Science.gov

Sample records for rapid iterative stimulation

  1. Rapid iterative reanalysis for automated design

    NASA Technical Reports Server (NTRS)

    Bhatia, K. G.

    1973-01-01

    A method for iterative reanalysis in automated structural design is presented for a finite-element analysis using the direct stiffness approach. A basic feature of the method is that the generalized stiffness and inertia matrices are expressed as functions of structural design parameters, and these generalized matrices are expanded in Taylor series about the initial design. Only the linear terms are retained in the expansions. The method is approximate because it uses static condensation, modal reduction, and the linear Taylor series expansions. The exact linear representation of the expansions of the generalized matrices is also described and a basis for the present method is established. Results of applications of the present method to the recalculation of the natural frequencies of two simple platelike structural models are presented and compared with results obtained by using a commonly applied analysis procedure used as a reference. In general, the results are in good agreement. A comparison of the computer times required for the use of the present method and the reference method indicated that the present method required substantially less time for reanalysis. Although the results presented are for relatively small-order problems, the present method will become more efficient relative to the reference method as the problem size increases. An extension of the present method to static reanalysis is described, ana a basis for unifying the static and dynamic reanalysis procedures is presented.

  2. Online Classrooms: Powerful Tools for Rapid-Iteration Pedagogical Improvements

    NASA Astrophysics Data System (ADS)

    Horodyskyj, L.; Semken, S.; Anbar, A.; Buxner, S.

    2015-11-01

    Online education offers the opportunity to reach a variety of students including non-traditional and geographically diverse students. Research has shown that online courses modeled after traditional lecture-exam courses are ineffective. Over the past three years, Arizona State University developed and offered Habitable Worlds, an online-only astrobiology lab course featuring active learning tools. The course is offered in an intelligent tutoring system (ITS) that records a wealth of student data. In analyzing data from the Fall 2013 offering of the course, we were able to identify pre-post quiz results that were suboptimal and where in the lesson and how precisely students were missing concepts. The problem areas were redesigned, and the improved lessons were deployed a few months later. We saw significant improvements in our pre-post quiz results due to the implemented changes. This demonstrates the effectiveness of using robust ITS not only to present content online, but to provide instantaneous data for rapid iteration and improvement of existing content.

  3. Iter

    NASA Astrophysics Data System (ADS)

    Iotti, Robert

    2015-04-01

    ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success

  4. Rapid Hebbian axonal remodeling mediated by visual stimulation.

    PubMed

    Munz, Martin; Gobert, Delphine; Schohl, Anne; Poquérusse, Jessie; Podgorski, Kaspar; Spratt, Perry; Ruthazer, Edward S

    2014-05-23

    We examined how correlated firing controls axon remodeling, using in vivo time-lapse imaging and electrophysiological analysis of individual retinal ganglion cell (RGC) axons that were visually stimulated either synchronously or asynchronously relative to neighboring inputs in the Xenopus laevis optic tectum. RGCs stimulated out of synchrony rapidly lost the ability to drive tectal postsynaptic partners while their axons grew and added many new branches. In contrast, synchronously activated RGCs produced fewer new branches, but these were more stable. The effects of synchronous activation were prevented by the inhibition of neurotransmitter release and N-methyl-D-aspartate receptor (NMDAR) blockade, which is consistent with a role for synaptic NMDAR activation in the stabilization of axonal branches and suppression of further exploratory branch addition. PMID:24855269

  5. Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke

    PubMed Central

    2012-01-01

    Background Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this. PMID:22676920

  6. Rapid assessment of gait and speech after subthalamic deep brain stimulation

    PubMed Central

    Farris, Sierra M.; Giroux, Monique L.

    2016-01-01

    Background: Describe a rapid assessment for patients with idiopathic Parkinson's disease (PD) and deep brain stimulation of the subthalamic nucleus reporting worsening speech and/or gait problems. Methods: We retrospectively reviewed 29 patients that had improvement in gait and/or speech within 30 min after turning stimulation off. Clinical data analyzed include unified PD rating scale motor scores and stimulation parameters before and after adjusting stimulation. All patients received electrode efficacy and side effect threshold testing. Stimulation parameters were adjusted to maximize efficacy, avoid side effects, and maximize battery longevity. Results: Turning stimulation off revealed reversible speech and/or gait stimulation side effects within 30 min. Focusing on six factors revealed stimulation modifications that improved motor symptoms, eliminated stimulation side effects, and reduced battery drain. Primary stimulation parameters modified were cathode selection and pulse width reduction. Conclusions: Stimulation-induced side effects impacting gait and speech can be identified within 30 min. A systematic evaluation can distinguish disease progression from reversible stimulation side effects and improve motor outcomes over the long term. PMID:27583181

  7. Pattern recognition for rapid T2 mapping with Stimulate Echo Compensation

    PubMed Central

    Huang, Chuan; Altbach, Maria I; Fakhri, Georges El

    2014-01-01

    Indirect echoes (such as stimulated echoes) are a source of signal contamination in a multi-echo spin-echo T2 quantification, and can lead to T2 overestimation if a conventional exponential T2 decay model is assumed. Recently, nonlinear least square fitting of a slice-resolve extended phase graph (SEPG) signal model has been shown to provide accurate T2 estimates with indirect echo compensation. However, the iterative nonlinear least square fitting is computationally expensive and the T2 map generation time is long. In this work, we present a pattern recognition T2 mapping technique based on the SEPG model that can be performed with a single pre-computed dictionary for any arbitrary echo spacing. Almost identical T2 and B1 maps were obtained from in vivo data using the proposed technique compared to conventional iterative nonlinear least square fitting, while the computation time was reduced by more than 14 fold. PMID:24853466

  8. Pattern recognition for rapid T2 mapping with stimulated echo compensation.

    PubMed

    Huang, Chuan; Altbach, Maria I; El Fakhri, Georges

    2014-09-01

    Indirect echoes (such as stimulated echoes) are a source of signal contamination in multi-echo spin-echo T2 quantification and can lead to T2 overestimation if a conventional exponential T2 decay model is assumed. Recently, nonlinear least square fitting of a slice-resolved extended phase graph (SEPG) signal model has been shown to provide accurate T2 estimates with indirect echo compensation. However, the iterative nonlinear least square fitting is computationally expensive and the T2 map generation time is long. In this work, we present a pattern recognition T2 mapping technique based on the SEPG model that can be performed with a single pre-computed dictionary for any arbitrary echo spacing. Almost identical T2 and B1 maps were obtained from in vivo data using the proposed technique compared to conventional iterative nonlinear least square fitting, while the computation time was reduced by more than 14-fold. PMID:24853466

  9. Sparsely corrupted stimulated scattering signals recovery by iterative reweighted continuous basis pursuit.

    PubMed

    Wang, Kunpeng; Chai, Yi; Su, Chunxiao

    2013-08-01

    In this paper, we consider the problem of extracting the desired signals from noisy measurements. This is a classical problem of signal recovery which is of paramount importance in inertial confinement fusion. To accomplish this task, we develop a tractable algorithm based on continuous basis pursuit and reweighted [script-l]1-minimization. By modeling the observed signals as superposition of scale time-shifted copies of theoretical waveform, structured noise, and unstructured noise on a finite time interval, a sparse optimization problem is obtained. We propose to solve this problem through an iterative procedure that alternates between convex optimization to estimate the amplitude, and local optimization to estimate the dictionary. The performance of the method was evaluated both numerically and experimentally. Numerically, we recovered theoretical signals embedded in increasing amounts of unstructured noise and compared the results with those obtained through popular denoising methods. We also applied the proposed method to a set of actual experimental data acquired from the Shenguang-II laser whose energy was below the detector noise-equivalent energy. Both simulation and experiments show that the proposed method improves the signal recovery performance and extends the dynamic detection range of detectors. PMID:24007049

  10. Sparsely corrupted stimulated scattering signals recovery by iterative reweighted continuous basis pursuit

    NASA Astrophysics Data System (ADS)

    Wang, Kunpeng; Chai, Yi; Su, Chunxiao

    2013-08-01

    In this paper, we consider the problem of extracting the desired signals from noisy measurements. This is a classical problem of signal recovery which is of paramount importance in inertial confinement fusion. To accomplish this task, we develop a tractable algorithm based on continuous basis pursuit and reweighted ℓ1-minimization. By modeling the observed signals as superposition of scale time-shifted copies of theoretical waveform, structured noise, and unstructured noise on a finite time interval, a sparse optimization problem is obtained. We propose to solve this problem through an iterative procedure that alternates between convex optimization to estimate the amplitude, and local optimization to estimate the dictionary. The performance of the method was evaluated both numerically and experimentally. Numerically, we recovered theoretical signals embedded in increasing amounts of unstructured noise and compared the results with those obtained through popular denoising methods. We also applied the proposed method to a set of actual experimental data acquired from the Shenguang-II laser whose energy was below the detector noise-equivalent energy. Both simulation and experiments show that the proposed method improves the signal recovery performance and extends the dynamic detection range of detectors.

  11. Rapid and transitory stimulation of 3-O-methylglucose transport by growth hormone

    SciTech Connect

    Carter-Su, C.; Rozsa, F.W.; Wang, Xueyan; Stubbart, J.R. )

    1988-11-01

    The regulation of hexose transport by growth hormone (GH) was investigated using isolated rat adipocytes. GH caused a rapid (<3 min) rise in rates of 3-O-methylglucose transport that reached a maximum of two to six times the basal rates in 10-30 min. The stimulation of transport was transitory, and rates of transport started to decline 15-30 min after GH was added. Transport stimulation required a period of preincubation; no stimulation was observed in freshly isolated cells. GH stimulated hexose transport between 100 and 5,000 ng/ml, with a 50% effective dose between 200 and 300 ng/ml. Depletion of cellular ATP by 2,4-dinitrophenol blocked the ability of GH to stimulate transport but not the decline of transport rates following stimulation by GH. In contrast, an inhibitor of RNA synthesis, actinomycin D, had no effect on either the initial stimulation by GH or the initial subsequent decline of transport when added simultaneously or 15 min prior to GH. Actinomycin D did, however, cause a second rise in hexose transport at {approximately}120 min that was blocked by 2,4-dinitrophenol. These results suggest that changes in glucose transport contribute to the effects of GH on carbohydrate and lipid metabolism in adipose tissue. These changes are rapid, of substantial magnitude, and of a complex nature, suggesting that regulation of glucose transport by GH most likely involves multiple mechanisms.

  12. Electrical stimulation causes rapid changes in electrode impedance of cell-covered electrodes

    PubMed Central

    Newbold, Carrie; Richardson, Rachael; Millard, Rodney; Seligman, Peter; Cowan, Robert; Shepherd, Robert

    2011-01-01

    Animal and clinical observations of a reduction in electrode impedance following electrical stimulation encouraged the development of an in vitro model of the electrode-tissue interface. This model was used previously to show an increase in impedance with cell and protein cover over electrodes. In this paper, the model was used to assess the changes in electrode impedance and cell cover following application of a charge-balanced biphasic current pulse train. Following stimulation, a large and rapid drop in total impedance (Zt) and access resistance (Ra) occurred. The magnitude of this impedance change was dependent on the current amplitude used, with a linear relationship determined between Ra and the resulting cell cover over the electrodes. The changes in impedance due to stimulation were shown to be transitory, with impedance returning to pre-stimulation levels several hours after cessation of stimulation. A loss of cells over the electrode surface was observed immediately after stimulation suggesting that the level of stimulation applied was creating localised changes to cell adhesion. Similar changes in electrode impedance were observed for in vivo and in vitro work, thus helping to verify the in vitro model, although the underlying mechanisms may differ. A change in the porosity of the cellular layer was proposed to explain the alterations in electrode impedance in vitro. These in vitro studies provide insight into the possible mechanisms occurring at the electrode-tissue interface in association with electrical stimulation. PMID:21572219

  13. Gastric bolus feeding rapidly stimulates hepatic protein synthesis in neonatal pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth and protein deposition rates are more rapid during the neonatal period than at any other stage of postnatal life. Feeding stimulates protein synthesis in the liver, as it does in other tissues of the neonatal pig. The purpose of this study was to examine the feeding-induced time course of the...

  14. Using Functional Electrical Stimulation Mediated by Iterative Learning Control and Robotics to Improve Arm Movement for People With Multiple Sclerosis.

    PubMed

    Sampson, Patrica; Freeman, Chris; Coote, Susan; Demain, Sara; Feys, Peter; Meadmore, Katie; Hughes, Ann-Marie

    2016-02-01

    Few interventions address multiple sclerosis (MS) arm dysfunction but robotics and functional electrical stimulation (FES) appear promising. This paper investigates the feasibility of combining FES with passive robotic support during virtual reality (VR) training tasks to improve upper limb function in people with multiple sclerosis (pwMS). The system assists patients in following a specified trajectory path, employing an advanced model-based paradigm termed iterative learning control (ILC) to adjust the FES to improve accuracy and maximise voluntary effort. Reaching tasks were repeated six times with ILC learning the optimum control action from previous attempts. A convenience sample of five pwMS was recruited from local MS societies, and the intervention comprised 18 one-hour training sessions over 10 weeks. The accuracy of tracking performance without FES and the amount of FES delivered during training were analyzed using regression analysis. Clinical functioning of the arm was documented before and after treatment with standard tests. Statistically significant results following training included: improved accuracy of tracking performance both when assisted and unassisted by FES; reduction in maximum amount of FES needed to assist tracking; and less impairment in the proximal arm that was trained. The system was well tolerated by all participants with no increase in muscle fatigue reported. This study confirms the feasibility of FES combined with passive robot assistance as a potentially effective intervention to improve arm movement and control in pwMS and provides the basis for a follow-up study. PMID:25823038

  15. Rapid Lead Discovery Through Iterative Screening of One Bead One Compound Libraries

    PubMed Central

    2015-01-01

    Primary hits that arise from screening one bead one compound (OBOC) libraries against a target of interest rarely have high potency. However, there has been little work focused on the development of an efficient workflow for primary hit improvement. In this study, we show that by characterizing the binding constants for all of the hits that arise from a screen, structure–activity relationship (SAR) data can be obtained to inform the design of “derivative libraries” of a primary hit that can then be screened under more demanding conditions to obtain improved compounds. Here, we demonstrate the rapid improvement of a primary hit against matrix metalloproteinase-14 using this approach. PMID:25434974

  16. Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood.

    PubMed

    Pascual-Leone, A; Catalá, M D; Pascual-Leone Pascual, A

    1996-02-01

    We studied the effects of rapid-rate transcranial magnetic stimulation (rTMS) of different scalp positions on mood. Ten normal volunteers rated themselves before and after rTMS on five analog scales labeled "Tristeza" (Sadness), "Ansiedad" (Anxiety), "Alegria" (Happiness), "Cansancio" (Tiredness), and "Dolor/Malestar" (Pain/Discomfort). rTMS was applied to the right lateral prefrontal, left prefrontal, or midline frontal cortex in trains of 5 seconds' duration at 10 Hz and 110% of the subject's motor threshold intensity. Each stimulation position received 10 trains separated by a 25-second pause. No clinically apparent mood changes were evoked by rTMS to any of the scalp positions in any subject. However, left prefrontal rTMS resulted in a significant increase in the Sadness ratings (Tristeza) and a significant decrease in the Happiness ratings ("Alegria") as compared with right prefrontal and midfrontal cortex stimulation. These results show differential effects of rTMS of left and right prefrontal cortex stimulation on mood and illustrate the lateralized control of mood in normal volunteers. PMID:8614521

  17. Stimulation of pulmonary rapidly adapting receptors by inhaled wood smoke in rats.

    PubMed

    Lai, C J; Kou, Y R

    1998-04-15

    1. The stimulation of pulmonary rapidly adapting receptors (RARs) by wood smoke was investigated. Impulses from seventy RARs were recorded in fifty-nine anaesthetized, open-chest and artificially ventilated rats; responses to delivery of 6 ml of wood smoke into the lungs were studied in sixty-one receptors whereas responses to histamine (10 or 100 microg kg-1, i.v.) were studied in the other nine. 2. Delivery of wood smoke stimulated fifty-two of the sixty-one RARs studied. When stimulated, an intense burst of discharge was evoked within 1 or 2 s of smoke delivery. This increased activity quickly peaked in 1-3 s (Delta = 15.8 +/- 1.6 impulses s-1; n = 61; mean +/- s.e.m.), then declined and yet remained at a level higher than the baseline activity. The mean duration of the stimulation was 25.1 +/- 2.7 s. In contrast, smoke delivery did not affect tracheal pressure. 3. Peak responses of RARs to wood smoke were partially reduced by removal of smoke particulates and were largely attenuated by pretreatment with dimethylthiourea (DMTU, a hydroxyl radical scavenger), indomethacin (Indo, a cyclo-oxygenase inhibitor), or both DMTU and Indo (DMTU + Indo). Conversely, the peak responses of RARs were not significantly affected by pretreatment with isoprenaline (a bronchodilator) or vehicle for these chemicals. Additionally, pretreatment with DMTU, Indo, or DMTU + Indo did not significantly alter the RAR sensitivity to mechanical stimulation (constant-pressure lung inflation; 20 cmH2O). 4. Of the nine RARs tested, six were stimulated by histamine and their sensitivity to this chemical irritant was not altered by pretreatment with DMTU + Indo. 5. The results suggest that both the particulates and gas phases are responsible for, and both the hydroxyl radical and cyclo-oxygenase products are involved in, the stimulation of RARs by wood smoke. Furthermore, changes in lung mechanics following smoke delivery are not the cause of this afferent stimulation. PMID:9508820

  18. Multi-color stimulated Raman scattering microscopy with a rapidly tunable optical parametric oscillator

    PubMed Central

    Kong, Lingjie; Ji, Minbiao; Holtom, Gary R.; Fu, Dan; Freudiger, Christian W.; Xie, X. Sunney

    2013-01-01

    Stimulated Raman scattering (SRS) microscopy allows label-free chemical imaging based on vibrational spectroscopy. Narrowband excitation with picosecond lasers creates the highest signal levels and enables imaging speeds up to video-rate, but sacrifices chemical specify in samples with overlapping bands compared to broadband (multiplex) excitation. We develope a rapidly tunable picosecond optical parametric oscillator with an electro-optical tunable Lyot filter, and demonstrate multi-color SRS microscopy with synchronized line-by-line wavelength tuning to avoid spectral artifacts due to sample movement. We show sensitive imaging of three different kinds of polymer beads and live HeLa cells with moving intracellular lipid droplets. PMID:23454943

  19. ITER Plasma at Electron Cyclotron Frequency Domain: Stimulated Raman Scattering off Gould-Trivelpiece Modes and Generation of Suprathermal Electrons and Energetic Ions

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2011-04-01

    Stimulated Raman scattering in the electron cyclotron frequency range of the X-Mode and O-Mode driver with the ITER plasma leads to the ``tail heating'' via the generation of suprathermal electrons and energetic ions. The scattering off Trivelpiece-Gould (T-G) modes is studied for the gyrotron frequency of 170GHz; X-Mode and O-Mode power of 24 MW CW; on-axis B-field of 10T. The synergy between the two-plasmon decay and Raman scattering is analyzed in reference to the bulk plasma heating. Supported in part by Nikola TESLA Labs, La Jolla, CA

  20. Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation.

    PubMed

    Jourdi, Hussam; Hsu, Yu-Tien; Zhou, Miou; Qin, Qingyu; Bi, Xiaoning; Baudry, Michel

    2009-07-01

    Brain-derived neurotrophic factor (BDNF) stimulates local dendritic mRNA translation and is involved in formation and consolidation of memory. 2H,3H,6aH-pyrrolidino[2'',1''-3',2']1,3-oxazino[6',5'-5,4]-benzo[e]1,4-dioxan-10-one (CX614), one of the best-studied positive AMPA receptor modulators (also known as ampakines), increases BDNF mRNA and protein and facilitates long-term potentiation (LTP) induction. Several other ampakines also improve performance in various behavioral and learning tasks. Since local dendritic protein synthesis has been implicated in LTP stabilization and in memory consolidation, this study investigated whether CX614 could influence synaptic plasticity by upregulating dendritic protein translation. CX614 treatment of primary neuronal cultures and acute hippocampal slices rapidly activated the translation machinery and increased local dendritic protein synthesis. CX614-induced activation of translation was blocked by K252a [(9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester], CNQX, APV, and TTX, and was inhibited in the presence of an extracellular BDNF scavenger, TrkB-Fc. The acute effect of CX614 on translation was mediated by increased BDNF release as demonstrated with a BDNF scavenging assay using TrkB-Fc during CX614 treatment of cultured primary neurons and was blocked by nifedipine, ryanodine, and lack of extracellular Ca(2+) in acute hippocampal slices. Finally, CX614, like BDNF, rapidly increased dendritic translation of an exogenous translation reporter. Together, our results demonstrate that positive modulation of AMPA receptors rapidly stimulates dendritic translation, an effect mediated by BDNF secretion and TrkB receptor activation. They also suggest that increased BDNF secretion and stimulation of local protein synthesis contribute to the effects of ampakines on synaptic plasticity. PMID:19587275

  1. Immunosuppressive drugs prevent a rapid dephosphorylation of transcription factor NFAT1 in stimulated immune cells.

    PubMed Central

    Shaw, K T; Ho, A M; Raghavan, A; Kim, J; Jain, J; Park, J; Sharma, S; Rao, A; Hogan, P G

    1995-01-01

    The immunosuppressive drugs cyclosporin A and FK506 interfere with the inducible transcription of cytokine genes in T cells and in other immune cells, in part by preventing the activation of NF-AT (nuclear factor of activated T cells). We show that transcription factor NFAT1 in T cells is rapidly dephosphorylated on stimulation, that dephosphorylation occurs before translocation of NFAT1 into the cell nucleus, and that dephosphorylation increases the affinity of NFAT1 for its specific sites in DNA. Cyclosporin A prevents the dephosphorylation and the nuclear translocation of NFAT1 in T cells, B cells, macrophages, and mast cells, delineating at least one mechanism that contributes to the profound immunosuppressive effects of this compound. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7479966

  2. Rapid auxin-induced stimulation of cell wall synthesis in pea internodes

    SciTech Connect

    Kutschera, U.; Briggs, W.R.

    1987-05-01

    The effect of auxin (indole-3-acetic acid; IAA) on growth and incorporation of myo-(2-/sup 3/H(N)) inositol ((/sup 3/H)Ins) into noncellulosic polysacchharides in the cell walls of third internode sections from red light-grown pea seedlings (Pisum sativum L. cv. Alaska) was investigated. Intact section were incubated on (/sup 3/H)Ins for 4 hr to permit uptake of the tracer and then IAA was added. Growth started after a lag phase of 15 min under these conditions. The sections were removed from the tracer and separated into epidermis and cortical cylinder (cortex plus vascular tissue). In the epidermis, IAA-induced stimulation of (/sup 3/H)Ins incorporation started after a lag of 15 min. The amount of incorporation was 15% higher after 30 min and 24% higher after 2 hr than in the control. In the cortical cylinder, IAA-induced stimulation of (/sup 3/H)Ins incorporation started only approx. = 1 hr after adding IAA. The ionophore monensin (20 ..mu..M) inhibited the IAA-induced growth by 95%. Under these conditions, the IAA-induced stimulation of (/sup 3/H)Ins incorporation and the IAA-induced increase in in vivo extensibility of the sections was almost completely inhibited, although oxygen uptake was unaffected. The authors suggest that wall synthesis (as represented by (/sup 3/H)Ins incorporation) and wall loosening (increase in in vivo extensibility) are related processes. The results support the hypothesis that IAA induces growth by rapid simulation of cell wall synthesis in the growth-limiting epidermal cell layer.

  3. Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation

    NASA Technical Reports Server (NTRS)

    Davies, E.; Vian, A.; Vian, C.; Stankovic, B.

    1997-01-01

    When one leaf of a tomato plant is electrically-stimulated or heat-wounded, proteinase inhibitor genes are rapidly up-regulated in distant leaves. The identity of the systemic wound signal(s) is not yet known, but major candidates include hormones transmitted via the phloem or the xylem, the electrically-stimulated self-propagating electrical signal in the phloem (the action potential, AP), or the heat-wound-induced surge in hydraulic pressure in the xylem evoking a local change in membrane potential in adjacent living cells (the variation potential, VP). In order to discriminate between these signals we have adopted two approaches. The first approach involves applying stimuli that evoke known signals and determining whether these signals have similar effects on the "model" transcripts for proteinase inhibitors (pin) and calmodulin (cal). Here we show that a heat wound almost invariably evokes a VP, while an electrical stimulation occasionally evokes an AP, and both of these signals induce accumulation of transcripts encoding proteinase inhibitors. The second approach involves identifying the array of genes turned on by heat-wounding. To this end, we have constructed a subtractive library for heat-wounded tissue, isolated over 800 putatively up-regulated clones, and shown that all but two of the fifty that we have analyzed by Northern hybridization are, indeed, up-regulated. Here we show the early kinetics of up-regulation of three of these transcripts in the terminal (4th) leaf in response to heat-wounding the 3rd leaf, about 5 cm away. Even though these transcripts show somewhat different time courses of induction, with one peaking at 30 min, another at 15 min, and another at 5 min after flaming of a distant leaf, they all exhibit a similar pattern, i.e., a transient period of transcript accumulation preceding a period of transcript decrease, followed by a second period of transcript accumulation.

  4. Serum stimulation of plasma protein synthesis in culture is selective and rapidly reversible.

    PubMed

    Plant, P W; Liang, T J; Pindyck, J; Grieninger, G

    1981-10-27

    Primary hepatocyte monolayers, derived from chick embryos, can be cultured from the onset in a completely chemically defined medium, free of added hormones. The liver cells synthesize and secrete a wide spectrum of plasma proteins for several days in this serum-free environment. Addition of fetal bovine serum elicits a 3-5-fold increase in the production of certain plasma proteins: fibrinogen, albumin, and the alpha1-globulin M. This effect of serum is selective; transferrin and plasminogen syntheses are enhanced less than 1.5-fold. Significant stimulation is observed with 0.1% fetal bovine serum, and half-maximal values for individual plasma proteins are obtained with concentrations ranging between 0.4 and 1%. The stimulatory activity of serum shows no developmental or species specificity. Plasma is active as serum derived from the same blood sample. The hepatocytes respond rapidly to serum, significant changes in albumin synthesis occurring less than 1 h after serum addition or removal. The effect of short exposure is fully reversible. These results establish the capacity of low concentrations of serum to stimulate plasma protein synthesis and underscore the importance of studying the effects of hormones and other factors under serum-free conditions. The findings suggest that, in addition to the classical hormones, ubiquitous but as yet uncharacterized serum components play a role in controlling this major hepatic function. PMID:7284395

  5. Acute inhalation of ozone stimulates bronchial C-fibers and rapidly adapting receptors in dogs

    SciTech Connect

    Coleridge, J.C.G.; Coleridge, H.M.; Schelegle, E.S.; Green, J.F. Univ. of California, San Francisco )

    1993-05-01

    To identify the afferents responsible for initiating the vagally mediated respiratory changes evoked by acute exposure to ozone, the authors recorded vagal impulses in anesthetized, open-chest, artificially ventilated dogs and examined the pulmonary afferent response to ozone (2--3 ppM in air) delivered to the lower trachea for 20--60 min. Bronchial C-fibers (BrCs) were the lung afferents most susceptible to ozone, the activity of 10 of 11 BrCs increasing from 0.2 [+-] 0.2 to 4.6 [+-] 1.3 impulses/s within 1--7 min of ozone exposure. Ten of 15 rapidly adapting receptors (RARs) were stimulated by ozone, their activity increasing from 1.5 [+-] 0.4 to 4.7 [+-] 0.7 impulses/s. Stimulation of RARs (but not of BrCs) appeared secondary to the ozone-induced reduction of lung compliance because it was abolished by hyperinflation of the lungs. Ozone had little effect on pulmonary C-fibers or slowly adapting pulmonary stretch receptors. The authors' results suggest that both BrCs and RARs contribute to the tachypnea and bronchoconstriction evoked by acute exposure to ozone when vagal conduction is intact and that BrCs alone are responsible for the vagally mediated tachypnea that survives vagal cooling to 7[degrees]C. 23 refs., 5 figs.

  6. Bombesin, vasopressin, and endothelin rapidly stimulate tyrosine phosphorylation in intact Swiss 3T3 cells

    SciTech Connect

    Zachary, I.; Gil, J.; Lehmann, W.; Sinnett-Smith, J.; Rozengurt, E. )

    1991-06-01

    The mitogenic neuropeptides bombesin and vasopressin markedly increased tyrosine and serine phosphorylation of multiple substrates in quiescent Swiss 3T3 fibroblasts, including two major bands of M{sub r} 90,000 and 115,000. Tyrosine phosphorylation of these proteins was increased as judged by immunoprecipitation of {sup 32}P{sub i}-labeled cells and immunoblotting of unlabeled cells with monoclonal antiphosphotyrosine antibodies, elution with phenyl phosphate, and phospho amino acid analysis. Phosphotyrosyl proteins generated by bombesin and vasopressin did not correspond either by apparent molecular weight or by immunological and biochemical criteria to several known tyrosine kinase substrates, including phospholipase C{sub {gamma}}, the microtubule-associated protein 2 kinase, GTPase-activating protein, or phosphatidylinositol kinase. The effect was rapid (within seconds), concentration dependent, and inhibited by specific receptor antagonists for both bombesin and vasopressin. The endothelin-related peptide, vasoactive intestinal contractor, also elicited a rapid and concentration-dependent tyrosine/serine phosphorylation of a similar set of substrates. These results demonstrate that neuropeptides, acting through receptors linked to GTP-binding proteins, stimulate tyrosine phosphorylation of a common set of substrates in quiescent Swiss 3T3 cells and suggest the existence of an additional signal transduction pathway in neuropeptide-induced mitogenesis.

  7. A microcontroller platform for the rapid prototyping of functional electrical stimulation-based gait neuroprostheses.

    PubMed

    Luzio de Melo, Paulo; da Silva, Miguel Tavares; Martins, Jorge; Newman, Dava

    2015-05-01

    Functional electrical stimulation (FES) has been used over the last decades as a method to rehabilitate lost motor functions of individuals with spinal cord injury, multiple sclerosis, and post-stroke hemiparesis. Within this field, researchers in need of developing FES-based control solutions for specific disabilities often have to choose between either the acquisition and integration of high-performance industry-level systems, which are rather expensive and hardly portable, or develop custom-made portable solutions, which despite their lower cost, usually require expert-level electronic skills. Here, a flexible low-cost microcontroller-based platform for rapid prototyping of FES neuroprostheses is presented, designed for reduced execution complexity, development time, and production cost. For this reason, the Arduino open-source microcontroller platform was used, together with off-the-shelf components whenever possible. The developed system enables the rapid deployment of portable FES-based gait neuroprostheses, being flexible enough to allow simple open-loop strategies but also more complex closed-loop solutions. The system is based on a modular architecture that allows the development of optimized solutions depending on the desired FES applications, even though the design and testing of the platform were focused toward drop foot correction. The flexibility of the system was demonstrated using two algorithms targeting drop foot condition within different experimental setups. Successful bench testing of the device in healthy subjects demonstrated these neuroprosthesis platform capabilities to correct drop foot. PMID:25919579

  8. Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila.

    PubMed

    Case, Christopher L; Kohler, Lara J; Lima, Jonilson B; Strowig, Till; de Zoete, Marcel R; Flavell, Richard A; Zamboni, Dario S; Roy, Craig R

    2013-01-29

    A flagellin-independent caspase-1 activation pathway that does not require NAIP5 or NRLC4 is induced by the intracellular pathogen Legionella pneumophila. Here we demonstrate that this pathway requires caspase-11. Treatment of macrophages with LPS up-regulated the host components required for this caspase-11 activation pathway. Activation by Legionella differed from caspase-11 activation using previously described agonists in that Legionella caspase-11 activation was rapid and required bacteria with a functional type IV secretion system called Dot/Icm. Legionella activation of caspase-11 induced pyroptosis by a mechanism independent of the NAIP/NLRC4 and caspase-1 axis. Legionella activation of caspase-11 stimulated activation of caspase-1 through NLRP3 and ASC. Induction of caspase-11-dependent responses occurred in macrophages deficient in the adapter proteins TRIF or MyD88 but not in macrophages deficient in both signaling factors. Although caspase-11 was produced in macrophages deficient in the type-I IFN receptor, there was a severe defect in caspase-11-dependent pyroptosis in these cells. These data indicate that macrophages respond to microbial signatures to produce proteins that mediate a capsase-11 response and that the caspase-11 system provides an alternative pathway for rapid detection of an intracellular pathogen capable of evading the canonical caspase-1 activation system that responds to bacterial flagellin. PMID:23307811

  9. Rapid-Rate Paired Associative Stimulation over the Primary Somatosensory Cortex

    PubMed Central

    Tsang, Philemon; Bailey, Aaron Z.; Nelson, Aimee J.

    2015-01-01

    Rapid-rate paired associative stimulation (rPAS) involves repeat pairing of peripheral nerve stimulation and Transcranial magnetic stimulation (TMS) pulses at a 5 Hz frequency. RPAS over primary motor cortex (M1) operates with spike-timing dependent plasticity such that increases in corticospinal excitability occur when the nerve and TMS pulse temporally coincide in cortex. The present study investigates the effects of rPAS over primary somatosensory cortex (SI) which has not been performed to date. In a series of experiments, rPAS was delivered over SI and M1 at varying timing intervals between the nerve and TMS pulse based on the latency of the N20 somatosensory evoked potential (SEP) component within each participant (intervals for SI-rPAS: N20, N20-2.5 ms, N20 + 2.5 ms, intervals for M1-rPAS: N20, N20+5 ms). Changes in SI physiology were measured via SEPs (N20, P25, N20-P25) and SEP paired-pulse inhibition, and changes in M1 physiology were measured with motor evoked potentials and short-latency afferent inhibition. Measures were obtained before rPAS and at 5, 25 and 45 minutes following stimulation. Results indicate that paired-pulse inhibition and short-latency afferent inhibition were reduced only when the SI-rPAS nerve-TMS timing interval was set to N20-2.5 ms. SI-rPAS over SI also led to remote effects on motor physiology over a wider range of nerve-TMS intervals (N20-2.5 ms – N20+2.5 ms) during which motor evoked potentials were increased. M1-rPAS increased motor evoked potentials and reduced short-latency afferent inhibition as previously reported. These data provide evidence that, similar to M1, rPAS over SI is spike-timing dependent and is capable of exerting changes in SI and M1 physiology. PMID:25799422

  10. Selective processing of auditory evoked responses with iterative-randomized stimulation and averaging: A strategy for evaluating the time-invariant assumption.

    PubMed

    Valderrama, Joaquin T; de la Torre, Angel; Medina, Carlos; Segura, Jose C; Thornton, A Roger D

    2016-03-01

    The recording of auditory evoked potentials (AEPs) at fast rates allows the study of neural adaptation, improves accuracy in estimating hearing threshold and may help diagnosing certain pathologies. Stimulation sequences used to record AEPs at fast rates require to be designed with a certain jitter, i.e., not periodical. Some authors believe that stimuli from wide-jittered sequences may evoke auditory responses of different morphology, and therefore, the time-invariant assumption would not be accomplished. This paper describes a methodology that can be used to analyze the time-invariant assumption in jittered stimulation sequences. The proposed method [Split-IRSA] is based on an extended version of the iterative randomized stimulation and averaging (IRSA) technique, including selective processing of sweeps according to a predefined criterion. The fundamentals, the mathematical basis and relevant implementation guidelines of this technique are presented in this paper. The results of this study show that Split-IRSA presents an adequate performance and that both fast and slow mechanisms of adaptation influence the evoked-response morphology, thus both mechanisms should be considered when time-invariance is assumed. The significance of these findings is discussed. PMID:26778545

  11. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    NASA Astrophysics Data System (ADS)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  12. Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.; McAllister, T. N.; Frangos, J. A.

    1996-01-01

    Interstitial fluid flow may mediate skeletal remodeling in response to mechanical loading. Because nitric oxide (NO) has been shown to be an osteoblast mitogen and inhibitor of osteoclastic resorption, we investigated and characterized the role of fluid shear on the release of NO in osteoblasts. Rat calvarial cells in a stationary culture produced undetectable levels of NO. Fluid shear stress (6 dyn/cm2) rapidly increased NO release rate to 9.8 nmol.h-1.mg protein-1 and sustained this production for 12 h of exposure to flow. Cytokine treatment also induced NO synthesis after a 12-h lag phase of zero production, followed by a production rate of 0.6 nmol.h-1.mg protein-1. Flow-induced NO production was blocked by the NO synthase (NOS) inhibitor NG-amino-L-arginine, but not by dexamethasone, which suggests that the flow stimulated a constitutive NOS isoform. This is the first time that a functional constitutively present NOS isoform has been identified in osteoblasts. Moreover, fluid flow represents the most potent stimulus of NO release in osteoblasts reported to date. Fluid flow-induced NO production may therefore play a primary role in bone maintenance and remodeling.

  13. Rapid increase in enzyme and peptide mRNA in sympathetic ganglia after electrical stimulation in humans.

    PubMed Central

    Schalling, M; Stieg, P E; Lindquist, C; Goldstein, M; Hökfelt, T

    1989-01-01

    Thoracic ganglia in humans were studied after electrical, preganglionic stimulation using in situ hybridization with synthetic oligonucleotide probes against the catecholamine-synthesizing enzymes tyrosine hydroxylase (EC 1.14.16.2) and dopamine beta-hydroxylase (EC 1.14.17.1) and neuropeptide tyrosine. Immunohistochemical analysis was also performed. Following short peroperative stimulation a severalfold increase in all three mRNAs was found in principal ganglion cells, whereas no definite changes could be detected in enzyme or peptide levels with immunohistochemistry. The results suggest a very rapid and sensitive regulation of genes involved in signal transmission in the sympathetic nervous system of humans. Moreover, they indicate that electrical stimulation of neurons and/or pathways combined with in situ hybridization may be used as a method to define neuronal projections by visualizing increases in mRNAs for transmitter enzymes and/or peptide in target cells. Images PMID:2567003

  14. Courtship interactions stimulate rapid changes in GnRH synthesis in male ring doves

    PubMed Central

    Mantei, Kristen E.; Ramakrishnan, Selvakumar; Sharp, Peter J.; Buntin, John D.

    2008-01-01

    Many birds and mammals show changes in the hypothalamo-pituitary-gonadal (HPG) axis in response to social or sexual interactions between breeding partners. While alterations in GnRH neuronal activity play an important role in stimulating these changes, it remains unclear if acute behaviorally-induced alterations in GnRH release are accompanied by parallel changes in GnRH synthesis. To investigate this relationship, we examined changes in the activity of GnRH neurons in the brains of male ring doves following brief periods of courtship interactions with females. Such interactions have been previously shown to increase plasma LH in courting male doves at 24 h, but not at 1 h, after pairing with females. In the first study, males allowed to court females for 2 h had 60% more cells that showed immunocytochemical labeling for GnRH-I in the preoptic area (POA) of the hypothalamus than did control males that remained isolated from females. To determine whether an increase in GnRH gene expression preceded this increase in GnRH immunoreactivity in the POA, changes in the number of cells with detectable GnRH-I mRNA in the POA were measured by in situ hybridization following a 1 h period of courtship interactions with females. In this second study, courting males exhibited 40% more cells with GnRH-I in this region than did isolated control males. GnRH-immunoreactive neurons in two other diencephalic regions failed to show these courtship-induced changes. Plasma LH was not elevated after 1 or 2 h of courtship. These results demonstrate that the release of GnRH-I in the POA that is presumably responsible for courtship-induced pituitary and gonadal activation is accompanied by a rapid increase in GnRH synthesis that occurs before plasma LH levels increase. We suggest that this increase in GnRH synthesis is necessary to support the extended period of HPG axis activation that is seen in this species during the 5–10 day period of courtship and nest building activity. PMID

  15. Vagus Nerve Stimulation Applied with a Rapid Cycle Has More Profound Influence on Hippocampal Electrophysiology Than a Standard Cycle.

    PubMed

    Larsen, Lars E; Wadman, Wytse J; Marinazzo, Daniele; van Mierlo, Pieter; Delbeke, Jean; Daelemans, Sofie; Sprengers, Mathieu; Thyrion, Lisa; Van Lysebettens, Wouter; Carrette, Evelien; Boon, Paul; Vonck, Kristl; Raedt, Robrecht

    2016-07-01

    Although vagus nerve stimulation (VNS) is widely used, therapeutic mechanisms and optimal stimulation parameters remain elusive. In the present study, we investigated the effect of VNS on hippocampal field activity and compared the efficiency of different VNS paradigms. Hippocampal electroencephalography (EEG) and perforant path dentate field-evoked potentials were acquired before and during VNS in freely moving rats, using 2 VNS duty cycles: a rapid cycle (7 s on, 18 s off) and standard cycle (30 s on, 300 s off) and various output currents. VNS modulated the evoked potentials, reduced total power of the hippocampal EEG, and slowed the theta rhythm. In the hippocampal EEG, theta (4-8 Hz) and high gamma (75-150 Hz) activity displayed strong phase amplitude coupling that was reduced by VNS. Rapid-cycle VNS had a greater effect than standard-cycle VNS on all outcome measures. Using rapid cycle VNS, a maximal effect on EEG parameters was found at 300 μA, beyond which effects saturated. The findings suggest that rapid-cycle VNS produces a more robust outcome than standard cycle VNS and support already existing preclinical evidence that relatively low output currents are sufficient to produce changes in brain physiology and thus likely also therapeutic efficacy. PMID:27102987

  16. Rapid effects of deep brain stimulation reactivation on symptoms and neuroendocrine parameters in obsessive-compulsive disorder.

    PubMed

    de Koning, P P; Figee, M; Endert, E; van den Munckhof, P; Schuurman, P R; Storosum, J G; Denys, D; Fliers, E

    2016-01-01

    Improvement of obsessions and compulsions by deep brain stimulation (DBS) for obsessive-compulsive disorder (OCD) is often preceded by a rapid and transient mood elevation (hypomania). In a previous study we showed that improvement of mood by DBS for OCD is associated with a decreased activity of the hypothalamus-pituitary adrenal axis. The aim of our present study was to evaluate the time course of rapid clinical changes following DBS reactivation in more detail and to assess their association with additional neuroendocrine parameters. We included therapy-refractory OCD patients treated with DBS (>1 year) and performed a baseline assessment of symptoms, as well as plasma concentrations of thyroid-stimulating hormone (TSH), prolactin, growth hormone, copeptin and homovanillic acid. This was repeated after a 1-week DBS OFF condition. Next, we assessed the rapid effects of DBS reactivation by measuring psychiatric symptom changes using visual analog scales as well as repeated neuroendocrine measures after 30 min, 2 h and 6 h. OCD, anxiety and depressive symptoms markedly increased during the 1-week OFF condition and decreased again to a similar extent already 2 h after DBS reactivation. We found lower plasma prolactin (41% decrease, P=0.003) and TSH (39% decrease, P=0.003) levels during DBS OFF, which increased significantly already 30 min after DBS reactivation. The rapid and simultaneous increase in TSH and prolactin is likely to result from stimulation of hypothalamic thyrotropin-releasing hormone (TRH), which may underlie the commonly observed transient mood elevation following DBS. PMID:26812043

  17. Automated rapid iterative negative geotaxis assay and its use in a genetic screen for modifiers of Aβ(42)-induced locomotor decline in Drosophila.

    PubMed

    Liu, Haiyan; Han, Meng; Li, Qingyi; Zhang, Xiao; Wang, Wen-An; Huang, Fu-De

    2015-10-01

    The negative-geotaxis climbing assay is used to efficiently study aging and neurodegeneration in Drosophila. To make it suitable for large-scale study, a method called the rapid iterative negative geotaxis (RING) assay has been established by simultaneously photographing the climbing of multiple groups of flies when they are manually tapped down in test tubes. Here, we automated the assay by using a well-controlled electric motor to drive the tapping, and a homemade program to analyze the climbing height of flies. Using the automated RING (aRING) assay, we found that the climbing ability of a strain of wild-type flies, males in particular, declined rapidly before day 21 after eclosion, but slowly from day 21 to 35. We also found that the expression of arctic mutant Aβ42 accelerated the age-dependent decline in the climbing ability of flies. Moreover, using aRING, we examined the effect of third chromosome deficiencies on the accelerated locomotor decline in Aβ42-expressing flies, and isolated 7 suppressors and 15 enhancers. PMID:26077703

  18. A rapid solid-phase radioimmunoassay for human plasma follicle-stimulating hormone.

    PubMed

    Lovesey, A C

    1980-01-01

    The measurement of plasma levels of human follicle-stimulating hormone (FSH) has proved to be of value for the study of the hypothalamic-hypophyseal-gonadal axis, greatly facilitating the diagnosis and mangement of problems relating to the menopause and infertility. In the present work a solid-phase radioimmunoassay for human FSH has been developed. This system is characterised by high precision, is economical, and is considerably faster to operate than conventional double antibody systems used in the hospital assay service. Reference values for plasma FSH in various endocrine states are recorded and discussed. PMID:6769381

  19. Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes

    SciTech Connect

    Radogna, Flavia; Paternoster, Laura; De Nicola, Milena; Cerella, Claudia; Ammendola, Sergio; Bedini, Annalida; Tarzia, Giorgio; Aquilano, Katia; Ciriolo, Maria; Ghibelli, Lina

    2009-08-15

    Melatonin is a modified tryptophan with potent biological activity, exerted by stimulation of specific plasma membrane (MT1/MT2) receptors, by lower affinity intracellular enzymatic targets (quinone reductase, calmodulin), or through its strong anti-oxidant ability. Scattered studies also report a perplexing pro-oxidant activity, showing that melatonin is able to stimulate production of intracellular reactive oxygen species (ROS). Here we show that on U937 human monocytes melatonin promotes intracellular ROS in a fast (< 1 min) and transient (up to 5-6 h) way. Melatonin equally elicits its pro-radical effect on a set of normal or tumor leukocytes; intriguingly, ROS production does not lead to oxidative stress, as shown by absence of protein carbonylation, maintenance of free thiols, preservation of viability and regular proliferation rate. ROS production is independent from MT1/MT2 receptor interaction, since a) requires micromolar (as opposed to nanomolar) doses of melatonin; b) is not contrasted by the specific MT1/MT2 antagonist luzindole; c) is not mimicked by a set of MT1/MT2 high affinity melatonin analogues. Instead, chlorpromazine, the calmodulin inhibitor shown to prevent melatonin-calmodulin interaction, also prevents melatonin pro-radical effect, suggesting that the low affinity binding to calmodulin (in the micromolar range) may promote ROS production.

  20. Hepatitis B Virus and DNA Stimulation Trigger a Rapid Innate Immune Response through NF-κB.

    PubMed

    Yoneda, Masato; Hyun, Jinhee; Jakubski, Silvia; Saito, Satoru; Nakajima, Atsushi; Schiff, Eugene R; Thomas, Emmanuel

    2016-07-15

    Cell-intrinsic innate immunity provides a rapid first line of defense to thwart invading viral pathogens through the production of antiviral and inflammatory genes. However, the presence of many of these signaling pathways in the liver and their role in hepatitis B virus (HBV) pathogenesis is unknown. Recent identification of intracellular DNA-sensing pathways and involvement in numerous diverse disease processes including viral pathogenesis and carcinogenesis suggest a role for these processes in HBV infection. To characterize HBV-intrinsic innate immune responses and the role of DNA- and RNA-sensing pathways in the liver, we used in vivo and in vitro models including analysis of gene expression in liver biopsies from HBV-infected patients. In addition, mRNA and protein expression were measured in HBV-stimulated and DNA-treated hepatoma cell lines and primary human hepatocytes. In this article, we report that HBV and foreign DNA stimulation results in innate immune responses characterized by the production of inflammatory chemokines in hepatocytes. Analysis of liver biopsies from HBV-infected patients supported a correlation among hepatic expression of specific chemokines. In addition, HBV elicits a much broader range of gene expression alterations. The induction of chemokines, including CXCL10, is mediated by melanoma differentiation-associated gene 5 and NF-κB-dependent pathways after HBV stimulation. In conclusion, HBV-stimulated pathways predominantly activate an inflammatory response that would promote the development of hepatitis. Understanding the mechanism underlying these virus-host interactions may provide new strategies to trigger noncytopathic clearance of covalently closed circular DNA to ultimately cure patients with HBV infection. PMID:27288535

  1. Transient supplementation of anabolic growth factors rapidly stimulates matrix synthesis in engineered cartilage

    PubMed Central

    Ng, Kenneth W.; O’Conor, Christopher J.; Kugler, Lindsay E.; Cook, James L.; Ateshian, Gerard A.; Hung, Clark T.

    2012-01-01

    The purpose of the presented work is to examine the response of engineered cartilage to a transient, 2-week application of anabolic growth factors compared to continuous exposure in in vitro culture. Immature bovine chondrocytes were suspended in agarose hydrogel and cultured for 28 days (Study 1) or 42 days (Study 2) in chondrogenic media with TGF-β1, TGF-β3, or IGF-I either added for only the first 14 days in culture or added to the media for the entire study period. In both studies, there were no statistical differences in tissue mechanical or biochemical properties between the growth factors on day 14. In Study 1, growth factor removal led to a significant and drastic increase in Young’s modulus and GAG content compared to continuously exposed controls on day 28. In Study 2, both TGF-β1 and β3 led to significantly higher mechanical properties and collagen content versus IGF-I on day 42. These results indicate that the rapid rise in tissue properties (previously observed with TGF-β3 only) is not dependent on the type but rather the temporal application of the anabolic growth factor. These findings shed light on possible techniques to rapidly develop engineered cartilage tissue for the future treatment of osteoarthritis. PMID:21833681

  2. Rapid touch-stimulated movement in the androgynophore of Passiflora flowers (subgen. Decaloba; Sect. Xerogona)

    PubMed Central

    Scorza, Livia CT; Dornelas, Marcelo Carnier

    2014-01-01

    Plant touch-sensitive organs have been described since Darwin’s observations and are related to a quick response to environment stimuli. Sensitive flower organs have been associated to an increase in the chances of cross pollination but there are few studies regarding this topic. Here we describe for the first time the kinetic of the androgynophore movement of 4 Passiflora species (P. sanguinolenta, P. citrina, P. capsularis, and P. rubra). For that, we collected flowers and recorded the movement after mechano-stimulating the androgynophore. From the recordings, we described the movement regarding its response and sensibility to mechanical stimulus and calculated the duration, speed, and the angle formed by the androgynophore before and after the movement. From our data we were able to propose a link to the pollination habit of these species. The movement of the androgynophore in these Passiflora is a noteworthy floral feature that might lead us to another astonishing example of a mechanism that evolved among angiosperms to assure sexual reproduction. PMID:24487079

  3. Mega-prizes in medicine: big cash awards may stimulate useful and rapid therapeutic innovation.

    PubMed

    Charlton, Bruce G

    2007-01-01

    Following Horrobin's suggestion of 1986, I argue that offering very large prizes (tens of millions of US dollars, or more) for solving specific therapeutic problems, would be an excellent strategy for promoting the rapid development of effective new treatments. The two mainstream ways of paying for medical research are funding the process with grants or funding the outcome via patent protection. When grants are used to fund the process of research the result tends to be 'pure' science, guided by intrinsic scientific objectives. Practical results, such as useful therapeutic advances, are a by-product. Patent-seeking research, by contrast, is more focused on technology than science. It seeks practical results; and aims to pay for itself (and make a profit) in the long term by generating a patentable product or procedure. Prize-seeking research is subject to different incentives and applicable to different situations than either process-funded or patent-seeking research. Prize seeking researchers have a strong incentive to solve the specified problem as rapidly as possible, but the problem may be solved using old ideas that are scientifically mundane or unpatentable technologies and methods. Prizes therefore seem to generate solutions which are incremental extensions, new applications or novel combinations of already-existing technologies. The main use of mega-prizes in medicine would be to accelerate therapeutic progress in stagnant fields of research and to address urgent problems. For example, medical charities focused on specific diseases should consider accumulating their resources until they can offer a mega-prize for solving a clinical problem of special concern to their patients. Prize money should be big enough to pay for the research and development, the evaluation of the new treatment in a clinical trial, and with a large profit left-over to compensate for the intrinsic risk of competing. Sufficiently large amounts of money, and the prestige and publicity

  4. Rapid detection of a point mutation in thyroid-stimulating hormone beta-subunit gene causing congenital isolated thyroid-stimulating hormone deficiency.

    PubMed

    Mori, R; Sawai, T; Kinoshita, E; Baba, T; Matsumoto, T; Yoshimoto, M; Tsuji, Y; Satake, Y; Sawada, K

    1991-12-01

    Previous study showed that congenital isolated TSH deficiency in Japan is resulted exclusively from a G-A transition at nucleotide 145 in exon 2 of the TSH beta-subunit gene. All reported cases were from the inbred in Shikoku Island. We describe here a 10-year-old boy with hereditary TSH deficiency in the same area. The patient was born with a weight of 3,225 g to non-consanguineous parents. Evaluation at age 2 months revealed typical manifestations of cretinism without goiter. Serum T4, T3, and TSH values were 2.53 micrograms/dl, 107 ng/dl, and 0.5 microU/ml, respectively. A TRH stimulation test showed no increment of serum TSH value. Other anterior pituitary hormone levels were all within the normal range. Two oligonucleotide primers T1a and T1b were synthesized according to the sequence data. Amplified 169 bp nucleotides in exon 2 of the TSH beta gene with this primer set were digested with MaeI. Both the phenotypically normal brother and normal controls showed only the 169 bp fragment, whereas the proband showed 140 and 29 bp fragments and both parents showed three fragments; 169, 140, and 29 bp. These results were consistent with the point mutation of TSH beta gene in Japanese patients with congenital isolated TSH deficiency. Our PCR method with MaeI digestion contributes to the rapid detection of the homozygous patient and the heterozygous carrier. PMID:1811097

  5. The non-benzodiazepine anxiolytic drug etifoxine causes a rapid, receptor-independent stimulation of neurosteroid biosynthesis.

    PubMed

    do Rego, Jean Luc; Vaudry, David; Vaudry, Hubert

    2015-01-01

    Neurosteroids can modulate the activity of the GABAA receptors, and thus affect anxiety-like behaviors. The non-benzodiazepine anxiolytic compound etifoxine has been shown to increase neurosteroid concentrations in brain tissue but the mode of action of etifoxine on neurosteroid formation has not yet been elucidated. In the present study, we have thus investigated the effect and the mechanism of action of etifoxine on neurosteroid biosynthesis using the frog hypothalamus as an experimental model. Exposure of frog hypothalamic explants to graded concentrations of etifoxine produced a dose-dependent increase in the biosynthesis of 17-hydroxypregnenolone, dehydroepiandrosterone, progesterone and tetrahydroprogesterone, associated with a decrease in the production of dihydroprogesterone. Time-course experiments revealed that a 15-min incubation of hypothalamic explants with etifoxine was sufficient to induce a robust increase in neurosteroid synthesis, suggesting that etifoxine activates steroidogenic enzymes at a post-translational level. Etifoxine-evoked neurosteroid biosynthesis was not affected by the central-type benzodiazepine (CBR) receptor antagonist flumazenil, the translocator protein (TSPO) antagonist PK11195 or the GABAA receptor antagonist bicuculline. In addition, the stimulatory effects of etifoxine and the triakontatetraneuropeptide TTN, a TSPO agonist, were additive, indicating that these two compounds act through distinct mechanisms. Etifoxine also induced a rapid stimulation of neurosteroid biosynthesis from frog hypothalamus homogenates, a preparation in which membrane receptor signalling is disrupted. In conclusion, the present study demonstrates that etifoxine stimulates neurosteroid production through a membrane receptor-independent mechanism. PMID:25785994

  6. The Non-Benzodiazepine Anxiolytic Drug Etifoxine Causes a Rapid, Receptor-Independent Stimulation of Neurosteroid Biosynthesis

    PubMed Central

    do Rego, Jean Luc; Vaudry, David; Vaudry, Hubert

    2015-01-01

    Neurosteroids can modulate the activity of the GABAA receptors, and thus affect anxiety-like behaviors. The non-benzodiazepine anxiolytic compound etifoxine has been shown to increase neurosteroid concentrations in brain tissue but the mode of action of etifoxine on neurosteroid formation has not yet been elucidated. In the present study, we have thus investigated the effect and the mechanism of action of etifoxine on neurosteroid biosynthesis using the frog hypothalamus as an experimental model. Exposure of frog hypothalamic explants to graded concentrations of etifoxine produced a dose-dependent increase in the biosynthesis of 17-hydroxypregnenolone, dehydroepiandrosterone, progesterone and tetrahydroprogesterone, associated with a decrease in the production of dihydroprogesterone. Time-course experiments revealed that a 15-min incubation of hypothalamic explants with etifoxine was sufficient to induce a robust increase in neurosteroid synthesis, suggesting that etifoxine activates steroidogenic enzymes at a post-translational level. Etifoxine-evoked neurosteroid biosynthesis was not affected by the central-type benzodiazepine (CBR) receptor antagonist flumazenil, the translocator protein (TSPO) antagonist PK11195 or the GABAA receptor antagonist bicuculline. In addition, the stimulatory effects of etifoxine and the triakontatetraneuropeptide TTN, a TSPO agonist, were additive, indicating that these two compounds act through distinct mechanisms. Etifoxine also induced a rapid stimulation of neurosteroid biosynthesis from frog hypothalamus homogenates, a preparation in which membrane receptor signalling is disrupted. In conclusion, the present study demonstrates that etifoxine stimulates neurosteroid production through a membrane receptor-independent mechanism. PMID:25785994

  7. ITER's woes

    NASA Astrophysics Data System (ADS)

    jjeherrera; Duffield, John; ZoloftNotWorking; esromac; protogonus; mleconte; cmfluteguy; adivita

    2014-07-01

    In reply to the physicsworld.com news story “US sanctions on Russia hit ITER council” (20 May, http://ow.ly/xF7oc and also June p8), about how a meeting of the fusion experiment's council had to be moved from St Petersburg and the US Congress's call for ITER boss Osamu Motojima to step down.

  8. Flash-and-Freeze: Coordinating Optogenetic Stimulation with Rapid Freezing to Visualize Membrane Dynamics at Synapses with Millisecond Resolution.

    PubMed

    Watanabe, Shigeki

    2016-01-01

    Electron microscopy depicts subcellular structures at synapses exquisitely but only captures static images. To visualize membrane dynamics, we have developed a novel technique, called flash-and-freeze, which induces neuronal activity with a flash of light and captures the membrane dynamics by rapid freezing. For characterizing membrane movements during synaptic transmission, a light-sensitive cation channel, channelrhodopsin, is heterologously expressed in mouse hippocampal neurons or in Caenorhabditis elegans motor neurons. A brief pulse of blue light activates channelrhodopsin and induces an action potential, leading to synaptic transmission. Following the light stimulation, neurons are frozen at different time intervals ranging from 10 ms to 20 s. Electron micrographs are then acquired from each time point to visualize the morphological changes. Using this approach, we have characterized a novel form of endocytosis, ultrafast endocytosis, which rapidly removes excess membrane added to the surface during neurotransmission. The flash-and-freeze approach can be adapted to study other cellular phenomena that can be induced by light-sensitive genetic or pharmacological tools. PMID:27594835

  9. Flash-and-Freeze: Coordinating Optogenetic Stimulation with Rapid Freezing to Visualize Membrane Dynamics at Synapses with Millisecond Resolution

    PubMed Central

    Watanabe, Shigeki

    2016-01-01

    Electron microscopy depicts subcellular structures at synapses exquisitely but only captures static images. To visualize membrane dynamics, we have developed a novel technique, called flash-and-freeze, which induces neuronal activity with a flash of light and captures the membrane dynamics by rapid freezing. For characterizing membrane movements during synaptic transmission, a light-sensitive cation channel, channelrhodopsin, is heterologously expressed in mouse hippocampal neurons or in Caenorhabditis elegans motor neurons. A brief pulse of blue light activates channelrhodopsin and induces an action potential, leading to synaptic transmission. Following the light stimulation, neurons are frozen at different time intervals ranging from 10 ms to 20 s. Electron micrographs are then acquired from each time point to visualize the morphological changes. Using this approach, we have characterized a novel form of endocytosis, ultrafast endocytosis, which rapidly removes excess membrane added to the surface during neurotransmission. The flash-and-freeze approach can be adapted to study other cellular phenomena that can be induced by light-sensitive genetic or pharmacological tools. PMID:27594835

  10. Robust iterative methods

    SciTech Connect

    Saadd, Y.

    1994-12-31

    In spite of the tremendous progress achieved in recent years in the general area of iterative solution techniques, there are still a few obstacles to the acceptance of iterative methods in a number of applications. These applications give rise to very indefinite or highly ill-conditioned non Hermitian matrices. Trying to solve these systems with the simple-minded standard preconditioned Krylov subspace methods can be a frustrating experience. With the mathematical and physical models becoming more sophisticated, the typical linear systems which we encounter today are far more difficult to solve than those of just a few years ago. This trend is likely to accentuate. This workshop will discuss (1) these applications and the types of problems that they give rise to; and (2) recent progress in solving these problems with iterative methods. The workshop will end with a hopefully stimulating panel discussion with the speakers.

  11. Vagal Nerve Stimulation Rapidly Activates Brain-Derived Neurotrophic Factor Receptor TrkB in Rat Brain

    PubMed Central

    Frazer, Alan

    2012-01-01

    Background Vagal nerve stimulation (VNS) has been approved for treatment-resistant depression. Many antidepressants increase expression of brain-derived neurotrophic factor (BDNF) in brain or activate, via phosphorylation, its receptor, TrkB. There have been no studies yet of whether VNS would also cause phosphorylation of TrkB. Methods Western blot analysis was used to evaluate the phosphorylation status of TrkB in the hippocampus of rats administered VNS either acutely or chronically. Acute effects of VNS were compared with those caused by fluoxetine or desipramine (DMI) whereas its chronic effects were compared with those of sertraline or DMI. Results All treatments, given either acutely or chronically, significantly elevated phosphorylation of tyrosines 705 and 816 on TrkB in the hippocampus. However, only VNS increased the phosphorylation of tyrosine 515, with both acute and chronic administration causing this effect. Pretreatment with K252a, a nonspecific tyrosine kinase inhibitor, blocked the phosphorylation caused by acute VNS at all three tyrosines. Downstream effectors of Y515, namely Akt and ERK, were also phosphorylated after acute treatment with VNS, whereas DMI did not cause this effect. Conclusion VNS rapidly activates TrkB phosphorylation and this effect persists over time. VNS-induced phosphorylation of tyrosine 515 is distinct from the effect of standard antidepressant drugs. PMID:22563458

  12. A rapid filtering and reconstruction method of two-dimensional image velocimetry signals using a non-iterative POD-method

    NASA Astrophysics Data System (ADS)

    Higham, Jonathan; Brevis, Wernher; Keylock, Christopher

    2015-11-01

    A method is presented, based on Proper Orthogonal Decomposition (POD), for the detection and estimation of outliers in two-dimensional signals. In experimental fluid mechanics, for a number of reasons, two dimensional data obtained using techniques such as Particle Image Velocimetry often contain outliers. The proposed methodology is based on the assumption that statistically significant outliers can be identified as abnormalities in the evolution of the temporal POD coefficients and as changes to the eigenvalues. Unlike previous methods, the estimation technique in the current method is non-iterative. It is instead dependent on a correction of a parameter introduced to search for abnormal, outlier induced magnitudes in the modal decomposition. The method is benchmarked by synthetically simulating outliers applied to two data sets: One data set is obtained experimentally using Particle Image Velocimetry; the other is based on a numerical simulation. The results demonstrate that the proposed approach is able to identify the outliers reliably and correct them with acceptable accuracy.

  13. Phosphorylation of rat kidney Na-K pump at Ser938 is required for rapid angiotensin II-dependent stimulation of activity and trafficking in proximal tubule cells.

    PubMed

    Massey, Katherine J; Li, Quanwen; Rossi, Noreen F; Keezer, Susan M; Mattingly, Raymond R; Yingst, Douglas R

    2016-02-01

    How angiotensin (ANG) II acutely stimulates the Na-K pump in proximal tubules is only partially understood, limiting insight into how ANG II increases blood pressure. First, we tested whether ANG II increases the number of pumps in plasma membranes of native rat proximal tubules under conditions of rapid activation. We found that exposure to 100 pM ANG II for 2 min, which was previously shown to increase affinity of the Na-K pump for Na and stimulate activity threefold, increased the amount of the Na-K pump in plasma membranes of native tubules by 33%. Second, we tested whether previously observed increases in phosphorylation of the Na-K pump at Ser(938) were part of the stimulatory mechanism. These experiments were carried out in opossum kidney cells, cultured proximal tubules stably coexpressing the ANG type 1 (AT1) receptor, and either wild-type or a S938A mutant of rat kidney Na-K pump under conditions found by others to stimulate activity. We found that 10 min of incubation in 10 pM ANG II stimulated activity of wild-type pumps from 2.3 to 3.5 nmol K · mg protein(-1) · min(-1) and increased the amount of the pump in the plasma membrane by 80% but had no effect on cells expressing the S938A mutant. We conclude that acute stimulation of Na-K pump activity in native rat proximal tubules includes increased trafficking to the plasma membrane and that phosphorylation at Ser(938) is part of the mechanism by which ANG II directly stimulates activity and trafficking of the rat kidney Na-K pump in opossum kidney cells. PMID:26582472

  14. A Low-Cost Multielectrode System for Data Acquisition Enabling Real-Time Closed-Loop Processing with Rapid Recovery from Stimulation Artifacts

    PubMed Central

    Rolston, John D.; Gross, Robert E.; Potter, Steve M.

    2009-01-01

    Commercially available data acquisition systems for multielectrode recording from freely moving animals are expensive, often rely on proprietary software, and do not provide detailed, modifiable circuit schematics. When used in conjunction with electrical stimulation, they are prone to prolonged, saturating stimulation artifacts that prevent the recording of short-latency evoked responses. Yet electrical stimulation is integral to many experimental designs, and critical for emerging brain-computer interfacing and neuroprosthetic applications. To address these issues, we developed an easy-to-use, modifiable, and inexpensive system for multielectrode neural recording and stimulation. Setup costs are less than US$10,000 for 64 channels, an order of magnitude lower than comparable commercial systems. Unlike commercial equipment, the system recovers rapidly from stimulation and allows short-latency action potentials (<1 ms post-stimulus) to be detected, facilitating closed-loop applications and exposing neural activity that would otherwise remain hidden. To illustrate this capability, evoked activity from microstimulation of the rodent hippocampus is presented. System noise levels are similar to existing platforms, and extracellular action potentials and local field potentials can be recorded simultaneously. The system is modular, in banks of 16 channels, and flexible in usage: while primarily designed for in vivo use, it can be combined with commercial preamplifiers to record from in vitro multielectrode arrays. The system's open-source control software, NeuroRighter, is implemented in C#, with an easy-to-use graphical interface. As C# functions in a managed code environment, which may impact performance, analysis was conducted to ensure comparable speed to C++ for this application. Hardware schematics, layout files, and software are freely available. Since maintaining wired headstage connections with freely moving animals is difficult, we describe a new method of

  15. ITER on the road to fusion energy

    NASA Astrophysics Data System (ADS)

    Ikeda, Kaname

    2010-01-01

    On 21 November 2006, the government representatives of China, the European Union, India, Japan, Korea, Russia and the United States firmly committed to building the International Thermonuclear Experimental Reactor (ITER) [1] by signing the ITER Agreement. The ITER Organization, which was formally established on 24 October 2007 after ratification of the ITER Agreement in each Member country, is the outcome of a two-decade-long collaborative effort aimed at demonstrating the scientific and technical feasibility of fusion energy. Each ITER partner has established a Domestic Agency (DA) for the construction of ITER, and the ITER Organization, based in Cadarache, in Southern France, is growing at a steady pace. The total number of staff reached 398 people from more than 20 nations by the end of September 2009. ITER will be built largely (90%) through in-kind contribution by the seven Members. On site, the levelling of the 40 ha platform has been completed. The roadworks necessary for delivering the ITER components from Fos harbour, close to Marseille, to the site are in the final stage of completion. With the aim of obtaining First Plasma in 2018, a new reference schedule has been developed by the ITER Organization and the DAs. Rapid attainment of the ITER goals is critical to accelerate fusion development—a crucial issue today in a world of increasing competition for scarce resources.

  16. Detection of Delta9-tetrahydrocannabinol and amphetamine-type stimulants in oral fluid using the Rapid Stat point-of-collection drug-testing device.

    PubMed

    Röhrich, J; Zörntlein, S; Becker, J; Urban, R

    2010-04-01

    The Rapid Stat assay, a point-of-collection drug-testing device for detection of amphetamines, cannabinoids, cocaine, opiates, methadone, and benzodiazepines in oral fluid, was evaluated for cannabis and amphetamine-type stimulants. The Rapid Stat tests (n = 134) were applied by police officers in routine traffic checks. Oral fluid and blood samples were analyzed using gas chromatography-mass spectrometry (GC-MS) for Delta(9)-tetrahydrocannabinol, amphetamine, methamphetamine, methylenedioxymethamphetamine, methylenedioxyethylamphetamine, and methylenedioxyamphetamine. The comparison of GC-MS analysis of oral fluid with the Rapid Stat results for cannabis showed a sensitivity of 85%, a specificity of 87%, and a total confirmation rate of 87%. When compared with serum, the sensitivity of the cannabis assay decreased to 71%, the specificity to 60%, and the total confirmation rate to 66%. These findings were possibly caused by an incorrect reading of the THC test results. Comparison of the Rapid Stat amphetamine assay with GC-MS in oral fluid showed a sensitivity of 94%, a specificity of 97%, and a total confirmation rate of 97%. Compared with serum, a sensitivity of 100%, a specificity of 90%, and a total confirmation rate of 92% was found. The amphetamine assay must, therefore, be regarded as satisfactory. PMID:20406540

  17. Type 2 Iodothyronine Deiodinase Activity Is Required for Rapid Stimulation of PI3K by Thyroxine in Human Umbilical Vein Endothelial Cells

    PubMed Central

    Aoki, Tomoyuki; Tsunekawa, Katsuhiko; Araki, Osamu; Ogiwara, Takayuki; Nara, Makoto; Sumino, Hiroyuki; Kimura, Takao

    2015-01-01

    Thyroid hormones (THs) exert a number of physiological effects on the cardiovascular system. Some of the nongenomic actions of T3 are achieved by cross coupling the TH receptor (TR) with the phosphatidylinositol 3-kinase (PI3K)/protein kinase Akt (Akt) pathway. We observed that both T3 and T4 rapidly stimulated Akt phosphorylation and Ras-related C3 botulinum toxin substrate 1 (Rac1) activation, which resulted in cell migration, in a PI3K-dependent manner in human umbilical vein endothelial cells (HUVECs). We identified the expression of type 2 iodothyronine deiodinase (D2), which converts T4 to T3, and TRα1 in HUVECs. D2 activity was significantly stimulated by (Bu)2cAMP in HUVECs. The blockade of D2 activity through transfection of small interfering RNA (siRNA) specific to D2 as well as by addition of iopanoic acid, a potent D2 inhibitor, abolished Akt phosphorylation, Rac activation, and cell migration induced by T4 but not by T3. The inhibition of TRα1 expression by the transfection of siRNA for TRα1 canceled Akt phosphorylation, Rac activation, and cell migration induced by T3 and T4. These findings suggest that conversion of T4 to T3 by D2 is required for TRα1/PI3K-mediated nongenomic actions of T4 in HUVECs, including stimulation of Akt phosphorylation and Rac activation, which result in cell migration. PMID:26284425

  18. Rapid breakdown of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in rat hepatocytes stimulated by vasopressin and other Ca2+-mobilizing hormones.

    PubMed Central

    Creba, J A; Downes, C P; Hawkins, P T; Brewster, G; Michell, R H; Kirk, C J

    1983-01-01

    Rat hepatocytes rapidly incorporate [32P]Pi into phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]; their monoester phosphate groups approach isotopic equilibrium with the cellular precursor pools within 1 h. Upon stimulation of these prelabelled cells with Ca2+-mobilizing stimuli (V1-vasopressin, angiotensin, alpha 1-adrenergic, ATP) there is a rapid fall in the labelling of PtdIns4P and PtdIns(4,5)P2. Pharmacological studies suggest that each of the four stimuli acts at a different population of receptors. Insulin, glucagon and prolactin do not provoke disappearance of labelled PtdIns4P and PtdIns(4,5)P2. The labelling of PtdIns4P and PtdIns(4,5)P2 in cells stimulated with vasopressin or angiotensin initially declines at a rate of 0.5-1.0% per s, reaches a minimum after 1-2 min and then returns towards the initial value. The dose-response curves for the vasopressin- and angiotensin-stimulated responses lie close to the respective receptor occupation curves, rather than at the lower hormone concentrations needed to evoke activation of glycogen phosphorylase. Disappearance of labelled PtdIns4P and PtdIns(4,5)P2 is not observed when cells are incubated with the ionophore A23187. The hormone-stimulated polyphosphoinositide disappearance is reduced, but not abolished, in Ca2+-depleted cells. These hormonal effects are not modified by 8-bromo cyclic GMP, cycloheximide or delta-hexachlorocyclohexane. The absolute rate of polyphosphoinositide breakdown in stimulated cells is similar to the rate previously reported for the disappearance of phosphatidylinositol [Kirk, Michell & Hems (1981) Biochem. J. 194, 155-165]. It seems likely that these changes in polyphosphoinositide labelling are caused by hormonal activation of the breakdown of PtdIns(4,5)P2 (and may be also PtdIns4P) by the action of a polyphosphoinositide phosphodiesterase. We therefore suggest that the initial response to hormones is breakdown of PtdIns(4,5)P2

  19. The ITER project construction status

    NASA Astrophysics Data System (ADS)

    Motojima, O.

    2015-10-01

    The pace of the ITER project in St Paul-lez-Durance, France is accelerating rapidly into its peak construction phase. With the completion of the B2 slab in August 2014, which will support about 400 000 metric tons of the tokamak complex structures and components, the construction is advancing on a daily basis. Magnet, vacuum vessel, cryostat, thermal shield, first wall and divertor structures are under construction or in prototype phase in the ITER member states of China, Europe, India, Japan, Korea, Russia, and the United States. Each of these member states has its own domestic agency (DA) to manage their procurements of components for ITER. Plant systems engineering is being transformed to fully integrate the tokamak and its auxiliary systems in preparation for the assembly and operations phase. CODAC, diagnostics, and the three main heating and current drive systems are also progressing, including the construction of the neutral beam test facility building in Padua, Italy. The conceptual design of the Chinese test blanket module system for ITER has been completed and those of the EU are well under way. Significant progress has been made addressing several outstanding physics issues including disruption load characterization, prediction, avoidance, and mitigation, first wall and divertor shaping, edge pedestal and SOL plasma stability, fuelling and plasma behaviour during confinement transients and W impurity transport. Further development of the ITER Research Plan has included a definition of the required plant configuration for 1st plasma and subsequent phases of ITER operation as well as the major plasma commissioning activities and the needs of the accompanying R&D program to ITER construction by the ITER parties.

  20. The septal area, site for the central regulation of penile erection during waking and rapid eye movement sleep in rats: a stimulation study.

    PubMed

    Gulia, K K; Jodo, E; Kawauchi, A; Miki, T; Kayama, Y; Mallick, H N; Koyama, Y

    2008-10-28

    The effects of electrical stimulation to the septum on penile erections in rats were examined to clarify the mechanisms for regulation of erectile responses during different states of vigilance. Penile responses were assessed by changes in pressure in the corpus spongiosum of penis (CSP) and electromyography (EMG) of the bulbospongiosus (BS) muscle. In anesthetized and un-anesthetized rats, stimulation in and around the septum induced three erectile patterns; 1) a Normal type response, which was indistinguishable from a spontaneous erection, characterized by a slow increase in CSP pressure with sharp CSP pressure peaks associated with BS muscle bursts, 2) Mixed type response, in which high frequency CSP pressure peaks were followed by a Normal type response, and 3) a Prolonged type response, evoked only in the anesthetized rat, consisting of a single sharp CSP peak followed by a slow increase in CSP pressure and a return to baseline with multiple subsequent events repeated for up to 960 s. In addition, a Micturition type response was also observed involving high frequency CSP pressure oscillations similar to the pressure pattern seen during spontaneous micturition. We found that erections were induced after stimulation to the lateral septum (LS), but not from the medial septum (MS). In anesthetized rats, a few responses were also obtained following stimulation of the horizontal limb of diagonal band (HDB). In un-anesthetized rats, responses were also induced from the HDB and the ventral limb of diagonal band (VDB) and the adjoining areas. The effective sites for eliciting erection during rapid eye movement (REM) sleep were located in the dorsal and intermediate parts of the LS, whereas the ventral part of the LS was the most effective site for eliciting erections during wakefulness. These results suggest a functional role for penile erection in the septum, and further suggest that subdivisions of the LS may have different roles in the regulation of penile erection

  1. US ITER Moving Forward

    ScienceCinema

    US ITER / ORNL

    2012-03-16

    US ITER Project Manager Ned Sauthoff, joined by Wayne Reiersen, Team Leader Magnet Systems, and Jan Berry, Team Leader Tokamak Cooling System, discuss the U.S.'s role in the ITER international collaboration.

  2. Nitric Oxide Synthase 1 Modulates Basal and β-Adrenergic-Stimulated Contractility by Rapid and Reversible Redox-Dependent S-Nitrosylation of the Heart

    PubMed Central

    Vielma, Alejandra Z.; León, Luisa; Fernández, Ignacio C.; González, Daniel R.

    2016-01-01

    S-nitrosylation of several Ca2+ regulating proteins in response to β-adrenergic stimulation was recently described in the heart; however the specific nitric oxide synthase (NOS) isoform and signaling pathways responsible for this modification have not been elucidated. NOS-1 activity increases inotropism, therefore, we tested whether β-adrenergic stimulation induces NOS-1-dependent S-nitrosylation of total proteins, the ryanodine receptor (RyR2), SERCA2 and the L-Type Ca2+ channel (LTCC). In the isolated rat heart, isoproterenol (10 nM, 3-min) increased S-nitrosylation of total cardiac proteins (+46±14%) and RyR2 (+146±77%), without affecting S-nitrosylation of SERCA2 and LTCC. Selective NOS-1 blockade with S-methyl-L-thiocitrulline (SMTC) and Nω-propyl-l-arginine decreased basal contractility and relaxation (−25–30%) and basal S-nitrosylation of total proteins (−25–60%), RyR2, SERCA2 and LTCC (−60–75%). NOS-1 inhibition reduced (−25–40%) the inotropic response and protein S-nitrosylation induced by isoproterenol, particularly that of RyR2 (−85±7%). Tempol, a superoxide scavenger, mimicked the effects of NOS-1 inhibition on inotropism and protein S-nitrosylation; whereas selective NOS-3 inhibitor L-N5-(1-Iminoethyl)ornithine had no effect. Inhibition of NOS-1 did not affect phospholamban phosphorylation, but reduced its oligomerization. Attenuation of contractility was abolished by PKA blockade and unaffected by guanylate cyclase inhibition. Additionally, in isolated mouse cardiomyocytes, NOS-1 inhibition or removal reduced the Ca2+-transient amplitude and sarcomere shortening induced by isoproterenol or by direct PKA activation. We conclude that 1) normal cardiac performance requires basal NOS-1 activity and S-nitrosylation of the calcium-cycling machinery; 2) β-adrenergic stimulation induces rapid and reversible NOS-1 dependent, PKA and ROS-dependent, S-nitrosylation of RyR2 and other proteins, accounting for about one third of its

  3. Human Schwann-like cells derived from adipose-derived mesenchymal stem cells rapidly de-differentiate in the absence of stimulating medium.

    PubMed

    Faroni, Alessandro; Smith, Richard J P; Lu, Li; Reid, Adam J

    2016-02-01

    Finding a viable cell-based therapy to address peripheral nerve injury holds promise for enhancing the currently suboptimal microsurgical approaches to peripheral nerve repair. Autologous nerve grafting is the current gold standard for surgical repair of nerve gaps; however, this causes donor nerve morbidity in the patient, and the results remain unsatisfactory. Transplanting autologous Schwann cells (SCs) results in similar morbidity, as well as limited cell numbers and restricted potential for expansion in vitro. Adipose-derived stem cells (ASCs), 'differentiated' towards an SC-like phenotype in vitro (dASCs), have been presented as an alternative to SC therapies. The differentiation protocol stimulates ASCs to mimic the SC phenotype; however, the efficacy of dASCs in nerve repair is not yet convincing, and the practicality of the SC-like phenotype is unproven. Here, we examined the stability of dASCs by withdrawing differentiation medium for 72 h after the full 18-day differentiation protocol, and measuring changes in morphology, gene expression, and protein levels. Withdrawal of differentiation medium from dASCs resulted in a rapid reversion to stem cell-like characteristics. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay analyses demonstrated a significant reduction in gene and protein expression of growth factors that were expressed at high levels following 'differentiation'. Therefore, we question the relevance of differentiation to an SC-like phenotype, as withdrawal of differentiation medium, a model of transplantation into an injured nerve, results in rapid reversion of the dASC phenotype to stem cell-like characteristics. Further investigation into the differentiation process and the response of dASCs to an injured environment must be undertaken prior to the use of dASCs in peripheral nerve repair therapies. PMID:26309136

  4. Unanticipated Rapid Remission of Refractory Bulimia Nervosa, during High-Dose Repetitive Transcranial Magnetic Stimulation of the Dorsomedial Prefrontal Cortex: A Case Report

    PubMed Central

    Downar, Jonathan; Sankar, Ashwin; Giacobbe, Peter; Woodside, Blake; Colton, Patricia

    2012-01-01

    A woman with severe, refractory bulimia nervosa (BN) underwent treatment for comorbid depression using repetitive transcranial magnetic stimulation (rTMS) of the dorsomedial prefrontal cortex (DMPFC) using a novel technique. Unexpectedly, she showed a rapid, dramatic remission from BN. For 5 months pre-treatment, she had reported two 5-h binge-purge episodes per day. After rTMS session 2 the episodes stopped entirely for 1 week; after session 10 there were no further recurrences. Depression scores improved more gradually to remission at session 10. Full remission from depression and binge-eating/purging episodes was sustained more than 2 months after treatment completion. In neuroimaging studies, the DMPFC is important in impulse control, and is underactive in BN. DMPFC–rTMS may have enhanced the patient’s ability to deploy previously acquired strategies to avoid binge-eating and purging via a reduction in her impulsivity. A larger sham-controlled trial of DMPFC–rTMS for binge-eating and purging behavior may be warranted. PMID:22529822

  5. ITER EDA project status

    NASA Astrophysics Data System (ADS)

    Chuyanov, V. A.

    1996-10-01

    The status of the ITER design is as presented in the Interim Design Report accepted by the ITER council for considerations by ITER parties. Physical and technical parameters of the machine, conditions of operation of main nuclear systems, corresponding design and material choices are described, with conventional materials selected. To fully utilize the safety and economical potential of fusion advanced materials are necessary. ITER shall and can be built with materials already available. The ITER project and advanced fusion material developments can proceed in parallel. The role of ITER is to establish (experimentally) requirements to these materials and to provide a test bed for their final qualification in fusion reactor environment. To achieve this goal, the first wall/blanket modules test program is foreseen.

  6. Dehydroepiandrosterone Activation of G-protein-coupled Estrogen Receptor Rapidly Stimulates MicroRNA-21 Transcription in Human Hepatocellular Carcinoma Cells.

    PubMed

    Teng, Yun; Radde, Brandie N; Litchfield, Lacey M; Ivanova, Margarita M; Prough, Russell A; Clark, Barbara J; Doll, Mark A; Hein, David W; Klinge, Carolyn M

    2015-06-19

    Little is known about the regulation of the oncomiR miR-21 in liver. Dehydroepiandrosterone (DHEA) regulates gene expression as a ligand for a G-protein-coupled receptor and as a precursor for steroids that activate nuclear receptor signaling. We report that 10 nm DHEA increases primary miR-21 (pri-miR-21) transcription and mature miR-21 expression in HepG2 cells in a biphasic manner with an initial peak at 1 h followed by a second, sustained response from 3-12 h. DHEA also increased miR-21 in primary human hepatocytes and Hep3B cells. siRNA, antibody, and inhibitor studies suggest that the rapid DHEA-mediated increase in miR-21 involves a G-protein-coupled estrogen receptor (GPER/GPR30), estrogen receptor α-36 (ERα36), epidermal growth factor receptor-dependent, pertussis toxin-sensitive pathway requiring activation of c-Src, ERK1/2, and PI3K. GPER antagonist G-15 attenuated DHEA- and BSA-conjugated DHEA-stimulated pri-miR-21 transcription. Like DHEA, GPER agonists G-1 and fulvestrant increased pri-miR-21 in a GPER- and ERα36-dependent manner. DHEA, like G-1, increased GPER and ERα36 mRNA and protein levels. DHEA increased ERK1/2 and c-Src phosphorylation in a GPER-responsive manner. DHEA increased c-Jun, but not c-Fos, protein expression after 2 h. DHEA increased androgen receptor, c-Fos, and c-Jun recruitment to the miR-21 promoter. These results suggest that physiological concentrations of DHEA activate a GPER intracellular signaling cascade that increases pri-miR-21 transcription mediated at least in part by AP-1 and androgen receptor miR-21 promoter interaction. PMID:25969534

  7. Slow oscillating transcranial direct current stimulation during non-rapid eye movement sleep improves behavioral inhibition in attention-deficit/hyperactivity disorder

    PubMed Central

    Munz, Manuel T.; Prehn-Kristensen, Alexander; Thielking, Frederieke; Mölle, Matthias; Göder, Robert; Baving, Lioba

    2015-01-01

    Background: Behavioral inhibition, which is a later-developing executive function (EF) and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD). While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM) slow-wave sleep. Recently, slow oscillations (SO) during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. Objective:By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz) during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Methods: Fourteen boys (10–14 years) diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. Results: SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness, and motor memory performance were not improved by so-tDCS. Conclusion: Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD. PMID:26321911

  8. Development and test of the ITER conductor joints

    SciTech Connect

    Martovetsky, N., LLNL

    1998-05-14

    Joints for the ITER superconducting Central Solenoid should perform in rapidly varying magnetic field with low losses and low DC resistance. This paper describes the design of the ITER joint and presents its assembly process. Two joints were built and tested at the PTF facility at MIT. Test results are presented, losses in transverse and parallel field and the DC performance are discussed. The developed joint demonstrates sufficient margin for baseline ITER operating scenarios.

  9. Preconditioned Iterative Solver

    Energy Science and Technology Software Center (ESTSC)

    2002-08-01

    AztecOO contains a collection of preconditioned iterative methods for the solution of sparse linear systems of equations. In addition to providing many of the common algebraic preconditioners and basic iterative methods, AztecOO can be easily extended to interact with user-provided preconditioners and matrix operators.

  10. Iteration, Not Induction

    ERIC Educational Resources Information Center

    Dobbs, David E.

    2009-01-01

    The main purpose of this note is to present and justify proof via iteration as an intuitive, creative and empowering method that is often available and preferable as an alternative to proofs via either mathematical induction or the well-ordering principle. The method of iteration depends only on the fact that any strictly decreasing sequence of…

  11. Perl Modules for Constructing Iterators

    NASA Technical Reports Server (NTRS)

    Tilmes, Curt

    2009-01-01

    The Iterator Perl Module provides a general-purpose framework for constructing iterator objects within Perl, and a standard API for interacting with those objects. Iterators are an object-oriented design pattern where a description of a series of values is used in a constructor. Subsequent queries can request values in that series. These Perl modules build on the standard Iterator framework and provide iterators for some other types of values. Iterator::DateTime constructs iterators from DateTime objects or Date::Parse descriptions and ICal/RFC 2445 style re-currence descriptions. It supports a variety of input parameters, including a start to the sequence, an end to the sequence, an Ical/RFC 2445 recurrence describing the frequency of the values in the series, and a format description that can refine the presentation manner of the DateTime. Iterator::String constructs iterators from string representations. This module is useful in contexts where the API consists of supplying a string and getting back an iterator where the specific iteration desired is opaque to the caller. It is of particular value to the Iterator::Hash module which provides nested iterations. Iterator::Hash constructs iterators from Perl hashes that can include multiple iterators. The constructed iterators will return all the permutations of the iterations of the hash by nested iteration of embedded iterators. A hash simply includes a set of keys mapped to values. It is a very common data structure used throughout Perl programming. The Iterator:: Hash module allows a hash to include strings defining iterators (parsed and dispatched with Iterator::String) that are used to construct an overall series of hash values.

  12. ITER nominates next leader

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2015-01-01

    Bernard Bigot, chair of France’s Alternative Energies and Atomic Energy Commission (CEA), has been chosen as the next director-general of ITER - the experimental fusion reactor currently being built in Cadarache, France.

  13. ITER convertible blanket evaluation

    SciTech Connect

    Wong, C.P.C.; Cheng, E.

    1995-09-01

    Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate.

  14. ITER tokamak device

    NASA Astrophysics Data System (ADS)

    Doggett, J.; Salpietro, E.; Shatalov, G.

    1991-07-01

    The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER, a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fueling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (1) magnet systems (toroidal and poloidal field coils and cryogenic systems), (2) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (3) first wall, (4) divertor plate (design and materials, performance and lifetime, a.o.), (5) blanket/shield system, (6) maintenance equipment, (7) current drive and heating, (8) fuel cycle system, and (9) diagnostics.

  15. Rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, produce modified schedules, quickly, and exhibits 'anytime' behavior. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. We also show the anytime characteristics of the system. These experiments were performed within the domain of Space Shuttle ground processing.

  16. Rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, and produce modified schedules quickly. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. These experiments were performed within the domain of Space Shuttle ground processing.

  17. Iterated multidimensional wave conversion

    NASA Astrophysics Data System (ADS)

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-12-01

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

  18. Rapid antidepressants stimulate the decoupling of GABAB receptors from GIRK/Kir3 channels through increased protein stability of 14-3-3η

    PubMed Central

    Workman, E R; Haddick, P C G; Bush, K; Dilly, G A; Niere, F; Zemelman, B V; Raab-Graham, K F

    2015-01-01

    A single injection of N-methyl-D-aspartate receptor (NMDAR) antagonists produces a rapid antidepressant response. Lasting changes in the synapse structure and composition underlie the effectiveness of these drugs. We recently discovered that rapid antidepressants cause a shift in the γ-aminobutyric acid receptor (GABABR) signaling pathway, such that GABABR activation shifts from opening inwardly rectifiying potassium channels (Kir/GIRK) to increasing resting dendritic calcium signal and mammalian Target of Rapamycin activity. However, little is known about the molecular and biochemical mechanisms that initiate this shift. Herein, we show that GABABR signaling to Kir3 (GIRK) channels decreases with NMDAR blockade. Blocking NMDAR signaling stabilizes the adaptor protein 14-3-3η, which decouples GABABR signaling from Kir3 and is required for the rapid antidepressant efficacy. Consistent with these results, we find that key proteins involved in GABABR signaling bidirectionally change in a depression model and with rapid antidepressants. In socially defeated rodents, a model for depression, GABABR and 14-3-3η levels decrease in the hippocampus. The NMDAR antagonists AP5 and Ro-25-6981, acting as rapid antidepressants, increase GABABR and 14-3-3η expression and decrease Kir3.2. Taken together, these data suggest that the shift in GABABR function requires a loss of GABABR-Kir3 channel activity mediated by 14-3-3η. Our findings support a central role for 14-3-3η in the efficacy of rapid antidepressants and define a critical molecular mechanism for activity-dependent alterations in GABABR signaling. PMID:25560757

  19. An Iterative Angle Trisection

    ERIC Educational Resources Information Center

    Muench, Donald L.

    2007-01-01

    The problem of angle trisection continues to fascinate people even though it has long been known that it can't be done with straightedge and compass alone. However, for practical purposes, a good iterative procedure can get you as close as you want. In this note, we present such a procedure. Using only straightedge and compass, our procedure…

  20. Iterative software kernels

    SciTech Connect

    Duff, I.

    1994-12-31

    This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.

  1. ITER Fusion Energy

    ScienceCinema

    Dr. Norbert Holtkamp

    2010-01-08

    ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.

  2. Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells

    SciTech Connect

    Haering, H.U.; White, M.F.; Machicao, F.; Ermel, B.; Schleicher, E.; Obermaier, B.

    1987-01-01

    It is speculated that the transmission of an insulin signal across the plasma membrane of cells occurs through activation of the tyrosine-specific receptor kinase, autophosphorylation of the receptor, and subsequent phosphorylation of unidentified substrates in the cell. In an attempt to identify possible substrates, the authors labeled intact rat fat cells with (/sup 32/P)orthophosphate and used an antiphosphotyrosine antibody to identify proteins that become phosphorylated on tyrosine residues in an insulin-stimulated way. In the membrane fraction of the fat cells, they found, in addition to the 95-kDa ..beta..-subunit of the receptor, a 46-kDa phosphoprotein that is phosphorylated exclusively on tyrosine residues. This protein is not immunoprecipitated by antibodies against different regions of the insulin receptor and its HPLC tryptic peptide map is different from the tryptic peptide map of the insulin receptor, suggesting that it is not derived from the receptor ..beta..-subunit. Insulin stimulates the tyrosine phosphorylation of the 46-kDa protein within 150 sec in the intact cell 3- to 4-fold in a dose-dependent way at insulin concentrations between 0.5 nM and 100 nM. Insulin (0.5 nM, 100 nM) stimulated within 2 min the /sup 32/P incorporation into a 116-kDa band, a 62 kDa band, and three bands between 45 kDa and 50 kDa 2- to 10-fold. They suggest that the 46-kDa membrane protein and possibly also the soluble proteins are endogenous substrates of the receptor tyrosine kinase in fat cells and that their phosphorylation is an early step in insulin signal transmission.

  3. Development and test of the ITER SC conductor joints

    SciTech Connect

    Gung, C. Y.; Jayakumar, R.; Manahan, R.; Martovetsky, N.; Michael, P.; Minervini, J.; Randall, A.

    1998-08-05

    Joints for the ITER superconducting Central Solenoid should perform in rapidly varying magnetic field with low losses and low DC resistance. This paper describes the design of the ITER joint and presents its assembly process. Two joints were built and tested at the PTF facility at MIT. Test results are presented; losses in transverse and parallel field and the DC performance are discussed. The developed joint demonstrates sufficient margin for baseline ITRR operating scenarios.

  4. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients.

    PubMed

    Kamei, Ken-ichiro; Mashimo, Yasumasa; Koyama, Yoshie; Fockenberg, Christopher; Nakashima, Miyuki; Nakajima, Minako; Li, Junjun; Chen, Yong

    2015-04-01

    Three-dimensional (3D) printing is advantageous over conventional technologies for the fabrication of sophisticated structures such as 3D micro-channels for future applications in tissue engineering and drug screening. We aimed to apply this technology to cell-based assays using polydimethylsiloxane (PDMS), the most commonly used material for fabrication of micro-channels used for cell culture experiments. Useful properties of PDMS include biocompatibility, gas permeability and transparency. We developed a simple and robust protocol to generate PDMS-based devices using a soft lithography mold produced by 3D printing. 3D chemical gradients were then generated to stimulate cells confined to a micro-channel. We demonstrate that concentration gradients of growth factors, important regulators of cell/tissue functions in vivo, influence the survival and growth of human embryonic stem cells. Thus, this approach for generation of 3D concentration gradients could have strong implications for tissue engineering and drug screening. PMID:25686903

  5. ITER breeding blanket design

    SciTech Connect

    Gohar, Y.; Cardella, A.; Ioki, K.; Lousteau, D.; Mohri, K.; Raffray, R.; Zolti, E.

    1995-12-31

    A breeding blanket design has been developed for ITER to provide the necessary tritium fuel to achieve the technical objectives of the Enhanced Performance Phase. It uses a ceramic breeder and water coolant for compatibility with the ITER machine design of the Basic Performance Phase. Lithium zirconate and lithium oxide am the selected ceramic breeders based on the current data base. Enriched lithium and beryllium neutron multiplier are used for both breeders. Both forms of beryllium material, blocks and pebbles are used at different blanket locations based on thermo-mechanical considerations and beryllium thickness requirements. Type 316LN austenitic steel is used as structural material similar to the shielding blanket. Design issues and required R&D data are identified during the development of the design.

  6. Neutron activation for ITER

    SciTech Connect

    Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo

    1996-04-29

    There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.

  7. Simple solution for preventing cerebrospinal fluid loss and brain shift during multitrack deep brain stimulation surgery in the semisupine position: polyethylene glycol hydrogel dural sealant capping: rapid communication.

    PubMed

    Takumi, Ichiro; Mishina, Masahiro; Hironaka, Kohei; Oyama, Kenichi; Yamada, Akira; Adachi, Koji; Hamamoto, Makoto; Kitamura, Shin; Yoshida, Daizo; Teramoto, Akira

    2013-01-01

    This study evaluated preliminary findings on the efficacy of polyethylene glycol (PEG) hydrogel dural sealant capping for the prevention of cerebrospinal fluid (CSF) leakage and pneumocephalus during deep brain stimulation (DBS) surgery in the semisupine position. Group A consisted of 5 patients who underwent bilateral subthalamic nucleus (STN)-DBS surgery without PEG hydrogel dural sealant capping. Group B consisted of 5 patients who underwent bilateral STN-DBS surgery with PEG hydrogel dural sealant capping. The immediate postoperative intracranial air volume was measured in all patients and compared between the 2 groups using the Welch test. Adverse effects were also examined in both groups. The intracranial air volume in Group A was 32.3 ± 12.3 ml (range 19.1-42.5 ml), whereas that in Group B was 1.3 ± 1.5 ml (range 0.0-3.5 ml), showing a significant difference (p < 0.005). No hemorrhage or venous air embolisms were observed in either group. The effect of brain shift was discriminated by STN recordings in Group B. These preliminary findings indicate that PEG hydrogel dural sealant capping may reduce adverse effects related to CSF leakage and brain shift during DBS surgery. PMID:23358161

  8. Iterative electro-optic matrix processor

    NASA Astrophysics Data System (ADS)

    Carlotto, M. J.

    An electro-optic vector matrix processor with electronic feedback is described. The iterative optical processor (IOP) is designed for the rapid solution of linear algebraic equations. The IOP and the iterative algorithm it realizes are analyzed and simulated. A version of the system was fabricated using advanced solid state light sources and detectors plus fiber optic technology, and its performance is evaluated. An extension of the system using wavelength multiplexing is developed and the basic system concepts demonstrated. Its use in the restoration of degraded images or signals (deconvolution) and the computation of matrix eigenvectors and eigenvalues and matrix inversion are demonstrated. The two major case studies pursued are: adaptive phased array radar processing and optimal control. In the former case, the system is used to compute the adaptive antenna weights for a radar system. In the latter case, the IOP solves the linear quadratic regular and algebraic Ricatti equations of modern control theory.

  9. Recent ADI iteration analysis and results

    SciTech Connect

    Wachspress, E.L.

    1994-12-31

    Some recent ADI iteration analysis and results are discussed. Discovery that the Lyapunov and Sylvester matrix equations are model ADI problems stimulated much research on ADI iteration with complex spectra. The ADI rational Chebyshev analysis parallels the classical linear Chebyshev theory. Two distinct approaches have been applied to these problems. First, parameters which were optimal for real spectra were shown to be nearly optimal for certain families of complex spectra. In the linear case these were spectra bounded by ellipses in the complex plane. In the ADI rational case these were spectra bounded by {open_quotes}elliptic-function regions{close_quotes}. The logarithms of the latter appear like ellipses, and the logarithms of the optimal ADI parameters for these regions are similar to the optimal parameters for linear Chebyshev approximation over superimposed ellipses. W.B. Jordan`s bilinear transformation of real variables to reduce the two-variable problem to one variable was generalized into the complex plane. This was needed for ADI iterative solution of the Sylvester equation.

  10. Adaptive iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Bruder, H.; Raupach, R.; Sunnegardh, J.; Sedlmair, M.; Stierstorfer, K.; Flohr, T.

    2011-03-01

    It is well known that, in CT reconstruction, Maximum A Posteriori (MAP) reconstruction based on a Poisson noise model can be well approximated by Penalized Weighted Least Square (PWLS) minimization based on a data dependent Gaussian noise model. We study minimization of the PWLS objective function using the Gradient Descent (GD) method, and show that if an exact inverse of the forward projector exists, the PWLS GD update equation can be translated into an update equation which entirely operates in the image domain. In case of non-linear regularization and arbitrary noise model this means that a non-linear image filter must exist which solves the optimization problem. In the general case of non-linear regularization and arbitrary noise model, the analytical computation is not trivial and might lead to image filters which are computationally very expensive. We introduce a new iteration scheme in image space, based on a regularization filter with an anisotropic noise model. Basically, this approximates the statistical data weighting and regularization in PWLS reconstruction. If needed, e.g. for compensation of the non-exactness of backprojector, the image-based regularization loop can be preceded by a raw data based loop without regularization and statistical data weighting. We call this combined iterative reconstruction scheme Adaptive Iterative Reconstruction (AIR). It will be shown that in terms of low-contrast visibility, sharpness-to-noise and contrast-to-noise ratio, PWLS and AIR reconstruction are similar to a high degree of accuracy. In clinical images the noise texture of AIR is also superior to the more artificial texture of PWLS.

  11. Iterative Magnetometer Calibration

    NASA Technical Reports Server (NTRS)

    Sedlak, Joseph

    2006-01-01

    This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.

  12. Searching with iterated maps

    PubMed Central

    Elser, V.; Rankenburg, I.; Thibault, P.

    2007-01-01

    In many problems that require extensive searching, the solution can be described as satisfying two competing constraints, where satisfying each independently does not pose a challenge. As an alternative to tree-based and stochastic searching, for these problems we propose using an iterated map built from the projections to the two constraint sets. Algorithms of this kind have been the method of choice in a large variety of signal-processing applications; we show here that the scope of these algorithms is surprisingly broad, with applications as diverse as protein folding and Sudoku. PMID:17202267

  13. The Achilles' Heel of "Ultrastable" Hyperthermophile Proteins: Submillimolar Concentrations of SDS Stimulate Rapid Conformational Change, Aggregation, and Amyloid Formation in Proteins Carrying Overall Positive Charge.

    PubMed

    Khan, Javed M; Sharma, Prerna; Arora, Kanika; Kishor, Nitin; Kaila, Pallavi; Guptasarma, Purnananda

    2016-07-19

    Low concentrations (<3.0 mM) of the anionic surfactant sodium dodecyl sulfate (SDS) have been shown to induce the formation of amyloid fibers in more than 20 different mesophile-derived proteins in the cationic state. It is not known whether SDS has similar effects on hyperthermophile-derived proteins, which are otherwise thought to be "ultrastable" and inordinately resistant to structural perturbations at room temperature. Here, we show that low (<4.5 mM) concentrations of SDS rapidly induce the formation of aggregates and amyloid fibers in five different ultrastable Pyrococcus furiosus proteins in the cationic state. We also show that amyloid formation is accompanied by the development of a characteristic, negative circular dichroism band at ∼230 nm. These effects are not seen if the proteins have a net negative charge or when higher concentrations of SDS are used (which induce helix formation instead). Our results appear to reveal a potential weakness or "Achilles' heel" in ultrastable proteins from hyperthermophiles. They also provide very strong support for the view that SDS initially interacts with proteins through electrostatic interactions, and not hydrophobic interactions, eliciting similar effects entirely regardless of protein molecular weight, or structural features such as quaternary structure or tertiary structural stability. PMID:27331826

  14. Intra- and Inter-scan Reproducibility using Fourier Analysis of STimulated Echoes (FAST) for the Rapid and Robust Quantification of Left Ventricular Twist

    PubMed Central

    Reyhan, Meral; Kim, Hyun J.; Brown, Matthew S.; Ennis, Daniel B.

    2013-01-01

    Purpose To assess the intra- and inter-scan reproducibility of LV twist using FAST. Assessing the reproducibility of the measurement of new magnetic resonance imaging (MRI) biomarkers is an important part of validation. Fourier Analysis of STimulated Echoes (FAST) is a new MRI tissue tagging method that has recently been shown to compare favorably to conventional estimates of left ventricular (LV) twist from cardiac tagged images, but with significantly reduced user interaction time. Materials and Methods Healthy volunteers (N=10) were scanned twice using FAST over one week. On Day-1 two measurements of LV twist were collected for intra-scan comparisons. Measurements for LV twist were again collected on Day-8 for inter-scan assessment. LV short-axis tagged images were acquired on a 3T scanner in order to ensure detectability of tags during early and mid-diastole. Peak LV twist is reported as mean±SD. Reproducibility was assessed using the concordance correlation coefficient (CCC) and the repeatability coefficient (RC) (95%-CI range). Results Mean peak twist measurements were 13.4±4.3° (Day-1, Scan-1), 13.6±3.7° (Day-1, Scan-2), and 13.0±2.7° (Day-8). Bland-Altman analysis resulted in intra- and inter-scan bias and 95%-CI of −0.6° [−1.0°, 1.6°] and 1.4° [−1.0°, 3.0°], respectively. The Bland-Altman RC for peak LV twist was 2.6° and 4.0° for intra- and inter-scan respectively. The CCC was 0.9 and 0.6 for peak LV twist for intra- and inter-scan respectively. Conclusion FAST is a semi-automated method that provides a quick and quantitative assessment of LV systolic and diastolic twist that demonstrates high intra-scan and moderate inter-scan reproducibility in preliminary studies. PMID:23633244

  15. ITER helium ash accumulation

    SciTech Connect

    Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)

    1990-01-01

    Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.

  16. An Overview Of The ITER In-Vessel Coil Systems

    SciTech Connect

    Heitzenroeder, P J; Chrzanowski, J H; Dahlgren, F; Hawryluk, R J; Loesser, G D; Neumeyer, C; Mansfield, C; Smith, J P; Schaffer, M; Humphreys, D; Cordier, J J; Campbell, D; Johnson, G A; Martin, A; Rebut, P H; Tao, J O; Fogarty, P J; Nelson, B E; Reed, R P

    2009-09-24

    ELM mitigation is of particular importance in ITER in order to prevent rapid erosion or melting of the divertor surface, with the consequent risk of water leaks, increased plasma impurity content and disruptivity. Exploitable "natural" small or no ELM regimes might yet be found which extrapolate to ITER but this cannot be depended upon. Resonant Magnetic Perturbation has been added to pellet pacing as a tool for ITER to mitigate ELMs. Both are required, since neither method is fully developed and much work remains to be done. In addition, in-vessel coils enable vertical stabilization and RWM control. For these reasons, in-vessel coils (IVCs) are being designed for ITER to provide control of Edge Localized Modes (ELMs) in addition to providing control of moderately unstable resistive wall modes (RWMs) and the vertical stability (VS) of the plasma.

  17. ECRH System For ITER

    SciTech Connect

    Darbos, C.; Henderson, M.; Gandini, F.; Albajar, F.; Bomcelli, T.; Heidinger, R.; Saibene, G.; Chavan, R.; Goodman, T.; Hogge, J. P.; Sauter, O.; Denisov, G.; Farina, D.; Kajiwara, K.; Kasugai, A.; Kobayashi, N.; Oda, Y.; Ramponi, G.

    2009-11-26

    A 26 MW Electron Cyclotron Heating and Current Drive (EC H and CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H and CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several

  18. ECRH System For ITER

    NASA Astrophysics Data System (ADS)

    Darbos, C.; Henderson, M.; Albajar, F.; Bigelow, T.; Bomcelli, T.; Chavan, R.; Denisov, G.; Farina, D.; Gandini, F.; Heidinger, R.; Goodman, T.; Hogge, J. P.; Kajiwara, K.; Kasugai, A.; Kern, S.; Kobayashi, N.; Oda, Y.; Ramponi, G.; Rao, S. L.; Rasmussen, D.; Rzesnicki, T.; Saibene, G.; Sakamoto, K.; Sauter, O.; Scherer, T.; Strauss, D.; Takahashi, K.; Zohm, H.

    2009-11-01

    A 26 MW Electron Cyclotron Heating and Current Drive (EC H&CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H&CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several teams

  19. Iterative modulo scheduling

    SciTech Connect

    Rau, B.R.

    1996-02-01

    Modulo scheduling is a framework within which algorithms for software pipelining innermost loops may be defined. The framework specifies a set of constraints that must be met in order to achieve a legal modulo schedule. A wide variety of algorithms and heuristics can be defined within this framework. Little work has been done to evaluate and compare alternative algorithms and heuristics for modulo scheduling from the viewpoints of schedule quality as well as computational complexity. This, along with a vague and unfounded perception that modulo scheduling is computationally expensive as well as difficult to implement, have inhibited its corporation into product compilers. This paper presents iterative modulo scheduling, a practical algorithm that is capable of dealing with realistic machine models. The paper also characterizes the algorithm in terms of the quality of the generated schedules as well as the computational incurred.

  20. Mission of ITER and Challenges for the Young

    NASA Astrophysics Data System (ADS)

    Ikeda, Kaname

    2009-02-01

    It is recognized that the ongoing effort to provide sufficient energy for the wellbeing of the globe's population and to power the world economy is of the greatest importance. ITER is a joint international research and development project that aims to demonstrate the scientific and technical feasibility of fusion power. It represents the responsible actions of governments whose countries comprise over half the world's population, to create fusion power as a source of clean, economic, carbon dioxide-free energy. This is the most important science initiative of our time. The partners in the Project—the ITER Parties—are the European Union, Japan, the People's Republic of China, India, the Republic of Korea, the Russian Federation and the USA. ITER will be constructed in Europe, at Cadarache in the South of France. The talk will illustrate the genesis of the ITER Organization, the ongoing work at the Cadarache site and the planned schedule for construction. There will also be an explanation of the unique aspects of international collaboration that have been developed for ITER. Although the present focus of the project is construction activities, ITER is also a major scientific and technological research program, for which the best of the world's intellectual resources is needed. Challenges for the young, imperative for fulfillment of the objective of ITER will be identified. It is important that young students and researchers worldwide recognize the rapid development of the project, and the fundamental issues that must be overcome in ITER. The talk will also cover the exciting career and fellowship opportunities for young people at the ITER Organization.

  1. Mission of ITER and Challenges for the Young

    SciTech Connect

    Ikeda, Kaname

    2009-02-19

    It is recognized that the ongoing effort to provide sufficient energy for the wellbeing of the globe's population and to power the world economy is of the greatest importance. ITER is a joint international research and development project that aims to demonstrate the scientific and technical feasibility of fusion power. It represents the responsible actions of governments whose countries comprise over half the world's population, to create fusion power as a source of clean, economic, carbon dioxide-free energy. This is the most important science initiative of our time.The partners in the Project--the ITER Parties--are the European Union, Japan, the People's Republic of China, India, the Republic of Korea, the Russian Federation and the USA. ITER will be constructed in Europe, at Cadarache in the South of France. The talk will illustrate the genesis of the ITER Organization, the ongoing work at the Cadarache site and the planned schedule for construction. There will also be an explanation of the unique aspects of international collaboration that have been developed for ITER.Although the present focus of the project is construction activities, ITER is also a major scientific and technological research program, for which the best of the world's intellectual resources is needed. Challenges for the young, imperative for fulfillment of the objective of ITER will be identified. It is important that young students and researchers worldwide recognize the rapid development of the project, and the fundamental issues that must be overcome in ITER.The talk will also cover the exciting career and fellowship opportunities for young people at the ITER Organization.

  2. Recent progress and advances in iterative software (including parallel aspects)

    SciTech Connect

    Carey, G.; Young, D.M.; Kincaid, D.

    1994-12-31

    The purpose of the workshop is to provide a forum for discussion of the current state of iterative software packages. Of particular interest is software for large scale engineering and scientific applications, especially for distributed parallel systems. However, the authors will also review the state of software development for conventional architectures. This workshop will complement the other proposed workshops on iterative BLAS kernels and applications. The format for the workshop is as follows: To provide some structure, there will be brief presentations, each of less than five minutes duration and dealing with specific facets of the subject. These will be designed to focus the discussion and to stimulate an exchange with the participants. Issues to be covered include: The evolution of iterative packages, current state of the art, the parallel computing challenge, applications viewpoint, standards, and future directions and open problems.

  3. A Fast Iterated Orthogonal Projection Framework for Smoke Simulation.

    PubMed

    Yang, Yang; Yang, Xubo; Yang, Shuangcai

    2016-05-01

    We present a fast iterated orthogonal projection (IOP) framework for smoke simulations. By modifying the IOP framework with a different means for convergence, our framework significantly reduces the number of iterations required to converge to the desired precision. Our new iteration framework adds a divergence redistributor component to IOP that can improve the impeded convergence logic of IOP. We tested Jacobi, GS and SOR as divergence redistributors and used the Multigrid scheme to generate a highly efficient Poisson solver. It provides a rapid convergence rate and requires less computation time. In all of our experiments, our method only requires 2-3 iterations to satisfy the convergence condition of 1e-5 and 5-7 iterations for 1e-10. Compared with the commonly used Incomplete Cholesky Preconditioned Conjugate Gradient(ICPCG) solver, our Poisson solver accelerates the overall speed to approximately 7- to 30-fold faster for grids ranging from 128(3) to 256(3). Our solver can accelerate more on larger grids because of the property that the iteration count required to satisfy the convergence condition is independent of the problem size. We use various experimental scenes and settings to demonstrate the efficiency of our method. In addition, we present a feasible method for both IOP and our fast IOP to support free surfaces. PMID:27045907

  4. Mode conversion in ITER

    NASA Astrophysics Data System (ADS)

    Jaeger, E. F.; Berry, L. A.; Myra, J. R.

    2006-10-01

    Fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) can convert to much shorter wavelength modes such as ion Bernstein waves (IBW) and ion cyclotron waves (ICW) [1]. These modes are potentially useful for plasma control through the generation of localized currents and sheared flows. As part of the SciDAC Center for Simulation of Wave-Plasma Interactions project, the AORSA global-wave solver [2] has been ported to the new, dual-core Cray XT-3 (Jaguar) at ORNL where it demonstrates excellent scaling with the number of processors. Preliminary calculations using 4096 processors have allowed the first full-wave simulations of mode conversion in ITER. Mode conversion from the fast wave to the ICW is observed in mixtures of deuterium, tritium and helium3 at 53 MHz. The resulting flow velocity and electric field shear will be calculated. [1] F.W. Perkins, Nucl. Fusion 17, 1197 (1977). [2] E.F. Jaeger, L.A. Berry, J.R. Myra, et al., Phys. Rev. Lett. 90, 195001-1 (2003).

  5. ITER Diagnostic First Wal

    SciTech Connect

    G. Douglas Loesser, et. al.

    2012-09-21

    The ITER Diagnostic Division is responsible for designing and procuring the First Wall Blankets that are mounted on the vacuum vessel port plugs at both the upper and equatorial levels This paper will discuss the effects of the diagnostic aperture shape and configuration on the coolant circuit design. The DFW design is driven in large part by the need to conform the coolant arrangement to a wide variety of diagnostic apertures combined with the more severe heating conditions at the surface facing the plasma, the first wall. At the first wall, a radiant heat flux of 35W/cm2 combines with approximate peak volumetric heating rates of 8W/cm3 (equatorial ports) and 5W/cm3 (upper ports). Here at the FW, a fast thermal response is desirable and leads to a thin element between the heat flux and coolant. This requirement is opposed by the wish for a thicker FW element to accommodate surface erosion and other off-normal plasma events.

  6. Iterative denoising of ghost imaging.

    PubMed

    Yao, Xu-Ri; Yu, Wen-Kai; Liu, Xue-Feng; Li, Long-Zhen; Li, Ming-Fei; Wu, Ling-An; Zhai, Guang-Jie

    2014-10-01

    We present a new technique to denoise ghost imaging (GI) in which conventional intensity correlation GI and an iteration process have been combined to give an accurate estimate of the actual noise affecting image quality. The blurring influence of the speckle areas in the beam is reduced in the iteration by setting a threshold. It is shown that with an appropriate choice of threshold value, the quality of the iterative GI reconstructed image is much better than that of differential GI for the same number of measurements. This denoising method thus offers a very effective approach to promote the implementation of GI in real applications. PMID:25322001

  7. Channeled spectropolarimetry using iterative reconstruction

    NASA Astrophysics Data System (ADS)

    Lee, Dennis J.; LaCasse, Charles F.; Craven, Julia M.

    2016-05-01

    Channeled spectropolarimeters (CSP) measure the polarization state of light as a function of wavelength. Conventional Fourier reconstruction suffers from noise, assumes the channels are band-limited, and requires uniformly spaced samples. To address these problems, we propose an iterative reconstruction algorithm. We develop a mathematical model of CSP measurements and minimize a cost function based on this model. We simulate a measured spectrum using example Stokes parameters, from which we compare conventional Fourier reconstruction and iterative reconstruction. Importantly, our iterative approach can reconstruct signals that contain more bandwidth, an advancement over Fourier reconstruction. Our results also show that iterative reconstruction mitigates noise effects, processes non-uniformly spaced samples without interpolation, and more faithfully recovers the ground truth Stokes parameters. This work offers a significant improvement to Fourier reconstruction for channeled spectropolarimetry.

  8. Comments on the iterated knapsack attack

    SciTech Connect

    Brickell, E.F.

    1983-01-01

    L. Adleman has proposed a three step method for breaking the iterated knapsack that runs in polynomial time and is linear in the number of iterations. In this paper, we show that the first step is possibly exponential in the number of iterations, and that the second and third steps are exponential even for only three iterations.

  9. Is Carbon a Realistic Choice for ITER's Divertor?

    SciTech Connect

    C.H. Skinner; G. Federici

    2005-05-13

    Tritium retention by co-deposition with carbon on the divertor target plate is predicted to limit ITER's DT burning plasma operations (e.g. to about 100 pulses for the worst conditions) before the in-vessel tritium inventory limit, currently set at 350 g, is reached. At this point, ITER will only be able to continue its burning plasma program if technology is available that is capable of rapidly removing large quantities of tritium from the vessel with over 90% efficiency. The removal rate required is four orders of magnitude faster than that demonstrated in current tokamaks. Eighteen years after the observation of co-deposition on JET and TFTR, such technology is nowhere in sight. The inexorable conclusion is that either a major initiative in tritium removal should be funded or that research priorities for ITER should focus on metal alternatives.

  10. Safety and efficacy of pegfilgrastim compared to granulocyte colony stimulating factor (G-CSF) supporting a dose-intensive, rapidly cycling anti-metabolite containing chemotherapy regimen (Hyper-CVAD) for lymphoid malignancy.

    PubMed

    Lane, Steven W; Crawford, Julie; Kenealy, Melita; Cull, Gavin; Seymour, John F; Prince, H Miles; Marlton, Paula; Gill, Devinder; Mollee, Peter N

    2006-09-01

    Pegfilgrastim (Neulasta) has proven efficacy as supportive therapy in a variety of 21-day chemotherapy regimens, but has not been studied in dose intensive, rapidly cycling regimens utilising cell-cycle active drugs (e.g. anti-metabolites) such as hyper-CVAD. This study examined whether pegfilgrastim was safe and lead to similar kinetics of neutrophil recovery as daily granulocyte colony stimulating factor (G-CSF). Using retrospective analysis, patients receiving pegfilgrastim (6 mg) were matched with controls (G-CSF 5 microg kg-1 per day) for a cycle of chemotherapy, prior chemotherapy, dose of cytarabine received, age (<60 or >60 years), diagnosis and bone marrow involvement. The primary endpoint was duration of grade IV neutropenia (absolute neutrophil count, ANC < 500 microl-1). Secondary endpoints included time to neutrophil recovery, incidence of febrile neutropenia, positive blood cultures and delay in subsequent chemotherapy. This study identified 124 pegfilgrastim supported cycles in 43 patients and successfully matched them to 124 G-CSF supported cycles from 38 patients treated between January 1999 and July 2005. There were no significant differences between pegfilgrastim and G-CSF groups in baseline or treatment-related variables. The median duration of grade IV neutropenia was 4 days in both groups (P = 0.55). Time to neutrophil recovery, incidence of febrile neutropenia, positive blood cultures and delay in subsequent chemotherapy were similar in both groups. Once per cycle dosing of pegfilgrastim appears safe and as effective as daily G-CSF for supporting the hyper-CVAD chemotherapy regimen. PMID:17064993

  11. ITER Construction--Plant System Integration

    SciTech Connect

    Tada, E.; Matsuda, S.

    2009-02-19

    This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.

  12. Rapid Prototyping of Mobile Learning Games

    ERIC Educational Resources Information Center

    Federley, Maija; Sorsa, Timo; Paavilainen, Janne; Boissonnier, Kimo; Seisto, Anu

    2014-01-01

    This position paper presents the first results of an on-going project, in which we explore rapid prototyping method to efficiently produce digital learning solutions that are commercially viable. In this first phase, rapid game prototyping and an iterative approach was tested as a quick and efficient way to create learning games and to evaluate…

  13. Construction Safety Forecast for ITER

    SciTech Connect

    cadwallader, lee charles

    2006-11-01

    The International Thermonuclear Experimental Reactor (ITER) project is poised to begin its construction activity. This paper gives an estimate of construction safety as if the experiment was being built in the United States. This estimate of construction injuries and potential fatalities serves as a useful forecast of what can be expected for construction of such a major facility in any country. These data should be considered by the ITER International Team as it plans for safety during the construction phase. Based on average U.S. construction rates, ITER may expect a lost workday case rate of < 4.0 and a fatality count of 0.5 to 0.9 persons per year.

  14. ITER Disruption Mitigation System Design

    NASA Astrophysics Data System (ADS)

    Rasmussen, David; Lyttle, M. S.; Baylor, L. R.; Carmichael, J. R.; Caughman, J. B. O.; Combs, S. K.; Ericson, N. M.; Bull-Ezell, N. D.; Fehling, D. T.; Fisher, P. W.; Foust, C. R.; Ha, T.; Meitner, S. J.; Nycz, A.; Shoulders, J. M.; Smith, S. F.; Warmack, R. J.; Coburn, J. D.; Gebhart, T. E.; Fisher, J. T.; Reed, J. R.; Younkin, T. R.

    2015-11-01

    The disruption mitigation system for ITER is under design and will require injection of up to 10 kPa-m3 of deuterium, helium, neon, or argon material for thermal mitigation and up to 100 kPa-m3 of material for suppression of runaway electrons. A hybrid unit compatible with the ITER nuclear, thermal and magnetic field environment is being developed. The unit incorporates a fast gas valve for massive gas injection (MGI) and a shattered pellet injector (SPI) to inject a massive spray of small particles, and can be operated as an SPI with a frozen pellet or an MGI without a pellet. Three ITER upper port locations will have three SPI/MGI units with a common delivery tube. One equatorial port location has space for sixteen similar SPI/MGI units. Supported by US DOE under DE-AC05-00OR22725.

  15. Error Field Correction in ITER

    SciTech Connect

    Park, Jong-kyu; Boozer, Allen H.; Menard, Jonathan E.; Schaffer, Michael J.

    2008-05-22

    A new method for correcting magnetic field errors in the ITER tokamak is developed using the Ideal Perturbed Equilibrium Code (IPEC). The dominant external magnetic field for driving islands is shown to be localized to the outboard midplane for three ITER equilibria that represent the projected range of operational scenarios. The coupling matrices between the poloidal harmonics of the external magnetic perturbations and the resonant fields on the rational surfaces that drive islands are combined for different equilibria and used to determine an ordered list of the dominant errors in the external magnetic field. It is found that efficient and robust error field correction is possible with a fixed setting of the correction currents relative to the currents in the main coils across the range of ITER operating scenarios that was considered.

  16. Parallel inverse iteration with reorthogonalization

    SciTech Connect

    Fann, G.I.; Littlefield, R.J.

    1993-03-01

    A parallel method for finding orthogonal eigenvectors of real symmetric tridiagonal is described. The method uses inverse iteration with repeated Modified Gram-Schmidt (MGS) reorthogonalization of the unconverged iterates for clustered eigenvalues. This approach is more parallelizable than reorthogonalizing against fully converged eigenvectors, as is done by LAPACK's current DSTEIN routine. The new method is found to provide accuracy and speed comparable to DSTEIN's and to have good parallel scalability even for matrices with large clusters of eigenvalues. We present al results for residual and orthogonality tests, plus timings on IBM RS/6000 (sequential) and Intel Touchstone DELTA (parallel) computers.

  17. Parallel inverse iteration with reorthogonalization

    SciTech Connect

    Fann, G.I.; Littlefield, R.J.

    1993-03-01

    A parallel method for finding orthogonal eigenvectors of real symmetric tridiagonal is described. The method uses inverse iteration with repeated Modified Gram-Schmidt (MGS) reorthogonalization of the unconverged iterates for clustered eigenvalues. This approach is more parallelizable than reorthogonalizing against fully converged eigenvectors, as is done by LAPACK`s current DSTEIN routine. The new method is found to provide accuracy and speed comparable to DSTEIN`s and to have good parallel scalability even for matrices with large clusters of eigenvalues. We present al results for residual and orthogonality tests, plus timings on IBM RS/6000 (sequential) and Intel Touchstone DELTA (parallel) computers.

  18. ITER EDA design confinement capability

    NASA Astrophysics Data System (ADS)

    Uckan, N. A.

    Major device parameters for ITER-EDA and CDA are given in this paper. Ignition capability of the EDA (and CDA) operational scenarios is evaluated using both the 1 1/2-D time-dependent transport simulations and 0-D global models under different confinement ((chi((gradient)(T)(sub e)(sub crit)), empirical global energy confinement scalings, chi(empirical), etc.) assumptions. Results from some of these transport simulations and confinement assessments are summarized in and compared with the ITER CDA results.

  19. ITER LHe Plants Parallel Operation

    NASA Astrophysics Data System (ADS)

    Fauve, E.; Bonneton, M.; Chalifour, M.; Chang, H.-S.; Chodimella, C.; Monneret, E.; Vincent, G.; Flavien, G.; Fabre, Y.; Grillot, D.

    The ITER Cryogenic System includes three identical liquid helium (LHe) plants, with a total average cooling capacity equivalent to 75 kW at 4.5 K.The LHe plants provide the 4.5 K cooling power to the magnets and cryopumps. They are designed to operate in parallel and to handle heavy load variations.In this proceedingwe will describe the presentstatusof the ITER LHe plants with emphasis on i) the project schedule, ii) the plantscharacteristics/layout and iii) the basic principles and control strategies for a stable operation of the three LHe plants in parallel.

  20. Iterated binomial sums and their associated iterated integrals

    NASA Astrophysics Data System (ADS)

    Ablinger, J.; Blümlein, J.; Raab, C. G.; Schneider, C.

    2014-11-01

    We consider finite iterated generalized harmonic sums weighted by the binomial binom{2k}{k} in numerators and denominators. A large class of these functions emerges in the calculation of massive Feynman diagrams with local operator insertions starting at 3-loop order in the coupling constant and extends the classes of the nested harmonic, generalized harmonic, and cyclotomic sums. The binomially weighted sums are associated by the Mellin transform to iterated integrals over square-root valued alphabets. The values of the sums for N → ∞ and the iterated integrals at x = 1 lead to new constants, extending the set of special numbers given by the multiple zeta values, the cyclotomic zeta values and special constants which emerge in the limit N → ∞ of generalized harmonic sums. We develop algorithms to obtain the Mellin representations of these sums in a systematic way. They are of importance for the derivation of the asymptotic expansion of these sums and their analytic continuation to N in {C}. The associated convolution relations are derived for real parameters and can therefore be used in a wider context, as, e.g., for multi-scale processes. We also derive algorithms to transform iterated integrals over root-valued alphabets into binomial sums. Using generating functions we study a few aspects of infinite (inverse) binomial sums.

  1. Delayed Over-Relaxation for iterative methods

    NASA Astrophysics Data System (ADS)

    Antuono, M.; Colicchio, G.

    2016-09-01

    We propose a variant of the relaxation step used in the most widespread iterative methods (e.g. Jacobi Over-Relaxation, Successive Over-Relaxation) which combines the iteration at the predicted step, namely (n + 1), with the iteration at step (n - 1). We provide a theoretical analysis of the proposed algorithm by applying such a delayed relaxation step to a generic (convergent) iterative scheme. We prove that, under proper assumptions, this significantly improves the convergence rate of the initial iterative method. As a relevant example, we apply the proposed algorithm to the solution of the Poisson equation, highlighting the advantages in comparison with classical iterative models.

  2. ODE System Solver W. Krylov Iteration & Rootfinding

    SciTech Connect

    Hindmarsh, Alan C.

    1991-09-09

    LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration, LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.

  3. ODE System Solver W. Krylov Iteration & Rootfinding

    Energy Science and Technology Software Center (ESTSC)

    1991-09-09

    LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration,more » LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.« less

  4. Object-oriented design of preconditioned iterative methods

    SciTech Connect

    Bruaset, A.M.

    1994-12-31

    In this talk the author discusses how object-oriented programming techniques can be used to develop a flexible software package for preconditioned iterative methods. The ideas described have been used to implement the linear algebra part of Diffpack, which is a collection of C++ class libraries that provides high-level tools for the solution of partial differential equations. In particular, this software package is aimed at rapid development of PDE-based numerical simulators, primarily using finite element methods.

  5. Networking Theories by Iterative Unpacking

    ERIC Educational Resources Information Center

    Koichu, Boris

    2014-01-01

    An iterative unpacking strategy consists of sequencing empirically-based theoretical developments so that at each step of theorizing one theory serves as an overarching conceptual framework, in which another theory, either existing or emerging, is embedded in order to elaborate on the chosen element(s) of the overarching theory. The strategy is…

  6. Energetic ions in ITER plasmas

    SciTech Connect

    Pinches, S. D.; Chapman, I. T.; Sharapov, S. E.; Lauber, Ph. W.; Oliver, H. J. C.; Shinohara, K.; Tani, K.

    2015-02-15

    This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.

  7. Prospects of ITER Instability Control

    NASA Astrophysics Data System (ADS)

    Kolemen, Egemen

    2015-11-01

    Prospects for real-time MHD stability analysis, plasma response calculations, and their use in ELM, NTM, RWM control and EFC will be discussed. ITER will need various controls to work together in order to achieve the stated goal of Q >= 10 for multiple minutes. These systems will allow operating at high beta while avoiding disruptions that may lead to damage to the reactor. However, it has not yet been demonstrated whether the combined real-time feedback control aim is feasible given the spectrum of plasma instabilities, the quality of the real-time diagnostic measurement/analysis, and the actuator set at ITER. We will explain challenges of instability control for ITER based on experimental and simulation results. We will demonstrate that it will not be possible to parameterize all possible disruption avoidance and ramp down scenarios that ITER may encounter. An alternative approach based on real-time MHD stability analysis and plasma response calculations, and its use in ELM, NTM, RWM control and EFC, will be demonstrated. Supported by the US DOE under DE-AC02-09CH11466.

  8. Infant Stimulation.

    ERIC Educational Resources Information Center

    International Children's Centre, Paris (France).

    This set of documents consists of English, French, and Spanish translations of four pamphlets on infant stimulation. The pamphlets provide information designed for lay persons, educators and primary care personnel, academics and professionals, and for health administrators and family-planning organizations. The contents cover infant needs; infant…

  9. Correctness properties for iterated hardware structures

    NASA Technical Reports Server (NTRS)

    Windley, Phillip J.

    1993-01-01

    Iterated structures occur frequently in hardware. This paper describes properties required of mathematical relations that can be implemented iteratively and demonstrates the use of these properties on a generalized class of adders. This work provides a theoretical basis for the correct synthesis of iterated arithmetic structures.

  10. Bioinspired iterative synthesis of polyketides

    PubMed Central

    Zheng, Kuan; Xie, Changmin; Hong, Ran

    2015-01-01

    Diverse array of biopolymers and second metabolites (particularly polyketide natural products) has been manufactured in nature through an enzymatic iterative assembly of simple building blocks. Inspired by this strategy, molecules with inherent modularity can be efficiently synthesized by repeated succession of similar reaction sequences. This privileged strategy has been widely adopted in synthetic supramolecular chemistry. Its value also has been reorganized in natural product synthesis. A brief overview of this approach is given with a particular emphasis on the total synthesis of polyol-embedded polyketides, a class of vastly diverse structures and biologically significant natural products. This viewpoint also illustrates the limits of known individual modules in terms of diastereoselectivity and enantioselectivity. More efficient and practical iterative strategies are anticipated to emerge in the future development. PMID:26052510

  11. Projection Classification Based Iterative Algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiqiu; Li, Chen; Gao, Wenhua

    2015-05-01

    Iterative algorithm has good performance as it does not need complete projection data in 3D image reconstruction area. It is possible to be applied in BGA based solder joints inspection but with low convergence speed which usually acts with x-ray Laminography that has a worse reconstruction image compared to the former one. This paper explores to apply one projection classification based method which tries to separate the object to three parts, i.e. solute, solution and air, and suppose that the reconstruction speed decrease from solution to two other parts on both side lineally. And then SART and CAV algorithms are improved under the proposed idea. Simulation experiment result with incomplete projection images indicates the fast convergence speed of the improved iterative algorithms and the effectiveness of the proposed method. Less the projection images, more the superiority is also founded.

  12. Approximate iterative operator method for potential-field downward continuation

    NASA Astrophysics Data System (ADS)

    Tai, Zhenhua; Zhang, Fengxu; Zhang, Fengqin; Hao, Mengcheng

    2016-05-01

    An approximate iterative operator method in wavenumber domain was proposed to improve the stability and accuracy of downward continuation of potential fields measured from the ground surface, marine or airborne. Firstly, the generalized iterative formula of downward continuation is derived in wavenumber domain; then, the transformational relationship between horizontal second-order partial derivatives and continuation is derived based on the Taylor series and Laplace equation, to obtain an approximate operator. By introducing this operator to the generalized iterative formula, a rapid algorithm is developed for downward continuation. The filtering and convergence characteristics of this method are analyzed for the purpose of estimating the optimal interval of number of iterations. We demonstrate the proposed method on synthetic data, and the results validate the flexibility of the proposed method. At last, we apply the proposed method to real data, and the results show the proposed method can enhance gravity anomalies generated by concealed orebodies. And in the contour obtained by making our proposed method results continue upward to measured level, the numerical results have approximate distribution and amplitude with original anomalies.

  13. Real-time Stability Analysis for Disruption Avoidance in ITER

    NASA Astrophysics Data System (ADS)

    Glasser, Alexander; Kolemen, Egemen; Glasser, Alan

    2015-11-01

    ITER is intended to operate at plasma parameters approaching the frontier of achievable stability limits. And yet, plasma disruptions at ITER must be kept to a bare minimum to avoid damage to its plasma-facing structures. These competing goals necessitate real-time plasma stability analysis and feedback control at ITER. This work aims to develop a mechanism for real-time analysis of a large and virulent class of disruptions driven by the rapid growth of ideal MHD unstable modes in tokamak equilibria. Such modes will be identified by a parallelized, low-latency implementation of A.H. Glasser's well-tested DCON (Direct Criterion of Newcomb) code, which measures the energetics of modes in the bulk plasma fluid, as well as M.S. Chance's VACUUM code, which measures the same in the vacuum between the plasma and tokamak chamber wall. Parallelization of these codes is intended to achieve a time-savings of 40x, thereby reducing latency to a timescale of order 100ms and making the codes viable for ideal MHD stability control at ITER. The hardware used to achieve this parallelization will be an Intel Xeon Phi server with 77 cores (308 threads). Supported by the US DOE under DE-AC02-09CH11466.

  14. Overview of Recent Developments in Pellet Injection for ITER

    SciTech Connect

    Combs, Stephen Kirk; Baylor, Larry R; Meitner, Steven J; Caughman, John B; Rasmussen, David A; Maruyama, So

    2012-01-01

    Pellet injection is the primary fueling technique planned for core fueling of ITER burning plasmas. Also, the injection of relatively small pellets to purposely trigger rapid small edge localized modes (ELMs) has been proposed as a possible solution to the heat flux damage from larger natural ELMs likely to be an issue on the ITER divertor surfaces. The ITER pellet injection system is designed to inject pellets into the plasma through both inner and outer wall guide tubes. The inner wall guide tubes will provide high throughput pellet fueling while the outerwall guide tubes will be used primarily to trigger ELMs at a high frequency (>15 Hz). The pellet fueling rate ofeach injector is to be up to 120 Pa-m3/s, which will require the formation of solid D-T at a volumetric rate of ~1500 mm3/s. Two injectors are to be provided for ITER at the startup with a provision for up to six injectorsduring the D-T phase. The required throughput of each injector is greater than that of any injector built to date, and a novel twin-screw continuous extrusion system is being developed to meet the challenging design parameters. Status of the development activities will be presented, highlighting recent progress.

  15. Truncated States Obtained by Iteration

    NASA Astrophysics Data System (ADS)

    Cardoso B., W.; Almeida G. de, N.

    2008-02-01

    We introduce the concept of truncated states obtained via iterative processes (TSI) and study its statistical features, making an analogy with dynamical systems theory (DST). As a specific example, we have studied TSI for the doubling and the logistic functions, which are standard functions in studying chaos. TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST.

  16. US ITER limiter module design

    SciTech Connect

    Mattas, R.F.; Billone, M.; Hassanein, A.

    1996-08-01

    The recent U.S. effort on the ITER (International Thermonuclear Experimental Reactor) shield has been focused on the limiter module design. This is a multi-disciplinary effort that covers design layout, fabrication, thermal hydraulics, materials evaluation, thermo- mechanical response, and predicted response during off-normal events. The results of design analyses are presented. Conclusions and recommendations are also presented concerning, the capability of the limiter modules to meet performance goals and to be fabricated within design specifications using existing technology.

  17. ITER Plasma Control System Development

    NASA Astrophysics Data System (ADS)

    Snipes, Joseph; ITER PCS Design Team

    2015-11-01

    The development of the ITER Plasma Control System (PCS) continues with the preliminary design phase for 1st plasma and early plasma operation in H/He up to Ip = 15 MA in L-mode. The design is being developed through a contract between the ITER Organization and a consortium of plasma control experts from EU and US fusion laboratories, which is expected to be completed in time for a design review at the end of 2016. This design phase concentrates on breakdown including early ECH power and magnetic control of the poloidal field null, plasma current, shape, and position. Basic kinetic control of the heating (ECH, ICH, NBI) and fueling systems is also included. Disruption prediction, mitigation, and maintaining stable operation are also included because of the high magnetic and kinetic stored energy present already for early plasma operation. Support functions for error field topology and equilibrium reconstruction are also required. All of the control functions also must be integrated into an architecture that will be capable of the required complexity of all ITER scenarios. A database is also being developed to collect and manage PCS functional requirements from operational scenarios that were defined in the Conceptual Design with links to proposed event handling strategies and control algorithms for initial basic control functions. A brief status of the PCS development will be presented together with a proposed schedule for design phases up to DT operation.

  18. Iterative methods for mixed finite element equations

    NASA Technical Reports Server (NTRS)

    Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.

    1985-01-01

    Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.

  19. ITER EDA Newsletter. Volume 3, no. 2

    NASA Astrophysics Data System (ADS)

    1994-02-01

    This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the Fifth ITER Council Meeting held in Garching, Germany, January 27-28, 1994, a visit (January 28, 1994) of an international group of Harvard Fellows to the San Diego Joint Work Site, the Inauguration Ceremony of the EC-hosted ITER joint work site in Garching (January 28, 1994), on an ITER Technical Meeting on Assembly and Maintenance held in Garching, Germany, January 19-26, 1994, and a report on a Technical Committee Meeting on radiation effects on in-vessel components held in Garching, Germany, November 15-19, 1993, as well as an ITER Status Report.

  20. ITER density profile with pellet injection

    SciTech Connect

    Houlberg, W.A.

    1989-01-01

    Particle transport in multi-pellet fueled JET plasmas in being examined to help evaluate density profile behavior in ITER. Preliminary results of the JET analysis were reported at the IAEA Technical Committee Meeting on Pellets in October 1988. In sawtooth free JET discharges, the density profile evolution after injection of pellets can be modeled with the neoclassical Ware pinch and a diffusion coefficient that is small in the plasma core and increased sharply in the vicinity of the q = 2 surface. This model is applicable to both ohmic and central ICRF heated discharges. Some of the auxiliary heated plasmas show a more rapid central density decay that appears to be related to MHD activity observed in soft x-ray signals. In these discharges the density profile evolution can be modeled with a temperature dependent diffusion coefficient and the neoclassical Ware pinch. There is a strong correlation between the inferred local particle and heat transport coefficients in all discharges. Plasmas with non-central pellet penetration show no significant density peaking, consistent with the small Ware pinch term. These results appear to conflict with those reported for ASDEX. There it was found that sustained pellet injection during neutral beam and ICRF heating, with pellet penetration of only half the plasma radius, led to markedly peaked electron density profiles as well as high edge recycling, reduced sawtooth activity, central impurity radiation, enhanced density limit, and improved global energy confinement. Thus, the implications of these results for ITER are still highly speculative because of the lack of knowledge about scaling with machine parameters. The JET results suggest that relatively deep fueling may be required to significantly influence the density profile shape, while the ASDEX results imply that partial penetration may be sufficient. 20 figs.

  1. Caloric stimulation

    MedlinePlus

    ... temperature, it should cause fast, side-to-side eye movements called nystagmus. The test is done in the ... Rapid, side-to-side eye movements should occur when cold or warm water is placed into the ear. The eye movements should be similar on both ...

  2. P-SPARSLIB: A parallel sparse iterative solution package

    SciTech Connect

    Saad, Y.

    1994-12-31

    Iterative methods are gaining popularity in engineering and sciences at a time where the computational environment is changing rapidly. P-SPARSLIB is a project to build a software library for sparse matrix computations on parallel computers. The emphasis is on iterative methods and the use of distributed sparse matrices, an extension of the domain decomposition approach to general sparse matrices. One of the goals of this project is to develop a software package geared towards specific applications. For example, the author will test the performance and usefulness of P-SPARSLIB modules on linear systems arising from CFD applications. Equally important is the goal of portability. In the long run, the author wishes to ensure that this package is portable on a variety of platforms, including SIMD environments and shared memory environments.

  3. The physics role of ITER

    SciTech Connect

    Rutherford, P.H.

    1997-04-01

    Experimental research on the International Thermonuclear Experimental Reactor (ITER) will go far beyond what is possible on present-day tokamaks to address new and challenging issues in the physics of reactor-like plasmas. First and foremost, experiments in ITER will explore the physics issues of burning plasmas--plasmas that are dominantly self-heated by alpha-particles created by the fusion reactions themselves. Such issues will include (i) new plasma-physical effects introduced by the presence within the plasma of an intense population of energetic alpha particles; (ii) the physics of magnetic confinement for a burning plasma, which will involve a complex interplay of transport, stability and an internal self-generated heat source; and (iii) the physics of very-long-pulse/steady-state burning plasmas, in which much of the plasma current is also self-generated and which will require effective control of plasma purity and plasma-wall interactions. Achieving and sustaining burning plasma regimes in a tokamak necessarily requires plasmas that are larger than those in present experiments and have higher energy content and power flow, as well as much longer pulse length. Accordingly, the experimental program on ITER will embrace the study of issues of plasma physics and plasma-materials interactions that are specific to a reactor-scale fusion experiment. Such issues will include (i) confinement physics for a tokamak in which, for the first time, the core-plasma and the edge-plasma are simultaneously in a reactor-like regime; (ii) phenomena arising during plasma transients, including so-called disruptions, in regimes of high plasma current and thermal energy; and (iii) physics of a radiative divertor designed for handling high power flow for long pulses, including novel plasma and atomic-physics effects as well as materials science of surfaces subject to intense plasma interaction. Experiments on ITER will be conducted by researchers in control rooms situated at major

  4. Iterates of maps with symmetry

    NASA Technical Reports Server (NTRS)

    Chossat, Pascal; Golubitsky, Martin

    1988-01-01

    Fixed-point bifurcation, period doubling, and Hopf bifurcation (HB) for iterates of equivariant mappings are investigated analytically, with a focus on HB in the presence of symmetry. An algebraic formulation for the hypotheses of the theorem of Ruelle (1973) is derived, and the case of standing waves in a system of ordinary differential equations with O(2) symmetry is considered in detail. In this case, it is shown that HB can lead directly to motion on an invariant 3-torus, with an unexpected third frequency due to drift of standing waves along the torus.

  5. [MRI compatibility of deep brain stimulator].

    PubMed

    Zhang, Yujing

    2013-07-01

    Deep brain stimulation (DBS) therapy develops rapidly in clinical application. The structures of deep brain stimulator and magnetic resonance imaging (MRI) equipment are introduced, the interactions are analyzed, and the two compatible problems of radio frequency (RF) heating and imaging artifact are summarized in this paper. PMID:24195387

  6. Experimental Evidence on Iterated Reasoning in Games

    PubMed Central

    Grehl, Sascha; Tutić, Andreas

    2015-01-01

    We present experimental evidence on two forms of iterated reasoning in games, i.e. backward induction and interactive knowledge. Besides reliable estimates of the cognitive skills of the subjects, our design allows us to disentangle two possible explanations for the observed limits in performed iterated reasoning: Restrictions in subjects’ cognitive abilities and their beliefs concerning the rationality of co-players. In comparison to previous literature, our estimates regarding subjects’ skills in iterated reasoning are quite pessimistic. Also, we find that beliefs concerning the rationality of co-players are completely irrelevant in explaining the observed limited amount of iterated reasoning in the dirty faces game. In addition, it is demonstrated that skills in backward induction are a solid predictor for skills in iterated knowledge, which points to some generalized ability of the subjects in iterated reasoning. PMID:26312486

  7. Challenges for Cryogenics at Iter

    NASA Astrophysics Data System (ADS)

    Serio, L.

    2010-04-01

    Nuclear fusion of light nuclei is a promising option to provide clean, safe and cost competitive energy in the future. The ITER experimental reactor being designed by seven partners representing more than half of the world population will be assembled at Cadarache, South of France in the next decade. It is a thermonuclear fusion Tokamak that requires high magnetic fields to confine and stabilize the plasma. Cryogenic technology is extensively employed to achieve low-temperature conditions for the magnet and vacuum pumping systems. Efficient and reliable continuous operation shall be achieved despite unprecedented dynamic heat loads due to magnetic field variations and neutron production from the fusion reaction. Constraints and requirements of the largest superconducting Tokamak machine have been analyzed. Safety and technical risks have been initially assessed and proposals to mitigate the consequences analyzed. Industrial standards and components are being investigated to anticipate the requirements of reliable and efficient large scale energy production. After describing the basic features of ITER and its cryogenic system, we shall present the key design requirements, improvements, optimizations and challenges.

  8. ITER Port Interspace Pressure Calculations

    SciTech Connect

    Carbajo, Juan J; Van Hove, Walter A

    2016-01-01

    The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.

  9. Status of US ITER Diagnostics

    NASA Astrophysics Data System (ADS)

    Stratton, B.; Delgado-Aparicio, L.; Hill, K.; Johnson, D.; Pablant, N.; Barnsley, R.; Bertschinger, G.; de Bock, M. F. M.; Reichle, R.; Udintsev, V. S.; Watts, C.; Austin, M.; Phillips, P.; Beiersdorfer, P.; Biewer, T. M.; Hanson, G.; Klepper, C. C.; Carlstrom, T.; van Zeeland, M. A.; Brower, D.; Doyle, E.; Peebles, A.; Ellis, R.; Levinton, F.; Yuh, H.

    2013-10-01

    The US is providing 7 diagnostics to ITER: the Upper Visible/IR cameras, the Low Field Side Reflectometer, the Motional Stark Effect diagnostic, the Electron Cyclotron Emission diagnostic, the Toroidal Interferometer/Polarimeter, the Core Imaging X-Ray Spectrometer, and the Diagnostic Residual Gas Analyzer. The front-end components of these systems must operate with high reliability in conditions of long pulse operation, high neutron and gamma fluxes, very high neutron fluence, significant neutron heating (up to 7 MW/m3) , large radiant and charge exchange heat flux (0.35 MW/m2) , and high electromagnetic loads. Opportunities for repair and maintenance of these components will be limited. These conditions lead to significant challenges for the design of the diagnostics. Space constraints, provision of adequate radiation shielding, and development of repair and maintenance strategies are challenges for diagnostic integration into the port plugs that also affect diagnostic design. The current status of design of the US ITER diagnostics is presented and R&D needs are identified. Supported by DOE contracts DE-AC02-09CH11466 (PPPL) and DE-AC05-00OR22725 (UT-Battelle, LLC).

  10. ETR/ITER systems code

    SciTech Connect

    Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.

    1988-04-01

    A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.

  11. Preconditioned iterations to calculate extreme eigenvalues

    SciTech Connect

    Brand, C.W.; Petrova, S.

    1994-12-31

    Common iterative algorithms to calculate a few extreme eigenvalues of a large, sparse matrix are Lanczos methods or power iterations. They converge at a rate proportional to the separation of the extreme eigenvalues from the rest of the spectrum. Appropriate preconditioning improves the separation of the eigenvalues. Davidson`s method and its generalizations exploit this fact. The authors examine a preconditioned iteration that resembles a truncated version of Davidson`s method with a different preconditioning strategy.

  12. Plasma-surface interaction in the context of ITER.

    PubMed

    Kleyn, A W; Lopes Cardozo, N J; Samm, U

    2006-04-21

    The decreasing availability of energy and concern about climate change necessitate the development of novel sustainable energy sources. Fusion energy is such a source. Although it will take several decades to develop it into routinely operated power sources, the ultimate potential of fusion energy is very high and badly needed. A major step forward in the development of fusion energy is the decision to construct the experimental test reactor ITER. ITER will stimulate research in many areas of science. This article serves as an introduction to some of those areas. In particular, we discuss research opportunities in the context of plasma-surface interactions. The fusion plasma, with a typical temperature of 10 keV, has to be brought into contact with a physical wall in order to remove the helium produced and drain the excess energy in the fusion plasma. The fusion plasma is far too hot to be brought into direct contact with a physical wall. It would degrade the wall and the debris from the wall would extinguish the plasma. Therefore, schemes are developed to cool down the plasma locally before it impacts on a physical surface. The resulting plasma-surface interaction in ITER is facing several challenges including surface erosion, material redeposition and tritium retention. In this article we introduce how the plasma-surface interaction relevant for ITER can be studied in small scale experiments. The various requirements for such experiments are introduced and examples of present and future experiments will be given. The emphasis in this article will be on the experimental studies of plasma-surface interactions. PMID:16633660

  13. Iterative Time Reversal Simulation for Selective Focusing in Multi-target Nonlinear Media

    NASA Astrophysics Data System (ADS)

    Su, Chang; Peng, Zhefan; Lin, Weijun

    In High Intensity Focused Ultrasound (HIFU), when multiple targets are present in a linear medium, ultrasound can focus on the strongest target by using an iterative time-reversal(TR) method. However, the validation of iterative TR in nonlinear human tissue still needs to be investigated. In the study, the TR and iterative TR processes are numerically simulated with a finite difference method in two dimension, considering the nonlinear effects. Results show that TR is valid in nonlinear human tissues with some difference in focus accuracy and intensity gain comparing to that in linear media. The nonlinearity of the media increases the intensity gain at the focal point, while the absorption decreases the focal gain and changes the position of the focal spot. Iterative TR works well in nonlinear media and the lobe on the weaker target attenuates more rapidly than in linear media.

  14. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    SciTech Connect

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  15. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    NASA Astrophysics Data System (ADS)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  16. Benchmarking ICRF simulations for ITER

    SciTech Connect

    R. V. Budny, L. Berry, R. Bilato, P. Bonoli, M. Brambilla, R.J. Dumont, A. Fukuyama, R. Harvey, E.F. Jaeger, E. Lerche, C.K. Phillips, V. Vdovin, J. Wright, and members of the ITPA-IOS

    2010-09-28

    Abstract Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode plasma. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by seven groups to predict the ICRF electromagnetic fields and heating profiles. Approximate agreement is achieved for the predicted heating power partitions for the DT and He4 cases. Profiles of the heating powers and electromagnetic fields are compared.

  17. New concurrent iterative methods with monotonic convergence

    SciTech Connect

    Yao, Qingchuan

    1996-12-31

    This paper proposes the new concurrent iterative methods without using any derivatives for finding all zeros of polynomials simultaneously. The new methods are of monotonic convergence for both simple and multiple real-zeros of polynomials and are quadratically convergent. The corresponding accelerated concurrent iterative methods are obtained too. The new methods are good candidates for the application in solving symmetric eigenproblems.

  18. An accelerated subspace iteration for eigenvector derivatives

    NASA Technical Reports Server (NTRS)

    Ting, Tienko

    1991-01-01

    An accelerated subspace iteration method for calculating eigenvector derivatives has been developed. Factors affecting the effectiveness and the reliability of the subspace iteration are identified, and effective strategies concerning these factors are presented. The method has been implemented, and the results of a demonstration problem are presented.

  19. Iterative methods for weighted least-squares

    SciTech Connect

    Bobrovnikova, E.Y.; Vavasis, S.A.

    1996-12-31

    A weighted least-squares problem with a very ill-conditioned weight matrix arises in many applications. Because of round-off errors, the standard conjugate gradient method for solving this system does not give the correct answer even after n iterations. In this paper we propose an iterative algorithm based on a new type of reorthogonalization that converges to the solution.

  20. ELM control strategies and tools: status and potential for ITER

    NASA Astrophysics Data System (ADS)

    Lang, P. T.; Loarte, A.; Saibene, G.; Baylor, L. R.; Becoulet, M.; Cavinato, M.; Clement-Lorenzo, S.; Daly, E.; Evans, T. E.; Fenstermacher, M. E.; Gribov, Y.; Horton, L. D.; Lowry, C.; Martin, Y.; Neubauer, O.; Oyama, N.; Schaffer, M. J.; Stork, D.; Suttrop, W.; Thomas, P.; Tran, M.; Wilson, H. R.; Kavin, A.; Schmitz, O.

    2013-04-01

    Operating ITER in the reference inductive scenario at the design values of Ip = 15 MA and QDT = 10 requires the achievement of good H-mode confinement that relies on the presence of an edge transport barrier whose pedestal pressure height is key to plasma performance. Strong gradients occur at the edge in such conditions that can drive magnetohydrodynamic instabilities resulting in edge localized modes (ELMs), which produce a rapid energy loss from the pedestal region to the plasma facing components (PFC). Without appropriate control, the heat loads on PFCs during ELMs in ITER are expected to become significant for operation in H-mode at Ip = 6-9 MA operation at higher plasma currents would result in a very reduced life time of the PFCs. Currently, several options are being considered for the achievement of the required level of ELM control in ITER; this includes operation in plasma regimes which naturally have no or very small ELMs, decreasing the ELM energy loss by increasing their frequency by a factor of up to 30 and avoidance of ELMs by actively controlling the edge with magnetic perturbations. Small/no ELM regimes obtained by influencing the edge stability (by plasma shaping, rotational shear control, etc) have shown in present experiments a significant reduction of the ELM heat fluxes compared to type-I ELMs. However, so far they have only been observed under a limited range of pedestal conditions depending on each specific device and their extrapolation to ITER remains uncertain. ELM control by increasing their frequency relies on the controlled triggering of the edge instability leading to the ELM. This has been presently demonstrated with the injection of pellets and with plasma vertical movements; pellets having provided the results more promising for application in ITER conditions. ELM avoidance/suppression takes advantage of the fact that relatively small changes in the pedestal plasma and magnetic field parameters seem to have a large stabilizing

  1. Acceleration of iterative image restoration algorithms.

    PubMed

    Biggs, D S; Andrews, M

    1997-03-10

    A new technique for the acceleration of iterative image restoration algorithms is proposed. The method is based on the principles of vector extrapolation and does not require the minimization of a cost function. The algorithm is derived and its performance illustrated with Richardson-Lucy (R-L) and maximum entropy (ME) deconvolution algorithms and the Gerchberg-Saxton magnitude and phase retrieval algorithms. Considerable reduction in restoration times is achieved with little image distortion or computational overhead per iteration. The speedup achieved is shown to increase with the number of iterations performed and is easily adapted to suit different algorithms. An example R-L restoration achieves an average speedup of 40 times after 250 iterations and an ME method 20 times after only 50 iterations. An expression for estimating the acceleration factor is derived and confirmed experimentally. Comparisons with other acceleration techniques in the literature reveal significant improvements in speed and stability. PMID:18250863

  2. Electrical stimulation in exercise training

    NASA Technical Reports Server (NTRS)

    Kroll, Walter

    1994-01-01

    muscle strength for over a century. Bigelow reported in 1894, for example, the use of electrical stimulation on a young man for the purpose of increasing muscle strength. Employing a rapidly alternating sinusoidal induced current and a dynamometer for strength testing, Bigelow reported that the total lifting capacity of a patient increased from 4328 pounds to 4639 pounds after only 25 minutes of stimulation. In 1965, Massey et al. reported on the use of an Isotron electrical stimulator that emitted a high frequency current. Interestingly enough, the frequencies used by Massey et al. and the frequencies used by Bigelow in 1894 were in the same range of frequencies reported by Kots as being the most effective in strength development. It would seem the Russian secret of high frequency electrical stimulation for strength development, then, is not a modern development at all.

  3. On the interplay between inner and outer iterations for a class of iterative methods

    SciTech Connect

    Giladi, E.

    1994-12-31

    Iterative algorithms for solving linear systems of equations often involve the solution of a subproblem at each step. This subproblem is usually another linear system of equations. For example, a preconditioned iteration involves the solution of a preconditioner at each step. In this paper, the author considers algorithms for which the subproblem is also solved iteratively. The subproblem is then said to be solved by {open_quotes}inner iterations{close_quotes} while the term {open_quotes}outer iteration{close_quotes} refers to a step of the basic algorithm. The cost of performing an outer iteration is dominated by the solution of the subproblem, and can be measured by the number of inner iterations. A good measure of the total amount of work needed to solve the original problem to some accuracy c is then, the total number of inner iterations. To lower the amount of work, one can consider solving the subproblems {open_quotes}inexactly{close_quotes} i.e. not to full accuracy. Although this diminishes the cost of solving each subproblem, it usually slows down the convergence of the outer iteration. It is therefore interesting to study the effect of solving each subproblem inexactly on the total amount of work. Specifically, the author considers strategies in which the accuracy to which the inner problem is solved, changes from one outer iteration to the other. The author seeks the `optimal strategy`, that is, the one that yields the lowest possible cost. Here, the author develops a methodology to find the optimal strategy, from the set of slowly varying strategies, for some iterative algorithms. This methodology is applied to the Chebychev iteration and it is shown that for Chebychev iteration, a strategy in which the inner-tolerance remains constant is optimal. The author also estimates this optimal constant. Then generalizations to other iterative procedures are discussed.

  4. A fast iterative method to compute the flow around a submerged body

    SciTech Connect

    Malmliden, J.F.; Petersson, N.A.

    1996-07-01

    The authors develop an efficient iterative method for computing steady linearized potential flow around a submerged body moving in a liquid of finite constant depth. In this paper they restrict the presentation to the two-dimensional problem, but the method is readily generalizable to the three-dimensional case, i.e., the flow in a canal. The problem is indefinite, which makes the convergence of most iterative methods unstable. To circumvent this difficulty, the authors decompose the problem into two more easily solvable subproblems and form a Schwarz-type iteration to solve the original problem. The first subproblem is definite and can therefore be solved by standard iterative methods. The second subproblem is indefinite but has no body. It is therefore easily and efficiently solvable by separation of variables. The authors prove that the iteration converges for sufficiently small Froude numbers. In addition, they present numerical results for a second-order accurate discretization of the problem. They demonstrate that the iterative method converges rapidly, and that the convergences rate improves when the Froude number decreases. They also verify numerically that the convergence rate is essentially independent of the grid size. 20 refs., 6 figs., 10 tabs.

  5. ITER Ion Cyclotron Heating and Fueling Systems

    SciTech Connect

    Rasmussen, D.A.; Baylor, L.R.; Combs, S.K.; Fredd, E.; Goulding, R.H.; Hosea, J.; Swain, D.W.

    2005-04-15

    The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.

  6. Progress on ITER Diagnostic Integration

    NASA Astrophysics Data System (ADS)

    Johnson, David; Feder, Russ; Klabacha, Jonathan; Loesser, Doug; Messineo, Mike; Stratton, Brentley; Wood, Rick; Zhai, Yuhu; Andrew, Phillip; Barnsley, Robin; Bertschinger, Guenter; Debock, Maarten; Reichle, Roger; Udintsev, Victor; Vayakis, George; Watts, Christopher; Walsh, Michael

    2013-10-01

    On ITER, front-end components must operate reliably in a hostile environment. Many will be housed in massive port plugs, which also shield the machine from radiation. Multiple diagnostics reside in a single plug, presenting new challenges for developers. Front-end components must tolerate thermally-induced stresses, disruption-induced mechanical loads, stray ECH radiation, displacement damage, and degradation due to plasma-induced coatings. The impact of failures is amplified due to the difficulty in performing robotic maintenance on these large structures. Motivated by needs to minimize disruption loads on the plugs, standardize the handling of shield modules, and decouple the parallel efforts of the many parties, the packaging strategy for diagnostics has recently focused on the use of 3 vertical shield modules inserted from the plasma side into each equatorial plug structure. At the front of each is a detachable first wall element with customized apertures. Progress on US equatorial and upper plugs will be used as examples, including the layout of components in the interspace and port cell regions. Supported by PPPL under contract DE-AC02-09CH11466 and UT-Battelle, LLC under contract DE-AC05-00OR22725 with the U.S. DOE.

  7. Iterants, Fermions and Majorana Operators

    NASA Astrophysics Data System (ADS)

    Kauffman, Louis H.

    Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.

  8. Multichannel blind iterative image restoration.

    PubMed

    Sroubek, Filip; Flusser, Jan

    2003-01-01

    Blind image deconvolution is required in many applications of microscopy imaging, remote sensing, and astronomical imaging. Unfortunately in a single-channel framework, serious conceptual and numerical problems are often encountered. Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework which determines perfectly convolution masks in a noise-free environment if channel disparity, called co-primeness, is satisfied. We propose a novel iterative algorithm based on recent anisotropic denoising techniques of total variation and a Mumford-Shah functional with the EVAM restoration condition included. A linearization scheme of half-quadratic regularization together with a cell-centered finite difference discretization scheme is used in the algorithm and provides a unified approach to the solution of total variation or Mumford-Shah. The algorithm performs well even on very noisy images and does not require an exact estimation of mask orders. We demonstrate capabilities of the algorithm on synthetic data. Finally, the algorithm is applied to defocused images taken with a digital camera and to data from astronomical ground-based observations of the Sun. PMID:18237981

  9. Computer implementations of iterative and non-iterative crystal plasticity solvers on high performance graphics hardware

    NASA Astrophysics Data System (ADS)

    Savage, Daniel J.; Knezevic, Marko

    2015-10-01

    We present parallel implementations of Newton-Raphson iterative and spectral based non-iterative solvers for single-crystal visco-plasticity models on a specialized computer hardware integrating a graphics-processing unit (GPU). We explore two implementations for the iterative solver on GPU multiprocessors: one based on a thread per crystal parallelization on local memory and another based on multiple threads per crystal on shared memory. The non-iterative solver implementation on the GPU hardware is based on a divide-conquer approach for matrix operations. The reduction of computational time for the iterative scheme was found to approach one order of magnitude. From detailed performance comparisons of the developed GPU iterative and non-iterative implementations, we conclude that the spectral non-iterative solver programed on a GPU platform is superior over the iterative implementation in terms of runtime as well as ease of implementation. It provides remarkable speedup factors exceeding three orders of magnitude over the iterative scalar version of the solver.

  10. Label-Free Neurosurgical Pathology with Stimulated Raman Imaging.

    PubMed

    Lu, Fa-Ke; Calligaris, David; Olubiyi, Olutayo I; Norton, Isaiah; Yang, Wenlong; Santagata, Sandro; Xie, X Sunney; Golby, Alexandra J; Agar, Nathalie Y R

    2016-06-15

    The goal of brain tumor surgery is to maximize tumor removal without injuring critical brain structures. Achieving this goal is challenging as it can be difficult to distinguish tumor from nontumor tissue. While standard histopathology provides information that could assist tumor delineation, it cannot be performed iteratively during surgery as freezing, sectioning, and staining of the tissue require too much time. Stimulated Raman scattering (SRS) microscopy is a powerful label-free chemical imaging technology that enables rapid mapping of lipids and proteins within a fresh specimen. This information can be rendered into pathology-like images. Although this approach has been used to assess the density of glioma cells in murine orthotopic xenografts models and human brain tumors, tissue heterogeneity in clinical brain tumors has not yet been fully evaluated with SRS imaging. Here we profile 41 specimens resected from 12 patients with a range of brain tumors. By evaluating large-scale stimulated Raman imaging data and correlating this data with current clinical gold standard of histopathology for 4,422 fields of view, we capture many essential diagnostic hallmarks for glioma classification. Notably, in fresh tumor samples, we observe additional features, not seen by conventional methods, including extensive lipid droplets within glioma cells, collagen deposition in gliosarcoma, and irregularity and disruption of myelinated fibers in areas infiltrated by oligodendroglioma cells. The data are freely available in a public resource to foster diagnostic training and to permit additional interrogation. Our work establishes the methodology and provides a significant collection of reference images for label-free neurosurgical pathology. Cancer Res; 76(12); 3451-62. ©2016 AACR. PMID:27197198

  11. On the safety of ITER accelerators.

    PubMed

    Li, Ge

    2013-01-01

    Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate -1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER. PMID:24008267

  12. US sanctions on Russia hit ITER council

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2014-06-01

    The ITER fusion experiment has had to bow to the impact of US sanctions against Russia and move the venue of its council meeting, scheduled for 18-19 June, from St Petersburg to the project headquarters in Cadarache, France.

  13. Budget woes continue to hamper ITER

    NASA Astrophysics Data System (ADS)

    Starckx, Senne

    2011-02-01

    A financial rescue package for ITER - the experimental nuclear-fusion reactor that is currently being built in Cadarache, France - has been refused by the European Parliament and the European Council.

  14. Archimedes' Pi--An Introduction to Iteration.

    ERIC Educational Resources Information Center

    Lotspeich, Richard

    1988-01-01

    One method (attributed to Archimedes) of approximating pi offers a simple yet interesting introduction to one of the basic ideas of numerical analysis, an iteration sequence. The method is described and elaborated. (PK)

  15. Three-dimensional stellarator equilibria by iteration

    SciTech Connect

    Boozer, A.H.

    1983-02-01

    The iterative method of evaluating plasma equilibria is especially simple in a magnetic coordinate representation. This method is particularly useful for clarifying the subtle constraints of three-dimensional equilibria and studying magnetic surface breakup at high plasma beta.

  16. Anderson Acceleration for Fixed-Point Iterations

    SciTech Connect

    Walker, Homer F.

    2015-08-31

    The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.

  17. The Physics Basis of ITER Confinement

    SciTech Connect

    Wagner, F.

    2009-02-19

    ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode--the preferred confinement regime of ITER.

  18. ITER Magnet Feeder: Design, Manufacturing and Integration

    NASA Astrophysics Data System (ADS)

    CHEN, Yonghua; ILIN, Y.; M., SU; C., NICHOLAS; BAUER, P.; JAROMIR, F.; LU, Kun; CHENG, Yong; SONG, Yuntao; LIU, Chen; HUANG, Xiongyi; ZHOU, Tingzhi; SHEN, Guang; WANG, Zhongwei; FENG, Hansheng; SHEN, Junsong

    2015-03-01

    The International Thermonuclear Experimental Reactor (ITER) feeder procurement is now well underway. The feeder design has been improved by the feeder teams at the ITER Organization (IO) and the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in the last 2 years along with analyses and qualification activities. The feeder design is being progressively finalized. In addition, the preparation of qualification and manufacturing are well scheduled at ASIPP. This paper mainly presents the design, the overview of manufacturing and the status of integration on the ITER magnet feeders. supported by the National Special Support for R&D on Science and Technology for ITER (Ministry of Public Security of the People's Republic of China-MPS) (No. 2008GB102000)

  19. Novel aspects of plasma control in ITER

    SciTech Connect

    Humphreys, D.; Jackson, G.; Walker, M.; Welander, A.; Ambrosino, G.; Pironti, A.; Felici, F.; Kallenbach, A.; Raupp, G.; Treutterer, W.; Kolemen, E.; Lister, J.; Sauter, O.; Moreau, D.; Schuster, E.

    2015-02-15

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  20. An Iterative Soft-Decision Decoding Algorithm

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Koumoto, Takuya; Takata, Toyoo; Kasami, Tadao

    1996-01-01

    This paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. Simulation results for the RM(64,22), EBCH(64,24), RM(64,42) and EBCH(64,45) codes show that the proposed decoding algorithm achieves practically (or near) optimal error performance with significant reduction in decoding computational complexity. The average number of search iterations is also small even for low signal-to-noise ratio.

  1. Novel aspects of plasma control in ITER

    NASA Astrophysics Data System (ADS)

    Humphreys, D.; Ambrosino, G.; de Vries, P.; Felici, F.; Kim, S. H.; Jackson, G.; Kallenbach, A.; Kolemen, E.; Lister, J.; Moreau, D.; Pironti, A.; Raupp, G.; Sauter, O.; Schuster, E.; Snipes, J.; Treutterer, W.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.

    2015-02-01

    ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.

  2. Programmable Iterative Optical Image And Data Processing

    NASA Technical Reports Server (NTRS)

    Jackson, Deborah J.

    1995-01-01

    Proposed method of iterative optical image and data processing overcomes limitations imposed by loss of optical power after repeated passes through many optical elements - especially, beam splitters. Involves selective, timed combination of optical wavefront phase conjugation and amplification to regenerate images in real time to compensate for losses in optical iteration loops; timing such that amplification turned on to regenerate desired image, then turned off so as not to regenerate other, undesired images or spurious light propagating through loops from unwanted reflections.

  3. Gyrokinetic Simulations of the ITER Pedestal

    NASA Astrophysics Data System (ADS)

    Kotschenreuther, Mike

    2015-11-01

    It has been reported that low collisionality pedestals for JET parameters are strongly stable to Kinetic Ballooning Modes (KBM), and it is, as simulations with GENE show, the drift-tearing modes that produce the pedestal transport. It would seem, then, that gyrokinetic simulations may be a powerful, perhaps, indispensable tool for probing the characteristics of the H-mode pedestal in ITER especially since projected ITER pedestals have the normalized gyroradius ρ* smaller than the range of present experimental investigation; they do lie, however, within the regime of validity of gyrokinetics. Since ExB shear becomes small as ρ* approaches zero, strong drift turbulence will eventually be excited. Finding an answer to the question whether the ITER ρ* is small enough to place it in the high turbulence regime compels serious investigation. We begin with MHD equilibria (including pedestal bootstrap current) constructed using VMEC. Plasma profile shapes, very close to JET experimental profiles, are scaled to values expected on ITER (e.g., a 4 keV pedestal). The equilibrium ExB shear is computed using a neoclassical formula for the radial electric field. As with JET, the ITER pedestal is found to be strongly stable to KBM. Preliminary nonlinear simulations with GENE show that the turbulent drift transport is strong for ITER; the electrostatic transport has a highly unfavorable scaling from JET to ITER, going from being highly sub-dominant to electromagnetic transport on JET, to dominant on ITER. At burning plasma parameters, pedestals in spherical tokamak H-modes may have much stronger velocity shear, and hence more favorable transport; preliminary investigations will be reported. This research supported by U.S. Department of Energy, Office of Fusion Energy Science: Grant No. DE-FG02-04ER-54742.

  4. EDITORIAL: ECRH physics and technology in ITER

    NASA Astrophysics Data System (ADS)

    Luce, T. C.

    2008-05-01

    It is a great pleasure to introduce you to this special issue containing papers from the 4th IAEA Technical Meeting on ECRH Physics and Technology in ITER, which was held 6-8 June 2007 at the IAEA Headquarters in Vienna, Austria. The meeting was attended by more than 40 ECRH experts representing 13 countries and the IAEA. Presentations given at the meeting were placed into five separate categories EC wave physics: current understanding and extrapolation to ITER Application of EC waves to confinement and stability studies, including active control techniques for ITER Transmission systems/launchers: state of the art and ITER relevant techniques Gyrotron development towards ITER needs System integration and optimisation for ITER. It is notable that the participants took seriously the focal point of ITER, rather than simply contributing presentations on general EC physics and technology. The application of EC waves to ITER presents new challenges not faced in the current generation of experiments from both the physics and technology viewpoints. High electron temperatures and the nuclear environment have a significant impact on the application of EC waves. The needs of ITER have also strongly motivated source and launcher development. Finally, the demonstrated ability for precision control of instabilities or non-inductive current drive in addition to bulk heating to fusion burn has secured a key role for EC wave systems in ITER. All of the participants were encouraged to submit their contributions to this special issue, subject to the normal publication and technical merit standards of Nuclear Fusion. Almost half of the participants chose to do so; many of the others had been published in other publications and therefore could not be included in this special issue. The papers included here are a representative sample of the meeting. The International Advisory Committee also asked the three summary speakers from the meeting to supply brief written summaries (O. Sauter

  5. Rapid Prototyping

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  6. Newton iterative methods for large scale nonlinear systems

    SciTech Connect

    Walker, H.F.; Turner, K.

    1993-01-01

    Objective is to develop robust, efficient Newton iterative methods for general large scale problems well suited for discretizations of partial differential equations, integral equations, and other continuous problems. A concomitant objective is to develop improved iterative linear algebra methods. We first outline research on Newton iterative methods and then review work on iterative linear algebra methods. (DLC)

  7. Accelerating the weighted histogram analysis method by direct inversion in the iterative subspace

    PubMed Central

    Zhang, Cheng; Lai, Chun-Liang; Pettitt, B. Montgomery

    2016-01-01

    The weighted histogram analysis method (WHAM) for free energy calculations is a valuable tool to produce free energy differences with the minimal errors. Given multiple simulations, WHAM obtains from the distribution overlaps the optimal statistical estimator of the density of states, from which the free energy differences can be computed. The WHAM equations are often solved by an iterative procedure. In this work, we use a well-known linear algebra algorithm which allows for more rapid convergence to the solution. We find that the computational complexity of the iterative solution to WHAM and the closely-related multiple Bennett acceptance ratio (MBAR) method can be improved by using the method of direct inversion in the iterative subspace. We give examples from a lattice model, a simple liquid and an aqueous protein solution. PMID:27453632

  8. PREFACE: Progress in the ITER Physics Basis

    NASA Astrophysics Data System (ADS)

    Ikeda, K.

    2007-06-01

    I would firstly like to congratulate all who have contributed to the preparation of the `Progress in the ITER Physics Basis' (PIPB) on its publication and express my deep appreciation of the hard work and commitment of the many scientists involved. With the signing of the ITER Joint Implementing Agreement in November 2006, the ITER Members have now established the framework for construction of the project, and the ITER Organization has begun work at Cadarache. The review of recent progress in the physics basis for burning plasma experiments encompassed by the PIPB will be a valuable resource for the project and, in particular, for the current Design Review. The ITER design has been derived from a physics basis developed through experimental, modelling and theoretical work on the properties of tokamak plasmas and, in particular, on studies of burning plasma physics. The `ITER Physics Basis' (IPB), published in 1999, has been the reference for the projection methodologies for the design of ITER, but the IPB also highlighted several key issues which needed to be resolved to provide a robust basis for ITER operation. In the intervening period scientists of the ITER Participant Teams have addressed these issues intensively. The International Tokamak Physics Activity (ITPA) has provided an excellent forum for scientists involved in these studies, focusing their work on the high priority physics issues for ITER. Significant progress has been made in many of the issues identified in the IPB and this progress is discussed in depth in the PIPB. In this respect, the publication of the PIPB symbolizes the strong interest and enthusiasm of the plasma physics community for the success of the ITER project, which we all recognize as one of the great scientific challenges of the 21st century. I wish to emphasize my appreciation of the work of the ITPA Coordinating Committee members, who are listed below. Their support and encouragement for the preparation of the PIPB were

  9. Comparison of Iterative and Non-Iterative Strain-Gage Balance Load Calculation Methods

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2010-01-01

    The accuracy of iterative and non-iterative strain-gage balance load calculation methods was compared using data from the calibration of a force balance. Two iterative and one non-iterative method were investigated. In addition, transformations were applied to balance loads in order to process the calibration data in both direct read and force balance format. NASA's regression model optimization tool BALFIT was used to generate optimized regression models of the calibration data for each of the three load calculation methods. This approach made sure that the selected regression models met strict statistical quality requirements. The comparison of the standard deviation of the load residuals showed that the first iterative method may be applied to data in both the direct read and force balance format. The second iterative method, on the other hand, implicitly assumes that the primary gage sensitivities of all balance gages exist. Therefore, the second iterative method only works if the given balance data is processed in force balance format. The calibration data set was also processed using the non-iterative method. Standard deviations of the load residuals for the three load calculation methods were compared. Overall, the standard deviations show very good agreement. The load prediction accuracies of the three methods appear to be compatible as long as regression models used to analyze the calibration data meet strict statistical quality requirements. Recent improvements of the regression model optimization tool BALFIT are also discussed in the paper.

  10. Iterative contextual CV model for liver segmentation

    NASA Astrophysics Data System (ADS)

    Ji, Hongwei; He, Jiangping; Yang, Xin

    2014-01-01

    In this paper, we propose a novel iterative active contour algorithm, i.e. Iterative Contextual CV Model (ICCV), and apply it to automatic liver segmentation from 3D CT images. ICCV is a learning-based method and can be divided into two stages. At the first stage, i.e. the training stage, given a set of abdominal CT training images and the corresponding manual liver labels, our task is to construct a series of self-correcting classifiers by learning a mapping between automatic segmentations (in each round) and manual reference segmentations via context features. At the second stage, i.e. the segmentation stage, first the basic CV model is used to segment the image and subsequently Contextual CV Model (CCV), which combines the image information and the current shape model, is iteratively performed to improve the segmentation result. The current shape model is obtained by inputting the previous automatic segmentation result into the corresponding self-correcting classifier. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that we obtain more and more accurate segmentation results by the iterative steps and satisfying results are obtained after about six iterations. Also, our method is comparable to the state-of-the-art work on liver segmentation.

  11. U.S. Contributions to ITER

    SciTech Connect

    Ned R. Sauthoff

    2005-05-13

    The United States participates in the ITER project and program to enable the study of the science and technology of burning plasmas, a key programmatic element missing from the world fusion program. The 2003 U.S. decision to enter the ITER negotiations followed an extensive series of community and governmental reviews of the benefits, readiness, and approaches to the study of burning plasmas. This paper describes both the technical and the organizational preparations and plans for U.S. participation in the ITER construction activity: in-kind contributions, staff contributions, and cash contributions as well as supporting physics and technology research. Near-term technical activities focus on the completion of R&D and design and mitigation of risks in the areas of the central solenoid magnet, shield/blanket, diagnostics, ion cyclotron system, electron cyclotron system, pellet fueling system, vacuum system, tritium processing system, and conventional systems. Outside the project, the U .S. is engaged in preparations for the test blanket module program. Organizational activities focus on preparations of the project management arrangements to maximize the overall success of the ITER Project; elements include refinement of U.S. directions on the international arrangements, the establishment of the U.S. Domestic Agency, progress along the path of the U.S. Department of Energy's Project Management Order, and overall preparations for commencement of the fabrication of major items of equipment and for provision of staff and cash as specified in the upcoming ITER agreement.

  12. Current status of the ITER MSE diagnostic

    NASA Astrophysics Data System (ADS)

    Yuh, Howard; Levinton, F.; La Fleur, H.; Foley, E.; Feder, R.; Zakharov, L.

    2013-10-01

    The U.S. is providing ITER with a Motional Stark Effect (MSE) diagnostic to provide a measurement to guide reconstructions of the plasma q-profile. The diagnostic design has gone through many iterations, driven primarily by the evolution of the ITER port plug design and the steering of the heating beams. The present two port, three view design viewing both heating beams and the DNB has recently passed a conceptual design review at the IO. The traditional line polarization (MSE-LP) technique employed on many devices around the world faces many challenges in ITER, including strong background light and mirror degradation. To mitigate these effects, a multi-wavelength polarimeter and high resolution spectrometer will be used to subtract polarized background, while retroreflecting polarizers will provide mirror calibration concurrent with MSE-LP measurements. However, without a proven plasma-facing mirror cleaning technique, inherent risks to MSE-LP remain. The high field and high beam energy on ITER offers optimal conditions for a spectroscopic measurement of the electric field using line splitting (MSE-LS), a technique which does not depend on mirror polarization properties. The current design is presented with a roadmap of the R&D needed to address remaining challenges. This work is supported by DOE contracts S009627-R and S012380-F.

  13. Preliminary Master Logic Diagram for ITER operation

    SciTech Connect

    Cadwallader, L.C.; Taylor, N.P.; Poucet, A.E.

    1998-04-01

    This paper describes the work performed to develop a Master Logic Diagram (MLD) for the operations phase of the International Thermonuclear Experimental Reactor (ITER). The MLD is a probabilistic risk assessment tool used to identify the broad set of potential initiating events that could lead to an offsite radioactive or toxic chemical release from the facility under study. The MLD described here is complementary to the failure modes and effects analyses (FMEAs) that have been performed for ITER`s major plant systems in the engineering evaluation of the facility design. While the FMEAs are a bottom-up or component level approach, the MLD is a top-down or facility level approach to identifying the broad spectrum of potential events. Strengths of the MLD are that it analyzes the entire plant, depicts completeness in the accident initiator process, provides an independent method for identification, and can also identify potential system interactions. MLDs have been used successfully as a hazard analysis tool. This paper describes the process used for the ITER MLD to treat the variety of radiological and toxicological source terms present in the ITER design. One subtree of the nineteen page MLD is shown to illustrate the levels of the diagram.

  14. Unilateral magnetic stimulation of the phrenic nerve.

    PubMed Central

    Mills, G. H.; Kyroussis, D.; Hamnegard, C. H.; Wragg, S.; Moxham, J.; Green, M.

    1995-01-01

    mm double coil. Supramaximal unilateral magnetic stimulation produced a higher TwPDI than electrical stimulation (mean (SD) 13.4 (2.5) cm H2O with 35 mm coil; 14.1 (3.8) cm H2O with 43 mm coil; 10.0 (1.7) cm H2O with electrical stimulation). Spread of the magnetic field to the opposite phrenic nerve produced a small amplitude contralateral diaphragm EMG measured from skin surface electrodes which reached a mean of 15% of the maximum EMG amplitude produced by ipsilateral stimulation. Similarly, in six patients with EMG activity recorded directly from needle electrodes, the contralateral spread of the magnetic field produced EMG activity up to a mean of 3% and a maximum of 6% of that seen with ipsilateral stimulation. Unilateral magnetic stimulation of the phrenic nerve was rapidly achieved and well tolerated. In the 54 patients unilateral magnetic TwPDI was more closely related than unilateral electrical TwPDI to transdiaphragmatic pressure produced during maximum sniffs and cervical magnetic stimulation. Unilateral magnetic stimulation eliminated the problem of producing a falsely low TwPDI because of technical difficulties in locating and adequately stimulating the nerve. Eight patients with unilateral phrenic nerve paresis, as indicated by a unilaterally elevated hemidiaphragm on a chest radiograph and maximum sniff PDI consistent with hemidiaphragm weakness, were all accurately identified by unilateral magnetic stimulation. CONCLUSIONS--Unilateral magnetic phrenic nerve stimulation is easy to apply and is a reproducible technique in the assessment of hemidiaphragm contractility. It is well tolerated and allows hemidiaphragm contractility to be rapidly and reliably assessed because precise positioning of the coils is not necessary. This may be particularly useful in patients. In addition, the anterolateral positioning of the coil allows the use of the magnet in the supine patient such as in the operating theatre or intensive care unit. Images PMID:8553272

  15. Axonal model for temperature stimulation.

    PubMed

    Fribance, Sarah; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2016-10-01

    Recent studies indicate that a rapid increase in local temperature plays an important role in nerve stimulation by laser. To analyze the temperature effect, our study modified the classical HH axonal model by incorporating a membrane capacitance-temperature relationship. The modified model successfully simulated the generation and propagation of action potentials induced by a rapid increase in local temperature when the Curie temperature of membrane capacitance is below 40 °C, while the classical model failed to simulate the axonal excitation by temperature stimulation. The new model predicts that a rapid increase in local temperature produces a rapid increase in membrane capacitance, which causes an inward membrane current across the membrane capacitor strong enough to depolarize the membrane and generate an action potential. If the Curie temperature of membrane capacitance is 31 °C, a temperature increase of 6.6-11.2 °C within 0.1-2.6 ms is required for axonal excitation and the required increase is smaller for a faster increase. The model also predicts that: (1) the temperature increase could be smaller if the global axon temperature is higher; (2) axons of small diameter require a smaller temperature increase than axons of large diameter. Our study indicates that the axonal membrane capacitance-temperature relationship plays a critical role in inducing the transient membrane depolarization by a rapidly increasing temperature, while the effects of temperature on ion channel kinetics cannot induce depolarization. The axonal model developed in this study will be very useful for analyzing the axonal response to local heating induced by pulsed infrared laser. PMID:27342462

  16. Model-based iterative learning control of Parkinsonian state in thalamic relay neuron

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Wang, Jiang; Li, Huiyan; Xue, Zhiqin; Deng, Bin; Wei, Xile

    2014-09-01

    Although the beneficial effects of chronic deep brain stimulation on Parkinson's disease motor symptoms are now largely confirmed, the underlying mechanisms behind deep brain stimulation remain unclear and under debate. Hence, the selection of stimulation parameters is full of challenges. Additionally, due to the complexity of neural system, together with omnipresent noises, the accurate model of thalamic relay neuron is unknown. Thus, the iterative learning control of the thalamic relay neuron's Parkinsonian state based on various variables is presented. Combining the iterative learning control with typical proportional-integral control algorithm, a novel and efficient control strategy is proposed, which does not require any particular knowledge on the detailed physiological characteristics of cortico-basal ganglia-thalamocortical loop and can automatically adjust the stimulation parameters. Simulation results demonstrate the feasibility of the proposed control strategy to restore the fidelity of thalamic relay in the Parkinsonian condition. Furthermore, through changing the important parameter—the maximum ionic conductance densities of low-threshold calcium current, the dominant characteristic of the proposed method which is independent of the accurate model can be further verified.

  17. Low-memory iterative density fitting.

    PubMed

    Grajciar, Lukáš

    2015-07-30

    A new low-memory modification of the density fitting approximation based on a combination of a continuous fast multipole method (CFMM) and a preconditioned conjugate gradient solver is presented. Iterative conjugate gradient solver uses preconditioners formed from blocks of the Coulomb metric matrix that decrease the number of iterations needed for convergence by up to one order of magnitude. The matrix-vector products needed within the iterative algorithm are calculated using CFMM, which evaluates them with the linear scaling memory requirements only. Compared with the standard density fitting implementation, up to 15-fold reduction of the memory requirements is achieved for the most efficient preconditioner at a cost of only 25% increase in computational time. The potential of the method is demonstrated by performing density functional theory calculations for zeolite fragment with 2592 atoms and 121,248 auxiliary basis functions on a single 12-core CPU workstation. PMID:26058451

  18. Re-starting an Arnoldi iteration

    SciTech Connect

    Lehoucq, R.B.

    1996-12-31

    The Arnoldi iteration is an efficient procedure for approximating a subset of the eigensystem of a large sparse n x n matrix A. The iteration produces a partial orthogonal reduction of A into an upper Hessenberg matrix H{sub m} of order m. The eigenvalues of this small matrix H{sub m} are used to approximate a subset of the eigenvalues of the large matrix A. The eigenvalues of H{sub m} improve as estimates to those of A as m increases. Unfortunately, so does the cost and storage of the reduction. The idea of re-starting the Arnoldi iteration is motivated by the prohibitive cost associated with building a large factorization.

  19. Safety and Environmental Activities for ITER

    NASA Astrophysics Data System (ADS)

    Saji, G.; Aymar, R.; Bartels, H.-W.; Gordon, C. W.; Gulden, W.; Holl, D. H.; Iida, H.; Inabe, T.; Iseli, M.; Kashirski, A. V.; Kolbasov, B. N.; Krivosheev, M.; McCarthy, K. A.; Marbach, G.; Morozov, S. I.; Natalizio, A.; Petti, D. A.; Piet, S. J.; Poucet, A. E.; Raeder, J.; Seki, Y.; Topilski, L. N.

    1997-09-01

    This paper will summarize highlights of the safety approach and discuss the ITER EDA safety activities. The ITER safety approach is driven by three major objectives: (1) Enhancement or improvement of fusion's intrinsic safety characteristics to the maximum extent feasible, which includes a minimization of the dependence on dedicated “safety systems”; (2) Selection of conservative design parameters and development of a robust design to accommodate uncertainties in plasma physics as well as the lack of operational experience and data; and (3) Integration of engineered mitigation systems to enhance the safety assurance against potentially hazardous inventories in the device by deploying well-established “nuclear safety” approaches and methodologies tailored as appropriate for ITER.

  20. US solid breeder blanket design for ITER

    SciTech Connect

    Gohar, Y.; Attaya, H.; Billone, M.; Lin, C.; Johnson, C.; Majumdar, S.; Smith, D. ); Goranson, P.; Nelson, B.; Williamson, D.; Baker, C. ); Raffray, A.; Badawi, A.; Gorbis, Z.; Ying, A.; Abdou, M. ); Sviatoslavsky, I.; Blanchard, J.; Mogahed, E.; Sawan, M.; Kulcinski, G. )

    1990-09-01

    The US blanket design activity has focused on the developments and the analyses of a solid breeder blanket concept for ITER. The main function of this blanket is to produce the necessary tritium required for the ITER operation and the test program. Safety, power reactor relevance, low tritium inventory, and design flexibility are the main reasons for the blanket selection. The blanket is designed to operate satisfactorily in the physics and the technology phases of ITER without the need for hardware changes. Mechanical simplicity, predictability, performance, minimum cost, and minimum R D requirements are the other criteria used to guide the design process. The design aspects of the blanket are summarized in this paper. 2 refs., 7 figs., 3 tabs.

  1. Accelerating an iterative process by explicit annihilation

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.; Buning, P. G.

    1983-01-01

    A slowly convergent stationary iterative process can be accelerated by explicitly annihilating (i.e., eliminating) the dominant eigenvector component of the error. The dominant eigenvalue or complex pair of eigenvalues can be estimated from the solution during the iteration. The corresponding eigenvector or complex pair of eigenvectors can then be annihilated by applying an explicit Richardson process over the basic iterative method. This can be done entirely in real arithmetic by analytically combining the complex conjugate annihilation steps. The technique is applied to an implicit algorithm for the calculation of two dimensional steady transonic flow over a circular cylinder using the equations of compressible inviscid gas dynamics. This demonstrates the use of explicit annihilation on a nonlinear problem.

  2. Accelerating an iterative process by explicit annihilation

    NASA Technical Reports Server (NTRS)

    Jespersen, D. C.; Buning, P. G.

    1985-01-01

    A slowly convergent stationary iterative process can be accelerated by explicitly annihilating (i.e., eliminating) the dominant eigenvector component of the error. The dominant eigenvalue or complex pair of eigenvalues can be estimated from the solution during the iteration. The corresponding eigenvector or complex pair of eigenvectors can then be annihilated by applying an explicit Richardson process over the basic iterative method. This can be done entirely in real arithmetic by analytically combining the complex conjugate annihilation steps. The technique is applied to an implicit algorithm for the calculation of two dimensional steady transonic flow over a circular cylinder using the equations of compressible inviscid gas dynamics. This demonstrates the use of explicit annihilation on a nonlinear problem.

  3. Development of pellet injection systems for ITER

    SciTech Connect

    Combs, S.K.; Gouge, M.J.; Baylor, L.R.

    1995-12-31

    Oak Ridge National Laboratory (ORNL) has been developing innovative pellet injection systems for plasma fueling experiments on magnetic fusion confinement devices for about 20 years. Recently, the ORNL development has focused on meeting the complex fueling needs of the International Thermonuclear Experimental Reactor (ITER). In this paper, we describe the ongoing research and development activities that will lead to a ITER prototype pellet injector test stand. The present effort addresses three main areas: (1) an improved pellet feed and delivery system for centrifuge injectors, (2) a long-pulse (up to steady-state) hydrogen extruder system, and (3) tritium extruder technology. The final prototype system must be fully tritium compatible and will be used to demonstrate the operating parameters and the reliability required for the ITER fueling application.

  4. The ITER in-vessel system

    SciTech Connect

    Lousteau, D.C.

    1994-09-01

    The overall programmatic objective, as defined in the ITER Engineering Design Activities (EDA) Agreement, is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER EDA Phase, due to last until July 1998, will encompass the design of the device and its auxiliary systems and facilities, including the preparation of engineering drawings. The EDA also incorporates validating research and development (R&D) work, including the development and testing of key components. The purpose of this paper is to review the status of the design, as it has been developed so far, emphasizing the design and integration of those components contained within the vacuum vessel of the ITER device. The components included in the in-vessel systems are divertor and first wall; blanket and shield; plasma heating, fueling, and vacuum pumping equipment; and remote handling equipment.

  5. Iterative Reconstruction of Coded Source Neutron Radiographs

    SciTech Connect

    Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens

    2013-01-01

    Use of a coded source facilitates high-resolution neutron imaging through magnifications but requires that the radiographic data be deconvolved. A comparison of direct deconvolution with two different iterative algorithms has been performed. One iterative algorithm is based on a maximum likelihood estimation (MLE)-like framework and the second is based on a geometric model of the neutron beam within a least squares formulation of the inverse imaging problem. Simulated data for both uniform and Gaussian shaped source distributions was used for testing to understand the impact of non-uniformities present in neutron beam distributions on the reconstructed images. Results indicate that the model based reconstruction method will match resolution and improve on contrast over convolution methods in the presence of non-uniform sources. Additionally, the model based iterative algorithm provides direct calculation of quantitative transmission values while the convolution based methods must be normalized base on known values.

  6. ITER Experts' meeting on density limits

    SciTech Connect

    Borrass, K.; Igitkhanov, Y.L.; Uckan, N.A.

    1989-12-01

    The necessity of achieving a prescribed wall load or fusion power essentially determines the plasma pressure in a device like ITER. The range of operation densities and temperatures compatible with this condition is constrained by the problems of power exhaust and the disruptive density limit. The maximum allowable heat loads on the divertor plates and the maximum allowable sheath edge temperature practically impose a lower limit on the operating densities, whereas the disruptive density limit imposes an upper limit. For most of the density limit scalings proposed in the past an overlap of the two constraints or at best a very narrow accessible density range is predicted for ITER. Improved understanding of the underlying mechanisms is therefore a crucial issue in order to provide a more reliable basis for extrapolation to ITER and to identify possible ways of alleviating the problem.

  7. Optical Stimulation of Neurons

    PubMed Central

    Thompson, Alexander C.; Stoddart, Paul R.; Jansen, E. Duco

    2014-01-01

    Our capacity to interface with the nervous system remains overwhelmingly reliant on electrical stimulation devices, such as electrode arrays and cuff electrodes that can stimulate both central and peripheral nervous systems. However, electrical stimulation has to deal with multiple challenges, including selectivity, spatial resolution, mechanical stability, implant-induced injury and the subsequent inflammatory response. Optical stimulation techniques may avoid some of these challenges by providing more selective stimulation, higher spatial resolution and reduced invasiveness of the device, while also avoiding the electrical artefacts that complicate recordings of electrically stimulated neuronal activity. This review explores the current status of optical stimulation techniques, including optogenetic methods, photoactive molecule approaches and infrared neural stimulation, together with emerging techniques such as hybrid optical-electrical stimulation, nanoparticle enhanced stimulation and optoelectric methods. Infrared neural stimulation is particularly emphasised, due to the potential for direct activation of neural tissue by infrared light, as opposed to techniques that rely on the introduction of exogenous light responsive materials. However, infrared neural stimulation remains imperfectly understood, and techniques for accurately delivering light are still under development. While the various techniques reviewed here confirm the overall feasibility of optical stimulation, a number of challenges remain to be overcome before they can deliver their full potential. PMID:26322269

  8. Iterative Vessel Segmentation of Fundus Images.

    PubMed

    Roychowdhury, Sohini; Koozekanani, Dara D; Parhi, Keshab K

    2015-07-01

    This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the vessel enhanced image. Next, new vessel pixels are identified iteratively by adaptive thresholding of the residual image generated by masking out the existing segmented vessel estimate from the vessel enhanced image. The new vessel pixels are, then, region grown into the existing vessel, thereby resulting in an iterative enhancement of the segmented vessel structure. As the iterations progress, the number of false edge pixels identified as new vessel pixels increases compared to the number of actual vessel pixels. A key contribution of this paper is a novel stopping criterion that terminates the iterative process leading to higher vessel segmentation accuracy. This iterative algorithm is robust to the rate of new vessel pixel addition since it achieves 93.2-95.35% vessel segmentation accuracy with 0.9577-0.9638 area under ROC curve (AUC) on abnormal retinal images from the STARE dataset. The proposed algorithm is computationally efficient and consistent in vessel segmentation performance for retinal images with variations due to pathology, uneven illumination, pigmentation, and fields of view since it achieves a vessel segmentation accuracy of about 95% in an average time of 2.45, 3.95, and 8 s on images from three public datasets DRIVE, STARE, and CHASE_DB1, respectively. Additionally, the proposed algorithm has more than 90% segmentation accuracy for segmenting peripapillary blood vessels in the images from the DRIVE and CHASE_DB1 datasets. PMID:25700436

  9. Global Asymptotic Behavior of Iterative Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.

    1994-01-01

    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.

  10. Iterative Mechanism of Macrodiolide Formation in the Anticancer Compound Conglobatin

    PubMed Central

    Zhou, Yongjun; Murphy, Annabel C.; Samborskyy, Markiyan; Prediger, Patricia; Dias, Luiz Carlos; Leadlay, Peter F.

    2015-01-01

    Summary Conglobatin is an unusual C2-symmetrical macrodiolide from the bacterium Streptomyces conglobatus with promising antitumor activity. Insights into the genes and enzymes that govern both the assembly-line production of the conglobatin polyketide and its dimerization are essential to allow rational alterations to be made to the conglobatin structure. We have used a rapid, direct in vitro cloning method to obtain the entire cluster on a 41-kbp fragment, encoding a modular polyketide synthase assembly line. The cloned cluster directs conglobatin biosynthesis in a heterologous host strain. Using a model substrate to mimic the conglobatin monomer, we also show that the conglobatin cyclase/thioesterase acts iteratively, ligating two monomers head-to-tail then re-binding the dimer product and cyclizing it. Incubation of two different monomers with the cyclase produces hybrid dimers and trimers, providing the first evidence that conglobatin analogs may in future become accessible through engineering of the polyketide synthase. PMID:26091168

  11. Iterative method for generating correlated binary sequences

    NASA Astrophysics Data System (ADS)

    Usatenko, O. V.; Melnik, S. S.; Apostolov, S. S.; Makarov, N. M.; Krokhin, A. A.

    2014-11-01

    We propose an efficient iterative method for generating random correlated binary sequences with a prescribed correlation function. The method is based on consecutive linear modulations of an initially uncorrelated sequence into a correlated one. Each step of modulation increases the correlations until the desired level has been reached. The robustness and efficiency of the proposed algorithm are tested by generating sequences with inverse power-law correlations. The substantial increase in the strength of correlation in the iterative method with respect to single-step filtering generation is shown for all studied correlation functions. Our results can be used for design of disordered superlattices, waveguides, and surfaces with selective transport properties.

  12. Challenges and status of ITER conductor production

    NASA Astrophysics Data System (ADS)

    Devred, A.; Backbier, I.; Bessette, D.; Bevillard, G.; Gardner, M.; Jong, C.; Lillaz, F.; Mitchell, N.; Romano, G.; Vostner, A.

    2014-04-01

    Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb3Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb-Ti strands. The required amount of Nb3Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb3Sn coil has ever experienced. Following a comprehensive R&D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been encountered and

  13. Scheduling and rescheduling with iterative repair

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael

    1992-01-01

    This paper describes the GERRY scheduling and rescheduling system being applied to coordinate Space Shuttle Ground Processing. The system uses constraint-based iterative repair, a technique that starts with a complete but possibly flawed schedule and iteratively improves it by using constraint knowledge within repair heuristics. In this paper we explore the tradeoff between the informedness and the computational cost of several repair heuristics. We show empirically that some knowledge can greatly improve the convergence speed of a repair-based system, but that too much knowledge, such as the knowledge embodied within the MIN-CONFLICTS lookahead heuristic, can overwhelm a system and result in degraded performance.

  14. Modified Iterative Extended Hueckel. 1: Theory

    NASA Technical Reports Server (NTRS)

    Aronowitz, S.

    1980-01-01

    Iterative Extended Huekel is modified by inclusion of explicit effective internuclear and electronic interactions. The one electron energies are shown to obey a variational principle because of the form of the effective electronic interactions. The modifications permit mimicking of aspects of valence bond theory with the additional feature that the energies associated with valence bond type structures are explicitly calculated. In turn, a hybrid molecular, orbital valence, bond scheme is introduced which incorporates variant total molecular electronic density distributions similar to the way that Iterative Extended Hueckel incorporates atoms.

  15. Iterative instructions in the Manchester dataflow computer

    SciTech Connect

    Bohm, A.P.; Gurd, J.R. )

    1990-04-01

    Compilation techniques for dataflow computers, particularly techniques associated with optimized code generation, have led to the introduction of iterative instructions, which produce a sequence of outputs when presented with a single set of inputs. Although these are beneficial in reducing program execution times, they exhibit distinctive, coarse-grain characteristics that effect the normal, fine-grain operation of a dataflow computer. This paper investigates the nature and extent of the benefits and adverse effects of iterative instructions in the prototype Manchester dataflow computer.

  16. The ITER bolometer diagnostic: status and plans.

    PubMed

    Meister, H; Giannone, L; Horton, L D; Raupp, G; Zeidner, W; Grunda, G; Kalvin, S; Fischer, U; Serikov, A; Stickel, S; Reichle, R

    2008-10-01

    A consortium consisting of four EURATOM Associations has been set up to develop the project plan for the full development of the ITER bolometer diagnostic and to continue urgent R&D activities. An overview of the current status is given, including detector development, line-of-sight optimization, performance analysis as well as the design of the diagnostic components and their integration in ITER. This is complemented by the presentation of plans for future activities required to successfully implement the bolometer diagnostic, ranging from the detector development over diagnostic design and prototype testing to RH tools for calibration. PMID:19044656

  17. ACTH (cosyntropin) stimulation test

    MedlinePlus

    ... The ACTH stimulation test measures how well the adrenal glands respond to adrenocorticotropic hormone ( ACTH ). ACTH is a ... produced in the pituitary gland that stimulates the adrenal glands to release a hormone called cortisol. How the ...

  18. Perturbed Coulomb potentials in the Klein-Gordon equation via the asymptotic iteration method

    SciTech Connect

    Barakat, T.

    2009-03-15

    The asymptotic iteration method is used to construct the exact energy eigenvalues for a Lorentz vector or a Lorentz scalar, and an equally mixed Lorentz vector and Lorentz scalar Coulombic potentials. Highly accurate and rapidly converging ground-state energies for Lorentz vector Coulomb with a Lorentz vector or a Lorentz scalar linear potential, V(r)=-{lambda}{sub 1}/r+krandV(r)=-{lambda}{sub 1}/randW(r)=kr, respectively, are obtained.

  19. Spectral resolvability of iterated rippled noise

    NASA Astrophysics Data System (ADS)

    Yost, William A.

    2005-04-01

    A forward-masking experiment was used to estimate the spectral ripple of iterated rippled noise (IRN) that is possibly resolved by the auditory system. Tonal signals were placed at spectral peaks and valleys of IRN maskers for a wide variety of IRN conditions that included different delays, number of iterations, and stimulus durations. The differences in the forward-masked thresholds of tones at spectral peaks and valleys were used to estimate spectral resolvability, and these results were compared to estimates obtained from a gamma-tone filter bank. The IRN spectrum has spectral peaks that are harmonics of the reciprocal of the delay used to generate IRN stimuli. As the number of iterations in the generation of IRN stimuli increases so does the difference in the spectral peak-to-valley ratio. For high number of iterations, long delays, and long durations evidence for spectral resolvability existed up to the 6th harmonic. For all other conditions spectral resolvability appeared to disappear at harmonics lower than the 6th, or was not measurable at all. These data will be discussed in terms of the role spectral resolvability might play in processing the pitch, pitch strength, and timbre of IRN stimuli. [Work supported by a grant from NIDCD.

  20. ITER faces further five-year delay

    NASA Astrophysics Data System (ADS)

    Clery, Daniel

    2016-06-01

    The €14bn ITER fusion reactor currently under construction in Cadarache, France, will require an additional cash injection of €4.6bn if it is to start up in 2025 – a target date that is already five years later than currently scheduled.

  1. Constructing Easily Iterated Functions with Interesting Properties

    ERIC Educational Resources Information Center

    Sprows, David J.

    2009-01-01

    A number of schools have recently introduced new courses dealing with various aspects of iteration theory or at least have found ways of including topics such as chaos and fractals in existing courses. In this note, we will consider a family of functions whose members are especially well suited to illustrate many of the concepts involved in these…

  2. Towards plasma cleaning of ITER first mirrors

    NASA Astrophysics Data System (ADS)

    Moser, L.; Marot, L.; Eren, B.; Steiner, R.; Mathys, D.; Leipold, F.; Reichle, R.; Meyer, E.

    2015-06-01

    To avoid reflectivity losses in ITER's optical diagnostic systems, on-site cleaning of metallic first mirrors via plasma sputtering is foreseen to remove deposit build-ups migrating from the main wall. In this work, the influence of aluminium and tungsten deposits on the reflectivity of molybdenum mirrors as well as the possibility to clean them with plasma exposure is investigated. Porous ITER-like deposits are grown to mimic the edge conditions expected in ITER, and a severe degradation in the specular reflectivity is observed as these deposits build up on the mirror surface. In addition, dense oxide films are produced for comparisons with porous films. The composition, morphology and crystal structure of several films were characterized by means of scanning electron microscopy, x-ray photoelectron spectroscopy, x-ray diffraction and secondary ion mass spectrometry. The cleaning of the deposits and the restoration of the mirrors' optical properties are possible either with a Kaufman source or radio frequency directly applied to the mirror (or radio frequency plasma generated directly around the mirror surface). Accelerating ions of an external plasma source through a direct current applied onto the mirror does not remove deposits composed of oxides. A possible implementation of plasma cleaning in ITER is addressed.

  3. Iteration of Complex Functions and Newton's Method

    ERIC Educational Resources Information Center

    Dwyer, Jerry; Barnard, Roger; Cook, David; Corte, Jennifer

    2009-01-01

    This paper discusses some common iterations of complex functions. The presentation is such that similar processes can easily be implemented and understood by undergraduate students. The aim is to illustrate some of the beauty of complex dynamics in an informal setting, while providing a couple of results that are not otherwise readily available in…

  4. Nuclear analyses for the ITER ECRH launcher

    NASA Astrophysics Data System (ADS)

    Serikov, A.; Fischer, U.; Heidinger, R.; Spaeh, P.; Stickel, S.; Tsige-Tamirat, H.

    2008-05-01

    Computational results of the nuclear analyses for the ECRH launcher integrated into the ITER upper port are presented. The purpose of the analyses was to provide the proof for the launcher design that the nuclear requirements specified in the ITER project can be met. The aim was achieved on the basis of 3D neutronics radiation transport calculations using the Monte Carlo code MCNP. In the course of the analyses an adequate shielding configuration against neutron and gamma radiation was developed keeping the necessary empty space for mm-waves propagation in accordance with the ECRH physics guidelines. Different variants of the shielding configuration for the extended performance front steering launcher (EPL) were compared in terms of nuclear response functions in the critical positions. Neutron damage (dpa), nuclear heating, helium production rate, neutron and gamma fluxes have been calculated under the conditions of ITER operation. It has been shown that the radiation shielding criteria are satisfied and the supposed shutdown dose rates are below the ITER nuclear design limits.

  5. Iteration and Anxiety in Mathematical Literature

    ERIC Educational Resources Information Center

    Capezzi, Rita; Kinsey, L. Christine

    2016-01-01

    We describe our experiences in team-teaching an honors seminar on mathematics and literature. We focus particularly on two of the texts we read: Georges Perec's "How to Ask Your Boss for a Raise" and Alain Robbe-Grillet's "Jealousy," both of which make use of iterative structures.

  6. First mirrors for diagnostic systems of ITER

    NASA Astrophysics Data System (ADS)

    Litnovsky, A.; Voitsenya, V. S.; Costley, A.; Donné, A. J. H.; SWG on First Mirrors of the ITPA Topical Group on Diagnostics

    2007-08-01

    The majority of optical diagnostics presently foreseen for ITER will implement in-vessel metallic mirrors as plasma-viewing components. Mirrors are used for the observation of the plasma radiation in a very wide wavelength range: from about 1 nm up to a few mm. In the hostile ITER environment, mirrors are subject to erosion, deposition, particle implantation and other adverse effects which will change their optical properties, affecting the entire performance of the respective diagnostic systems. The Specialists Working Group (SWG) on first mirrors was established under the wings of the International Tokamak Physics Activity (ITPA) Topical Group (TG) on Diagnostics to coordinate and guide the investigations on diagnostic mirrors towards the development of optimal, robust and durable solutions for ITER diagnostic systems. The results of tests of various ITER-candidate mirror materials, performed in Tore-Supra, TEXTOR, DIII-D, TCV, T-10, TRIAM-1M and LHD under various plasma conditions, as well as an overview of laboratory investigations of mirror performance and mirror cleaning techniques are presented in the paper. The current tasks in the R&D of diagnostic mirrors will be addressed.

  7. Iterative solution of the Helmholtz equation

    SciTech Connect

    Larsson, E.; Otto, K.

    1996-12-31

    We have shown that the numerical solution of the two-dimensional Helmholtz equation can be obtained in a very efficient way by using a preconditioned iterative method. We discretize the equation with second-order accurate finite difference operators and take special care to obtain non-reflecting boundary conditions. We solve the large, sparse system of equations that arises with the preconditioned restarted GMRES iteration. The preconditioner is of {open_quotes}fast Poisson type{close_quotes}, and is derived as a direct solver for a modified PDE problem.The arithmetic complexity for the preconditioner is O(n log{sub 2} n), where n is the number of grid points. As a test problem we use the propagation of sound waves in water in a duct with curved bottom. Numerical experiments show that the preconditioned iterative method is very efficient for this type of problem. The convergence rate does not decrease dramatically when the frequency increases. Compared to banded Gaussian elimination, which is a standard solution method for this type of problems, the iterative method shows significant gain in both storage requirement and arithmetic complexity. Furthermore, the relative gain increases when the frequency increases.

  8. On the safety of ITER accelerators

    PubMed Central

    Li, Ge

    2013-01-01

    Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate −1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER. PMID:24008267

  9. Solving Differential Equations Using Modified Picard Iteration

    ERIC Educational Resources Information Center

    Robin, W. A.

    2010-01-01

    Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…

  10. The determination of orbits using Picard iteration

    NASA Technical Reports Server (NTRS)

    Mikkilineni, R. P.; Feagin, T.

    1975-01-01

    The determination of orbits by using Picard iteration is reported. This is a direct extension of the classical method of Picard that has been used in finding approximate solutions of nonlinear differential equations for a variety of problems. The application of the Picard method of successive approximations to the initial value and the two point boundary value problems is given.

  11. Symbolic Computational Algebra Applied to Picard Iteration.

    ERIC Educational Resources Information Center

    Mathews, John

    1989-01-01

    Uses muMATH to illustrate the step-by-step process in translating mathematical theory into the symbolic manipulation setting. Shows an application of a Picard iteration which uses a computer to generate a sequence of functions which converge to a solution. (MVL)

  12. Testing Short Samples of ITER Conductors and Projection of Their Performance in ITER Magnets

    SciTech Connect

    Martovetsky, N N

    2007-08-20

    Qualification of the ITER conductor is absolutely necessary. Testing large scale conductors is expensive and time consuming. To test straight 3-4m long samples in a bore of a split solenoid is a relatively economical way in comparison with fabrication of a coil to be tested in a bore of a background field solenoid. However, testing short sample may give ambiguous results due to different constraints in current redistribution in the cable or other end effects which are not present in the large magnet. This paper discusses processes taking place in the ITER conductor, conditions when conductor performance could be distorted and possible signal processing to deduce behavior of ITER conductors in ITER magnets from the test data.

  13. Reducing the latency of the Fractal Iterative Method to half an iteration

    NASA Astrophysics Data System (ADS)

    Béchet, Clémentine; Tallon, Michel

    2013-12-01

    The fractal iterative method for atmospheric tomography (FRiM-3D) has been introduced to solve the wavefront reconstruction at the dimensions of an ELT with a low-computational cost. Previous studies reported the requirement of only 3 iterations of the algorithm in order to provide the best adaptive optics (AO) performance. Nevertheless, any iterative method in adaptive optics suffer from the intrinsic latency induced by the fact that one iteration can start only once the previous one is completed. Iterations hardly match the low-latency requirement of the AO real-time computer. We present here a new approach to avoid iterations in the computation of the commands with FRiM-3D, thus allowing low-latency AO response even at the scale of the European ELT (E-ELT). The method highlights the importance of "warm-start" strategy in adaptive optics. To our knowledge, this particular way to use the "warm-start" has not been reported before. Futhermore, removing the requirement of iterating to compute the commands, the computational cost of the reconstruction with FRiM-3D can be simplified and at least reduced to half the computational cost of a classical iteration. Thanks to simulations of both single-conjugate and multi-conjugate AO for the E-ELT,with FRiM-3D on Octopus ESO simulator, we demonstrate the benefit of this approach. We finally enhance the robustness of this new implementation with respect to increasing measurement noise, wind speed and even modeling errors.

  14. Rapid weight loss

    MedlinePlus

    ... loss-rapid weight loss; Overweight-rapid weight loss; Obesity-rapid weight loss; Diet-rapid weight loss ... for people who have health problems because of obesity. For these people, losing a lot of weight ...

  15. Iterative type I polyketide synthases for enediyne core biosynthesis.

    PubMed

    Horsman, Geoffrey P; Van Lanen, Steven G; Shen, Ben

    2009-01-01

    Enediyne natural products are extremely potent antitumor antibiotics with a remarkable core structure consisting of two acetylenic groups conjugated to a double bond within either a 9- or 10-membered ring. Biosynthesis of this fascinating scaffold is catalyzed in part by an unusual iterative type I polyketide synthase, PKSE, that is shared among all enediyne biosynthetic pathways whose gene clusters have been sequenced to date. The PKSE is unusual in two main respects: (1) it contains an acyl carrier protein (ACP) domain with no sequence homology to any known proteins, and (2) it is self-phosphopantetheinylated by an integrated phosphopantetheinyl transferase (PPTase) domain. The unusual domain architecture and biochemistry of the PKSE hold promise both for the rapid identification of new enediyne natural products and for obtaining fundamental catalytic insights into enediyne biosynthesis. This chapter describes methods for rapid PCR-based classification of conserved enediyne biosynthetic genes, heterologous production of 9-membered PKSE proteins and isolation of the resulting polyene product, and in vitro characterization of the PKSE ACP domain. PMID:19362637

  16. Deep brain stimulation: new directions.

    PubMed

    Ostergard, T; Miller, J P

    2014-12-01

    The role of deep brain stimulation (DBS) in the treatment of movement disorders is well established, but there has recently been a proliferation of additional indications that have been shown to be amenable to this technology. The combination of innovative approaches to neural interface technology with novel target identification based on previously discovered clinical effects of lesioning procedures has led to a fundamental paradigm for new directions in the application of DBS. The historical use of neurosurgical lesioning procedures in the treatment of psychiatric diseases such as obsessive compulsive disorder provided an initial opportunity to expand the use of DBS. The list is rapidly expanding and now includes major depressive disorder, Tourette's syndrome, addiction disorders, and eating disorders. Keen observations by neurosurgeons using these devices have lead to the incidental discovery of treatments for diseases without previous neurosurgical treatments. These discoveries are breaking new ground in the treatment of disorders of cognition, headache syndromes, disorders of consciousness, and epilepsy. Two features of DBS make it well-suited for treatment of disorders of nervous system function. First, the reversible, non-lesional nature of DBS allows for investigation of new targets without the morbidity of permanent side effects. Second, the programmable nature of DBS allows practitioners to alter stimulation patterns to minimize side effects and potentially improve efficacy through reprogramming. More importantly, proper scientific evaluation of new targets is aided by the ability to turn stimulation on and off with evaluators blinded to the stimulation status. Knowledge of these emerging therapies is important for practitioners, as there are many situations where a single target can effectively treat the symptoms of more than one disease. The intersection of advances in neuromodulation, neurophysiology, neuroimaging, and functional neuroanatomy has

  17. High contrast laminography using iterative algorithms

    NASA Astrophysics Data System (ADS)

    Kroupa, M.; Jakubek, J.

    2011-01-01

    3D X-ray imaging of internal structure of large flat objects is often complicated by limited access to all viewing angles or extremely high absorption in certain directions, therefore the standard method of computed tomography (CT) fails. This problem can be solved by the method of laminography. During a laminographic measurement the imaging detector is placed close to the sample while the X-ray source irradiates both sample and detector at different angles. The application of the state-of-the-art pixel detector Medipix in laminography together with adapted tomographic iterative alghorithms for 3D reconstruction of sample structure has been investigated. Iterative algorithms such as EM (Expectation Maximization) and OSEM (Ordered Subset Expectation Maximization) improve the quality of the reconstruction and allow including more complex physical models. In this contribution results and proposed future approaches which could be used for resolution enhancement are presented.

  18. Iterative image restoration using approximate inverse preconditioning.

    PubMed

    Nagy, J G; Plemmons, R J; Torgersen, T C

    1996-01-01

    Removing a linear shift-invariant blur from a signal or image can be accomplished by inverse or Wiener filtering, or by an iterative least-squares deblurring procedure. Because of the ill-posed characteristics of the deconvolution problem, in the presence of noise, filtering methods often yield poor results. On the other hand, iterative methods often suffer from slow convergence at high spatial frequencies. This paper concerns solving deconvolution problems for atmospherically blurred images by the preconditioned conjugate gradient algorithm, where a new approximate inverse preconditioner is used to increase the rate of convergence. Theoretical results are established to show that fast convergence can be expected, and test results are reported for a ground-based astronomical imaging problem. PMID:18285203

  19. New iterative solvers for the NAG Libraries

    SciTech Connect

    Salvini, S.; Shaw, G.

    1996-12-31

    The purpose of this paper is to introduce the work which has been carried out at NAG Ltd to update the iterative solvers for sparse systems of linear equations, both symmetric and unsymmetric, in the NAG Fortran 77 Library. Our current plans to extend this work and include it in our other numerical libraries in our range are also briefly mentioned. We have added to the Library the new Chapter F11, entirely dedicated to sparse linear algebra. At Mark 17, the F11 Chapter includes sparse iterative solvers, preconditioners, utilities and black-box routines for sparse symmetric (both positive-definite and indefinite) linear systems. Mark 18 will add solvers, preconditioners, utilities and black-boxes for sparse unsymmetric systems: the development of these has already been completed.

  20. High resolution non-iterative aperture synthesis.

    PubMed

    Kraczek, Jeffrey R; McManamon, Paul F; Watson, Edward A

    2016-03-21

    The maximum resolution of a multiple-input multiple-output (MIMO) imaging system is determined by the size of the synthetic aperture. The synthetic aperture is determined by a coordinate shift using the relative positions of the illuminators and receive apertures. Previous methods have shown non-iterative phasing for multiple illuminators with a single receive aperture for intra-aperture synthesis. This work shows non-iterative phasing with both multiple illuminators and multiple receive apertures for inter-aperture synthesis. Simulated results show that piston, tip, and tilt can be calculated using inter-aperture phasing after intra-aperture phasing has been performed. Use of a fourth illuminator for increased resolution is shown. The modulation transfer function (MTF) is used to quantitatively judge increased resolution. PMID:27136816

  1. Linear iterative solvers for implicit ODE methods

    NASA Technical Reports Server (NTRS)

    Saylor, Paul E.; Skeel, Robert D.

    1990-01-01

    The numerical solution of stiff initial value problems, which lead to the problem of solving large systems of mildly nonlinear equations are considered. For many problems derived from engineering and science, a solution is possible only with methods derived from iterative linear equation solvers. A common approach to solving the nonlinear equations is to employ an approximate solution obtained from an explicit method. The error is examined to determine how it is distributed among the stiff and non-stiff components, which bears on the choice of an iterative method. The conclusion is that error is (roughly) uniformly distributed, a fact that suggests the Chebyshev method (and the accompanying Manteuffel adaptive parameter algorithm). This method is described, also commenting on Richardson's method and its advantages for large problems. Richardson's method and the Chebyshev method with the Mantueffel algorithm are applied to the solution of the nonlinear equations by Newton's method.

  2. ITER Shape Controller and Transport Simulations

    SciTech Connect

    Casper, T A; Meyer, W H; Pearlstein, L D; Portone, A

    2007-05-31

    We currently use the CORSICA integrated modeling code for scenario studies for both the DIII-D and ITER experiments. In these simulations, free- or fixed-boundary equilibria are simultaneously converged with thermal evolution determined from transport models providing temperature and current density profiles. Using a combination of fixed boundary evolution followed by free-boundary calculation to determine the separatrix and coil currents. In the free-boundary calculation, we use the state-space controller representation with transport simulations to provide feedback modeling of shape, vertical stability and profile control. In addition to a tightly coupled calculation with simulator and controller imbedded inside CORSICA, we also use a remote procedure call interface to couple the CORSICA non-linear plasma simulations to the controller environments developed within the Mathworks Matlab/Simulink environment. We present transport simulations using full shape and vertical stability control with evolution of the temperature profiles to provide simulations of the ITER controller and plasma response.

  3. Main challenges for ITER optical diagnostics

    NASA Astrophysics Data System (ADS)

    Vukolov, K. Yu.; Orlovskiy, I. I.; Alekseev, A. G.; Borisov, A. A.; Andreenko, E. N.; Kukushkin, A. B.; Lisitsa, V. S.; Neverov, V. S.

    2014-08-01

    The review is made of the problems of ITER optical diagnostics. Most of these problems will be related to the intensive neutron radiation from hot plasma. At a high level of radiation loads the most types of materials gradually change their properties. This effect is most critical for optical diagnostics because of degradation of optical glasses and mirrors. The degradation of mirrors, that collect the light from plasma, basically will be induced by impurity deposition and (or) sputtering by charge exchange atoms. Main attention is paid to the search of glasses for vacuum windows and achromatic lens which are stable under ITER irradiation conditions. The last results of irradiation tests in nuclear reactor of candidate silica glasses KU-1, KS-4V and TF 200 are presented. An additional problem is discussed that deals with the stray light produced by multiple reflections from the first wall of the intense light emitted in the divertor plasma.

  4. Iterative most likely oriented point registration.

    PubMed

    Billings, Seth; Taylor, Russell

    2014-01-01

    A new algorithm for model based registration is presented that optimizes both position and surface normal information of the shapes being registered. This algorithm extends the popular Iterative Closest Point (ICP) algorithm by incorporating the surface orientation at each point into both the correspondence and registration phases of the algorithm. For the correspondence phase an efficient search strategy is derived which computes the most probable correspondences considering both position and orientation differences in the match. For the registration phase an efficient, closed-form solution provides the maximum likelihood rigid body alignment between the oriented point matches. Experiments by simulation using human femur data demonstrate that the proposed Iterative Most Likely Oriented Point (IMLOP) algorithm has a strong accuracy advantage over ICP and has increased ability to robustly identify a successful registration result. PMID:25333116

  5. Thermomechanical analysis of the ITER breeding blanket

    SciTech Connect

    Majumdar, S.; Gruhn, H.; Gohar, Y.; Giegerich, M.

    1997-03-01

    Thermomechanical performance of the ITER breeding blanket is an important design issue because it requires first, that the thermal expansion mismatch between the blanket structure and the blankets internals (such as, beryllium multiplier and tritium breeders) can be accommodated without creating high stresses, and second, that the thermomechanical deformation of various interfaces within the blanket does not create high resistance to heat flow and consequent unacceptably high temperatures in the blanket materials. Thermomechanical analysis of a single beryllium block sandwiched between two stainless steel plates was carried out using the finite element code ABAQUS to illustrate the importance of elastic deformation on the temperature distributions. Such an analysis for the whole ITER blanket needs to be conducted in the future. Uncertainties in the thermomechanical contact analysis can be reduced by bonding the beryllium blocks to the stainless steel plates by a thin soft interfacial layer.

  6. Iterative optimization calibration method for stereo deflectometry.

    PubMed

    Ren, Hongyu; Gao, Feng; Jiang, Xiangqian

    2015-08-24

    An accurate system calibration method is presented in this paper to calibrate stereo deflectometry. A corresponding iterative optimization algorithm is also proposed to improve the system calibration accuracy. This merges CCD parameters and geometrical relation between CCDs and the LCD into one cost function. In this calibration technique, an optical flat acts as a reference mirror and simultaneously reflect sinusoidal fringe patterns into the two CCDs. The normal vector of the reference mirror is used as an intermediate variable to implement this iterative optimization algorithm until the root mean square of the reprojection errors converge to a minimum. The experiment demonstrates that this method can optimize all the calibration parameters and can effectively reduce reprojection error, which correspondingly improves the final reconstruction accuracy. PMID:26368180

  7. Stimulant Use Disorders.

    PubMed

    Park, Taryn M; Haning, William F

    2016-07-01

    Compared with other illicit substances, stimulants are not commonly used by adolescents; however, they represent a serious concern regarding substance use among youths. This article uses methamphetamine as a model for stimulant use in adolescents; cocaine and prescription stimulants are also mentioned. Methamphetamine use among adolescents and young adults is a serious health concern with potentially long-term physical, cognitive, and psychiatric consequences. Brain development and the effects of misusing stimulants align such that usage in adolescents can more dangerous than during adulthood. It seems helpful to keep in mind the differences between adolescents and young adults when implementing interventions. PMID:27338967

  8. Iterative solution of high order compact systems

    SciTech Connect

    Spotz, W.F.; Carey, G.F.

    1996-12-31

    We have recently developed a class of finite difference methods which provide higher accuracy and greater stability than standard central or upwind difference methods, but still reside on a compact patch of grid cells. In the present study we investigate the performance of several gradient-type iterative methods for solving the associated sparse systems. Both serial and parallel performance studies have been made. Representative examples are taken from elliptic PDE`s for diffusion, convection-diffusion, and viscous flow applications.

  9. Iterative Reconstruction of Coded Source Neutron Radiographs

    SciTech Connect

    Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens

    2012-01-01

    Use of a coded source facilitates high-resolution neutron imaging but requires that the radiographic data be deconvolved. In this paper, we compare direct deconvolution with two different iterative algorithms, namely, one based on direct deconvolution embedded in an MLE-like framework and one based on a geometric model of the neutron beam and a least squares formulation of the inverse imaging problem.

  10. Statistical properties of an iterated arithmetic mapping

    SciTech Connect

    Feix, M.R.; Rouet, J.L.

    1994-07-01

    We study the (3x = 1)/2 problem from a probabilistic viewpoint and show a forgetting mechanism for the last k binary digits of the seed after k iterations. The problem is subsequently generalized to a trifurcation process, the (lx + m)/3 problem. Finally the sequence of a set of seeds is empirically shown to be equivalent to a random walk of the variable log{sub 2}x (or log{sub 3} x) though computer simulations.