Science.gov

Sample records for rapid hardening cement

  1. Temperature influence on water transport in hardened cement pastes

    SciTech Connect

    Drouet, Emeline; Poyet, Stéphane; Torrenti, Jean-Michel

    2015-10-15

    Describing water transport in concrete is an important issue for the durability assessment of radioactive waste management reinforced concrete structures. Due to the waste thermal output such structures would be submitted to moderate temperatures (up to 80 °C). We have then studied the influence of temperature on water transport within hardened cement pastes of four different formulations. Using a simplified approach (describing only the permeation of liquid water) we characterized the properties needed to describe water transport (up to 80 °C) using dedicated experiments. For each hardened cement paste the results are presented and discussed.

  2. Action Of Cement Hardening On Artificial Hip Joint Components

    NASA Astrophysics Data System (ADS)

    Roder, U.; Niess, N.; Plitz, W.

    1981-05-01

    Artificial acetabular cups loose their original shape and undergo deformations during implantation, caused by the polymerization shrinkage of the bone cement. In laboratory experiments, two acetabula of different material - both common in clinical use - were studied by holographic real-time interferometry during cement hardening. This method picks up characteristic features in the transient behaviour of the form changes. It is shown, that temperature, porosity and shrinkage of the cement has a large influence on the form of a polyethylene acetabulum, whereas there is only little effect on an acetabulum, made of alumina ceramic.

  3. Open photoacoustic cell for thermal diffusivity measurements of a fast hardening cement used in dental restoring

    NASA Astrophysics Data System (ADS)

    Astrath, F. B. G.; Astrath, N. G. C.; Baesso, M. L.; Bento, A. C.; Moraes, J. C. S.; Santos, A. D.

    2012-01-01

    Thermal diffusivity and conductivity of dental cements have been studied using open photoacoustic cell (OPC). The samples consisted of fast hardening cement named CER, developed to be a root-end filling material. Thermal characterization was performed in samples with different gel/powder ratio and particle sizes and the results were compared to the ones from commercial cements. Complementary measurements of specific heat and mass density were also performed. The results showed that the thermal diffusivity of CER tends to increase smoothly with gel volume and rapidly against particle size. This behavior was linked to the pores size and their distribution in the samples. The OPC method was shown to be a valuable way in deriving thermal properties of porous material.

  4. Undrained heating and anomalous pore-fluid pressurization of a hardened cement paste

    NASA Astrophysics Data System (ADS)

    Ghabezloo, S.; Sulem, J.; Saint-Marc, J.

    2009-04-01

    Temperature increase in a fluid-saturated porous material in undrained condition leads to volume change and pore pressure increase due to the discrepancy between the thermal expansion coefficients of the pore fluid and of the pore volume. This increase of the pore fluid pressure induces a reduction of the effective mean stress, and can lead to shear failure or hydraulic fracturing. This phenomenon is important is important in environmental engineering for radioactive (exothermal) waste disposal in deep clay geological formations as well as in geophysics in the studies of rapid fault slip events when shear heating tends to increase the pore pressure and to decrease the effective compressive stress and the shearing resistance of the fault material (Sulem et al. 2007). This is also important in petroleum engineering where the reservoir rock and the well cement lining undergo sudden temperature changes for example when extracting heavy oils by steam injection methods. This rapid increase of temperature could damage cement sheath integrity of wells and lead to loss of zonal isolation. The values of the thermal pressurization coefficient, defined as the pore pressure increase due to a unit temperature increase in undrained condition, is largely dependent upon the nature of the material, the state of stress, the range of temperature change, the induced damage. The large variability of the thermal pressurization coefficient reported in the literature for different porous materials with values from 0.01MPa/°C to 1.5MPa/°C highlights the necessity of laboratory studies. This phenomenon of thermal pressurization is studied experimentally for a fluid-saturated hardened cement paste in an undrained heating test. Careful analysis of the effect of the dead volume of the drainage system of the triaxial cell has been performed based on a simple correction method proposed by Ghabezloo and Sulem (2008, 2009). The drained and undrained thermal expansion coefficients of the hardened

  5. Influence of electrified surface of cementitious materials on structure formation of hardened cement paste

    NASA Astrophysics Data System (ADS)

    Alekseev, A.; Gusakov, A.

    2015-01-01

    To provide high strength and durability of concrete it is necessary to study the influence of physical and chemical and mechanical principles of dispersed cementitious systems. The experimental bench was developed to study the influence of electrified surface of cementitious materials on structure formation of hardened cement paste. The test bench allows accelerating the processes of dissolution of cementing materials in water due to influence of electric discharge on their surface. Cement activation with high-voltage corona discharge when AC current is applied allows increasing the ultimate compressive strength of hardened cement paste by 46% at the age of one day and by 20% at the age of 28 days.

  6. Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers

    NASA Astrophysics Data System (ADS)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya

    2016-01-01

    The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significant change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.

  7. Monitoring of hardening and hygroscopic induced strains in a calcium phosphate bone cement using FBG sensor.

    PubMed

    Bimis, A; Karalekas, D; Bouropoulos, N; Mouzakis, D; Zaoutsos, S

    2016-07-01

    This study initially deals with the investigation of the induced strains during hardening stage of a self-setting calcium phosphate bone cement using fiber-Bragg grating (FBG) optical sensors. A complementary Scanning Electron Microscopy (SEM) investigation was also conducted at different time intervals of the hardening period and its findings were related to the FBG recordings. From the obtained results, it is demonstrated that the FBG response is affected by the microstructural changes taking place when the bone cement is immersed into the hardening liquid media. Subsequently, the FBG sensor was used to monitor the absorption process and hygroscopic response of the hardened and dried biocement when exposed to a liquid/humid environment. From the FBG-based calculated hygric strains as a function of moisture concentration, the coefficient of moisture expansion (CME) of the examined bone cement was obtained, exhibiting two distinct linear regions. PMID:26807773

  8. Microstructural and bulk property changes in hardened cement paste during the first drying process

    SciTech Connect

    Maruyama, Ippei; Nishioka, Yukiko; Igarashi, Go; Matsui, Kunio

    2014-04-01

    This paper reports the microstructural changes and resultant bulk physical property changes in hardened cement paste (hcp) during the first desorption process. The microstructural changes and solid-phase changes were evaluated by water vapor sorption, nitrogen sorption, ultrasonic velocity, and {sup 29}Si and {sup 27}Al nuclear magnetic resonance. Strength, Young's modulus, and drying shrinkage were also examined. The first drying process increased the volume of macropores and decreased the volume of mesopores and interlayer spaces. Furthermore, in the first drying process globule clusters were interconnected. During the first desorption, the strength increased for samples cured at 100% to 90% RH, decreased for 90% to 40% RH, and increased again for 40% to 11% RH. This behavior is explained by both microstructural changes in hcp and C–S–H globule densification. The drying shrinkage strains during rapid drying and slow drying were compared and the effects of the microstructural changes and evaporation were separated.

  9. Determining the water-cement ratio, cement content, water content and degree of hydration of hardened cement paste: Method development and validation on paste samples

    SciTech Connect

    Wong, H.S. Buenfeld, N.R.

    2009-10-15

    We propose a new method to estimate the initial cement content, water content and free water/cement ratio (w/c) of hardened cement-based materials made with Portland cements that have unknown mixture proportions and degree of hydration. This method first quantifies the composition of the hardened cement paste, i.e. the volumetric fractions of capillary pores, hydration products and unreacted cement, using high-resolution field emission scanning electron microscopy (FE-SEM) in the backscattered electron (BSE) mode and image analysis. From the obtained data and the volumetric increase of solids during cement hydration, we compute the initial free water content and cement content, hence the free w/c ratio. The same method can also be used to calculate the degree of hydration. The proposed method has the advantage that it is quantitative and does not require comparison with calibration graphs or reference samples made with the same materials and cured to the same degree of hydration as the tested sample. This paper reports the development, assumptions and limitations of the proposed method, and preliminary results from Portland cement pastes with a range of w/c ratios (0.25-0.50) and curing ages (3-90 days). We also discuss the extension of the technique to mortars and concretes, and samples made with blended cements.

  10. Effect of the surface topographic modification on cytocompatibility of hardened calcium phosphate cement

    NASA Astrophysics Data System (ADS)

    Li, Jiyan; He, Fupo; Ye, Jiandong

    2013-06-01

    As cells are inherently sensitive to local nanoscale patterns of topography, the aim of this study was to determine the effect of the topographic modification of hardened calcium phosphate cement on cell response which was conducted with MC3T3-E1 cells. The results exhibited that the samples with regular blade-like crystalline structure had better cell response (cell attachment, viability, proliferation and differentiation) compared to those with irregular blade-like crystalline structure. The method of topographic modification is promising for developing a novel biomaterial of hardened calcium phosphate cement for bone repair.

  11. Monitoring of sulphate attack on hardened cement paste studied by synchrotron XRD

    NASA Astrophysics Data System (ADS)

    Stroh, J.; Meng, B.; Emmerling, F.

    2015-10-01

    The complex matter of external sulphate attack on cement-based construction materials is still not completely understood. The concentration of sulphate is a crucial factor for the formation of secondary phases and phase transitions of cement hydrates due to sulphate ingress into the microstructure. The sulphate attack on building materials for high and low sulphate concentrations was monitored by laboratory experiments. Hardened cement paste consisting of ordinary Portland cement (CEM I) were exposed to aqueous solutions of sodium sulphate for 18 months. Three sample compositions were used for this research, including different supplementary cementitious materials (SCM). The phase composition was determined for different time spans by high resolution synchrotron X-ray diffraction. Cross sections of exposed cement prisms were investigated as a representation of the microstructural profile. Based on the data, a temporal and spatial determination of the stages of the sulphate attack and the deterioration course was possible. Cement matrices blended with slag showed the highest resistance against sulphate attack.

  12. Chloride diffusivity in hardened cement paste from microscale analyses and accounting for binding effects

    NASA Astrophysics Data System (ADS)

    Carrara, P.; De Lorenzis, L.; Bentz, D. P.

    2016-08-01

    The diffusion of chloride ions in hardened cement paste (HCP) under steady-state conditions and accounting for the highly heterogeneous nature of the material is investigated. The three-dimensional HCP microstructures are obtained through segmentation of x-ray images of real samples as well as from simulations using the cement hydration model CEMHYD3D. Moreover, the physical and chemical interactions between chloride ions and HCP phases (binding), along with their effects on the diffusive process, are explicitly taken into account. The homogenized diffusivity of the HCP is then derived through a least square homogenization technique. Comparisons between numerical results and experimental data from the literature are presented.

  13. Deteriorated hardened cement paste structure analyzed by XPS and {sup 29}Si NMR techniques

    SciTech Connect

    Kurumisawa, Kiyofumi; Nawa, Toyoharu; Owada, Hitoshi; Shibata, Masahito

    2013-10-15

    In this report, X-ray photoelectron spectroscopy (XPS) and {sup 29}Si-MAS-NMR was used for the evaluation of deteriorated hardened cement pastes. The deterioration by ammonium nitrate solution was accompanied by changes in the pore structure as well as by structural changes in the C–S–H in the hardened cement paste. The CaO/SiO{sub 2} ratio of the C–S–H decreased with the progress of deterioration, there was also polymerization of the silicate in the C–S–H. It was confirmed that the degree of polymerization of silicate of the C–S–H in hardened cement paste can be determined by XPS. It was also shown that the polymerization depends on the structure of the C–S–H. -- Highlights: •The polymerization of silicate of the C–S–H in the HCP can be observed by XPS. •The structure of C–S–H changed with the degree of calcium leaching. •The NMR result about silicate in C–S–H was in good agreement with the XPS result.

  14. Reactivity of NO2 and CO2 with hardened cement paste containing activated carbon

    NASA Astrophysics Data System (ADS)

    Horgnies, M.; Dubois-Brugger, I.; Krou, N. J.; Batonneau-Gener, I.; Belin, T.; Mignard, S.

    2015-07-01

    The development of building materials to reduce the concentration of NO2 is growing interest in a world where the air quality in urban areas is affected by the car traffic. The main binder in concrete is the cement paste that is partly composed of calcium hydroxide. This alkaline hydrate composing the hardened cement paste shows a high BET surface area (close to 100 m2.g-1) and can absorb low-concentrations of NO2. However, the presence of CO2 in the atmosphere limits the de-polluting effect of reference cement paste, mainly due to carbonation of the alkaline hydrates (reaction leading to the formation of calcium carbonate). The results established in this paper demonstrate that the addition of activated carbon in the cement paste, because of its very high BET surface area (close to 800 m2.g-1) and its specific reactivity with NO2, can significantly improve and prolong the de-polluting effect in presence of CO2 and even after complete carbonation of the surface of the cement paste.

  15. Water dynamics in hardened ordinary Portland cement paste or concrete: from quasielastic neutron scattering.

    PubMed

    Bordallo, Heloisa N; Aldridge, Laurence P; Desmedt, Arnaud

    2006-09-14

    Portland cement reacts with water to form an amorphous paste through a chemical reaction called hydration. In concrete the formation of pastes causes the mix to harden and gain strength to form a rock-like mass. Within this process lies the key to a remarkable peculiarity of concrete: it is plastic and soft when newly mixed, strong and durable when hardened. These qualities explain why one material, concrete, can build skyscrapers, bridges, sidewalks and superhighways, houses, and dams. The character of the concrete is determined by the quality of the paste. Creep and shrinkage of concrete specimens occur during the loss and gain of water from cement paste. To better understand the role of water in mature concrete, a series of quasielastic neutron scattering (QENS) experiments were carried out on cement pastes with water/cement ratio varying between 0.32 and 0.6. The samples were cured for about 28 days in sealed containers so that the initial water content would not change. These experiments were carried out with an actual sample of Portland cement rather than with the components of cement studied by other workers. The QENS spectra differentiated between three different water interactions: water that was chemically bound into the cement paste, the physically bound or "glassy water" that interacted with the surface of the gel pores in the paste, and unbound water molecules that are confined within the larger capillary pores of cement paste. The dynamics of the "glassy" and "unboud" water in an extended time scale, from a hundred picoseconds to a few nanoseconds, could be clearly differentiated from the data. While the observed motions on the picosecond time scale are mainly stochastic reorientations of the water molecules, the dynamics observed on the nanosecond range can be attributed to long-range diffusion. Diffusive motion was characterized by diffusion constants in the range of (0.6-2) 10(-9) m(2)/s, with significant reduction compared to the rate of diffusion

  16. Determining the slag fraction, water/binder ratio and degree of hydration in hardened cement pastes

    SciTech Connect

    Yio, M.H.N. Phelan, J.C.; Wong, H.S.; Buenfeld, N.R.

    2014-02-15

    A method for determining the original mix composition of hardened slag-blended cement-based materials based on analysis of backscattered electron images combined with loss on ignition measurements is presented. The method does not require comparison to reference standards or prior knowledge of the composition of the binders used. Therefore, it is well-suited for application to real structures. The method is also able to calculate the degrees of reaction of slag and cement. Results obtained from an experimental study involving sixty samples with a wide range of water/binder (w/b) ratios (0.30 to 0.50), slag/binder ratios (0 to 0.6) and curing ages (3 days to 1 year) show that the method is very promising. The mean absolute errors for the estimated slag, water and cement contents (kg/m{sup 3}), w/b and s/b ratios were 9.1%, 1.5%, 2.5%, 4.7% and 8.7%, respectively. 91% of the estimated w/b ratios were within 0.036 of the actual values. -- Highlights: •A new method for estimating w/b ratio and slag content in cement pastes is proposed. •The method is also able to calculate the degrees of reaction of slag and cement. •Reference standards or prior knowledge of the binder composition are not required. •The method was tested on samples with varying w/b ratios and slag content.

  17. VOLATILITY AND EXTRACTABILITY OF STRONTIUM-85, CESIUM-134, COBALT-57, AND URANIUM AFTER HEATING HARDENED PORTLAND CEMENT PASTE

    EPA Science Inventory

    The objective of this preliminary investigation is to determine the effect of heating hardened Portland cement paste (the cementitious component of concrete) in aiding the removal of common radionuclide contaminants including 137Cs, 90Sr, 60Co, and U. Direct volatilization of ra...

  18. Solid-liquid distribution of selected concrete admixtures in hardened cement pastes

    SciTech Connect

    Glaus, Martin A.

    2006-07-01

    The distribution between hardened cement paste and cement pore water of selected concrete admixtures (BZMs), i.e., sulfonated naphthalene-formaldehyde condensate (NS), lignosulfonate (LS) and a gluconate-containing plasticiser used at the Paul Scherrer Institute for waste conditioning, was measured. Sorption data were fitted to a single-site Langmuir isotherm with affinity constants K = (19 {+-} 4) dm{sup 3} g{sup -1} for NS, K = (2.1 {+-} 0.6) dm{sup 3} g{sup -1} for LS and sorption capacities q = (81 {+-} 16) g kg{sup -1} for NS, q = (43 {+-} 8) g kg{sup -1} for LS. In the case of gluconate, a two-site Langmuir sorption model was necessary to fit the data satisfactorily. Sorption parameters for gluconate were K {sub 1} = (2 {+-} 1) x 10{sup 6} dm{sup 3} mol{sup -1} and q {sub 1} = (0.04 {+-} 0.02) mol kg{sup -1} for the stronger binding site and K {sub 2} = (2.6 {+-} 1.1) x 10{sup 3} dm{sup 3} mol{sup -1} and q {sub 2} = (0.7 {+-} 0.3) mol kg{sup -1} for the weaker binding site. Desorption of these BZMs from cement pastes and pore water in cement specimens prepared in the presence of the BZMs were then used to test the model. It was found that only minor parts of NS and LS could be mobilised as long as the cement composition was intact, whereas the sorption of gluconate was found to be reversible. The Langmuir model makes valuable predictions in the qualitative sense in that the pore water concentration of the BZMs is reduced by several orders of magnitude as compared to the initial concentrations. In view of the necessity for conservative predictions used in the safety analysis for disposal of radioactive waste, however, the predictions are unsatisfactory in that the measured pore water concentrations of NS and LS were considerably larger than the predicted values. This conclusion does not apply for gluconate, because its concentration in cement pore water was below the detection limit of {approx}50 nM.

  19. Acoustic emission for characterising the crack propagation in strain-hardening cement-based composites (SHCC)

    SciTech Connect

    Paul, S.C.; Pirskawetz, S.; Zijl, G.P.A.G. van; Schmidt, W.

    2015-03-15

    This paper presents the analysis of crack propagation in strain-hardening cement-based composite (SHCC) under tensile and flexural load by using acoustic emission (AE). AE is a non-destructive technique to monitor the development of structural damage due to external forces. The main objective of this research was to characterise the cracking behaviour in SHCC in direct tensile and flexural tests by using AE. A better understanding of the development of microcracks in SHCC will lead to a better understanding of pseudo strain-hardening behaviour of SHCC and its general performance. ARAMIS optical deformation analysis was also used in direct tensile tests to observe crack propagation in SHCC materials. For the direct tensile tests, SHCC specimens were prepared with polyvinyl alcohol (PVA) fibre with three different volume percentages (1%, 1.85% and 2.5%). For the flexural test beam specimens, only a fibre dosage of 1.85% was applied. It was found that the application of AE in SHCC can be a good option to analyse the crack growth in the specimens under increasing load, the location of the cracks and most importantly the identification of matrix cracking and fibre rupture or slippage.

  20. The influence of fly ash on obtaining quality plastic and hardened properties of portland cement concrete

    SciTech Connect

    Mohamad, A.B.

    1989-01-01

    An experimental test burn was done substituting coal with Refuse-Derived-Fuel(RDF) consisting mainly of waste paper and plastic with heating value of 6000 to 8000 BTU/lb. Twelve test burn days were run with 4 days of 5% RDF and 8 days of 10% RDF. The effect of RDF on the chemical and physical properties of fly ash and the effect of coal-RDF fly ash on the properties of plastic and hardened concrete were investigated. Coal fly ash from Merrimack Power Station was classified as an ASTM class F complying to the chemical and physical properties of ASTM C-618 specifications. Coal-RDF fly ash produced during the test burn showed chemical and physical properties comparable to coal fly ash. The average chemical and physical properties of coal-RDF fly ash complied to ASTM C-618 specifications. Concrete made with coal fly ash and coal-RDF fly ash showed increased slump in high paste mixes and decreased slump in low paste mixes. Air content decreased with increased fly ash at a constant dosage of air entrainment. Compressive strength the fly ash concrete at and beyond 28 days were comparable to ordinary portland cement concrete. Heavy metals were not leached from coal fly ash and coal-RDF fly ash concrete during a column test using a synthetic acid rain of pH 4.5 even though small quantities of cadmium and lead were found to leach from coal fly ash and coal-RDF fly ash during the beginning of the test. The volume of the acid rain was approximately equivalent to 7 years of precipitation, assuming 36 inches of rain per year. A microscopic investigation comparing the structure of pastes made with coal fly ash, coal-RDF fly ash, incinerator fly ash and incinerator bottom ash was conducted.

  1. Injectable and rapid-setting calcium phosphate bone cement with dicalcium phosphate dihydrate.

    PubMed

    Burguera, Elena F; Xu, Hockin H K; Weir, Michael D

    2006-04-01

    Calcium phosphate cement (CPC) sets in situ with intimate adaptation to the contours of defect surfaces, and forms an implant having a structure and composition similar to hydroxyapatite, the putative mineral in teeth and bones. The objective of the present study was to develop an injectable CPC using dicalcium phosphate dihydrate (DCPD) with a high solubility for rapid setting. Two agents were incorporated to impart injectability and fast-hardening to the cement: a hardening accelerator (sodium phosphate) and a gelling agent (hydroxypropyl methylcellulose, HPMC). The cement with DCPD was designated as CPC(D), and the conventional cement was referred to as CPC(A). Using water without sodium phosphate, CPC(A) had a setting time of 82 +/- 6 min. In contrast, CPC(D) exhibited rapid setting with a time of 17 +/- 1 min. At 0.2 mol/L sodium phosphate, setting time for CPC(D) was 15 +/- 1 min, significantly faster than 40 +/- 2 min for CPC(A) (Tukey's at 0.95). Sodium phosphate decreased the paste injectability (measured as the paste mass extruded from the syringe divided by the original paste mass inside the syringe). However, the addition of HPMC dramatically increased the paste injectability. For CPC(D), the injectability was increased from 65% +/- 12% without HPMC to 98% +/- 1% with 1% HPMC. Injectability of CPC(A) was also doubled to 99% +/- 1%. The injectable and rapid-setting CPC(D) possessed flexural strength and elastic modulus values overlapping the reported values for sintered porous hydroxyapatite implants and cancellous bone. In summary, the rapid setting and relatively high strength and elastic modulus of CPC(D) should help the graft to quickly attain strength and geometrical integrity within a short period of time postoperatively. Furthermore, the injectability of CPC(D) may have potential for procedures involving defects with limited accessibility or narrow cavities, when there is a need for precise placement of the paste, and when using minimally invasive

  2. Rapid setting of portland cement by greenhouse carbon dioxide capture

    SciTech Connect

    Wagh, A.S.; Singh, D.; Knox, L.J.

    1994-04-01

    Following the work by Berger et al. on rapid setting of calcium silicates by carbonation, a method of high-volume capture of CO{sub 2} in portland cement has been developed. Typically, 10--24 wt. % of CO{sub 2} produced by the calcination of calcium carbonate during clinkering, may be captured, and the set cement acquires most of its full strength in less than a day. The approach will have economic advantages in fabrication of precast structures, in emergency development of infrastructure during natural disasters, and in defense applications. Moreover, it will help the cement industry comply with the Clean Air Act of 1990 by sequestering the greenhouse carbon dioxide.

  3. Radon exhalation of hardening concrete: monitoring cement hydration and prediction of radon concentration in construction site.

    PubMed

    Kovler, Konstantin

    2006-01-01

    The unique properties of radon as a noble gas are used for monitoring cement hydration and microstructural transformations in cementitious system. It is found that the radon concentration curve for hydrating cement paste enclosed in the chamber increases from zero (more accurately - background) concentrations, similar to unhydrated cement. However, radon concentrations developed within 3 days in the test chamber containing cement paste were approximately 20 times higher than those of unhydrated cement. This fact proves the importance of microstructural transformations taking place in the process of cement hydration, in comparison with cement grain, which is a time-stable material. It is concluded that monitoring cement hydration by means of radon exhalation method makes it possible to distinguish between three main stages, which are readily seen in the time dependence of radon concentration: stage I (dormant period), stage II (setting and intensive microstructural transformations) and stage III (densification of the structure and drying). The information presented improves our understanding of the main physical mechanisms resulting in the characteristic behavior of radon exhalation in the course of cement hydration. The maximum value of radon exhalation rate observed, when cement sets, can reach 0.6 mBq kg(-1) s(-1) and sometimes exceeds 1.0 mBq kg(-1) s(-1). These values exceed significantly to those known before for cementitious materials. At the same time, the minimum ventilation rate accepted in the design practice (0.5 h(-1)), guarantees that the concentrations in most of the cases will not exceed the action level and that they are not of any radiological concern for construction workers employed in concreting in closed spaces. PMID:16356604

  4. Sensitivity of concrete properties to the pore structure of hardened cement paste

    SciTech Connect

    Oktar, O.N.; Moral, H.; Tasdemir, M.A.

    1996-11-01

    Coefficients and degrees of sensitivity are introduced to define quantitatively the sensitivity of concrete properties to the pore structure of cement paste. Proposed parameters have been applied to experimental data obtained from 60 different concrete mixtures, measuring eight properties for each mix and the results obtained have been discussed and evaluated.

  5. Deterioration of hardened cement paste under combined sulphate-chloride attack investigated by synchrotron XRD

    NASA Astrophysics Data System (ADS)

    Stroh, J.; Meng, B.; Emmerling, F.

    2016-06-01

    The exact mechanisms of the phase transitions caused by a combined sulphate-chloride attack are discussed controversially. The main points concern the mutual influences of sulphate and chloride ions during the secondary binding processes of these anions within cement hydrate phases. We simulated combined sulphate-chloride attack under laboratory conditions using solutions containing NaCl and Na2SO4 in different concentrations. Three sample compositions were used for the preparation of the specimens. In two of them, 30% of Portland cement was replaced by supplementary cementitious materials (fly ash, slag). The phase distribution in the samples was determined using synchrotron X-ray diffraction. The analysis with high spatial resolution allows the localisation of the secondary phase formation in the microstructural profile of the sample. A mechanism of the phase developments under combined sulphate-chloride attack is derived.

  6. Damage to the pore structure of hardened portland cement paste by mercury intrusion

    SciTech Connect

    Olson, R.A.; Neubauer, C.M.; Jennings, H.M.

    1997-09-01

    Microstructural changes due to mercury intrusion porosimetry were documented in a 6-month-old sample of ordinary portland cement paste made with a water/cement ratio of 0.5. Specimens before and after mercury intrusion were viewed at 60% relative humidity using an environmental scanning electron microscope. Specimens were intruded to a pressure just below the critical threshold pressure, removed for observation, then intruded to a pressure well above the critical threshold pressure. Significant damage caused by relatively low pressures of 10--20 MPa was found in the interior of the sample. The connectivity of pores in the 10--1 {micro}m size range was much higher after intrusion.

  7. Evaluation of a low temperature hardening Inorganic Phosphate Cement for high-temperature applications

    SciTech Connect

    Alshaaer, M.; Cuypers, H.; Mosselmans, G.; Rahier, H.; Wastiels, J.

    2011-01-15

    Phase and mechanical changes of Inorganic Phosphate Cement (IPC) are identified along with changes in macro properties as functions of temperature and time. In addition to amorphous phases, the presence of significant amounts of brushite and wollastonite in the reference IPC is confirmed using X-ray diffraction. The thermal behavior of IPC up to 1000 {sup o}C shows that contraction of the solid phase in IPC due to chemical transformations causes reduction in the volume of the material. Also the ongoing meta-stable calcium phosphate transformations and reactions over a long time contribute significantly to the phase instability of the material at ambient conditions. It is found that the strength of IPC increases with ageing at ambient conditions but the formation microcracks below 105 {sup o}C causes a sharp reduction in the mechanical performance of IPC. According to the results obtained by Mercury intrusion porosimetry, the pore system of the reference IPC is dominated by mesopores.

  8. Ultrasound monitoring of the influence of different accelerating admixtures and cement types for shotcrete on setting and hardening behaviour

    SciTech Connect

    Belie, N. de . E-mail: nele.debelie@ugent.be; Grosse, C.U.; Kurz, J.; Reinhardt, H.-W.

    2005-11-15

    The possible use of ultrasound measurements for monitoring setting and hardening of mortar containing different accelerating admixtures for shotcrete was investigated. The sensitivity to accelerator type (alkaline aluminate or alkali-free) and dosage, and accelerator-cement compatibility were evaluated. Furthermore, a new automatic onset picking algorithm for ultrasound signals was tested. A stepwise increase of the accelerator dosage resulted in increasing values for the ultrasound pulse velocity at early ages. In the accelerated mortar no dormant period could be noticed before the pulse velocity started to increase sharply, indicating a quick change in solid phase connectivity. The alkaline accelerator had a larger effect than the alkali-free accelerator, especially at ages below 90 min. The effect of the alkali-free accelerator was at very early age more pronounced on mortar containing CEM I in comparison with CEM II, while the alkaline accelerator had a larger influence on mortar containing CEM II. The increase of ultrasound energy could be related to the setting phenomenon and the maximum energy was reached when the end of workability was approached. Only the alkaline accelerator caused a significant reduction in compressive strength and this for all the dosages tested.

  9. Desorption of bis(2-chloroethyl) sulfide, mustard agent, from the surface of hardened cement paste (HCP) wafers.

    PubMed

    Tang, Hairong; Zhou, Xuezhi; Guan, Yingqiang; Zhou, Liming; Wang, Xinming; Yan, Huijuan

    2013-05-01

    The decontamination of surfaces exposed to chemical warfare agents is an interesting scientific topic. The desorption behavior of bis(2-chloroethyl) sulfide (sulfur mustard, HD) from the surface of the HD-contaminated hardened cement paste (HCP) was investigated under different weather conditions, which should provide scientific reference data for protection and decontamination projects involving HD-contaminated HCP in different conditions. The desorption of HD from the surface of HCP wafers was studied, and the effects of the purge air flow rate, water content, sorption temperature, and substrate age were investigated. HD desorption was detected from the surface of HD-contaminated HCP, but the desorption velocity was relatively slow. The desorption quantity remained within an order of magnitude throughout a time span of 36h (25°C at 200mL/min of purge air), and the amount of HD that was desorbed from each square meter of HCP surface was approximately 1.1g (25°C at 200mL/min of purge air), which was approximately 5.5 percent of the total HD that was initially applied. A higher flow rate of the purge air, increased water content, and longer substrate age of HCP all increased the HD desorption. In contrast, increased temperatures suppressed HD desorption. PMID:23395389

  10. Quantitative Phosphoproteomics Reveals Signaling Mechanisms Associated with Rapid Cold Hardening in a Chill-Tolerant Fly.

    PubMed

    Teets, Nicholas M; Denlinger, David L

    2016-08-01

    Rapid cold hardening (RCH) is a physiological adaptation in which brief chilling (minutes to hours) significantly enhances the cold tolerance of insects. RCH allows insects to cope with sudden cold snaps and diurnal variation in temperature, but the mechanistic basis of this rapid stress response is poorly understood. Here, we used phosphoproteomics to identify phosphorylation-mediated signaling events that are regulated by chilling that induces RCH. Phosphoproteomic changes were measured in both brain and fat bodies, two tissues that are essential for sensing cold and coordinating RCH at the organismal level. Tissues were chilled ex vivo, and changes in phosphoprotein abundance were measured using 2D electrophoresis coupled with Pro-Q diamond labeling of phosphoproteins followed by protein identification via LC-MS/MS. In both tissues, we observed an abundance of protein phosphorylation events in response to chilling. Some of the proteins regulated by RCH-inducing chilling include proteins involved in cytoskeletal reorganization, heat shock proteins, and proteins involved in the degradation of damaged cellular components via the proteasome and autophagosome. Our results suggest that phosphorylation-mediated signaling cascades are major drivers of RCH and enhance our mechanistic understanding of this complex phenotype. PMID:27362561

  11. Effect of an organic additive on the rheology of an aluminous cement paste and consequences on the densification of the hardened material

    NASA Astrophysics Data System (ADS)

    El Hafiane, Y.; Smith, A.; Bonnet, J. P.; Tanouti, B.

    2005-03-01

    The material used in the present work is Secar 71 (Lafarge) mixed with water containing an organic additive (acetic acid noted HOAc). The rheological behavior of these pastes is studied. The best dispersion is obtained when the mass content of the additive with respect to the cement is equal to 0.5%. The microstructural characterizations of samples aged 4 days at 20° C and 95 % relative humidity reveal a significant increase in the density and a reduction in porosity for very small percentages of additive. The remarkable effect of the acetic acid on the microstructure of hardened material is correlated with its good dispersing action.

  12. On the use of peak-force tapping atomic force microscopy for quantification of the local elastic modulus in hardened cement paste

    SciTech Connect

    Trtik, Pavel; Kaufmann, Josef; Volz, Udo

    2012-01-15

    A surface of epoxy-impregnated hardened cement paste was investigated using a novel atomic force microscopy (AFM) imaging mode that allows for the quantitative mapping of the local elastic modulus. The analyzed surface was previously prepared using focussed ion beam milling. The same surface was also characterized by electron microscopy and energy-dispersive X-ray spectroscopy. We demonstrate the capability of this quantitative nanomechanical mapping to provide information on the local distribution of the elastic modulus (from about 1 to about 100 GPa) with a spatial resolution in the range of decananometers, that corresponds to that of low-keV back-scattered electron imaging. Despite some surface roughness which affects the measured nanomechanical properties it is shown that topography, adhesion and Young's modulus can be clearly distinguished. The quantitative mapping of the local elastic modulus is able to discriminate between phases in the cement paste microstructure that cannot be distinguished from the corresponding back-scattered electron images.

  13. Rapid desiccation hardening changes the cuticular hydrocarbon profile of Drosophila melanogaster.

    PubMed

    Stinziano, Joseph R; Sové, Richard J; Rundle, Howard D; Sinclair, Brent J

    2015-02-01

    The success of insects in terrestrial environments is due in large part to their ability to resist desiccation stress. Since the majority of water is lost across the cuticle, a relatively water-impermeable cuticle is a major component of insect desiccation resistance. Cuticular permeability is affected by the properties and mixing effects of component hydrocarbons, and changes in cuticular hydrocarbons can affect desiccation tolerance. A pre-exposure to a mild desiccation stress increases duration of desiccation survival in adult female Drosophila melanogaster, via a decrease in cuticular permeability. To test whether this acute response to desiccation stress is due to a change in cuticular hydrocarbons, we treated male and female D. melanogaster to a rapid desiccation hardening (RDH) treatment and used gas chromatography to examine the effects on cuticular hydrocarbon composition. RDH led to reduced proportions of unsaturated and methylated hydrocarbons compared to controls in females, but although RDH modified the cuticular hydrocarbon profile in males, there was no coordinated pattern. These data suggest that the phenomenon of RDH leading to reduced cuticular water loss occurs via an acute change in cuticular hydrocarbons that enhances desiccation tolerance in female, but not male, D. melanogaster. PMID:25460832

  14. Rapid growth rates of syndepositional marine aragonite cements in steep marginal slope deposits, Bahamas and Belize

    SciTech Connect

    Grammer, G.M.; Ginsburg, R.N.; Swart, P.K.; McNeill, D.F. . Div. of Marine Geology); Jull, A.J.T. . NSF Accelerator Facility); Prezbindowski, D.R. )

    1993-09-01

    Growth rates of marine botryoidal aragonite cements from steep (35-45[degree]) marginal slope deposits in the Bahamas and Belize have been determined by accelerator mass spectrometer radiocarbon dating of samples taken at the base and top of individual botryoids. The pore-filling cements, which range from approximately 11,000-13,000 years old, grew at average rates of 8-10mm/100 yr with maximum rates > 25mm/100 yr. Radiocarbon dating of coexisting skeletal components indicates that cementation was syndepositional. Microsampling transects across individual botryoids for stable-isotope analyses show little variation in [delta][sup 31]C and [delta][sup 18]O, supporting the conclusion that cementation was extremely rapid. Although the cements show a progressive depletion in isotopic composition of approximately 1[per thousand]([delta][sup 13]C) and 2[per thousand]([delta][sup 18]O) from 13 ka to 11 ka, the average variation ([delta][sub 1]) within individual pore-filling cements, ranging in size 2 mm to 32 mm (bottom to top), was 0.11[per thousand]([delta][sup 13]C) and 0.14[per thousand]([delta][sup 18]O). Results of this study provide the first quantitative data on growth rates of marine carbonate cements in a marginal slope environment. The data indicate that marginal slope deposits may lithify within several tens of years and suggest that geologically instantaneous cementation may be critical in stabilizing steep carbonate slope deposits at or above angles of repose.

  15. Liquid-solid phase transition alloy as reversible and rapid molding bone cement.

    PubMed

    Yi, Liting; Jin, Chao; Wang, Lei; Liu, Jing

    2014-12-01

    Acrylic bone cement has been an essential non-metallic implant used as fixing agent in the cemented total joint arthroplasty (THA). However, the currently available materials based mainly on polymethylmethacrylate (PMMA) still encounter certain limitations, such as time-consuming polymerization, thermal and chemical necrosis and troublesome revision procedure. Here from an alternative way, we proposed for the first time to adopt the injectable alloy cement to address such tough issues through introducing its unique liquid-solid phase transition mechanism. A typical cement along this way is thus made of an alloy Bi/In/Sn/Zn with a specifically designed low melting point 57.5 °C, which enables its rapid molding into various desired shapes with high plasticity and ultimate metallic behaviors. The fundamental characteristics including the mechanical strength, biocompatibility and phase transition-induced thermal effects have been clarified to demonstrate the importance of such alloy as unconventional cement with favorable merits. In addition, we also disclosed its advantage as an excellent contrast agent for radiation imaging on the bone interior structure which is highly beneficial for guiding the surgery and monitoring the therapeutic effects. Particularly, the proposed alloy cement with reversible phase transition feature significantly simplifies the revision of the cement and prosthesis. This study opens the way for employing the injectable alloy materials as reversible bone cement to fulfill diverse clinical needs in the coming time. PMID:25239039

  16. Pre-adapted to the maritime Antarctic?--rapid cold hardening of the midge, Eretmoptera murphyi.

    PubMed

    Everatt, M J; Worland, M R; Bale, J S; Convey, P; Hayward, S A L

    2012-08-01

    During the 1960s, the midge, Eretmoptera murphyi, was transferred from sub-Antarctic South Georgia (55°S 37°W) where it is endemic to a single location on maritime Antarctic Signy Island (60°S 45°W). Its distribution has since expanded considerably, suggesting that it is pre-adapted to the more severe conditions further south. To test one aspect of the level of its pre-adaptation, the rapid cold hardening (RCH) response in this species was investigated. When juvenile (L1-L2) and mature (L3-L4) larvae of E. murphyi were directly exposed to progressively lower temperatures for 8h, they exhibited Discriminating Temperatures (DTemp, temperature at which there is 10-20% survival of exposed individuals) of -11.5 and -12.5°C, respectively. The mean SCP was above -7.5°C in both larval groups, confirming the finding of previous studies that this species is freeze-tolerant. Following gradual cooling (0.2°Cmin(-1)), survival was significantly greater at the DTemp in both larval groups. The response was strong, lowering the lower lethal temperature (LLT) by up to 6.5°C and maintaining survival above 80% for at least 22h at the DTemp. RCH was also exhibited during the cooling phase of an ecologically relevant thermoperiodic cycle (+4°C to -3°C). Mechanistically, the response did not affect freezing, with no alteration in the supercooling point (SCP) found following gradual cooling, and was not induced while the organism was in a frozen state. These results are discussed in light of E. murphyi's pre-adaptation to conditions on Signy Island and its potential to colonize regions further south in the maritime Antarctic. PMID:22684111

  17. Observation and quantification of water penetration into Strain Hardening Cement-based Composites (SHCC) with multiple cracks by means of neutron radiography

    NASA Astrophysics Data System (ADS)

    Zhang, P.; Wittmann, F. H.; Zhao, T. J.; Lehmann, E. H.; Tian, L.; Vontobel, P.

    2010-08-01

    Durability of reinforced concrete structures has become a crucial issue with respect to economy, ecology and sustainability. One major reason for durability problems of concrete structures is the limited strain capacity of cement-based materials under imposed tensile stress. By adding PVA fibers, a new material named Strain Hardening Cement-based Composites (SHCC) with high strain capacity can be produced. Due to the formation of multiple micro-cracks, wide cracks can be avoided in SHCC under an imposed strain. The high strain capacity, however, is beneficial with respect to durability only if the multi-crack formation in SHCC does not lead to significantly increased water penetration. If water and aggressive chemical compounds such as chlorides and sulfates dissolved in water penetrate into the cement-based matrix and reach the steel reinforcement service-life of reinforced concrete structures will be reduced significantly. In this project, neutron radiography was applied to observe and quantify the process of water penetration into uncracked SHCC and after the multi-crack formation. In addition, water penetration into integral water repellent cracked and uncracked SHCC, which has been produced by adding a silane-based water repellent agent to the fresh SHCC mortar has been investigated. Results will be discussed with respect to durability.

  18. YIELD STRENGTH PREDICTION FOR RAPID AGE-HARDENING HEAT TREATMENT OF ALUMINUM ALLOYS

    SciTech Connect

    Yin, Hebi; Sabau, Adrian S; Ludtka, Gerard Michael; Skszek, Timothy; Niu, X

    2013-01-01

    A constitutive model has been developed to predict the yield strength aging curves for aluminum casting alloys during non-isothermal age-hardening processes. The model provides the specific relationship between the process variables and yield strength. Several aging heat treatment scenarios have been investigated using the proposed model, including two-step aging recipes. Two-step aging heat treatments involve a low temperature regime to promote nucleation of secondary phases and a second step at higher temperature for the growth of the secondary phases. The predicted results show that yield strength of approximately 300MPa might be obtained in shorter aging time, of approximately 30 minutes. Thus, better mechanical properties can be obtained by optimizing the time-temperature schedules for the precipitation hardening process of heat treatable aluminum alloys.

  19. Manufacture and properties of fluoride cement

    NASA Astrophysics Data System (ADS)

    Malata-Chirwa, Charles David

    This research work aimed at characterising composition, hydration and physical properties of fluoride cement, by studying samples of the cement obtained from Malawi, and comparing them to ordinary Portland cement. By confirming the suitable characteristics of fluoride cement through this work, the results of the research work provide a good basis for the wider adoption of fluoride cement as an alternative to ordinary Portland cement, especially in developing economies. Numerous accounts have been cited regarding the production and use of fluoride cement. Since there have not been conclusive agreement as to its properties, this study was limited to the theories of successful incorporation of fluoride compounds in the manufacture of fluoride cement. Hence, the properties and characteristics reported in this study relate to the cement currently manufactured in Malawi, and, on a comparative basis only, to that manufactured in other parts of the world. Samples of the fluoride cement used in the study were obtained by synthetic manufacture of the cement using common raw materials for the manufacture of fluoride cement that is limestone, silica sand, and fluorspar. These samples were subjected to several comparative tests used to characterise cements including examination under x-ray diffractometer, scanning electron microscopy and tests for setting time and compressive strength. Under similar laboratory conditions, it was possible to prove that fluoride cement hardens more rapidly than ordinary Portland cement. Also observed during the experimental work is that fluoride cement develops higher compressive strengths than ordinary Portland cement. The hardening and setting times are significantly different between the two cements. Also the nature of the hydration products, that is the microstructural development is significantly different in the two cements. The differences brought about between the two cements are because of the presence of fluorine during the clinkering

  20. Design procedures for Strain Hardening Cement Composites (SHCC) and measurement of their shear properties by mechanical and 2-D Digital Image Correlation (DIC) method

    NASA Astrophysics Data System (ADS)

    Aswani, Karan

    The main objective of this study is to investigate the behaviour and applications of strain hardening cement composites (SHCC). Application of SHCC for use in slabs of common configurations was studied and design procedures are prepared by employing yield line theory and integrating it with simplified tri-linear model developed in Arizona State University by Dr. Barzin Mobasher and Dr. Chote Soranakom. Intrinsic material property of moment-curvature response for SHCC was used to derive the relationship between applied load and deflection in a two-step process involving the limit state analysis and kinematically admissible displacements. For application of SHCC in structures such as shear walls, tensile and shear properties are necessary for design. Lot of research has already been done to study the tensile properties and therefore shear property study was undertaken to prepare a design guide. Shear response of textile reinforced concrete was investigated based on picture frame shear test method. The effects of orientation, volume of cement paste per layer, planar cross-section and volume fraction of textiles were investigated. Pultrusion was used for the production of textile reinforced concrete. It is an automated set-up with low equipment cost which provides uniform production and smooth final surface of the TRC. A 3-D optical non-contacting deformation measurement technique of digital image correlation (DIC) was used to conduct the image analysis on the shear samples by means of tracking the displacement field through comparison between the reference image and deformed images. DIC successfully obtained full-field strain distribution, displacement and strain versus time responses, demonstrated the bonding mechanism from perspective of strain field, and gave a relation between shear angle and shear strain.

  1. The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster

    PubMed Central

    Nilson, Theresa L.; Sinclair, Brent J.; Roberts, Stephen P.

    2007-01-01

    Carbon dioxide gas is used as an insect anesthetic in many laboratories, despite recent studies which have shown that CO2 can alter behavior and fitness. We examine the effects of CO2 and anoxia (N2) on cold tolerance, measuring the rapid cold-hardening (RCH) response and chill coma recovery in Drosophila melanogaster. Short exposures to CO2 or N2 do not significantly affect RCH, but 60 min of exposure negates RCH. Exposure to CO2 anesthesia increases chill coma recovery time, but this effect disappears if the flies are given 90 min recovery in air before chill coma induction. Flies treated with N2 show a similar pattern, but require significantly longer chill coma recovery times even after 90 min of recovery from anoxia. Our results suggest that CO2 anesthesia is an acceptable way to manipulate flies before cold tolerance experiments (when using RCH or chill coma recovery as a measure), provided exposure duration is minimized and recovery is permitted before chill coma induction. However, we recommend that exposure to N2 not be used as a method of anesthesia for chill coma studies. PMID:16996534

  2. Meat Feeding Restricts Rapid Cold Hardening Response and Increases Thermal Activity Thresholds of Adult Blow Flies, Calliphora vicina (Diptera: Calliphoridae)

    PubMed Central

    2015-01-01

    Virtually all temperate insects survive the winter by entering a physiological state of reduced metabolic activity termed diapause. However, there is increasing evidence that climate change is disrupting the diapause response resulting in non-diapause life stages encountering periods of winter cold. This is a significant problem for adult life stages in particular, as they must remain mobile, periodically feed, and potentially initiate reproductive development at a time when resources should be diverted to enhance stress tolerance. Here we present the first evidence of protein/meat feeding restricting rapid cold hardening (RCH) ability and increasing low temperature activity thresholds. No RCH response was noted in adult female blow flies (Calliphora vicina Robineau-Desvoidy) fed a sugar, water and liver (SWL) diet, while a strong RCH response was seen in females fed a diet of sugar and water (SW) only. The RCH response in SW flies was induced at temperatures as high as 10°C, but was strongest following 3h at 0°C. The CTmin (loss of coordinated movement) and chill coma (final appendage twitch) temperature of SWL females (-0.3 ± 0.5°C and -4.9 ± 0.5°C, respectively) was significantly higher than for SW females (-3.2 ± 0.8°C and -8.5 ± 0.6°C). We confirmed this was not directly the result of altered extracellular K+, as activity thresholds of alanine-fed adults were not significantly different from SW flies. Instead we suggest the loss of cold tolerance is more likely the result of diverting resource allocation to egg development. Between 2009 and 2013 winter air temperatures in Birmingham, UK, fell below the CTmin of SW and SWL flies on 63 and 195 days, respectively, suggesting differential exposure to chill injury depending on whether adults had access to meat or not. We conclude that disruption of diapause could significantly impact on winter survival through loss of synchrony in the timing of active feeding and reproductive development with favourable

  3. Responses of the bed bug, Cimex lectularius, to temperature extremes and dehydration: levels of tolerance, rapid cold hardening and expression of heat shock proteins.

    PubMed

    Benoit, J B; Lopez-Martinez, G; Teets, N M; Phillips, S A; Denlinger, D L

    2009-12-01

    This study of the bed bug, Cimex lectularius, examines tolerance of adult females to extremes in temperature and loss of body water. Although the supercooling point (SCP) of the bed bugs was approximately -20 degrees C, all were killed by a direct 1 h exposure to -16 degrees C. Thus, this species cannot tolerate freezing and is killed at temperatures well above its SCP. Neither cold acclimation at 4 degrees C for 2 weeks nor dehydration (15% loss of water content) enhanced cold tolerance. However, bed bugs have the capacity for rapid cold hardening, i.e. a 1-h exposure to 0 degrees C improved their subsequent tolerance of -14 and -16 degrees C. In response to heat stress, fewer than 20% of the bugs survived a 1-h exposure to 46 degrees C, and nearly all were killed at 48 degrees C. Dehydration, heat acclimation at 30 degrees C for 2 weeks and rapid heat hardening at 37 degrees C for 1 h all failed to improve heat tolerance. Expression of the mRNAs encoding two heat shock proteins (Hsps), Hsp70 and Hsp90, was elevated in response to heat stress, cold stress and during dehydration and rehydration. The response of Hsp90 was more pronounced than that of Hsp70 during dehydration and rehydration. Our results define the tolerance limits for bed bugs to these commonly encountered stresses of temperature and low humidity and indicate a role for Hsps in responding to these stresses. PMID:19941608

  4. RECYCLED WASTE-BASED CEMENT COMPOSITE PATCH MATERIALS FOR RAPID/PERMANENT ROAD RESTORATION.

    SciTech Connect

    SUGAMA,T.

    2001-07-31

    Over the past year, KeySpan Energy sponsored a research program at Brookhaven National Laboratory (BNL) aimed at recycling boiler ash (BA) and waste water treatment sludge (WWTS) byproducts generated from Keyspan's power stations into potentially useful materials, and at reducing concurrent costs for their disposal. Also, KeySpan has an interest in developing strategies to explicitly integrate industrial ecology and green chemistry. From our collaborative efforts with Keyspan (Diane Blankenhom Project Manager, and Kenneth Yager), we succeeded in recycling them into two viable products; Pb-exchange adsorbents (PEAs), and high-performance cements (HpCs). These products were made from chemically bonded cement and ceramic (CBC) materials that were synthesized through two-step chemical reaction pathways, acid-base and hydration. Using this synthesis technology, both the WWTS and BA served in acting as solid base reactants, and sodium polyphosphate, [-(-NaPO{sub 3}-)-{sub n}], known as an intermediator of fertilizer, was employed as the acid solution reactant. In addition, two commercial cement additives, Secar No. 51 calcium aluminate cement (CAC) and Type I calcium silicate cement (CSC), were used to improve mechanical behavior and to promote the rate of acid-base reaction of the CBC materials.

  5. Research of magnesium phosphosilicate cement

    NASA Astrophysics Data System (ADS)

    Ding, Zhu

    Magnesium phosphosilicate cement (MPSC) is a novel phosphate bonded cement, which consists mainly of magnesia, phosphate and silicate minerals. The traditional magnesium phosphate cements (MPCs) usually composed by ammonium phosphate, and gaseous ammonia will emit during mixing and in service. There is no noxious ammonia released from MPSC, furthermore, it can recycle a large volume of the non-hazardous waste. The goal of this research is to investigate the composition, reaction products, reaction mechanism, microstructure, properties, durability and applications of the MPSC. MPSC sets rapidly and has high early strength. It reacts better with solid industrial waste when compared to Portland cement. Many solid industrial wastes, such as fly ash, steel slag, coal gangue, red coal gangue, red mud, barium-bearing slag, copper slag, silica fume, and ground granulated blast furnace slag, have been used as the main component (40% by weight) in MPSC. The research has found that these aluminosilicate (or ironsilicate, or calciumsilicate) minerals with an amorphous or glass structure can enhance the performance of MPSC. The disorganized internal structure of amorphous materials may make it possess higher reactivity compared to the crystalline phases. Chemical reaction between phosphate and these minerals may form an amorphous gel, which is favorable to the cementing. Borax, boric acid and sodium tripolyphosphate have been used as retardants in the MPSC system. It is found that boric acid has a higher retarding effect on the setting of cement, than borax does. However, sodium polyphosphate accelerates the reaction of MPSC. The hydration of MPSC is exothermic reaction. The heat evolution may prompt hydrates formation, and shorten the setting process. Modern materials characterization techniques, XRD, DSC, TG-DTA FTIR, XPS, MAS-NMR, SEM, TEM, MIP, etc. were used to analyze the phase composition, micro morphology, and microstructure of hardened MPSC. The main hydration product

  6. Developing a More Rapid Test to Assess Sulfate Resistance of Hydraulic Cements

    PubMed Central

    Ferraris, Chiara; Stutzman, Paul; Peltz, Max; Winpigler, John

    2005-01-01

    External sulfate attack of concrete is a major problem that can appear in regions where concrete is exposed to soil or water containing sulfates, leading to softening and cracking of the concrete. Therefore, it is important that materials selection and proportioning of concrete in susceptible regions be carefully considered to resist sulfate attack. American Society for Testing Materials (ASTM) limits the tricalcium aluminate phase in cements when sulfate exposure is of concern. The hydration products of tricalcium aluminate react with the sulfates resulting in expansion and cracking. While ASTM standard tests are available to determine the susceptibility of cements to sulfate attack, these tests require at least 6 months and often up to a year to perform; a delay that hinders development of new cements. This paper presents a new method for testing cement resistance to sulfate attack that is three to five times faster than the current ASTM tests. Development of the procedure was based upon insights on the degradation process by petrographic examination of sulfate-exposed specimens over time. Also key to the development was the use of smaller samples and tighter environmental control. PMID:27308177

  7. Survivability of the hardened mobile launcher when attacked by a hypothetical rapidly retargetable ICBM system. Master's thesis

    SciTech Connect

    Gearhart, D.J.; Merrow, S.F.

    1986-03-01

    This thesis evaluates the survivability of the hardened mobile launcher system (HML) against a hypothetical enemy ICBM system. The hypothetical system has two key capabilities: it can obtain near real-time intelligence information regarding the HML's location, and it can be retargeted in flight (as necessary) according to the intelligence information. Thus, the hypothetical ICBM threat systems can attack individual HMLs directly rather than rely on a barrage attack against HML bases. Monte Carlo simulation is used to approach the problem. The model is an MBASIC computer program, written and runs on an Apple Macintosh computer. The model simulates the flight of the attacking ICBMs (there may be as few as one or as many as 14 warheads directed at each HML) and the random dispersal tactics of a single HML. The model determines the locations of the detonations and the location of the HML at time of detonation. Based on these locations, probability of kill due to peak-blast overpressure is calculated. A key parameter in the model is intelligence / retargeting cycle time -- the time required to obtain intelligence and retarget accordingly. This time is varied from 1-30 minutes. The model also allows variations in HML speed and hardness and threat system CEP. A subroutine for examining the effects of neutron fratricide on the attacking warheads is included (although the effects were found to be negligible). The thesis concludes that very small intelligence/retargeting cycle times are required for this to be an effective weapon system against the HML. Thus, with today's (or near future) technology, the HML can be considered a very survivable system.

  8. Dispersion strengthening of precipitation hardened Al-Cu-Mg alloys prepared by rapid solidification and mechanical alloying

    NASA Technical Reports Server (NTRS)

    Gilman, P. S.; Sankaran, K. K.

    1988-01-01

    Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.

  9. In vitro degradation and cytocompatibility of dicalcium phosphate dihydrate cements prepared using the monocalcium phosphate monohydrate/hydroxyapatite system reveals rapid conversion to HA as a key mechanism.

    PubMed

    Alge, Daniel L; Goebel, W Scott; Chu, Tien-Min Gabriel

    2012-04-01

    We previously showed that dicalcium phosphate dihydrate (DCPD) cements can be prepared using monocalcium phosphate monohydrate (MCPM) and hydroxyapatite (HA). In this study, we have characterized the degradation properties and biocompatibility of these novel cements. To study the degradation properties, cements were prepared using MCPM:HA molar ratios of 4:1, 2:1, 2:3, and 2:5. Degradation was evaluated in vitro by static soaking in PBS, and changes in pH, mass, compressive strength, and composition were monitored. Conversion of DCPD to HA was noted in the 4:1 group, which initially consisted of pure DCPD. However, the 2:1 group, which initially consisted of DCPD and an intermediate amount of unreacted HA, underwent rapid conversion to HA associated with significantly greater pH drop and mass loss as well as a complete loss of mechanical integrity. On the basis of these results, we directly compared the cytocompatibility of 2:1 MCPM:HA cements to DCPD cements prepared with an equivalent percent molar excess of β-tricalcium phosphate (β-TCP) using an in vitro cell viability assay. Viability of cells co-cultured with 2:1 MCPM:HA cements was significantly reduced after just 48 h, while viability of cells cultured with the β-TCP-based cements was no different from control cells. In conclusion, this study demonstrates that conversion to HA plays an important role in the degradation of DCPD cements prepared with the MCPM/HA system, affecting both physical properties and cytocompatibility. These results could have important clinical implications for MCPM/HA cements. PMID:22323239

  10. The limits of drought-induced rapid cold-hardening: extremely brief, mild desiccation triggers enhanced freeze-tolerance in Eurosta solidaginis larvae.

    PubMed

    Gantz, J D; Lee, Richard E

    2015-02-01

    Rapid cold-hardening (RCH) is a highly conserved response in insects that induces physiological changes within minutes to hours of exposure to low temperature and provides protection from chilling injury. Recently, a similar response, termed drought-induced RCH, was described following as little as 6h of desiccation, producing a loss of less than 10% of fresh mass. In this study, we investigated the limits and mechanisms of this response in larvae of the goldenrod gall fly Eurosta solidaginis (Diptera, Tephritidae). The cold-hardiness of larvae increased markedly after as few as 2h of desiccation and a loss of less than 1% fresh mass, as organismal survival increased from 8% to 41% following exposure to -18 °C. Tissue-level effects of desiccation were observed within 1h, as 87% of midgut cells from desiccated larvae remained viable following freezing compared to 57% of controls. We also demonstrated that drought-induced RCH occurs independently of neuroendocrine input, as midgut tissue desiccated ex vivo displayed improved freeze-tolerance relative to control tissue (78-11% survival, respectively). Finally, though there was an increase in hemolymph osmolality beyond the expected effects of the osmo-concentration of solutes during dehydration, we determined that this increase was not due to the synthesis of glycerol, glucose, sorbitol, or trehalose. Our results indicate that E. solidaginis larvae are extremely sensitive to desiccation, which is a triggering mechanism for one or more physiological pathways that confer enhanced freeze-tolerance. PMID:25545423

  11. Mineral of the month: cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2006-01-01

    Hydraulic cement is a virtually ubiquitous construction material that, when mixed with water, serves as the binder in concrete and most mortars. Only about 13 percent of concrete by weight is cement (the rest being water and aggregates), but the cement contributes all of the concrete’s compressional strength. The term “hydraulic” refers to the cement’s ability to set and harden underwater through the hydration of the cement’s components.

  12. Surface Fatigue Resistance with Induction Hardening

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis; Turza, Alan; Chapman, Mike

    1996-01-01

    Induction hardening has been used for some years to harden the surface and improve the strength and service life of gears and other components. Many applications that employ induction hardening require a relatively long time to finish the hardening process and controlling the hardness of the surface layer and its depth often was a problem. Other surface hardening methods, ie., carbonizing, take a very long time and tend to cause deformations of the toothing, whose elimination requires supplementary finishing work. In double-frequency induction hardening, one uses a low frequency for the preheating of the toothed wheel and a much higher frequency for the purpose of rapidly heating the surface by way of surface hardening.

  13. New steels and methods for induction hardening of bearing rings and rollers

    SciTech Connect

    Ouchakov, B.K.; Shepeljakovsky, K.Z.

    1998-12-31

    The new method of through-surface hardening (TSH) of bearing rings and rollers was developed and used in Russia and former USSR. The principles of the method include the use of special steels of low or controlled hardenability, through-the-section induction of furnace heating and intense quenching of the parts by water stream in special devices. Due to the low hardenability of applied steels, the bearing rings and rollers have high-strength martensitic surface layer, combined with a core strengthened with a troostite and sorbite structure. High compressive residual stresses are formed in the martensitic surface layers. For a long time TSH has been successfully used for inner rings of bearings for railway car boxes, large rings and rollers of bearings for cement furnaces and rolling mills. Recently TSH was used for hollow rollers of railway bearings. For bearing rings made of SAE 52100 type high-carbon, chromium-alloyed steel a new method of low-deformation hardening was developed. The method is based on self-calibration of the rings during the quenching process and is intended for through hardening by induction heating and quenching by rapidly moved water stream.

  14. Environmentally compatible spray cement

    SciTech Connect

    Loeschnig, P.

    1995-12-31

    Within the framework of a European research project, Heidelberger Zement developed a quickly setting and hardening binder for shotcrete, called Chronolith S, which avoids the application of setting accelerators. Density and strength of the shotcrete produced with this spray cement correspond to those of an unaccelerated shotcrete. An increased hazard for the heading team and for the environment, which may occur when applying setting accelerators, can be excluded here. Owing to the special setting properties of a spray cement, the process engineering for its manufacturing is of great importance. The treatment of a spray cement as a dry concrete with kiln-dried aggregates is possible without any problems. The use of a naturally damp pre-batched mixture is possible with Chronolith S but requires special process engineering; spray cement and damp aggregate are mixed with one another immediately before entering the spraying machinery.

  15. Influence of Thermal Treatment Conditions on the Properties of Dental Silicate Cements.

    PubMed

    Voicu, Georgeta; Popa, Alexandru Mihai; Badanoiu, Alina Ioana; Iordache, Florin

    2016-01-01

    In this study the sol-gel process was used to synthesize a precursor mixture for the preparation of silicate cement, also called mineral trioxide aggregate (MTA) cement. This mixture was thermally treated under two different conditions (1400 °C/2 h and 1450 °C/3 h) followed by rapid cooling in air. The resulted material (clinker) was ground for one hour in a laboratory planetary mill (v = 150 rot/min), in order to obtain the MTA cements. The setting time and mechanical properties, in vitro induction of apatite formation by soaking in simulated body fluid (SBF) and cytocompatibility of the MTA cements were assessed in this study. The hardening processes, nature of the reaction products and the microstructural characteristics were also investigated. The anhydrous and hydrated cements were characterized by different techniques e.g., X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR) and thermal analysis (DTA-DTG-TG). The setting time of the MTA cement obtained by thermal treatment at 1400 °C/2 h (MTA1) was 55 min and 15 min for the MTA cement obtained at 1450 °C/3 h (MTA2). The compressive strength values were 18.5 MPa (MTA1) and 22.9 MPa (MTA2). Both MTA cements showed good bioactivity (assessed by an in vitro test), good cytocompatibility and stimulatory effect on the proliferation of cells. PMID:26901185

  16. Alkali-slag cements for the immobilization of radioactive wastes

    SciTech Connect

    Shi, C.; Day, R.L.

    1996-12-31

    Alkali-slag cements consist of glassy slag and an alkaline activator and can show both higher early and later strengths than Type III Portland cement, if a proper alkaline activator is used. An examination of microstructure of hardened alkali-slag cement pastes with the help of XRD and SEM with EDAX shows that the main hydration product is C-S-H (B) with low C/S ratio and no crystalline substances exist such as Ca(OH){sub 2}, Al (OH){sub 3} and sulphoaluminates. Mercury intrusion tests indicate that hardened alkali-slag cement pastes have a lower porosity than ordinary Portland cement, and contain mainly gel pores. The fine pore structure of hardened alkali-slag cement pastes will restrict the ingress of deleterious substances and the leaching of harmful species such as radionuclides. The leachability of Cs{sup + } from hardened alkali-slag cement pastes is only half of that from hardened Portland cement. From all these aspects, it is concluded that alkali-slag cements are a better solidification matrix than Portland cement for radioactive wastes.

  17. The stress relaxation of cement clinkers under high temperature

    NASA Astrophysics Data System (ADS)

    Wang, Xiufang; Bao, Yiwang; Liu, Xiaogen; Qiu, Yan

    2015-12-01

    The energy consumption of crushing is directly affected by the mechanical properties of cement materials. This research provides a theoretical proof for the mechanism of the stress relaxation of cement clinkers under high temperature. Compression stress relaxation under various high temperatures is discussed using a specially developed load cell, which can measure stress and displacement under high temperatures inside an autoclave. The cell shows that stress relaxation dramatically increases and that the remaining stress rapidly decreases with an increase in temperature. Mechanical experiments are conducted under various temperatures during the cooling process to study the changes in the grinding resistance of the cement clinker with temperature. The effects of high temperature on the load-displacement curve, compressive strength, and elastic modulus of cement clinkers are systematically studied. Results show that the hardening phenomenon of the clinker becomes apparent with a decrease in temperature and that post-peak behaviors manifest characteristics of the transformation from plasticity to brittleness. The elastic modulus and compressive strength of cement clinkers increase with a decrease in temperature. The elastic modulus increases greatly when the temperature is lower than 1000 °C. The compressive strength of clinkers increases by 73.4% when the temperature drops from 1100 to 800 °C.

  18. Comparison of Perioperative Blood Loss in Primary Non-cemented Total Hip Arthroplasty for Rapidly Destructive Coxarthrosis and Osteonecrosis of the Femoral Head

    PubMed Central

    Song, Joo-Hyoun; Han, Suk Ku; Lee, Kyung-Hoon; Lee, Jae-Min

    2015-01-01

    Purpose The purpose of this study is to compare the perioperative blood loss in primary non-cemented total hip arthroplasty (THA) performed for rapidly destructive coxarthrosis (RDC) with the perioperative blood loss in primary non-cemented THA for typical osteonecrosis of the femoral head (ONFH). Materials and Methods From January 2000 to December 2013, 19 patients were diagnosed with RDC (group 1) and 40 patients were diagnosed typical Ficat stage IV ONFH (group 2), comparison of perioperative blood loss between group 1 and group 2 in primary noncemented THA was done. Patients with preoperative usage of steroid or anticoagulants medication and with hemodynamic abnormal blood test results were excluded. The blood loss was measured up to the fifth post operation day and calculated with formula proposed by Mercuriali, Inghilleri and Nadler. Results Non-compensated blood loss calculated in milliliters of red blood cells was 362 mL (standard deviation [SD], 187; range, 77-675) in group 1 and 180 mL (SD, 145; range, 53-519) in group 2. Compensated blood loss was 630 mL (SD, 180; range, 380-760) in group 1 and 503 mL (SD, 260; range, 190-1, 505) in group 2. The total blood loss after primary non-cemented THA is greater when surgery is performed for RDC than for ONFH, with the volume of 992 mL (SD, 300; range, 457-1, 434) in group 1 and 683 mL (SD, 360; range, 226-1, 975) in group 2 respectively. Conclusion Total perioperative blood loss was significantly greater in RDC than in ONFH in primary non-cemented THA. PMID:27536617

  19. [Hardening of dental instruments].

    PubMed

    Gerasev, G P

    1981-01-01

    The possibility of prolonging the service life of stomatological instruments by the local hardening of their working parts is discussed. Such hardening should be achieved by using hard and wear-resistant materials. The examples of hardening dental elevators and hard-alloy dental drills are given. New trends in the local hardening of instruments are the treatment of their working parts with laser beams, the application of coating on their surface by the gas-detonation method. The results of research work and trials are presented. PMID:7300627

  20. MDF cements: Chemistry, processing and microstructure

    SciTech Connect

    McHugh, A.J.; Tan, L.S.; Lewis, J.

    1995-12-31

    Macro-Defect-Free (MDF) cements are low water content, polymer-cement composites which can exhibit flexural strengths over 30 times in excess of normally cast cement. The microstructure of hardened MDF, responsible for the vastly improved properties, is the direct outcome of mechano-chemically induced reactions which take place during shear mixing of the damp powder. Mixing torque curves exhibit a characteristic shape which reflects the temperature and shear-rate-dependent kinetics of the polymer-cement crosslinking reactions. These kinetics are parametrically related to the viscoelastic and Theological properties of the paste which also enhance its overall processability. The evolution of overall composite structure and the microstructure of the cement-polymer interphase region are quantified using scanning and transmission electron microscopy in conjunction with energy dispersion spectrometry. Mechanical flexural strength of the hardened composites are also determined.

  1. The suitability of a supersulfated cement for nuclear waste immobilisation

    NASA Astrophysics Data System (ADS)

    Collier, N. C.; Milestone, N. B.; Gordon, L. E.; Ko, S.-C.

    2014-09-01

    Composite cements based on ordinary Portland cement are used in the UK as immobilisation matrices for low and intermediate level nuclear wastes. However, the high pore solution pH causes corrosion of some metallic wastes and undesirable expansive reactions, which has led to alternative cementing systems being examined. We have investigated the physical, chemical and microstructural properties of a supersulfated cement in order to determine its applicability for use in nuclear waste encapsulation. The hardened supersulfated cement paste appeared to have properties desirable for use in producing encapsulation matrices, but the high powder specific surface resulted in a matrix with high porosity. Ettringite and calcium silicate hydrate were the main phases formed in the hardened cement paste and anhydrite was present in excess. The maximum rate of heat output during hydration of the supersulfated cement paste was slightly higher than that of a 9:1 blastfurnace slag:ordinary Portland cement paste commonly used by the UK nuclear waste processing industry, although the total heat output of the supersulfated cement paste was lower. The pH was also significantly lower in the supersulfated cement paste. Aluminium hydroxide was formed on the surface of aluminium metal encapsulated in the cement paste and ettringite was detected between the aluminium hydroxide and the hardened cement paste.

  2. Fatigue hardening in niobium single crystals.

    NASA Technical Reports Server (NTRS)

    Doner, M.; Diprimio, J. C.; Salkovitz, E. I.

    1973-01-01

    Nb single crystals of various orientations were cyclically deformed in tension-compression under strain control. At low strain amplitudes all crystals oriented for single slip and some oriented for multiple slip showed a two stage hardening. When present, the first stage was characterized with almost no cyclic work hardening. The rate of hardening in the second stage increased with strain amplitude and the amount of secondary slip. In crystals oriented for single slip kink bands developed on their side faces during rapid hardening stage which resulted in considerable amount of asterism in Laue spots. A cyclic stress-strain curve independent of prior history was found to exist which was also independent of crystal orientation. Furthermore, this curve differed only slightly from that of polycrystalline Nb obtained from data in literature.

  3. Well cementing in permafrost

    SciTech Connect

    Wilson, W.N.

    1980-01-01

    A process for cementing a string of pipe in the permafrost region of a borehole of a well wherein aqueous drilling fluid actually used in drilling the wellbore in the permafrost region of a wellbore is employed. The drilling fluid contains or is adjusted to contain from about 2 to about 16 volume percent solids. Mixing with the drilling fluid (1) an additive selected from the group consisting of ligno-sulfonate, lignite, tannin, and mixtures thereof, (2) sufficient base to raise the pH of the drilling fluid into the range of from about 9 to about 12, and (3) cementitious material which will harden in from about 30 to about 40 hours at 40/sup 0/F. The resulting mixture is pumped into the permafrost region of a wellbore to be cemented and allowed to harden in the wellbore. There is also provided a process for treating an aqueous drilling fluid after it has been used in drilling the wellbore in permafrost, and a cementitious composition for cementing in a permafrost region of a wellbore.

  4. Stabilization of ZnCl2-containing wastes using calcium sulfoaluminate cement: cement hydration, strength development and volume stability.

    PubMed

    Berger, Stéphane; Cau Dit Coumes, Céline; Le Bescop, Patrick; Damidot, Denis

    2011-10-30

    The potential of calcium sulfoaluminate (CSA) cement was investigated to solidify and stabilize wastes containing large amounts of soluble zinc chloride (a strong inhibitor of Portland cement hydration). Hydration of pastes and mortars prepared with a 0.5 mol/L ZnCl(2) mixing solution was characterized over one year as a function of the gypsum content of the binder and the thermal history of the material. Blending the CSA clinker with 20% gypsum enabled its rapid hydration, with only very small delay compared with a reference prepared with pure water. It also improved the compressive strength of the hardened material and significantly reduced its expansion under wet curing. Moreover, the hydrates assemblage was less affected by a thermal treatment at early age simulating the temperature rise and fall occurring in a large-volume drum of cemented waste. Fully hydrated materials contained ettringite, amorphous aluminum hydroxide, strätlingite, together with AFm phases (Kuzel's salt associated with monosulfoaluminate or Friedel's salt depending on the gypsum content of the binder), and possibly C-(A)-S-H. Zinc was readily insolubilized and could not be detected in the pore solution extracted from cement pastes. PMID:21889260

  5. Hardening of the arteries

    MedlinePlus

    Atherosclerosis; Arteriosclerosis; Plaque buildup - arteries; Hyperlipidemia - atherosclerosis; Cholesterol - atherosclerosis ... Hardening of the arteries often occurs with aging. As you grow older, ... narrows your arteries and makes them stiffer. These changes ...

  6. Bone cement

    PubMed Central

    Vaishya, Raju; Chauhan, Mayank; Vaish, Abhishek

    2013-01-01

    The knowledge about the bone cement is of paramount importance to all Orthopaedic surgeons. Although the bone cement had been the gold standard in the field of joint replacement surgery, its use has somewhat decreased because of the advent of press-fit implants which encourages bone in growth. The shortcomings, side effects and toxicity of the bone cement are being addressed recently. More research is needed and continues in the field of nanoparticle additives, enhanced bone–cement interface etc. PMID:26403875

  7. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points.

  8. Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-10-28

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention provides a method for increasing the rate of strength gain of a hardenable mixture containing fly ash by exposing the fly ash to an aqueous slurry of calcium oxide (lime) prior to its incorporation into the hardenable mixture. The invention further relates to such hardenable mixtures, e.g., concrete and mortar, that contain fly ash pre-reacted with calcium oxide. In particular, the fly ash is added to a slurry of calcium oxide in water, prior to incorporating the fly ash in a hardenable mixture. The hardenable mixture may be concrete or mortar. In a specific embodiment, mortar containing fly ash treated by exposure to an aqueous lime slurry are prepared and tested for compressive strength at early time points. 2 figs.

  9. 42. INTERIOR VIEW OF THE NAIL HARDENER USED TO HARDEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. INTERIOR VIEW OF THE NAIL HARDENER USED TO HARDEN AND TEMPER THE NAILS; WEST TUBES IN FOREGRPUND AND DRAWBACK TUBE IN THE CENTER - LaBelle Iron Works, Thirtieth & Wood Streets, Wheeling, Ohio County, WV

  10. Cementing porcelain-fused-to-metal crowns.

    PubMed

    Vadachkoria, D

    2009-12-01

    The clinical success of fixed prosthodontic restorations can be complex and involve multifaceted procedures. Preparation design, oral hygiene/micro flora, mechanical forces, and restorative materials are only a few of the factors which contribute to overall success. One key factor to success is choosing the proper cement. Popular use of cements for PFM crowns has shifted from zinc phosphate and glass ionomer cements to resin-reinforced glass ionomer, or RRGI, cements. This change has been rapid and profound. Dental cements have always been less than ideal materials, but this is shift to the relatively new RRGI category justified. Resin-reinforced glass ionomer (RRGI) cements appear to be better than zinc phosphate and glass ionomer cements when placing porcelain-to-metal crowns. RRGI cements, such as RelyX Luting, Fuji Plus and Vitremer Luting Cement, satisfy more of the ideal characteristics of PFM cementation than any other previous cement. Expansion of all three cements has not caused any apparent problems with the cements when used with PFM or metal crowns, but these cements, however, should be avoided when cementing all-ceramic crowns. PMID:20090144

  11. Cement disease.

    PubMed

    Jones, L C; Hungerford, D S

    1987-12-01

    Does "cement disease" exist? The bony environment surrounding a loosened cemented prosthesis is an abnormal pathologic condition which, if left unattended, will progress to a total failure of the joint including an inhibition of function and immobilizing pain. That biomaterial properties of the cement used for fixation also contribute to the pathologic state separates this disease from other modes of loosening. This leads inevitably to the conclusion that "cement disease" does exist. Methyl methacrylate has revolutionized the treatment of severe joint dysfunction. There can be no doubt that improving surgical technique, cement handling, and the cement itself will continue to improve the results and reduce the incidence of failure due to loosening. Cement is undoubtedly satisfactory for elderly patients with low activity levels and relatively short life expectancies. However, because of the inherent biologic and biomechanical properties of methyl methacrylate, it is unlikely that it can be rendered satisfactory in the long run for the young, the active, or the overweight patient, for whom alternatives are currently being sought. In such cases, the elimination of "cement disease" can only occur with the elimination of cement. Alternatives include the search for other grouting materials and the development of prostheses with satisfactory surfaces for either press-fit or biologic ingrowth. PMID:3315375

  12. Well cementing method using an am/amps fluid loss additive blend

    SciTech Connect

    Boncan, V.G.; Gandy, R.

    1986-12-30

    A method is described of cementing a wellbore, comprising the steps of: mixing together a hydraulic cement, water in an amount to produce a pumpable slurry, and a non-retarding fluid loss additive blend. The blend comprises a copolymer of acrylamide and 2-acrylamide-2-methylpropane sulfonate, the sodium salt of naphthalene formaldehyde sulfonate, and polyvinylpyrrolidone polymer; pumping the cement slurry to the desired location in the wellbore; and allowing the cement slurry to harden to a solid mass.

  13. RHOBOT: Radiation hardened robotics

    SciTech Connect

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  14. Precipitation hardening austenitic superalloys

    DOEpatents

    Korenko, Michael K.

    1985-01-01

    Precipitation hardening, austenitic type superalloys are described. These alloys contain 0.5 to 1.5 weight percent silicon in combination with about 0.05 to 0.5 weight percent of a post irradiation ductility enhancing agent selected from the group of hafnium, yttrium, lanthanum and scandium, alone or in combination with each other. In addition, when hafnium or yttrium are selected, reductions in irradiation induced swelling have been noted.

  15. Nuclear effects hardened shelters

    NASA Astrophysics Data System (ADS)

    Lindke, Paul

    1990-11-01

    The Houston Fearless 76 Government Projects Group has been actively engaged for more than twenty-five years as a sub-contractor and currently as a prime contractor in the design, manufacture, repair and logistics support of custom mobile ground stations and their equipment accommodations. Other associated products include environmental control units (ECU's), mobilizers for shelters and a variety of mobile power generation units (MPU's). Since 1984, Houston Fearless 76 has designed and manufactured four 8' x 8' x 22' nuclear hardened mobile shelters. These shelters were designed to contain electronic data processing/reduction equipment. One shelter is currently being operated by the Air Force as a Defense Intelligence Agency (DIA) approved and certified Special Corrpartmented Information Facility (SCIF). During the development and manufacturing process of the shelters, we received continual technical assistance and design concept evaluations from Science Applications International Corporation (SAIC) Operations Analysis and Logistics Engineering Division and the Nondestructive Inspection Lab at McClellan AFB. SAIC was originally employed by the Air Force to design the nuclear hardening specifications applied to these shelters. The specific levels of hardening to which the shelters were designed are classified and will not be mentioned during this presentation.

  16. Construction procedures using self hardening fly ash

    NASA Astrophysics Data System (ADS)

    Thornton, S. I.; Parker, D. G.

    1980-07-01

    Fly ash produced in Arkansas from burning Wyoming low sulfur coal is self-hardening and can be effective as a soil stabilizing agent for clays and sands. The strength of soil-self hardening fly ash develops rapidly when compacted immediately after mixing. Seven day unconfined compressive strengths up to 1800 psi were obtained from 20% fly ash and 80% sand mixtures. A time delay between mixing the fly ash with the soil and compaction of the mixture reduced the strength. With two hours delay, over a third of the strength was lost and with four hours delay, the loss was over half. Gypsum and some commercial concrete retarders were effective in reducing the detrimental effect of delayed compaction. Adequate mixing of the soil and fly ash and rapid compaction of the mixtures were found to be important parameters in field construction of stabilized bases.

  17. Thermal Shock-resistant Cement

    SciTech Connect

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved

  18. Improved microstructure of cement-based composites through the addition of rock wool particles

    SciTech Connect

    Lin, Wei-Ting; Cheng, An; Huang, Ran; Zou, Si-Yu

    2013-10-15

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reduced chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.

  19. Practical aspects of systems hardening

    SciTech Connect

    Shepherd, W.J.

    1989-01-01

    Applications of hardening technology in a practical system require a balance between the factors governing affordability, producibility, and survivability of the finished design. Without careful consideration of the top-level system operating constraints, a design engineer may find himself with a survivable but overweight, unproductive, expensive design. This paper explores some lessons learned in applying hardening techniques to several laser communications programs and is intended as an introductory guide to novice designers faced with the task of hardening a space system.

  20. Optimization of fly ash as sand replacement materials (SRM) in cement composites containing coconut fiber

    NASA Astrophysics Data System (ADS)

    Nadzri, N. I. M.; Jamaludin, S. B.; Mazlee, M. N.; Jamal, Z. A. Z.

    2016-07-01

    The need of utilizing industrial and agricultural wastes is very important to maintain sustainability. These wastes are often incorporated with cement composites to improve performances in term of physical and mechanical properties. This study presents the results of the investigation of the response of cement composites containing coconut fiber as reinforcement and fly ash use as substitution of sand at different hardening days. Hardening periods of time (7, 14 and 28 days) were selected to study the properties of cement composites. Optimization result showed that 20 wt. % of fly ash (FA) is a suitable material for sand replacement (SRM). Meanwhile 14 days of hardening period gave highest compressive strength (70.12 MPa) from the cement composite containing 9 wt. % of coconut fiber and fly ash. This strength was comparable with the cement without coconut fiber (74.19 MPa) after 28 days of curing.

  1. Combined actions for the improvement of properties of cement-ash binder systems

    SciTech Connect

    Grankovskii, I.G.; Uglyrenko, T.V.

    1983-01-20

    The use of fly ash from thermal electric power generating stations in concrete technology as a hydraulic additive to improve the quality of concretes and cement slurries has been shown to be effective in many studies. However, under natural hardening conditions, cement-ash compositions acquire strength very slowly, and their favorable qualities are manifested at an age of approximately three months. On the basis of new data on the structurizing and strengthening effects of small amounts of mineral additives in the mixing water, along with studies of the optimal mechanical activation by mixing the cement slurries in accordance with the kinetics of structurization, in this paper the results from studies of combined actions on binder systems with the aim of improving the engineering characteristics of slurries used in cementing, increasing the slurry mobility, accelerating the hardening, and increasing the strength of hardened compositions in which up to 30% of the cement is replaced by fly ash, are presented.

  2. Calcium phosphate cement scaffolds with PLGA fibers.

    PubMed

    Vasconcellos, Letícia Araújo; dos Santos, Luís Alberto

    2013-04-01

    The use of calcium phosphate-based biomaterials has revolutionized current orthopedics and dentistry in repairing damaged parts of the skeletal system. Among those biomaterials, the cement made of hydraulic grip calcium phosphate has attracted great interest due to its biocompatibility and hardening "in situ". However, these cements have low mechanical strength compared with the bones of the human body. In the present work, we have studied the attainment of calcium phosphate cement powders and their addition to poly (co-glycolide) (PLGA) fibers to increase mechanical properties of those cements. We have used a new method that obtains fibers by dripping different reagents. PLGA fibers were frozen after lyophilized. With this new method, which was patented, it was possible to obtain fibers and reinforcing matrix which furthered the increase of mechanical properties, thus allowing the attainment of more resistant materials. The obtained materials were used in the construction of composites and scaffolds for tissue growth, keeping a higher mechanical integrity. PMID:23827539

  3. Effect of carbon dioxide injection on production of wood cement composites from waste medium density fiberboard (MDF).

    PubMed

    Qi, H; Cooper, P A; Wan, H

    2006-01-01

    The possibility of recycling waste medium density fiberboard (MDF) into wood-cement composites was evaluated. Both new fibers and recycled steam exploded MDF fibers had poor compatibility with cement if no treatment was applied, due to interference of the hydration process by the water soluble components of the fiber. However, this issue was resolved when a rapid hardening process with carbon dioxide injection was adopted. It appears that the rapid carbonation allowed the board to develop considerable strength before the adverse effects of the wood extractives could take effect. After 3-5 min of carbon dioxide injection, the composites reached 22-27% of total carbonation and developed 50-70% of their final (28-day) strength. Composites containing recycled MDF fibers had slightly lower splitting tensile strength and lower tensile toughness properties than those containing new fibers especially at a high fiber/cement ratio. Composites containing recycled MDF fibers also showed lower values of water absorption. Unlike composites cured conventionally, composites cured under CO(2) injection developed higher strength and toughness with increased fiber content. Incorporation of recycled MDF fibers into wood cement composites with CO(2) injection during the production stage presents a viable option for recycling of this difficult to manage waste material. PMID:16046114

  4. Multipurpose hardened spacecraft insulation

    NASA Technical Reports Server (NTRS)

    Steimer, Carlos H.

    1990-01-01

    A Multipurpose Hardened Spacecraft Multilayer Insulation (MLI) system was developed and implemented to meet diverse survivability and performance requirements. Within the definition and confines of a MLI assembly (blanket), the design: (1) provides environmental protection from natural and induced nuclear, thermal, and electromagnetic radiation; (2) provides adequate electrostatic discharge protection for a geosynchronous satellite; (3) provides adequate shielding to meet radiated emission needs; and (4) will survive ascent differential pressure loads between enclosed volume and space. The MLI design is described which meets these requirements and design evolution and verification is discussed. The application is for MLI blankets which closeout the area between the laser crosslink subsystem (LCS) equipment and the DSP spacecraft cabin. Ancillary needs were implemented to ease installation at launch facility and to survive ascent acoustic and vibration loads. Directional venting accommodations were also incorporated to avoid contamination of LCS telescope, spacecraft sensors, and second surface mirrors (SSMs).

  5. Development of nanosilica bonded monetite cement from egg shells.

    PubMed

    Zhou, Huan; Luchini, Timothy J F; Boroujeni, Nariman Mansouri; Agarwal, Anand K; Goel, Vijay K; Bhaduri, Sarit B

    2015-05-01

    This work represents further effort from our group in developing monetite based calcium phosphate cements (CPC). These cements start with a calcium phosphate powder (MW-CPC) that is manufactured using microwave irradiation. Due to the robustness of the cement production process, we report that the starting materials can be derived from egg shells, a waste product from the poultry industry. The CPC were prepared with MW-CPC and aqueous setting solution. Results showed that the CPC hardened after mixing powdered cement with water for about 12.5±1 min. The compressive strength after 24h of incubation was approximately 8.45±1.29 MPa. In addition, adding colloidal nanosilica to CPC can accelerate the cement hardening (10±1 min) process by about 2.5 min and improve compressive strength (20.16±4.39 MPa), which is more than double the original strength. The interaction between nanosilica and CPC was monitored using an environmental scanning electron microscope (ESEM). While hardening, nanosilica can bond to the CPC crystal network for stabilization. The physical and biological studies performed on both cements suggest that they can potentially be used in orthopedics. PMID:25746244

  6. Influence of Solids-to-liquid and Activator Ratios on Calcined Kaolin Cement Powder

    NASA Astrophysics Data System (ADS)

    Liew, Y. M.; Kamarudin, H.; Bakri, A. M. Mustafa Al; Binhussain, M.; Luqman, M.; Nizar, I. Khairul; Ruzaidi, C. M.; Heah, C. Y.

    This paper summarizes the effect of activator ratio on the processing of cement powder. Geopolymer slurry was produced via alkaline activation of calcined kaolin. Once the geopolymer slurry solidified, it was crushed and ground to obtain cement powder. Ultilizing the concept of "just adding water", hardened cement paste could be produced from cement powder. This paper concluded that solids-to-liquid and sodium silicate-to-sodium hydroxide ratios have a significant effect on compressive strength of hardened cement paste. The optimum solids-to-liquid and sodium silicate-to-sodium hydroxide ratios were 0.80 and 0.20, respectively. SEM micrographs showed that a processing route to produce cement powder by "just adding water" was possible, and the structure became denser and fewer unreacted particles were observed.

  7. System-Level Radiation Hardening

    NASA Technical Reports Server (NTRS)

    Ladbury, Ray

    2014-01-01

    Although system-level radiation hardening can enable the use of high-performance components and enhance the capabilities of a spacecraft, hardening techniques can be costly and can compromise the very performance designers sought from the high-performance components. Moreover, such techniques often result in a complicated design, especially if several complex commercial microcircuits are used, each posing its own hardening challenges. The latter risk is particularly acute for Commercial-Off-The-Shelf components since high-performance parts (e.g. double-data-rate synchronous dynamic random access memories - DDR SDRAMs) may require other high-performance commercial parts (e.g. processors) to support their operation. For these reasons, it is essential that system-level radiation hardening be a coordinated effort, from setting requirements through testing up to and including validation.

  8. A new method to analyze copolymer based superplasticizer traces in cement leachates.

    PubMed

    Guérandel, Cyril; Vernex-Loset, Lionel; Krier, Gabriel; De Lanève, Michel; Guillot, Xavier; Pierre, Christian; Muller, Jean François

    2011-03-15

    Enhancing the flowing properties of fresh concrete is a crucial step for cement based materials users. This is done by adding polymeric admixtures. Such additives have enabled to improve final mechanicals properties and the development of new materials like high performance or self compacting concrete. Like this, the superplasticizers are used in almost cement based materials, in particular for concrete structures that can have a potential interaction with drinking water. It is then essential to have suitable detection techniques to assess whether these organic compounds are dissolved in water after a leaching process or not. The main constituent of the last generation superplasticizer is a PolyCarboxylate-Ester copolymer (PCE), in addition this organic admixture contains polyethylene oxide (free PEO) which constitutes a synthesis residue. Numerous analytical methods are available to characterize superplasticizer content. Although these techniques work well, they do not bring suitable detection threshold to analyze superplasticizer traces in solution with high mineral content such as leachates of hardened cement based materials formulated with superplasticizers. Moreover those techniques do not enable to distinguish free PEO from PCE in the superplasticizer. Here we discuss two highly sensitive analytical methods based on mass spectrometry suitable to perform a rapid detection of superplasticizer compounds traces in CEM I cement paste leachates: MALDI-TOF mass spectrometry, is used to determine the free PEO content in the leachate. However, industrial copolymers (such as PCE) are characterized by high molecular weight and polymolecular index. These two parameters lead to limitation concerning analysis of copolymers by MALDI-TOFMS. In this study, we demonstrate how pyrolysis and a Thermally assisted Hydrolysis/Methylation coupled with a triple-quadrupole mass spectrometer, provides good results for the detection of PCE copolymer traces in CEM I cement paste

  9. Mesoscale texture of cement hydrates.

    PubMed

    Ioannidou, Katerina; Krakowiak, Konrad J; Bauchy, Mathieu; Hoover, Christian G; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J-M; Del Gado, Emanuela

    2016-02-23

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium-silicate-hydrates (C-S-H) during cement hydration. Controlling structure and properties of the C-S-H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C-S-H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C-S-H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C-S-H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C-S-H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  10. Mesoscale texture of cement hydrates

    PubMed Central

    Ioannidou, Katerina; Krakowiak, Konrad J.; Bauchy, Mathieu; Hoover, Christian G.; Masoero, Enrico; Yip, Sidney; Ulm, Franz-Josef; Levitz, Pierre; Pellenq, Roland J.-M.; Del Gado, Emanuela

    2016-01-01

    Strength and other mechanical properties of cement and concrete rely upon the formation of calcium–silicate–hydrates (C–S–H) during cement hydration. Controlling structure and properties of the C–S–H phase is a challenge, due to the complexity of this hydration product and of the mechanisms that drive its precipitation from the ionic solution upon dissolution of cement grains in water. Departing from traditional models mostly focused on length scales above the micrometer, recent research addressed the molecular structure of C–S–H. However, small-angle neutron scattering, electron-microscopy imaging, and nanoindentation experiments suggest that its mesoscale organization, extending over hundreds of nanometers, may be more important. Here we unveil the C–S–H mesoscale texture, a crucial step to connect the fundamental scales to the macroscale of engineering properties. We use simulations that combine information of the nanoscale building units of C–S–H and their effective interactions, obtained from atomistic simulations and experiments, into a statistical physics framework for aggregating nanoparticles. We compute small-angle scattering intensities, pore size distributions, specific surface area, local densities, indentation modulus, and hardness of the material, providing quantitative understanding of different experimental investigations. Our results provide insight into how the heterogeneities developed during the early stages of hydration persist in the structure of C–S–H and impact the mechanical performance of the hardened cement paste. Unraveling such links in cement hydrates can be groundbreaking and controlling them can be the key to smarter mix designs of cementitious materials. PMID:26858450

  11. Explosive Surface Hardening of Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Kovacs-Coskun, T.

    2016-04-01

    In this study, the effects of explosion hardening on the microstructure and the hardness of austenitic stainless steel have been studied. The optimum explosion hardening technology of austenitic stainless steel was researched. In case of the explosive hardening used new idea mean indirect hardening setup. Austenitic stainless steels have high plasticity and can be easily cold formed. However, during cold processing the hardening phenomena always occurs. Upon the explosion impact, the deformation mechanism indicates a plastic deformation and this deformation induces a phase transformation (martensite). The explosion hardening enhances the mechanical properties of the material, includes the wear resistance and hardness. In case of indirect hardening as function of the setup parameters specifically the flayer plate position the hardening increased differently. It was find a relationship between the explosion hardening setup and the hardening level.

  12. Premixed rapid-setting calcium phosphate composites for bone repair.

    PubMed

    Carey, Lisa E; Xu, Hockin H K; Simon, Carl G; Takagi, Shozo; Chow, Laurence C

    2005-08-01

    Although calcium phosphate cement (CPC) is promising for bone repair, its clinical use requires on site powder-liquid mixing. To shorten surgical time and improve graft properties, it is desirable to develop premixed CPC in which the paste remains stable during storage and hardens only after placement into the defect. The objective of this study was to develop premixed CPC with rapid setting when immersed in a physiological solution. Premixed CPCs were formulated using the following approach: Premixed CPC = CPC powder + nonaqueous liquid + gelling agent + hardening accelerator. Three premixed CPCs were developed: CPC-monocalcium phosphate monohydrate (MCPM), CPC-chitosan, and CPC-tartaric. Setting time for these new premixed CPCs ranged from 5.3 to 7.9 min, significantly faster than 61.7 min for a premixed control CPC reported previously (p < 0.05). SEM revealed the formation of nano-sized needle-like hydroxyapatite crystals after 1 d immersion and crystal growth after 7 d. Diametral tensile strength for premixed CPCs at 7 d ranged from 2.8 to 6.4 MPa, comparable to reported strengths for cancellous bone and sintered porous hydroxyapatite implants. Osteoblast cells attained a normal polygonal morphology on CPC-MCPM and CPC-chitosan with cytoplasmic extensions adhering to the nano-hydroxyapatite crystals. In summary, fast-setting premixed CPCs were developed to avoid the powder-liquid mixing in surgery. The pastes hardened rapidly once immersed in physiological solution and formed hydroxyapatite. The cements had strengths matching those of cancellous bone and sintered porous hydroxyapatite and non-cytotoxicity similar to conventional non-premixed CPC. PMID:15769536

  13. Premixed rapid-setting calcium phosphate composites for bone repair✩

    PubMed Central

    Carey, Lisa E.; Xu, Hockin H.K.; Simon, Carl G.; Takagi, Shozo; Chow, Laurence C.

    2009-01-01

    Although calcium phosphate cement (CPC) is promising for bone repair, its clinical use requires on site powder–liquid mixing. To shorten surgical time and improve graft properties, it is desirable to develop premixed CPC in which the paste remains stable during storage and hardens only after placement into the defect. The objective of this study was to develop premixed CPC with rapid setting when immersed in a physiological solution. Premixed CPCs were formulated using the following approach: Premixed CPC = CPC powder+nonaqueous liquid+gelling agent+hardening accelerator. Three premixed CPCs were developed: CPC–monocalcium phosphate monohydrate (MCPM), CPC–chitosan, and CPC–tartaric. Setting time for these new premixed CPCs ranged from 5.3 to 7.9 min, significantly faster than 61.7 min for a premixed control CPC reported previously (p<05). SEM revealed the formation of nano-sized needle-like hydroxyapatite crystals after 1 d immersion and crystal growth after 7 d. Diametral tensile strength for premixed CPCs at 7 d ranged from 2.8 to 6.4 MPa, comparable to reported strengths for cancellous bone and sintered porous hydroxyapatite implants. Osteoblast cells attained a normal polygonal morphology on CPC–MCPM and CPC–chitosan with cytoplasmic extensions adhering to the nano-hydroxyapatite crystals. In summary, fast-setting premixed CPCs were developed to avoid the powder–liquid mixing in surgery. The pastes hardened rapidly once immersed in physiological solution and formed hydroxyapatite. The cements had strengths matching those of cancellous bone and sintered porous hydroxyapatite and non-cytotoxicity similar to conventional non-premixed CPC. PMID:15769536

  14. Lunar cement

    NASA Technical Reports Server (NTRS)

    Agosto, William N.

    1992-01-01

    With the exception of water, the major oxide constituents of terrestrial cements are present at all nine lunar sites from which samples have been returned. However, with the exception of relatively rare cristobalite, the lunar oxides are not present as individual phases but are combined in silicates and in mixed oxides. Lime (CaO) is most abundant on the Moon in the plagioclase (CaAl2Si2O8) of highland anorthosites. It may be possible to enrich the lime content of anorthite to levels like those of Portland cement by pyrolyzing it with lunar-derived phosphate. The phosphate consumed in such a reaction can be regenerated by reacting the phosphorus product with lunar augite pyroxenes at elevated temperatures. Other possible sources of lunar phosphate and other oxides are discussed.

  15. Modelling work hardening of aluminium alloys containing dispersoids

    NASA Astrophysics Data System (ADS)

    Zhao, Qinglong; Holmedal, Bjørn

    2013-08-01

    The influence of dispersoids on tensile deformation behaviour has been studied by comparison of aluminium alloys containing different dispersoid densities. It was found that a fine dispersion of non-shearable particles led to an increased work hardening at the initial plastic deformation, but the effect was opposite at higher strains. The reason has been attributed to the generation of geometrically necessary dislocations (GNDs). A new model has been proposed for the evolution of GNDs based on a balance of storage and dynamic recovery of GNDs. The model predicts a rapid saturation of GNDs and a reduced work hardening at small strains, consistent with the experimental results.

  16. Sculpting with Cement.

    ERIC Educational Resources Information Center

    Olson, Lynn

    1983-01-01

    Cement offers many creative possibilities for school art programs. Instructions are given for sculpting with fiber-cement and sand-cement, as well as for finishing processes and the addition of color. Safety is stressed. (IS)

  17. The Use of a Simple Enzyme Assay in 'Seed-Hardening' Studies

    ERIC Educational Resources Information Center

    Ead, J.; Devonald, V. G.

    1975-01-01

    Describes a single technique for an enzyme assay of catalase. The method shows that vegetable seeds submitted to pre-sowing 'hardening' cycles of imbition and drying have greater catalase activity and more rapid germination than do the controls. (LS)

  18. Reaction kinetics of dual setting α-tricalcium phosphate cements.

    PubMed

    Hurle, Katrin; Christel, Theresa; Gbureck, Uwe; Moseke, Claus; Neubauer, Juergen; Goetz-Neunhoeffer, Friedlinde

    2016-01-01

    Addition of ductile polymers to calcium-deficient hydroxyapatite (CDHA)-forming bone cements based on α-tricalcium phosphate (α-TCP) is a promising approach to improve the mechanical performance of α-TCP cements and extend their application to load-bearing defects, which is else impeded by the brittleness of the hardened cement. One suitable polymer is poly-(2-hydroxyethylmethacrylate) (p-HEMA), which forms during cement setting by radical polymerisation of the monomer. In this study the hydration kinetics and the mechanical performance of α-TCP cements modified with addition of different HEMA concentrations (0-50 wt% in the cement liquid) was investigated by quantitative in situ XRD and four-point bending tests. Morphology of CDHA crystals was monitored by scanning electron microscopy. The hydration of α-TCP to CDHA was increasingly impeded and the visible crystal size of CDHA increasingly reduced with increasing HEMA concentration. Modification of the cements by adding 50 wt% HEMA to the cement liquid changed the brittle performance of the hardened cement to a pseudoplastic behaviour, reduced the flexural modulus and increased the work of fracture, while lower HEMA concentrations had no significant effect on these parameters. In such a composite, the extent of CDHA formation was considerably reduced (34.0 ± 1.8 wt% CDHA with 50 % HEMA compared to 54.1 ± 2.4 wt% CDHA in the reference formed after 48 h), while the general reaction kinetics were not changed. In conclusion, while the extent of CDHA formation was decreased, the mechanical properties were noticeably improved by addition of HEMA. Hence, α-TCP/HEMA composites might be suitable for application in some load-bearing defects and have adequate properties for mechanical treatment after implantation, like insertion of screws. PMID:26610924

  19. Onycholysis induced by nail hardener.

    PubMed

    Helsing, Per; Austad, Joar; Talberg, Hans Jørgen

    2007-10-01

    Nail hardeners appeared in the market during the 1960s. They were basically solutions of formaldehyde. The first adverse effects were published in 1966 (1). Reactions were onycholysis, chromonychia, subungual haemorrhage, and hyperkeratosis. Onycholysis may be non-inflammatory or inflammatory, and is accompanied by throbbing pain. Inflammatory reactions are followed by paronychia and occasional dermatitis on the digital pulpa. PMID:17868227

  20. Life on the Hardened Border

    ERIC Educational Resources Information Center

    Miller, Bruce Granville

    2012-01-01

    The many Coast Salish groups distributed on both sides of the United States-Canada border on the Pacific coast today face significant obstacles to cross the international border, and in some cases are denied passage or intimidated into not attempting to cross. The current situation regarding travel by Aboriginal people reflects the "hardening" of…

  1. Cement-based materials' characterization using ultrasonic attenuation

    NASA Astrophysics Data System (ADS)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  2. Influence of nano-dispersive modified additive on cement activity

    NASA Astrophysics Data System (ADS)

    Sazonova, Natalya; Badenikov, Artem; Skripnikova, Nelli; Ivanova, Elizaveta

    2016-01-01

    In the work the influence of single-walled carbon nanotubes (SWCNT) on the cement activity and the processes of structure formation of the hardened cement paste in different periods of hydration are studied. The changes in the kinetic curves of the sample strength growth modified with SWCNT in amount of 0.01 and 0.0005 % are stipulated by the results of differential scanning colorimetry, scanning electronic and ionic microscopy, X-ray-phase analysis. It was found that the nano-modified additive may increase in the axis compressive strength of the system by 1.4-6.3 fold relatively to the reference samples and may reach 179.6 MPa. It may intensify the hydration process of calcium silicates as well as influence on the matrix of hardened cement paste. The studies are conducted on the structural changes in the hardened cement paste, the time periods of increase and decrease of the compressive strength of the samples, the amount of the calcium hydroxide and tobermorite-like gel as well as the degree of hydration C3S and β-C2S.

  3. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-07-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that was performed to analyze the alkali-silica reactivity of ULHS in cement slurries.

  4. Effect of processing cement to concrete on hexavalent chromium levels.

    PubMed

    Turk, K; Rietschel, R L

    1993-04-01

    Hexavalent chromium sensitization is known to occur from exposure to cement. Concrete is a mixture of cement, sand, rock, and water. Admixtures are compounds used to retard or accelerate concrete setting time. Some countries use ferrous sulfate to reduce hexavalent chromium in cement. We evaluated and compared hexavalent chromium levels in cement, rock (aggregate), and wet and dry concrete in samples from Singapore, Ireland, Denmark, Australia, and the United States. Cement from Denmark contains ferrous sulfate. The effect of representative admixtures on hexavalent chromium concentration in concrete was also evaluated, but technical limitations made evaluation difficult. Soluble chromium levels in cement ranged from 0.225 mg/kg in the US sample to 0.036 mg/kg in the Singapore sample. Aggregate chromium levels ranged from 0.083 mg/kg in the Denmark sample to < 0.002 mg/kg in the Ireland sample. Fresh US concrete, with 1.27 mg/kg hexavalent chromium, contained the highest level. The Denmark sample, with ferrous sulfate added, was lowest (< 0.01 mg/kg). Hardened concrete levels ranged from 0.104 mg/kg from the Ireland sample to 0.002 mg/kg from the Singapore sample. Therefore, hexavalent chromium levels do appear to be influenced by admixtures and by processing from powdered cement to dry concrete. Ferrous sulfate significantly reduced hexavalent chromium levels in fresh cement. PMID:8508629

  5. Non-retarding fluid loss additives for well cementing compositions

    SciTech Connect

    McKenzie, L.F.; McElfresh, P.M.; Reese, D.W.

    1986-07-29

    A method is described of cementing a well bore, comprising the steps of: mixing together a hydraulic cement, water in an amount to produce a pumpable slurry, and a non-retarding fluid loss additive which comprises a copolymer of N-vinylpyrrolidone monomer and a second anionic monomer selected from the group consisting of acrylic acid and methacrylic acid the monomer ratio of the N-vinylpyrrolidone monomer to the anionic monomer being in the range from about 85:15 to 95:5, and the copolymer having a molecular weight in the range from about 200,000 to 400,000; pumping the cement slurry to the desired location in the well bore; and allowing the cement slurry to harden to a solid mass.

  6. Potential role of strain hardening in the cessation of rifting at constant tectonic force

    NASA Astrophysics Data System (ADS)

    Yamasaki, Tadashi; Stephenson, Randell

    2009-01-01

    In this study the cessation of rifting at constant tectonic force is discussed from the viewpoint of lithospheric rheology using a simple one-dimensional numerical model. The behaviour of the conventionally adopted constant force model re-examined in this study contradicts some general features in the development of sedimentary basins. Strain hardening is implemented to explain the contradictions, in which the viscosity of the mantle is a function of not only the strain rate and temperature but also the total strain. The roles of various strain hardening parameters in rifting dynamics are examined, including the strain required for the onset of hardening, the strain interval required for the completion of hardening and the factor controlling the increase in mantle viscosity. It is shown that a model with strain hardening can explain many characteristic features of sedimentary basin formation better than the conventional constant force model. There are a variety of ways in which rifting can be terminated by the strain hardening model, depending on the initial lithospheric structure, magnitude of tectonic force and the hardening process. One possible strain hardening mechanism involves the switch from wet to dry rheology associated with decompressional melting, though the implemented strain hardening formula could be generally applicable to any hardening phenomenon and could therefore be physically interpreted as such. The results of this study also provide important insights into sedimentary basin subsidence in relation to rifting dynamics. The end of an initial rapid ("syn-rift" like) subsidence phase is not necessarily equivalent to the end of actual rifting as in the constant force model. The transition from initial rapid subsidence to long-term, more subdued ("post-rift" like), subsidence is actually marked by the onset of deceleration of rifting. Since significant extension still continues for some time thereafter, the subsequent long-term subsidence includes

  7. Impact of Wellbore Cement Degradation on CO2 Storage Integrity

    NASA Astrophysics Data System (ADS)

    Kutchko, B.; Strazisar, B.; Lowry, G.; Dzombak, D.; Thaulow, N.

    2007-12-01

    The sequestration of CO2 in underground geologic formations requires a thorough evaluation of potential leakage of the sequestered CO2 through the numerous existing wellbores which penetrate them. Leakage rates of less than 1% per 100 years have been deemed necessary for geologic sequestration to be viable. Well bores are of particular interest because the cement used to line and/or plug the well, may be vulnerable to acid attack. Injected CO2 will dissolve, becoming carbonic acid, which can readily react with calcium hydroxide and calcium silicate hydrate, key components in hardened cement. Laboratory experiments have been performed in order to determine the physical and chemical changes, as well as the rate of degradation of the cement under simulated sequestration reservoir conditions, including both aqueous and supercritical CO2. Upon exposure to aqueous CO2, hardened cement formed well-defined reaction zones by a 2-step process. The first step is the dissolution of Ca(OH) 2 (s) and subsequent precipitation of CaCO3 (s). The formation of CaCO3 (s) has been reported to decrease cement permeability and increase its compressive strength. The second step is the dissolution of CaCO3 (s) resulting in a leaching of calcium from the cement matrix. The resulting cement paste has a significant increase in porosity, is primarily composed of amorphous silica gel, and lacks structural integrity. Although it is clear that cement is degraded, the results of this study suggest that the reactions involved are slow. In fact, long term experiments show that the rate of degradation decreases over time, likely due to the precipitation of CaCO3 (s) within the pore space of the cement. This phenomenon should limit the negative impact that chemical degradation will have on well bores. Supercritical CO2 exposure (saturated with water vapor) led to a very different process by which CaCO3 (s) was deposited throughout the matrix and on the surface, rather than within an isolated reaction

  8. Scintillation-Hardened GPS Receiver

    NASA Technical Reports Server (NTRS)

    Stephens, Donald R.

    2015-01-01

    CommLargo, Inc., has developed a scintillation-hardened Global Positioning System (GPS) receiver that improves reliability for low-orbit missions and complies with NASA's Space Telecommunications Radio System (STRS) architecture standards. A software-defined radio (SDR) implementation allows a single hardware element to function as either a conventional radio or as a GPS receiver, providing backup and redundancy for platforms such as the International Space Station (ISS) and high-value remote sensing platforms. The innovation's flexible SDR implementation reduces cost, weight, and power requirements. Scintillation hardening improves mission reliability and variability. In Phase I, CommLargo refactored an open-source GPS software package with Kalman filter-based tracking loops to improve performance during scintillation and also demonstrated improved navigation during a geomagnetic storm. In Phase II, the company generated a new field-programmable gate array (FPGA)-based GPS waveform to demonstrate on NASA's Space Communication and Navigation (SCaN) test bed.

  9. A Novel Injectable Borate Bioactive Glass Cement as an Antibiotic Delivery Vehicle for Treating Osteomyelitis

    PubMed Central

    Cui, Xu; Gu, Yi-Fei; Jia, Wei-Tao; Rahaman, Mohamed N.; Wang, Yang; Huang, Wen-Hai; Zhang, Chang-Qing

    2014-01-01

    Background A novel injectable cement composed of chitosan-bonded borate bioactive glass (BG) particles was evaluated as a carrier for local delivery of vancomycin in the treatment of osteomyelitis in a rabbit tibial model. Materials and Methods The setting time, injectability, and compressive strength of the borate BG cement, and the release profile of vancomycin from the cement were measured in vitro. The capacity of the vancomycin-loaded BG cement to eradicate methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in rabbit tibiae in vivo was evaluated and compared with that for a vancomycin-loaded calcium sulfate (CS) cement and for intravenous injection of vancomycin. Results The BG cement had an injectability of >90% during the first 3 minutes after mixing, hardened within 30 minutes and, after hardening, had a compressive strength of 18±2 MPa. Vancomycin was released from the BG cement into phosphate-buffered saline for up to 36 days, and the cumulative amount of vancomycin released was 86% of the amount initially loaded into the cement. In comparison, vancomycin was released from the CS cement for up 28 days and the cumulative amount released was 89%. Two months post-surgery, radiography and microbiological tests showed that the BG and CS cements had a better ability to eradicate osteomyelitis when compared to intravenous injection of vancomycin, but there was no significant difference between the BG and CS cements in eradicating the infection. Histological examination showed that the BG cement was biocompatible and had a good capacity for regenerating bone in the tibial defects. Conclusions These results indicate that borate BG cement is a promising material both as an injectable carrier for vancomycin in the eradication of osteomyelitis and as an osteoconductive matrix to regenerate bone after the infection is cured. PMID:24427311

  10. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, T.

    1993-09-21

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120 C to about 300 C to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate. 10 figures.

  11. Phosphate-bonded calcium aluminate cements

    DOEpatents

    Sugama, Toshifumi

    1993-01-01

    A method is described for making a rapid-setting phosphate-bonded cementitious material. A powdered aluminous cement is mixed with an aqueous solution of ammonium phosphate. The mixture is allowed to set to form an amorphous cementitious material which also may be hydrothermally treated at a temperature of from about 120.degree. C. to about 300.degree. C. to form a crystal-containing phosphate-bonded material. Also described are the cementitious products of this method and the cement composition which includes aluminous cement and ammonium polyphosphate.

  12. Development and study of cement and a phosphocalciques ceramic as medical use

    NASA Astrophysics Data System (ADS)

    Abbaoui, E.; Essaddek, A.; Mejdoubi, E.; Elansari, L. L.; Elgadi, M.; Hammouti, B.

    2005-03-01

    The hydroxyapatite (Ca{10}(PO{4})6(OH){2}) has a structure and a chemical composition very close to those of the mineral phase of calcified tissues. It is thus used for a long time in orthopedic and odontological surgery. In the past few years, cements which evolve toward the hydroxyapatite have been the object of several studies. This communication reports the synthesis and the study of new phosphocalcic cement, which evolves after hardening, towards a hydroxyapatite. The cement is composed of tricalcium phosphate a type (α -Ca{3}(PO{4})2), calcium hydroxide (Ca(OH){2}) and phosphoric acid (H{3}PO{4}). The sintering of hardened cement, leads to ceramics having a structure and chemical composition close to those of the bone's mineral phase. The trisodium phosphate is used as melting agent to increase the hardness of ceramics and to decrease the sintering temperature, without affecting the physicochemical properties of ceramics.

  13. Sorption of radionuclides by cement-based barrier materials

    SciTech Connect

    Li, Kefei Pang, Xiaoyun

    2014-11-15

    This paper investigates the sorption of radionuclide ions, {sup 137}Cs{sup +} and {sup 90}Sr{sup 2+}, by cement-based barrier materials for radioactive waste disposal. A mortar with ternary binder is prepared and powder samples are ground from the hardened material following a predetermined granulometry. After pre-equilibrium with an artificial pore solution, the sorption behaviors of powder samples are investigated through single sorption and blended sorption. The results show that: (1) no systematic difference is observed for single and blended sorptions thus the interaction between {sup 137}Cs{sup +} and {sup 90}Sr{sup 2+} sorptions must be weak; (2) the sorption kinetics is rapid and all characteristic times are less than 1d; (3) the sorption capacity is enhanced by C–A–S–H hydrates and the measured K{sub d} values can be predicted from C–S–H sorption data with Ca/Si ratio equal to Ca/(Si + Al) ratio.

  14. Monitoring and repairing geothermal casing cement: a case history

    SciTech Connect

    Pettitt, R.A.

    1980-01-01

    A manmade geothermal reservoir has been created by drilling a deep hole into relatively impermeable hot rocks, creating a large surface area for heat transfer by hydraulic fracturing, then drilling a second hole to intersect the fracture to complete the closed circulation loop. A second generation system, presently being drilled, will entail creating multiple, parallel, vertical fractures between a pair of inclined boreholes. The original completion of injection Hole EE-1, consisting of a conventional high-temperature formulation of Class B portland cement, stabilized with 40% silica sand, did not withstand the cyclic stresses, and rapid deterioration of casing-to-cement and cement-to-formation bonds occurred, which allowed significant flow in the resulting microannulus. The performance history of the casing cement for the existing HDR EE-1 injection well, the subsequent remedial cementing program, the cement bond logs, and the radioactive isotope tracer injections tests, used to monitor the condition of the casing cement is described. (MHR)

  15. Direct Resistance Joule Heating of Al-10 pct Si-Coated Press Hardening Steel

    NASA Astrophysics Data System (ADS)

    Lee, Chang Wook; Choi, Won Seok; Cho, Yeol Rae; De Cooman, Bruno C.

    2016-06-01

    Various rapid heating methods have been developed to increase the productivity of press hardening steel. One of these methods is direct resistance Joule heating. This heating method results in the melting of the surface coating and the formation of a persistent liquid trail as a result of the high thermal conductivity and low melting temperature of the Al-10 pct Si alloy coating. This can be addressed by an alloying preheating treatment prior to the press hardening process.

  16. Method for determining the hardness of strain hardening articles of tungsten-nickel-iron alloy

    DOEpatents

    Wallace, Steven A.

    1984-01-01

    The present invention is directed to a rapid nondestructive method for determining the extent of strain hardening in an article of tungsten-nickel-iron alloy. The method comprises saturating the article with a magnetic field from a permanent magnet, measuring the magnetic flux emanating from the article, comparing the measurements of the magnetic flux emanating from the article with measured magnetic fluxes from similarly shaped standards of the alloy with known amounts of strain hardening to determine the hardness.

  17. Direct Resistance Joule Heating of Al-10 pct Si-Coated Press Hardening Steel

    NASA Astrophysics Data System (ADS)

    Lee, Chang Wook; Choi, Won Seok; Cho, Yeol Rae; De Cooman, Bruno C.

    2016-03-01

    Various rapid heating methods have been developed to increase the productivity of press hardening steel. One of these methods is direct resistance Joule heating. This heating method results in the melting of the surface coating and the formation of a persistent liquid trail as a result of the high thermal conductivity and low melting temperature of the Al-10 pct Si alloy coating. This can be addressed by an alloying preheating treatment prior to the press hardening process.

  18. Experience in calibrating the double-hardening constitutive model Monot

    NASA Astrophysics Data System (ADS)

    Hicks, M. A.

    2003-11-01

    The Monot double-hardening soil model has previously been implemented within a general purpose finite element algorithm, and used in the analysis of numerous practical problems. This paper reviews experience gained in calibrating Monot to laboratory data and demonstrates how the calibration process may be simplified without detriment to the range of behaviours modelled. It describes Monot's principal features, important governing equations and various calibration methods, including strategies for overconsolidated, cemented and cohesive soils. Based on a critical review of over 30 previous Monot calibrations, for sands and other geomaterials, trends in parameter values have been identified, enabling parameters to be categorized according to their relative importance. It is shown that, for most practical purposes, a maximum of only 5 parameters is needed; for the remaining parameters, standard default values are suggested. Hence, the advanced stress-strain modelling offered by Monot is attainable with a similar number of parameters as would be needed for some simpler, less versatile, models. Copyright

  19. Superplasticized Portland cement: Production and compressive strength of mortars and concrete

    SciTech Connect

    Bouzoubaa, N.; Zhang, M.H.; Malhotra, V.M.

    1998-12-01

    This paper deals with the effect of intergrinding different percentages of a naphthalene-based superplasticizer with Portland cement clinker and gypsum on the fineness of the product, and on the water requirement and the compressive strength of the mortars made with the superplasticized cement. The properties of the fresh and hardened concrete made with the superplasticized cements were also investigated. The results showed that the intergrinding of a given amount of a naphthalene-based superplasticizer with Portland clinker and gypsum reduced the grinding time required for obtaining the same Blaine fineness as that of the control Portland cement without the superplasticizer. The water requirement of the mortars made with the superplasticized cements was similar to that of the mortars made with the control Portland cements when the same amount of the superplasticizer was added at the mortar mixer; for a given grinding time and a Blaine fineness of {approximately}4500 cm{sup 2}/g, the mortars made with the superplasticized cement had higher compressive strength than those made with the control Portland cement. For a given grinding time or Blaine fineness of cement {ge}5000 cm{sup 2}/g, the slump loss, air content stability, bleeding, autogenous temperature rise, setting times, and compressive strength of the concrete made with the superplasticized cements were generally comparable to those of the concrete made with the control Portland cements when the superplasticizer was added at the concrete mixer.

  20. Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements.

    PubMed

    Shi, Caijun; Fernández-Jiménez, A

    2006-10-11

    This paper reviews progresses on the use of alkali-activated cements for stabilization/solidification of hazardous and radioactive wastes. Alkali-activated cements consist of an alkaline activator and cementing components, such as blast furnace slag, coal fly ash, phosphorus slag, steel slag, metakaolin, etc., or a combination of two or more of them. Properly designed alkali-activated cements can exhibit both higher early and later strengths than conventional portland cement. The main hydration product of alkali-activated cements is calcium silicate hydrate (CSH) with low Ca/Si ratios or aluminosilicate gel at room temperature; CSH, tobmorite, xonotlite and/or zeolites under hydrothermal condition, no metastable crystalline compounds such as Ca(OH)(2) and calcium sulphoaluminates exist. Alkali-activated cements also exhibit excellent resistance to corrosive environments. The leachability of contaminants from alkali-activated cement stabilized hazardous and radioactive wastes is lower than that from hardened portland cement stabilized wastes. From all these aspects, it is concluded that alkali-activated cements are better matrix for solidification/stabilization of hazardous and radioactive wastes than Portland cement. PMID:16787699

  1. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-10-31

    The objective of this project is to develop an improved ultra- lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  2. ADVANCED CEMENTS FOR GEOTHERMAL WELLS

    SciTech Connect

    SUGAMA,T.

    2007-01-01

    Using the conventional well cements consisting of the calcium silicate hydrates (CaO-SiO{sub 2}-H{sub 2}O system) and calcium aluminum silicate hydrates (CaO-Al{sub 2}O{sub 3}-SiO{sub 2}-H{sub 2}O system) for the integrity of geothermal wells, the serious concern confronting the cementing industries was their poor performance in mechanically supporting the metallic well casing pipes and in mitigating the pipe's corrosion in very harsh geothermal reservoirs. These difficulties are particularly acute in two geological regions: One is the deep hot downhole area ({approx} 1700 m depth at temperatures of {approx} 320 C) that contains hyper saline water with high concentrations of CO{sub 2} (> 40,000 ppm) in conjunction with {approx} 100 ppm H{sub 2}S at a mild acid of pH {approx} 5.0; the other is the upper well region between the well's surface and {approx} 1000 m depth at temperatures up to 200 C. The specific environment of the latter region is characterized by highly concentrated H{sub 2}SO{sub 4} (pH < 1.5) brine containing at least 5000 ppm CO{sub 2}. When these conventional cements are emplaced in these harsh environments, their major shortcoming is their susceptibility to reactions with hot CO{sub 2} and H{sub 2}SO4, thereby causing their deterioration brought about by CO{sub 2}-catalyzed carbonation and acid-initiated erosion. Such degradation not only reduced rapidly the strength of cements, lowering the mechanical support of casing pipes, but also increased the extent of permeability of the brine through the cement layer, promoting the rate of the pipe's corrosion. Severely carbonated and acid eroded cements often impaired the integrity of a well in less than one year; in the worst cases, casings have collapsed within three months, leading to the need for costly and time-consuming repairs or redrilling operations. These were the reasons why the geothermal well drilling and cementing industries were concerned about using conventional well cements, and further

  3. DISPERSION HARDENING OF URANIUM METAL

    DOEpatents

    Arbiter, W.

    1963-01-15

    A method of hardening U metal involves the forming of a fine dispersion of UO/sub 2/. This method consists of first hydriding the U to form a finely divided powder and then exposing the powder to a very dilute O gas in an inert atmosphere under such pressure and temperature conditions as to cause a thin oxide film to coat each particle of the U hydride, The oxide skin prevents agglomeration of the particles as the remaining H is removed, thus preserving the small particle size. The oxide skin coatings remain as an oxide dispersion. The resulting product may be workhardened to improve its physical characteristics. (AEC)

  4. Energy-Efficient Thermomagnetic and Induction Hardening

    SciTech Connect

    2009-02-01

    This factsheet describes a research project that will develop and test a hybrid thermomagnetic and induction hardening technology to replace conventional heat treatment processes in forging applications.

  5. Radiation Hardened Electronics for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Watson, Michael D.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project consists of a series of tasks designed to develop and mature a broad spectrum of radiation hardened and low temperature electronics technologies. Three approaches are being taken to address radiation hardening: improved material hardness, design techniques to improve radiation tolerance, and software methods to improve radiation tolerance. Within these approaches various technology products are being addressed including Field Programmable Gate Arrays (FPGA), Field Programmable Analog Arrays (FPAA), MEMS Serial Processors, Reconfigurable Processors, and Parallel Processors. In addition to radiation hardening, low temperature extremes are addressed with a focus on material and design approaches.

  6. The influence of shrinkage-cracking on the drying behaviour of White Portland cement using Single-Point Imaging (SPI).

    PubMed

    Beyea, S D; Balcom, B J; Bremner, T W; Prado, P J; Cross, A R; Armstrong, R L; Grattan-Bellew, P E

    1998-11-01

    The removal of water from pores in hardened cement paste smaller than 50 nm results in cracking of the cement matrix due to the tensile stresses induced by drying shrinkage. Cracks in the matrix fundamentally alter the permeability of the material, and therefore directly affect the drying behaviour. Using Single-Point Imaging (SPI), we obtain one-dimensional moisture profiles of hydrated White Portland cement cylinders as a function of drying time. The drying behaviour of White Portland cement, is distinctly different from the drying behaviour of related concrete materials containing aggregates. PMID:9875607

  7. COSMIC-RAY HELIUM HARDENING

    SciTech Connect

    Ohira, Yutaka; Ioka, Kunihito

    2011-03-01

    Recent observations by the CREAM and ATIC-2 experiments suggest that (1) the spectrum of cosmic-ray (CR) helium is harder than that of CR protons below the knee energy, 10{sup 15}eV, and (2) all CR spectra become hard at {approx}>10{sup 11}eV nucleon{sup -1}. We propose a new idea, that higher energy CRs are generated in a more helium-rich region, to explain the hardening without introducing different sources for CR helium. The helium-to-proton ratio at {approx}100 TeV exceeds the Big Bang abundance Y = 0.25 by several times, and the different spectrum is not reproduced within the diffusive shock acceleration theory. We argue that CRs are produced in a chemically enriched region, such as a superbubble, and the outward-decreasing abundance naturally leads to the hard spectrum of CR helium if CRs escape from the supernova remnant shock in an energy-dependent way. We provide a simple analytical spectrum that also fits well the hardening due to the decreasing Mach number in the hot superbubble with {approx}10{sup 6} K. Our model predicts hard and concave spectra for heavier CR elements.

  8. Silica Transport and Cementation in Quartz Aggregates

    NASA Astrophysics Data System (ADS)

    Pebble, C.; Farver, J.; Onasch, C.; Winslow, D.

    2008-12-01

    Silica transport and cementation in quartz aggregates have been experimentally investigated. Starting materials include a natural quartz arenite (Pocono sandstone), sized clasts of synthetic quartz, and sized grains of disaggregated natural sandstones. Experimental charges consisted of amorphous silica powder (~25 mg), AlCl3 powder (~3 mg), 25 wt% NaCl brine solution (~20 mg), and the starting material (~150 mg). The charges were weld-sealed in gold capsules and run in cold-seal pressure vessels at 300°C to 600°C at 150 MPa confining pressure for up to 4 weeks. Detailed calibrations of the furnaces indicate the maximum temperature variation across the length of the sample charges (3-7mm) was <5°C, and typically <3°C. After the experiments, samples were vacuum impregnated with epoxy containing a blue dye and sawn in half along the long axis of the sample charge. The nature and amount of silica transport and cementation in the samples was determined by a combination of Cathodoluminescence (CL), Light Microscopy (LM), and Scanning Electron Microscopy (SEM). Photomosaics of the samples were collected and the amount of cement, porosity, and average grain sizes were determined by point-counting. The cement was easily recognized from the quartz grains by the difference in luminescence. The experiments indicate that the presence of amorphous silica results in rapid silica cementation in quartz aggregates (e.g., up to 12% cement by volume in 4 weeks at 450°C). The amount of cementation is a function of substrate type, time, temperature, and ionic strength of the brine. The rate of silica transport through the length of the experimental charge appears to be limited by the silica solubility and its rapid depletion by cementation. Although most of the cement was derived from the amorphous silica, evidence for local dissolution-precipitation was observed. The experiments demonstrate that the mobility of silica, and consequent precipitation of cement, does not require a

  9. Magnesium phosphate glass cements with ceramic-type properties

    SciTech Connect

    Sugama, T.; Kukacka, L.E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono-and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  10. Magnesium phosphate glass cements with ceramic-type properties

    DOEpatents

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  11. Magnesium-phosphate-glass cements with ceramic-type properties

    DOEpatents

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  12. Effect of mechanical grinding of MCPM and CaO mixtures on their composition and on the mechanical properties of the resulting self-setting hydraulic calcium phosphate cements.

    PubMed

    Serraj, S; Boudeville, P; Terol, A

    2001-01-01

    Calcium bis-dihydrogenophosphate monohydrate (or monocalcium phosphate monohydrate, MCPM) is often used as the acid calcium phosphate in hydraulic calcium phosphate cement formulations. But commercial MCPM is not pure; it contains a small amount of orthophosphoric acid and moisture. Consequently, MCPM is difficult to mill and the powder is sticky and presents aggregates. Because granularity influences the mechanical properties of the hardened cements, a possible way to get around this difficulty that has been proposed is to premix it with other materials before grinding. We therefore ground commercial MCPM with CaO. A rapid decrease in the amount of MCPM was observed during mechanical grinding by a solid-solid reaction with calcium oxide. The final products were anhydrous or dihydrate dicalcium phosphate and/or hydroxyapatite or calcium-deficient hydroxyapatite depending on the initial calcium-to-phosphate (Ca/P) ratio. The mechanical properties (compressive strength and setting time) of cements made from MCPM and CaO were affected whatever the Ca/P ratio as a consequence of the change in composition of the starting materials. Storage at different temperatures of MCPM and CaO mixtures manually ground in a mortar for only 2 min and without mechanical grinding did not affect their composition, but a decrease was observed in the compressive strength of cements made from these mixtures. PMID:15348376

  13. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-04-15

    The objective of this project is to develop an improved ultra-lightweight cement using ultralight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Problems and Task 3: Test Ultra-Lightweight Cements. Results reported this quarter include a review and summary of Halliburton Energy Services (HES) and BJ Services historical performance data for lightweight cement applications. These data are analyzed and compared to ULHS cement and foamed cement performances. Similar data is expected from Schlumberger, and an analysis of this data will be completed in the following phases of the project. Quality control testing of materials used to formulate ULHS cements in the laboratory was completed to establish baseline material performance standards. A testing protocol was developed employing standard procedures as well as procedures tailored to evaluate ULHS and foamed cement. This protocol is presented and discussed. Results of further testing of ULHS cements are presented along with an analysis to establish cement performance design criteria to be used during the remainder of the project. Finally, a list of relevant literature on lightweight cement performance is compiled for review during the next quarter.

  14. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-07-18

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses Task 1: Assess Ultra-Lightweight Cementing Issues, Task 2: Review Russian Ultra-Lightweight Cement Literature, Task 3: Test Ultra-Lightweight Cements, and Task 8: Develop Field ULHS Cement Blending and Mixing Techniques. Results reported this quarter include: preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; summary of pertinent information from Russian ultra-lightweight cement literature review; laboratory tests comparing ULHS slurries to foamed slurries and sodium silicate slurries for two different applications; and initial laboratory studies with ULHS in preparation for a field job.

  15. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-04-29

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, and shear bond. Testing to determine the effect of temperature cycling on the shear bond properties of the cement systems was also conducted. In addition, the stress-strain behavior of the cement types was studied. This report discusses a software program that is being developed to help design ULHS cements and foamed cements.

  16. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-10-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems, including foamed and sodium silicate slurries. During this project quarter, a comparison study of the three cement systems examined the effect that cement drillout has on the three cement systems. Testing to determine the effect of pressure cycling on the shear bond properties of the cement systems was also conducted. This report discusses testing that will be performed for analyzing the alkali-silica reactivity of ULHS in cement slurries, as well as the results of Field Tests 1 and 2.

  17. Experimental study of self-compacted concrete in hardened state

    NASA Astrophysics Data System (ADS)

    Parra Costa, Carlos Jose

    The main aim of this work is to investigate the hardened behaviour of Self-Compacting Concrete (SCC). Self compacting Concrete is a special concrete that can flow in its gravity and fill in the formwork alone to its self-weight, passing through the bars and congested sections without the need of any internal or external vibration, while maintaining adequate homogeneity. SCC avoids most of the materials defects due to bleeding or segregation. With regard to its composition, SCC consists of the same components as traditional vibrated concrete (TC), but in different proportions. Thus, the high amount of superplasticizer and high powder content have to taken into account. The high workability of SCC does not allow to use traditional methods for measuring the fresh state properties, so new tests has developed (slump-flow, V-funnel, L-box, and others). The properties of the hardened SCC, which depend on the mix design, should be different from traditional concrete. In order to study the possible modifications of SCC hardened state properties, a review of the bibliography was done. The state of art was focused on the mechanical behaviour (compressive strength, tension strength and elastic modulus), on bond strength of reinforcement steel, and on material durability. The experimental program consisted in the production of two types of concretes: Self-Compacting Concrete and Traditional Concrete. Four different dosages was made with three different water/cement ratio and two strength types of Portland cement, in order to cover the ordinary strength used in construction. Based on this study it can be concluded that compressive strength of SCC and TC are similar (the differences are lesser than 10%), whereas the tensile strength of TC are up to 18% higher. The values of elastic modulus of both concrete are similar. On the other hand, in the ultimate state the bond strength of SCC and TC is similar, although SCC shows higher bond stiffness in the serviceability state (initial

  18. Microstructural evolution and the variation of tensile behavior after aging heat treatment of precipitation hardened martensitic steel

    SciTech Connect

    Shin, Jong-Ho; Jeong, JaeSuk; Lee, Jong-Wook

    2015-01-15

    The effects of aging temperature on the microstructural evolution and the tensile behavior of precipitation hardened martensitic steel were investigated. Microscopic analysis using transmission electron microscope (TEM) was combined with the microstructural analysis using the synchrotron X-ray diffraction (XRD) to characterize the microstructural evolution with aging temperature. Peak hardness was obtained by precipitation of the Ni{sub 3}Al ordered phase. After aging at temperature range from 420 to 590 °C, spherical Ni{sub 3}Al precipitates and ellipsoidal M{sub 23}C{sub 6} carbides were observed within laths and at lath boundaries, respectively. Strain hardening behavior was analyzed with Ludwik equation. It is observed that the plastic strain regimes can be divided into two different stages by a rapid increase in strain hardening followed by a comparatively lower increase. At the first strain hardening stage, the aged specimen exhibited higher strain hardening exponent than the as-quenched specimen, and the exponent in the aged specimen was not changed considerably with increasing aging temperature. It is revealed that the strain hardening exponents at the first and the second stages were associated with the Ni{sub 3}Al precipitates and the domain size representing the coherent scattering area, respectively. - Highlights: • All of aged specimen exhibited higher strain hardening exponent than the as-quenched specimen at the first stage. • The value of strain hardening exponent in the aged specimen was nearly constant with aging temperature. • Ni{sub 3}Al precipitation dominantly influenced to the increase of strain hardening exponent at the first strain hardening stage. • Domain size was associated with strain hardening exponent at the second strain hardening stage.

  19. Percutaneous Vertebroplasty: A New Serial Injection Technique to Minimize Cement Leak

    PubMed Central

    2015-01-01

    Study Design This is a prospective cohort study. Purpose This study discusses a new technique for injecting cement in the affected vertebrae. Overview of Literature Since introduction of vertebroplasty to clinical practice, the cement leak is considered the most frequent and hazardous complication. In literature, the cement extravasation occurred in 26%-97% of the cases. Methods A hundred and twenty-three patients underwent vertebroplasty using the serial injection technique. The package of the cement powder and the solvent was divided into five equal parts. Each part of the powder and the solvent was mixed as a single dose and injected to the affected vertebra. The duration between subsequent injections was 10 minutes. Each injection consisted of 1-1.5 mL of cement. Results This new technique gives the surgeon enough time to make multiple separate injections using the same package. The time interval between injections hardens the cement just enough so that it does not get displaced by the next cement injection. This technique gives time to the preceding injected cement to seal off the cracks and cavities in the vertebra, and subsequently leads to a significant decrease in cement leak (p<0.001), as compared to literature. Conclusions This study demonstrates a previously unreported technique for vertebroplasty that adds more safety to the procedure by significantly decreasing cement leak. It also makes the surgeon more relaxed due to time intervals, giving him more self-confidence whilst performing the procedure. PMID:26713116

  20. Improved hardening theory for cyclic plasticity.

    NASA Technical Reports Server (NTRS)

    Vos, R. G.; Armstrong, W. H.

    1973-01-01

    A temperature-dependent version of a combined hardening theory, including isotropic and kinematic hardening, is presented within the framework of recent plasticity formulations. This theory has been found to be especially useful in finite-element analysis of aerospace vehicle engines under conditions of large plastic strain and low-cycle fatigue.

  1. Transmission and scanning electron microscope study on the secondary cyclic hardening behavior of interstitial-free steel

    SciTech Connect

    Shih, Chia-Chang; Ho, New-Jin; Huang, Hsing-Lu

    2009-11-15

    Strain controlled fatigue experiment was employed to evaluate automotive grade interstitial-free ferrite steel. Hundreds of grains were examined by scanning electron microscope under electron channeling contrast image technique of backscattered electron image mode for comprehensive comparison of micrographs with those taken under transmission electron microscope. The cyclic stress responses clearly revealed that rapid hardening occurs at the early stage of cycling as a result of multiplication of dislocations to develop loop patches, dipolar walls and dislocation cells at various total strain amplitudes. After primary rapid hardening, stress responses varied from being saturated to further hardening according to dislocation structure evolution at various strain amplitudes. The fatigue failure was always accompanied with further hardening including secondary hardening. The corresponding dislocation structures with the three types of hardening behaviors are discussed. Once the secondary hardening starts, dislocation cells began to develop along grain boundaries in the low strain region and then extended into grain interiors as strain amplitudes increased and cycling went on. The secondary hardening rates were found to be directly proportional to their strain amplitudes.

  2. CHEMICALLY BONDED CEMENTS FROM BOILER ASH AND SLUDGE WASTES. PHASE I REPORT AUGUST 1997 - JULY 1998

    SciTech Connect

    SUGAMA,T.; YAGER,K.A.

    2002-08-05

    In exploring methods to recycle boiler ash (BA) and waste water treatment sludge (WWTS), by-products generated from Keyspan's power plants, into commercially viable materials, we synthesized chemically bonded cements (CBC) offering the following three specific characteristics; (1) immobilization of hazardous heavy metals, such as Pb, Ni, and V, (2) rapid hardening and setting properties, and (3) development of high mechanical strength. The CBCs were prepared through an acid-base reaction between these by-products acting as the solid base reactants and the sodium polyphosphate solution as the cement-forming acid reactant, followed by a hydrating reaction. Furthermore, two additives, the calcium aluminate cements (CAC) and the calcium silicate cements (CSC) were incorporated into the CBC systems to improve their properties. Using a CBC formulation consisting of 53.8 wt% WWTS, 23.1 wt% CSC, and 23.1 wt% [40 wt% -(-NaPO{sub 3}-)-{sub n}]{sub 2} the Toxicity Characteristics Leaching Procedure (TCLP) tests showed that the concentrations of Pb, Ni, and V metals leached out from the specimens were minimal. This formulation originally contained {approx} 28800 mg/kg of Pb, {approx} 6300 mg/kg of Ni, and {approx} 11130 mg/kg of V; the amounts leaching into the acid extraction fluid were only 0.15 mg/L of Pb, 0.15 mg/L of Ni, and 4.63 mgiL of V. On the other hand, CBC specimens derived from a formulation consisting of 42 wt% BA, 18 wt% CAC and 40 wt% [40 wt% -(-NaPO{sub 3}-)-{sub n}] displayed an excellent compressive strength of 10.8 MPa at an early curing age of 2 hours after mixing at room temperature. The reason for its rapid hardening was due to a high exothermic energy evolved by the acid-base reaction. Furthermore, when these specimens were immersed for 28 days in water at 25 C, and exposed for 20 hours to steam at 80 C, a very high compressive strength of 3.32 MPa developed. Two physico-chemical factors played an important role in improving the mechanical strength of

  3. Kinematic hardening of a porous limestone

    NASA Astrophysics Data System (ADS)

    Cheatham, J. B.; Allen, M. B.; Celle, C. C.

    1984-10-01

    A concept for a kinematic hardening yield surface in stress space for Cordova Cream limestone (Austin Chalk) developed by Celle and Cheatham (1981) has been improved using Ziegler's modification of Prager's hardening rule (Ziegler, 1959). Data to date agree with the formulated concepts. It is shown how kinematic hardening can be used to approximate the yield surface for a wide range of stress states past the initial yield surface. The particular difficulty of identifying the yield surface under conditions of unloading or extension is noted. A yield condition and hardening rule which account for the strain induced anisotropy in Cordova Cream Limestone were developed. Although the actual yield surface appears to involve some change of size and shape, it is concluded that true kinematic hardening provides a basis for engineering calculations.

  4. Challenges in hardening technologies using shallow-trench isolation

    SciTech Connect

    Shaneyfelt, M.R.; Dodd, P.E.; Draper, B.L.; Flores, R.S.

    1998-02-01

    Challenges related to radiation hardening CMOS technologies with shallow-trench isolation are explored. Results show that trench hardening can be more difficult than simply replacing the trench isolation oxide with a hardened field oxide.

  5. Heavyweight cement concrete with high stability of strength parameters

    NASA Astrophysics Data System (ADS)

    Kudyakov, Konstantin; Nevsky, Andrey; Danke, Ilia; Kudyakov, Aleksandr; Kudyakov, Vitaly

    2016-01-01

    The present paper establishes regularities of basalt fibers distribution in movable cement concrete mixes under different conditions of their preparation and their selective introduction into mixer during the mixing process. The optimum content of basalt fibers was defined as 0.5% of the cement weight, which provides a uniform distribution of fibers in the concrete volume. It allows increasing compressive strength up to 51.2% and increasing tensile strength up to 28.8%. Micro-structural analysis identified new formations on the surface of basalt fibers, which indicates the good adhesion of hardened cement paste to the fibers. Stability of concrete strength parameters has significantly increased with introduction of basalt fibers into concrete mix.

  6. Properties and hydration of blended cements with steelmaking slag

    SciTech Connect

    Kourounis, S.; Tsivilis, S. . E-mail: stsiv@central.ntua.gr; Tsakiridis, P.E.; Papadimitriou, G.D.; Tsibouki, Z.

    2007-06-15

    The present research study investigates the properties and hydration of blended cements with steelmaking slag, a by-product of the conversion process of iron to steel. For this purpose, a reference sample and three cements containing up to 45% w/w steel slag were tested. The steel slag fraction used was the '0-5 mm', due to its high content in calcium silicate phases. Initial and final setting time, standard consistency, flow of normal mortar, autoclave expansion and compressive strength at 2, 7, 28 and 90 days were measured. The hydrated products were identified by X-ray diffraction while the non-evaporable water was determined by TGA. The microstructure of the hardened cement pastes and their morphological characteristics were examined by scanning electron microscopy. It is concluded that slag can be used in the production of composite cements of the strength classes 42.5 and 32.5 of EN 197-1. In addition, the slag cements present satisfactory physical properties. The steel slag slows down the hydration of the blended cements, due to the morphology of contained C{sub 2}S and its low content in calcium silicates.

  7. Cyber situational awareness and differential hardening

    NASA Astrophysics Data System (ADS)

    Dwivedi, Anurag; Tebben, Dan

    2012-06-01

    The advent of cyber threats has created a need for a new network planning, design, architecture, operations, control, situational awareness, management, and maintenance paradigms. Primary considerations include the ability to assess cyber attack resiliency of the network, and rapidly detect, isolate, and operate during deliberate simultaneous attacks against the network nodes and links. Legacy network planning relied on automatic protection of a network in the event of a single fault or a very few simultaneous faults in mesh networks, but in the future it must be augmented to include improved network resiliency and vulnerability awareness to cyber attacks. Ability to design a resilient network requires the development of methods to define, and quantify the network resiliency to attacks, and to be able to develop new optimization strategies for maintaining operations in the midst of these newly emerging cyber threats. Ways to quantify resiliency, and its use in visualizing cyber vulnerability awareness and in identifying node or link criticality, are presented in the current work, as well as a methodology of differential network hardening based on the criticality profile of cyber network components.

  8. Possibility of Using Wood Pulp in the Preparation of Cement Composites

    NASA Astrophysics Data System (ADS)

    Kidalova, Lucia; Stevulova, Nadezda; Geffert, Anton

    2014-06-01

    Sustainable building materials are based on the use of renewable materials instead of non-renewable. Large group of renewable materials composes of plant fibres having high tensile strength are used as fillers into building material with reinforcement function of composite. This study aimed to establish the mechanical and physical properties of cement composites with organic fillers, such as wood pulp. Wood pulp cellulose is very interesting material as reinforcement in cement which contributes to a reduction of pollutants. Varying the producing technology (wood pulp and cement ratio in mixture) it is possible to obtain composites with density from 940 to 1260 kgm-3 and with compressive strength from 1.02 to 5.44 MPa after 28 days of hardening. Based on the experimental results, cement composites with using unbleached wood pulp reach higher values than composites based on bleached wood pulp. Volume ratio of unbleached wood pulp in composites influences water absorbability of cement composites

  9. A novel cement-based hybrid material

    NASA Astrophysics Data System (ADS)

    Nasibulin, Albert G.; Shandakov, Sergey D.; Nasibulina, Larisa I.; Cwirzen, Andrzej; Mudimela, Prasantha R.; Habermehl-Cwirzen, Karin; Grishin, Dmitrii A.; Gavrilov, Yuriy V.; Malm, Jari E. M.; Tapper, Unto; Tian, Ying; Penttala, Vesa; Karppinen, Maarit J.; Kauppinen, Esko I.

    2009-02-01

    Carbon nanotubes (CNTs) and carbon nanofibers (CNFs) are known to possess exceptional tensile strength, elastic modulus and electrical and thermal conductivity. They are promising candidates for the next-generation high-performance structural and multi-functional composite materials. However, one of the largest obstacles to creating strong, electrically or thermally conductive CNT/CNF composites is the difficulty of getting a good dispersion of the carbon nanomaterials in a matrix. Typically, time-consuming steps of purification and functionalization of the carbon nanomaterial are required. We propose a new approach to grow CNTs/CNFs directly on the surface of matrix particles. As the matrix we selected cement, the most important construction material. We synthesized in a simple one-step process a novel cement hybrid material (CHM), wherein CNTs and CNFs are attached to the cement particles. The CHM has been proven to increase 2 times the compressive strength and 40 times the electrical conductivity of the hardened paste, i.e. concrete without sand.

  10. Shrinkage deformation of cement foam concrete

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  11. Abyssal seep site cementation

    SciTech Connect

    Neumann, A.C.; Paull, C.K.; Commeau, R.; Commeau, J.

    1988-01-01

    The deepest submarine cements known so far occur along the 3,300-m deep base of the Florida escarpment and are associated with methane-bearing brine seeps, which emanate there. These deep Holocene carbonates, which occur as surficial and buried crusts, burrow fillings, and friable horizons, were sampled via ALVIN. The carbonates form irregular halos extending up to 20 m from seeps colonized by chemosynthetic fauna. Mussels, gastropods, and clams, the carbonate components of the community, produce a shell hash that is locally cemented by coarsely crystalline low-Mg calcite. Halos of palisade calcite are reminiscent of ancient examples of marine cements. Also present are carbonate hemipelagics cemented by micrite into crusts and burrow fillings. The degree of cementation varies from pervasive to light. Slabs of cemented crust up to 30 cm thick contrast with typical shallow crusts and exhibit irregular tops and smooth bottoms indicating different chemical gradients and pathways.

  12. Heterogeneous nucleation of ice from supercooled NaCl solution confined in porous cement paste

    NASA Astrophysics Data System (ADS)

    Zeng, Qiang; Li, Kefei; Fen-Chong, Teddy

    2015-01-01

    Clarifying the nucleation process of chloride-based deicing salt solution (e.g., NaCl solution) confined in cement-based porous materials remains an important issue to understand its detrimental effects on material substrates. In this study, the pore structures of hardened cement pastes were characterized by mercury-intrusion and nitrogen-sorption porosimetry. The ice nucleation temperature of NaCl solution of different concentrations confined in the hardened cement pastes was measured and analyzed by classical heterogeneous nucleation theory. The kinetic factor, contact-angle factor including the contact angle between ice and the substrate were evaluated. The results revealed that the contact angle between ice and the substrate showed the minimum value when adding 3% NaCl into water. The heterogeneous ice nucleation rates were found to be proportional to the water activity shifts.

  13. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-01-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. DOE joined the Materials Management Service (MMS)-sponsored joint industry project ''Long-Term Integrity of Deepwater Cement under Stress/Compaction Conditions.'' Results of the project contained in two progress reports are also presented in this report.

  14. Cements from nanocrystalline hydroxyapatite.

    PubMed

    Barralet, J E; Lilley, K J; Grover, L M; Farrar, D F; Ansell, C; Gbureck, U

    2004-04-01

    Calcium phosphate cements are used as bone substitute materials because they may be moulded to fill a void or defect in bone and are osteoconductive. Although apatite cements are stronger than brushite cements, they are potentially less resorbable in vivo. Brushite cements are three-component systems whereby phosphate ions and water react with a soluble calcium phosphate to form brushite (CaHPO4 x 2H2O). Previously reported brushite cement formulations set following the mixture of a calcium phosphate, such as beta-tricalcium phosphate (beta-TCP), with an acidic component such as H3PO4 or monocalcium phosphate monohydrate (MCPM). Due to its low solubility, hydroxyapatite (HA) is yet to be reported as a reactive component in calcium phosphate cement systems. Here we report a new cement system setting to form a matrix consisting predominantly of brushite following the mixture of phosphoric acid with nanocrystalline HA. As a result of the relative ease with which ionic substitutions may be made in apatite this route may offer a novel way to control cement composition or setting characteristics. Since kinetic solubility is dependent on particle size and precipitation temperature is known to affect precipitated HA crystal size, the phase composition and mechanical properties of cements made from HA precipitated at temperatures between 4 and 60 degrees C were investigated. PMID:15332608

  15. Cyclic hardening mechanisms in Nimonic 80A

    NASA Technical Reports Server (NTRS)

    Lerch, B. A.; Gerold, V.

    1987-01-01

    A nickel base superalloy was fatigued under constant plastic strain range control. The hardening response was investigated as a function of plastic strain range and particle size of the gamma prime phase. Hardening was found to be a function of the slip band spacing. Numerous measurements of the slip band spacing and other statistical data on the slip band structures were obtained. Interactions between intersecting slip systems were shown to influence hardening. A Petch-Hall model was found to describe best this relationship between the response stress and the slip band spacing.

  16. Structural influences on the work hardening behavior of aluminum

    SciTech Connect

    Chu, D.

    1994-12-01

    Effects of various grain and subgrain morphologies on low temperature work hardening of pure Al is studied using tensile tests. Plotting the work hardening rate as a function of true stress, the work hardening is separable into two distinct regimes. Both regimes are approximated by a line {Theta} = {Theta}{sub 0} {minus} K{sub 2}{sigma}, where {Theta}{sub 0} is theoretical work hardening rate at zero stress and K{sub 2} is related to dynamic recovery rate. The first or early deformation regime exhibits greater values of {Theta}{sub 0} and K{sub 2} and can extend up to the first 10% strain of tensile deformation. This early deformation regime is contingent on the existence of a pre-existent dislocation substructure from previous straining. The {Theta}{sub 0} and K{sub 2} associated with the early deformation regime are dependent on the strength and orientation of the pre-existent dislocation substructure relative to the new strain path. At high enough temperatures, this pre-existent dislocation substructure is annealed out, resulting in the near elimination of the early deformation regime. In comparison, the latter regime is dominated by the initial grain and/or subgrain morphology and exhibit lower values of {Theta}{sub 0} and K{sub 2}. The actual value of K{sub 2} in the latter regime is strongly dependent on the existence of a subgrain morphology. Recrystallized or well-annealed microstructures exhibit greater values of K{sub 2} than microstructures that remain partially or fully unrecrystallized. The higher K{sub 2} value is indicative of a more rapid dynamic recovery rate and a greater degree of strain relaxation. The ability to achieve a more relaxed state produces a low-energy cellular dislocation substructure upon deformation. The introduction of subgrains hinders the evolution of a low-energy dislocation cell network, giving way to a more random distribution of the dislocation density.

  17. Effect of microstructure characteristics on tetracalcium phosphate-nanomonetite cement in vitro cytotoxicity.

    PubMed

    Medvecky, Lubomir; Giretova, Maria; Stulajterova, Radoslava; Kasiarova, Monika

    2015-04-01

    MC3T3E1 murine pre-osteoblastic cells were used to evaluate the cytotoxicity of tetracalcium phosphate (TTCP)-nanomonetite (DCPA) cement. The starting cement powder mixture was prepared by the in situ reaction between TTCP and a diluted solution of orthophosphoric acid in a planetary ball mill. The cements in the form of pressed cement powder mixture discs differ from each other by the method of pre-treatment and degree of the transformation of cement components in phosphate-buffered saline (PBS). For the evaluation of TTCP-DCPA cement to be non-cytotoxic, it was sufficient to apply the short-time soaking in PBS solution, regardless of whether the cement components were completely transformed or not. If the texture motif and hydroxyapatite particle morphology were properly developed during the initial stage of hardening, the cement cytotoxicity or osteoblast proliferation were insignificantly influenced by the soaking time or the texture stability during cell cultivation, but the lattice ordering enhanced cell proliferation. Results showed that the surface texture and the hydroxyapatite particle morphology are crucial for in vitro cement cytotoxicity evaluation. PMID:25805605

  18. Physico-mechanical and physico-chemical properties of synthesized cement based on plasma- and wet technologies

    NASA Astrophysics Data System (ADS)

    Sazonova, Natalya; Skripnikova, Nelli

    2016-01-01

    In this work we studied the influence of plasma-chemical technology of cement clinker synthesis under conditions of high-concentrated heat streams on the properties of cement on fixing such factors as raw-material type (chemical and mineralogical composition), fraction composition, homogenization and module characters of the raw-material mixture. In this connection the sludge of the cement plant in town Angarsk, based on which the cement clinker synthesis using the wet- and plasma-chemical technologies was performed, was used in the studies. The results of chemical X-ray-phase analysis, petrography of cement clinkers, differential scanning colorimetry of hardened cement paste are represented in this work. The analysis of building-technical properties of inorganic viscous substances was performed. It was found that in using the identical raw-material mixture the cement produced with temperature higher by 1650 °C than the traditional one may indicate the higher activity. The hardened cement paste compressive strength at the age of 28 days was higher than the strength of the reference samples by 40.8-41.4 %.

  19. Alloy solution hardening with solute pairs

    DOEpatents

    Mitchell, John W.

    1976-08-24

    Solution hardened alloys are formed by using at least two solutes which form associated solute pairs in the solvent metal lattice. Copper containing equal atomic percentages of aluminum and palladium is an example.

  20. Process for hardening the surface of polymers

    DOEpatents

    Mansur, L.K.; Lee, E.H.

    1992-07-14

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance. 1 figure.

  1. Process for hardening the surface of polymers

    DOEpatents

    Mansur, Louis K.; Lee, Eal H.

    1992-01-01

    Hard surfaced polymers and the method for making them is generally described. Polymers are subjected to simultaneous multiple ion beam bombardment, that results in a hardening of the surface and improved wear resistance.

  2. Decline in Radiation Hardened Microcircuit Infrastructure

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2015-01-01

    Two areas of radiation hardened microcircuit infrastructure will be discussed: 1) The availability and performance of radiation hardened microcircuits, and, and 2) The access to radiation test facilities primarily for proton single event effects (SEE) testing. Other areas not discussed, but are a concern include: The challenge for maintaining radiation effects tool access for assurance purposes, and, the access to radiation test facilities primarily for heavy ion single event effects (SEE) testing. Status and implications will be discussed for each area.

  3. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2004-01-30

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries.

  4. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  5. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  6. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  7. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  8. 7 CFR 58.641 - Hardening and storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hardening and storage. 58.641 Section 58.641... Procedures § 58.641 Hardening and storage. Immediately after the semifrozen product is placed in its intended container it shall be placed in a hardening tunnel or hardening room to continue the freezing process....

  9. Laser Surface Hardening of AISI 1045 Steel

    NASA Astrophysics Data System (ADS)

    Li, Ruifeng; Jin, Yajuan; Li, Zhuguo; Qi, Kai

    2014-09-01

    The study investigates laser surface hardening in the AISI 1045 steel using two different types of industrial laser: a high-power diode laser (HPDL) and a CO2 laser, respectively. The effect of process parameters such as beam power, travel speed on structure, case depth, and microhardness was examined. In most cases, a heat-affected zone (HAZ) formed below the surface; a substantial increase in surface hardness was achieved. In addition, big differences were found between the hardened specimens after HPDL surface hardening and CO2 laser surface hardening. For HPDL, depths of the HAZ were almost equal in total HAZ o, without surface melting. For CO2 laser, the depths changed a lot in the HAZ, with surface melting in the center. To better understand the difference of laser hardening results when use these two types of laser, numerical (ANSYS) analysis of the heat conduction involved in the process was also studied. For HPDL method, a rectangular beam spot and uniform energy distribution across the spot were assumed, while for CO2 laser, a circular beam spot and Gaussian energy distribution were assumed. The results showed that the energy distribution variety altered the thermal cycles of the HAZ dramatically. The rectangular HPDL laser beam spot with uniform energy distribution is much more feasible for laser surface hardening.

  10. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2002-01-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report includes results from laboratory testing of ULHS systems along with other lightweight cement systems: foamed and sodium silicate slurries. Comparison studies of the three cement systems examined several properties: tensile strength, Young's modulus, water permeability, and shear bond. Testing was also done to determine the effect that temperature cycling has on the shear bond properties of the cement systems. In addition, analysis was carried out to examine alkali silica reactivity of slurries containing ULHS. Data is also presented from a study investigating the effects of mixing and pump circulation on breakage of ULHS. Information is also presented about the field application of ULHS in cementing a 7-in. intermediate casing in south Texas.

  11. Sulfate attack monitored by microCT and EDXRD: Influence of cement type, water-to-cement ratio, and aggregate

    SciTech Connect

    Naik, N.N.; Jupe, A.C.; Stock, S.R.; Wilkinson, A.P.; Lee, P.L.; Kurtis, K.E. . E-mail: kkurtis@ce.gatech.edu

    2006-01-15

    X-ray microtomography (microCT) and spatially resolved energy dispersive X-ray diffraction (EDXRD) were used in combination to non-destructively monitor the physical and chemical manifestations of damage in Portland cement paste samples subjected to severe sodium sulfate attack. Additional measurements of expansion and compressive strength were made on complementary mortar and cement paste specimens. Specifically, the influences of cement type (ASTM Types I and V), water-to-cement ratio (0.485 and 0.435), and the presence of aggregate on the rate and forms of damage were examined. As expected, Type V cement samples exhibited less cracking and expansion than the Type I cement samples. EDXRD indicated an anticorrelation between ettringite and gypsum in the near-surface region for Type V samples, which may be associated with crack formation. An unanticipated result for Type I cement pastes was that cracking was apparent at earlier exposure times and progressed more rapidly for samples with w/c of 0.435, than for those with w/c of 0.485. Possible mechanisms for this behavior are proposed. The presence of aggregate particles resulted in a more rapid rate of cracking, as compared to the corresponding cement paste sample.

  12. Characterization of dicalcium phosphate dihydrate cements prepared using a novel hydroxyapatite-based formulation.

    PubMed

    Alge, Daniel L; Santa Cruz, Grace; Goebel, W Scott; Chu, Tien-Min Gabriel

    2009-04-01

    Dicalcium phosphate dihydrate (DCPD) cements are typically prepared using beta-tricalcium phosphate (beta-TCP) as the base component. However, hydroxyapatite (HA) is an interesting alternative because of its potential for reducing cement acidity, as well as modulating cement properties via ionic substitutions. In the present study, we have characterized DCPD cements prepared with a novel formulation based on monocalcium phosphate monohydrate (MCPM) and HA. Cements were prepared using a 4:1 MCPM:HA molar ratio. The reactivity of HA in this system was verified by showing DCPD formation using poorly crystalline HA, as well as highly crystalline HA. Evaluation of cements prepared with poorly crystalline HA revealed that setting occurs rapidly in the MCPM/HA system, and that the use of a setting regulator is necessary to maintain workability of the cement paste. Compressive testing showed that MCPM/HA cements have strengths comparable to what has previously been published for DCPD cements. However, preliminary in vitro analysis of cement degradation revealed that conversion of DCPD to HA may occur much more rapidly in the MCPM/HA system compared to cements prepared with beta-TCP. Future studies should investigate this property further, as it could have important implications for the use of HA-based DCPD cement formulations. PMID:19349655

  13. Solid state NMR and LVSEM studies on the hardening of latex modified tile mortar systems

    SciTech Connect

    Rottstegge, J.; Arnold, M.; Herschke, L.; Glasser, G.; Wilhelm, M.; Spiess, H.W. . E-mail: spiess@mpip-mainz.mpg.de; Hergeth, W.D.

    2005-12-15

    Construction mortars contain a broad variety of both inorganic and organic additives beside the cement powder. Here we present a study of tile mortar systems based on portland cement, quartz, methyl cellulose and different latex additives. As known, the methyl cellulose stabilizes the freshly prepared cement paste, the latex additive enhances final hydrophobicity, flexibility and adhesion. Measurements were performed by solid state nuclear magnetic resonance (NMR) and low voltage scanning electron microscopy (LVSEM) to probe the influence of the latex additives on the hydration, hardening and the final tile mortar properties. While solid state NMR enables monitoring of the bulk composition, scanning electron microscopy affords visualization of particles and textures with respect to their shape and the distribution of the different phases. Within the alkaline cement paste, the poly(vinyl acetate) (VAc)-based latex dispersions stabilized by poly(vinyl alcohol) (PVA) were found to be relatively stable against hydrolysis. The influence of the combined organic additives methyl cellulose, poly(vinyl alcohol) and latexes stabilized by poly(vinyl alcohol) on the final silicate structure of the cement hydration products is small. But even small amounts of additives result in an increased ratio of ettringite to monosulfate within the final hydrated tile mortar as monitored by {sup 27}Al NMR. The latex was found to be adsorbed to the inorganic surfaces, acting as glue to the inorganic components. For similar latex water interfaces built up by poly(vinyl alcohol), a variation in the latex polymer composition results in modified organic textures. In addition to the networks of the inorganic cement and of the latex, there is a weak network build up by thin polymer fibers, most probably originating from poly(vinyl alcohol). Besides the weak network, polymer fibers form well-ordered textures covering inorganic crystals such as portlandite.

  14. Cement-cement interface strength: influence of time to apposition.

    PubMed

    Park, S H; Silva, M; Park, J S; Ebramzadeh, E; Schmalzried, T P

    2001-01-01

    Cement-cement interfaces were created under simulated operating-room conditions. In order to analyze the effect of time to apposition on interface strength, two cement surfaces were brought together 1, 2, 4, and 6 min after 1 min of mixing and 45 s of waiting. Cement-cement interface strength was evaluated with the use of a three-point bending to failure test. Scanning electron microscopy (SEM) images of the failed interface were obtained. The mean interface strength decreased when the cement-cement interface was time delayed. Compared to bulk cement, interface strength in time-delayed groups decreased 8% after 1-min delay (p=.037), 18% after 2-min delay (p=.0004), 20% after 4-min delay (p=.0005), and 42% after 6-min delay (p<.0001). No statistically significant differences in interface strength were found between the 2- and 4-min delayed groups (p=.73). SEM images revealed that after 6-min delay, up to 50% of the cement surface can remain unbonded, explaining the decrease in strength of the cement-cement interface as a function of time to apposition. This laboratory study indicates that time to apposition plays a critical role in cement-cement interface strength. If any cementing technique involves the joining of two cement surfaces, it is recommended that the two cement surfaces be mated together within 5 min and 45 s after the start of mixing (1 min mixing; 45 s waiting; 4 min delay), in order to obtain a strong cement-cement interface bond. Delay beyond this can result in substantial reduction in the strength of the cement-cement interface bond. PMID:11745529

  15. Timing of syntaxial cement

    SciTech Connect

    Perkins, R.D.

    1985-02-01

    Echinodermal fragments are commonly overgrown in ancient limestones, with large single crystals growing in optical continuity over their skeletal hosts (i.e., syntaxial overgrowths). Such syntaxial cements are usually considered to have precipitated from meteoric pore waters associated with a later stage of subaerial exposure. Although several examples have been reported from ancient carbonates where petrographic relationships may indicate an early submarine formation of syntaxial cement, no occurrences have been noted in Holocene submarine-cemented rocks. Syntaxial cements of submarine origin have been found in Bermuda beachrock where isopachous high-magnesian calcite cements merge with large optically continuous crystals growing on echinodermal debris. Examination of other Holocene sediments cemented by magnesian calcite indicates that echinodermal fragments are not always overgrown syntaxially, but may be rimmed by microcrystalline calcite. The reason for this difference is not clear, although it may be a function of the spacing of nucleation sites and rates of crystal growth. A review of syntaxial cements from several localities in ancient carbonate sequences reveals that many are best interpreted as having formed in the submarine setting, whereas it is more clear that others formed from meteoric precipitation. These occurrences suggest that care should be exercised in inferring meteoric diagenesis from syntaxial overgrowths and that the possibility of submarine formation should be considered.

  16. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2003-07-31

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). This report discusses testing that was performed for analyzing the alkali-silica reactivity of ULHS in cement slurries. Laboratory testing during the eleventh quarter focused on evaluation of the alkali-silica reaction of eight different cement compositions, four of which contain ULHS. This report provides a progress summary of ASR testing. The original laboratory procedure for measuring set cement expansion resulted in unacceptable erosion of the test specimens. In subsequent tests, a different expansion procedure was implemented and an alternate curing method for cements formulated with TXI Lightweight cement was employed to prevent sample failure caused by thermal shock. The results obtained with the modified procedure showed improvement over data obtained with the original procedure, but data for some compositions were still questionable. Additional modification of test procedures for compositions containing TXI Lightweight cement were implemented and testing is ongoing.

  17. Increase in the strength characteristics of Portland cement due to introduction of the compound mineral supplements

    NASA Astrophysics Data System (ADS)

    Il'ina, Liliia; Gichko, Nikolai; Mukhina, Irina

    2016-01-01

    At the initial phase of hardening it is the limestone component that plays a major role in the hardening process, which acts as the substrate for the crystallization of hydrate tumors due to its chemical affinity with the products of Portland cement hydration. After 7 days, the diopside supplement influences the processes more significantly. Diopside has a high modulus of elasticity compared to the cement paste. As a result, stresses are redistributed within the cement paste and the whole composition is hardened. An increase in the quantity of diopside in the compound supplement to more than 66.7% does not provide a substantial increase in the strength of the cement paste. As the hardness of diopside is higher than the hardness of limestone, much more energy is required to grind it down to a usable component. Therefore, a further increase in the quantity of diopside in the compound supplement is not economically feasible. An evaluation of the optimum quantity of input compound mineral supplements can be made based on the ideas of close packing of spherical particles and the Pauling rules. The optimum content of the supplement is 8-8.5% provided that its dispersion and density are close to the dispersion and density of the binder. An increase in the dispersion of the supplement reduces its optimal quantity.

  18. Stage cementing apparatus

    SciTech Connect

    Blamford, D.M.; Easter, J.H.

    1988-06-21

    A stage cementing apparatus for selectively passing cement from the interior passage of a casing to the annulus between the exterior of the casing and borehole, the casing having an upper portion and a lower portion, is described comprising: a barrel secured to the upper portion of the casing; a mandrel secured to the lower portion of the casing, and a stage cementing tool having a generally cylindrical configuration adapted for attachment to the lower end of the barrel about a portion of the mandrel.

  19. Cement and concrete

    NASA Technical Reports Server (NTRS)

    Corley, Gene; Haskin, Larry A.

    1992-01-01

    To produce lunar cement, high-temperature processing will be required. It may be possible to make calcium-rich silicate and aluminate for cement by solar heating of lunar pyroxene and feldspar, or chemical treatment may be required to enrich the calcium and aluminum in lunar soil. The effects of magnesium and ferrous iron present in the starting materials and products would need to be evaluated. So would the problems of grinding to produce cement, mixing, forming in vacuo and low gravity, and minimizing water loss.

  20. Physicochemical properties of newly developed bioactive glass cement and its effects on various cells.

    PubMed

    Washio, Ayako; Nakagawa, Aika; Nishihara, Tatsuji; Maeda, Hidefumi; Kitamura, Chiaki

    2015-02-01

    Biomaterials used in dental treatments are expected to have favorable properties such as biocompatibility and an ability to induce tissue formation in dental pulp and periapical tissue, as well as sealing to block external stimuli. Bioactive glasses have been applied in bone engineering, but rarely applied in the field of dentistry. In the present study, bioactive glass cement for dental treatment was developed, and then its physicochemical properties and effects on cell responses were analyzed. To clarify the physicochemical attributes of the cement, field emission scanning electron microscopy, X-ray diffraction, and pH measurement were carried out. Cell attachment, morphology, and viability to the cement were also examined to clarify the effects of the cement on odontoblast-like cells (KN-3 cells), osteoblastic cells (MC3T3-E1 cells), human periodontal ligament stem/progenitor cells and neuro-differentiative cells (PC-12 cells). Hydroxyapatite-like precipitation was formed on the surface of the hardened cement and the pH level changed from pH10 to pH9, then stabilized in simulate body fluid. The cement had no cytotxic effects on these cells, and particulary induced process elongation of PC-12 cells. Our results suggest that the newly developed bioactive glass cement have capability of the application in dental procedures as bioactive cement. PMID:24895094

  1. Pull-out strength of screws from polymethylmethacrylate cement.

    PubMed

    Motzkin, N E; Chao, E Y; An, K N; Wikenheiser, M A; Lewallen, D G

    1994-03-01

    We aimed to determine the optimal method of inserting a screw into polymethylmethacrylate (PMMA) cement to enhance fixation. We performed six groups of ten axial pull-out tests with two sizes of screw (3.5 and 4.5 mm AO cortical) and three methods of insertion. Screws were placed into 'fluid' PMMA, into 'solid' PMMA by drilling and tapping, or into 'curing' PMMA with quarter-revolution turns every 30 seconds until the PMMA had hardened. After full hardening, we measured the maximum load to failure for each screw-PMMA construct. We found no significant difference in the pull-out strengths between screw sizes or between screws placed in fluid or solid PMMA. Screws placed in curing PMMA were significantly weaker: the relative strengths of solid, fluid and curing groups were 100%, 97% and 71%, respectively. We recommend the use of either solid or fluid insertion according to the circumstances and the preference of the surgeon. PMID:8113302

  2. Determination of Diffusion Profiles in Altered Wellbore Cement Using X-ray Computed Tomography Methods

    SciTech Connect

    Mason, Harris E.; Walsh, Stuart D. C.; DuFrane, Wyatt L.; Carroll, Susan A.

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining “effective linear activity coefficients” (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.

  3. Preparation of the saving-energy sulphoaluminate cement using MSWI fly ash.

    PubMed

    Shi, Hui-sheng; Deng, Kai; Yuan, Feng; Wu, Kai

    2009-09-30

    MSWI fly ash was used as a major cement raw material in sintering sulphoaluminate cement clinker successfully in the laboratory. Sintering system, mechanical performance, hydration process and microstructure of the clinker was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence spectrometry (XRF), etc. The result shows that the clinker can be sintered properly under the temperature of 1200-1300 degrees C and sintered time of 120 min. Cl(-) content in the clinker made with MSWI fly ash is about 1.08%. However most Cl(-) cannot leach out in water solution from the hardened cement paste during curing age between 1d and 28d because of the Cl(-) being combined in clinker minerals and its hydrates. The compressive strength of the sulphoaluminate cement was high in early age while that developed smoothly in later age. PMID:19409703

  4. Determination of diffusion profiles in altered wellbore cement using X-ray computed tomography methods.

    PubMed

    Mason, Harris E; Walsh, Stuart D C; DuFrane, Wyatt L; Carroll, Susan A

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining "effective linear activity coefficients" (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment. PMID:24869420

  5. Thermodynamics and cement science

    SciTech Connect

    Damidot, D.; Lothenbach, B.; Herfort, D.; Glasser, F.P.

    2011-07-15

    Thermodynamics applied to cement science has proved to be very valuable. One of the most striking findings has been the extent to which the hydrate phases, with one conspicuous exception, achieve equilibrium. The important exception is the persistence of amorphous C-S-H which is metastable with respect to crystalline calcium silicate hydrates. Nevertheless C-S-H can be included in the scope of calculations. As a consequence, from comparison of calculation and experiment, it appears that kinetics is not necessarily an insuperable barrier to engineering the phase composition of a hydrated Portland cement. Also the sensitivity of the mineralogy of the AFm and AFt phase compositions to the presence of calcite and to temperature has been reported. This knowledge gives a powerful incentive to develop links between the mineralogy and engineering properties of hydrated cement paste and, of course, anticipates improvements in its performance leading to decreasing the environmental impacts of cement production.

  6. [Allergy towards bone cement].

    PubMed

    Thomas, P; Schuh, A; Summer, B; Mazoochian, F; Thomsen, M

    2006-09-01

    Bone cements based on polymethylmethacrylate are typically used for fixation of artificial joints. Intolerance reactions to endoprostheses not explained by infection or mechanical failure may lead to allergological diagnostics, which mostly focuses on metal allergy. However, also bone cement components may provoke hypersensitivity reactions leading to eczema, implant loosening, or fistula formation. Elicitors of such reactions encompass acrylates and additives such as benzoyl peroxide, N,N-dimethyl-p-toluidine, hydroquinone, or antibiotics (particularly gentamicin). Upon repeated contact with bone cement components, e.g., acrylate monomers, also in medical personnel occasionally hand eczema or even asthma may develop. Therefore, in the case of suspected hypersensitivity reactions to arthroplasty, the allergological diagnostics should include bone cement components. PMID:16865384

  7. Influence of slip system hardening assumptions on modeling stress dependence of work hardening

    NASA Astrophysics Data System (ADS)

    Miller, Matthew; Dawson, Paul

    1997-11-01

    Due to the discrete directional nature of processes such as crystallographic slip, the orientation of slip planes relative to a fixed set of loading axes has a direct effect on the magnitude of the external load necessary to induce dislocation motion (yielding). The effect such geometric or textural hardening has on the macroscopic flow stress can be quantified in a polycrystal by the average Taylor factor M¯. Sources of resistance to dislocation motion such as interaction with dislocation structures, precipitates, and grain boundaries, contribute to the elevation of the critically resolved shear strength τcrss. In continuum slip polycrystal formulations, material hardening phenomena are reflected in the slip system hardness equations. Depending on the model, the hardening equations and the mean field assumption can both affect geometric hardening through texture evolution. In this paper, we examine continuum slip models and focus on how the slip system hardening model and the mean field assumption affect the stress-strain response. Texture results are also presented within the context of how the texture affects geometric hardening. We explore the effect of employing slip system hardnesses averaged over different size scales. We first compare a polycrystal simulation employing a single hardness per crystal to one using a latent hardening formulation producing distinct slip system hardnesses. We find little difference between the amplitude of the single hardness and a crystal-average of the latent hardening values. The geometric hardening is different due to the differences in the textures predicted by each model. We also find that due to the high degree of symmetry in an fcc crystal, macroscopic stress-strain predictions using simulations employing crystal- and aggregateaveraged hardnesses are nearly identical. We find this to be true for several different mean field assumptions. An aggregate-averaged hardness may be preferred in light of the difficulty

  8. Modeling of Irradiation Hardening of Polycrystalline Materials

    SciTech Connect

    Li, Dongsheng; Zbib, Hussein M.; Garmestani, Hamid; Sun, Xin; Khaleel, Mohammad A.

    2011-09-14

    High energy particle irradiation of structural polycrystalline materials usually produces irradiation hardening and embrittlement. The development of predict capability for the influence of irradiation on mechanical behavior is very important in materials design for next generation reactors. In this work a multiscale approach was implemented to predict irradiation hardening of body centered cubic (bcc) alpha-iron. The effect of defect density, texture and grain boundary was investigated. In the microscale, dislocation dynamics models were used to predict the critical resolved shear stress from the evolution of local dislocation and defects. In the macroscale, a viscoplastic self-consistent model was applied to predict the irradiation hardening in samples with changes in texture and grain boundary. This multiscale modeling can guide performance evaluation of structural materials used in next generation nuclear reactors.

  9. Modeling of anisotropic hardening of sheet metals

    NASA Astrophysics Data System (ADS)

    Yoshida, Fusahito; Hamasaki, Hiroshi; Uemori, Takeshi

    2013-12-01

    To describe the evolution of anisotropy of sheet metals, in terms of both r-values and stresses, the present paper proposes anisotropic hardening models, where the shape of yield surface changes with increasing plastic strain. In this framework of modeling, any types of yield functions are able to be used. The evolution of anisotropy is expressed by updating the yield function as an interpolation between two yield functions defined at two different effective plastic strains. In this paper, two types of interpolation models, i.e., nonlinear interpolation model and piecewise interpolation model are presented. These models are validated by comparing the experimental data on 3003-O aluminum sheet (after Hu, Int J Plasticity 23, 620-639, 2007). To describe the Bauschinger effect, the combined anisotropic-kinematic hardening model is formulated based on Yoshida-Uemori kinematic hardening model.

  10. Point defect concentrations and solid solution hardening in NiAl with Fe additions

    SciTech Connect

    Pike, L.M.; Chang, Y.A.; Liu, C.T.

    1997-08-01

    The solid solution hardening behavior exhibited when Fe is added to NiAl is investigated. This is an interesting problem to consider since the ternary Fe additions may choose to occupy either the Ni or the Al sublattice, affecting the hardness at differing rates. Moreover, the addition of Fe may affect the concentrations of other point defects such as vacancies and Ni anti-sites. As a result, unusual effects ranging from rapid hardening to solid solution softening are observed. Alloys with varying amounts of Fe were prepared in Ni-rich (40 at. % Al) and stoichiometric (50 at. % Al) compositions. Vacancy concentrations were measured using lattice parameter and density measurements. The site occupancy of Fe was determined using ALCHEMI. Using these two techniques the site occupancies of all species could be uniquely determined. Significant differences in the defect concentrations as well as the hardening behavior were encountered between the Ni-rich and stoichiometric regimes.

  11. Phenomenological modeling of hardening and thermal recovery in metals

    NASA Technical Reports Server (NTRS)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.

    1988-01-01

    Modeling of hardening and thermal recovery in metals is considered within the context of unified elastic-viscoplastic theories. Specifically, the choices of internal variables and hardening measures, and the resulting hardening response obtained by incorporating saturation-type evolution equations into two general forms of the flow law are examined. Based on the analytical considerations, a procedure for delineating directional and isotropic hardening from uniaxial hardening data has been developed for the Bodner-Partom model and applied to a nickel-base superalloy, B1900 + Hf. Predictions based on the directional hardening properties deduced from the monotonic loading data are shown to be in good agreement with results of cyclic tests.

  12. Time resolved X-ray Dark-Field Tomography Revealing Water Transport in a Fresh Cement Sample

    NASA Astrophysics Data System (ADS)

    Prade, Friedrich; Fischer, Kai; Heinz, Detlef; Meyer, Pascal; Mohr, Jürgen; Pfeiffer, Franz

    2016-06-01

    Grating-based X-ray dark-field tomography is a promising technique for biomedical and materials research. Even if the resolution of conventional X-ray tomography does not suffice to resolve relevant structures, the dark-field signal provides valuable information about the sub-pixel microstructural properties of the sample. Here, we report on the potential of X-ray dark-field imaging to be used for time-resolved three-dimensional studies. By repeating consecutive tomography scans on a fresh cement sample, we were able to study the hardening dynamics of the cement paste in three dimensions over time. The hardening of the cement was accompanied by a strong decrease in the dark-field signal pointing to microstructural changes within the cement paste. Furthermore our results hint at the transport of water from certain limestone grains, which were embedded in the sample, to the cement paste during the process of hardening. This is indicated by an increasing scattering signal which was observed for two of the six tested limestone grains. Electron microscopy images revealed a distinct porous structure only for those two grains which supports the following interpretation of our results. When the water filled pores of the limestone grains empty during the experiment the scattering signal of the grains increases.

  13. Time resolved X-ray Dark-Field Tomography Revealing Water Transport in a Fresh Cement Sample

    PubMed Central

    Prade, Friedrich; Fischer, Kai; Heinz, Detlef; Meyer, Pascal; Mohr, Jürgen; Pfeiffer, Franz

    2016-01-01

    Grating-based X-ray dark-field tomography is a promising technique for biomedical and materials research. Even if the resolution of conventional X-ray tomography does not suffice to resolve relevant structures, the dark-field signal provides valuable information about the sub-pixel microstructural properties of the sample. Here, we report on the potential of X-ray dark-field imaging to be used for time-resolved three-dimensional studies. By repeating consecutive tomography scans on a fresh cement sample, we were able to study the hardening dynamics of the cement paste in three dimensions over time. The hardening of the cement was accompanied by a strong decrease in the dark-field signal pointing to microstructural changes within the cement paste. Furthermore our results hint at the transport of water from certain limestone grains, which were embedded in the sample, to the cement paste during the process of hardening. This is indicated by an increasing scattering signal which was observed for two of the six tested limestone grains. Electron microscopy images revealed a distinct porous structure only for those two grains which supports the following interpretation of our results. When the water filled pores of the limestone grains empty during the experiment the scattering signal of the grains increases. PMID:27357449

  14. Investigation of the effects of acid rain on the deterioration of cement concrete using accelerated tests established in laboratory

    NASA Astrophysics Data System (ADS)

    Xie, Shaodong; Qi, Li; Zhou, Ding

    Deterioration of cement concrete specimens caused by simulated acid rain was investigated by laboratory tests. Before and after cement concrete specimens were exposed to simulated acid rain, the neutralized depth, the compressive strength and the chemical compositions in the hardened cement paste were measured. The mineralogical composition of the concrete specimens was analyzed with XRD. The results lead to the following conclusions: the neutralized depth of the concrete specimens of all experiments can be described as a power function of exposure duration, CaO loss and the reduction rate of strength increased with H + and decreased with SO 42- concentration in simulated acid rain. The original mineral compounds such as [Na K]AlSi 3O 8 and [Ca Na][SiAl] 4O 8 in the hardened cement paste are converted to CaSO 4·2H 2O, CaAl 2Si 2O 8 and Ca 3Al 6O 12·CaSO 4. And these are larger in volume so that the reaction with SO 42- ions result in volume expansion and strength decrease. The reduction rate of strength has a binary linear relation to the CaO loss rate and the ratio of SO 3 content to CaO content in the hardened cement paste. So the deterioration of acid rain on the concrete specimen is caused by both H + dissolution and SO 42- expansion.

  15. Time resolved X-ray Dark-Field Tomography Revealing Water Transport in a Fresh Cement Sample.

    PubMed

    Prade, Friedrich; Fischer, Kai; Heinz, Detlef; Meyer, Pascal; Mohr, Jürgen; Pfeiffer, Franz

    2016-01-01

    Grating-based X-ray dark-field tomography is a promising technique for biomedical and materials research. Even if the resolution of conventional X-ray tomography does not suffice to resolve relevant structures, the dark-field signal provides valuable information about the sub-pixel microstructural properties of the sample. Here, we report on the potential of X-ray dark-field imaging to be used for time-resolved three-dimensional studies. By repeating consecutive tomography scans on a fresh cement sample, we were able to study the hardening dynamics of the cement paste in three dimensions over time. The hardening of the cement was accompanied by a strong decrease in the dark-field signal pointing to microstructural changes within the cement paste. Furthermore our results hint at the transport of water from certain limestone grains, which were embedded in the sample, to the cement paste during the process of hardening. This is indicated by an increasing scattering signal which was observed for two of the six tested limestone grains. Electron microscopy images revealed a distinct porous structure only for those two grains which supports the following interpretation of our results. When the water filled pores of the limestone grains empty during the experiment the scattering signal of the grains increases. PMID:27357449

  16. Radiation Hardened Electronics for Space Environments (RHESE)

    NASA Technical Reports Server (NTRS)

    Keys, Andrew S.; Adams, James H.; Frazier, Donald O.; Patrick, Marshall C.; Watson, Michael D.; Johnson, Michael A.; Cressler, John D.; Kolawa, Elizabeth A.

    2007-01-01

    Radiation Environmental Modeling is crucial to proper predictive modeling and electronic response to the radiation environment. When compared to on-orbit data, CREME96 has been shown to be inaccurate in predicting the radiation environment. The NEDD bases much of its radiation environment data on CREME96 output. Close coordination and partnership with DoD radiation-hardened efforts will result in leveraged - not duplicated or independently developed - technology capabilities of: a) Radiation-hardened, reconfigurable FPGA-based electronics; and b) High Performance Processors (NOT duplication or independent development).

  17. Thermoelastic constitutive equations for chemically hardening materials

    NASA Technical Reports Server (NTRS)

    Shaffer, B. W.; Levitsky, M.

    1974-01-01

    Thermoelastic constitutive equations are derived for a material undergoing solidification or hardening as the result of a chemical reaction. The derivation is based upon a two component model whose composition is determined by the degree of hardening, and makes use of strain-energy considerations. Constitutive equations take the form of stress rate-strain rate relations, in which the coefficients are time-dependent functions of the composition. Specific results are developed for the case of a material of constant bulk modulus which undergoes a transition from an initial liquidlike state into an isotropic elastic solid. Potential applications are discussed.

  18. 'Work-Hardenable' Ductile Bulk Metallic Glass

    SciTech Connect

    Das, Jayanta; Eckert, Juergen; Tang Meibo; Wang Weihua; Kim, Ki Buem; Baier, Falko; Theissmann, Ralf

    2005-05-27

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<1%) at room temperature. We present a new class of bulk metallic glass, which exhibits high strength of up to 2265 MPa together with extensive 'work hardening' and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The 'work-hardening' capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  19. Elastic-Plastic Constitutive Equation of WC-Co Cemented Carbides with Anisotropic Damage

    SciTech Connect

    Hayakawa, Kunio; Nakamura, Tamotsu; Tanaka, Shigekazu

    2007-05-17

    Elastic-plastic constitutive equation of WC-Co cemented carbides with anisotropic damage is proposed to predict a precise service life of cold forging tools. A 2nd rank symmetric tensor damage tensor is introduced in order to express the stress unilaterality; a salient difference in uniaxial behavior between tension and compression. The conventional framework of irreversible thermodynamics is used to derive the constitutive equation. The Gibbs potential is formulated as a function of stress, damage tensor, isotropic hardening variable and kinematic hardening variable. The elastic-damage constitutive equation, conjugate forces of damage, isotropic hardening and kinematic hardening variable is derived from the potential. For the kinematic hardening variable, the superposition of three kinematic hardening laws is employed in order to improve the cyclic behavior of the material. For the evolution equation of the damage tensor, the damage is assumed to progress by fracture of the Co matrix - WC particle interface and by the mechanism of fatigue, i.e. the accumulation of microscopic plastic strain in matrix and particles. By using the constitutive equations, calculation of uniaxial tensile and compressive test is performed and the results are compared with the experimental ones in the literature. Furthermore, finite element analysis on cold forward extrusion was carried out, in which the proposed constitutive equation was employed as die insert material.

  20. Elastic-Plastic Constitutive Equation of WC-Co Cemented Carbides with Anisotropic Damage

    NASA Astrophysics Data System (ADS)

    Hayakawa, Kunio; Nakamura, Tamotsu; Tanaka, Shigekazu

    2007-05-01

    Elastic-plastic constitutive equation of WC-Co cemented carbides with anisotropic damage is proposed to predict a precise service life of cold forging tools. A 2nd rank symmetric tensor damage tensor is introduced in order to express the stress unilaterality; a salient difference in uniaxial behavior between tension and compression. The conventional framework of irreversible thermodynamics is used to derive the constitutive equation. The Gibbs potential is formulated as a function of stress, damage tensor, isotropic hardening variable and kinematic hardening variable. The elastic-damage constitutive equation, conjugate forces of damage, isotropic hardening and kinematic hardening variable is derived from the potential. For the kinematic hardening variable, the superposition of three kinematic hardening laws is employed in order to improve the cyclic behavior of the material. For the evolution equation of the damage tensor, the damage is assumed to progress by fracture of the Co matrix — WC particle interface and by the mechanism of fatigue, i.e. the accumulation of microscopic plastic strain in matrix and particles. By using the constitutive equations, calculation of uniaxial tensile and compressive test is performed and the results are compared with the experimental ones in the literature. Furthermore, finite element analysis on cold forward extrusion was carried out, in which the proposed constitutive equation was employed as die insert material.

  1. Dislocation Starvation and Exhaustion Hardening in Mo-alloy Nanofibers

    SciTech Connect

    Chisholm, Claire; Bei, Hongbin; Lowry, M. B.; Oh, Jason; Asif, S.A. Syed; Warren, O.; Shan, Zhiwei; George, Easo P; Minor, Andrew

    2012-01-01

    The evolution of defects in Mo alloy nanofibers with initial dislocation densities ranging from 0 to 1.6 1014 m2 were studied using an in situ push-to-pull device in conjunction with a nanoindenter in a transmission electron microscope. Digital image correlation was used to determine stress and strain in local areas of deformation. When they had no initial dislocations the Mo alloy nanofibers suffered sudden catastrophic elongation following elastic deformation to ultrahigh stresses. At the other extreme fibers with a high dislocation density underwent sustained homogeneous deformation after yielding at much lower stresses. Between these two extremes nanofibers with intermediate dislocation densities demonstrated a clear exhaustion hardening behavior, where the progressive exhaustion of dislocations and dislocation sources increases the stress required to drive plasticity. This is consistent with the idea that mechanical size effects ( smaller is stronger ) are due to the fact that nanostructures usually have fewer defects that can operate at lower stresses. By monitoring the evolution of stress locally we find that exhaustion hardening causes the stress in the nanofibers to surpass the critical stress predicted for self-multiplication, supporting a plasticity mechanism that has been hypothesized to account for the rapid strain softening observed in nanoscale bcc materials at high stresses.

  2. Irradiation hardening of reduced activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Kimura, A.; Morimura, T.; Narui, M.; Matsui, H.

    1996-10-01

    Irradiation response on the tensile properties of 9Cr2W steels has been investigated following FFTF/MOTA irradiations at temperatures between 646 and 873 K up to doses between 10 and 59 dpa. The largest irradiation hardening accompanied by the largest decrease in the elongation is observed for the specimens irradiated at 646 K at doses between 10 and 15 dpa. The irradiation hardening appears to saturate at a dose of around 10 dpa at the irradiation temperature. No hardening but softening was observed in the specimens irradiated at above 703 K to doses of 40 and 59 dpa. Microstructural observation by transmission electron microscope (TEM) revealed that the dislocation loops with the a<100> type Burgers vector and small precipitates which were identified to be M 6C type carbides existed after the irradiation at below 703 K. As for the void formation, the average size of voids increased with increasing irradiation temperature from 646 to 703 K. No voids were observed above 703 K. Irradiation softening was attributed to the enhanced recovery of martensitic structure under the irradiation. Post-irradiation annealing resulted in hardening by the annealing at 673 K and softening by the annealing at 873 K.

  3. SEU hardening of CMOS memory circuit

    NASA Technical Reports Server (NTRS)

    Whitaker, S.; Canaris, J.; Liu, K.

    1990-01-01

    This paper reports a design technique to harden CMOS memory circuits against Single Event Upset (SEU) in the space environment. A RAM cell and Flip Flop design are presented to demonstrate the method. The Flip Flop was used in the control circuitry for a Reed Solomon encoder designed for the Space Station.

  4. Extraordinary strain hardening by gradient structure

    PubMed Central

    Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T.

    2014-01-01

    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures. PMID:24799688

  5. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    NASA Astrophysics Data System (ADS)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-06-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used.

  6. 'Fire hardening' spear wood does slightly harden it, but makes it much weaker and more brittle.

    PubMed

    Ennos, Antony Roland; Chan, Tak Lok

    2016-05-01

    It is usually assumed that 'fire hardening' the tips of spears, as practised by hunter-gatherers and early Homo spp., makes them harder and better suited for hunting. This suggestion was tested by subjecting coppiced poles of hazel to a fire-hardening process and comparing their mechanical properties to those of naturally seasoned poles. A Shore D hardness test showed that fire treatment slightly increased the hardness of the wood, but flexural and impact tests showed that it reduced the strength and work of fracture by 30% and 36%, respectively. These results suggest that though potentially slightly sharper and more durable, fire-hardened tips would actually be more likely to break off when used, as may have been the case with the earliest known wooden tool, the Clacton spear. Fire might first have been used to help sharpen the tips of spears, and fire-hardening would have been a mostly negative side effect, not its primary purpose. PMID:27194289

  7. ULTRA-LIGHTWEIGHT CEMENT

    SciTech Connect

    Fred Sabins

    2001-10-23

    The objective of this project is to develop an improved ultra-lightweight cement using ultra-lightweight hollow glass spheres (ULHS). Work reported herein addresses tasks performed in the fourth quarter as well as the other three quarters of the past year. The subjects that were covered in previous reports and that are also discussed in this report include: Analysis of field laboratory data of active cement applications from three oil-well service companies; Preliminary findings from a literature review focusing on problems associated with ultra-lightweight cements; Summary of pertinent information from Russian ultra-lightweight cement literature review; and Comparison of compressive strengths of ULHS systems using ultrasonic and crush methods Results reported from the fourth quarter include laboratory testing of ULHS systems along with other lightweight cement systems--foamed and sodium silicate slurries. These comparison studies were completed for two different densities (10.0 and 11.5 lb/gal) and three different field application scenarios. Additional testing included the mechanical properties of ULHS systems and other lightweight systems. Studies were also performed to examine the effect that circulation by centrifugal pump during mixing has on breakage of ULHS.

  8. Deformation in metals after low temperature irradiation: Part II - Irradiation hardening, strain hardening, and stress ratios

    SciTech Connect

    Byun, Thak Sang; Li, Meimei

    2008-03-01

    Effects of irradiation at temperatures 200oC on tensile stress parameters are analyzed for dozens of bcc, fcc, and hcp pure metals and alloys, focusing on irradiation hardening, strain hardening, and relationships between the true stress parameters. Similar irradiation-hardening rates are observed for all the metals irrespective of crystal type; typically, the irradiation-hardening rates are large, in the range 100 - 1000 GPa/dpa, at the lowest dose of <0.0001 dpa and decrease with dose to a few tens of MPa/dpa or less at about 10 dpa. However, average irradiation-hardening rates over the dose range of 0 dpa − (the dose to plastic instability at yield) are considerably lower for stainless steels due to their high uniform ductility. It is shown that whereas low temperature irradiation increases the yield stress, it does not significantly change the strain-hardening rate of metallic materials; it decreases the fracture stress only when non-ductile failure occurs. Such dose independence in strain hardening behavior results in strong linear relationships between the true stress parameters. Average ratios of plastic instability stress to unirradiated yield stress are about 1.4, 3.9, and 1.3 for bcc metals (and precipitation hardened IN718 alloy), annealed fcc metals (and pure Zr), and Zr-4 alloy, respectively. Ratios of fracture stress to plastic instability stress are calculated to be 2.2, 1.7, and 2.1, respectively. Comparison of these values confirms that the annealed fcc metals and other soft metals have larger uniform ductility but smaller necking ductility when compared to other materials.

  9. A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste

    NASA Astrophysics Data System (ADS)

    Jo, Byung-Wan; Chakraborty, Sumit

    2015-01-01

    To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite.

  10. A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste.

    PubMed

    Jo, Byung-Wan; Chakraborty, Sumit

    2015-01-01

    To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite. PMID:25592665

  11. Bonding material containing ashes after domestic waste incineration for cementation of radioactive waste

    SciTech Connect

    Dmitriev, S.A.; Varlakov, A.P.; Gorbunova, O.A.; Arustamov, A.E.; Barinov, A.S.

    2007-07-01

    It is known that cement minerals hydration is accompanied with heat emission. Heat of hardening influences formation of a cement compound structure and its properties. It is important to reduce the heat quantity at continuous cementation of waste and filling of compartments of a repository or containers by a cement grout. For reduction of heating, it is necessary to use cement of mineral additives (fuel ashes, slag and hydraulic silica). Properties of ashes after domestic waste incineration can be similar to ones of fly fuel ashes. However, ash after domestic waste incineration is toxic industrial waste as it contains toxic elements (As, Cd, Hg, Pb, Sb, Zn). Utilization of secondary waste (slag and ash) of combustion plants is an important environmental approach to solving cities' issues. Results of the research have shown that ashes of combustion plants can be used for radioactive waste conditioning. Co-processing of toxic and radioactive waste is ecologically and economically effective. At SIA 'Radon', experimental batches of cement compositions are used for cementation of oil containing waste. (authors)

  12. A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste

    PubMed Central

    Jo, Byung-Wan; Chakraborty, Sumit

    2015-01-01

    To reduce the antagonistic effect of jute fibre on the setting and hydration of jute reinforced cement, modified jute fibre reinforcement would be a unique approach. The present investigation deals with the effectiveness of mild alkali treated (0.5%) jute fibre on the setting and hydration behaviour of cement. Setting time measurement, hydration test and analytical characterizations of the hardened samples (viz., FTIR, XRD, DSC, TGA, and free lime estimation) were used to evaluate the effect of alkali treated jute fibre. From the hydration test, the time (t) required to reach maximum temperature for the hydration of control cement sample is estimated to be 860 min, whilst the time (t) is measured to be 1040 min for the hydration of a raw jute reinforced cement sample. However, the time (t) is estimated to be 1020 min for the hydration of an alkali treated jute reinforced cement sample. Additionally, from the analytical characterizations, it is determined that fibre-cement compatibility is increased and hydration delaying effect is minimized by using alkali treated jute fibre as fibre reinforcement. Based on the analyses, a model has been proposed to explain the setting and hydration behaviour of alkali treated jute fibre reinforced cement composite. PMID:25592665

  13. O-phospho-L-serine: a modulator of bone healing in calcium-phosphate cements.

    PubMed

    Mai, Ronald; Lux, Romy; Proff, Peter; Lauer, Günter; Pradel, Winnie; Leonhardt, Henry; Reinstorf, Antje; Gelinsky, Michael; Jung, Roland; Eckelt, Uwe; Gedrange, Tomasz; Stadlinger, Bernd

    2008-10-01

    Bone substitution materials are seen as an alternative to autogenous bone transplants in the reconstruction of human bone structures. The aim of the present animal study was to evaluate the clinical handling and the conditions of bone healing after the application of a phosphoserine and collagen-I-modified calcium-phosphate cement (Biozement D). The application of phosphoserine is supposed to influence the texture of the extracellular matrix. Standardised bone defects were created in the lower jaw of 10 adult minipigs. These defects were reconstructed with a pasty calcium-phosphate cement mixture. After a healing time of 4 months, the animals were sacrificed. The mandibles of all animals were resected and non-decalcified histological sections of the areas of interest were prepared. The experiment was evaluated by means of qualitative histology and histomorphometry. The hydroxyapatite cement entirely hardened intraoperatively. Modelling and handling of the cement was facile and the margin fit to the host bone was excellent. Histology showed that resorption started in the periphery and proceeded exceptionally fast. The bony substitution, especially in phosphoserine-endowed cements, was very promising. After a healing period of 4 months, phosphoserine cements showed a bone regeneration of nearly two-thirds of the defect sizes. In the applied animal experiment, the newly developed hydroxyapatite collagen-I cement is well suited for bone substitution due to its easy handling, its excellent integration and good resorption characteristics. The addition of phosphoserine is very promising in terms of influencing resorption features and bone regeneration. PMID:18803525

  14. Influence of various amount of diatomaceous earth used as cement substitute on mechanical properties of cement paste

    NASA Astrophysics Data System (ADS)

    Pokorný, Jaroslav; Pavlíková, Milena; Medved, Igor; Pavlík, Zbyšek; Zahálková, Jana; Rovnaníková, Pavla; Černý, Robert

    2016-06-01

    Active silica containing materials in the sub-micrometer size range are commonly used for modification of strength parameters and durability of cement based composites. In addition, these materials also assist to accelerate cement hydration. In this paper, two types of diatomaceous earths are used as partial cement replacement in composition of cement paste mixtures. For raw binders, basic physical and chemical properties are studied. The chemical composition of tested materials is determined using classical chemical analysis combined with XRD method that allowed assessment of SiO2 amorphous phase content. For all tested mixtures, initial and final setting times are measured. Basic physical and mechanical properties are measured on hardened paste samples cured 28 days in water. Here, bulk density, matrix density, total open porosity, compressive and flexural strength, are measured. Relationship between compressive strength and total open porosity is studied using several empirical models. The obtained results give evidence of high pozzolanic activity of tested diatomite earths. Their application leads to the increase of both initial and final setting times, decrease of compressive strength, and increase of flexural strength.

  15. 1H NMR Cryoporometry Study of the Melting Behavior of Water in White Cement

    NASA Astrophysics Data System (ADS)

    Boguszyńska, Joanna; Tritt-Goc, Jadwiga

    2004-09-01

    The pore size of white cement samples is studied by the melting behaviour of water confined in it, using 1H NMR cryopormetry. The influence of the preparing method and antifreeze admixture on the pore size and distribution in cement samples is investigated at 283 K. The addition of an antifreeze admixture [containing 1% Sika Rapid 2 by weight of the dry cement] influences the porosity. In wet prepared samples we observed a significant increase in the quantity of mesopores between 0.8 and 5 nm and a smaller increase of mesopores between 5 and 10 nm, when compared to cement without admixture. The compressive strength is related to the porosity of the cement. Therefore the cement with Sika Rapid 2, wet prepared at 278 K shows a higher strength than all other measured samples.

  16. Continuous Hardening During Isothermal Aging at 723 K (450 °C) of a Precipitation Hardening Stainless Steel

    NASA Astrophysics Data System (ADS)

    Celada-Casero, Carola; Chao, Jesús; Urones-Garrote, Esteban; San Martin, David

    2016-06-01

    The isothermal aging behavior of a cold-rolled precipitation hardening stainless steel has been studied at 723 K (450 °C) for holding times up to 72 hours. The precipitation hardening has been investigated using microhardness Vickers (Hv), thermoelectric power (TEP) measurements, and tensile testing. Microhardness compared to TEP measurements is more sensitive to detect the initial stages of aging. Two precipitation regimes have been observed: the first one related to the formation of Cu-clusters for aging times below 1 hour and a second one associated with formation of Ni-rich precipitates. The results show that the material exhibits an outstanding continuous age strengthening response over the aging time investigated, reaching a hardness of 710 ± 4 HV1 and an ultimate tensile strength (σ UTS) of 2.65 ± 0.02 GPa after 72 hours. Engineering stress-plastic strain curves reveal that the strength increases and the ductility decreases as the aging time increases. However, after prolonged holding times (24-72 hours) and, although small, a rise in both the strength and the total elongation is observed. The precipitation kinetics can be well predicted over the entire range of aging times by the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation. Finally, a reliable linear hardness-yield strength correlation has been found, which enables a rapid evaluation of the strength from bulk hardness measurements.

  17. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  18. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  19. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  20. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  1. 7 CFR 58.622 - Hardening and storage rooms.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Hardening and storage rooms. 58.622 Section 58.622 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards....622 Hardening and storage rooms. Hardening and storage rooms for frozen desserts shall be...

  2. System for radioactive waste cementation

    SciTech Connect

    Dmitriev, S.A.; Barinov, A.S.; Varlakov, A.P.; Volkov, A.S.; Karlin, S.V.

    1995-12-31

    NPP, research reactors and radiochemical enterprises produce a great amount of liquid radioactive waste (LRW). One of the methods of LRW solidification is cementation. The recent investigations demonstrated possible inclusion of sufficient amount of waste in the cement matrix (up to 20--30 mass% on dry residue). In this case the cementation process becomes competitive with bituminization process, where the matrix can include 40--50 mass% and the solidified product volume is equal to the volume, obtained by cementation. Additionally, the cement matrix in contrast with the bituminous one is unburnable. Many countries are investigating the cementation process. The main idea governing technological process is the waste and cement mixing method and type of mixer. In world practice some principal types of cementation systems are used. The paper describes the SIA Radon industrial plant in Moscow.

  3. Recycled rubber in cement composites

    SciTech Connect

    Raghavan, D.; Tratt, K.; Wool, R.P.

    1994-12-31

    Disposal of 200 million waste tires in the US each year has become a major problem. An environmentally sound innovative technology of recycling rubber in cement matrix was examined. Using silane coupling agent the rubber was bonded to the hydrating cement making a lighter composite, which absorbed more energy than ordinary Portland cement. The bonding information was obtained by peel strength analysis. SEM was used to understand the mode of fracture in pure cement paste, cement bonded rubber composite and rubber filled cement paste. It was found that cracks propagate through the rubber particle in rubber bonded cement composite while in unbonded rubber cement mix, the cracks propagate around the interface. The density and shrinkage measurements are also discussed.

  4. Small-particle-size cement

    SciTech Connect

    Ewert, D.P.; Almond, S.W.; Blerhaus, W.M. II )

    1991-05-01

    Successful remedial cementing has historically been difficult in wells with large-interval, multizone, gravel-packed completions. The reason is the inability of conventional oilfield cements to penetrate gravel packs adequately. Small-particle-size cement (SPSC) was developed to penetrate gravel packs and to provide the zonal isolation required. This paper details the laboratory work, job design, and field implementation of this new cement.

  5. Cement clinker structure during plasma-chemical synthesis and its influence on cement properties

    NASA Astrophysics Data System (ADS)

    Sazonova, N.; Skripnikova, N.; Lucenko, A.; Novikova, L.

    2015-01-01

    The aim of this study was to determine the degree of influence of cement clinker cooling modes, synthesized in a low-temperature plasma, its structure and physico-mechanical properties. The raw mixture consisting of marble, sand, ash from thermal power plants and py- rite cinders were used, which are characterized by saturation factor (1,045); silicate (2,35) and alumina (1,22) modules. It was found that the use of different cooling rates of fused cement clinker entails changes associated with the mineralogical composition (increase of alite of 8.719,2 %), morphology (variation of the mineral alite aspect ratio of 6,7-17,5), density of the structure (change in distance between the minerals from 1 to 7,5 microns), grindability, specific surface area (2600-3650 cm2/g) and, in consequence, the activity of cement (56,973,2 MPa). Disorientation of alite mineral blocks against each other, a significant amount of microcracks, affect the increase in cement specific surface area of 14,3-21,6 %, which leads to activity growth of the system. Along with this, with the rapid cooling of the samples, alite 54CaO- 16SiO2-Al2O3 MgO is formed, with single units of the structure, more deformed relatively to C3S, which has a positive effect on the hydraulic cement activity.

  6. Reducing cement's CO2 footprint

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2011-01-01

    The manufacturing process for Portland cement causes high levels of greenhouse gas emissions. However, environmental impacts can be reduced by using more energy-efficient kilns and replacing fossil energy with alternative fuels. Although carbon capture and new cements with less CO2 emission are still in the experimental phase, all these innovations can help develop a cleaner cement industry.

  7. Cement Mason's Curriculum. Instructional Units.

    ERIC Educational Resources Information Center

    Hendirx, Laborn J.; Patton, Bob

    To assist cement mason instructors in providing comprehensive instruction to their students, this curriculum guide treats both the skills and information necessary for cement masons in commercial and industrial construction. Ten sections are included, as follow: related information, covering orientation, safety, the history of cement, and applying…

  8. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi.

    1989-10-03

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed. 3 figs.

  9. High temperature lightweight foamed cements

    DOEpatents

    Sugama, Toshifumi

    1989-01-01

    Cement slurries are disclosed which are suitable for use in geothermal wells since they can withstand high temperatures and high pressures. The formulation consists of cement, silica flour, water, a retarder, a foaming agent, a foam stabilizer, and a reinforcing agent. A process for producing these cements is also disclosed.

  10. High-volume use of self-cementing spray dry absorber material for structural applications

    NASA Astrophysics Data System (ADS)

    Riley, Charles E.

    Spray dry absorber (SDA) material, or spray dryer ash, is a byproduct of energy generation by coal combustion and sulfur emissions controls. Like any resource, it ought to be used to its fullest potential offsetting as many of the negative environmental impacts of coal combustion as possible throughout its lifecycle. Its cementitious and pozzolanic properties suggest it be used to augment or replace another energy and emissions intensive product: Portland cement. There is excellent potential for spray dryer ash to be used beneficially in structural applications, which will offset CO2 emissions due to Portland cement production, divert landfill waste by further utilizing a plentiful coal combustion by-product, and create more durable and sustainable structures. The research into beneficial use applications for SDA material is relatively undeveloped and the material is highly underutilized. This dissertation explored a specific self-cementing spray dryer ash for use as a binder in structural materials. Strength and stiffness properties of hydrated spray dryer ash mortars were improved by chemical activation with Portland cement and reinforcement with polymer fibers from automobile tire recycling. Portland cement at additions of five percent of the cementitious material was found to function effectively as an activating agent for spray dryer ash and had a significant impact on the hardened properties. The recycled polymer fibers improved the ductility and toughness of the material in all cases and increased the compressive strength of weak matrix materials like the pure hydrated ash. The resulting hardened materials exhibited useful properties that were sufficient to suggest that they be used in structural applications such as concrete, masonry block, or as a hydraulic cement binder. While the long-term performance characteristics remain to be investigated, from an embodied-energy and carbon emissions standpoint the material investigated here is far superior to

  11. Cementing a wellbore using cementing material encapsulated in a shell

    DOEpatents

    Aines, Roger D.; Bourcier, William L.; Duoss, Eric B.; Spadaccini, Christopher M.; Cowan, Kenneth Michael

    2016-08-16

    A system for cementing a wellbore penetrating an earth formation into which a pipe extends. A cement material is positioned in the space between the wellbore and the pipe by circulated capsules containing the cement material through the pipe into the space between the wellbore and the pipe. The capsules contain the cementing material encapsulated in a shell. The capsules are added to a fluid and the fluid with capsules is circulated through the pipe into the space between the wellbore and the pipe. The shell is breached once the capsules contain the cementing material are in position in the space between the wellbore and the pipe.

  12. Effectiveness of hardening threaded parts by plastic deformation

    SciTech Connect

    Pyshkin, V.A.; Belai, S.V.; Dyad'kova, I.G.

    1983-03-01

    The rules of hardening threaded parts by roller burning the root of the inner diameter of a thread are studied. The effectiveness of hardening increases where the allowance for the inner diameter increases. By equations, a change in the inner diameter can be used to determine the depth of work hardening residual compressive stress, fatigue limit, and the mechanical properties of the threaded part. The effective stress concentration factor, increase in transmission load, and average tensile stress in cyclic loading, are also calculated. Equations help to determine the depth of hardening necessary; the optimum conditions of burnishing; and the maximum increase in fatigue strength, with optimum hardening conditions.

  13. Retention of posts cemented with various dentinal bonding cements.

    PubMed

    Mendoza, D B; Eakle, W S

    1994-12-01

    This investigation evaluated the retention of preformed posts with four different cements: C & B Metabond, Panavia, All-Bond 2, and Ketac-Cem. Sixty intact maxillary canines were selected for the study. The clinical crowns were removed and endodontic therapy done on each root, which was then prepared to receive prefabricated posts. The 60 samples were divided into four groups of 15, and the posts in each group were cemented with one of the four cements. The roots were mounted in acrylic resin blocks and the posts were separated from the canals with an Instron testing machine. Analysis of the forces needed to dislodge the posts with analysis of variance and Student-Newman-Keuls test disclosed that C & B Metabond cement was the most retentive (p < 0.05). No difference in retention was recorded between Ketac-Cem and Panavia cements. All-Bond 2 cement was the least retentive of cements. PMID:7853255

  14. Inspection of deteriorating asbestos cement force mains with georadar technique.

    PubMed

    Smolders, S; Verhoest, L; De Gueldre, G; Van De Steene, B

    2009-01-01

    Several breaks on asbestos cement force mains indicated a problem with these kind of force mains. An inspection technique that could give a good idea about the state of asbestos cement pipes was searched for. A georadar technique already existed to inspect drinking water mains and gravity sewers. The technique measures the wall thickness of cement containing materials and it can differentiate between 'healthy' and deteriorated material. The technique was applied on four wastewater force mains in Flanders. The results indicated a rapid deterioration of the asbestos cement. A deterioration mechanism called 'calcium leaching' was known from asbestos cement drinking water mains. Further it was known that H(2)S is produced in force mains and that it can attack concrete containing materials by mains of biogenic sulphuric acid attack. This research checked if both deterioration mechanisms cause the measured rapid deterioration of the asbestos cement force mains. Finally deterioration speeds and minimum required wall thickness were calculated. With the results the residual lifetimes of the force mains were calculated and these could be applied in an asset management program. PMID:19700838

  15. Cement compositions for cementing wells allowing pressure gas channeling in the cemented annulus to be controlled

    SciTech Connect

    Porcevaux, P. A.; Piot, B. M.; Vercaemer, C. J.

    1985-08-27

    The invention relates to cement compositions for cementing wells, which allow pressure gas-channeling to be effectively controlled up to more than about 485 F. The cement composition contains a styrene-butadiene latex and a stabilizer. The film of latex interrupts gas-channeling after an extremely brief path.

  16. Modeling the Case Hardening of Automotive Components

    NASA Astrophysics Data System (ADS)

    Munikamal, Tiruttani; Sundarraj, Suresh

    2013-04-01

    A generalized framework has been developed within ABAQUS to model the surface hardening heat treatment processes for automotive steel components. The macro-scale heat transfer and stress calculations during the heating and quenching are coupled with the microstructural phase calculations, defined through a user routine, to estimate key process parameters such as case depth and surface hardness. This model has been applied to predict these parameters in two key industrial processes, i.e., case hardening of crankshafts and case carburization of gears. The results of the case depth and hardness calculations have been validated with the literature and in-house plant data. The effect of varying quench conditions on the overall stress distribution changes within the component has been outlined.

  17. Radiation-hardened transistor and integrated circuit

    DOEpatents

    Ma, Kwok K.

    2007-11-20

    A composite transistor is disclosed for use in radiation hardening a CMOS IC formed on an SOI or bulk semiconductor substrate. The composite transistor has a circuit transistor and a blocking transistor connected in series with a common gate connection. A body terminal of the blocking transistor is connected only to a source terminal thereof, and to no other connection point. The blocking transistor acts to prevent a single-event transient (SET) occurring in the circuit transistor from being coupled outside the composite transistor. Similarly, when a SET occurs in the blocking transistor, the circuit transistor prevents the SET from being coupled outside the composite transistor. N-type and P-type composite transistors can be used for each and every transistor in the CMOS IC to radiation harden the IC, and can be used to form inverters and transmission gates which are the building blocks of CMOS ICs.

  18. Rubber cement poisoning

    MedlinePlus

    ... common household glue. It is often used for arts and crafts projects. Breathing in large amounts of rubber cement fumes or swallowing any amount can be extremely dangerous, especially for a small child. This article is for information only. Do NOT ...

  19. Pulsed laser surface hardening of ferrous alloys.

    SciTech Connect

    Xu, Z.; Reed, C. B.; Leong, K. H.; Hunter, B. V.

    1999-09-30

    A high power pulsed Nd:YAG laser and special optics were used to produce surface hardening on 1045 steel and gray cast iron by varying the process parameters. Unlike CO{sub 2} lasers, where absorptive coatings are required, the higher absorptivity of ferrous alloys at the Nd:YAG laser wavelength eliminates the necessity of applying a coating before processing. Metallurgical analysis of the treated tracks showed that very fine and hard martensitic microstructure (1045 steel) or inhomogeneous martensite (gray cast iron) were obtained without surface melting, giving maximum hardness of HRC 61 and HRC 40 for 1045 steel and gray cast iron respectively. The corresponding maximum case depths for both alloys at the above hardness are 0.6 mm. Gray cast iron was more difficult to harden without surface melting because of its lower melting temperature and a significantly longer time-at-temperature required to diffuse carbon atoms from the graphite flakes into the austenite matrix during laser heating. The thermal distortion was characterized in term of flatness changes after surface hardening.

  20. Stage IV work hardening in cubic metals

    SciTech Connect

    Rollett, A.D.; Kocks, U.F.; Doherty, R.D.

    1986-01-01

    The work hardening of fcc metals at large strains is discussed with reference to the linear stress-strain behavior often observed at large strains and known as Stage IV. The experimental evidence shows that Stage IV is a work hardening phenomenon that is found quite generally, even in pure fcc metals subjected to homogeneous deformation. A simple model for Stage IV in pure metals is presented, based on the accumulation of dislocation debris. Experiments are described for large strain torsion tests on four aluminum alloys. The level and extent of Stage IV scaled with the saturation stress that would represent the end of Stage III in the absence of a Stage IV. Reversing the torsion after large prestrains produced transient reductions in the work hardening. The strain rate sensitivity was also measured before and during the transient and found not to vary significantly. The microstructure observed at large strains in an Mg alloy suggest that Stage IV can occur in the absence of microband formation. Previous proposals for the cause of Stage IV are reviewed and found to be not supported by recent experimental data.

  1. Work hardening: occupational therapy in industrial rehabilitation.

    PubMed

    Matheson, L N; Ogden, L D; Violette, K; Schultz, K

    1985-05-01

    Work hardening, presented in this paper as a "new" service for the industrially injured, is actually well grounded in the traditional models and practices of occupational therapy. From the profession's early roots in industrial therapy to the development of a variety of programs for the industrially injured through the 1950s and 1960s, the historical and philosophical bases of occupational therapy support the use of work as an evaluative and therapeutic medium. What is actually new is the adoption of terminology, technology, and a program format that fits in with the needs of consumers in the 1980s. Recent developments that created the need for the specialized services that occupational therapists are uniquely qualified to provide include growth of private sector vocational rehabilitation, changes in workers' compensation laws, and increasing costs of vocational rehabilitation. This paper describes work hardening in its present form. A case example is given that demonstrates how work hardening can be a cost-effective and time-saving bridge which spans the gap between curative medicine and the return to work. PMID:4014411

  2. Dislocation Multi-junctions and Strain Hardening

    SciTech Connect

    Bulatov, V; Hsiung, L; Tang, M; Arsenlis, A; Bartelt, M; Cai, W; Florando, J; Hiratani, M; Rhee, M; Hommes, G; Pierce, T; Diaz de la Rubia, T

    2006-06-20

    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals.

  3. Incorporation of titanium dioxide nanoparticles in mortars - Influence of microstructure in the hardened state properties and photocatalytic activity

    SciTech Connect

    Lucas, S.S.

    2013-01-15

    The environmental pollution in urban areas is one of the causes for poor indoor air quality in buildings, particularly in suburban areas. The development of photocatalytic construction materials can contribute to clean the air and improve sustainability levels. Previous studies have focused mainly in cement and concrete materials, disregarding the potential application in historic buildings. In this work, a photocatalytic additive (titanium dioxide) was added to mortars prepared with aerial lime, cement and gypsum binders. The main goal was to study the way that microstructural changes affect the photocatalytic efficiency. The photocatalytic activity was determined using a reactor developed to assess the degradation rate with a common urban pollutant, NO{sub x}. The laboratory results show that all the compositions tested exhibited high photocatalytic efficiency. It was demonstrated that photocatalytic mortars can be applied in new and old buildings, because the nanoadditives do not compromise the mortar hardened state properties.

  4. Hydration of alumina cement containing ferrotitanium slag with polycarboxylate-ethers (PCE) additives

    NASA Astrophysics Data System (ADS)

    Rechkalov, Denis; Chernogorlov, Sergey; Abyzov, Victor

    2016-01-01

    The paper is discussing results of study of alumina binder containing aluminous cement and ferrotitanium slag from aluminothermic process by Kliuchevskoi Ferroalloys corp. with various additives containing polycarboxylate-ethers (PCE). Selecting ferrotitanium slag as additive is based on the fact that its content of alumina and phase composition is closest to the alumina cement. The composition of the ferrotitanium slag is displayed. In order to compensate the decrease in strength caused by addition of ferrotitanium slag having low activity, PCE additives were added. As PCE additives were used Melflux 1641F, Melflux 2651F and Melflux PP200F by BASF. The effect of additives on the hydration of the binder, depending on the amount and time of additives hardening is shown. The composition of the hydration products in the cement was studied by physico-chemical analysis: derivatography and X-ray analysis. It is found that in the early stages of hardening PCE additives have inhibitory effect on hydration processes and promote new phase amorphization. The optimal content of additives was investigated. The basic properties of the binders have been tested. It was observed that the modified binders meet the requirements of Russian National State Standard GOST 969 to the alumina cement.

  5. Empirical beam hardening correction (EBHC) for CT

    SciTech Connect

    Kyriakou, Yiannis; Meyer, Esther; Prell, Daniel; Kachelriess, Marc

    2010-10-15

    Purpose: Due to x-ray beam polychromaticity and scattered radiation, attenuation measurements tend to be underestimated. Cupping and beam hardening artifacts become apparent in the reconstructed CT images. If only one material such as water, for example, is present, these artifacts can be reduced by precorrecting the rawdata. Higher order beam hardening artifacts, as they result when a mixture of materials such as water and bone, or water and bone and iodine is present, require an iterative beam hardening correction where the image is segmented into different materials and those are forward projected to obtain new rawdata. Typically, the forward projection must correctly model the beam polychromaticity and account for all physical effects, including the energy dependence of the assumed materials in the patient, the detector response, and others. We propose a new algorithm that does not require any knowledge about spectra or attenuation coefficients and that does not need to be calibrated. The proposed method corrects beam hardening in single energy CT data. Methods: The only a priori knowledge entering EBHC is the segmentation of the object into different materials. Materials other than water are segmented from the original image, e.g., by using simple thresholding. Then, a (monochromatic) forward projection of these other materials is performed. The measured rawdata and the forward projected material-specific rawdata are monomially combined (e.g., multiplied or squared) and reconstructed to yield a set of correction volumes. These are then linearly combined and added to the original volume. The combination weights are determined to maximize the flatness of the new and corrected volume. EBHC is evaluated using data acquired with a modern cone-beam dual-source spiral CT scanner (Somatom Definition Flash, Siemens Healthcare, Forchheim, Germany), with a modern dual-source micro-CT scanner (TomoScope Synergy Twin, CT Imaging GmbH, Erlangen, Germany), and with a modern

  6. Effects of densified silica fume on microstructure and compressive strength of blended cement pastes

    SciTech Connect

    Ji Yajun; Cahyadi, Jong Herman

    2003-10-01

    Some experimental investigations on the microstructure and compressive strength development of silica fume blended cement pastes are presented in this paper. The silica fume replacement varies from 0% to 20% by weight and the water/binder ratio (w/b) is 0.4. The pore structure by mercury intrusion porosimetry (MIP), the micromorphology by scanning electron microscopy (SEM) and the compressive strength at 3, 7, 14, 28, 56 and 90 days have been studied. The test results indicate that the improvements on both microstructure and mechanical properties of hardened cement pastes by silica fume replacement are not effective due to the agglomeration of silica fume particles. The unreacted silica fume remained in cement pastes, the threshold diameter was not reduced and the increase in compressive strength was insignificant up to 28 days. It is suggested that the proper measures should be taken to disperse silica fume agglomeration to make it more effective on improving the properties of materials.

  7. Effects of ceramic component on cephalexin release from bioactive bone cement consisting of Bis-GMA/TEGDMA resin and bioactive glass ceramics.

    PubMed

    Otsuka, M; Fujita, H; Nakamura, T; Kokubo, T

    2001-01-01

    The purpose of this study was to elucidate the effect of amount of ceramic cement powder on drug release from bioactive bone cement. The associated bone-bonding strength was also investigated. The bioactive bone cement under investigation consisted of bisphenol-alpha-glycidyl methacrylate (Bis-GMA), triethylene-glycol dimethacrylate (TEGDMA) resin and a combination of apatite- and wollastonite-containing glass-ceramic (A-W GC) powder. A-W GC powder (50%, 70% and 80% w/w) containing 5% cephalexin (CEX) powder hardened within 5 min after mixing with Bis-GMA/TEGDMA resin. The compressive strength of the cement with or without drug increased with increasing the amount of ceramic powder. The compressive strength of the 80% ceramic cement without the incorporation of cephalexin was 194 MPa. This compressive strength was about 3 times higher than that for polymethylmethacrylate cement. After the cement was implanted in the proximal metaphysis of the tibiae of male rabbits, the failure load for the cement was found to increase with increasing of the amount of ceramic powder. This finding suggested that the cement formed a bonding with bone. In vitro CEX release from bioactive bone cement pellets in a simulated body fluid at pH 7.25 and 37 degrees C continued for more than 2 weeks. Drug release profile followed the Higuchi equation initially, but not at later stages. The drug release rate increased with increasing amount of ceramic powder in the mixture. Since the pore volume of the cement increased with increasing of amount of ceramic powder, the drug diffused in the pores between the ceramics particle and polymer matrix. As hydroxyapatite precipitated on the cement surface, the drug release rate decreased, as observed at the later release stage. These results suggest that varying the amount of ceramic powder in the cement system could control the drug release rate from bioactive bone cement. PMID:11281575

  8. Solidification of microbiologically treated ion-exchange resins using Portland cement-based systems

    SciTech Connect

    Voima Oy, I.

    1993-12-31

    Pretreated inactive ion exchange resins from the Loviisa nuclear power plant (NPP) were first reduced to one tenth of the original volume through microbiological treatment. During the process, the granular ion exchange resins were decomposed to result in dregs, which were solidified with two types of Portland cements. The objective of the present experiments was to investigate whether commercial cements are suitable solidification agents for this kind of waste. A total of ten mixtures were pretested for their rheological and setting properties. On the basis of the pretest results, four additional mixtures were chosen and tested for the spread value, density, air content, setting time and bleeding of the fresh waste product and for the dimensional stability and compressive strength of the hardened waste product. The cementing systems incorporated in the tests were ASTM type V Portland cement and ASTm type P Portland Composite cements. The dregs used in the tests were taken from a Pilot-Plant experiment at the Loviisa NPP and contained 2 wt-% solids. The test results were promising in showing that microbiological dregs can very easily be soldified with Portland cements to form a high-quality waste product. Thus, the microbiological treatment of spent ion exchange resins will drastically decrease the amount of solidified waste to be disposed of at the Loviisa NPP.

  9. An ultrasonic through-transmission technique for monitoring the setting of injectable calcium phosphate cement.

    PubMed

    Rajzer, Izabella; Piekarczyk, Wojciech; Castaño, Oscar

    2016-10-01

    An ultrasound through-transmission method to monitor the setting process of injectable calcium phosphate bone cements in body fluids is presented. This method can be used to determine the acoustic properties of the bone cement as it sets, which are linked to its material properties and provide some information about changes occurring within the cement. The development of the methodology of ultrasonic testing and execution of velocity measurements of the longitudinal and transverse waves using the through-transmission method made it possible to determine the material constants of samples during the setting and hardening process of an injectable cement paste in physiological fluids (i.e. the Young's modulus (E), the Poisson ratio (ν) and the shear modulus (G)), and to determine the degree of anisotropy of wave velocity in the samples. A strong advantage of the proposed method is that it is non-destructive, and the same sample can be used to monitor the whole process of the cement setting. The testing was performed on premixed and injectable calcium phosphate (CPC)/chitosan blend, where glycerol was used as a liquid phase. Comparisons between ultrasonic velocity and empirical tests such as compressive strength, porosity measurement, FTIR, SEM and XRD analysis at different days of immersion in Ringer's solutions showed that the ultrasonic velocity can be very useful to provide in situ information about changes occurring within the cement. PMID:27287094

  10. Mineral resource of the month: hydraulic cement

    USGS Publications Warehouse

    van Oss, Hendrik G.

    2012-01-01

    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.