Rapid iterative reanalysis for automated design
NASA Technical Reports Server (NTRS)
Bhatia, K. G.
1973-01-01
A method for iterative reanalysis in automated structural design is presented for a finite-element analysis using the direct stiffness approach. A basic feature of the method is that the generalized stiffness and inertia matrices are expressed as functions of structural design parameters, and these generalized matrices are expanded in Taylor series about the initial design. Only the linear terms are retained in the expansions. The method is approximate because it uses static condensation, modal reduction, and the linear Taylor series expansions. The exact linear representation of the expansions of the generalized matrices is also described and a basis for the present method is established. Results of applications of the present method to the recalculation of the natural frequencies of two simple platelike structural models are presented and compared with results obtained by using a commonly applied analysis procedure used as a reference. In general, the results are in good agreement. A comparison of the computer times required for the use of the present method and the reference method indicated that the present method required substantially less time for reanalysis. Although the results presented are for relatively small-order problems, the present method will become more efficient relative to the reference method as the problem size increases. An extension of the present method to static reanalysis is described, ana a basis for unifying the static and dynamic reanalysis procedures is presented.
Online Classrooms: Powerful Tools for Rapid-Iteration Pedagogical Improvements
NASA Astrophysics Data System (ADS)
Horodyskyj, L.; Semken, S.; Anbar, A.; Buxner, S.
2015-11-01
Online education offers the opportunity to reach a variety of students including non-traditional and geographically diverse students. Research has shown that online courses modeled after traditional lecture-exam courses are ineffective. Over the past three years, Arizona State University developed and offered Habitable Worlds, an online-only astrobiology lab course featuring active learning tools. The course is offered in an intelligent tutoring system (ITS) that records a wealth of student data. In analyzing data from the Fall 2013 offering of the course, we were able to identify pre-post quiz results that were suboptimal and where in the lesson and how precisely students were missing concepts. The problem areas were redesigned, and the improved lessons were deployed a few months later. We saw significant improvements in our pre-post quiz results due to the implemented changes. This demonstrates the effectiveness of using robust ITS not only to present content online, but to provide instantaneous data for rapid iteration and improvement of existing content.
NASA Astrophysics Data System (ADS)
Iotti, Robert
2015-04-01
ITER is an international experimental facility being built by seven Parties to demonstrate the long term potential of fusion energy. The ITER Joint Implementation Agreement (JIA) defines the structure and governance model of such cooperation. There are a number of necessary conditions for such international projects to be successful: a complete design, strong systems engineering working with an agreed set of requirements, an experienced organization with systems and plans in place to manage the project, a cost estimate backed by industry, and someone in charge. Unfortunately for ITER many of these conditions were not present. The paper discusses the priorities in the JIA which led to setting up the project with a Central Integrating Organization (IO) in Cadarache, France as the ITER HQ, and seven Domestic Agencies (DAs) located in the countries of the Parties, responsible for delivering 90%+ of the project hardware as Contributions-in-Kind and also financial contributions to the IO, as ``Contributions-in-Cash.'' Theoretically the Director General (DG) is responsible for everything. In practice the DG does not have the power to control the work of the DAs, and there is not an effective management structure enabling the IO and the DAs to arbitrate disputes, so the project is not really managed, but is a loose collaboration of competing interests. Any DA can effectively block a decision reached by the DG. Inefficiencies in completing design while setting up a competent organization from scratch contributed to the delays and cost increases during the initial few years. So did the fact that the original estimate was not developed from industry input. Unforeseen inflation and market demand on certain commodities/materials further exacerbated the cost increases. Since then, improvements are debatable. Does this mean that the governance model of ITER is a wrong model for international scientific cooperation? I do not believe so. Had the necessary conditions for success
Rapid Hebbian axonal remodeling mediated by visual stimulation.
Munz, Martin; Gobert, Delphine; Schohl, Anne; Poquérusse, Jessie; Podgorski, Kaspar; Spratt, Perry; Ruthazer, Edward S
2014-05-23
We examined how correlated firing controls axon remodeling, using in vivo time-lapse imaging and electrophysiological analysis of individual retinal ganglion cell (RGC) axons that were visually stimulated either synchronously or asynchronously relative to neighboring inputs in the Xenopus laevis optic tectum. RGCs stimulated out of synchrony rapidly lost the ability to drive tectal postsynaptic partners while their axons grew and added many new branches. In contrast, synchronously activated RGCs produced fewer new branches, but these were more stable. The effects of synchronous activation were prevented by the inhibition of neurotransmitter release and N-methyl-D-aspartate receptor (NMDAR) blockade, which is consistent with a role for synaptic NMDAR activation in the stabilization of axonal branches and suppression of further exploratory branch addition. PMID:24855269
2012-01-01
Background Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this. PMID:22676920
Rapid assessment of gait and speech after subthalamic deep brain stimulation
Farris, Sierra M.; Giroux, Monique L.
2016-01-01
Background: Describe a rapid assessment for patients with idiopathic Parkinson's disease (PD) and deep brain stimulation of the subthalamic nucleus reporting worsening speech and/or gait problems. Methods: We retrospectively reviewed 29 patients that had improvement in gait and/or speech within 30 min after turning stimulation off. Clinical data analyzed include unified PD rating scale motor scores and stimulation parameters before and after adjusting stimulation. All patients received electrode efficacy and side effect threshold testing. Stimulation parameters were adjusted to maximize efficacy, avoid side effects, and maximize battery longevity. Results: Turning stimulation off revealed reversible speech and/or gait stimulation side effects within 30 min. Focusing on six factors revealed stimulation modifications that improved motor symptoms, eliminated stimulation side effects, and reduced battery drain. Primary stimulation parameters modified were cathode selection and pulse width reduction. Conclusions: Stimulation-induced side effects impacting gait and speech can be identified within 30 min. A systematic evaluation can distinguish disease progression from reversible stimulation side effects and improve motor outcomes over the long term. PMID:27583181
Pattern recognition for rapid T2 mapping with Stimulate Echo Compensation
Huang, Chuan; Altbach, Maria I; Fakhri, Georges El
2014-01-01
Indirect echoes (such as stimulated echoes) are a source of signal contamination in a multi-echo spin-echo T2 quantification, and can lead to T2 overestimation if a conventional exponential T2 decay model is assumed. Recently, nonlinear least square fitting of a slice-resolve extended phase graph (SEPG) signal model has been shown to provide accurate T2 estimates with indirect echo compensation. However, the iterative nonlinear least square fitting is computationally expensive and the T2 map generation time is long. In this work, we present a pattern recognition T2 mapping technique based on the SEPG model that can be performed with a single pre-computed dictionary for any arbitrary echo spacing. Almost identical T2 and B1 maps were obtained from in vivo data using the proposed technique compared to conventional iterative nonlinear least square fitting, while the computation time was reduced by more than 14 fold. PMID:24853466
Pattern recognition for rapid T2 mapping with stimulated echo compensation.
Huang, Chuan; Altbach, Maria I; El Fakhri, Georges
2014-09-01
Indirect echoes (such as stimulated echoes) are a source of signal contamination in multi-echo spin-echo T2 quantification and can lead to T2 overestimation if a conventional exponential T2 decay model is assumed. Recently, nonlinear least square fitting of a slice-resolved extended phase graph (SEPG) signal model has been shown to provide accurate T2 estimates with indirect echo compensation. However, the iterative nonlinear least square fitting is computationally expensive and the T2 map generation time is long. In this work, we present a pattern recognition T2 mapping technique based on the SEPG model that can be performed with a single pre-computed dictionary for any arbitrary echo spacing. Almost identical T2 and B1 maps were obtained from in vivo data using the proposed technique compared to conventional iterative nonlinear least square fitting, while the computation time was reduced by more than 14-fold. PMID:24853466
Wang, Kunpeng; Chai, Yi; Su, Chunxiao
2013-08-01
In this paper, we consider the problem of extracting the desired signals from noisy measurements. This is a classical problem of signal recovery which is of paramount importance in inertial confinement fusion. To accomplish this task, we develop a tractable algorithm based on continuous basis pursuit and reweighted [script-l]1-minimization. By modeling the observed signals as superposition of scale time-shifted copies of theoretical waveform, structured noise, and unstructured noise on a finite time interval, a sparse optimization problem is obtained. We propose to solve this problem through an iterative procedure that alternates between convex optimization to estimate the amplitude, and local optimization to estimate the dictionary. The performance of the method was evaluated both numerically and experimentally. Numerically, we recovered theoretical signals embedded in increasing amounts of unstructured noise and compared the results with those obtained through popular denoising methods. We also applied the proposed method to a set of actual experimental data acquired from the Shenguang-II laser whose energy was below the detector noise-equivalent energy. Both simulation and experiments show that the proposed method improves the signal recovery performance and extends the dynamic detection range of detectors. PMID:24007049
NASA Astrophysics Data System (ADS)
Wang, Kunpeng; Chai, Yi; Su, Chunxiao
2013-08-01
In this paper, we consider the problem of extracting the desired signals from noisy measurements. This is a classical problem of signal recovery which is of paramount importance in inertial confinement fusion. To accomplish this task, we develop a tractable algorithm based on continuous basis pursuit and reweighted ℓ1-minimization. By modeling the observed signals as superposition of scale time-shifted copies of theoretical waveform, structured noise, and unstructured noise on a finite time interval, a sparse optimization problem is obtained. We propose to solve this problem through an iterative procedure that alternates between convex optimization to estimate the amplitude, and local optimization to estimate the dictionary. The performance of the method was evaluated both numerically and experimentally. Numerically, we recovered theoretical signals embedded in increasing amounts of unstructured noise and compared the results with those obtained through popular denoising methods. We also applied the proposed method to a set of actual experimental data acquired from the Shenguang-II laser whose energy was below the detector noise-equivalent energy. Both simulation and experiments show that the proposed method improves the signal recovery performance and extends the dynamic detection range of detectors.
Rapid and transitory stimulation of 3-O-methylglucose transport by growth hormone
Carter-Su, C.; Rozsa, F.W.; Wang, Xueyan; Stubbart, J.R. )
1988-11-01
The regulation of hexose transport by growth hormone (GH) was investigated using isolated rat adipocytes. GH caused a rapid (<3 min) rise in rates of 3-O-methylglucose transport that reached a maximum of two to six times the basal rates in 10-30 min. The stimulation of transport was transitory, and rates of transport started to decline 15-30 min after GH was added. Transport stimulation required a period of preincubation; no stimulation was observed in freshly isolated cells. GH stimulated hexose transport between 100 and 5,000 ng/ml, with a 50% effective dose between 200 and 300 ng/ml. Depletion of cellular ATP by 2,4-dinitrophenol blocked the ability of GH to stimulate transport but not the decline of transport rates following stimulation by GH. In contrast, an inhibitor of RNA synthesis, actinomycin D, had no effect on either the initial stimulation by GH or the initial subsequent decline of transport when added simultaneously or 15 min prior to GH. Actinomycin D did, however, cause a second rise in hexose transport at {approximately}120 min that was blocked by 2,4-dinitrophenol. These results suggest that changes in glucose transport contribute to the effects of GH on carbohydrate and lipid metabolism in adipose tissue. These changes are rapid, of substantial magnitude, and of a complex nature, suggesting that regulation of glucose transport by GH most likely involves multiple mechanisms.
Electrical stimulation causes rapid changes in electrode impedance of cell-covered electrodes
Newbold, Carrie; Richardson, Rachael; Millard, Rodney; Seligman, Peter; Cowan, Robert; Shepherd, Robert
2011-01-01
Animal and clinical observations of a reduction in electrode impedance following electrical stimulation encouraged the development of an in vitro model of the electrode-tissue interface. This model was used previously to show an increase in impedance with cell and protein cover over electrodes. In this paper, the model was used to assess the changes in electrode impedance and cell cover following application of a charge-balanced biphasic current pulse train. Following stimulation, a large and rapid drop in total impedance (Zt) and access resistance (Ra) occurred. The magnitude of this impedance change was dependent on the current amplitude used, with a linear relationship determined between Ra and the resulting cell cover over the electrodes. The changes in impedance due to stimulation were shown to be transitory, with impedance returning to pre-stimulation levels several hours after cessation of stimulation. A loss of cells over the electrode surface was observed immediately after stimulation suggesting that the level of stimulation applied was creating localised changes to cell adhesion. Similar changes in electrode impedance were observed for in vivo and in vitro work, thus helping to verify the in vitro model, although the underlying mechanisms may differ. A change in the porosity of the cellular layer was proposed to explain the alterations in electrode impedance in vitro. These in vitro studies provide insight into the possible mechanisms occurring at the electrode-tissue interface in association with electrical stimulation. PMID:21572219
Gastric bolus feeding rapidly stimulates hepatic protein synthesis in neonatal pigs
Technology Transfer Automated Retrieval System (TEKTRAN)
Growth and protein deposition rates are more rapid during the neonatal period than at any other stage of postnatal life. Feeding stimulates protein synthesis in the liver, as it does in other tissues of the neonatal pig. The purpose of this study was to examine the feeding-induced time course of the...
Sampson, Patrica; Freeman, Chris; Coote, Susan; Demain, Sara; Feys, Peter; Meadmore, Katie; Hughes, Ann-Marie
2016-02-01
Few interventions address multiple sclerosis (MS) arm dysfunction but robotics and functional electrical stimulation (FES) appear promising. This paper investigates the feasibility of combining FES with passive robotic support during virtual reality (VR) training tasks to improve upper limb function in people with multiple sclerosis (pwMS). The system assists patients in following a specified trajectory path, employing an advanced model-based paradigm termed iterative learning control (ILC) to adjust the FES to improve accuracy and maximise voluntary effort. Reaching tasks were repeated six times with ILC learning the optimum control action from previous attempts. A convenience sample of five pwMS was recruited from local MS societies, and the intervention comprised 18 one-hour training sessions over 10 weeks. The accuracy of tracking performance without FES and the amount of FES delivered during training were analyzed using regression analysis. Clinical functioning of the arm was documented before and after treatment with standard tests. Statistically significant results following training included: improved accuracy of tracking performance both when assisted and unassisted by FES; reduction in maximum amount of FES needed to assist tracking; and less impairment in the proximal arm that was trained. The system was well tolerated by all participants with no increase in muscle fatigue reported. This study confirms the feasibility of FES combined with passive robot assistance as a potentially effective intervention to improve arm movement and control in pwMS and provides the basis for a follow-up study. PMID:25823038
Rapid Lead Discovery Through Iterative Screening of One Bead One Compound Libraries
2015-01-01
Primary hits that arise from screening one bead one compound (OBOC) libraries against a target of interest rarely have high potency. However, there has been little work focused on the development of an efficient workflow for primary hit improvement. In this study, we show that by characterizing the binding constants for all of the hits that arise from a screen, structure–activity relationship (SAR) data can be obtained to inform the design of “derivative libraries” of a primary hit that can then be screened under more demanding conditions to obtain improved compounds. Here, we demonstrate the rapid improvement of a primary hit against matrix metalloproteinase-14 using this approach. PMID:25434974
Lateralized effect of rapid-rate transcranial magnetic stimulation of the prefrontal cortex on mood.
Pascual-Leone, A; Catalá, M D; Pascual-Leone Pascual, A
1996-02-01
We studied the effects of rapid-rate transcranial magnetic stimulation (rTMS) of different scalp positions on mood. Ten normal volunteers rated themselves before and after rTMS on five analog scales labeled "Tristeza" (Sadness), "Ansiedad" (Anxiety), "Alegria" (Happiness), "Cansancio" (Tiredness), and "Dolor/Malestar" (Pain/Discomfort). rTMS was applied to the right lateral prefrontal, left prefrontal, or midline frontal cortex in trains of 5 seconds' duration at 10 Hz and 110% of the subject's motor threshold intensity. Each stimulation position received 10 trains separated by a 25-second pause. No clinically apparent mood changes were evoked by rTMS to any of the scalp positions in any subject. However, left prefrontal rTMS resulted in a significant increase in the Sadness ratings (Tristeza) and a significant decrease in the Happiness ratings ("Alegria") as compared with right prefrontal and midfrontal cortex stimulation. These results show differential effects of rTMS of left and right prefrontal cortex stimulation on mood and illustrate the lateralized control of mood in normal volunteers. PMID:8614521
Stimulation of pulmonary rapidly adapting receptors by inhaled wood smoke in rats.
Lai, C J; Kou, Y R
1998-04-15
1. The stimulation of pulmonary rapidly adapting receptors (RARs) by wood smoke was investigated. Impulses from seventy RARs were recorded in fifty-nine anaesthetized, open-chest and artificially ventilated rats; responses to delivery of 6 ml of wood smoke into the lungs were studied in sixty-one receptors whereas responses to histamine (10 or 100 microg kg-1, i.v.) were studied in the other nine. 2. Delivery of wood smoke stimulated fifty-two of the sixty-one RARs studied. When stimulated, an intense burst of discharge was evoked within 1 or 2 s of smoke delivery. This increased activity quickly peaked in 1-3 s (Delta = 15.8 +/- 1.6 impulses s-1; n = 61; mean +/- s.e.m.), then declined and yet remained at a level higher than the baseline activity. The mean duration of the stimulation was 25.1 +/- 2.7 s. In contrast, smoke delivery did not affect tracheal pressure. 3. Peak responses of RARs to wood smoke were partially reduced by removal of smoke particulates and were largely attenuated by pretreatment with dimethylthiourea (DMTU, a hydroxyl radical scavenger), indomethacin (Indo, a cyclo-oxygenase inhibitor), or both DMTU and Indo (DMTU + Indo). Conversely, the peak responses of RARs were not significantly affected by pretreatment with isoprenaline (a bronchodilator) or vehicle for these chemicals. Additionally, pretreatment with DMTU, Indo, or DMTU + Indo did not significantly alter the RAR sensitivity to mechanical stimulation (constant-pressure lung inflation; 20 cmH2O). 4. Of the nine RARs tested, six were stimulated by histamine and their sensitivity to this chemical irritant was not altered by pretreatment with DMTU + Indo. 5. The results suggest that both the particulates and gas phases are responsible for, and both the hydroxyl radical and cyclo-oxygenase products are involved in, the stimulation of RARs by wood smoke. Furthermore, changes in lung mechanics following smoke delivery are not the cause of this afferent stimulation. PMID:9508820
Kong, Lingjie; Ji, Minbiao; Holtom, Gary R.; Fu, Dan; Freudiger, Christian W.; Xie, X. Sunney
2013-01-01
Stimulated Raman scattering (SRS) microscopy allows label-free chemical imaging based on vibrational spectroscopy. Narrowband excitation with picosecond lasers creates the highest signal levels and enables imaging speeds up to video-rate, but sacrifices chemical specify in samples with overlapping bands compared to broadband (multiplex) excitation. We develope a rapidly tunable picosecond optical parametric oscillator with an electro-optical tunable Lyot filter, and demonstrate multi-color SRS microscopy with synchronized line-by-line wavelength tuning to avoid spectral artifacts due to sample movement. We show sensitive imaging of three different kinds of polymer beads and live HeLa cells with moving intracellular lipid droplets. PMID:23454943
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2011-04-01
Stimulated Raman scattering in the electron cyclotron frequency range of the X-Mode and O-Mode driver with the ITER plasma leads to the ``tail heating'' via the generation of suprathermal electrons and energetic ions. The scattering off Trivelpiece-Gould (T-G) modes is studied for the gyrotron frequency of 170GHz; X-Mode and O-Mode power of 24 MW CW; on-axis B-field of 10T. The synergy between the two-plasmon decay and Raman scattering is analyzed in reference to the bulk plasma heating. Supported in part by Nikola TESLA Labs, La Jolla, CA
Jourdi, Hussam; Hsu, Yu-Tien; Zhou, Miou; Qin, Qingyu; Bi, Xiaoning; Baudry, Michel
2009-07-01
Brain-derived neurotrophic factor (BDNF) stimulates local dendritic mRNA translation and is involved in formation and consolidation of memory. 2H,3H,6aH-pyrrolidino[2'',1''-3',2']1,3-oxazino[6',5'-5,4]-benzo[e]1,4-dioxan-10-one (CX614), one of the best-studied positive AMPA receptor modulators (also known as ampakines), increases BDNF mRNA and protein and facilitates long-term potentiation (LTP) induction. Several other ampakines also improve performance in various behavioral and learning tasks. Since local dendritic protein synthesis has been implicated in LTP stabilization and in memory consolidation, this study investigated whether CX614 could influence synaptic plasticity by upregulating dendritic protein translation. CX614 treatment of primary neuronal cultures and acute hippocampal slices rapidly activated the translation machinery and increased local dendritic protein synthesis. CX614-induced activation of translation was blocked by K252a [(9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester], CNQX, APV, and TTX, and was inhibited in the presence of an extracellular BDNF scavenger, TrkB-Fc. The acute effect of CX614 on translation was mediated by increased BDNF release as demonstrated with a BDNF scavenging assay using TrkB-Fc during CX614 treatment of cultured primary neurons and was blocked by nifedipine, ryanodine, and lack of extracellular Ca(2+) in acute hippocampal slices. Finally, CX614, like BDNF, rapidly increased dendritic translation of an exogenous translation reporter. Together, our results demonstrate that positive modulation of AMPA receptors rapidly stimulates dendritic translation, an effect mediated by BDNF secretion and TrkB receptor activation. They also suggest that increased BDNF secretion and stimulation of local protein synthesis contribute to the effects of ampakines on synaptic plasticity. PMID:19587275
Shaw, K T; Ho, A M; Raghavan, A; Kim, J; Jain, J; Park, J; Sharma, S; Rao, A; Hogan, P G
1995-01-01
The immunosuppressive drugs cyclosporin A and FK506 interfere with the inducible transcription of cytokine genes in T cells and in other immune cells, in part by preventing the activation of NF-AT (nuclear factor of activated T cells). We show that transcription factor NFAT1 in T cells is rapidly dephosphorylated on stimulation, that dephosphorylation occurs before translocation of NFAT1 into the cell nucleus, and that dephosphorylation increases the affinity of NFAT1 for its specific sites in DNA. Cyclosporin A prevents the dephosphorylation and the nuclear translocation of NFAT1 in T cells, B cells, macrophages, and mast cells, delineating at least one mechanism that contributes to the profound immunosuppressive effects of this compound. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7479966
Rapid auxin-induced stimulation of cell wall synthesis in pea internodes
Kutschera, U.; Briggs, W.R.
1987-05-01
The effect of auxin (indole-3-acetic acid; IAA) on growth and incorporation of myo-(2-/sup 3/H(N)) inositol ((/sup 3/H)Ins) into noncellulosic polysacchharides in the cell walls of third internode sections from red light-grown pea seedlings (Pisum sativum L. cv. Alaska) was investigated. Intact section were incubated on (/sup 3/H)Ins for 4 hr to permit uptake of the tracer and then IAA was added. Growth started after a lag phase of 15 min under these conditions. The sections were removed from the tracer and separated into epidermis and cortical cylinder (cortex plus vascular tissue). In the epidermis, IAA-induced stimulation of (/sup 3/H)Ins incorporation started after a lag of 15 min. The amount of incorporation was 15% higher after 30 min and 24% higher after 2 hr than in the control. In the cortical cylinder, IAA-induced stimulation of (/sup 3/H)Ins incorporation started only approx. = 1 hr after adding IAA. The ionophore monensin (20 ..mu..M) inhibited the IAA-induced growth by 95%. Under these conditions, the IAA-induced stimulation of (/sup 3/H)Ins incorporation and the IAA-induced increase in in vivo extensibility of the sections was almost completely inhibited, although oxygen uptake was unaffected. The authors suggest that wall synthesis (as represented by (/sup 3/H)Ins incorporation) and wall loosening (increase in in vivo extensibility) are related processes. The results support the hypothesis that IAA induces growth by rapid simulation of cell wall synthesis in the growth-limiting epidermal cell layer.
Rapid systemic up-regulation of genes after heat-wounding and electrical stimulation
NASA Technical Reports Server (NTRS)
Davies, E.; Vian, A.; Vian, C.; Stankovic, B.
1997-01-01
When one leaf of a tomato plant is electrically-stimulated or heat-wounded, proteinase inhibitor genes are rapidly up-regulated in distant leaves. The identity of the systemic wound signal(s) is not yet known, but major candidates include hormones transmitted via the phloem or the xylem, the electrically-stimulated self-propagating electrical signal in the phloem (the action potential, AP), or the heat-wound-induced surge in hydraulic pressure in the xylem evoking a local change in membrane potential in adjacent living cells (the variation potential, VP). In order to discriminate between these signals we have adopted two approaches. The first approach involves applying stimuli that evoke known signals and determining whether these signals have similar effects on the "model" transcripts for proteinase inhibitors (pin) and calmodulin (cal). Here we show that a heat wound almost invariably evokes a VP, while an electrical stimulation occasionally evokes an AP, and both of these signals induce accumulation of transcripts encoding proteinase inhibitors. The second approach involves identifying the array of genes turned on by heat-wounding. To this end, we have constructed a subtractive library for heat-wounded tissue, isolated over 800 putatively up-regulated clones, and shown that all but two of the fifty that we have analyzed by Northern hybridization are, indeed, up-regulated. Here we show the early kinetics of up-regulation of three of these transcripts in the terminal (4th) leaf in response to heat-wounding the 3rd leaf, about 5 cm away. Even though these transcripts show somewhat different time courses of induction, with one peaking at 30 min, another at 15 min, and another at 5 min after flaming of a distant leaf, they all exhibit a similar pattern, i.e., a transient period of transcript accumulation preceding a period of transcript decrease, followed by a second period of transcript accumulation.
Acute inhalation of ozone stimulates bronchial C-fibers and rapidly adapting receptors in dogs
Coleridge, J.C.G.; Coleridge, H.M.; Schelegle, E.S.; Green, J.F. Univ. of California, San Francisco )
1993-05-01
To identify the afferents responsible for initiating the vagally mediated respiratory changes evoked by acute exposure to ozone, the authors recorded vagal impulses in anesthetized, open-chest, artificially ventilated dogs and examined the pulmonary afferent response to ozone (2--3 ppM in air) delivered to the lower trachea for 20--60 min. Bronchial C-fibers (BrCs) were the lung afferents most susceptible to ozone, the activity of 10 of 11 BrCs increasing from 0.2 [+-] 0.2 to 4.6 [+-] 1.3 impulses/s within 1--7 min of ozone exposure. Ten of 15 rapidly adapting receptors (RARs) were stimulated by ozone, their activity increasing from 1.5 [+-] 0.4 to 4.7 [+-] 0.7 impulses/s. Stimulation of RARs (but not of BrCs) appeared secondary to the ozone-induced reduction of lung compliance because it was abolished by hyperinflation of the lungs. Ozone had little effect on pulmonary C-fibers or slowly adapting pulmonary stretch receptors. The authors' results suggest that both BrCs and RARs contribute to the tachypnea and bronchoconstriction evoked by acute exposure to ozone when vagal conduction is intact and that BrCs alone are responsible for the vagally mediated tachypnea that survives vagal cooling to 7[degrees]C. 23 refs., 5 figs.
Serum stimulation of plasma protein synthesis in culture is selective and rapidly reversible.
Plant, P W; Liang, T J; Pindyck, J; Grieninger, G
1981-10-27
Primary hepatocyte monolayers, derived from chick embryos, can be cultured from the onset in a completely chemically defined medium, free of added hormones. The liver cells synthesize and secrete a wide spectrum of plasma proteins for several days in this serum-free environment. Addition of fetal bovine serum elicits a 3-5-fold increase in the production of certain plasma proteins: fibrinogen, albumin, and the alpha1-globulin M. This effect of serum is selective; transferrin and plasminogen syntheses are enhanced less than 1.5-fold. Significant stimulation is observed with 0.1% fetal bovine serum, and half-maximal values for individual plasma proteins are obtained with concentrations ranging between 0.4 and 1%. The stimulatory activity of serum shows no developmental or species specificity. Plasma is active as serum derived from the same blood sample. The hepatocytes respond rapidly to serum, significant changes in albumin synthesis occurring less than 1 h after serum addition or removal. The effect of short exposure is fully reversible. These results establish the capacity of low concentrations of serum to stimulate plasma protein synthesis and underscore the importance of studying the effects of hormones and other factors under serum-free conditions. The findings suggest that, in addition to the classical hormones, ubiquitous but as yet uncharacterized serum components play a role in controlling this major hepatic function. PMID:7284395
Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila.
Case, Christopher L; Kohler, Lara J; Lima, Jonilson B; Strowig, Till; de Zoete, Marcel R; Flavell, Richard A; Zamboni, Dario S; Roy, Craig R
2013-01-29
A flagellin-independent caspase-1 activation pathway that does not require NAIP5 or NRLC4 is induced by the intracellular pathogen Legionella pneumophila. Here we demonstrate that this pathway requires caspase-11. Treatment of macrophages with LPS up-regulated the host components required for this caspase-11 activation pathway. Activation by Legionella differed from caspase-11 activation using previously described agonists in that Legionella caspase-11 activation was rapid and required bacteria with a functional type IV secretion system called Dot/Icm. Legionella activation of caspase-11 induced pyroptosis by a mechanism independent of the NAIP/NLRC4 and caspase-1 axis. Legionella activation of caspase-11 stimulated activation of caspase-1 through NLRP3 and ASC. Induction of caspase-11-dependent responses occurred in macrophages deficient in the adapter proteins TRIF or MyD88 but not in macrophages deficient in both signaling factors. Although caspase-11 was produced in macrophages deficient in the type-I IFN receptor, there was a severe defect in caspase-11-dependent pyroptosis in these cells. These data indicate that macrophages respond to microbial signatures to produce proteins that mediate a capsase-11 response and that the caspase-11 system provides an alternative pathway for rapid detection of an intracellular pathogen capable of evading the canonical caspase-1 activation system that responds to bacterial flagellin. PMID:23307811
Luzio de Melo, Paulo; da Silva, Miguel Tavares; Martins, Jorge; Newman, Dava
2015-05-01
Functional electrical stimulation (FES) has been used over the last decades as a method to rehabilitate lost motor functions of individuals with spinal cord injury, multiple sclerosis, and post-stroke hemiparesis. Within this field, researchers in need of developing FES-based control solutions for specific disabilities often have to choose between either the acquisition and integration of high-performance industry-level systems, which are rather expensive and hardly portable, or develop custom-made portable solutions, which despite their lower cost, usually require expert-level electronic skills. Here, a flexible low-cost microcontroller-based platform for rapid prototyping of FES neuroprostheses is presented, designed for reduced execution complexity, development time, and production cost. For this reason, the Arduino open-source microcontroller platform was used, together with off-the-shelf components whenever possible. The developed system enables the rapid deployment of portable FES-based gait neuroprostheses, being flexible enough to allow simple open-loop strategies but also more complex closed-loop solutions. The system is based on a modular architecture that allows the development of optimized solutions depending on the desired FES applications, even though the design and testing of the platform were focused toward drop foot correction. The flexibility of the system was demonstrated using two algorithms targeting drop foot condition within different experimental setups. Successful bench testing of the device in healthy subjects demonstrated these neuroprosthesis platform capabilities to correct drop foot. PMID:25919579
Zachary, I.; Gil, J.; Lehmann, W.; Sinnett-Smith, J.; Rozengurt, E. )
1991-06-01
The mitogenic neuropeptides bombesin and vasopressin markedly increased tyrosine and serine phosphorylation of multiple substrates in quiescent Swiss 3T3 fibroblasts, including two major bands of M{sub r} 90,000 and 115,000. Tyrosine phosphorylation of these proteins was increased as judged by immunoprecipitation of {sup 32}P{sub i}-labeled cells and immunoblotting of unlabeled cells with monoclonal antiphosphotyrosine antibodies, elution with phenyl phosphate, and phospho amino acid analysis. Phosphotyrosyl proteins generated by bombesin and vasopressin did not correspond either by apparent molecular weight or by immunological and biochemical criteria to several known tyrosine kinase substrates, including phospholipase C{sub {gamma}}, the microtubule-associated protein 2 kinase, GTPase-activating protein, or phosphatidylinositol kinase. The effect was rapid (within seconds), concentration dependent, and inhibited by specific receptor antagonists for both bombesin and vasopressin. The endothelin-related peptide, vasoactive intestinal contractor, also elicited a rapid and concentration-dependent tyrosine/serine phosphorylation of a similar set of substrates. These results demonstrate that neuropeptides, acting through receptors linked to GTP-binding proteins, stimulate tyrosine phosphorylation of a common set of substrates in quiescent Swiss 3T3 cells and suggest the existence of an additional signal transduction pathway in neuropeptide-induced mitogenesis.
Rapid-Rate Paired Associative Stimulation over the Primary Somatosensory Cortex
Tsang, Philemon; Bailey, Aaron Z.; Nelson, Aimee J.
2015-01-01
Rapid-rate paired associative stimulation (rPAS) involves repeat pairing of peripheral nerve stimulation and Transcranial magnetic stimulation (TMS) pulses at a 5 Hz frequency. RPAS over primary motor cortex (M1) operates with spike-timing dependent plasticity such that increases in corticospinal excitability occur when the nerve and TMS pulse temporally coincide in cortex. The present study investigates the effects of rPAS over primary somatosensory cortex (SI) which has not been performed to date. In a series of experiments, rPAS was delivered over SI and M1 at varying timing intervals between the nerve and TMS pulse based on the latency of the N20 somatosensory evoked potential (SEP) component within each participant (intervals for SI-rPAS: N20, N20-2.5 ms, N20 + 2.5 ms, intervals for M1-rPAS: N20, N20+5 ms). Changes in SI physiology were measured via SEPs (N20, P25, N20-P25) and SEP paired-pulse inhibition, and changes in M1 physiology were measured with motor evoked potentials and short-latency afferent inhibition. Measures were obtained before rPAS and at 5, 25 and 45 minutes following stimulation. Results indicate that paired-pulse inhibition and short-latency afferent inhibition were reduced only when the SI-rPAS nerve-TMS timing interval was set to N20-2.5 ms. SI-rPAS over SI also led to remote effects on motor physiology over a wider range of nerve-TMS intervals (N20-2.5 ms – N20+2.5 ms) during which motor evoked potentials were increased. M1-rPAS increased motor evoked potentials and reduced short-latency afferent inhibition as previously reported. These data provide evidence that, similar to M1, rPAS over SI is spike-timing dependent and is capable of exerting changes in SI and M1 physiology. PMID:25799422
Valderrama, Joaquin T; de la Torre, Angel; Medina, Carlos; Segura, Jose C; Thornton, A Roger D
2016-03-01
The recording of auditory evoked potentials (AEPs) at fast rates allows the study of neural adaptation, improves accuracy in estimating hearing threshold and may help diagnosing certain pathologies. Stimulation sequences used to record AEPs at fast rates require to be designed with a certain jitter, i.e., not periodical. Some authors believe that stimuli from wide-jittered sequences may evoke auditory responses of different morphology, and therefore, the time-invariant assumption would not be accomplished. This paper describes a methodology that can be used to analyze the time-invariant assumption in jittered stimulation sequences. The proposed method [Split-IRSA] is based on an extended version of the iterative randomized stimulation and averaging (IRSA) technique, including selective processing of sweeps according to a predefined criterion. The fundamentals, the mathematical basis and relevant implementation guidelines of this technique are presented in this paper. The results of this study show that Split-IRSA presents an adequate performance and that both fast and slow mechanisms of adaptation influence the evoked-response morphology, thus both mechanisms should be considered when time-invariance is assumed. The significance of these findings is discussed. PMID:26778545
NASA Astrophysics Data System (ADS)
Stefan, V. Alexander
2014-10-01
A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.
Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts
NASA Technical Reports Server (NTRS)
Johnson, D. L.; McAllister, T. N.; Frangos, J. A.
1996-01-01
Interstitial fluid flow may mediate skeletal remodeling in response to mechanical loading. Because nitric oxide (NO) has been shown to be an osteoblast mitogen and inhibitor of osteoclastic resorption, we investigated and characterized the role of fluid shear on the release of NO in osteoblasts. Rat calvarial cells in a stationary culture produced undetectable levels of NO. Fluid shear stress (6 dyn/cm2) rapidly increased NO release rate to 9.8 nmol.h-1.mg protein-1 and sustained this production for 12 h of exposure to flow. Cytokine treatment also induced NO synthesis after a 12-h lag phase of zero production, followed by a production rate of 0.6 nmol.h-1.mg protein-1. Flow-induced NO production was blocked by the NO synthase (NOS) inhibitor NG-amino-L-arginine, but not by dexamethasone, which suggests that the flow stimulated a constitutive NOS isoform. This is the first time that a functional constitutively present NOS isoform has been identified in osteoblasts. Moreover, fluid flow represents the most potent stimulus of NO release in osteoblasts reported to date. Fluid flow-induced NO production may therefore play a primary role in bone maintenance and remodeling.
Schalling, M; Stieg, P E; Lindquist, C; Goldstein, M; Hökfelt, T
1989-01-01
Thoracic ganglia in humans were studied after electrical, preganglionic stimulation using in situ hybridization with synthetic oligonucleotide probes against the catecholamine-synthesizing enzymes tyrosine hydroxylase (EC 1.14.16.2) and dopamine beta-hydroxylase (EC 1.14.17.1) and neuropeptide tyrosine. Immunohistochemical analysis was also performed. Following short peroperative stimulation a severalfold increase in all three mRNAs was found in principal ganglion cells, whereas no definite changes could be detected in enzyme or peptide levels with immunohistochemistry. The results suggest a very rapid and sensitive regulation of genes involved in signal transmission in the sympathetic nervous system of humans. Moreover, they indicate that electrical stimulation of neurons and/or pathways combined with in situ hybridization may be used as a method to define neuronal projections by visualizing increases in mRNAs for transmitter enzymes and/or peptide in target cells. Images PMID:2567003
Courtship interactions stimulate rapid changes in GnRH synthesis in male ring doves
Mantei, Kristen E.; Ramakrishnan, Selvakumar; Sharp, Peter J.; Buntin, John D.
2008-01-01
Many birds and mammals show changes in the hypothalamo-pituitary-gonadal (HPG) axis in response to social or sexual interactions between breeding partners. While alterations in GnRH neuronal activity play an important role in stimulating these changes, it remains unclear if acute behaviorally-induced alterations in GnRH release are accompanied by parallel changes in GnRH synthesis. To investigate this relationship, we examined changes in the activity of GnRH neurons in the brains of male ring doves following brief periods of courtship interactions with females. Such interactions have been previously shown to increase plasma LH in courting male doves at 24 h, but not at 1 h, after pairing with females. In the first study, males allowed to court females for 2 h had 60% more cells that showed immunocytochemical labeling for GnRH-I in the preoptic area (POA) of the hypothalamus than did control males that remained isolated from females. To determine whether an increase in GnRH gene expression preceded this increase in GnRH immunoreactivity in the POA, changes in the number of cells with detectable GnRH-I mRNA in the POA were measured by in situ hybridization following a 1 h period of courtship interactions with females. In this second study, courting males exhibited 40% more cells with GnRH-I in this region than did isolated control males. GnRH-immunoreactive neurons in two other diencephalic regions failed to show these courtship-induced changes. Plasma LH was not elevated after 1 or 2 h of courtship. These results demonstrate that the release of GnRH-I in the POA that is presumably responsible for courtship-induced pituitary and gonadal activation is accompanied by a rapid increase in GnRH synthesis that occurs before plasma LH levels increase. We suggest that this increase in GnRH synthesis is necessary to support the extended period of HPG axis activation that is seen in this species during the 5–10 day period of courtship and nest building activity. PMID
Larsen, Lars E; Wadman, Wytse J; Marinazzo, Daniele; van Mierlo, Pieter; Delbeke, Jean; Daelemans, Sofie; Sprengers, Mathieu; Thyrion, Lisa; Van Lysebettens, Wouter; Carrette, Evelien; Boon, Paul; Vonck, Kristl; Raedt, Robrecht
2016-07-01
Although vagus nerve stimulation (VNS) is widely used, therapeutic mechanisms and optimal stimulation parameters remain elusive. In the present study, we investigated the effect of VNS on hippocampal field activity and compared the efficiency of different VNS paradigms. Hippocampal electroencephalography (EEG) and perforant path dentate field-evoked potentials were acquired before and during VNS in freely moving rats, using 2 VNS duty cycles: a rapid cycle (7 s on, 18 s off) and standard cycle (30 s on, 300 s off) and various output currents. VNS modulated the evoked potentials, reduced total power of the hippocampal EEG, and slowed the theta rhythm. In the hippocampal EEG, theta (4-8 Hz) and high gamma (75-150 Hz) activity displayed strong phase amplitude coupling that was reduced by VNS. Rapid-cycle VNS had a greater effect than standard-cycle VNS on all outcome measures. Using rapid cycle VNS, a maximal effect on EEG parameters was found at 300 μA, beyond which effects saturated. The findings suggest that rapid-cycle VNS produces a more robust outcome than standard cycle VNS and support already existing preclinical evidence that relatively low output currents are sufficient to produce changes in brain physiology and thus likely also therapeutic efficacy. PMID:27102987
de Koning, P P; Figee, M; Endert, E; van den Munckhof, P; Schuurman, P R; Storosum, J G; Denys, D; Fliers, E
2016-01-01
Improvement of obsessions and compulsions by deep brain stimulation (DBS) for obsessive-compulsive disorder (OCD) is often preceded by a rapid and transient mood elevation (hypomania). In a previous study we showed that improvement of mood by DBS for OCD is associated with a decreased activity of the hypothalamus-pituitary adrenal axis. The aim of our present study was to evaluate the time course of rapid clinical changes following DBS reactivation in more detail and to assess their association with additional neuroendocrine parameters. We included therapy-refractory OCD patients treated with DBS (>1 year) and performed a baseline assessment of symptoms, as well as plasma concentrations of thyroid-stimulating hormone (TSH), prolactin, growth hormone, copeptin and homovanillic acid. This was repeated after a 1-week DBS OFF condition. Next, we assessed the rapid effects of DBS reactivation by measuring psychiatric symptom changes using visual analog scales as well as repeated neuroendocrine measures after 30 min, 2 h and 6 h. OCD, anxiety and depressive symptoms markedly increased during the 1-week OFF condition and decreased again to a similar extent already 2 h after DBS reactivation. We found lower plasma prolactin (41% decrease, P=0.003) and TSH (39% decrease, P=0.003) levels during DBS OFF, which increased significantly already 30 min after DBS reactivation. The rapid and simultaneous increase in TSH and prolactin is likely to result from stimulation of hypothalamic thyrotropin-releasing hormone (TRH), which may underlie the commonly observed transient mood elevation following DBS. PMID:26812043
Liu, Haiyan; Han, Meng; Li, Qingyi; Zhang, Xiao; Wang, Wen-An; Huang, Fu-De
2015-10-01
The negative-geotaxis climbing assay is used to efficiently study aging and neurodegeneration in Drosophila. To make it suitable for large-scale study, a method called the rapid iterative negative geotaxis (RING) assay has been established by simultaneously photographing the climbing of multiple groups of flies when they are manually tapped down in test tubes. Here, we automated the assay by using a well-controlled electric motor to drive the tapping, and a homemade program to analyze the climbing height of flies. Using the automated RING (aRING) assay, we found that the climbing ability of a strain of wild-type flies, males in particular, declined rapidly before day 21 after eclosion, but slowly from day 21 to 35. We also found that the expression of arctic mutant Aβ42 accelerated the age-dependent decline in the climbing ability of flies. Moreover, using aRING, we examined the effect of third chromosome deficiencies on the accelerated locomotor decline in Aβ42-expressing flies, and isolated 7 suppressors and 15 enhancers. PMID:26077703
A rapid solid-phase radioimmunoassay for human plasma follicle-stimulating hormone.
Lovesey, A C
1980-01-01
The measurement of plasma levels of human follicle-stimulating hormone (FSH) has proved to be of value for the study of the hypothalamic-hypophyseal-gonadal axis, greatly facilitating the diagnosis and mangement of problems relating to the menopause and infertility. In the present work a solid-phase radioimmunoassay for human FSH has been developed. This system is characterised by high precision, is economical, and is considerably faster to operate than conventional double antibody systems used in the hospital assay service. Reference values for plasma FSH in various endocrine states are recorded and discussed. PMID:6769381
Radogna, Flavia; Paternoster, Laura; De Nicola, Milena; Cerella, Claudia; Ammendola, Sergio; Bedini, Annalida; Tarzia, Giorgio; Aquilano, Katia; Ciriolo, Maria; Ghibelli, Lina
2009-08-15
Melatonin is a modified tryptophan with potent biological activity, exerted by stimulation of specific plasma membrane (MT1/MT2) receptors, by lower affinity intracellular enzymatic targets (quinone reductase, calmodulin), or through its strong anti-oxidant ability. Scattered studies also report a perplexing pro-oxidant activity, showing that melatonin is able to stimulate production of intracellular reactive oxygen species (ROS). Here we show that on U937 human monocytes melatonin promotes intracellular ROS in a fast (< 1 min) and transient (up to 5-6 h) way. Melatonin equally elicits its pro-radical effect on a set of normal or tumor leukocytes; intriguingly, ROS production does not lead to oxidative stress, as shown by absence of protein carbonylation, maintenance of free thiols, preservation of viability and regular proliferation rate. ROS production is independent from MT1/MT2 receptor interaction, since a) requires micromolar (as opposed to nanomolar) doses of melatonin; b) is not contrasted by the specific MT1/MT2 antagonist luzindole; c) is not mimicked by a set of MT1/MT2 high affinity melatonin analogues. Instead, chlorpromazine, the calmodulin inhibitor shown to prevent melatonin-calmodulin interaction, also prevents melatonin pro-radical effect, suggesting that the low affinity binding to calmodulin (in the micromolar range) may promote ROS production.
Hepatitis B Virus and DNA Stimulation Trigger a Rapid Innate Immune Response through NF-κB.
Yoneda, Masato; Hyun, Jinhee; Jakubski, Silvia; Saito, Satoru; Nakajima, Atsushi; Schiff, Eugene R; Thomas, Emmanuel
2016-07-15
Cell-intrinsic innate immunity provides a rapid first line of defense to thwart invading viral pathogens through the production of antiviral and inflammatory genes. However, the presence of many of these signaling pathways in the liver and their role in hepatitis B virus (HBV) pathogenesis is unknown. Recent identification of intracellular DNA-sensing pathways and involvement in numerous diverse disease processes including viral pathogenesis and carcinogenesis suggest a role for these processes in HBV infection. To characterize HBV-intrinsic innate immune responses and the role of DNA- and RNA-sensing pathways in the liver, we used in vivo and in vitro models including analysis of gene expression in liver biopsies from HBV-infected patients. In addition, mRNA and protein expression were measured in HBV-stimulated and DNA-treated hepatoma cell lines and primary human hepatocytes. In this article, we report that HBV and foreign DNA stimulation results in innate immune responses characterized by the production of inflammatory chemokines in hepatocytes. Analysis of liver biopsies from HBV-infected patients supported a correlation among hepatic expression of specific chemokines. In addition, HBV elicits a much broader range of gene expression alterations. The induction of chemokines, including CXCL10, is mediated by melanoma differentiation-associated gene 5 and NF-κB-dependent pathways after HBV stimulation. In conclusion, HBV-stimulated pathways predominantly activate an inflammatory response that would promote the development of hepatitis. Understanding the mechanism underlying these virus-host interactions may provide new strategies to trigger noncytopathic clearance of covalently closed circular DNA to ultimately cure patients with HBV infection. PMID:27288535
Ng, Kenneth W.; O’Conor, Christopher J.; Kugler, Lindsay E.; Cook, James L.; Ateshian, Gerard A.; Hung, Clark T.
2012-01-01
The purpose of the presented work is to examine the response of engineered cartilage to a transient, 2-week application of anabolic growth factors compared to continuous exposure in in vitro culture. Immature bovine chondrocytes were suspended in agarose hydrogel and cultured for 28 days (Study 1) or 42 days (Study 2) in chondrogenic media with TGF-β1, TGF-β3, or IGF-I either added for only the first 14 days in culture or added to the media for the entire study period. In both studies, there were no statistical differences in tissue mechanical or biochemical properties between the growth factors on day 14. In Study 1, growth factor removal led to a significant and drastic increase in Young’s modulus and GAG content compared to continuously exposed controls on day 28. In Study 2, both TGF-β1 and β3 led to significantly higher mechanical properties and collagen content versus IGF-I on day 42. These results indicate that the rapid rise in tissue properties (previously observed with TGF-β3 only) is not dependent on the type but rather the temporal application of the anabolic growth factor. These findings shed light on possible techniques to rapidly develop engineered cartilage tissue for the future treatment of osteoarthritis. PMID:21833681
Scorza, Livia CT; Dornelas, Marcelo Carnier
2014-01-01
Plant touch-sensitive organs have been described since Darwin’s observations and are related to a quick response to environment stimuli. Sensitive flower organs have been associated to an increase in the chances of cross pollination but there are few studies regarding this topic. Here we describe for the first time the kinetic of the androgynophore movement of 4 Passiflora species (P. sanguinolenta, P. citrina, P. capsularis, and P. rubra). For that, we collected flowers and recorded the movement after mechano-stimulating the androgynophore. From the recordings, we described the movement regarding its response and sensibility to mechanical stimulus and calculated the duration, speed, and the angle formed by the androgynophore before and after the movement. From our data we were able to propose a link to the pollination habit of these species. The movement of the androgynophore in these Passiflora is a noteworthy floral feature that might lead us to another astonishing example of a mechanism that evolved among angiosperms to assure sexual reproduction. PMID:24487079
Mega-prizes in medicine: big cash awards may stimulate useful and rapid therapeutic innovation.
Charlton, Bruce G
2007-01-01
Following Horrobin's suggestion of 1986, I argue that offering very large prizes (tens of millions of US dollars, or more) for solving specific therapeutic problems, would be an excellent strategy for promoting the rapid development of effective new treatments. The two mainstream ways of paying for medical research are funding the process with grants or funding the outcome via patent protection. When grants are used to fund the process of research the result tends to be 'pure' science, guided by intrinsic scientific objectives. Practical results, such as useful therapeutic advances, are a by-product. Patent-seeking research, by contrast, is more focused on technology than science. It seeks practical results; and aims to pay for itself (and make a profit) in the long term by generating a patentable product or procedure. Prize-seeking research is subject to different incentives and applicable to different situations than either process-funded or patent-seeking research. Prize seeking researchers have a strong incentive to solve the specified problem as rapidly as possible, but the problem may be solved using old ideas that are scientifically mundane or unpatentable technologies and methods. Prizes therefore seem to generate solutions which are incremental extensions, new applications or novel combinations of already-existing technologies. The main use of mega-prizes in medicine would be to accelerate therapeutic progress in stagnant fields of research and to address urgent problems. For example, medical charities focused on specific diseases should consider accumulating their resources until they can offer a mega-prize for solving a clinical problem of special concern to their patients. Prize money should be big enough to pay for the research and development, the evaluation of the new treatment in a clinical trial, and with a large profit left-over to compensate for the intrinsic risk of competing. Sufficiently large amounts of money, and the prestige and publicity
Mori, R; Sawai, T; Kinoshita, E; Baba, T; Matsumoto, T; Yoshimoto, M; Tsuji, Y; Satake, Y; Sawada, K
1991-12-01
Previous study showed that congenital isolated TSH deficiency in Japan is resulted exclusively from a G-A transition at nucleotide 145 in exon 2 of the TSH beta-subunit gene. All reported cases were from the inbred in Shikoku Island. We describe here a 10-year-old boy with hereditary TSH deficiency in the same area. The patient was born with a weight of 3,225 g to non-consanguineous parents. Evaluation at age 2 months revealed typical manifestations of cretinism without goiter. Serum T4, T3, and TSH values were 2.53 micrograms/dl, 107 ng/dl, and 0.5 microU/ml, respectively. A TRH stimulation test showed no increment of serum TSH value. Other anterior pituitary hormone levels were all within the normal range. Two oligonucleotide primers T1a and T1b were synthesized according to the sequence data. Amplified 169 bp nucleotides in exon 2 of the TSH beta gene with this primer set were digested with MaeI. Both the phenotypically normal brother and normal controls showed only the 169 bp fragment, whereas the proband showed 140 and 29 bp fragments and both parents showed three fragments; 169, 140, and 29 bp. These results were consistent with the point mutation of TSH beta gene in Japanese patients with congenital isolated TSH deficiency. Our PCR method with MaeI digestion contributes to the rapid detection of the homozygous patient and the heterozygous carrier. PMID:1811097
do Rego, Jean Luc; Vaudry, David; Vaudry, Hubert
2015-01-01
Neurosteroids can modulate the activity of the GABAA receptors, and thus affect anxiety-like behaviors. The non-benzodiazepine anxiolytic compound etifoxine has been shown to increase neurosteroid concentrations in brain tissue but the mode of action of etifoxine on neurosteroid formation has not yet been elucidated. In the present study, we have thus investigated the effect and the mechanism of action of etifoxine on neurosteroid biosynthesis using the frog hypothalamus as an experimental model. Exposure of frog hypothalamic explants to graded concentrations of etifoxine produced a dose-dependent increase in the biosynthesis of 17-hydroxypregnenolone, dehydroepiandrosterone, progesterone and tetrahydroprogesterone, associated with a decrease in the production of dihydroprogesterone. Time-course experiments revealed that a 15-min incubation of hypothalamic explants with etifoxine was sufficient to induce a robust increase in neurosteroid synthesis, suggesting that etifoxine activates steroidogenic enzymes at a post-translational level. Etifoxine-evoked neurosteroid biosynthesis was not affected by the central-type benzodiazepine (CBR) receptor antagonist flumazenil, the translocator protein (TSPO) antagonist PK11195 or the GABAA receptor antagonist bicuculline. In addition, the stimulatory effects of etifoxine and the triakontatetraneuropeptide TTN, a TSPO agonist, were additive, indicating that these two compounds act through distinct mechanisms. Etifoxine also induced a rapid stimulation of neurosteroid biosynthesis from frog hypothalamus homogenates, a preparation in which membrane receptor signalling is disrupted. In conclusion, the present study demonstrates that etifoxine stimulates neurosteroid production through a membrane receptor-independent mechanism. PMID:25785994
do Rego, Jean Luc; Vaudry, David; Vaudry, Hubert
2015-01-01
Neurosteroids can modulate the activity of the GABAA receptors, and thus affect anxiety-like behaviors. The non-benzodiazepine anxiolytic compound etifoxine has been shown to increase neurosteroid concentrations in brain tissue but the mode of action of etifoxine on neurosteroid formation has not yet been elucidated. In the present study, we have thus investigated the effect and the mechanism of action of etifoxine on neurosteroid biosynthesis using the frog hypothalamus as an experimental model. Exposure of frog hypothalamic explants to graded concentrations of etifoxine produced a dose-dependent increase in the biosynthesis of 17-hydroxypregnenolone, dehydroepiandrosterone, progesterone and tetrahydroprogesterone, associated with a decrease in the production of dihydroprogesterone. Time-course experiments revealed that a 15-min incubation of hypothalamic explants with etifoxine was sufficient to induce a robust increase in neurosteroid synthesis, suggesting that etifoxine activates steroidogenic enzymes at a post-translational level. Etifoxine-evoked neurosteroid biosynthesis was not affected by the central-type benzodiazepine (CBR) receptor antagonist flumazenil, the translocator protein (TSPO) antagonist PK11195 or the GABAA receptor antagonist bicuculline. In addition, the stimulatory effects of etifoxine and the triakontatetraneuropeptide TTN, a TSPO agonist, were additive, indicating that these two compounds act through distinct mechanisms. Etifoxine also induced a rapid stimulation of neurosteroid biosynthesis from frog hypothalamus homogenates, a preparation in which membrane receptor signalling is disrupted. In conclusion, the present study demonstrates that etifoxine stimulates neurosteroid production through a membrane receptor-independent mechanism. PMID:25785994
NASA Astrophysics Data System (ADS)
jjeherrera; Duffield, John; ZoloftNotWorking; esromac; protogonus; mleconte; cmfluteguy; adivita
2014-07-01
In reply to the physicsworld.com news story “US sanctions on Russia hit ITER council” (20 May, http://ow.ly/xF7oc and also June p8), about how a meeting of the fusion experiment's council had to be moved from St Petersburg and the US Congress's call for ITER boss Osamu Motojima to step down.
Watanabe, Shigeki
2016-01-01
Electron microscopy depicts subcellular structures at synapses exquisitely but only captures static images. To visualize membrane dynamics, we have developed a novel technique, called flash-and-freeze, which induces neuronal activity with a flash of light and captures the membrane dynamics by rapid freezing. For characterizing membrane movements during synaptic transmission, a light-sensitive cation channel, channelrhodopsin, is heterologously expressed in mouse hippocampal neurons or in Caenorhabditis elegans motor neurons. A brief pulse of blue light activates channelrhodopsin and induces an action potential, leading to synaptic transmission. Following the light stimulation, neurons are frozen at different time intervals ranging from 10 ms to 20 s. Electron micrographs are then acquired from each time point to visualize the morphological changes. Using this approach, we have characterized a novel form of endocytosis, ultrafast endocytosis, which rapidly removes excess membrane added to the surface during neurotransmission. The flash-and-freeze approach can be adapted to study other cellular phenomena that can be induced by light-sensitive genetic or pharmacological tools. PMID:27594835
Watanabe, Shigeki
2016-01-01
Electron microscopy depicts subcellular structures at synapses exquisitely but only captures static images. To visualize membrane dynamics, we have developed a novel technique, called flash-and-freeze, which induces neuronal activity with a flash of light and captures the membrane dynamics by rapid freezing. For characterizing membrane movements during synaptic transmission, a light-sensitive cation channel, channelrhodopsin, is heterologously expressed in mouse hippocampal neurons or in Caenorhabditis elegans motor neurons. A brief pulse of blue light activates channelrhodopsin and induces an action potential, leading to synaptic transmission. Following the light stimulation, neurons are frozen at different time intervals ranging from 10 ms to 20 s. Electron micrographs are then acquired from each time point to visualize the morphological changes. Using this approach, we have characterized a novel form of endocytosis, ultrafast endocytosis, which rapidly removes excess membrane added to the surface during neurotransmission. The flash-and-freeze approach can be adapted to study other cellular phenomena that can be induced by light-sensitive genetic or pharmacological tools. PMID:27594835
Saadd, Y.
1994-12-31
In spite of the tremendous progress achieved in recent years in the general area of iterative solution techniques, there are still a few obstacles to the acceptance of iterative methods in a number of applications. These applications give rise to very indefinite or highly ill-conditioned non Hermitian matrices. Trying to solve these systems with the simple-minded standard preconditioned Krylov subspace methods can be a frustrating experience. With the mathematical and physical models becoming more sophisticated, the typical linear systems which we encounter today are far more difficult to solve than those of just a few years ago. This trend is likely to accentuate. This workshop will discuss (1) these applications and the types of problems that they give rise to; and (2) recent progress in solving these problems with iterative methods. The workshop will end with a hopefully stimulating panel discussion with the speakers.
Frazer, Alan
2012-01-01
Background Vagal nerve stimulation (VNS) has been approved for treatment-resistant depression. Many antidepressants increase expression of brain-derived neurotrophic factor (BDNF) in brain or activate, via phosphorylation, its receptor, TrkB. There have been no studies yet of whether VNS would also cause phosphorylation of TrkB. Methods Western blot analysis was used to evaluate the phosphorylation status of TrkB in the hippocampus of rats administered VNS either acutely or chronically. Acute effects of VNS were compared with those caused by fluoxetine or desipramine (DMI) whereas its chronic effects were compared with those of sertraline or DMI. Results All treatments, given either acutely or chronically, significantly elevated phosphorylation of tyrosines 705 and 816 on TrkB in the hippocampus. However, only VNS increased the phosphorylation of tyrosine 515, with both acute and chronic administration causing this effect. Pretreatment with K252a, a nonspecific tyrosine kinase inhibitor, blocked the phosphorylation caused by acute VNS at all three tyrosines. Downstream effectors of Y515, namely Akt and ERK, were also phosphorylated after acute treatment with VNS, whereas DMI did not cause this effect. Conclusion VNS rapidly activates TrkB phosphorylation and this effect persists over time. VNS-induced phosphorylation of tyrosine 515 is distinct from the effect of standard antidepressant drugs. PMID:22563458
NASA Astrophysics Data System (ADS)
Higham, Jonathan; Brevis, Wernher; Keylock, Christopher
2015-11-01
A method is presented, based on Proper Orthogonal Decomposition (POD), for the detection and estimation of outliers in two-dimensional signals. In experimental fluid mechanics, for a number of reasons, two dimensional data obtained using techniques such as Particle Image Velocimetry often contain outliers. The proposed methodology is based on the assumption that statistically significant outliers can be identified as abnormalities in the evolution of the temporal POD coefficients and as changes to the eigenvalues. Unlike previous methods, the estimation technique in the current method is non-iterative. It is instead dependent on a correction of a parameter introduced to search for abnormal, outlier induced magnitudes in the modal decomposition. The method is benchmarked by synthetically simulating outliers applied to two data sets: One data set is obtained experimentally using Particle Image Velocimetry; the other is based on a numerical simulation. The results demonstrate that the proposed approach is able to identify the outliers reliably and correct them with acceptable accuracy.
Massey, Katherine J; Li, Quanwen; Rossi, Noreen F; Keezer, Susan M; Mattingly, Raymond R; Yingst, Douglas R
2016-02-01
How angiotensin (ANG) II acutely stimulates the Na-K pump in proximal tubules is only partially understood, limiting insight into how ANG II increases blood pressure. First, we tested whether ANG II increases the number of pumps in plasma membranes of native rat proximal tubules under conditions of rapid activation. We found that exposure to 100 pM ANG II for 2 min, which was previously shown to increase affinity of the Na-K pump for Na and stimulate activity threefold, increased the amount of the Na-K pump in plasma membranes of native tubules by 33%. Second, we tested whether previously observed increases in phosphorylation of the Na-K pump at Ser(938) were part of the stimulatory mechanism. These experiments were carried out in opossum kidney cells, cultured proximal tubules stably coexpressing the ANG type 1 (AT1) receptor, and either wild-type or a S938A mutant of rat kidney Na-K pump under conditions found by others to stimulate activity. We found that 10 min of incubation in 10 pM ANG II stimulated activity of wild-type pumps from 2.3 to 3.5 nmol K · mg protein(-1) · min(-1) and increased the amount of the pump in the plasma membrane by 80% but had no effect on cells expressing the S938A mutant. We conclude that acute stimulation of Na-K pump activity in native rat proximal tubules includes increased trafficking to the plasma membrane and that phosphorylation at Ser(938) is part of the mechanism by which ANG II directly stimulates activity and trafficking of the rat kidney Na-K pump in opossum kidney cells. PMID:26582472
Rolston, John D.; Gross, Robert E.; Potter, Steve M.
2009-01-01
Commercially available data acquisition systems for multielectrode recording from freely moving animals are expensive, often rely on proprietary software, and do not provide detailed, modifiable circuit schematics. When used in conjunction with electrical stimulation, they are prone to prolonged, saturating stimulation artifacts that prevent the recording of short-latency evoked responses. Yet electrical stimulation is integral to many experimental designs, and critical for emerging brain-computer interfacing and neuroprosthetic applications. To address these issues, we developed an easy-to-use, modifiable, and inexpensive system for multielectrode neural recording and stimulation. Setup costs are less than US$10,000 for 64 channels, an order of magnitude lower than comparable commercial systems. Unlike commercial equipment, the system recovers rapidly from stimulation and allows short-latency action potentials (<1 ms post-stimulus) to be detected, facilitating closed-loop applications and exposing neural activity that would otherwise remain hidden. To illustrate this capability, evoked activity from microstimulation of the rodent hippocampus is presented. System noise levels are similar to existing platforms, and extracellular action potentials and local field potentials can be recorded simultaneously. The system is modular, in banks of 16 channels, and flexible in usage: while primarily designed for in vivo use, it can be combined with commercial preamplifiers to record from in vitro multielectrode arrays. The system's open-source control software, NeuroRighter, is implemented in C#, with an easy-to-use graphical interface. As C# functions in a managed code environment, which may impact performance, analysis was conducted to ensure comparable speed to C++ for this application. Hardware schematics, layout files, and software are freely available. Since maintaining wired headstage connections with freely moving animals is difficult, we describe a new method of
ITER on the road to fusion energy
NASA Astrophysics Data System (ADS)
Ikeda, Kaname
2010-01-01
On 21 November 2006, the government representatives of China, the European Union, India, Japan, Korea, Russia and the United States firmly committed to building the International Thermonuclear Experimental Reactor (ITER) [1] by signing the ITER Agreement. The ITER Organization, which was formally established on 24 October 2007 after ratification of the ITER Agreement in each Member country, is the outcome of a two-decade-long collaborative effort aimed at demonstrating the scientific and technical feasibility of fusion energy. Each ITER partner has established a Domestic Agency (DA) for the construction of ITER, and the ITER Organization, based in Cadarache, in Southern France, is growing at a steady pace. The total number of staff reached 398 people from more than 20 nations by the end of September 2009. ITER will be built largely (90%) through in-kind contribution by the seven Members. On site, the levelling of the 40 ha platform has been completed. The roadworks necessary for delivering the ITER components from Fos harbour, close to Marseille, to the site are in the final stage of completion. With the aim of obtaining First Plasma in 2018, a new reference schedule has been developed by the ITER Organization and the DAs. Rapid attainment of the ITER goals is critical to accelerate fusion development—a crucial issue today in a world of increasing competition for scarce resources.
Röhrich, J; Zörntlein, S; Becker, J; Urban, R
2010-04-01
The Rapid Stat assay, a point-of-collection drug-testing device for detection of amphetamines, cannabinoids, cocaine, opiates, methadone, and benzodiazepines in oral fluid, was evaluated for cannabis and amphetamine-type stimulants. The Rapid Stat tests (n = 134) were applied by police officers in routine traffic checks. Oral fluid and blood samples were analyzed using gas chromatography-mass spectrometry (GC-MS) for Delta(9)-tetrahydrocannabinol, amphetamine, methamphetamine, methylenedioxymethamphetamine, methylenedioxyethylamphetamine, and methylenedioxyamphetamine. The comparison of GC-MS analysis of oral fluid with the Rapid Stat results for cannabis showed a sensitivity of 85%, a specificity of 87%, and a total confirmation rate of 87%. When compared with serum, the sensitivity of the cannabis assay decreased to 71%, the specificity to 60%, and the total confirmation rate to 66%. These findings were possibly caused by an incorrect reading of the THC test results. Comparison of the Rapid Stat amphetamine assay with GC-MS in oral fluid showed a sensitivity of 94%, a specificity of 97%, and a total confirmation rate of 97%. Compared with serum, a sensitivity of 100%, a specificity of 90%, and a total confirmation rate of 92% was found. The amphetamine assay must, therefore, be regarded as satisfactory. PMID:20406540
Aoki, Tomoyuki; Tsunekawa, Katsuhiko; Araki, Osamu; Ogiwara, Takayuki; Nara, Makoto; Sumino, Hiroyuki; Kimura, Takao
2015-01-01
Thyroid hormones (THs) exert a number of physiological effects on the cardiovascular system. Some of the nongenomic actions of T3 are achieved by cross coupling the TH receptor (TR) with the phosphatidylinositol 3-kinase (PI3K)/protein kinase Akt (Akt) pathway. We observed that both T3 and T4 rapidly stimulated Akt phosphorylation and Ras-related C3 botulinum toxin substrate 1 (Rac1) activation, which resulted in cell migration, in a PI3K-dependent manner in human umbilical vein endothelial cells (HUVECs). We identified the expression of type 2 iodothyronine deiodinase (D2), which converts T4 to T3, and TRα1 in HUVECs. D2 activity was significantly stimulated by (Bu)2cAMP in HUVECs. The blockade of D2 activity through transfection of small interfering RNA (siRNA) specific to D2 as well as by addition of iopanoic acid, a potent D2 inhibitor, abolished Akt phosphorylation, Rac activation, and cell migration induced by T4 but not by T3. The inhibition of TRα1 expression by the transfection of siRNA for TRα1 canceled Akt phosphorylation, Rac activation, and cell migration induced by T3 and T4. These findings suggest that conversion of T4 to T3 by D2 is required for TRα1/PI3K-mediated nongenomic actions of T4 in HUVECs, including stimulation of Akt phosphorylation and Rac activation, which result in cell migration. PMID:26284425
Creba, J A; Downes, C P; Hawkins, P T; Brewster, G; Michell, R H; Kirk, C J
1983-01-01
Rat hepatocytes rapidly incorporate [32P]Pi into phosphatidylinositol 4-phosphate (PtdIns4P) and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]; their monoester phosphate groups approach isotopic equilibrium with the cellular precursor pools within 1 h. Upon stimulation of these prelabelled cells with Ca2+-mobilizing stimuli (V1-vasopressin, angiotensin, alpha 1-adrenergic, ATP) there is a rapid fall in the labelling of PtdIns4P and PtdIns(4,5)P2. Pharmacological studies suggest that each of the four stimuli acts at a different population of receptors. Insulin, glucagon and prolactin do not provoke disappearance of labelled PtdIns4P and PtdIns(4,5)P2. The labelling of PtdIns4P and PtdIns(4,5)P2 in cells stimulated with vasopressin or angiotensin initially declines at a rate of 0.5-1.0% per s, reaches a minimum after 1-2 min and then returns towards the initial value. The dose-response curves for the vasopressin- and angiotensin-stimulated responses lie close to the respective receptor occupation curves, rather than at the lower hormone concentrations needed to evoke activation of glycogen phosphorylase. Disappearance of labelled PtdIns4P and PtdIns(4,5)P2 is not observed when cells are incubated with the ionophore A23187. The hormone-stimulated polyphosphoinositide disappearance is reduced, but not abolished, in Ca2+-depleted cells. These hormonal effects are not modified by 8-bromo cyclic GMP, cycloheximide or delta-hexachlorocyclohexane. The absolute rate of polyphosphoinositide breakdown in stimulated cells is similar to the rate previously reported for the disappearance of phosphatidylinositol [Kirk, Michell & Hems (1981) Biochem. J. 194, 155-165]. It seems likely that these changes in polyphosphoinositide labelling are caused by hormonal activation of the breakdown of PtdIns(4,5)P2 (and may be also PtdIns4P) by the action of a polyphosphoinositide phosphodiesterase. We therefore suggest that the initial response to hormones is breakdown of PtdIns(4,5)P2
The ITER project construction status
NASA Astrophysics Data System (ADS)
Motojima, O.
2015-10-01
The pace of the ITER project in St Paul-lez-Durance, France is accelerating rapidly into its peak construction phase. With the completion of the B2 slab in August 2014, which will support about 400 000 metric tons of the tokamak complex structures and components, the construction is advancing on a daily basis. Magnet, vacuum vessel, cryostat, thermal shield, first wall and divertor structures are under construction or in prototype phase in the ITER member states of China, Europe, India, Japan, Korea, Russia, and the United States. Each of these member states has its own domestic agency (DA) to manage their procurements of components for ITER. Plant systems engineering is being transformed to fully integrate the tokamak and its auxiliary systems in preparation for the assembly and operations phase. CODAC, diagnostics, and the three main heating and current drive systems are also progressing, including the construction of the neutral beam test facility building in Padua, Italy. The conceptual design of the Chinese test blanket module system for ITER has been completed and those of the EU are well under way. Significant progress has been made addressing several outstanding physics issues including disruption load characterization, prediction, avoidance, and mitigation, first wall and divertor shaping, edge pedestal and SOL plasma stability, fuelling and plasma behaviour during confinement transients and W impurity transport. Further development of the ITER Research Plan has included a definition of the required plant configuration for 1st plasma and subsequent phases of ITER operation as well as the major plasma commissioning activities and the needs of the accompanying R&D program to ITER construction by the ITER parties.
Gulia, K K; Jodo, E; Kawauchi, A; Miki, T; Kayama, Y; Mallick, H N; Koyama, Y
2008-10-28
The effects of electrical stimulation to the septum on penile erections in rats were examined to clarify the mechanisms for regulation of erectile responses during different states of vigilance. Penile responses were assessed by changes in pressure in the corpus spongiosum of penis (CSP) and electromyography (EMG) of the bulbospongiosus (BS) muscle. In anesthetized and un-anesthetized rats, stimulation in and around the septum induced three erectile patterns; 1) a Normal type response, which was indistinguishable from a spontaneous erection, characterized by a slow increase in CSP pressure with sharp CSP pressure peaks associated with BS muscle bursts, 2) Mixed type response, in which high frequency CSP pressure peaks were followed by a Normal type response, and 3) a Prolonged type response, evoked only in the anesthetized rat, consisting of a single sharp CSP peak followed by a slow increase in CSP pressure and a return to baseline with multiple subsequent events repeated for up to 960 s. In addition, a Micturition type response was also observed involving high frequency CSP pressure oscillations similar to the pressure pattern seen during spontaneous micturition. We found that erections were induced after stimulation to the lateral septum (LS), but not from the medial septum (MS). In anesthetized rats, a few responses were also obtained following stimulation of the horizontal limb of diagonal band (HDB). In un-anesthetized rats, responses were also induced from the HDB and the ventral limb of diagonal band (VDB) and the adjoining areas. The effective sites for eliciting erection during rapid eye movement (REM) sleep were located in the dorsal and intermediate parts of the LS, whereas the ventral part of the LS was the most effective site for eliciting erections during wakefulness. These results suggest a functional role for penile erection in the septum, and further suggest that subdivisions of the LS may have different roles in the regulation of penile erection
US ITER / ORNL
2012-03-16
US ITER Project Manager Ned Sauthoff, joined by Wayne Reiersen, Team Leader Magnet Systems, and Jan Berry, Team Leader Tokamak Cooling System, discuss the U.S.'s role in the ITER international collaboration.
Vielma, Alejandra Z.; León, Luisa; Fernández, Ignacio C.; González, Daniel R.
2016-01-01
S-nitrosylation of several Ca2+ regulating proteins in response to β-adrenergic stimulation was recently described in the heart; however the specific nitric oxide synthase (NOS) isoform and signaling pathways responsible for this modification have not been elucidated. NOS-1 activity increases inotropism, therefore, we tested whether β-adrenergic stimulation induces NOS-1-dependent S-nitrosylation of total proteins, the ryanodine receptor (RyR2), SERCA2 and the L-Type Ca2+ channel (LTCC). In the isolated rat heart, isoproterenol (10 nM, 3-min) increased S-nitrosylation of total cardiac proteins (+46±14%) and RyR2 (+146±77%), without affecting S-nitrosylation of SERCA2 and LTCC. Selective NOS-1 blockade with S-methyl-L-thiocitrulline (SMTC) and Nω-propyl-l-arginine decreased basal contractility and relaxation (−25–30%) and basal S-nitrosylation of total proteins (−25–60%), RyR2, SERCA2 and LTCC (−60–75%). NOS-1 inhibition reduced (−25–40%) the inotropic response and protein S-nitrosylation induced by isoproterenol, particularly that of RyR2 (−85±7%). Tempol, a superoxide scavenger, mimicked the effects of NOS-1 inhibition on inotropism and protein S-nitrosylation; whereas selective NOS-3 inhibitor L-N5-(1-Iminoethyl)ornithine had no effect. Inhibition of NOS-1 did not affect phospholamban phosphorylation, but reduced its oligomerization. Attenuation of contractility was abolished by PKA blockade and unaffected by guanylate cyclase inhibition. Additionally, in isolated mouse cardiomyocytes, NOS-1 inhibition or removal reduced the Ca2+-transient amplitude and sarcomere shortening induced by isoproterenol or by direct PKA activation. We conclude that 1) normal cardiac performance requires basal NOS-1 activity and S-nitrosylation of the calcium-cycling machinery; 2) β-adrenergic stimulation induces rapid and reversible NOS-1 dependent, PKA and ROS-dependent, S-nitrosylation of RyR2 and other proteins, accounting for about one third of its
Faroni, Alessandro; Smith, Richard J P; Lu, Li; Reid, Adam J
2016-02-01
Finding a viable cell-based therapy to address peripheral nerve injury holds promise for enhancing the currently suboptimal microsurgical approaches to peripheral nerve repair. Autologous nerve grafting is the current gold standard for surgical repair of nerve gaps; however, this causes donor nerve morbidity in the patient, and the results remain unsatisfactory. Transplanting autologous Schwann cells (SCs) results in similar morbidity, as well as limited cell numbers and restricted potential for expansion in vitro. Adipose-derived stem cells (ASCs), 'differentiated' towards an SC-like phenotype in vitro (dASCs), have been presented as an alternative to SC therapies. The differentiation protocol stimulates ASCs to mimic the SC phenotype; however, the efficacy of dASCs in nerve repair is not yet convincing, and the practicality of the SC-like phenotype is unproven. Here, we examined the stability of dASCs by withdrawing differentiation medium for 72 h after the full 18-day differentiation protocol, and measuring changes in morphology, gene expression, and protein levels. Withdrawal of differentiation medium from dASCs resulted in a rapid reversion to stem cell-like characteristics. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assay analyses demonstrated a significant reduction in gene and protein expression of growth factors that were expressed at high levels following 'differentiation'. Therefore, we question the relevance of differentiation to an SC-like phenotype, as withdrawal of differentiation medium, a model of transplantation into an injured nerve, results in rapid reversion of the dASC phenotype to stem cell-like characteristics. Further investigation into the differentiation process and the response of dASCs to an injured environment must be undertaken prior to the use of dASCs in peripheral nerve repair therapies. PMID:26309136
Downar, Jonathan; Sankar, Ashwin; Giacobbe, Peter; Woodside, Blake; Colton, Patricia
2012-01-01
A woman with severe, refractory bulimia nervosa (BN) underwent treatment for comorbid depression using repetitive transcranial magnetic stimulation (rTMS) of the dorsomedial prefrontal cortex (DMPFC) using a novel technique. Unexpectedly, she showed a rapid, dramatic remission from BN. For 5 months pre-treatment, she had reported two 5-h binge-purge episodes per day. After rTMS session 2 the episodes stopped entirely for 1 week; after session 10 there were no further recurrences. Depression scores improved more gradually to remission at session 10. Full remission from depression and binge-eating/purging episodes was sustained more than 2 months after treatment completion. In neuroimaging studies, the DMPFC is important in impulse control, and is underactive in BN. DMPFC–rTMS may have enhanced the patient’s ability to deploy previously acquired strategies to avoid binge-eating and purging via a reduction in her impulsivity. A larger sham-controlled trial of DMPFC–rTMS for binge-eating and purging behavior may be warranted. PMID:22529822
NASA Astrophysics Data System (ADS)
Chuyanov, V. A.
1996-10-01
The status of the ITER design is as presented in the Interim Design Report accepted by the ITER council for considerations by ITER parties. Physical and technical parameters of the machine, conditions of operation of main nuclear systems, corresponding design and material choices are described, with conventional materials selected. To fully utilize the safety and economical potential of fusion advanced materials are necessary. ITER shall and can be built with materials already available. The ITER project and advanced fusion material developments can proceed in parallel. The role of ITER is to establish (experimentally) requirements to these materials and to provide a test bed for their final qualification in fusion reactor environment. To achieve this goal, the first wall/blanket modules test program is foreseen.
Teng, Yun; Radde, Brandie N; Litchfield, Lacey M; Ivanova, Margarita M; Prough, Russell A; Clark, Barbara J; Doll, Mark A; Hein, David W; Klinge, Carolyn M
2015-06-19
Little is known about the regulation of the oncomiR miR-21 in liver. Dehydroepiandrosterone (DHEA) regulates gene expression as a ligand for a G-protein-coupled receptor and as a precursor for steroids that activate nuclear receptor signaling. We report that 10 nm DHEA increases primary miR-21 (pri-miR-21) transcription and mature miR-21 expression in HepG2 cells in a biphasic manner with an initial peak at 1 h followed by a second, sustained response from 3-12 h. DHEA also increased miR-21 in primary human hepatocytes and Hep3B cells. siRNA, antibody, and inhibitor studies suggest that the rapid DHEA-mediated increase in miR-21 involves a G-protein-coupled estrogen receptor (GPER/GPR30), estrogen receptor α-36 (ERα36), epidermal growth factor receptor-dependent, pertussis toxin-sensitive pathway requiring activation of c-Src, ERK1/2, and PI3K. GPER antagonist G-15 attenuated DHEA- and BSA-conjugated DHEA-stimulated pri-miR-21 transcription. Like DHEA, GPER agonists G-1 and fulvestrant increased pri-miR-21 in a GPER- and ERα36-dependent manner. DHEA, like G-1, increased GPER and ERα36 mRNA and protein levels. DHEA increased ERK1/2 and c-Src phosphorylation in a GPER-responsive manner. DHEA increased c-Jun, but not c-Fos, protein expression after 2 h. DHEA increased androgen receptor, c-Fos, and c-Jun recruitment to the miR-21 promoter. These results suggest that physiological concentrations of DHEA activate a GPER intracellular signaling cascade that increases pri-miR-21 transcription mediated at least in part by AP-1 and androgen receptor miR-21 promoter interaction. PMID:25969534
Munz, Manuel T.; Prehn-Kristensen, Alexander; Thielking, Frederieke; Mölle, Matthias; Göder, Robert; Baving, Lioba
2015-01-01
Background: Behavioral inhibition, which is a later-developing executive function (EF) and anatomically located in prefrontal areas, is impaired in attention-deficit and hyperactivity disorder (ADHD). While optimal EFs have been shown to depend on efficient sleep in healthy subjects, the impact of sleep problems, frequently reported in ADHD, remains elusive. Findings of macroscopic sleep changes in ADHD are inconsistent, but there is emerging evidence for distinct microscopic changes with a focus on prefrontal cortical regions and non-rapid eye movement (non-REM) slow-wave sleep. Recently, slow oscillations (SO) during non-REM sleep were found to be less functional and, as such, may be involved in sleep-dependent memory impairments in ADHD. Objective:By augmenting slow-wave power through bilateral, slow oscillating transcranial direct current stimulation (so-tDCS, frequency = 0.75 Hz) during non-REM sleep, we aimed to improve daytime behavioral inhibition in children with ADHD. Methods: Fourteen boys (10–14 years) diagnosed with ADHD were included. In a randomized, double-blind, cross-over design, patients received so-tDCS either in the first or in the second experimental sleep night. Inhibition control was assessed with a visuomotor go/no-go task. Intrinsic alertness was assessed with a simple stimulus response task. To control for visuomotor performance, motor memory was assessed with a finger sequence tapping task. Results: SO-power was enhanced during early non-REM sleep, accompanied by slowed reaction times and decreased standard deviations of reaction times, in the go/no-go task after so-tDCS. In contrast, intrinsic alertness, and motor memory performance were not improved by so-tDCS. Conclusion: Since behavioral inhibition but not intrinsic alertness or motor memory was improved by so-tDCS, our results suggest that lateral prefrontal slow oscillations during sleep might play a specific role for executive functioning in ADHD. PMID:26321911
Development and test of the ITER conductor joints
Martovetsky, N., LLNL
1998-05-14
Joints for the ITER superconducting Central Solenoid should perform in rapidly varying magnetic field with low losses and low DC resistance. This paper describes the design of the ITER joint and presents its assembly process. Two joints were built and tested at the PTF facility at MIT. Test results are presented, losses in transverse and parallel field and the DC performance are discussed. The developed joint demonstrates sufficient margin for baseline ITER operating scenarios.
Preconditioned Iterative Solver
Energy Science and Technology Software Center (ESTSC)
2002-08-01
AztecOO contains a collection of preconditioned iterative methods for the solution of sparse linear systems of equations. In addition to providing many of the common algebraic preconditioners and basic iterative methods, AztecOO can be easily extended to interact with user-provided preconditioners and matrix operators.
ERIC Educational Resources Information Center
Dobbs, David E.
2009-01-01
The main purpose of this note is to present and justify proof via iteration as an intuitive, creative and empowering method that is often available and preferable as an alternative to proofs via either mathematical induction or the well-ordering principle. The method of iteration depends only on the fact that any strictly decreasing sequence of…
Perl Modules for Constructing Iterators
NASA Technical Reports Server (NTRS)
Tilmes, Curt
2009-01-01
The Iterator Perl Module provides a general-purpose framework for constructing iterator objects within Perl, and a standard API for interacting with those objects. Iterators are an object-oriented design pattern where a description of a series of values is used in a constructor. Subsequent queries can request values in that series. These Perl modules build on the standard Iterator framework and provide iterators for some other types of values. Iterator::DateTime constructs iterators from DateTime objects or Date::Parse descriptions and ICal/RFC 2445 style re-currence descriptions. It supports a variety of input parameters, including a start to the sequence, an end to the sequence, an Ical/RFC 2445 recurrence describing the frequency of the values in the series, and a format description that can refine the presentation manner of the DateTime. Iterator::String constructs iterators from string representations. This module is useful in contexts where the API consists of supplying a string and getting back an iterator where the specific iteration desired is opaque to the caller. It is of particular value to the Iterator::Hash module which provides nested iterations. Iterator::Hash constructs iterators from Perl hashes that can include multiple iterators. The constructed iterators will return all the permutations of the iterations of the hash by nested iteration of embedded iterators. A hash simply includes a set of keys mapped to values. It is a very common data structure used throughout Perl programming. The Iterator:: Hash module allows a hash to include strings defining iterators (parsed and dispatched with Iterator::String) that are used to construct an overall series of hash values.
NASA Astrophysics Data System (ADS)
Clery, Daniel
2015-01-01
Bernard Bigot, chair of France’s Alternative Energies and Atomic Energy Commission (CEA), has been chosen as the next director-general of ITER - the experimental fusion reactor currently being built in Cadarache, France.
ITER convertible blanket evaluation
Wong, C.P.C.; Cheng, E.
1995-09-01
Proposed International Thermonuclear Experimental Reactor (ITER) convertible blankets were reviewed. Key design difficulties were identified. A new particle filter concept is introduced and key performance parameters estimated. Results show that this particle filter concept can satisfy all of the convertible blanket design requirements except the generic issue of Be blanket lifetime. If the convertible blanket is an acceptable approach for ITER operation, this particle filter option should be a strong candidate.
NASA Astrophysics Data System (ADS)
Doggett, J.; Salpietro, E.; Shatalov, G.
1991-07-01
The results of the Conceptual Design Activities for the International Thermonuclear Experimental Reactor (ITER) are summarized. These activities, carried out between April 1988 and December 1990, produced a consistent set of technical characteristics and preliminary plans for co-ordinated research and development support of ITER, a conceptual design, a description of design requirements and a preliminary construction schedule and cost estimate. After a description of the design basis, an overview is given of the tokamak device, its auxiliary systems, facility and maintenance. The interrelation and integration of the various subsystems that form the ITER tokamak concept are discussed. The 16 ITER equatorial port allocations, used for nuclear testing, diagnostics, fueling, maintenance, and heating and current drive, are given, as well as a layout of the reactor building. Finally, brief descriptions are given of the major ITER sub-systems, i.e., (1) magnet systems (toroidal and poloidal field coils and cryogenic systems), (2) containment structures (vacuum and cryostat vessels, machine gravity supports, attaching locks, passive loops and active coils), (3) first wall, (4) divertor plate (design and materials, performance and lifetime, a.o.), (5) blanket/shield system, (6) maintenance equipment, (7) current drive and heating, (8) fuel cycle system, and (9) diagnostics.
Rescheduling with iterative repair
NASA Technical Reports Server (NTRS)
Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael
1992-01-01
This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, produce modified schedules, quickly, and exhibits 'anytime' behavior. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. We also show the anytime characteristics of the system. These experiments were performed within the domain of Space Shuttle ground processing.
Rescheduling with iterative repair
NASA Technical Reports Server (NTRS)
Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael
1992-01-01
This paper presents a new approach to rescheduling called constraint-based iterative repair. This approach gives our system the ability to satisfy domain constraints, address optimization concerns, minimize perturbation to the original schedule, and produce modified schedules quickly. The system begins with an initial, flawed schedule and then iteratively repairs constraint violations until a conflict-free schedule is produced. In an empirical demonstration, we vary the importance of minimizing perturbation and report how fast the system is able to resolve conflicts in a given time bound. These experiments were performed within the domain of Space Shuttle ground processing.
Iterated multidimensional wave conversion
NASA Astrophysics Data System (ADS)
Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.
2011-12-01
Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.
Workman, E R; Haddick, P C G; Bush, K; Dilly, G A; Niere, F; Zemelman, B V; Raab-Graham, K F
2015-01-01
A single injection of N-methyl-D-aspartate receptor (NMDAR) antagonists produces a rapid antidepressant response. Lasting changes in the synapse structure and composition underlie the effectiveness of these drugs. We recently discovered that rapid antidepressants cause a shift in the γ-aminobutyric acid receptor (GABABR) signaling pathway, such that GABABR activation shifts from opening inwardly rectifiying potassium channels (Kir/GIRK) to increasing resting dendritic calcium signal and mammalian Target of Rapamycin activity. However, little is known about the molecular and biochemical mechanisms that initiate this shift. Herein, we show that GABABR signaling to Kir3 (GIRK) channels decreases with NMDAR blockade. Blocking NMDAR signaling stabilizes the adaptor protein 14-3-3η, which decouples GABABR signaling from Kir3 and is required for the rapid antidepressant efficacy. Consistent with these results, we find that key proteins involved in GABABR signaling bidirectionally change in a depression model and with rapid antidepressants. In socially defeated rodents, a model for depression, GABABR and 14-3-3η levels decrease in the hippocampus. The NMDAR antagonists AP5 and Ro-25-6981, acting as rapid antidepressants, increase GABABR and 14-3-3η expression and decrease Kir3.2. Taken together, these data suggest that the shift in GABABR function requires a loss of GABABR-Kir3 channel activity mediated by 14-3-3η. Our findings support a central role for 14-3-3η in the efficacy of rapid antidepressants and define a critical molecular mechanism for activity-dependent alterations in GABABR signaling. PMID:25560757
ERIC Educational Resources Information Center
Muench, Donald L.
2007-01-01
The problem of angle trisection continues to fascinate people even though it has long been known that it can't be done with straightedge and compass alone. However, for practical purposes, a good iterative procedure can get you as close as you want. In this note, we present such a procedure. Using only straightedge and compass, our procedure…
Duff, I.
1994-12-31
This workshop focuses on kernels for iterative software packages. Specifically, the three speakers discuss various aspects of sparse BLAS kernels. Their topics are: `Current status of user lever sparse BLAS`; Current status of the sparse BLAS toolkit`; and `Adding matrix-matrix and matrix-matrix-matrix multiply to the sparse BLAS toolkit`.
Dr. Norbert Holtkamp
2010-01-08
ITER (in Latin ?the way?) is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier over one and thus release energy. In the fusion process two isotopes of hydrogen ? deuterium and tritium ? fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q ? 10 (input power 50 MW / output power 500 MW). The ITER Organization was officially established in Cadarache, France, on 24 October 2007. The seven members engaged in the project ? China, the European Union, India, Japan, Korea, Russia and the United States ? represent more than half the world?s population. The costs for ITER are shared by the seven members. The cost for the construction will be approximately 5.5 billion Euros, a similar amount is foreseen for the twenty-year phase of operation and the subsequent decommissioning.
Haering, H.U.; White, M.F.; Machicao, F.; Ermel, B.; Schleicher, E.; Obermaier, B.
1987-01-01
It is speculated that the transmission of an insulin signal across the plasma membrane of cells occurs through activation of the tyrosine-specific receptor kinase, autophosphorylation of the receptor, and subsequent phosphorylation of unidentified substrates in the cell. In an attempt to identify possible substrates, the authors labeled intact rat fat cells with (/sup 32/P)orthophosphate and used an antiphosphotyrosine antibody to identify proteins that become phosphorylated on tyrosine residues in an insulin-stimulated way. In the membrane fraction of the fat cells, they found, in addition to the 95-kDa ..beta..-subunit of the receptor, a 46-kDa phosphoprotein that is phosphorylated exclusively on tyrosine residues. This protein is not immunoprecipitated by antibodies against different regions of the insulin receptor and its HPLC tryptic peptide map is different from the tryptic peptide map of the insulin receptor, suggesting that it is not derived from the receptor ..beta..-subunit. Insulin stimulates the tyrosine phosphorylation of the 46-kDa protein within 150 sec in the intact cell 3- to 4-fold in a dose-dependent way at insulin concentrations between 0.5 nM and 100 nM. Insulin (0.5 nM, 100 nM) stimulated within 2 min the /sup 32/P incorporation into a 116-kDa band, a 62 kDa band, and three bands between 45 kDa and 50 kDa 2- to 10-fold. They suggest that the 46-kDa membrane protein and possibly also the soluble proteins are endogenous substrates of the receptor tyrosine kinase in fat cells and that their phosphorylation is an early step in insulin signal transmission.
Development and test of the ITER SC conductor joints
Gung, C. Y.; Jayakumar, R.; Manahan, R.; Martovetsky, N.; Michael, P.; Minervini, J.; Randall, A.
1998-08-05
Joints for the ITER superconducting Central Solenoid should perform in rapidly varying magnetic field with low losses and low DC resistance. This paper describes the design of the ITER joint and presents its assembly process. Two joints were built and tested at the PTF facility at MIT. Test results are presented; losses in transverse and parallel field and the DC performance are discussed. The developed joint demonstrates sufficient margin for baseline ITRR operating scenarios.
Kamei, Ken-ichiro; Mashimo, Yasumasa; Koyama, Yoshie; Fockenberg, Christopher; Nakashima, Miyuki; Nakajima, Minako; Li, Junjun; Chen, Yong
2015-04-01
Three-dimensional (3D) printing is advantageous over conventional technologies for the fabrication of sophisticated structures such as 3D micro-channels for future applications in tissue engineering and drug screening. We aimed to apply this technology to cell-based assays using polydimethylsiloxane (PDMS), the most commonly used material for fabrication of micro-channels used for cell culture experiments. Useful properties of PDMS include biocompatibility, gas permeability and transparency. We developed a simple and robust protocol to generate PDMS-based devices using a soft lithography mold produced by 3D printing. 3D chemical gradients were then generated to stimulate cells confined to a micro-channel. We demonstrate that concentration gradients of growth factors, important regulators of cell/tissue functions in vivo, influence the survival and growth of human embryonic stem cells. Thus, this approach for generation of 3D concentration gradients could have strong implications for tissue engineering and drug screening. PMID:25686903
Gohar, Y.; Cardella, A.; Ioki, K.; Lousteau, D.; Mohri, K.; Raffray, R.; Zolti, E.
1995-12-31
A breeding blanket design has been developed for ITER to provide the necessary tritium fuel to achieve the technical objectives of the Enhanced Performance Phase. It uses a ceramic breeder and water coolant for compatibility with the ITER machine design of the Basic Performance Phase. Lithium zirconate and lithium oxide am the selected ceramic breeders based on the current data base. Enriched lithium and beryllium neutron multiplier are used for both breeders. Both forms of beryllium material, blocks and pebbles are used at different blanket locations based on thermo-mechanical considerations and beryllium thickness requirements. Type 316LN austenitic steel is used as structural material similar to the shielding blanket. Design issues and required R&D data are identified during the development of the design.
Barnes, C.W.; Loughlin, M.J.; Nishitani, Takeo
1996-04-29
There are three primary goals for the Neutron Activation system for ITER: maintain a robust relative measure of fusion power with stability and high dynamic range (7 orders of magnitude); allow an absolute calibration of fusion power (energy); and provide a flexible and reliable system for materials testing. The nature of the activation technique is such that stability and high dynamic range can be intrinsic properties of the system. It has also been the technique that demonstrated (on JET and TFTR) the highest accuracy neutron measurements in DT operation. Since the gamma-ray detectors are not located on the tokamak and are therefore amenable to accurate characterization, and if material foils are placed very close to the ITER plasma with minimum scattering or attenuation, high overall accuracy in the fusion energy production (7--10%) should be achievable on ITER. In the paper, a conceptual design is presented. A system is shown to be capable of meeting these three goals, also detailed design issues remain to be solved.
Takumi, Ichiro; Mishina, Masahiro; Hironaka, Kohei; Oyama, Kenichi; Yamada, Akira; Adachi, Koji; Hamamoto, Makoto; Kitamura, Shin; Yoshida, Daizo; Teramoto, Akira
2013-01-01
This study evaluated preliminary findings on the efficacy of polyethylene glycol (PEG) hydrogel dural sealant capping for the prevention of cerebrospinal fluid (CSF) leakage and pneumocephalus during deep brain stimulation (DBS) surgery in the semisupine position. Group A consisted of 5 patients who underwent bilateral subthalamic nucleus (STN)-DBS surgery without PEG hydrogel dural sealant capping. Group B consisted of 5 patients who underwent bilateral STN-DBS surgery with PEG hydrogel dural sealant capping. The immediate postoperative intracranial air volume was measured in all patients and compared between the 2 groups using the Welch test. Adverse effects were also examined in both groups. The intracranial air volume in Group A was 32.3 ± 12.3 ml (range 19.1-42.5 ml), whereas that in Group B was 1.3 ± 1.5 ml (range 0.0-3.5 ml), showing a significant difference (p < 0.005). No hemorrhage or venous air embolisms were observed in either group. The effect of brain shift was discriminated by STN recordings in Group B. These preliminary findings indicate that PEG hydrogel dural sealant capping may reduce adverse effects related to CSF leakage and brain shift during DBS surgery. PMID:23358161
Iterative electro-optic matrix processor
NASA Astrophysics Data System (ADS)
Carlotto, M. J.
An electro-optic vector matrix processor with electronic feedback is described. The iterative optical processor (IOP) is designed for the rapid solution of linear algebraic equations. The IOP and the iterative algorithm it realizes are analyzed and simulated. A version of the system was fabricated using advanced solid state light sources and detectors plus fiber optic technology, and its performance is evaluated. An extension of the system using wavelength multiplexing is developed and the basic system concepts demonstrated. Its use in the restoration of degraded images or signals (deconvolution) and the computation of matrix eigenvectors and eigenvalues and matrix inversion are demonstrated. The two major case studies pursued are: adaptive phased array radar processing and optimal control. In the former case, the system is used to compute the adaptive antenna weights for a radar system. In the latter case, the IOP solves the linear quadratic regular and algebraic Ricatti equations of modern control theory.
Adaptive iterative reconstruction
NASA Astrophysics Data System (ADS)
Bruder, H.; Raupach, R.; Sunnegardh, J.; Sedlmair, M.; Stierstorfer, K.; Flohr, T.
2011-03-01
It is well known that, in CT reconstruction, Maximum A Posteriori (MAP) reconstruction based on a Poisson noise model can be well approximated by Penalized Weighted Least Square (PWLS) minimization based on a data dependent Gaussian noise model. We study minimization of the PWLS objective function using the Gradient Descent (GD) method, and show that if an exact inverse of the forward projector exists, the PWLS GD update equation can be translated into an update equation which entirely operates in the image domain. In case of non-linear regularization and arbitrary noise model this means that a non-linear image filter must exist which solves the optimization problem. In the general case of non-linear regularization and arbitrary noise model, the analytical computation is not trivial and might lead to image filters which are computationally very expensive. We introduce a new iteration scheme in image space, based on a regularization filter with an anisotropic noise model. Basically, this approximates the statistical data weighting and regularization in PWLS reconstruction. If needed, e.g. for compensation of the non-exactness of backprojector, the image-based regularization loop can be preceded by a raw data based loop without regularization and statistical data weighting. We call this combined iterative reconstruction scheme Adaptive Iterative Reconstruction (AIR). It will be shown that in terms of low-contrast visibility, sharpness-to-noise and contrast-to-noise ratio, PWLS and AIR reconstruction are similar to a high degree of accuracy. In clinical images the noise texture of AIR is also superior to the more artificial texture of PWLS.
Recent ADI iteration analysis and results
Wachspress, E.L.
1994-12-31
Some recent ADI iteration analysis and results are discussed. Discovery that the Lyapunov and Sylvester matrix equations are model ADI problems stimulated much research on ADI iteration with complex spectra. The ADI rational Chebyshev analysis parallels the classical linear Chebyshev theory. Two distinct approaches have been applied to these problems. First, parameters which were optimal for real spectra were shown to be nearly optimal for certain families of complex spectra. In the linear case these were spectra bounded by ellipses in the complex plane. In the ADI rational case these were spectra bounded by {open_quotes}elliptic-function regions{close_quotes}. The logarithms of the latter appear like ellipses, and the logarithms of the optimal ADI parameters for these regions are similar to the optimal parameters for linear Chebyshev approximation over superimposed ellipses. W.B. Jordan`s bilinear transformation of real variables to reduce the two-variable problem to one variable was generalized into the complex plane. This was needed for ADI iterative solution of the Sylvester equation.
Elser, V.; Rankenburg, I.; Thibault, P.
2007-01-01
In many problems that require extensive searching, the solution can be described as satisfying two competing constraints, where satisfying each independently does not pose a challenge. As an alternative to tree-based and stochastic searching, for these problems we propose using an iterated map built from the projections to the two constraint sets. Algorithms of this kind have been the method of choice in a large variety of signal-processing applications; we show here that the scope of these algorithms is surprisingly broad, with applications as diverse as protein folding and Sudoku. PMID:17202267
Iterative Magnetometer Calibration
NASA Technical Reports Server (NTRS)
Sedlak, Joseph
2006-01-01
This paper presents an iterative method for three-axis magnetometer (TAM) calibration that makes use of three existing utilities recently incorporated into the attitude ground support system used at NASA's Goddard Space Flight Center. The method combines attitude-independent and attitude-dependent calibration algorithms with a new spinning spacecraft Kalman filter to solve for biases, scale factors, nonorthogonal corrections to the alignment, and the orthogonal sensor alignment. The method is particularly well-suited to spin-stabilized spacecraft, but may also be useful for three-axis stabilized missions given sufficient data to provide observability.
Khan, Javed M; Sharma, Prerna; Arora, Kanika; Kishor, Nitin; Kaila, Pallavi; Guptasarma, Purnananda
2016-07-19
Low concentrations (<3.0 mM) of the anionic surfactant sodium dodecyl sulfate (SDS) have been shown to induce the formation of amyloid fibers in more than 20 different mesophile-derived proteins in the cationic state. It is not known whether SDS has similar effects on hyperthermophile-derived proteins, which are otherwise thought to be "ultrastable" and inordinately resistant to structural perturbations at room temperature. Here, we show that low (<4.5 mM) concentrations of SDS rapidly induce the formation of aggregates and amyloid fibers in five different ultrastable Pyrococcus furiosus proteins in the cationic state. We also show that amyloid formation is accompanied by the development of a characteristic, negative circular dichroism band at ∼230 nm. These effects are not seen if the proteins have a net negative charge or when higher concentrations of SDS are used (which induce helix formation instead). Our results appear to reveal a potential weakness or "Achilles' heel" in ultrastable proteins from hyperthermophiles. They also provide very strong support for the view that SDS initially interacts with proteins through electrostatic interactions, and not hydrophobic interactions, eliciting similar effects entirely regardless of protein molecular weight, or structural features such as quaternary structure or tertiary structural stability. PMID:27331826
Reyhan, Meral; Kim, Hyun J.; Brown, Matthew S.; Ennis, Daniel B.
2013-01-01
Purpose To assess the intra- and inter-scan reproducibility of LV twist using FAST. Assessing the reproducibility of the measurement of new magnetic resonance imaging (MRI) biomarkers is an important part of validation. Fourier Analysis of STimulated Echoes (FAST) is a new MRI tissue tagging method that has recently been shown to compare favorably to conventional estimates of left ventricular (LV) twist from cardiac tagged images, but with significantly reduced user interaction time. Materials and Methods Healthy volunteers (N=10) were scanned twice using FAST over one week. On Day-1 two measurements of LV twist were collected for intra-scan comparisons. Measurements for LV twist were again collected on Day-8 for inter-scan assessment. LV short-axis tagged images were acquired on a 3T scanner in order to ensure detectability of tags during early and mid-diastole. Peak LV twist is reported as mean±SD. Reproducibility was assessed using the concordance correlation coefficient (CCC) and the repeatability coefficient (RC) (95%-CI range). Results Mean peak twist measurements were 13.4±4.3° (Day-1, Scan-1), 13.6±3.7° (Day-1, Scan-2), and 13.0±2.7° (Day-8). Bland-Altman analysis resulted in intra- and inter-scan bias and 95%-CI of −0.6° [−1.0°, 1.6°] and 1.4° [−1.0°, 3.0°], respectively. The Bland-Altman RC for peak LV twist was 2.6° and 4.0° for intra- and inter-scan respectively. The CCC was 0.9 and 0.6 for peak LV twist for intra- and inter-scan respectively. Conclusion FAST is a semi-automated method that provides a quick and quantitative assessment of LV systolic and diastolic twist that demonstrates high intra-scan and moderate inter-scan reproducibility in preliminary studies. PMID:23633244
Hogan, J.T.; Hillis, D.L.; Galambos, J.; Uckan, N.A. ); Dippel, K.H.; Finken, K.H. . Inst. fuer Plasmaphysik); Hulse, R.A.; Budny, R.V. . Plasma Physics Lab.)
1990-01-01
Many studies have shown the importance of the ratio {upsilon}{sub He}/{upsilon}{sub E} in determining the level of He ash accumulation in future reactor systems. Results of the first tokamak He removal experiments have been analysed, and a first estimate of the ratio {upsilon}{sub He}/{upsilon}{sub E} to be expected for future reactor systems has been made. The experiments were carried out for neutral beam heated plasmas in the TEXTOR tokamak, at KFA/Julich. Helium was injected both as a short puff and continuously, and subsequently extracted with the Advanced Limiter Test-II pump limiter. The rate at which the He density decays has been determined with absolutely calibrated charge exchange spectroscopy, and compared with theoretical models, using the Multiple Impurity Species Transport (MIST) code. An analysis of energy confinement has been made with PPPL TRANSP code, to distinguish beam from thermal confinement, especially for low density cases. The ALT-II pump limiter system is found to exhaust the He with maximum exhaust efficiency (8 pumps) of {approximately}8%. We find 1<{upsilon}{sub He}/{upsilon}{sub E}<3.3 for the database of cases analysed to date. Analysis with the ITER TETRA systems code shows that these values would be adequate to achieve the required He concentration with the present ITER divertor He extraction system.
An Overview Of The ITER In-Vessel Coil Systems
Heitzenroeder, P J; Chrzanowski, J H; Dahlgren, F; Hawryluk, R J; Loesser, G D; Neumeyer, C; Mansfield, C; Smith, J P; Schaffer, M; Humphreys, D; Cordier, J J; Campbell, D; Johnson, G A; Martin, A; Rebut, P H; Tao, J O; Fogarty, P J; Nelson, B E; Reed, R P
2009-09-24
ELM mitigation is of particular importance in ITER in order to prevent rapid erosion or melting of the divertor surface, with the consequent risk of water leaks, increased plasma impurity content and disruptivity. Exploitable "natural" small or no ELM regimes might yet be found which extrapolate to ITER but this cannot be depended upon. Resonant Magnetic Perturbation has been added to pellet pacing as a tool for ITER to mitigate ELMs. Both are required, since neither method is fully developed and much work remains to be done. In addition, in-vessel coils enable vertical stabilization and RWM control. For these reasons, in-vessel coils (IVCs) are being designed for ITER to provide control of Edge Localized Modes (ELMs) in addition to providing control of moderately unstable resistive wall modes (RWMs) and the vertical stability (VS) of the plasma.
Darbos, C.; Henderson, M.; Gandini, F.; Albajar, F.; Bomcelli, T.; Heidinger, R.; Saibene, G.; Chavan, R.; Goodman, T.; Hogge, J. P.; Sauter, O.; Denisov, G.; Farina, D.; Kajiwara, K.; Kasugai, A.; Kobayashi, N.; Oda, Y.; Ramponi, G.
2009-11-26
A 26 MW Electron Cyclotron Heating and Current Drive (EC H and CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H and CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several
NASA Astrophysics Data System (ADS)
Darbos, C.; Henderson, M.; Albajar, F.; Bigelow, T.; Bomcelli, T.; Chavan, R.; Denisov, G.; Farina, D.; Gandini, F.; Heidinger, R.; Goodman, T.; Hogge, J. P.; Kajiwara, K.; Kasugai, A.; Kern, S.; Kobayashi, N.; Oda, Y.; Ramponi, G.; Rao, S. L.; Rasmussen, D.; Rzesnicki, T.; Saibene, G.; Sakamoto, K.; Sauter, O.; Scherer, T.; Strauss, D.; Takahashi, K.; Zohm, H.
2009-11-01
A 26 MW Electron Cyclotron Heating and Current Drive (EC H&CD) system is to be installed for ITER. The main objectives are to provide, start-up assist, central H&CD and control of MHD activity. These are achieved by a combination of two types of launchers, one located in an equatorial port and the second type in four upper ports. The physics applications are partitioned between the two launchers, based on the deposition location and driven current profiles. The equatorial launcher (EL) will access from the plasma axis to mid radius with a relatively broad profile useful for central heating and current drive applications, while the upper launchers (ULs) will access roughly the outer half of the plasma radius with a very narrow peaked profile for the control of the Neoclassical Tearing Modes (NTM) and sawtooth oscillations. The EC power can be switched between launchers on a time scale as needed by the immediate physics requirements. A revision of all injection angles of all launchers is under consideration for increased EC physics capabilities while relaxing the engineering constraints of both the EL and ULs. A series of design reviews are being planned with the five parties (EU, IN, JA, RF, US) procuring the EC system, the EC community and ITER Organization (IO). The review meetings qualify the design and provide an environment for enhancing performances while reducing costs, simplifying interfaces, predicting technology upgrades and commercial availability. In parallel, the test programs for critical components are being supported by IO and performed by the Domestic Agencies (DAs) for minimizing risks. The wide participation of the DAs provides a broad representation from the EC community, with the aim of collecting all expertise in guiding the EC system optimization. Still a strong relationship between IO and the DA is essential for optimizing the design of the EC system and for the installation and commissioning of all ex-vessel components when several teams
Rau, B.R.
1996-02-01
Modulo scheduling is a framework within which algorithms for software pipelining innermost loops may be defined. The framework specifies a set of constraints that must be met in order to achieve a legal modulo schedule. A wide variety of algorithms and heuristics can be defined within this framework. Little work has been done to evaluate and compare alternative algorithms and heuristics for modulo scheduling from the viewpoints of schedule quality as well as computational complexity. This, along with a vague and unfounded perception that modulo scheduling is computationally expensive as well as difficult to implement, have inhibited its corporation into product compilers. This paper presents iterative modulo scheduling, a practical algorithm that is capable of dealing with realistic machine models. The paper also characterizes the algorithm in terms of the quality of the generated schedules as well as the computational incurred.
Mission of ITER and Challenges for the Young
Ikeda, Kaname
2009-02-19
It is recognized that the ongoing effort to provide sufficient energy for the wellbeing of the globe's population and to power the world economy is of the greatest importance. ITER is a joint international research and development project that aims to demonstrate the scientific and technical feasibility of fusion power. It represents the responsible actions of governments whose countries comprise over half the world's population, to create fusion power as a source of clean, economic, carbon dioxide-free energy. This is the most important science initiative of our time.The partners in the Project--the ITER Parties--are the European Union, Japan, the People's Republic of China, India, the Republic of Korea, the Russian Federation and the USA. ITER will be constructed in Europe, at Cadarache in the South of France. The talk will illustrate the genesis of the ITER Organization, the ongoing work at the Cadarache site and the planned schedule for construction. There will also be an explanation of the unique aspects of international collaboration that have been developed for ITER.Although the present focus of the project is construction activities, ITER is also a major scientific and technological research program, for which the best of the world's intellectual resources is needed. Challenges for the young, imperative for fulfillment of the objective of ITER will be identified. It is important that young students and researchers worldwide recognize the rapid development of the project, and the fundamental issues that must be overcome in ITER.The talk will also cover the exciting career and fellowship opportunities for young people at the ITER Organization.
Mission of ITER and Challenges for the Young
NASA Astrophysics Data System (ADS)
Ikeda, Kaname
2009-02-01
It is recognized that the ongoing effort to provide sufficient energy for the wellbeing of the globe's population and to power the world economy is of the greatest importance. ITER is a joint international research and development project that aims to demonstrate the scientific and technical feasibility of fusion power. It represents the responsible actions of governments whose countries comprise over half the world's population, to create fusion power as a source of clean, economic, carbon dioxide-free energy. This is the most important science initiative of our time. The partners in the Project—the ITER Parties—are the European Union, Japan, the People's Republic of China, India, the Republic of Korea, the Russian Federation and the USA. ITER will be constructed in Europe, at Cadarache in the South of France. The talk will illustrate the genesis of the ITER Organization, the ongoing work at the Cadarache site and the planned schedule for construction. There will also be an explanation of the unique aspects of international collaboration that have been developed for ITER. Although the present focus of the project is construction activities, ITER is also a major scientific and technological research program, for which the best of the world's intellectual resources is needed. Challenges for the young, imperative for fulfillment of the objective of ITER will be identified. It is important that young students and researchers worldwide recognize the rapid development of the project, and the fundamental issues that must be overcome in ITER. The talk will also cover the exciting career and fellowship opportunities for young people at the ITER Organization.
Recent progress and advances in iterative software (including parallel aspects)
Carey, G.; Young, D.M.; Kincaid, D.
1994-12-31
The purpose of the workshop is to provide a forum for discussion of the current state of iterative software packages. Of particular interest is software for large scale engineering and scientific applications, especially for distributed parallel systems. However, the authors will also review the state of software development for conventional architectures. This workshop will complement the other proposed workshops on iterative BLAS kernels and applications. The format for the workshop is as follows: To provide some structure, there will be brief presentations, each of less than five minutes duration and dealing with specific facets of the subject. These will be designed to focus the discussion and to stimulate an exchange with the participants. Issues to be covered include: The evolution of iterative packages, current state of the art, the parallel computing challenge, applications viewpoint, standards, and future directions and open problems.
A Fast Iterated Orthogonal Projection Framework for Smoke Simulation.
Yang, Yang; Yang, Xubo; Yang, Shuangcai
2016-05-01
We present a fast iterated orthogonal projection (IOP) framework for smoke simulations. By modifying the IOP framework with a different means for convergence, our framework significantly reduces the number of iterations required to converge to the desired precision. Our new iteration framework adds a divergence redistributor component to IOP that can improve the impeded convergence logic of IOP. We tested Jacobi, GS and SOR as divergence redistributors and used the Multigrid scheme to generate a highly efficient Poisson solver. It provides a rapid convergence rate and requires less computation time. In all of our experiments, our method only requires 2-3 iterations to satisfy the convergence condition of 1e-5 and 5-7 iterations for 1e-10. Compared with the commonly used Incomplete Cholesky Preconditioned Conjugate Gradient(ICPCG) solver, our Poisson solver accelerates the overall speed to approximately 7- to 30-fold faster for grids ranging from 128(3) to 256(3). Our solver can accelerate more on larger grids because of the property that the iteration count required to satisfy the convergence condition is independent of the problem size. We use various experimental scenes and settings to demonstrate the efficiency of our method. In addition, we present a feasible method for both IOP and our fast IOP to support free surfaces. PMID:27045907
G. Douglas Loesser, et. al.
2012-09-21
The ITER Diagnostic Division is responsible for designing and procuring the First Wall Blankets that are mounted on the vacuum vessel port plugs at both the upper and equatorial levels This paper will discuss the effects of the diagnostic aperture shape and configuration on the coolant circuit design. The DFW design is driven in large part by the need to conform the coolant arrangement to a wide variety of diagnostic apertures combined with the more severe heating conditions at the surface facing the plasma, the first wall. At the first wall, a radiant heat flux of 35W/cm2 combines with approximate peak volumetric heating rates of 8W/cm3 (equatorial ports) and 5W/cm3 (upper ports). Here at the FW, a fast thermal response is desirable and leads to a thin element between the heat flux and coolant. This requirement is opposed by the wish for a thicker FW element to accommodate surface erosion and other off-normal plasma events.
NASA Astrophysics Data System (ADS)
Jaeger, E. F.; Berry, L. A.; Myra, J. R.
2006-10-01
Fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) can convert to much shorter wavelength modes such as ion Bernstein waves (IBW) and ion cyclotron waves (ICW) [1]. These modes are potentially useful for plasma control through the generation of localized currents and sheared flows. As part of the SciDAC Center for Simulation of Wave-Plasma Interactions project, the AORSA global-wave solver [2] has been ported to the new, dual-core Cray XT-3 (Jaguar) at ORNL where it demonstrates excellent scaling with the number of processors. Preliminary calculations using 4096 processors have allowed the first full-wave simulations of mode conversion in ITER. Mode conversion from the fast wave to the ICW is observed in mixtures of deuterium, tritium and helium3 at 53 MHz. The resulting flow velocity and electric field shear will be calculated. [1] F.W. Perkins, Nucl. Fusion 17, 1197 (1977). [2] E.F. Jaeger, L.A. Berry, J.R. Myra, et al., Phys. Rev. Lett. 90, 195001-1 (2003).
Iterative denoising of ghost imaging.
Yao, Xu-Ri; Yu, Wen-Kai; Liu, Xue-Feng; Li, Long-Zhen; Li, Ming-Fei; Wu, Ling-An; Zhai, Guang-Jie
2014-10-01
We present a new technique to denoise ghost imaging (GI) in which conventional intensity correlation GI and an iteration process have been combined to give an accurate estimate of the actual noise affecting image quality. The blurring influence of the speckle areas in the beam is reduced in the iteration by setting a threshold. It is shown that with an appropriate choice of threshold value, the quality of the iterative GI reconstructed image is much better than that of differential GI for the same number of measurements. This denoising method thus offers a very effective approach to promote the implementation of GI in real applications. PMID:25322001
Channeled spectropolarimetry using iterative reconstruction
NASA Astrophysics Data System (ADS)
Lee, Dennis J.; LaCasse, Charles F.; Craven, Julia M.
2016-05-01
Channeled spectropolarimeters (CSP) measure the polarization state of light as a function of wavelength. Conventional Fourier reconstruction suffers from noise, assumes the channels are band-limited, and requires uniformly spaced samples. To address these problems, we propose an iterative reconstruction algorithm. We develop a mathematical model of CSP measurements and minimize a cost function based on this model. We simulate a measured spectrum using example Stokes parameters, from which we compare conventional Fourier reconstruction and iterative reconstruction. Importantly, our iterative approach can reconstruct signals that contain more bandwidth, an advancement over Fourier reconstruction. Our results also show that iterative reconstruction mitigates noise effects, processes non-uniformly spaced samples without interpolation, and more faithfully recovers the ground truth Stokes parameters. This work offers a significant improvement to Fourier reconstruction for channeled spectropolarimetry.
Comments on the iterated knapsack attack
Brickell, E.F.
1983-01-01
L. Adleman has proposed a three step method for breaking the iterated knapsack that runs in polynomial time and is linear in the number of iterations. In this paper, we show that the first step is possibly exponential in the number of iterations, and that the second and third steps are exponential even for only three iterations.
Is Carbon a Realistic Choice for ITER's Divertor?
C.H. Skinner; G. Federici
2005-05-13
Tritium retention by co-deposition with carbon on the divertor target plate is predicted to limit ITER's DT burning plasma operations (e.g. to about 100 pulses for the worst conditions) before the in-vessel tritium inventory limit, currently set at 350 g, is reached. At this point, ITER will only be able to continue its burning plasma program if technology is available that is capable of rapidly removing large quantities of tritium from the vessel with over 90% efficiency. The removal rate required is four orders of magnitude faster than that demonstrated in current tokamaks. Eighteen years after the observation of co-deposition on JET and TFTR, such technology is nowhere in sight. The inexorable conclusion is that either a major initiative in tritium removal should be funded or that research priorities for ITER should focus on metal alternatives.
ITER Construction--Plant System Integration
Tada, E.; Matsuda, S.
2009-02-19
This brief paper introduces how the ITER will be built in the international collaboration. The ITER Organization plays a central role in constructing ITER and leading it into operation. Since most of the ITER components are to be provided in-kind from the member countries, integral project management should be scoped in advance of real work. Those include design, procurement, system assembly, testing, licensing and commissioning of ITER.
Lane, Steven W; Crawford, Julie; Kenealy, Melita; Cull, Gavin; Seymour, John F; Prince, H Miles; Marlton, Paula; Gill, Devinder; Mollee, Peter N
2006-09-01
Pegfilgrastim (Neulasta) has proven efficacy as supportive therapy in a variety of 21-day chemotherapy regimens, but has not been studied in dose intensive, rapidly cycling regimens utilising cell-cycle active drugs (e.g. anti-metabolites) such as hyper-CVAD. This study examined whether pegfilgrastim was safe and lead to similar kinetics of neutrophil recovery as daily granulocyte colony stimulating factor (G-CSF). Using retrospective analysis, patients receiving pegfilgrastim (6 mg) were matched with controls (G-CSF 5 microg kg-1 per day) for a cycle of chemotherapy, prior chemotherapy, dose of cytarabine received, age (<60 or >60 years), diagnosis and bone marrow involvement. The primary endpoint was duration of grade IV neutropenia (absolute neutrophil count, ANC < 500 microl-1). Secondary endpoints included time to neutrophil recovery, incidence of febrile neutropenia, positive blood cultures and delay in subsequent chemotherapy. This study identified 124 pegfilgrastim supported cycles in 43 patients and successfully matched them to 124 G-CSF supported cycles from 38 patients treated between January 1999 and July 2005. There were no significant differences between pegfilgrastim and G-CSF groups in baseline or treatment-related variables. The median duration of grade IV neutropenia was 4 days in both groups (P = 0.55). Time to neutrophil recovery, incidence of febrile neutropenia, positive blood cultures and delay in subsequent chemotherapy were similar in both groups. Once per cycle dosing of pegfilgrastim appears safe and as effective as daily G-CSF for supporting the hyper-CVAD chemotherapy regimen. PMID:17064993
Rapid Prototyping of Mobile Learning Games
ERIC Educational Resources Information Center
Federley, Maija; Sorsa, Timo; Paavilainen, Janne; Boissonnier, Kimo; Seisto, Anu
2014-01-01
This position paper presents the first results of an on-going project, in which we explore rapid prototyping method to efficiently produce digital learning solutions that are commercially viable. In this first phase, rapid game prototyping and an iterative approach was tested as a quick and efficient way to create learning games and to evaluate…
ITER Disruption Mitigation System Design
NASA Astrophysics Data System (ADS)
Rasmussen, David; Lyttle, M. S.; Baylor, L. R.; Carmichael, J. R.; Caughman, J. B. O.; Combs, S. K.; Ericson, N. M.; Bull-Ezell, N. D.; Fehling, D. T.; Fisher, P. W.; Foust, C. R.; Ha, T.; Meitner, S. J.; Nycz, A.; Shoulders, J. M.; Smith, S. F.; Warmack, R. J.; Coburn, J. D.; Gebhart, T. E.; Fisher, J. T.; Reed, J. R.; Younkin, T. R.
2015-11-01
The disruption mitigation system for ITER is under design and will require injection of up to 10 kPa-m3 of deuterium, helium, neon, or argon material for thermal mitigation and up to 100 kPa-m3 of material for suppression of runaway electrons. A hybrid unit compatible with the ITER nuclear, thermal and magnetic field environment is being developed. The unit incorporates a fast gas valve for massive gas injection (MGI) and a shattered pellet injector (SPI) to inject a massive spray of small particles, and can be operated as an SPI with a frozen pellet or an MGI without a pellet. Three ITER upper port locations will have three SPI/MGI units with a common delivery tube. One equatorial port location has space for sixteen similar SPI/MGI units. Supported by US DOE under DE-AC05-00OR22725.
Error Field Correction in ITER
Park, Jong-kyu; Boozer, Allen H.; Menard, Jonathan E.; Schaffer, Michael J.
2008-05-22
A new method for correcting magnetic field errors in the ITER tokamak is developed using the Ideal Perturbed Equilibrium Code (IPEC). The dominant external magnetic field for driving islands is shown to be localized to the outboard midplane for three ITER equilibria that represent the projected range of operational scenarios. The coupling matrices between the poloidal harmonics of the external magnetic perturbations and the resonant fields on the rational surfaces that drive islands are combined for different equilibria and used to determine an ordered list of the dominant errors in the external magnetic field. It is found that efficient and robust error field correction is possible with a fixed setting of the correction currents relative to the currents in the main coils across the range of ITER operating scenarios that was considered.
Construction Safety Forecast for ITER
cadwallader, lee charles
2006-11-01
The International Thermonuclear Experimental Reactor (ITER) project is poised to begin its construction activity. This paper gives an estimate of construction safety as if the experiment was being built in the United States. This estimate of construction injuries and potential fatalities serves as a useful forecast of what can be expected for construction of such a major facility in any country. These data should be considered by the ITER International Team as it plans for safety during the construction phase. Based on average U.S. construction rates, ITER may expect a lost workday case rate of < 4.0 and a fatality count of 0.5 to 0.9 persons per year.
ITER EDA design confinement capability
NASA Astrophysics Data System (ADS)
Uckan, N. A.
Major device parameters for ITER-EDA and CDA are given in this paper. Ignition capability of the EDA (and CDA) operational scenarios is evaluated using both the 1 1/2-D time-dependent transport simulations and 0-D global models under different confinement ((chi((gradient)(T)(sub e)(sub crit)), empirical global energy confinement scalings, chi(empirical), etc.) assumptions. Results from some of these transport simulations and confinement assessments are summarized in and compared with the ITER CDA results.
ITER LHe Plants Parallel Operation
NASA Astrophysics Data System (ADS)
Fauve, E.; Bonneton, M.; Chalifour, M.; Chang, H.-S.; Chodimella, C.; Monneret, E.; Vincent, G.; Flavien, G.; Fabre, Y.; Grillot, D.
The ITER Cryogenic System includes three identical liquid helium (LHe) plants, with a total average cooling capacity equivalent to 75 kW at 4.5 K.The LHe plants provide the 4.5 K cooling power to the magnets and cryopumps. They are designed to operate in parallel and to handle heavy load variations.In this proceedingwe will describe the presentstatusof the ITER LHe plants with emphasis on i) the project schedule, ii) the plantscharacteristics/layout and iii) the basic principles and control strategies for a stable operation of the three LHe plants in parallel.
Parallel inverse iteration with reorthogonalization
Fann, G.I.; Littlefield, R.J.
1993-03-01
A parallel method for finding orthogonal eigenvectors of real symmetric tridiagonal is described. The method uses inverse iteration with repeated Modified Gram-Schmidt (MGS) reorthogonalization of the unconverged iterates for clustered eigenvalues. This approach is more parallelizable than reorthogonalizing against fully converged eigenvectors, as is done by LAPACK's current DSTEIN routine. The new method is found to provide accuracy and speed comparable to DSTEIN's and to have good parallel scalability even for matrices with large clusters of eigenvalues. We present al results for residual and orthogonality tests, plus timings on IBM RS/6000 (sequential) and Intel Touchstone DELTA (parallel) computers.
Parallel inverse iteration with reorthogonalization
Fann, G.I.; Littlefield, R.J.
1993-03-01
A parallel method for finding orthogonal eigenvectors of real symmetric tridiagonal is described. The method uses inverse iteration with repeated Modified Gram-Schmidt (MGS) reorthogonalization of the unconverged iterates for clustered eigenvalues. This approach is more parallelizable than reorthogonalizing against fully converged eigenvectors, as is done by LAPACK`s current DSTEIN routine. The new method is found to provide accuracy and speed comparable to DSTEIN`s and to have good parallel scalability even for matrices with large clusters of eigenvalues. We present al results for residual and orthogonality tests, plus timings on IBM RS/6000 (sequential) and Intel Touchstone DELTA (parallel) computers.
Iterated binomial sums and their associated iterated integrals
NASA Astrophysics Data System (ADS)
Ablinger, J.; Blümlein, J.; Raab, C. G.; Schneider, C.
2014-11-01
We consider finite iterated generalized harmonic sums weighted by the binomial binom{2k}{k} in numerators and denominators. A large class of these functions emerges in the calculation of massive Feynman diagrams with local operator insertions starting at 3-loop order in the coupling constant and extends the classes of the nested harmonic, generalized harmonic, and cyclotomic sums. The binomially weighted sums are associated by the Mellin transform to iterated integrals over square-root valued alphabets. The values of the sums for N → ∞ and the iterated integrals at x = 1 lead to new constants, extending the set of special numbers given by the multiple zeta values, the cyclotomic zeta values and special constants which emerge in the limit N → ∞ of generalized harmonic sums. We develop algorithms to obtain the Mellin representations of these sums in a systematic way. They are of importance for the derivation of the asymptotic expansion of these sums and their analytic continuation to N in {C}. The associated convolution relations are derived for real parameters and can therefore be used in a wider context, as, e.g., for multi-scale processes. We also derive algorithms to transform iterated integrals over root-valued alphabets into binomial sums. Using generating functions we study a few aspects of infinite (inverse) binomial sums.
ODE System Solver W. Krylov Iteration & Rootfinding
Hindmarsh, Alan C.
1991-09-09
LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration, LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.
ODE System Solver W. Krylov Iteration & Rootfinding
Energy Science and Technology Software Center (ESTSC)
1991-09-09
LSODKR is a new initial value ODE solver for stiff and nonstiff systems. It is a variant of the LSODPK and LSODE solvers, intended mainly for large stiff systems. The main differences between LSODKR and LSODE are the following: (a) for stiff systems, LSODKR uses a corrector iteration composed of Newton iteration and one of four preconditioned Krylov subspace iteration methods. The user must supply routines for the preconditioning operations, (b) Within the corrector iteration,more » LSODKR does automatic switching between functional (fixpoint) iteration and modified Newton iteration, (c) LSODKR includes the ability to find roots of given functions of the solution during the integration.« less
Delayed Over-Relaxation for iterative methods
NASA Astrophysics Data System (ADS)
Antuono, M.; Colicchio, G.
2016-09-01
We propose a variant of the relaxation step used in the most widespread iterative methods (e.g. Jacobi Over-Relaxation, Successive Over-Relaxation) which combines the iteration at the predicted step, namely (n + 1), with the iteration at step (n - 1). We provide a theoretical analysis of the proposed algorithm by applying such a delayed relaxation step to a generic (convergent) iterative scheme. We prove that, under proper assumptions, this significantly improves the convergence rate of the initial iterative method. As a relevant example, we apply the proposed algorithm to the solution of the Poisson equation, highlighting the advantages in comparison with classical iterative models.
Networking Theories by Iterative Unpacking
ERIC Educational Resources Information Center
Koichu, Boris
2014-01-01
An iterative unpacking strategy consists of sequencing empirically-based theoretical developments so that at each step of theorizing one theory serves as an overarching conceptual framework, in which another theory, either existing or emerging, is embedded in order to elaborate on the chosen element(s) of the overarching theory. The strategy is…
Prospects of ITER Instability Control
NASA Astrophysics Data System (ADS)
Kolemen, Egemen
2015-11-01
Prospects for real-time MHD stability analysis, plasma response calculations, and their use in ELM, NTM, RWM control and EFC will be discussed. ITER will need various controls to work together in order to achieve the stated goal of Q >= 10 for multiple minutes. These systems will allow operating at high beta while avoiding disruptions that may lead to damage to the reactor. However, it has not yet been demonstrated whether the combined real-time feedback control aim is feasible given the spectrum of plasma instabilities, the quality of the real-time diagnostic measurement/analysis, and the actuator set at ITER. We will explain challenges of instability control for ITER based on experimental and simulation results. We will demonstrate that it will not be possible to parameterize all possible disruption avoidance and ramp down scenarios that ITER may encounter. An alternative approach based on real-time MHD stability analysis and plasma response calculations, and its use in ELM, NTM, RWM control and EFC, will be demonstrated. Supported by the US DOE under DE-AC02-09CH11466.
Energetic ions in ITER plasmas
Pinches, S. D.; Chapman, I. T.; Sharapov, S. E.; Lauber, Ph. W.; Oliver, H. J. C.; Shinohara, K.; Tani, K.
2015-02-15
This paper discusses the behaviour and consequences of the expected populations of energetic ions in ITER plasmas. It begins with a careful analytic and numerical consideration of the stability of Alfvén Eigenmodes in the ITER 15 MA baseline scenario. The stability threshold is determined by balancing the energetic ion drive against the dominant damping mechanisms and it is found that only in the outer half of the plasma (r/a>0.5) can the fast ions overcome the thermal ion Landau damping. This is in spite of the reduced numbers of alpha-particles and beam ions in this region but means that any Alfvén Eigenmode-induced redistribution is not expected to influence the fusion burn process. The influence of energetic ions upon the main global MHD phenomena expected in ITER's primary operating scenarios, including sawteeth, neoclassical tearing modes and Resistive Wall Modes, is also reviewed. Fast ion losses due to the non-axisymmetric fields arising from the finite number of toroidal field coils, the inclusion of ferromagnetic inserts, the presence of test blanket modules containing ferromagnetic material, and the fields created by the Edge Localised Mode (ELM) control coils in ITER are discussed. The greatest losses and associated heat loads onto the plasma facing components arise due to the use of the ELM control coils and come from neutral beam ions that are ionised in the plasma edge.
Object-oriented design of preconditioned iterative methods
Bruaset, A.M.
1994-12-31
In this talk the author discusses how object-oriented programming techniques can be used to develop a flexible software package for preconditioned iterative methods. The ideas described have been used to implement the linear algebra part of Diffpack, which is a collection of C++ class libraries that provides high-level tools for the solution of partial differential equations. In particular, this software package is aimed at rapid development of PDE-based numerical simulators, primarily using finite element methods.
ERIC Educational Resources Information Center
International Children's Centre, Paris (France).
This set of documents consists of English, French, and Spanish translations of four pamphlets on infant stimulation. The pamphlets provide information designed for lay persons, educators and primary care personnel, academics and professionals, and for health administrators and family-planning organizations. The contents cover infant needs; infant…
Correctness properties for iterated hardware structures
NASA Technical Reports Server (NTRS)
Windley, Phillip J.
1993-01-01
Iterated structures occur frequently in hardware. This paper describes properties required of mathematical relations that can be implemented iteratively and demonstrates the use of these properties on a generalized class of adders. This work provides a theoretical basis for the correct synthesis of iterated arithmetic structures.
Bioinspired iterative synthesis of polyketides
Zheng, Kuan; Xie, Changmin; Hong, Ran
2015-01-01
Diverse array of biopolymers and second metabolites (particularly polyketide natural products) has been manufactured in nature through an enzymatic iterative assembly of simple building blocks. Inspired by this strategy, molecules with inherent modularity can be efficiently synthesized by repeated succession of similar reaction sequences. This privileged strategy has been widely adopted in synthetic supramolecular chemistry. Its value also has been reorganized in natural product synthesis. A brief overview of this approach is given with a particular emphasis on the total synthesis of polyol-embedded polyketides, a class of vastly diverse structures and biologically significant natural products. This viewpoint also illustrates the limits of known individual modules in terms of diastereoselectivity and enantioselectivity. More efficient and practical iterative strategies are anticipated to emerge in the future development. PMID:26052510
Projection Classification Based Iterative Algorithm
NASA Astrophysics Data System (ADS)
Zhang, Ruiqiu; Li, Chen; Gao, Wenhua
2015-05-01
Iterative algorithm has good performance as it does not need complete projection data in 3D image reconstruction area. It is possible to be applied in BGA based solder joints inspection but with low convergence speed which usually acts with x-ray Laminography that has a worse reconstruction image compared to the former one. This paper explores to apply one projection classification based method which tries to separate the object to three parts, i.e. solute, solution and air, and suppose that the reconstruction speed decrease from solution to two other parts on both side lineally. And then SART and CAV algorithms are improved under the proposed idea. Simulation experiment result with incomplete projection images indicates the fast convergence speed of the improved iterative algorithms and the effectiveness of the proposed method. Less the projection images, more the superiority is also founded.
Truncated States Obtained by Iteration
NASA Astrophysics Data System (ADS)
Cardoso B., W.; Almeida G. de, N.
2008-02-01
We introduce the concept of truncated states obtained via iterative processes (TSI) and study its statistical features, making an analogy with dynamical systems theory (DST). As a specific example, we have studied TSI for the doubling and the logistic functions, which are standard functions in studying chaos. TSI for both the doubling and logistic functions exhibit certain similar patterns when their statistical features are compared from the point of view of DST.
Mattas, R.F.; Billone, M.; Hassanein, A.
1996-08-01
The recent U.S. effort on the ITER (International Thermonuclear Experimental Reactor) shield has been focused on the limiter module design. This is a multi-disciplinary effort that covers design layout, fabrication, thermal hydraulics, materials evaluation, thermo- mechanical response, and predicted response during off-normal events. The results of design analyses are presented. Conclusions and recommendations are also presented concerning, the capability of the limiter modules to meet performance goals and to be fabricated within design specifications using existing technology.
Real-time Stability Analysis for Disruption Avoidance in ITER
NASA Astrophysics Data System (ADS)
Glasser, Alexander; Kolemen, Egemen; Glasser, Alan
2015-11-01
ITER is intended to operate at plasma parameters approaching the frontier of achievable stability limits. And yet, plasma disruptions at ITER must be kept to a bare minimum to avoid damage to its plasma-facing structures. These competing goals necessitate real-time plasma stability analysis and feedback control at ITER. This work aims to develop a mechanism for real-time analysis of a large and virulent class of disruptions driven by the rapid growth of ideal MHD unstable modes in tokamak equilibria. Such modes will be identified by a parallelized, low-latency implementation of A.H. Glasser's well-tested DCON (Direct Criterion of Newcomb) code, which measures the energetics of modes in the bulk plasma fluid, as well as M.S. Chance's VACUUM code, which measures the same in the vacuum between the plasma and tokamak chamber wall. Parallelization of these codes is intended to achieve a time-savings of 40x, thereby reducing latency to a timescale of order 100ms and making the codes viable for ideal MHD stability control at ITER. The hardware used to achieve this parallelization will be an Intel Xeon Phi server with 77 cores (308 threads). Supported by the US DOE under DE-AC02-09CH11466.
Overview of Recent Developments in Pellet Injection for ITER
Combs, Stephen Kirk; Baylor, Larry R; Meitner, Steven J; Caughman, John B; Rasmussen, David A; Maruyama, So
2012-01-01
Pellet injection is the primary fueling technique planned for core fueling of ITER burning plasmas. Also, the injection of relatively small pellets to purposely trigger rapid small edge localized modes (ELMs) has been proposed as a possible solution to the heat flux damage from larger natural ELMs likely to be an issue on the ITER divertor surfaces. The ITER pellet injection system is designed to inject pellets into the plasma through both inner and outer wall guide tubes. The inner wall guide tubes will provide high throughput pellet fueling while the outerwall guide tubes will be used primarily to trigger ELMs at a high frequency (>15 Hz). The pellet fueling rate ofeach injector is to be up to 120 Pa-m3/s, which will require the formation of solid D-T at a volumetric rate of ~1500 mm3/s. Two injectors are to be provided for ITER at the startup with a provision for up to six injectorsduring the D-T phase. The required throughput of each injector is greater than that of any injector built to date, and a novel twin-screw continuous extrusion system is being developed to meet the challenging design parameters. Status of the development activities will be presented, highlighting recent progress.
Approximate iterative operator method for potential-field downward continuation
NASA Astrophysics Data System (ADS)
Tai, Zhenhua; Zhang, Fengxu; Zhang, Fengqin; Hao, Mengcheng
2016-05-01
An approximate iterative operator method in wavenumber domain was proposed to improve the stability and accuracy of downward continuation of potential fields measured from the ground surface, marine or airborne. Firstly, the generalized iterative formula of downward continuation is derived in wavenumber domain; then, the transformational relationship between horizontal second-order partial derivatives and continuation is derived based on the Taylor series and Laplace equation, to obtain an approximate operator. By introducing this operator to the generalized iterative formula, a rapid algorithm is developed for downward continuation. The filtering and convergence characteristics of this method are analyzed for the purpose of estimating the optimal interval of number of iterations. We demonstrate the proposed method on synthetic data, and the results validate the flexibility of the proposed method. At last, we apply the proposed method to real data, and the results show the proposed method can enhance gravity anomalies generated by concealed orebodies. And in the contour obtained by making our proposed method results continue upward to measured level, the numerical results have approximate distribution and amplitude with original anomalies.
ITER Plasma Control System Development
NASA Astrophysics Data System (ADS)
Snipes, Joseph; ITER PCS Design Team
2015-11-01
The development of the ITER Plasma Control System (PCS) continues with the preliminary design phase for 1st plasma and early plasma operation in H/He up to Ip = 15 MA in L-mode. The design is being developed through a contract between the ITER Organization and a consortium of plasma control experts from EU and US fusion laboratories, which is expected to be completed in time for a design review at the end of 2016. This design phase concentrates on breakdown including early ECH power and magnetic control of the poloidal field null, plasma current, shape, and position. Basic kinetic control of the heating (ECH, ICH, NBI) and fueling systems is also included. Disruption prediction, mitigation, and maintaining stable operation are also included because of the high magnetic and kinetic stored energy present already for early plasma operation. Support functions for error field topology and equilibrium reconstruction are also required. All of the control functions also must be integrated into an architecture that will be capable of the required complexity of all ITER scenarios. A database is also being developed to collect and manage PCS functional requirements from operational scenarios that were defined in the Conceptual Design with links to proposed event handling strategies and control algorithms for initial basic control functions. A brief status of the PCS development will be presented together with a proposed schedule for design phases up to DT operation.
ITER EDA Newsletter. Volume 3, no. 2
NASA Astrophysics Data System (ADS)
1994-02-01
This issue of the ITER EDA (Engineering Design Activities) Newsletter contains reports on the Fifth ITER Council Meeting held in Garching, Germany, January 27-28, 1994, a visit (January 28, 1994) of an international group of Harvard Fellows to the San Diego Joint Work Site, the Inauguration Ceremony of the EC-hosted ITER joint work site in Garching (January 28, 1994), on an ITER Technical Meeting on Assembly and Maintenance held in Garching, Germany, January 19-26, 1994, and a report on a Technical Committee Meeting on radiation effects on in-vessel components held in Garching, Germany, November 15-19, 1993, as well as an ITER Status Report.
Iterative methods for mixed finite element equations
NASA Technical Reports Server (NTRS)
Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.
1985-01-01
Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.
ITER density profile with pellet injection
Houlberg, W.A.
1989-01-01
Particle transport in multi-pellet fueled JET plasmas in being examined to help evaluate density profile behavior in ITER. Preliminary results of the JET analysis were reported at the IAEA Technical Committee Meeting on Pellets in October 1988. In sawtooth free JET discharges, the density profile evolution after injection of pellets can be modeled with the neoclassical Ware pinch and a diffusion coefficient that is small in the plasma core and increased sharply in the vicinity of the q = 2 surface. This model is applicable to both ohmic and central ICRF heated discharges. Some of the auxiliary heated plasmas show a more rapid central density decay that appears to be related to MHD activity observed in soft x-ray signals. In these discharges the density profile evolution can be modeled with a temperature dependent diffusion coefficient and the neoclassical Ware pinch. There is a strong correlation between the inferred local particle and heat transport coefficients in all discharges. Plasmas with non-central pellet penetration show no significant density peaking, consistent with the small Ware pinch term. These results appear to conflict with those reported for ASDEX. There it was found that sustained pellet injection during neutral beam and ICRF heating, with pellet penetration of only half the plasma radius, led to markedly peaked electron density profiles as well as high edge recycling, reduced sawtooth activity, central impurity radiation, enhanced density limit, and improved global energy confinement. Thus, the implications of these results for ITER are still highly speculative because of the lack of knowledge about scaling with machine parameters. The JET results suggest that relatively deep fueling may be required to significantly influence the density profile shape, while the ASDEX results imply that partial penetration may be sufficient. 20 figs.
... temperature, it should cause fast, side-to-side eye movements called nystagmus. The test is done in the ... Rapid, side-to-side eye movements should occur when cold or warm water is placed into the ear. The eye movements should be similar on both ...
P-SPARSLIB: A parallel sparse iterative solution package
Saad, Y.
1994-12-31
Iterative methods are gaining popularity in engineering and sciences at a time where the computational environment is changing rapidly. P-SPARSLIB is a project to build a software library for sparse matrix computations on parallel computers. The emphasis is on iterative methods and the use of distributed sparse matrices, an extension of the domain decomposition approach to general sparse matrices. One of the goals of this project is to develop a software package geared towards specific applications. For example, the author will test the performance and usefulness of P-SPARSLIB modules on linear systems arising from CFD applications. Equally important is the goal of portability. In the long run, the author wishes to ensure that this package is portable on a variety of platforms, including SIMD environments and shared memory environments.
Rutherford, P.H.
1997-04-01
Experimental research on the International Thermonuclear Experimental Reactor (ITER) will go far beyond what is possible on present-day tokamaks to address new and challenging issues in the physics of reactor-like plasmas. First and foremost, experiments in ITER will explore the physics issues of burning plasmas--plasmas that are dominantly self-heated by alpha-particles created by the fusion reactions themselves. Such issues will include (i) new plasma-physical effects introduced by the presence within the plasma of an intense population of energetic alpha particles; (ii) the physics of magnetic confinement for a burning plasma, which will involve a complex interplay of transport, stability and an internal self-generated heat source; and (iii) the physics of very-long-pulse/steady-state burning plasmas, in which much of the plasma current is also self-generated and which will require effective control of plasma purity and plasma-wall interactions. Achieving and sustaining burning plasma regimes in a tokamak necessarily requires plasmas that are larger than those in present experiments and have higher energy content and power flow, as well as much longer pulse length. Accordingly, the experimental program on ITER will embrace the study of issues of plasma physics and plasma-materials interactions that are specific to a reactor-scale fusion experiment. Such issues will include (i) confinement physics for a tokamak in which, for the first time, the core-plasma and the edge-plasma are simultaneously in a reactor-like regime; (ii) phenomena arising during plasma transients, including so-called disruptions, in regimes of high plasma current and thermal energy; and (iii) physics of a radiative divertor designed for handling high power flow for long pulses, including novel plasma and atomic-physics effects as well as materials science of surfaces subject to intense plasma interaction. Experiments on ITER will be conducted by researchers in control rooms situated at major
Iterates of maps with symmetry
NASA Technical Reports Server (NTRS)
Chossat, Pascal; Golubitsky, Martin
1988-01-01
Fixed-point bifurcation, period doubling, and Hopf bifurcation (HB) for iterates of equivariant mappings are investigated analytically, with a focus on HB in the presence of symmetry. An algebraic formulation for the hypotheses of the theorem of Ruelle (1973) is derived, and the case of standing waves in a system of ordinary differential equations with O(2) symmetry is considered in detail. In this case, it is shown that HB can lead directly to motion on an invariant 3-torus, with an unexpected third frequency due to drift of standing waves along the torus.
[MRI compatibility of deep brain stimulator].
Zhang, Yujing
2013-07-01
Deep brain stimulation (DBS) therapy develops rapidly in clinical application. The structures of deep brain stimulator and magnetic resonance imaging (MRI) equipment are introduced, the interactions are analyzed, and the two compatible problems of radio frequency (RF) heating and imaging artifact are summarized in this paper. PMID:24195387
Experimental Evidence on Iterated Reasoning in Games
Grehl, Sascha; Tutić, Andreas
2015-01-01
We present experimental evidence on two forms of iterated reasoning in games, i.e. backward induction and interactive knowledge. Besides reliable estimates of the cognitive skills of the subjects, our design allows us to disentangle two possible explanations for the observed limits in performed iterated reasoning: Restrictions in subjects’ cognitive abilities and their beliefs concerning the rationality of co-players. In comparison to previous literature, our estimates regarding subjects’ skills in iterated reasoning are quite pessimistic. Also, we find that beliefs concerning the rationality of co-players are completely irrelevant in explaining the observed limited amount of iterated reasoning in the dirty faces game. In addition, it is demonstrated that skills in backward induction are a solid predictor for skills in iterated knowledge, which points to some generalized ability of the subjects in iterated reasoning. PMID:26312486
ITER Port Interspace Pressure Calculations
Carbajo, Juan J; Van Hove, Walter A
2016-01-01
The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.
Challenges for Cryogenics at Iter
NASA Astrophysics Data System (ADS)
Serio, L.
2010-04-01
Nuclear fusion of light nuclei is a promising option to provide clean, safe and cost competitive energy in the future. The ITER experimental reactor being designed by seven partners representing more than half of the world population will be assembled at Cadarache, South of France in the next decade. It is a thermonuclear fusion Tokamak that requires high magnetic fields to confine and stabilize the plasma. Cryogenic technology is extensively employed to achieve low-temperature conditions for the magnet and vacuum pumping systems. Efficient and reliable continuous operation shall be achieved despite unprecedented dynamic heat loads due to magnetic field variations and neutron production from the fusion reaction. Constraints and requirements of the largest superconducting Tokamak machine have been analyzed. Safety and technical risks have been initially assessed and proposals to mitigate the consequences analyzed. Industrial standards and components are being investigated to anticipate the requirements of reliable and efficient large scale energy production. After describing the basic features of ITER and its cryogenic system, we shall present the key design requirements, improvements, optimizations and challenges.
NASA Astrophysics Data System (ADS)
Stratton, B.; Delgado-Aparicio, L.; Hill, K.; Johnson, D.; Pablant, N.; Barnsley, R.; Bertschinger, G.; de Bock, M. F. M.; Reichle, R.; Udintsev, V. S.; Watts, C.; Austin, M.; Phillips, P.; Beiersdorfer, P.; Biewer, T. M.; Hanson, G.; Klepper, C. C.; Carlstrom, T.; van Zeeland, M. A.; Brower, D.; Doyle, E.; Peebles, A.; Ellis, R.; Levinton, F.; Yuh, H.
2013-10-01
The US is providing 7 diagnostics to ITER: the Upper Visible/IR cameras, the Low Field Side Reflectometer, the Motional Stark Effect diagnostic, the Electron Cyclotron Emission diagnostic, the Toroidal Interferometer/Polarimeter, the Core Imaging X-Ray Spectrometer, and the Diagnostic Residual Gas Analyzer. The front-end components of these systems must operate with high reliability in conditions of long pulse operation, high neutron and gamma fluxes, very high neutron fluence, significant neutron heating (up to 7 MW/m3) , large radiant and charge exchange heat flux (0.35 MW/m2) , and high electromagnetic loads. Opportunities for repair and maintenance of these components will be limited. These conditions lead to significant challenges for the design of the diagnostics. Space constraints, provision of adequate radiation shielding, and development of repair and maintenance strategies are challenges for diagnostic integration into the port plugs that also affect diagnostic design. The current status of design of the US ITER diagnostics is presented and R&D needs are identified. Supported by DOE contracts DE-AC02-09CH11466 (PPPL) and DE-AC05-00OR22725 (UT-Battelle, LLC).
Barr, W.L.; Bathke, C.G.; Brooks, J.N.; Bulmer, R.H.; Busigin, A.; DuBois, P.F.; Fenstermacher, M.E.; Fink, J.; Finn, P.A.; Galambos, J.D.; Gohar, Y.; Gorker, G.E.; Haines, J.R.; Hassanein, A.M.; Hicks, D.R.; Ho, S.K.; Kalsi, S.S.; Kalyanam, K.M.; Kerns, J.A.; Lee, J.D.; Miller, J.R.; Miller, R.L.; Myall, J.O.; Peng, Y-K.M.; Perkins, L.J.; Spampinato, P.T.; Strickler, D.J.; Thomson, S.L.; Wagner, C.E.; Willms, R.S.; Reid, R.L.
1988-04-01
A tokamak systems code capable of modeling experimental test reactors has been developed and is described in this document. The code, named TETRA (for Tokamak Engineering Test Reactor Analysis), consists of a series of modules, each describing a tokamak system or component, controlled by an optimizer/driver. This code development was a national effort in that the modules were contributed by members of the fusion community and integrated into a code by the Fusion Engineering Design Center. The code has been checked out on the Cray computers at the National Magnetic Fusion Energy Computing Center and has satisfactorily simulated the Tokamak Ignition/Burn Experimental Reactor II (TIBER) design. A feature of this code is the ability to perform optimization studies through the use of a numerical software package, which iterates prescribed variables to satisfy a set of prescribed equations or constraints. This code will be used to perform sensitivity studies for the proposed International Thermonuclear Experimental Reactor (ITER). 22 figs., 29 tabs.
Preconditioned iterations to calculate extreme eigenvalues
Brand, C.W.; Petrova, S.
1994-12-31
Common iterative algorithms to calculate a few extreme eigenvalues of a large, sparse matrix are Lanczos methods or power iterations. They converge at a rate proportional to the separation of the extreme eigenvalues from the rest of the spectrum. Appropriate preconditioning improves the separation of the eigenvalues. Davidson`s method and its generalizations exploit this fact. The authors examine a preconditioned iteration that resembles a truncated version of Davidson`s method with a different preconditioning strategy.
Plasma-surface interaction in the context of ITER.
Kleyn, A W; Lopes Cardozo, N J; Samm, U
2006-04-21
The decreasing availability of energy and concern about climate change necessitate the development of novel sustainable energy sources. Fusion energy is such a source. Although it will take several decades to develop it into routinely operated power sources, the ultimate potential of fusion energy is very high and badly needed. A major step forward in the development of fusion energy is the decision to construct the experimental test reactor ITER. ITER will stimulate research in many areas of science. This article serves as an introduction to some of those areas. In particular, we discuss research opportunities in the context of plasma-surface interactions. The fusion plasma, with a typical temperature of 10 keV, has to be brought into contact with a physical wall in order to remove the helium produced and drain the excess energy in the fusion plasma. The fusion plasma is far too hot to be brought into direct contact with a physical wall. It would degrade the wall and the debris from the wall would extinguish the plasma. Therefore, schemes are developed to cool down the plasma locally before it impacts on a physical surface. The resulting plasma-surface interaction in ITER is facing several challenges including surface erosion, material redeposition and tritium retention. In this article we introduce how the plasma-surface interaction relevant for ITER can be studied in small scale experiments. The various requirements for such experiments are introduced and examples of present and future experiments will be given. The emphasis in this article will be on the experimental studies of plasma-surface interactions. PMID:16633660
Iterative Time Reversal Simulation for Selective Focusing in Multi-target Nonlinear Media
NASA Astrophysics Data System (ADS)
Su, Chang; Peng, Zhefan; Lin, Weijun
In High Intensity Focused Ultrasound (HIFU), when multiple targets are present in a linear medium, ultrasound can focus on the strongest target by using an iterative time-reversal(TR) method. However, the validation of iterative TR in nonlinear human tissue still needs to be investigated. In the study, the TR and iterative TR processes are numerically simulated with a finite difference method in two dimension, considering the nonlinear effects. Results show that TR is valid in nonlinear human tissues with some difference in focus accuracy and intensity gain comparing to that in linear media. The nonlinearity of the media increases the intensity gain at the focal point, while the absorption decreases the focal gain and changes the position of the focal spot. Iterative TR works well in nonlinear media and the lobe on the weaker target attenuates more rapidly than in linear media.
Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER
NASA Astrophysics Data System (ADS)
Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.
2014-08-01
In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.
Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER
Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.
2014-08-21
In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.
Benchmarking ICRF simulations for ITER
R. V. Budny, L. Berry, R. Bilato, P. Bonoli, M. Brambilla, R.J. Dumont, A. Fukuyama, R. Harvey, E.F. Jaeger, E. Lerche, C.K. Phillips, V. Vdovin, J. Wright, and members of the ITPA-IOS
2010-09-28
Abstract Benchmarking of full-wave solvers for ICRF simulations is performed using plasma profiles and equilibria obtained from integrated self-consistent modeling predictions of four ITER plasmas. One is for a high performance baseline (5.3 T, 15 MA) DT H-mode plasma. The others are for half-field, half-current plasmas of interest for the pre-activation phase with bulk plasma ion species being either hydrogen or He4. The predicted profiles are used by seven groups to predict the ICRF electromagnetic fields and heating profiles. Approximate agreement is achieved for the predicted heating power partitions for the DT and He4 cases. Profiles of the heating powers and electromagnetic fields are compared.
New concurrent iterative methods with monotonic convergence
Yao, Qingchuan
1996-12-31
This paper proposes the new concurrent iterative methods without using any derivatives for finding all zeros of polynomials simultaneously. The new methods are of monotonic convergence for both simple and multiple real-zeros of polynomials and are quadratically convergent. The corresponding accelerated concurrent iterative methods are obtained too. The new methods are good candidates for the application in solving symmetric eigenproblems.
An accelerated subspace iteration for eigenvector derivatives
NASA Technical Reports Server (NTRS)
Ting, Tienko
1991-01-01
An accelerated subspace iteration method for calculating eigenvector derivatives has been developed. Factors affecting the effectiveness and the reliability of the subspace iteration are identified, and effective strategies concerning these factors are presented. The method has been implemented, and the results of a demonstration problem are presented.
Iterative methods for weighted least-squares
Bobrovnikova, E.Y.; Vavasis, S.A.
1996-12-31
A weighted least-squares problem with a very ill-conditioned weight matrix arises in many applications. Because of round-off errors, the standard conjugate gradient method for solving this system does not give the correct answer even after n iterations. In this paper we propose an iterative algorithm based on a new type of reorthogonalization that converges to the solution.
Acceleration of iterative image restoration algorithms.
Biggs, D S; Andrews, M
1997-03-10
A new technique for the acceleration of iterative image restoration algorithms is proposed. The method is based on the principles of vector extrapolation and does not require the minimization of a cost function. The algorithm is derived and its performance illustrated with Richardson-Lucy (R-L) and maximum entropy (ME) deconvolution algorithms and the Gerchberg-Saxton magnitude and phase retrieval algorithms. Considerable reduction in restoration times is achieved with little image distortion or computational overhead per iteration. The speedup achieved is shown to increase with the number of iterations performed and is easily adapted to suit different algorithms. An example R-L restoration achieves an average speedup of 40 times after 250 iterations and an ME method 20 times after only 50 iterations. An expression for estimating the acceleration factor is derived and confirmed experimentally. Comparisons with other acceleration techniques in the literature reveal significant improvements in speed and stability. PMID:18250863
ELM control strategies and tools: status and potential for ITER
NASA Astrophysics Data System (ADS)
Lang, P. T.; Loarte, A.; Saibene, G.; Baylor, L. R.; Becoulet, M.; Cavinato, M.; Clement-Lorenzo, S.; Daly, E.; Evans, T. E.; Fenstermacher, M. E.; Gribov, Y.; Horton, L. D.; Lowry, C.; Martin, Y.; Neubauer, O.; Oyama, N.; Schaffer, M. J.; Stork, D.; Suttrop, W.; Thomas, P.; Tran, M.; Wilson, H. R.; Kavin, A.; Schmitz, O.
2013-04-01
Operating ITER in the reference inductive scenario at the design values of Ip = 15 MA and QDT = 10 requires the achievement of good H-mode confinement that relies on the presence of an edge transport barrier whose pedestal pressure height is key to plasma performance. Strong gradients occur at the edge in such conditions that can drive magnetohydrodynamic instabilities resulting in edge localized modes (ELMs), which produce a rapid energy loss from the pedestal region to the plasma facing components (PFC). Without appropriate control, the heat loads on PFCs during ELMs in ITER are expected to become significant for operation in H-mode at Ip = 6-9 MA operation at higher plasma currents would result in a very reduced life time of the PFCs. Currently, several options are being considered for the achievement of the required level of ELM control in ITER; this includes operation in plasma regimes which naturally have no or very small ELMs, decreasing the ELM energy loss by increasing their frequency by a factor of up to 30 and avoidance of ELMs by actively controlling the edge with magnetic perturbations. Small/no ELM regimes obtained by influencing the edge stability (by plasma shaping, rotational shear control, etc) have shown in present experiments a significant reduction of the ELM heat fluxes compared to type-I ELMs. However, so far they have only been observed under a limited range of pedestal conditions depending on each specific device and their extrapolation to ITER remains uncertain. ELM control by increasing their frequency relies on the controlled triggering of the edge instability leading to the ELM. This has been presently demonstrated with the injection of pellets and with plasma vertical movements; pellets having provided the results more promising for application in ITER conditions. ELM avoidance/suppression takes advantage of the fact that relatively small changes in the pedestal plasma and magnetic field parameters seem to have a large stabilizing
Electrical stimulation in exercise training
NASA Technical Reports Server (NTRS)
Kroll, Walter
1994-01-01
muscle strength for over a century. Bigelow reported in 1894, for example, the use of electrical stimulation on a young man for the purpose of increasing muscle strength. Employing a rapidly alternating sinusoidal induced current and a dynamometer for strength testing, Bigelow reported that the total lifting capacity of a patient increased from 4328 pounds to 4639 pounds after only 25 minutes of stimulation. In 1965, Massey et al. reported on the use of an Isotron electrical stimulator that emitted a high frequency current. Interestingly enough, the frequencies used by Massey et al. and the frequencies used by Bigelow in 1894 were in the same range of frequencies reported by Kots as being the most effective in strength development. It would seem the Russian secret of high frequency electrical stimulation for strength development, then, is not a modern development at all.
On the interplay between inner and outer iterations for a class of iterative methods
Giladi, E.
1994-12-31
Iterative algorithms for solving linear systems of equations often involve the solution of a subproblem at each step. This subproblem is usually another linear system of equations. For example, a preconditioned iteration involves the solution of a preconditioner at each step. In this paper, the author considers algorithms for which the subproblem is also solved iteratively. The subproblem is then said to be solved by {open_quotes}inner iterations{close_quotes} while the term {open_quotes}outer iteration{close_quotes} refers to a step of the basic algorithm. The cost of performing an outer iteration is dominated by the solution of the subproblem, and can be measured by the number of inner iterations. A good measure of the total amount of work needed to solve the original problem to some accuracy c is then, the total number of inner iterations. To lower the amount of work, one can consider solving the subproblems {open_quotes}inexactly{close_quotes} i.e. not to full accuracy. Although this diminishes the cost of solving each subproblem, it usually slows down the convergence of the outer iteration. It is therefore interesting to study the effect of solving each subproblem inexactly on the total amount of work. Specifically, the author considers strategies in which the accuracy to which the inner problem is solved, changes from one outer iteration to the other. The author seeks the `optimal strategy`, that is, the one that yields the lowest possible cost. Here, the author develops a methodology to find the optimal strategy, from the set of slowly varying strategies, for some iterative algorithms. This methodology is applied to the Chebychev iteration and it is shown that for Chebychev iteration, a strategy in which the inner-tolerance remains constant is optimal. The author also estimates this optimal constant. Then generalizations to other iterative procedures are discussed.
ITER Ion Cyclotron Heating and Fueling Systems
Rasmussen, D.A.; Baylor, L.R.; Combs, S.K.; Fredd, E.; Goulding, R.H.; Hosea, J.; Swain, D.W.
2005-04-15
The ITER burning plasma and advanced operating regimes require robust and reliable heating and current drive and fueling systems. The ITER design documents describe the requirements and reference designs for the ion cyclotron and pellet fueling systems. Development and testing programs are required to optimize, validate and qualify these systems for installation on ITER.The ITER ion cyclotron system offers significant technology challenges. The antenna must operate in a nuclear environment and withstand heat loads and disruption forces beyond present-day designs. It must operate for long pulse lengths and be highly reliable, delivering power to a plasma load with properties that will change throughout the discharge. The ITER ion cyclotron system consists of one eight-strap antenna, eight rf sources (20 MW, 35-65 MHz), associated high-voltage DC power supplies, transmission lines and matching and decoupling components.The ITER fueling system consists of a gas injection system and multiple pellet injectors for edge fueling and deep core fueling. Pellet injection will be the primary ITER fuel delivery system. The fueling requirements will require significant extensions in pellet injector pulse length ({approx}3000 s), throughput (400 torr-L/s,) and reliability. The proposed design is based on a centrifuge accelerator fed by a continuous screw extruder. Inner wall pellet injection with the use of curved guide tubes will be utilized for deep fueling.
A fast iterative method to compute the flow around a submerged body
Malmliden, J.F.; Petersson, N.A.
1996-07-01
The authors develop an efficient iterative method for computing steady linearized potential flow around a submerged body moving in a liquid of finite constant depth. In this paper they restrict the presentation to the two-dimensional problem, but the method is readily generalizable to the three-dimensional case, i.e., the flow in a canal. The problem is indefinite, which makes the convergence of most iterative methods unstable. To circumvent this difficulty, the authors decompose the problem into two more easily solvable subproblems and form a Schwarz-type iteration to solve the original problem. The first subproblem is definite and can therefore be solved by standard iterative methods. The second subproblem is indefinite but has no body. It is therefore easily and efficiently solvable by separation of variables. The authors prove that the iteration converges for sufficiently small Froude numbers. In addition, they present numerical results for a second-order accurate discretization of the problem. They demonstrate that the iterative method converges rapidly, and that the convergences rate improves when the Froude number decreases. They also verify numerically that the convergence rate is essentially independent of the grid size. 20 refs., 6 figs., 10 tabs.
Progress on ITER Diagnostic Integration
NASA Astrophysics Data System (ADS)
Johnson, David; Feder, Russ; Klabacha, Jonathan; Loesser, Doug; Messineo, Mike; Stratton, Brentley; Wood, Rick; Zhai, Yuhu; Andrew, Phillip; Barnsley, Robin; Bertschinger, Guenter; Debock, Maarten; Reichle, Roger; Udintsev, Victor; Vayakis, George; Watts, Christopher; Walsh, Michael
2013-10-01
On ITER, front-end components must operate reliably in a hostile environment. Many will be housed in massive port plugs, which also shield the machine from radiation. Multiple diagnostics reside in a single plug, presenting new challenges for developers. Front-end components must tolerate thermally-induced stresses, disruption-induced mechanical loads, stray ECH radiation, displacement damage, and degradation due to plasma-induced coatings. The impact of failures is amplified due to the difficulty in performing robotic maintenance on these large structures. Motivated by needs to minimize disruption loads on the plugs, standardize the handling of shield modules, and decouple the parallel efforts of the many parties, the packaging strategy for diagnostics has recently focused on the use of 3 vertical shield modules inserted from the plasma side into each equatorial plug structure. At the front of each is a detachable first wall element with customized apertures. Progress on US equatorial and upper plugs will be used as examples, including the layout of components in the interspace and port cell regions. Supported by PPPL under contract DE-AC02-09CH11466 and UT-Battelle, LLC under contract DE-AC05-00OR22725 with the U.S. DOE.
Iterants, Fermions and Majorana Operators
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.
Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.
Multichannel blind iterative image restoration.
Sroubek, Filip; Flusser, Jan
2003-01-01
Blind image deconvolution is required in many applications of microscopy imaging, remote sensing, and astronomical imaging. Unfortunately in a single-channel framework, serious conceptual and numerical problems are often encountered. Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework which determines perfectly convolution masks in a noise-free environment if channel disparity, called co-primeness, is satisfied. We propose a novel iterative algorithm based on recent anisotropic denoising techniques of total variation and a Mumford-Shah functional with the EVAM restoration condition included. A linearization scheme of half-quadratic regularization together with a cell-centered finite difference discretization scheme is used in the algorithm and provides a unified approach to the solution of total variation or Mumford-Shah. The algorithm performs well even on very noisy images and does not require an exact estimation of mask orders. We demonstrate capabilities of the algorithm on synthetic data. Finally, the algorithm is applied to defocused images taken with a digital camera and to data from astronomical ground-based observations of the Sun. PMID:18237981
NASA Astrophysics Data System (ADS)
Savage, Daniel J.; Knezevic, Marko
2015-10-01
We present parallel implementations of Newton-Raphson iterative and spectral based non-iterative solvers for single-crystal visco-plasticity models on a specialized computer hardware integrating a graphics-processing unit (GPU). We explore two implementations for the iterative solver on GPU multiprocessors: one based on a thread per crystal parallelization on local memory and another based on multiple threads per crystal on shared memory. The non-iterative solver implementation on the GPU hardware is based on a divide-conquer approach for matrix operations. The reduction of computational time for the iterative scheme was found to approach one order of magnitude. From detailed performance comparisons of the developed GPU iterative and non-iterative implementations, we conclude that the spectral non-iterative solver programed on a GPU platform is superior over the iterative implementation in terms of runtime as well as ease of implementation. It provides remarkable speedup factors exceeding three orders of magnitude over the iterative scalar version of the solver.
Label-Free Neurosurgical Pathology with Stimulated Raman Imaging.
Lu, Fa-Ke; Calligaris, David; Olubiyi, Olutayo I; Norton, Isaiah; Yang, Wenlong; Santagata, Sandro; Xie, X Sunney; Golby, Alexandra J; Agar, Nathalie Y R
2016-06-15
The goal of brain tumor surgery is to maximize tumor removal without injuring critical brain structures. Achieving this goal is challenging as it can be difficult to distinguish tumor from nontumor tissue. While standard histopathology provides information that could assist tumor delineation, it cannot be performed iteratively during surgery as freezing, sectioning, and staining of the tissue require too much time. Stimulated Raman scattering (SRS) microscopy is a powerful label-free chemical imaging technology that enables rapid mapping of lipids and proteins within a fresh specimen. This information can be rendered into pathology-like images. Although this approach has been used to assess the density of glioma cells in murine orthotopic xenografts models and human brain tumors, tissue heterogeneity in clinical brain tumors has not yet been fully evaluated with SRS imaging. Here we profile 41 specimens resected from 12 patients with a range of brain tumors. By evaluating large-scale stimulated Raman imaging data and correlating this data with current clinical gold standard of histopathology for 4,422 fields of view, we capture many essential diagnostic hallmarks for glioma classification. Notably, in fresh tumor samples, we observe additional features, not seen by conventional methods, including extensive lipid droplets within glioma cells, collagen deposition in gliosarcoma, and irregularity and disruption of myelinated fibers in areas infiltrated by oligodendroglioma cells. The data are freely available in a public resource to foster diagnostic training and to permit additional interrogation. Our work establishes the methodology and provides a significant collection of reference images for label-free neurosurgical pathology. Cancer Res; 76(12); 3451-62. ©2016 AACR. PMID:27197198
Three-dimensional stellarator equilibria by iteration
Boozer, A.H.
1983-02-01
The iterative method of evaluating plasma equilibria is especially simple in a magnetic coordinate representation. This method is particularly useful for clarifying the subtle constraints of three-dimensional equilibria and studying magnetic surface breakup at high plasma beta.
Anderson Acceleration for Fixed-Point Iterations
Walker, Homer F.
2015-08-31
The purpose of this grant was to support research on acceleration methods for fixed-point iterations, with applications to computational frameworks and simulation problems that are of interest to DOE.
On the safety of ITER accelerators.
Li, Ge
2013-01-01
Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate -1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER. PMID:24008267
US sanctions on Russia hit ITER council
NASA Astrophysics Data System (ADS)
Clery, Daniel
2014-06-01
The ITER fusion experiment has had to bow to the impact of US sanctions against Russia and move the venue of its council meeting, scheduled for 18-19 June, from St Petersburg to the project headquarters in Cadarache, France.
Budget woes continue to hamper ITER
NASA Astrophysics Data System (ADS)
Starckx, Senne
2011-02-01
A financial rescue package for ITER - the experimental nuclear-fusion reactor that is currently being built in Cadarache, France - has been refused by the European Parliament and the European Council.
Archimedes' Pi--An Introduction to Iteration.
ERIC Educational Resources Information Center
Lotspeich, Richard
1988-01-01
One method (attributed to Archimedes) of approximating pi offers a simple yet interesting introduction to one of the basic ideas of numerical analysis, an iteration sequence. The method is described and elaborated. (PK)
ITER Magnet Feeder: Design, Manufacturing and Integration
NASA Astrophysics Data System (ADS)
CHEN, Yonghua; ILIN, Y.; M., SU; C., NICHOLAS; BAUER, P.; JAROMIR, F.; LU, Kun; CHENG, Yong; SONG, Yuntao; LIU, Chen; HUANG, Xiongyi; ZHOU, Tingzhi; SHEN, Guang; WANG, Zhongwei; FENG, Hansheng; SHEN, Junsong
2015-03-01
The International Thermonuclear Experimental Reactor (ITER) feeder procurement is now well underway. The feeder design has been improved by the feeder teams at the ITER Organization (IO) and the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) in the last 2 years along with analyses and qualification activities. The feeder design is being progressively finalized. In addition, the preparation of qualification and manufacturing are well scheduled at ASIPP. This paper mainly presents the design, the overview of manufacturing and the status of integration on the ITER magnet feeders. supported by the National Special Support for R&D on Science and Technology for ITER (Ministry of Public Security of the People's Republic of China-MPS) (No. 2008GB102000)
The Physics Basis of ITER Confinement
Wagner, F.
2009-02-19
ITER will be the first fusion reactor and the 50 year old dream of fusion scientists will become reality. The quality of magnetic confinement will decide about the success of ITER, directly in the form of the confinement time and indirectly because it decides about the plasma parameters and the fluxes, which cross the separatrix and have to be handled externally by technical means. This lecture portrays some of the basic principles which govern plasma confinement, uses dimensionless scaling to set the limits for the predictions for ITER, an approach which also shows the limitations of the predictions, and describes briefly the major characteristics and physics behind the H-mode--the preferred confinement regime of ITER.
Novel aspects of plasma control in ITER
Humphreys, D.; Jackson, G.; Walker, M.; Welander, A.; Ambrosino, G.; Pironti, A.; Felici, F.; Kallenbach, A.; Raupp, G.; Treutterer, W.; Kolemen, E.; Lister, J.; Sauter, O.; Moreau, D.; Schuster, E.
2015-02-15
ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.
An Iterative Soft-Decision Decoding Algorithm
NASA Technical Reports Server (NTRS)
Lin, Shu; Koumoto, Takuya; Takata, Toyoo; Kasami, Tadao
1996-01-01
This paper presents a new minimum-weight trellis-based soft-decision iterative decoding algorithm for binary linear block codes. Simulation results for the RM(64,22), EBCH(64,24), RM(64,42) and EBCH(64,45) codes show that the proposed decoding algorithm achieves practically (or near) optimal error performance with significant reduction in decoding computational complexity. The average number of search iterations is also small even for low signal-to-noise ratio.
Novel aspects of plasma control in ITER
NASA Astrophysics Data System (ADS)
Humphreys, D.; Ambrosino, G.; de Vries, P.; Felici, F.; Kim, S. H.; Jackson, G.; Kallenbach, A.; Kolemen, E.; Lister, J.; Moreau, D.; Pironti, A.; Raupp, G.; Sauter, O.; Schuster, E.; Snipes, J.; Treutterer, W.; Walker, M.; Welander, A.; Winter, A.; Zabeo, L.
2015-02-01
ITER plasma control design solutions and performance requirements are strongly driven by its nuclear mission, aggressive commissioning constraints, and limited number of operational discharges. In addition, high plasma energy content, heat fluxes, neutron fluxes, and very long pulse operation place novel demands on control performance in many areas ranging from plasma boundary and divertor regulation to plasma kinetics and stability control. Both commissioning and experimental operations schedules provide limited time for tuning of control algorithms relative to operating devices. Although many aspects of the control solutions required by ITER have been well-demonstrated in present devices and even designed satisfactorily for ITER application, many elements unique to ITER including various crucial integration issues are presently under development. We describe selected novel aspects of plasma control in ITER, identifying unique parts of the control problem and highlighting some key areas of research remaining. Novel control areas described include control physics understanding (e.g., current profile regulation, tearing mode (TM) suppression), control mathematics (e.g., algorithmic and simulation approaches to high confidence robust performance), and integration solutions (e.g., methods for management of highly subscribed control resources). We identify unique aspects of the ITER TM suppression scheme, which will pulse gyrotrons to drive current within a magnetic island, and turn the drive off following suppression in order to minimize use of auxiliary power and maximize fusion gain. The potential role of active current profile control and approaches to design in ITER are discussed. Issues and approaches to fault handling algorithms are described, along with novel aspects of actuator sharing in ITER.
Gyrokinetic Simulations of the ITER Pedestal
NASA Astrophysics Data System (ADS)
Kotschenreuther, Mike
2015-11-01
It has been reported that low collisionality pedestals for JET parameters are strongly stable to Kinetic Ballooning Modes (KBM), and it is, as simulations with GENE show, the drift-tearing modes that produce the pedestal transport. It would seem, then, that gyrokinetic simulations may be a powerful, perhaps, indispensable tool for probing the characteristics of the H-mode pedestal in ITER especially since projected ITER pedestals have the normalized gyroradius ρ* smaller than the range of present experimental investigation; they do lie, however, within the regime of validity of gyrokinetics. Since ExB shear becomes small as ρ* approaches zero, strong drift turbulence will eventually be excited. Finding an answer to the question whether the ITER ρ* is small enough to place it in the high turbulence regime compels serious investigation. We begin with MHD equilibria (including pedestal bootstrap current) constructed using VMEC. Plasma profile shapes, very close to JET experimental profiles, are scaled to values expected on ITER (e.g., a 4 keV pedestal). The equilibrium ExB shear is computed using a neoclassical formula for the radial electric field. As with JET, the ITER pedestal is found to be strongly stable to KBM. Preliminary nonlinear simulations with GENE show that the turbulent drift transport is strong for ITER; the electrostatic transport has a highly unfavorable scaling from JET to ITER, going from being highly sub-dominant to electromagnetic transport on JET, to dominant on ITER. At burning plasma parameters, pedestals in spherical tokamak H-modes may have much stronger velocity shear, and hence more favorable transport; preliminary investigations will be reported. This research supported by U.S. Department of Energy, Office of Fusion Energy Science: Grant No. DE-FG02-04ER-54742.
Programmable Iterative Optical Image And Data Processing
NASA Technical Reports Server (NTRS)
Jackson, Deborah J.
1995-01-01
Proposed method of iterative optical image and data processing overcomes limitations imposed by loss of optical power after repeated passes through many optical elements - especially, beam splitters. Involves selective, timed combination of optical wavefront phase conjugation and amplification to regenerate images in real time to compensate for losses in optical iteration loops; timing such that amplification turned on to regenerate desired image, then turned off so as not to regenerate other, undesired images or spurious light propagating through loops from unwanted reflections.
EDITORIAL: ECRH physics and technology in ITER
NASA Astrophysics Data System (ADS)
Luce, T. C.
2008-05-01
It is a great pleasure to introduce you to this special issue containing papers from the 4th IAEA Technical Meeting on ECRH Physics and Technology in ITER, which was held 6-8 June 2007 at the IAEA Headquarters in Vienna, Austria. The meeting was attended by more than 40 ECRH experts representing 13 countries and the IAEA. Presentations given at the meeting were placed into five separate categories EC wave physics: current understanding and extrapolation to ITER Application of EC waves to confinement and stability studies, including active control techniques for ITER Transmission systems/launchers: state of the art and ITER relevant techniques Gyrotron development towards ITER needs System integration and optimisation for ITER. It is notable that the participants took seriously the focal point of ITER, rather than simply contributing presentations on general EC physics and technology. The application of EC waves to ITER presents new challenges not faced in the current generation of experiments from both the physics and technology viewpoints. High electron temperatures and the nuclear environment have a significant impact on the application of EC waves. The needs of ITER have also strongly motivated source and launcher development. Finally, the demonstrated ability for precision control of instabilities or non-inductive current drive in addition to bulk heating to fusion burn has secured a key role for EC wave systems in ITER. All of the participants were encouraged to submit their contributions to this special issue, subject to the normal publication and technical merit standards of Nuclear Fusion. Almost half of the participants chose to do so; many of the others had been published in other publications and therefore could not be included in this special issue. The papers included here are a representative sample of the meeting. The International Advisory Committee also asked the three summary speakers from the meeting to supply brief written summaries (O. Sauter
Newton iterative methods for large scale nonlinear systems
Walker, H.F.; Turner, K.
1993-01-01
Objective is to develop robust, efficient Newton iterative methods for general large scale problems well suited for discretizations of partial differential equations, integral equations, and other continuous problems. A concomitant objective is to develop improved iterative linear algebra methods. We first outline research on Newton iterative methods and then review work on iterative linear algebra methods. (DLC)
NASA Technical Reports Server (NTRS)
1999-01-01
Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.
Accelerating the weighted histogram analysis method by direct inversion in the iterative subspace
Zhang, Cheng; Lai, Chun-Liang; Pettitt, B. Montgomery
2016-01-01
The weighted histogram analysis method (WHAM) for free energy calculations is a valuable tool to produce free energy differences with the minimal errors. Given multiple simulations, WHAM obtains from the distribution overlaps the optimal statistical estimator of the density of states, from which the free energy differences can be computed. The WHAM equations are often solved by an iterative procedure. In this work, we use a well-known linear algebra algorithm which allows for more rapid convergence to the solution. We find that the computational complexity of the iterative solution to WHAM and the closely-related multiple Bennett acceptance ratio (MBAR) method can be improved by using the method of direct inversion in the iterative subspace. We give examples from a lattice model, a simple liquid and an aqueous protein solution. PMID:27453632
PREFACE: Progress in the ITER Physics Basis
NASA Astrophysics Data System (ADS)
Ikeda, K.
2007-06-01
I would firstly like to congratulate all who have contributed to the preparation of the `Progress in the ITER Physics Basis' (PIPB) on its publication and express my deep appreciation of the hard work and commitment of the many scientists involved. With the signing of the ITER Joint Implementing Agreement in November 2006, the ITER Members have now established the framework for construction of the project, and the ITER Organization has begun work at Cadarache. The review of recent progress in the physics basis for burning plasma experiments encompassed by the PIPB will be a valuable resource for the project and, in particular, for the current Design Review. The ITER design has been derived from a physics basis developed through experimental, modelling and theoretical work on the properties of tokamak plasmas and, in particular, on studies of burning plasma physics. The `ITER Physics Basis' (IPB), published in 1999, has been the reference for the projection methodologies for the design of ITER, but the IPB also highlighted several key issues which needed to be resolved to provide a robust basis for ITER operation. In the intervening period scientists of the ITER Participant Teams have addressed these issues intensively. The International Tokamak Physics Activity (ITPA) has provided an excellent forum for scientists involved in these studies, focusing their work on the high priority physics issues for ITER. Significant progress has been made in many of the issues identified in the IPB and this progress is discussed in depth in the PIPB. In this respect, the publication of the PIPB symbolizes the strong interest and enthusiasm of the plasma physics community for the success of the ITER project, which we all recognize as one of the great scientific challenges of the 21st century. I wish to emphasize my appreciation of the work of the ITPA Coordinating Committee members, who are listed below. Their support and encouragement for the preparation of the PIPB were
Comparison of Iterative and Non-Iterative Strain-Gage Balance Load Calculation Methods
NASA Technical Reports Server (NTRS)
Ulbrich, N.
2010-01-01
The accuracy of iterative and non-iterative strain-gage balance load calculation methods was compared using data from the calibration of a force balance. Two iterative and one non-iterative method were investigated. In addition, transformations were applied to balance loads in order to process the calibration data in both direct read and force balance format. NASA's regression model optimization tool BALFIT was used to generate optimized regression models of the calibration data for each of the three load calculation methods. This approach made sure that the selected regression models met strict statistical quality requirements. The comparison of the standard deviation of the load residuals showed that the first iterative method may be applied to data in both the direct read and force balance format. The second iterative method, on the other hand, implicitly assumes that the primary gage sensitivities of all balance gages exist. Therefore, the second iterative method only works if the given balance data is processed in force balance format. The calibration data set was also processed using the non-iterative method. Standard deviations of the load residuals for the three load calculation methods were compared. Overall, the standard deviations show very good agreement. The load prediction accuracies of the three methods appear to be compatible as long as regression models used to analyze the calibration data meet strict statistical quality requirements. Recent improvements of the regression model optimization tool BALFIT are also discussed in the paper.
Current status of the ITER MSE diagnostic
NASA Astrophysics Data System (ADS)
Yuh, Howard; Levinton, F.; La Fleur, H.; Foley, E.; Feder, R.; Zakharov, L.
2013-10-01
The U.S. is providing ITER with a Motional Stark Effect (MSE) diagnostic to provide a measurement to guide reconstructions of the plasma q-profile. The diagnostic design has gone through many iterations, driven primarily by the evolution of the ITER port plug design and the steering of the heating beams. The present two port, three view design viewing both heating beams and the DNB has recently passed a conceptual design review at the IO. The traditional line polarization (MSE-LP) technique employed on many devices around the world faces many challenges in ITER, including strong background light and mirror degradation. To mitigate these effects, a multi-wavelength polarimeter and high resolution spectrometer will be used to subtract polarized background, while retroreflecting polarizers will provide mirror calibration concurrent with MSE-LP measurements. However, without a proven plasma-facing mirror cleaning technique, inherent risks to MSE-LP remain. The high field and high beam energy on ITER offers optimal conditions for a spectroscopic measurement of the electric field using line splitting (MSE-LS), a technique which does not depend on mirror polarization properties. The current design is presented with a roadmap of the R&D needed to address remaining challenges. This work is supported by DOE contracts S009627-R and S012380-F.
Preliminary Master Logic Diagram for ITER operation
Cadwallader, L.C.; Taylor, N.P.; Poucet, A.E.
1998-04-01
This paper describes the work performed to develop a Master Logic Diagram (MLD) for the operations phase of the International Thermonuclear Experimental Reactor (ITER). The MLD is a probabilistic risk assessment tool used to identify the broad set of potential initiating events that could lead to an offsite radioactive or toxic chemical release from the facility under study. The MLD described here is complementary to the failure modes and effects analyses (FMEAs) that have been performed for ITER`s major plant systems in the engineering evaluation of the facility design. While the FMEAs are a bottom-up or component level approach, the MLD is a top-down or facility level approach to identifying the broad spectrum of potential events. Strengths of the MLD are that it analyzes the entire plant, depicts completeness in the accident initiator process, provides an independent method for identification, and can also identify potential system interactions. MLDs have been used successfully as a hazard analysis tool. This paper describes the process used for the ITER MLD to treat the variety of radiological and toxicological source terms present in the ITER design. One subtree of the nineteen page MLD is shown to illustrate the levels of the diagram.
Iterative contextual CV model for liver segmentation
NASA Astrophysics Data System (ADS)
Ji, Hongwei; He, Jiangping; Yang, Xin
2014-01-01
In this paper, we propose a novel iterative active contour algorithm, i.e. Iterative Contextual CV Model (ICCV), and apply it to automatic liver segmentation from 3D CT images. ICCV is a learning-based method and can be divided into two stages. At the first stage, i.e. the training stage, given a set of abdominal CT training images and the corresponding manual liver labels, our task is to construct a series of self-correcting classifiers by learning a mapping between automatic segmentations (in each round) and manual reference segmentations via context features. At the second stage, i.e. the segmentation stage, first the basic CV model is used to segment the image and subsequently Contextual CV Model (CCV), which combines the image information and the current shape model, is iteratively performed to improve the segmentation result. The current shape model is obtained by inputting the previous automatic segmentation result into the corresponding self-correcting classifier. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that we obtain more and more accurate segmentation results by the iterative steps and satisfying results are obtained after about six iterations. Also, our method is comparable to the state-of-the-art work on liver segmentation.
Ned R. Sauthoff
2005-05-13
The United States participates in the ITER project and program to enable the study of the science and technology of burning plasmas, a key programmatic element missing from the world fusion program. The 2003 U.S. decision to enter the ITER negotiations followed an extensive series of community and governmental reviews of the benefits, readiness, and approaches to the study of burning plasmas. This paper describes both the technical and the organizational preparations and plans for U.S. participation in the ITER construction activity: in-kind contributions, staff contributions, and cash contributions as well as supporting physics and technology research. Near-term technical activities focus on the completion of R&D and design and mitigation of risks in the areas of the central solenoid magnet, shield/blanket, diagnostics, ion cyclotron system, electron cyclotron system, pellet fueling system, vacuum system, tritium processing system, and conventional systems. Outside the project, the U .S. is engaged in preparations for the test blanket module program. Organizational activities focus on preparations of the project management arrangements to maximize the overall success of the ITER Project; elements include refinement of U.S. directions on the international arrangements, the establishment of the U.S. Domestic Agency, progress along the path of the U.S. Department of Energy's Project Management Order, and overall preparations for commencement of the fabrication of major items of equipment and for provision of staff and cash as specified in the upcoming ITER agreement.
Unilateral magnetic stimulation of the phrenic nerve.
Mills, G. H.; Kyroussis, D.; Hamnegard, C. H.; Wragg, S.; Moxham, J.; Green, M.
1995-01-01
mm double coil. Supramaximal unilateral magnetic stimulation produced a higher TwPDI than electrical stimulation (mean (SD) 13.4 (2.5) cm H2O with 35 mm coil; 14.1 (3.8) cm H2O with 43 mm coil; 10.0 (1.7) cm H2O with electrical stimulation). Spread of the magnetic field to the opposite phrenic nerve produced a small amplitude contralateral diaphragm EMG measured from skin surface electrodes which reached a mean of 15% of the maximum EMG amplitude produced by ipsilateral stimulation. Similarly, in six patients with EMG activity recorded directly from needle electrodes, the contralateral spread of the magnetic field produced EMG activity up to a mean of 3% and a maximum of 6% of that seen with ipsilateral stimulation. Unilateral magnetic stimulation of the phrenic nerve was rapidly achieved and well tolerated. In the 54 patients unilateral magnetic TwPDI was more closely related than unilateral electrical TwPDI to transdiaphragmatic pressure produced during maximum sniffs and cervical magnetic stimulation. Unilateral magnetic stimulation eliminated the problem of producing a falsely low TwPDI because of technical difficulties in locating and adequately stimulating the nerve. Eight patients with unilateral phrenic nerve paresis, as indicated by a unilaterally elevated hemidiaphragm on a chest radiograph and maximum sniff PDI consistent with hemidiaphragm weakness, were all accurately identified by unilateral magnetic stimulation. CONCLUSIONS--Unilateral magnetic phrenic nerve stimulation is easy to apply and is a reproducible technique in the assessment of hemidiaphragm contractility. It is well tolerated and allows hemidiaphragm contractility to be rapidly and reliably assessed because precise positioning of the coils is not necessary. This may be particularly useful in patients. In addition, the anterolateral positioning of the coil allows the use of the magnet in the supine patient such as in the operating theatre or intensive care unit. Images PMID:8553272
Model-based iterative learning control of Parkinsonian state in thalamic relay neuron
NASA Astrophysics Data System (ADS)
Liu, Chen; Wang, Jiang; Li, Huiyan; Xue, Zhiqin; Deng, Bin; Wei, Xile
2014-09-01
Although the beneficial effects of chronic deep brain stimulation on Parkinson's disease motor symptoms are now largely confirmed, the underlying mechanisms behind deep brain stimulation remain unclear and under debate. Hence, the selection of stimulation parameters is full of challenges. Additionally, due to the complexity of neural system, together with omnipresent noises, the accurate model of thalamic relay neuron is unknown. Thus, the iterative learning control of the thalamic relay neuron's Parkinsonian state based on various variables is presented. Combining the iterative learning control with typical proportional-integral control algorithm, a novel and efficient control strategy is proposed, which does not require any particular knowledge on the detailed physiological characteristics of cortico-basal ganglia-thalamocortical loop and can automatically adjust the stimulation parameters. Simulation results demonstrate the feasibility of the proposed control strategy to restore the fidelity of thalamic relay in the Parkinsonian condition. Furthermore, through changing the important parameter—the maximum ionic conductance densities of low-threshold calcium current, the dominant characteristic of the proposed method which is independent of the accurate model can be further verified.
Iterative Reconstruction of Coded Source Neutron Radiographs
Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens
2013-01-01
Use of a coded source facilitates high-resolution neutron imaging through magnifications but requires that the radiographic data be deconvolved. A comparison of direct deconvolution with two different iterative algorithms has been performed. One iterative algorithm is based on a maximum likelihood estimation (MLE)-like framework and the second is based on a geometric model of the neutron beam within a least squares formulation of the inverse imaging problem. Simulated data for both uniform and Gaussian shaped source distributions was used for testing to understand the impact of non-uniformities present in neutron beam distributions on the reconstructed images. Results indicate that the model based reconstruction method will match resolution and improve on contrast over convolution methods in the presence of non-uniform sources. Additionally, the model based iterative algorithm provides direct calculation of quantitative transmission values while the convolution based methods must be normalized base on known values.
ITER Experts' meeting on density limits
Borrass, K.; Igitkhanov, Y.L.; Uckan, N.A.
1989-12-01
The necessity of achieving a prescribed wall load or fusion power essentially determines the plasma pressure in a device like ITER. The range of operation densities and temperatures compatible with this condition is constrained by the problems of power exhaust and the disruptive density limit. The maximum allowable heat loads on the divertor plates and the maximum allowable sheath edge temperature practically impose a lower limit on the operating densities, whereas the disruptive density limit imposes an upper limit. For most of the density limit scalings proposed in the past an overlap of the two constraints or at best a very narrow accessible density range is predicted for ITER. Improved understanding of the underlying mechanisms is therefore a crucial issue in order to provide a more reliable basis for extrapolation to ITER and to identify possible ways of alleviating the problem.
Re-starting an Arnoldi iteration
Lehoucq, R.B.
1996-12-31
The Arnoldi iteration is an efficient procedure for approximating a subset of the eigensystem of a large sparse n x n matrix A. The iteration produces a partial orthogonal reduction of A into an upper Hessenberg matrix H{sub m} of order m. The eigenvalues of this small matrix H{sub m} are used to approximate a subset of the eigenvalues of the large matrix A. The eigenvalues of H{sub m} improve as estimates to those of A as m increases. Unfortunately, so does the cost and storage of the reduction. The idea of re-starting the Arnoldi iteration is motivated by the prohibitive cost associated with building a large factorization.
Safety and Environmental Activities for ITER
NASA Astrophysics Data System (ADS)
Saji, G.; Aymar, R.; Bartels, H.-W.; Gordon, C. W.; Gulden, W.; Holl, D. H.; Iida, H.; Inabe, T.; Iseli, M.; Kashirski, A. V.; Kolbasov, B. N.; Krivosheev, M.; McCarthy, K. A.; Marbach, G.; Morozov, S. I.; Natalizio, A.; Petti, D. A.; Piet, S. J.; Poucet, A. E.; Raeder, J.; Seki, Y.; Topilski, L. N.
1997-09-01
This paper will summarize highlights of the safety approach and discuss the ITER EDA safety activities. The ITER safety approach is driven by three major objectives: (1) Enhancement or improvement of fusion's intrinsic safety characteristics to the maximum extent feasible, which includes a minimization of the dependence on dedicated “safety systems”; (2) Selection of conservative design parameters and development of a robust design to accommodate uncertainties in plasma physics as well as the lack of operational experience and data; and (3) Integration of engineered mitigation systems to enhance the safety assurance against potentially hazardous inventories in the device by deploying well-established “nuclear safety” approaches and methodologies tailored as appropriate for ITER.
US solid breeder blanket design for ITER
Gohar, Y.; Attaya, H.; Billone, M.; Lin, C.; Johnson, C.; Majumdar, S.; Smith, D. ); Goranson, P.; Nelson, B.; Williamson, D.; Baker, C. ); Raffray, A.; Badawi, A.; Gorbis, Z.; Ying, A.; Abdou, M. ); Sviatoslavsky, I.; Blanchard, J.; Mogahed, E.; Sawan, M.; Kulcinski, G. )
1990-09-01
The US blanket design activity has focused on the developments and the analyses of a solid breeder blanket concept for ITER. The main function of this blanket is to produce the necessary tritium required for the ITER operation and the test program. Safety, power reactor relevance, low tritium inventory, and design flexibility are the main reasons for the blanket selection. The blanket is designed to operate satisfactorily in the physics and the technology phases of ITER without the need for hardware changes. Mechanical simplicity, predictability, performance, minimum cost, and minimum R D requirements are the other criteria used to guide the design process. The design aspects of the blanket are summarized in this paper. 2 refs., 7 figs., 3 tabs.
Accelerating an iterative process by explicit annihilation
NASA Technical Reports Server (NTRS)
Jespersen, D. C.; Buning, P. G.
1983-01-01
A slowly convergent stationary iterative process can be accelerated by explicitly annihilating (i.e., eliminating) the dominant eigenvector component of the error. The dominant eigenvalue or complex pair of eigenvalues can be estimated from the solution during the iteration. The corresponding eigenvector or complex pair of eigenvectors can then be annihilated by applying an explicit Richardson process over the basic iterative method. This can be done entirely in real arithmetic by analytically combining the complex conjugate annihilation steps. The technique is applied to an implicit algorithm for the calculation of two dimensional steady transonic flow over a circular cylinder using the equations of compressible inviscid gas dynamics. This demonstrates the use of explicit annihilation on a nonlinear problem.
Accelerating an iterative process by explicit annihilation
NASA Technical Reports Server (NTRS)
Jespersen, D. C.; Buning, P. G.
1985-01-01
A slowly convergent stationary iterative process can be accelerated by explicitly annihilating (i.e., eliminating) the dominant eigenvector component of the error. The dominant eigenvalue or complex pair of eigenvalues can be estimated from the solution during the iteration. The corresponding eigenvector or complex pair of eigenvectors can then be annihilated by applying an explicit Richardson process over the basic iterative method. This can be done entirely in real arithmetic by analytically combining the complex conjugate annihilation steps. The technique is applied to an implicit algorithm for the calculation of two dimensional steady transonic flow over a circular cylinder using the equations of compressible inviscid gas dynamics. This demonstrates the use of explicit annihilation on a nonlinear problem.
Development of pellet injection systems for ITER
Combs, S.K.; Gouge, M.J.; Baylor, L.R.
1995-12-31
Oak Ridge National Laboratory (ORNL) has been developing innovative pellet injection systems for plasma fueling experiments on magnetic fusion confinement devices for about 20 years. Recently, the ORNL development has focused on meeting the complex fueling needs of the International Thermonuclear Experimental Reactor (ITER). In this paper, we describe the ongoing research and development activities that will lead to a ITER prototype pellet injector test stand. The present effort addresses three main areas: (1) an improved pellet feed and delivery system for centrifuge injectors, (2) a long-pulse (up to steady-state) hydrogen extruder system, and (3) tritium extruder technology. The final prototype system must be fully tritium compatible and will be used to demonstrate the operating parameters and the reliability required for the ITER fueling application.
Lousteau, D.C.
1994-09-01
The overall programmatic objective, as defined in the ITER Engineering Design Activities (EDA) Agreement, is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER EDA Phase, due to last until July 1998, will encompass the design of the device and its auxiliary systems and facilities, including the preparation of engineering drawings. The EDA also incorporates validating research and development (R&D) work, including the development and testing of key components. The purpose of this paper is to review the status of the design, as it has been developed so far, emphasizing the design and integration of those components contained within the vacuum vessel of the ITER device. The components included in the in-vessel systems are divertor and first wall; blanket and shield; plasma heating, fueling, and vacuum pumping equipment; and remote handling equipment.
Low-memory iterative density fitting.
Grajciar, Lukáš
2015-07-30
A new low-memory modification of the density fitting approximation based on a combination of a continuous fast multipole method (CFMM) and a preconditioned conjugate gradient solver is presented. Iterative conjugate gradient solver uses preconditioners formed from blocks of the Coulomb metric matrix that decrease the number of iterations needed for convergence by up to one order of magnitude. The matrix-vector products needed within the iterative algorithm are calculated using CFMM, which evaluates them with the linear scaling memory requirements only. Compared with the standard density fitting implementation, up to 15-fold reduction of the memory requirements is achieved for the most efficient preconditioner at a cost of only 25% increase in computational time. The potential of the method is demonstrated by performing density functional theory calculations for zeolite fragment with 2592 atoms and 121,248 auxiliary basis functions on a single 12-core CPU workstation. PMID:26058451
Axonal model for temperature stimulation.
Fribance, Sarah; Wang, Jicheng; Roppolo, James R; de Groat, William C; Tai, Changfeng
2016-10-01
Recent studies indicate that a rapid increase in local temperature plays an important role in nerve stimulation by laser. To analyze the temperature effect, our study modified the classical HH axonal model by incorporating a membrane capacitance-temperature relationship. The modified model successfully simulated the generation and propagation of action potentials induced by a rapid increase in local temperature when the Curie temperature of membrane capacitance is below 40 °C, while the classical model failed to simulate the axonal excitation by temperature stimulation. The new model predicts that a rapid increase in local temperature produces a rapid increase in membrane capacitance, which causes an inward membrane current across the membrane capacitor strong enough to depolarize the membrane and generate an action potential. If the Curie temperature of membrane capacitance is 31 °C, a temperature increase of 6.6-11.2 °C within 0.1-2.6 ms is required for axonal excitation and the required increase is smaller for a faster increase. The model also predicts that: (1) the temperature increase could be smaller if the global axon temperature is higher; (2) axons of small diameter require a smaller temperature increase than axons of large diameter. Our study indicates that the axonal membrane capacitance-temperature relationship plays a critical role in inducing the transient membrane depolarization by a rapidly increasing temperature, while the effects of temperature on ion channel kinetics cannot induce depolarization. The axonal model developed in this study will be very useful for analyzing the axonal response to local heating induced by pulsed infrared laser. PMID:27342462
Iterative Vessel Segmentation of Fundus Images.
Roychowdhury, Sohini; Koozekanani, Dara D; Parhi, Keshab K
2015-07-01
This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the vessel enhanced image. Next, new vessel pixels are identified iteratively by adaptive thresholding of the residual image generated by masking out the existing segmented vessel estimate from the vessel enhanced image. The new vessel pixels are, then, region grown into the existing vessel, thereby resulting in an iterative enhancement of the segmented vessel structure. As the iterations progress, the number of false edge pixels identified as new vessel pixels increases compared to the number of actual vessel pixels. A key contribution of this paper is a novel stopping criterion that terminates the iterative process leading to higher vessel segmentation accuracy. This iterative algorithm is robust to the rate of new vessel pixel addition since it achieves 93.2-95.35% vessel segmentation accuracy with 0.9577-0.9638 area under ROC curve (AUC) on abnormal retinal images from the STARE dataset. The proposed algorithm is computationally efficient and consistent in vessel segmentation performance for retinal images with variations due to pathology, uneven illumination, pigmentation, and fields of view since it achieves a vessel segmentation accuracy of about 95% in an average time of 2.45, 3.95, and 8 s on images from three public datasets DRIVE, STARE, and CHASE_DB1, respectively. Additionally, the proposed algorithm has more than 90% segmentation accuracy for segmenting peripapillary blood vessels in the images from the DRIVE and CHASE_DB1 datasets. PMID:25700436
Global Asymptotic Behavior of Iterative Implicit Schemes
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.
1994-01-01
The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics.
Optical Stimulation of Neurons
Thompson, Alexander C.; Stoddart, Paul R.; Jansen, E. Duco
2014-01-01
Our capacity to interface with the nervous system remains overwhelmingly reliant on electrical stimulation devices, such as electrode arrays and cuff electrodes that can stimulate both central and peripheral nervous systems. However, electrical stimulation has to deal with multiple challenges, including selectivity, spatial resolution, mechanical stability, implant-induced injury and the subsequent inflammatory response. Optical stimulation techniques may avoid some of these challenges by providing more selective stimulation, higher spatial resolution and reduced invasiveness of the device, while also avoiding the electrical artefacts that complicate recordings of electrically stimulated neuronal activity. This review explores the current status of optical stimulation techniques, including optogenetic methods, photoactive molecule approaches and infrared neural stimulation, together with emerging techniques such as hybrid optical-electrical stimulation, nanoparticle enhanced stimulation and optoelectric methods. Infrared neural stimulation is particularly emphasised, due to the potential for direct activation of neural tissue by infrared light, as opposed to techniques that rely on the introduction of exogenous light responsive materials. However, infrared neural stimulation remains imperfectly understood, and techniques for accurately delivering light are still under development. While the various techniques reviewed here confirm the overall feasibility of optical stimulation, a number of challenges remain to be overcome before they can deliver their full potential. PMID:26322269
Iterative method for generating correlated binary sequences
NASA Astrophysics Data System (ADS)
Usatenko, O. V.; Melnik, S. S.; Apostolov, S. S.; Makarov, N. M.; Krokhin, A. A.
2014-11-01
We propose an efficient iterative method for generating random correlated binary sequences with a prescribed correlation function. The method is based on consecutive linear modulations of an initially uncorrelated sequence into a correlated one. Each step of modulation increases the correlations until the desired level has been reached. The robustness and efficiency of the proposed algorithm are tested by generating sequences with inverse power-law correlations. The substantial increase in the strength of correlation in the iterative method with respect to single-step filtering generation is shown for all studied correlation functions. Our results can be used for design of disordered superlattices, waveguides, and surfaces with selective transport properties.
Challenges and status of ITER conductor production
NASA Astrophysics Data System (ADS)
Devred, A.; Backbier, I.; Bessette, D.; Bevillard, G.; Gardner, M.; Jong, C.; Lillaz, F.; Mitchell, N.; Romano, G.; Vostner, A.
2014-04-01
Taking the relay of the large Hadron collider (LHC) at CERN, ITER has become the largest project in applied superconductivity. In addition to its technical complexity, ITER is also a management challenge as it relies on an unprecedented collaboration of seven partners, representing more than half of the world population, who provide 90% of the components as in-kind contributions. The ITER magnet system is one of the most sophisticated superconducting magnet systems ever designed, with an enormous stored energy of 51 GJ. It involves six of the ITER partners. The coils are wound from cable-in-conduit conductors (CICCs) made up of superconducting and copper strands assembled into a multistage cable, inserted into a conduit of butt-welded austenitic steel tubes. The conductors for the toroidal field (TF) and central solenoid (CS) coils require about 600 t of Nb3Sn strands while the poloidal field (PF) and correction coil (CC) and busbar conductors need around 275 t of Nb-Ti strands. The required amount of Nb3Sn strands far exceeds pre-existing industrial capacity and has called for a significant worldwide production scale up. The TF conductors are the first ITER components to be mass produced and are more than 50% complete. During its life time, the CS coil will have to sustain several tens of thousands of electromagnetic (EM) cycles to high current and field conditions, way beyond anything a large Nb3Sn coil has ever experienced. Following a comprehensive R&D program, a technical solution has been found for the CS conductor, which ensures stable performance versus EM and thermal cycling. Productions of PF, CC and busbar conductors are also underway. After an introduction to the ITER project and magnet system, we describe the ITER conductor procurements and the quality assurance/quality control programs that have been implemented to ensure production uniformity across numerous suppliers. Then, we provide examples of technical challenges that have been encountered and
Scheduling and rescheduling with iterative repair
NASA Technical Reports Server (NTRS)
Zweben, Monte; Davis, Eugene; Daun, Brian; Deale, Michael
1992-01-01
This paper describes the GERRY scheduling and rescheduling system being applied to coordinate Space Shuttle Ground Processing. The system uses constraint-based iterative repair, a technique that starts with a complete but possibly flawed schedule and iteratively improves it by using constraint knowledge within repair heuristics. In this paper we explore the tradeoff between the informedness and the computational cost of several repair heuristics. We show empirically that some knowledge can greatly improve the convergence speed of a repair-based system, but that too much knowledge, such as the knowledge embodied within the MIN-CONFLICTS lookahead heuristic, can overwhelm a system and result in degraded performance.
Modified Iterative Extended Hueckel. 1: Theory
NASA Technical Reports Server (NTRS)
Aronowitz, S.
1980-01-01
Iterative Extended Huekel is modified by inclusion of explicit effective internuclear and electronic interactions. The one electron energies are shown to obey a variational principle because of the form of the effective electronic interactions. The modifications permit mimicking of aspects of valence bond theory with the additional feature that the energies associated with valence bond type structures are explicitly calculated. In turn, a hybrid molecular, orbital valence, bond scheme is introduced which incorporates variant total molecular electronic density distributions similar to the way that Iterative Extended Hueckel incorporates atoms.
Iterative instructions in the Manchester dataflow computer
Bohm, A.P.; Gurd, J.R. )
1990-04-01
Compilation techniques for dataflow computers, particularly techniques associated with optimized code generation, have led to the introduction of iterative instructions, which produce a sequence of outputs when presented with a single set of inputs. Although these are beneficial in reducing program execution times, they exhibit distinctive, coarse-grain characteristics that effect the normal, fine-grain operation of a dataflow computer. This paper investigates the nature and extent of the benefits and adverse effects of iterative instructions in the prototype Manchester dataflow computer.
The ITER bolometer diagnostic: status and plans.
Meister, H; Giannone, L; Horton, L D; Raupp, G; Zeidner, W; Grunda, G; Kalvin, S; Fischer, U; Serikov, A; Stickel, S; Reichle, R
2008-10-01
A consortium consisting of four EURATOM Associations has been set up to develop the project plan for the full development of the ITER bolometer diagnostic and to continue urgent R&D activities. An overview of the current status is given, including detector development, line-of-sight optimization, performance analysis as well as the design of the diagnostic components and their integration in ITER. This is complemented by the presentation of plans for future activities required to successfully implement the bolometer diagnostic, ranging from the detector development over diagnostic design and prototype testing to RH tools for calibration. PMID:19044656
Iterative Mechanism of Macrodiolide Formation in the Anticancer Compound Conglobatin
Zhou, Yongjun; Murphy, Annabel C.; Samborskyy, Markiyan; Prediger, Patricia; Dias, Luiz Carlos; Leadlay, Peter F.
2015-01-01
Summary Conglobatin is an unusual C2-symmetrical macrodiolide from the bacterium Streptomyces conglobatus with promising antitumor activity. Insights into the genes and enzymes that govern both the assembly-line production of the conglobatin polyketide and its dimerization are essential to allow rational alterations to be made to the conglobatin structure. We have used a rapid, direct in vitro cloning method to obtain the entire cluster on a 41-kbp fragment, encoding a modular polyketide synthase assembly line. The cloned cluster directs conglobatin biosynthesis in a heterologous host strain. Using a model substrate to mimic the conglobatin monomer, we also show that the conglobatin cyclase/thioesterase acts iteratively, ligating two monomers head-to-tail then re-binding the dimer product and cyclizing it. Incubation of two different monomers with the cyclase produces hybrid dimers and trimers, providing the first evidence that conglobatin analogs may in future become accessible through engineering of the polyketide synthase. PMID:26091168
ACTH (cosyntropin) stimulation test
... The ACTH stimulation test measures how well the adrenal glands respond to adrenocorticotropic hormone ( ACTH ). ACTH is a ... produced in the pituitary gland that stimulates the adrenal glands to release a hormone called cortisol. How the ...
Towards plasma cleaning of ITER first mirrors
NASA Astrophysics Data System (ADS)
Moser, L.; Marot, L.; Eren, B.; Steiner, R.; Mathys, D.; Leipold, F.; Reichle, R.; Meyer, E.
2015-06-01
To avoid reflectivity losses in ITER's optical diagnostic systems, on-site cleaning of metallic first mirrors via plasma sputtering is foreseen to remove deposit build-ups migrating from the main wall. In this work, the influence of aluminium and tungsten deposits on the reflectivity of molybdenum mirrors as well as the possibility to clean them with plasma exposure is investigated. Porous ITER-like deposits are grown to mimic the edge conditions expected in ITER, and a severe degradation in the specular reflectivity is observed as these deposits build up on the mirror surface. In addition, dense oxide films are produced for comparisons with porous films. The composition, morphology and crystal structure of several films were characterized by means of scanning electron microscopy, x-ray photoelectron spectroscopy, x-ray diffraction and secondary ion mass spectrometry. The cleaning of the deposits and the restoration of the mirrors' optical properties are possible either with a Kaufman source or radio frequency directly applied to the mirror (or radio frequency plasma generated directly around the mirror surface). Accelerating ions of an external plasma source through a direct current applied onto the mirror does not remove deposits composed of oxides. A possible implementation of plasma cleaning in ITER is addressed.
Iteration of Complex Functions and Newton's Method
ERIC Educational Resources Information Center
Dwyer, Jerry; Barnard, Roger; Cook, David; Corte, Jennifer
2009-01-01
This paper discusses some common iterations of complex functions. The presentation is such that similar processes can easily be implemented and understood by undergraduate students. The aim is to illustrate some of the beauty of complex dynamics in an informal setting, while providing a couple of results that are not otherwise readily available in…
Nuclear analyses for the ITER ECRH launcher
NASA Astrophysics Data System (ADS)
Serikov, A.; Fischer, U.; Heidinger, R.; Spaeh, P.; Stickel, S.; Tsige-Tamirat, H.
2008-05-01
Computational results of the nuclear analyses for the ECRH launcher integrated into the ITER upper port are presented. The purpose of the analyses was to provide the proof for the launcher design that the nuclear requirements specified in the ITER project can be met. The aim was achieved on the basis of 3D neutronics radiation transport calculations using the Monte Carlo code MCNP. In the course of the analyses an adequate shielding configuration against neutron and gamma radiation was developed keeping the necessary empty space for mm-waves propagation in accordance with the ECRH physics guidelines. Different variants of the shielding configuration for the extended performance front steering launcher (EPL) were compared in terms of nuclear response functions in the critical positions. Neutron damage (dpa), nuclear heating, helium production rate, neutron and gamma fluxes have been calculated under the conditions of ITER operation. It has been shown that the radiation shielding criteria are satisfied and the supposed shutdown dose rates are below the ITER nuclear design limits.
Iteration and Anxiety in Mathematical Literature
ERIC Educational Resources Information Center
Capezzi, Rita; Kinsey, L. Christine
2016-01-01
We describe our experiences in team-teaching an honors seminar on mathematics and literature. We focus particularly on two of the texts we read: Georges Perec's "How to Ask Your Boss for a Raise" and Alain Robbe-Grillet's "Jealousy," both of which make use of iterative structures.
Spectral resolvability of iterated rippled noise
NASA Astrophysics Data System (ADS)
Yost, William A.
2005-04-01
A forward-masking experiment was used to estimate the spectral ripple of iterated rippled noise (IRN) that is possibly resolved by the auditory system. Tonal signals were placed at spectral peaks and valleys of IRN maskers for a wide variety of IRN conditions that included different delays, number of iterations, and stimulus durations. The differences in the forward-masked thresholds of tones at spectral peaks and valleys were used to estimate spectral resolvability, and these results were compared to estimates obtained from a gamma-tone filter bank. The IRN spectrum has spectral peaks that are harmonics of the reciprocal of the delay used to generate IRN stimuli. As the number of iterations in the generation of IRN stimuli increases so does the difference in the spectral peak-to-valley ratio. For high number of iterations, long delays, and long durations evidence for spectral resolvability existed up to the 6th harmonic. For all other conditions spectral resolvability appeared to disappear at harmonics lower than the 6th, or was not measurable at all. These data will be discussed in terms of the role spectral resolvability might play in processing the pitch, pitch strength, and timbre of IRN stimuli. [Work supported by a grant from NIDCD.
ITER faces further five-year delay
NASA Astrophysics Data System (ADS)
Clery, Daniel
2016-06-01
The €14bn ITER fusion reactor currently under construction in Cadarache, France, will require an additional cash injection of €4.6bn if it is to start up in 2025 – a target date that is already five years later than currently scheduled.
Constructing Easily Iterated Functions with Interesting Properties
ERIC Educational Resources Information Center
Sprows, David J.
2009-01-01
A number of schools have recently introduced new courses dealing with various aspects of iteration theory or at least have found ways of including topics such as chaos and fractals in existing courses. In this note, we will consider a family of functions whose members are especially well suited to illustrate many of the concepts involved in these…
On the safety of ITER accelerators
Li, Ge
2013-01-01
Three 1 MV/40A accelerators in heating neutral beams (HNB) are on track to be implemented in the International Thermonuclear Experimental Reactor (ITER). ITER may produce 500 MWt of power by 2026 and may serve as a green energy roadmap for the world. They will generate −1 MV 1 h long-pulse ion beams to be neutralised for plasma heating. Due to frequently occurring vacuum sparking in the accelerators, the snubbers are used to limit the fault arc current to improve ITER safety. However, recent analyses of its reference design have raised concerns. General nonlinear transformer theory is developed for the snubber to unify the former snubbers' different design models with a clear mechanism. Satisfactory agreement between theory and tests indicates that scaling up to a 1 MV voltage may be possible. These results confirm the nonlinear process behind transformer theory and map out a reliable snubber design for a safer ITER. PMID:24008267
Solving Differential Equations Using Modified Picard Iteration
ERIC Educational Resources Information Center
Robin, W. A.
2010-01-01
Many classes of differential equations are shown to be open to solution through a method involving a combination of a direct integration approach with suitably modified Picard iterative procedures. The classes of differential equations considered include typical initial value, boundary value and eigenvalue problems arising in physics and…
The determination of orbits using Picard iteration
NASA Technical Reports Server (NTRS)
Mikkilineni, R. P.; Feagin, T.
1975-01-01
The determination of orbits by using Picard iteration is reported. This is a direct extension of the classical method of Picard that has been used in finding approximate solutions of nonlinear differential equations for a variety of problems. The application of the Picard method of successive approximations to the initial value and the two point boundary value problems is given.
Symbolic Computational Algebra Applied to Picard Iteration.
ERIC Educational Resources Information Center
Mathews, John
1989-01-01
Uses muMATH to illustrate the step-by-step process in translating mathematical theory into the symbolic manipulation setting. Shows an application of a Picard iteration which uses a computer to generate a sequence of functions which converge to a solution. (MVL)
First mirrors for diagnostic systems of ITER
NASA Astrophysics Data System (ADS)
Litnovsky, A.; Voitsenya, V. S.; Costley, A.; Donné, A. J. H.; SWG on First Mirrors of the ITPA Topical Group on Diagnostics
2007-08-01
The majority of optical diagnostics presently foreseen for ITER will implement in-vessel metallic mirrors as plasma-viewing components. Mirrors are used for the observation of the plasma radiation in a very wide wavelength range: from about 1 nm up to a few mm. In the hostile ITER environment, mirrors are subject to erosion, deposition, particle implantation and other adverse effects which will change their optical properties, affecting the entire performance of the respective diagnostic systems. The Specialists Working Group (SWG) on first mirrors was established under the wings of the International Tokamak Physics Activity (ITPA) Topical Group (TG) on Diagnostics to coordinate and guide the investigations on diagnostic mirrors towards the development of optimal, robust and durable solutions for ITER diagnostic systems. The results of tests of various ITER-candidate mirror materials, performed in Tore-Supra, TEXTOR, DIII-D, TCV, T-10, TRIAM-1M and LHD under various plasma conditions, as well as an overview of laboratory investigations of mirror performance and mirror cleaning techniques are presented in the paper. The current tasks in the R&D of diagnostic mirrors will be addressed.
Iterative solution of the Helmholtz equation
Larsson, E.; Otto, K.
1996-12-31
We have shown that the numerical solution of the two-dimensional Helmholtz equation can be obtained in a very efficient way by using a preconditioned iterative method. We discretize the equation with second-order accurate finite difference operators and take special care to obtain non-reflecting boundary conditions. We solve the large, sparse system of equations that arises with the preconditioned restarted GMRES iteration. The preconditioner is of {open_quotes}fast Poisson type{close_quotes}, and is derived as a direct solver for a modified PDE problem.The arithmetic complexity for the preconditioner is O(n log{sub 2} n), where n is the number of grid points. As a test problem we use the propagation of sound waves in water in a duct with curved bottom. Numerical experiments show that the preconditioned iterative method is very efficient for this type of problem. The convergence rate does not decrease dramatically when the frequency increases. Compared to banded Gaussian elimination, which is a standard solution method for this type of problems, the iterative method shows significant gain in both storage requirement and arithmetic complexity. Furthermore, the relative gain increases when the frequency increases.
Perturbed Coulomb potentials in the Klein-Gordon equation via the asymptotic iteration method
Barakat, T.
2009-03-15
The asymptotic iteration method is used to construct the exact energy eigenvalues for a Lorentz vector or a Lorentz scalar, and an equally mixed Lorentz vector and Lorentz scalar Coulombic potentials. Highly accurate and rapidly converging ground-state energies for Lorentz vector Coulomb with a Lorentz vector or a Lorentz scalar linear potential, V(r)=-{lambda}{sub 1}/r+krandV(r)=-{lambda}{sub 1}/randW(r)=kr, respectively, are obtained.
Testing Short Samples of ITER Conductors and Projection of Their Performance in ITER Magnets
Martovetsky, N N
2007-08-20
Qualification of the ITER conductor is absolutely necessary. Testing large scale conductors is expensive and time consuming. To test straight 3-4m long samples in a bore of a split solenoid is a relatively economical way in comparison with fabrication of a coil to be tested in a bore of a background field solenoid. However, testing short sample may give ambiguous results due to different constraints in current redistribution in the cable or other end effects which are not present in the large magnet. This paper discusses processes taking place in the ITER conductor, conditions when conductor performance could be distorted and possible signal processing to deduce behavior of ITER conductors in ITER magnets from the test data.
Reducing the latency of the Fractal Iterative Method to half an iteration
NASA Astrophysics Data System (ADS)
Béchet, Clémentine; Tallon, Michel
2013-12-01
The fractal iterative method for atmospheric tomography (FRiM-3D) has been introduced to solve the wavefront reconstruction at the dimensions of an ELT with a low-computational cost. Previous studies reported the requirement of only 3 iterations of the algorithm in order to provide the best adaptive optics (AO) performance. Nevertheless, any iterative method in adaptive optics suffer from the intrinsic latency induced by the fact that one iteration can start only once the previous one is completed. Iterations hardly match the low-latency requirement of the AO real-time computer. We present here a new approach to avoid iterations in the computation of the commands with FRiM-3D, thus allowing low-latency AO response even at the scale of the European ELT (E-ELT). The method highlights the importance of "warm-start" strategy in adaptive optics. To our knowledge, this particular way to use the "warm-start" has not been reported before. Futhermore, removing the requirement of iterating to compute the commands, the computational cost of the reconstruction with FRiM-3D can be simplified and at least reduced to half the computational cost of a classical iteration. Thanks to simulations of both single-conjugate and multi-conjugate AO for the E-ELT,with FRiM-3D on Octopus ESO simulator, we demonstrate the benefit of this approach. We finally enhance the robustness of this new implementation with respect to increasing measurement noise, wind speed and even modeling errors.
... loss-rapid weight loss; Overweight-rapid weight loss; Obesity-rapid weight loss; Diet-rapid weight loss ... for people who have health problems because of obesity. For these people, losing a lot of weight ...
Iterative type I polyketide synthases for enediyne core biosynthesis.
Horsman, Geoffrey P; Van Lanen, Steven G; Shen, Ben
2009-01-01
Enediyne natural products are extremely potent antitumor antibiotics with a remarkable core structure consisting of two acetylenic groups conjugated to a double bond within either a 9- or 10-membered ring. Biosynthesis of this fascinating scaffold is catalyzed in part by an unusual iterative type I polyketide synthase, PKSE, that is shared among all enediyne biosynthetic pathways whose gene clusters have been sequenced to date. The PKSE is unusual in two main respects: (1) it contains an acyl carrier protein (ACP) domain with no sequence homology to any known proteins, and (2) it is self-phosphopantetheinylated by an integrated phosphopantetheinyl transferase (PPTase) domain. The unusual domain architecture and biochemistry of the PKSE hold promise both for the rapid identification of new enediyne natural products and for obtaining fundamental catalytic insights into enediyne biosynthesis. This chapter describes methods for rapid PCR-based classification of conserved enediyne biosynthetic genes, heterologous production of 9-membered PKSE proteins and isolation of the resulting polyene product, and in vitro characterization of the PKSE ACP domain. PMID:19362637
New iterative solvers for the NAG Libraries
Salvini, S.; Shaw, G.
1996-12-31
The purpose of this paper is to introduce the work which has been carried out at NAG Ltd to update the iterative solvers for sparse systems of linear equations, both symmetric and unsymmetric, in the NAG Fortran 77 Library. Our current plans to extend this work and include it in our other numerical libraries in our range are also briefly mentioned. We have added to the Library the new Chapter F11, entirely dedicated to sparse linear algebra. At Mark 17, the F11 Chapter includes sparse iterative solvers, preconditioners, utilities and black-box routines for sparse symmetric (both positive-definite and indefinite) linear systems. Mark 18 will add solvers, preconditioners, utilities and black-boxes for sparse unsymmetric systems: the development of these has already been completed.
High resolution non-iterative aperture synthesis.
Kraczek, Jeffrey R; McManamon, Paul F; Watson, Edward A
2016-03-21
The maximum resolution of a multiple-input multiple-output (MIMO) imaging system is determined by the size of the synthetic aperture. The synthetic aperture is determined by a coordinate shift using the relative positions of the illuminators and receive apertures. Previous methods have shown non-iterative phasing for multiple illuminators with a single receive aperture for intra-aperture synthesis. This work shows non-iterative phasing with both multiple illuminators and multiple receive apertures for inter-aperture synthesis. Simulated results show that piston, tip, and tilt can be calculated using inter-aperture phasing after intra-aperture phasing has been performed. Use of a fourth illuminator for increased resolution is shown. The modulation transfer function (MTF) is used to quantitatively judge increased resolution. PMID:27136816
Linear iterative solvers for implicit ODE methods
NASA Technical Reports Server (NTRS)
Saylor, Paul E.; Skeel, Robert D.
1990-01-01
The numerical solution of stiff initial value problems, which lead to the problem of solving large systems of mildly nonlinear equations are considered. For many problems derived from engineering and science, a solution is possible only with methods derived from iterative linear equation solvers. A common approach to solving the nonlinear equations is to employ an approximate solution obtained from an explicit method. The error is examined to determine how it is distributed among the stiff and non-stiff components, which bears on the choice of an iterative method. The conclusion is that error is (roughly) uniformly distributed, a fact that suggests the Chebyshev method (and the accompanying Manteuffel adaptive parameter algorithm). This method is described, also commenting on Richardson's method and its advantages for large problems. Richardson's method and the Chebyshev method with the Mantueffel algorithm are applied to the solution of the nonlinear equations by Newton's method.
ITER Shape Controller and Transport Simulations
Casper, T A; Meyer, W H; Pearlstein, L D; Portone, A
2007-05-31
We currently use the CORSICA integrated modeling code for scenario studies for both the DIII-D and ITER experiments. In these simulations, free- or fixed-boundary equilibria are simultaneously converged with thermal evolution determined from transport models providing temperature and current density profiles. Using a combination of fixed boundary evolution followed by free-boundary calculation to determine the separatrix and coil currents. In the free-boundary calculation, we use the state-space controller representation with transport simulations to provide feedback modeling of shape, vertical stability and profile control. In addition to a tightly coupled calculation with simulator and controller imbedded inside CORSICA, we also use a remote procedure call interface to couple the CORSICA non-linear plasma simulations to the controller environments developed within the Mathworks Matlab/Simulink environment. We present transport simulations using full shape and vertical stability control with evolution of the temperature profiles to provide simulations of the ITER controller and plasma response.
Iterative optimization calibration method for stereo deflectometry.
Ren, Hongyu; Gao, Feng; Jiang, Xiangqian
2015-08-24
An accurate system calibration method is presented in this paper to calibrate stereo deflectometry. A corresponding iterative optimization algorithm is also proposed to improve the system calibration accuracy. This merges CCD parameters and geometrical relation between CCDs and the LCD into one cost function. In this calibration technique, an optical flat acts as a reference mirror and simultaneously reflect sinusoidal fringe patterns into the two CCDs. The normal vector of the reference mirror is used as an intermediate variable to implement this iterative optimization algorithm until the root mean square of the reprojection errors converge to a minimum. The experiment demonstrates that this method can optimize all the calibration parameters and can effectively reduce reprojection error, which correspondingly improves the final reconstruction accuracy. PMID:26368180
Main challenges for ITER optical diagnostics
NASA Astrophysics Data System (ADS)
Vukolov, K. Yu.; Orlovskiy, I. I.; Alekseev, A. G.; Borisov, A. A.; Andreenko, E. N.; Kukushkin, A. B.; Lisitsa, V. S.; Neverov, V. S.
2014-08-01
The review is made of the problems of ITER optical diagnostics. Most of these problems will be related to the intensive neutron radiation from hot plasma. At a high level of radiation loads the most types of materials gradually change their properties. This effect is most critical for optical diagnostics because of degradation of optical glasses and mirrors. The degradation of mirrors, that collect the light from plasma, basically will be induced by impurity deposition and (or) sputtering by charge exchange atoms. Main attention is paid to the search of glasses for vacuum windows and achromatic lens which are stable under ITER irradiation conditions. The last results of irradiation tests in nuclear reactor of candidate silica glasses KU-1, KS-4V and TF 200 are presented. An additional problem is discussed that deals with the stray light produced by multiple reflections from the first wall of the intense light emitted in the divertor plasma.
High contrast laminography using iterative algorithms
NASA Astrophysics Data System (ADS)
Kroupa, M.; Jakubek, J.
2011-01-01
3D X-ray imaging of internal structure of large flat objects is often complicated by limited access to all viewing angles or extremely high absorption in certain directions, therefore the standard method of computed tomography (CT) fails. This problem can be solved by the method of laminography. During a laminographic measurement the imaging detector is placed close to the sample while the X-ray source irradiates both sample and detector at different angles. The application of the state-of-the-art pixel detector Medipix in laminography together with adapted tomographic iterative alghorithms for 3D reconstruction of sample structure has been investigated. Iterative algorithms such as EM (Expectation Maximization) and OSEM (Ordered Subset Expectation Maximization) improve the quality of the reconstruction and allow including more complex physical models. In this contribution results and proposed future approaches which could be used for resolution enhancement are presented.
Iterative most likely oriented point registration.
Billings, Seth; Taylor, Russell
2014-01-01
A new algorithm for model based registration is presented that optimizes both position and surface normal information of the shapes being registered. This algorithm extends the popular Iterative Closest Point (ICP) algorithm by incorporating the surface orientation at each point into both the correspondence and registration phases of the algorithm. For the correspondence phase an efficient search strategy is derived which computes the most probable correspondences considering both position and orientation differences in the match. For the registration phase an efficient, closed-form solution provides the maximum likelihood rigid body alignment between the oriented point matches. Experiments by simulation using human femur data demonstrate that the proposed Iterative Most Likely Oriented Point (IMLOP) algorithm has a strong accuracy advantage over ICP and has increased ability to robustly identify a successful registration result. PMID:25333116
Iterative image restoration using approximate inverse preconditioning.
Nagy, J G; Plemmons, R J; Torgersen, T C
1996-01-01
Removing a linear shift-invariant blur from a signal or image can be accomplished by inverse or Wiener filtering, or by an iterative least-squares deblurring procedure. Because of the ill-posed characteristics of the deconvolution problem, in the presence of noise, filtering methods often yield poor results. On the other hand, iterative methods often suffer from slow convergence at high spatial frequencies. This paper concerns solving deconvolution problems for atmospherically blurred images by the preconditioned conjugate gradient algorithm, where a new approximate inverse preconditioner is used to increase the rate of convergence. Theoretical results are established to show that fast convergence can be expected, and test results are reported for a ground-based astronomical imaging problem. PMID:18285203
Thermomechanical analysis of the ITER breeding blanket
Majumdar, S.; Gruhn, H.; Gohar, Y.; Giegerich, M.
1997-03-01
Thermomechanical performance of the ITER breeding blanket is an important design issue because it requires first, that the thermal expansion mismatch between the blanket structure and the blankets internals (such as, beryllium multiplier and tritium breeders) can be accommodated without creating high stresses, and second, that the thermomechanical deformation of various interfaces within the blanket does not create high resistance to heat flow and consequent unacceptably high temperatures in the blanket materials. Thermomechanical analysis of a single beryllium block sandwiched between two stainless steel plates was carried out using the finite element code ABAQUS to illustrate the importance of elastic deformation on the temperature distributions. Such an analysis for the whole ITER blanket needs to be conducted in the future. Uncertainties in the thermomechanical contact analysis can be reduced by bonding the beryllium blocks to the stainless steel plates by a thin soft interfacial layer.
Iterative Reconstruction of Coded Source Neutron Radiographs
Santos-Villalobos, Hector J; Bingham, Philip R; Gregor, Jens
2012-01-01
Use of a coded source facilitates high-resolution neutron imaging but requires that the radiographic data be deconvolved. In this paper, we compare direct deconvolution with two different iterative algorithms, namely, one based on direct deconvolution embedded in an MLE-like framework and one based on a geometric model of the neutron beam and a least squares formulation of the inverse imaging problem.
Iterative solution of high order compact systems
Spotz, W.F.; Carey, G.F.
1996-12-31
We have recently developed a class of finite difference methods which provide higher accuracy and greater stability than standard central or upwind difference methods, but still reside on a compact patch of grid cells. In the present study we investigate the performance of several gradient-type iterative methods for solving the associated sparse systems. Both serial and parallel performance studies have been made. Representative examples are taken from elliptic PDE`s for diffusion, convection-diffusion, and viscous flow applications.
Fourier analysis of the SOR iteration
NASA Technical Reports Server (NTRS)
Leveque, R. J.; Trefethen, L. N.
1986-01-01
The SOR iteration for solving linear systems of equations depends upon an overrelaxation factor omega. It is shown that for the standard model problem of Poisson's equation on a rectangle, the optimal omega and corresponding convergence rate can be rigorously obtained by Fourier analysis. The trick is to tilt the space-time grid so that the SOR stencil becomes symmetrical. The tilted grid also gives insight into the relation between convergence rates of several variants.
Statistical properties of an iterated arithmetic mapping
Feix, M.R.; Rouet, J.L.
1994-07-01
We study the (3x = 1)/2 problem from a probabilistic viewpoint and show a forgetting mechanism for the last k binary digits of the seed after k iterations. The problem is subsequently generalized to a trifurcation process, the (lx + m)/3 problem. Finally the sequence of a set of seeds is empirically shown to be equivalent to a random walk of the variable log{sub 2}x (or log{sub 3} x) though computer simulations.
Deep brain stimulation: new directions.
Ostergard, T; Miller, J P
2014-12-01
The role of deep brain stimulation (DBS) in the treatment of movement disorders is well established, but there has recently been a proliferation of additional indications that have been shown to be amenable to this technology. The combination of innovative approaches to neural interface technology with novel target identification based on previously discovered clinical effects of lesioning procedures has led to a fundamental paradigm for new directions in the application of DBS. The historical use of neurosurgical lesioning procedures in the treatment of psychiatric diseases such as obsessive compulsive disorder provided an initial opportunity to expand the use of DBS. The list is rapidly expanding and now includes major depressive disorder, Tourette's syndrome, addiction disorders, and eating disorders. Keen observations by neurosurgeons using these devices have lead to the incidental discovery of treatments for diseases without previous neurosurgical treatments. These discoveries are breaking new ground in the treatment of disorders of cognition, headache syndromes, disorders of consciousness, and epilepsy. Two features of DBS make it well-suited for treatment of disorders of nervous system function. First, the reversible, non-lesional nature of DBS allows for investigation of new targets without the morbidity of permanent side effects. Second, the programmable nature of DBS allows practitioners to alter stimulation patterns to minimize side effects and potentially improve efficacy through reprogramming. More importantly, proper scientific evaluation of new targets is aided by the ability to turn stimulation on and off with evaluators blinded to the stimulation status. Knowledge of these emerging therapies is important for practitioners, as there are many situations where a single target can effectively treat the symptoms of more than one disease. The intersection of advances in neuromodulation, neurophysiology, neuroimaging, and functional neuroanatomy has
Iterative pass optimization of sequence data
NASA Technical Reports Server (NTRS)
Wheeler, Ward C.
2003-01-01
The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
Cyclic Game Dynamics Driven by Iterated Reasoning
Frey, Seth; Goldstone, Robert L.
2013-01-01
Recent theories from complexity science argue that complex dynamics are ubiquitous in social and economic systems. These claims emerge from the analysis of individually simple agents whose collective behavior is surprisingly complicated. However, economists have argued that iterated reasoning–what you think I think you think–will suppress complex dynamics by stabilizing or accelerating convergence to Nash equilibrium. We report stable and efficient periodic behavior in human groups playing the Mod Game, a multi-player game similar to Rock-Paper-Scissors. The game rewards subjects for thinking exactly one step ahead of others in their group. Groups that play this game exhibit cycles that are inconsistent with any fixed-point solution concept. These cycles are driven by a “hopping” behavior that is consistent with other accounts of iterated reasoning: agents are constrained to about two steps of iterated reasoning and learn an additional one-half step with each session. If higher-order reasoning can be complicit in complex emergent dynamics, then cyclic and chaotic patterns may be endogenous features of real-world social and economic systems. PMID:23441191
Iterative pass optimization of sequence data.
Wheeler, Ward C
2003-06-01
The problem of determining the minimum-cost hypothetical ancestral sequences for a given cladogram is known to be NP-complete. This "tree alignment" problem has motivated the considerable effort placed in multiple sequence alignment procedures. Wheeler in 1996 proposed a heuristic method, direct optimization, to calculate cladogram costs without the intervention of multiple sequence alignment. This method, though more efficient in time and more effective in cladogram length than many alignment-based procedures, greedily optimizes nodes based on descendent information only. In their proposal of an exact multiple alignment solution, Sankoff et al. in 1976 described a heuristic procedure--the iterative improvement method--to create alignments at internal nodes by solving a series of median problems. The combination of a three-sequence direct optimization with iterative improvement and a branch-length-based cladogram cost procedure, provides an algorithm that frequently results in superior (i.e., lower) cladogram costs. This iterative pass optimization is both computation and memory intensive, but economies can be made to reduce this burden. An example in arthropod systematics is discussed. PMID:12901382
ITER Creation Safety File Expertise Results
NASA Astrophysics Data System (ADS)
Perrault, D.
2013-06-01
In March 2010, the ITER operator delivered the facility safety file to the French "Autorité de Sûreté Nucléaire" (ASN) as part of its request for the creation decree, legally necessary before building works can begin on the site. The French "Institut de Radioprotection et de Sûreté Nucléaire" (IRSN), in support to the ASN, recently completed its expertise of the safety measures proposed for ITER, on the basis of this file and of additional technical documents from the operator. This paper presents the IRSN's main conclusions. In particular, they focus on the radioactive materials involved, the safety and radiation protection demonstration (suitability of risk management measures…), foreseeable accidents, building and safety important component design and, finally, wastes and effluents to be produced. This assessment was just the first legally-required step in on-going safety monitoring of the ITER project, which will include other complete regulatory re-evaluations.
Conformal mapping and convergence of Krylov iterations
Driscoll, T.A.; Trefethen, L.N.
1994-12-31
Connections between conformal mapping and matrix iterations have been known for many years. The idea underlying these connections is as follows. Suppose the spectrum of a matrix or operator A is contained in a Jordan region E in the complex plane with 0 not an element of E. Let {phi}(z) denote a conformal map of the exterior of E onto the exterior of the unit disk, with {phi}{infinity} = {infinity}. Then 1/{vert_bar}{phi}(0){vert_bar} is an upper bound for the optimal asymptotic convergence factor of any Krylov subspace iteration. This idea can be made precise in various ways, depending on the matrix iterations, on whether A is finite or infinite dimensional, and on what bounds are assumed on the non-normality of A. This paper explores these connections for a variety of matrix examples, making use of a new MATLAB Schwarz-Christoffel Mapping Toolbox developed by the first author. Unlike the earlier Fortran Schwarz-Christoffel package SCPACK, the new toolbox computes exterior as well as interior Schwarz-Christoffel maps, making it easy to experiment with spectra that are not necessarily symmetric about an axis.
ITER (International Thermonuclear Experimental Reactor) in perspective
Henning, C.D. )
1989-10-20
The International Thermonuclear Experimental Reactor (ITER) team is completing the second year of a three-year conceptual design phase. The purpose of ITER is to demonstrate the scientific and technological feasibility of fusion power. It is to demonstrate plasma ignition and extended burn with steady state as the ultimate goal. In so doing, it is to provide the physics data base needed for a demonstration tokamak power reactor and to demonstrate reactor-relevant technologies, such as high-heat-flux and nuclear components for fusion power. To meet these objectives, many design compromises had to be reached by the participants following a careful review of the physics and technology base for fusion. The current ITER design features a 6-m major radius, a 2.15-m minor radius and a 22-MA plasma current. About 330 volt-seconds in the poloidal field system inductively drive the current for hundreds of seconds. Moreover, about 125 MW of neutral-beam, lower-hybrid, and electron-cyclotron power are provided for steady-state current drive and heating all these systems are discussed in this paper. 3 refs., 6 figs., 7 tabs.
The dynamics of iterated transportation simulations
Nagel, K.; Rickert, M.; Simon, P.M.
1998-12-01
Transportation-related decisions of people often depend on what everybody else is doing. For example, decisions about mode choice, route choice, activity scheduling, etc., can depend on congestion, caused by the aggregated behavior of others. From a conceptual viewpoint, this consistency problem causes a deadlock, since nobody can start planning because they do not know what everybody else is doing. It is the process of iterations that is examined in this paper as a method for solving the problem. In this paper, the authors concentrate on the aspect of the iterative process that is probably the most important one from a practical viewpoint, and that is the ``uniqueness`` or ``robustness`` of the results. Also, they define robustness more in terms of common sense than in terms of a mathematical formalism. For this, they do not only want a single iterative process to converge, but they want the result to be independent of any particular implementation. The authors run many computational experiments, sometimes with variations of the same code, sometimes with totally different code, in order to see if any of the results are robust against these changes.
Performance assessment of the ITER ICRF antenna
NASA Astrophysics Data System (ADS)
Durodié, F.; Vrancken, M.; Bamber, R.; Colas, L.; Dumortier, P.; Hancock, D.; Huygen, S.; Lockley, D.; Louche, F.; Maggiora, R.; Milanesio, D.; Messiaen, A.; Nightingale, M. P. S.; Shannon, M.; Tigwell, P.; van Schoor, M.; Wilson, D.; Winkler, K.; Cycle Team
2014-02-01
ITER's Ion Cyclotron Range of Frequencies (ICRF) system [1] comprises two antenna launchers designed by CYCLE (a consortium of European associations listed in the author affiliations above) on behalf F4E for the ITER Organisation (IO), each inserted as a Port Plug (PP) into one of ITER's Vacuum Vessel (VV) ports. Each launcher is an array of 4 toroidal by 6 poloidal RF current straps specified to couple up to 20 MW in total to the plasma in the frequency range of 40 to 55 MHz but limited to a maximum system voltage of 45 kV and limits on RF electric fields depending on their location and direction with respect to respectively the torus vacuum and the toroidal magnetic field. A crucial aspect of coupling ICRF power to plasmas is the knowledge of the plasma density profiles in the Scrape-Off Layer (SOL) and the location of the RF current straps with respect to the SOL. The launcher layout and details were optimized and its performance estimated for a worst case SOL provided by the IO. The paper summarizes the estimated performance obtained within the operational parameter space specified by IO. Aspects of the RF grounding of the whole antenna PP to the VV port and the effect of the voids between the PP and the Blanket Shielding Modules (BSM) surrounding the antenna front are discussed.
Iterative solution of the semiconductor device equations
Bova, S.W.; Carey, G.F.
1996-12-31
Most semiconductor device models can be described by a nonlinear Poisson equation for the electrostatic potential coupled to a system of convection-reaction-diffusion equations for the transport of charge and energy. These equations are typically solved in a decoupled fashion and e.g. Newton`s method is used to obtain the resulting sequences of linear systems. The Poisson problem leads to a symmetric, positive definite system which we solve iteratively using conjugate gradient. The transport equations lead to nonsymmetric, indefinite systems, thereby complicating the selection of an appropriate iterative method. Moreover, their solutions exhibit steep layers and are subject to numerical oscillations and instabilities if standard Galerkin-type discretization strategies are used. In the present study, we use an upwind finite element technique for the transport equations. We also evaluate the performance of different iterative methods for the transport equations and investigate various preconditioners for a few generalized gradient methods. Numerical examples are given for a representative two-dimensional depletion MOSFET.
Park, Taryn M; Haning, William F
2016-07-01
Compared with other illicit substances, stimulants are not commonly used by adolescents; however, they represent a serious concern regarding substance use among youths. This article uses methamphetamine as a model for stimulant use in adolescents; cocaine and prescription stimulants are also mentioned. Methamphetamine use among adolescents and young adults is a serious health concern with potentially long-term physical, cognitive, and psychiatric consequences. Brain development and the effects of misusing stimulants align such that usage in adolescents can more dangerous than during adulthood. It seems helpful to keep in mind the differences between adolescents and young adults when implementing interventions. PMID:27338967
Overview of International Thermonuclear Experimental Reactor (ITER) engineering design activities*
NASA Astrophysics Data System (ADS)
Shimomura, Y.
1994-05-01
The International Thermonuclear Experimental Reactor (ITER) [International Thermonuclear Experimental Reactor (ITER) (International Atomic Energy Agency, Vienna, 1988), ITER Documentation Series, No. 1] project is a multiphased project, presently proceeding under the auspices of the International Atomic Energy Agency according to the terms of a four-party agreement among the European Atomic Energy Community (EC), the Government of Japan (JA), the Government of the Russian Federation (RF), and the Government of the United States (US), ``the Parties.'' The ITER project is based on the tokamak, a Russian invention, and has since been brought to a high level of development in all major fusion programs in the world. The objective of ITER is to demonstrate the scientific and technological feasibility of fusion energy for peaceful purposes. The ITER design is being developed, with support from the Parties' four Home Teams and is in progress by the Joint Central Team. An overview of ITER Design activities is presented.
NASA Technical Reports Server (NTRS)
Gartling, D. K.; Roache, P. J.
1978-01-01
The efficiency characteristics of finite element and finite difference approximations for the steady-state solution of the Navier-Stokes equations are examined. The finite element method discussed is a standard Galerkin formulation of the incompressible, steady-state Navier-Stokes equations. The finite difference formulation uses simple centered differences that are O(delta x-squared). Operation counts indicate that a rapidly converging Newton-Raphson-Kantorovitch iteration scheme is generally preferable over a Picard method. A split NOS Picard iterative algorithm for the finite difference method was most efficient.
Evaluation of ITER MSE Viewing Optics
Allen, S; Lerner, S; Morris, K; Jayakumar, J; Holcomb, C; Makowski, M; Latkowski, J; Chipman, R
2007-03-26
The Motional Stark Effect (MSE) diagnostic on ITER determines the local plasma current density by measuring the polarization angle of light resulting from the interaction of a high energy neutral heating beam and the tokamak plasma. This light signal has to be transmitted from the edge and core of the plasma to a polarization analyzer located in the port plug. The optical system should either preserve the polarization information, or it should be possible to reliably calibrate any changes induced by the optics. This LLNL Work for Others project for the US ITER Project Office (USIPO) is focused on the design of the viewing optics for both the edge and core MSE systems. Several design constraints were considered, including: image quality, lack of polarization aberrations, ease of construction and cost of mirrors, neutron shielding, and geometric layout in the equatorial port plugs. The edge MSE optics are located in ITER equatorial port 3 and view Heating Beam 5, and the core system is located in equatorial port 1 viewing heating beam 4. The current work is an extension of previous preliminary design work completed by the ITER central team (ITER resources were not available to complete a detailed optimization of this system, and then the MSE was assigned to the US). The optimization of the optical systems at this level was done with the ZEMAX optical ray tracing code. The final LLNL designs decreased the ''blur'' in the optical system by nearly an order of magnitude, and the polarization blur was reduced by a factor of 3. The mirror sizes were reduced with an estimated cost savings of a factor of 3. The throughput of the system was greater than or equal to the previous ITER design. It was found that optical ray tracing was necessary to accurately measure the throughput. Metal mirrors, while they can introduce polarization aberrations, were used close to the plasma because of the anticipated high heat, particle, and neutron loads. These mirrors formed an intermediate
Rapid prototyping of extrusion dies using layer-based techniques
Misiolek, W.Z.; Winther, K.T.; Prats, A.E.; Rock, S.J.
1999-02-01
Extrusion die design and development often requires significant craftsman skill and iterative improvement to arrive at a production-ready die geometry. Constructing the dies used during this iterative process from layers, rather than from one solid block of material, offers unique opportunities to improve die development efficiency when coupled with concepts drawn from the rapid prototyping field. This article presents a proof-of-concept illustrating the potential utility of layer-based extrusion dies for the die design and fabrication process. The major benefits include greater flexibility in the design process, a more efficient, automated fabrication technique, and a means for performing localized die modifications and repairs.
Wang, Meng; Zhou, Hui; Wirz, Monica; Tang, Yi; Boddy, Christopher N.
2009-01-01
Zearalenone, a fungal macrocyclic polyketide, is a member of the resorcylic acid lactone family. Herein, we characterize in vitro the thioesterase from PKS13 in zearalenone biosynthesis (Zea TE). The excised Zea TE catalyzes macrocyclization of a linear thioester activated model of zearalenone. Zea TE also catalyzes the cross coupling of a benzoyl thioester with alcohols and amines. Kinetic characterization of the cross coupling is consistent with a ping-pong bi-bi mechanism, confirming an acyl-enzyme intermediate. Finally, the substrate specificity of the Zea TE indicates the TE may help control iterative cycling on PKS13 by rapidly off loading the final resorcylate containing product. PMID:19530704
Short-Term Variations in Response Distribution to Cortical Stimulation
ERIC Educational Resources Information Center
Lesser, Ronald P.; Lee, Hyang Woon; Webber, W. R. S.; Prince, Barry; Crone, Nathan E.; Miglioretti, Diana L.
2008-01-01
Patterns of responses in the cerebral cortex can vary, and are influenced by pre-existing cortical function, but it is not known how rapidly these variations can occur in humans. We investigated how rapidly response patterns to electrical stimulation can vary in intact human brain. We also investigated whether the type of functional change…
An application generator for rapid prototyping of Ada real-time control software
NASA Technical Reports Server (NTRS)
Johnson, Jim; Biglari, Haik; Lehman, Larry
1990-01-01
The need to increase engineering productivity and decrease software life cycle costs in real-time system development establishes a motivation for a method of rapid prototyping. The design by iterative rapid prototyping technique is described. A tool which facilitates such a design methodology for the generation of embedded control software is described.
[Transcranial and invasive brain stimulation for depression].
Plewnia, C; Padberg, F
2012-08-01
Considering the substantial proportion of depressed patients which does not sufficiently benefit from antidepressant pharmacotherapy or psychotherapy, there is increasing interest in non-pharmacological antidepressant strategies. Thus, a whole array of stimulation approaches has been developed as potential new antidepressant interventions. These methods include transcranial convulsive and non-convulsive approaches, e.g. electroconvulsive therapy (ECT), magnetic seizure therapy (MST), transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) as well as invasive techniques, e.g. deep brain stimulation (DBS), vagus nerve stimulation (VNS) and epidural cortical stimulation (ECS). Each method represents a specific therapeutic approach with distinct targets within neural networks involved in the pathophysiology of depression. The ECT procedure is an established treatment with the highest efficacy of all antidepressant interventions and TMS reaches the highest level of evidence among the novel neurostimulation approaches and may be clinically used. However, the field yields a promising rapid development which may substantially enrich the armamentarium of antidepressant interventions in the near future. PMID:22843027
Final Report on ITER Task Agreement 81-08
Richard L. Moore
2008-03-01
As part of an ITER Implementing Task Agreement (ITA) between the ITER US Participant Team (PT) and the ITER International Team (IT), the INL Fusion Safety Program was tasked to provide the ITER IT with upgrades to the fusion version of the MELCOR 1.8.5 code including a beryllium dust oxidation model. The purpose of this model is to allow the ITER IT to investigate hydrogen production from beryllium dust layers on hot surfaces inside the ITER vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). Also included in the ITER ITA was a task to construct a RELAP5/ATHENA model of the ITER divertor cooling loop to model the draining of the loop during a large ex-vessel pipe break followed by an in-vessel divertor break and compare the results to a simular MELCOR model developed by the ITER IT. This report, which is the final report for this agreement, documents the completion of the work scope under this ITER TA, designated as TA 81-08.
Lauzeral, Christine; Grenouillet, Gaël; Brosse, Sébastien
2012-01-01
Species distribution models (SDMs) are widespread in ecology and conservation biology, but their accuracy can be lowered by non-environmental (noisy) absences that are common in species occurrence data. Here we propose an iterative ensemble modelling (IEM) method to deal with noisy absences and hence improve the predictive reliability of ensemble modelling of species distributions. In the IEM approach, outputs of a classical ensemble model (EM) were used to update the raw occurrence data. The revised data was then used as input for a new EM run. This process was iterated until the predictions stabilized. The outputs of the iterative method were compared to those of the classical EM using virtual species. The IEM process tended to converge rapidly. It increased the consensus between predictions provided by the different methods as well as between those provided by different learning data sets. Comparing IEM and EM showed that for high levels of non-environmental absences, iterations significantly increased prediction reliability measured by the Kappa and TSS indices, as well as the percentage of well-predicted sites. Compared to EM, IEM also reduced biases in estimates of species prevalence. Compared to the classical EM method, IEM improves the reliability of species predictions. It particularly deals with noisy absences that are replaced in the data matrices by simulated presences during the iterative modelling process. IEM thus constitutes a promising way to increase the accuracy of EM predictions of difficult-to-detect species, as well as of species that are not in equilibrium with their environment. PMID:23166691
Iterative reactions of transient boronic acids enable sequential C-C bond formation
NASA Astrophysics Data System (ADS)
Battilocchio, Claudio; Feist, Florian; Hafner, Andreas; Simon, Meike; Tran, Duc N.; Allwood, Daniel M.; Blakemore, David C.; Ley, Steven V.
2016-04-01
The ability to form multiple carbon-carbon bonds in a controlled sequence and thus rapidly build molecular complexity in an iterative fashion is an important goal in modern chemical synthesis. In recent times, transition-metal-catalysed coupling reactions have dominated in the development of C-C bond forming processes. A desire to reduce the reliance on precious metals and a need to obtain products with very low levels of metal impurities has brought a renewed focus on metal-free coupling processes. Here, we report the in situ preparation of reactive allylic and benzylic boronic acids, obtained by reacting flow-generated diazo compounds with boronic acids, and their application in controlled iterative C-C bond forming reactions is described. Thus far we have shown the formation of up to three C-C bonds in a sequence including the final trapping of a reactive boronic acid species with an aldehyde to generate a range of new chemical structures.
NASA Astrophysics Data System (ADS)
Grisolia, C.; Hodille, E.; Chene, J.; Garcia-Argote, S.; Pieters, G.; El-Kharbachi, A.; Marchetti, L.; Martin, F.; Miserque, F.; Vrel, D.; Redolfi, M.; Malard, V.; Dinescu, G.; Acsente, T.; Gensdarmes, F.; Peillon, S.; Pegourié, B.; Rousseau, B.
2015-08-01
Tritium adsorption and desorption from well characterized tungsten dust are presented. The dust used are of different types prepared by planetary milling and by aggregation technique in plasma. For the milled powder, the surface specific area (SSA) is 15.5 m2/g. The particles are poly-disperse with a maximum size of 200 nm for the milled powder and 100 nm for the aggregation one. Prior to tritiation the particles are carefully de-oxidized. Both samples are experiencing a high tritium inventory from 5 GBq/g to 35 GBq/g. From comparison with massive samples and considering that tritium inventory increases with SSA, it is shown that surface effects are predominant in the tritium trapping process. Extrapolation to the ITER environment is undertaken with the help of a Macroscopic Rate Equation model. It is shown that, during the life time of ITER, these particles can exceed rapidly 1 GBq/g.
The Iterated Classification Game: A New Model of the Cultural Transmission of Language
Swarup, Samarth; Gasser, Les
2010-01-01
The Iterated Classification Game (ICG) combines the Classification Game with the Iterated Learning Model (ILM) to create a more realistic model of the cultural transmission of language through generations. It includes both learning from parents and learning from peers. Further, it eliminates some of the chief criticisms of the ILM: that it does not study grounded languages, that it does not include peer learning, and that it builds in a bias for compositional languages. We show that, over the span of a few generations, a stable linguistic system emerges that can be acquired very quickly by each generation, is compositional, and helps the agents to solve the classification problem with which they are faced. The ICG also leads to a different interpretation of the language acquisition process. It suggests that the role of parents is to initialize the linguistic system of the child in such a way that subsequent interaction with peers results in rapid convergence to the correct language. PMID:20190877
Iterative procedure for in-situ EUV optical testing with an incoherent source
Miyawaka, Ryan; Naulleau, Patrick; Zakhor, Avideh
2009-12-01
We propose an iterative method for in-situ optical testing under partially coherent illumination that relies on the rapid computation of aerial images. In this method a known pattern is imaged with the test optic at several planes through focus. A model is created that iterates through possible aberration maps until the through-focus series of aerial images matches the experimental result. The computation time of calculating the through-focus series is significantly reduced by a-SOCS, an adapted form of the Sum Of Coherent Systems (SOCS) decomposition. In this method, the Hopkins formulation is described by an operator S which maps the space of pupil aberrations to the space of aerial images. This operator is well approximated by a truncated sum of its spectral components.
Cai, Yunfeng; Bai, Zhaojun; Pask, John E.; Sukumar, N.
2013-12-15
The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal block preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.
Research on JET in view of ITER
NASA Astrophysics Data System (ADS)
Pamela, Jerome; Ongena, Jef; Watkins, Michael
2004-11-01
Research on JET is focused on further development of the two ITER reference plasma scenarios. The ELMy H-Mode, has been extended to lower rho* at high and q_95=3, with simultaneously H_98=0.9, and f_GW=0.9 at I_p=3.5 MA. The dependence of confinement on beta and rho* has been found to be more favorable than given by the IPB98(y,2) scaling. Highlights in the development of Advanced Regimes with Internal Transport Barriers (ITB) and strong reversed shear (q_0=2-3, q_min=1.5-2.5) are : (i) operation at a core density close to the Greenwald limit and (ii) full current drive in 3T/1.8MA ITB plasmas extended to 20 seconds with a JET record injected energy of E≈ 330MJ; (iii) 7 keV Te≈ Ti ITB plasmas at low toroidal rotation, and (iv) wide radius ITB's (r/a=0.6). Furthermore, emphasis in JET is placed on (i) mitigating the impact of ELMs, (ii) understanding the phenomena leading to tritium retention and (iii) preparing burning plasma physics. Recent developments on JET in view of ITER are : (i) real-time control in both ELMy H-Mode and ITB plasmas and (ii) an upgrade of JET with: (a) increased NBI power (b) a new ELM-resilient ITER-like ICRH antenna (7MW) to be tested in 2006 (c) 16 new and upgraded diagnostics.
Corneal topography matching by iterative registration.
Wang, Junjie; Elsheikh, Ahmed; Davey, Pinakin G; Wang, Weizhuo; Bao, Fangjun; Mottershead, John E
2014-11-01
Videokeratography is used for the measurement of corneal topography in overlapping portions (or maps) which must later be joined together to form the overall topography of the cornea. The separate portions are measured from different viewpoints and therefore must be brought together by registration of measurement points in the regions of overlap. The central map is generally the most accurate, but all maps are measured with uncertainty that increases towards the periphery. It becomes the reference (or static) map, and the peripheral (or dynamic) maps must then be transformed by rotation and translation so that the overlapping portions are matched. The process known as registration, of determining the necessary transformation, is a well-understood procedure in image analysis and has been applied in several areas of science and engineering. In this article, direct search optimisation using the Nelder-Mead algorithm and several variants of the iterative closest/corresponding point routine are explained and applied to simulated and real clinical data. The measurement points on the static and dynamic maps are generally different so that it becomes necessary to interpolate, which is done using a truncated series of Zernike polynomials. The point-to-plane iterative closest/corresponding point variant has the advantage of releasing certain optimisation constraints that lead to persistent registration and alignment errors when other approaches are used. The point-to-plane iterative closest/corresponding point routine is found to be robust to measurement noise, insensitive to starting values of the transformation parameters and produces high-quality results when using real clinical data. PMID:25500860
Cryogenic High Voltage Insulation Breaks for ITER
NASA Astrophysics Data System (ADS)
Kovalchuk, O. A.; Safonov, A. V.; Rodin, I. Yu.; Mednikov, A. A.; Lancetov, A. A.; Klimchenko, Yu. A.; Grinchenko, V. A.; Voronin, N. M.; Smorodina, N. V.; Bursikov, A. S.
High voltage insulation breaks are used in cryogenic lines with gas or liquid (helium, hydrogen, nitrogen, etc.) at a temperature range of 4.2-300 K and pressure up to 30 MPa to insulate the parts of an electrophysical facility with different electrical potentials. In 2013 JSC "NIIEFA" delivered 95 high voltage insulation breaks to the IO ITER, i.e. 65 breaks with spiral channels and 30 breaks with uniflow channels. These high voltage insulation breaks were designed, manufactured and tested in accordance with the ITER Technical Specifications: «Axial Insulating Breaks for the Qualification Phase of ITER Coils and Feeders». The high voltage insulation breaks consist of the glass-reinforced plastic cylinder equipped with channels for cryoagent and stainless steel end fittings. The operating voltage is 30 kV for the breaks with spiral channels (30 kV HV IBs) and 4 kV for the breaks with uniflow channels (4 kV HV IBs). The main design feature of the 30 kV HV IBs is the spiral channels instead of a linear one. This approach has enabled us to increase the breakdown voltage and decrease the overall dimensions of the high voltage insulation breaks. In 2013 the manufacturing technique was developed to produce the high voltage insulation breaks with the spiral and uniflow channels that made it possible to proceed to serial production. To provide the acceptance tests of the breaks a special test facility was prepared. The helium tightness test at 10-11 m3Pa/s under the pressure up to 10 MPa, the high voltage test up to 135 kV and different types of mechanical tests were carried out at the room and liquid nitrogen temperatures.
Fast iterative reconstructions for animal CT
NASA Astrophysics Data System (ADS)
Huang, H.-M.; Hsiao, I.-T.; Jan, M.-L.
2009-06-01
For iterative x-ray computed tomography (CT) reconstruction, the convex algorithm combined with ordered subset (OSC) [1] is a relatively fast algorithm and has shown its potential for low-dose situations. But it needs one forward projection and two backprojections per iteration. Unlike convex algorithm, the gradient algorithm only requires one forward projection and one backprojection per iteration. Here, we applied ordered subsets of projection data to a modified gradient algorithm. In order to further reduce computation time, the new algorithm, the ordered subset gradient (OSG) algorithm, can be adjusted with a step size. We also implemented another OS-type algorithm called OSTR. The OSG algorithm is compared with OSC algorithm and OSTR algorithm using three-dimensional simulated helical cone-beam CT data. The performance is evaluated in terms of log-likelihood, contrast recovery, and bias-variance studies. Results show that images of OSG has compatible visual image quality to those of OSC and OSTR, but in the resolution and bias-variance studies, OSG seems to reach stable values with faster speed. In particular, OSTR has better recovery in a smoother region, but both OSG and OSC have better recovery in the high-frequency regions. Moreover, in terms of log likelihood with respect to computation time, OSG has faster convergence rate than that of OSC and similar to that of OSTR. We conclude that OSG has potential to provide comparable image quality and is more computationally efficient, and thus could be suitable for low-dose, helical cone-beam CT image reconstruction.
Generalized iterative deconvolution for receiver function estimation
NASA Astrophysics Data System (ADS)
Wang, Yinzhi; Pavlis, Gary L.
2016-02-01
This paper describes a generalization of the iterative deconvolution method commonly used as a component of passive array wavefield imaging. We show that the iterative method should be thought of as a sparse output deconvolution method with the number of terms retained dependent on the convergence criteria. The generalized method we introduce uses an inverse operator to shape the assumed wavelet to a peaked function at zero lag. We show that the conventional method is equivalent to using a damped least-squares spiking filter with extremely large damping and proper scaling. In that case, the inverse operator used in the generalized method reduces to the cross-correlation operator. The theoretical insight of realizing the output is a sparse series provides a basis for the second important addition of the generalized method-an output shaping wavelet. A constant output shaping wavelet is a critical component in scattered wave imaging to avoid mixing data of variable bandwidth. We demonstrate the new approach can improve resolution by using an inverse operator tuned to maximize resolution. We also show that the signal-to-noise ratio of the result can be improved by applying a different convergence criterion than the standard method, which measures the energy left after each iteration. The efficacy of the approach was evaluated with synthetic experiment in various signal and noise conditions. We further validated the approach with real data from the USArray. We compared our results with data from the EarthScope Automated Receiver Survey and found that our results show modest improvements in consistency measured by correlation coefficients with station stacks and a reduced number of outliers.
Experimental studies of ITER demonstration discharges
NASA Astrophysics Data System (ADS)
Sips, A. C. C.; Casper, T. A.; Doyle, E. J.; Giruzzi, G.; Gribov, Y.; Hobirk, J.; Hogeweij, G. M. D.; Horton, L. D.; Hubbard, A. E.; Hutchinson, I.; Ide, S.; Isayama, A.; Imbeaux, F.; Jackson, G. L.; Kamada, Y.; Kessel, C.; Kochl, F.; Lomas, P.; Litaudon, X.; Luce, T. C.; Marmar, E.; Mattei, M.; Nunes, I.; Oyama, N.; Parail, V.; Portone, A.; Saibene, G.; Sartori, R.; Stober, J. K.; Suzuki, T.; Wolfe, S. M.; C-Mod Team; ASDEX Upgrade Team; DIII-D Team; JET EFDA Contributors
2009-08-01
Key parts of the ITER scenarios are determined by the capability of the proposed poloidal field (PF) coil set. They include the plasma breakdown at low loop voltage, the current rise phase, the performance during the flat top (FT) phase and a ramp down of the plasma. The ITER discharge evolution has been verified in dedicated experiments. New data are obtained from C-Mod, ASDEX Upgrade, DIII-D, JT-60U and JET. Results show that breakdown for Eaxis < 0.23-0.33 V m-1 is possible unassisted (ohmic) for large devices like JET and attainable in devices with a capability of using ECRH assist. For the current ramp up, good control of the plasma inductance is obtained using a full bore plasma shape with early X-point formation. This allows optimization of the flux usage from the PF set. Additional heating keeps li(3) < 0.85 during the ramp up to q95 = 3. A rise phase with an H-mode transition is capable of achieving li(3) < 0.7 at the start of the FT. Operation of the H-mode reference scenario at q95 ~ 3 and the hybrid scenario at q95 = 4-4.5 during the FT phase is documented, providing data for the li (3) evolution after the H-mode transition and the li (3) evolution after a back-transition to L-mode. During the ITER ramp down it is important to remain diverted and to reduce the elongation. The inductance could be kept <=1.2 during the first half of the current decay, using a slow Ip ramp down, but still consuming flux from the transformer. Alternatively, the discharges can be kept in H-mode during most of the ramp down, requiring significant amounts of additional heating.
Music acupuncture stimulation method.
Brătilă, F; Moldovan, C
2007-01-01
Harmonic Medicine is the model using the theory that the body rhythms synchronize to an outer rhythm applied for therapeutic purpose, can restores the energy balance in acupuncture channels and organs and the condition of well-being. The purpose of this scientific work was to demonstrate the role played by harmonic sounds in the stimulation of the Lung (LU) Meridian (Shoutaiyin Feijing) and of the Kidney (KI) Meridian (Zushaoyin Shenjing). It was used an original method that included: measurement and electronic sound stimulation of the Meridian Entry Point, measurement of Meridian Exit Point, computer data processing, bio feed-back adjustment of the music stimulation parameters. After data processing, it was found that the sound stimulation of the Lung Meridian Frequency is optimal between 122 Hz and 128 Hz, with an average of 124 Hz (87% of the subjects) and for Kidney Meridian from 118 Hz to 121 Hz, with an average of 120 Hz (67% of the subjects). The acupuncture stimulation was more intense for female subjects (> 7%) than for the male ones. We preliminarily consider that an informational resonance phenomenon can be developed between the acupuncture music stimulation frequency and the cellular dipole frequency, being a really "resonant frequency signature" of an acupoint. The harmonic generation and the electronic excitation or low-excitation status of an acupuncture point may be considered as a resonance mechanism. By this kind of acupunctural stimulation, a symphony may act and play a healer role. PMID:18767418
Adaptable Iterative and Recursive Kalman Filter Schemes
NASA Technical Reports Server (NTRS)
Zanetti, Renato
2014-01-01
Nonlinear filters are often very computationally expensive and usually not suitable for real-time applications. Real-time navigation algorithms are typically based on linear estimators, such as the extended Kalman filter (EKF) and, to a much lesser extent, the unscented Kalman filter. The Iterated Kalman filter (IKF) and the Recursive Update Filter (RUF) are two algorithms that reduce the consequences of the linearization assumption of the EKF by performing N updates for each new measurement, where N is the number of recursions, a tuning parameter. This paper introduces an adaptable RUF algorithm to calculate N on the go, a similar technique can be used for the IKF as well.
Iterative blind deconvolution of adaptive optics images
NASA Astrophysics Data System (ADS)
Liang, Ying; Rao, Changhui; Li, Mei; Geng, Zexun
2006-04-01
Adaptive optics (AO) technique has been extensively used for large ground-based optical telescopes to overcome the effect of atmospheric turbulence. But the correction is often partial. An iterative blind deconvolution (IBD) algorithm based on maximum-likelihood (ML) method is proposed to restore the details of the object image corrected by AO. IBD algorithm and the procedure are briefly introduced and the experiment results are presented. The results show that IBD algorithm is efficient for the restoration of some useful high-frequency of the image.
Fuzzy logic components for iterative deconvolution systems
NASA Astrophysics Data System (ADS)
Northan, Brian M.
2013-02-01
Deconvolution systems rely heavily on expert knowledge and would benefit from approaches that capture this expert knowledge. Fuzzy logic is an approach that is used to capture expert knowledge rules and produce outputs that range in degree. This paper describes a fuzzy-deconvolution-system that integrates traditional Richardson-Lucy deconvolution with fuzzy components. The system is intended for restoration of 3D widefield images taken under conditions of refractive index mismatch. The system uses a fuzzy rule set for calculating sample refractive index, a fuzzy median filter for inter-iteration noise reduction, and a fuzzy rule set for stopping criteria.
Iterative repair for scheduling and rescheduling
NASA Technical Reports Server (NTRS)
Zweben, Monte; Davis, Eugene; Deale, Michael
1991-01-01
An iterative repair search method is described called constraint based simulated annealing. Simulated annealing is a hill climbing search technique capable of escaping local minima. The utility of the constraint based framework is shown by comparing search performance with and without the constraint framework on a suite of randomly generated problems. Results are also shown of applying the technique to the NASA Space Shuttle ground processing problem. These experiments show that the search methods scales to complex, real world problems and reflects interesting anytime behavior.
Deterministic convergence in iterative phase shifting
Luna, Esteban; Salas, Luis; Sohn, Erika; Ruiz, Elfego; Nunez, Juan M.; Herrera, Joel
2009-03-10
Previous implementations of the iterative phase shifting method, in which the phase of a test object is computed from measurements using a phase shifting interferometer with unknown positions of the reference, do not provide an accurate way of knowing when convergence has been attained. We present a new approach to this method that allows us to deterministically identify convergence. The method is tested with a home-built Fizeau interferometer that measures optical surfaces polished to {lambda}/100 using the Hydra tool. The intrinsic quality of the measurements is better than 0.5 nm. Other possible applications for this technique include fringe projection or any problem where phase shifting is involved.
Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the lung Choking Chronic obstructive ...
A unified noise analysis for iterative image estimation
Qi, Jinyi
2003-07-03
Iterative image estimation methods have been widely used in emission tomography. Accurate estimate of the uncertainty of the reconstructed images is essential for quantitative applications. While theoretical approach has been developed to analyze the noise propagation from iteration to iteration, the current results are limited to only a few iterative algorithms that have an explicit multiplicative update equation. This paper presents a theoretical noise analysis that is applicable to a wide range of preconditioned gradient type algorithms. One advantage is that proposed method does not require an explicit expression of the preconditioner and hence it is applicable to some algorithms that involve line searches. By deriving fixed point expression from the iteration based results, we show that the iteration based noise analysis is consistent with the xed point based analysis. Examples in emission tomography and transmission tomography are shown.
Convergence Results on Iteration Algorithms to Linear Systems
Wang, Zhuande; Yang, Chuansheng; Yuan, Yubo
2014-01-01
In order to solve the large scale linear systems, backward and Jacobi iteration algorithms are employed. The convergence is the most important issue. In this paper, a unified backward iterative matrix is proposed. It shows that some well-known iterative algorithms can be deduced with it. The most important result is that the convergence results have been proved. Firstly, the spectral radius of the Jacobi iterative matrix is positive and the one of backward iterative matrix is strongly positive (lager than a positive constant). Secondly, the mentioned two iterations have the same convergence results (convergence or divergence simultaneously). Finally, some numerical experiments show that the proposed algorithms are correct and have the merit of backward methods. PMID:24991640
Braille line using electrical stimulation
NASA Astrophysics Data System (ADS)
Puertas, A.; Purés, P.; Echenique, A. M.; Ensinck, J. P. Graffigna y. G.
2007-11-01
Conceived within the field of Rehabilitation Technologies for visually impaired persons, the present work aims at enabling the blind user to read written material by means of a tactile display. Once he is familiarized to operate this system, the user will be able to achieve greater performance in study, academic and job activities, thus achieving a rapid and easier social inclusion. The devise accepts any kind of text that is computer-loadable (documents, books, Internet information, and the like) which, through digital means, can be read as Braille text on the pad. This tactile display is composed of an electrodes platform that simulate, through stimulation the writing/reading Braille characters. In order to perceive said characters in similar way to the tactile feeling from paper material, the skin receptor of fingers are stimulated electrically so as to simulate the same pressure and depressions as those of the paper-based counterpart information. Once designed and developed, the display was tested with blind subjects, with relatively satisfactory results. As a continuing project, this prototype is currently being improved as regards.
Laser cleaning of ITER's diagnostic mirrors
NASA Astrophysics Data System (ADS)
Skinner, C. H.; Gentile, C. A.; Doerner, R.
2012-10-01
Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We report on laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150 - 420 nm thick. A 1.06 μm Nd laser system provided 220 ns pulses at 8 kHz with typical power densities of 1-2 J/cm^2. The laser beam was fiber optically coupled to a scanner suitable for tokamak applications. The efficacy of mirror cleaning was assessed with a new technique that combines microscopic imaging and reflectivity measurements [1]. The method is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber. Excellent restoration of reflectivity for the carbon coated Mo mirrors was observed after laser scanning under vacuum conditions. For the beryllium coated mirrors restoration of reflectivity has so far been incomplete and modeling indicates that a shorter duration laser pulse is needed. No damage of the molybdenum mirror substrates was observed.[4pt][1] C.H. Skinner et al., Rev. Sci. Instrum. at press.
Adaptive self-calibrating iterative GRAPPA reconstruction.
Park, Suhyung; Park, Jaeseok
2012-06-01
Parallel magnetic resonance imaging in k-space such as generalized auto-calibrating partially parallel acquisition exploits spatial correlation among neighboring signals over multiple coils in calibration to estimate missing signals in reconstruction. It is often challenging to achieve accurate calibration information due to data corruption with noises and spatially varying correlation. The purpose of this work is to address these problems simultaneously by developing a new, adaptive iterative generalized auto-calibrating partially parallel acquisition with dynamic self-calibration. With increasing iterations, under a framework of the Kalman filter spatial correlation is estimated dynamically updating calibration signals in a measurement model and using fixed-point state transition in a process model while missing signals outside the step-varying calibration region are reconstructed, leading to adaptive self-calibration and reconstruction. Noise statistic is incorporated in the Kalman filter models, yielding coil-weighted de-noising in reconstruction. Numerical and in vivo studies are performed, demonstrating that the proposed method yields highly accurate calibration and thus reduces artifacts and noises even at high acceleration. PMID:21994010
Thomson scattering diagnostic systems in ITER
NASA Astrophysics Data System (ADS)
Bassan, M.; Andrew, P.; Kurskiev, G.; Mukhin, E.; Hatae, T.; Vayakis, G.; Yatsuka, E.; Walsh, M.
2016-01-01
Thomson scattering (TS) is a proven diagnostic technique that will be implemented in ITER in three independent systems. The Edge TS will measure electron temperature Te and electron density ne profiles at high resolution in the region with r/a>0.8 (with a the minor radius). The Core TS will cover the region r/a<0.85 and shall be able to measure electron temperatures up to 40 keV . The Divertor TS will observe a segment of the divertor plasma more than 700 mm long and is designed to detect Te as low as 0.3 eV . The Edge and Core systems are primary contributors to Te and ne profiles. Both are installed in equatorial port 10 and very close together with the toroidal distance between the two laser beams of less than 600 mm at the first wall (~ 6° toroidal separation), a characteristic that should allow to reliably match the two profiles in the region 0.8
Diverse Power Iteration Embeddings and Its Applications
Huang H.; Yoo S.; Yu, D.; Qin, H.
2014-12-14
Abstract—Spectral Embedding is one of the most effective dimension reduction algorithms in data mining. However, its computation complexity has to be mitigated in order to apply it for real-world large scale data analysis. Many researches have been focusing on developing approximate spectral embeddings which are more efficient, but meanwhile far less effective. This paper proposes Diverse Power Iteration Embeddings (DPIE), which not only retains the similar efficiency of power iteration methods but also produces a series of diverse and more effective embedding vectors. We test this novel method by applying it to various data mining applications (e.g. clustering, anomaly detection and feature selection) and evaluating their performance improvements. The experimental results show our proposed DPIE is more effective than popular spectral approximation methods, and obtains the similar quality of classic spectral embedding derived from eigen-decompositions. Moreover it is extremely fast on big data applications. For example in terms of clustering result, DPIE achieves as good as 95% of classic spectral clustering on the complex datasets but 4000+ times faster in limited memory environment.
The ITER ICRF Antenna Design with TOPICA
NASA Astrophysics Data System (ADS)
Milanesio, Daniele; Maggiora, Riccardo; Meneghini, Orso; Vecchi, Giuseppe
2007-11-01
TOPICA (Torino Polytechnic Ion Cyclotron Antenna) code is an innovative tool for the 3D/1D simulation of Ion Cyclotron Radio Frequency (ICRF), i.e. accounting for antennas in a realistic 3D geometry and with an accurate 1D plasma model [1]. The TOPICA code has been deeply parallelized and has been already proved to be a reliable tool for antennas design and performance prediction. A detailed analysis of the 24 straps ITER ICRF antenna geometry has been carried out, underlining the strong dependence and asymmetries of the antenna input parameters due to the ITER plasma response. We optimized the antenna array geometry dimensions to maximize loading, lower mutual couplings and mitigate sheath effects. The calculated antenna input impedance matrices are TOPICA results of a paramount importance for the tuning and matching system design. Electric field distributions have been also calculated and they are used as the main input for the power flux estimation tool. The designed optimized antenna is capable of coupling 20 MW of power to plasma in the 40 -- 55 MHz frequency range with a maximum voltage of 45 kV in the feeding coaxial cables. [1] V. Lancellotti et al., Nuclear Fusion, 46 (2006) S476-S499
Iterative reconstruction of volumetric particle distribution
NASA Astrophysics Data System (ADS)
Wieneke, Bernhard
2013-02-01
For tracking the motion of illuminated particles in space and time several volumetric flow measurement techniques are available like 3D-particle tracking velocimetry (3D-PTV) recording images from typically three to four viewing directions. For higher seeding densities and the same experimental setup, tomographic PIV (Tomo-PIV) reconstructs voxel intensities using an iterative tomographic reconstruction algorithm (e.g. multiplicative algebraic reconstruction technique, MART) followed by cross-correlation of sub-volumes computing instantaneous 3D flow fields on a regular grid. A novel hybrid algorithm is proposed here that similar to MART iteratively reconstructs 3D-particle locations by comparing the recorded images with the projections calculated from the particle distribution in the volume. But like 3D-PTV, particles are represented by 3D-positions instead of voxel-based intensity blobs as in MART. Detailed knowledge of the optical transfer function and the particle image shape is mandatory, which may differ for different positions in the volume and for each camera. Using synthetic data it is shown that this method is capable of reconstructing densely seeded flows up to about 0.05 ppp with similar accuracy as Tomo-PIV. Finally the method is validated with experimental data.
Pedestal stability comparison and ITER pedestal prediction
Snyder, P.; Alba, N; Beurskens, M.; Horton, L D
2009-01-01
The pressure at the top of the edge transport barrier (or 'pedestal height') strongly impacts fusion performance, while large edge localized modes (ELMs), driven by the free energy in the pedestal region, can constrain material lifetimes. Accurately predicting the pedestal height and ELM behavior in ITER is an essential element of prediction and optimization of fusion performance. Investigation of intermediate wavelength MHD modes (or 'peeling ballooning' modes) has led to an improved understanding of important constraints on the pedestal height and the mechanism for ELMs. The combination of high-resolution pedestal diagnostics, including substantial recent improvements, and a suite of highly efficient stability codes, has made edge stability analysis routine on several major tokamaks, contributing both to understanding, and to experimental planning and performance optimization. Here we present extensive comparisons of observations to predicted edge stability boundaries on several tokamaks, both for the standard (Type I) ELM regime, and for small ELM and ELM-free regimes. We further discuss a new predictive model for the pedestal height and width (EPED1), developed by self-consistently combining a simple width model with peeling-ballooning stability calculations. This model is tested against experimental measurements, and used in initial predictions of the pedestal height for ITER.
ITER plant layout and site services
NASA Astrophysics Data System (ADS)
Chuyanov, V. A.
2000-03-01
The ITER site has not yet been determined. Nevertheless, to develop a construction plan and a cost estimate, it is necessary to have a detailed layout of the buildings, structures and outdoor equipment integrated with the balance of plant service systems prototypical of large fusion power plants. These services include electrical power for magnet feeds and plasma heating systems, cryogenic and conventional cooling systems, compressed air, gas supplies, demineralized water, steam and drainage. Nuclear grade facilities are provided to handle tritium fuel and activated waste, as well as to prevent radiation exposure of workers and the public. To prevent interference between services of different types and for efficient arrangement of buildings, structures and equipment within the site area, a plan was developed which segregated different classes of services to four quadrants surrounding the tokamak building, placed at the approximate geographical centre of the site. The locations of the buildings on the generic site were selected to meet all design requirements at minimum total project cost. A similar approach was used to determine the locations of services above, at and below grade. The generic site plan can be adapted to the site selected for ITER without significant changes to the buildings or equipment. Some rearrangements may be required by site topography, resulting primarily in changes to the length of services that link the buildings and equipment.
Ordinal neural networks without iterative tuning.
Fernández-Navarro, Francisco; Riccardi, Annalisa; Carloni, Sante
2014-11-01
Ordinal regression (OR) is an important branch of supervised learning in between the multiclass classification and regression. In this paper, the traditional classification scheme of neural network is adapted to learn ordinal ranks. The model proposed imposes monotonicity constraints on the weights connecting the hidden layer with the output layer. To do so, the weights are transcribed using padding variables. This reformulation leads to the so-called inequality constrained least squares (ICLS) problem. Its numerical solution can be obtained by several iterative methods, for example, trust region or line search algorithms. In this proposal, the optimum is determined analytically according to the closed-form solution of the ICLS problem estimated from the Karush-Kuhn-Tucker conditions. Furthermore, following the guidelines of the extreme learning machine framework, the weights connecting the input and the hidden layers are randomly generated, so the final model estimates all its parameters without iterative tuning. The model proposed achieves competitive performance compared with the state-of-the-art neural networks methods for OR. PMID:25330430
Intense diagnostic neutral beam development for ITER
Rej, D.J.; Henins, I.; Fonck, R.J.; Kim, Y.J.
1992-05-01
For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.
Intense diagnostic neutral beam development for ITER
Rej, D.J.; Henins, I. ); Fonck, R.J.; Kim, Y.J. . Dept. of Nuclear Engineering and Engineering Physics)
1992-01-01
For the next-generation, burning tokamak plasmas such as ITER, diagnostic neutral beams and beam spectroscopy will continue to be used to determine a variety of plasma parameters such as ion temperature, rotation, fluctuations, impurity content, current density profile, and confined alpha particle density and energy distribution. Present-day low-current, long-pulse beam technology will be unable to provide the required signal intensities because of higher beam attenuation and background bremsstrahlung radiation in these larger, higher-density plasmas. To address this problem, we are developing a short-pulse, intense diagnostic neutral beam. Protons or deuterons are accelerated using magnetic-insulated ion-diode technology, and neutralized in a transient gas cell. A prototype 25-kA, 100-kV, 1-{mu}s accelerator is under construction at Los Alamos. Initial experiments will focus on ITER-related issues of beam energy distribution, current density, pulse length, divergence, propagation, impurity content, reproducibility, and maintenance.
Iterative Mechanism Solutions with Scenario and ADAMS
NASA Technical Reports Server (NTRS)
Rhoades, Daren
2006-01-01
This slide presentation reviews the use of iterative solutions using Scenario for Motion (UG NX 2 Motion) to assist in designing the Mars Science Laboratory (MSL). The MSL will have very unique design requirements, and in order to meet these requirements the system must have the ability to design for static stability, simulate mechanism kinematics, simulate dynamic behaviour and be capable of reconfiguration, and iterations as designed. The legacy process used on the Mars Exploration rovers worked, but it was cumbersome using multiple tools, limited configuration control, with manual process and communication, and multiple steps. The aim is to develop a mechanism that would reduce turn around time, and make more reiterations possible, to improve the quality and quantity of data, and to enhance configuration control. Currently for NX Scenario for Motion uses are in the articulation studies, the simulations of traverse motions,and subsystem simulations. The design of the Rover landing model requires accurate results, flexible elements, such as beams, and the use of the full ADAMS solver has been used. In order to achieve this, when required, there has been a direct translation from Scenario to ADAMS, with additional data in ascii format. The process that has been designed to move from Scenario to ADAMS is reviewed.
Stimulating Children to Write.
ERIC Educational Resources Information Center
Edwards, Roy
1985-01-01
Special education students can be stimulated to write through a variety of activities, including representation, publicity and display tasks, activities featuring photographs, use of music and poetry, and projects in which students finish stories and describe novel materials. (CL)
... the brain The neurostimulator, which puts out the electric current. The stimulator is similar to a heart pacemaker . It is usually placed under the skin near the collarbone, but may be ... pulses travel from the neurostimulator, along the extension ...
Spinal cord stimulation is a treatment for pain that uses a mild electric current to block nerve impulses ... stretched into the space on top of your spinal cord. These wires will be connected to a small ...
Growth hormone stimulation test
The growth hormone (GH) stimulation test measures the ability of the body to produce GH. ... killing medicine (antiseptic). The first sample is drawn early in the morning. Medicine is given through the ...
An iterative method for analysis of hadron ratios and Spectra in relativistic heavy-ion collisions
NASA Astrophysics Data System (ADS)
Choi, Suk; Lee, Kang Seog
2016-04-01
A new iteration method is proposed for analyzing both the multiplicities and the transverse momentum spectra measured within a small rapidity interval with low momentum cut-off without assuming the invariance of the rapidity distribution under the Lorentz-boost and is applied to the hadron data measured by the ALICE collaboration for Pb+Pb collisions at √ {^sNN} = 2.76 TeV. In order to correctly consider the resonance contribution only to the small rapidity interval measured, we only consider ratios involving only those hadrons whose transverse momentum spectrum is available. In spite of the small number of ratios considered, the quality of fitting both of the ratios and the transverse momentum spectra is excellent. Also, the calculated ratios involving strange baryons with the fitted parameters agree with the data surprisingly well.
Alpha-physics and measurement requirements for ITER
Zweben, S.J.; Young, K.M.; Putvinski, S.; Petrov, M.P.; Sadler, G.; Tobita, K.
1995-12-31
This paper reviews alpha particle physics issues in ITER and their implications for alpha particle measurements. A comparison is made between alpha heating in ITER and NBI and ICRH heating systems in present tokamaks, and alpha particle issues in ITER are discussed in three physics areas: `single particle` alpha effects, `collective` alpha effects, and RF interactions with alpha particles. 29 refs., 4 figs., 4 tabs.
Stationary second-degree iterative methods and recurrences
Kincaid, D.R.; Young, D.M.
1991-02-01
The basic theory of stationary second-degree iterative methods is presented from the point of view of recurrences. Recurrences are encountered in the development of expressions for the spectral radii and for various norms associated with linear stationary iterative methods. We show that many of these recurrences are special cases of a single general recurrence and that its closed-form solution leads to these expressions. Citations are given showing where the expressions occur in the theory of iterative methods.
Simulation and Analysis of the Hybrid Operating Mode in ITER
Kessel, C.E.; Budny, R.V.; Indireshkumar, K.
2005-09-22
The hybrid operating mode in ITER is examined with 0D systems analysis, 1.5D discharge scenario simulations using TSC and TRANSP, and the ideal MHD stability is discussed. The hybrid mode has the potential to provide very long pulses and significant neutron fluence if the physics regime can be produced in ITER. This paper reports progress in establishing the physics basis and engineering limitation for the hybrid mode in ITER.
ITER- International Toxicity Estimates for Risk, new TOXNET database.
Tomasulo, Patricia
2005-01-01
ITER, the International Toxicity Estimates for Risk database, joined the TOXNET system in the winter of 2004. ITER features international comparisons of environmental health risk assessment information and contains over 620 chemical records. ITER includes data from the EPA, Health Canada, the National Institute of Public Health and the Environment of the Netherlands, and other organizations that provide risk values that have been peer-reviewed. PMID:15760833
Compatibility of ITER candidate materials with static gallium
Luebbers, P.R.; Chopra, O.K.
1995-09-01
Corrosion tests have been conducted to determine the compatibility of gallium with candidate structural materials for the International Thermonuclear Experimental Reactor (ITER) first wall/blanket systems, e.g., Type 316 stainless steel (SS), Inconel 625, and Nb-5 Mo-1 Zr. The results indicate that Type 316 SS is least resistant to corrosion in static gallium and Nb-5 Mo-1 Zr alloy is most resistant. At 400 C, corrosion rates for Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy are {approx} 4.0, 0.5, and 0.03 mm/yr, respectively. Iron, nickel, and chromium react rapidly with gallium. Iron shows greater corrosion than nickel at 400 C ({ge} 88 and 18 mm/yr, respectively). The present study indicates that at temperatures up to 400 C, corrosion occurs primarily by dissolution and is accompanied by formation of metal/gallium intermetallic compounds. The growth of intermetallic compounds may control the overall rate of corrosion.
Bounded-Angle Iterative Decoding of LDPC Codes
NASA Technical Reports Server (NTRS)
Dolinar, Samuel; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush
2009-01-01
Bounded-angle iterative decoding is a modified version of conventional iterative decoding, conceived as a means of reducing undetected-error rates for short low-density parity-check (LDPC) codes. For a given code, bounded-angle iterative decoding can be implemented by means of a simple modification of the decoder algorithm, without redesigning the code. Bounded-angle iterative decoding is based on a representation of received words and code words as vectors in an n-dimensional Euclidean space (where n is an integer).
ITER Cryoplant Status and Economics of the LHe plants
NASA Astrophysics Data System (ADS)
Monneret, E.; Chalifour, M.; Bonneton, M.; Fauve, E.; Voigt, T.; Badgujar, S.; Chang, H.-S.; Vincent, G.
The ITER cryoplant is composed of helium and nitrogen refrigerators and generator combined with 80 K helium loop plants and external purification systems. Storage and recovery of the helium inventory is provided in warm and cold (80 K and 4.5 K) helium tanks.The conceptual design of the ITER cryoplant has been completed, the technical requirements defined for industrial procurement and contracts signed with industry. Each contract covers the design, manufacturing, installation and commissioning. Design is under finalization and manufacturing has started. First deliveries are scheduled by end of 2015.The various cryoplant systems are designed based on recognized codes and international standards to meet the availability, the reliability and the time between maintenance imposed by the long-term uninterrupted operation of the ITER Tokamak. In addition, ITER has to consider the constraint of a nuclear installation.ITER Organization (IO) is responsible for the liquid helium (LHe) Plants contract signed end of 2012 with industry. It is composed of three LHe Plants, working in parallel and able to provide a total average cooling capacity of 75 kW at 4.5 K. Based on concept designed developed with industries and the procurement phase, ITER has accumulated data to broaden the scaling laws for costing such systems.After describing the status of ITER cryoplant part of the cryogenic system, we shall present the economics of the ITER LHe Plants based on key design requirements, choice and challenges of this ITER Organization procurement.
A novel iterative scheme and its application to differential equations.
Khan, Yasir; Naeem, F; Šmarda, Zdeněk
2014-01-01
The purpose of this paper is to employ an alternative approach to reconstruct the standard variational iteration algorithm II proposed by He, including Lagrange multiplier, and to give a simpler formulation of Adomian decomposition and modified Adomian decomposition method in terms of newly proposed variational iteration method-II (VIM). Through careful investigation of the earlier variational iteration algorithm and Adomian decomposition method, we find unnecessary calculations for Lagrange multiplier and also repeated calculations involved in each iteration, respectively. Several examples are given to verify the reliability and efficiency of the method. PMID:24757427
Rapid and Iterative Estimation of Predictions of High School Graduation and Other Milestones
ERIC Educational Resources Information Center
Porter, Kristin E.; Balu, Rekha; Gunton, Brad; Pestronk, Jefferson; Cohen, Allison
2016-01-01
With the advent of data systems that allow for frequent or even real-time student data updates, and recognition that high school students often can move from being on-track to graduation to off-track in a matter of weeks, indicator analysis alone may not provide a complete picture to guide school leaders' actions. The authors of this paper suggest…
FRANCHFRI: the Finite-RANge Constrained Hartree-Fock Rapid Iterator
Younes, W; Gogny, D
2007-01-22
The Hartree-Fock code FRANCHFRI, which uses a finite-range nucleon-nucleon interaction, has been written and benchmarked. This code represents a new LLNL capability for realistic calculations in both nuclear-structure and nuclear-reaction physics. The use of a finite-range interaction represents a considerable improvement over other Hartree-Fock codes currently available in the public domain, which rely on zero-range forces. The finite-range force does not simply lead to a more realistic treatment of the nuclear problem, it avoids serious mathematical pathologies inherent to zero-range interactions. This brief and non-technical report introduces the code, its design philosophy, various benchmarks used to test its accuracy, and places it within its proper physics context. The current limitations and planned extensions of the code are also discussed.
Computational electromagnetic methods for transcranial magnetic stimulation
NASA Astrophysics Data System (ADS)
Gomez, Luis J.
Transcranial magnetic stimulation (TMS) is a noninvasive technique used both as a research tool for cognitive neuroscience and as a FDA approved treatment for depression. During TMS, coils positioned near the scalp generate electric fields and activate targeted brain regions. In this thesis, several computational electromagnetics methods that improve the analysis, design, and uncertainty quantification of TMS systems were developed. Analysis: A new fast direct technique for solving the large and sparse linear system of equations (LSEs) arising from the finite difference (FD) discretization of Maxwell's quasi-static equations was developed. Following a factorization step, the solver permits computation of TMS fields inside realistic brain models in seconds, allowing for patient-specific real-time usage during TMS. The solver is an alternative to iterative methods for solving FD LSEs, often requiring run-times of minutes. A new integral equation (IE) method for analyzing TMS fields was developed. The human head is highly-heterogeneous and characterized by high-relative permittivities (107). IE techniques for analyzing electromagnetic interactions with such media suffer from high-contrast and low-frequency breakdowns. The novel high-permittivity and low-frequency stable internally combined volume-surface IE method developed. The method not only applies to the analysis of high-permittivity objects, but it is also the first IE tool that is stable when analyzing highly-inhomogeneous negative permittivity plasmas. Design: TMS applications call for electric fields to be sharply focused on regions that lie deep inside the brain. Unfortunately, fields generated by present-day Figure-8 coils stimulate relatively large regions near the brain surface. An optimization method for designing single feed TMS coil-arrays capable of producing more localized and deeper stimulation was developed. Results show that the coil-arrays stimulate 2.4 cm into the head while stimulating 3
Some results concerning linear iterative (systolic) arrays
Ibarra, O.H.; Palis, M.A.; Kim, S.M.
1985-05-01
The authors have shown some new interesting results concerning the properties, power, and limitations of various types of linear iterative (systolic) arrays. The method they employed consisted of finding sequential machine characterizations of these array models, and then using the characterizations to prove the results. Because of the absence of any concurrency and synchronization problems, the authors obtained simple proofs to results which when proved directly on the arrays would seem very difficult. The characterizations, therefore, provide a novel and promising method which can be used to analyze other systolic systems. In the future they hope to extend this methodology to the study of two-dimensional and multidimensional systolic arrays, and other systolic systems with different interconnection networks.
ITER CENTRAL SOLENOID COIL INSULATION QUALIFICATION
Martovetsky, N N; Mann, T L; Miller, J R; Freudenberg, K D; Reed, R P; Walsh, R P; McColskey, J D; Evans, D
2009-06-11
An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4 x 4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.
Iterative Precise Conductivity Measurement with IDEs
Hubálek, Jaromír
2015-01-01
The paper presents a new approach in the field of precise electrolytic conductivity measurements with planar thin- and thick-film electrodes. This novel measuring method was developed for measurement with comb-like electrodes called interdigitated electrodes (IDEs). Correction characteristics over a wide range of specific conductivities were determined from an interface impedance characterization of the thick-film IDEs. The local maximum of the capacitive part of the interface impedance is used for corrections to get linear responses. The measuring frequency was determined at a wide range of measured conductivity. An iteration mode of measurements was suggested to precisely measure the conductivity at the right frequency in order to achieve a highly accurate response. The method takes precise conductivity measurements in concentration ranges from 10−6 to 1 M without electrode cell replacement. PMID:26007745
Iterated Gate Teleportation and Blind Quantum Computation
NASA Astrophysics Data System (ADS)
Pérez-Delgado, Carlos A.; Fitzsimons, Joseph F.
2015-06-01
Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements.
ITER Central Solenoid Coil Insulation Qualification
Martovetsky, Nicolai N; Mann Jr, Thomas Latta; Miller, John L; Freudenberg, Kevin D; Reed, Richard P; Walsh, Robert P; McColskey, J D; Evans, D
2010-01-01
An insulation system for ITER Central Solenoid must have sufficiently high electrical and structural strength. Design efforts to bring stresses in the turn and layer insulation within allowables failed. It turned out to be impossible to eliminate high local tensile stresses in the winding pack. When high local stresses can not be designed out, the qualification procedure requires verification of the acceptable structural and electrical strength by testing. We built two 4x4 arrays of the conductor jacket with two options of the CS insulation and subjected the arrays to 1.2 million compressive cycles at 60 MPa and at 76 K. Such conditions simulated stresses in the CS insulation. We performed voltage withstand tests and after end of cycling we measured the breakdown voltages between in the arrays. After that we dissectioned the arrays and studied micro cracks in the insulation. We report details of the specimens preparation, test procedures and test results.
Fusion Specific Features in ITER Accident Analysis
NASA Astrophysics Data System (ADS)
Bartels, H.-W.; Gordon, C. W.; Piet, S. J.; Poucet, A. E.; Saji, G.; Topilski, L. N.
1997-06-01
Fusion specific features like inherent plasma shutdown, low decay heat densities, cryogenic temperatures, and limited source terms were considered during the safety design process of ITER. Uncertainties in plasma disruptions motivates a robust design to cope with multiple failures of in-vessel cooling piping. A vacuum vessel pressure suppression system mitigates pressure transients and effectively captures mobilized radioactivity. In case of pump trips or ex-vessel coolant losses in the divertor the plasma needs to be actively terminated in a few seconds. Failure to do so might damage the divertor but radiological consequences will be minor due to the intact first confinement barrier. Tritium plant inventories are protected by several layers of confinement. Uncontrolled release of magnet energy will be prevented by design. Postulated damage from magnets to confinement barriers causes fluid ingress (air, water, helium) into the cryostat. The cold environment limits pressurization. Most tritium and dust is captured by condensation.
Learning to improve iterative repair scheduling
NASA Technical Reports Server (NTRS)
Zweben, Monte; Davis, Eugene
1992-01-01
This paper presents a general learning method for dynamically selecting between repair heuristics in an iterative repair scheduling system. The system employs a version of explanation-based learning called Plausible Explanation-Based Learning (PEBL) that uses multiple examples to confirm conjectured explanations. The basic approach is to conjecture contradictions between a heuristic and statistics that measure the quality of the heuristic. When these contradictions are confirmed, a different heuristic is selected. To motivate the utility of this approach we present an empirical evaluation of the performance of a scheduling system with respect to two different repair strategies. We show that the scheduler that learns to choose between the heuristics outperforms the same scheduler with any one of two heuristics alone.
Iterative methods for Toeplitz-like matrices
Huckle, T.
1994-12-31
In this paper the author will give a survey on iterative methods for solving linear equations with Toeplitz matrices, Block Toeplitz matrices, Toeplitz plus Hankel matrices, and matrices with low displacement rank. He will treat the following subjects: (1) optimal (w)-circulant preconditioners is a generalization of circulant preconditioners; (2) Optimal implementation of circulant-like preconditioners in the complex and real case; (3) preconditioning of near-singular matrices; what kind of preconditioners can be used in this case; (4) circulant preconditioning for more general classes of Toeplitz matrices; what can be said about matrices with coefficients that are not l{sub 1}-sequences; (5) preconditioners for Toeplitz least squares problems, for block Toeplitz matrices, and for Toeplitz plus Hankel matrices.
Iterated Gate Teleportation and Blind Quantum Computation.
Pérez-Delgado, Carlos A; Fitzsimons, Joseph F
2015-06-01
Blind quantum computation allows a user to delegate a computation to an untrusted server while keeping the computation hidden. A number of recent works have sought to establish bounds on the communication requirements necessary to implement blind computation, and a bound based on the no-programming theorem of Nielsen and Chuang has emerged as a natural limiting factor. Here we show that this constraint only holds in limited scenarios, and show how to overcome it using a novel method of iterated gate teleportations. This technique enables drastic reductions in the communication required for distributed quantum protocols, extending beyond the blind computation setting. Applied to blind quantum computation, this technique offers significant efficiency improvements, and in some scenarios offers an exponential reduction in communication requirements. PMID:26196609
Iterated upwind schemes for gas dynamics
Smolarkiewicz, Piotr K. Szmelter, Joanna
2009-01-10
A class of high-resolution schemes established in integration of anelastic equations is extended to fully compressible flows, and documented for unsteady (and steady) problems through a span of Mach numbers from zero to supersonic. The schemes stem from iterated upwind technology of the multidimensional positive definite advection transport algorithm (MPDATA). The derived algorithms employ standard and modified forms of the equations of gas dynamics for conservation of mass, momentum and either total or internal energy as well as potential temperature. Numerical examples from elementary wave propagation, through computational aerodynamics benchmarks, to atmospheric small- and large-amplitude acoustics with intricate wave-flow interactions verify the approach for both structured and unstructured meshes, and demonstrate its flexibility and robustness.
NASA Astrophysics Data System (ADS)
van den Brand, H.; de Baar, M. R.; Lopes Cardozo, N. J.; Westerhof, E.
2012-09-01
Control of Neoclassical Tearing Modes (NTMs) requires an accurate and low latency detection of the mode position. For a burning H-mode ITER plasma, simulations are conducted for both ECE detected via the equatorial port plug and along the line-of-sight of the ECCD launchers. Simulated ECE is detected using synthetic radiometers, with settings chosen to meet the required accuracy. A video bandwidth of 2 kHz is used which allows for an intermediate frequency bandwidth of BIF = 400 MHz for ECE detected via the equatorial port plug. For ECE detected via the ECCD line-of-sight, an intermediate frequency bandwidth of 1.5 GHz and 1 GHz for the 2/1 and 3/2 NTM respectively suffices for accurate location detection. For both ECE systems, the latency requirements for NTM suppression are fulfilled.
Robust tooth surface reconstruction by iterative deformation.
Jiang, Xiaotong; Dai, Ning; Cheng, Xiaosheng; Wang, Jun; Peng, Qingjin; Liu, Hao; Cheng, Cheng
2016-01-01
Digital design technologies have been applied extensively in dental medicine, especially in the field of dental restoration. The all-ceramic crown is an important restoration type of dental CAD systems. This paper presents a robust tooth surface reconstruction algorithm for all-ceramic crown design. The algorithm involves three necessary steps: standard tooth initial positioning and division; salient feature point extraction using Morse theory; and standard tooth deformation using iterative Laplacian Surface Editing and mesh stitching. This algorithm can retain the morphological features of the tooth surface well. It is robust and suitable for almost all types of teeth, including incisor, canine, premolar, and molar. Moreover, it allows dental technicians to use their own preferred library teeth for reconstruction. The algorithm has been successfully integrated in our Dental CAD system, more than 1000 clinical cases have been tested to demonstrate the robustness and effectiveness of the proposed algorithm. PMID:26638148
ITER fuel storage system conceptual design description
Nasise, J.E.; Anderson, J.L.; Bartlit, J.R.; Muller, M.E.
1990-01-01
Fuel, in the form of hydrogen isotopes Q{sub 2} (where Q is H, D, or T), is required to be stored and assayed in a safe manner at the proposed International Thermonuclear Experimental Reactor (ITER). Two subsystems are proposed for this task: Fuel Storage (FS) and Fuel Management (FM). The combined system, Fuel Storage and Management System (FSMS), will provide fuel storage, tritium inventory, gas analysis, transfer pumping, and flow measurements. Presented is a Conceptual Design Description (CDD) of only the FS portion of the FSMS. The proposed FS system permits tritium and its associated isotopes to be stored within ZrCo storage beds, as a solid metal-hydride, or as a gas stored in tanks. 10 refs., 4 figs., 3 tabs.
ITER tokamak buildings and equipment layout
Ahlfeld, C.E.; Dilling, D.A.; Ishimoto, Kazuyuki; Tanaka, Eiichi; Stoner, S.
1996-12-31
The International Thermonuclear Experimental Reactor (ITER) design has evolved to a level of maturity that has enabled the building designers to define the major dimensions and characteristics of the cluster of buildings that contain the tokamak and adjacent support equipment. Three-dimensional building models developed in a CATIA database provide the framework for the equipment layout. This article describes the preliminary layout of all major pieces of equipment, large bore pipes, ducts, busbars and other services. It is anticipated that some features of the layout will change as equipment design is advanced and future decisions are made, but these changes are not expected to alter the basic building design and any necessary changes are facilitated by the 3-D CATIA models. 1 ref., 6 figs.
Iterative restoration of SPECT projection images
Glick, S.J.; Xia, W.
1997-04-01
Photon attenuation and the limited nonstationary spatial resolution of the detector can reduce both qualitative and quantitative image quality in single photon emission computed tomography (SPECT). In this paper, a reconstruction approach is described which can compensate for both of these degradations. The approach involves processing the project data with Bellini`s method for attenuation compensation followed by an iterative deconvolution technique which uses the frequency distance principle (FDP) to model the distance-dependent camera blur. Modeling of the camera blur with the FDP allows an efficient implementation using fast Fourier transformation (FFT) methods. After processing of the project data, reconstruction is performed using filtered backprojections. Simulation studies using two different brain phantoms show that this approach gives reconstructions with a favorable bias versus noise tradeoff, provides no visually undesirable noise artifacts, and requires a low computational load.
NASA Astrophysics Data System (ADS)
Zhao, Jufeng; Gao, Xiumin; Chen, Yueting; Feng, Huajun; Xu, Zhihai; Li, Qi
2014-07-01
A fast scene-based nonuniformity correction algorithm is proposed for fixed-pattern noise removal in infrared focal plane array imagery. Based on minimization of L0 gradient of the estimated irradiance, the correction function is optimized through correction parameters estimation via iterative optimization strategy. When applied to different real IR data, the proposed method provides enhanced results with good visual effect, making a good balance between nonuniformity correction and details preservation. Comparing with other excellent approaches, this algorithm can accurately estimate the irradiance rapidly with fewer ghosting artifacts.
Comparison of starting values for iterative solutions to a universal Kepler's equation
NASA Technical Reports Server (NTRS)
Bergam, M. J.; Prussing, J. E.
1982-01-01
General starting values for the iterative numerical solution of a universal Kepler's equation for position in a conic orbit at a specified time are investigated. Three starting values based on recent refinements of previously obtained bounds on the solution are derived and tested numerically. Of these, a simple starting value based on a cubic approximation to Kepler's equation provides the most rapid convergence using both first and second order Newton algorithms. The performance of the starting values are compared with similar studies which used the restricted case of elliptical orbits with the initial epoch at periapse.
NASA Astrophysics Data System (ADS)
Hesameddini, Esmail; Rahimi, Azam
2015-05-01
In this article, we propose a new approach for solving fractional partial differential equations with variable coefficients, which is very effective and can also be applied to other types of differential equations. The main advantage of the method lies in its flexibility for obtaining the approximate solutions of time fractional and space fractional equations. The fractional derivatives are described based on the Caputo sense. Our method contains an iterative formula that can provide rapidly convergent successive approximations of the exact solution if such a closed form solution exists. Several examples are given, and the numerical results are shown to demonstrate the efficiency of the newly proposed method.
Nuclear Forensic Inferences Using Iterative Multidimensional Statistics
Robel, M; Kristo, M J; Heller, M A
2009-06-09
Nuclear forensics involves the analysis of interdicted nuclear material for specific material characteristics (referred to as 'signatures') that imply specific geographical locations, production processes, culprit intentions, etc. Predictive signatures rely on expert knowledge of physics, chemistry, and engineering to develop inferences from these material characteristics. Comparative signatures, on the other hand, rely on comparison of the material characteristics of the interdicted sample (the 'questioned sample' in FBI parlance) with those of a set of known samples. In the ideal case, the set of known samples would be a comprehensive nuclear forensics database, a database which does not currently exist. In fact, our ability to analyze interdicted samples and produce an extensive list of precise materials characteristics far exceeds our ability to interpret the results. Therefore, as we seek to develop the extensive databases necessary for nuclear forensics, we must also develop the methods necessary to produce the necessary inferences from comparison of our analytical results with these large, multidimensional sets of data. In the work reported here, we used a large, multidimensional dataset of results from quality control analyses of uranium ore concentrate (UOC, sometimes called 'yellowcake'). We have found that traditional multidimensional techniques, such as principal components analysis (PCA), are especially useful for understanding such datasets and drawing relevant conclusions. In particular, we have developed an iterative partial least squares-discriminant analysis (PLS-DA) procedure that has proven especially adept at identifying the production location of unknown UOC samples. By removing classes which fell far outside the initial decision boundary, and then rebuilding the PLS-DA model, we have consistently produced better and more definitive attributions than with a single pass classification approach. Performance of the iterative PLS-DA method
Error bounds from extra precise iterative refinement
Demmel, James; Hida, Yozo; Kahan, William; Li, Xiaoye S.; Mukherjee, Soni; Riedy, E. Jason
2005-02-07
We present the design and testing of an algorithm for iterative refinement of the solution of linear equations, where the residual is computed with extra precision. This algorithm was originally proposed in the 1960s [6, 22] as a means to compute very accurate solutions to all but the most ill-conditioned linear systems of equations. However two obstacles have until now prevented its adoption in standard subroutine libraries like LAPACK: (1) There was no standard way to access the higher precision arithmetic needed to compute residuals, and (2) it was unclear how to compute a reliable error bound for the computed solution. The completion of the new BLAS Technical Forum Standard [5] has recently removed the first obstacle. To overcome the second obstacle, we show how a single application of iterative refinement can be used to compute an error bound in any norm at small cost, and use this to compute both an error bound in the usual infinity norm, and a componentwise relative error bound. We report extensive test results on over 6.2 million matrices of dimension 5, 10, 100, and 1000. As long as a normwise (resp. componentwise) condition number computed by the algorithm is less than 1/max{l_brace}10,{radical}n{r_brace} {var_epsilon}{sub w}, the computed normwise (resp. componentwise) error bound is at most 2 max{l_brace}10,{radical}n{r_brace} {center_dot} {var_epsilon}{sub w}, and indeed bounds the true error. Here, n is the matrix dimension and w is single precision roundoff error. For worse conditioned problems, we get similarly small correct error bounds in over 89.4% of cases.
An iterative subaperture position correction algorithm
NASA Astrophysics Data System (ADS)
Lo, Weng-Hou; Lin, Po-Chih; Chen, Yi-Chun
2015-08-01
The subaperture stitching interferometry is a technique suitable for testing high numerical-aperture optics, large-diameter spherical lenses and aspheric optics. In the stitching process, each subaperture has to be placed at its correct position in a global coordinate, and the positioning precision would affect the accuracy of stitching result. However, the mechanical limitations in the alignment process as well as vibrations during the measurement would induce inevitable subaperture position uncertainties. In our previous study, a rotational scanning subaperture stitching interferometer has been constructed. This paper provides an iterative algorithm to correct the subaperture position without altering the interferometer configuration. Each subaperture is first placed at its geometric position estimated according to the F number of reference lens, the measurement zenithal angle and the number of pixels along the width of subaperture. By using the concept of differentiation, a shift compensator along the radial direction of the global coordinate is added into the stitching algorithm. The algorithm includes two kinds of compensators: one for the geometric null with four compensators of piston, two directional tilts and defocus, and the other for the position correction with the shift compensator. These compensators are computed iteratively to minimize the phase differences in the overlapped regions of subapertures in a least-squares sense. The simulation results demonstrate that the proposed method works to the position accuracy of 0.001 pixels for both the single-ring and multiple-ring configurations. Experimental verifications with the single-ring and multiple-ring data also show the effectiveness of the algorithm.
The Effect of Iteration on the Design Performance of Primary School Children
ERIC Educational Resources Information Center
Looijenga, Annemarie; Klapwijk, Remke; de Vries, Marc J.
2015-01-01
Iteration during the design process is an essential element. Engineers optimize their design by iteration. Research on iteration in Primary Design Education is however scarce; possibly teachers believe they do not have enough time for iteration in daily classroom practices. Spontaneous playing behavior of children indicates that iteration fits in…
Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.
2008-02-12
A procedure for carrying out iterative model-building, density modification and refinement is presented in which the density in an OMIT region is essentially unbiased by an atomic model. Density from a set of overlapping OMIT regions can be combined to create a composite 'Iterative-Build' OMIT map that is everywhere unbiased by an atomic model but also everywhere benefiting from the model-based information present elsewhere in the unit cell. The procedure may have applications in the validation of specific features in atomic models as well as in overall model validation. The procedure is demonstrated with a molecular replacement structure and with an experimentally-phased structure, and a variation on the method is demonstrated by removing model bias from a structure from the Protein Data Bank.
NASA Astrophysics Data System (ADS)
Ramlau, R.; Saxenhuber, D.; Yudytskiy, M.
2014-07-01
The problem of atmospheric tomography arises in ground-based telescope imaging with adaptive optics (AO), where one aims to compensate in real-time for the rapidly changing optical distortions in the atmosphere. Many of these systems depend on a sufficient reconstruction of the turbulence profiles in order to obtain a good correction. Due to steadily growing telescope sizes, there is a strong increase in the computational load for atmospheric reconstruction with current methods, first and foremost the MVM. In this paper we present and compare three novel iterative reconstruction methods. The first iterative approach is the Finite Element- Wavelet Hybrid Algorithm (FEWHA), which combines wavelet-based techniques and conjugate gradient schemes to efficiently and accurately tackle the problem of atmospheric reconstruction. The method is extremely fast, highly flexible and yields superior quality. Another novel iterative reconstruction algorithm is the three step approach which decouples the problem in the reconstruction of the incoming wavefronts, the reconstruction of the turbulent layers (atmospheric tomography) and the computation of the best mirror correction (fitting step). For the atmospheric tomography problem within the three step approach, the Kaczmarz algorithm and the Gradient-based method have been developed. We present a detailed comparison of our reconstructors both in terms of quality and speed performance in the context of a Multi-Object Adaptive Optics (MOAO) system for the E-ELT setting on OCTOPUS, the ESO end-to-end simulation tool.
Rapid prototyping and the human factors engineering process.
Beevis, D; Denis, G S
1992-06-01
Rapid prototyping or 'virtual prototyping' of human-machine interfaces offers the possibility of putting the human operator 'in the loop' without the effort and cost associated with conventional man-in-the-loop simulation. Advocates suggest that rapid prototyping is compatible with conventional systems development techniques. It is not clear, however, exactly how rapid prototyping could be used in relation to conventional human factors engineering analyses. Therefore, an investigation of the use of the VAPS virtual prototyping system was carried out in five organizations. The results show that a variety of task analysis approaches can be used to initiate rapid prototyping. Overall, it appears that rapid prototyping facilitates an iterative approach to the development of the human-machine interface, and that is most applicable to the early stages of systems development, rather than to detailed design. PMID:15676861
An Iterative Method for Solving Variable Coefficient ODEs
ERIC Educational Resources Information Center
Deeba, Elias; Yoon, Jeong-Mi; Zafiris, Vasilis
2003-01-01
In this classroom note, the authors present a method to solve variable coefficients ordinary differential equations of the form p(x)y([squared])(x) + q(x)y([superscript 1])(x) + r(x)y(x) = 0. They propose an iterative method as an alternate method to solve the above equation. This iterative method is accessible to an undergraduate student studying…
Magnet design technical report---ITER definition phase
Henning, C.
1989-04-28
This report contains papers on the following topics: conceptual design; radiation damage of ITER magnet systems; insulation system of the magnets; critical current density and strain sensitivity; toroidal field coil structural analysis; stress analysis for the ITER central solenoid; and volt-second capabilities and PF magnet configurations.
Validation of 1-D transport and sawtooth models for ITER
Connor, J.W.; Turner, M.F.; Attenberger, S.E.; Houlberg, W.A.
1996-12-31
In this paper the authors describe progress on validating a number of local transport models by comparing their predictions with relevant experimental data from a range of tokamaks in the ITER profile database. This database, the testing procedure and results are discussed. In addition a model for sawtooth oscillations is used to investigate their effect in an ITER plasma with alpha-particles.
Wall conditioning for ITER: Current experimental and modeling activities
NASA Astrophysics Data System (ADS)
Douai, D.; Kogut, D.; Wauters, T.; Brezinsek, S.; Hagelaar, G. J. M.; Hong, S. H.; Lomas, P. J.; Lyssoivan, A.; Nunes, I.; Pitts, R. A.; Rohde, V.; de Vries, P. C.
2015-08-01
Wall conditioning will be required in ITER to control fuel and impurity recycling, as well as tritium (T) inventory. Analysis of conditioning cycle on the JET, with its ITER-Like Wall is presented, evidencing reduced need for wall cleaning in ITER compared to JET-CFC. Using a novel 2D multi-fluid model, current density during Glow Discharge Conditioning (GDC) on the in-vessel plasma-facing components (PFC) of ITER is predicted to approach the simple expectation of total anode current divided by wall surface area. Baking of the divertor to 350 °C should desorb the majority of the co-deposited T. ITER foresees the use of low temperature plasma based techniques compatible with the permanent toroidal magnetic field, such as Ion (ICWC) or Electron Cyclotron Wall Conditioning (ECWC), for tritium removal between ITER plasma pulses. Extrapolation of JET ICWC results to ITER indicates removal comparable to estimated T-retention in nominal ITER D:T shots, whereas GDC may be unattractive for that purpose.
Not so Complex: Iteration in the Complex Plane
ERIC Educational Resources Information Center
O'Dell, Robin S.
2014-01-01
The simple process of iteration can produce complex and beautiful figures. In this article, Robin O'Dell presents a set of tasks requiring students to use the geometric interpretation of complex number multiplication to construct linear iteration rules. When the outputs are plotted in the complex plane, the graphs trace pleasing designs…
Language Evolution by Iterated Learning with Bayesian Agents
ERIC Educational Resources Information Center
Griffiths, Thomas L.; Kalish, Michael L.
2007-01-01
Languages are transmitted from person to person and generation to generation via a process of iterated learning: people learn a language from other people who once learned that language themselves. We analyze the consequences of iterated learning for learning algorithms based on the principles of Bayesian inference, assuming that learners compute…
On the Levin iterative method for oscillatory integrals
NASA Astrophysics Data System (ADS)
Xiang, Shuhuang; Wang, Haiyong
2008-07-01
This paper considers and gives error analysis for Levin iteration method to approximate Bessel-trigonometric transformation . For generalized Fourier transformation under the condition that g'(x)[not equal to]0 for all x[set membership, variant][a,b], Levin iteration method with the initial U[0](x)[reverse not equivalent]0 is identical to the asymptotic method.
Experimental investigation of iterative reconstruction techniques for high resolution mammography
NASA Astrophysics Data System (ADS)
Vengrinovich, Valery L.; Zolotarev, Sergei A.; Linev, Vladimir N.
2014-02-01
The further development of the new iterative reconstruction algorithms to improve three-dimensional breast images quality restored from incomplete and noisy mammograms, is provided. The algebraic reconstruction method with simultaneous iterations - Simultaneous Algebraic Reconstruction Technique (SART) and the iterative method of statistical reconstruction Bayesian Iterative Reconstruction (BIR) are referred here as the preferable iterative methods suitable to improve the image quality. For better processing we use the Graphics Processing Unit (GPU). Method of minimizing the Total Variation (TV) is used as a priori support for regularization of iteration process and to reduce the level of noise in the reconstructed image. Preliminary results with physical phantoms show that all examined methods are capable to reconstruct structures layer-by-layer and to separate layers which images are overlapped in the Z- direction. It was found that the method of traditional Shift-And-Add tomosynthesis (SAA) is worse than iterative methods SART and BIR in terms of suppression of the anatomical noise and image blurring in between the adjacent layers. Despite of the fact that the measured contrast/noise ratio in the presence of low contrast internal structures is higher for the method of tomosynthesis SAA than for SART and BIR methods, its effectiveness in the presence of structured background is rather poor. In our opinion the optimal results can be achieved using Bayesian iterative reconstruction BIR.
Perlmutter, Joel S.; Mink, Jonathan W.
2015-01-01
Deep brain stimulation (DBS) has provided remarkable benefits for people with a variety of neurologic conditions. Stimulation of the ventral intermediate nucleus of the thalamus can dramatically relieve tremor associated with essential tremor or Parkinson disease (PD). Similarly, stimulation of the subthalamic nucleus or the internal segment of the globus pallidus can substantially reduce bradykinesia, rigidity, tremor, and gait difficulties in people with PD. Multiple groups are attempting to extend this mode of treatment to other conditions. Yet, the precise mechanism of action of DBS remains uncertain. Such studies have importance that extends beyond clinical therapeutics. Investigations of the mechanisms of action of DBS have the potential to clarify fundamental issues such as the functional anatomy of selected brain circuits and the relationship between activity in those circuits and behavior. Although we review relevant clinical issues, we emphasize the importance of current and future investigations on these topics. PMID:16776585
PUBLISHER'S NOTE: Rapid Communications Rapid Communications
NASA Astrophysics Data System (ADS)
Miller, Tom
2009-09-01
As part of a general review of Superconductor Science and Technology, we have been examining the scope for Rapid Communications (RAPs). We recognize these articles make up an important part of the journal representing the latest state-of-the-art research in superconductivity. To reflect this, we have devised a new scope for this article type: 'Rapid Communications. The journal offers open access to outstanding short articles (no longer than 5 journal pages or 4500 words including figures) reporting new and timely developments in superconductivity and its applications. These articles should report very substantial new advances in superconductivity to the readers of Superconductor Science and Technology, but are not expected to meet any requirement of 'general interest'. RAPs will be processed quickly (average receipt to online publication for RAPs is around 60 days) and are permanently free to read in the electronic journal. Authors submitting a RAP should provide reasons why the work is urgent and requires rapid publication. Each RAP will be assessed for suitability by our Reviews and Rapid Communications Editor before full peer review takes place.' The essential points are: They should report very substantial new advances in superconductivity and its application; They must be no longer than 5 journal pages long (approx. 4500 words); Average publication time for a Rapid Communication is 60 days; They are free to read. As mentioned in the previous publisher's announcement (2009 Supercond. Sci. Technol. 22 010101), each submitted Rapid Communication must come with a letter justifying why it should be prioritized over regular papers and will be pre-assessed by our Reviews and Rapid Communications Editor. In addition, we will work with the authors of any Rapid Communication to promote and raise the visibility of the work presented in it. We will be making further changes to the journal in the near future and we write to you accordingly. Thank you for your kind
Image Restoration Using the Damped Richardson-Lucy Iteration
NASA Astrophysics Data System (ADS)
White, R. L.
The most widely used image restoration technique for optical astronomical data is the Richardson-Lucy (RL) iteration. The RL method is well-suited to optical and ultraviolet because it converges to the maximum likelihood solution for Poisson statistics in the data, which is appropriate for astronomical images taken with CCD or photon-counting detectors. Images restored using the RL iteration have good good photometric linearity and can be used for quantitative analysis, and typical RL restorations require a manageable amount of computer time. Despite its advantages, the RL method has some serious shortcomings. Noise amplification is a problem, as for all maximum likelihood techniques. If one performs many RL iterations on an image containing an extended object such as a galaxy, the extended emission develops a ``speckled'' appearance. The speckles are the result of fitting the noise in the data too closely. The only limit on the amount of noise amplification in the RL method is the requirement that the image not become negative. The usual practical approach to limiting noise amplification is simply to stop the iteration when the restored image appears to become too noisy. However, in most cases the number of iterations needed is different for different parts of the image. Hundreds of iterations may be required to get a good fit to the high signal-to-noise image of a bright star, while a smooth, extended object may be fitted well after only a few iterations. Thus, one would like to be able to slow or stop the iteration automatically in regions where a smooth model fits the data adequately, while continuing to iterate in regions where there are sharp features (edges or point sources). The need for a spatially adaptive convergence criterion is exacerbated when CCD readout noise is included in the RL algorithm (Snyder, Hammoud, & White, 1993, JOSA A , 10 , 1014), because the rate of convergence is then slower for faint stars than for bright stars. This paper will
Summary report for ITER Task -- D4: Activation calculations for the stainless steel ITER design
Attaya, H.
1995-02-01
Detailed activation analysis for ITER has been performed as a part of ITER Task D4. The calculations have been performed for the shielding blanket (SS/water) and for the breeding blanket (LiN) options. The activation code RACC-P, which has been modified under IFER Task-D-10 for pulsed operation, has been used in this analysis. The spatial distributions of the radioactive inventory, decay heat, biological hazard potential, and the contact dose were calculated for the two designs for different operation modes and targeted fluences. A one-dimensional toroidal geometrical model has been utilized to determine the neutron fluxes in the two designs. The results are normalized for an inboard and outboard neutron wall loadings of 0.91 and 1.2 MW/M{sup 2}, respectively. The point-wise distributions of the decay gamma sources have been calculated everywhere in the reactor at several times after the shutdown of the two designs and are then used in the transport code ONEDANT to calculate the biological dose everywhere in the reactor. The point-wise distributions of all the responses have also been calculated. These calculations have been performed for neutron fluences of 3.0 MWa/M{sup 2}, which corresponds to the target fluence of ITER, and 0.1 MWa/M{sup 2}, which is anticipated to correspond to the beginning of an extended maintenance period.
On the JET ITER-Like ICRF antenna and implications for the ICRF system for ITER
NASA Astrophysics Data System (ADS)
Durodie, Frederic; Nightingale, Mark
2009-11-01
A new ``ITER-Like'' Ion Cyclotron Resonance Frequency (ICRF) antenna was installed on the JET tokamak in 2007 and extensively operated on plasma since May 2008 for a wide range of conditions (frequencies: 33, 42 and 47 MHz, L- and ELMy H-mode plasmas, antenna strap - plasma separatrix distances from 9 to 17 cm). Aspects relating to the potential performance and design of the ITER system, will be discussed: (i) the wave coupling performance and validation of the TOPICA modelling code used to predict the coupled power in ITER; (ii) the operation at high coupled power density (up to 6.2 MW/m^2 in L-mode, 4.1 MW/m^2 in H-mode) and high RF voltage on the antenna structure (up to 42 kV); (iii) the coupling of ICRF power during fast variations (ms) in coupling occurring during ELMs and (iv) antenna control in the presence of high mutual coupling between antenna straps.
Final Report on ITER Task Agreement 81-10
Brad J. Merrill
2009-01-01
An International Thermonuclear Experimental Reactor (ITER) Implementing Task Agreement (ITA) on Magnet Safety was established between the ITER International Organization (IO) and the Idaho National Laboratory (INL) Fusion Safety Program (FSP) during calendar year 2004. The objectives of this ITA were to add new capabilities to the MAGARC code and to use this updated version of MAGARC to analyze unmitigated superconductor quench events for both poloidal field (PF) and toroidal field (TF) coils of the ITER design. This report documents the completion of the work scope for this ITA. Based on the results obtained for this ITA, an unmitigated quench event in an ITER larger PF coil does not appear to be as severe an accident as in an ITER TF coil.
Iterative image reconstruction techniques: cardiothoracic computed tomography applications.
Cho, Young Jun; Schoepf, U Joseph; Silverman, Justin R; Krazinski, Aleksander W; Canstein, Christian; Deak, Zsuzsanna; Grimm, Jochen; Geyer, Lucas L
2014-07-01
Iterative image reconstruction algorithms provide significant improvements over traditional filtered back projection in computed tomography (CT). Clinically available through recent advances in modern CT technology, iterative reconstruction enhances image quality through cyclical image calculation, suppressing image noise and artifacts, particularly blooming artifacts. The advantages of iterative reconstruction are apparent in traditionally challenging cases-for example, in obese patients, those with significant artery calcification, or those with coronary artery stents. In addition, as clinical use of CT has grown, so have concerns over ionizing radiation associated with CT examinations. Through noise reduction, iterative reconstruction has been shown to permit radiation dose reduction while preserving diagnostic image quality. This approach is becoming increasingly attractive as the routine use of CT for pediatric and repeated follow-up evaluation grows ever more common. Cardiovascular CT in particular, with its focus on detailed structural and functional analyses, stands to benefit greatly from the promising iterative solutions that are readily available. PMID:24662334
A unified noise analysis for iterative image estimation.
Qi, Jinyi
2003-11-01
Iterative image estimation methods have been widely used in emission tomography. Accurate estimation of the uncertainty of the reconstructed images is essential for quantitative applications. While both iteration-based noise analysis and fixed-point noise analysis have been developed, current iteration-based results are limited to only a few algorithms that have an explicit multiplicative update equation and some may not converge to the fixed-point result. This paper presents a theoretical noise analysis that is applicable to a wide range of preconditioned gradient-type algorithms. Under a certain condition, the proposed method does not require an explicit expression of the preconditioner. By deriving the fixed-point expression from the iteration-based result, we show that the proposed iteration-based noise analysis is consistent with fixed-point analysis. Examples in emission tomography and transmission tomography are shown. The results are validated using Monte Carlo simulations. PMID:14653559
Raemy, Bernard
2012-06-21
The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "No Go" decision and initiate project termination in April 2012.
NASA Technical Reports Server (NTRS)
1997-01-01
Under a Goddard Space Flight Center contract, Electrologic of America was able to refine the process of densely packing circuitry on personal computer boards, providing significant contributions to the closed-loop systems for the Remote Manipulator System Simulator. The microcircuitry work was then applied to the StimMaster FES Ergometer, an exercise device used to stimulate muscles suffering from paralysis. The electrical stimulation equipment was developed exclusively for V-Care Health Systems, Inc. Product still commercially available as of March 2002.
Neural stimulation with optical radiation
Richter, Claus-Peter; Matic, Agnella Izzo; Wells, Jonathon D.; Jansen, E. Duco; Walsh, Joseph T.
2012-01-01
This paper reviews the existing research on infrared neural stimulation, a means of artificially stimulating neurons that has been proposed as an alternative to electrical stimulation. Infrared neural stimulation (INS) is defined as the direct induction of an evoked potential in response to a transient targeted deposition of optical energy. The foremost advantage of using optical radiation for neural stimulation is its spatial resolution. Exogenously applied or trans-genetically synthesized fluorophores are not used to achieve stimulation. Here, current work on INS is presented for motor nerves, sensory nerves, central nervous system, and in vitro preparations. A discussion follows addressing the mechanism of INS and its potential use in neuroprostheses. A brief review of neural depolarization involving other optical methods is also presented. Topics covered include optical stimulation concurrent with electrical stimulation, optical stimulation using exogenous fluorophores, and optical stimulation by transgenic induction of light-gated ion channels. PMID:23082105
Neural stimulation with optical radiation.
Richter, Claus-Peter; Matic, Agnella Izzo; Wells, Jonathon D; Jansen, E Duco; Walsh, Joseph T
2011-01-01
This paper reviews the existing research on infrared neural stimulation, a means of artificially stimulating neurons that has been proposed as an alternative to electrical stimulation. Infrared neural stimulation (INS) is defined as the direct induction of an evoked potential in response to a transient targeted deposition of optical energy. The foremost advantage of using optical radiation for neural stimulation is its spatial resolution. Exogenously applied or trans-genetically synthesized fluorophores are not used to achieve stimulation. Here, current work on INS is presented for motor nerves, sensory nerves, central nervous system, and in vitro preparations. A discussion follows addressing the mechanism of INS and its potential use in neuroprostheses. A brief review of neural depolarization involving other optical methods is also presented. Topics covered include optical stimulation concurrent with electrical stimulation, optical stimulation using exogenous fluorophores, and optical stimulation by transgenic induction of light-gated ion channels. PMID:23082105
Study of Driving Fatigue Alleviation by Transcutaneous Acupoints Electrical Stimulations
Wang, Fuwang; Wang, Hong
2014-01-01
Driving fatigue is more likely to bring serious safety trouble to traffic. Therefore, accurately and rapidly detecting driving fatigue state and alleviating fatigue are particularly important. In the present work, the electrical stimulation method stimulating the Láogóng point (劳宫PC8) of human body is proposed, which is used to alleviate the mental fatigue of drivers. The wavelet packet decomposition (WPD) is used to extract θ, α, and β subbands of drivers' electroencephalogram (EEG) signals. Performances of the two algorithms (θ + α)/(α + β) and θ/β are also assessed as possible indicators for fatigue detection. Finally, the differences between the drivers with electrical stimulation and normal driving are discussed. It is shown that stimulating the Láogóng point (劳宫PC8) using electrical stimulation method can alleviate driver fatigue effectively during longtime driving. PMID:25254242
Evaluating iterative reconstruction performance in computed tomography
Chen, Baiyu Solomon, Justin; Ramirez Giraldo, Juan Carlos; Samei, Ehsan
2014-12-15
Purpose: Iterative reconstruction (IR) offers notable advantages in computed tomography (CT). However, its performance characterization is complicated by its potentially nonlinear behavior, impacting performance in terms of specific tasks. This study aimed to evaluate the performance of IR with both task-specific and task-generic strategies. Methods: The performance of IR in CT was mathematically assessed with an observer model that predicted the detection accuracy in terms of the detectability index (d′). d′ was calculated based on the properties of the image noise and resolution, the observer, and the detection task. The characterizations of image noise and resolution were extended to accommodate the nonlinearity of IR. A library of tasks was mathematically modeled at a range of sizes (radius 1–4 mm), contrast levels (10–100 HU), and edge profiles (sharp and soft). Unique d′ values were calculated for each task with respect to five radiation exposure levels (volume CT dose index, CTDI{sub vol}: 3.4–64.8 mGy) and four reconstruction algorithms (filtered backprojection reconstruction, FBP; iterative reconstruction in imaging space, IRIS; and sinogram affirmed iterative reconstruction with strengths of 3 and 5, SAFIRE3 and SAFIRE5; all provided by Siemens Healthcare, Forchheim, Germany). The d′ values were translated into the areas under the receiver operating characteristic curve (AUC) to represent human observer performance. For each task and reconstruction algorithm, a threshold dose was derived as the minimum dose required to achieve a threshold AUC of 0.9. A task-specific dose reduction potential of IR was calculated as the difference between the threshold doses for IR and FBP. A task-generic comparison was further made between IR and FBP in terms of the percent of all tasks yielding an AUC higher than the threshold. Results: IR required less dose than FBP to achieve the threshold AUC. In general, SAFIRE5 showed the most significant dose reduction
Copeptin under glucagon stimulation.
Lewandowski, Krzysztof C; Lewiński, Andrzej; Skowrońska-Jóźwiak, Elżbieta; Stasiak, Magdalena; Horzelski, Wojciech; Brabant, Georg
2016-05-01
Stimulation of growth hormone (GH) and adrenocorticotropic hormone (ACTH) secretion by glucagon is a standard procedure to assess pituitary dysfunction but the pathomechanism of glucagon action remains unclear. As arginine vasopressin (AVP) may act on the release of both, GH and ACTH, we tested here the role of AVP in GST by measuring a stable precursor fragment, copeptin, which is stoichiometrically secreted with AVP in a 1:1 ratio. ACTH, cortisol, GH, and copeptin were measured at 0, 60, 90, 120, 150, and 180 min during GST in 79 subjects: healthy controls (Group 1, n = 32), subjects with pituitary disease, but with adequate cortisol and GH responses during GST (Group 2, n = 29), and those with overt hypopituitarism (Group 3, n = 18). Copeptin concentrations significantly increased over baseline 150 and 180 min following glucagon stimulation in controls and patients with intact pituitary function but not in hypopituitarism. Copeptin concentrations were stimulated over time and the maximal increment correlated with ACTH, while correlations between copeptin and GH were weaker. Interestingly, copeptin as well as GH secretion was significantly attenuated when comparing subjects within the highest to those in the lowest BMI quartile (p < 0.05). Copeptin is significantly released following glucagon stimulation. As this release is BMI-dependent, the time-dependent relation between copeptin and GH may be obscured, whereas the close relation to ACTH suggests that AVP/copeptin release might be linked to the activation of the adrenal axis. PMID:26578365
Brain stimulation in migraine.
Brighina, Filippo; Cosentino, Giuseppe; Fierro, Brigida
2013-01-01
Migraine is a very prevalent disease with great individual disability and socioeconomic burden. Despite intensive research effort in recent years, the etiopathogenesis of the disease remains to be elucidated. Recently, much importance has been given to mechanisms underlying the cortical excitability that has been suggested to be dysfunctional in migraine. In recent years, noninvasive brain stimulation techniques based on magnetic fields (transcranial magnetic stimulation, TMS) and on direct electrical currents (transcranial direct current stimulation, tDCS) have been shown to be safe and effective tools to explore the issue of cortical excitability, activation, and plasticity in migraine. Moreover, TMS, repetitive TMS (rTMS), and tDCS, thanks to their ability to interfere with and/or modulate cortical activity inducing plastic, persistent effects, have been also explored as potential therapeutic approaches, opening an interesting perspective for noninvasive neurostimulation for both symptomatic and preventive treatment of migraine and other types of headache. In this chapter we critically review evidence regarding the role of noninvasive brain stimulation in the pathophysiology and treatment of migraine, delineating the advantages and limits of these techniques together with potential development and future application. PMID:24112926
Heliostat Stimulator operator's manual
Not Available
1980-11-01
The Heliostat Stimulator is a portable test tool, housed in a suitcase, which can be used to perform the following functions: (1) acceptance testing of newly manufactured Heliostat Controllers (HC) and Heliostat Field Controllers (HFC); (2) aid in the installation and alignment of Heliostats; and (3) provide diagnostic troubleshooting capability in the event of Heliostat failure in the field.
NASA Astrophysics Data System (ADS)
Perkins, William C.; Lagoda, Gwen A.; Burnett, Arthur; Fried, Nathaniel M.
2015-07-01
Identification and preservation of the cavernous nerves (CNs) during prostate cancer surgery is critical for post-operative sexual function. Electrical nerve stimulation (ENS) mapping has previously been tested as an intraoperative tool for CN identification, but was found to be unreliable. ENS is limited by the need for electrode-tissue contact, poor spatial precision from electrical current spreading, and stimulation artifacts interfering with detection. Alternatively, optical nerve stimulation (ONS) provides noncontact stimulation, improved spatial selectivity, and elimination of stimulation artifacts. This study compares ENS to pulsed/CW ONS to explore the ONS mechanism. A total of eighty stimulations were performed in 5 rats, in vivo. ENS (4 V, 5 ms, 10 Hz) was compared to ONS using a pulsed diode laser nerve stimulator (1873 nm, 5 ms, 10 Hz) or CW diode laser nerve stimulator (1455 nm). Intracavernous pressure (ICP) response and nerve compound action potentials (nCAPs) were measured. All three stimulation modes (ENS, ONS-CW, ONS-P) produced comparable ICP magnitudes. However, ENS demonstrated more rapid ICP response times and well defined nCAPs compared to unmeasurable nCAPs for ONS. Further experiments measuring single action potentials during ENS and ONS are warranted to further understand differences in the ENS and ONS mechanisms.
Transcranial brain stimulation: closing the loop between brain and stimulation
Karabanov, Anke; Thielscher, Axel; Siebner, Hartwig Roman
2016-01-01
Purpose of review To discuss recent strategies for boosting the efficacy of noninvasive transcranial brain stimulation to improve human brain function. Recent findings Recent research exposed substantial intra- and inter-individual variability in response to plasticity-inducing transcranial brain stimulation. Trait-related and state-related determinants contribute to this variability, challenging the standard approach to apply stimulation in a rigid, one-size-fits-all fashion. Several strategies have been identified to reduce variability and maximize the plasticity-inducing effects of noninvasive transcranial brain stimulation. Priming interventions or paired associative stimulation can be used to ‘standardize’ the brain-state and hereby, homogenize the group response to stimulation. Neuroanatomical and neurochemical profiling based on magnetic resonance imaging and spectroscopy can capture trait-related and state-related variability. Fluctuations in brain-states can be traced online with functional brain imaging and inform the timing or other settings of transcranial brain stimulation. State-informed open-loop stimulation is aligned to the expression of a predefined brain state, according to prespecified rules. In contrast, adaptive closed-loop stimulation dynamically adjusts stimulation settings based on the occurrence of stimulation-induced state changes. Summary Approaches that take into account trait-related and state-related determinants of stimulation-induced plasticity bear considerable potential to establish noninvasive transcranial brain stimulation as interventional therapeutic tool. PMID:27224087
U.S. Plans and Strategy for ITER Blanket Testing
Abdou, M.; Sze, D.; Wong, C.; Sawan, M.; Ying, A.; Morley, N.B.; Malang, S
2005-04-15
Testing blanket concepts in the integrated fusion environment is one of the principal objectives of ITER. Blanket test modules will be inserted in ITER from Day 1 of its operation and will provide the first experimental data on the feasibility of the D-T cycle for fusion. With the US rejoining ITER, the US community has decided to have strong participation in the ITER Test Blanket Module (TBM) Program. A US strategy for ITER-TBM has evolved that emphasizes international collaboration. A study was initiated to select the two blanket options for the US ITER-TBM in light of new R and D results from the US and world programs over the past decade. The study is led by the Plasma Chamber community in partnership with the Materials, PFC, Safety, and physics communities. The study focuses on assessment of the critical feasibility issues for candidate blanket concepts and it is strongly coupled to R and D of modeling and experiments. Examples of issues are MHD insulators, SiC insert viability and compatibility with PbLi, tritium permeation, MHD effects on heat transfer, solid breeder 'temperature window' and thermomechanics, and chemistry control of molten salts. A dual coolant liquid breeder and a helium-cooled solid breeder blanket concept have been selected for the US ITER-TBM.
Newton`s iteration for inversion of Cauchy-like and other structured matrices
Pan, V.Y.; Zheng, Ailong; Huang, Xiaohan; Dias, O.
1996-12-31
We specify some initial assumptions that guarantee rapid refinement of a rough initial approximation to the inverse of a Cauchy-like matrix, by mean of our new modification of Newton`s iteration, where the input, output, and all the auxiliary matrices are represented with their short generators defined by the associated scaling operators. The computations are performed fast since they are confined to operations with short generators of the given and computed matrices. Because of the known correlations among various structured matrices, the algorithm is immediately extended to rapid refinement of rough initial approximations to the inverses of Vandermonde-like, Chebyshev-Vandermonde-like and Toeplitz-like matrices, where again, the computations are confined to operations with short generators of the involved matrices.
Constructing Linkage Disequilibrium Map with Iterative Approach
NASA Astrophysics Data System (ADS)
Ao, S. I.
2008-05-01
With recent advance of the genotyping single nucleotide polymorphisms (SNPs) in mass scale of high density in a candidate region of the human genome, the linkage disequilibrium analysis can offer a much higher resolution of the biological samples than the traditional linkage maps. We have formulated this LD mapping problem as a constrained unidimensional scaling problem. Our method, which is directly based on the measurement of LD among SNPs, is non-parametric. Therefore it is different from LD maps derived from the given Malecot model. We have formulated with the quadratic programming approach for solving this constrained unidimensional scaling problem. Different from the classical metric unidimensional scaling problem, the constrained problem is not an NP-hard combinatorial problem. The optimal solution is determined by using the quadratic programming solver. Nevertheless, because of the large requirement for memory during the running time that may cause the out of memory problems, and the high computational time of the quadratic programming algorithm, the iterative algorithm has been developed for solving this LD constrained unidimensional scaling problem.
Resent Status of ITER Equatorial Launcher Development
Takahashi, K.; Kajiwara, K.; Kasugai, A.; Oda, Y.; Kobayashi, N.; Sakamoto, K.
2009-11-26
The ITER equatorial launcher is divided into a front shield and a port plug. The front shield is composed of fourteen blanket shield modules so as to form three openings for the injection of mm-wave beams into plasma. Twenty-four waveguide transmission lines, internal shields, cooling pipes and so on are installed in the port plug. The transmission lines consist of the corrugated waveguides, miter bends and the free space propagation region utilizing two mirrors in front of the waveguide outlet. The analysis of mm-wave beam propagation in the region shows that the transmission efficiency more than 99.5% is attained. The high power experiments of the launcher mock-up have been carried out and the measured field patterns at each mirror and the outlet of the launcher are agreed with the calculations. It is concluded that the transmission line components in the launcher mock-up are fabricated as designed and the present mm-wave design in the launcher is feasible.
Sequence analysis by iterated maps, a review.
Almeida, Jonas S
2014-05-01
Among alignment-free methods, Iterated Maps (IMs) are on a particular extreme: they are also scale free (order free). The use of IMs for sequence analysis is also distinct from other alignment-free methodologies in being rooted in statistical mechanics instead of computational linguistics. Both of these roots go back over two decades to the use of fractal geometry in the characterization of phase-space representations. The time series analysis origin of the field is betrayed by the title of the manuscript that started this alignment-free subdomain in 1990, 'Chaos Game Representation'. The clash between the analysis of sequences as continuous series and the better established use of Markovian approaches to discrete series was almost immediate, with a defining critique published in same journal 2 years later. The rest of that decade would go by before the scale-free nature of the IM space was uncovered. The ensuing decade saw this scalability generalized for non-genomic alphabets as well as an interest in its use for graphic representation of biological sequences. Finally, in the past couple of years, in step with the emergence of BigData and MapReduce as a new computational paradigm, there is a surprising third act in the IM story. Multiple reports have described gains in computational efficiency of multiple orders of magnitude over more conventional sequence analysis methodologies. The stage appears to be now set for a recasting of IMs with a central role in processing nextgen sequencing results. PMID:24162172
Mixed Confidence Estimation for Iterative CT Reconstruction.
Perlmutter, David S; Kim, Soo Mee; Kinahan, Paul E; Alessio, Adam M
2016-09-01
Dynamic (4D) CT imaging is used in a variety of applications, but the two major drawbacks of the technique are its increased radiation dose and longer reconstruction time. Here we present a statistical analysis of our previously proposed Mixed Confidence Estimation (MCE) method that addresses both these issues. This method, where framed iterative reconstruction is only performed on the dynamic regions of each frame while static regions are fixed across frames to a composite image, was proposed to reduce computation time. In this work, we generalize the previous method to describe any application where a portion of the image is known with higher confidence (static, composite, lower-frequency content, etc.) and a portion of the image is known with lower confidence (dynamic, targeted, etc). We show that by splitting the image space into higher and lower confidence components, MCE can lower the estimator variance in both regions compared to conventional reconstruction. We present a theoretical argument for this reduction in estimator variance and verify this argument with proof-of-principle simulations. We also propose a fast approximation of the variance of images reconstructed with MCE and confirm that this approximation is accurate compared to analytic calculations of and multi-realization image variance. This MCE method requires less computation time and provides reduced image variance for imaging scenarios where portions of the image are known with more certainty than others allowing for potentially reduced radiation dose and/or improved dynamic imaging. PMID:27008663
Experimental developments towards an ITER thermography diagnostic
NASA Astrophysics Data System (ADS)
Reichle, R.; Brichard, B.; Escourbiac, F.; Gardarein, J. L.; Hernandez, D.; Le Niliot, C.; Rigollet, F.; Serra, J. J.; Badie, J. M.; van Ierschot, S.; Jouve, M.; Martinez, S.; Ooms, H.; Pocheau, C.; Rauber, X.; Sans, J. L.; Scheer, E.; Berghmans, F.; Decréton, M.
2007-06-01
In the course of the development of a concept for a spectrally resolving thermography diagnostic for the ITER divertor using optical fibres experimental development work has been carried out in three different areas. Firstly ZrF4 fibres and hollow fibres (silica capillaries with internal AG/AgJ coating) were tested in a Co60 irradiation facility under γ irradiation up to doses of 5 kGy and 27 kGy, respectively. The ZrF4 fibres suffered more radiation induced degradation (>1 db/m) then the hollow fibres (0-0.4 db/m). Secondly multi-colour pyroreflectometry is being developed towards tokamak applicability. The emissivity and temperature of tungsten samples were measured in the range of 700-1500 °C. The angular working range for off normal observation of the method was 20-30°. The working distance of the method has been be increased from cm to the m range. Finally, encouraging preliminary results have been obtained concerning the application of pulsed and modulated active thermography.
Iterative phase retrieval algorithms. I: optimization.
Guo, Changliang; Liu, Shi; Sheridan, John T
2015-05-20
Two modified Gerchberg-Saxton (GS) iterative phase retrieval algorithms are proposed. The first we refer to as the spatial phase perturbation GS algorithm (SPP GSA). The second is a combined GS hybrid input-output algorithm (GS/HIOA). In this paper (Part I), it is demonstrated that the SPP GS and GS/HIO algorithms are both much better at avoiding stagnation during phase retrieval, allowing them to successfully locate superior solutions compared with either the GS or the HIO algorithms. The performances of the SPP GS and GS/HIO algorithms are also compared. Then, the error reduction (ER) algorithm is combined with the HIO algorithm (ER/HIOA) to retrieve the input object image and the phase, given only some knowledge of its extent and the amplitude in the Fourier domain. In Part II, the algorithms developed here are applied to carry out known plaintext and ciphertext attacks on amplitude encoding and phase encoding double random phase encryption systems. Significantly, ER/HIOA is then used to carry out a ciphertext-only attack on AE DRPE systems. PMID:26192504
Neutron spectrometer for ITER using silicon detectors
Conroy, Sean W.; Weiszflog, Matthias; Andersson-Sunden, Erik; Ericsson, Goran; Gatu-Johnson, Maria; Hellesen, Carl; Ronchi, Emanuel; Sjostrand, Henrik
2008-10-15
High resolution neutron spectrometers provide information about plasma parameters at existing fusion experiments. Such a system may also be employed at ITER. Proton recoil telescopes have classically been used to detect neutrons with good energy resolution but poor efficiency. Using annular silicon detectors, it is possible to greatly increase the solid angle coverage and hence improve efficiency. Based on a simulation (MCNPX) study, the scaling of energy resolution, efficiency, and time to determine an ion temperature to 10% accuracy on foil thickness and detector location is shown. The latter quantity is used to determine the optimum foil thickness and detector geometry for specific plasma temperatures. For a 20 keV deuterium-tritium (DT) plasma, 5.3% resolution with efficiency of 2.9x10{sup -4} n cm{sup 2} is attainable using the available detectors. This gives a temperature measurement with 10% accuracy in 1.1 ms for a neutron flux of 2x10{sup 9} n cm{sup -2}. Multiple detectors can be used to further increase the efficiency if needed. A system of this kind could be tested in a future DT campaign at, for example, JET.
Iterative Sparse Approximation of the Gravitational Potential
NASA Astrophysics Data System (ADS)
Telschow, R.
2012-04-01
In recent applications in the approximation of gravitational potential fields, several new challenges arise. We are concerned with a huge quantity of data (e.g. in case of the Earth) or strongly irregularly distributed data points (e.g. in case of the Juno mission to Jupiter), where both of these problems bring the established approximation methods to their limits. Our novel method, which is a matching pursuit, however, iteratively chooses a best basis out of a large redundant family of trial functions to reconstruct the signal. It is independent of the data points which makes it possible to take into account a much higher amount of data and, furthermore, handle irregularly distributed data, since the algorithm is able to combine arbitrary spherical basis functions, i.e., global as well as local trial functions. This additionaly results in a solution, which is sparse in the sense that it features more basis functions where the signal has a higher local detail density. Summarizing, we get a method which reconstructs large quantities of data with a preferably low number of basis functions, combining global as well as several localizing functions to a sparse basis and a solution which is locally adapted to the data density and also to the detail density of the signal.
Iterated conformal dynamics and Laplacian growth.
Barra, Felipe; Davidovitch, Benny; Procaccia, Itamar
2002-04-01
The method of iterated conformal maps for the study of diffusion limited aggregates (DLA) is generalized to the study of Laplacian growth patterns and related processes. We emphasize the fundamental difference between these processes: DLA is grown serially with constant size particles, while Laplacian patterns are grown by advancing each boundary point in parallel, proportional to the gradient of the Laplacian field. We introduce a two-parameter family of growth patterns that interpolates between DLA and a discrete version of Laplacian growth. The ultraviolet putative finite-time singularities are regularized here by a minimal tip size, equivalently for all the models in this family. With this we stress that the difference between DLA and Laplacian growth is not in the manner of ultraviolet regularization, but rather in their deeply different growth rules. The fractal dimensions of the asymptotic patterns depend continuously on the two parameters of the family, giving rise to a "phase diagram" in which DLA and discretized Laplacian growth are at the extreme ends. In particular, we show that the fractal dimension of Laplacian growth patterns is higher than the fractal dimension of DLA, with the possibility of dimension 2 for the former not excluded. PMID:12005963
ITER coils insulation R and D program
Vieira, R.F.; Sugimoto, M.; Osaki, O.; Fujioka, T.; Korsunsky, V.; Reed, R.P.; Katheder, H.; Broadbent, A.
1995-12-31
The ITER coil insulation systems are required for operating voltages up to 10 KV and to support shear and normal compression loads through the winding pack. Manufacturing considerations and nuclear radiation resistance also influence the choice of suitable systems. A screening program of candidate systems is being conducted in stages. The first stage is reported in this paper. Present R and D data based on small samples indicate a static shear strength of about 85 MPa for a glass or alumina and epoxy resin vacuum pressure impregnation system and 50 MPa for a pre-impregnated glass/epoxy resin system with polyimide interleaved at a temperature of 4K. The preliminary irradiation results show that coating the steel surface with inorganic materials such as Al{sub 2}O{sub 3} or ZrO{sub 2}/8 Y{sub 2}O{sub 3} is beneficial in increasing the radiation resistance as far as shear strength is concerned. In addition Tetrafunctional epoxy (TGDM) systems appear to be more radiation resistant than Diglycidyl Ether of Bisphenol-A (DGEBA) systems. Further R and D work will focus on prototypical samples to continue evaluation of the performance of the insulation systems.
Resent Status of ITER Equatorial Launcher Development
NASA Astrophysics Data System (ADS)
Takahashi, K.; Kajiwara, K.; Kasugai, A.; Oda, Y.; Kobayashi, N.; Sakamoto, K.
2009-11-01
The ITER equatorial launcher is divided into a front shield and a port plug. The front shield is composed of fourteen blanket shield modules so as to form three openings for the injection of mm-wave beams into plasma. Twenty-four waveguide transmission lines, internal shields, cooling pipes and so on are installed in the port plug. The transmission lines consist of the corrugated waveguides, miter bends and the free space propagation region utilizing two mirrors in front of the waveguide outlet. The analysis of mm-wave beam propagation in the region shows that the transmission efficiency more than 99.5% is attained. The high power experiments of the launcher mock-up have been carried out and the measured field patterns at each mirror and the outlet of the launcher are agreed with the calculations. It is concluded that the transmission line components in the launcher mock-up are fabricated as designed and the present mm-wave design in the launcher is feasible.
Iterative atmospheric parameters estimationof the tropical atmospere
NASA Astrophysics Data System (ADS)
Longo, F.; Laneve, G.; Castronuovo, M.
This work describes an iterative algorithm capable of determining the atmospheric parameters (temperature, water vapor and ozone profiles) by using the observations currently collected at the BSC Station (Malindi -Kenya, 40° E, 3° S) of the Centro di Ricerca Progetto San Marco (CRPSM) of the University of Rome "La Sapienza" (Italy), by using the NOAA ATOVS data. The method is based on the usual approach to the problem of retrieving atmospheric characteristics:- a forward model (using the FASCODE atmospheric code);- a numerical method to find a solution (by means of the Least SquareEstimation (LSE), the Extended Kalman Filter (EKF) and a regularizationmethod for computing stabilized solutions to the ill-posed problems). Moreover, the retrieval method for the temperature, water vapor and ozone is discussed in detail; comparisons are also made with available co-located atmospheric informations from AAPP-ICI software and balloon based soundings. The aim of this paper is to evaluate the accuracy of the estimate of the tropical atmosphere parameters using an autonomous ret rieval algorithm, based on a modified LSE technique, introducing a gain computed from Kalman theory.
Demonstration of ITER Operational Scenarios on DIII-D
Doyle, E J; Budny, R V; DeBoo, J C; Ferron, J R; Jackson, G L; Luce, T C; Murakami, M; Osborne, T H; Park, J; Politzer, P A; Reimerdes, H; Casper, T A; Challis, C D; Groebner, R J; Holcomb, C T; Hyatt, A W; La Haye, R J; McKee, G R; Petrie, T W; Petty, C C; Rhodes, T L; Shafer, M W; Snyder, P B; Strait, E J; Wade, M R; Wang, G; West, W P; Zeng, L
2008-10-13
The DIII-D program has recently initiated an effort to provide suitably scaled experimental evaluations of four primary ITER operational scenarios. New and unique features of this work are that the plasmas incorporate essential features of the ITER scenarios and anticipated operating characteristics; e.g., the plasma cross-section, aspect ratio and value of I/aB of the DIII-D discharges match the ITER design, with size reduced by a factor of 3.7. Key aspects of all four scenarios, such as target values for {beta}{sub N} and H{sub 98}, have been replicated successfully on DIII-D, providing an improved and unified physics basis for transport and stability modeling, as well as for performance extrapolation to ITER. In all four scenarios normalized performance equals or closely approaches that required to realize the physics and technology goals of ITER, and projections of the DIII-D discharges are consistent with ITER achieving its goals of {ge} 400 MW of fusion power production and Q {ge} 10. These studies also address many of the key physics issues related to the ITER design, including the L-H transition power threshold, the size of ELMs, pedestal parameter scaling, the impact of tearing modes on confinement and disruptivity, beta limits and the required capabilities of the plasma control system. An example of direct influence on the ITER design from this work is a modification of the specified operating range in internal inductance at 15 MA for the poloidal field coil set, based on observations that the measured inductance in the baseline scenario case lay outside the original ITER specification.
ITER Physics Issues, Capabilities and Physics Program Plans
NASA Astrophysics Data System (ADS)
Wesley, John
1996-11-01
The International Thermonuclear Experimental Reactor/Engineering Design Activity (ITER/EDA) is a joint project of the ITER Parties --- the European Union, Japan,the Russian Federation and the United States --- to carry out the engineering design of a reactor-scale DT-burning tokamak capable of producing 1-1.5 GW of fusion power with a burn duration of 1000 s or longer. The ITER Parties anticipate that ITER (R = 8.14 m, a = 2.80 m, B = 5.7 T, I = 21 MA) will be the definitive fusion research device for the period 2010-2030 and as such will be the principal facility for exploring the physics and technology testing issues of a reactor-scale plasma. To this end, ITER is designed with the dual objectives of being capable of conducting comprehensive physics studies of reactor-regime plasmas and of being able to reliably produce the fusion power level and burn duration needed for testing of reactor nuclear and plasma-facing-components at appreciable neutron fluence. The purpose of this talk is to present a discussion of the key physics issues associated with the physics design of ITER and to summarize how present understanding of these issues affects the corresponding projections of ITER performance and experimental capabilities. Emphasis will be on the effects of the plasma core performance-determining issues of energy confinement at low ρ^*, long-pulse beta-limit at low ν^* (non-ideal MHD effects) and particle and energy confinement and fueling/exhaust efficacy in high-density plasmas [n(10^20 m-3) >= I(MA)/π a(m)^2]. An overview of the anticipated ITER physics program and the wide-ranging opportunities that ITER will provide for scientific studies of reactor-scale plasmas and for obtaining the physics and technology data needed for design of a prototype power reactor will also be presented.
Novel transcranial magnetic stimulation coil for mice
NASA Astrophysics Data System (ADS)
March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David
2014-03-01
Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.
SUMMARY REPORT-FY2006 ITER WORK ACCOMPLISHED
Martovetsky, N N
2006-04-11
Six parties (EU, Japan, Russia, US, Korea, China) will build ITER. The US proposed to deliver at least 4 out of 7 modules of the Central Solenoid. Phillip Michael (MIT) and I were tasked by DoE to assist ITER in development of the ITER CS and other magnet systems. We work to help Magnets and Structure division headed by Neil Mitchell. During this visit I worked on the selected items of the CS design and carried out other small tasks, like PF temperature margin assessment.
Fourier mode analysis of source iteration in spatially periodic media
Zika, M.R.; Larsen, E.W.
1998-12-31
The standard Fourier mode analysis is an indispensable tool when designing acceleration techniques for transport iterations; however, it requires the assumption of a homogeneous infinite medium. For problems of practical interest, material heterogeneities may significantly impact iterative performance. Recent work has applied a Fourier analysis to the discretized two-dimensional transport operator with heterogeneous material properties. The results of these analyses may be difficult to interpret because the heterogeneity effects are inherently coupled to the discretization effects. Here, the authors describe a Fourier analysis of source iteration (SI) that allows the calculation of the eigenvalue spectrum for the one-dimensional continuous transport operator with spatially periodic heterogeneous media.
Perturbation-iteration theory for analyzing microwave striplines
NASA Technical Reports Server (NTRS)
Kretch, B. E.
1985-01-01
A perturbation-iteration technique is presented for determining the propagation constant and characteristic impedance of an unshielded microstrip transmission line. The method converges to the correct solution with a few iterations at each frequency and is equivalent to a full wave analysis. The perturbation-iteration method gives a direct solution for the propagation constant without having to find the roots of a transcendental dispersion equation. The theory is presented in detail along with numerical results for the effective dielectric constant and characteristic impedance for a wide range of substrate dielectric constants, stripline dimensions, and frequencies.
Conference on iterative methods for large linear systems
Kincaid, D.R.
1988-12-01
This conference is dedicated to providing an overview of the state of the art in the use of iterative methods for solving sparse linear systems with an eye to contributions of the past, present and future. The emphasis is on identifying current and future research directions in the mainstream of modern scientific computing. Recently, the use of iterative methods for solving linear systems has experienced a resurgence of activity as scientists attach extremely complicated three-dimensional problems using vector and parallel supercomputers. Many research advances in the development of iterative methods for high-speed computers over the past forty years are reviewed, as well as focusing on current research.
Qualification tests and facilities for the ITER superconductors
NASA Astrophysics Data System (ADS)
Bruzzone, P.; Wesche, R.; Stepanov, B.; Cau, F.; Bagnasco, M.; Calvi, M.; Herzog, R.; Vogel, M.
2009-06-01
All the ITER superconductors are tested as short length samples in the SULTAN test facility at CRPP. Twenty-four TF conductor samples with small layout variations were tested since February 2007 with the aim of verifying the design and qualification of the manufacturers. The sample assembly and the measurement techniques at CRPP are discussed. Starting in 2010, another test facility for ITER conductors, named EDIPO, will be operating at CRPP to share with SULTAN the load of the samples for the acceptance tests during the construction of ITER.
Shattered Pellet Disruption Mitigation Technology Development for ITER
Baylor, Larry R; Combs, Stephen Kirk; Jernigan, T. C.; Meitner, Steven J; Edgemon, Timothy D; Parks, P. B.; Commaux, Nicolas JC; Maruyama, S.; Caughman, John B; Rasmussen, David A
2010-01-01
The mitigation of first wall thermal and mechanical loads and damage from runaway electrons during disruptions are critical for successful long term operation of ITER. Disruption mitigation tools based on shattered pellet injection are being developed at Oak Ridge National Laboratory that can be employed on ITER to provide the necessary mitigation of thermal and mechanical loads from disruptions as well as provide collisional damping to inhibit the formation of runaway electrons . Here we present progress on the development of the technology to provide reliable disruption mitigation with large shattered cryogenic pellets. An example of how this concept can be employed on ITER is discussed.
Iterative schemes for nonsymmetric and indefinite elliptic boundary value problems
Bramble, J.H.; Leyk, Z.; Pasciak, J.E.
1993-01-01
The purpose of this paper is twofold. The first is to describe some simple and robust iterative schemes for nonsymmetric and indefinite elliptic boundary value problems. The schemes are based in the Sobolev space H ([Omega]) and require minimal hypotheses. The second is to develop algorithms utilizing a coarse-grid approximation. This leads to iteration matrices whose eigenvalues lie in the right half of the complex plane. In fact, for symmetric indefinite problems, the iteration is reduced to a well-conditioned symmetric positive definite system which can be solved by conjugate gradient interation. Applications of the general theory as well as numerical examples are given. 20 refs., 8 tabs.
Iterative method for elliptic problems on regions partitioned into substructures
Bramble, J.H.; Pasciak, J.E.; Schatz, A.H.
1986-04-01
Some new preconditioners for discretizations of elliptic boundary problems are studied. With these preconditioners, the domain under consideration is broken into subdomains and preconditioners are defined which only require the solution of matrix problems on the subdomains. Analytic estimates are given which guarantee that under appropriate hypotheses, the preconditioned iterative procedure converges to the solution of the discrete equations with a rate per iteration that is independent of the number of unknowns. Numerical examples are presented which illustrate the theoretically predicted iterative convergence rates.
Electromechanical Nerve Stimulator
NASA Technical Reports Server (NTRS)
Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.
1993-01-01
Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.
Mammis, Antonios; Agarwal, Nitin; Mogilner, Alon Y
2015-01-01
Occipital nerve stimulation (ONS) is a form of neuromodulation therapy aimed at treating intractable headache and craniofacial pain. The therapy utilizes neurostimulating electrodes placed subcutaneously in the occipital region and connected to a permanently implanted programmable pulse generator identical to those used for dorsal column/spinal cord stimulation. The presumed mechanisms of action involve modulation of the trigeminocervical complex, as well as closure of the physiologic pain gate. ONS is a reversible, nondestructive therapy, which can be tailored to a patient's individual needs. Typically, candidates for successful ONS include those patients with migraines, Chiari malformation, or occipital neuralgia. However, recent MRSA infections, unrealistic expectations, and psychiatric comorbidities are generally contraindications. As with any invasive procedure, complications may occur including lead migration, infection, wound erosion, device failure, muscle spasms, and pain. The success of this therapy is dependent on careful patient selection, a preimplantation trial, meticulous implantation technique, programming strategies, and complication avoidance. PMID:25411143
Stimulated Raman photoacoustic imaging
Yakovlev, Vladislav V.; Zhang, Hao F.; Noojin, Gary D.; Denton, Michael L.; Thomas, Robert J.; Scully, Marlan O.
2010-01-01
Achieving label-free, molecular-specific imaging with high spatial resolution in deep tissue is often considered the grand challenge of optical imaging. To accomplish this goal, significant optical scattering in tissues has to be overcome while achieving molecular specificity without resorting to extrinsic labeling. We demonstrate the feasibility of developing such an optical imaging modality by combining the molecularly specific stimulated Raman excitation with the photoacoustic detection. By employing two ultrashort excitation laser pulses, separated in frequency by the vibrational frequency of a targeted molecule, only the specific vibrational level of the target molecules in the illuminated tissue volume is excited. This targeted optical absorption generates ultrasonic waves (referred to as stimulated Raman photoacoustic waves) which are detected using a traditional ultrasonic transducer to form an image following the design of the established photoacoustic microscopy. PMID:21059930
Raft River well stimulation experiments: geothermal reservoir well stimulation program
Not Available
1980-08-01
The Geothermal Reservoir Well Stimulation Program (GRWSP) performed two field experiments at the Raft River KGRA in 1979. Wells RRGP-4 and RRGP-5 were selected for the hydraulic fracture stimulation treatments. The well selection process, fracture treatment design, field execution, stimulation results, and pre- and post-job evaluations are presented.
NASA Technical Reports Server (NTRS)
1982-01-01
Neurodyne Corporation Human Tissue Stimulator (HTS) is a totally implantable system used for treatment of chronic pain and involuntary motion disorders by electrical stimulation. It was developed by Pacesetter Systems, Inc. in cooperation with the Applied Physics Laboratory. HTS incorporates a nickel cadmium battery, telemetry and command systems technologies of the same type as those used in NASA's Small Astronomy Satellite-3 in microminiature proportions so that the implantable element is the size of a deck of cards. The stimulator includes a rechargeable battery, an antenna and electronics to receive and process commands and to report on its own condition via telemetry, a wireless process wherein instrument data is converted to electrical signals and sent to a receiver where signals are presented as usable information. The HTS is targeted to nerve centers or to particular areas of the brain to provide relief from intractable pain or arrest involuntary motion. The nickel cadmium battery can be recharged through the skin. The first two HTS units were implanted last year and have been successful. Extensive testing is required before HTS can be made available for general use.
Sequence analysis by iterated maps, a review
2014-01-01
Among alignment-free methods, Iterated Maps (IMs) are on a particular extreme: they are also scale free (order free). The use of IMs for sequence analysis is also distinct from other alignment-free methodologies in being rooted in statistical mechanics instead of computational linguistics. Both of these roots go back over two decades to the use of fractal geometry in the characterization of phase-space representations. The time series analysis origin of the field is betrayed by the title of the manuscript that started this alignment-free subdomain in 1990, ‘Chaos Game Representation’. The clash between the analysis of sequences as continuous series and the better established use of Markovian approaches to discrete series was almost immediate, with a defining critique published in same journal 2 years later. The rest of that decade would go by before the scale-free nature of the IM space was uncovered. The ensuing decade saw this scalability generalized for non-genomic alphabets as well as an interest in its use for graphic representation of biological sequences. Finally, in the past couple of years, in step with the emergence of BigData and MapReduce as a new computational paradigm, there is a surprising third act in the IM story. Multiple reports have described gains in computational efficiency of multiple orders of magnitude over more conventional sequence analysis methodologies. The stage appears to be now set for a recasting of IMs with a central role in processing nextgen sequencing results. PMID:24162172
Electrostatic Dust Detection and Removal for ITER
C.H. Skinner; A. Campos; H. Kugel; J. Leisure; A.L. Roquemore; S. Wagner
2008-09-01
We present some recent results on two innovative applications of microelectronics technology to dust inventory measurement and dust removal in ITER. A novel device to detect the settling of dust particles on a remote surface has been developed in the laboratory. A circuit board with a grid of two interlocking conductive traces with 25 μm spacing is biased to 30 – 50 V. Carbon particles landing on the energized grid create a transient short circuit. The current flowing through the short circuit creates a voltage pulse that is recorded by standard nuclear counting electronics and the total number of counts is related to the mass of dust impinging on the grid. The particles typically vaporize in a few seconds restoring the previous voltage standoff. Experience on NSTX however, showed that in a tokamak environment it was still possible for large particles or fibers to remain on the grid causing a long term short circuit. We report on the development of a gas puff system that uses helium to clear such particles. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have given an optimal configuration that effectively removes particles from an area up to 25 cm² with a single nozzle. In a separate experiment we are developing an advanced circuit grid of three interlocking traces that can generate a miniature electrostatic traveling wave for transporting dust to a suitable exit port. We have fabricated such a 3-pole circuit board with 25 micron insulated traces that operates with voltages up to 200 V. Recent results showed motion of dust particles with the application of only 50 V bias voltage. Such a device could potentially remove dust continuously without dedicated interventions and without loss of machine availability for plasma operations.
NASA Astrophysics Data System (ADS)
Addor, Nans; Ewen, Tracy; Johnson, Leigh; Ćöltekin, Arzu; Derungs, Curdin; Muccione, Veruska
2015-08-01
In the context of climate change, both climate researchers and decision makers deal with uncertainties, but these uncertainties differ in fundamental ways. They stem from different sources, cover different temporal and spatial scales, might or might not be reducible or quantifiable, and are generally difficult to characterize and communicate. Hence, a mutual understanding between current and future climate researchers and decision makers must evolve for adaptation strategies and planning to progress. Iterative two-way dialogue can help to improve the decision making process by bridging current top-down and bottom-up approaches. One way to cultivate such interactions is by providing venues for these actors to interact and exchange on the uncertainties they face. We use a workshop-seminar series involving academic researchers, students, and decision makers as an opportunity to put this idea into practice and evaluate it. Seminars, case studies, and a round table allowed participants to reflect upon and experiment with uncertainties. An opinion survey conducted before and after the workshop-seminar series allowed us to qualitatively evaluate its influence on the participants. We find that the event stimulated new perspectives on research products and communication processes, and we suggest that similar events may ultimately contribute to the midterm goal of improving support for decision making in a changing climate. Therefore, we recommend integrating bridging events into university curriculum to foster interdisciplinary and iterative dialogue among researchers, decision makers, and students.
Final Report on ITER Task Agreement 81-18
Brad J. Merrill
2008-02-01
During 2007, the US International Thermonuclear Experimental Reactor (ITER) Project Office (USIPO) entered into a Task Agreement (TA) with the ITER International Organization (IO) to conduct Research and Development activity and/or Design activity in the area of Safety Analyses. There were four tasks within this TA, which were to provide the ITER IO with: 1) Quality Assurance (QA) documentation for the MELCOR 1.8.2 Fusion code, 2) a pedigreed version of MELCOR 1.8.2, 3) assistance in MELCOR input deck development and accident analyses, and 4) support and assistance in the operation of the MELCOR 1.8.2. This report, which is the final report for this agreement, documents the completion of the work scope under this ITER TA, designated as TA 81-18.
An iterative method for indefinite systems of linear equations
NASA Technical Reports Server (NTRS)
Ito, K.
1984-01-01
An iterative method for solving nonsymmetric indefinite linear systems is proposed. The method involves the successive use of a modified version of the conjugate residual method. A numerical example is given to illustrate the method.
Dutch plasma facility reveals new problems for ITER
NASA Astrophysics Data System (ADS)
van Calmthout, Martijn
2012-06-01
Scientists have expressed concern about the ability of the ITER experimental fusion reactor, currently being built in Cadarache, France, to hold intense high-temperature plasmas without seriously damaging the reactor core.
An iterative curvelet thresholding algorithm for seismic random noise attenuation
NASA Astrophysics Data System (ADS)
Wang, De-Li; Tong, Zhong-Fei; Tang, Chen; Zhu, Heng
2010-12-01
In this paper, we explore the use of iterative curvelet thresholding for seismic random noise attenuation. A new method for combining the curvelet transform with iterative thresholding to suppress random noise is demonstrated and the issue is described as a linear inverse optimal problem using the L1 norm. Random noise suppression in seismic data is transformed into an L1 norm optimization problem based on the curvelet sparsity transform. Compared to the conventional methods such as median filter algorithm, FX deconvolution, and wavelet thresholding, the results of synthetic and field data processing show that the iterative curvelet thresholding proposed in this paper can sufficiently improve signal to noise radio (SNR) and give higher signal fidelity at the same time. Furthermore, to make better use of the curvelet transform such as multiple scales and multiple directions, we control the curvelet direction of the result after iterative curvelet thresholding to further improve the SNR.
Approximate inverse preconditioning of iterative methods for nonsymmetric linear systems
Benzi, M.; Tuma, M.
1996-12-31
A method for computing an incomplete factorization of the inverse of a nonsymmetric matrix A is presented. The resulting factorized sparse approximate inverse is used as a preconditioner in the iterative solution of Ax = b by Krylov subspace methods.
International Thermonuclear Experimental Reactor (ITER) neutral beam design
Myers, T.J.; Brook, J.W.; Spampinato, P.T.; Mueller, J.P.; Luzzi, T.E.; Sedgley, D.W. . Space Systems Div.)
1990-10-01
This report discusses the following topics on ITER neutral beam design: ion dump; neutralizer and module gas flow analysis; vacuum system; cryogenic system; maintainability; power distribution; and system cost.
Iterative methods for elliptic finite element equations on general meshes
NASA Technical Reports Server (NTRS)
Nicolaides, R. A.; Choudhury, Shenaz
1986-01-01
Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included.
Leapfrog variants of iterative methods for linear algebra equations
NASA Technical Reports Server (NTRS)
Saylor, Paul E.
1988-01-01
Two iterative methods are considered, Richardson's method and a general second order method. For both methods, a variant of the method is derived for which only even numbered iterates are computed. The variant is called a leapfrog method. Comparisons between the conventional form of the methods and the leapfrog form are made under the assumption that the number of unknowns is large. In the case of Richardson's method, it is possible to express the final iterate in terms of only the initial approximation, a variant of the iteration called the grand-leap method. In the case of the grand-leap variant, a set of parameters is required. An algorithm is presented to compute these parameters that is related to algorithms to compute the weights and abscissas for Gaussian quadrature. General algorithms to implement the leapfrog and grand-leap methods are presented. Algorithms for the important special case of the Chebyshev method are also given.
Multi-Level iterative methods in computational plasma physics
Knoll, D.A.; Barnes, D.C.; Brackbill, J.U.; Chacon, L.; Lapenta, G.
1999-03-01
Plasma physics phenomena occur on a wide range of spatial scales and on a wide range of time scales. When attempting to model plasma physics problems numerically the authors are inevitably faced with the need for both fine spatial resolution (fine grids) and implicit time integration methods. Fine grids can tax the efficiency of iterative methods and large time steps can challenge the robustness of iterative methods. To meet these challenges they are developing a hybrid approach where multigrid methods are used as preconditioners to Krylov subspace based iterative methods such as conjugate gradients or GMRES. For nonlinear problems they apply multigrid preconditioning to a matrix-few Newton-GMRES method. Results are presented for application of these multilevel iterative methods to the field solves in implicit moment method PIC, multidimensional nonlinear Fokker-Planck problems, and their initial efforts in particle MHD.
Distributed Minimal Residual (DMR) method for acceleration of iterative algorithms
NASA Technical Reports Server (NTRS)
Lee, Seungsoo; Dulikravich, George S.
1991-01-01
A new method for enhancing the convergence rate of iterative algorithms for the numerical integration of systems of partial differential equations was developed. It is termed the Distributed Minimal Residual (DMR) method and it is based on general Krylov subspace methods. The DMR method differs from the Krylov subspace methods by the fact that the iterative acceleration factors are different from equation to equation in the system. At the same time, the DMR method can be viewed as an incomplete Newton iteration method. The DMR method was applied to Euler equations of gas dynamics and incompressible Navier-Stokes equations. All numerical test cases were obtained using either explicit four stage Runge-Kutta or Euler implicit time integration. The formulation for the DMR method is general in nature and can be applied to explicit and implicit iterative algorithms for arbitrary systems of partial differential equations.
A preliminary engineering assessment of the ITER CDA ECH Launcher
Bigelow, T.S.; Swain, D.W. ); Sawan, M. )
1994-10-15
A preliminary engineering study of the ITER electron cyclotron heating (ECH) launcher configuration proposed by the ITER Conceptual Design Activity (CDA) team has been performed to assess its survivability in the ITER nuclear environment. Potential problem areas are with the vacuum windows, the plasma-facing mirrors, and some of the other high-power waveguide components that are untested in a reactor environment. The study indicates that the CDA design is quite robust, since the mirror power density is relatively low and the windows are well shielded. Although the CDA ECH system is unlikely to be built as proposed, most analysis techniques developed to study this system will apply to future ITER ECH system configurations. The vacuum window is likely to be the most difficult launcher component to develop. Design for a proposed resonant ring for high-power testing of windows using existing lower-power gyrotrons is presented.
A preliminary engineering assessment of the ITER CDA ECH launcher
Bigelow, T.S.; Swain, D.W.; Sawan, M.
1993-06-01
A preliminary engineering study of the ITER electron cyclotron heating (ECH) launcher configuration proposed by the ITER Conceptual Design Activity (CDA) team has been performed to assess its survivability in the ITER nuclear environment. Potential problem areas are with the vacuum windows, the plasma-facing mirrors, and some of the other high-power waveguide components that are untested in a reactor environment. The study indicates that the CDA design is quite robust, since the mirror power density is relatively low and the windows are well shielded. Although the CDA ECH system is unlikely to be built as proposed, most analysis techniques developed to study this system will apply to future ITER ECH system configurations. The vacuum window is likely to be the most difficult launcher component to develop. Design for a proposed resonant ring for high-power testing of windows using existing lower-power gyrotrons is presented.
Modelling of passive spectroscopy in the ITER divertor: the first hydrogen Balmer lines
NASA Astrophysics Data System (ADS)
Rosato, J.; Kotov, V.; Reiter, D.
2010-07-01
The first lines of the hydrogen Balmer series are investigated in ITER divertor conditions using a line shape code and a plasma edge transport code. It is shown that most of the emissivity originates from a localized, cold and dense region close to the divertor target plates, where the plasma is in the recombining regime. We simulate the signal obtained by pointing a spectrometer at this zone. The physical processes which contribute to the spectral line formation are examined, with a special emphasis on the Stark effect, photon absorption and stimulated emission. It is shown that, even though the Stark effect is significant, local information on the Doppler atomic temperature can be obtained from a fitting analysis of the Dα spectral line shape.
Development of the ITER magnetic diagnostic set and specification
Vayakis, G.; Delhom, D.; Encheva, A.; Giacomin, T.; Jones, L.; Patel, K. M.; Portales, M.; Prieto, D.; Simrock, S.; Snipes, J. A.; Udintsev, V. S.; Watts, C.; Winter, A.; Zabeo, L.; Arshad, S.; Perez-Lasala, M.; Sartori, F.
2012-10-15
ITER magnetic diagnostics are now in their detailed design and R and D phase. They have passed their conceptual design reviews and a working diagnostic specification has been prepared aimed at the ITER project requirements. This paper highlights specific design progress, in particular, for the in-vessel coils, steady state sensors, saddle loops and divertor sensors. Key changes in the measurement specifications, and a working concept of software and electronics are also outlined.
An automatic ordering method for incomplete factorization iterative solvers
Forsyth, P.A.; Tang, W.P. . Dept. of Computer Science); D'Azevedo, E.F.D. )
1991-01-01
The minimum discarded fill (MDF) ordering strategy for incomplete factorization iterative solvers is developed. MDF ordering is demonstrated for several model son-symmetric problems, as well as a water-flooding simulation which uses an unstructured grid. The model problems show a three to five fold decrease in the number of iterations compared to natural orderings. Greater than twofold improvement was observed for the waterflooding simulation. 26 refs., 7 figs., 3 tabs.
An iterative method for systems of nonlinear hyperbolic equations
NASA Technical Reports Server (NTRS)
Scroggs, Jeffrey S.
1989-01-01
An iterative algorithm for the efficient solution of systems of nonlinear hyperbolic equations is presented. Parallelism is evident at several levels. In the formation of the iteration, the equations are decoupled, thereby providing large grain parallelism. Parallelism may also be exploited within the solves for each equation. Convergence of the interation is established via a bounding function argument. Experimental results in two-dimensions are presented.
Parallel iterative methods for sparse linear and nonlinear equations
NASA Technical Reports Server (NTRS)
Saad, Youcef
1989-01-01
As three-dimensional models are gaining importance, iterative methods will become almost mandatory. Among these, preconditioned Krylov subspace methods have been viewed as the most efficient and reliable, when solving linear as well as nonlinear systems of equations. There has been several different approaches taken to adapt iterative methods for supercomputers. Some of these approaches are discussed and the methods that deal more specifically with general unstructured sparse matrices, such as those arising from finite element methods, are emphasized.
Minimizing inner product data dependencies in conjugate gradient iteration
NASA Technical Reports Server (NTRS)
Vanrosendale, J.
1983-01-01
The amount of concurrency available in conjugate gradient iteration is limited by the summations required in the inner product computations. The inner product of two vectors of length N requires time c log(N), if N or more processors are available. This paper describes an algebraic restructuring of the conjugate gradient algorithm which minimizes data dependencies due to inner product calculations. After an initial start up, the new algorithm can perform a conjugate gradient iteration in time c*log(log(N)).
Material nonlinear analysis via mixed-iterative finite element method
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1992-01-01
The performance of elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors are tested using 4-node quadrilateral finite elements. The membrane result is excellent, which indicates the implementation of elastic-plastic mixed-iterative analysis is appropriate. On the other hand, further research to improve bending performance of the method seems to be warranted.
Improvements In Optically Stimulated Electron Emission
NASA Technical Reports Server (NTRS)
Yost, William T.; Welch, Christopher S.; Joe, Edmond J.; Hefner, Bill B., Jr.
1994-01-01
Optically stimulated electron emission (OSEE) used in inspection for contamination of critical bonding surfaces in solid rocket motors of Space Shuttle prior to formation of adhesive bonds on surfaces during manufacture and refurbishment. Fundamental OSEE inspection technique described in "Surface-Contamination Inspection Tool for Field Use" (MFS-25581) and "Detecting Contamination With Photoelectron Emission" (MFS-25619). OSEE measurement head easily portable, and measurement operation convenient and rapid, making it useful inspection technique in industrial environment. Reveals contamination in many situations in which other techniques do not work.
A VLSI design concept for parallel iterative algorithms
NASA Astrophysics Data System (ADS)
Sun, C. C.; Götze, J.
2009-05-01
Modern VLSI manufacturing technology has kept shrinking down to the nanoscale level with a very fast trend. Integration with the advanced nano-technology now makes it possible to realize advanced parallel iterative algorithms directly which was almost impossible 10 years ago. In this paper, we want to discuss the influences of evolving VLSI technologies for iterative algorithms and present design strategies from an algorithmic and architectural point of view. Implementing an iterative algorithm on a multiprocessor array, there is a trade-off between the performance/complexity of processors and the load/throughput of interconnects. This is due to the behavior of iterative algorithms. For example, we could simplify the parallel implementation of the iterative algorithm (i.e., processor elements of the multiprocessor array) in any way as long as the convergence is guaranteed. However, the modification of the algorithm (processors) usually increases the number of required iterations which also means that the switch activity of interconnects is increasing. As an example we show that a 25×25 full Jacobi EVD array could be realized into one single FPGA device with the simplified μ-rotation CORDIC architecture.
ITER startup studies in the DIII-D tokamak
Jackson, G. L.; Casper, T. A.; Luce, T.C.; Humphreys, D A; Ferron, J.R.; Hyatt, A. W.; Lazarus, Edward Alan; Moyer, R.A.; Petrie, T W; Rudakov, D.L.; West, W. P.
2008-01-01
plasma initiation and current ramp up scenario envisioned for ITER has been simulated in DIII-D experiments. These discharges were limited on the low field side (LFS) during the initial current ramp up, as specified for the ITER baseline startup scenario. Initial experiments produced internal inductance (l(i)),higher than the design value for the ITER shaping coils, often leading to vertical instabilities. A modified startup with larger volume was developed to reduce l(i) in the current ramp up. This large-bore scenario, also limiting on the LFS, produced a lower l(i) and avoided the vertical instabilities. Feedback control of l(i), using the ohmic field coil power supply as the actuator, was successfully demonstrated. Such control may be useful in avoiding vertical instabilities and in providing access to sawtooth-free steady state and hybrid scenarios in ITER. Experiments at reduced inductive voltage and with electron cyclotron assist for breakdown and burnthrough have also been carried out. The Corsica equilibrium and transport code has modelled these data to provide validation of transport models used to simulate this phase of ITER discharges in order to yield more accurate extrapolation to ITER scenarios.
Development of Jacketing Technologies for Iter CS and TF Conductor
NASA Astrophysics Data System (ADS)
Hamada, K.; Nakajima, H.; Matsui, K.; Kawano, K.; Takano, K.; Tsutsumi, F.; Okuno, K.; Teshima, O.; Soejima, K.
2008-03-01
The Japan Atomic Energy Agency (JAEA) has developed jacketing technologies for ITER Toroidal Field (TF) and Central Solenoid (CS) conductor. Full scale TF and CS conduits were fabricated using carbon-reduced SUS316LN and boron-added (˜40 ppm) high manganese stainless steel (0.025C -22Mn -13Cr -9Ni -0.12N: JK2LB), respectively. Welding condition was optimized so that back bead does not interfere a cable insertion. The weld joint samples were compacted by a compaction machine that was newly constructed and tested at 4.2 K. Mechanical characteristics at 4K of CS, TF conduits and CS welded joint satisfied ITER mechanical requirements. TF welded joint shows slightly lower value of 0.2% yield strength (885 MPa) than that of ITER requirement (900 MPa). The TF conduit contains nitrogen content of 0.14%, which is minimum value in ITER specification. The lower nitrogen content may be caused by the release of nitrogen from molten metal during non-filler welding resulting in a 4 K strength decrease. To satisfy the ITER requirements, minimum nitrogen contents of conduit should be increased from 0.14% to 0.15% at least. Therefore, JAEA successfully developed TF and CS conduits with welding technologies and finalized the procurement specification for ITER conductor jacketing.
Visible and Infrared Optical Design for the ITER Upper Ports
Lasnier, C; Seppala, L; Morris, K; Groth, M; Fenstermacher, M; Allen, S; Synakowski, E; Ortiz, J
2007-03-01
This document contains the results of an optical design scoping study of visible-light and infrared optics for the ITER upper ports, performed by LLNL under contract for the US ITER Project Office. ITER is an international collaboration to build a large fusion energy tokamak with a goal of demonstrating net fusion power for pulses much longer than the energy confinement time. At the time of this report, six of the ITER upper ports are planned to each to contain a camera system for recording visible and infrared light, as well as other diagnostics. the performance specifications for the temporal and spatial resolution of this system are shown in the Section II, Functional Specifications. They acknowledge a debt to Y. Corre and co-authors of the CEA Cadarache report ''ITER wide-angle viewing and thermographic and visible system''. Several of the concepts used in this design are derived from that CEA report. The infrared spatial resolution for optics of this design is diffraction-limited by the size of the entrance aperture, at lower resolution than listed in the ITER diagnostic specifications. The size of the entrance aperture is a trade-off between spatial resolution, optics size in the port, and the location of relay optics. The signal-to-noise ratio allows operation at the specified time resolutions.
Stimulants and the lung : review of literature.
Tseng, Will; Sutter, Mark E; Albertson, Timothy E
2014-02-01
Illicit stimulants, such as cocaine, amphetamine, and their derivatives (e.g., "ecstasy"), continue to exact heavy toll on health care in both developed and developing countries. The US Department of Health and Human Service reported over one million illicit drug-related emergency department visits in 2010, which was higher than any of the six previous years. Both inhaled and intravenous forms of these substances of abuse can result in a variety of acute and chronic injuries to practically every part of the respiratory tract, leading potentially to permanent morbidities as well as fatal consequences--including but not limited to nasal septum perforation, pulmonary hypertension, pneumothorax, pneumomediastinum, interstitial lung disease, alveolar hemorrhage, reactive airway disease, pulmonary edema, pulmonary granulomatosis, infections, foreign body aspiration, infections, bronchoconstriction, and thermal injuries. Stimulants are all rapidly absorbed substances that can also significantly alter the patient's systemic acid-base balance and central nervous system, thereby leading to further respiratory compromise. Mounting evidence in the past decade has demonstrated that adulterants coinhaled with these substances (e.g., levamisole) and the metabolites of these substances (e.g., cocaethylene) are associated with specific forms of systemic and respiratory complications as well. Recent studies have also demonstrated the effects of stimulants on autoimmune-mediated injuries of the respiratory tract, such as cocaine-induced midline destructive lesions. A persistent challenge to studies involving stimulant-associated respiratory toxidromes is the high prevalence of concomitant usage of various substances by drug abusers, including tobacco smoking. Now more than ever, health care providers must be familiar with the multitude of respiratory toxidromes as well as the diverse pathophysiology related to commonly abused stimulants to provide timely diagnosis and effective
Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria.
Besserer, Arnaud; Puech-Pagès, Virginie; Kiefer, Patrick; Gomez-Roldan, Victoria; Jauneau, Alain; Roy, Sébastien; Portais, Jean-Charles; Roux, Christophe; Bécard, Guillaume; Séjalon-Delmas, Nathalie
2006-07-01
The association of arbuscular mycorrhizal (AM) fungi with plant roots is the oldest and ecologically most important symbiotic relationship between higher plants and microorganisms, yet the mechanism by which these fungi detect the presence of a plant host is poorly understood. Previous studies have shown that roots secrete a branching factor (BF) that strongly stimulates branching of hyphae during germination of the spores of AM fungi. In the BF of Lotus, a strigolactone was found to be the active molecule. Strigolactones are known as germination stimulants of the parasitic plants Striga and Orobanche. In this paper, we show that the BF of a monocotyledonous plant, Sorghum, also contains a strigolactone. Strigolactones strongly and rapidly stimulated cell proliferation of the AM fungus Gigaspora rosea at concentrations as low as 10(-13) M. This effect was not found with other sesquiterperne lactones known as germination stimulants of parasitic weeds. Within 1 h of treatment, the density of mitochondria in the fungal cells increased, and their shape and movement changed dramatically. Strigolactones stimulated spore germination of two other phylogenetically distant AM fungi, Glomus intraradices and Gl. claroideum. This was also associated with a rapid increase of mitochondrial density and respiration as shown with Gl. intraradices. We conclude that strigolactones are important rhizospheric plant signals involved in stimulating both the pre-symbiotic growth of AM fungi and the germination of parasitic plants. PMID:16787107
Rapid virtual stenting for intracranial aneurysms
NASA Astrophysics Data System (ADS)
Zhao, Liang; Chen, Danyang; Chen, Zihe; Wang, Xiangyu; Paliwal, Nikhil; Xiang, Jianping; Meng, Hui; Corso, Jason J.; Xu, Jinhui
2016-03-01
The rupture of Intracranial Aneurysms is the most severe form of stroke with high rates of mortality and disability. One of its primary treatments is to use stent or Flow Diverter to divert the blood flow away from the IA in a minimal invasive manner. To optimize such treatments, it is desirable to provide an automatic tool for virtual stenting before its actual implantation. In this paper, we propose a novel method, called ball-sweeping, for rapid virtual stenting. Our method sweeps a maximum inscribed sphere through the aneurysmal region of the vessel and directly generates a stent surface touching the vessel wall without needing to iteratively grow a deformable stent surface. Our resulting stent mesh has guaranteed smoothness and variable pore density to achieve an enhanced occlusion performance. Comparing to existing methods, our technique is computationally much more efficient.
Rapid Virtual Stenting for Intracranial Aneurysms
Zhao, Liang; Chen, Danyang; Chen, Zihe; Wang, Xiangyu; Paliwal, Nikhil; Xiang, Jianping; Meng, Hui; Corso, Jason J.; Xu, Jinhui
2016-01-01
The rupture of Intracranial Aneurysms is the most severe form of stroke with high rates of mortality and disability. One of its primary treatments is to use stent or Flow Diverter to divert the blood flow away from the IA in a minimal invasive manner. To optimize such treatments, it is desirable to provide an automatic tool for virtual stenting before its actual implantation. In this paper, we propose a novel method, called ball-sweeping, for rapid virtual stenting. Our method sweeps a maximum inscribed sphere through the aneurysmal region of the vessel and directly generates a stent surface touching the vessel wall without needing to iteratively grow a deformable stent surface. Our resulting stent mesh has guaranteed smoothness and variable pore density to achieve an enhanced occlusion performance. Comparing to existing methods, our technique is computationally much more efficient. PMID:27346910
Rapid prototyping applications at Sandia National Laboratories
NASA Astrophysics Data System (ADS)
Atwood, C. L.; McCarty, G. D.; Pardo, B. T.; Bryce, E. A.
In an effort to reduce the cycle time for producing prototypical mechanical and electro-mechanical components, Sandia National Laboratories has integrated rapid prototyping processes into the design and manufacturing process. The processes currently in operation within the Rapid Prototyping Laboratory are Stereolithography (SL), Selective Laser Sintering (SLS), and Direct Shell Production Casting (DSPC). These emerging technologies have proven to be valuable tools for reducing lead times and fabrication costs. Sandia uses the SL and SLS processes to support internal product development efforts. Their primary use is to fabricate patterns for investment casting in support of a Sandia-managed program called FASTCAST that integrates computational technologies and experimental data into the investment casting process. These processes are also used in the design iteration process to produce proof-of-concept models, hands-on models for design reviews, fit-check models, visual aids for manufacturing, and functional parts in assemblies. The DSPC process is currently being developed as a method of fabricating ceramic investment casting molds directly from a CAD solid model. Sandia is an Alpha machine test site for this process. This presentation will provide an overview of the SL and SLS processes and an update of our experience and success in integrating these technologies into the product development cycle. It will also provide a lead-in for a tour of the Rapid Prototyping Laboratory, where these processes will be demonstrated.
Rapid computation of chemical equilibrium composition - An application to hydrocarbon combustion
NASA Technical Reports Server (NTRS)
Erickson, W. D.; Prabhu, R. K.
1986-01-01
A scheme for rapidly computing the chemical equilibrium composition of hydrocarbon combustion products is derived. A set of ten governing equations is reduced to a single equation that is solved by the Newton iteration method. Computation speeds are approximately 80 times faster than the often used free-energy minimization method. The general approach also has application to many other chemical systems.
Rapid, Enhanced IV Characterization of Multi-Junction PV Devices under One Sun at NREL
Moriarty, Tom; France, Ryan; Steiner, Myles
2015-06-14
Multi-junction technology is rapidly advancing, which puts increasing demands on IV characterization resources. We report on a tool and procedure for fast turn-around of IV data under the reference conditions, but also under controlled variations from the reference conditions. This enhanced data set can improve further iterations of device optimization.
Rapid, Enhanced IV Characterization of Multi-Junction PV Devices under One Sun at NREL: Preprint
Moriarty, Tom; France, Ryan; Steiner, Myles
2015-09-15
Multi-junction technology is rapidly advancing, which puts increasing demands on IV characterization resources. We report on a tool and procedure for fast turn-around of IV data under the reference conditions, but also under controlled variations from the reference conditions. This enhanced data set can improve further iterations of device optimization.
Rapid evolution of 6-phenylpurine inhibitors of protein kinase B through structure-based design.
Donald, Alastair; McHardy, Tatiana; Rowlands, Martin G; Hunter, Lisa-Jane K; Davies, Thomas G; Berdini, Valerio; Boyle, Robert G; Aherne, G Wynne; Garrett, Michelle D; Collins, Ian
2007-05-17
6-phenylpurines were identified as novel, ATP-competitive inhibitors of protein kinase B (PKB/Akt) from a fragment-based screen and were rapidly progressed to potent compounds using iterative protein-ligand crystallography with a PKA-PKB chimeric protein. An elaborated lead compound showed cell growth inhibition and effects on cellular signaling pathways characteristic of PKB inhibition. PMID:17451235
NASA Astrophysics Data System (ADS)
Pearson, Darren L.; Schumm, Jeffry S.; Jones, Leroy, II; Tour, James M.
1994-06-01
We have devised an iterative convergent/divergent approach to conjugated oligomers that might serve as molecular wires. The molecular length doubles with each iteration. The systems prepared are completely monodispersed and based upon oligo(thiophene-ethynylene)s (1) and oligo(phenylene-ethynylene)s at 100 A and 128 A long, respectively. The optical and size exclusion chromatography (SEC) properties are discussed. Methods are outlined to attach end groups that might serve as molecular alligator clips.
THE EFFECTS OF CHRONIC IMMUNE STIMULATION ON MUSCLE GROWTH IN RAINBOW TROUT
Technology Transfer Automated Retrieval System (TEKTRAN)
Successful production of aquaculture species depends on efficient growth with low susceptibility to disease. Therefore, selection programs have focused on rapid growth combined with disease resistance. However, chronic immune stimulation diminishes muscle growth (a syndrome referred to as cachexia),...
Broadband stimulated Raman backscattering
NASA Astrophysics Data System (ADS)
Landgraf, B.; Aurand, B.; Lehmann, G.; Gangolf, T.; Schnell, M.; Kühl, T.; Spielmann, C.
2016-07-01
Broadband amplification employing stimulated Raman backscattering is demonstrated. Using seed pulses with a bandwidth of about 200 nm, we study the amplification in a wide spectral range in a single laser shot. With chirped pump pulses and a Ne gas jet, we observed under optimized conditions, amplification in a range of about 80 nm, which is sufficient to support the amplification of sub-20 fs pulses. This broad amplification range is also in excellent agreement with PIC simulations. The conversion efficiency is at certain wavelengths as high as 1.2% and was measured to be better than 6 × 10‑3 on average.
Sinclair, A.R.; Pittard, F.J.; Hanold, R.J.
1980-01-01
All available data on proppants and fluids were examined to determine areas in technology that need development for 300 to 500/sup 0/F (150/sup 0/ to 265/sup 0/C) hydrothermal wells. While fluid properties have been examined well into the 450/sup 0/F range, proppants have not been previously tested at elevated temperatures except in a few instances. The latest test data at geothermal temperatures is presented and some possible proppants and fluid systems that can be used are shown. Also discussed are alternative stimulation techniques for geothermal wells.
DIII-D Research in Support of ITER
Strait, E
2008-10-14
DIII-D research is providing key information for the design and operation of ITER. Discharges that simulate ITER operating scenarios in conventional H-mode, advanced inductive, hybrid, and steady state regimes have achieved normalized performance consistent with ITER's goals for fusion performance. Stationary discharges with high {beta}{sub N} and 90% noninductive current that project to Q=5 in ITER have been sustained for a current relaxation time ({approx}2.5 s), and high-beta wall-stabilized discharges with fully non-inductive current drive have been sustained for more than one second. Detailed issues of plasma control have been addressed, including the development of a new large-bore startup scenario for ITER. A broad research program provides the physics basis for predicting the performance of ITER. Recent key results include the discovery that the L-H power threshold is reduced with low neutral beam torque, and the development of a successful model for prediction of the H-mode pedestal height in DIII-D. Research areas with the potential to improve ITER's performance include the demonstration of ELM-free 'QH-mode' discharges with both co and counter-injection, and validation of the predicted torque generated by static, non-axisymmetric magnetic fields. New diagnostics provide detailed benchmarking of turbulent transport codes and direct measurements of the anomalous transport of fast ions by Alfven instabilities. DIII-D research also contributes to the basis for reliable operation in ITER, through active control of the chief performance-limiting instabilities. Recently, ELM suppression with resonant magnetic perturbations has been demonstrated at collisionality similar to ITER's, while simultaneous stabilization of NTMs (by localized current drive) and RWMs (by magnetic feedback) has allowed stable operation at high beta and low rotation. In research aimed at improving the lifetime of material surfaces near the plasma, recent experiments have investigated
Newton iterative methods for large scale nonlinear systems. Progress report, 1992--1993
Walker, H.F.; Turner, K.
1993-06-01
Objective is to develop robust, efficient Newton iterative methods for general large scale problems well suited for discretizations of partial differential equations, integral equations, and other continuous problems. A concomitant objective is to develop improved iterative linear algebra methods. We first outline research on Newton iterative methods and then review work on iterative linear algebra methods. (DLC)
Modeling rapidly rotating stars
NASA Astrophysics Data System (ADS)
Rieutord, M.
2006-06-01
We review the quest of modeling rapidly rotating stars during the past 40 years and detail the challenges to be taken up by models facing new data from interferometry, seismology, spectroscopy... We then present the progress of the ESTER project aimed at giving a physically self-consistent model for the structure and evolution of rapidly rotating stars.
Zhang, Yudong; Yang, Jiquan; Yang, Jianfei; Liu, Aijun; Sun, Ping
2016-01-01
Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI) scanning. Patients will benefit from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS) were proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-thresholding algorithm with random shift (abbreviated as EWISTARS). It is composed of three successful components: (i) exponential wavelet transform, (ii) iterative shrinkage-thresholding algorithm, and (iii) random shift. Results. Experimental results validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches. PMID:27066068
NASA Technical Reports Server (NTRS)
Chow, M.; Houska, C. R.
1980-01-01
Solutions are given for one-dimensional diffusion problems with a time varying surface composition and also a composition dependent diffusion coefficient. The most general solution does not require special mathematical functions to fit the variation in surface composition or D(C). In another solution, a series expansion may be used to fit the time dependent surface concentration. These solutions make use of iterative calculations that converge rapidly and are highly stable. Computer times are much shorter than that required for finite difference calculations and can efficiently make use of interactive graphics terminals. Existing gas carburization data were used to provide an illustration of an iterative approach with a time varying carbon composition at the free surface.
Zhang, Yudong; Yang, Jiquan; Yang, Jianfei; Liu, Aijun; Sun, Ping
2016-01-01
Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI) scanning. Patients will benefit from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS) were proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-thresholding algorithm with random shift (abbreviated as EWISTARS). It is composed of three successful components: (i) exponential wavelet transform, (ii) iterative shrinkage-thresholding algorithm, and (iii) random shift. Results. Experimental results validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches. PMID:27066068
NASA Astrophysics Data System (ADS)
Kafri, H. Q.; Khuri, S. A.; Sayfy, A.
2016-03-01
In this paper, a novel approach is introduced for the solution of the non-linear Troesch's boundary value problem. The underlying strategy is based on Green's functions and fixed-point iterations, including Picard's and Krasnoselskii-Mann's schemes. The resulting numerical solutions are compared with both the analytical solutions and numerical solutions that exist in the literature. Convergence of the iterative schemes is proved via manipulation of the contraction principle. It is observed that the method handles the boundary layer very efficiently, reduces lengthy calculations, provides rapid convergence, and yields accurate results particularly for large eigenvalues. Indeed, to our knowledge, this is the first time that this problem is solved successfully for very large eigenvalues, actually the rate of convergence increases as the magnitude of the eigenvalues increases.
NASA Technical Reports Server (NTRS)
Kutepov, A. A.; Kunze, D.; Hummer, D. G.; Rybicki, G. B.
1991-01-01
An iterative method based on the use of approximate transfer operators, which was designed initially to solve multilevel NLTE line formation problems in stellar atmospheres, is adapted and applied to the solution of the NLTE molecular band radiative transfer in planetary atmospheres. The matrices to be constructed and inverted are much smaller than those used in the traditional Curtis matrix technique, which makes possible the treatment of more realistic problems using relatively small computers. This technique converges much more rapidly than straightforward iteration between the transfer equation and the equations of statistical equilibrium. A test application of this new technique to the solution of NLTE radiative transfer problems for optically thick and thin bands (the 4.3 micron CO2 band in the Venusian atmosphere and the 4.7 and 2.3 micron CO bands in the earth's atmosphere) is described.
Controlled electromechanical cell stimulation on-a-chip
Pavesi, Andrea; Adriani, Giulia; Rasponi, Marco; Zervantonakis, Ioannis K.; Fiore, Gianfranco B.; Kamm, Roger D.
2015-01-01
Stem cell research has yielded promising advances in regenerative medicine, but standard assays generally lack the ability to combine different cell stimulations with rapid sample processing and precise fluid control. In this work, we describe the design and fabrication of a micro-scale cell stimulator capable of simultaneously providing mechanical, electrical, and biochemical stimulation, and subsequently extracting detailed morphological and gene-expression analysis on the cellular response. This micro-device offers the opportunity to overcome previous limitations and recreate critical elements of the in vivo microenvironment in order to investigate cellular responses to three different stimulations. The platform was validated in experiments using human bone marrow mesenchymal stem cells. These experiments demonstrated the ability for inducing changes in cell morphology, cytoskeletal fiber orientation and changes in gene expression under physiological stimuli. This novel bioengineering approach can be readily applied to various studies, especially in the fields of stem cell biology and regenerative medicine. PMID:26135970
Dorsal column stimulator applications
Yampolsky, Claudio; Hem, Santiago; Bendersky, Damián
2012-01-01
Background: Spinal cord stimulation (SCS) has been used to treat neuropathic pain since 1967. Following that, technological progress, among other advances, helped SCS become an effective tool to reduce pain. Methods: This article is a non-systematic review of the mechanism of action, indications, results, programming parameters, complications, and cost-effectiveness of SCS. Results: In spite of the existence of several studies that try to prove the mechanism of action of SCS, it still remains unknown. The mechanism of action of SCS would be based on the antidromic activation of the dorsal column fibers, which activate the inhibitory interneurons within the dorsal horn. At present, the indications of SCS are being revised constantly, while new applications are being proposed and researched worldwide. Failed back surgery syndrome (FBSS) is the most common indication for SCS, whereas, the complex regional pain syndrome (CRPS) is the second one. Also, this technique is useful in patients with refractory angina and critical limb ischemia, in whom surgical or endovascular treatment cannot be performed. Further indications may be phantom limb pain, chronic intractable pain located in the head, face, neck, or upper extremities, spinal lumbar stenosis in patients who are not surgical candidates, and others. Conclusion: Spinal cord stimulation is a useful tool for neuromodulation, if an accurate patient selection is carried out prior, which should include a trial period. Undoubtedly, this proper selection and a better knowledge of its underlying mechanisms of action, will allow this cutting edge technique to be more acceptable among pain physicians. PMID:23230533
Therapeutic stimulation versus ablation.
Hariz, Marwan I; Hariz, Gun-Marie
2013-01-01
The renaissance of functional stereotactic neurosurgery was pioneered in the mid 1980s by Laitinen's introduction of Leksell's posteroventral pallidotomy for Parkinson´s disease (PD). This ablative procedure experienced a worldwide spread in the 1990s, owing to its excellent effect on dyskinesias and other symptoms of post-l-dopa PD. Modern deep brain stimulation (DBS), pioneered by Benabid and Pollak in 1987 for the treatment of tremor, first became popular when it was applied to the subthalamic nucleus (STN) in the mid 1990s, where it demonstrated a striking effect on all cardinal symptoms of advanced PD, and permitted reduced dosages of medication. DBS, as a nondestructive, adaptable, and reversible procedure that is proving safe in bilateral surgery on basal ganglia, has great appeal to clinicians and patients alike, despite the fact that it is expensive, laborious, and relies on very strict patient selection criteria, especially for STN DBS. Psychiatric surgery has experienced the same phenomenon, with DBS supplanting completely stereotactic ablative procedures. This chapter discusses the pros and cons of ablation versus stimulation and investigates the reasons why DBS has overshadowed proven efficient ablative procedures such as pallidotomy for PD, and capsulotomy and cingulotomy for obsessive-compulsive disorder and depression. PMID:24112885
BIOPHYSICAL STIMULATION FOR NONUNIONS.
Della Bella, E; Tschon, M; Stagni, C; Dallari, D; Fini, M
2015-01-01
Nonunions account for 5-10% on the total number of fractures. Biophysical stimulation is a non-surgical, conservative, frequently used therapy in nonunions and a greater efficacy has been demonstrated for pulsed electromagnetic fields (PEMF). The mechanisms of action of PEMF at cellular and molecular levels are still under debate and no dose-response study is available. Moreover, the vast majority of in vitro studies were conducted on healthy cells. The primary aim of the research was to investigate the capacity of PEMF with different exposure times to stimulate the osteogenic process in cells from the callus of a nonunion patient. Another important objective was the characterization of nonunion cells in terms of clonogenicity, cluster of differentiation expression and the tri-lineage differentiation capacity. Overall, the results indicated the presence of osteochondroprogenitor cells in the callus of a nonunion, with an impairment in the osteogenic differentiation process. PEMF may enhance cell viability, the formation of osteoid matrix and accelerate the process of osteogenic differentiation. BMP-4 production, TIMP1 and TIMP2 expression were influenced, as well as VEGFA, whose early upregulation may account for a possible improvement in both the osteogenic and vasculogenic processes. In conclusion, even with some discussed limitations, these preliminary data showed the presence of a multipotent progenitor population and suggested some hints of the effect of PEMF on nonunion cells. PMID:26652488
Solving Upwind-Biased Discretizations: Defect-Correction Iterations
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
1999-01-01
This paper considers defect-correction solvers for a second order upwind-biased discretization of the 2D convection equation. The following important features are reported: (1) The asymptotic convergence rate is about 0.5 per defect-correction iteration. (2) If the operators involved in defect-correction iterations have different approximation order, then the initial convergence rates may be very slow. The number of iterations required to get into the asymptotic convergence regime might grow on fine grids as a negative power of h. In the case of a second order target operator and a first order driver operator, this number of iterations is roughly proportional to h-1/3. (3) If both the operators have the second approximation order, the defect-correction solver demonstrates the asymptotic convergence rate after three iterations at most. The same three iterations are required to converge algebraic error below the truncation error level. A novel comprehensive half-space Fourier mode analysis (which, by the way, can take into account the influence of discretized outflow boundary conditions as well) for the defect-correction method is developed. This analysis explains many phenomena observed in solving non-elliptic equations and provides a close prediction of the actual solution behavior. It predicts the convergence rate for each iteration and the asymptotic convergence rate. As a result of this analysis, a new very efficient adaptive multigrid algorithm solving the discrete problem to within a given accuracy is proposed. Numerical simulations confirm the accuracy of the analysis and the efficiency of the proposed algorithm. The results of the numerical tests are reported.
A New Non-Iterative Scheme for Surface Fluxes Parameterization
NASA Astrophysics Data System (ADS)
Gao, Z.
2015-12-01
In weather or climate models, the earth's surface is the boundary that needs to be resolved physically. The condition of atmosphere aloft (e.g., wind, temperature and humidity) is highly dependent on the momentum, sensible heat and latent heat fluxes at surface. However, parameterization of surface turbulent fluxes under unstably/stably stratified conditions has always been a challenge. Currently, the exchanges of momentum and heat fluxes between the earth's surface and the atmosphere are usually calculated with various schemes based on Monin-Obukhov similarity theory. These schemes either need iterations or suffer low accuracy, which might consume excessive CPU time or could lead to unrealistic simulation results. In this paper, a non-iterative scheme is proposed to approach the classic iterative computation results using multiple regressions.The range -5 ≤ RiB ≤ 2.5, 10 ≤ z/z0m ≤ 105 and -0.5 ≤ ln(z0m/z0h) ≤ 30 is divided into several regions, and in each of the regions, multiple linear regression is performed to obtain non-iterative solutions for surface fluxes. As compared to the other most recent non-iterative schemes, we show that the suggested scheme has the smallest bias. The maximum relative errors of turbulent transfer coefficients for momentum (CM) and sensible heat (CH), as compared to those obtained from the classic iterative method, are always smaller than 2% in unstable condition and 12% in stable condition from our new non-iterative scheme.
A linearized current stimulator for deep brain stimulation.
Shen, Ding-Lan; Chu, Yu-Jung
2010-01-01
This paper develops the front end of the stimulator which is applied in the implantable deep brain stimulation (DBS) for the therapy of Parkinson's disease. This stimulator adopts the low power switched-capacitor DAC accompanying with voltage-to-current transconductance amplifiers to obtain the adjustable output currents. The proposed distortion cancellation technique improves the linearity of the current stimulator. Multiple transconductance amplifiers sharing a single DAC save the circuit area. The biphasic stimulation waveform is generated from the bridge switching technique and the programmable pulse. This stimulation circuit provides the 0 approximately 165 microA current for a typical loading of 10 kΩ, 8 approximately 120 micros pulse width, and 126 approximately 244 Hz frequencies with a 0.35 microm CMOS technology at 3.3 V supply voltage. PMID:21096724
Korsholm, S. B.; Bindslev, H.; Meo, F.; Leipold, F.; Michelsen, P. K.; Michelsen, S.; Nielsen, S. K.; Tsakadze, E. L.; Woskov, P.; Westerhof, E.; Oosterbeek, J. W.; Hoekzema, J.; Leuterer, F.; Wagner, D
2006-10-15
Fast ion physics will play an important role on ITER where confined alpha particles will affect plasma dynamics and overall confinement. Fast ion collective Thomson scattering (CTS) using gyrotrons has the potential to meet the need for measuring the spatially localized velocity distributions of confined fast ions in ITER. Currently, CTS experiments are performed at TEXTOR using a 150 kW, 0.2 s, 110 GHz gyrotron and a receiver upgraded at the Risoe National Laboratory. The gyrotron and receiver optics have also been upgraded for rapid scanning during a plasma shot. The receiver consists of a nine-mirror quasioptical transmission line including a universal polarizer and a 42-channel data acquisition system, which allows complete coverage of the double sideband scattered spectrum for localized ({approx}10 cm) time resolved (4 ms) measurements of the ion velocity distribution. At ASDEX Upgrade (AUG) a similar 50-channel CTS receiver has been installed. This CTS system will use the 105 GHz frequency of a dual frequency gyrotron. The gyrotron is presently being commissioned. CTS campaigns are scheduled for the summer of 2006 with a probe power of up to 1 MW for 10 s. This report presents the alignment of the quasioptical transmission line, calibration, and gyrotron tuning of the TEXTOR and AUG CTS systems. We will also review the progress on the design of the proposed fast ion CTS diagnostic for ITER. It is envisaged that scattered radiation from two 60 GHz probe beams launched from the low field side midplane port will be received by two arrays of receivers located on the low and high field sides of the plasma. This geometry will allow the ion velocity distribution near perpendicular and near parallel to the magnetic field to be measured in ten or more spatial locations covering the full plasma cross section. The temporal resolution can be significantly better than the required 100 ms.
Electrical Stimulation of Coleopteran Muscle for Initiating Flight.
Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka
2016-01-01
Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots. PMID:27050093
Electrical Stimulation of Coleopteran Muscle for Initiating Flight
Choo, Hao Yu; Li, Yao; Cao, Feng; Sato, Hirotaka
2016-01-01
Some researchers have long been interested in reconstructing natural insects into steerable robots or vehicles. However, until recently, these so-called cyborg insects, biobots, or living machines existed only in science fiction. Owing to recent advances in nano/micro manufacturing, data processing, and anatomical and physiological biology, we can now stimulate living insects to induce user-desired motor actions and behaviors. To improve the practicality and applicability of airborne cyborg insects, a reliable and controllable flight initiation protocol is required. This study demonstrates an electrical stimulation protocol that initiates flight in a beetle (Mecynorrhina torquata, Coleoptera). A reliable stimulation protocol was determined by analyzing a pair of dorsal longitudinal muscles (DLMs), flight muscles that oscillate the wings. DLM stimulation has achieved with a high success rate (> 90%), rapid response time (< 1.0 s), and small variation (< 0.33 s; indicating little habituation). Notably, the stimulation of DLMs caused no crucial damage to the free flight ability. In contrast, stimulation of optic lobes, which was earlier demonstrated as a successful flight initiation protocol, destabilized the beetle in flight. Thus, DLM stimulation is a promising secure protocol for inducing flight in cyborg insects or biobots. PMID:27050093
Rapid Airplane Parametric Input Design (RAPID)
NASA Technical Reports Server (NTRS)
Smith, Robert E.
1995-01-01
RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool
Geschwind, Michael D.; Shu, Huidy; Haman, Aissa; Sejvar, James J.; Miller, Bruce L.
2009-01-01
In contrast with more common dementing conditions that typically develop over years, rapidly progressive dementias can develop subacutely over months, weeks, or even days and be quickly fatal. Because many rapidly progressive dementias are treatable, it is paramount to evaluate and diagnose these patients quickly. This review summarizes recent advances in the understanding of the major categories of RPD and outlines efficient approaches to the diagnosis of the various neurodegenerative, toxic-metabolic, infectious, autoimmune, neoplastic, and other conditions that may progress rapidly. PMID:18668637
NITSOL: A Newton iterative solver for nonlinear systems
Pernice, M.; Walker, H.F.
1996-12-31
Newton iterative methods, also known as truncated Newton methods, are implementations of Newton`s method in which the linear systems that characterize Newton steps are solved approximately using iterative linear algebra methods. Here, we outline a well-developed Newton iterative algorithm together with a Fortran implementation called NITSOL. The basic algorithm is an inexact Newton method globalized by backtracking, in which each initial trial step is determined by applying an iterative linear solver until an inexact Newton criterion is satisfied. In the implementation, the user can specify inexact Newton criteria in several ways and select an iterative linear solver from among several popular {open_quotes}transpose-free{close_quotes} Krylov subspace methods. Jacobian-vector products used by the Krylov solver can be either evaluated analytically with a user-supplied routine or approximated using finite differences of function values. A flexible interface permits a wide variety of preconditioning strategies and allows the user to define a preconditioner and optionally update it periodically. We give details of these and other features and demonstrate the performance of the implementation on a representative set of test problems.
ITER diagnostic systems in development in Ioffe Institute
Petrov, M.; Afanasyev, V.; Petrov, S.; Mironov, M.; Mukhin, E.; Tolstyakov, S.; Chugunov, I.; Shevelev, A.
2014-08-21
Three diagnostic systems are being developed in Ioffe Institute for ITER. Those are Neutral Particle Analysis (NPA), Thomson Scattering in Divertor (TSD) and Gamma Spectroscopy (GS). The main objective of NPA in ITER is to measure D/T fuel ration in plasma on the basis of measurement of neutralized fluxes of D and T ions [1]. Fuel ratio is one of the key parameters needed by ITER control system to provide the optimal conditions in plasma and the most effective plasma burning. Another objective is to measure the distribution function of fast ions (including alpha particles) generated as a result of the additional heating and nuclear fusion reactions. Thomson Scattering in Divertor (TSD) [2] will be used to measure electron temperature and density in the scrape-off layer in outer leg of ITER divertor. The main task of TSD is to protect the machine from divertor overloading. Gamma Spectroscopy (GS) [3] is based on the measurement of spectral lines of MeV range gammas generated in nuclear reactions in plasma. 2-D gamma-ray emission measurements give valuable information on the confined alpha particles in DT plasma. They also provide important information on the location of MeV range runaway electron beams in ITER plasma. For all three cases the physical basis and instrumentation are presented. The simple NPA version for measurements of D/T ratio in DEMO is also briefly described.
Iterative least squares method for global positioning system
NASA Astrophysics Data System (ADS)
He, Y.; Bilgic, A.
2011-08-01
The efficient implementation of positioning algorithms is investigated for Global Positioning System (GPS). In order to do the positioning, the pseudoranges between the receiver and the satellites are required. The most commonly used algorithm for position computation from pseudoranges is non-linear Least Squares (LS) method. Linearization is done to convert the non-linear system of equations into an iterative procedure, which requires the solution of a linear system of equations in each iteration, i.e. linear LS method is applied iteratively. CORDIC-based approximate rotations are used while computing the QR decomposition for solving the LS problem in each iteration. By choosing accuracy of the approximation, e.g. with a chosen number of optimal CORDIC angles per rotation, the LS computation can be simplified. The accuracy of the positioning results is compared for various numbers of required iterations and various approximation accuracies using real GPS data. The results show that very coarse approximations are sufficient for reasonable positioning accuracy. Therefore, the presented method reduces the computational complexity significantly and is highly suited for hardware implementation.
ITER physics design guidelines at high aspect ratio
NASA Astrophysics Data System (ADS)
Uckan, N. A.
1991-09-01
The physics requirements for the International Thermonuclear Experimental Reactor (ITER) design are formulated in a set of physics design guidelines. These guidelines, established by the ITER Physics Group during the Conceptual Design Activity (CDA, 1988--90), were based on credible extrapolations of the tokamak physics database as assessed during the CDA, and defined a class of tokamak designs (with plasma current I is approximately 20 MA and aspect ratio A is approximately 2.5--3.5) that meet the ITER objectives. Recent U.S. studies have indicated that there may be significant benefits if the ITER-CDA design point is moved from the low aspect ratio, high current baseline (A = 2.79, I = 22 MA) to a high aspect ratio machine at Ais approximately 4, I is approximately 15 MA, especially regarding steady-state, technology-testing performance. To adequately assess the physics and technology testing capability of higher aspect ratio design options, several changes are proposed to the original ITER guidelines to reflect the latest developments in physics understanding at higher aspect ratios. The critical issues for higher aspect ratio design options are the uncertainty in scaling of confinement with aspect ratio, the variation of vertical stability with elongation and aspect ratio, plasma shaping requirements, ability to control and maintain plasma current and q-profiles for MHD stability (and volt-second consumption), access for current drive, restrictions on field ripple and divertor plate incident angles, etc.
Status of the ITER plasma modeling activities in JAEA
NASA Astrophysics Data System (ADS)
Shiraishi, Junya; Honda, Mitsuru; Hayashi, Nobuhiko; Aiba, Nobuyuki; Toma, Mitsunori; Matsuyama, Akinobu; Naito, Osamu; Miyata, Yoshiaki; Inoue, Shizuo; Narita, Emi; Shimizu, Katsuhiro; Hamamatsu, Kiyotaka; Ide, Shunsuke; Yagi, Masatoshi
2015-11-01
JAEA has been contributing to the ITER plasma modeling in a wide range of research areas. Among them we report recent integrated modeling activities in JAEA. The integrated modeling is indispensable for predictive simulations of autonomous ITER plasmas, which exhibit multi-physics nature. JAEA has been developing an integrated modeling code, the TOPICS suite. The TOPICS suite has been incorporating many physics factors to enhance its prediction capability and has delivered many important findings on ITER plasm. A recent achievement is the success of predictive simulation of toroidal rotation in ITER. The TOPICS suite has been coupled with the 3D equilibrium code VMEC and the 3D drift-kinetic solver FORTEC-3D to compute the NTV, the radial electric field, and the resultant toroidal rotation self-consistently. Another achievement is the quantitative estimate of reduction of ELM energy loss by pellet injection in ITER. The TOPICS suite has been coupled with a new pellet model and with the MHD stability code MARG2D to calculate finite-n modes for modeling the ELM-enhanced diffusivities.
Engagement Sensitive Visual Stimulation
Kumar, Deepesh; Dutta, Anirban; Das, Abhijit; Lahiri, Uttama
2016-01-01
Stroke is one of leading cause of death and disability worldwide. Early detection during golden hour and treatment of individual neurological dysfunction in stroke using easy-to-access biomarkers based on a simple-to-use, cost-effective, clinically-valid screening tool can bring a paradigm shift in healthcare, both urban and rural. In our research we have designed a quantitative automatic home-based oculomotor assessment tool that can play an important complementary role in prognosis of neurological disorders like stroke for the neurologist. Once the patient has been screened for stroke, the next step is to design proper rehabilitation platform to alleviate the disability. In addition to the screening platform, in our research, we work in designing virtual reality based rehabilitation exercise platform that has the potential to deliver visual stimulation and in turn contribute to improving one’s performance. PMID:27478569
Stimulated radiative laser cooling
NASA Astrophysics Data System (ADS)
Muys, P.
2008-04-01
Building a refrigerator based on the conversion of heat into optical energy is an ongoing engineering challenge. Under well-defined conditions, spontaneous anti-Stokes fluorescence of a dopant material in a host matrix is capable of lowering the host temperature. The fluorescence is conveying away a part of the thermal energy stored in the vibrational oscillations of the host lattice. In particular, applying this principle to the cooling of (solid-state) lasers opens up many potential device applications, especially in the domain of high-power lasers. In this paper, an alternative optical cooling scheme is outlined, leading to the radiative cooling of solid-state lasers. It is based on converting the thermal energy stored in the host into optical energy by means of a stimulated nonlinear process, rather than a spontaneous process. This should lead to better cooling efficiencies and a higher potential of applying the principle for device applications.
Myeloperoxidase Stimulates Neutrophil Degranulation.
Grigorieva, D V; Gorudko, I V; Sokolov, A V; Kostevich, V A; Vasilyev, V B; Cherenkevich, S N; Panasenko, O M
2016-08-01
Myeloperoxidase, heme enzyme of azurophilic granules in neutrophils, is released into the extracellular space in the inflammation foci. In neutrophils, it stimulates a dose-dependent release of lactoferrin (a protein of specific granules), lysozyme (a protein of specific and azurophilic granules), and elastase (a protein of azurophilic granules). 4-Aminobenzoic acid hydrazide, a potent inhibitor of peroxidase activity of myeloperoxidase, produced no effect on neutrophil degranulation. Using signal transduction inhibitors (genistein, methoxyverapamil, wortmannin, and NiCl2), we demonstrated that myeloperoxidase-induced degranulation of neutrophils resulted from enzyme interaction with the plasma membrane and depends on activation of tyrosine kinases, phosphatidylinositol 3-kinases (PI3K), and calcium signaling. Myeloperoxidase modified by oxidative/halogenation stress (chlorinated and monomeric forms of the enzyme) lost the potency to activate neutrophil degranulation. PMID:27597056
Stimulated rotational Raman scattering
NASA Astrophysics Data System (ADS)
Parazzoli, C. G.; Rafanelli, G. L.; Capps, D. M.; Drutman, C.
1989-03-01
The effect of Stimulated Rotational Raman Scattering (SRRS) processes on high energy laser directed energy weapon systems was studied. The program had 3 main objectives; achieving an accurate description of the physical processes involved in SRRS; developing a numerical algorithm to confidently evaluate SRRS-induced losses in the propagation of high energy laser beams in the uplink and downlink segments of the optical trains of various strategic defense system scenarios; and discovering possible methods to eliminate, or at least reduce, the deleterious effects of SRRS on the energy deposition on target. The following topics are discussed: the motivation for the accomplishments of the DOE program; the Semiclassical Theory of Non-Resonant SRRS for Diatomic Homonuclear Molecules; and then the following appendices; Calculation of the Dipole Transition Reduced Matrix Element, Guided Tour of Hughes SRRS Code, Running the Hughes SRRS Code, and Hughes SRRS Code Listing.
Femtosecond Stimulated Raman Spectroscopy.
Dietze, Daniel R; Mathies, Richard A
2016-05-01
Femtosecond stimulated Raman spectroscopy (FSRS) is an ultrafast nonlinear optical technique that provides vibrational structural information with high temporal (sub-50 fs) precision and high spectral (10 cm(-1) ) resolution. Since the first full demonstration of its capabilities ≈15 years ago, FSRS has evolved into a mature technique, giving deep insights into chemical and biochemical reaction dynamics that would be inaccessible with any other technique. It is now being routinely applied to virtually all possible photochemical reactions and systems spanning from single molecules in solution to thin films, bulk crystals and macromolecular proteins. This review starts with an historic overview and discusses the theoretical and experimental concepts behind this technology. Emphasis is put on the current state-of-the-art experimental realization and several variations of FSRS that have been developed. The unique capabilities of FSRS are illustrated through a comprehensive presentation of experiments to date followed by prospects. PMID:26919612
Engagement Sensitive Visual Stimulation.
Kumar, Deepesh; Dutta, Anirban; Das, Abhijit; Lahiri, Uttama
2016-06-13
Stroke is one of leading cause of death and disability worldwide. Early detection during golden hour and treatment of individual neurological dysfunction in stroke using easy-to-access biomarkers based on a simple-to-use, cost-effective, clinically-valid screening tool can bring a paradigm shift in healthcare, both urban and rural. In our research we have designed a quantitative automatic home-based oculomotor assessment tool that can play an important complementary role in prognosis of neurological disorders like stroke for the neurologist. Once the patient has been screened for stroke, the next step is to design proper rehabilitation platform to alleviate the disability. In addition to the screening platform, in our research, we work in designing virtual reality based rehabilitation exercise platform that has the potential to deliver visual stimulation and in turn contribute to improving one's performance. PMID:27478569
Stimulated coherent transition radiation
Hung-chi Lihn
1996-03-01
Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed.
Usage possibilities of laser stimulation in ophthalmology
NASA Astrophysics Data System (ADS)
Switka-Wieclawska, Iwona; Kecik, Tadeusz
1996-03-01
The laser stimulation is used in ophthalmology as a supplement toother way of therapy. Nowadays, the following types of procedures are being performed: eyeball anterior segment stimulation, lacrimal gland stimulation, eyeball posterior pole stimulation, trigeminal nerve opening stimulation. Laser stimulation can be used as an independent procedure or together with pharmacological treatment.
Hagstrom, T.; Radhakrishnan, K.
1994-12-31
The authors report on some iterative methods which they have tested for use in combustion simulations. In particular, they have developed a code to solve zero Mach number reacting flow equations with complex reaction and diffusion physics. These equations have the form of a nonlinear parabolic system coupled with constraints. In semi-discrete form, one obtains DAE`s of index two or three depending on the number of spatial dimensions. The authors have implemented a fourth order (fully implicit) BDF method in time, coupled with a suite of fourth order explicit and implicit spatial difference approximations. Most codes they know of for simulating reacting flows use a splitting strategy to march in time. This results in a sequence of nonlinear systems to solve, each of which has a simpler structure than the one they are faced with. The rapid and robust solution of the coupled system is the essential requirement for the success of their approach. They have implemented and analyzed nonlinear generalizations of conjugate gradient-like methods for nonsymmetric systems, including CGS and the quasi-Newton based method of Eirola and Nevanlinna. They develop a general framework for the nonlinearization of linear methods in terms of the acceleration of fixed-point iterations, where the latter is assumed to include the {open_quote}preconditioning{open_quote}. Their preconditioning is a single step of a split method, using lower order spatial difference approximations as well as simplified (Fickian) approximations of the diffusion physics.
Zhang, X L; Su, G F; Chen, J G; Raskob, W; Yuan, H Y; Huang, Q Y
2015-10-30
Information about atmospheric dispersion of radionuclides is vitally important for planning effective countermeasures during nuclear accidents. Results of dispersion models have high spatial and temporal resolutions, but they are not accurate enough due to the uncertain source term and the errors in meteorological data. Environmental measurements are more reliable, but they are scarce and unable to give forecasts. In this study, our newly proposed iterative ensemble Kalman filter (EnKF) data assimilation scheme is used to combine model results and environmental measurements. The system is thoroughly validated against the observations in the Kincaid tracer experiment. The initial first-guess emissions are assumed to be six magnitudes underestimated. The iterative EnKF system rapidly corrects the errors in the emission rate and wind data, thereby significantly improving the model results (>80% reduction of the normalized mean square error, r=0.71). Sensitivity tests are conducted to investigate the influence of meteorological parameters. The results indicate that the system is sensitive to boundary layer height. When the heights from the numerical weather prediction model are used, only 62.5% of reconstructed emission rates are within a factor two of the actual emissions. This increases to 87.5% when the heights derived from the on-site observations are used. PMID:26026852
Hao, Yan; Kemper, Peter; Smith, Gregory D
2009-09-01
Mathematical models of calcium release sites derived from Markov chain models of intracellular calcium channels exhibit collective gating reminiscent of the experimentally observed phenomenon of calcium puffs and sparks. Such models often take the form of stochastic automata networks in which the transition probabilities of each channel depend on the local calcium concentration and thus the state of the other channels. In order to overcome the state-space explosion that occurs in such compositionally defined calcium release site models, we have implemented several automated procedures for model reduction using fast/slow analysis. After categorizing rate constants in the single channel model as either fast or slow, groups of states in the expanded release site model that are connected by fast transitions are lumped, and transition rates between reduced states are chosen consistent with the conditional probability distribution among states within each group. For small problems these conditional probability distributions can be numerically calculated from the full model without approximation. For large problems the conditional probability distributions can be approximated without the construction of the full model by assuming rapid mixing of states connected by fast transitions. Alternatively, iterative aggregation/disaggregation may be employed to obtain reduced calcium release site models in a memory-efficient fashion. Benchmarking of several different iterative aggregation/disaggregation-based fast/slow reduction schemes establishes the effectiveness of automated calcium release site reduction utilizing the Koury-McAllister-Stewart method. PMID:19792032
Simulation of High Power ICRF Wave Heating in the ITER Burning Plasma
NASA Astrophysics Data System (ADS)
Jaeger, E. F.; Berry, L. A.; Barrett, R. F.; D'Azevedo, E. F.
2007-11-01
ITER relies on Ion-cyclotron Radio Frequency (ICRF) power to heat the plasma to fusion temperatures. To heat effectively, the waves must couple efficiently to the core plasma. Recent simulations using AORSA [1] on the 120 TF Cray XT-4 (Jaguar) at ORNL show that the waves propagate radially inward and are rapidly absorbed with little heating of the plasma edge. AORSA has achieved 87.5 trillion calculations per second (87.5 teraflops) on Jaguar, which is 73 percent of the system's theoretical peak. Three dimensional visualizations show ``hot spots'' near the antenna surface where the wave amplitude is high. AORSA simulations are also being used to study how to best use ICRF to drive plasma currents for optimizing ITER performance and pulse length. Results for Scenario 4 show a maximum current of 0.54 MA for 20 MW of power at 57 MHz. [1] E.F. Jaeger, L.A. Berry, E. D'Azevedo, et al., Phys. Plasmas. 8, 1573 (2001).
Biggley, W H; Swift, E; Buchanan, R J; Seliger, H H
1969-07-01
P. bahamense, G. polyedra, and P. lunula exhibit interspecies differences in stimulable and spontaneous bioluminescence. For each species the total number of photons that can be emitted upon mechanical stimulation is a constant, regardless of the time during scotophase at which stimulation occurs. Ratios of stimulable bioluminescence per organism during scotophase and photophase are as high as 950:1 for laboratory cultures and have been observed as high as 4000: 1 for natural populations of P. bahamense. Spontaneous emission in darkness shows flashing as well as low-level continuous emission. Natural populations of P. bahamense, placed in darkness during natural photophase, exhibit a dual character to their stimulable bioluminescence. Mechanical stimulation techniques are described for rapid and reproducible stimulation of bioluminescence. PMID:5792367
Biggley, W. H.; Swift, E.; Buchanan, R. J.; Seliger, H. H.
1969-01-01
P. bahamense, G. polyedra, and P. lunula exhibit interspecies differences in stimulable and spontaneous bioluminescence. For each species the total number of photons that can be emitted upon mechanical stimulation is a constant, regardless of the time during scotophase at which stimulation occurs. Ratios of stimulable bioluminescence per organism during scotophase and photophase are as high as 950:1 for laboratory cultures and have been observed as high as 4000: 1 for natural populations of P. bahamense. Spontaneous emission in darkness shows flashing as well as low-level continuous emission. Natural populations of P. bahamense, placed in darkness during natural photophase, exhibit a dual character to their stimulable bioluminescence. Mechanical stimulation techniques are described for rapid and reproducible stimulation of bioluminescence. PMID:5792367
Optically stimulated differential impedance spectroscopy
Maxey, Lonnie C; Parks, II, James E; Lewis, Sr., Samuel A; Partridge, Jr., William P
2014-02-18
Methods and apparatuses for evaluating a material are described. Embodiments typically involve use of an impedance measurement sensor to measure the impedance of a sample of the material under at least two different states of illumination. The states of illumination may include (a) substantially no optical stimulation, (b) substantial optical stimulation, (c) optical stimulation at a first wavelength of light, (d) optical stimulation at a second wavelength of light, (e) a first level of light intensity, and (f) a second level of light intensity. Typically a difference in impedance between the impedance of the sample at the two states of illumination is measured to determine a characteristic of the material.
Electrical stimulation: a societal perspective.
Gater, D R; McDowell, S M; Abbas, J J
2000-01-01
Societal perspective on functional electrical stimulation is colored by media influence, popular thought, and political climate as much as by the science that supports it. The purpose of this article is to examine how these influences facilitate or inhibit the application of electrical stimulation in today's world and to describe the challenges facing the use of electrical stimulation in the future. Emphasis will be placed on perceived need, cost, and available resources and how these factors must be addressed to utilize functional electrical stimulation successfully in society. PMID:11067581
The iteration method for the Wahba problem solution
NASA Astrophysics Data System (ADS)
Kruzhilov, Ivan
2014-12-01
Wahba problem is the task of constrained optimization on SO(3). Solution of this task is vital for satellite attitude determination using star trackers. An iterative method having quadratic convergence is proposed. Each iteration of the proposed method is reduced to sequential rotation of the vectors and solving the system of linear algebraic equations. The method needs an initial approximation, which can be obtained by the TRIAD method. The quaternion form of the TRIAD method is given. One or two iterations are sufficient for finding the optimal solution using the proposed method. The primary advantage of the proposed method as compared with classical methods based on calculation of eigenvectors and singular decomposition is the simplicity of its implementation.
Tomography by iterative convolution - Empirical study and application to interferometry
NASA Technical Reports Server (NTRS)
Vest, C. M.; Prikryl, I.
1984-01-01
An algorithm for computer tomography has been developed that is applicable to reconstruction from data having incomplete projections because an opaque object blocks some of the probing radiation as it passes through the object field. The algorithm is based on iteration between the object domain and the projection (Radon transform) domain. Reconstructions are computed during each iteration by the well-known convolution method. Although it is demonstrated that this algorithm does not converge, an empirically justified criterion for terminating the iteration when the most accurate estimate has been computed is presented. The algorithm has been studied by using it to reconstruct several different object fields with several different opaque regions. It also has been used to reconstruct aerodynamic density fields from interferometric data recorded in wind tunnel tests.
RHIC D0 INSERTION DIPOLE DESIGN ITERATIONS DURING PRODUCTION.
SCHMALZLE,J.; ANERELLA,M.; GANETIS,G.; GHOSH,A.; GUPTA,R.; JAIN,A.; KAHN,S.; MORGAN,G.; MURATORE,J.; SAMPSON,W.; WANDERER,P.; WILLEN,E.
1997-05-12
Iterations to the cross section of the Relativistic Heavy Ion Collider (RHIC) D0 Insertion Dipole magnets were made during the production. This was included as part of the production plan because no R&D or pre-production magnets were built prior to the start of production. The first magnet produced had the desired coil pre-stress and low field harmonics in the body of the magnet and is therefore being used in the RHIC Machine. On the first eight magnets, iterations were carried out to minimize the iron saturation and to compensate for the end harmonics. This paper will discuss the details of the iterations made, the obstacles encountered, and the results obtained. Also included will be a brief summary of the magnet design and performance.
Diamond neutral particle spectrometer for fusion reactor ITER
NASA Astrophysics Data System (ADS)
Krasilnikov, V.; Amosov, V.; Kaschuck, Yu.; Skopintsev, D.
2014-08-01
A compact diamond neutral particle spectrometer with digital signal processing has been developed for fast charge-exchange atoms and neutrons measurements at ITER fusion reactor conditions. This spectrometer will play supplementary role for Neutral Particle Analyzer providing 10 ms time and 30 keV energy resolutions for fast particle spectra in non-tritium ITER phase. These data will also be implemented for independent studies of fast ions distribution function evolution in various plasma scenarios with the formation of a single fraction of high-energy ions. In tritium ITER phase the DNPS will measure 14 MeV neutrons spectra. The spectrometer with digital signal processing can operate at peak counting rates reaching a value of 106 cps. Diamond neutral particle spectrometer is applicable to future fusion reactors due to its high radiation hardness, fast response and high energy resolution.
Description of the prototype diagnostic residual gas analyzer for ITER.
Younkin, T R; Biewer, T M; Klepper, C C; Marcus, C
2014-11-01
The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations. PMID:25430381
Shape reanalysis and sensitivities utilizing preconditioned iterative boundary solvers
NASA Technical Reports Server (NTRS)
Guru Prasad, K.; Kane, J. H.
1992-01-01
The computational advantages associated with the utilization of preconditined iterative equation solvers are quantified for the reanalysis of perturbed shapes using continuum structural boundary element analysis (BEA). Both single- and multi-zone three-dimensional problems are examined. Significant reductions in computer time are obtained by making use of previously computed solution vectors and preconditioners in subsequent analyses. The effectiveness of this technique is demonstrated for the computation of shape response sensitivities required in shape optimization. Computer times and accuracies achieved using the preconditioned iterative solvers are compared with those obtained via direct solvers and implicit differentiation of the boundary integral equations. It is concluded that this approach employing preconditioned iterative equation solvers in reanalysis and sensitivity analysis can be competitive with if not superior to those involving direct solvers.
Fully converged iterative method for coupled channel problems
NASA Astrophysics Data System (ADS)
Shu, Di; Simbotin, I.; Côté, R.
2016-05-01
We implemented a numerical method using a distorted-wave perturbative approach for coupled-channel scattering problems. Our new method provides a way to avoid costly computations for the propagation of the full solutions in coupled-channel problems to large distances for slowly vanishing couplings. Thus, instead of dealing with large matrices, all computations are performed in a channel by channel fashion. The distorted wavefunction for each channel is initialized with the appropriate solution (which includes the diagonal element of the coupling potential matrix). We then solve single-channel inhomogeneous radial equations which contain the (off-diagonal) couplings as a perturbation, and we iterate until desired accuracy is achieved. We tested for stability by continuing to iterate even after convergence has been achieved, e.g., for a total of 75 iterations. Partial support from the US Army Research Office (ARO-MURI W911NF-14-1-0378), and from NSF (Grant No. PHY-1415560).
Description of the prototype diagnostic residual gas analyzer for ITER
Younkin, T. R.; Biewer, T. M.; Klepper, C. C.; Marcus, C.
2014-11-15
The diagnostic residual gas analyzer (DRGA) system to be used during ITER tokamak operation is being designed at Oak Ridge National Laboratory to measure fuel ratios (deuterium and tritium), fusion ash (helium), and impurities in the plasma. The eventual purpose of this instrument is for machine protection, basic control, and physics on ITER. Prototyping is ongoing to optimize the hardware setup and measurement capabilities. The DRGA prototype is comprised of a vacuum system and measurement technologies that will overlap to meet ITER measurement requirements. Three technologies included in this diagnostic are a quadrupole mass spectrometer, an ion trap mass spectrometer, and an optical penning gauge that are designed to document relative and absolute gas concentrations.
Diamond neutral particle spectrometer for fusion reactor ITER
Krasilnikov, V.; Amosov, V.; Kaschuck, Yu.; Skopintsev, D.
2014-08-21
A compact diamond neutral particle spectrometer with digital signal processing has been developed for fast charge-exchange atoms and neutrons measurements at ITER fusion reactor conditions. This spectrometer will play supplementary role for Neutral Particle Analyzer providing 10 ms time and 30 keV energy resolutions for fast particle spectra in non-tritium ITER phase. These data will also be implemented for independent studies of fast ions distribution function evolution in various plasma scenarios with the formation of a single fraction of high-energy ions. In tritium ITER phase the DNPS will measure 14 MeV neutrons spectra. The spectrometer with digital signal processing can operate at peak counting rates reaching a value of 10{sup 6} cps. Diamond neutral particle spectrometer is applicable to future fusion reactors due to its high radiation hardness, fast response and high energy resolution.
Velocity observer-based iterative learning control for robot manipulators
NASA Astrophysics Data System (ADS)
Bouakrif, Farah; Boukhetala, Djamel; Boudjema, Farès
2013-02-01
This article addresses the problem of designing an iterative learning control for trajectory tracking of rigid robot manipulators subject to external disturbances, and performing repetitive tasks, without using the velocity measurement. For solving this problem, a velocity observer having an iterative form is proposed to reconstruct the velocity signal in the control laws. Under assumptions that the disturbances are repetitive and the velocities are bounded, it has been shown that the whole control system (robot plus controller plus observer) is asymptotically stable and the observation error is globally asymptotically stable, over the whole finite time-interval when the iteration number tends to infinity. This proof is based upon the use of a Lyapunov-like positive definite sequence, which is shown to be monotonically decreasing under the proposed observer-controller schemes.
A successive overrelaxation iterative technique for an adaptive equalizer
NASA Technical Reports Server (NTRS)
Kosovych, O. S.
1973-01-01
An adaptive strategy for the equalization of pulse-amplitude-modulated signals in the presence of intersymbol interference and additive noise is reported. The successive overrelaxation iterative technique is used as the algorithm for the iterative adjustment of the equalizer coefficents during a training period for the minimization of the mean square error. With 2-cyclic and nonnegative Jacobi matrices substantial improvement is demonstrated in the rate of convergence over the commonly used gradient techniques. The Jacobi theorems are also extended to nonpositive Jacobi matrices. Numerical examples strongly indicate that the improvements obtained for the special cases are possible for general channel characteristics. The technique is analytically demonstrated to decrease the mean square error at each iteration for a large range of parameter values for light or moderate intersymbol interference and for small intervals for general channels. Analytically, convergence of the relaxation algorithm was proven in a noisy environment and the coefficient variance was demonstrated to be bounded.
Space Charge Neutralization in the ITER Negative Ion Beams
Surrey, Elizabeth
2007-08-10
A model of the space charge neutralization of negative ion beams, developed from the model due to Holmes, is applied to the ITER heating and diagnostic beams. The Holmes model assumed that the plasma electron temperature was derived from the stripped electrons. This is shown to be incorrect for the ITER beams and the plasma electron temperature is obtained from the average creation energy upon ionization. The model shows that both ITER beams will be fully space charge compensated in the drift distance between the accelerator and the neutralizer. Inside the neutralizer, the plasma over compensates the space charge to the extent that a significant focusing force is predicted. At a certain position in the neutraliser this force balances the defocusing force due to the ions' transverse energy. Under these conditions the beam distribution function can change from Gaussian to Bennett and evidence of such a distribution observed in a multi-aperture, neutralized negative ion beam is presented.
Accelerating multidimensional NMR and MRI experiments using iterated maps
NASA Astrophysics Data System (ADS)
Barrett, Sean; Frey, Merideth; Sethna, Zachary; Manley, Gregory; Sengupta, Suvrajit; Zilm, Kurt; Loria, J. Patrick
2014-03-01
Techniques that accelerate data acquisition without sacrificing the advantages of fast Fourier transform (FFT) reconstruction could benefit a wide variety of magnetic resonance experiments. Here we discuss an approach for reconstructing multidimensional nuclear magnetic resonance (NMR) spectra and MR images from sparsely-sampled time domain data, by way of iterated maps. This method exploits the computational speed of the FFT algorithm and is done in a deterministic way, by reformulating any a priori knowledge or constraints into projections, and then iterating. In this paper we explain the motivation behind this approach, the formulation of the specific projections, the benefits of using a `QUasi-Even Sampling, plus jiTter' (QUEST) sampling schedule, and various methods for handling noise. Applying the iterated maps method to real 2D NMR and 3D MRI of solids data, we show that it is flexible and robust enough to handle large data sets with significant noise and artifacts.
Accelerating multidimensional NMR and MRI experiments using iterated maps
NASA Astrophysics Data System (ADS)
Frey, Merideth A.; Sethna, Zachary M.; Manley, Gregory A.; Sengupta, Suvrajit; Zilm, Kurt W.; Loria, J. Patrick; Barrett, Sean E.
2013-12-01
Techniques that accelerate data acquisition without sacrificing the advantages of fast Fourier transform (FFT) reconstruction could benefit a wide variety of magnetic resonance experiments. Here we discuss an approach for reconstructing multidimensional nuclear magnetic resonance (NMR) spectra and MR images from sparsely-sampled time domain data, by way of iterated maps. This method exploits the computational speed of the FFT algorithm and is done in a deterministic way, by reformulating any a priori knowledge or constraints into projections, and then iterating. In this paper we explain the motivation behind this approach, the formulation of the specific projections, the benefits of using a ‘QUasi-Even Sampling, plus jiTter' (QUEST) sampling schedule, and various methods for handling noise. Applying the iterated maps method to real 2D NMR and 3D MRI of solids data, we show that it is flexible and robust enough to handle large data sets with significant noise and artifacts.
Preconditioning methods for improved convergence rates in iterative reconstructions
Clinthorne, N.H.; Chiao, Pingchun; Rogers, W.L. . Div. of Nuclear Medicine); Pan, T.S. . Dept. of Nuclear Medicine); Stamos, J.A. . Dept. of Nuclear Engineering)
1993-03-01
Because of the characteristics of the tomographic inversion problem, iterative reconstruction techniques often suffer from poor convergence rates--especially at high spatial frequencies. By using preconditioning methods, the convergence properties of most iterative methods can be greatly enhanced without changing their ultimate solution. To increase reconstruction speed, the authors have applied spatially-invariant preconditioning filters that can be designed using the tomographic system response and implemented using 2-D frequency-domain filtering techniques. In a sample application, the authors performed reconstructions from noiseless, simulated projection data, using preconditioned and conventional steepest-descent algorithms. The preconditioned methods demonstrated residuals that were up to a factor of 30 lower than the unassisted algorithms at the same iteration. Applications of these methods to regularized reconstructions from projection data containing Poisson noise showed similar, although not as dramatic, behavior.
Iterative methods for plasma sheath calculations: Application to spherical probe
NASA Technical Reports Server (NTRS)
Parker, L. W.; Sullivan, E. C.
1973-01-01
The computer cost of a Poisson-Vlasov iteration procedure for the numerical solution of a steady-state collisionless plasma-sheath problem depends on: (1) the nature of the chosen iterative algorithm, (2) the position of the outer boundary of the grid, and (3) the nature of the boundary condition applied to simulate a condition at infinity (as in three-dimensional probe or satellite-wake problems). Two iterative algorithms, in conjunction with three types of boundary conditions, are analyzed theoretically and applied to the computation of current-voltage characteristics of a spherical electrostatic probe. The first algorithm was commonly used by physicists, and its computer costs depend primarily on the boundary conditions and are only slightly affected by the mesh interval. The second algorithm is not commonly used, and its costs depend primarily on the mesh interval and slightly on the boundary conditions.
Scattering from a multilayered chiral sphere using an iterative method
NASA Astrophysics Data System (ADS)
Shang, Qing-Chao; Wu, Zhen-Sen; Qu, Tan; Li, Zheng-Jun; Bai, Lu
2016-04-01
An iterative method for electromagnetic scattering from a multilayered chiral sphere is presented based on Lorenz-Mie regime. Electromagnetic fields in each region are expanded in terms of spherical vector wave functions. To calculate the scattering coefficients of the fields in outer space, an iterative form is constructed according to the coefficients equations obtained by the boundary condition on each layer. The iterative relations are expressed in forms of ratios and logarithmic derivatives of Riccati-Bessel functions, which can be calculated conveniently by their recurrence relations. The theory and codes are verified by comparing the scattered fields with those of a multilayered isotropic achiral sphere, and those of a single layered chiral sphere. Scattered fields of multilayered chiral spheres are presented and discussed, including a large sized case and a Gaussian beam incidence case.
Migration of vectorized iterative solvers to distributed memory architectures
Pommerell, C.; Ruehl, R.
1994-12-31
Both necessity and opportunity motivate the use of high-performance computers for iterative linear solvers. Necessity results from the size of the problems being solved-smaller problems are often better handled by direct methods. Opportunity arises from the formulation of the iterative methods in terms of simple linear algebra operations, even if this {open_quote}natural{close_quotes} parallelism is not easy to exploit in irregularly structured sparse matrices and with good preconditioners. As a result, high-performance implementations of iterative solvers have attracted a lot of interest in recent years. Most efforts are geared to vectorize or parallelize the dominating operation-structured or unstructured sparse matrix-vector multiplication, or to increase locality and parallelism by reformulating the algorithm-reducing global synchronization in inner products or local data exchange in preconditioners. Target architectures for iterative solvers currently include mostly vector supercomputers and architectures with one or few optimized (e.g., super-scalar and/or super-pipelined RISC) processors and hierarchical memory systems. More recently, parallel computers with physically distributed memory and a better price/performance ratio have been offered by vendors as a very interesting alternative to vector supercomputers. However, programming comfort on such distributed memory parallel processors (DMPPs) still lags behind. Here the authors are concerned with iterative solvers and their changing computing environment. In particular, they are considering migration from traditional vector supercomputers to DMPPs. Application requirements force one to use flexible and portable libraries. They want to extend the portability of iterative solvers rather than reimplementing everything for each new machine, or even for each new architecture.