Science.gov

Sample records for rapid-response splicing reporter

  1. Rapid generation of splicing reporters with pSpliceExpress

    PubMed Central

    Kishore, Shivendra; Khanna, Amit; Stamm, Stefan

    2008-01-01

    Almost all human protein-coding transcripts undergo pre-mRNA splicing and a majority of them is alternatively spliced. The most common technique used to analyze the regulation of an alternative exon is through reporter minigene constructs. However, their construction is time-consuming and is often complicated by the limited availability of appropriate restriction sites. Here, we report a fast and simple recombination-based method to generate splicing reporter genes, using a new vector, pSpliceExpress. The system allows generation of minigenes within one week. Minigenes generated with pSpliceExpress show the same regulation as displayed by conventionally cloned reporter constructs and provide an alternate avenue to study splice site selection in vivo. PMID:18930792

  2. Arabidopsis PTB1 and PTB2 proteins negatively regulate splicing of a mini-exon splicing reporter and affect alternative splicing of endogenous genes differentially.

    PubMed

    Simpson, Craig G; Lewandowska, Dominika; Liney, Michele; Davidson, Diane; Chapman, Sean; Fuller, John; McNicol, Jim; Shaw, Paul; Brown, John W S

    2014-07-01

    This paper examines the function of Arabidopsis thaliana AtPTB1 and AtPTB2 as plant splicing factors. The effect on splicing of overexpression of AtPTB1 and AtPTB2 was analysed in an in vivo protoplast transient expression system with a novel mini-exon splicing reporter. A range of mutations in pyrimidine-rich sequences were compared with and without AtPTB and NpU2AF65 overexpression. Splicing analyses of constructs in protoplasts and RNA from overexpression lines used high-resolution reverse transcription polymerase chain reaction (RT-PCR). AtPTB1 and AtPTB2 reduced inclusion/splicing of the potato invertase mini-exon splicing reporter, indicating that these proteins can repress plant intron splicing. Mutation of the polypyrimidine tract and closely associated Cytosine and Uracil-rich (CU-rich) sequences, upstream of the mini-exon, altered repression by AtPTB1 and AtPTB2. Coexpression of a plant orthologue of U2AF65 alleviated the splicing repression of AtPTB1. Mutation of a second CU-rich upstream of the mini-exon 3' splice site led to a decline in mini-exon splicing, indicating the presence of a splicing enhancer sequence. Finally, RT-PCR of AtPTB overexpression lines with c. 90 known alternative splicing (AS) events showed that AtPTBs significantly altered AS of over half the events. AtPTB1 and AtPTB2 are splicing factors that influence alternative splicing. This occurs in the potato invertase mini-exon via the polypyrimidine tract and associated pyrimidine-rich sequence. PMID:24749484

  3. Rapid response manufacturing (RRM)

    SciTech Connect

    Cain, W.D.; Waddell, W.L.

    1997-02-18

    US industry is fighting to maintain its competitive edge in the global market place. Today markets fluctuate rapidly. Companies, to survive, have to be able to respond with quick-to-market, improved, high quality, cost efficient products. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies. The RRM project was established to leverage the expertise and resources of US private industries and federal agencies to develop, integrate, and deploy new technologies that meet critical needs for effective product realization. The RRM program addressed a needed change in the US Manufacturing infrastructure that will ensure US competitiveness in world market typified by mass customization. This project provided the effort needed to define, develop and establish a customizable infrastructure for rapid response product development design and manufacturing. A major project achievement was the development of a broad-based framework for automating and integrating the product and process design and manufacturing activities involved with machined parts. This was accomplished by coordinating and extending the application of feature-based product modeling, knowledge-based systems, integrated data management, and direct manufacturing technologies in a cooperative integrated computing environment. Key technological advancements include a product model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering environment, knowledge-based software aids for design and process planning, and new production technologies to make products directly from design application software.

  4. Lupus erythematosus and lichen planus overlap syndrome:a case report with a rapid response to topical corticosteroid therapy

    PubMed Central

    Demirci, Gulsen Tukenmez; Altunay, Ilknur Kıvanç; Sarıkaya, Sezgi; Sakiz, Damlanur

    2011-01-01

    Lupus erythematosus (LE) and lichen planus (LP) may occur as an overlap syndrome. We report the clinical characteristics of a young man with lesions diagnosed as LE and LP by histopathological and direct immunoflurosence examinations. We achieved remarkable clinical response from the treatment with topical corticosteroids and no recurrence was seen in a 6 months of follow up time. We found this case interesting because of the rapid improvement with corticosteroid and discussed if there is a real overlap or a coexistence according to the literature. PMID:25386300

  5. Early detection and rapid response

    USGS Publications Warehouse

    Westbrooks, Randy G.; Eplee, Robert E.

    2011-01-01

    Prevention is the first line of defense against introduced invasive species - it is always preferable to prevent the introduction of new invaders into a region or country. However, it is not always possible to detect all alien hitchhikers imported in cargo, or to predict with any degree of certainty which introduced species will become invasive over time. Fortunately, the majority of introduced plants and animals don't become invasive. But, according to scientists at Cornell University, costs and losses due to species that do become invasive are now estimated to be over $137 billion/year in the United States. Early detection and rapid response (EDRR) is the second line of defense against introduced invasive species - EDRR is the preferred management strategy for preventing the establishment and spread of invasive species. Over the past 50 years, there has been a gradual shift away from large and medium scale federal/state single-agency-led weed eradication programs in the United States, to smaller interagency-led projects involving impacted and potential stakeholders. The importance of volunteer weed spotters in detecting and reporting suspected new invasive species has also been recognized in recent years.

  6. Splicing fidelity

    PubMed Central

    Koodathingal, Prakash; Staley, Jonathan P.

    2013-01-01

    The spliceosome discriminates against suboptimal substrates, both during assembly and catalysis, thereby enhancing specificity during pre-mRNA splicing. Central to such fidelity mechanisms are a conserved subset of the DEAD- and DEAH-box ATPases, which belong to a superfamily of proteins that mediate RNP rearrangements in almost all RNA-dependent processes in the cell. Through an investigation of the mechanisms contributing to the specificity of 5′ splice site cleavage, two related reports, one from our lab and the other from the Cheng lab, have provided insights into fidelity mechanisms utilized by the spliceosome. In our work, we found evidence for a kinetic proofreading mechanism in splicing in which the DEAH-box ATPase Prp16 discriminates against substrates undergoing slow 5′ splice site cleavage. Additionally, our study revealed that discriminated substrates are discarded through a general spliceosome disassembly pathway, mediated by another DEAH-box ATPase Prp43. In their work, Tseng et al. described the underlying molecular events through which Prp16 discriminates against a splicing substrate during 5′ splice site cleavage. Here, we present a synthesis of these two studies and, additionally, provide the first biochemical evidence for discrimination of a suboptimal splicing substrate just prior to 5′ splice site cleavage. Together, these findings support a general mechanism for a ubiquitous superfamily of ATPases in enhancing specificity during RNA-dependent processes in the cell. PMID:23770752

  7. Splicing Programs and Cancer

    PubMed Central

    Germann, Sophie; Gratadou, Lise; Dutertre, Martin; Auboeuf, Didier

    2012-01-01

    Numerous studies report splicing alterations in a multitude of cancers by using gene-by-gene analysis. However, understanding of the role of alternative splicing in cancer is now reaching a new level, thanks to the use of novel technologies allowing the analysis of splicing at a large-scale level. Genome-wide analyses of alternative splicing indicate that splicing alterations can affect the products of gene networks involved in key cellular programs. In addition, many splicing variants identified as being misregulated in cancer are expressed in normal tissues. These observations suggest that splicing programs contribute to specific cellular programs that are altered during cancer initiation and progression. Supporting this model, recent studies have identified splicing factors controlling cancer-associated splicing programs. The characterization of splicing programs and their regulation by splicing factors will allow a better understanding of the genetic mechanisms involved in cancer initiation and progression and the development of new therapeutic targets. PMID:22132318

  8. Integration of palliative care in the context of rapid response: a report from the Improving Palliative Care in the ICU advisory board.

    PubMed

    Nelson, Judith E; Mathews, Kusum S; Weissman, David E; Brasel, Karen J; Campbell, Margaret; Curtis, J Randall; Frontera, Jennifer A; Gabriel, Michelle; Hays, Ross M; Mosenthal, Anne C; Mulkerin, Colleen; Puntillo, Kathleen A; Ray, Daniel E; Weiss, Stefanie P; Bassett, Rick; Boss, Renee D; Lustbader, Dana R

    2015-02-01

    Rapid response teams (RRTs) can effectively foster discussions about appropriate goals of care and address other emergent palliative care needs of patients and families facing life-threatening illness on hospital wards. In this article, The Improving Palliative Care in the ICU (IPAL-ICU) Project brings together interdisciplinary expertise and existing data to address the following: special challenges for providing palliative care in the rapid response setting, knowledge and skills needed by RRTs for delivery of high-quality palliative care, and strategies for improving the integration of palliative care with rapid response critical care. We discuss key components of communication with patients, families, and primary clinicians to develop a goal-directed treatment approach during a rapid response event. We also highlight the need for RRT expertise to initiate symptom relief. Strategies including specific clinician training and system initiatives are then recommended for RRT care improvement. We conclude by suggesting that as evaluation of their impact on other outcomes continues, performance by RRTs in meeting palliative care needs of patients and families should also be measured and improved. PMID:25644909

  9. Characterization of BRCA1 and BRCA2 splicing variants: a collaborative report by ENIGMA consortium members.

    PubMed

    Thomassen, Mads; Blanco, Ana; Montagna, Marco; Hansen, Thomas V O; Pedersen, Inge S; Gutiérrez-Enríquez, Sara; Menéndez, Mireia; Fachal, Laura; Santamariña, Marta; Steffensen, Ane Y; Jønson, Lars; Agata, Simona; Whiley, Phillip; Tognazzo, Silvia; Tornero, Eva; Jensen, Uffe B; Balmaña, Judith; Kruse, Torben A; Goldgar, David E; Lázaro, Conxi; Diez, Orland; Spurdle, Amanda B; Vega, Ana

    2012-04-01

    Mutations in BRCA1 and BRCA2 predispose carriers to early onset breast and ovarian cancer. A common problem in clinical genetic testing is interpretation of variants with unknown clinical significance. The Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium was initiated to evaluate and implement strategies to characterize the clinical significance of BRCA1 and BRCA2 variants. As an initial project of the ENIGMA Splicing Working Group, we report splicing and multifactorial likelihood analysis of 25 BRCA1 and BRCA2 variants from seven different laboratories. Splicing analysis was performed by reverse transcriptase PCR or mini gene assay, and sequencing to identify aberrant transcripts. The findings were compared to bioinformatic predictions using four programs. The posterior probability of pathogenicity was estimated using multifactorial likelihood analysis, including co-occurrence with a deleterious mutation, segregation and/or report of family history. Abnormal splicing patterns expected to lead to a non-functional protein were observed for 7 variants (BRCA1 c.441+2T>A, c.4184_4185+2del, c.4357+1G>A, c.4987-2A>G, c.5074G>C, BRCA2 c.316+5G>A, and c.8754+3G>C). Combined interpretation of splicing and multifactorial analysis classified an initiation codon variant (BRCA2 c.3G>A) as likely pathogenic, uncertain clinical significance for 7 variants, and indicated low clinical significance or unlikely pathogenicity for another 10 variants. Bioinformatic tools predicted disruption of consensus donor or acceptor sites with high sensitivity, but cryptic site usage was predicted with low specificity, supporting the value of RNA-based assays. The findings also provide further evidence that clinical RNA-based assays should be extended from analysis of invariant dinucleotides to routinely include all variants located within the donor and acceptor consensus splicing sites. Importantly, this study demonstrates the added value of

  10. Acute incident rapid response at a mass-gathering event through comprehensive planning systems: a case report from the 2013 Shamrock Shuffle.

    PubMed

    Başdere, Mehmet; Ross, Colleen; Chan, Jennifer L; Mehrotra, Sanjay; Smilowitz, Karen; Chiampas, George

    2014-06-01

    Planning and execution of mass-gathering events involves various challenges. In this case report, the Chicago Model (CM), which was designed to organize and operate such events and to maintain the health and wellbeing of both runners and the public in a more effective way, is described. The Chicago Model also was designed to prepare for unexpected incidents, including disasters, during the marathon event. The model has been used successfully in the planning and execution stages of the Bank of America Shamrock Shuffle and the Bank of America Chicago Marathon since 2008. The key components of the CM are organizational structure, information systems, and communication. This case report describes how the organizers at the 2013 Shamrock Shuffle used the key components of the CM approach in order to respond to an acute incident caused by a man who was threatening to jump off the State Street Bridge. The course route was changed to accommodate this unexpected event, while maintaining access to key health care facilities. The lessons learned from the incident are presented and further improvements to the existing model are proposed. PMID:24820906

  11. Alternative Splicing in CKD.

    PubMed

    Stevens, Megan; Oltean, Sebastian

    2016-06-01

    Alternative splicing (AS) has emerged in the postgenomic era as one of the main drivers of proteome diversity, with ≥94% of multiexon genes alternatively spliced in humans. AS is therefore one of the main control mechanisms for cell phenotype, and is a process deregulated in disease. Numerous reports describe pathogenic mutations in splice factors, splice sites, or regulatory sequences. Additionally, compared with the physiologic state, disease often associates with an abnormal proportion of splice isoforms (or novel isoforms), without an apparent driver mutation. It is therefore essential to study how AS is regulated in physiology, how it contributes to pathogenesis, and whether we can manipulate faulty splicing for therapeutic advantage. Although the disease most commonly linked to deregulation of AS in several genes is cancer, many reports detail pathogenic splice variants in diseases ranging from neuromuscular disorders to diabetes or cardiomyopathies. A plethora of splice variants have been implicated in CKDs as well. In this review, we describe examples of these CKD-associated splice variants and ideas on how to manipulate them for therapeutic benefit. PMID:26763787

  12. Spliced leader trans-splicing in the nematode Trichinella spiralis uses highly polymorphic, noncanonical spliced leaders.

    PubMed

    Pettitt, Jonathan; Müller, Berndt; Stansfield, Ian; Connolly, Bernadette

    2008-04-01

    The trans-splicing of short spliced leader (SL) RNAs onto the 5' ends of mRNAs occurs in a diverse range of taxa. In nematodes, all species so far characterized utilize a characteristic, conserved spliced leader, SL1, as well as variants that are employed in the resolution of operons. Here we report the identification of spliced leader trans-splicing in the basal nematode Trichinella spiralis, and show that this nematode does not possess a canonical SL1, but rather has at least 15 distinct spliced leaders, encoded by at least 19 SL RNA genes. The individual spliced leaders vary in both size and primary sequence, showing a much higher degree of diversity compared to other known trans-spliced leaders. In a survey of T. spiralis mRNAs, individual mRNAs were found to be trans-spliced to a number of different spliced leader sequences. These data provide the first indication that the last common ancestor of the phylum Nematoda utilized spliced leader trans-splicing and that the canonical spliced leader, SL1, found in Caenorhabditis elegans, evolved after the divergence of the major nematode clades. This discovery sheds important light on the nature and evolution of mRNA processing in the Nematoda. PMID:18256244

  13. Precise autofocusing microscope with rapid response

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Sheng; Jiang, Sheng-Hong

    2015-03-01

    The rapid on-line or off-line automated vision inspection is a critical operation in the manufacturing fields. Accordingly, this present study designs and characterizes a novel precise optics-based autofocusing microscope with a rapid response and no reduction in the focusing accuracy. In contrast to conventional optics-based autofocusing microscopes with centroid method, the proposed microscope comprises a high-speed rotating optical diffuser in which the variation of the image centroid position is reduced and consequently the focusing response is improved. The proposed microscope is characterized and verified experimentally using a laboratory-built prototype. The experimental results show that compared to conventional optics-based autofocusing microscopes, the proposed microscope achieves a more rapid response with no reduction in the focusing accuracy. Consequently, the proposed microscope represents another solution for both existing and emerging industrial applications of automated vision inspection.

  14. Identification of Coilin Mutants in a Screen for Enhanced Expression of an Alternatively Spliced GFP Reporter Gene in Arabidopsis thaliana

    PubMed Central

    Kanno, Tatsuo; Lin, Wen-Dar; Fu, Jason L.; Wu, Ming-Tsung; Yang, Ho-Wen; Lin, Shih-Shun; Matzke, Antonius J. M.; Matzke, Marjori

    2016-01-01

    Coilin is a marker protein for subnuclear organelles known as Cajal bodies, which are sites of various RNA metabolic processes including the biogenesis of spliceosomal small nuclear ribonucleoprotein particles. Through self-associations and interactions with other proteins and RNA, coilin provides a structural scaffold for Cajal body formation. However, despite a conspicuous presence in Cajal bodies, most coilin is dispersed in the nucleoplasm and expressed in cell types that lack these organelles. The molecular function of coilin, particularly of the substantial nucleoplasmic fraction, remains uncertain. We identified coilin loss-of-function mutations in a genetic screen for mutants showing either reduced or enhanced expression of an alternatively spliced GFP reporter gene in Arabidopsis thaliana. The coilin mutants feature enhanced GFP fluorescence and diminished Cajal bodies compared with wild-type plants. The amount of GFP protein is several-fold higher in the coilin mutants owing to elevated GFP transcript levels and more efficient splicing to produce a translatable GFP mRNA. Genome-wide RNA-sequencing data from two distinct coilin mutants revealed a small, shared subset of differentially expressed genes, many encoding stress-related proteins, and, unexpectedly, a trend toward increased splicing efficiency. These results suggest that coilin attenuates splicing and modulates transcription of a select group of genes. The transcriptional and splicing changes observed in coilin mutants are not accompanied by gross phenotypic abnormalities or dramatically altered stress responses, supporting a role for coilin in fine tuning gene expression. Our GFP reporter gene provides a sensitive monitor of coilin activity that will facilitate further investigations into the functions of this enigmatic protein. PMID:27317682

  15. Identification of Coilin Mutants in a Screen for Enhanced Expression of an Alternatively Spliced GFP Reporter Gene in Arabidopsis thaliana.

    PubMed

    Kanno, Tatsuo; Lin, Wen-Dar; Fu, Jason L; Wu, Ming-Tsung; Yang, Ho-Wen; Lin, Shih-Shun; Matzke, Antonius J M; Matzke, Marjori

    2016-08-01

    Coilin is a marker protein for subnuclear organelles known as Cajal bodies, which are sites of various RNA metabolic processes including the biogenesis of spliceosomal small nuclear ribonucleoprotein particles. Through self-associations and interactions with other proteins and RNA, coilin provides a structural scaffold for Cajal body formation. However, despite a conspicuous presence in Cajal bodies, most coilin is dispersed in the nucleoplasm and expressed in cell types that lack these organelles. The molecular function of coilin, particularly of the substantial nucleoplasmic fraction, remains uncertain. We identified coilin loss-of-function mutations in a genetic screen for mutants showing either reduced or enhanced expression of an alternatively spliced GFP reporter gene in Arabidopsis thaliana The coilin mutants feature enhanced GFP fluorescence and diminished Cajal bodies compared with wild-type plants. The amount of GFP protein is several-fold higher in the coilin mutants owing to elevated GFP transcript levels and more efficient splicing to produce a translatable GFP mRNA. Genome-wide RNA-sequencing data from two distinct coilin mutants revealed a small, shared subset of differentially expressed genes, many encoding stress-related proteins, and, unexpectedly, a trend toward increased splicing efficiency. These results suggest that coilin attenuates splicing and modulates transcription of a select group of genes. The transcriptional and splicing changes observed in coilin mutants are not accompanied by gross phenotypic abnormalities or dramatically altered stress responses, supporting a role for coilin in fine tuning gene expression. Our GFP reporter gene provides a sensitive monitor of coilin activity that will facilitate further investigations into the functions of this enigmatic protein. PMID:27317682

  16. Evaluation of a 5-tier scheme proposed for classification of sequence variants using bioinformatic and splicing assay data: inter-reviewer variability and promotion of minimum reporting guidelines.

    PubMed

    Walker, Logan C; Whiley, Phillip J; Houdayer, Claude; Hansen, Thomas V O; Vega, Ana; Santamarina, Marta; Blanco, Ana; Fachal, Laura; Southey, Melissa C; Lafferty, Alan; Colombo, Mara; De Vecchi, Giovanna; Radice, Paolo; Spurdle, Amanda B

    2013-10-01

    Splicing assays are commonly undertaken in the clinical setting to assess the clinical relevance of sequence variants in disease predisposition genes. A 5-tier classification system incorporating both bioinformatic and splicing assay information was previously proposed as a method to provide consistent clinical classification of such variants. Members of the ENIGMA Consortium Splicing Working Group undertook a study to assess the applicability of the scheme to published assay results, and the consistency of classifications across multiple reviewers. Splicing assay data were identified for 235 BRCA1 and 176 BRCA2 unique variants, from 77 publications. At least six independent reviewers from research and/or clinical settings comprehensively examined splicing assay methods and data reported for 22 variant assays of 21 variants in four publications, and classified the variants using the 5-tier classification scheme. Inconsistencies in variant classification occurred between reviewers for 17 of the variant assays. These could be attributed to a combination of ambiguity in presentation of the classification criteria, differences in interpretation of the data provided, nonstandardized reporting of results, and the lack of quantitative data for the aberrant transcripts. We propose suggestions for minimum reporting guidelines for splicing assays, and improvements to the 5-tier splicing classification system to allow future evaluation of its performance as a clinical tool. PMID:23893897

  17. Rapid response team for behavioral emergencies.

    PubMed

    Loucks, Jeannine; Rutledge, Dana N; Hatch, Beverly; Morrison, Victoria

    2010-03-01

    Behaviors of patients with psychiatric illness who are hospitalized on nonbehavioral health units can be difficult to address by staff members. Instituting a rapid response team to proactively de-escalate potential volatile situations on nonpsychiatric units in a hospital allows earlier treatment of behavioral issues with these patients. The behavioral emergency response team (BERT) consists of staff members (registered nurses, social workers) from behavioral health services who have experience in caring for patients with acute psychiatric disorders as well as competence in management of assaultive behavior. BERT services were trialed on a medical pulmonary unit; gradual housewide implementation occurred over 2 years. Tools developed for BERT include an activation algorithm, educational cue cards for staff, and a staff survey. Results of a performance improvement survey reveal that staff nurses have had positive experiences with BERT but that many nurses are still not comfortable caring for psychiatric patients on their units. PMID:21659266

  18. Rapid Response to Treatment for Binge Eating Disorder

    ERIC Educational Resources Information Center

    Grilo, Carlos M.; Masheb, Robin M.; Wilson, Terence G.

    2006-01-01

    The authors examined rapid response among 108 patients with binge eating disorder (BED) who were randomly assigned to 1 of 4 16-week treatments: fluoxetine, placebo, cognitive-behavioral therapy (CBT) plus fluoxetine, or CBT plus placebo. Rapid response, defined as 65% or greater reduction in binge eating by the 4th treatment week, was determined…

  19. A 32-nucleotide exon-splicing enhancer regulates usage of competing 5' splice sites in a differential internal exon.

    PubMed Central

    Humphrey, M B; Bryan, J; Cooper, T A; Berget, S M

    1995-01-01

    Large alternatively spliced internal exons are uncommon in vertebrate genes, and the mechanisms governing their usage are unknown. In this report, we examined alternative splicing of a 1-kb internal exon from the human caldesmon gene containing two regulated 5' splice sites that are 687 nucleotides apart. In cell lines normally splicing caldesmon RNA via utilization of the exon-internal 5' splice site, inclusion of the differential exon required a long purine-rich sequence located between the two competing 5' splice sites. This element consisted of four identical 32-nucleotide purine-rich repeats that resemble exon-splicing enhancers (ESE) identified in other genes. One 32-nucleotide repeat supported exon inclusion, repressed usage of the terminal 5' splice site, and functioned in a heterologous exon dependent on exon enhancers for inclusion, indicating that the caldesmon purine-rich sequence can be classified as an ESE. The ESE was required for utilization of the internal 5' splice site only in the presence of the competing 5' splice site and had no effect when placed downstream of the terminal 5' splice site. In the absence of the internal 5' splice site, the ESE activated a normally silent cryptic 5' splice site near the natural internal 5' splice site, indicating that the ESE stimulates upstream 5' splice site selection. We propose that the caldesmon ESE functions to regulate competition between two 5' splice sites within a differential internal exon. PMID:7623794

  20. SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.

    PubMed

    Sun, Xiaoyong; Zuo, Fenghua; Ru, Yuanbin; Guo, Jiqiang; Yan, Xiaoyan; Sablok, Gaurav

    2015-04-01

    Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html. PMID:25720307

  1. Splicing factor SRSF1 negatively regulates alternative splicing of MDM2 under damage

    PubMed Central

    Comiskey, Daniel F.; Jacob, Aishwarya G.; Singh, Ravi K.; Tapia-Santos, Aixa S.; Chandler, Dawn S.

    2015-01-01

    Genotoxic stress induces alternative splicing of the oncogene MDM2 generating MDM2-ALT1, an isoform attributed with tumorigenic properties. However, the mechanisms underlying this event remain unclear. Here we explore MDM2 splicing regulation by utilizing a novel minigene that mimics endogenous MDM2 splicing in response to UV and cisplatinum-induced DNA damage. We report that exon 11 is necessary and sufficient for the damage-specific alternative splicing of the MDM2 minigene and that the splicing factor SRSF1 binds exon 11 at evolutionarily conserved sites. Interestingly, mutations disrupting this interaction proved sufficient to abolish the stress-induced alternative splicing of the MDM2 minigene. Furthermore, SRSF1 overexpression promoted exclusion of exon 11, while its siRNA-mediated knockdown prevented the stress-induced alternative splicing of endogenous MDM2. Additionally, we observed elevated SRSF1 levels under stress and in tumors correlating with the expression of MDM2-ALT1. Notably, we demonstrate that MDM2-ALT1 splicing can be blocked by targeting SRSF1 sites on exon 11 using antisense oligonucleotides. These results present conclusive evidence supporting a negative role for SRSF1 in MDM2 alternative splicing. Importantly, we define for the first time, a clear-cut mechanism for the regulation of damage-induced MDM2 splicing and present potential strategies for manipulating MDM2 expression via splicing modulation. PMID:25845590

  2. Integration of Palliative Care in the Context of Rapid Response

    PubMed Central

    Nelson, Judith E.; Mathews, Kusum S.; Weissman, David E.; Brasel, Karen J.; Campbell, Margaret; Curtis, J. Randall; Frontera, Jennifer A.; Gabriel, Michelle; Hays, Ross M.; Mosenthal, Anne C.; Mulkerin, Colleen; Puntillo, Kathleen A.; Ray, Daniel E.; Weiss, Stefanie P.; Bassett, Rick; Boss, Renee D.; Lustbader, Dana R.

    2015-01-01

    Rapid response teams (RRTs) can effectively foster discussions about appropriate goals of care and address other emergent palliative care needs of patients and families facing life-threatening illness on hospital wards. In this article, The Improving Palliative Care in the ICU (IPAL-ICU) Project brings together interdisciplinary expertise and existing data to address the following: special challenges for providing palliative care in the rapid response setting, knowledge and skills needed by RRTs for delivery of high-quality palliative care, and strategies for improving the integration of palliative care with rapid response critical care. We discuss key components of communication with patients, families, and primary clinicians to develop a goal-directed treatment approach during a rapid response event. We also highlight the need for RRT expertise to initiate symptom relief. Strategies including specific clinician training and system initiatives are then recommended for RRT care improvement. We conclude by suggesting that as evaluation of their impact on other outcomes continues, performance by RRTs in meeting palliative care needs of patients and families should also be measured and improved. PMID:25644909

  3. Probabilistic simple splicing systems

    NASA Astrophysics Data System (ADS)

    Selvarajoo, Mathuri; Heng, Fong Wan; Sarmin, Nor Haniza; Turaev, Sherzod

    2014-06-01

    A splicing system, one of the early theoretical models for DNA computing was introduced by Head in 1987. Splicing systems are based on the splicing operation which, informally, cuts two strings of DNA molecules at the specific recognition sites and attaches the prefix of the first string to the suffix of the second string, and the prefix of the second string to the suffix of the first string, thus yielding the new strings. For a specific type of splicing systems, namely the simple splicing systems, the recognition sites are the same for both strings of DNA molecules. It is known that splicing systems with finite sets of axioms and splicing rules only generate regular languages. Hence, different types of restrictions have been considered for splicing systems in order to increase their computational power. Recently, probabilistic splicing systems have been introduced where the probabilities are initially associated with the axioms, and the probabilities of the generated strings are computed from the probabilities of the initial strings. In this paper, some properties of probabilistic simple splicing systems are investigated. We prove that probabilistic simple splicing systems can also increase the computational power of the splicing languages generated.

  4. Regulation of Alternative Splicing in Vivo by Overexpression of Antagonistic Splicing Factors

    NASA Astrophysics Data System (ADS)

    Caceres, Javier F.; Stamm, Stefan; Helfman, David M.; Krainer, Adrian R.

    1994-09-01

    The opposing effects of SF2/ASF and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 influence alternative splicing in vitro. SF2/ASF or hnRNP A1 complementary DNAs were transiently overexpressed in HeLa cells, and the effect on alternative splicing of several cotransfected reporter genes was measured. Increased expression of SF2/ASF activated proximal 5' splice sites, promoted inclusion of a neuron-specific exon, and prevented abnormal exon skipping. Increased expression of hnRNP A1 activated distal 5' splice sites. Therefore, variations in the intracellular levels of antagonistic splicing factors influence different modes of alternative splicing in vivo and may be a natural mechanism for tissue-specific or developmental regulation of gene expression.

  5. The evolution of spliced leader trans-splicing in nematodes.

    PubMed

    Pettitt, Jonathan; Harrison, Neale; Stansfield, Ian; Connolly, Bernadette; Müller, Berndt

    2010-08-01

    Spliced leader trans-splicing occurs in many primitive eukaryotes including nematodes. Most of our knowledge of trans-splicing in nematodes stems from the model organism Caenorhabditis elegans and relatives, and from work with Ascaris. Our investigation of spliced leader trans-splicing in distantly related Dorylaimia nematodes indicates that spliced-leader trans-splicing arose before the nematode phylum and suggests that the spliced leader RNA gene complements in extant nematodes have evolved from a common ancestor with a diverse set of spliced leader RNA genes. PMID:20659016

  6. IRAS: High-Throughput Identification of Novel Alternative Splicing Regulators.

    PubMed

    Zheng, S

    2016-01-01

    Alternative splicing is a fundamental regulatory process of gene expression. Defects in alternative splicing can lead to various diseases, and modification of disease-causing splicing events presents great therapeutic promise. Splicing outcome is commonly affected by extracellular stimuli and signaling cascades that converge on RNA-binding splicing regulators. These trans-acting factors recognize cis-elements in pre-mRNA transcripts to affect spliceosome assembly and splice site choices. Identification of these splicing regulators and/or upstream modulators has been difficult and traditionally done by piecemeal. High-throughput screening strategies to find multiple regulators of exon splicing have great potential to accelerate the discovery process, but typically confront low sensitivity and low specificity of screening assays. Here we describe a unique screening strategy, IRAS (identifying regulators of alternative splicing), using a pair of dual-output minigene reporters to allow for sensitive detection of exon splicing changes. Each dual-output reporter produces green fluorescent protein (GFP) and red fluorescent protein (RFP) fluorescent signals to assay the two spliced isoforms exclusively. The two complementary minigene reporters alter GFP/RFP output ratios in the opposite direction in response to splicing change. Applying IRAS in cell-based high-throughput screens allows sensitive and specific identification of splicing regulators and modulators for any alternative exons of interest. In comparison to previous high-throughput screening methods, IRAS substantially enhances the specificity of the screening assay. This strategy significantly eliminates false positives without sacrificing sensitive identification of true regulators of splicing. PMID:27241759

  7. Onboard Radar Processing Development for Rapid Response Applications

    NASA Technical Reports Server (NTRS)

    Lou, Yunling; Chien, Steve; Clark, Duane; Doubleday, Josh; Muellerschoen, Ron; Wang, Charles C.

    2011-01-01

    We are developing onboard processor (OBP) technology to streamline data acquisition on-demand and explore the potential of the L-band SAR instrument onboard the proposed DESDynI mission and UAVSAR for rapid response applications. The technology would enable the observation and use of surface change data over rapidly evolving natural hazards, both as an aid to scientific understanding and to provide timely data to agencies responsible for the management and mitigation of natural disasters. We are adapting complex science algorithms for surface water extent to detect flooding, snow/water/ice classification to assist in transportation/ shipping forecasts, and repeat-pass change detection to detect disturbances. We are near completion of the development of a custom FPGA board to meet the specific memory and processing needs of L-band SAR processor algorithms and high speed interfaces to reformat and route raw radar data to/from the FPGA processor board. We have also developed a high fidelity Matlab model of the SAR processor that is modularized and parameterized for ease to prototype various SAR processor algorithms targeted for the FPGA. We will be testing the OBP and rapid response algorithms with UAVSAR data to determine the fidelity of the products.

  8. The Resistance and Strength of Soft Solder Splices between Conductors in MICE Coils

    SciTech Connect

    Wu, Hong; Pan, Heng; Green, Michael A; Dietderich, Dan; Gartner, T. E.; Higley, Hugh C; Mentink, M.; Xu, FengYu; Trillaud, F.; Liu, X. K.; Wang, Li; Zheng, S. X.; Tam, D.G.

    2010-08-03

    Two of the three types of MICE magnets will have splices within their coils. The MICE coupling coils may have as many as fifteen one-meter long splices within them. Each of the MICE focusing coils may have a couple of 0.25-meter long conductor splices. Equations for the calculation of resistance of soldered lap splices of various types are presented. This paper presents resistance measurements of soldered lap splices of various lengths. Measured splice resistance is shown for one-meter long splices as a function of the fabrication method. Another important consideration is the strength of the splices. The measured breaking stress of splices of various lengths is presented in this paper. Tin-lead solders and tin-silver solders were used for the splices that were tested. From the data given in this report, the authors recommend that the use of lead free solders be avoided for low temperature coils.

  9. An Alu-derived intronic splicing enhancer facilitates intronic processing and modulates aberrant splicing in ATM

    PubMed Central

    Pastor, Tibor; Talotti, Gabriele; Lewandowska, Marzena Anna; Pagani, Franco

    2009-01-01

    We have previously reported a natural GTAA deletion within an intronic splicing processing element (ISPE) of the ataxia telangiectasia mutated (ATM) gene that disrupts a non-canonical U1 snRNP interaction and activates the excision of the upstream portion of the intron. The resulting pre-mRNA splicing intermediate is then processed to a cryptic exon, whose aberrant inclusion in the final mRNA is responsible for ataxia telangiectasia. We show here that the last 40 bases of a downstream intronic antisense Alu repeat are required for the activation of the cryptic exon by the ISPE deletion. Evaluation of the pre-mRNA splicing intermediate by a hybrid minigene assay indicates that the identified intronic splicing enhancer represents a novel class of enhancers that facilitates processing of splicing intermediates possibly by recruiting U1 snRNP to defective donor sites. In the absence of this element, the splicing intermediate accumulates and is not further processed to generate the cryptic exon. Our results indicate that Alu-derived sequences can provide intronic splicing regulatory elements that facilitate pre-mRNA processing and potentially affect the severity of disease-causing splicing mutations. PMID:19773425

  10. Guatemala's ministry of health rapid response team manuals.

    PubMed

    Hernandez, Luis; Hanson, Kimberly M; Martel, Lise D

    2014-01-01

    The function of public health rapid response teams (RRTs) is to quickly identify, investigate, and control an outbreak before it can spread. The Central America Regional Office in Guatemala provided assistance to the Guatemalan Ministry of Health and Social Assistance (MSPAS) to develop RRT manuals at the district and regional levels. The manuals are divided into 4 sections: background, activity lists, standard operating procedures, and annexes. The manuals outline Guatemala's RRT members' responsibilities and will be tested in the near future through tabletop exercises. The development of the manuals is a concrete and significant step toward the attainment of Guatemala's IHR goals and should be integrated into a larger emergency management system to promote "a world safe and secure from global health threats posed by infectious diseases." PMID:25254918

  11. Applying Bayesian belief networks in rapid response situations

    SciTech Connect

    Gibson, William L; Deborah, Leishman, A.; Van Eeckhout, Edward

    2008-01-01

    The authors have developed an enhanced Bayesian analysis tool called the Integrated Knowledge Engine (IKE) for monitoring and surveillance. The enhancements are suited for Rapid Response Situations where decisions must be made based on uncertain and incomplete evidence from many diverse and heterogeneous sources. The enhancements extend the probabilistic results of the traditional Bayesian analysis by (1) better quantifying uncertainty arising from model parameter uncertainty and uncertain evidence, (2) optimizing the collection of evidence to reach conclusions more quickly, and (3) allowing the analyst to determine the influence of the remaining evidence that cannot be obtained in the time allowed. These extended features give the analyst and decision maker a better comprehension of the adequacy of the acquired evidence and hence the quality of the hurried decisions. They also describe two example systems where the above features are highlighted.

  12. Rapid response radiation sensors for homeland security applications

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Guss, Paul

    2014-09-01

    The National Security Technologies, LLC, Remote Sensing Laboratory is developing a rapid response radiation detection system for homeland security field applications. The intelligence-driven system is deployed only when non-radiological information about the target is verifiable. The survey area is often limited, so the detection range is small; in most cases covering a distance of 10 meters or less suffices. Definitive response is required in no more than 3 seconds and should minimize false negative alarms, but can err on the side of positive false alarms. The detection system is rapidly reconfigurable in terms of size, shape, and outer appearance; it is a plug-and-play system. Multiple radiation detection components (viz., two or more sodium iodide scintillators) are used to independently "over-determine" the existence of the threat object. Rapid response electronic dose rate meters are also included in the equipment suite. Carefully studied threat signatures are the basis of the decision making. The use of Rad-Detect predictive modeling provides information on the nature of the threat object. Rad-Detect provides accurate dose rate from heavily shielded large sources; for example those lost in Mexico were Category 1 radiation sources (~3,000 Ci of 60Co), the most dangerous of five categories defined by the International Atomic Energy Agency. Taken out of their shielding containers, Category 1 sources can kill anyone who is exposed to them at close range for a few minutes to an hour. Whenever possible sub-second data acquisition will be attempted, and, when deployed, the system will be characterized for false alarm rates. Although the radiation detection materials selected are fast (viz., faster scintillators), their speed is secondary to sensitivity, which is of primary importance. Results from these efforts will be discussed and demonstrated.

  13. Spliced leader RNA trans-splicing discovered in copepods

    PubMed Central

    Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Yi, Xiaoyan; Huang, Yousong; Chen, Hongju; Lin, Senjie; Campbell, David A.; Sturm, Nancy R.; Liu, Guangxing; Zhang, Huan

    2015-01-01

    Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3′-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods. PMID:26621068

  14. Spliced leader RNA trans-splicing discovered in copepods

    NASA Astrophysics Data System (ADS)

    Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Yi, Xiaoyan; Huang, Yousong; Chen, Hongju; Lin, Senjie; Campbell, David A.; Sturm, Nancy R.; Liu, Guangxing; Zhang, Huan

    2015-12-01

    Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3‧-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods.

  15. Spliced leader RNA trans-splicing discovered in copepods.

    PubMed

    Yang, Feifei; Xu, Donghui; Zhuang, Yunyun; Yi, Xiaoyan; Huang, Yousong; Chen, Hongju; Lin, Senjie; Campbell, David A; Sturm, Nancy R; Liu, Guangxing; Zhang, Huan

    2015-01-01

    Copepods are one of the most abundant metazoans in the marine ecosystem, constituting a critical link in aquatic food webs and contributing significantly to the global carbon budget, yet molecular mechanisms of their gene expression are not well understood. Here we report the detection of spliced leader (SL) trans-splicing in calanoid copepods. We have examined nine species of wild-caught copepods from Jiaozhou Bay, China that represent the major families of the calanoids. All these species contained a common 46-nt SL (CopepodSL). We further determined the size of CopepodSL precursor RNA (slRNA; 108-158 nt) through genomic analysis and 3'-RACE technique, which was confirmed by RNA blot analysis. Structure modeling showed that the copepod slRNA folded into typical slRNA secondary structures. Using a CopepodSL-based primer set, we selectively enriched and sequenced copepod full-length cDNAs, which led to the characterization of copepod transcripts and the cataloging of the complete set of 79 eukaryotic cytoplasmic ribosomal proteins (cRPs) for a single copepod species. We uncovered the SL trans-splicing in copepod natural populations, and demonstrated that CopepodSL was a sensitive and specific tool for copepod transcriptomic studies at both the individual and population levels and that it would be useful for metatranscriptomic analysis of copepods. PMID:26621068

  16. Collaborative Intervention of Middle East Respiratory Syndrome: Rapid Response Team

    PubMed Central

    2016-01-01

    On May 20th 2015, a 68 year old man was the first to be diagnosed with Middle East Respiratory Syndrome-Corona Virus (MERS-CoV) in Korea. He travelled to Bahrain, Saudi Arabia, and Qatar for 16 days. On May 4th 2015, the patient entered Korea, with febrile sense and respiratory symptoms that appeared on May 11th. The MERS-CoV Outbreak became worse and several patients had to be admitted throughout various hospitals starting at the beginning of June. This situation led to a nationwide chaos. The Rapid Response Team (RRT) was organized after the Korean government's calling for specialists that were composed of 15 Infectious disease Doctors and 2 Infection Control professionals on the 8th of June 2015. The main purpose of the RRT were: 1) consultation to the Government controlling MERS-CoV outbreak. 2) Visit hospitals that were exposed to MERS-CoV infected patients, and to provide advice regarding infection control strategy for rehabilitating of the exposed hospitals. Since June 8th, the RRT visited more than 10 hospitals and an effective consultation was carried out. Most of the hospitals were recovering from the MERS outbreak since early July. Cooperation between the government and private sector experts was very effective. The efforts of government and private sector experts overcame the initial chaos situation. It could prevent further deterioration of the MERS outbreak. PMID:27433376

  17. Fast and Furious: Rapid Response to Young Supernovae

    NASA Astrophysics Data System (ADS)

    Cao, Yi; Kulkarni, Shrinivas R.; Nugent, Peter E.; Kasliwal, Mansi M.

    2016-01-01

    Observations of supernovae within a few days of their explosion provide entirely diagnostics to probe the nature of supernova progenitors. Since 2013, I have used the intermediate Palomar Transient Factory (iPTF) to systematically study extraordinarily young supernovae. In this talk, I will give an overview of iPTF survey design, summarize the design and implementation of the near real-time discovery pipeline and then describe the rapid-response follow-up. The highlights from my thesis are: 1) We observed a strong declining UV emission from a low-velocity Type Ia supernova which is consistent with the expected emission from a supernova slamming into a companion star. Evidently some Type Ia supernovae arise from the so-called "single degenerate" channel. 2) We identified the first progenitor candidate of a Type Ib supernova in the pre-explosion HST images. Our multi-wavelength observations of this young Type Ib supernova constrain its progenitor to be smaller than several solar radii and with strong mass loss, consistent with our current ideas that the progenitor should be a Wolf-Rayet star. I will end my talk with prospects for this field with the upcoming Zwicky Transient Facility.

  18. Swift: a Multi-frequency Rapid Response Space Observatory

    NASA Astrophysics Data System (ADS)

    Swift Team

    2006-01-01

    Swift is a rapid-response, multi-wavelength space observatory dedicated to gamma-ray burst astronomy. The mission, an international collaboration between USA, Italy and UK, is scheduled for launch in October 2004. Swift will carry on-board a wide-field coded-mask gamma-ray camera, a X-ray telescope and a UV-Optical telescope, providing wide and narrow field-of-view instruments capability. The gamma ray camera is expected to detect and image ≈100 150 GRBs per year with a few arcminutes position accuracy. Following a GRB detection the Swift spacecraft will autonomously point its narrow-field telescopes towards the sources within 20-70 seconds to determine arcsec and subarcsec positions accuracy together with detailed spectral and timing information. The accurate positions will be quickly transmitted to the ground thus enabling the timely use of the most advanced ground- and space-based telescopes to gather high quality spectra during the early, brightest phases of the afterglow.

  19. Sensor Webs: Autonomous Rapid Response to Monitor Transient Science Events

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Grosvenor, Sandra; Frye, Stu; Sherwood, Robert; Chien, Steve; Davies, Ashley; Cichy, Ben; Ingram, Mary Ann; Langley, John; Miranda, Felix

    2005-01-01

    To better understand how physical phenomena, such as volcanic eruptions, evolve over time, multiple sensor observations over the duration of the event are required. Using sensor web approaches that integrate original detections by in-situ sensors and global-coverage, lower-resolution, on-orbit assets with automated rapid response observations from high resolution sensors, more observations of significant events can be made with increased temporal, spatial, and spectral resolution. This paper describes experiments using Earth Observing 1 (EO-1) along with other space and ground assets to implement progressive mission autonomy to identify, locate and image with high resolution instruments phenomena such as wildfires, volcanoes, floods and ice breakup. The software that plans, schedules and controls the various satellite assets are used to form ad hoc constellations which enable collaborative autonomous image collections triggered by transient phenomena. This software is both flight and ground based and works in concert to run all of the required assets cohesively and includes software that is model-based, artificial intelligence software.

  20. Electrical-splicing connector

    NASA Technical Reports Server (NTRS)

    Stringer, E. J.

    1977-01-01

    Connection can be made without removing insulation, and connector case insulates splice. Device can be made in various sizes and saves time, especially when working on prototype boards with several interconnecting test leads.

  1. Cotranscriptional splicing of a group I intron is facilitated by the Cbp2 protein

    SciTech Connect

    Lewin, A.S.; Thomas, J. Jr.; Tirupati, H.K.

    1995-12-01

    This report investigates the coupling between transcription and splicing of a mitochondrial group I intron in Saccharomyces cerevisiae and the effect of the Cbp2 protein on splicing. 65 refs., 7 figs.

  2. Brief Report: Alternative Splicing of Extra Domain A (EIIIA) of Fibronectin Plays a Tissue-Specific Role in Hematopoietic Homeostasis.

    PubMed

    Malara, Alessandro; Gruppi, Cristian; Celesti, Giuseppe; Romano, Bina; Laghi, Luigi; De Marco, Luigi; Muro, Andrés F; Balduini, Alessandra

    2016-08-01

    Fibronectin (FN) is a major extracellular matrix protein implicated in cell adhesion and differentiation in the bone marrow (BM) environment. Alternative splicing of FN gene results in the generation of protein variants containing an additional EIIIA domain that sustains cell proliferation or differentiation during physiological or pathological tissue remodeling. To date its expression and role in adult hematopoiesis has not been explored. In our research, we demonstrate that during physiological hematopoiesis a small fraction of BM derived FN contains the EIIIA domain and that mice constitutively including (EIIIA(+/+) ) or excluding (EIIIA(-/-) ) the EIIIA exon present comparable levels of hematopoietic stem cells, myeloid and lymphoid progenitors within BM. Moreover, only minor alterations were detected in blood parameters and in hematopoietic frequencies of BM granulocytes/monocytes and B cells. As opposed to other tissues, unique compensatory mechanisms, such as increased FN accumulation and variable expression of the EIIIA receptors, Toll like receptor-4 and alpha9 integrin subunit, characterized the BM of these mice. Our data demonstrate that FN is a fundamental component of the hematopoietic tissue and that the EIIIA exon may play a key role in modulating hematopiesis in conditions of BM stress or diseases. Stem Cells 2016;34:2263-2268. PMID:27090359

  3. Rapid-Response Impulsivity: Definitions, Measurement Issues, and Clinical Implications

    PubMed Central

    Hamilton, Kristen R.; Littlefield, Andrew K.; Anastasio, Noelle C.; Cunningham, Kathryn A.; Fink, Latham H.; Wing, Victoria C.; Mathias, Charles W.; Lane, Scott D.; Schutz, Christian; Swann, Alan C.; Lejuez, C.W.; Clark, Luke; Moeller, F. Gerard; Potenza, Marc N.

    2015-01-01

    Impulsivity is a multi-faceted construct that is a core feature of multiple psychiatric conditions and personality disorders. However, progress in understanding and treating impulsivity in the context of these conditions is limited by a lack of precision and consistency in its definition and assessment. Rapid-response-impulsivity (RRI) represents a tendency toward immediate action that occurs with diminished forethought and is out of context with the present demands of the environment. Experts from the International Society for Research on Impulsivity (InSRI) met to discuss and evaluate RRI-measures in terms of reliability, sensitivity, and validity with the goal of helping researchers and clinicians make informed decisions about the use and interpretation of findings from RRI-measures. Their recommendations are described in this manuscript. Commonly-used clinical and preclinical RRI-tasks are described, and considerations are provided to guide task selection. Tasks measuring two conceptually and neurobiologically distinct types of RRI, “refraining from action initiation” (RAI) and “stopping an ongoing action” (SOA) are described. RAI and SOA-tasks capture distinct aspects of RRI that may relate to distinct clinical outcomes. The InSRI group recommends that: 1) selection of RRI-measures should be informed by careful consideration of the strengths, limitations, and practical considerations of the available measures; 2) researchers use both RAI and SOA tasks in RRI studies to allow for direct comparison of RRI types and examination of their associations with clinically relevant measures; and, 3) similar considerations should be made for human and non-human studies in an effort to harmonize and integrate pre-clinical and clinical research. PMID:25867840

  4. Rapid Responses of Groundwater Systems in Reservoir Sediment Deposits

    NASA Astrophysics Data System (ADS)

    Vishnevskiy, M.; Freyberg, D. L.

    2012-12-01

    Phreatic aquifers that develop within reservoir sediment deposits contribute to the water and mass balances of reservoir systems and in turn strongly influence their ecology. As a case study, we examine the response of an aquifer formed within the sediment deposit of Searsville Reservoir (California, U.S.A.) using data from a set of 18 piezometers installed in the deposit and the adjacent native material. Searsville Reservoir is located in the Jasper Ridge Biological Preserve of Stanford University in the low foothills of the Santa Cruz Mountains. As is typical of Mediterranean climates, almost all precipitation occurs as rain in the winters, and summers are dry. Approximately weekly data are available from the piezometers, in addition to high-frequency streamflow and meteorological data collected in the vicinity of the reservoir. High-frequency pressure head data at some of the piezometer locations are also available for portions of the record. We combine time series and spatial analysis to explore how the water table responds to precipitation and evaporation patterns. Analysis reveals that fluctuations in the water table are highly responsive to precipitation and evaporation stimuli, with more muted responses to reservoir water surface elevation and streamflow across the sediment surface. Spatially, we see distinct patterns across the sediment body, along with consistent, periodic reversals in direction of groundwater flow at some locations. Temporally, in addition to rapid responses during rainfall events, we observe diurnal fluctuations due to evapotranspiration and a seasonal signal tempered by water surface regulation at the dam. Taken together, our data reveal reservoir sediment deposits to be dynamic ecohydrologic environments over multiple scales.

  5. Spectrophotometric Rapid-Response Classification of Near-Earth Objects

    NASA Astrophysics Data System (ADS)

    Mommert, Michael; Trilling, David; Butler, Nat; Axelrod, Tim; Moskovitz, Nick; Jedicke, Robert; Pichardo, Barbara; Reyes-Ruiz, Mauricio

    2015-08-01

    Small NEOs are, as a whole, poorly characterized, and we know nothing about the physical properties of the majority of all NEOs. The rate of NEO discoveries is increasing each year, and projects to determine the physical properties of NEOs are lagging behind. NEOs are faint, and generally even fainter by the time that follow-up characterizations can be made days or weeks after their discovery. There is a need for a high-throughput, high-efficiency physical characterization strategy in which hundreds of faint NEOs can be characterized each year. Broadband photometry in the near-infrared is sufficiently diagnostic to assign taxonomic types, and hence constrain both the individual and ensemble properties of NEOs.We present results from our rapid response near-infrared spectrophotometric characterization program of NEOs. We are using UKIRT (on Mauna Kea) and the RATIR instrument on the 1.5m telescope at the San Pedro Martir Observatory (Mexico) to allow us to make observations most nights of the year in robotic/queue mode. We derive taxonomic classifications for our targets using machine-learning techniques that are trained on a large sample of measured asteroid spectra. For each target we assign a probability for it to belong to a number of different taxa. Target selection, observation, data reduction, and analysis are highly automated, requiring only a minimum of user interaction, making this technique powerful and fast. Our targets are NEOs that are generally too faint for other characterization techniques, or would require many hours of large telescope time.

  6. Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates.

    PubMed

    Irimia, Manuel; Rukov, Jakob Lewin; Roy, Scott William

    2009-01-01

    Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans) factors that bind to different sequence (cis) elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex 'splicing code'. Many cis-elements have been identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs) on exon inclusion levels in human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5' splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the effect of SNPs on splicing in human disease. PMID:19495418

  7. Adenosine to Inosine editing frequency controlled by splicing efficiency.

    PubMed

    Licht, Konstantin; Kapoor, Utkarsh; Mayrhofer, Elisa; Jantsch, Michael F

    2016-07-27

    Alternative splicing and adenosine to inosine (A to I) RNA-editing are major factors leading to co- and post-transcriptional modification of genetic information. Both, A to I editing and splicing occur in the nucleus. As editing sites are frequently defined by exon-intron basepairing, mRNA splicing efficiency should affect editing levels. Moreover, splicing rates affect nuclear retention and will therefore also influence the exposure of pre-mRNAs to the editing-competent nuclear environment. Here, we systematically test the influence of splice rates on RNA-editing using reporter genes but also endogenous substrates. We demonstrate for the first time that the extent of editing is controlled by splicing kinetics when editing is guided by intronic elements. In contrast, editing sites that are exclusively defined by exonic structures are almost unaffected by the splicing efficiency of nearby introns. In addition, we show that editing levels in pre- and mature mRNAs do not match. This phenomenon can in part be explained by the editing state of an RNA influencing its splicing rate but also by the binding of the editing enzyme ADAR that interferes with splicing. PMID:27112566

  8. Rapid response predicts treatment outcomes in binge eating disorder: implications for stepped care.

    PubMed

    Masheb, Robin M; Grilo, Carlos M

    2007-08-01

    The authors examined rapid response in 75 overweight patients with binge eating disorder (BED) who participated in a randomized clinical trial of guided self-help treatments (cognitive-behavioral therapy [CBTgsh] and behavioral weight loss [BWLgsh]). Rapid response, defined as a 65% or greater reduction in binge eating by the 4th treatment week, occurred in 62% of CBTgsh and 47% of BWLgsh participants. Rapid response was unrelated to most patient characteristics except for eating psychopathology and depressive symptoms. Participants with rapid response were more likely to achieve binge remission and had greater improvements in overall eating pathology and depressive symptomatology than participants without rapid response. Rapid response had different prognostic significance for the 2 treatments. In terms of binge eating, participants receiving CBTgsh, but not BWLgsh, did equally well regardless of whether they experienced rapid response. In terms of increasing restraint and weight loss, participants with rapid response receiving BWLgsh had greater restraint and weight loss than participants receiving CBTgsh. Rapid response has utility for predicting outcomes, provides evidence for specificity of treatment effects, and has implications for stepped care treatment models of BED. PMID:17663617

  9. The Wallops Flight Facility Rapid Response Range Operations Initiative

    NASA Technical Reports Server (NTRS)

    Underwood, Bruce E.; Kremer, Steven E.

    2004-01-01

    becomes how can a launch site provide acceptably responsive mission services to a particular customer without dedicating extensive resources and while continuing to serve other projects? NASA's Wallops Flight Facility (WFF) is pursuing solutions to exactly this challenge. NASA, in partnership with the Virginia Commercial Space Flight Authority, has initiated the Rapid Response Range Operations Initiative (R3Ops). R3Ops is a multi-phased effort to incrementally establish and demonstrate increasingly responsive launch operations, with an ultimate goal of providing ELV-class services in a maximum of 7-10 days from initial notification routinely, and shorter schedules possible with committed resources. This target will be pursued within the reality of simultaneous concurrent programs, and ideally, largely independent of specialized flight system configurations. WFF has recently completed Phase 1 of R3Ops, an in-depth collection (through extensive expert interviews) and software modeling of individual steps by various range disciplines. This modeling is now being used to identify existing inefficiencies in current procedures, to identify bottlenecks, and show interdependencies. Existing practices are being tracked to provide a baseline to benchmark against as new procedures are implemented. This paper will describe in detail the philosophies behind WFF's R3Ops, the data collected and modeled in Phase 1, and strategies for meeting responsive launch requirements in a multi-user range environment planned for subsequent phases of this initiative.

  10. Rapid Response Measurements of Hurricane Waves and Storm Surge

    NASA Astrophysics Data System (ADS)

    Gravois, U.

    2010-12-01

    Andrew (1992), Katrina (2005), and Ike (2008) are recent examples of extensive damage that resulted from direct hurricane landfall. Some of the worst damages from these hurricanes are caused by wind driven waves and storm surge flooding. The potential for more hurricane disasters like these continues to increase as a result of population growth and real estate development in low elevation coastal regions. Observational measurements of hurricane waves and storm surge play an important role in future mitigation efforts, yet permanent wave buoy moorings and tide stations are more sparse than desired. This research has developed a rapid response method using helicopters to install temporary wave and surge gauges ahead of hurricane landfall. These temporary installations, with target depths from 10-15 m and 1-7 km offshore depending on the local shelf slope, increase the density of measurement points where the worst conditions are expected. The method has progressed to an operational state and has successfully responded to storms Ernesto (2006), Noel (2007), Fay (2008), Gustav (2008), Hanna (2008) and Ike (2008). The temporary gauges are pressure data loggers that measure at 1 Hz continuously for 12 days and are post-processed to extract surge and wave information. For the six storms studied, 45 out of 49 sensors were recovered by boat led scuba diver search teams, with 43 providing useful data for an 88 percent success rate. As part of the 20 sensor Hurricane Gustav response, sensors were also deployed in lakes and bays inLouisiana, east of the Mississippi river delta. Gustav was the largest deployment to date. Generally efforts were scaled back for storms that were not anticipated to be highly destructive. For example, the cumulative total of sensors deployed for Ernesto, Noel, Fay and Hanna was only 20. Measurement locations for Gustav spanned over 800 km of exposed coastline from Louisiana to Florida with sensors in close proximity to landfall near Cocodrie

  11. Splice assembly tool and method of splicing

    DOEpatents

    Silva, Frank A.

    1980-01-01

    A splice assembly tool for assembling component parts of an electrical conductor while producing a splice connection between electrical cables therewith, comprises a first structural member adaptable for supporting force applying means thereon, said force applying means enabling a rotary force applied manually thereto to be converted to a longitudinal force for subsequent application against a first component part of said electrical connection, a second structural member adaptable for engaging a second component part in a manner to assist said first structural member in assembling the component parts relative to one another and transmission means for conveying said longitudinal force between said first and said second structural members, said first and said second structural members being coupled to one another by said transmission means, wherein at least one of said component parts comprises a tubular elastomeric sleeve and said force applying means provides a relatively high mechanical advantage when said rotary force is applied thereto so as to facilitate assembly of said at least one tubular elastomeric sleeve about said other component part in an interference fit manner.

  12. Rapid Response Predicts Treatment Outcomes in Binge Eating Disorder: Implications for Stepped Care

    ERIC Educational Resources Information Center

    Masheb, Robin M.; Grilo, Carlos M.

    2007-01-01

    The authors examined rapid response in 75 overweight patients with binge eating disorder (BED) who participated in a randomized clinical trial of guided self-help treatments (cognitive-behavioral therapy [CBTgsh] and behavioral weight loss [BWLgsh]). Rapid response, defined as a 65% or greater reduction in binge eating by the 4th treatment week,…

  13. 20 CFR 665.320 - May other activities be undertaken as part of rapid response?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false May other activities be undertaken as part of rapid response? 665.320 Section 665.320 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR STATEWIDE WORKFORCE INVESTMENT ACTIVITIES UNDER TITLE I OF THE WORKFORCE INVESTMENT ACT Rapid Response Activities § 665.320...

  14. An artificial riboswitch for controlling pre-mRNA splicing.

    PubMed

    Kim, Dong-Suk; Gusti, Veronica; Pillai, Sailesh G; Gaur, Rajesh K

    2005-11-01

    Riboswitches, as previously reported, are natural RNA aptamers that regulate the expression of numerous bacterial metabolic genes in response to small molecule ligands. It has recently been shown that these RNA genetic elements are also present near the splice site junctions of plant and fungal introns, thus raising the possibility of their involvement in regulating mRNA splicing. Here it is shown for the first time that a riboswitch can be engineered to regulate pre-mRNA splicing in vitro. We show that insertion of a high-affinity theophylline binding aptamer into the 3' splice site (3' ss) region of a model pre-mRNA (AdML-Theo29AG) enables its splicing to be repressed by the addition theophylline. Our results indicate that the location of 3' ss AG within the aptamer plays a crucial role in conferring theophylline-dependent control of pre-mRNA splicing. We also show that theophylline-mediated control of pre-mRNA splicing is highly specific by first demonstrating that a small molecule ligand similar in shape and size to theophylline had no effect on the splicing of AdML-Theo29AG pre-mRNA. Second, theophylline failed to exert any influence on the splicing of a pre-mRNA that does not contain its binding site. Third, theophylline specifically blocks the step II of the splicing reaction. Finally, we provide evidence that theophylline-dependent control of pre-mRNA splicing is functionally relevant. PMID:16244133

  15. A nationwide web-based automated system for outbreak early detection and rapid response in China

    PubMed Central

    Lan, Yajia; Wang, Jinfeng; Ma, Jiaqi; Jin, Lianmei; Sun, Qiao; Lv, Wei; Lai, Shengjie; Liao, Yilan; Hu, Wenbiao

    2011-01-01

    Timely reporting, effective analyses and rapid distribution of surveillance data can assist in detecting the aberration of disease occurrence and further facilitate a timely response. In China, a new nationwide web-based automated system for outbreak detection and rapid response was developed in 2008. The China Infectious Disease Automated-alert and Response System (CIDARS) was developed by the Chinese Center for Disease Control and Prevention based on the surveillance data from the existing electronic National Notifiable Infectious Diseases Reporting Information System (NIDRIS) started in 2004. NIDRIS greatly improved the timeliness and completeness of data reporting with real-time reporting information via the Internet. CIDARS further facilitates the data analysis, aberration detection, signal dissemination, signal response and information communication needed by public health departments across the country. In CIDARS, three aberration detection methods are used to detect the unusual occurrence of 28 notifiable infectious diseases at the county level and transmit information either in real time or on a daily basis. The Internet, computers and mobile phones are used to accomplish rapid signal generation and dissemination, timely reporting and reviewing of the signal response results. CIDARS has been used nationwide since 2008; all Centers for Disease Control and Prevention (CDC) in China at the county, prefecture, provincial and national levels are involved in the system. It assists with early outbreak detection at the local level and prompts reporting of unusual disease occurrences or potential outbreaks to CDCs throughout the country. PMID:23908878

  16. Regulation of alternative splicing of liver scavenger receptor class B gene by estrogen and the involved regulatory splicing factors.

    PubMed

    Zhang, Xiaohui; Moor, Andrea N; Merkler, Kathleen A; Liu, Qiyuan; McLean, Mark P

    2007-11-01

    The scavenger receptor class B isoforms (SR-B) type I and type II mediate the selective uptake of high-density lipoprotein cholesterol and promote reverse cholesterol transport, an important atherosclerosis protection mechanism, in the liver. Previously it was shown that the hepatic expression of SR-BI and SR-BII is regulated by estrogen. In the present study, we demonstrate that estrogen differentially regulates expression of the glycosylated and nonglycosylated forms of SR-BI and SR-BII in rat liver and hepatic cells. We report that estrogen mainly induces the down-regulation of glycosylated SR-BI and the up-regulation of nonglycosylated SR-BII. To study how estrogen regulates expression of the SR-B isoforms, we constructed a SR-B minigene containing minimal genomic sequences and were able to demonstrate that estrogen directly regulates the pre-mRNA alternative splicing of the exogenously expressed SR-B minigene in hepatic cells. Furthermore, we showed that the overexpression of splicing factors alternative splicing factor/splicing factor 2, Transformer (Tra)-2alpha, and Tra2beta changes the splicing pattern of SR-B dramatically, whereas other splicing factors, such as heterogeneous nuclear ribonucleoprotein-G, SC-35, and arginine/serine-rich p40, had no effect. We also demonstrate that estrogen regulates Tra2beta expression levels in liver cells. These studies suggest that estrogen may regulate SR-B isoform expression at both the RNA splicing and posttranslational modification levels and that, for alternative splicing regulation, estrogen may function by regulating the expression of the splicing factors alternative splicing factor/splicing factor 2, Tra2alpha, and especially Tra2beta. PMID:17673517

  17. Should pharmacologists care about alternative splicing? IUPHAR Review 4

    PubMed Central

    Bonner, T I

    2014-01-01

    Alternative splicing of mRNAs occurs in the majority of human genes, and most differential splicing results in different protein isoforms with possibly different functional properties. However, there are many reported splicing variations that may be quite rare, and not all combinatorially possible variants of a given gene are expressed at significant levels. Genes of interest to pharmacologists are frequently expressed at such low levels that they are not adequately represented in genome-wide studies of transcription. In single-gene studies, data are commonly available on the relative abundance and functional significance of individual alternatively spliced exons, but there are rarely data that quantitate the relative abundance of full-length transcripts and define which combinations of exons are significant. A number of criteria for judging the significance of splice variants and suggestions for their nomenclature are discussed. PMID:24670145

  18. Discovering Transcription and Splicing Networks in Myelodysplastic Syndromes

    PubMed Central

    Wang, Hongyan; Wen, Jianguo; Chang, Chung-che; Zhou, Xiaobo

    2013-01-01

    More and more transcription factors and their motifs have been reported and linked to specific gene expression levels. However, focusing only on transcription is not sufficient for mechanism research. Most genes, especially in eukaryotes, are alternatively spliced to different isoforms. Some of these isoforms increase the biodiversity of proteins. From this viewpoint, transcription and splicing are two of important mechanisms to modulate expression levels of isoforms. To integrate these two kinds of regulation, we built a linear regression model to select a subset of transcription factors and splicing factors for each co-expressed isoforms using least-angle regression approach. Then, we applied this method to investigate the mechanism of myelodysplastic syndromes (MDS), a precursor lesion of acute myeloid leukemia. Results suggested that expression levels of most isoforms were regulated by a set of selected regulatory factors. Some of the detected factors, such as EGR1 and STAT family, are highly correlated with progression of MDS. We discovered that the splicing factor SRSF11 experienced alternative splicing switch, and in turn induced different amino acid sequences between MDS and controls. This splicing switch causes two different splicing mechanisms. Polymerase Chain Reaction experiments also confirmed that one of its isoforms was over-expressed in MDS. We analyzed the regulatory networks constructed from the co-expressed isoforms and their regulatory factors in MDS. Many of these networks were enriched in the herpes simplex infection pathway which involves many splicing factors, and pathways in cancers and acute or chronic myeloid leukemia. PMID:24244432

  19. Rapid response of the steatosis-sensing hepatokine LECT2 during diet-induced weight cycling in mice.

    PubMed

    Chikamoto, Keita; Misu, Hirofumi; Takayama, Hiroaki; Kikuchi, Akihiro; Ishii, Kiyo-Aki; Lan, Fei; Takata, Noboru; Tajima-Shirasaki, Natsumi; Takeshita, Yumie; Tsugane, Hirohiko; Kaneko, Shuichi; Matsugo, Seiichi; Takamura, Toshinari

    2016-09-23

    Dieting often leads to body weight cycling involving repeated weight loss and regain. However, little information is available regarding rapid-response serum markers of overnutrition that predict body weight alterations during weight cycling. Here, we report the rapid response of serum leukocyte cell-derived chemotaxin 2 (LECT2), a hepatokine that induces insulin resistance in skeletal muscle, during diet-induced weight cycling in mice. A switch from a high-fat diet (HFD) to a regular diet (RD) in obese mice gradually decreased body weight but rapidly decreased serum LECT2 levels within 10 days. In contrast, a switch from a RD to a HFD rapidly elevated serum LECT2 levels. Serum LECT2 levels showed a positive correlation with liver triglyceride contents but not with adipose tissue weight. This study demonstrates the rapid response of LECT2 preceding body weight alterations during weight cycling in mice and suggests that measurement of serum LECT2 may be clinically useful in the management of obesity. PMID:27562717

  20. NIAAA's Rapid Response to College Drinking Problems Initiative: Reinforcing the Use of Evidence-Based Approaches in College Alcohol Prevention*

    PubMed Central

    DeJong, William; Larimer, Mary E.; Wood, Mark D.; Hartman, Roger

    2009-01-01

    Objective: The National Institute on Alcohol Abuse and Alcoholism (NIAAA) created the Rapid Response to College Drinking Problems initiative so that senior college administrators facing an alcohol-related crisis could get assistance from well-established alcohol researchers and NIAAA staff. Method: Based on a competitive grant process, NIAAA selected five teams of research scientists with expertise in college drinking research. NIAAA then invited college administrators to propose interventions to address a recently experienced alcohol-related problem. Between September 2004 and September 2005, NIAAA selected 15 sites and paired each recipient college with a scientific team. Together, each program development/evaluation team, working closely with NIAAA scientific staff, jointly designed, implemented, and evaluated a Rapid Response project. Results: This supplement reports the results of several Rapid Response projects, plus other findings of interest that emerged from that research. Eight articles present evaluation findings for prevention and treatment interventions, which can be grouped by the individual, group/interpersonal, institutional, and community levels of the social ecological framework. Additional studies provide further insights that can inform prevention and treatment programs designed to reduce alcohol-related problems among college students. This article provides an overview of these findings, placing them in the context of the college drinking intervention literature. Conclusions: College drinking remains a daunting problem on many campuses, but evidence-based strategies—such as those described in this supplement—provide hope that more effective solutions can be found. The Rapid Response initiative has helped solidify the necessary link between research and practice in college alcohol prevention and treatment. PMID:19538907

  1. WT1 interacts with the splicing protein RBM4 and regulates its ability to modulate alternative splicing in vivo

    SciTech Connect

    Markus, M. Andrea; Heinrich, Bettina; Raitskin, Oleg; Adams, David J.; Mangs, Helena; Goy, Christine; Ladomery, Michael; Sperling, Ruth; Stamm, Stefan; Morris, Brian J. . E-mail: brianm@medsci.usyd.edu.au

    2006-10-15

    Wilm's tumor protein 1 (WT1), a protein implicated in various cancers and developmental disorders, consists of two major isoforms: WT1(-KTS), a transcription factor, and WT1(+KTS), a post-transcriptional regulator that binds to RNA and can interact with splicing components. Here we show that WT1 interacts with the novel splicing regulator RBM4. Each protein was found to colocalize in nuclear speckles and to cosediment with supraspliceosomes in glycerol gradients. RBM4 conferred dose-dependent and cell-specific regulation of alternative splicing of pre-mRNAs transcribed from several reporter genes. We found that overexpressed WT1(+KTS) abrogated this effect of RBM4 on splice-site selection, whereas WT1(-KTS) did not. We conclude that the (+KTS) form of WT1 is able to inhibit the effect of RBM4 on alternative splicing.

  2. Nursing and Medical Perceptions of a Hospital Rapid Response System: New Process But Same Old Game?

    PubMed

    Douglas, Clint; Osborne, Sonya; Windsor, Carol; Fox, Robyn; Booker, Catriona; Jones, Lee; Gardner, Glenn

    2016-01-01

    Perhaps no other patient safety intervention depends so acutely on effective interprofessional teamwork for patient survival than the hospital rapid response system. Yet, little is known about nurse-physician relationships when rescuing at-risk patients. This study compared nursing and medical staff perceptions of a mature rapid response system at a large tertiary hospital. Findings indicate that the rapid response system may be failing to address a hierarchical culture and systems-level barriers to early recognition and response to patient deterioration. PMID:26132845

  3. BUILDING ROBUST TRANSCRIPTOMES WITH MASTER SPLICING FACTORS

    PubMed Central

    Jangi, Mohini; Sharp, Phillip A.

    2014-01-01

    Coherent splicing networks arise from many discrete splicing decisions regulated in unison. Here, we examine the properties of robust, context-specific splicing networks. We propose that a subset of key splicing regulators, or “master splicing factors,” respond to environmental cues to establish and maintain tissue transcriptomes during development. PMID:25417102

  4. Light-Activated Rapid-Response Polyvinylidene-Fluoride-Based Flexible Films.

    PubMed

    Tai, Yanlong; Lubineau, Gilles; Yang, Zhenguo

    2016-06-01

    The design strategy and mechanical response mechanism of light-activated, rapid-response, flexible films are presented. Practical applications as a microrobot and a smart spring are demonstrated. PMID:27061392

  5. Non-Critical-Care Nurses' Perceptions of Facilitators and Barriers to Rapid Response Team Activation.

    PubMed

    Jenkins, Sheryl Henry; Astroth, Kim Schafer; Woith, Wendy Mann

    2015-01-01

    Rapid response teams can save lives but are only effective when activated. We surveyed 50 nurses for their perceptions of facilitators and barriers to activation. Findings showed that participants need more education on their role and when to activate the rapid response team. Nurses who comprise the team need help building their communication skills. We recommend nursing professional development specialists increase the frequency of offerings and expand the focus on roles, activation criteria, and communication skills. PMID:26381336

  6. Splicing Wires Permanently With Explosives

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Kushnick, Anne C.

    1990-01-01

    Explosive joining process developed to splice wires by enclosing and metallurgically bonding wires within copper sheets. Joints exhibit many desirable characteristics, 100-percent conductivity and strength, no heat-induced annealing, no susceptibility to corrosion in contacts between dissimilar metals, and stability at high temperature. Used to join wires to terminals, as well as to splice wires. Applicable to telecommunications industry, in which millions of small wires spliced annually.

  7. The Deployment of Rapid Response Teams in U.S. Hospitals

    PubMed Central

    Stolldorf, Deonni P.; Jones, Cheryl B.

    2015-01-01

    The Institute of Medicine (IOM) report, To Err is Human: Building a Safer Health system (1999), highlighted the need for improvements in the quality of health care, advocating for improvements in patient safety, preventing avoidable harm, and providing the necessary care to patients who could benefit from it. Rapid Response Teams (RRTs) are one crucial aspect of a hospital's RRS, providing hospitals with a mechanism to respond and care for patients experiencing an avoidable medical crisis. RRTs became imbedded in US hospitals following the launch of the 100 000 Lives Campaign in 2004 by the Institute for Healthcare Improvement and the introduction of RRTs as one of six initiatives to improve the quality of patient care. RRT adoption also provides hospitals the opportunity to meet a Joint Commission requirement for hospitals to implement a mechanism that enabled staff members to obtain help from experts when their patient's condition is worsening. Despite the proliferation of RRTs in hospitals, descriptive reports of these teams across groups of hospitals have been relatively few and provided limited descriptive information on RRTs. Therefore, using data we collected as part of a larger mixed-methods study of RRTs to examine their sustainability, we describe RRTs in a group of hospitals that were part of a collaborative to facilitate RRT adoption and implementation. PMID:25977203

  8. Real-time earthquake monitoring: Early warning and rapid response

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A panel was established to investigate the subject of real-time earthquake monitoring (RTEM) and suggest recommendations on the feasibility of using a real-time earthquake warning system to mitigate earthquake damage in regions of the United States. The findings of the investigation and the related recommendations are described in this report. A brief review of existing real-time seismic systems is presented with particular emphasis given to the current California seismic networks. Specific applications of a real-time monitoring system are discussed along with issues related to system deployment and technical feasibility. In addition, several non-technical considerations are addressed including cost-benefit analysis, public perceptions, safety, and liability.

  9. Alternative RNA splicing and cancer

    PubMed Central

    Liu, Sali; Cheng, Chonghui

    2015-01-01

    Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells. PMID:23765697

  10. Genome-wide profiling of alternative splicing in Alzheimer's disease

    PubMed Central

    Lai, Mitchell K.P.; Esiri, Margaret M.; Tan, Michelle G.K.

    2014-01-01

    Alternative splicing is a highly regulated process which generates transcriptome and proteome diversity through the skipping or inclusion of exons within gene loci. Identification of aberrant alternative splicing associated with human diseases has become feasible with the development of new genomic technologies and powerful bioinformatics. We have previously reported genome-wide gene alterations in the neocortex of a well-characterized cohort of Alzheimer's disease (AD) patients and matched elderly controls using a commercial exon microarray platform [1]. Here, we provide detailed description of analyses aimed at identifying differential alternative splicing events associated with AD. PMID:26484111

  11. Hydrogen Peroxide Alters Splicing of Soluble Guanylyl Cyclase and Selectively Modulates Expression of Splicing Regulators in Human Cancer Cells

    PubMed Central

    Cote, Gilbert J.; Zhu, Wen; Thomas, Anthony; Martin, Emil; Murad, Ferid; Sharina, Iraida G.

    2012-01-01

    Background Soluble guanylyl cyclase (sGC) plays a central role in nitric oxide (NO)-mediated signal transduction in the cardiovascular, nervous and gastrointestinal systems. Alternative RNA splicing has emerged as a potential mechanism to modulate sGC expression and activity. C-α1 sGC is an alternative splice form that is resistant to oxidation-induced protein degradation and demonstrates preferential subcellular distribution to the oxidized environment of endoplasmic reticulum (ER). Methodology/Principal Findings Here we report that splicing of C-α1 sGC can be modulated by H2O2 treatment in BE2 neuroblastoma and MDA-MD-468 adenocarcinoma human cells. In addition, we show that the H2O2 treatment of MDA-MD-468 cells selectively decreases protein levels of PTBP1 and hnRNP A2/B1 splice factors identified as potential α1 gene splicing regulators by in silico analysis. We further demonstrate that down-regulation of PTBP1 by H2O2 occurs at the protein level with variable regulation observed in different breast cancer cells. Conclusions/Significance Our data demonstrate that H2O2 regulates RNA splicing to induce expression of the oxidation-resistant C-α1 sGC subunit. We also report that H2O2 treatment selectively alters the expression of key splicing regulators. This process might play an important role in regulation of cellular adaptation to conditions of oxidative stress. PMID:22911749

  12. Intravitreal Injection of Splice-switching Oligonucleotides to Manipulate Splicing in Retinal Cells

    PubMed Central

    Gérard, Xavier; Perrault, Isabelle; Munnich, Arnold; Kaplan, Josseline; Rozet, Jean-Michel

    2015-01-01

    Leber congenital amaurosis is a severe hereditary retinal dystrophy responsible for neonatal blindness. The most common disease-causing mutation (c.2991+1655A>G; 10–15%) creates a strong splice donor site that leads to insertion of a cryptic exon encoding a premature stop codon. Recently, we reported that splice-switching oligonucleotides (SSO) allow skipping of the mutant cryptic exon and the restoration of ciliation in fibroblasts of affected patients, supporting the feasibility of a SSO-mediated exon skipping strategy to correct the aberrant splicing. Here, we present data in the wild-type mouse, which demonstrate that intravitreal administration of 2'-OMePS-SSO allows selective alteration of Cep290 splicing in retinal cells, including photoreceptors as shown by successful alteration of Abca4 splicing using the same approach. We show that both SSOs and Cep290 skipped mRNA were detectable for at least 1 month and that intravitreal administration of oligonucleotides did not provoke any serious adverse event. These data suggest that intravitreal injections of SSO should be considered to bypass protein truncation resulting from the c.2991+1655A>G mutation as well as other truncating mutations in genes which like CEP290 or ABCA4 have a mRNA size that exceed cargo capacities of US Food and Drug Administration (FDA)-approved adeno-associated virus (AAV)-vectors, thus hampering gene augmentation therapy. PMID:26325627

  13. Histone methylation, alternative splicing and neuronal differentiation.

    PubMed

    Fiszbein, Ana; Kornblihtt, Alberto R

    2016-01-01

    Alternative splicing, as well as chromatin structure, greatly contributes to specific transcriptional programs that promote neuronal differentiation. The activity of G9a, the enzyme responsible for mono- and di-methylation of lysine 9 on histone H3 (H3K9me1 and H3K9me2) in mammalian euchromatin, has been widely implicated in the differentiation of a variety of cell types and tissues. In a recent work from our group (Fiszbein et al., 2016) we have shown that alternative splicing of G9a regulates its nuclear localization and, therefore, the efficiency of H3K9 methylation, which promotes neuronal differentiation. We discuss here our results in the light of a report from other group (Laurent et al. 2015) demonstrating a key role for the alternative splicing of the histone demethylase LSD1 in controlling specific gene expression in neurons. All together, these results illustrate the importance of alternative splicing in the generation of a proper equilibrium between methylation and demethylation of histones for the regulation of neuron-specific transcriptional programs. PMID:27606339

  14. ERISdb: a database of plant splice sites and splicing signals.

    PubMed

    Szcześniak, Michał Wojciech; Kabza, Michał; Pokrzywa, Rafał; Gudyś, Adam; Makałowska, Izabela

    2013-02-01

    Splicing is one of the major contributors to observed spatiotemporal diversification of transcripts and proteins in metazoans. There are numerous factors that affect the process, but splice sites themselves along with the adjacent splicing signals are critical here. Unfortunately, there is still little known about splicing in plants and, consequently, further research in some fields of plant molecular biology will encounter difficulties. Keeping this in mind, we performed a large-scale analysis of splice sites in eight plant species, using novel algorithms and tools developed by us. The analyses included identification of orthologous splice sites, polypyrimidine tracts and branch sites. Additionally we identified putative intronic and exonic cis-regulatory motifs, U12 introns as well as splice sites in 45 microRNA genes in five plant species. We also provide experimental evidence for plant splice sites in the form of expressed sequence tag and RNA-Seq data. All the data are stored in a novel database called ERISdb and are freely available at http://lemur.amu.edu.pl/share/ERISdb/. PMID:23299413

  15. Rapid Response to the Howard Hanson Dam Crisis

    NASA Astrophysics Data System (ADS)

    Ralph, F. M.; Carter, G.; White, A.; Neiman, P. J.; King, C.; Jankov, I.; Colman, B.; Cook, K.; Buehner, T.

    2010-12-01

    mobile AR observatory (ARO) at Westport, Washington, in October 2009. Development of the mobile ARO is based on two decades of instrument and technology development at ESRL/PSD. ESRL/PSD also responded to the HHD crisis by rapidly deploying a fixed ARO couplet closer to HHD in order to detect and monitor the AR conditions that potentially could lead to flooding along the Green River. These deployments complemented a set of newly telemetered rain gauges surrounding the Green River basin provided by the NWS Western Region Headquarters. This paper will report on initial scientific findings resulting from the ARO deployments including recent AR results for Washington and will document use of the ARO observations in daily forecast operations.

  16. Method of predicting Splice Sites based on signal interactions

    PubMed Central

    Churbanov, Alexander; Rogozin, Igor B; Deogun, Jitender S; Ali, Hesham

    2006-01-01

    Background Predicting and proper ranking of canonical splice sites (SSs) is a challenging problem in bioinformatics and machine learning communities. Any progress in SSs recognition will lead to better understanding of splicing mechanism. We introduce several new approaches of combining a priori knowledge for improved SS detection. First, we design our new Bayesian SS sensor based on oligonucleotide counting. To further enhance prediction quality, we applied our new de novo motif detection tool MHMMotif to intronic ends and exons. We combine elements found with sensor information using Naive Bayesian Network, as implemented in our new tool SpliceScan. Results According to our tests, the Bayesian sensor outperforms the contemporary Maximum Entropy sensor for 5' SS detection. We report a number of putative Exonic (ESE) and Intronic (ISE) Splicing Enhancers found by MHMMotif tool. T-test statistics on mouse/rat intronic alignments indicates, that detected elements are on average more conserved as compared to other oligos, which supports our assumption of their functional importance. The tool has been shown to outperform the SpliceView, GeneSplicer, NNSplice, Genio and NetUTR tools for the test set of human genes. SpliceScan outperforms all contemporary ab initio gene structural prediction tools on the set of 5' UTR gene fragments. Conclusion Designed methods have many attractive properties, compared to existing approaches. Bayesian sensor, MHMMotif program and SpliceScan tools are freely available on our web site. Reviewers This article was reviewed by Manyuan Long, Arcady Mushegian and Mikhail Gelfand. PMID:16584568

  17. Inference of Splicing Regulatory Activities by Sequence Neighborhood Analysis

    PubMed Central

    Stadler, Michael B; Shomron, Noam; Yeo, Gene W; Schneider, Aniket; Xiao, Xinshu; Burge, Christopher B

    2006-01-01

    Sequence-specific recognition of nucleic-acid motifs is critical to many cellular processes. We have developed a new and general method called Neighborhood Inference (NI) that predicts sequences with activity in regulating a biochemical process based on the local density of known sites in sequence space. Applied to the problem of RNA splicing regulation, NI was used to predict hundreds of new exonic splicing enhancer (ESE) and silencer (ESS) hexanucleotides from known human ESEs and ESSs. These predictions were supported by cross-validation analysis, by analysis of published splicing regulatory activity data, by sequence-conservation analysis, and by measurement of the splicing regulatory activity of 24 novel predicted ESEs, ESSs, and neutral sequences using an in vivo splicing reporter assay. These results demonstrate the ability of NI to accurately predict splicing regulatory activity and show that the scope of exonic splicing regulatory elements is substantially larger than previously anticipated. Analysis of orthologous exons in four mammals showed that the NI score of ESEs, a measure of function, is much more highly conserved above background than ESE primary sequence. This observation indicates a high degree of selection for ESE activity in mammalian exons, with surprisingly frequent interchangeability between ESE sequences. PMID:17121466

  18. In vitro splicing of fibronectin pre-mRNAs.

    PubMed Central

    Norton, P A; Hynes, R O

    1990-01-01

    We have investigated the alternative splicing of the EIIIB exon of the rat fibronectin gene. Mini-gene constructs containing this exon and portions of adjacent introns and exons, when transfected into HeLa cells, are transcribed and spliced, but omit the EIIIB exon. In vitro, HeLa nuclear extracts similarly splice out (skip) the EIIIB exon from similarly structured transcripts. Therefore, the HeLa splicing apparatus recognizes as atypical the EIIIB exon and its flanking intron sequences, both in vivo and in vitro. We also report that alterations in the ionic conditions of the in vitro splicing reaction can promote the initiation of EIIIB exon inclusion, as reflected by the formation of intermediate and product RNAs related to the removal of the intron upstream of EIIIB. Processing of this intron correlates with the formation of complexes resembling intermediates in spliceosome assembly. The branch sites involved in this alternative processing pathway are rather distant from the EIIIB 3' splice site, and lie within a region which is well conserved in the fibronectin genes of other species. Thus, the intron upstream of EIIIB shows singular structure and behavior which probably have a bearing on the regulated alternative splicing of this exon. Images PMID:2377454

  19. Alternative Splicing of an Insect Sodium Channel Gene Generates Pharmacologically Distinct Sodium Channels

    PubMed Central

    Tan, Jianguo; Liu, Zhiqi; Nomura, Yoshiko; Goldin, Alan L.; Dong, Ke

    2011-01-01

    Alternative splicing is a major mechanism by which potassium and calcium channels increase functional diversity in animals. Extensive alternative splicing of the para sodium channel gene and developmental regulation of alternative splicing have been reported in Drosophila species. Alternative splicing has also been observed for several mammalian voltage-gated sodium channel genes. However, the functional significance of alternative splicing of sodium channels has not been demonstrated. In this study, we identified three mutually exclusive alternative exons encoding part of segments 3 and 4 of domain III in the German cockroach sodium channel gene, paraCSMA. The splice site is conserved in the mouse, fish, and human Nav1.6 sodium channel genes, suggesting an ancient origin. One of the alternative exons possesses a stop codon, which would generate a truncated protein with only the first two domains. The splicing variant containing the stop codon is detected only in the PNS, whereas the other two full-size variants were detected in both the PNS and CNS. When expressed in Xenopus oocytes, the two splicing variants produced robust sodium currents, but with different gating properties, whereas the splicing variant with the stop codon did not produce any detectable sodium current. Furthermore, these two functional splicing variants exhibited a striking difference in sensitivity to a pyrethroid insecticide, deltamethrin. Exon swapping partially reversed the channel sensitivity to deltamethrin. Our results therefore provide the first evidence that alternative splicing of a sodium channel gene produces pharmacologically distinct channels. PMID:12097481

  20. Nano-structured smart hydrogels with rapid response and high elasticity

    PubMed Central

    Xia, Lie-Wen; Xie, Rui; Ju, Xiao-Jie; Wang, Wei; Chen, Qianming; Chu, Liang-Yin

    2013-01-01

    Smart hydrogels, or stimuli-responsive hydrogels, are three-dimensional networks composed of crosslinked hydrophilic polymer chains that are able to dramatically change their volume and other properties in response to environmental stimuli such as temperature, pH and certain chemicals. Rapid and significant response to environmental stimuli and high elasticity are critical for the versatility of such smart hydrogels. Here we report the synthesis of smart hydrogels which are rapidly responsive, highly swellable and stretchable, by constructing a nano-structured architecture with activated nanogels as nano-crosslinkers. The nano-structured smart hydrogels show very significant and rapid stimuli-responsive characteristics, as well as highly elastic properties to sustain high compressions, resist slicing and withstand high level of deformation, such as bending, twisting and extensive stretching. Because of the concurrent rapid and significant stimuli-response and high elasticity, these nano-structured smart hydrogels may expand the scope of hydrogel applications, and provide enhanced performance in their applications. PMID:23900497

  1. Accurate Splicing of HDAC6 Pre-mRNA Requires SON

    PubMed Central

    Battini, Vishnu Priya; Bubulya, Athanasios; Bubulya, Paula A.

    2015-01-01

    Pre-mRNA splicing requires proper splice site selection mediated by many factors including snRNPs and serine-arginine rich (SR) splicing factors. Our lab previously reported that the SR-like protein SON maintains organization of pre-mRNA splicing factors in nuclear speckles as well as splicing of many human transcripts including mRNAs coding for the chromatin-modifying enzymes HDAC6, ADA and SETD8. However, the mechanism by which SON maintains accurate splicing is unknown. To build tools for understanding SON-dependent pre-mRNA splicing, we constructed a minigene reporter plasmid driving expression of the genomic sequence spanning exons 26 through 29 of HDAC6. Following SON depletion, we observed altered splicing of HDAC6 reporter transcripts that showed exclusion of exons 27 and 28, reflecting the splicing patterns of endogenous HDAC6 mRNA. Importantly, loss of HDAC6 biological function was also observed, as indicated by truncated HDAC6 protein and corresponding absence of aggresome assembly activities of HDAC6 binding-of-ubiquitin zinc finger (BUZ) domain. We therefore propose that SON-mediated splicing regulation of HDAC6 is essential for supporting protein degradation pathways that prevent human disease. PMID:25782155

  2. Alternative splicing and muscular dystrophy

    PubMed Central

    Pistoni, Mariaelena; Ghigna, Claudia; Gabellini, Davide

    2013-01-01

    Alternative splicing of pre-mRNAs is a major contributor to proteomic diversity and to the control of gene expression in higher eukaryotic cells. For this reasons, alternative splicing is tightly regulated in different tissues and developmental stages and its disruption can lead to a wide range of human disorders. The aim of this review is to focus on the relevance of alternative splicing for muscle function and muscle disease. We begin by giving a brief overview of alternative splicing, muscle-specific gene expression and muscular dystrophy. Next, to illustrate these concepts we focus on two muscular dystrophy, myotonic muscular dystrophy and facioscapulohumeral muscular dystrophy, both associated to disruption of splicing regulation in muscle. PMID:20603608

  3. nagnag: Identification and quantification of NAGNAG alternative splicing using RNA-Seq data.

    PubMed

    Yan, Xiaoyan; Sablok, Gaurav; Feng, Gang; Ma, Jiaxin; Zhao, Hongwei; Sun, Xiaoyong

    2015-07-01

    Regulation of proteome diversity by alternative splicing has been widely demonstrated in plants and animals. NAGNAG splicing, which was recently defined as a tissue specific event, results in the production of two distinct isoforms that are distinguished by three nucleotides (NAG) as a consequence of the intron proximal or distal to the splice site. Since the NAGNAG mechanism is not well characterized, tools for the identification and quantification of NAGNAG splicing events remain under-developed. Here we report nagnag, an R-based NAGNAG splicing detection tool, which accurately identifies and quantifies NAGNAG splicing events using RNA-Seq. Overall, nagnag produces user-friendly visualization reports and highlights differences between the DNA/RNA/protein across the identified isoforms of the reported gene. The package is available on https://sourceforge.net/projects/nagnag/files/; or http://genome.sdau.edu.cn/research/software/nagnag.html. PMID:26028313

  4. Therapeutic targeting of splicing in cancer.

    PubMed

    Lee, Stanley Chun-Wei; Abdel-Wahab, Omar

    2016-09-01

    Recent studies have highlighted that splicing patterns are frequently altered in cancer and that mutations in genes encoding spliceosomal proteins, as well as mutations affecting the splicing of key cancer-associated genes, are enriched in cancer. In parallel, there is also accumulating evidence that several molecular subtypes of cancer are highly dependent on splicing function for cell survival. These findings have resulted in a growing interest in targeting splicing catalysis, splicing regulatory proteins, and/or specific key altered splicing events in the treatment of cancer. Here we present strategies that exist and that are in development to target altered dependency on the spliceosome, as well as aberrant splicing, in cancer. These include drugs to target global splicing in cancer subtypes that are preferentially dependent on wild-type splicing for survival, methods to alter post-translational modifications of splicing-regulating proteins, and strategies to modulate pathologic splicing events and protein-RNA interactions in cancer. PMID:27603132

  5. Splicing Express: a software suite for alternative splicing analysis using next-generation sequencing data

    PubMed Central

    Kroll, Jose E.; Kim, Jihoon; Ohno-Machado, Lucila

    2015-01-01

    Motivation. Alternative splicing events (ASEs) are prevalent in the transcriptome of eukaryotic species and are known to influence many biological phenomena. The identification and quantification of these events are crucial for a better understanding of biological processes. Next-generation DNA sequencing technologies have allowed deep characterization of transcriptomes and made it possible to address these issues. ASEs analysis, however, represents a challenging task especially when many different samples need to be compared. Some popular tools for the analysis of ASEs are known to report thousands of events without annotations and/or graphical representations. A new tool for the identification and visualization of ASEs is here described, which can be used by biologists without a solid bioinformatics background. Results. A software suite named Splicing Express was created to perform ASEs analysis from transcriptome sequencing data derived from next-generation DNA sequencing platforms. Its major goal is to serve the needs of biomedical researchers who do not have bioinformatics skills. Splicing Express performs automatic annotation of transcriptome data (GTF files) using gene coordinates available from the UCSC genome browser and allows the analysis of data from all available species. The identification of ASEs is done by a known algorithm previously implemented in another tool named Splooce. As a final result, Splicing Express creates a set of HTML files composed of graphics and tables designed to describe the expression profile of ASEs among all analyzed samples. By using RNA-Seq data from the Illumina Human Body Map and the Rat Body Map, we show that Splicing Express is able to perform all tasks in a straightforward way, identifying well-known specific events. Availability and Implementation.Splicing Express is written in Perl and is suitable to run only in UNIX-like systems. More details can be found at: http

  6. Sip1, a novel RS domain-containing protein essential for pre-mRNA splicing.

    PubMed

    Zhang, W J; Wu, J Y

    1998-02-01

    Previous studies have shown that protein-protein interactions among splicing factors may play an important role in pre-mRNA splicing. We report here identification and functional characterization of a new splicing factor, Sip1 (SC35-interacting protein 1). Sip1 was initially identified by virtue of its interaction with SC35, a splicing factor of the SR family. Sip1 interacts with not only several SR proteins but also with U1-70K and U2AF65, proteins associated with 5' and 3' splice sites, respectively. The predicted Sip1 sequence contains an arginine-serine-rich (RS) domain but does not have any known RNA-binding motifs, indicating that it is not a member of the SR family. Sip1 also contains a region with weak sequence similarity to the Drosophila splicing regulator suppressor of white apricot (SWAP). An essential role for Sip1 in pre-mRNA splicing was suggested by the observation that anti-Sip1 antibodies depleted splicing activity from HeLa nuclear extract. Purified recombinant Sip1 protein, but not other RS domain-containing proteins such as SC35, ASF/SF2, and U2AF65, restored the splicing activity of the Sip1-immunodepleted extract. Addition of U2AF65 protein further enhanced the splicing reconstitution by the Sip1 protein. Deficiency in the formation of both A and B splicing complexes in the Sip1-depleted nuclear extract indicates an important role of Sip1 in spliceosome assembly. Together, these results demonstrate that Sip1 is a novel RS domain-containing protein required for pre-mRNA splicing and that the functional role of Sip1 in splicing is distinct from those of known RS domain-containing splicing factors. PMID:9447963

  7. The transcription factor c-Myb affects pre-mRNA splicing

    SciTech Connect

    Orvain, Christophe; Matre, Vilborg; Gabrielsen, Odd S.

    2008-07-25

    c-Myb is a transcription factor which plays a key role in haematopoietic proliferation and lineage commitment. We raised the question of whether c-Myb may have abilities beyond the extensively studied transcriptional activation function. In this report we show that c-Myb influences alternative pre-mRNA splicing. This was seen by its marked effect on the 5'-splice site selection during E1A alternative splicing, while no effect of c-Myb was observed when reporters for the 3'-splice site selection or for the constitutive splicing process were tested. Moreover, co-immunoprecipitation experiments provided evidence for interactions between c-Myb and distinct components of the splicing apparatus, such as the general splicing factor U2AF{sup 65} and hnRNPA1 involved in the 5'-splice site selection. The effect on 5'-splice site selection was abolished in the oncogenic variant v-Myb. Altogether, these data provide evidence that c-Myb may serve a previously unappreciated role in the coupling between transcription and splicing.

  8. Minimum Factorization Agreement of Spliced ESTs

    NASA Astrophysics Data System (ADS)

    Bonizzoni, Paola; Della Vedova, Gianluca; Dondi, Riccardo; Pirola, Yuri; Rizzi, Raffaella

    Producing spliced EST sequences is a fundamental task in the computational problem of reconstructing splice and transcript variants, a crucial step in the alternative splicing investigation. Now, given an EST sequence, there can be several spliced EST sequences associated to it, since the original EST sequences may have different alignments against wide genomic regions.

  9. Interagency partnering for weed prevention--progress on development of a National Early Detection and Rapid Response System for Invasive Plants in the United States

    USGS Publications Warehouse

    Westbrooks, R.

    2011-01-01

    Over the past 50 years, experience has shown that interagency groups provide an effective forum for addressing various invasive species issues and challenges on multiple land units. However, more importantly, they can also provide a coordinated framework for early detection, reporting, identification and vouchering, rapid assessment, and rapid response to new and emerging invasive plants in the United States. Interagency collaboration maximizes the use of available expertise, resources, and authority for promoting early detection and rapid response (EDRR) as the preferred management option for addressing new and emerging invasive plants. Currently, an interagency effort is underway to develop a National EDRR System for Invasive Plants in the United States. The proposed system will include structural and informational elements. Structural elements of the system include a network of interagency partner groups to facilitate early detection and rapid response to new invasive plants, including the Federal Interagency Committee for the Management of Noxious and Exotic Weeds (FICMNEW), State Invasive Species Councils, State Early Detection and Rapid Response Coordinating Committees, State Volunteer Detection and Reporting Networks, Invasive Plant Task Forces, and Cooperative Weed Management Areas. Informational elements and products being developed include Regional Invasive Plant Atlases, and EDRR Guidelines for EDRR Volunteer Network Training, Rapid Assessment and Rapid Response, and Criteria for Selection of EDRR Species. System science and technical support elements which are provided by cooperating state and federal scientists, include EDRR guidelines, training curriculum for EDRR volunteers and agency field personnel, plant identification and vouchering, rapid assessments, as well as predictive modeling and ecological range studies for invasive plant species.

  10. Splicing of cauliflower mosaic virus 35S RNA is essential for viral infectivity.

    PubMed Central

    Kiss-László, Z; Blanc, S; Hohn, T

    1995-01-01

    A splicing event essential for the infectivity of a plant pararetrovirus has been characterized. Transient expression experiments using reporter constructs revealed a splice donor site in the leader sequence of the cauliflower mosaic virus (CaMV) 35S RNA and three additional splice donor sites within open reading frame (ORF) I. All four donors use the same splice acceptor within ORF II. Splicing between the leader and ORF II produces an mRNA from which ORF III and, in the presence of the CaMV translational transactivator, ORF IV can be translated efficiently. The other three splicing events produce RNAs encoding ORF I-II in-frame fusions. All four spliced CaMV RNAs were detected in CaMV-infected plants. Virus mutants in which the splice acceptor site in ORF II is inactivated are not infectious, indicating that splicing plays an essential role in the CaMV life cycle. The results presented here suggest a model for viral gene expression in which RNA splicing is required to provide appropriate substrate mRNAs for the specialized translation mechanisms of CaMV. Images PMID:7628455

  11. In vivo relevance for photoprotection by the vitamin D rapid response pathway.

    PubMed

    Dixon, K M; Deo, S S; Norman, A W; Bishop, J E; Halliday, G M; Reeve, V E; Mason, R S

    2007-03-01

    Vitamin D is produced by exposure of 7-dehydrocholesterol in the skin to UV irradiation (UVR) and further converted in the skin to the biologically active metabolite, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and other compounds. UVR also results in DNA damage producing cyclobutane pyrimidine dimers (CPD). We previously reported that 1,25(OH)(2)D(3) at picomolar concentrations, protects human skin cells from UVR-induced apoptosis, and decreases CPD in surviving cells. 1,25(OH)(2)D(3) has been shown to generate biological responses via two pathways-the classical steroid receptor/genomic pathway or a rapid, non-genomic pathway mediated by a putative membrane receptor. Whether the rapid response pathway is physiologically relevant is unclear. A cis-locked, rapid-acting agonist 1,25(OH)(2)lumisterol(3) (JN), entirely mimicked the actions of 1,25(OH)(2)D(3) to reduce fibroblast and keratinocyte loss and CPD damage after UVR. The effects of 1,25(OH)(2)D(3) were abolished by a rapid-acting antagonist, but not by a genomic antagonist. Skh:hr1 mice exposed to three times the minimal erythemal dose of solar-simulated UVR and treated topically with 1,25(OH)(2)D(3) or JN immediately after UVR showed reduction in UVR-induced UVR-induced sunburn cells (p<0.01 and <0.05, respectively), CPD (p<0.01 for both) and immunosuppression (p<0.001 for both) compared with vehicle-treated mice. These results show for the first time an in vivo biological response mediated by a rapid-acting analog of the vitamin D system. The data support the hypothesis that 1,25(OH)(2)D(3) exerts its photoprotective effects via the rapid pathway and raise the possibility that other D compounds produced in skin may contribute to the photoprotective effects. PMID:17223553

  12. Rapid Response Team activation in New Zealand hospitals-a multicentre prospective observational study.

    PubMed

    Psirides, A J; Hill, J; Jones, D

    2016-05-01

    We aimed to describe the epidemiology of Rapid Response Team (RRT) activation in New Zealand public hospitals. We undertook a prospective multicentre observational study of RRT activations in 11 hospitals for consecutive 14-day periods during October-December 2014. A standardised case report form was used to collect data on patient demographics, RRT activation criteria and timing, vital signs on RRT arrival, team composition and intervention, treatment limitation and patient outcome at day 30. Three hundred and thirteen patients received 351 RRT calls during the study period. Patients were admitted under a medical specialty in 177 (56.5%) instances. Median duration from hospital admission to first RRT call was two days. Eighty-six percent of RRT calls were to inpatient wards. A total of 43.4% of RRT calls occurred between 0800 and 1700 hours (38% of the day) and 75.5% of RRT calls were activated by ward nurses. A median of three staff attended each call. Common triggers for RRT activation were increased Early Warning Score (56.2%) and staff concern (25.7%). During the RRT call, 2.8% of patients died; 19.8% died by day 30. New 'Not For Resuscitation' orders were written in 22.5% of RRT calls. By day 30, 56.2% of patients had been discharged home alive. In conclusion, RRTs in New Zealand are multidisciplinary, mostly nurse-activated and predominantly respond to deteriorating medical (rather than surgical) patients. Most patients remain on the ward. The RRT frequently implements treatment limitations. Given almost one in five patients die within 30 days, over half of whom die within 72 hours of RRT review, surviving the RRT call may provide false reassurance that the patient will subsequently do well. PMID:27246940

  13. Characterization of the Regulation of CD46 RNA Alternative Splicing.

    PubMed

    Tang, Sze Jing; Luo, Shufang; Ho, Jia Xin Jessie; Ly, Phuong Thao; Goh, Eling; Roca, Xavier

    2016-07-01

    Here we present a detailed analysis of the alternative splicing regulation of human CD46, which generates different isoforms with distinct functions. CD46 is a ubiquitous membrane protein that protects host cells from complement and plays other roles in immunity, autophagy, and cell adhesion. CD46 deficiency causes an autoimmune disorder, and this protein is also involved in pathogen infection and cancer. Before this study, the mechanisms of CD46 alternative splicing remained unexplored even though dysregulation of this process has been associated with autoimmune diseases. We proved that the 5' splice sites of CD46 cassette exons 7 and 8 encoding extracellular domains are defined by noncanonical mechanisms of base pairing to U1 small nuclear RNA. Next we characterized the regulation of CD46 cassette exon 13, whose inclusion or skipping generates different cytoplasmic tails with distinct functions. Using splicing minigenes, we identified multiple exonic and intronic splicing enhancers and silencers that regulate exon 13 inclusion via trans-acting splicing factors like PTBP1 and TIAL1. Interestingly, a common splicing activator such as SRSF1 appears to repress CD46 exon 13 inclusion. We also report that expression of CD46 mRNA isoforms is further regulated by non-sense-mediated mRNA decay and transcription speed. Finally, we successfully manipulated CD46 exon 13 inclusion using antisense oligonucleotides, opening up opportunities for functional studies of the isoforms as well as for therapeutics for autoimmune diseases. This study provides insight into CD46 alternative splicing regulation with implications for its function in the immune system and for genetic disease. PMID:27226545

  14. Functional studies on the ATM intronic splicing processing element

    PubMed Central

    Lewandowska, Marzena A.; Stuani, Cristiana; Parvizpur, Alireza; Baralle, Francisco E.; Pagani, Franco

    2005-01-01

    In disease-associated genes, the understanding of the functional significance of deep intronic nucleotide variants may represent a difficult challenge. We have previously reported a new disease-causing mechanism that involves an intronic splicing processing element (ISPE) in ATM, composed of adjacent consensus 5′ and 3′ splice sites. A GTAA deletion within ISPE maintains potential adjacent splice sites, disrupts a non-canonical U1 snRNP interaction and activates an aberrant exon. In this paper, we demonstrate that binding of U1 snRNA through complementarity within a ∼40 nt window downstream of the ISPE prevents aberrant splicing. By selective mutagenesis at the adjacent consensus ISPE splice sites, we show that this effect is not due to a resplicing process occurring at the ISPE. Functional comparison of the ATM mouse counterpart and evaluation of the pre-mRNA splicing intermediates derived from affected cell lines and hybrid minigene assays indicate that U1 snRNP binding at the ISPE interferes with the cryptic acceptor site. Activation of this site results in a stringent 5′–3′ order of intron sequence removal around the cryptic exon. Artificial U1 snRNA loading by complementarity to heterologous exonic sequences represents a potential therapeutic method to prevent the usage of an aberrant CFTR cryptic exon. Our results suggest that ISPE-like intronic elements binding U1 snRNPs may regulate correct intron processing. PMID:16030351

  15. Tafazzin splice variants and mutations in Barth syndrome.

    PubMed

    Kirwin, Susan M; Manolakos, Athena; Barnett, Sarah Swain; Gonzalez, Iris L

    2014-01-01

    Barth syndrome is caused by mutations in the TAZ (tafazzin) gene on human chromosome Xq28. The human tafazzin gene produces four major mRNA splice variants; two of which have been shown to be functional (TAZ lacking exon 5 and full-length) in complementation studies with yeast and Drosophila. This study characterizes the multiple alternative splice variants of TAZ mRNA and their proportions in blood samples from a cohort of individuals with Barth syndrome (BTHS). Because it has been reported that collection and processing methods can affect the expression of various genes, we tested and chose a stabilizing medium for collecting, shipping and processing of the blood samples of these individuals. In both healthy controls and in BTHS individuals, we found a greater variety of alternatively spliced forms than previously described, with a sizeable proportion of minor splice variants besides the four dominant isoforms. Individuals with certain exonic and intronic splice mutations produce additional mutant mRNAs that could be translated into two or more proteins with different amino acid substitutions in a single individual. A fraction of the minor splice variants is predicted to be non-productive. PMID:24342716

  16. 20 CFR 665.320 - May other activities be undertaken as part of rapid response?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... permanent closure or mass layoff, or a natural or other disaster resulting in a mass job dislocation, the... labor organizations: (1) Develop prospective strategies for addressing dislocation events, that ensure... potential dislocations, available adjustment assistance, and the effectiveness of rapid response...

  17. Caring for our own: deploying a systemwide second victim rapid response team.

    PubMed

    Scott, Susan D; Hirschinger, Laura E; Cox, Karen R; McCoig, Myra; Hahn-Cover, Kristin; Epperly, Kerri M; Phillips, Eileen C; Hall, Leslie W

    2010-05-01

    A unique rapid response system was designed to provide social, psychological, emotional, and professional support for health care providers who are "second victims"--traumatized as a result of their involvement in an unanticipated adverse event, medical error, or patient-related injury. PMID:20480757

  18. Early Detection Rapid Response Program Targets New Noxious Weed Species in Washington State

    ERIC Educational Resources Information Center

    Andreas, Jennifer E.; Halpern, Alison D.; DesCamp, Wendy C.; Miller, Timothy W.

    2015-01-01

    Early detection, rapid response is a critical component of invasive plant management. It can be challenging, however, to detect new invaders before they become established if landowners cannot identify species of concern. In order to increase awareness, eye-catching postcards were developed in Washington State as part of a noxious weed educational…

  19. Splicing Efficiently Couples Optical Fibers

    NASA Technical Reports Server (NTRS)

    Lutes, G. F.

    1985-01-01

    Method of splicing single-mode optical fibers results in very low transmission losses through joined fiber ends. Coupling losses between joined optical-fiber ends only 0.1 dB. Method needs no special operator training.

  20. Medical Rapid Response in Psychiatry: Reasons for Activation and Immediate Outcome.

    PubMed

    Manu, Peter; Loewenstein, Kristy; Girshman, Yankel J; Bhatia, Padam; Barnes, Maira; Whelan, Joseph; Solderitch, Victoria A; Rogozea, Liliana; McManus, Marybeth

    2015-12-01

    Rapid response teams are used to improve the recognition of acute deteriorations in medical and surgical settings. They are activated by abnormal physiological parameters, symptoms or clinical concern, and are believed to decrease hospital mortality rates. We evaluated the reasons for activation and the outcome of rapid response interventions in a 222-bed psychiatric hospital in New York City using data obtained at the time of all activations from January through November, 2012. The primary outcome was the admission rate to a medical or surgical unit for each of the main reasons for activation. The 169 activations were initiated by nursing staff (78.7 %) and psychiatrists (13 %) for acute changes in condition (64.5 %), abnormal physiological parameters (27.2 %) and non-specified concern (8.3 %). The most common reasons for activation were chest pain (14.2 %), fluctuating level of consciousness (9.5 %), hypertension (9.5 %), syncope or fall (8.9 %), hypotension (8.3 %), dyspnea (7.7 %) and seizures (5.9 %). The rapid response team transferred 127 (75.2 %) patients to the Emergency Department and 46 (27.2 %) were admitted to a medical or surgical unit. The admission rates were statistically similar for acute changes in condition, abnormal physiological parameters, and clinicians' concern. In conclusion, a majority of rapid response activations in a self-standing psychiatric hospital were initiated by nursing staff for changes in condition, rather than for policy-specified abnormal physiological parameters. The findings suggest that a rapid response system may empower psychiatric nurses to use their clinical skills to identify patients requiring urgent transfer to a general hospital. PMID:25796608

  1. Biochemical identification of new proteins involved in splicing repression at the Drosophila P-element exonic splicing silencer

    PubMed Central

    Horan, Lucas; Yasuhara, Jiro C.; Kohlstaedt, Lori A.; Rio, Donald C.

    2015-01-01

    Splicing of the Drosophila P-element third intron (IVS3) is repressed in somatic tissues due to the function of an exonic splicing silencer (ESS) complex present on the 5′ exon RNA. To comprehensively characterize the mechanisms of this alternative splicing regulation, we used biochemical fractionation and affinity purification to isolate the silencer complex assembled in vitro and identify the constituent proteins by mass spectrometry. Functional assays using splicing reporter minigenes identified the proteins hrp36 and hrp38 and the cytoplasmic poly(A)-binding protein PABPC1 as novel functional components of the splicing silencer. hrp48, PSI, and PABPC1 have high-affinity RNA-binding sites on the P-element IVS3 5′ exon, whereas hrp36 and hrp38 proteins bind with low affinity to the P-element silencer RNA. RNA pull-down and immobilized protein assays showed that hrp48 protein binding to the silencer RNA can recruit hrp36 and hrp38. These studies identified additional components that function at the P-element ESS and indicated that proteins with low-affinity RNA-binding sites can be recruited in a functional manner through interactions with a protein bound to RNA at a high-affinity binding site. These studies have implications for the role of heterogeneous nuclear ribonucleoproteins (hnRNPs) in the control of alternative splicing at cis-acting regulatory sites. PMID:26545814

  2. Splicing variants of porcine synphilin-1.

    PubMed

    Larsen, Knud; Madsen, Lone Bruhn; Farajzadeh, Leila; Bendixen, Christian

    2015-09-01

    Parkinson's disease (PD), idiopathic and familial, is characterized by degradation of dopaminergic neurons and the presence of Lewy bodies (LB) in the substantia nigra. LBs contain aggregated proteins of which α-synuclein is the major component. The protein synphilin-1 interacts and colocalizes with α-synuclein in LBs. The aim of this study was to isolate and characterize porcine synphilin-1 and isoforms hereof with the future perspective to use the pig as a model for Parkinson's disease. The porcine SNCAIP cDNA was cloned by reverse transcriptase PCR. The spatial expression of SNCAIP mRNA was investigated by RNAseq. The presented work reports the molecular cloning and characterization of the porcine (Sus scrofa) synphilin-1 cDNA (SNCAIP) and three splice variants hereof. The porcine SNCAIP cDNA codes for a protein (synphilin-1) of 919 amino acids which shows a high similarity to human (90%) and to mouse (84%) synphilin-1. Three shorter transcript variants of the synphilin-1 gene were identified, all lacking one or more exons. SNCAIP transcripts were detected in most examined organs and tissues and the highest expression was found in brain tissues and lung. Conserved splicing variants and a novel splice form of synhilin-1 were found in this study. All synphilin-1 isoforms encoded by the identified transcript variants lack functional domains important for protein degradation. PMID:26101749

  3. SpliceVista, a Tool for Splice Variant Identification and Visualization in Shotgun Proteomics Data*

    PubMed Central

    Zhu, Yafeng; Hultin-Rosenberg, Lina; Forshed, Jenny; Branca, Rui M. M.; Orre, Lukas M.; Lehtiö, Janne

    2014-01-01

    Alternative splicing is a pervasive process in eukaryotic organisms. More than 90% of human genes have alternatively spliced products, and aberrant splicing has been shown to be associated with many diseases. Current methods employed in the detection of splice variants include prediction by clustering of expressed sequence tags, exon microarray, and mRNA sequencing, all methods focusing on RNA-level information. There is a lack of tools for analyzing splice variants at the protein level. Here, we present SpliceVista, a tool for splice variant identification and visualization based on mass spectrometry proteomics data. SpliceVista retrieves gene structure and translated sequences from alternative splicing databases and maps MS-identified peptides to splice variants. The visualization module plots the exon composition of each splice variant and aligns identified peptides with transcript positions. If quantitative mass spectrometry data are used, SpliceVista plots the quantitative patterns for each peptide and provides users with the option to cluster peptides based on their quantitative patterns. SpliceVista can identify splice-variant-specific peptides, providing the possibility for variant-specific analysis. The tool was tested on two experimental datasets (PXD000065 and PXD000134). In A431 cells treated with gefitinib, 2983 splice-variant-specific peptides corresponding to 939 splice variants were identified. Through comparison of splice-variant-centric, protein-centric, and gene-centric quantification, several genes (e.g. EIF4H) were found to have differentially regulated splice variants after gefitinib treatment. The same discrepancy between protein-centric and splice-centric quantification was detected in the other dataset, in which induced pluripotent stem cells were compared with parental fibroblast and human embryotic stem cells. In addition, SpliceVista can be used to visualize novel splice variants inferred from peptide-level evidence. In summary, Splice

  4. SpliceVista, a tool for splice variant identification and visualization in shotgun proteomics data.

    PubMed

    Zhu, Yafeng; Hultin-Rosenberg, Lina; Forshed, Jenny; Branca, Rui M M; Orre, Lukas M; Lehtiö, Janne

    2014-06-01

    Alternative splicing is a pervasive process in eukaryotic organisms. More than 90% of human genes have alternatively spliced products, and aberrant splicing has been shown to be associated with many diseases. Current methods employed in the detection of splice variants include prediction by clustering of expressed sequence tags, exon microarray, and mRNA sequencing, all methods focusing on RNA-level information. There is a lack of tools for analyzing splice variants at the protein level. Here, we present SpliceVista, a tool for splice variant identification and visualization based on mass spectrometry proteomics data. SpliceVista retrieves gene structure and translated sequences from alternative splicing databases and maps MS-identified peptides to splice variants. The visualization module plots the exon composition of each splice variant and aligns identified peptides with transcript positions. If quantitative mass spectrometry data are used, SpliceVista plots the quantitative patterns for each peptide and provides users with the option to cluster peptides based on their quantitative patterns. SpliceVista can identify splice-variant-specific peptides, providing the possibility for variant-specific analysis. The tool was tested on two experimental datasets (PXD000065 and PXD000134). In A431 cells treated with gefitinib, 2983 splice-variant-specific peptides corresponding to 939 splice variants were identified. Through comparison of splice-variant-centric, protein-centric, and gene-centric quantification, several genes (e.g. EIF4H) were found to have differentially regulated splice variants after gefitinib treatment. The same discrepancy between protein-centric and splice-centric quantification was detected in the other dataset, in which induced pluripotent stem cells were compared with parental fibroblast and human embryotic stem cells. In addition, SpliceVista can be used to visualize novel splice variants inferred from peptide-level evidence. In summary, Splice

  5. Spliced-leader trans-splicing in freshwater planarians.

    PubMed

    Zayas, Ricardo M; Bold, Tyler D; Newmark, Phillip A

    2005-10-01

    trans-Splicing, in which a spliced-leader (SL) RNA is appended to the most 5' exon of independently transcribed pre-mRNAs, has been described in a wide range of eukaryotes, from protozoans to chordates. Here we describe trans-splicing in the freshwater planarian Schmidtea mediterranea, a free-living member of the phylum Platyhelminthes. Analysis of an expressed sequence tag (EST) collection from this organism showed that over 300 transcripts shared one of two approximately 35-base sequences (Smed SL-1 and SL-2) at their 5' ends. Examination of genomic sequences encoding representatives of these transcripts revealed that these shared sequences were transcribed elsewhere in the genome. RNA blot analysis, 5' and 3' rapid amplification of cDNA ends, as well as genomic sequence data showed that 42-nt SL sequences were derived from small RNAs of approximately 110 nt. Similar sequences were also found at the 5' ends of ESTs from the planarian Dugesia japonica. trans-Splicing has already been described in numerous representatives of the phylum Platyhelminthes (trematodes, cestodes, and polyclads); its presence in two representatives of the triclads supports the hypothesis that this mode of RNA processing is ancestral within this group. The upcoming complete genome sequence of S. mediterranea, combined with this animal's experimental accessibility and susceptibility to RNAi, provide another model organism in which to study the function of the still-enigmatic trans-splicing. PMID:15972844

  6. Methods for Characterization of Alternative RNA Splicing

    PubMed Central

    Harvey, Samuel E.; Cheng, Chonghui

    2016-01-01

    Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing “minigene” in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest. PMID:26721495

  7. MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery

    PubMed Central

    Wang, Kai; Singh, Darshan; Zeng, Zheng; Coleman, Stephen J.; Huang, Yan; Savich, Gleb L.; He, Xiaping; Mieczkowski, Piotr; Grimm, Sara A.; Perou, Charles M.; MacLeod, James N.; Chiang, Derek Y.; Prins, Jan F.; Liu, Jinze

    2010-01-01

    The accurate mapping of reads that span splice junctions is a critical component of all analytic techniques that work with RNA-seq data. We introduce a second generation splice detection algorithm, MapSplice, whose focus is high sensitivity and specificity in the detection of splices as well as CPU and memory efficiency. MapSplice can be applied to both short (<75 bp) and long reads (≥75 bp). MapSplice is not dependent on splice site features or intron length, consequently it can detect novel canonical as well as non-canonical splices. MapSplice leverages the quality and diversity of read alignments of a given splice to increase accuracy. We demonstrate that MapSplice achieves higher sensitivity and specificity than TopHat and SpliceMap on a set of simulated RNA-seq data. Experimental studies also support the accuracy of the algorithm. Splice junctions derived from eight breast cancer RNA-seq datasets recapitulated the extensiveness of alternative splicing on a global level as well as the differences between molecular subtypes of breast cancer. These combined results indicate that MapSplice is a highly accurate algorithm for the alignment of RNA-seq reads to splice junctions. Software download URL: http://www.netlab.uky.edu/p/bioinfo/MapSplice. PMID:20802226

  8. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery.

    PubMed

    Wang, Kai; Singh, Darshan; Zeng, Zheng; Coleman, Stephen J; Huang, Yan; Savich, Gleb L; He, Xiaping; Mieczkowski, Piotr; Grimm, Sara A; Perou, Charles M; MacLeod, James N; Chiang, Derek Y; Prins, Jan F; Liu, Jinze

    2010-10-01

    The accurate mapping of reads that span splice junctions is a critical component of all analytic techniques that work with RNA-seq data. We introduce a second generation splice detection algorithm, MapSplice, whose focus is high sensitivity and specificity in the detection of splices as well as CPU and memory efficiency. MapSplice can be applied to both short (<75 bp) and long reads (≥ 75 bp). MapSplice is not dependent on splice site features or intron length, consequently it can detect novel canonical as well as non-canonical splices. MapSplice leverages the quality and diversity of read alignments of a given splice to increase accuracy. We demonstrate that MapSplice achieves higher sensitivity and specificity than TopHat and SpliceMap on a set of simulated RNA-seq data. Experimental studies also support the accuracy of the algorithm. Splice junctions derived from eight breast cancer RNA-seq datasets recapitulated the extensiveness of alternative splicing on a global level as well as the differences between molecular subtypes of breast cancer. These combined results indicate that MapSplice is a highly accurate algorithm for the alignment of RNA-seq reads to splice junctions. Software download URL: http://www.netlab.uky.edu/p/bioinfo/MapSplice. PMID:20802226

  9. A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila

    PubMed Central

    Gao, Jun-Li; Fan, Yu-Jie; Wang, Xiu-Ye; Zhang, Yu; Pu, Jia; Li, Liang; Shao, Wei; Zhan, Shuai; Hao, Jianjiang

    2015-01-01

    Unlike typical cis-splicing, trans-splicing joins exons from two separate transcripts to produce chimeric mRNA and has been detected in most eukaryotes. Trans-splicing in trypanosomes and nematodes has been characterized as a spliced leader RNA-facilitated reaction; in contrast, its mechanism in higher eukaryotes remains unclear. Here we investigate mod(mdg4), a classic trans-spliced gene in Drosophila, and report that two critical RNA sequences in the middle of the last 5′ intron, TSA and TSB, promote trans-splicing of mod(mdg4). In TSA, a 13-nucleotide (nt) core motif is conserved across Drosophila species and is essential and sufficient for trans-splicing, which binds U1 small nuclear RNP (snRNP) through strong base-pairing with U1 snRNA. In TSB, a conserved secondary structure acts as an enhancer. Deletions of TSA and TSB using the CRISPR/Cas9 system result in developmental defects in flies. Although it is not clear how the 5′ intron finds the 3′ introns, compensatory changes in U1 snRNA rescue trans-splicing of TSA mutants, demonstrating that U1 recruitment is critical to promote trans-splicing in vivo. Furthermore, TSA core-like motifs are found in many other trans-spliced Drosophila genes, including lola. These findings represent a novel mechanism of trans-splicing, in which RNA motifs in the 5′ intron are sufficient to bring separate transcripts into close proximity to promote trans-splicing. PMID:25838544

  10. A rapid response 64-channel photomultiplier tube camera for high-speed flow velocimetry

    NASA Astrophysics Data System (ADS)

    Ecker, Tobias; Lowe, K. Todd; Ng, Wing F.

    2015-02-01

    In this technical design note, the development of a rapid response photomultiplier tube camera, leveraging field-programmable gate arrays (FPGA) for high-speed flow velocimetry at up to 10 MHz is described. Technically relevant flows, for example, supersonic inlets and exhaust jets, have time scales on the order of microseconds, and their experimental study requires resolution of these timescales for fundamental insight. The inherent rapid response time attributes of a 64-channel photomultiplier array were coupled with two-stage amplifiers on each anode, and were acquired using a FPGA-based system. Application of FPGA allows high data acquisition rates with many channels as well as on-the-fly preprocessing techniques. Results are presented for optical velocimetry in supersonic free jet flows, demonstrating the value of the technique in the chosen application example for determining supersonic shear layer velocity correlation maps.

  11. The 6 "ws" of rapid response systems: best practices for improving development, implementation, and evaluation.

    PubMed

    Lazzara, Elizabeth H; Benishek, Lauren E; Sonesh, Shirley C; Patzer, Brady; Robinson, Patricia; Wallace, Ruth; Salas, Eduardo

    2014-01-01

    Delays in care have been cited as one of the primary contributors of preventable mortality; thus, quality patient safety is often contingent upon the delivery of timely clinical care. Rapid response systems (RRSs) have been touted as one mechanism to improve the ability of suitable staff to respond to deteriorating patients quickly and appropriately. Rapid response systems are defined as highly skilled individual(s) who mobilize quickly to provide medical care in response to clinical deterioration. While there is mounting evidence that RRSs are a valid strategy for managing obstetric emergencies, reducing adverse events, and improving patient safety, there remains limited insight into the practices underlying the development and execution of these systems. Therefore, the purpose of this article was to synthesize the literature and answer the primary questions necessary for successfully developing, implementing, and evaluating RRSs within inpatient settings-the Who, What, When, Where, Why, and How of RRSs. PMID:24595258

  12. A purine-rich intronic element enhances alternative splicing of thyroid hormone receptor mRNA.

    PubMed Central

    Hastings, M L; Wilson, C M; Munroe, S H

    2001-01-01

    The mammalian thyroid hormone receptor gene c-erbAalpha gives rise to two mRNAs that code for distinct isoforms, TRalpha1 and TRalpha2, with antagonistic functions. Alternative processing of these mRNAs involves the mutually exclusive use of a TRalpha1-specific polyadenylation site or TRalpha2-specific 5' splice site. A previous investigation of TRalpha minigene expression defined a critical role for the TRalpha2 5' splice site in directing alternative processing. Mutational analysis reported here shows that purine residues within a highly conserved intronic element, SEa2, enhance splicing of TRalpha2 in vitro as well as in vivo. Although SEalpha2 is located within the intron of TRalpha2 mRNA, it activates splicing of a heterologous dsx pre-mRNA when located in the downstream exon. Competition with wild-type and mutant RNAs indicates that SEalpha2 functions by binding trans-acting factors in HeLa nuclear extract. Protein-RNA crosslinking identifies several proteins, including SF2/ASF and hnRNP H, that bind specifically to SEalpha2. SEalpha2 also includes an element resembling a 5' splice site consensus sequence that is critical for splicing enhancer activity. Mutations within this pseudo-5' splice site sequence have a dramatic effect on splicing and protein binding. Thus SEa2 and its associated factors are required for splicing of TRalpha2 pre-mRNA. PMID:11421362

  13. Physically flexible, rapid-response gas sensor based on colloidal quantum dot solids.

    PubMed

    Liu, Huan; Li, Min; Voznyy, Oleksandr; Hu, Long; Fu, Qiuyun; Zhou, Dongxiang; Xia, Zhe; Sargent, Edward H; Tang, Jiang

    2014-05-01

    A gas sensor based on PbS colloidal quantum dots (CQDs) is constructed on a paper substrate, yielding flexible, rapid-response NO₂ gas sensors, fabricated from the solution phase. The devices are highly sensitive and fully recoverable at room temperature, which is attributed to the excellent access of gas molecules to the CQD surface, realized by surface ligand removal, combined with the desirable binding energy of NO₂ with the PbS CQDs. PMID:24452852

  14. Observed and self-perceived teamwork in a rapid response team.

    PubMed

    Beebe, Pattie; Bawel-Brinkley, Karen; O'Leary-Kelley, Colleen

    2012-07-01

    Teamwork and communication between healthcare workers are vital for patient safety in the high-risk environment of health care. The purpose of this descriptive study was to measure the teamwork among members of the rapid response team (RRT) to design teamwork communication training for team members. Data were collected via live observation of RRT events and from RRT team member ratings of teamwork during events. PMID:22821023

  15. Alternatively Spliced Androgen Receptor Variants

    PubMed Central

    Dehm, Scott M.; Tindall, Donald J.

    2011-01-01

    Alternative splicing is an important mechanism for increasing functional diversity from a limited set of genes. De-regulation of this process is common in diverse pathologic conditions. The androgen receptor (AR) is a steroid receptor transcription factor with functions critical for normal male development as well as the growth and survival of normal and cancerous prostate tissue. Studies of AR function in androgen insensitivity syndrome (AIS) and prostate cancer (PCa) have demonstrated loss-of-function AR alterations in AIS, and gain-of-function AR alterations in PCa. Over the past two decades, AR gene alterations have been identified in various individuals with AIS, which disrupt normal AR splicing patterns and yield dysfunctional AR protein variants. More recently, altered AR splicing patterns have been identified as a mechanism of PCa progression and resistance to androgen-depletion therapy. Several studies have described the synthesis of alternatively spliced transcripts encoding truncated AR isoforms that lack the ligand-binding domain, which is the ultimate target of androgen depletion. Many of these truncated AR isoforms function as constitutively active, ligand-independent transcription factors that can support androgen-independent expression of AR target genes, as well as the androgen-independent growth of PCa cells. In this review, we will summarize the various alternatively spliced AR variants that have been discovered, with a focus on their role and origin in the pathologic conditions of AIS and PCa. PMID:21778211

  16. scaRNAs regulate splicing and vertebrate heart development.

    PubMed

    Patil, Prakash; Kibiryeva, Nataliya; Uechi, Tamayo; Marshall, Jennifer; O'Brien, James E; Artman, Michael; Kenmochi, Naoya; Bittel, Douglas C

    2015-08-01

    Alternative splicing (AS) plays an important role in regulating mammalian heart development, but a link between misregulated splicing and congenital heart defects (CHDs) has not been shown. We reported that more than 50% of genes associated with heart development were alternatively spliced in the right ventricle (RV) of infants with tetralogy of Fallot (TOF). Moreover, there was a significant decrease in the level of 12 small cajal body-specific RNAs (scaRNAs) that direct the biochemical modification of specific nucleotides in spliceosomal RNAs. We sought to determine if scaRNA levels influence patterns of AS and heart development. We used primary cells derived from the RV of infants with TOF to show a direct link between scaRNA levels and splice isoforms of several genes that regulate heart development (e.g., GATA4, NOTCH2, DAAM1, DICER1, MBNL1 and MBNL2). In addition, we used antisense morpholinos to knock down the expression of two scaRNAs (scarna1 and snord94) in zebrafish and saw a corresponding disruption of heart development with an accompanying alteration in splice isoforms of cardiac regulatory genes. Based on these combined results, we hypothesize that scaRNA modification of spliceosomal RNAs assists in fine tuning the spliceosome for dynamic selection of mRNA splice isoforms. Our results are consistent with disruption of splicing patterns during early embryonic development leading to insufficient communication between the first and second heart fields, resulting in conotruncal misalignment and TOF. Our findings represent a new paradigm for determining the mechanisms underlying congenital cardiac malformations. PMID:25916634

  17. Correction of a Cystic Fibrosis Splicing Mutation by Antisense Oligonucleotides.

    PubMed

    Igreja, Susana; Clarke, Luka A; Botelho, Hugo M; Marques, Luís; Amaral, Margarida D

    2016-02-01

    Cystic fibrosis (CF), the most common life-threatening genetic disease in Caucasians, is caused by ∼2,000 different mutations in the CF transmembrane conductance regulator (CFTR) gene. A significant fraction of these (∼13%) affect pre-mRNA splicing for which novel therapies have been somewhat neglected. We have previously described the effect of the CFTR splicing mutation c.2657+5G>A in IVS16, showing that it originates transcripts lacking exon 16 as well as wild-type transcripts. Here, we tested an RNA-based antisense oligonucleotide (AON) strategy to correct the aberrant splicing caused by this mutation. Two AONs (AON1/2) complementary to the pre-mRNA IVS16 mutant region were designed and their effect on splicing was assessed at the RNA and protein levels, on intracellular protein localization and function. To this end, we used the 2657+5G>A mutant CFTR minigene stably expressed in HEK293 Flp-In cells that express a single copy of the transgene. RNA data from AON1-treated mutant cells show that exon 16 inclusion was almost completely restored (to 95%), also resulting in increased levels of correctly localized CFTR protein at the plasma membrane (PM) and with increased function. A novel two-color CFTR splicing reporter minigene developed here allowed the quantitative monitoring of splicing by automated microscopy localization of CFTR at the PM. The AON strategy is thus a promising therapeutic approach for the specific correction of alternative splicing. PMID:26553470

  18. 20 CFR 665.330 - Are the NAFTA-TAA program requirements for rapid response also required activities?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Are the NAFTA-TAA program requirements for rapid response also required activities? 665.330 Section 665.330 Employees' Benefits EMPLOYMENT AND... WORKFORCE INVESTMENT ACT Rapid Response Activities § 665.330 Are the NAFTA-TAA program requirements...

  19. 20 CFR 671.160 - What rapid response activities are required before a national emergency grant application is...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... out by the State or its designee in collaboration with the Local Board(s) and chief elected official(s). Under 20 CFR 665.310, rapid response encompasses, among other activities, an assessment of the general...) The rapid response activities described in 20 CFR 665.310 have been initiated and carried out, or...

  20. 20 CFR 671.160 - What rapid response activities are required before a national emergency grant application is...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...), to be carried out by the State or its designee in collaboration with the Local Board(s) and chief elected official(s). Under 20 CFR 665.310, rapid response encompasses, among other activities, an... must demonstrate that: (1) The rapid response activities described in 20 CFR 665.310 have...

  1. 20 CFR 671.160 - What rapid response activities are required before a national emergency grant application is...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...), to be carried out by the State or its designee in collaboration with the Local Board(s) and chief elected official(s). Under 20 CFR 665.310, rapid response encompasses, among other activities, an... must demonstrate that: (1) The rapid response activities described in 20 CFR 665.310 have...

  2. 20 CFR 671.160 - What rapid response activities are required before a national emergency grant application is...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... out by the State or its designee in collaboration with the Local Board(s) and chief elected official(s). Under 20 CFR 665.310, rapid response encompasses, among other activities, an assessment of the general...) The rapid response activities described in 20 CFR 665.310 have been initiated and carried out, or...

  3. Alternative splicing of the FMR1 gene in human fetal brain neurons

    SciTech Connect

    Tao Huang; Yan Shen; Xue-bin Qin; Guan-Yun Wu

    1996-08-09

    The alternative splicing expression of the FMR1 gene was reported in several human and mouse tissues. Five regions of FMR1 gene can be alternatively spliced, but the combination of them has not been investigated fully. We reported here the analysis of alternative splicing pattern of the FMR1 gene in cultured fetal human neurons, using a RT-PCR and cloning strategy. Eleven splicing types were cloned and different isoforms were not equally represented. The dominant isoform represents nearly 40%, and the other isoforms were relatively rare. One isoform has a different carboxyl-terminus. Most of the alternative spliced regions appear hydrophilic; thus, they may locate on the surface of the FMR1 protein. 16 refs., 2 figs.

  4. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs.

    PubMed

    Zhang, Xiao-Ou; Dong, Rui; Zhang, Yang; Zhang, Jia-Lin; Luo, Zheng; Zhang, Jun; Chen, Ling-Ling; Yang, Li

    2016-09-01

    Circular RNAs (circRNAs) derived from back-spliced exons have been widely identified as being co-expressed with their linear counterparts. A single gene locus can produce multiple circRNAs through alternative back-splice site selection and/or alternative splice site selection; however, a detailed map of alternative back-splicing/splicing in circRNAs is lacking. Here, with the upgraded CIRCexplorer2 pipeline, we systematically annotated different types of alternative back-splicing and alternative splicing events in circRNAs from various cell lines. Compared with their linear cognate RNAs, circRNAs exhibited distinct patterns of alternative back-splicing and alternative splicing. Alternative back-splice site selection was correlated with the competition of putative RNA pairs across introns that bracket alternative back-splice sites. In addition, all four basic types of alternative splicing that have been identified in the (linear) mRNA process were found within circRNAs, and many exons were predominantly spliced in circRNAs. Unexpectedly, thousands of previously unannotated exons were detected in circRNAs from the examined cell lines. Although these novel exons had similar splice site strength, they were much less conserved than known exons in sequences. Finally, both alternative back-splicing and circRNA-predominant alternative splicing were highly diverse among the examined cell lines. All of the identified alternative back-splicing and alternative splicing in circRNAs are available in the CIRCpedia database (http://www.picb.ac.cn/rnomics/circpedia). Collectively, the annotation of alternative back-splicing and alternative splicing in circRNAs provides a valuable resource for depicting the complexity of circRNA biogenesis and for studying the potential functions of circRNAs in different cells. PMID:27365365

  5. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    SciTech Connect

    Alvarez, Enrique; Castello, Alfredo; Carrasco, Luis; Izquierdo, Jose M.

    2011-10-14

    Highlights: {yields} Novel role for poliovirus 2A protease as splicing modulator. {yields} Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. {yields} Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A{sup pro} modulating the alternative splicing of pre-mRNAs. Expression of 2A{sup pro} potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A{sup pro} abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A{sup pro}, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A{sup pro} on splicing is to selectively block the second catalytic step.

  6. Comprehensive splicing functional analysis of DNA variants of the BRCA2 gene by hybrid minigenes

    PubMed Central

    2012-01-01

    Introduction The underlying pathogenic mechanism of a large fraction of DNA variants of disease-causing genes is the disruption of the splicing process. We aimed to investigate the effect on splicing of the BRCA2 variants c.8488-1G > A (exon 20) and c.9026_9030del (exon 23), as well as 41 BRCA2 variants reported in the Breast Cancer Information Core (BIC) mutation database. Methods DNA variants were analyzed with the splicing prediction programs NNSPLICE and Human Splicing Finder. Functional analyses of candidate variants were performed by lymphocyte RT-PCR and/or hybrid minigene assays. Forty-one BIC variants of exons 19, 20, 23 and 24 were bioinformatically selected and generated by PCR-mutagenesis of the wild type minigenes. Results Lymphocyte RT-PCR of c.8488-1G > A showed intron 19 retention and a 12-nucleotide deletion in exon 20, whereas c.9026_9030del did not show any splicing anomaly. Minigene analysis of c.8488-1G > A displayed the aforementioned aberrant isoforms but also exon 20 skipping. We further evaluated the splicing outcomes of 41 variants of four BRCA2 exons by minigene analysis. Eighteen variants presented splicing aberrations. Most variants (78.9%) disrupted the natural splice sites, whereas four altered putative enhancers/silencers and had a weak effect. Fluorescent RT-PCR of minigenes accurately detected 14 RNA isoforms generated by cryptic site usage, exon skipping and intron retention events. Fourteen variants showed total splicing disruptions and were predicted to truncate or eliminate essential domains of BRCA2. Conclusions A relevant proportion of BRCA2 variants are correlated with splicing disruptions, indicating that RNA analysis is a valuable tool to assess the pathogenicity of a particular DNA change. The minigene system is a straightforward and robust approach to detect variants with an impact on splicing and contributes to a better knowledge of this gene expression step. PMID:22632462

  7. Characterization of a novel arginine/serine-rich splicing factor in Arabidopsis.

    PubMed Central

    Lopato, S; Waigmann, E; Barta, A

    1996-01-01

    Many splicing factors in vertebrate nuclei belong to a class of evolutionarily conserved proteins containing arginine/serine (RS) or serine/arginine (SR) domains. Previously, we demonstrated the existence of SR splicing factors in plants. In this article, we report on a novel member of this splicing factor family from Arabidopsis designated atRSp31. It has one N-terminal RNA recognition motif and a C-terminal RS domain highly enriched in arginines. The RNA recognition motif shows significant homology to all animal SR proteins identified to date, but the intermediate region does not show any homology to any other known protein. Subsequently, we characterized two cDNAs from Arabidopsis that are highly homologous to atRSp31 (designated atRSp35 and atRSp41). Their deduced amino acid sequences indicate that these proteins constitute a new family of RS domain splicing factors. Purified recombinant atRSp31 is able to restore splicing in SR protein-deficient human S100 extracts. This indicates that atRSp31 is a true plant splicing factor and plays a crucial role in splicing, similar to that of other RS splicing factors. All of the three genes are differentially expressed in a tissue-specific manner. The isolation of this new plant splicing factor family enlarges the essential group of RS domain splicing factors. Furthermore, because no animal equivalent to this protein family has been identified to date, our results suggest that these proteins play key roles in constitutive and alternative splicing in plants. PMID:8989882

  8. Vital Signs Predict Rapid-Response Team Activation Within Twelve Hours of Emergency Department Admission

    PubMed Central

    Walston, James M.; Cabrera, Daniel; Bellew, Shawna D.; Olive, Marc N.; Lohse, Christine M.; Bellolio, M. Fernanda

    2016-01-01

    Introduction Rapid-response teams (RRTs) are interdisciplinary groups created to rapidly assess and treat patients with unexpected clinical deterioration marked by decline in vital signs. Traditionally emergency department (ED) disposition is partially based on the patients’ vital signs (VS) at the time of hospital admission. We aimed to identify which patients will have RRT activation within 12 hours of admission based on their ED VS, and if their outcomes differed. Methods We conducted a case-control study of patients presenting from January 2009 to December 2012 to a tertiary ED who subsequently had RRT activations within 12 hours of admission (early RRT activations). The medical records of patients 18 years and older admitted to a non-intensive care unit (ICU) setting were reviewed to obtain VS at the time of ED arrival and departure, age, gender and diagnoses. Controls were matched 1:1 on age, gender, and diagnosis. We evaluated VS using cut points (lowest 10%, middle 80% and highest 10%) based on the distribution of VS for all patients. Our study adheres to the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines for reporting observational studies. Results A total of 948 patients were included (474 cases and 474 controls). Patients who had RRT activations were more likely to be tachycardic (odds ratio [OR] 2.02, 95% CI [1.25–3.27]), tachypneic (OR 2.92, 95% CI [1.73–4.92]), and had lower oxygen saturations (OR 2.25, 95% CI [1.42–3.56]) upon arrival to the ED. Patients who had RRT activations were more likely to be tachycardic at the time of disposition from the ED (OR 2.76, 95% CI [1.65–4.60]), more likely to have extremes of systolic blood pressure (BP) (OR 1.72, 95% CI [1.08–2.72] for low BP and OR 1.82, 95% CI [1.19–2.80] for high BP), higher respiratory rate (OR 4.15, 95% CI [2.44–7.07]) and lower oxygen saturation (OR 2.29, 95% CI [1.43–3.67]). Early RRT activation was associated with increased

  9. COMMUNICATION: Alternative splicing and genomic stability

    NASA Astrophysics Data System (ADS)

    Cahill, Kevin

    2004-06-01

    Alternative splicing allows an organism to make different proteins in different cells at different times, all from the same gene. In a cell that uses alternative splicing, the total length of all the exons is much shorter than in a cell that encodes the same set of proteins without alternative splicing. This economical use of exons makes genes more stable during reproduction and development because a genome with a shorter exon length is more resistant to harmful mutations. Genomic stability may be the reason why higher vertebrates splice alternatively. For a broad class of alternatively spliced genes, a formula is given for the increase in their stability.

  10. How a rapid response team is supporting people to remain at home.

    PubMed

    Clift, Esther

    2015-12-01

    This article explores the work of a rapid response team (RRT) in an English city. The RRT is a multiprofessional intermediate care team that is able to support patients to remain at home during clinical crises and changes to their social care needs. The service is popular with patients and cost effective. The National Audit of Intermediate Care is in its fourth year and benchmarks how intermediate care services are delivered across England. RRT data are compared with the national data, and show that keeping the team as a crisis intervention service has enabled it to maintain capacity to support patients at home without requiring hospital admission. PMID:26607624

  11. Evolution of alternative splicing after gene duplication.

    PubMed

    Su, Zhixi; Wang, Jianmin; Yu, Jun; Huang, Xiaoqiu; Gu, Xun

    2006-02-01

    Alternative splicing and gene duplication are two major sources of proteomic function diversity. Here, we study the evolutionary trend of alternative splicing after gene duplication by analyzing the alternative splicing differences between duplicate genes. We observed that duplicate genes have fewer alternative splice (AS) forms than single-copy genes, and that a negative correlation exists between the mean number of AS forms and the gene family size. Interestingly, we found that the loss of alternative splicing in duplicate genes may occur shortly after the gene duplication. These results support the subfunctionization model of alternative splicing in the early stage after gene duplication. Further analysis of the alternative splicing distribution in human duplicate pairs showed the asymmetric evolution of alternative splicing after gene duplications; i.e., the AS forms between duplicates may differ dramatically. We therefore conclude that alternative splicing and gene duplication may not evolve independently. In the early stage after gene duplication, young duplicates may take over a certain amount of protein function diversity that previously was carried out by the alternative splicing mechanism. In the late stage, the gain and loss of alternative splicing seem to be independent between duplicates. PMID:16365379

  12. The RNA Splicing Response to DNA Damage.

    PubMed

    Shkreta, Lulzim; Chabot, Benoit

    2015-01-01

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging. PMID:26529031

  13. The RNA Splicing Response to DNA Damage

    PubMed Central

    Shkreta, Lulzim; Chabot, Benoit

    2015-01-01

    The number of factors known to participate in the DNA damage response (DDR) has expanded considerably in recent years to include splicing and alternative splicing factors. While the binding of splicing proteins and ribonucleoprotein complexes to nascent transcripts prevents genomic instability by deterring the formation of RNA/DNA duplexes, splicing factors are also recruited to, or removed from, sites of DNA damage. The first steps of the DDR promote the post-translational modification of splicing factors to affect their localization and activity, while more downstream DDR events alter their expression. Although descriptions of molecular mechanisms remain limited, an emerging trend is that DNA damage disrupts the coupling of constitutive and alternative splicing with the transcription of genes involved in DNA repair, cell-cycle control and apoptosis. A better understanding of how changes in splice site selection are integrated into the DDR may provide new avenues to combat cancer and delay aging. PMID:26529031

  14. Traceless protein splicing utilizing evolved split inteins

    PubMed Central

    Lockless, Steve W.; Muir, Tom W.

    2009-01-01

    Split inteins are parasitic genetic elements frequently found inserted into reading frames of essential proteins. Their association and excision restore host protein function through a protein self-splicing reaction. They have gained an increasingly important role in the chemical modification of proteins to create cyclical, segmentally labeled, and fluorescently tagged proteins. Ideally, inteins would seamlessly splice polypeptides together with no remnant sequences and at high efficiency. Here, we describe experiments that identify the branched intermediate, a transient step in the overall splicing reaction, as a key determinant of the splicing efficiency at different splice-site junctions. To alter intein specificity, we developed a cell-based selection scheme to evolve split inteins that splice with high efficiency at different splice junctions and at higher temperatures. Mutations within these evolved inteins occur at sites distant from the active site. We present a hypothesis that a network of conserved coevolving amino acids in inteins mediates these long-range effects. PMID:19541616

  15. The genetics of splicing in neuroblastoma

    PubMed Central

    Chen, Justin; Hackett, Christopher S.; Zhang, Shile; Song, Young K.; Bell, Robert J.A.; Molinaro, Annette M.; Quigley, David A.; Balmain, Allan; Song, Jun S.; Costello, Joseph F.; Gustafson, W. Clay; Dyke, Terry Van; Kwok, Pui-Yan; Khan, Javed; Weiss, William A.

    2015-01-01

    Regulation of mRNA splicing, a critical and tightly regulated cellular function, underlies the majority of proteomic diversity, and is frequently disrupted in disease. Using an integrative genomics approach, we combined both genome and exon level transcriptome data in two somatic tissues (cerebella and peripheral ganglia) from a transgenic mouse model of neuroblastoma, a tumor that arises from peripheral neural crest. Here we describe splicing quantitative trait loci (sQTL) associated with differential splicing across the genome that we use to identify genes with previously unknown functions within the splicing pathway and to define de novo intronic splicing motifs that influence splicing from hundreds of bases away. Our results show that these splicing motifs represent sites for functional recurrent mutations and highlight novel candidate genes in human cancers, including childhood neuroblastoma. PMID:25637275

  16. Cephalopod eye evolution was modulated by the acquisition of Pax-6 splicing variants

    PubMed Central

    Yoshida, Masa-aki; Yura, Kei; Ogura, Atsushi

    2014-01-01

    Previous studies have reported that the developmental processes of vertebrate eyes are controlled by four Pax-6 splicing variants, each modulating different downstream genes, whereas those of insect eyes are controlled by duplicated Pax-6 genes. Cephalopods belong to the Protostomes but possess a camera-type eye similar to those in vertebrates. We examined Pax-6 variations in the squid and found five types of Pax-6 splicing variants but no duplication of the Pax-6 gene. In the five splicing variants, the splicing patterns were produced by the combination of two additional exons to the ortholog and one jettisoned exon containing most of the Homeobox domain (HD). These five variants show spatio-temporal patterns of gene expression during development in the squid. Our study suggests that cephalopods acquired Pax-6 splicing variants independent of those in vertebrates and that these variants were similarly utilized in the development of the squid eye. PMID:24594543

  17. Quantitative Imaging of Single mRNA Splice Variants in Living Cells

    PubMed Central

    Lee, Kyuwan; Cui, Yi

    2015-01-01

    Alternative mRNA splicing is a fundamental process of gene regulation via the precise control of the post-transcriptional step that occurs before mRNA translation. Errors in RNA splicing have been known to correlate with different diseases; however, a key limitation is the lack of technologies for live cell monitoring and quantification to understand the process of alternative splicing. Here, we report a spectroscopic strategy for quantitative imaging of mRNA splice variants in living cells, using nanoplasmonic dimer antennas. The spatial and temporal distribution of three selected splice variants of the breast cancer susceptibility gene, BRCA1 were monitored at single copy resolution by measuring the hybridization dynamics of nanoplasmonic antennas targeting complementary mRNA sequences in live cells. Our study provides valuable insights on RNA and its transport in living cells, which has the potential to enhance our understanding of cellular protein complex, pharmacogenomics, genetic diagnosis, and gene therapies. PMID:24747838

  18. Structure of the human myelin/oligodendrocyte glycoprotein gene and multiple alternative spliced isoforms

    SciTech Connect

    Pham-Dinh, D.; Gaspera, D.B.; Dautigny, A.

    1995-09-20

    Myelin/oligodendrocyte glycoprotein (MOG), a special component of the central nervous system localization on the outermost lamellae of mature myelin, is a member of the immunoglobulin superfamily. We report here the organization of the human MOG gene, which spans approximately 17 kb, and the characterization of six MOG mRNA splicing variants. The intron/exon structure of the human MOG gene confirmed the splicing pattern, supporting the hypothesis that mRNA isoforms could arise by alternative splicing of a single gene. In addition to the eight exons coding for the major MOG isoform, the human MOG gene also contains 3` region, a previously unknown alternatively spliced coding exon, VIA. Alternative utilization of two acceptor splicing sites for exon VIII could produce two different C-termini. The nucleotide sequences presented here may be a useful tool to study further possible involvement if the MOG gene in hereditary neurological disorders. 23 refs., 5 figs.

  19. The role of splicing factors in deregulation of alternative splicing during oncogenesis and tumor progression

    PubMed Central

    Shilo, Asaf; Siegfried, Zahava; Karni, Rotem

    2015-01-01

    In past decades, cancer research has focused on genetic alterations that are detected in malignant tissues and contribute to the initiation and progression of cancer. These changes include mutations, copy number variations, and translocations. However, it is becoming increasingly clear that epigenetic changes, including alternative splicing, play a major role in cancer development and progression. There are relatively few studies on the contribution of alternative splicing and the splicing factors that regulate this process to cancer development and progression. Recently, multiple studies have revealed altered splicing patterns in cancers and several splicing factors were found to contribute to tumor development. Studies using high-throughput genomic analysis have identified mutations in components of the core splicing machinery and in splicing factors in several cancers. In this review, we will highlight new findings on the role of alternative splicing and its regulators in cancer initiation and progression, in addition to novel approaches to correct oncogenic splicing. PMID:27308389

  20. Genomic functions of U2AF in constitutive and regulated splicing

    PubMed Central

    Wu, Tongbin; Fu, Xiang-Dong

    2015-01-01

    The U2AF heterodimer is generally accepted to play a vital role in defining functional 3′ splice sites in pre-mRNA splicing. Given prevalent mutations in U2AF, particularly in the U2AF1 gene (which encodes for the U2AF35 subunit) in blood disorders and other human cancers, there are renewed interests in these classic splicing factors to further understand their regulatory functions in RNA metabolism in both physiological and disease settings. We recently reported that U2AF has a maximal capacity to directly bind ˜88% of functional 3′ splice sites in the human genome and that numerous U2AF binding events also occur in various exonic and intronic locations, thus providing additional mechanisms for the regulation of alternative splicing besides their traditional role in titrating weak splice sites in the cell. These findings, coupled with the existence of multiple related proteins to both U2AF65 and U2AF35, beg a series of questions on the universal role of U2AF in functional 3′ splice site definition, their binding specificities in vivo, potential mechanisms to bypass their requirement for certain intron removal events, contribution of splicing-independent functions of U2AF to important cellular functions, and the mechanism for U2AF mutations to invoke specific diseases in humans. PMID:25901584

  1. DBASS3 and DBASS5: databases of aberrant 3′- and 5′-splice sites

    PubMed Central

    Chivers, Martin; Hwang, Gyulin; Vorechovsky, Igor

    2011-01-01

    DBASS3 and DBASS5 provide comprehensive repositories of new exon boundaries that were induced by pathogenic mutations in human disease genes. Aberrant 5′- and 3′-splice sites were activated either by mutations in the consensus sequences of natural exon–intron junctions (cryptic sites) or elsewhere (‘de novo’ sites). DBASS3 and DBASS5 currently contain approximately 900 records of cryptic and de novo 3′- and 5′-splice sites that were produced by over a thousand different mutations in approximately 360 genes. DBASS3 and DBASS5 data can be searched by disease phenotype, gene, mutation, location of aberrant splice sites in introns and exons and their distance from authentic counterparts, by bibliographic references and by the splice-site strength estimated with several prediction algorithms. The user can also retrieve reference sequences of both aberrant and authentic splice sites with the underlying mutation. These data will facilitate identification of introns or exons frequently involved in aberrant splicing, mutation analysis of human disease genes and study of germline or somatic mutations that impair RNA processing. Finally, this resource will be useful for fine-tuning splice-site prediction algorithms, better definition of auxiliary splicing signals and design of new reporter assays. DBASS3 and DBASS5 are freely available at http://www.dbass.org.uk/. PMID:20929868

  2. Deep intron elements mediate nested splicing events at consecutive AG dinucleotides to regulate alternative 3' splice site choice in vertebrate 4.1 genes.

    PubMed

    Parra, Marilyn K; Gallagher, Thomas L; Amacher, Sharon L; Mohandas, Narla; Conboy, John G

    2012-06-01

    Distal intraexon (iE) regulatory elements in 4.1R pre-mRNA govern 3' splice site choice at exon 2 (E2) via nested splicing events, ultimately modulating expression of N-terminal isoforms of cytoskeletal 4.1R protein. Here we explored intrasplicing in other normal and disease gene contexts and found conservation of intrasplicing through vertebrate evolution. In the paralogous 4.1B gene, we identified ∼120 kb upstream of E2 an ultradistal intraexon, iE(B), that mediates intrasplicing by promoting two intricately coupled splicing events that ensure selection of a weak distal acceptor at E2 (E2dis) by prior excision of the competing proximal acceptor (E2prox). Mutating iE(B) in minigene splicing reporters abrogated intrasplicing, as did blocking endogenous iE(B) function with antisense morpholinos in live mouse and zebrafish animal models. In a human elliptocytosis patient with a mutant 4.1R gene lacking E2 through E4, we showed that aberrant splicing is consistent with iE(R)-mediated intrasplicing at the first available exons downstream of iE(R), namely, alternative E5 and constitutive E6. Finally, analysis of heterologous acceptor contexts revealed a strong preference for nested 3' splice events at consecutive pairs of AG dinucleotides. Distal regulatory elements may control intrasplicing at a subset of alternative 3' splice sites in vertebrate pre-mRNAs to generate proteins with functional diversity. PMID:22473990

  3. MODIS Rapid Response: On-the-ground, real time applications of scientific satellite imagery

    NASA Astrophysics Data System (ADS)

    Schmaltz, J. E.; Riebeek, H.; Kendall, J. D.

    2009-12-01

    Since 2001, NASA’s MODIS Rapid Response Project has been providing fire detections and imagery in near real time for a wide variety of application users. The project web site provides MODIS imagery in true color and false color band combinations, a vegetation index, and land surface temperature - in both uncorrected swath format and geographically corrected subset regions within a few hours of data acquisition. The uncorrected swath format data is available worldwide. Geographically corrected subset images cover the world's land areas and adjoining waters, as well as the entire Arctic and Antarctic. Images are available twice daily, in the morning from the Terra satellite and in the afternoon from the Aqua satellite. A wide range of user communities access this information to get a rapid, 250 meter-resolution overview of ground conditions for fire management, crop and famine monitoring and forecasting, disaster response (floods, storms), dust and aerosol monitoring, aviation (tracking volcanic ash), monitoring sea ice conditions, environmental monitoring, and more. The scientific community uses imagery to locate phenomena of interest prior to ordering and processing data and to support the day-to-day planning of field campaigns. Rapid Response imagery is used extensively to support education and public outreach, both by NASA and other organizations, and is frequently found in newspapers, books, TV, and the web. California wildfires, 26 October 2003, Terra MODIS

  4. Rapid-response process reduces mortality, facilitates speedy treatment for patients with sepsis.

    PubMed

    2013-08-01

    To reduce mortality and improve the care of patients with sepsis, Wake Forest Baptist Medical Center in Winston-Salem, NC, created a new rapid-response protocol aimed at facilitating earlier diagnosis and treatment. In this approach, clinicians who suspect a patient may have sepsis can call a Code Sepsis, which will fast-track the series of tests and evaluations that are needed to confirm the diagnosis and get appropriate patients on IV antibiotics quickly. Administrators say the approach fits in with the culture of the ED, and it has quickly slashed time-to-treatment in this environment. In just one year, the hospital has been able to reduce its risk-adjusted mortality index from 1.8 to less than 1.25. In the ED, where a modified version of the approach has been in place since April 1 of this year, the percentage of patients with sepsis receiving antibiotics within one hour of diagnosis has increased from 25% to 85%. Key to the success of the approach are specially trained rapid-response nurses who are called in on a case whenever a diagnosis of sepsis is suspected and a series of policy changes designed to facilitate needed diagnostic tests to confirm a diagnosis. A mandated online education module helped to bring all clinicians and staff up to speed on the new process quickly. PMID:23923521

  5. Hypoxia-Induced Alternative Splicing in Endothelial Cells

    PubMed Central

    Weigand, Julia E.; Boeckel, Jes-Niels; Gellert, Pascal; Dimmeler, Stefanie

    2012-01-01

    Background Adaptation to low oxygen by changing gene expression is vitally important for cell survival and tissue development. The sprouting of new blood vessels, initiated from endothelial cells, restores the oxygen supply of ischemic tissues. In contrast to the transcriptional response induced by hypoxia, which is mainly mediated by members of the HIF family, there are only few studies investigating alternative splicing events. Therefore, we performed an exon array for the genome-wide analysis of hypoxia-related changes of alternative splicing in endothelial cells. Methodology/Principal findings Human umbilical vein endothelial cells (HUVECs) were incubated under hypoxic conditions (1% O2) for 48 h. Genome-wide transcript and exon expression levels were assessed using the Affymetrix GeneChip Human Exon 1.0 ST Array. We found altered expression of 294 genes after hypoxia treatment. Upregulated genes are highly enriched in glucose metabolism and angiogenesis related processes, whereas downregulated genes are mainly connected to cell cycle and DNA repair. Thus, gene expression patterns recapitulate known adaptations to low oxygen supply. Alternative splicing events, until now not related to hypoxia, are shown for nine genes: six which are implicated in angiogenesis-mediated cytoskeleton remodeling (cask, itsn1, larp6, sptan1, tpm1 and robo1); one, which is involved in the synthesis of membrane-anchors (pign) and two universal regulators of gene expression (cugbp1 and max). Conclusions/Significance For the first time, this study investigates changes in splicing in the physiological response to hypoxia on a genome-wide scale. Nine alternative splicing events, until now not related to hypoxia, are reported, considerably expanding the information on splicing changes due to low oxygen supply. Therefore, this study provides further knowledge on hypoxia induced gene expression changes and presents new starting points to study the hypoxia adaptation of endothelial cells

  6. The mammalian homolog of suppressor-of-white-apricot regulates alternative mRNA splicing of CD45 exon 4 and fibronectin IIICS.

    PubMed

    Sarkissian, M; Winne, A; Lafyatis, R

    1996-12-01

    We have previously described human (HsSWAP) and mouse (MmSWAP) homologs to the Drosophila alternative splicing regulator suppressor-of-white-apricot (su(wa) or DmSWAP). DmSWAP was formally defined as an alternative splicing regulator by studies showing that it autoregulates splicing of its own pre-mRNA. We report here that mammalian SWAP regulates its own splicing, and also the splicing of fibronectin and CD45. Using an in vivo system of cell transfection, mammalian SWAP regulated 5' splice site selection in splicing of its own second intron. SWAP enhanced splicing to the distal 5' splice site, whereas the SR protein ASF/SF2 enhanced splicing to the proximal site. SWAP also regulated alternative splicing of the fibronectin IIICS region by promoting exclusion of the entire IIICS region. In contrast, ASF/SF2 stimulated inclusion of the entire IIICS region. Finally, SWAP regulated splicing of CD45 exon 4, promoting exclusion of this exon, an effect also seen with ASF/SF2. Experiments using SWAP deletion mutants showed that splicing regulation of the fibronectin IIICS region and CD45 exon 4 requires a region including a carboxyl-terminal arginine/serine (R/S)-rich motif. Since R/S motifs of various splicing proteins have been shown to interact with each other, these results suggest that the R/S motif in SWAP may regulate splicing, at least in part, through interactions with other R/S containing splicing factors. PMID:8940107

  7. Hallmarks of alternative splicing in cancer.

    PubMed

    Oltean, S; Bates, D O

    2014-11-13

    The immense majority of genes are alternatively spliced and there are many isoforms specifically associated with cancer progression and metastasis. The splicing pattern of specific isoforms of numerous genes is altered as cells move through the oncogenic process of gaining proliferative capacity, acquiring angiogenic, invasive, antiapoptotic and survival properties, becoming free from growth factor dependence and growth suppression, altering their metabolism to cope with hypoxia, enabling them to acquire mechanisms of immune escape, and as they move through the epithelial-mesenchymal and mesenchymal-epithelial transitions and metastasis. Each of the 'hallmarks of cancer' is associated with a switch in splicing, towards a more aggressive invasive cancer phenotype. The choice of isoforms is regulated by several factors (signaling molecules, kinases, splicing factors) currently being identified systematically by a number of high-throughput, independent and unbiased methodologies. Splicing factors are de-regulated in cancer, and in some cases are themselves oncogenes or pseudo-oncogenes and can contribute to positive feedback loops driving cancer progression. Tumour progression may therefore be associated with a coordinated splicing control, meaning that there is the potential for a relatively small number of splice factors or their regulators to drive multiple oncogenic processes. The understanding of how splicing contributes to the various phenotypic traits acquired by tumours as they progress and metastasise, and in particular how alternative splicing is coordinated, can and is leading to the development of a new class of anticancer therapeutics-the alternative-splicing inhibitors. PMID:24336324

  8. SLCO1B1 and SLC19A1 Gene Variants and Irinotecan-Induced Rapid Response and Survival: A Prospective Multicenter Pharmacogenetics Study of Metastatic Colorectal Cancer

    PubMed Central

    Liao, Xin; Yu, Qianqian; Feng, Jueping; Ma, Hong; Dai, Jing; Li, Min; Chen, Jigui; Zang, Aihua; Wang, Qian; Ge, Shuwang; Qin, Kai; Cai, Juan; Yuan, Xianglin

    2013-01-01

    Background Rapid response to chemotherapy in metastatic colorectal cancer (mCRC) patients (response within 12 weeks of chemotherapy) may increase the chance of complete resection and improved survival. Few molecular markers predict irinotecan-induced rapid response and survival. Single-nucleotide polymorphisms (SNPs) in solute carrier genes are reported to correlate with the variable pharmacokinetics of irinotecan and folate in cancer patients. This study aims to evaluate the predictive role of 3 SNPs in mCRC patients treated with irinotecan and fluoropyrimidine-containing regimens. Materials and Methods Three SNPs were selected and genotyped in 137 mCRC patients from a Chinese prospective multicenter trial (NCT01282658). The chi-squared test, univariate and multivariable logistic regression model, and receiver operating characteristic analysis were used to evaluate correlations between the genotypes and rapid response. Kaplan-Meier survival analysis and Cox proportional hazard models were used to evaluate the associations between genotypes and survival outcomes. Benjamini and Hochberg False Discovery Rate correction was used in multiple testing Results Genotype GA/AA of SNP rs2306283 of the gene SLCO1B1 and genotype GG of SNP rs1051266 of the gene SLC19A1 were associated with a higher rapid response rate (odds ratio [OR] =3.583 and 3.521, 95%CI =1.301-9.871 and 1.271-9.804, p=0.011 and p=0.013, respectively). The response rate was 70% in patients with both genotypes, compared with only 19.7% in the remaining patients (OR = 9.489, 95%CI = 2.191-41.093, Fisher's exact test p=0.002). Their significances were all maintained even after multiple testing (all pc < 0.05). The rs2306283 GA/AA genotype was also an independent prognostic factor of longer progression-free survival (PFS) (hazard ratio = 0.402, 95%CI = 0.171-0.945, p=0.037). None of the SNPs predicted overall survival. Conclusions Polymorphisms of solute carriers’ may be useful to predict rapid response to

  9. Safely splicing glass optical fibers

    NASA Technical Reports Server (NTRS)

    Korbelak, K.

    1980-01-01

    Field-repair technique fuses glass fibers in flammable environment. Apparatus consists of v-groove vacuum chucks on manipulators, high-voltage dc power supply and tungsten electrodes, microscope to observe joint alignment and fusion, means of test transmission through joint. Apparatus is enclosed in gas tight bos filled with inert gas during fusion. About 2 feet of fiber end are necessary for splicing.

  10. Modular, Reconfigurable, and Rapid Response Space Systems: The Remote Sensing Advanced Technology Microsatellite

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Andary, Jim; Oberright, John; So, Maria; Wegner, Peter; Hauser, Joe

    2004-01-01

    Modular, Reconfigurable, and Rapid-response (MR(sup 2)) space systems represent a paradigm shift in the way space assets of all sizes are designed, manufactured, integrated, tested, and flown. This paper will describe the MR(sup 2) paradigm in detail, and will include guidelines for its implementation. The Remote Sensing Advanced Technology microsatellite (RSAT) is a proposed flight system test-bed used for developing and implementing principles and best practices for MR(sup 2) spacecraft, and their supporting infrastructure. The initial goal of this test-bed application is to produce a lightweight (approx. 100 kg), production-minded, cost-effective, and scalable remote sensing micro-satellite capable of high performance and broad applicability. Such applications range from future distributed space systems, to sensor-webs, and rapid-response satellite systems. Architectures will be explored that strike a balance between modularity and integration while preserving the MR(sup 2) paradigm. Modularity versus integration has always been a point of contention when approaching a design: whereas one-of-a-kind missions may require close integration resulting in performance optimization, multiple and flexible application spacecraft benefit &om modularity, resulting in maximum flexibility. The process of building spacecraft rapidly (< 7 days), requires a concerted and methodical look at system integration and test processes and pitfalls. Although the concept of modularity is not new and was first developed in the 1970s by NASA's Goddard Space Flight Center (Multi-Mission Modular Spacecraft), it was never modernized and was eventually abandoned. Such concepts as the Rapid Spacecraft Development Office (RSDO) became the preferred method for acquiring satellites. Notwithstanding, over the past 30 years technology has advanced considerably, and the time is ripe to reconsider modularity in its own right, as enabler of R(sup 2), and as a key element of transformational systems. The

  11. Underwater splice for submarine coaxial cable

    SciTech Connect

    Inouye, A.T.; Roe, T. Jr.; Tausing, W.R.; Wilson, J.V.

    1984-10-30

    The invention is a device for splicing submarine coaxial cable underwater on the seafloor with a simple push-on operation to restore and maintain electrical and mechanical strength integrity; the splice device is mateable directly with the severed ends of a coaxial cable to be repaired. Splicing assemblies comprise a dielectric pressure compensating fluid filled guide cavity, a gelled castor oil cap and wiping seals for exclusion of seawater, electrical contacts, a cable strength restoration mechanism, and a pressure compensation system for controlled extrusion of and depletion loss prevention of dielectric seal fluid during cable splicing. A splice is made underwater by directly inserting prepared ends of coaxial cable, having no connector attachments, into splicing assemblies.

  12. Functional consequences of developmentally regulated alternative splicing

    PubMed Central

    Kalsotra, Auinash; Cooper, Thomas A.

    2012-01-01

    Genome-wide analyses of metazoan transcriptomes have revealed an unexpected level of mRNA diversity that is generated by alternative splicing. Recently, regulatory networks have been identified through which splicing promotes dynamic remodeling of the transcriptome to promote physiological changes, which involve robust and coordinated alternative splicing transitions. The regulation of splicing in yeast, worms, flies and vertebrates affects a variety of biological processes. The functional classes of genes that are regulated by alternative splicing include both those with widespread homeostatic activities and genes with cell-type-specific functions. Alternative splicing can drive determinative physiological change or can have a permissive role by providing mRNA variability that is utilized by other regulatory mechanisms. PMID:21921927

  13. Investigating alternative RNA splicing in Xenopus.

    PubMed

    Mereau, Agnès; Hardy, Serge

    2012-01-01

    Alternative splicing, the process by which distinct mature mRNAs can be produced from a single primary transcript, is a key mechanism to increase the organism complexity. The generation of alternative splicing pattern is a means to expand the proteome diversity and also to control gene expression through the regulation of mRNA abundance. Alternative splicing is therefore particularly prevalent during development and accordingly numerous splicing events are regulated in a tissue or temporal manner. To study the roles of alternative splicing during developmental processes and decipher the molecular mechanisms that underlie temporal and spatial regulation, it is important to develop in vivo whole animal studies. In this chapter, we present the advantages of using the amphibian Xenopus as a fully in vivo model to study alternative splicing and we describe the experimental procedures that can be used with Xenopus laevis embryos and oocytes to define the cis-regulatory elements and identify the associated trans-acting factors. PMID:22956098

  14. Spectrum of splicing errors caused by CHRNE mutations affecting introns and intron/exon boundaries

    PubMed Central

    Ohno, K; Tsujino, A; Shen, X; Milone, M; Engel, A

    2005-01-01

    Background: Mutations in CHRNE, the gene encoding the muscle nicotinic acetylcholine receptor ε subunit, cause congenital myasthenic syndromes. Only three of the eight intronic splice site mutations of CHRNE reported to date have had their splicing consequences characterised. Methods: We analysed four previously reported and five novel splicing mutations in CHRNE by introducing the entire normal and mutant genomic CHRNEs into COS cells. Results and conclusions: We found that short introns (82–109 nucleotides) favour intron retention, whereas medium to long introns (306–1210 nucleotides) flanking either or both sides of an exon favour exon skipping. Two mutations are of particular interest. Firstly, a G→T substitution at the 3' end of exon 8 predicts an R286M missense mutation, but instead results in skipping of exon 8. In human genes, a mismatch of the last exonic nucleotide to U1 snRNP is frequently compensated by a matching nucleotide at intron position +6. CHRNE intron 8 has a mismatch at position +6, and accordingly fails to compensate for the exonic mutation at position –1. Secondly, a 16 bp duplication, giving rise to two 3' splice sites (g.IVS10-9_c.1167dup16), results in silencing of the downstream 3' splice site. This conforms to the scanning model of recognition of the 3' splice site, which predicts that the first "ag" occurring after the branch point is selected for splicing. PMID:16061559

  15. Molecular aspects of DNA splicing system

    NASA Astrophysics Data System (ADS)

    Yusof, Yuhani; Lim, Wen Li; Goode, T. Elizabeth; Sarmin, Nor Haniza; Heng, Fong Wan; Wahab, Mohd Firdaus Abd

    2015-05-01

    The pioneer model of deoxyribonucleic acid (DNA) splicing system in a framework of Formal Language Theory was introduced by Head that led to the existence of other models of splicing system, namely Paun, Pixton and Yusof-Goode. These entire models are inspired by the molecular biological process of DNA splicing. Hence, this paper focuses on the translucent DNA splicing process, particularly on the generated language. Starting with some preliminaries in a limit graph, this paper also provides the experimental design with the predicted and actual result.

  16. Recursive splicing in long vertebrate genes

    PubMed Central

    Blazquez, Lorea; Faro, Ana; Haberman, Nejc; Briese, Michael; Trabzuni, Daniah; Ryten, Mina; Weale, Michael E; Hardy, John; Modic, Miha; Curk, Tomaž; Wilson, Stephen W; Plagnol, Vincent; Ule, Jernej

    2015-01-01

    It is generally believed that splicing removes introns as single units from pre-mRNA transcripts. However, some long D. melanogaster introns contain a cryptic site, called a recursive splice site (RS-site), that enables a multi-step process of intron removal termed recursive splicing1,2. The extent to which recursive splicing occurs in other species and its mechanistic basis remain unclear. Here we identify highly conserved RS-sites in genes expressed in the mammalian brain that encode proteins functioning in neuronal development. Moreover, the RS-sites are found in some of the longest introns across vertebrates. We find that vertebrate recursive splicing requires initial definition of a “RS-exon” that follows the RS-site. The RS-exon is then excluded from the dominant mRNA isoform due to competition with a reconstituted 5′ splice site formed at the RS-site after the first splicing step. Conversely, the RS-exon is included when preceded by cryptic exons or promoters that are prevalent in long introns, but which fail to reconstitute an efficient 5′ splice site. Most RS-exons contain a premature stop codon such that their inclusion may decrease mRNA stability. Thus, by establishing a binary splicing switch, RS-sites demarcate different mRNA isoforms emerging from long genes by coupling inclusion of cryptic elements with RS-exons. PMID:25970246

  17. Tropomyosin exons as models for alternative splicing.

    PubMed

    Gooding, Clare; Smith, Christopher W J

    2008-01-01

    Three of the four mammalian tropomyosin (Tm) genes are alternatively spliced, most commonly by mutually exclusive selection from pairs of internal or 3' end exons. Alternative splicing events in the TPM1, 2 and 3 genes have been analysed experimentally in various levels ofdetail. In particular, mutually exclusive exon pairs in the betaTm (TPM2) and alphaTm (TPM1) genes are among the most intensively studied models for striated and smooth muscle specific alternative splicing, respectively. Analysis of these model systems has provided important insights into general mechanisms and strategies of splicing regulation. PMID:19209811

  18. Recursive splicing in long vertebrate genes.

    PubMed

    Sibley, Christopher R; Emmett, Warren; Blazquez, Lorea; Faro, Ana; Haberman, Nejc; Briese, Michael; Trabzuni, Daniah; Ryten, Mina; Weale, Michael E; Hardy, John; Modic, Miha; Curk, Tomaž; Wilson, Stephen W; Plagnol, Vincent; Ule, Jernej

    2015-05-21

    It is generally believed that splicing removes introns as single units from precursor messenger RNA transcripts. However, some long Drosophila melanogaster introns contain a cryptic site, known as a recursive splice site (RS-site), that enables a multi-step process of intron removal termed recursive splicing. The extent to which recursive splicing occurs in other species and its mechanistic basis have not been examined. Here we identify highly conserved RS-sites in genes expressed in the mammalian brain that encode proteins functioning in neuronal development. Moreover, the RS-sites are found in some of the longest introns across vertebrates. We find that vertebrate recursive splicing requires initial definition of an 'RS-exon' that follows the RS-site. The RS-exon is then excluded from the dominant mRNA isoform owing to competition with a reconstituted 5' splice site formed at the RS-site after the first splicing step. Conversely, the RS-exon is included when preceded by cryptic promoters or exons that fail to reconstitute an efficient 5' splice site. Most RS-exons contain a premature stop codon such that their inclusion can decrease mRNA stability. Thus, by establishing a binary splicing switch, RS-sites demarcate different mRNA isoforms emerging from long genes by coupling cryptic elements with inclusion of RS-exons. PMID:25970246

  19. The Technical Efficiency of Earthquake Medical Rapid Response Teams Following Disasters: The Case of the 2010 Yushu Earthquake in China

    PubMed Central

    Liu, Xu; Tang, Bihan; Yang, Hongyang; Liu, Yuan; Xue, Chen; Zhang, Lulu

    2015-01-01

    Purpose: Performance assessments of earthquake medical rapid response teams (EMRRTs), particularly the first responders deployed to the hardest hit areas following major earthquakes, should consider efficient and effective use of resources. This study assesses the daily technical efficiency of EMRRTs in the emergency period immediately following the 2010 Yushu earthquake in China. Methods: Data on EMRRTs were obtained from official daily reports of the general headquarters for Yushu earthquake relief, the emergency office of the National Ministry of Health, and the Health Department of Qinghai Province, for a sample of data on 15 EMRRTs over 62 days. Data envelopment analysis was used to examine the technical efficiency in a constant returns to scale model, a variable returns to scale model, and the scale efficiency of EMRRTs. Tobit regression was applied to analyze the effects of corresponding influencing factors. Results: The average technical efficiency scores under constant returns to scale, variable returns to scale, and the scale efficiency scores of the 62 units of analysis were 77.95%, 89.00%, and 87.47%, respectively. The staff-to-bed ratio was significantly related to global technical efficiency. The date of rescue was significantly related to pure technical efficiency. The type of institution to which an EMRRT belonged and the staff-to-bed ratio were significantly related to scale efficiency. Conclusions: This study provides evidence that supports improvements to EMRRT efficiency and serves as a reference for earthquake emergency medical rapid assistance leaders and teams. PMID:26690182

  20. Regulation of Splicing Factors by Alternative Splicing and NMD Is Conserved between Kingdoms Yet Evolutionarily Flexible

    PubMed Central

    Lareau, Liana F.; Brenner, Steven E.

    2015-01-01

    Ultraconserved elements, unusually long regions of perfect sequence identity, are found in genes encoding numerous RNA-binding proteins including arginine-serine rich (SR) splicing factors. Expression of these genes is regulated via alternative splicing of the ultraconserved regions to yield mRNAs that are degraded by nonsense-mediated mRNA decay (NMD), a process termed unproductive splicing (Lareau et al. 2007; Ni et al. 2007). As all human SR genes are affected by alternative splicing and NMD, one might expect this regulation to have originated in an early SR gene and persisted as duplications expanded the SR family. But in fact, unproductive splicing of most human SR genes arose independently (Lareau et al. 2007). This paradox led us to investigate the origin and proliferation of unproductive splicing in SR genes. We demonstrate that unproductive splicing of the splicing factor SRSF5 (SRp40) is conserved among all animals and even observed in fungi; this is a rare example of alternative splicing conserved between kingdoms, yet its effect is to trigger mRNA degradation. As the gene duplicated, the ancient unproductive splicing was lost in paralogs, and distinct unproductive splicing evolved rapidly and repeatedly to take its place. SR genes have consistently employed unproductive splicing, and while it is exceptionally conserved in some of these genes, turnover in specific events among paralogs shows flexible means to the same regulatory end. PMID:25576366

  1. RNA catalyzes nuclear pre-mRNA splicing

    PubMed Central

    Fica, Sebastian M.; Tuttle, Nicole; Novak, Thaddeus; Li, Nan-Sheng; Lu, Jun; Koodathingal, Prakash; Dai, Qing; Staley, Jonathan P.; Piccirilli, Joseph A.

    2014-01-01

    SUMMARY In nuclear pre-messenger RNA splicing, introns are excised by the spliceosome, a multi-megadalton machine composed of both proteins and small nuclear RNAs (snRNAs). Over thirty years ago, following the discovery of self-splicing group II intron RNAs, the snRNAs were hypothesized to catalyze splicing. However, no definitive evidence for a role of either RNA or protein in catalysis by the spliceosome has been reported to date. By using metal rescue strategies, here we show that the U6 snRNA catalyzes both splicing reactions by positioning divalent metals that stabilize the leaving groups during each reaction. Strikingly, all of the U6 catalytic metal ligands we identified correspond to the ligands observed to position catalytic, divalent metals in crystal structures of a group II intron RNA. These findings indicate that group II introns and the spliceosome share common catalytic mechanisms, and likely common evolutionary origins. Our results demonstrate that RNA mediates catalysis within the spliceosome. PMID:24196718

  2. Conserved mechanism of tRNA splicing in eukaryotes.

    PubMed Central

    Zillmann, M; Gorovsky, M A; Phizicky, E M

    1991-01-01

    The ligation steps of tRNA splicing in yeast and vertebrate cells have been thought to proceed by fundamentally different mechanisms. Ligation in yeast cells occurs by incorporation of an exogenous phosphate from ATP into the splice junction, with concomitant formation of a 2' phosphate at the 5' junction nucleotide. This phosphate is removed in a subsequent step which, in vitro, is catalyzed by an NAD-dependent dephosphorylating activity. In contrast, tRNA ligation in vertebrates has been reported to occur without incorporation of exogenous phosphate or formation of a 2' phosphate. We demonstrate in this study the existence of a yeast tRNA ligase-like activity in HeLa cells. Furthermore, in extracts from these cells, the entire yeastlike tRNA splicing machinery is intact, including that for cleavage, ligation, and removal of the 2' phosphate in an NAD-dependent fashion to give mature tRNA. These results argue that the mechanism of tRNA splicing is conserved among eukaryotes. Images PMID:1922054

  3. SON Controls Cell Cycle Progression by Coordinated Regulation of RNA Splicing

    PubMed Central

    Ahn, Eun-Young; DeKelver, Russell C.; Lo, Miao-Chia; Nguyen, Tuyet Ann; Matsuura, Shinobu; Boyapati, Anita; Pandit, Shatakshi; Fu, Xiang-Dong; Zhang, Dong-Er

    2011-01-01

    SUMMARY It has been suspected that cell cycle progression might be functionally coupled with RNA processing. However, little is known about the role of the precise splicing control in cell cycle progression. Here, we report that SON, a large Ser/Arg (SR)-related protein, is a splicing co-factor contributing to efficient splicing of cell cycle regulators. Down-regulation of SON leads to severe impairment of spindle pole separation, microtubule dynamics, and genome integrity. These molecular defects result from inadequate RNA splicing of a specific set of cell cycle-related genes that possess weak splice sites. Furthermore, we show that SON facilitates the interaction of SR proteins with RNA polymerase II and other key spliceosome components, suggesting its function in efficient co-transcriptional RNA processing. These results reveal a mechanism for controlling cell cycle progression through SON-dependent constitutive splicing at suboptimal splice sites, with strong implications for its role in cancer and other human diseases. PMID:21504830

  4. A role for U2/U6 helix Ib in 5' splice site selection.

    PubMed Central

    Luukkonen, B G; Séraphin, B

    1998-01-01

    Selection of pre-mRNA splice sites is a highly accurate process involving many trans-acting factors. Recently, we described a role for U6 snRNA position G52 in selection of the first intron nucleotide (+1G). Because some U2 alleles suppress U6-G52 mutations, we investigated whether the corresponding U2 snRNA region also influenced 5' splice site selection. Our results demonstrate that U2 snRNAs mutated at position U23, but not adjacent nucleotides, specifically affect 5' splice site cleavage. Furthermore, all U2 position U23 mutations are synthetic lethal with the thermosensitive U6-G52U allele. Interestingly, the U2-U23C substitution has an unprecedented hyperaccurate splicing phenotype in which cleavage of introns with a +1G substitution is reduced, whereas the strain grows with wild-type kinetics. U2 position U23 forms the first base pair with U6 position A59 in U2/U6 helix Ib. Restoration of the helical structure suppresses 5' splice site cleavage defects, showing an important role for the helix Ib structure in 5' splice site selection. U2/U6 helix Ib and helix II have recently been described as being functionally redundant. This report demonstrates a unique role for helix Ib in 5' splice site selection that is not shared with helix II. PMID:9701283

  5. Misregulation of Alternative Splicing in a Mouse Model of Rett Syndrome.

    PubMed

    Li, Ronghui; Dong, Qiping; Yuan, Xinni; Zeng, Xin; Gao, Yu; Chiao, Cassandra; Li, Hongda; Zhao, Xinyu; Keles, Sunduz; Wang, Zefeng; Chang, Qiang

    2016-06-01

    Mutations in the human MECP2 gene cause Rett syndrome (RTT), a severe neurodevelopmental disorder that predominantly affects girls. Despite decades of work, the molecular function of MeCP2 is not fully understood. Here we report a systematic identification of MeCP2-interacting proteins in the mouse brain. In addition to transcription regulators, we found that MeCP2 physically interacts with several modulators of RNA splicing, including LEDGF and DHX9. These interactions are disrupted by RTT causing mutations, suggesting that they may play a role in RTT pathogenesis. Consistent with the idea, deep RNA sequencing revealed misregulation of hundreds of splicing events in the cortex of Mecp2 knockout mice. To reveal the functional consequence of altered RNA splicing due to the loss of MeCP2, we focused on the regulation of the splicing of the flip/flop exon of Gria2 and other AMPAR genes. We found a significant splicing shift in the flip/flop exon toward the flop inclusion, leading to a faster decay in the AMPAR gated current and altered synaptic transmission. In summary, our study identified direct physical interaction between MeCP2 and splicing factors, a novel MeCP2 target gene, and established functional connection between a specific RNA splicing change and synaptic phenotypes in RTT mice. These results not only help our understanding of the molecular function of MeCP2, but also reveal potential drug targets for future therapies. PMID:27352031

  6. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage

    PubMed Central

    Alsafadi, Samar; Houy, Alexandre; Battistella, Aude; Popova, Tatiana; Wassef, Michel; Henry, Emilie; Tirode, Franck; Constantinou, Angelos; Piperno-Neumann, Sophie; Roman-Roman, Sergio; Dutertre, Martin; Stern, Marc-Henri

    2016-01-01

    Hotspot mutations in the spliceosome gene SF3B1 are reported in ∼20% of uveal melanomas. SF3B1 is involved in 3′-splice site (3′ss) recognition during RNA splicing; however, the molecular mechanisms of its mutation have remained unclear. Here we show, using RNA-Seq analyses of uveal melanoma, that the SF3B1R625/K666 mutation results in deregulated splicing at a subset of junctions, mostly by the use of alternative 3′ss. Modelling the differential junctions in SF3B1WT and SF3B1R625/K666 cell lines demonstrates that the deregulated splice pattern strictly depends on SF3B1 status and on the 3'ss-sequence context. SF3B1WT knockdown or overexpression do not reproduce the SF3B1R625/K666 splice pattern, qualifying SF3B1R625/K666 as change-of-function mutants. Mutagenesis of predicted branchpoints reveals that the SF3B1R625/K666-promoted splice pattern is a direct result of alternative branchpoint usage. Altogether, this study provides a better understanding of the mechanisms underlying splicing alterations induced by mutant SF3B1 in cancer, and reveals a role for alternative branchpoints in disease. PMID:26842708

  7. Misregulation of Alternative Splicing in a Mouse Model of Rett Syndrome

    PubMed Central

    Li, Ronghui; Dong, Qiping; Yuan, Xinni; Zeng, Xin; Gao, Yu; Li, Hongda; Keles, Sunduz; Wang, Zefeng; Chang, Qiang

    2016-01-01

    Mutations in the human MECP2 gene cause Rett syndrome (RTT), a severe neurodevelopmental disorder that predominantly affects girls. Despite decades of work, the molecular function of MeCP2 is not fully understood. Here we report a systematic identification of MeCP2-interacting proteins in the mouse brain. In addition to transcription regulators, we found that MeCP2 physically interacts with several modulators of RNA splicing, including LEDGF and DHX9. These interactions are disrupted by RTT causing mutations, suggesting that they may play a role in RTT pathogenesis. Consistent with the idea, deep RNA sequencing revealed misregulation of hundreds of splicing events in the cortex of Mecp2 knockout mice. To reveal the functional consequence of altered RNA splicing due to the loss of MeCP2, we focused on the regulation of the splicing of the flip/flop exon of Gria2 and other AMPAR genes. We found a significant splicing shift in the flip/flop exon toward the flop inclusion, leading to a faster decay in the AMPAR gated current and altered synaptic transmission. In summary, our study identified direct physical interaction between MeCP2 and splicing factors, a novel MeCP2 target gene, and established functional connection between a specific RNA splicing change and synaptic phenotypes in RTT mice. These results not only help our understanding of the molecular function of MeCP2, but also reveal potential drug targets for future therapies. PMID:27352031

  8. The splice is right: Guarantors of fidelity in pre-mRNA splicing

    PubMed Central

    Horowitz, David S.

    2011-01-01

    Two recent papers, one from the Staley laboratory (Koodathingal and colleagues) and the other from the Cheng laboratory (Tseng and colleagues), show that the RNA-dependent ATPase Prp16, which is required for the second step of splicing, acts to reject slowly splicing pre-mRNAs immediately before the first catalytic reaction in pre-mRNA splicing. The results answer long-investigated questions about the actions of Prp16 and provide a wealth of molecular details on the proofreading process in pre-mRNA splicing. The discussion here reviews and integrates the results of the two papers and describes the implications for proofreading in splicing. PMID:21357751

  9. Strong Motion Networks - Rapid Response and Early Warning Applications in Istanbul

    NASA Astrophysics Data System (ADS)

    Zulfikar, C.; Alcik, H.; Ozel, O.; Erdik, M.

    2009-04-01

    In recent years several strong motion networks have been established in Istanbul with a preparation purpose for future probable earthquake. This study addresses the introduction of current seismic networks and presentation of some recent results recorded in these networks. Istanbul Earthquake Early Warning System Istanbul Earthquake Early Warning System has ten strong motion stations which were installed as close as possible to Marmara Sea main fault zone. Continuous on-line data from these stations via digital radio modem provide early warning for potentially disastrous earthquakes. Considering the complexity of fault rupture and the short fault distances involved, a simple and robust Early Warning algorithm, based on the exceedance of specified threshold time domain amplitude levels is implemented. The current algorithm compares the band-pass filtered accelerations and the cumulative absolute velocity (CAV) with specified threshold levels. Istanbul Earthquake Rapid Response System Istanbul Earthquake Rapid Response System has one hundred 18 bit-resolution strong motion accelerometers which were placed in quasi-free field locations (basement of small buildings) in the populated areas of the city, within an area of approximately 50x30km, to constitute a network that will enable early damage assessment and rapid response information after a damaging earthquake. Early response information is achieved through fast acquisition and analysis of processed data obtained from the network. The stations are routinely interrogated on regular basis by the main data center. After triggered by an earthquake, each station processes the streaming strong motion data to yield the spectral accelerations at specific periods and sends these parameters in the form of SMS messages at every 20s directly to the main data center through a designated GSM network and through a microwave system. A shake map and damage distribution map (using aggregate building inventories and fragility curves

  10. Cutting, Splicing, and Kelvin Waves

    NASA Astrophysics Data System (ADS)

    Scheeler, Martin; Kleckner, Dustin; Irvine, William T. M.

    2013-11-01

    Recent experimental advances have allowed us to create, visualize and track vortices of prescribed shape and topology in classical fluids. We study the effect of surgery (cutting and splicing) on the evolution of the geometry and topology of these vortex loops, with a particular focus on the wave-like excitations generated by these operations. We interpret the dynamics of these excitations and the role they play within the broader context of vortex evolution. This work was supported by the National Science Foundation Materials Research and Engineering Centers (MRSEC) Program at the University of Chicago (DMR-0820054) and the Packard Foundation through a Packard fellowship.

  11. Functional selection of splicing enhancers that stimulate trans-splicing in vitro.

    PubMed Central

    Boukis, L A; Bruzik, J P

    2001-01-01

    The role of exonic sequences in naturally occurring trans-splicing has not been explored in detail. Here, we have identified trans-splicing enhancers through the use of an iterative selection scheme. Several classes of enhancer sequences were identified that led to dramatic increases in trans-splicing efficiency. Two sequence families were investigated in detail. These include motifs containing the element (G/C)GAC(G/C) and also 5' splice site-like sequences. Distinct elements were tested for their ability to function as splicing enhancers and in competition experiments. In addition, discrete trans-acting factors were identified. This work demonstrates that splicing enhancers are able to effect a large increase in trans-splicing efficiency and that the process of exon definition is able to positively enhance trans-splicing even though the reaction itself is independent of the need for the 5' end of U1 snRNA. Due to the presence of internal introns in messages that are trans-spliced, the natural arrangement of 5' splice sites downstream of trans-splicing acceptors may lead to a general promotion of this unusual reaction. PMID:11421358

  12. Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes.

    PubMed

    Sveen, A; Kilpinen, S; Ruusulehto, A; Lothe, R A; Skotheim, R I

    2016-05-12

    Alternative splicing is a widespread process contributing to structural transcript variation and proteome diversity. In cancer, the splicing process is commonly disrupted, resulting in both functional and non-functional end-products. Cancer-specific splicing events are known to contribute to disease progression; however, the dysregulated splicing patterns found on a genome-wide scale have until recently been less well-studied. In this review, we provide an overview of aberrant RNA splicing and its regulation in cancer. We then focus on the executors of the splicing process. Based on a comprehensive catalog of splicing factor encoding genes and analyses of available gene expression and somatic mutation data, we identify cancer-associated patterns of dysregulation. Splicing factor genes are shown to be significantly differentially expressed between cancer and corresponding normal samples, and to have reduced inter-individual expression variation in cancer. Furthermore, we identify enrichment of predicted cancer-critical genes among the splicing factors. In addition to previously described oncogenic splicing factor genes, we propose 24 novel cancer-critical splicing factors predicted from somatic mutations. PMID:26300000

  13. E-DECIDER Rapid Response to the M 6.0 South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Parker, J. W.; Pierce, M. E.; Wang, J.; Eguchi, R. T.; Huyck, C. K.; Hu, Z.; Chen, Z.; Yoder, M. R.; Rundle, J. B.; Rosinski, A.

    2014-12-01

    E-DECIDER initiated rapid response mode when the California Earthquake Clearinghouse was activated the morning following the M6 Napa earthquake. Data products, including: 1) rapid damage and loss estimates, 2) deformation magnitude and slope change maps, and 3) aftershock forecasts were provided to the Clearinghouse partners within 24 hours of the event via XchangeCore Web Service Data Orchestration sharing. NASA data products were provided to end-users via XchangeCore, EERI and Clearinghouse websites, and ArcGIS online for Napa response, reaching a wide response audience. The E-DECIDER team helped facilitate rapid delivery of NASA products to stakeholders and participated in Clearinghouse Napa earthquake briefings to update stakeholders on product information. Rapid response products from E-DECIDER can be used to help prioritize response efforts shortly after the event has occurred. InLET (Internet Loss Estimation Tool) post-event damage and casualty estimates were generated quickly after the Napa earthquake. InLET provides immediate post-event estimates of casualties and building damage by performing loss/impact simulations using USGS ground motion data and FEMA HAZUS damage estimation technology. These results were provided to E-DECIDER by their collaborators, ImageCat, Inc. and the Community Stakeholder Network (CSN). Strain magnitude and slope change maps were automatically generated when the Napa earthquake appeared on the USGS feed. These maps provide an early estimate of where the deformation has occurred and where damage may be localized. Using E-DECIDER critical infrastructure overlays with damage estimates, decision makers can direct response effort that can be verified later with field reconnaissance and remote sensing-based observations. Earthquake aftershock forecast maps were produced within hours of the event. These maps highlight areas where aftershocks are likely to occur and can also be coupled with infrastructure overlays to help direct response

  14. Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments

    SciTech Connect

    Haas, B J; Salzberg, S L; Zhu, W; Pertea, M; Allen, J E; Orvis, J; White, O; Buell, C R; Wortman, J R

    2007-12-10

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

  15. Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing.

    PubMed

    Roundtree, Ian A; He, Chuan

    2016-06-01

    N(6)-Methyladenosine (m(6)A) is emerging as a chemical mark that broadly affects the flow of genetic information in various biological processes in eukaryotes. Recently, Xiao et al. reported that the nuclear m(6)A reader protein YTHDC1 impacts mRNA splicing, providing a transcriptome-wide glance of splicing changes affected by this mRNA methylation reader protein. PMID:27050931

  16. Subgroup Specific Alternative Splicing in Medulloblastoma

    PubMed Central

    Kloosterhof, Nanne K; Northcott, Paul A; Yu, Emily PY; Shih, David; Peacock, John; Grajkowska, Wieslawa; van Meter, Timothy; Eberhart, Charles G; Pfister, Stefan; Marra, Marco A; Weiss, William A; Scherer, Stephen W; Rutka, James T; French, Pim J; Taylor, Michael D

    2014-01-01

    Medulloblastoma is comprised of four distinct molecular variants: WNT, SHH, Group 3, and Group 4. We analyzed alternative splicing usage in 14 normal cerebellar samples and 103 medulloblastomas of known subgroup. Medulloblastoma samples have a statistically significant increase in alternative splicing as compared to normal fetal cerebella (2.3-times; P<6.47E-8). Splicing patterns are distinct and specific between molecular subgroups. Unsupervised hierarchical clustering of alternative splicing events accurately assigns medulloblastomas to their correct subgroup. Subgroup-specific splicing and alternative promoter usage was most prevalent in Group 3 (19.4%) and SHH (16.2%) medulloblastomas, while observed less frequently in WNT (3.2%), and Group 4 (9.3%) tumors. Functional annotation of alternatively spliced genes reveals over-representation of genes important for neuronal development. Alternative splicing events in medulloblastoma may be regulated in part by the correlative expression of antisense transcripts, suggesting a possible mechanism affecting subgroup specific alternative splicing. Our results identify additional candidate markers for medulloblastoma subgroup affiliation, further support the existence of distinct subgroups of the disease, and demonstrate an additional level of transcriptional heterogeneity between medulloblastoma subgroups. PMID:22358458

  17. Phosphoregulation of Ire1 RNase splicing activity

    NASA Astrophysics Data System (ADS)

    Prischi, Filippo; Nowak, Piotr R.; Carrara, Marta; Ali, Maruf M. U.

    2014-04-01

    Ire1 is activated in response to accumulation of misfolded proteins within the endoplasmic reticulum as part of the unfolded protein response (UPR). It is a unique enzyme, possessing both kinase and RNase activity that is required for specific splicing of Xbp1 mRNA leading to UPR activation. How phosphorylation impacts on the Ire1 splicing activity is unclear. In this study, we isolate distinct phosphorylated species of Ire1 and assess their effects on RNase splicing both in vitro and in vivo. We find that phosphorylation within the kinase activation loop significantly increases RNase splicing in vitro. Correspondingly, mutants of Ire1 that cannot be phosphorylated on the activation loop show decreased specific Xbp1 and promiscuous RNase splicing activity relative to wild-type Ire1 in cells. These data couple the kinase phosphorylation reaction to the activation state of the RNase, suggesting that phosphorylation of the activation loop is an important step in Ire1-mediated UPR activation.

  18. The Characterizations of Different Splicing Systems

    NASA Astrophysics Data System (ADS)

    Karimi, Fariba; Sarmin, Nor Haniza; Heng, Fong Wan

    The concept of splicing system was first introduced by Head in 1987 to model the biological process of DNA recombination mathematically. This model was made on the basis of formal language theory which is a branch of applied discrete mathematics and theoretical computer science. In fact, splicing system treats DNA molecule and the recombinant behavior by restriction enzymes and ligases in the form of words and splicing rules respectively. The notion of splicing systems was taken into account from different points of view by many mathematicians. Several modified definitions have been introduced by many researchers. In this paper, some properties of different kinds of splicing systems are presented and their relationships are investigated. Furthermore, these results are illustrated by some examples.

  19. Prp40 pre-mRNA processing factor 40 homolog B (PRPF40B) associates with SF1 and U2AF65 and modulates alternative pre-mRNA splicing in vivo

    PubMed Central

    Becerra, Soraya; Montes, Marta; Hernández-Munain, Cristina

    2015-01-01

    The first stable complex formed during the assembly of spliceosomes onto pre-mRNA substrates in mammals includes U1 snRNP, which recognizes the 5′ splice site, and the splicing factors SF1 and U2AF, which bind the branch point sequence, polypyrimidine tract, and 3′ splice site. The 5′ and 3′ splice site complexes are thought to be joined together by protein–protein interactions mediated by factors that ensure the fidelity of the initial splice site recognition. In this study, we identified and characterized PRPF40B, a putative mammalian ortholog of the U1 snRNP-associated yeast splicing factor Prp40. PRPF40B is highly enriched in speckles with a behavior similar to splicing factors. We demonstrated that PRPF40B interacts directly with SF1 and associates with U2AF65. Accordingly, PRPF40B colocalizes with these splicing factors in the cell nucleus. Splicing assays with reporter minigenes revealed that PRPF40B modulates alternative splice site selection. In the case of Fas regulation of alternative splicing, weak 5′ and 3′ splice sites and exonic sequences are required for PRPF40B function. Placing our data in a functional context, we also show that PRPF40B depletion increased Fas/CD95 receptor number and cell apoptosis, which suggests the ability of PRPF40B to alter the alternative splicing of key apoptotic genes to regulate cell survival. PMID:25605964

  20. Utility and assessment of non-technical skills for rapid response systems and medical emergency teams.

    PubMed

    Chalwin, R P; Flabouris, A

    2013-09-01

    Efforts are ongoing to improve outcomes from cardiac arrest and medical emergencies. A promising quality improvement modality is use of non-technical skills (NTS) that aim to address human factors through improvements in performance of leadership, communication, situational awareness and decision-making. Originating in the airline industry, NTS training has been successfully introduced into anaesthesia, surgery, emergency medicine and other acute medical specialities. Some aspects of NTS have already achieved acceptance for cardiac arrest teams. Leadership skills are emphasised in advanced life support training and have shown favourable results when employed in simulated and clinical resuscitation scenarios. The application of NTS in medical emergency teams as part of a rapid response system attending medical emergencies is less certain; however, observations of simulations have also shown promise. This review highlights the potential benefits of NTS competency for cardiac arrest teams and, more importantly, medical emergency teams because of the diversity of clinical scenarios encountered. Discussion covers methods to assess and refine NTS and NTS training to optimise performance in the clinical environment. Increasing attention should be applied to yielding meaningful patient and organisational outcomes from use of NTS. Similarly, implementation of any training course should receive appropriate scrutiny to refine team and institutional performance. PMID:23611153

  1. Phosphodiesterase 1C is dispensable for rapid response termination of olfactory sensory neurons

    PubMed Central

    Cygnar, Katherine D.; Zhao, Haiqing

    2009-01-01

    In the nose, odorants are detected on the cilia of olfactory sensory neurons (OSNs), where a cAMP-mediated signaling pathway transforms odor stimulation into electrical responses. Phosphodiesterase (PDE) activity in OSN cilia was long thought to account for rapid response termination by degrading odor-induced cAMP. Two PDEs with distinct cellular localization have been found in OSNs: PDE1C in cilia; PDE4A throughout the cell but absent from cilia. We disrupted both genes in mice and performed electroolfactogram analysis. Unexpectedly, eliminating PDE1C did not prolong response termination. Prolonged termination occurred only in mice lacking both PDEs, suggesting that cAMP degradation by PDE1C in cilia is not a rate-limiting factor for response termination in wildtype. Pde1c−/− OSNs instead displayed reduced sensitivity and attenuated adaptation to repeated stimulation, suggesting potential roles for PDE1C in regulating sensitivity and adaptation. These observations provide new perspectives in regulation of olfactory transduction. PMID:19305400

  2. Rapid response near-infrared spectrophotometric characterization of Near Earth Objects

    NASA Astrophysics Data System (ADS)

    Mommert, Michael; Trilling, David; Axelrod, Tim; Butler, Nat; Jedicke, Robert; Moskovitz, Nicholas; Pichardo, Barbara; Reyes, Mauricio

    2014-11-01

    Small NEOs are, as a whole, poorly characterized, and we know nothing about the physical properties of the majority of all NEOs. The rate of NEO discoveries is increasing each year, and projects to determine the physical properties of NEOs are lagging behind. NEOs are faint, and generally even fainter by the time that follow-up characterizations can be made days or weeks later. There is a need for a high-throughput, high-efficiency physical characterization strategy in which hundreds of faint NEOs can be characterized each year. Broadband photometry in the near-infrared is sufficiently diagnostic to assign taxonomic types, and hence constrain both the individual and ensemble properties of NEOs. We will present results from our recently initiated program of rapid response near-infrared spectrophotometric characterization of NEOs. We are using UKIRT (on Mauna Kea) and the RATIR instrument on the 1.5m telescope at the San Pedro Martir Observatory (Mexico) to allow us to make observations most nights of the year in robotic/queue mode. This technique is powerful and fast. We have written automated software that allows us to observe NEOs very soon after discovery. Our targets are NEOs that are generally too faint for other characterization techniques. We are on pace to characterize hundreds of NEOs per year.

  3. Wing Leading Edge RCC Rapid Response Damage Prediction Tool (IMPACT2)

    NASA Technical Reports Server (NTRS)

    Clark, Robert; Cottter, Paul; Michalopoulos, Constantine

    2013-01-01

    This rapid response computer program predicts Orbiter Wing Leading Edge (WLE) damage caused by ice or foam impact during a Space Shuttle launch (Program "IMPACT2"). The program was developed after the Columbia accident in order to assess quickly WLE damage due to ice, foam, or metal impact (if any) during a Shuttle launch. IMPACT2 simulates an impact event in a few minutes for foam impactors, and in seconds for ice and metal impactors. The damage criterion is derived from results obtained from one sophisticated commercial program, which requires hours to carry out simulations of the same impact events. The program was designed to run much faster than the commercial program with prediction of projectile threshold velocities within 10 to 15% of commercial-program values. The mathematical model involves coupling of Orbiter wing normal modes of vibration to nonlinear or linear springmass models. IMPACT2 solves nonlinear or linear impact problems using classical normal modes of vibration of a target, and nonlinear/ linear time-domain equations for the projectile. Impact loads and stresses developed in the target are computed as functions of time. This model is novel because of its speed of execution. A typical model of foam, or other projectile characterized by material nonlinearities, impacting an RCC panel is executed in minutes instead of hours needed by the commercial programs. Target damage due to impact can be assessed quickly, provided that target vibration modes and allowable stress are known.

  4. Rapid-Response Low Infrared Emission Broadband Ultrathin Plasmonic Light Absorber

    PubMed Central

    Tagliabue, Giulia; Eghlidi, Hadi; Poulikakos, Dimos

    2014-01-01

    Plasmonic nanostructures can significantly advance broadband visible-light absorption, with absorber thicknesses in the sub-wavelength regime, much thinner than conventional broadband coatings. Such absorbers have inherently very small heat capacity, hence a very rapid response time, and high light power-to-temperature sensitivity. Additionally, their surface emissivity can be spectrally tuned to suppress infrared thermal radiation. These capabilities make plasmonic absorbers promising candidates for fast light-to-heat applications, such as radiation sensors. Here we investigate the light-to-heat conversion properties of a metal-insulator-metal broadband plasmonic absorber, fabricated as a free-standing membrane. Using a fast IR camera, we show that the transient response of the absorber has a characteristic time below 13 ms, nearly one order of magnitude lower than a similar membrane coated with a commercial black spray. Concurrently, despite the small thickness, due to the large absorption capability, the achieved absorbed light power-to-temperature sensitivity is maintained at the level of a standard black spray. Finally, we show that while black spray has emissivity similar to a black body, the plasmonic absorber features a very low infra-red emissivity of almost 0.16, demonstrating its capability as selective coating for applications with operating temperatures up to 400°C, above which the nano-structure starts to deform. PMID:25418040

  5. Communication and relationship skills for rapid response teams at hamilton health sciences.

    PubMed

    Cziraki, Karen; Lucas, Janie; Rogers, Toni; Page, Laura; Zimmerman, Rosanne; Hauer, Lois Ann; Daniels, Charlotte; Gregoroff, Susan

    2008-01-01

    Rapid response teams (RRT) are an important safety strategy in the prevention of deaths in patients who are progressively failing outside of the intensive care unit. The goal is to intervene before a critical event occurs. Effective teamwork and communication skills are frequently cited as critical success factors in the implementation of these teams. However, there is very little literature that clearly provides an education strategy for the development of these skills. Training in simulation labs offers an opportunity to assess and build on current team skills; however, this approach does not address how to meet the gaps in team communication and relationship skill management. At Hamilton Health Sciences (HHS) a two-day program was developed in collaboration with the RRT Team Leads, Organizational Effectiveness and Patient Safety Leaders. Participants reflected on their conflict management styles and considered how their personality traits may contribute to team function. Communication and relationship theories were reviewed and applied in simulated sessions in the relative safety of off-site team sessions. The overwhelming positive response to this training has been demonstrated in the incredible success of these teams from the perspective of the satisfaction surveys of the care units that call the team, and in the multi-phased team evaluation of their application to practice. These sessions offer a useful approach to the development of the soft skills required for successful RRT implementation. PMID:18382164

  6. First Results from the Rapid-response Spectrophotometric Characterization of Near-Earth Objects using UKIRT

    NASA Astrophysics Data System (ADS)

    Mommert, M.; Trilling, D. E.; Borth, D.; Jedicke, R.; Butler, N.; Reyes-Ruiz, M.; Pichardo, B.; Petersen, E.; Axelrod, T.; Moskovitz, N.

    2016-04-01

    Using the Wide Field Camera for the United Kingdom Infrared Telescope (UKIRT), we measure the near-infrared colors of near-Earth objects (NEOs) in order to put constraints on their taxonomic classifications. The rapid-response character of our observations allows us to observe NEOs when they are close to the Earth and bright. Here we present near-infrared color measurements of 86 NEOs, most of which were observed within a few days of their discovery, allowing us to characterize NEOs with diameters of only a few meters. Using machine-learning methods, we compare our measurements to existing asteroid spectral data and provide probabilistic taxonomic classifications for our targets. Our observations allow us to distinguish between S-complex, C/X-complex, D-type, and V-type asteroids. Our results suggest that the fraction of S-complex asteroids in the whole NEO population is lower than the fraction of ordinary chondrites in the meteorite fall statistics. Future data obtained with UKIRT will be used to investigate the significance of this discrepancy.

  7. NOAA Atmospheric, Marine and Arctic Monitoring Using UASs (including Rapid Response)

    NASA Astrophysics Data System (ADS)

    Coffey, J. J.; Jacobs, T.

    2015-12-01

    Unmanned systems have the potential to efficiently, effectively, economically, and safely bridge critical observation requirements in an environmentally friendly manner. As the United States' Atmospheric, Marine and Arctic areas of interest expand and include hard-to-reach regions of the Earth (such as the Arctic and remote oceanic areas) optimizing unmanned capabilities will be needed to advance the United States' science, technology and security efforts. Through increased multi-mission and multi-agency operations using improved inter-operable and autonomous unmanned systems, the research and operations communities will better collect environmental intelligence and better protect our Country against hazardous weather, environmental, marine and polar hazards. This presentation will examine NOAA's Atmospheric, Marine and Arctic Monitoring Unmanned Aircraft System (UAS) strategies which includes developing a coordinated effort to maximize the efficiency and capabilities of unmanned systems across the federal government and research partners. Numerous intra- and inter-agency operational demonstrations and assessments have been made to verify and validated these strategies. This includes the introduction of the Targeted Autonomous Insitu Sensing and Rapid Response (TAISRR) with UAS concept of operations. The presentation will also discuss the requisite UAS capabilities and our experience in using them.

  8. Rapid-response low infrared emission broadband ultrathin plasmonic light absorber.

    PubMed

    Tagliabue, Giulia; Eghlidi, Hadi; Poulikakos, Dimos

    2014-01-01

    Plasmonic nanostructures can significantly advance broadband visible-light absorption, with absorber thicknesses in the sub-wavelength regime, much thinner than conventional broadband coatings. Such absorbers have inherently very small heat capacity, hence a very rapid response time, and high light power-to-temperature sensitivity. Additionally, their surface emissivity can be spectrally tuned to suppress infrared thermal radiation. These capabilities make plasmonic absorbers promising candidates for fast light-to-heat applications, such as radiation sensors. Here we investigate the light-to-heat conversion properties of a metal-insulator-metal broadband plasmonic absorber, fabricated as a free-standing membrane. Using a fast IR camera, we show that the transient response of the absorber has a characteristic time below 13 ms, nearly one order of magnitude lower than a similar membrane coated with a commercial black spray. Concurrently, despite the small thickness, due to the large absorption capability, the achieved absorbed light power-to-temperature sensitivity is maintained at the level of a standard black spray. Finally, we show that while black spray has emissivity similar to a black body, the plasmonic absorber features a very low infra-red emissivity of almost 0.16, demonstrating its capability as selective coating for applications with operating temperatures up to 400°C, above which the nano-structure starts to deform. PMID:25418040

  9. Rapid-Response Low Infrared Emission Broadband Ultrathin Plasmonic Light Absorber

    NASA Astrophysics Data System (ADS)

    Tagliabue, Giulia; Eghlidi, Hadi; Poulikakos, Dimos

    2014-11-01

    Plasmonic nanostructures can significantly advance broadband visible-light absorption, with absorber thicknesses in the sub-wavelength regime, much thinner than conventional broadband coatings. Such absorbers have inherently very small heat capacity, hence a very rapid response time, and high light power-to-temperature sensitivity. Additionally, their surface emissivity can be spectrally tuned to suppress infrared thermal radiation. These capabilities make plasmonic absorbers promising candidates for fast light-to-heat applications, such as radiation sensors. Here we investigate the light-to-heat conversion properties of a metal-insulator-metal broadband plasmonic absorber, fabricated as a free-standing membrane. Using a fast IR camera, we show that the transient response of the absorber has a characteristic time below 13 ms, nearly one order of magnitude lower than a similar membrane coated with a commercial black spray. Concurrently, despite the small thickness, due to the large absorption capability, the achieved absorbed light power-to-temperature sensitivity is maintained at the level of a standard black spray. Finally, we show that while black spray has emissivity similar to a black body, the plasmonic absorber features a very low infra-red emissivity of almost 0.16, demonstrating its capability as selective coating for applications with operating temperatures up to 400°C, above which the nano-structure starts to deform.

  10. Structural Characterization of the Catalytic Subunit of a Novel RNA Splicing Endonuclease

    SciTech Connect

    Calvin, Kate; Hall, Michelle D.; Xu, Fangmin; Xue, Song; Li, Hong

    2010-07-13

    The RNA splicing endonuclease is responsible for recognition and excision of nuclear tRNA and all archaeal introns. Despite the conserved RNA cleavage chemistry and a similar enzyme assembly, currently known splicing endonuclease families have limited RNA specificity. Different from previously characterized splicing endonucleases in Archaea, the splicing endonuclease from archaeum Sulfolobus solfataricus was found to contain two different subunits and accept a broader range of substrates. Here, we report a crystal structure of the catalytic subunit of the S. solfataricus endonuclease at 3.1 {angstrom} resolution. The structure, together with analytical ultracentrifugation analysis, identifies the catalytic subunit as an inactive but stable homodimer, thus suggesting the possibility of two modes of functional assembly for the active enzyme.

  11. The Integrity of ACSR Full Tension Single-Stage Splice Connector at Higher Operation Temperature

    SciTech Connect

    Wang, Jy-An John; Lara-Curzio, Edgar; King Jr, Thomas J

    2008-10-01

    Due to increases in power demand and limited investment in new infrastructure, existing overhead power transmission lines often need to operate at temperatures higher than those used for the original design criteria. This has led to the accelerated aging and degradation of splice connectors. It is manifested by the formation of hot-spots that have been revealed by infrared imaging during inspection. The implications of connector aging is two-fold: (1) significant increases in resistivity of the splice connector (i.e., less efficient transmission of electricity) and (2) significant reductions in the connector clamping strength, which could ultimately result in separation of the power transmission line at the joint. Therefore, the splice connector appears to be the weakest link in electric power transmission lines. This report presents a protocol for integrating analytical and experimental approaches to evaluate the integrity of full tension single-stage splice connector assemblies and the associated effective lifetime at high operating temperature.

  12. Meayamycin Inhibits pre-mRNA Splicing and Exhibits Picomolar Activity Against Multidrug Resistant Cells

    PubMed Central

    Albert, Brian J.; McPherson, Peter A.; O'Brien, Kristine; Czaicki, Nancy L.; DeStefino, Vincent; Osman, Sami; Li, Miaosheng; Day, Billy W.; Grabowski, Paula J.; Moore, Melissa J.; Vogt, Andreas; Koide, Kazunori

    2009-01-01

    FR901464 is a potent antitumor natural product that binds to the SF3b complex and inhibits pre-mRNA splicing. Its analogue, meayamycin, is two orders of magnitude more potent as an antiproliferative agent against human breast cancer MCF-7 cells. Here, we report the picomolar antiproliferative activity of meayamycin against various cancer cell lines and multidrug resistant cells. Time-dependence studies implied that meayamycin may form a covalent bond with its target protein(s). Meayamycin inhibited pre-mRNA splicing in HEK-293 cells but not alternative splicing in a neuronal system. Meayamycin exhibited specificity toward human lung cancer cells compared to non-tumorigenic human lung fibroblasts and retained picomolar growth inhibitory activity against multi-drug resistant cells. These data suggest that meayamycin is a useful chemical probe to study pre-mRNA splicing in live cells and is a promising lead as an anticancer agent. PMID:19671752

  13. Probabilistic Splicing of Dscam1 Establishes Identity at the Level of Single Neurons

    PubMed Central

    Miura, Satoru K.; Martins, André; Zhang, Kelvin X.; Graveley, Brenton R.; Zipursky, S. Lawrence

    2014-01-01

    The Drosophila Dscam1 gene encodes a vast number of cell recognition molecules through alternative splicing. These exhibit isoform-specific homophilic binding and regulate self-avoidance, the tendency of neurites from the same cell to repel one another. Genetic experiments indicate that different cells must express different isoforms. How this is achieved is not known, as the expression of alternative exons in vivo has not been shown. Here, we modified the endogenous Dscam1 locus to generate splicing reporters for all variants of exon 4. We demonstrate that splicing does not occur in a cell-type specific fashion, that cells identified by their unique locations express different exon 4 variants in different animals, and that splicing in identified neurons can change over time. Probabilistic expression is compatible with a widespread role in neural circuit assembly through self-avoidance and is incompatible with models in which specific isoforms of Dscam1 mediate recognition between processes of different cells. PMID:24267895

  14. Splicing regulation: From a parts list of regulatory elements to an integrated splicing code

    PubMed Central

    Wang, Zefeng; Burge, Christopher B.

    2008-01-01

    Alternative splicing of pre-mRNAs is a major contributor to both proteomic diversity and control of gene expression levels. Splicing is tightly regulated in different tissues and developmental stages, and its disruption can lead to a wide range of human diseases. An important long-term goal in the splicing field is to determine a set of rules or “code” for splicing that will enable prediction of the splicing pattern of any primary transcript from its sequence. Outside of the core splice site motifs, the bulk of the information required for splicing is thought to be contained in exonic and intronic cis-regulatory elements that function by recruitment of sequence-specific RNA-binding protein factors that either activate or repress the use of adjacent splice sites. Here, we summarize the current state of knowledge of splicing cis-regulatory elements and their context-dependent effects on splicing, emphasizing recent global/genome-wide studies and open questions. PMID:18369186

  15. Role of the 3′ Splice Site in U12-Dependent Intron Splicing

    PubMed Central

    Dietrich, Rosemary C.; Peris, Marian J.; Seyboldt, Andrew S.; Padgett, Richard A.

    2001-01-01

    U12-dependent introns containing alterations of the 3′ splice site AC dinucleotide or alterations in the spacing between the branch site and the 3′ splice site were examined for their effects on splice site selection in vivo and in vitro. Using an intron with a 5′ splice site AU dinucleotide, any nucleotide could serve as the 3′-terminal nucleotide, although a C residue was most active, while a U residue was least active. The penultimate A residue, by contrast, was essential for 3′ splice site function. A branch site-to-3′ splice site spacing of less than 10 or more than 20 nucleotides strongly activated alternative 3′ splice sites. A strong preference for a spacing of about 12 nucleotides was observed. The combined in vivo and in vitro results suggest that the branch site is recognized in the absence of an active 3′ splice site but that formation of the prespliceosomal complex A requires an active 3′ splice site. Furthermore, the U12-type spliceosome appears to be unable to scan for a distal 3′ splice site. PMID:11238930

  16. Original Research: The Benefits of Rapid Response Teams: Exploring Perceptions of Nurse Leaders, Team Members, and End Users.

    PubMed

    Stolldorf, Deonni P

    2016-03-01

    : The perceived benefits of rapid response teams (RRTs) influence whether RRTs are used and sustained. Perceived benefits are particularly important to sustaining RRTs when limited RRT data are shared with organizational members. Nurse leaders' perceptions of the benefits of RRTs likely influence their support, which is crucial for sustained RRT use. The perceptions of RRT members and end users similarly will affect use. But little is known regarding the perceptions of nurse leaders, RRT members, and RRT users in this regard.This study sought to explore and compare the perceptions of nurse leaders, RRT members, and RRT users regarding the benefits of RRTs.A qualitative, multiple-case study design was used. Semistructured interviews were conducted with nurse leaders, RRT members, and RRT users at four community hospitals, as part of a larger mixed-methods study examining RRT sustainability. Purposive and snowball sampling were used. Recruitment strategies included e-mail and listserv announcements, on-site presentations, direct personal contact, and a study flyer.All participants reported perceiving various ways that RRTs benefit the organization, staff members, and patients. Variations in the benefits perceived were observed between the three participant groups. Nurse leaders' perceptions tended to focus on macro-level benefits. RRT members emphasized the teaching and learning opportunities that RRTs offer. RRT users focused on the psychological support that RRTs can provide.Both similarities and differences were found between nurse leaders, RRT members, and RRT users regarding their perceptions of RRT benefits. Differences may be indicative of organizations' information-sharing processes; of variation in the priorities of nurse leaders, RRT members, and RRT users; and of the challenges nurses face daily in their work environments. Future research should investigate whether the perceived benefits of RRTs are borne out in actuality, as well as the relationships

  17. The habitus of 'rescue' and its significance for implementation of rapid response systems in acute health care.

    PubMed

    Mackintosh, Nicola; Humphrey, Charlotte; Sandall, Jane

    2014-11-01

    The need to focus on patient safety and improve the quality and consistency of medical care in acute hospital settings has been highlighted in a number of UK and international reports. When patients on a hospital ward become acutely unwell there is often a window of opportunity for staff, patients and relatives to contribute to the 'rescue' process by intervening in the trajectory of clinical deterioration. This paper explores the social and institutional processes associated with the practice of rescue, and implications for the implementation and effectiveness of rapid response systems (RRSs) within acute health care. An ethnographic case study was conducted in 2009 in two UK hospitals (focussing on the medical directorates in each organisation). Data collection involved 180 h of observation, 35 staff interviews (doctors, nurses, health care assistants and managers) and documentary review. Analysis was informed by Bourdieu's logic of practice and his relational concept of the 'field' of the general medical ward. Three themes illustrated the nature of rescue work within the field and collective rules which guided associated occupational distinction practices: (1) the 'dirty work' of vital sign recording and its distinction from diagnostic (higher order) interpretive work; (2) the moral order of legitimacy claims for additional help; and (3) professional deference and the selective managerial control of rescue work. The discourse of rescue provided a means of exercising greater control over clinical uncertainty. The acquisition of 'rescue capital' enabled the social positioning of health care assistants, nurses and doctors, and shaped use of the RRS on the wards. Boundary work, professional legitimation and jurisdictional claims defined the social practice of rescue, as clinical staff had to balance safety, professional and organisational concerns within the field. This paper offers a nuanced understanding of patient safety on the front-line, challenging notions of

  18. Rapid Response to Evaluate the Presence of Amphibian Chytrid Fungus (Batrachochytrium dendrobatidis) and Ranavirus in Wild Amphibian Populations in Madagascar

    PubMed Central

    Kolby, Jonathan E.; Smith, Kristine M.; Ramirez, Sara D.; Rabemananjara, Falitiana; Pessier, Allan P.; Brunner, Jesse L.; Goldberg, Caren S.; Berger, Lee; Skerratt, Lee F.

    2015-01-01

    We performed a rapid response investigation to evaluate the presence and distribution of amphibian pathogens in Madagascar following our identification of amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd) and ranavirus in commercially exported amphibians. This targeted risk-based field surveillance program was conducted from February to April 2014 encompassing 12 regions and 47 survey sites. We simultaneously collected amphibian and environmental samples to increase survey sensitivity and performed sampling both in wilderness areas and commercial amphibian trade facilities. Bd was not detected in any of 508 amphibian skin swabs or 68 water filter samples, suggesting pathogen prevalence was below 0.8%, with 95% confidence during our visit. Ranavirus was detected in 5 of 97 amphibians, including one adult Mantidactylus cowanii and three unidentified larvae from Ranomafana National Park, and one adult Mantidactylus mocquardi from Ankaratra. Ranavirus was also detected in water samples collected from two commercial amphibian export facilities. We also provide the first report of an amphibian mass-mortality event observed in wild amphibians in Madagascar. Although neither Bd nor ranavirus appeared widespread in Madagascar during this investigation, additional health surveys are required to disentangle potential seasonal variations in pathogen abundance and detectability from actual changes in pathogen distribution and rates of spread. Accordingly, our results should be conservatively interpreted until a comparable survey effort during winter months has been performed. It is imperative that biosecurity practices be immediately adopted to limit the unintentional increased spread of disease through the movement of contaminated equipment or direct disposal of contaminated material from wildlife trade facilities. The presence of potentially introduced strains of ranaviruses suggests that Madagascar's reptile species might also be threatened by disease

  19. A volcano-seismic event spotting system for the use in rapid response systems

    NASA Astrophysics Data System (ADS)

    Hammer, Conny; Ohrnberger, Matthias

    2010-05-01

    The classification of seismic signals of volcanic origin is an important task in monitoring active volcanoes. The number and size of certain types of seismic events usually increase before periods of volcanic crisis and can be used to quantify the volcanic activity. Due to the advantage of providing consistent, objective and time-invariant results automatic classification systems are preferred. Most automatic classification systems are trained in a supervised fashion from a sufficiently large pre-classified data set. The setup of an automatic classification system thus requires the pre-existence of these training data. For a rapid volcano-response team, however, the situation is often different. In the worst case, no prior observations exist (e.g. re-awakening of a dormant volcano). More frequently, archive data exist for a particular observatory network, but no record of seismicity for a high volcanic activity level exists and new seismicity patterns occur. Usually, the networks are additionally sparse and new equipment will be installed for better surveillance during the actual crisis. For the new recording sites again no prior example data is available. Finally, due to the imminent crisis there might be no time for the time-consuming and tedious process of preparing a training data set. For all these reasons a classification system which allows a "learning-while-recording" approach would be very advantageous for use in rapid response systems. Within this study, we show a novel seismic event spotting approach in order to reduce the dependency on the existence of previously acquired data bases and classification schemes. One main goal is therefore to provide the observatory staff with a robust event classification system based on a minimum number of reference waveforms and thus allowing for a fast build-up of a volcanic signal classification scheme as early as interesting events have been identified. For implementation issues we make use of the Hidden Markov

  20. UMTS rapid response real-time seismic networks: implementation and strategies at INGV

    NASA Astrophysics Data System (ADS)

    Govoni, Aladino; Margheriti, Lucia; Moretti, Milena; Lauciani, Valentino; Sensale, Gianpaolo; Bucci, Augusto; Criscuoli, Fabio

    2015-04-01

    The benefits of portable real-time seismic networks are several and well known. During the management of a temporary experiment from the real-time data it is possible to detect and fix rapidly problems with power supply, time synchronization, disk failures and, most important, seismic signal quality degradation due to unexpected noise sources or sensor alignment/tampering. This usually minimizes field maintenance trips and maximizes both the quantity and the quality of the acquired data. When the area of the temporary experiment is not well monitored by the local permanent network, the real-time data from the temporary experiment can be fed to the permanent network monitoring system improving greatly both the real-time hypocentral locations and the final revised bulletin. All these benefits apply also in case of seismic crises when rapid deployment stations can significantly contribute to the aftershock analysis. Nowadays data transmission using meshed radio networks or satellite systems is not a big technological problem for a permanent seismic network where each site is optimized for the device power consumption and is usually installed by properly specialized technicians that can configure transmission devices and align antennas. This is not usually practical for temporary networks and especially for rapid response networks where the installation time is the main concern. These difficulties are substantially lowered using the now widespread UMTS technology for data transmission. A small (but sometimes power hungry) properly configured device with an omnidirectional antenna must be added to the station assembly. All setups are usually configured before deployment and this allows for an easy installation also by untrained personnel. We describe here the implementation of a UMTS based portable seismic network for both temporary experiments and rapid response applications developed at INGV. The first field experimentation of this approach dates back to the 2009 L

  1. EASI--enrichment of alternatively spliced isoforms.

    PubMed

    Venables, Julian P; Burn, John

    2006-01-01

    Alternative splicing produces more than one protein from the majority of genes and the rarer forms can have dominant functions. Instability of alternative transcripts can also hinder the study of regulation of gene expression by alternative splicing. To investigate the true extent of alternative splicing we have developed a simple method of enriching alternatively spliced isoforms (EASI) from PCRs using beads charged with Thermus aquaticus single-stranded DNA-binding protein (T.Aq ssb). This directly purifies the single-stranded regions of heteroduplexes between alternative splices formed in the PCR, enabling direct sequencing of all the rare alternative splice forms of any gene. As a proof of principle the alternative transcripts of three tumour suppressor genes, TP53, MLH1 and MSH2, were isolated from testis cDNA. These contain missing exons, cryptic splice sites or include completely novel exons. EASI beads are stable for months in the fridge and can be easily combined with standard protocols to speed the cloning of novel transcripts. PMID:16951290

  2. 20 CFR 665.330 - Are the NAFTA-TAA program requirements for rapid response also required activities?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Are the NAFTA-TAA program requirements for... WORKFORCE INVESTMENT ACT Rapid Response Activities § 665.330 Are the NAFTA-TAA program requirements for... WIA are made available to workers who, under the NAFTA Implementation Act (Public Law 103-182),...

  3. Rapid Responsiveness to Practice Predicts Longer-Term Retention of Upper Extremity Motor Skill in Non-Demented Older Adults

    PubMed Central

    Schaefer, Sydney Y.; Duff, Kevin

    2015-01-01

    Skill acquisition is a form of motor learning that may provide key insights into the aging brain. Although previous work suggests that older adults learn novel motor tasks slower and to a lesser extent than younger adults, we have recently demonstrated no significant effect of chronological age on the rates and amounts of skill acquisition, nor on its long-term retention, in adults over the age of 65. To better understand predictors of skill acquisition in non-demented older adults, we now explore the relationship between early improvements in motor performance due to practice (i.e., rapid responsiveness) and longer-term retention of an upper extremity motor skill, and whether the extent of rapid responsiveness was associated with global cognitive status. Results showed significant improvements in motor performance within the first five (of 150) trials, and that this “rapid responsiveness” was predictive of skill retention 1 month later. Notably, the extent of rapid responsiveness was not dependent on global cognitive status, as measured by the Montreal Cognitive Assessment (MoCA). Thus, rapid responsiveness appears to be an important variable in longer-term neurorehabilitative efforts with older adults, regardless of their cognitive status. PMID:26635601

  4. Using a Novel Spatial Tool to Inform Invasive Species Early Detection and Rapid Response Efforts

    NASA Astrophysics Data System (ADS)

    Davidson, Alisha D.; Fusaro, Abigail J.; Kashian, Donna R.

    2015-07-01

    Management of invasive species has increasingly emphasized the importance of early detection and rapid response (EDRR) programs in limiting introductions, establishment, and impacts. These programs require an understanding of vector and species spatial dynamics to prioritize monitoring sites and efficiently allocate resources. Yet managers often lack the empirical data necessary to make these decisions. We developed an empirical mapping tool that can facilitate development of EDRR programs through identifying high-risk locations, particularly within the recreational boating vector. We demonstrated the utility of this tool in the Great Lakes watershed. We surveyed boaters to identify trips among water bodies and to quantify behaviors associated with high likelihood of species transfer (e.g., not removing organic materials from boat trailers) during that trip. We mapped water bodies with high-risk inbound and outbound boater movements using ArcGIS. We also tested for differences in high-risk behaviors based on demographic variables to understand risk differences among boater groups. Incorporation of boater behavior led to identification of additional high-risk water bodies compared to using the number of trips alone. Therefore, the number of trips itself may not fully reflect the likelihood of invasion. This tool can be broadly applied in other geographic contexts and with different taxa, and can be adjusted according to varying levels of information concerning the vector or species of interest. The methodology is straightforward and can be followed after a basic introduction to ArcGIS software. The visual nature of the mapping tool will facilitate site prioritization by managers and stakeholders from diverse backgrounds.

  5. Rapid-Response or Repeat-Mode Topography from Aerial Structure from Motion

    NASA Astrophysics Data System (ADS)

    Nissen, E.; Johnson, K. L.; Fitzgerald, F. S.; Morgan, M.; White, J.

    2014-12-01

    This decade has seen a surge of interest in Structure-from-Motion (SfM) as a means of generating high-resolution topography and coregistered texture maps from stereo digital photographs. Using an unstructured set of overlapping photographs captured from multiple viewpoints and minimal GPS ground control, SfM solves simultaneously for scene topography and camera positions, orientations and lens parameters. The use of cheap unmanned aerial vehicles or tethered helium balloons as camera platforms expedites data collection and overcomes many of the cost, time and logistical limitations of LiDAR surveying, making it a potentially valuable tool for rapid response mapping and repeat monitoring applications. We begin this presentation by assessing what data resolutions and precisions are achievable using a simple aerial camera platform and commercial SfM software (we use the popular Agisoft Photoscan package). SfM point clouds generated at two small (~0.1 km2), sparsely-vegetated field sites in California compare favorably with overlapping airborne and terrestrial LiDAR surveys, with closest point distances of a few centimeters between the independent datasets. Next, we go on to explore the method in more challenging conditions, in response to a major landslide in Mesa County, Colorado, on 25th May 2014. Photographs collected from a small UAV were used to generate a high-resolution model of the 4.5 x 1 km landslide several days before an airborne LiDAR survey could be organized and flown. An initial estimate of the mass balance of the landslide could quickly be made by differencing this model against pre-event topography generated using stereo photographs collected in 2009 as part of the National Agricultural Imagery Program (NAIP). This case study therefore demonstrates the rich potential offered by this technique, as well as some of the challenges, particularly with respect to the treatment of vegetation.

  6. Using Rapid-Response Scenario-Building Methodology for Climate Change Adaptation Planning

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Stoepler, T. M.; Schuster, R.

    2015-12-01

    Rapid-response scenario-building methodology can be modified to develop scenarios for slow-onset disasters associated with climate change such as drought. Results of a collaboration between the Department of the Interior (DOI) Strategic Sciences Group (SSG) and the Southwest Colorado Social-Ecological Climate Resilience Project are presented in which SSG scenario-building methods were revised and applied to climate change adaptation planning in Colorado's Gunnison Basin, United States. The SSG provides the DOI with the capacity to rapidly assemble multidisciplinary teams of experts to develop scenarios of the potential environmental, social, and economic cascading consequences of environmental crises, and to analyze these chains to determine actionable intervention points. By design, the SSG responds to acute events of a relatively defined duration. As a capacity-building exercise, the SSG explored how its scenario-building methodology could be applied to outlining the cascading consequences of slow-onset events related to climate change. SSG staff facilitated two workshops to analyze the impacts of drought, wildfire, and insect outbreak in the sagebrush and spruce-fir ecosystems. Participants included local land managers, natural and social scientists, ranchers, and other stakeholders. Key findings were: 1) scenario framing must be adjusted to accommodate the multiple, synergistic components and longer time frames of slow-onset events; 2) the development of slow-onset event scenarios is likely influenced by participants having had more time to consider potential consequences, relative to acute events; 3) participants who are from the affected area may have a more vested interest in the outcome and/or may be able to directly implement interventions.

  7. The effect of rapid response teams on end-of-life care: A retrospective chart review

    PubMed Central

    Tam, Benjamin; Salib, Mary; Fox-Robichaud, Alison

    2014-01-01

    BACKGROUND: A subset of critically ill patients have end-of-life (EOL) goals that are unclear. Rapid response teams (RRTs) may aid in the identification of these patients and the delivery of their EOL care. OBJECTIVES: To characterize the impact of RRT discussion on EOL care, and to examine how a preprinted order (PPO) set for EOL care influenced EOL discussions and outcomes. METHODS: A single-centre retrospective chart review of all RRT calls (January 2009 to December 2010) was performed. The effect of RRT EOL discussions and the effect of a hospital-wide PPO set on EOL care was examined. Charts were from the Ontario Ministry of Health and Long-Term Care Critical Care Information Systemic database, and were interrogated by two reviewers. RESULTS: In patients whose EOL status changed following RRT EOL discussion, there were fewer intensive care unit (ICU) transfers (8.4% versus 17%; P<0.001), decreased ICU length of stay (5.8 days versus 20 days; P=0.08), increased palliative care consultations (34% versus 5.3%; P<0.001) and an increased proportion who died within 24 h of consultation (25% versus 8.3%; P<0.001). More patients experienced a change in EOL status following the introduction of an EOL PPO, from 20% (before) to 31% (after) (P<0.05). CONCLUSIONS: A change in EOL status following RRT-led EOL discussion was associated with reduced ICU transfers and enhanced access to palliative care services. Further study is required to identify and deconstruct barriers impairing timely and appropriate EOL discussions. PMID:25299222

  8. Student Accomplishments in the Rapid Response Radiotherapy Program: A 10-Year Review.

    PubMed

    McDonald, Rachel; Lechner, Breanne; Pulenzas, Natalie; Bedard, Gillian; Wong, Erin; Holden, Lori; Tsao, May; Barnes, Elizabeth; Szumacher, Ewa; Fenton, Gonenc; Chow, Edward; Popovic, Marko; Danjoux, Cyril

    2015-12-01

    In 1996, the Toronto Sunnybrook Regional Cancer Centre developed the Rapid Response Radiotherapy Program (RRRP). The objective of this clinic is to consult, simulate, plan, and treat patients with palliative radiotherapy on the same day. In 2004, the RRRP initiated a program to provide clinical and research experience to undergraduate students interested in health sciences. The purpose of this study is to review the 10-year (2004-2013) experience of the RRRP and to examine whether the goals of the student program have been met. Students who worked in the RRRP from 2004 to 2013 were contacted to complete a short survey regarding their overall experience with the program and their current endeavors. Student accomplishments were collected from an internal database as well as PubMed. Descriptive statistics were used to analyze results. A total of 54 students from ten postsecondary institutions have worked in the RRRP; 29 were from the University of Waterloo undergraduate co-op program. In total, 214 articles with first authorship from students were published, 93 (43%) of which can be found on PubMed. Other accomplishments include 40 book chapters, 58 invited presentations, and 99 awards cumulatively. Qualitative data regarding student perspectives of their experience in the RRRP were also analyzed. Over the past 10 years, the RRRP has achieved its goal of providing quality medical and research experience to students interested in the health sciences. Using the responses of past and present students, we hope to continue to shape our program and provide unique opportunities to future students. PMID:25370839

  9. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent, shall be made in a trailing cable within 25 feet of the machine unless the machine is equipped with...

  10. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent, shall be made in a trailing cable within 25 feet of the machine unless the machine is equipped with...

  11. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent, shall be made in a trailing cable within 25 feet of the machine unless the machine is equipped with...

  12. 30 CFR 57.12088 - Splicing trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Splicing trailing cables. 57.12088 Section 57... Underground Only § 57.12088 Splicing trailing cables. No splice, except a vulcanized splice or its equivalent, shall be made in a trailing cable within 25 feet of the machine unless the machine is equipped with...

  13. Crystal Structure of a Self-Spliced Group ll Intron

    SciTech Connect

    Toor,N.; Keating, K.; Taylor, S.; Pyle, A.

    2008-01-01

    Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.

  14. Crystal Structure of a Self-Spliced Group II Intron

    SciTech Connect

    Toor, Navtej; Keating, Kevin S.; Taylor, Sean D.; Pyle, Anna Marie

    2008-04-10

    Group II introns are self-splicing ribozymes that catalyze their own excision from precursor transcripts and insertion into new genetic locations. Here we report the crystal structure of an intact, self-spliced group II intron from Oceanobacillus iheyensis at 3.1 angstrom resolution. An extensive network of tertiary interactions facilitates the ordered packing of intron subdomains around a ribozyme core that includes catalytic domain V. The bulge of domain V adopts an unusual helical structure that is located adjacent to a major groove triple helix (catalytic triplex). The bulge and catalytic triplex jointly coordinate two divalent metal ions in a configuration that is consistent with a two-metal ion mechanism for catalysis. Structural and functional analogies support the hypothesis that group II introns and the spliceosome share a common ancestor.

  15. Aberrant splicing and drug resistance in AML.

    PubMed

    de Necochea-Campion, Rosalia; Shouse, Geoffrey P; Zhou, Qi; Mirshahidi, Saied; Chen, Chien-Shing

    2016-01-01

    The advent of next-generation sequencing technologies has unveiled a new window into the heterogeneity of acute myeloid leukemia (AML). In particular, recurrent mutations in spliceosome machinery and genome-wide aberrant splicing events have been recognized as a prominent component of this disease. This review will focus on how these factors influence drug resistance through altered splicing of tumor suppressor and oncogenes and dysregulation of the apoptotic signaling network. A better understanding of these factors in disease progression is necessary to design appropriate therapeutic strategies recognizing specific alternatively spliced or mutated oncogenic targets. PMID:27613060

  16. Involvement of the catalytic subunit of protein kinase A and of HA95 in pre-mRNA splicing

    SciTech Connect

    Kvissel, Anne-Katrine . E-mail: a.k.kvissel@basalmed.uio.no; Orstavik, Sigurd; Eikvar, Sissel; Brede, Gaute; Jahnsen, Tore; Collas, Philippe; Akusjaervi, Goeran; Skalhegg, Bjorn Steen

    2007-08-01

    Protein kinase A (PKA) is a holoenzyme consisting of two catalytic (C) subunits bound to a regulatory (R) subunit dimer. Stimulation by cAMP dissociates the holoenzyme and causes translocation to the nucleus of a fraction of the C subunit. Apart from transcription regulation, little is known about the function of the C subunit in the nucleus. In the present report, we show that both C{alpha} and C{beta} are localized to spots in the mammalian nucleus. Double immunofluorescence analysis of splicing factor SC35 with the C subunit indicated that these spots are splicing factor compartments (SFCs). Using the E1A in vivo splicing assay, we found that catalytically active C subunits regulate alternative splicing and phosphorylate several members of the SR-protein family of splicing factors in vitro. Furthermore, nuclear C subunits co-localize with the C subunit-binding protein homologous to AKAP95, HA95. HA95 also regulates E1A alternative splicing in vivo, apparently through its N-terminal domain. Localization of the C subunit to SFCs and the E1A splicing pattern were unaffected by cAMP stimulation. Our findings demonstrate that the nuclear PKA C subunit co-locates with HA95 in SFCs and regulates pre-mRNA splicing, possibly through a cAMP-independent mechanism.

  17. RNA-Binding Proteins: Splicing Factors and Disease

    PubMed Central

    Fredericks, Alger M.; Cygan, Kamil J.; Brown, Brian A.; Fairbrother, William G.

    2015-01-01

    Pre-mRNA splicing is mediated by interactions of the Core Spliceosome and an array of accessory RNA binding proteins with cis-sequence elements. Splicing is a major regulatory component in higher eukaryotes. Disruptions in splicing are a major contributor to human disease. One in three hereditary disease alleles are believed to cause aberrant splicing. Hereditary disease alleles can alter splicing by disrupting a splicing element, creating a toxic RNA, or affecting splicing factors. One of the challenges of medical genetics is identifying causal variants from the thousands of possibilities discovered in a clinical sequencing experiment. Here we review the basic biochemistry of splicing, the mechanisms of splicing mutations, the methods for identifying splicing mutants, and the potential of therapeutic interventions. PMID:25985083

  18. Competition between pre-mRNAs for the splicing machinery drives global regulation of splicing.

    PubMed

    Munding, Elizabeth M; Shiue, Lily; Katzman, Sol; Donohue, John Paul; Ares, Manuel

    2013-08-01

    During meiosis in yeast, global splicing efficiency increases and then decreases. Here we provide evidence that splicing improves due to reduced competition for the splicing machinery. The timing of this regulation corresponds to repression and reactivation of ribosomal protein genes (RPGs) during meiosis. In vegetative cells, RPG repression by rapamycin treatment also increases splicing efficiency. Downregulation of the RPG-dedicated transcription factor gene IFH1 genetically suppresses two spliceosome mutations, prp11-1 and prp4-1, and globally restores splicing efficiency in prp4-1 cells. We conclude that the splicing apparatus is limiting and that pre-messenger RNAs compete. Splicing efficiency of a pre-mRNA therefore depends not just on its own concentration and affinity for limiting splicing factor(s), but also on those of competing pre-mRNAs. Competition between RNAs for limiting processing factors appears to be a general condition in eukaryotes for a variety of posttranscriptional control mechanisms including microRNA (miRNA) repression, polyadenylation, and splicing. PMID:23891561

  19. Functional characterization of putative novel splicing mutations in the cardiomyopathy-causing genes.

    PubMed

    Millat, Gilles; Lafont, Estèle; Nony, Séverine; Rouvet, Isabelle; Bozon, Dominique

    2015-07-01

    Molecular diagnosis of cardiomyopathies remains difficult not only because of the large number of causative genes and the high rate of private mutations but also due to the large number of unclassified variants (UVs) found in patients' DNA. This study reports the functional splicing impact of nine novel genomic variations previously identified in unrelated patients with cardiomyopathies. To identify splice variants among these UVs, a combination of in silico and in vitro hybrid minigene tools was used as transcript is not available. Using this two-step approach, these UVs were reclassified as splicing mutations (MYBPC3-c.655-25A>G, MYBPC3-c.1790G>A (p.Arg597Gln), MYBPC3-c.2414-36G>T) or as mutations with a majority of abnormally spliced transcripts (MYBPC3-c.1182C>A, TNNT2-c.460G>A (p.Glu154Lys), and TNNT2-c.822-3C>A) or as variations with a weak splicing effect (TNNT2-c.1000-38C>A). For the two remaining variations in intron 11 of the TNNT2 gene in the vicinity of the acceptor splice site (c.571-7G>A, c.571-29G>A), a minigene assay was inconclusive as exon 12 is neither recognized as an exon by HeLa nor by H9c2 cells. Our study highlights the importance of the combined use of in silico and in vitro splicing assays to improve the prediction of the functional splicing impact of identified genetic variants if the RNA sample from the patient is not easily available. PMID:25849606

  20. Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia.

    PubMed

    Axelrod, Felicia B; Liebes, Leonard; Gold-Von Simson, Gabrielle; Mendoza, Sandra; Mull, James; Leyne, Maire; Norcliffe-Kaufmann, Lucy; Kaufmann, Horacio; Slaugenhaupt, Susan A

    2011-11-01

    Familial dysautonomia (FD) is caused by an intronic splice mutation in the IKBKAP gene that leads to partial skipping of exon 20 and tissue-specific reduction in I-κ-B kinase complex-associated protein/elongation protein 1 (IKAP/ELP-1) expression. Kinetin (6-furfurylaminopurine) has been shown to improve splicing and increase WT IKBKAP mRNA and IKAP protein expression in FD cell lines and carriers. To determine whether oral kinetin treatment could alter mRNA splicing in FD subjects and was tolerable, we administered kinetin to eight FD individuals homozygous for the splice mutation. Subjects received 23.5 mg/Kg/d for 28 d. An increase in WT IKBKAP mRNA expression in leukocytes was noted after 8 d in six of eight individuals; after 28 d, the mean increase compared with baseline was significant (p = 0.002). We have demonstrated that kinetin is tolerable in this medically fragile population. Not only did kinetin produce the desired effect on splicing in FD patients but also that effect seems to improve with time despite lack of dose change. This is the first report of a drug that produces in vivo mRNA splicing changes in individuals with FD and supports future long-term trials to determine whether kinetin will prove therapeutic in FD patients. PMID:21775922

  1. Nitric Oxide Receptor Soluble Guanylyl Cyclase Undergoes Splicing Regulation in Differentiating Human Embryonic Cells

    PubMed Central

    Sharin, Vladislav G.; Mujoo, Kalpana; Kots, Alexander Y.; Martin, Emil; Murad, Ferid

    2011-01-01

    Nitric oxide (NO), an important mediator molecule in mammalian physiology, initiates a number of signaling mechanisms by activating the enzyme soluble guanylyl cyclase (sGC). Recently, a new role for NO/cyclic guanosine monophosphate signaling in embryonic development and cell differentiation has emerged. The changes in expression of NO synthase isoforms and various sGC subunits has been demonstrated during human and mouse embryonic stem (ES) cells differentiation. Previously, our laboratory demonstrated that nascent α1 sGC transcript undergoes alternative splicing and that expression of α1 sGC splice forms directly affects sGC activity. Expression of sGC splice variants in the process of human ES (hES) cells differentiation has not been investigated. In this report, we demonstrate that α1 sGC undergoes alternative splicing during random hES differentiation for the first time. Our results indicate that C-α1 sGC splice form is expressed at high levels in differentiating cells and its intracellular distribution varies from canonical α1 sGC subunit. Together, our data suggest that alternative splicing of sGC subunits is associated with differentiation of hES cells. PMID:20964618

  2. Kinetic characterization of the first step of the ribozyme-catalyzed trans excision-splicing reaction.

    PubMed

    Dotson, P Patrick; Sinha, Joy; Testa, Stephen M

    2008-06-01

    Group I introns catalyze the self-splicing reaction, and their derived ribozymes are frequently used as model systems for the study of RNA folding and catalysis, as well as for the development of non-native catalytic reactions. Utilizing a group I intron-derived ribozyme from Pneumocystis carinii, we previously reported a non-native reaction termed trans excision-splicing (TES). In this reaction, an internal segment of RNA is excised from an RNA substrate, resulting in the covalent reattachment of the flanking regions. TES proceeds through two consecutive phosphotransesterification reactions, which are similar to the reaction steps of self-splicing. One key difference is that TES utilizes the 3'-terminal guanosine of the ribozyme as the first-step nucleophile, whereas self-splicing utilizes an exogenous guanosine. To further aid in our understanding of ribozyme reactions, a kinetic framework for the first reaction step (substrate cleavage) was established. The results demonstrate that the substrate binds to the ribozyme at a rate expected for simple helix formation. In addition, the rate constant for the first step of the TES reaction is more than one order of magnitude lower than the analogous step in self-splicing. Results also suggest that a conformational change, likely similar to that in self-splicing, exists between the two reaction steps of TES. Finally, multiple turnover is curtailed because dissociation of the cleavage product is slower than the rate of chemistry. PMID:18479464

  3. Embracing the complexity of matricellular proteins: the functional and clinical significance of splice variation.

    PubMed

    Viloria, Katrina; Hill, Natasha J

    2016-05-01

    Matricellular proteins influence wide-ranging fundamental cellular processes including cell adhesion, migration, growth and differentiation. They achieve this both through interactions with cell surface receptors and regulation of the matrix environment. Many matricellular proteins are also associated with diverse clinical disorders including cancer and diabetes. Alternative splicing is a precisely regulated process that can produce multiple isoforms with variable functions from a single gene. To date, the expression of alternate transcripts for the matricellular family has been reported for only a handful of genes. Here we analyse the evidence for alternative splicing across the matricellular family including the secreted protein acidic and rich in cysteine (SPARC), thrombospondin, tenascin and CCN families. We find that matricellular proteins have double the average number of splice variants per gene, and discuss the types of domain affected by splicing in matricellular proteins. We also review the clinical significance of alternative splicing for three specific matricellular proteins that have been relatively well characterised: osteopontin (OPN), tenascin-C (TNC) and periostin. Embracing the complexity of matricellular splice variants will be important for understanding the sometimes contradictory function of these powerful regulatory proteins, and for their effective clinical application as biomarkers and therapeutic targets. PMID:27135623

  4. CIR, a corepressor of CBF1, binds to PAP-1 and effects alternative splicing

    SciTech Connect

    Maita, Hiroshi; Kitaura, Hirotake; Ariga, Hiroyoshi . E-mail: hiro@pharm.hokudai.ac.jp; Iguchi-Ariga, Sanae M.M.

    2005-02-15

    We have reported that PAP-1, a product of a causative gene for autosomal retinitis pigmentosa, plays a role in splicing. In this study, CIR, a protein originally identified as a CBF1-interacting protein and reported to act as a transcriptional corepressor, was identified as a PAP-1 binding protein and its function as a splicing factor was investigated. In addition to a basic lysine and acidic serine-rich (BA) domain and a zinc knuckle-like motif, CIR has an arginine/serine dipeptide repeat (RS) domain in its C terminal region. The RS domain has been reported to be present in the superfamily of SR proteins, which are involved in splicing reactions. We generated CIR mutants with deletions of each BA and RS domain and studied their subcellular localizations and interactions with PAP-1 and other SR proteins, including SC35, SF2/ASF, and U2AF{sup 35}. CIR was found to interact with U2AF{sup 35} through the BA domain, with SC35 and SF2/ASF through the RS domain, and with PAP-1 outside the BA domain in vivo and in vitro. CIR was found to be colocalized with SC35 and PAP-1 in nuclear speckles. Then the effect of CIR on splicing was investigated using the E1a minigene as a reporter in HeLa cells. Ectopic expression of CIR with the E1a minigene changed the ratio of spliced isoforms of E1a that were produced by alternative selection of 5'-splice sites. These results indicate that CIR is a member of the family of SR-related proteins and that CIR plays a role in splicing regulation.

  5. UMTS rapid response real-time seismic networks: implementation and strategies at INGV

    NASA Astrophysics Data System (ADS)

    Govoni, A.; Margheriti, L.; Moretti, M.; Lauciani, V.; Sensale, G.; Bucci, A.; Criscuoli, F.

    2015-12-01

    Universal Mobile Telecommunications System (UMTS) and its evolutions are nowadays the most affordable and widespread data communication infrastructure available almost world wide. Moreover the always growing cellular phone market is pushing the development of new devices with higher performances and lower power consumption. All these characteristics make UMTS really useful for the implementation of an "easy to deploy" temporary real-time seismic station. Despite these remarkable features, there are many drawbacks that must be properly taken in account to effectively transmit the seismic data: Internet security, signal and service availability, power consumption. - Internet security: exposing seismological data services and seismic stations to the Internet is dangerous, attack prone and can lead to downtimes in the services, so we setup a dedicated Virtual Private Network (VPN) service to protect all the connected devices. - Signal and service availability: while for temporary experiment a carefull planning and an accurate site selection can minimize the problem, this is not always the case with rapid response networks. Moreover, as with any other leased line, the availability of the UMTS service during a seismic crisis is basically unpredictable. Nowadays in Italy during a major national emergency a Committee of the Italian Civil Defense ensures unified management and coordination of emergency activities. Inside it the telecom companies are committed to give support to the crisis management improving the standards in their communication networks. - Power consumption: it is at least of the order of that of the seismic station and, being related to data flow and signal quality is largely unpredictable. While the most secure option consists in adding a second independent solar power supply to the seismic station, this is not always a very convenient solution since it doubles the cost and doubles the equipment on site. We found that an acceptable trade-off is to add an

  6. The Climate Science Rapid Response Team - A Model for Science Communication

    NASA Astrophysics Data System (ADS)

    Mandia, S. A.; Abraham, J. A.; Weymann, R.; Ashley, M.

    2011-12-01

    In recent years, there have been many independent initiatives which have commenced with the goal of improving communication between scientists and the larger public. These initiatives have often been motivated by the recognition that concerns amongst scientists related to the pending threats of climate change are not universally shared by the general public. Multiple studies have conclusively demonstrated that while the vast majority of climate scientists are in broad agreement that human-emitted greenhouse gases are causing increases in the Earth's temperature, the larger public is divided. Often, this divide mirrors divides on other political, societal, economic, or scientific issues. One unique approach to improve the conveyance of the state of climate-change science to the public is reflected by a self-organized effort of scientists themselves. This approach has lead to the formation of the Climate Science Rapid Response Team (CSRRT). The mission of this organization is to provide accurate and rapid information on any climate-science topic to general media and governmental inquirers. The CSRRT currently consists of approximately 135 world-class climate scientists whose members cover the sub-disciplines of climate change and include not only the natural sciences but also economics and policy. Since its formation, the CSRRT has fielded approximately four inquires each week from institutions that include The Associated Press, ABC, CBS, CNN, BBC, New York Times, Time of London, National Public Radio, The Guardian, The Washington Post, the Los Angeles Times, the Chicago Tribune, and the U.S. Congress, among others. Members of the CSRRT have been asked to provide quotations for news stories; they have also been asked to give radio, television, or print-media interviews. Some members of the CSRRT have undergone media training to help encourage the use of jargon-free language so that clear communication with the broader public can be more successful. The response from

  7. Rapid Response Tools and Datasets for Post-fire Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Miller, Mary Ellen; MacDonald, Lee H.; Billmire, Michael; Elliot, William J.; Robichaud, Pete R.

    2016-04-01

    Rapid response is critical following natural disasters. Flooding, erosion, and debris flows are a major threat to life, property and municipal water supplies after moderate and high severity wildfires. The problem is that mitigation measures must be rapidly implemented if they are to be effective, but they are expensive and cannot be applied everywhere. Fires, runoff, and erosion risks also are highly heterogeneous in space, so there is an urgent need for a rapid, spatially-explicit assessment. Past post-fire modeling efforts have usually relied on lumped, conceptual models because of the lack of readily available, spatially-explicit data layers on the key controls of topography, vegetation type, climate, and soil characteristics. The purpose of this project is to develop a set of spatially-explicit data layers for use in process-based models such as WEPP, and to make these data layers freely available. The resulting interactive online modeling database (http://geodjango.mtri.org/geowepp/) is now operational and publically available for 17 western states in the USA. After a fire, users only need to upload a soil burn severity map, and this is combined with the pre-existing data layers to generate the model inputs needed for spatially explicit models such as GeoWEPP (Renschler, 2003). The development of this online database has allowed us to predict post-fire erosion and various remediation scenarios in just 1-7 days for six fires ranging in size from 4-540 km2. These initial successes have stimulated efforts to further improve the spatial extent and amount of data, and add functionality to support the USGS debris flow model, batch processing for Disturbed WEPP (Elliot et al., 2004) and ERMiT (Robichaud et al., 2007), and to support erosion modeling for other land uses, such as agriculture or mining. The design and techniques used to create the database and the modeling interface are readily repeatable for any area or country that has the necessary topography

  8. Group II Intron Self-Splicing.

    PubMed

    Pyle, Anna Marie

    2016-07-01

    Group II introns are large, autocatalytic ribozymes that catalyze RNA splicing and retrotransposition. Splicing by group II introns plays a major role in the metabolism of plants, fungi, and yeast and contributes to genetic variation in many bacteria. Group II introns have played a major role in genome evolution, as they are likely progenitors of spliceosomal introns, retroelements, and other machinery that controls genetic variation and stability. The structure and catalytic mechanism of group II introns have recently been elucidated through a combination of genetics, chemical biology, solution biochemistry, and crystallography. These studies reveal a dynamic machine that cycles progressively through multiple conformations as it stimulates the various stages of splicing. A central active site, containing a reactive metal ion cluster, catalyzes both steps of self-splicing. These studies provide insights into RNA structure, folding, and catalysis, as they raise new questions about the behavior of RNA machines. PMID:27391926

  9. Lessons from non-canonical splicing.

    PubMed

    Sibley, Christopher R; Blazquez, Lorea; Ule, Jernej

    2016-07-01

    Recent improvements in experimental and computational techniques that are used to study the transcriptome have enabled an unprecedented view of RNA processing, revealing many previously unknown non-canonical splicing events. This includes cryptic events located far from the currently annotated exons and unconventional splicing mechanisms that have important roles in regulating gene expression. These non-canonical splicing events are a major source of newly emerging transcripts during evolution, especially when they involve sequences derived from transposable elements. They are therefore under precise regulation and quality control, which minimizes their potential to disrupt gene expression. We explain how non-canonical splicing can lead to aberrant transcripts that cause many diseases, and also how it can be exploited for new therapeutic strategies. PMID:27240813

  10. Re-splicing of mature mRNA in cancer cells promotes activation of distant weak alternative splice sites

    PubMed Central

    Kameyama, Toshiki; Suzuki, Hitoshi; Mayeda, Akila

    2012-01-01

    Transcripts of the human tumor susceptibility gene 101 (TSG101) are aberrantly spliced in many cancers. A major aberrant splicing event on the TSG101 pre-mRNA involves joining of distant alternative 5′ and 3′ splice sites within exon 2 and exon 9, respectively, resulting in the extensive elimination of the mRNA. The estimated strengths of the alternative splice sites are much lower than those of authentic splice sites. We observed that the equivalent aberrant mRNA could be generated from an intron-less TSG101 gene expressed ectopically in breast cancer cells. Remarkably, we identified a pathway-specific endogenous lariat RNA consisting solely of exonic sequences, predicted to be generated by a re-splicing between exon 2 and exon 9 on the spliced mRNA. Our results provide evidence for a two-step splicing pathway in which the initial constitutive splicing removes all 14 authentic splice sites, thereby bringing the weak alternative splice sites into close proximity. We also demonstrate that aberrant multiple-exon skipping of the fragile histidine triad (FHIT) pre-mRNA in cancer cells occurs via re-splicing of spliced FHIT mRNA. The re-splicing of mature mRNA can potentially generate mutation-independent diversity in cancer transcriptomes. Conversely, a mechanism may exist in normal cells to prevent potentially deleterious mRNA re-splicing events. PMID:22675076

  11. A point mutation within CD45 exon A is the cause of variant CD45RA splicing in humans.

    PubMed

    Zilch, C F; Walker, A M; Timón, M; Goff, L K; Wallace, D L; Beverley, P C

    1998-01-01

    The leukocyte common antigen (CD45) is alternatively spliced, generating various isoforms expressed on hemopoietic cells. The splicing pattern of CD45 in T cells is altered in some individuals who show abnormal expression of high molecular weight isoforms containing exon A. The variant splicing pattern was shown to be associated with heterozygosity for a silent point mutation within CD45 exon A. This C to G transition is located 77 nucleotides downstream of the splice acceptor junction of exon A (198 bp total length). Here we report that this mutation is the cause of abnormal splicing. To isolate the mutant gene, somatic cell hybrids of lymphocytes with a CD45 splicing defect and a mouse lymphoid line were produced and clones expressing different isoforms of CD45 were isolated. Expression of the high molecular weight isoform containing exon A was associated with the mutation within exon A. All hybrids expressing the low molecular weight isoforms lacking exon A contained the normal allele of CD45 only. In addition, minigenes including this mutation were constructed and transfected into various cell lines (COS-7, HeLa, CHO). Semi-quantitative reverse transcription polymerase chain reaction showed an increase of more than tenfold in splicing to CD45RA (concomitant with a decrease in splicing to CD45RO) when compared with the normal minigene. Taken together, these results demonstrate a causal relationship between the mutation in CD45 exon A and the variant splicing pattern observed. The involvement of trans-acting splicing factors that interact with this region of CD45 pre-mRNA is currently under investigation. PMID:9485182

  12. Identification of alternative splicing regulators by RNA interference in Drosophila

    PubMed Central

    Park, Jung W.; Parisky, Katherine; Celotto, Alicia M.; Reenan, Robert A.; Graveley, Brenton R.

    2004-01-01

    Alternative splicing is thought to be regulated by nonspliceosomal RNA binding proteins that modulate the association of core components of the spliceosome with the pre-mRNA. Although the majority of metazoan genes encode pre-mRNAs that are alternatively spliced, remarkably few splicing regulators are currently known. Here, we used RNA interference to examine the role of >70% of the Drosophila RNA-binding proteins in regulating alternative splicing. We identified 47 proteins as splicing regulators, 26 of which have not previously been implicated in alternative splicing. Many of the regulators we identified are nonspliceosomal RNA-binding proteins. However, our screen unexpectedly revealed that altering the concentration of certain core components of the spliceosome specifically modulates alternative splicing. These results significantly expand the number of known splicing regulators and reveal an extraordinary richness in the mechanisms that regulate alternative splicing. PMID:15492211

  13. Splicing in action: assessing disease causing sequence changes

    PubMed Central

    Baralle, D; Baralle, M

    2005-01-01

    Variations in new splicing regulatory elements are difficult to identify exclusively by sequence inspection and may result in deleterious effects on precursor (pre) mRNA splicing. These mutations can result in either complete skipping of the exon, retention of the intron, or the introduction of a new splice site within an exon or intron. Sometimes mutations that do not disrupt or create a splice site activate pre-existing pseudo splice sites, consistent with the proposal that introns contain splicing inhibitory sequences. These variants can also affect the fine balance of isoforms produced by alternatively spliced exons and in consequence cause disease. Available genomic pathology data reveal that we are still partly ignorant of the basic mechanisms that underlie the pre-mRNA splicing process. The fact that human pathology can provide pointers to new modulatory elements of splicing should be exploited. PMID:16199547

  14. Does distance matter? Variations in alternative 3' splicing regulation.

    PubMed

    Akerman, Martin; Mandel-Gutfreund, Yael

    2007-01-01

    Alternative splicing constitutes a major mechanism creating protein diversity in humans. This diversity can result from the alternative skipping of entire exons or by alternative selection of the 5' or 3' splice sites that define the exon boundaries. In this study, we analyze the sequence and evolutionary characteristics of alternative 3' splice sites conserved between human and mouse genomes for distances ranging from 3 to 100 nucleotides. We show that alternative splicing events can be distinguished from constitutive splicing by a combination of properties which vary depending on the distance between the splice sites. Among the unique features of alternative 3' splice sites, we observed an unexpectedly high occurrence of events in which a polypyrimidine tract was found to overlap the upstream splice site. By applying a machine-learning approach, we show that we can successfully discriminate true alternative 3' splice sites from constitutive 3' splice sites. Finally, we propose that the unique features of the intron flanking alternative splice sites are indicative of a regulatory mechanism that is involved in splice site selection. We postulate that the process of splice site selection is influenced by the distance between the competitive splice sites. PMID:17704130

  15. Optical satellite data volcano monitoring: a multi-sensor rapid response system

    USGS Publications Warehouse

    Duda, Kenneth A.; Ramsey, Michael; Wessels, Rick L.; Dehn, Jonathan

    2009-01-01

    of the ASTER Urgent Request Protocol (URP) for natural disaster monitoring and scientific analysis, has expanded the project to other volcanoes around the world and is in progress through 2011. The focus on ASTER data is due to the suitability of the sensor for natural disaster monitoring and the availability of data. The instrument has several unique facets that make it especially attractive for volcanic observations (Ramsey and Dehn, 2004). Specifically, ASTER routinely collects data at night, it has the ability to generate digital elevation models using stereo imaging, it can collect data in various gain states to minimize data saturation, it has a cross-track pointing capability for faster targeting, and it collects data up to ±85° latitude for better global coverage. As with any optical imaging-based remote sensing, the viewing conditions can negatively impact the data quality. This impact varies across the optical and thermal infrared wavelengths as well as being a function of the specific atmospheric window within a given wavelength region. Water vapor and cloud formation can obscure surface data in the visible and near infrared (VNIR)/shortwave infrared (SWIR) region due mainly to non-selective scattering of the incident photons. In the longer wavelengths of the thermal infrared (TIR), scattering is less of an issue, but heavy cloud cover can still obscure the ground due to atmospheric absorption. Thin clouds can be optically-transparent in the VNIR and TIR regions, but can cause errors in the extracted surface reflectance or derived surface temperatures. In regions prone to heavy cloud cover, optical remote sensing can be improved through increased temporal resolution. As more images are acquired in a given time period the chances of a clear image improve dramatically. The Advanced Very High Resolution Radiometer (AVHRR) routine monitoring, which commonly collects 4-6 images per day of any north Pacific volcano, takes advantage of this fact. The rapid

  16. Alternative Splice in Alternative Lice.

    PubMed

    Tovar-Corona, Jaime M; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P; Clark, John M; Reynolds, Stuart E; Pittendrigh, Barry R; Feil, Edward J; Urrutia, Araxi O

    2015-10-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. PMID:26169943

  17. Splicing therapy for neuromuscular disease.

    PubMed

    Douglas, Andrew G L; Wood, Matthew J A

    2013-09-01

    Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA) are two of the most common inherited neuromuscular diseases in humans. Both conditions are fatal and no clinically available treatments are able to significantly alter disease course in either case. However, by manipulation of pre-mRNA splicing using antisense oligonucleotides, defective transcripts from the DMD gene and from the SMN2 gene in SMA can be modified to once again produce protein and restore function. A large number of in vitro and in vivo studies have validated the applicability of this approach and an increasing number of preliminary clinical trials have either been completed or are under way. Several different oligonucleotide chemistries can be used for this purpose and various strategies are being developed to facilitate increased delivery efficiency and prolonged therapeutic effect. As these novel therapeutic compounds start to enter the clinical arena, attention must also be drawn to the question of how best to facilitate the clinical development of such personalised genetic therapies and how best to implement their provision. PMID:23631896

  18. Alternative Splice in Alternative Lice

    PubMed Central

    Tovar-Corona, Jaime M.; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P.; Clark, John M.; Reynolds, Stuart E.; Pittendrigh, Barry R.; Feil, Edward J.; Urrutia, Araxi O.

    2015-01-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. PMID:26169943

  19. Alternative Splicing Signatures in RNA-seq Data: Percent Spliced in (PSI).

    PubMed

    Schafer, Sebastian; Miao, Kui; Benson, Craig C; Heinig, Matthias; Cook, Stuart A; Hubner, Norbert

    2015-01-01

    Thousands of alternative exons are spliced out of messenger RNA to increase protein diversity. High-throughput sequencing of short cDNA fragments (RNA-seq) generates a genome-wide snapshot of these post-transcriptional processes. RNA-seq reads yield insights into the regulation of alternative splicing by revealing the usage of known or unknown splice sites as well as the expression level of exons. Constitutive exons are never covered by split alignments, whereas alternative exonic parts are located within highly expressed splicing junctions. The ratio between reads including or excluding exons, also known as percent spliced in index (PSI), indicates how efficiently sequences of interest are spliced into transcripts. This protocol describes a method to calculate the PSI without prior knowledge of splicing patterns. It provides a quantitative, global assessment of exon usage that can be integrated with other tools that identify differential isoform processing. Novel, complex splicing events along a genetic locus can be visualized in an exon-centric manner and compared across conditions. PMID:26439713

  20. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    SciTech Connect

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina; Redal, María Ana; Alghamdi, Mansour A.; Khoder, Mamdouh I.; Shamy, Magdy; Muñoz, Manuel J.; and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  1. BRCA1 EXON 11, a CERES (composite regulatory element of splicing) element involved in splice regulation.

    PubMed

    Tammaro, Claudia; Raponi, Michela; Wilson, David I; Baralle, Diana

    2014-01-01

    Unclassified variants (UV) of BRCA1 can affect normal pre-mRNA splicing. Here, we investigate the UV c.693G>A, a "silent" change in BRCA1 exon 11, which we have found induces aberrant splicing in patient carriers and in vitro. Using a minigene assay, we show that the UV c.693G>A has a strong effect on the splicing isoform ratio of BRCA1. Systematic site-directed mutagenesis of the area surrounding the nucleotide position c.693G>A induced variable changes in the level of exon 11 inclusion/exclusion in the mRNA, pointing to the presence of a complex regulatory element with overlapping enhancer and silencer functions. Accordingly, protein binding analysis in the region detected several splicing regulatory factors involved, including SRSF1, SRSF6 and SRSF9, suggesting that this sequence represents a composite regulatory element of splicing (CERES). PMID:25056543

  2. RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.

    PubMed

    Xiong, Hui Y; Alipanahi, Babak; Lee, Leo J; Bretschneider, Hannes; Merico, Daniele; Yuen, Ryan K C; Hua, Yimin; Gueroussov, Serge; Najafabadi, Hamed S; Hughes, Timothy R; Morris, Quaid; Barash, Yoseph; Krainer, Adrian R; Jojic, Nebojsa; Scherer, Stephen W; Blencowe, Benjamin J; Frey, Brendan J

    2015-01-01

    To facilitate precision medicine and whole-genome annotation, we developed a machine-learning technique that scores how strongly genetic variants affect RNA splicing, whose alteration contributes to many diseases. Analysis of more than 650,000 intronic and exonic variants revealed widespread patterns of mutation-driven aberrant splicing. Intronic disease mutations that are more than 30 nucleotides from any splice site alter splicing nine times as often as common variants, and missense exonic disease mutations that have the least impact on protein function are five times as likely as others to alter splicing. We detected tens of thousands of disease-causing mutations, including those involved in cancers and spinal muscular atrophy. Examination of intronic and exonic variants found using whole-genome sequencing of individuals with autism revealed misspliced genes with neurodevelopmental phenotypes. Our approach provides evidence for causal variants and should enable new discoveries in precision medicine. PMID:25525159

  3. Vitamin D and alternative splicing of RNA

    PubMed Central

    Zhou, Rui; Chun, Rene F.; Lisse, Thomas S.; Garcia, Alejandro J.; Xu, Jianzhong; Adams, John S.; Hewison, Martin

    2014-01-01

    The active form of vitamin D (1α,25-dihydroxyvitamin D, 1,25(OH)2D) exerts its genomic effects via binding to a nuclear high-affinity vitamin D receptor (VDR). Recent deep sequencing analysis of VDR binding locations across the complete genome has significantly expanded our understanding of the actions of vitamin D and VDR on gene transcription. However, these studies have also promoted appreciation of the extra-transcriptional impact of vitamin D on gene expression. It is now clear that vitamin D interacts with the epigenome via effects on DNA methylation, histone acetylation, and microRNA generation to maintain normal biological functions. There is also increasing evidence that vitamin D can influence pre-mRNA constitutive splicing and alternative splicing, although the mechanism for this remains unclear. Pre-mRNA splicing has long been thought to be a post-transcription RNA processing event, but current data indicate that this occurs co-transcriptionally. Several steroid hormones have been recognized to coordinately control gene transcription and pre-mRNA splicing through the recruitment of nuclear receptor co-regulators that can both control gene transcription and splicing. The current review will discuss this concept with specific reference to vitamin D, and the potential role of heterogeneous nuclear ribonucleoprotein C (hnRNPC), a nuclear factor with an established function in RNA splicing. hnRNPC, has been shown to be involved in the VDR transcriptional complex as a vitamin D-response element-binding protein (VDRE-BP), and may act as a coupling factor linking VDR-directed gene transcription with RNA splicing. In this way hnRNPC may provide an additional mechanism for the fine-tuning of vitamin D-regulated target gene expression. PMID:25447737

  4. Tau exon 10 alternative splicing and tauopathies

    PubMed Central

    Liu, Fei; Gong, Cheng-Xin

    2008-01-01

    Abnormalities of microtubule-associated protein tau play a central role in neurofibrillary degeneration in several neurodegenerative disorders that collectively called tauopathies. Six isoforms of tau are expressed in adult human brain, which result from alternative splicing of pre-mRNA generated from a single tau gene. Alternative splicing of tau exon 10 results in tau isoforms containing either three or four microtubule-binding repeats (3R-tau and 4R-tau, respectively). Approximately equal levels of 3R-tau and 4R-tau are expressed in normal adult human brain, but the 3R-tau/4R-tau ratio is altered in the brains in several tauopathies. Discovery of silence mutations and intronic mutations of tau gene in some individuals with frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), which only disrupt tau exon 10 splicing but do not alter tau's primary sequence, demonstrates that dysregulation of tau exon 10 alternative splicing and consequently of 3R-tau/4R-tau balance is sufficient to cause neurodegeneration and dementia. Here, we review the gene structure, transcripts and protein isoforms of tau, followed by the regulation of exon 10 splicing that determines the expression of 3R-tau or 4R-tau. Finally, dysregulation of exon 10 splicing of tau in several tauopathies is discussed. Understanding the molecular mechanisms by which tau exon 10 splicing is regulated and how it is disrupted in tauopathies will provide new insight into the mechanisms of these tauopathies and help identify new therapeutic targets to treat these disorders. PMID:18616804

  5. Variation in alternative splicing across human tissues

    PubMed Central

    Yeo, Gene; Holste, Dirk; Kreiman, Gabriel; Burge, Christopher B

    2004-01-01

    Background Alternative pre-mRNA splicing (AS) is widely used by higher eukaryotes to generate different protein isoforms in specific cell or tissue types. To compare AS events across human tissues, we analyzed the splicing patterns of genomically aligned expressed sequence tags (ESTs) derived from libraries of cDNAs from different tissues. Results Controlling for differences in EST coverage among tissues, we found that the brain and testis had the highest levels of exon skipping. The most pronounced differences between tissues were seen for the frequencies of alternative 3' splice site and alternative 5' splice site usage, which were about 50 to 100% higher in the liver than in any other human tissue studied. Quantifying differences in splice junction usage, the brain, pancreas, liver and the peripheral nervous system had the most distinctive patterns of AS. Analysis of available microarray expression data showed that the liver had the most divergent pattern of expression of serine-arginine protein and heterogeneous ribonucleoprotein genes compared to the other human tissues studied, possibly contributing to the unusually high frequency of alternative splice site usage seen in liver. Sequence motifs enriched in alternative exons in genes expressed in the brain, testis and liver suggest specific splicing factors that may be important in AS regulation in these tissues. Conclusions This study distinguishes the human brain, testis and liver as having unusually high levels of AS, highlights differences in the types of AS occurring commonly in different tissues, and identifies candidate cis-regulatory elements and trans-acting factors likely to have important roles in tissue-specific AS in human cells. PMID:15461793

  6. The behavior of bonded doubler splices for composite sandwich panels

    NASA Technical Reports Server (NTRS)

    Zeller, T. A.; Weisahaar, T. A.

    1980-01-01

    The results of an investigation into the behavior of adhesively bonded doubler splices of two composite material sandwich panels are presented. The splices are studied from three approaches: analytical; numerical (finite elements); and experimental. Several parameters that characterize the splice are developed to determine their influence upon joint strength. These parameters are: doubler overlap length; core stiffness; laminate bending stiffness; the size of the gap between the spliced sandwich panels; and room and elevated temperatures. Similarities and contrasts between these splices and the physically similar single and double lap joints are discussed. The results of this investigation suggest several possible approaches to improving the strength of the sandwich splices.

  7. The HP1 homolog Rhino anchors a nuclear complex that suppresses piRNA precursor splicing

    PubMed Central

    Zhang, Zhao; Wang, Jie; Schultz, Nadine; Zhang, Fan; Parhad, Swapnil S.; Tu, Shikui; Vreven, Thom; Zamore, Phillip D.; Weng, Zhiping; Theurkauf, William E.

    2014-01-01

    Summary piRNAs guide an adaptive genome defense system that silences transposons during germline development. The Drosophila HP1 homolog Rhino is required for germline piRNA production. We show that Rhino binds specifically to the heterochromatic clusters that produce piRNA precursors, and that binding directly correlates with piRNA production. Rhino co-localizes to germline nuclear foci with Rai1/DXO related protein Cuff and the DEAD box protein UAP56, which are also required for germline piRNA production. RNA sequencing indicates that most cluster transcripts are not spliced, and that rhino, cuff and uap56 mutations increase expression of spliced cluster transcripts over 100 fold. LacI∷Rhino fusion protein binding suppresses splicing of a reporter transgene, and is sufficient to trigger piRNA production from a trans combination of sense and antisense reporters. We therefore propose that Rhino anchors a nuclear complex that suppresses cluster transcript splicing, and speculate that stalled splicing differentiates piRNA precursors from mRNAs. PMID:24906152

  8. The in vivo dynamics of TCERG1, a factor that couples transcriptional elongation with splicing.

    PubMed

    Sánchez-Hernández, Noemí; Boireau, Stéphanie; Schmidt, Ute; Muñoz-Cobo, Juan Pablo; Hernández-Munain, Cristina; Bertrand, Edouard; Suñé, Carlos

    2016-04-01

    Coupling between transcription and RNA processing is key for gene regulation. Using live-cell photobleaching techniques, we investigated the factor TCERG1, which coordinates transcriptional elongation with splicing. We demonstrate that TCERG1 is highly mobile in the nucleoplasm and that this mobility is slightly decreased when it is associated with speckles. Dichloro-1-β-D-ribofuranosylbenzimidazole (DRB) but not α-amanitin treatment reduced the mobility of TCERG1, which suggests interaction with paused transcription elongation complexes. We found that TCERG1 mobility is rapid at the transcription site (TS) of a reporter that splices post-transcriptionally and that TCERG1 is recruited to the active TS independent of the CTD of RNAPII, thus excluding phosphorylated CTD as a requirement for recruiting this factor to the TS. Importantly, the mobility of TCERG1 is reduced when the reporter splices cotranscriptionally, which suggests that TCERG1 forms new macromolecular complexes when splicing occurs cotranscriptionally. In this condition, spliceostatin A has no effect, indicating that TCERG1 rapidly binds and dissociates from stalled spliceosomal complexes and that the mobility properties of TCERG1 do not depend on events occurring after the initial spliceosome formation. Taken together, these data suggest that TCERG1 binds independently to elongation and splicing complexes, thus performing their coupling by transient interactions rather than by stable association with one or the other complexes. This finding has conceptual implications for understanding the coupling between transcription and RNA processing. PMID:26873599

  9. Gene and alternative splicing annotation with AIR

    PubMed Central

    Florea, Liliana; Di Francesco, Valentina; Miller, Jason; Turner, Russell; Yao, Alison; Harris, Michael; Walenz, Brian; Mobarry, Clark; Merkulov, Gennady V.; Charlab, Rosane; Dew, Ian; Deng, Zuoming; Istrail, Sorin; Li, Peter; Sutton, Granger

    2005-01-01

    Designing effective and accurate tools for identifying the functional and structural elements in a genome remains at the frontier of genome annotation owing to incompleteness and inaccuracy of the data, limitations in the computational models, and shifting paradigms in genomics, such as alternative splicing. We present a methodology for the automated annotation of genes and their alternatively spliced mRNA transcripts based on existing cDNA and protein sequence evidence from the same species or projected from a related species using syntenic mapping information. At the core of the method is the splice graph, a compact representation of a gene, its exons, introns, and alternatively spliced isoforms. The putative transcripts are enumerated from the graph and assigned confidence scores based on the strength of sequence evidence, and a subset of the high-scoring candidates are selected and promoted into the annotation. The method is highly selective, eliminating the unlikely candidates while retaining 98% of the high-quality mRNA evidence in well-formed transcripts, and produces annotation that is measurably more accurate than some evidence-based gene sets. The process is fast, accurate, and fully automated, and combines the traditionally distinct gene annotation and alternative splicing detection processes in a comprehensive and systematic way, thus considerably aiding in the ensuing manual curation efforts. PMID:15632090

  10. Phosphoregulation of Ire1 RNase splicing activity

    PubMed Central

    Prischi, Filippo; Nowak, Piotr R.; Carrara, Marta; Ali, Maruf M. U.

    2014-01-01

    Ire1 is activated in response to accumulation of misfolded proteins within the endoplasmic reticulum as part of the unfolded protein response (UPR). It is a unique enzyme, possessing both kinase and RNase activity that is required for specific splicing of Xbp1 mRNA leading to UPR activation. How phosphorylation impacts on the Ire1 splicing activity is unclear. In this study, we isolate distinct phosphorylated species of Ire1 and assess their effects on RNase splicing both in vitro and in vivo. We find that phosphorylation within the kinase activation loop significantly increases RNase splicing in vitro. Correspondingly, mutants of Ire1 that cannot be phosphorylated on the activation loop show decreased specific Xbp1 and promiscuous RNase splicing activity relative to wild-type Ire1 in cells. These data couple the kinase phosphorylation reaction to the activation state of the RNase, suggesting that phosphorylation of the activation loop is an important step in Ire1-mediated UPR activation. PMID:24704861

  11. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells.

    PubMed

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina; Redal, María Ana; Alghamdi, Mansour A; Khoder, Mamdouh I; Shamy, Magdy; Muñoz, Manuel J; Kornblihtt, Alberto R

    2015-07-01

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5' untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. PMID:25863591

  12. Dysregulation of splicing proteins in head and neck squamous cell carcinoma.

    PubMed

    Radhakrishnan, Aneesha; Nanjappa, Vishalakshi; Raja, Remya; Sathe, Gajanan; Chavan, Sandip; Nirujogi, Raja Sekhar; Patil, Arun H; Solanki, Hitendra; Renuse, Santosh; Sahasrabuddhe, Nandini A; Mathur, Premendu P; Prasad, T S Keshava; Kumar, Prashant; Califano, Joseph A; Sidransky, David; Pandey, Akhilesh; Gowda, Harsha; Chatterjee, Aditi

    2016-02-01

    ABSRTRACT Signaling plays an important role in regulating all cellular pathways. Altered signaling is one of the hallmarks of cancers. Phosphoproteomics enables interrogation of kinase mediated signaling pathways in biological systems. In cancers, this approach can be utilized to identify aberrantly activated pathways that potentially drive proliferation and tumorigenesis. To identify signaling alterations in head and neck squamous cell carcinoma (HNSCC), we carried out proteomic and phosphoproteomic analysis of HNSCC cell lines using a combination of tandem mass tag (TMT) labeling approach and titanium dioxide-based enrichment. We identified 4,920 phosphosites corresponding to 2,212 proteins in six HNSCC cell lines compared to a normal oral cell line. Our data indicated significant enrichment of proteins associated with splicing. We observed hyperphosphorylation of SRSF protein kinase 2 (SRPK2) and its downstream substrates in HNSCC cell lines. SRPK2 is a splicing kinase, known to phosphorylate serine/arginine (SR) rich domain proteins and regulate splicing process in eukaryotes. Although genome-wide studies have reported the contribution of alternative splicing events of several genes in the progression of cancer, the involvement of splicing kinases in HNSCC is not known. In this study, we studied the role of SRPK2 in HNSCC. Inhibition of SRPK2 resulted in significant decrease in colony forming and invasive ability in a panel of HNSCC cell lines. Our results indicate that phosphorylation of SRPK2 plays a crucial role in the regulation of splicing process in HNSCC and that splicing kinases can be developed as a new class of therapeutic target in HNSCC. PMID:26853621

  13. Compensatory signals associated with the activation of human GC 5′ splice sites

    PubMed Central

    Kralovicova, Jana; Hwang, Gyulin; Asplund, A. Charlotta; Churbanov, Alexander; Smith, C. I. Edvard; Vorechovsky, Igor

    2011-01-01

    GC 5′ splice sites (5′ss) are present in ∼1% of human introns, but factors promoting their efficient selection are poorly understood. Here, we describe a case of X-linked agammaglobulinemia resulting from a GC 5′ss activated by a mutation in BTK intron 3. This GC 5′ss was intrinsically weak, yet it was selected in >90% primary transcripts in the presence of a strong and intact natural GT counterpart. We show that efficient selection of this GC 5′ss required a high density of GAA/CAA-containing splicing enhancers in the exonized segment and was promoted by SR proteins 9G8, Tra2β and SC35. The GC 5′ss was efficiently inhibited by splice-switching oligonucleotides targeting either the GC 5′ss itself or the enhancer. Comprehensive analysis of natural GC-AG introns and previously reported pathogenic GC 5′ss showed that their efficient activation was facilitated by higher densities of splicing enhancers and lower densities of silencers than their GT 5′ss equivalents. Removal of the GC-AG introns was promoted to a minor extent by the splice-site strength of adjacent exons and inhibited by flanking Alu repeats, with the first downstream Alus located on average at a longer distance from the GC 5′ss than other transposable elements. These results provide new insights into the splicing code that governs selection of noncanonical splice sites. PMID:21609956

  14. Skipping of exons by premature termination of transcription and alternative splicing within intron-5 of the sheep SCF gene: a novel splice variant.

    PubMed

    Saravanaperumal, Siva Arumugam; Pediconi, Dario; Renieri, Carlo; La Terza, Antonietta

    2012-01-01

    Stem cell factor (SCF) is a growth factor, essential for haemopoiesis, mast cell development and melanogenesis. In the hematopoietic microenvironment (HM), SCF is produced either as a membrane-bound (-) or soluble (+) forms. Skin expression of SCF stimulates melanocyte migration, proliferation, differentiation, and survival. We report for the first time, a novel mRNA splice variant of SCF from the skin of white merino sheep via cloning and sequencing. Reverse transcriptase (RT)-PCR and molecular prediction revealed two different cDNA products of SCF. Full-length cDNA libraries were enriched by the method of rapid amplification of cDNA ends (RACE-PCR). Nucleotide sequencing and molecular prediction revealed that the primary 1519 base pair (bp) cDNA encodes a precursor protein of 274 amino acids (aa), commonly known as 'soluble' isoform. In contrast, the shorter (835 and/or 725 bp) cDNA was found to be a 'novel' mRNA splice variant. It contains an open reading frame (ORF) corresponding to a truncated protein of 181 aa (vs 245 aa) with an unique C-terminus lacking the primary proteolytic segment (28 aa) right after the D(175)G site which is necessary to produce 'soluble' form of SCF. This alternative splice (AS) variant was explained by the complete nucleotide sequencing of splice junction covering exon 5-intron (5)-exon 6 (948 bp) with a premature termination codon (PTC) whereby exons 6 to 9/10 are skipped (Cassette Exon, CE 6-9/10). We also demonstrated that the Northern blot analysis at transcript level is mediated via an intron-5 splicing event. Our data refine the structure of SCF gene; clarify the presence (+) and/or absence (-) of primary proteolytic-cleavage site specific SCF splice variants. This work provides a basis for understanding the functional role and regulation of SCF in hair follicle melanogenesis in sheep beyond what was known in mice, humans and other mammals. PMID:22719917

  15. The neuronal splicing factor Nova controls alternative splicing in N-type and P-type CaV2 calcium channels.

    PubMed

    Allen, Summer E; Darnell, Robert B; Lipscombe, Diane

    2010-01-01

    Many cellular processes are involved in optimizing protein function for specific neuronal tasks; here we focus on alternative pre-mRNA splicing. Alternative pre-mRNA splicing gives cells the capacity to modify and selectively re-balance their existing pool of transcripts in a coordinated way across multiple mRNAs, thereby effecting relatively rapid and relatively stable changes in protein activity. Here we report on and discuss the coordinated regulation of two sites of alternative splicing, e24a and e31a, in P-type CaV2.1 and N-type CaV2.2 channels. These two exons encode 4 and 2 amino acids, respectively, in the extracellular linker regions between transmembrane spanning segments S3 and S4 in domains III and IV of each CaV2 subunit. Recent genome-wide screens of splicing factor-RNA binding events by Darnell and colleagues show that Nova-2 promotes inclusion of e24a in CaV2.2 mRNAs in brain. We review these studies and show that a homologous e24a is present in theCaV2 .1 gene, Cacna1a, and that it is expressed in different regions of the nervous system. Nova-2 enhances inclusion of e24a but represses e31a inclusion in CaV2.1 and CaV2.2 mRNAs in brain. It is likely that coordinated alternative pre-mRNA splicing across related CaV2 genes by common splicing factors, allows neurons to orchestrate changes in synaptic protein function while maintaining a balanced and functioning system. PMID:21150296

  16. Analysis of differential splicing suggests different modes of short-term splicing regulation

    PubMed Central

    Topa, Hande; Honkela, Antti

    2016-01-01

    Motivation: Alternative splicing is an important mechanism in which the regions of pre-mRNAs are differentially joined in order to form different transcript isoforms. Alternative splicing is involved in the regulation of normal physiological functions but also linked to the development of diseases such as cancer. We analyse differential expression and splicing using RNA-sequencing time series in three different settings: overall gene expression levels, absolute transcript expression levels and relative transcript expression levels. Results: Using estrogen receptor α signaling response as a model system, our Gaussian process-based test identifies genes with differential splicing and/or differentially expressed transcripts. We discover genes with consistent changes in alternative splicing independent of changes in absolute expression and genes where some transcripts change whereas others stay constant in absolute level. The results suggest classes of genes with different modes of alternative splicing regulation during the experiment. Availability and Implementation: R and Matlab codes implementing the method are available at https://github.com/PROBIC/diffsplicing. An interactive browser for viewing all model fits is available at http://users.ics.aalto.fi/hande/splicingGP/ Contact: hande.topa@helsinki.fi or antti.honkela@helsinki.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27307611

  17. Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes.

    PubMed

    Ebstein, F; Textoris-Taube, K; Keller, C; Golnik, R; Vigneron, N; Van den Eynde, B J; Schuler-Thurner, B; Schadendorf, D; Lorenz, F K M; Uckert, W; Urban, S; Lehmann, A; Albrecht-Koepke, N; Janek, K; Henklein, P; Niewienda, A; Kloetzel, P M; Mishto, M

    2016-01-01

    Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100(mel)47-52/40-42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100(mel)47-52/40-42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8(+) T cell response. Importantly, we demonstrate that different gp100(mel)-derived spliced epitopes are generated and presented to CD8(+) T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100(mel)-derived spliced epitopes trigger activation of CD8(+) T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119

  18. SeeSite: Characterizing Relationships between Splice Junctions and Splicing Enhancers.

    PubMed

    Lo, Christine; Kakaradov, Boyko; Lokshtanov, Daniel; Boucher, Christina

    2014-01-01

    RNA splicing is a cellular process driven by the interaction between numerous regulatory sequences and binding sites, however, such interactions have been primarily explored by laboratory methods since computational tools largely ignore the relationship between different splicing elements. Current computational methods identify either splice sites or other regulatory sequences, such as enhancers and silencers. We present a novel approach for characterizing co-occurring relationships between splice site motifs and splicing enhancers. Our approach relies on an efficient algorithm for approximately solving Consensus Sequence with Outliers , an NP-complete string clustering problem. In particular, we give an algorithm for this problem that outputs near-optimal solutions in polynomial time. To our knowledge, this is the first formulation and computational attempt for detecting co-occurring sequence elements in RNA sequence data. Further, we demonstrate that SeeSite is capable of showing that certain ESEs are preferentially associated with weaker splice sites, and that there exists a co-occurrence relationship with splice site motifs. PMID:26356335

  19. Proteasomes generate spliced epitopes by two different mechanisms and as efficiently as non-spliced epitopes

    PubMed Central

    Ebstein, F.; Textoris-Taube, K.; Keller, C.; Golnik, R.; Vigneron, N.; Van den Eynde, B. J.; Schuler-Thurner, B.; Schadendorf, D.; Lorenz, F. K. M.; Uckert, W.; Urban, S.; Lehmann, A.; Albrecht-Koepke, N.; Janek, K.; Henklein, P.; Niewienda, A.; Kloetzel, P. M.; Mishto, M.

    2016-01-01

    Proteasome-catalyzed peptide splicing represents an additional catalytic activity of proteasomes contributing to the pool of MHC-class I-presented epitopes. We here biochemically and functionally characterized a new melanoma gp100 derived spliced epitope. We demonstrate that the gp100mel47–52/40–42 antigenic peptide is generated in vitro and in cellulo by a not yet described proteasomal condensation reaction. gp100mel47–52/40–42 generation is enhanced in the presence of the β5i/LMP7 proteasome-subunit and elicits a peptide-specific CD8+ T cell response. Importantly, we demonstrate that different gp100mel-derived spliced epitopes are generated and presented to CD8+ T cells with efficacies comparable to non-spliced canonical tumor epitopes and that gp100mel-derived spliced epitopes trigger activation of CD8+ T cells found in peripheral blood of half of the melanoma patients tested. Our data suggest that both transpeptidation and condensation reactions contribute to the frequent generation of spliced epitopes also in vivo and that their immune relevance may be comparable to non-spliced epitopes. PMID:27049119

  20. IntSplice: prediction of the splicing consequences of intronic single-nucleotide variations in the human genome.

    PubMed

    Shibata, Akihide; Okuno, Tatsuya; Rahman, Mohammad Alinoor; Azuma, Yoshiteru; Takeda, Jun-Ichi; Masuda, Akio; Selcen, Duygu; Engel, Andrew G; Ohno, Kinji

    2016-07-01

    Precise spatiotemporal regulation of splicing is mediated by splicing cis-elements on pre-mRNA. Single-nucleotide variations (SNVs) affecting intronic cis-elements possibly compromise splicing, but no efficient tool has been available to identify them. Following an effect-size analysis of each intronic nucleotide on annotated alternative splicing, we extracted 105 parameters that could affect the strength of the splicing signals. However, we could not generate reliable support vector regression models to predict the percent-splice-in (PSI) scores for normal human tissues. Next, we generated support vector machine (SVM) models using 110 parameters to directly differentiate pathogenic SNVs in the Human Gene Mutation Database and normal SNVs in the dbSNP database, and we obtained models with a sensitivity of 0.800±0.041 (mean and s.d.) and a specificity of 0.849±0.021. Our IntSplice models were more discriminating than SVM models that we generated with Shapiro-Senapathy score and MaxEntScan::score3ss. We applied IntSplice to a naturally occurring and nine artificial intronic mutations in RAPSN causing congenital myasthenic syndrome. IntSplice correctly predicted the splicing consequences for nine of the ten mutants. We created a web service program, IntSplice (http://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice) to predict splicing-affecting SNVs at intronic positions from -50 to -3. PMID:27009626

  1. Tau Splicing and the Intricacies of Dementia

    PubMed Central

    Andreadis, Athena

    2011-01-01

    Tau is a microtubule associated protein that fulfills several functions critical for neuronal formation and health. Tau discharges its functions by producing multiple isoforms via regulated alternative splicing. These isoforms modulate tau function in normal brain by altering the domains of the protein, thereby influencing its localization, conformation and post-translational modifications and hence its availability and affinity for microtubules and other ligands. Disturbances in tau expression result in disruption of the neuronal cytoskeleton and formation of tau structures (neurofibrillary tangles) found in brains of dementia sufferers. More specifically, aberrations in tau splicing regulation directly cause several neurodegenerative diseases which lead to dementia. In this review, I present our cumulative knowledge of tau splicing regulation in connection with neurodegeneration and also briefly go over the still-extensive list of questions that are connected to tau (dys)function. PMID:21604267

  2. Exon circularization requires canonical splice signals.

    PubMed

    Starke, Stefan; Jost, Isabelle; Rossbach, Oliver; Schneider, Tim; Schreiner, Silke; Hung, Lee-Hsueh; Bindereif, Albrecht

    2015-01-01

    Circular RNAs (circRNAs), an abundant class of noncoding RNAs in higher eukaryotes, are generated from pre-mRNAs by circularization of adjacent exons. Using a set of 15 circRNAs, we demonstrated their cell-type-specific expression and circular versus linear processing in mammalian cells. Northern blot analysis combined with RNase H cleavage conclusively proved a circular configuration for two examples, LPAR1 and HIPK3. To address the circularization mechanism, we analyzed the sequence requirements using minigenes derived from natural circRNAs. Both canonical splice sites are required for circularization, although they vary in flexibility and potential use of cryptic sites. Surprisingly, we found that no specific circRNA exon sequence is necessary and that potential flanking intron structures can modulate circularization efficiency. In combination with splice inhibitor assays, our results argue that the canonical spliceosomal machinery functions in circRNA biogenesis, constituting an alternative splicing mode. PMID:25543144

  3. Origin of Spliceosomal Introns and Alternative Splicing

    PubMed Central

    Irimia, Manuel; Roy, Scott William

    2014-01-01

    In this work we review the current knowledge on the prehistory, origins, and evolution of spliceosomal introns. First, we briefly outline the major features of the different types of introns, with particular emphasis on the nonspliceosomal self-splicing group II introns, which are widely thought to be the ancestors of spliceosomal introns. Next, we discuss the main scenarios proposed for the origin and proliferation of spliceosomal introns, an event intimately linked to eukaryogenesis. We then summarize the evidence that suggests that the last eukaryotic common ancestor (LECA) had remarkably high intron densities and many associated characteristics resembling modern intron-rich genomes. From this intron-rich LECA, the different eukaryotic lineages have taken very distinct evolutionary paths leading to profoundly diverged modern genome structures. Finally, we discuss the origins of alternative splicing and the qualitative differences in alternative splicing forms and functions across lineages. PMID:24890509

  4. SPA: A Probabilistic Algorithm for Spliced Alignment

    PubMed Central

    van Nimwegen, Erik; Paul, Nicodeme; Sheridan, Robert; Zavolan, Mihaela

    2006-01-01

    Recent large-scale cDNA sequencing efforts show that elaborate patterns of splice variation are responsible for much of the proteome diversity in higher eukaryotes. To obtain an accurate account of the repertoire of splice variants, and to gain insight into the mechanisms of alternative splicing, it is essential that cDNAs are very accurately mapped to their respective genomes. Currently available algorithms for cDNA-to-genome alignment do not reach the necessary level of accuracy because they use ad hoc scoring models that cannot correctly trade off the likelihoods of various sequencing errors against the probabilities of different gene structures. Here we develop a Bayesian probabilistic approach to cDNA-to-genome alignment. Gene structures are assigned prior probabilities based on the lengths of their introns and exons, and based on the sequences at their splice boundaries. A likelihood model for sequencing errors takes into account the rates at which misincorporation, as well as insertions and deletions of different lengths, occurs during sequencing. The parameters of both the prior and likelihood model can be automatically estimated from a set of cDNAs, thus enabling our method to adapt itself to different organisms and experimental procedures. We implemented our method in a fast cDNA-to-genome alignment program, SPA, and applied it to the FANTOM3 dataset of over 100,000 full-length mouse cDNAs and a dataset of over 20,000 full-length human cDNAs. Comparison with the results of four other mapping programs shows that SPA produces alignments of significantly higher quality. In particular, the quality of the SPA alignments near splice boundaries and SPA's mapping of the 5′ and 3′ ends of the cDNAs are highly improved, allowing for more accurate identification of transcript starts and ends, and accurate identification of subtle splice variations. Finally, our splice boundary analysis on the human dataset suggests the existence of a novel non-canonical splice

  5. 30 CFR 77.602 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permanent splicing of trailing cables. 77.602... COAL MINES Trailing Cables § 77.602 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be: (a) Mechanically strong with adequate electrical conductivity;...

  6. 46 CFR 111.60-19 - Cable splices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... with section 25.11 of IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2012-10-01 2012-10-01 false Cable splices. 111.60-19 Section 111.60-19 Shipping... REQUIREMENTS Wiring Materials and Methods § 111.60-19 Cable splices. (a) A cable must not be spliced in...

  7. 30 CFR 75.603 - Temporary splice of trailing cable.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Temporary splice of trailing cable. 75.603... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.603 Temporary splice of trailing cable. One temporary splice may be made in any trailing cable. Such trailing cable...

  8. 30 CFR 75.603 - Temporary splice of trailing cable.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Temporary splice of trailing cable. 75.603... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.603 Temporary splice of trailing cable. One temporary splice may be made in any trailing cable. Such trailing cable...

  9. 30 CFR 75.604 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Permanent splicing of trailing cables. 75.604... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.604 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be:...

  10. 30 CFR 75.604 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Permanent splicing of trailing cables. 75.604... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.604 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be:...

  11. 30 CFR 77.602 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Permanent splicing of trailing cables. 77.602... COAL MINES Trailing Cables § 77.602 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be: (a) Mechanically strong with adequate electrical conductivity;...

  12. 30 CFR 75.603 - Temporary splice of trailing cable.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Temporary splice of trailing cable. 75.603... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.603 Temporary splice of trailing cable. One temporary splice may be made in any trailing cable. Such trailing cable...

  13. 30 CFR 77.602 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Permanent splicing of trailing cables. 77.602... COAL MINES Trailing Cables § 77.602 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be: (a) Mechanically strong with adequate electrical conductivity;...

  14. 46 CFR 111.60-19 - Cable splices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... with section 25.11 of IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2013-10-01 2013-10-01 false Cable splices. 111.60-19 Section 111.60-19 Shipping... REQUIREMENTS Wiring Materials and Methods § 111.60-19 Cable splices. (a) A cable must not be spliced in...

  15. 30 CFR 75.604 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Permanent splicing of trailing cables. 75.604... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.604 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be:...

  16. 46 CFR 111.60-19 - Cable splices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... with section 25.11 of IEEE 45-2002 (incorporated by reference; see 46 CFR 110.10-1). ... 46 Shipping 4 2011-10-01 2011-10-01 false Cable splices. 111.60-19 Section 111.60-19 Shipping... REQUIREMENTS Wiring Materials and Methods § 111.60-19 Cable splices. (a) A cable must not be spliced in...

  17. 30 CFR 75.604 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Permanent splicing of trailing cables. 75.604... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.604 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be:...

  18. 30 CFR 77.602 - Permanent splicing of trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Permanent splicing of trailing cables. 77.602... COAL MINES Trailing Cables § 77.602 Permanent splicing of trailing cables. When permanent splices in trailing cables are made, they shall be: (a) Mechanically strong with adequate electrical conductivity;...

  19. 30 CFR 75.603 - Temporary splice of trailing cable.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Temporary splice of trailing cable. 75.603... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.603 Temporary splice of trailing cable. One temporary splice may be made in any trailing cable. Such trailing cable...

  20. Diurnal variation in the performance of rapid response systems: the role of critical care services-a review article.

    PubMed

    Sundararajan, Krishnaswamy; Flabouris, Arthas; Thompson, Campbell

    2016-01-01

    The type of medical review before an adverse event influences patient outcome. Delays in the up-transfer of patients requiring intensive care are associated with higher mortality rates. Timely detection and response to a deteriorating patient constitute an important function of the rapid response system (RRS). The activation of the RRS for at-risk patients constitutes the system's afferent limb. Afferent limb failure (ALF), an important performance measure of rapid response systems, constitutes a failure to activate a rapid response team (RRT) despite criteria for calling an RRT. There are diurnal variations in hospital staffing levels, the performance of rapid response systems and patient outcomes. Fewer ward-based nursing staff at night may contribute to ALF. The diurnal variability in RRS activity is greater in unmonitored units than it is in monitored units for events that should result in a call for an RRT. RRT events include a significant abnormality in either the pulse rate, blood pressure, conscious state or respiratory rate. There is also diurnal variation in RRT summoning rates, with most activations occurring during the day. The reasons for this variation are mostly speculative, but the failure of the afferent limb of RRT activation, particularly at night, may be a factor. The term "circadian variation/rhythm" applies to physiological variations over a 24-h cycle. In contrast, diurnal variation applies more accurately to extrinsic systems. Circadian rhythm has been demonstrated in a multitude of bodily functions and disease states. For example, there is an association between disrupted circadian rhythms and abnormal vital parameters such as anomalous blood pressure, irregular pulse rate, aberrant endothelial function, myocardial infarction, stroke, sleep-disordered breathing and its long-term consequences of hypertension, heart failure and cognitive impairment. Therefore, diurnal variation in patient outcomes may be extrinsic, and more easily modifiable

  1. Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment.

    PubMed

    Martínez-Montiel, Nancy; Rosas-Murrieta, Nora Hilda; Martínez-Montiel, Mónica; Gaspariano-Cholula, Mayra Patricia; Martínez-Contreras, Rebeca D

    2016-01-01

    In eukaryotes, genes are frequently interrupted with noncoding sequences named introns. Alternative splicing is a nuclear mechanism by which these introns are removed and flanking coding regions named exons are joined together to generate a message that will be translated in the cytoplasm. This mechanism is catalyzed by a complex machinery known as the spliceosome, which is conformed by more than 300 proteins and ribonucleoproteins that activate and regulate the precision of gene expression when assembled. It has been proposed that several genetic diseases are related to defects in the splicing process, including cancer. For this reason, natural products that show the ability to regulate splicing have attracted enormous attention due to its potential use for cancer treatment. Some microbial metabolites have shown the ability to inhibit gene splicing and the molecular mechanism responsible for this inhibition is being studied for future applications. Here, we summarize the main types of natural products that have been characterized as splicing inhibitors, the recent advances regarding molecular and cellular effects related to these molecules, and the applications reported so far in cancer therapeutics. PMID:27610372

  2. Sex-lethal interacts with splicing factors in vitro and in vivo.

    PubMed Central

    Deshpande, G; Samuels, M E; Schedl, P D

    1996-01-01

    The Drosophila sex determination gene Sex-lethal controls its own expression and the expression of downstream target genes such as transformer by regulating RNA splicing. Genetic and molecular studies have established that Sxl requires the product of another gene, snf, to autoregulate the splicing of its own transcripts. snf has recently been shown to encode a Drosophila U1 and U2 small nuclear ribonucleoprotein particle protein. In the work reported here, we demonstrate that the Sxl and Snf proteins can interact directly in vitro and that these two proteins are part of an RNase-sensitive complex in vivo which can be immunoprecipitated with the Sxl antibody. Unlike bulk Snf protein, which sediments slowly in sucrose gradients, the Snf protein associated with Sxl is in a large, rapidly sedimenting complex. Detailed characterization of the Sxl-Snf complexes from cross-linked extracts indicates that these complexes contain additional small nuclear ribonucleoprotein particle proteins and the U1 and U2 small nuclear RNAs. Finally, consistent with the RNase sensitivity of the Sxl-Snf complexes, Sxl transcripts can also be immunoprecipitated by Sxl antibodies. On the basis of the physical interactions between Sxl and Snf, we present a model for Sxl splicing regulation. This model helps explain how the Sxl protein is able to promote the sex-specific splicing of Sxl transcripts, utilizing target sequences that are distant from the regulated splice sites. PMID:8756662

  3. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani.

    PubMed

    McNeil, Bonnie A; Simon, Dawn M; Zimmerly, Steven

    2014-02-01

    Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5' splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5' exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns. PMID:24214997

  4. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani.

    PubMed

    McNeil, Bonnie A; Zimmerly, Steven

    2014-06-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5' splice site located 8 nt upstream of the usual 5' GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1-EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5' splice site is shown to be affected by structures in addition to IBS1-EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3' exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression. PMID:24751650

  5. Structural Features of a 3′ Splice Site in Influenza A

    PubMed Central

    2015-01-01

    Influenza A is an RNA virus with a genome of eight negative sense segments. Segment 7 mRNA contains a 3′ splice site for alternative splicing to encode the essential M2 protein. On the basis of sequence alignment and chemical mapping experiments, the secondary structure surrounding the 3′ splice site has an internal loop, adenine bulge, and hairpin loop when it is in the hairpin conformation that exposes the 3′ splice site. We report structural features of a three-dimensional model of the hairpin derived from nuclear magnetic resonance spectra and simulated annealing with restrained molecular dynamics. Additional insight was provided by modeling based on 1H chemical shifts. The internal loop containing the 3′ splice site has a dynamic guanosine and a stable imino (cis Watson–Crick/Watson–Crick) GA pair. The adenine bulge also appears to be dynamic with the A either stacked in the stem or forming a base triple with a Watson–Crick GC pair. The hairpin loop is a GAAA tetraloop closed by an AC pair. PMID:25909229

  6. Permeable trypanosome cells as a model system for transcription and trans-splicing.

    PubMed Central

    Ullu, E; Tschudi, C

    1990-01-01

    We have established conditions for Trypanosoma brucei permeable cells to study transcription and trans-splicing. We found that the concentration of monovalent and, to a lesser extent, divalent ions plays a critical role for the expression of a number of different genes. Most remarkably, the synthesis of the spliced leader (SL) RNA was optimal at 20 mM KCl, whereas higher potassium concentrations were inhibitory. In addition, MgCl2 concentrations above 3 mM led to the accumulation of a 3' end shortened SL RNA species, which has been previously reported not to participate in trans-splicing. Using conditions optimal for the synthesis of the SL RNA, we observed accurate trans-splicing of newly-synthesized alpha-tubulin RNA. Moreover, we detected the SL intron both joined to high molecular weight RNAs in the form of branched Y-structures and as a free linear molecule, which rapidly turned over. Furthermore, ionic concentrations that inhibit the synthesis of the SL RNA produced exclusively unspliced alpha-tubulin RNA, thus demonstrating that transcription and trans-splicing can be uncoupled. Images PMID:2356121

  7. Sam68 Regulates S6K1 Alternative Splicing during Adipogenesis

    PubMed Central

    Song, Jingwen

    2015-01-01

    The requirement for alternative splicing during adipogenesis is poorly understood. The Sam68 RNA binding protein is a known regulator of alternative splicing, and mice deficient for Sam68 exhibit adipogenesis defects due to defective mTOR signaling. Sam68 null preadipocytes were monitored for alternative splicing imbalances in components of the mTOR signaling pathway. Herein, we report that Sam68 regulates isoform expression of the ribosomal S6 kinase gene (Rps6kb1). Sam68-deficient adipocytes express Rps6kb1-002 and its encoded p31S6K1 protein, in contrast to wild-type adipocytes that do not express this isoform. Sam68 binds an RNA sequence encoded by Rps6kb1 intron 6 and prevents serine/arginine-rich splicing factor 1 (SRSF1)-mediated alternative splicing of Rps6kb1-002, as assessed by cross-linking and immunoprecipitation (CLIP) and minigene assays. Depletion of p31S6K1 with small interfering RNAs (siRNAs) partially restored adipogenesis of Sam68-deficient preadipocytes. The ectopic expression of p31S6K1 in wild-type 3T3-L1 cells resulted in adipogenesis differentiation defects, showing that p31S6K1 is an inhibitor of adipogenesis. Our findings indicate that Sam68 is required to prevent the expression of p31S6K1 in adipocytes for adipogenesis to occur. PMID:25776557

  8. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani

    PubMed Central

    McNeil, Bonnie A.; Zimmerly, Steven

    2014-01-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5′ splice site located 8 nt upstream of the usual 5′ GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1–EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5′ splice site is shown to be affected by structures in addition to IBS1–EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3′ exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression. PMID:24751650

  9. Functional Analysis of A Novel Splicing Mutation in The Mutase Gene of Two Unrelated Pedigrees

    PubMed Central

    Miryounesi, Mohammad; Pasalar, Parvin; Keramatipour, Mohammad

    2016-01-01

    Objective Methylmalonic acidura (MMA) is a rare autosomal recessive inborn error of metabolism. In this study we present a novel nucleotide change in the mutase (MUT) gene of two unrelated Iranian pedigrees and introduce the methods used for its functional analysis. Materials and Methods Two probands with definite diagnosis of MMA and a common novel variant in the MUT were included in a descriptive study. Bioinformatic prediction of the splicing variant was done with different prediction servers. Reverse transcriptionpolymerase chain reaction (RT-PCR) was done for splicing analysis and the products were analyzed by sequencing. Results The included index patients showed elevated levels of propionylcarnitine (C3). Urine organic acid analysis confirmed the diagnosis of MMA, and screening for mutations in the MUT revealed a novel C to G variation at the 3´ splice acceptor site in intron 12. In silico analysis suggested the change as a mutation in a conserved sequence. The splicing analysis showed that the C to G nucleotide change at position -3 in the acceptor splice site can lead to retention of the intron 12 sequence. Conclusion This is the first report of a mutation at the position -3 in the MUT intron 12 (c.2125-3C>G). The results suggest that the identified variation can be associated with the typical clinical manifestations of MMA. PMID:27602322

  10. Evolutionary Emergence of a Novel Splice Variant with an Opposite Effect on the Cell Cycle

    PubMed Central

    Sohail, Muhammad

    2015-01-01

    Alternative splicing contributes greatly to the diversification of mammalian proteomes, but the molecular basis for the evolutionary emergence of splice variants remains poorly understood. We have recently found a novel class of splicing regulatory elements between the polypyrimidine tract (Py) and 3′ AG (REPA) at intron ends in many human genes, including the multifunctional PRMT5 (for protein arginine methyltransferase 5) gene. The PRMT5 element is comprised of two G tracts that arise in most mammals and accompany significant exon skipping in human transcripts. The G tracts inhibit splicing by recruiting heterogeneous nuclear ribonucleoprotein (hnRNP) H and F (H/F) to reduce U2AF65 binding to the Py, causing exon skipping. The resulting novel shorter variant PRMT5S exhibits a histone H4R3 methylation effect similar to that seen with the original longer PRMT5L isoform but exhibits a distinct localization and preferential control of critical genes for cell cycle arrest at interphase in comparison to PRMT5L. This report thus provides a molecular mechanism for the evolutionary emergence of a novel splice variant with an opposite function in a fundamental cell process. The presence of REPA elements in a large group of genes implies their wider impact on different cellular processes for increased protein diversity in humans. PMID:25870105

  11. Natural cytotoxicity receptor splice variants orchestrate the distinct functions of human natural killer cell subtypes

    PubMed Central

    Siewiera, Johan; Gouilly, Jordi; Hocine, Hocine-Rachid; Cartron, Géraldine; Levy, Claude; Al-Daccak, Reem; Jabrane-Ferrat, Nabila

    2015-01-01

    The natural cytotoxicity receptors NKp46/NCR1, NKp44/NCR2 and NKp30/NCR3 are critical for natural killer (NK) cell functions. Their genes are transcribed into several splice variants whose physiological relevance is not yet fully understood. Here we report that decidua basalis NK (dNK) cells of the pregnant uterine mucosa and peripheral blood NK (pNK) cells, two functionally distinct subsets of the physiological NK cell pool, display differential expression of NKp30/NCR3 and NKp44/NCR2 splice variants. The presence of cytokines that are enriched within the decidual microenvironment is sufficient to convert the splice variant profile of pNK cells into one similar to that of dNK cells. This switch is associated with decreased cytotoxic function and major adaptations to the secretome, hallmarks of the decidual phenotype. Thus, NKp30/NCR3 and NKp44/NCR2 splice variants delineate functionally distinct NK cell subsets. To our knowledge, this is the first conclusive evidence underlining the physiological importance of NCR splice variants. PMID:26666685

  12. Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development.

    PubMed

    Heller, N; Brändli, A W

    1997-12-01

    Kidney organogenesis is initiated with the formation of the pronephric kidney and requires Pax-2 gene function. We report here the cloning and characterization of Pax-2 cDNAs from the frog Xenopus laevis, a model system suitable for the study of early kidney organogenesis. We show that expression of Xenopus Pax-2 (XPax-2) genes was confined to the nervous system, sensory organs, the visceral arches, and the developing excretory system. DNA sequencing of XPax-2 cDNAs isolated from head and pronephric kidney libraries revealed seven novel alternatively spliced Pax-2 isoforms. They all retain DNA-binding domains, but can differ significantly in their C termini with some isoforms containing a novel Pax-2 exon. We investigated the spectrum of XPax-2 splice events in pronephric kidneys, animal cap cultures and in whole embryos. Splicing of XPax-2 transcripts was found to be extensive and temporally regulated during Xenopus embryogenesis. Since all investigated tissues expressed essentially the full spectrum of XPax-2 splice variants, we conclude that splicing of XPax-2 transcripts does not occur in a tissue-specific manner. PMID:9486533

  13. Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment

    PubMed Central

    Rosas-Murrieta, Nora Hilda; Martínez-Montiel, Mónica; Gaspariano-Cholula, Mayra Patricia

    2016-01-01

    In eukaryotes, genes are frequently interrupted with noncoding sequences named introns. Alternative splicing is a nuclear mechanism by which these introns are removed and flanking coding regions named exons are joined together to generate a message that will be translated in the cytoplasm. This mechanism is catalyzed by a complex machinery known as the spliceosome, which is conformed by more than 300 proteins and ribonucleoproteins that activate and regulate the precision of gene expression when assembled. It has been proposed that several genetic diseases are related to defects in the splicing process, including cancer. For this reason, natural products that show the ability to regulate splicing have attracted enormous attention due to its potential use for cancer treatment. Some microbial metabolites have shown the ability to inhibit gene splicing and the molecular mechanism responsible for this inhibition is being studied for future applications. Here, we summarize the main types of natural products that have been characterized as splicing inhibitors, the recent advances regarding molecular and cellular effects related to these molecules, and the applications reported so far in cancer therapeutics. PMID:27610372

  14. Cloning of Caenorhabditis U2AF65: an alternatively spliced RNA containing a novel exon.

    PubMed Central

    Zorio, D A; Lea, K; Blumenthal, T

    1997-01-01

    The U2 small nuclear ribonucleoprotein particle (snRNP) auxiliary factor, U2AF, is an essential splicing factor required for recognition of the polypyrimidine tract and subsequent U2 snRNP assembly at the branch point. Because Caenorhabditis elegans introns lack both polypyrimidine tract and branch point consensus sequences but have a very highly conserved UUUUCAG/R consensus at their 3' splice sites, we hypothesized that U2AF might serve to recognize this sequence and thus promote intron recognition in C. elegans. Here we report the cloning of the gene for the large subunit of U2AF, uaf-1. Three classes of cDNA were identified. In the most abundant class the open reading frame is similar to that for the U2AF65 from mammals and flies. The remaining two classes result from an alternative splicing event in which an exon containing an in-frame stop codon is inserted near the beginning of the second RNA recognition motif. However, this alternative mRNA is apparently not translated. Interestingly, the inserted exon contains 10 matches to the 3' splice site consensus. To determine whether this feature is conserved, we sequenced uaf-1 from the related nematode Caenorhabditis briggsae. It is composed of six exons, including an alternatively spliced third exon interrupting the gene at the same location as in C. elegans. uaf-1 is contained in an operon with the rab-18 gene in both species. Although the alternative exons from the two species are not highly conserved and would not encode related polypeptides, the C. briggsae alternative exon has 18 matches to the 3' splice site consensus. We hypothesize that the array of 3' splice site-like sequences in the pre-mRNA and alternatively spliced exon may have a regulatory role. The alternatively spliced RNA accumulates at high levels following starvation, suggesting that this RNA may represent an adaption for reducing U2AF65 levels when pre-mRNA levels are low. PMID:9001248

  15. Inhibition of Splicing but not Cleavage at the 5' Splice Site by Truncating Human β -globin Pre-mRNA

    NASA Astrophysics Data System (ADS)

    Furdon, Paul J.; Kole, Ryszard

    1986-02-01

    Human β -globin mRNAs truncated in the second exon or in the first intron have been processed in vitro in a HeLa cell nuclear extract. Transcripts containing a fragment of the second exon as short as 53 nucleotides are efficiently spliced, whereas transcripts truncated 24 or 14 nucleotides downstream from the 3' splice site are spliced inefficiently, if at all. All of these transcripts, however, are efficiently and accurately cleaved at the 5' splice site. In contrast, RNA truncated in the first intron, 54 nucleotides upstream from the 3' splice site, is not processed at all. These findings suggest that cleavage at the 5' splice site and subsequent splicing steps--i.e., cleavage at the 3' splice site and exon ligation--need not be coupled. Anti-Sm serum inhibits the complete splicing reaction and cleavage at the 5' splice site, suggesting involvement of certain ribonucleoprotein particles in the cleavage reaction. ATP and Mg2+ are required for cleavage at the 5' splice site at concentrations similar to those for the complete splicing reaction.

  16. Purifying Selection on Splice-Related Motifs, Not Expression Level nor RNA Folding, Explains Nearly All Constraint on Human lincRNAs

    PubMed Central

    Schüler, Andreas; Ghanbarian, Avazeh T.; Hurst, Laurence D.

    2014-01-01

    There are two strong and equally important predictors of rates of human protein evolution: The amount the gene is expressed and the proportion of exonic sequence devoted to control splicing, mediated largely by selection on exonic splice enhancer (ESE) motifs. Is the same true for noncoding RNAs, known to be under very weak purifying selection? Prior evidence suggests that selection at splice sites in long intergenic noncoding RNAs (lincRNAs) is important. We now report multiple lines of evidence indicating that the great majority of purifying selection operating on lincRNAs in humans is splice related. Splice-related parameters explain much of the between-gene variation in evolutionary rate in humans. Expression rate is not a relevant predictor, although expression breadth is weakly so. In contrast to protein-coding RNAs, we observe no relationship between evolutionary rate and lincRNA stability. As in protein-coding genes, ESEs are especially abundant near splice junctions and evolve slower than non-ESE sequence equidistant from boundaries. Nearly all constraint in lincRNAs is at exon ends (N.B. the same is not witnessed in Drosophila). Although we cannot definitely answer the question as to why splice-related selection is so important, we find no evidence that splicing might enable the nonsense-mediated decay pathway to capture transcripts incorrectly processed by ribosomes. We find evidence consistent with the notion that splicing modifies the underlying chromatin through recruitment of splice-coupled chromatin modifiers, such as CHD1, which in turn might modulate neighbor gene activity. We conclude that most selection on human lincRNAs is splice mediated and suggest that the possibility of splice–chromatin coupling is worthy of further scrutiny. PMID:25158797

  17. Global genome splicing analysis reveals an increased number of alternatively spliced genes with aging.

    PubMed

    Rodríguez, Sofía A; Grochová, Diana; McKenna, Tomás; Borate, Bhavesh; Trivedi, Niraj S; Erdos, Michael R; Eriksson, Maria

    2016-04-01

    Alternative splicing (AS) is a key regulatory mechanism for the development of different tissues; however, not much is known about changes to alternative splicing during aging. Splicing events may become more frequent and widespread genome-wide as tissues age and the splicing machinery stringency decreases. Using skin, skeletal muscle, bone, thymus, and white adipose tissue from wild-type C57BL6/J male mice (4 and 18 months old), we examined the effect of age on splicing by AS analysis of the differential exon usage of the genome. The results identified a considerable number of AS genes in skeletal muscle, thymus, bone, and white adipose tissue between the different age groups (ranging from 27 to 246 AS genes corresponding to 0.3-3.2% of the total number of genes analyzed). For skin, skeletal muscle, and bone, we included a later age group (28 months old) that showed that the number of alternatively spliced genes increased with age in all three tissues (P < 0.01). Analysis of alternatively spliced genes across all tissues by gene ontology and pathway analysis identified 158 genes involved in RNA processing. Additional analysis of AS in a mouse model for the premature aging disease Hutchinson-Gilford progeria syndrome was performed. The results show that expression of the mutant protein, progerin, is associated with an impaired developmental splicing. As progerin accumulates, the number of genes with AS increases compared to in wild-type skin. Our results indicate the existence of a mechanism for increased AS during aging in several tissues, emphasizing that AS has a more important role in the aging process than previously known. PMID:26685868

  18. Alternative-splicing-mediated gene expression

    NASA Astrophysics Data System (ADS)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  19. Development of Therapeutic Splice-Switching Oligonucleotides

    PubMed Central

    Kryczka, Adrianna; Liu, Yuqi; Badi, Yusef E.; Wong, Jessie J.; Owen, James S.; Khoo, Bernard

    2014-01-01

    Abstract Synthetic splice-switching oligonucleotides (SSOs) target nuclear pre-mRNA molecules to change exon splicing and generate an alternative protein isoform. Clinical trials with two competitive SSO drugs are underway to treat Duchenne muscular dystrophy (DMD). Beyond DMD, many additional therapeutic applications are possible, with some in phase 1 clinical trials or advanced preclinical evaluation. Here, we present an overview of the central factors involved in developing therapeutic SSOs for the treatment of diseases. The selection of susceptible pre-mRNA target sequences, as well as the design and chemical modification of SSOs to increase SSO stability and effectiveness, are key initial considerations. Identification of effective SSO target sequences is still largely empirical and published guidelines are not a universal guarantee for success. Specifically, exon-targeted SSOs, which are successful in modifying dystrophin splicing, can be ineffective for splice-switching in other contexts. Chemical modifications, importantly, are associated with certain characteristic toxicities, which need to be addressed as target diseases require chronic treatment with SSOs. Moreover, SSO delivery in adequate quantities to the nucleus of target cells without toxicity can prove difficult. Last, the means by which these SSOs are administered needs to be acceptable to the patient. Engineering an efficient therapeutic SSO, therefore, necessarily entails a compromise between desirable qualities and effectiveness. Here, we describe how the application of optimal solutions may differ from case to case. PMID:24826963

  20. RNA structure in splicing: An evolutionary perspective.

    PubMed

    Lin, Chien-Ling; Taggart, Allison J; Fairbrother, William G

    2016-09-01

    Pre-mRNA splicing is a key post-transcriptional regulation process in which introns are excised and exons are ligated together. A novel class of structured intron was recently discovered in fish. Simple expansions of complementary AC and GT dimers at opposite boundaries of an intron were found to form a bridging structure, thereby enforcing correct splice site pairing across the intron. In some fish introns, the RNA structures are strong enough to bypass the need of regulatory protein factors for splicing. Here, we discuss the prevalence and potential functions of highly structured introns. In humans, structured introns usually arise through the co-occurrence of C and G-rich repeats at intron boundaries. We explore the potentially instructive example of the HLA receptor genes. In HLA pre-mRNA, structured introns flank the exons that encode the highly polymorphic β sheet cleft, making the processing of the transcript robust to variants that disrupt splicing factor binding. While selective forces that have shaped HLA receptor are fairly atypical, numerous other highly polymorphic genes that encode receptors contain structured introns. Finally, we discuss how the elevated mutation rate associated with the simple repeats that often compose structured intron can make structured introns themselves rapidly evolving elements. PMID:27454491

  1. The human splicing code reveals new insights into the genetic determinants of disease

    PubMed Central

    Xiong, Hui Y.; Alipanahi, Babak; Lee, Leo J.; Bretschneider, Hannes; Merico, Daniele; Yuen, Ryan K.C.; Hua, Yimin; Gueroussov, Serge; Najafabadi, Hamed S.; Hughes, Timothy R.; Morris, Quaid; Barash, Yoseph; Krainer, Adrian R.; Jojic, Nebojsa; Scherer, Stephen W.; Blencowe, Benjamin J.; Frey, Brendan J.

    2015-01-01

    disrupted splicing in brain regions, so we used our method to score variants detected using whole genome sequencing data from individuals with and without autism. Genes with high scoring variants include many that have been previously linked with autism, as well as new genes with known neurodevelopmental phenotypes. Most of the high scoring variants are intronic and cannot be detected by exome analysis techniques. When we score clinical variants in spinal muscular atrophy and colorectal cancer genes, up to 94% of variants found to disrupt splicing using minigene reporters are correctly classified. Discussion In the context of precision medicine, causal support for variants that is independent of existing studies is greatly needed. Our computational model was trained to predict splicing from DNA sequence alone, without using disease annotations or population data. Consequently, its predictions are independent of and complementary to population data, genome-wide association studies (GWAS), expression-based quantitative trait loci (QTL), and functional annotations of the genome. As such, our technique greatly expands the opportunities for understanding the genetic determinants of disease. PMID:25525159

  2. A transgenic zebrafish model for monitoring xbp1 splicing and endoplasmic reticulum stress in vivo.

    PubMed

    Li, Junling; Chen, Zhiliang; Gao, Lian-Yong; Colorni, Angelo; Ucko, Michal; Fang, Shengyun; Du, Shao Jun

    2015-08-01

    Accumulation of misfolded or unfolded proteins in the endoplasmic reticulum (ER) triggers ER stress that initiates unfolded protein response (UPR). XBP1 is a transcription factor that mediates one of the key signaling pathways of UPR to cope with ER stress through regulating gene expression. Activation of XBP1 involves an unconventional mRNA splicing catalyzed by IRE1 endonuclease that removes an internal 26 nucleotides from xbp1 mRNA transcripts in the cytoplasm. Researchers have taken advantage of this unique activation mechanism to monitor XBP1 activation, thereby UPR, in cell culture and transgenic models. Here we report a Tg(ef1α:xbp1δ-gfp) transgenic zebrafish line to monitor XBP1 activation using GFP as a reporter especially in zebrafish oocytes and developing embryos. The Tg(ef1α:xbp1δ-gfp) transgene was constructed using part of the zebrafish xbp1 cDNA containing the splicing element. ER stress induced splicing results in the cDNA encoding a GFP-tagged partial XBP1 without the transactivation activation domain (XBP1Δ-GFP). The results showed that xbp1 transcripts mainly exist as the spliced active isoform in unfertilized oocytes and zebrafish embryos prior to zygotic gene activation at 3 hours post fertilization. A strong GFP expression was observed in unfertilized oocytes, eyes, brain and skeletal muscle in addition to a weak expression in the hatching gland. Incubation of transgenic zebrafish embryos with (dithiothreitol) DTT significantly induced XBP1Δ-GFP expression. Collectively, these studies unveil the presence of maternal xbp1 splicing in zebrafish oocytes, fertilized eggs and early stage embryos. The Tg(ef1α:xbp1δ-gfp) transgenic zebrafish provides a useful model for in vivo monitoring xbp1 splicing during development and under ER stress conditions. PMID:25892297

  3. RNA splicing factors as oncoproteins and tumour suppressors.

    PubMed

    Dvinge, Heidi; Kim, Eunhee; Abdel-Wahab, Omar; Bradley, Robert K

    2016-07-01

    The recent genomic characterization of cancers has revealed recurrent somatic point mutations and copy number changes affecting genes encoding RNA splicing factors. Initial studies of these 'spliceosomal mutations' suggest that the proteins bearing these mutations exhibit altered splice site and/or exon recognition preferences relative to their wild-type counterparts, resulting in cancer-specific mis-splicing. Such changes in the splicing machinery may create novel vulnerabilities in cancer cells that can be therapeutically exploited using compounds that can influence the splicing process. Further studies to dissect the biochemical, genomic and biological effects of spliceosomal mutations are crucial for the development of cancer therapies targeted at these mutations. PMID:27282250

  4. Functional Classification of BRCA2 DNA Variants by Splicing Assays in a Large Minigene with 9 Exons

    PubMed Central

    Acedo, Alberto; Hernández-Moro, Cristina; Curiel-García, Álvaro; Díez-Gómez, Beatriz; Velasco, Eladio A

    2015-01-01

    Numerous pathogenic DNA variants impair the splicing mechanism in human genetic diseases. Minigenes are optimal approaches to test variants under the splicing viewpoint without the need of patient samples. We aimed to design a robust minigene construct of the breast cancer gene BRCA2 in order to investigate the impact of variants on splicing. BRCA2 exons 19–27 (MGBR2_ex19–27) were cloned in the new vector pSAD. It produced a large transcript of the expected size (2,174 nucleotides) and exon structure (V1-ex19-27-V2). Splicing assays showed that 18 (17 splice-site and 1 silencer variants) out of 40 candidate DNA variants induced aberrant patterns. Twenty-four anomalous transcripts were accurately detected by fluorescent-RT-PCR that were generated by exon-skipping, alternative site usage, and intron-retention events. Fourteen variants induced major anomalies and were predicted to disrupt protein function so they could be classified as pathogenic. Furthermore, minigene mimicked previously reported patient RNA outcomes of seven variants supporting the reproducibility of minigene assays. Therefore, a relevant fraction of variants are involved in breast cancer through splicing alterations. MGBR2_ex19–27 is the largest reported BRCA2 minigene and constitutes a valuable tool for the functional and clinical classification of sequence variations. PMID:25382762

  5. UnSplicer: mapping spliced RNA-Seq reads in compact genomes and filtering noisy splicing.

    PubMed

    Burns, Paul D; Li, Yang; Ma, Jian; Borodovsky, Mark

    2014-02-01

    Accurate mapping of spliced RNA-Seq reads to genomic DNA has been known as a challenging problem. Despite significant efforts invested in developing efficient algorithms, with the human genome as a primary focus, the best solution is still not known. A recently introduced tool, TrueSight, has demonstrated better performance compared with earlier developed algorithms such as TopHat and MapSplice. To improve detection of splice junctions, TrueSight uses information on statistical patterns of nucleotide ordering in intronic and exonic DNA. This line of research led to yet another new algorithm, UnSplicer, designed for eukaryotic species with compact genomes where functional alternative splicing is likely to be dominated by splicing noise. Genome-specific parameters of the new algorithm are generated by GeneMark-ES, an ab initio gene prediction algorithm based on unsupervised training. UnSplicer shares several components with TrueSight; the difference lies in the training strategy and the classification algorithm. We tested UnSplicer on RNA-Seq data sets of Arabidopsis thaliana, Caenorhabditis elegans, Cryptococcus neoformans and Drosophila melanogaster. We have shown that splice junctions inferred by UnSplicer are in better agreement with knowledge accumulated on these well-studied genomes than predictions made by earlier developed tools. PMID:24259430

  6. Multiple splicing pathways of group II trans-splicing introns in wheat mitochondria.

    PubMed

    Massel, Karen; Silke, Jordan R; Bonen, Linda

    2016-05-01

    Trans-splicing of discontinuous introns in plant mitochondria requires the assembly of independently-transcribed precursor RNAs into splicing-competent structures, and they are expected to be excised as Y-branched molecules ("broken lariats") because these introns belong to the group II ribozyme family. We now demonstrate that this is just one of several trans-splicing pathways for wheat mitochondrial nad1 intron 4 and nad5 intron 2; they also use a hydrolytic pathway and the liberated 5'-half-intron linear molecules are unexpectedly abundant in the RNA population. We also observe a third productive splicing pathway for nad5 intron 2 that yields full-length excised introns in which the termini are joined in vivo and possess non-encoded nucleotides. In the case of trans-splicing nad1 intron 1, which has a weakly-structured and poorly-conserved core sequence, excision appears to be solely through a hydrolytic pathway. When wheat embryos are germinated in the cold rather than at room temperature, an increased complexity in trans-splicing products is seen for nad1 intron 4, suggesting that there can be environmental effects on the RNA folding of bipartite introns. Our observations provide insights into intron evolution and the complexity of RNA processing events in plant mitochondria. PMID:26970277

  7. Regulation of alternative splicing of CD45 by antagonistic effects of SR protein splicing factors.

    PubMed

    ten Dam, G B; Zilch, C F; Wallace, D; Wieringa, B; Beverley, P C; Poels, L G; Screaton, G R

    2000-05-15

    CD45 is a transmembrane glycoprotein possessing tyrosine phosphatase activity, which is involved in cell signaling. CD45 is expressed on the surface of most leukocytes and can be alternatively spliced by the inclusion or skipping of three variable exons (4, 5, and 6 or A, B, and C) to produce up to eight isoforms. In T cells, the splicing pattern of CD45 isoforms changes after activation; naive cells express high m.w. isoforms of CD45 which predominantly express exon A (CD45RA), whereas activated cells lose expression of exon A to form low m.w. isoforms of CD45 including CD45RO. Little is known about the specific factors controlling the switch in CD45 splicing which occurs on activation. In this study, we examined the influence of the SR family of splicing factors, which, like CD45, are expressed in tissue-specific patterns and have been shown to modulate the alternative splicing of a variety of transcripts. We show that specific SR proteins have antagonistic effects on CD45 splicing, leading either to exon inclusion or skipping. Furthermore, we were able to demonstrate specific changes in the SR protein expression pattern during T cell activation. PMID:10799890

  8. Splicing factor hnRNPH drives an oncogenic splicing switch in gliomas

    PubMed Central

    LeFave, Clare V; Squatrito, Massimo; Vorlova, Sandra; Rocco, Gina L; Brennan, Cameron W; Holland, Eric C; Pan, Ying-Xian; Cartegni, Luca

    2011-01-01

    In tumours, aberrant splicing generates variants that contribute to multiple aspects of tumour establishment, progression and maintenance. We show that in glioblastoma multiforme (GBM) specimens, death-domain adaptor protein Insuloma-Glucagonoma protein 20 (IG20) is consistently aberrantly spliced to generate an antagonist, anti-apoptotic isoform (MAP-kinase activating death domain protein, MADD), which effectively redirects TNF-α/TRAIL-induced death signalling to promote survival and proliferation instead of triggering apoptosis. Splicing factor hnRNPH, which is upregulated in gliomas, controls this splicing event and similarly mediates switching to a ligand-independent, constitutively active Recepteur d′Origine Nantais (RON) tyrosine kinase receptor variant that promotes migration and invasion. The increased cell death and the reduced invasiveness caused by hnRNPH ablation can be rescued by the targeted downregulation of IG20/MADD exon 16- or RON exon 11-containing variants, respectively, using isoform-specific knockdown or splicing redirection approaches. Thus, hnRNPH activity appears to be involved in the pathogenesis and progression of malignant gliomas as the centre of a splicing oncogenic switch, which might reflect reactivation of stem cell patterns and mediates multiple key aspects of aggressive tumour behaviour, including evasion from apoptosis and invasiveness. PMID:21915099

  9. Alternative Splicing Variants and DNA Methylation Status of BDNF in Inbred Chicken Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brain derived neurotrophic factor (BDNF) plays essential roles in neuronal survival and differentiation, synaptic plasticity, central regulation of energy homeostasis, and neuronal development of the central and peripheral nerve system. Here, we report two new splicing variants of the chicken BDNF g...

  10. Single-molecule RNA observation in vivo reveals dynamics of co-transcriptional splicing

    NASA Astrophysics Data System (ADS)

    Ferguson, M. L.; Coulon, A.; de Turris, V.; Palangat, M.; Chow, C. C.; Singer, R. H.; Larson, D. R.

    2013-03-01

    The synthesis of pre-mRNA and the splicing of that pre-mRNA to form completed transcripts requires coordination between two large multi-subunit complexes (the transcription elongation complex and the spliceosome). How this coordination occurs in vivo is unknown. Here we report the first experimental observation of transcription and splicing occurring at the same gene in living cells. By utilizing the PP7/MS2 fluorescent RNA reporter system, we can directly observe two distinct regions of the nascent RNA, allowing us to measure the rise and fall time of the intron and exon of a reporter gene stably integrated into a human cell line. The reporter gene consists of a beta globin gene where we have inserted a 24 RNA hairpin cassette into the intron/exon. Upon synthesis, the RNA hairpins are tightly bound by fluorescently-labeled PP7/MS2 bacteriophage coat proteins. After gene induction, a single locus of active transcription in the nucleus shows fluorescence intensity changes characteristic of the synthesis and excision of the intron/exon. Using fluctuation analysis, we determine the elongation rate to be 1.5 kb/min. From the temporal cross correlation function, we determine that splicing of this gene must be co-transcriptional with a splicing time of ~100 seconds before termination and a ~200 second pause at termination. We propose that dual-color RNA imaging may be extended to investigate other mechanisms of transcription, gene regulation, and RNA processing.

  11. Single Mode Fiber Optic Connectors And Splices

    NASA Astrophysics Data System (ADS)

    Woods, John G.

    1984-08-01

    There is a trend toward increasing use of single mode transmission, particularly in telecommunications where high data bit rates are transmitted for long distances. Inter-connections of multimode fibers can be made in a number of ways, using ferrules, v-grooves, elastomeric splices, etc. However, the connection of single mode fibers, which have core diameters of 4 to 13 μm, requires more precise alignment than do the multimode fibers having core diameters of 50 μm or more. At TRW, we have adapted the four rod alignment guide concept for single mode fiber inter-connections. The principle of this OPTAGUIDE* alignment guide is presented. The single mode connectors and splices use the four rod scheme with an index matching material to eliminate or reduce the losses incurred through fiber end roughness or angularity. We are able to produce demountable connectors for 80/4.4 pm fibers having typical insertion losses of 1.0dB. The main factors in obtaining this result are the naturally precise fiber alignment provided by the alignment guide, and the ability of several manufacturers to maintain tight diametral and core offset tolerances. The single mode OPTALIGN* SM Connectors have been subjected to performance and environmental tests including repeated matings, temperature cycle and vibration. The results of these tests are described in this paper. A feature of the OPTALIGN* SM Connectors is the relative ease and speed of attachment to fiber optic cable in the field, without the use of epoxy or polishing procedures. The alignment guide concept has also been applied to permanent single mode splices. The splicing procedure is simple to perform in the field without expensive or delicate equipment. Construction and assembly procedures of the demountable connectors and permanent splices will be described with the aid of diagrams and photographs.

  12. Widespread alternative and aberrant splicing revealed by lariat sequencing

    PubMed Central

    Stepankiw, Nicholas; Raghavan, Madhura; Fogarty, Elizabeth A.; Grimson, Andrew; Pleiss, Jeffrey A.

    2015-01-01

    Alternative splicing is an important and ancient feature of eukaryotic gene structure, the existence of which has likely facilitated eukaryotic proteome expansions. Here, we have used intron lariat sequencing to generate a comprehensive profile of splicing events in Schizosaccharomyces pombe, amongst the simplest organisms that possess mammalian-like splice site degeneracy. We reveal an unprecedented level of alternative splicing, including alternative splice site selection for over half of all annotated introns, hundreds of novel exon-skipping events, and thousands of novel introns. Moreover, the frequency of these events is far higher than previous estimates, with alternative splice sites on average activated at ∼3% the rate of canonical sites. Although a subset of alternative sites are conserved in related species, implying functional potential, the majority are not detectably conserved. Interestingly, the rate of aberrant splicing is inversely related to expression level, with lowly expressed genes more prone to erroneous splicing. Although we validate many events with RNAseq, the proportion of alternative splicing discovered with lariat sequencing is far greater, a difference we attribute to preferential decay of aberrantly spliced transcripts. Together, these data suggest the spliceosome possesses far lower fidelity than previously appreciated, highlighting the potential contributions of alternative splicing in generating novel gene structures. PMID:26261211

  13. Loss of Pnn expression attenuates expression levels of SR family splicing factors and modulates alternative pre-mRNA splicing in vivo

    SciTech Connect

    Chiu Yali; Ouyang Pin . E-mail: ouyang@mail.cgu.edu.tw

    2006-03-10

    SR and SR-related proteins have been implicated as trans-acting factors that play an important role in splice selection and are involved at specific stages of spliceosome formation. A well-established property of SR protein splicing factors is their ability to influence selection of alternative splice sites in a concentration-dependent manner. Identification of molecules that regulate SR family protein expression is therefore of vital importance in RNA biology. Here we report that depletion of Pnn expression, a SR-related protein with functions involved in pre-mRNA splicing and mRNA export, induces reduced expression of a subset of cellular proteins, especially that of SR family proteins, including SC35, SRm300, SRp55, and SRp40, but not that of other nuclear proteins, such as p53, Mdm2, and ki67. Knocking down Pnn expression was achieved in vitro by siRNA transfection. Expression levels of SR and SR-related proteins in Pnn-depleted cells as compared to those in control cells were evaluated by immunofluorescent staining and Western blot with specific antibodies. In addition, we also demonstrate that loss of Pnn expression could modulate splice site selection of model reporter gene in vivo. Our finding is significant in terms of regulation of SR protein cellular concentration because it reveals that Pnn may play a general role in the control of the cellular amount of family SR proteins through down-regulation of its own expression, thereby providing us with a better understanding of the cellular mechanism by which Pnn fulfills its biological function.

  14. Utilisation of a cryptic non-canonical donor splice site of the gene encoding PARAFIBROMIN is associated with familial isolated primary hyperparathyroidism

    PubMed Central

    Bradley, K; Cavaco, B; Bowl, M; Harding, B; Young, A; Thakker, R

    2005-01-01

    More than 99% of all splice sites conform to consensus sequences that usually include the invariant dinucleotides gt and ag at the 5' and 3' ends of the introns, respectively. We report on the utilisation of a non-consensus (non-canonical) donor splice site within exon 1 of the HRPT2 gene in familial isolated primary hyperparathyroidism (FIHP). HRPT2 mutations are more frequently associated with the hyperparathyroidism-jaw tumour syndrome (HPT-JT). Patients with FIHP were identified to have a donor splice site mutation, IVS1+1 g→a, and the consequences of this for RNA processing were investigated. The mutant mRNA lacked 30 bp and DNA sequence analysis revealed this to result from utilisation of an alternative cryptic non-canonical donor splice site (gaatgt) in exon 1 together with the normally occurring acceptor splice site in intron 1. Translation of this mutant mRNA predicted the in-frame loss of 10 amino acids in the encoded protein, termed PARAFIBROMIN. Thus, these FIHP patients are utilising a ga-ag splice site pair, which until recently was considered to be incompatible with splicing but is now known to occur as a rare (<0.02%) normal splicing variant. PMID:16061557

  15. A human RNA helicase-like protein, HRH1, facilitates nuclear export of spliced mRNA by releasing the RNA from the spliceosome.

    PubMed

    Ohno, M; Shimura, Y

    1996-04-15

    Because the nuclear export of mRNA occurs only after the splicing reaction is completed, intron-containing pre-mRNA does not normally appear in the cytoplasm. As a mechanism to secure this, intron-containing RNA is retained in the nucleus via formation of the spliceosome. Therefore, the process of releasing spliced mRNA from the spliceosome after completion of splicing is an essential step for triggering the nuclear export of the spliced mRNA. In budding yeast, RNA helicase-like protein Prp22 is implicated in this process. Here we demonstrate the function of HRH1, a human protein homologous to Prp22, in mammalian cells using dominant-negative HRH1++ mutants (dn-HRH1). dn-HRH1 protein stalls on the spliceosome and prevents release of the spliced RNA from the spliceosome in vitro. Expression of dn-HRH1 in mammalian cells leads to inhibition of splicing and to extensive nuclear export of unspliced pre-mRNA, probably because of the incapability of recycling spliceosome components that normally retain the pre-mRNA in the nucleus. The arginine/serine-rich domain (RS domain) of HRH1, which is missing in Prp22, confers a nuclear localization signal, and appears to facilitate the interaction of HRH1 with the spliceosome. This is the first report on a bona fide mammalian homolog of yeast Prp splicing factor, and also on a mammalian RNA helicase-like splicing factor. PMID:8608946

  16. Cauliflower mosaic virus Transcriptome Reveals a Complex Alternative Splicing Pattern

    PubMed Central

    Bouton, Clément; Geldreich, Angèle; Ramel, Laëtitia; Ryabova, Lyubov A.; Dimitrova, Maria; Keller, Mario

    2015-01-01

    The plant pararetrovirus Cauliflower mosaic virus (CaMV) uses alternative splic-ing to generate several isoforms from its polycistronic pregenomic 35S RNA. This pro-cess has been shown to be essential for infectivity. Previous works have identified four splice donor sites and a single splice acceptor site in the 35S RNA 5’ region and sug-gested that the main role of CaMV splicing is to downregulate expression of open read-ing frames (ORFs) I and II. In this study, we show that alternative splicing is a conserved process among CaMV isolates. In Cabb B-JI and Cabb-S isolates, splicing frequently leads to different fusion between ORFs, particularly between ORF I and II. The corresponding P1P2 fusion proteins expressed in E. coli interact with viral proteins P2 and P3 in vitro. However, they are detected neither during infection nor upon transient expression in planta, which suggests rapid degradation after synthesis and no important biological role in the CaMV infectious cycle. To gain a better understanding of the functional relevance of 35S RNA alternative splicing in CaMV infectivity, we inactivated the previously described splice sites. All the splicing mutants were as pathogenic as the corresponding wild-type isolate. Through RT-PCR-based analysis we demonstrate that CaMV 35S RNA exhibits a complex splicing pattern, as we identify new splice donor and acceptor sites whose selection leads to more than thirteen 35S RNA isoforms in infected turnip plants. Inactivating splice donor or acceptor sites is not lethal for the virus, since disrupted sites are systematically rescued by the activation of cryptic and/or seldom used splice sites. Taken together, our data depict a conserved, complex and flexible process, involving multiple sites, that ensures splicing of 35S RNA. PMID:26162084

  17. Genomic features defining exonic variants that modulate splicing

    PubMed Central

    2010-01-01

    Background Single point mutations at both synonymous and non-synonymous positions within exons can have severe effects on gene function through disruption of splicing. Predicting these mutations in silico purely from the genomic sequence is difficult due to an incomplete understanding of the multiple factors that may be responsible. In addition, little is known about which computational prediction approaches, such as those involving exonic splicing enhancers and exonic splicing silencers, are most informative. Results We assessed the features of single-nucleotide genomic variants verified to cause exon skipping and compared them to a large set of coding SNPs common in the human population, which are likely to have no effect on splicing. Our findings implicate a number of features important for their ability to discriminate splice-affecting variants, including the naturally occurring density of exonic splicing enhancers and exonic splicing silencers of the exon and intronic environment, extensive changes in the number of predicted exonic splicing enhancers and exonic splicing silencers, proximity to the splice junctions and evolutionary constraint of the region surrounding the variant. By extending this approach to additional datasets, we also identified relevant features of variants that cause increased exon inclusion and ectopic splice site activation. Conclusions We identified a number of features that have statistically significant representation among exonic variants that modulate splicing. These analyses highlight putative mechanisms responsible for splicing outcome and emphasize the role of features important for exon definition. We developed a web-tool, Skippy, to score coding variants for these relevant splice-modulating features. PMID:20158892

  18. Plaque-Like Sclerodermiform Localized Mucinosis Rapidly Responsive to Topical Tacrolimus

    PubMed Central

    Schmaltz, R.; Vogt, T.; Müller, C.S.L.

    2010-01-01

    We report the successful treatment of plaque-like sclerodermiform mucinosis using tacrolimus ointment topically. We present a 70-year-old male with a large chronic erythema and hardening of the nuchal skin and shoulder area. Subjective symptoms were a moderate pruritus and a rather disabling stiffness. A biopsy specimen revealed typical features of lichen myxedematosus. In a subsequent clinical examination, no associated illnesses such as hypothyroidism or gammopathy were found. Since no established therapy exists for this condition, and as there was a lack of response to potent topical glucocorticosteroids, tacrolimus 0.03% ointment was used off-label twice daily. Surprisingly, this resulted in a rapid, almost complete clearance of the skin within three weeks of treatment. PMID:21060774

  19. Identification of two spliced leader RNA transcripts from Perkinsus marinus.

    PubMed

    Hearne, Jennifer L; Pitula, Joseph S

    2011-01-01

    Spliced leader (SL) variants are present in a number of mRNAs from Perkinsus marinus. Three different SLs of 22 nucleotides (nt) in length were previously reported, with a consensus sequence of (DCCGUAGCCAUYUUGGCUCAAG). A truncated 21 nt SL, with an (A) at nt-1 and a (U) deletion at nt-13, has also been reported. Here, we report an additional 21 nt SL variant with (G) at nt-1. Using cDNA analysis, a full-length SL RNA transcript was identified for both 21 nt SLs (SL2[A] and SL2[G]). This transcript is 81 nt in length and contains a conserved transcription termination sequence present in closely related dinoflagellates. PMID:21435079

  20. Aberrant Splicing of Estrogen Receptor, HER2, and CD44 Genes in Breast Cancer

    PubMed Central

    Inoue, Kazushi; Fry, Elizabeth A.

    2015-01-01

    Breast cancer (BC) is the most common cause of cancer-related death among women under the age of 50 years. Established biomarkers, such as hormone receptors (estrogen receptor [ER]/progesterone receptor) and human epidermal growth factor receptor 2 (HER2), play significant roles in the selection of patients for endocrine and trastuzumab therapies. However, the initial treatment response is often followed by tumor relapse with intrinsic resistance to the first-line therapy, so it has been expected to identify novel molecular markers to improve the survival and quality of life of patients. Alternative splicing of pre-messenger RNAs is a ubiquitous and flexible mechanism for the control of gene expression in mammalian cells. It provides cells with the opportunity to create protein isoforms with different, even opposing, functions from a single genomic locus. Aberrant alternative splicing is very common in cancer where emerging tumor cells take advantage of this flexibility to produce proteins that promote cell growth and survival. While a number of splicing alterations have been reported in human cancers, we focus on aberrant splicing of ER, HER2, and CD44 genes from the viewpoint of BC development. ERα36, a splice variant from the ER1 locus, governs nongenomic membrane signaling pathways triggered by estrogen and confers 4-hydroxytamoxifen resistance in BC therapy. The alternative spliced isoform of HER2 lacking exon 20 (Δ16HER2) has been reported in human BC; this isoform is associated with transforming ability than the wild-type HER2 and recapitulates the phenotypes of endocrine therapy-resistant BC. Although both CD44 splice isoforms (CD44s, CD44v) play essential roles in BC development, CD44v is more associated with those with favorable prognosis, such as luminal A subtype, while CD44s is linked to those with poor prognosis, such as HER2 or basal cell subtypes that are often metastatic. Hence, the detection of splice variants from these loci will provide keys

  1. A serine–arginine-rich (SR) splicing factor modulates alternative splicing of over a thousand genes in Toxoplasma gondii

    PubMed Central

    Yeoh, Lee M.; Goodman, Christopher D.; Hall, Nathan E.; van Dooren, Giel G.; McFadden, Geoffrey I.; Ralph, Stuart A.

    2015-01-01

    Single genes are often subject to alternative splicing, which generates alternative mature mRNAs. This phenomenon is widespread in animals, and observed in over 90% of human genes. Recent data suggest it may also be common in Apicomplexa. These parasites have small genomes, and economy of DNA is evolutionarily favoured in this phylum. We investigated the mechanism of alternative splicing in Toxoplasma gondii, and have identified and localized TgSR3, a homologue of ASF/SF2 (alternative-splicing factor/splicing factor 2, a serine-arginine–rich, or SR protein) to a subnuclear compartment. In addition, we conditionally overexpressed this protein, which was deleterious to growth. qRT-PCR was used to confirm perturbation of splicing in a known alternatively-spliced gene. We performed high-throughput RNA-seq to determine the extent of splicing modulated by this protein. Current RNA-seq algorithms are poorly suited to compact parasite genomes, and hence we complemented existing tools by writing a new program, GeneGuillotine, that addresses this deficiency by segregating overlapping reads into distinct genes. In order to identify the extent of alternative splicing, we released another program, JunctionJuror, that detects changes in intron junctions. Using this program, we identified about 2000 genes that were constitutively alternatively spliced in T. gondii. Overexpressing the splice regulator TgSR3 perturbed alternative splicing in over 1000 genes. PMID:25870410

  2. A serine-arginine-rich (SR) splicing factor modulates alternative splicing of over a thousand genes in Toxoplasma gondii.

    PubMed

    Yeoh, Lee M; Goodman, Christopher D; Hall, Nathan E; van Dooren, Giel G; McFadden, Geoffrey I; Ralph, Stuart A

    2015-05-19

    Single genes are often subject to alternative splicing, which generates alternative mature mRNAs. This phenomenon is widespread in animals, and observed in over 90% of human genes. Recent data suggest it may also be common in Apicomplexa. These parasites have small genomes, and economy of DNA is evolutionarily favoured in this phylum. We investigated the mechanism of alternative splicing in Toxoplasma gondii, and have identified and localized TgSR3, a homologue of ASF/SF2 (alternative-splicing factor/splicing factor 2, a serine-arginine-rich, or SR protein) to a subnuclear compartment. In addition, we conditionally overexpressed this protein, which was deleterious to growth. qRT-PCR was used to confirm perturbation of splicing in a known alternatively-spliced gene. We performed high-throughput RNA-seq to determine the extent of splicing modulated by this protein. Current RNA-seq algorithms are poorly suited to compact parasite genomes, and hence we complemented existing tools by writing a new program, GeneGuillotine, that addresses this deficiency by segregating overlapping reads into distinct genes. In order to identify the extent of alternative splicing, we released another program, JunctionJuror, that detects changes in intron junctions. Using this program, we identified about 2000 genes that were constitutively alternatively spliced in T. gondii. Overexpressing the splice regulator TgSR3 perturbed alternative splicing in over 1000 genes. PMID:25870410

  3. Protein Trans-Splicing of Multiple Atypical Split Inteins Engineered from Natural Inteins

    PubMed Central

    Lin, Ying; Li, Mengmeng; Song, Huiling; Xu, Lingling; Meng, Qing; Liu, Xiang-Qin

    2013-01-01

    Protein trans-splicing by split inteins has many uses in protein production and research. Splicing proteins with synthetic peptides, which employs atypical split inteins, is particularly useful for site-specific protein modifications and labeling, because the synthetic peptide can be made to contain a variety of unnatural amino acids and chemical modifications. For this purpose, atypical split inteins need to be engineered to have a small N-intein or C-intein fragment that can be more easily included in a synthetic peptide that also contains a small extein to be trans-spliced onto target proteins. Here we have successfully engineered multiple atypical split inteins capable of protein trans-splicing, by modifying and testing more than a dozen natural inteins. These included both S1 split inteins having a very small (11–12 aa) N-intein fragment and S11 split inteins having a very small (6 aa) C-intein fragment. Four of the new S1 and S11 split inteins showed high efficiencies (85–100%) of protein trans-splicing both in E. coli cells and in vitro. Under in vitro conditions, they exhibited reaction rate constants ranging from ∼1.7×10−4 s−1 to ∼3.8×10−4 s−1, which are comparable to or higher than those of previously reported atypical split inteins. These findings should facilitate a more general use of trans-splicing between proteins and synthetic peptides, by expanding the availability of different atypical split inteins. They also have implications on understanding the structure-function relationship of atypical split inteins, particularly in terms of intein fragment complementation. PMID:23593141

  4. Novel mutations in EVC cause aberrant splicing in Ellis-van Creveld syndrome.

    PubMed

    Shi, Lisong; Luo, Chunyan; Ahmed, Mairaj K; Attaie, Ali B; Ye, Xiaoqian

    2016-04-01

    Ellis-van Creveld syndrome (EvC) is a rare autosomal recessive disorder characterized by disproportionate chondrodysplasia, postaxial polydactyly, nail dystrophy, dental abnormalities and in a proportion of patients, congenital cardiac malformations. Weyers acrofacial dysostosis (Weyers) is another dominantly inherited disorder allelic to EvC syndrome but with milder phenotypes. Both disorders can result from loss-of-function mutations in either EVC or EVC2 gene, and phenotypes associated with the two gene mutations are clinically indistinguishable. We present here a clinical and molecular analysis of a Chinese family manifested specific features of EvC syndrome. Sequencing of both EVC and EVC2 identified two novel heterozygous splice site mutations c.384+5G>C in intron 3 and c.1465-1G>A in intron 10 in EVC, which were inherited from mother and father, respectively. In vitro minigene expression assay, RT-PCR and sequencing analysis demonstrated that c.384+5G>C mutation abolished normal splice site and created a new cryptic acceptor site within exon 4, whereas c.1465-1G>A mutation affected consensus splice junction site and resulted in full exon 11 skipping. These two aberrant pre-mRNA splicing processes both produced in-frame abnormal transcripts that possibly led to abolishment of important functional domains. To our knowledge, this is the first report of EVC mutations that cause EvC syndrome in Chinese population. Our data revealed that EVC splice site mutations altered splicing pattern and helped elucidate the pathogenesis of EvC syndrome. PMID:26621368

  5. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer.

    PubMed

    Hartung, Anne-Mette; Swensen, Jeff; Uriz, Inaki E; Lapin, Morten; Kristjansdottir, Karen; Petersen, Ulrika S S; Bang, Jeanne Mari V; Guerra, Barbara; Andersen, Henriette Skovgaard; Dobrowolski, Steven F; Carey, John C; Yu, Ping; Vaughn, Cecily; Calhoun, Amy; Larsen, Martin R; Dyrskjøt, Lars; Stevenson, David A; Andresen, Brage S

    2016-05-01

    Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping. PMID:27195699

  6. The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer

    PubMed Central

    Kristjansdottir, Karen; Petersen, Ulrika S. S.; Bang, Jeanne Mari V.; Guerra, Barbara; Andersen, Henriette Skovgaard; Dobrowolski, Steven F.; Carey, John C.; Yu, Ping; Calhoun, Amy; Larsen, Martin R.; Dyrskjøt, Lars; Stevenson, David A.; Andresen, Brage S.

    2016-01-01

    Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3’ splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping. PMID:27195699

  7. Ethanedithiol-treated manganese oxide nanoparticles for rapidly responsive and transparent supercapacitors

    NASA Astrophysics Data System (ADS)

    Ryu, Ilhwan; Kim, Green; Park, Dasom; Yim, Sanggyu

    2015-11-01

    Metal oxide nanoparticles (NPs) provide a large surface area and short diffusion pathways for ions in supercapacitor electrode materials. However, binders and conductive additives used for tight connections with current collectors and improved conductivity hamper these benefits. In this work, we successfully fix manganese oxide (Mn3O4) NPs onto ITO current collectors by a simple 1,2-ethanedithiol (EDT) treatment without using any binders or conductive additives. As compared to the electrode fabricated using binder-mixed Mn3O4 NPs, the EDT-treated electrode shows significantly improved specific capacitance of 403 F g-1 at a scan rate of 10 mV s-1. The EDT-treatment is more effective at higher scan rates. The specific capacitances, 278 F g-1 at 100 mV s-1 and 202 F g-1 at 200 mV s-1, are larger than those reported so far at scan rates ≥100 mV s-1. The deconvolution of capacitive elements indicates that these improved capacitive properties are attributed to large insertion elements of the binder-free NP electrodes. Furthermore, this additive-free electrode is highly transparent and can be easily fabricated by simple spray-coating on various substrates including polymer films, implying that this new method is promising for the fabrication of large-area, transparent and flexible electrodes for next-generation supercapacitors.

  8. Multiple measures of rapid response as predictors of remission in cognitive behavior therapy for bulimia nervosa.

    PubMed

    Thompson-Brenner, Heather; Shingleton, Rebecca M; Sauer-Zavala, Shannon; Richards, Lauren K; Pratt, Elizabeth M

    2015-01-01

    Bulimia nervosa (BN) treatment studies consistently observe that substantial reductions in purging frequency after four weeks of treatment predict outcome. Although baseline levels of other variables have been compared to change in purging, measures of early change in other domains have not been examined. This study aimed to compare percentage change in purging, depression, and cognitive eating disorder (ED) symptoms for associations with BN remission post-treatment and at six months follow-up. Data from N = 43 patients with BN in a clinical trial comparing the broad and focused versions of enhanced cognitive behavior therapy (CBT-E; Fairburn, 2008) were utilized. Measures included self-reported purging frequency, Beck Depression Inventory (BDI) score, and a mean of items from the Eating Disorder Inventory Body Dissatisfaction and Drive for Thinness subscales. Results indicated that both percentage change in purging frequency and percentage change in BDI score at week four/session eight were significantly associated with remission at termination. The optimal cutoffs for purging change and BDI score change were 65% decrease and 25% decrease respectively. Only change in BDI score at week four significantly predicted remission at six-month follow-up. These data suggest that change in depressive symptoms may be as important as ED symptom change to predict outcome in some groups. PMID:25462877

  9. Rapid response to Ebola outbreaks in remote areas - Liberia, July-November 2014.

    PubMed

    Kateh, Francis; Nagbe, Thomas; Kieta, Abraham; Barskey, Albert; Gasasira, Alex Ntale; Driscoll, Anne; Tucker, Anthony; Christie, Athalia; Karmo, Ben; Scott, Colleen; Bowah, Collin; Barradas, Danielle; Blackley, David; Dweh, Emmanuel; Warren, Felicia; Mahoney, Frank; Kassay, Gabriel; Calvert, Geoffrey M; Castro, Georgina; Logan, Gorbee; Appiah, Grace; Kirking, Hannah; Koon, Hawa; Papowitz, Heather; Walke, Henry; Cole, Isaac B; Montgomery, Joel; Neatherlin, John; Tappero, Jordan W; Hagan, Jose E; Forrester, Joseph; Woodring, Joseph; Mott, Joshua; Attfield, Kathleen; DeCock, Kevin; Lindblade, Kim A; Powell, Krista; Yeoman, Kristin; Adams, Laura; Broyles, Laura N; Slutsker, Laurence; Larway, Lawrence; Belcher, Lisa; Cooper, Lorraine; Santos, Marjorie; Westercamp, Matthew; Weinberg, Meghan Pearce; Massoudi, Mehran; Dea, Monica; Patel, Monita; Hennessey, Morgan; Fomba, Moses; Lubogo, Mutaawe; Maxwell, Nikki; Moonan, Patrick; Arzoaquoi, Sampson; Gee, Samuel; Zayzay, Samuel; Pillai, Satish; Williams, Seymour; Zarecki, Shauna Mettee; Yett, Sheldon; James, Stephen; Grube, Steven; Gupta, Sundeep; Nelson, Thelma; Malibiche, Theophil; Frank, Wilmont; Smith, Wilmot; Nyenswah, Tolbert

    2015-02-27

    West Africa is experiencing its first epidemic of Ebola virus disease (Ebola). As of February 9, Liberia has reported 8,864 Ebola cases, of which 3,147 were laboratory-confirmed. Beginning in August 2014, the Liberia Ministry of Health and Social Welfare (MOHSW), supported by CDC, the World Health Organization (WHO), and others, began systematically investigating and responding to Ebola outbreaks in remote areas. Because many of these areas lacked mobile telephone service, easy road access, and basic infrastructure, flexible and targeted interventions often were required. Development of a national strategy for the Rapid Isolation and Treatment of Ebola (RITE) began in early October. The strategy focuses on enhancing capacity of county health teams (CHT) to investigate outbreaks in remote areas and lead tailored responses through effective and efficient coordination of technical and operational assistance from the MOHSW central level and international partners. To measure improvements in response indicators and outcomes over time, data from investigations of 12 of 15 outbreaks in remote areas with illness onset dates of index cases during July 16-November 20, 2014, were analyzed. The times to initial outbreak alerts and durations of the outbreaks declined over that period while the proportions of patients who were isolated and treated increased. At the same time, the case-fatality rate in each outbreak declined. Implementation of strategies, such as RITE, to rapidly respond to rural outbreaks of Ebola through coordinated and tailored responses can successfully reduce transmission and improve outcomes. PMID:25719682

  10. A novel donor splice-site mutation of major intrinsic protein gene associated with congenital cataract in a Chinese family

    PubMed Central

    Zeng, Lu; Liu, Wenqiang; Feng, Wenguo; Wang, Xing; Dang, Hui; Gao, Luna; Yao, Jing

    2013-01-01

    Purpose To identify the disease-causing gene in a Chinese family with autosomal dominant congenital cataract. Methods Clinical and ophthalmologic examinations were performed on all members of a Chinese family with congenital cataract. Nine genes associated with congenital cataract were screened using direct DNA sequencing. Mutations were confirmed using restriction fragment length polymorphism (RFLP) analysis. The mutated major intrinsic protein (MIP) minigene, which carries the disease-causing splice-site mutation, and the wild-type (WT) MIP minigene were constructed using the pcDNA3.1 expression vector. Wild-type and mutant MIP minigene constructs were transiently transfected into HeLa cells. After 48 h of incubation at 37 °C, total RNA isolation and reverse transcription (RT)–PCR analysis were performed, and PCR products were separated and confirmed with sequencing. Results Direct DNA sequence analysis identified a novel splice-site mutation in intron 3 (c.606+1 G>A) of the MIP gene. To investigate the manner in which the splice donor mutation could affect mRNA splicing, WT and mutant MIP minigenes were inserted in the pcDNA3.1 (+) vector. Constructs were transfected into HeLa cells. RT–PCR analysis showed that the donor splice site mutation led to deletion of exon 3 in the mRNA encoded by the MIP gene. Conclusions The present study identified a novel donor splice-site mutation (c.606+1G>A) in the MIP gene in a Chinese family with congenital cataract. In vitro RT–PCR analysis showed that this splice-site mutation resulted in the deletion of exon 3 from mRNA encoded by the MIP gene. This is the first report to show that donor splice-site mutation in MIP gene can cause autosomal dominant congenital cataract. PMID:24319327

  11. A novel Na+ channel splice form contributes to the regulation of an androgen-dependent social signal

    PubMed Central

    Liu, He; Wu, Ming-ming; Zakon, Harold H

    2008-01-01

    Na+ channels are often spliced but little is known about the functional consequences of splicing. We have been studying the regulation of Na+ current inactivation in an electric fish model in which systematic variation in the rate of inactivation of the electric organ Na+ current shapes the electric organ discharge (EOD), a sexually-dimorphic, androgen-sensitive communication signal. Here we examine the relationship between a Na+ channel (Nav1.4b), which has two splice forms, and the waveform of the EOD. One splice form (Nav1.4bL) possesses a novel first exon that encodes a 51 amino acid N terminal extension. This is the first report of a Na+ channel with alternative splicing in the N terminal. This N terminal is present in zebrafish suggesting its general importance in regulating Na+ currents in teleosts. The extended N terminal significantly speeds fast inactivation, shifts steady state inactivation, and dramatically enhances recovery from inactivation, essentially fulfilling the functions of a β subunit. Both splice forms are equally expressed in muscle in electric fish and zebrafish but Nav1.4bL is the dominant form in the electric organ implying electric organ-specific transcriptional regulation. Transcript abundance of Nav1.4bL in the electric organ is positively correlated with EOD frequency and lowered by androgens. Thus, shaping of the EOD waveform involves the androgenic regulation of a rapidly inactivating splice form of a Na+ channel. Our results emphasize the role of splicing in the regulation of a vertebrate Na+ channel and its contribution to a known behavior. PMID:18784298

  12. Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides.

    PubMed

    Hinrich, Anthony J; Jodelka, Francine M; Chang, Jennifer L; Brutman, Daniella; Bruno, Angela M; Briggs, Clark A; James, Bryan D; Stutzmann, Grace E; Bennett, David A; Miller, Steven A; Rigo, Frank; Marr, Robert A; Hastings, Michelle L

    2016-01-01

    Apolipoprotein E receptor 2 (ApoER2) is an apolipoprotein E receptor involved in long-term potentiation, learning, and memory. Given its role in cognition and its association with the Alzheimer's disease (AD) risk gene, apoE, ApoER2 has been proposed to be involved in AD, though a role for the receptor in the disease is not clear. ApoER2 signaling requires amino acids encoded by alternatively spliced exon 19. Here, we report that the balance of ApoER2 exon 19 splicing is deregulated in postmortem brain tissue from AD patients and in a transgenic mouse model of AD To test the role of deregulated ApoER2 splicing in AD, we designed an antisense oligonucleotide (ASO) that increases exon 19 splicing. Treatment of AD mice with a single dose of ASO corrected ApoER2 splicing for up to 6 months and improved synaptic function and learning and memory. These results reveal an association between ApoER2 isoform expression and AD, and provide preclinical evidence for the utility of ASOs as a therapeutic approach to mitigate Alzheimer's disease symptoms by improving ApoER2 exon 19 splicing. PMID:26902204

  13. HS3D, A Dataset of Homo Sapiens Splice Regions, and its Extraction Procedure from a Major Public Database

    NASA Astrophysics Data System (ADS)

    Pollastro, Pasquale; Rampone, Salvatore

    The aim of this work is to describe a cleaning procedure of GenBank data, producing material to train and to assess the prediction accuracy of computational approaches for gene characterization. A procedure (GenBank2HS3D) has been defined, producing a dataset (HS3D - Homo Sapiens Splice Sites Dataset) of Homo Sapiens Splice regions extracted from GenBank (Rel.123 at this time). It selects, from the complete GenBank Primate Division, entries of Human Nuclear DNA according with several assessed criteria; then it extracts exons and introns from these entries (actually 4523 + 3802). Donor and acceptor sites are then extracted as windows of 140 nucleotides around each splice site (3799 + 3799). After discarding windows not including canonical GT-AG junctions (65 + 74), including insufficient data (not enough material for a 140 nucleotide window) (686 + 589), including not AGCT bases (29 + 30), and redundant (218 + 226), the remaining windows (2796 + 2880) are reported in the dataset. Finally, windows of false splice sites are selected by searching canonical GT-AG pairs in not splicing positions (271 937 + 332 296). The false sites in a range +/- 60 from a true splice site are marked as proximal. HS3D, release 1.2 at this time, is available at the Web server of the University of Sannio: http://www.sci.unisannio.it/docenti/rampone/.

  14. The exon A (C77G) mutation is a common cause of abnormal CD45 splicing in humans.

    PubMed

    Tchilian, E Z; Wallace, D L; Imami, N; Liao, H X; Burton, C; Gotch, F; Martinson, J; Haynes, B F; Beverley, P C

    2001-05-15

    The leukocyte common (CD45) Ag is essential for normal T lymphocyte function and alternative splicing at the N terminus of the gene is associated with changes in T cell maturation and differentiation. Recently, a statistically significant association was reported in a large series of human thymus samples between phenotypically abnormal CD45 splicing and the presence of the CC chemokine receptor 5 deletion 32 (CCR5del32) allele, which confers resistance to HIV infection in homozygotes. We show here that abnormal splicing in these thymus samples is associated with the presence of the only established cause of CD45 abnormal splicing, a C77G transversion in exon A. In addition we have examined 227 DNA samples from peripheral blood of healthy donors and find no association between the exon A (C77G) and CCR5del32 mutations. Among 135 PBMC samples, tested by flow cytometric analysis, all those exhibiting abnormal splicing of CD45 also showed the exon A C77G transversion. We conclude that the exon A (C77G) mutation is a common cause of abnormal CD45 splicing and that further disease association studies of this mutation are warranted. PMID:11342634

  15. The splicing modulator sudemycin induces a specific antitumor response and cooperates with ibrutinib in chronic lymphocytic leukemia

    PubMed Central

    Rosich, Laia; Montraveta, Arnau; Roldán, Jocabed; Rodríguez, Vanina; Villamor, Neus; Aymerich, Marta; Lagisetti, Chandraiah; Webb, Thomas R.; López-Otín, Carlos; Campo, Elias; Colomer, Dolors

    2015-01-01

    Mutations or deregulated expression of the components of the spliceosome can influence the splicing pattern of several genes and contribute to the development of tumors. In this context, we report that the spliceosome modulator sudemycin induces selective cytotoxicity in primary chronic lymphocytic leukemia (CLL) cells when compared with healthy lymphocytes and tumor cells from other B-lymphoid malignancies, with a slight bias for CLL cases with mutations in spliceosome-RNA processing machinery. Consistently, sudemycin exhibits considerable antitumor activity in NOD/SCID/IL2Rγ−/− (NSG) mice engrafted with primary cells from CLL patients. The antileukemic effect of sudemycin involves the splicing modulation of several target genes important for tumor survival, both in SF3B1-mutated and -unmutated cases. Thus, the apoptosis induced by this compound is related to the alternative splicing switch of MCL1 toward its proapoptotic isoform. Sudemycin also functionally disturbs NF-κB pathway in parallel with the induction of a spliced RELA variant that loses its DNA binding domain. Importantly, we show an enhanced antitumor effect of sudemycin in combination with ibrutinib that might be related to the modulation of the alternative splicing of the inhibitor of Btk (IBTK). In conclusion, we provide first evidence that the spliceosome is a relevant therapeutic target in CLL, supporting the use of splicing modulators alone or in combination with ibrutinib as a promising approach for the treatment of CLL patients. PMID:26068951

  16. SKIP Is a Component of the Spliceosome Linking Alternative Splicing and the Circadian Clock in Arabidopsis[W

    PubMed Central

    Wang, Xiaoxue; Wu, Fangming; Xie, Qiguang; Wang, Huamei; Wang, Ying; Yue, Yanling; Gahura, Ondrej; Ma, Shuangshuang; Liu, Lei; Cao, Ying; Jiao, Yuling; Puta, Frantisek; McClung, C. Robertson; Xu, Xiaodong; Ma, Ligeng

    2012-01-01

    Circadian clocks generate endogenous rhythms in most organisms from cyanobacteria to humans and facilitate entrainment to environmental diurnal cycles, thus conferring a fitness advantage. Both transcriptional and posttranslational mechanisms are prominent in the basic network architecture of circadian systems. Posttranscriptional regulation, including mRNA processing, is emerging as a critical step for clock function. However, little is known about the molecular mechanisms linking RNA metabolism to the circadian clock network. Here, we report that a conserved SNW/Ski-interacting protein (SKIP) domain protein, SKIP, a splicing factor and component of the spliceosome, is involved in posttranscriptional regulation of circadian clock genes in Arabidopsis thaliana. Mutation in SKIP lengthens the circadian period in a temperature-sensitive manner and affects light input and the sensitivity of the clock to light resetting. SKIP physically interacts with the spliceosomal splicing factor Ser/Arg-rich protein45 and associates with the pre-mRNA of clock genes, such as PSEUDORESPONSE REGULATOR7 (PRR7) and PRR9, and is necessary for the regulation of their alternative splicing and mRNA maturation. Genome-wide investigations reveal that SKIP functions in regulating alternative splicing of many genes, presumably through modulating recognition or cleavage of 5′ and 3′ splice donor and acceptor sites. Our study addresses a fundamental question on how the mRNA splicing machinery contributes to circadian clock function at a posttranscriptional level. PMID:22942380

  17. Alteration of NCoR Corepressor Splicing in Mice Causes Increased Body Weight and Hepatosteatosis without Glucose Intolerance

    PubMed Central

    Goodson, Michael L.; Young, Briana M.; Snyder, Chelsea A.; Schroeder, Amy C.

    2014-01-01

    Alternative mRNA splicing is an important means of diversifying function in higher eukaryotes. Notably, both NCoR and SMRT corepressors are subject to alternative mRNA splicing, yielding a series of distinct corepressor variants with highly divergent functions. Normal adipogenesis is associated with a switch in corepressor splicing from NCoRω to NCoRδ, which appears to help regulate this differentiation process. We report here that mimicking this development switch in mice by a splice-specific whole-animal ablation of NCoRω is very different from a whole-animal or tissue-specific total NCoR knockout and produces significantly enhanced weight gain on a high-fat diet. Surprisingly, NCoRω−/− mice are protected against diet-induced glucose intolerance despite enhanced adiposity and the presence of multiple additional, prodiabetic phenotypic changes. Our results indicate that the change in NCoR splicing during normal development both helps drive normal adipocyte differentiation and plays a key role in determining a metabolically appropriate storage of excess calories. We also conclude that whole-gene “knockouts” fail to reveal how important gene products are customized, tailored, and adapted through alternative mRNA splicing and thus do not reveal all the functions of the protein products of that gene. PMID:25182530

  18. Dysferlin rescue by spliceosome-mediated pre-mRNA trans-splicing targeting introns harbouring weakly defined 3' splice sites.

    PubMed

    Philippi, Susanne; Lorain, Stéphanie; Beley, Cyriaque; Peccate, Cécile; Précigout, Guillaume; Spuler, Simone; Garcia, Luis

    2015-07-15

    The modification of the pre-mRNA cis-splicing process employing a pre-mRNA trans-splicing molecule (PTM) is an attractive strategy for the in situ correction of genes whose careful transcription regulation and full-length expression is determinative for protein function, as it is the case for the dysferlin (DYSF, Dysf) gene. Loss-of-function mutations of DYSF result in different types of muscular dystrophy mainly manifesting as limb girdle muscular dystrophy 2B (LGMD2B) and Miyoshi muscular dystrophy 1 (MMD1). We established a 3' replacement strategy for mutated DYSF pre-mRNAs induced by spliceosome-mediated pre-mRNA trans-splicing (SmaRT) by the use of a PTM. In contrast to previously established SmaRT strategies, we particularly focused on the identification of a suitable pre-mRNA target intron other than the optimization of the PTM design. By targeting DYSF pre-mRNA introns harbouring differentially defined 3' splice sites (3' SS), we found that target introns encoding weakly defined 3' SSs were trans-spliced successfully in vitro in human LGMD2B myoblasts as well as in vivo in skeletal muscle of wild-type and Dysf(-/-) mice. For the first time, we demonstrate rescue of Dysf protein by SmaRT in vivo. Moreover, we identified concordant qualities among the successfully targeted Dysf introns and targeted endogenous introns in previously reported SmaRT approaches that might facilitate a selective choice of target introns in future SmaRT strategies. PMID:25904108

  19. Rapid-response fluorescent probe for hydrogen peroxide in living cells based on increased polarity of C-B bonds.

    PubMed

    Zhang, Wei; Liu, Wei; Li, Ping; Huang, Fang; Wang, Hui; Tang, Bo

    2015-10-01

    Hydrogen peroxide (H2O2) as a reactive oxygen species (ROS) plays a crucial role in oxidative stress and signal transduction of organisms. Currently, a fluorescence probe has proven to be a powerful tool for the H2O2 analysis. However, the common problem is the slow response, causing difficulty in tracking H2O2 in situ. Herein, we describe a novel aggregation-induced emission (AIE) fluorescence probe based on increased polarity of C-B bonds that is well suited for monitoring H2O2 rapidly and selectively. Importantly, the probe was successfully applied to visualize H2O2 levels in living cells, which provides a rapid-response and highly selective fluorescence tool for monitoring of the H2O2 levels in biological process. PMID:26352695

  20. Introns, alternative splicing, spliced leader trans-splicing and differential expression of pcna and cyclin in Perkinsus marinus.

    PubMed

    Zhang, Huan; Dungan, Christopher F; Lin, Senjie

    2011-01-01

    To gain understanding on the structure and regulation of growth-related genes of the parasitic alveolatePerkinsus marinus, we analyzed genes encoding proliferating cell nuclear antigen (pcna) and cyclins (cyclin). Comparison of the full-length cDNAs with the corresponding genomic sequences revealedtrans-splicing of the mRNAs of these genes with a conserved 21-22 nt spliced leader. Over 10 copies ofpcnawere detected, with identical gene structures and similar nucleotide (nt) sequences (88-99%), encoding largely identical amino acid sequences (aa). Two distinct types ofcyclin(Pmacyclin1 andPmacyclin2) were identified, with 66-69% nt and 81-85% aa similarities.Pmacyclin2 was organized in tandem repeats, and was alternatively spliced, giving rise to five subtypes of transcripts. For bothpcnaandcyclingenes, 6-10 introns were found. Quantitative RT-PCR assays showed thatpcnaandPmacyclin2 expression levels were low with small variations during a 28-h time course, whereasPmacyclin1 transcript abundance was 10-100 times higher, and increased markedly during active cell division, suggesting that it is a mitoticcyclinand can be a useful growth marker for this species. The gene structure and expression features along with phylogenetic results position this organism between dinoflagellates and apicomplexans, but its definitive affiliation among alveolates requires further studies. PMID:20650682

  1. Invasive species information networks: Collaboration at multiple scales for prevention, early detection, and rapid response to invasive alien species

    USGS Publications Warehouse

    Simpson, A.; Jarnevich, C.; Madsen, J.; Westbrooks, R.; Fournier, C.; Mehrhoff, L.; Browne, M.; Graham, J.; Sellers, E.

    2009-01-01

    Accurate analysis of present distributions and effective modeling of future distributions of invasive alien species (IAS) are both highly dependent on the availability and accessibility of occurrence data and natural history information about the species. Invasive alien species monitoring and detection networks (such as the Invasive Plant Atlas of New England and the Invasive Plant Atlas of the MidSouth) generate occurrence data at local and regional levels within the United States, which are shared through the US National Institute of Invasive Species Science. The Inter-American Biodiversity Information Network's Invasives Information Network (I3N), facilitates cooperation on sharing invasive species occurrence data throughout the Western Hemisphere. The I3N and other national and regional networks expose their data globally via the Global Invasive Species Information Network (GISIN). International and interdisciplinary cooperation on data sharing strengthens cooperation on strategies and responses to invasions. However, limitations to effective collaboration among invasive species networks leading to successful early detection and rapid response to invasive species include: lack of interoperability; data accessibility; funding; and technical expertise. This paper proposes various solutions to these obstacles at different geographic levels and briefly describes success stories from the invasive species information networks mentioned above. Using biological informatics to facilitate global information sharing is especially critical in invasive species science, as research has shown that one of the best indicators of the invasiveness of a species is whether it has been invasive elsewhere. Data must also be shared across disciplines because natural history information (e.g. diet, predators, habitat requirements, etc.) about a species in its native range is vital for effective prevention, detection, and rapid response to an invasion. Finally, it has been our

  2. The Same Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) yet Different Outbreak Patterns and Public Health Impacts on the Far East Expert Opinion from the Rapid Response Team of the Republic of Korea

    PubMed Central

    2015-01-01

    A Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) outbreak, the largest outbreak outside the Middle East in 2012, occurred in the Republic of Korea and resulted in a large number of cases, with 186 infected people, including 38 deaths. A Rapid Response Team (RRT) was appointed after a request from the Korean government on June 8, 2015 calling for specialists to manage and control the MERS-CoV outbreak. This report presents the opinion of the RRT who worked to manage this healthcare-associated MERS-CoV outbreak in Korea. PMID:26788408

  3. Evolution of Nova-Dependent Splicing Regulation in the Brain

    PubMed Central

    Živin, Marko; Darnell, Robert B

    2007-01-01

    A large number of alternative exons are spliced with tissue-specific patterns, but little is known about how such patterns have evolved. Here, we study the conservation of the neuron-specific splicing factors Nova1 and Nova2 and of the alternatively spliced exons they regulate in mouse brain. Whereas Nova RNA binding domains are 94% identical across vertebrate species, Nova-dependent splicing silencer and enhancer elements (YCAY clusters) show much greater divergence, as less than 50% of mouse YCAY clusters are conserved at orthologous positions in the zebrafish genome. To study the relation between the evolution of tissue-specific splicing and YCAY clusters, we compared the brain-specific splicing of Nova-regulated exons in zebrafish, chicken, and mouse. The presence of YCAY clusters in lower vertebrates invariably predicted conservation of brain-specific splicing across species, whereas their absence in lower vertebrates correlated with a loss of alternative splicing. We hypothesize that evolution of Nova-regulated splicing in higher vertebrates proceeds mainly through changes in cis-acting elements, that tissue-specific splicing might in some cases evolve in a single step corresponding to evolution of a YCAY cluster, and that the conservation level of YCAY clusters relates to the functions encoded by the regulated RNAs. PMID:17937501

  4. Entropic contributions to the splicing process

    NASA Astrophysics Data System (ADS)

    Osella, Matteo; Caselle, Michele

    2009-12-01

    It has been recently argued that depletion attraction may play an important role in different aspects of cellular organization, ranging from the organization of transcriptional activity in transcription factories to the formation of nuclear bodies. In this paper, we suggest a new application of these ideas in the context of the splicing process, a crucial step of messenger RNA maturation in eukaryotes. We shall show that entropy effects and the resulting depletion attraction may explain the relevance of the aspecific intron length variable in the choice of splice-site recognition modality. On top of that, some qualitative features of the genome architecture of higher eukaryotes can find evolutionary realistic motivation in the light of our model.

  5. The missing puzzle piece: splicing mutations

    PubMed Central

    Lewandowska, Marzena A

    2013-01-01

    Proper gene splicing is highly dependent on the correct recognition of exons. Among the elements allowing this process are the “cis” (conserved sequences) and “trans” (snRNP, splicing factors) elements. Splicing mutations are related with a number of genetic disorders and usually induce exon skipping, form new exon/intron boundaries or activate new cryptic exons as a result of alterations at donor/acceptor sites. They constitute more than 9% of the currently published mutations, but this value is highly underestimated as many of the potential mutations are located in the “cis” elements and should be confirmed experimentally. The most commonly detected splicing mutations are located at donor (5’) and acceptor (3’) sites. Mutations at the branch point are rare (only over a dozen are known to date), and are mostly searched and detected when no alteration has been detected in the sequenced exons and UTRs. Polypyrimidine tract mutations are equally rare. High throughput technologies, as well as traditional Sanger sequencing, allow detection of many changes in intronic sequences and intron/exon boundaries. However, the assessment whether a mutation affects exon recognition and results in a genetic disorder has to be conducted using molecular biology methods: in vitro transcription of the sequence of interest cloned into a plasmid, with and without alterations, or mutation analysis via a hybrid minigene system. Even though microarrays and new generation sequencing methods pose difficulties in detecting novel branch point mutations, these tools seem appropriate to expand the mutation detection panel especially for diagnostic purposes. PMID:24294354

  6. Vials: Visualizing Alternative Splicing of Genes

    PubMed Central

    Strobelt, Hendrik; Alsallakh, Bilal; Botros, Joseph; Peterson, Brant; Borowsky, Mark; Pfister, Hanspeter; Lex, Alexander

    2016-01-01

    Alternative splicing is a process by which the same DNA sequence is used to assemble different proteins, called protein isoforms. Alternative splicing works by selectively omitting some of the coding regions (exons) typically associated with a gene. Detection of alternative splicing is difficult and uses a combination of advanced data acquisition methods and statistical inference. Knowledge about the abundance of isoforms is important for understanding both normal processes and diseases and to eventually improve treatment through targeted therapies. The data, however, is complex and current visualizations for isoforms are neither perceptually efficient nor scalable. To remedy this, we developed Vials, a novel visual analysis tool that enables analysts to explore the various datasets that scientists use to make judgments about isoforms: the abundance of reads associated with the coding regions of the gene, evidence for junctions, i.e., edges connecting the coding regions, and predictions of isoform frequencies. Vials is scalable as it allows for the simultaneous analysis of many samples in multiple groups. Our tool thus enables experts to (a) identify patterns of isoform abundance in groups of samples and (b) evaluate the quality of the data. We demonstrate the value of our tool in case studies using publicly available datasets. PMID:26529712

  7. Integrating alternative splicing detection into gene prediction

    PubMed Central

    Foissac, Sylvain; Schiex, Thomas

    2005-01-01

    Background Alternative splicing (AS) is now considered as a major actor in transcriptome/proteome diversity and it cannot be neglected in the annotation process of a new genome. Despite considerable progresses in term of accuracy in computational gene prediction, the ability to reliably predict AS variants when there is local experimental evidence of it remains an open challenge for gene finders. Results We have used a new integrative approach that allows to incorporate AS detection into ab initio gene prediction. This method relies on the analysis of genomically aligned transcript sequences (ESTs and/or cDNAs), and has been implemented in the dynamic programming algorithm of the graph-based gene finder EuGÈNE. Given a genomic sequence and a set of aligned transcripts, this new version identifies the set of transcripts carrying evidence of alternative splicing events, and provides, in addition to the classical optimal gene prediction, alternative optimal predictions (among those which are consistent with the AS events detected). This allows for multiple annotations of a single gene in a way such that each predicted variant is supported by a transcript evidence (but not necessarily with a full-length coverage). Conclusions This automatic combination of experimental data analysis and ab initio gene finding offers an ideal integration of alternatively spliced gene prediction inside a single annotation pipeline. PMID:15705189

  8. Consequences of splice variation on Secretin family G protein-coupled receptor function

    PubMed Central

    Furness, Sebastian GB; Wootten, Denise; Christopoulos, Arthur; Sexton, Patrick M

    2012-01-01

    The Secretin family of GPCRs are endocrine peptide hormone receptors that share a common genomic organization and are the subject of a wide variety of alternative splicing. All GPCRs contain a central seven transmembrane domain responsible for transducing signals from the outside of the cell as well as extracellular amino and intracellular carboxyl termini. Members of the Secretin receptor family have a relatively large N-terminus and a variety of lines of evidence support a common mode of ligand binding and a common ligand binding fold. These receptors are best characterized as coupling to intracellular signalling pathways via Gαs and Gαq but are also reported to couple to a multitude of other signalling pathways. The intracellular loops are implicated in regulating the interaction between the receptor and heterotrimeric G protein complexes. Alternative splicing of exons encoding both the extracellular N-terminal domain as well as the extracellular loops of some family members has been reported and as expected these splice variants display altered ligand affinity as well as differential activation by endogenous ligands. Various forms of alternative splicing have also been reported to alter intracellular loops 1 and 3 as well as the C-terminus and as one might expect these display differences in signalling bias towards downstream effectors. These diverse pharmacologies require that the physiological role of these splice variants be addressed but should provide unique opportunities for drug design and development. LINKED ARTICLES This article is part of a themed section on Secretin Family (Class B) G Protein-Coupled Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-1 PMID:21718310

  9. Splicing of many human genes involves sites embedded within introns

    PubMed Central

    Kelly, Steven; Georgomanolis, Theodore; Zirkel, Anne; Diermeier, Sarah; O'Reilly, Dawn; Murphy, Shona; Längst, Gernot; Cook, Peter R.; Papantonis, Argyris

    2015-01-01

    The conventional model for splicing involves excision of each intron in one piece; we demonstrate this inaccurately describes splicing in many human genes. First, after switching on transcription of SAMD4A, a gene with a 134 kb-long first intron, splicing joins the 3′ end of exon 1 to successive points within intron 1 well before the acceptor site at exon 2 is made. Second, genome-wide analysis shows that >60% of active genes yield products generated by such intermediate intron splicing. These products are present at ∼15% the levels of primary transcripts, are encoded by conserved sequences similar to those found at canonical acceptors, and marked by distinctive structural and epigenetic features. Finally, using targeted genome editing, we demonstrate that inhibiting the formation of these splicing intermediates affects efficient exon–exon splicing. These findings greatly expand the functional and regulatory complexity of the human transcriptome. PMID:25897131

  10. A general role for splicing enhancers in exon definition.

    PubMed Central

    Lam, Bianca J; Hertel, Klemens J

    2002-01-01

    Exonic splicing enhancers (ESEs) facilitate exon definition by assisting in the recruitment of splicing factors to the adjacent intron. Here we demonstrate that suboptimal 5' and 3' splice sites are activated independently by ESEs when they are located on different exons. However, when they are situated within a single exon, the same weak 5' and 3' splice sites are activated simultaneously by a single ESE. These findings demonstrate that a single ESE promotes the recognition of both exon/intron junctions within the same step during exon definition. Our results suggest that ESEs recruit a multicomponent complex that minimally contains components of the splicing machinery required for 5' and 3' splice site selection. PMID:12403462

  11. Identification and comparative analysis of novel alternatively spliced transcripts of RhoGEF domain encoding gene in C. elegans and C. briggsae

    PubMed Central

    Kashyap, Luv; Tabish, Mohammad; Ganesh, Subramaniam; Dubey, Deepti

    2007-01-01

    Y95B8A.12 gene of C. elegans encodes RhoGEF domain, which is a novel module in the Guanine nucleotide exchange factors (GEFs). Alternative splicing increases transcriptome and proteome diversification. Y95B8A.12 gene has two reported alternatively spliced transcripts by the C. elegans genome sequencing consortium. In the work presented here, we report the presence of four new spliced transcripts of Y95B8A.12 arising as a result of alternative splicing in the pre-mRNA encoded by Y95B8A.12 gene. Our methodology involved the use of various gene or exon finding programmes and several other bioinformatics tools followed by experimental validation. We have also studied alternative splicing pattern in RhoGEF domain encoding orthologues gene from C. briggsae and have obtained very similar results. These new unreported spliced transcripts, which were not detected through conventional approaches, not only point towards the extent of alternative splicing in C. elegans genes but also emphasize towards the need of analyzing genome data using a combinations of bioinformatics tools to delineate all possible gene products. PMID:18188419

  12. Rapid Response Skills Training

    ERIC Educational Resources Information Center

    Kelley-Winders, Anna Faye

    2008-01-01

    Mississippi Gulf Coast Community College's (MGCCC) long-term commitment to providing workforce training in a post-Katrina environment became a catalyst for designing short-term flexible educational opportunities. Providing nationally recognized skills training for the recovery/rebuilding of communities challenged the college to develop innovative,…

  13. Superconducting cable-in-conduit low resistance splice

    DOEpatents

    Artman, Thomas A.

    2003-06-24

    A low resistance splice connects two cable-in-conduit superconductors to each other. Dividing collars for arranging sub-cable units from each conduit are provided, along with clamping collars for mating each sub-cable wire assembly to form mated assemblies. The mated assemblies ideally can be accomplished by way of splicing collar. The mated assemblies are cooled by way of a flow of coolant, preferably helium. A method for implementing such a splicing is also described.

  14. Evolutionary Insights into RNA trans-Splicing in Vertebrates

    PubMed Central

    Lei, Quan; Li, Cong; Zuo, Zhixiang; Huang, Chunhua; Cheng, Hanhua; Zhou, Rongjia

    2016-01-01

    Pre-RNA splicing is an essential step in generating mature mRNA. RNA trans-splicing combines two separate pre-mRNA molecules to form a chimeric non-co-linear RNA, which may exert a function distinct from its original molecules. Trans-spliced RNAs may encode novel proteins or serve as noncoding or regulatory RNAs. These novel RNAs not only increase the complexity of the proteome but also provide new regulatory mechanisms for gene expression. An increasing amount of evidence indicates that trans-splicing occurs frequently in both physiological and pathological processes. In addition, mRNA reprogramming based on trans-splicing has been successfully applied in RNA-based therapies for human genetic diseases. Nevertheless, clarifying the extent and evolution of trans-splicing in vertebrates and developing detection methods for trans-splicing remain challenging. In this review, we summarize previous research, highlight recent advances in trans-splicing, and discuss possible splicing mechanisms and functions from an evolutionary viewpoint. PMID:26966239

  15. RNA Splicing: Regulation and Dysregulation in the Heart.

    PubMed

    van den Hoogenhof, Maarten M G; Pinto, Yigal M; Creemers, Esther E

    2016-02-01

    RNA splicing represents a post-transcriptional mechanism to generate multiple functional RNAs or proteins from a single transcript. The evolution of RNA splicing is a prime example of the Darwinian function follows form concept. A mutation that leads to a new mRNA (form) that encodes for a new functional protein (function) is likely to be retained, and this way, the genome has gradually evolved to encode for genes with multiple isoforms, thereby creating an enormously diverse transcriptome. Advances in technologies to characterize RNA populations have led to a better understanding of RNA processing in health and disease. In the heart, alternative splicing is increasingly being recognized as an important layer of post-transcriptional gene regulation. Moreover, the recent identification of several cardiac splice factors, such as RNA-binding motif protein 20 and SF3B1, not only provided important insight into the mechanisms underlying alternative splicing but also revealed how these splicing factors impact functional properties of the heart. Here, we review our current knowledge of alternative splicing in the heart, with a particular focus on the major and minor spliceosome, the factors controlling RNA splicing, and the role of alternative splicing in cardiac development and disease. PMID:26846640

  16. Impacts of Alternative Splicing Events on the Differentiation of Adipocytes

    PubMed Central

    Lin, Jung-Chun

    2015-01-01

    Alternative splicing was found to be a common phenomenon after the advent of whole transcriptome analyses or next generation sequencing. Over 90% of human genes were demonstrated to undergo at least one alternative splicing event. Alternative splicing is an effective mechanism to spatiotemporally expand protein diversity, which influences the cell fate and tissue development. The first focus of this review is to highlight recent studies, which demonstrated effects of alternative splicing on the differentiation of adipocytes. Moreover, use of evolving high-throughput approaches, such as transcriptome analyses (RNA sequencing), to profile adipogenic transcriptomes, is also addressed. PMID:26389882

  17. Splice-switching antisense oligonucleotides as therapeutic drugs.

    PubMed

    Havens, Mallory A; Hastings, Michelle L

    2016-08-19

    Splice-switching oligonucleotides (SSOs) are short, synthetic, antisense, modified nucleic acids that base-pair with a pre-mRNA and disrupt the normal splicing repertoire of the transcript by blocking the RNA-RNA base-pairing or protein-RNA binding interactions that occur between components of the splicing machinery and the pre-mRNA. Splicing of pre-mRNA is required for the proper expression of the vast majority of protein-coding genes, and thus, targeting the process offers a means to manipulate protein production from a gene. Splicing modulation is particularly valuable in cases of disease caused by mutations that lead to disruption of normal splicing or when interfering with the normal splicing process of a gene transcript may be therapeutic. SSOs offer an effective and specific way to target and alter splicing in a therapeutic manner. Here, we discuss the different approaches used to target and alter pre-mRNA splicing with SSOs. We detail the modifications to the nucleic acids that make them promising therapeutics and discuss the challenges to creating effective SSO drugs. We highlight the development of SSOs designed to treat Duchenne muscular dystrophy and spinal muscular atrophy, which are currently being tested in clinical trials. PMID:27288447

  18. Viral interactions with components of the splicing machinery.

    PubMed

    Meyer, F

    2016-01-01

    Eukaryotic genes are often interrupted by stretches of sequence with no protein coding potential or obvious function. After transcription, these interrupting sequences must be removed to give rise to the mature messenger RNA. This fundamental process is called RNA splicing and is achieved by complicated machinery made of protein and RNA that assembles around the RNA to be edited. Viruses also use RNA splicing to maximize their coding potential and economize on genetic space, and use clever strategies to manipulate the splicing machinery to their advantage. This article gives an overview of the splicing process and provides examples of viral strategies that make use of various components of the splicing system to promote their replicative cycle. Representative virus families have been selected to illustrate the interaction with various regulatory proteins and ribonucleoproteins. The unifying theme is fine regulation through protein-protein and protein-RNA interactions with the spliceosome components and associated factors to promote or prevent spliceosome assembly on given splice sites, in addition to a strong influence from cis-regulatory sequences on viral transcripts. Because there is an intimate coupling of splicing with the processes that direct mRNA biogenesis, a description of how these viruses couple the regulation of splicing with the retention or stability of mRNAs is also included. It seems that a unique balance of suppression and activation of splicing and nuclear export works optimally for each family of viruses. PMID:27571697

  19. Some characteristics of probabilistic one-sided splicing systems

    NASA Astrophysics Data System (ADS)

    Selvarajoo, Mathuri; Fong, Wan Heng; Sarmin, Nor Haniza; Turaev, Sherzod

    2013-04-01

    A theoretical model for DNA computing using the recombination behavior of DNA molecules known as asplicing system has been introduced in 1987. Splicing systems are based on the splicing operation which, informally, cuts two strings at the specific places and attaches the prefix of the first string to the suffix of the second string and the prefix of the second string to the suffix of the first string yielding the new strings. It is known that splicing systems with finite sets of axioms and splicing rules only generate regular languages. Hence, different types of restrictions for splicing systems have been considered to increase the computational power of the languages generated. Recently, probabilistic splicing systems have been introduced where the probabilities are initially associated with the axioms, and the probabilities of the generated strings are computed from the probabilities of the initial strings. In this paper, some properties of probabilistic one-sided splicing systems, which are special types of probabilistic splicing systems, are investigated. We prove that probabilistic one-sided splicing systems can also increase the computational power of the languages generated.

  20. Specific CLK Inhibitors from a Novel Chemotype for Regulation of Alternative Splicing

    PubMed Central

    Fedorov, Oleg; Huber, Kilian; Eisenreich, Andreas; Filippakopoulos, Panagis; King, Oliver; Bullock, Alex N.; Szklarczyk, Damian; Jensen, Lars J.; Fabbro, Doriano; Trappe, Jörg; Rauch, Ursula; Bracher, Franz; Knapp, Stefan

    2011-01-01

    Summary There is a growing recognition of the importance of protein kinases in the control of alternative splicing. To define the underlying regulatory mechanisms, highly selective inhibitors are needed. Here, we report the discovery and characterization of the dichloroindolyl enaminonitrile KH-CB19, a potent and highly specific inhibitor of the CDC2-like kinase isoforms 1 and 4 (CLK1/CLK4). Cocrystal structures of KH-CB19 with CLK1 and CLK3 revealed a non-ATP mimetic binding mode, conformational changes in helix αC and the phosphate binding loop and halogen bonding to the kinase hinge region. KH-CB19 effectively suppressed phosphorylation of SR (serine/arginine) proteins in cells, consistent with its expected mechanism of action. Chemical inhibition of CLK1/CLK4 generated a unique pattern of splicing factor dephosphorylation and had at low nM concentration a profound effect on splicing of the two tissue factor isoforms flTF (full-length TF) and asHTF (alternatively spliced human TF). PMID:21276940

  1. A splicing isoform of TEAD4 attenuates the Hippo–YAP signalling to inhibit tumour proliferation

    PubMed Central

    Qi, Yangfan; Yu, Jing; Han, Wei; Fan, Xiaojuan; Qian, Haili; Wei, Huanhuan; Tsai, Yi-hsuan S.; Zhao, Jinyao; Zhang, Wenjing; Liu, Quentin; Meng, Songshu; Wang, Yang; Wang, Zefeng

    2016-01-01

    Aberrant splicing is frequently found in cancer, yet the biological consequences of such alterations are mostly undefined. Here we report that the Hippo–YAP signalling, a key pathway that regulates cell proliferation and organ size, is under control of a splicing switch. We show that TEAD4, the transcription factor that mediates Hippo–YAP signalling, undergoes alternative splicing facilitated by the tumour suppressor RBM4, producing a truncated isoform, TEAD4-S, which lacks an N-terminal DNA-binding domain, but maintains YAP interaction domain. TEAD4-S is located in both the nucleus and cytoplasm, acting as a dominant negative isoform to YAP activity. Consistently, TEAD4-S is reduced in cancer cells, and its re-expression suppresses cancer cell proliferation and migration, inhibiting tumour growth in xenograft mouse models. Furthermore, TEAD4-S is reduced in human cancers, and patients with elevated TEAD4-S levels have improved survival. Altogether, these data reveal a splicing switch that serves to fine tune the Hippo–YAP pathway. PMID:27291620

  2. Discovery of Novel Splice Variants and Regulatory Mechanisms for Microsomal Triglyceride Transfer Protein in Human Tissues

    PubMed Central

    Suzuki, Takashi; Swift, Larry L.

    2016-01-01

    Microsomal triglyceride transfer protein (MTP) is a unique lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins by the liver and intestine. Previous studies in mice identified a splice variant of MTP with an alternate first exon. Splice variants of human MTP have not been reported. Using PCR approaches we have identified two splice variants in human tissues, which we have named MTP-B and MTP-C. MTP-B has a unique first exon (Ex1B) located 10.5 kb upstream of the first exon (Ex1A) for canonical MTP (MTP-A); MTP-C contains both first exons for MTP-A and MTP-B. MTP-B was found in a number of tissues, whereas MTP-C was prominent in brain and testis. MTP-B does not encode a protein; MTP-C encodes the same protein encoded by MTP-A, although MTP-C translation is strongly inhibited by regulatory elements within its 5′-UTR. Using luciferase assays, we demonstrate that the promoter region upstream of exon 1B is quite adequate to drive expression of MTP. We conclude that alternate splicing plays a key role in regulating cellular MTP levels by introducing distinct promoter regions and unique 5′-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP activity. PMID:27256115

  3. Simultaneous quantification of alternatively spliced transcripts in a single droplet digital PCR reaction.

    PubMed

    Sun, Bing; Tao, Lian; Zheng, Yun-Ling

    2014-06-01

    Human telomerase reverse transcriptase (hTERT) is an essential component required for telomerase activity and telomere maintenance. Several alternatively spliced forms of hTERT mRNA have been reported in human primary and tumor cells. Currently, however, there is no sensitive and accurate method for the simultaneous quantification of multiple alternatively spliced RNA transcripts, such as in the case of hTERT. Here we show droplet digital PCR (ddPCR) provides sensitive, simultaneous digital quantification in a single reaction of two alternatively spliced single deletion hTERT transcripts (α-/β+ and α+/β-) as well as the opportunity to manually quantify non-deletion (α+/β+) and double deletion (α-/β-) transcripts. Our ddPCR method enables direct comparison among four alternatively spliced mRNAs without the need for internal standards or multiple primer pairs specific for each variant as real-time PCR (qPCR) requires, thus eliminating potential variation due to differences in PCR amplification efficiency. PMID:24924392

  4. Trans-splicing as a novel method to rapidly produce antibody fusion proteins

    SciTech Connect

    Iwasaki, Ryohei; Kiuchi, Hiroki; Ihara, Masaki; Mori, Toshihiro; Kawakami, Masayuki; Ueda, Hiroshi

    2009-07-03

    To cultivate the use of trans-splicing as a novel means to rapidly express various antibody fusion proteins, we tried to express antibody-reporter enzyme fusions in a COS-1 co-transfection model. When a vector designed to induce trans-splicing with IgH pre-mRNA was co-transfected with a vector encoding the mouse IgM locus, the expression of V{sub H}-secreted human placental alkaline phosphatase (SEAP) as well as Fab-SEAP were successfully expressed both in mRNA and protein levels. Especially, the vectors encoding complementary sequence to S{mu} as a binding domain was accurate and efficient, producing trans-spliced mRNA of up to 2% of cis-spliced one. Since S{mu} sequence should exist in every IgH pre-mRNA, our finding will lead to the rapid production and analysis of various antibody-enzyme fusions suitable for enzyme-linked immunosorbent assay (ELISA) or antibody-dependent enzyme prodrug therapy (ADEPT).

  5. 20-hydroxyecdysone mediates non-canonical regulation of mosquito vitellogenins through alternative splicing.

    PubMed

    Provost-Javier, K N; Rasgon, J L

    2014-08-01

    Vitellogenesis is one of the most well-studied physiological processes in mosquitoes. Expression of mosquito vitellogenin genes is classically described as being restricted to female adult reproduction. We report premature vitellogenin transcript expression in three vector mosquitoes: Culex tarsalis, Aedes aegypti and Anopheles gambiae. Vitellogenins expressed during non-reproductive stages are alternatively spliced to retain their first intron and encode premature termination codons. We show that intron retention results in transcript degradation by translation-dependent nonsense-mediated mRNA decay. This is probably an example of regulated unproductive splicing and translation (RUST), a mechanism known to regulate gene expression in numerous organisms but which has never been described in mosquitoes. We demonstrate that the hormone 20-hydroxyecdysone (20E) is responsible for regulating post-transcriptional splicing of vitellogenin. After exposure of previtellogenic fat bodies to 20E, vitellogenin expression switches from a non-productive intron-retaining transcript to a spliced protein-coding transcript. This effect is independent of factors classically known to influence transcription, such as juvenile hormone-mediated competence and amino acid signalling through the target of rapamycin pathway. Non-canonical regulation of vitellogenesis through RUST is a novel role for the multifunctional hormone 20E, and may have important implications for general patterns of gene regulation in mosquitoes. PMID:24720618

  6. Dinoflagellate Gene Structure and Intron Splice Sites in a Genomic Tandem Array.

    PubMed

    Mendez, Gregory S; Delwiche, Charles F; Apt, Kirk E; Lippmeier, J Casey

    2015-01-01

    Dinoflagellates are one of the last major lineages of eukaryotes for which little is known about genome structure and organization. We report here the sequence and gene structure of a clone isolated from a cosmid library which, to our knowledge, represents the largest contiguously sequenced, dinoflagellate genomic, tandem gene array. These data, combined with information from a large transcriptomic library, allowed a high level of confidence of every base pair call. This degree of confidence is not possible with PCR-based contigs. The sequence contains an intron-rich set of five highly expressed gene repeats arranged in tandem. One of the tandem repeat gene members contains an intron 26,372 bp long. This study characterizes a splice site consensus sequence for dinoflagellate introns. Two to nine base pairs around the 3' splice site are repeated by an identical two to nine base pairs around the 5' splice site. The 5' and 3' splice sites are in the same locations within each repeat so that the repeat is found only once in the mature mRNA. This identically repeated intron boundary sequence might be useful in gene modeling and annotation of genomes. PMID:25963315

  7. Antisense Mediated Splicing Modulation For Inherited Metabolic Diseases: Challenges for Delivery

    PubMed Central

    Pérez, Belen; Vilageliu, Lluisa; Grinberg, Daniel

    2014-01-01

    In the past few years, research in targeted mutation therapies has experienced significant advances, especially in the field of rare diseases. In particular, the efficacy of antisense therapy for suppression of normal, pathogenic, or cryptic splice sites has been demonstrated in cellular and animal models and has already reached the clinical trials phase for Duchenne muscular dystrophy. In different inherited metabolic diseases, splice switching oligonucleotides (SSOs) have been used with success in patients' cells to force pseudoexon skipping or to block cryptic splice sites, in both cases recovering normal transcript and protein and correcting the enzyme deficiency. However, future in vivo studies require individual approaches for delivery depending on the gene defect involved, given the different patterns of tissue and organ expression. Herein we review the state of the art of antisense therapy targeting RNA splicing in metabolic diseases, grouped according to their expression patterns—multisystemic, hepatic, or in central nervous system (CNS)—and summarize the recent progress achieved in the field of in vivo delivery of oligonucleotides to each organ or system. Successful body-wide distribution of SSOs and preferential distribution in the liver after systemic administration have been reported in murine models for different diseases, while for CNS limited data are available, although promising results with intratechal injections have been achieved. PMID:24506780

  8. Antisense mediated splicing modulation for inherited metabolic diseases: challenges for delivery.

    PubMed

    Pérez, Belen; Vilageliu, Lluisa; Grinberg, Daniel; Desviat, Lourdes R

    2014-02-01

    In the past few years, research in targeted mutation therapies has experienced significant advances, especially in the field of rare diseases. In particular, the efficacy of antisense therapy for suppression of normal, pathogenic, or cryptic splice sites has been demonstrated in cellular and animal models and has already reached the clinical trials phase for Duchenne muscular dystrophy. In different inherited metabolic diseases, splice switching oligonucleotides (SSOs) have been used with success in patients' cells to force pseudoexon skipping or to block cryptic splice sites, in both cases recovering normal transcript and protein and correcting the enzyme deficiency. However, future in vivo studies require individual approaches for delivery depending on the gene defect involved, given the different patterns of tissue and organ expression. Herein we review the state of the art of antisense therapy targeting RNA splicing in metabolic diseases, grouped according to their expression patterns-multisystemic, hepatic, or in central nervous system (CNS)-and summarize the recent progress achieved in the field of in vivo delivery of oligonucleotides to each organ or system. Successful body-wide distribution of SSOs and preferential distribution in the liver after systemic administration have been reported in murine models for different diseases, while for CNS limited data are available, although promising results with intratechal injections have been achieved. PMID:24506780

  9. Discovery of Novel Splice Variants and Regulatory Mechanisms for Microsomal Triglyceride Transfer Protein in Human Tissues.

    PubMed

    Suzuki, Takashi; Swift, Larry L

    2016-01-01

    Microsomal triglyceride transfer protein (MTP) is a unique lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins by the liver and intestine. Previous studies in mice identified a splice variant of MTP with an alternate first exon. Splice variants of human MTP have not been reported. Using PCR approaches we have identified two splice variants in human tissues, which we have named MTP-B and MTP-C. MTP-B has a unique first exon (Ex1B) located 10.5 kb upstream of the first exon (Ex1A) for canonical MTP (MTP-A); MTP-C contains both first exons for MTP-A and MTP-B. MTP-B was found in a number of tissues, whereas MTP-C was prominent in brain and testis. MTP-B does not encode a protein; MTP-C encodes the same protein encoded by MTP-A, although MTP-C translation is strongly inhibited by regulatory elements within its 5'-UTR. Using luciferase assays, we demonstrate that the promoter region upstream of exon 1B is quite adequate to drive expression of MTP. We conclude that alternate splicing plays a key role in regulating cellular MTP levels by introducing distinct promoter regions and unique 5'-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP activity. PMID:27256115

  10. 20-hydroxyecdysone mediates non-canonical regulation of mosquito vitellogenins through alternative splicing

    PubMed Central

    Provost-Javier, K. N.; Rasgon, J. L.

    2015-01-01

    Vitellogenesis is one of the most well-studied physiological processes in mosquitoes. Expression of mosquito vitellogenin genes is classically described as being restricted to female adult reproduction. We report premature vitellogenin transcript expression in three vector mosquitoes: Culex tarsalis, Aedes aegypti and Anopheles gambiae. Vitellogenins expressed during non-reproductive stages are alternatively spliced to retain their first intron and encode premature termination codons. We show that intron retention results in transcript degradation by translation-dependent nonsense-mediated mRNA decay. This is probably an example of regulated unproductive splicing and translation (RUST), a mechanism known to regulate gene expression in numerous organisms but which has never been described in mosquitoes. We demonstrate that the hormone 20-hydroxyecdysone (20E) is responsible for regulating post-transcriptional splicing of vitellogenin. After exposure of previtellogenic fat bodies to 20E, vitellogenin expression switches from a non-productive intron-retaining transcript to a spliced protein-coding transcript. This effect is independent of factors classically known to influence transcription, such as juvenile hormone-mediated competence and amino acid signalling through the target of rapamycin pathway. Non-canonical regulation of vitellogenesis through RUST is a novel role for the multifunctional hormone 20E, and may have important implications for general patterns of gene regulation in mosquitoes. PMID:24720618

  11. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.

    PubMed

    Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J

    2014-03-01

    Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states. PMID:24299736

  12. RBM4a-regulated splicing cascade modulates the differentiation and metabolic activities of brown adipocytes

    PubMed Central

    Lin, Jung-Chun; Lu, Yi-Han; Liu, Yun-Ru; Lin, Ying-Ju

    2016-01-01

    RNA-binding motif protein 4a (RBM4a) reportedly reprograms splicing profiles of the insulin receptor (IR) and myocyte enhancer factor 2C (MEF2C) genes, facilitating the differentiation of brown adipocytes. Using an RNA-sequencing analysis, we first compared the gene expressing profiles between wild-type and RBM4a−/− brown adipocytes. The ablation of RBM4a led to increases in the PTBP1, PTBP2 (nPTB), and Nova1 proteins, whereas elevated RBM4a reduced the expression of PTBP1 and PTBP2 proteins in brown adipocytes through an alternative splicing-coupled nonsense-mediated decay mechanism. Subsequently, RBM4a indirectly shortened the half-life of the Nova1 transcript which was comparatively stable in the presence of PTBP2. RBM4a diminished the influence of PTBP2 in adipogenic development by reprogramming the splicing profiles of the FGFR2 and PKM genes. These results constitute a mechanistic understanding of the RBM4a-modulated splicing cascade during the brown adipogenesis. PMID:26857472

  13. Real-time risk assessment in seismic early warning and rapid response: a feasibility study in Bishkek (Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Picozzi, M.; Bindi, D.; Pittore, M.; Kieling, K.; Parolai, S.

    2013-04-01

    Earthquake early warning systems (EEWS) are considered to be an effective, pragmatic, and viable tool for seismic risk reduction in cities. While standard EEWS approaches focus on the real-time estimation of an earthquake's location and magnitude, innovative developments in EEWS include the capacity for the rapid assessment of damage. Clearly, for all public authorities that are engaged in coordinating emergency activities during and soon after earthquakes, real-time information about the potential damage distribution within a city is invaluable. In this work, we present a first attempt to design an early warning and rapid response procedure for real-time risk assessment. In particular, the procedure uses typical real-time information (i.e., P-wave arrival times and early waveforms) derived from a regional seismic network for locating and evaluating the size of an earthquake, information which in turn is exploited for extracting a risk map representing the potential distribution of damage from a dataset of predicted scenarios compiled for the target city. A feasibility study of the procedure is presented for the city of Bishkek, the capital of Kyrgyzstan, which is surrounded by the Kyrgyz seismic network by mimicking the ground motion associated with two historical events that occurred close to Bishkek, namely the 1911 Kemin ( M = 8.2; ±0.2) and the 1885 Belovodsk ( M = 6.9; ±0.5) earthquakes. Various methodologies from previous studies were considered when planning the implementation of the early warning and rapid response procedure for real-time risk assessment: the Satriano et al. (Bull Seismol Soc Am 98(3):1482-1494, 2008) approach to real-time earthquake location; the Caprio et al. (Geophys Res Lett 38:L02301, 2011) approach for estimating moment magnitude in real time; the EXSIM method for ground motion simulation (Motazedian and Atkinson, Bull Seismol Soc Am 95:995-1010, 2005); the Sokolov (Earthquake Spectra 161: 679-694, 2002) approach for estimating

  14. 30 CFR 75.830 - Splicing and repair of trailing cables.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... including the replacement of: Insulation, semi-conductive tape, metallic shielding, and the outer jacket(s... include instructions for outer-jacket repairs and splices. (b) Splicing limitations. (1) Splicing of...

  15. 30 CFR 75.830 - Splicing and repair of trailing cables.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... including the replacement of: Insulation, semi-conductive tape, metallic shielding, and the outer jacket(s... include instructions for outer-jacket repairs and splices. (b) Splicing limitations. (1) Splicing of...

  16. Extensive genetic interactions between PRP8 and PRP17/CDC40, two yeast genes involved in pre-mRNA splicing and cell cycle progression.

    PubMed Central

    Ben-Yehuda, S; Russell, C S; Dix, I; Beggs, J D; Kupiec, M

    2000-01-01

    Biochemical and genetic experiments have shown that the PRP17 gene of the yeast Saccharomyces cerevisiae encodes a protein that plays a role during the second catalytic step of the splicing reaction. It was found recently that PRP17 is identical to the cell division cycle CDC40 gene. cdc40 mutants arrest at the restrictive temperature after the completion of DNA replication. Although the PRP17/CDC40 gene product is essential only at elevated temperatures, splicing intermediates accumulate in prp17 mutants even at the permissive temperature. In this report we describe extensive genetic interactions between PRP17/CDC40 and the PRP8 gene. PRP8 encodes a highly conserved U5 snRNP protein required for spliceosome assembly and for both catalytic steps of the splicing reaction. We show that mutations in the PRP8 gene are able to suppress the temperature-sensitive growth phenotype and the splicing defect conferred by the absence of the Prp17 protein. In addition, these mutations are capable of suppressing certain alterations in the conserved PyAG trinucleotide at the 3' splice junction, as detected by an ACT1-CUP1 splicing reporter system. Moreover, other PRP8 alleles exhibit synthetic lethality with the absence of Prp17p and show a reduced ability to splice an intron bearing an altered 3' splice junction. On the basis of these findings, we propose a model for the mode of interaction between the Prp8 and Prp17 proteins during the second catalytic step of the splicing reaction. PMID:10628969

  17. Rapid response doctor cars for cases of severe trauma in remote locations: A life saved owing to cooperation between a doctor car and a physician from a local medical facility

    PubMed Central

    Abe, Tomohiro; Ochiai, Hidenobu

    2016-01-01

    Objective: Rescuing severe trauma patients who are injured far from a trauma center is challenging for rural emergency systems. We report a severe trauma case that occurred at a remote location, in which the patient’s life was saved by a dispatched doctor car and a physician from a local medical facility. Patient: A 31-year-old man experienced a left femur injury due to a fallen tree. The fire station requested a doctor car from our center, approximately 56 km away. Meanwhile, a paramedic team reported that the patient was in a state of shock. The doctor car docked over 1 h after the accident. Pressure hemostasis, rapid intravenous infusion, and tracheal intubation were performed en route. After arrival at our hospital, an emergency blood transfusion was administered; the injured blood vessel was sutured and the wound closed. On day 22, the patient was transferred to another hospital for rehabilitation. Discussion: Rapid response-type doctor car is often considered ineffective for distant severe trauma cases. However, this case demonstrates the benefits of a doctor car working with local medical facilities. Conclusion: The rapid response-type doctor car is effective even in remote severe trauma cases. PMID:27313799

  18. Definition of Proteasomal Peptide Splicing Rules for High-Efficiency Spliced Peptide Presentation by MHC Class I Molecules

    PubMed Central

    Berkers, Celia R.; de Jong, Annemieke; Schuurman, Karianne G.; Linnemann, Carsten; Meiring, Hugo D.; Janssen, Lennert; Neefjes, Jacques J.; Schumacher, Ton N. M.; Rodenko, Boris

    2015-01-01

    Peptide splicing, in which two distant parts of a protein are excised and then ligated to form a novel peptide, can generate unique MHC class I–restricted responses. Because these peptides are not genetically encoded and the rules behind proteasomal splicing are unknown, it is difficult to predict these spliced Ags. In the current study, small libraries of short peptides were used to identify amino acid sequences that affect the efficiency of this transpeptidation process. We observed that splicing does not occur at random, neither in terms of the amino acid sequences nor through random splicing of peptides from different sources. In contrast, splicing followed distinct rules that we deduced and validated both in vitro and in cells. Peptide ligation was quantified using a model peptide and demonstrated to occur with up to 30% ligation efficiency in vitro, provided that optimal structural requirements for ligation were met by both ligating partners. In addition, many splicing products could be formed from a single protein. Our splicing rules will facilitate prediction and detection of new spliced Ags to expand the peptidome presented by MHC class I Ags. PMID:26401003

  19. Pre-mRNA Splicing in Plants: In Vivo Functions of RNA-Binding Proteins Implicated in the Splicing Process

    PubMed Central

    Meyer, Katja; Koester, Tino; Staiger, Dorothee

    2015-01-01

    Alternative pre-messenger RNA splicing in higher plants emerges as an important layer of regulation upon exposure to exogenous and endogenous cues. Accordingly, mutants defective in RNA-binding proteins predicted to function in the splicing process show severe phenotypic alterations. Among those are developmental defects, impaired responses to pathogen threat or abiotic stress factors, and misregulation of the circadian timing system. A suite of splicing factors has been identified in the model plant Arabidopsis thaliana. Here we summarize recent insights on how defects in these splicing factors impair plant performance. PMID:26213982

  20. Commitment of apolipoprotein B RNA to the splicing pathway regulates cytidine-to-uridine editing-site utilization.

    PubMed Central

    Sowden, M P; Smith, H C

    2001-01-01

    A tripartite motif located in the centre of the 7.5 kb exon 26 of apolipoprotein B (apoB) mRNA directs editosome assembly and site-specific cytidine-to-uridine editing at nucleotide 6666. apoB mRNA editing is a post-transcriptional event, occurring primarily at the time exon 26 is spliced or at a time after splicing, but before nuclear export. We show, through reporter RNA constructs, that RNA splice sites suppress editing of precursor RNAs when placed proximal or distal to the editing site. Processed RNAs were edited more efficiently than precursor RNAs. Mutation of both the splice donor and acceptor sites was necessary for RNAs to be edited efficiently. The results suggested that commitment of pre-mRNA to the splicing and/or nuclear-export pathways may play a role in regulating editing-site utilization. The HIV-1 Rev-Rev response element ('RRE') interaction was utilized to uncouple the commitment of precursor RNAs to the spliceosome assembly pathway and associated nuclear-export pathway. Under these conditions, unspliced reporter RNAs were edited efficiently. We propose that pre-mRNA passage through the temporal or spatial restriction point where they become committed to spliceosome assembly contributes regulatory information for subsequent editosome activity. PMID:11672445

  1. A novel splicing mutation in the IQSEC2 gene that modulates the phenotype severity in a family with intellectual disability.

    PubMed

    Madrigal, Irene; Alvarez-Mora, Maria Isabel; Rosell, Jordi; Rodríguez-Revenga, Laia; Karlberg, Olof; Sauer, Sascha; Syvänen, Ann-Christine; Mila, Montserrat

    2016-08-01

    The IQSEC2 gene is located on chromosome Xp11.22 and encodes a guanine nucleotide exchange factor for the ADP-ribosylation factor family of small GTPases. This gene is known to have a significant role in cytoskeletal organization, dendritic spine morphology and synaptic organization. Variants in IQSEC2 cause moderate to severe intellectual disability in males and a variable phenotype in females because this gene escapes from X-chromosome inactivation. Here we report on the first splicing variant in IQSEC2 (g.88032_88033del; NG_021296.1) that co-segregates in a family diagnosed with an X-linked form of ID. In a percentage of the cells, the variant activates an intraexonic splice acceptor site that abolishes 26 amino acids from the highly conserved PH domain of IQSEC2 and creates a premature stop codon 36 amino acids later in exon 13. Interestingly, the percentage of aberrant splicing seems to correlate with the severity of the disease in each patient. The impact of this variant in the target tissue is unknown, but we can hypothesize that these differences may be related to the amount of abnormal IQSEC2 transcript. To our knowledge, we are reporting a novel mechanism of IQSEC2 involvement in ID. Variants that affect splicing are related to many genetic diseases and the understanding of their role in disease expands potential opportunities for gene therapy. Modulation of aberrant splicing transcripts can become a potent therapeutic approach for many of these diseases. PMID:26733290

  2. Mechanisms of splicing-dependent trans-synaptic adhesion by PTPδ-IL1RAPL1/IL-1RAcP for synaptic differentiation

    NASA Astrophysics Data System (ADS)

    Yamagata, Atsushi; Yoshida, Tomoyuki; Sato, Yusuke; Goto-Ito, Sakurako; Uemura, Takeshi; Maeda, Asami; Shiroshima, Tomoko; Iwasawa-Okamoto, Shiho; Mori, Hisashi; Mishina, Masayoshi; Fukai, Shuya

    2015-04-01

    Synapse formation is triggered through trans-synaptic interaction between pairs of pre- and postsynaptic adhesion molecules, the specificity of which depends on splice inserts known as `splice-insert signaling codes'. Receptor protein tyrosine phosphatase δ (PTPδ) can bidirectionally induce pre- and postsynaptic differentiation of neurons by trans-synaptically binding to interleukin-1 receptor accessory protein (IL-1RAcP) and IL-1RAcP-like-1 (IL1RAPL1) in a splicing-dependent manner. Here, we report crystal structures of PTPδ in complex with IL1RAPL1 and IL-1RAcP. The first immunoglobulin-like (Ig) domain of IL1RAPL1 directly recognizes the first splice insert, which is critical for binding to IL1RAPL1. The second splice insert functions as an adjustable linker that positions the Ig2 and Ig3 domains of PTPδ for simultaneously interacting with the Ig1 domain of IL1RAPL1 or IL-1RAcP. We further identified the IL1RAPL1-specific interaction, which appears coupled to the first-splice-insert-mediated interaction. Our results thus reveal the decoding mechanism of splice-insert signaling codes for synaptic differentiation induced by trans-synaptic adhesion between PTPδ and IL1RAPL1/IL-1RAcP.

  3. Mechanisms of splicing-dependent trans-synaptic adhesion by PTPδ–IL1RAPL1/IL-1RAcP for synaptic differentiation

    PubMed Central

    Yamagata, Atsushi; Yoshida, Tomoyuki; Sato, Yusuke; Goto-Ito, Sakurako; Uemura, Takeshi; Maeda, Asami; Shiroshima, Tomoko; Iwasawa-Okamoto, Shiho; Mori, Hisashi; Mishina, Masayoshi; Fukai, Shuya

    2015-01-01

    Synapse formation is triggered through trans-synaptic interaction between pairs of pre- and postsynaptic adhesion molecules, the specificity of which depends on splice inserts known as ‘splice-insert signaling codes'. Receptor protein tyrosine phosphatase δ (PTPδ) can bidirectionally induce pre- and postsynaptic differentiation of neurons by trans-synaptically binding to interleukin-1 receptor accessory protein (IL-1RAcP) and IL-1RAcP-like-1 (IL1RAPL1) in a splicing-dependent manner. Here, we report crystal structures of PTPδ in complex with IL1RAPL1 and IL-1RAcP. The first immunoglobulin-like (Ig) domain of IL1RAPL1 directly recognizes the first splice insert, which is critical for binding to IL1RAPL1. The second splice insert functions as an adjustable linker that positions the Ig2 and Ig3 domains of PTPδ for simultaneously interacting with the Ig1 domain of IL1RAPL1 or IL-1RAcP. We further identified the IL1RAPL1-specific interaction, which appears coupled to the first-splice-insert-mediated interaction. Our results thus reveal the decoding mechanism of splice-insert signaling codes for synaptic differentiation induced by trans-synaptic adhesion between PTPδ and IL1RAPL1/IL-1RAcP. PMID:25908590

  4. The RAD52-like protein ODB1 is required for the efficient excision of two mitochondrial introns spliced via first-step hydrolysis.

    PubMed

    Gualberto, José M; Le Ret, Monique; Beator, Barbara; Kühn, Kristina

    2015-07-27

    Transcript splicing in plant mitochondria involves numerous nucleus-encoded factors, most of which are of eukaryotic origin. Some of these belong to protein families initially characterised to perform unrelated functions. The RAD52-like ODB1 protein has been reported to have roles in homologous recombination-dependent DNA repair in the nuclear and mitochondrial compartments in Arabidopsis thaliana. We show that it is additionally involved in splicing and facilitates the excision of two cis-spliced group II introns, nad1 intron 2 and nad2 intron 1, in Arabidopsis mitochondria. odb1 mutants lacking detectable amounts of ODB1 protein over-accumulated incompletely spliced nad1 and nad2 transcripts. The two ODB1-dependent introns were both found to splice via first-step hydrolysis and to be released as linear or circular molecules instead of lariats. Our systematic analysis of the structures of excised introns in Arabidopsis mitochondria revealed several other hydrolytically spliced group II introns in addition to nad1 intron 2 and nad2 intron 1, indicating that ODB1 is not a general determinant of the hydrolytic splicing pathway. PMID:26048959

  5. The RAD52-like protein ODB1 is required for the efficient excision of two mitochondrial introns spliced via first-step hydrolysis

    PubMed Central

    Gualberto, José M.; Le Ret, Monique; Beator, Barbara; Kühn, Kristina

    2015-01-01

    Transcript splicing in plant mitochondria involves numerous nucleus-encoded factors, most of which are of eukaryotic origin. Some of these belong to protein families initially characterised to perform unrelated functions. The RAD52-like ODB1 protein has been reported to have roles in homologous recombination-dependent DNA repair in the nuclear and mitochondrial compartments in Arabidopsis thaliana. We show that it is additionally involved in splicing and facilitates the excision of two cis-spliced group II introns, nad1 intron 2 and nad2 intron 1, in Arabidopsis mitochondria. odb1 mutants lacking detectable amounts of ODB1 protein over-accumulated incompletely spliced nad1 and nad2 transcripts. The two ODB1-dependent introns were both found to splice via first-step hydrolysis and to be released as linear or circular molecules instead of lariats. Our systematic analysis of the structures of excised introns in Arabidopsis mitochondria revealed several other hydrolytically spliced group II introns in addition to nad1 intron 2 and nad2 intron 1, indicating that ODB1 is not a general determinant of the hydrolytic splicing pathway. PMID:26048959

  6. A spliced antigenic peptide comprising a single spliced amino acid is produced in the proteasome by reverse splicing of a longer peptide fragment followed by trimming.

    PubMed

    Michaux, Alexandre; Larrieu, Pierre; Stroobant, Vincent; Fonteneau, Jean-François; Jotereau, Francine; Van den Eynde, Benoît J; Moreau-Aubry, Agnès; Vigneron, Nathalie

    2014-02-15

    Peptide splicing is a novel mechanism of production of peptides relying on the proteasome and involving the linkage of fragments originally distant in the parental protein. Peptides produced by splicing can be presented on class I molecules of the MHC and recognized by CTLs. In this study, we describe a new antigenic peptide, which is presented by HLA-A3 and comprises two noncontiguous fragments of the melanoma differentiation Ag gp100(PMEL17) spliced together in the reverse order to that in which they appear in the parental protein. Contrary to the previously described spliced peptides, which are produced by the association of fragments of 3-6 aa, the peptide described in this work results from the ultimate association of an 8-aa fragment with a single arginine residue. As described before, peptide splicing takes place in the proteasome by transpeptidation involving an acyl-enzyme intermediate linking one of the peptide fragment to a catalytic subunit of the proteasome. Interestingly, we observe that the peptide causing the nucleophilic attack on the acyl-enzyme intermediate must be at least 3 aa long to give rise to a spliced peptide. The spliced peptide produced from this reaction therefore bears an extended C terminus that needs to be further trimmed to produce the final antigenic peptide. We show that the proteasome is able to perform the final trimming step required to produce the antigenic peptide described in this work. PMID:24453253

  7. Multiple fiber Bragg grating sensor network with a rapid response and wide spectral dynamic range using code division multiple access

    NASA Astrophysics Data System (ADS)

    Kim, Youngbok; Jeon, Sie-Wook; Park, Chang-Soo

    2011-05-01

    Fiber Bragg grating (FBG) sensor networks have been intensively researched in optical sensor area and it developed in wavelength division multiplexing (WDM) and time division multiplexing (TDM) technologies which was adopted for its interrogating many optical sensors. In particular, WDM technology can be easily employed to interrogate FBG sensor however, the number of FBG sensors is limited. On the other hand, the TDM technique can extremely expand the number of sensor because the FBG sensors have same center wavelength. However, it suffers from a reduced sensor output power due to low reflectivity of FBG sensor. In this paper, we proposed and demonstrated the FBG sensor network based on code division multiple access (CDMA) with a rapid response and wide spectral dynamic range. The reflected semiconductor optical amplifier (RSOA) as a light source was directly modulated by the generated pseudorandom binary sequence (PRBS) code and the modulated signal is amplified and goes through FBG sensors via circulator. When the modulated optical signal experienced FBG sensor array, the optical signal which was consistent with center wavelength of FBGs is reflected and added from each sensors. The added signal goes into dispersion compensating fiber (DCF) as a dispersion medium. After through the DCF, the optical signal is converted into electrical signal by using photodetector (PD). For separate individual reflected sensor signal, the sliding correlation method was used. The proposed method improves the code interference and it also has advantages such as a large number of sensors, continuously measuring individual sensors, and decreasing the complexity of the sensor network.

  8. Nitrogen can improve the rapid response of photosynthesis to changing irradiance in rice (Oryza sativa L.) plants

    PubMed Central

    Sun, Jiali; Ye, Miao; Peng, Shaobing; Li, Yong

    2016-01-01

    To identify the effect of nitrogen (N) nutrition on the dynamic photosynthesis of rice plants, a pot experiment was conducted under two N conditions. The leaf N and chlorophyll levels, as well as steady–state photosynthesis, were significantly increased under high N. After the transition from saturating to low light levels, decreases in the induction state (IS%) of leaf photosynthesis (A) and stomatal conductance (gs) were more severe under low than under high N supply. After the transition from low to flecked irradiance, the times to 90% of maximum A (T90%A) were significantly longer under low than under high N supply. Under flecked irradiance, the maximum A under saturating light (Amax–fleck) and the steady–state A under low light (Amin–fleck) were both lower than those under uniform irradiance (Asat and Ainitial). Under high N supply, Amax–fleck was 14.12% lower than Asat, while it was 22.80% lower under low N supply. The higher IS%, shorter T90%A, and the lower depression of Amax–fleck from Asat under high N supply led to a less carbon loss compared with under a low N supply. Therefore, we concluded that N can improve the rapid response of photosynthesis to changing irradiance. PMID:27506927

  9. Nitrogen can improve the rapid response of photosynthesis to changing irradiance in rice (Oryza sativa L.) plants.

    PubMed

    Sun, Jiali; Ye, Miao; Peng, Shaobing; Li, Yong

    2016-01-01

    To identify the effect of nitrogen (N) nutrition on the dynamic photosynthesis of rice plants, a pot experiment was conducted under two N conditions. The leaf N and chlorophyll levels, as well as steady-state photosynthesis, were significantly increased under high N. After the transition from saturating to low light levels, decreases in the induction state (IS%) of leaf photosynthesis (A) and stomatal conductance (gs) were more severe under low than under high N supply. After the transition from low to flecked irradiance, the times to 90% of maximum A (T90%A) were significantly longer under low than under high N supply. Under flecked irradiance, the maximum A under saturating light (Amax-fleck) and the steady-state A under low light (Amin-fleck) were both lower than those under uniform irradiance (Asat and Ainitial). Under high N supply, Amax-fleck was 14.12% lower than Asat, while it was 22.80% lower under low N supply. The higher IS%, shorter T90%A, and the lower depression of Amax-fleck from Asat under high N supply led to a less carbon loss compared with under a low N supply. Therefore, we concluded that N can improve the rapid response of photosynthesis to changing irradiance. PMID:27506927

  10. High efficiency and rapid response superconducting NbN nanowire single photon detector based on asymmetric split ring metamaterial

    SciTech Connect

    Li, Guanhai; Chen, Xiaoshuang; Wang, Shao-Wei Lu, Wei

    2014-06-09

    With asymmetric split ring metamaterial periodically placed on top of the niobium nitride (NbN) nanowire meander, we theoretically propose a kind of metal-insulator-metallic metamaterial nanocavity to enhance absorbing efficiency and shorten response time of the superconducting NbN nanowire single photon detector (SNSPD) operating at wavelength of 1550 nm. Up to 99.6% of the energy is absorbed and 96.5% dissipated in the nanowire. Meanwhile, taking advantage of this high efficiency absorbing cavity, we implement a more sparse arrangement of the NbN nanowire of the filling factor 0.2, which significantly lessens the nanowire and crucially boosts the response time to be only 40% of reset time in previous evenly spaced meander design. Together with trapped mode resonance, a standing wave oscillation mechanism is presented to explain the high efficiency and broad bandwidth properties. To further demonstrate the advantages of the nanocavity, a four-pixel SNSPD on 10 μm × 10 μm area is designed to further reduce 75% reset time while maintaining 70% absorbing efficiency. Utilizing the asymmetric split ring metamaterial, we show a higher efficiency and more rapid response SNSPD configuration to contribute to the development of single photon detectors.

  11. Clinical review: The role of the intensivist and the rapid response team in nosocomial end-of-life care

    PubMed Central

    2013-01-01

    In-hospital end-of-life care outside the ICU is a new and increasing aspect of practice for intensive care physicians in countries where rapid response teams have been introduced. As more of these patients die from withdrawal or withholding of artificial life support, determining whether a patient is dying or not has become as important to intensivists as the management of organ support therapy itself. Intensivists have now moved to making such decisions in hospital wards outside the boundaries of their usual closely monitored environment. This strategic change may cause concern to some intensivists; however, as custodians of the highest technology area in the hospital, intensivists are by necessity involved in such processes. Now, more than ever before, intensive care clinicians must consider the usefulness of key concepts surrounding nosocomial death and dying and the importance and value of making a formal diagnosis of dying in the wards. In this article, we assess the conceptual background, reference points, challenges and implications of these emerging aspects of intensive care medicine. PMID:23672813

  12. Skipping of Exons by Premature Termination of Transcription and Alternative Splicing within Intron-5 of the Sheep SCF Gene: A Novel Splice Variant

    PubMed Central

    Saravanaperumal, Siva Arumugam; Pediconi, Dario; Renieri, Carlo; La Terza, Antonietta

    2012-01-01

    Stem cell factor (SCF) is a growth factor, essential for haemopoiesis, mast cell development and melanogenesis. In the hematopoietic microenvironment (HM), SCF is produced either as a membrane-bound (−) or soluble (+) forms. Skin expression of SCF stimulates melanocyte migration, proliferation, differentiation, and survival. We report for the first time, a novel mRNA splice variant of SCF from the skin of white merino sheep via cloning and sequencing. Reverse transcriptase (RT)-PCR and molecular prediction revealed two different cDNA products of SCF. Full-length cDNA libraries were enriched by the method of rapid amplification of cDNA ends (RACE-PCR). Nucleotide sequencing and molecular prediction revealed that the primary 1519 base pair (bp) cDNA encodes a precursor protein of 274 amino acids (aa), commonly known as ‘soluble’ isoform. In contrast, the shorter (835 and/or 725 bp) cDNA was found to be a ‘novel’ mRNA splice variant. It contains an open reading frame (ORF) corresponding to a truncated protein of 181 aa (vs 245 aa) with an unique C-terminus lacking the primary proteolytic segment (28 aa) right after the D175G site which is necessary to produce ‘soluble’ form of SCF. This alternative splice (AS) variant was explained by the complete nucleotide sequencing of splice junction covering exon 5-intron (5)-exon 6 (948 bp) with a premature termination codon (PTC) whereby exons 6 to 9/10 are skipped (Cassette Exon, CE 6–9/10). We also demonstrated that the Northern blot analysis at transcript level is mediated via an intron-5 splicing event. Our data refine the structure of SCF gene; clarify the presence (+) and/or absence (−) of primary proteolytic-cleavage site specific SCF splice variants. This work provides a basis for understanding the functional role and regulation of SCF in hair follicle melanogenesis in sheep beyond what was known in mice, humans and other mammals. PMID:22719917

  13. Biomedical Impact of Splicing Mutations Revealed through Exome Sequencing

    PubMed Central

    Taneri, Bahar; Asilmaz, Esra; Gaasterland, Terry

    2012-01-01

    Splicing is a cellular mechanism, which dictates eukaryotic gene expression by removing the noncoding introns and ligating the coding exons in the form of a messenger RNA molecule. Alternative splicing (AS) adds a major level of complexity to this mechanism and thus to the regulation of gene expression. This widespread cellular phenomenon generates multiple messenger RNA isoforms from a single gene, by utilizing alternative splice sites and promoting different exon–intron inclusions and exclusions. AS greatly increases the coding potential of eukaryotic genomes and hence contributes to the diversity of eukaryotic proteomes. Mutations that lead to disruptions of either constitutive splicing or AS cause several diseases, among which are myotonic dystrophy and cystic fibrosis. Aberrant splicing is also well established in cancer states. Identification of rare novel mutations associated with splice-site recognition, and splicing regulation in general, could provide further insight into genetic mechanisms of rare diseases. Here, disease relevance of aberrant splicing is reviewed, and the new methodological approach of starting from disease phenotype, employing exome sequencing and identifying rare mutations affecting splicing regulation is described. Exome sequencing has emerged as a reliable method for finding sequence variations associated with various disease states. To date, genetic studies using exome sequencing to find disease-causing mutations have focused on the discovery of nonsynonymous single nucleotide polymorphisms that alter amino acids or introduce early stop codons, or on the use of exome sequencing as a means to genotype known single nucleotide polymorphisms. The involvement of splicing mutations in inherited diseases has received little attention and thus likely occurs more frequently than currently estimated. Studies of exome sequencing followed by molecular and bioinformatic analyses have great potential to reveal the high impact of splicing

  14. Altered PLP1 splicing causes hypomyelination of early myelinating structures

    PubMed Central

    Kevelam, Sietske H; Taube, Jennifer R; van Spaendonk, Rosalina M L; Bertini, Enrico; Sperle, Karen; Tarnopolsky, Mark; Tonduti, Davide; Valente, Enza Maria; Travaglini, Lorena; Sistermans, Erik A; Bernard, Geneviève; Catsman-Berrevoets, Coriene E; van Karnebeek, Clara D M; Østergaard, John R; Friederich, Richard L; Fawzi Elsaid, Mahmoud; Schieving, Jolanda H; Tarailo-Graovac, Maja; Orcesi, Simona; Steenweg, Marjan E; van Berkel, Carola G M; Waisfisz, Quinten; Abbink, Truus E M; van der Knaap, Marjo S; Hobson, Grace M; Wolf, Nicole I

    2015-01-01

    Objective The objective of this study was to investigate the genetic etiology of the X-linked disorder “Hypomyelination of Early Myelinating Structures” (HEMS). Methods We included 16 patients from 10 families diagnosed with HEMS by brain MRI criteria. Exome sequencing was used to search for causal mutations. In silico analysis of effects of the mutations on splicing and RNA folding was performed. In vitro gene splicing was examined in RNA from patients’ fibroblasts and an immortalized immature oligodendrocyte cell line after transfection with mutant minigene splicing constructs. Results All patients had unusual hemizygous mutations of PLP1 located in exon 3B (one deletion, one missense and two silent), which is spliced out in isoform DM20, or in intron 3 (five mutations). The deletion led to truncation of PLP1, but not DM20. Four mutations were predicted to affect PLP1/DM20 alternative splicing by creating exonic splicing silencer motifs or new splice donor sites or by affecting the local RNA structure of the PLP1 splice donor site. Four deep intronic mutations were predicted to destabilize a long-distance interaction structure in the secondary PLP1 RNA fragment involved in regulating PLP1/DM20 alternative splicing. Splicing studies in fibroblasts and transfected cells confirmed a decreased PLP1/DM20 ratio. Interpretation Brain structures that normally myelinate early are poorly myelinated in HEMS, while they are the best myelinated structures in Pelizaeus–Merzbacher disease, also caused by PLP1 alterations. Our data extend the phenotypic spectrum of PLP1-related disorders indicating that normal PLP1/DM20 alternative splicing is essential for early myelination and support the need to include intron 3 in diagnostic sequencing. PMID:26125040

  15. Modulation of RNA splicing as a potential treatment for cancer.

    PubMed

    Bauman, John A; Kole, Ryszard

    2011-01-01

    Close to 90% of human genes are transcribed into pre-mRNA that undergoes alternative splicing, producing multiple mRNAs and proteins from single genes. This process is largely responsible for human proteome diversity, and about half of genetic disease-causing mutations affect splicing. Splice-switching oligonucleotides (SSOs) comprise an emerging class of antisense therapeutics that modify gene expression by directing pre-mRNA splice site usage. Bauman et al. investigated an SSO that up-regulated the expression of an anti-cancer splice variant while simultaneously eliminating an over-expressed cancer-causing splice variant.  This was accomplished by targeting pre-mRNA of the apoptotic regulator Bcl-x, which is alternatively spliced to express anti- and pro-apoptotic splice variants Bcl-xL and Bcl-xS, respectively. High expression of Bcl-xL is a hallmark of many cancers and is considered a general mechanism used by cancer cells to evade apoptosis. Redirection of Bcl-x pre-mRNA splicing from Bcl-xL to -xS by SSO induced apoptotic and chemosensitizing effects in various cancer cell lines. Importantly, the paper shows that delivery of Bcl-x SSO using a lipid nanoparticle redirected Bcl-x splicing and reduced tumor burden in melanoma lung metastases. This was the first demonstration of SSO efficacy in tumors in vivo. SSOs are not limited to be solely potential anti-cancer drugs. SSOs were first applied to repair aberrant splicing in thalassemia, a genetic disease, they have been used to create novel proteins (e.g., ∆7TNFR1), and they have recently progressed to clinical trials for patients with Duchenne muscular dystrophy.  PMID:21637003

  16. Alternative Splicing of TAF6: Downstream Transcriptome Impacts and Upstream RNA Splice Control Elements

    PubMed Central

    Kamtchueng, Catherine; Stébenne, Marie-Éve; Delannoy, Aurélie; Wilhelm, Emmanuelle; Léger, Hélène; Benecke, Arndt G.; Bell, Brendan

    2014-01-01

    The TAF6δ pathway of apoptosis can dictate life versus death decisions independently of the status of p53 tumor suppressor. TAF6δ is an inducible pro-apoptotic subunit of the general RNA polymerase II (Pol II) transcription factor TFIID. Alternative splice site choice of TAF6δ has been shown to be a pivotal event in triggering death via the TAF6δ pathway, yet nothing is currently known about the mechanisms that promote TAF6δ splicing. Furthermore the transcriptome impact of the gain of function of TAF6δ versus the loss of function of the major TAF6α splice form remains undefined. Here we employ comparative microarray analysis to show that TAF6δ drives a transcriptome profile distinct from that resulting from depletion of TAF6α. To define the cis-acting RNA elements responsible for TAF6δ alternative splicing we performed a mutational analysis of a TAF6 minigene system. The data point to several new RNA elements that can modulate TAF6δ and also reveal a role for RNA secondary structure in the selection of TAF6δ. PMID:25025302

  17. A mutation in the Srrm4 gene causes alternative splicing defects and deafness in the Bronx waltzer mouse.

    PubMed

    Nakano, Yoko; Jahan, Israt; Bonde, Gregory; Sun, Xingshen; Hildebrand, Michael S; Engelhardt, John F; Smith, Richard J H; Cornell, Robert A; Fritzsch, Bernd; Bánfi, Botond

    2012-01-01

    Sensory hair cells are essential for hearing and balance. Their development from epithelial precursors has been extensively characterized with respect to transcriptional regulation, but not in terms of posttranscriptional influences. Here we report on the identification and functional characterization of an alternative-splicing regulator whose inactivation is responsible for defective hair-cell development, deafness, and impaired balance in the spontaneous mutant Bronx waltzer (bv) mouse. We used positional cloning and transgenic rescue to locate the bv mutation to the splicing factor-encoding gene Ser/Arg repetitive matrix 4 (Srrm4). Transcriptome-wide analysis of pre-mRNA splicing in the sensory patches of embryonic inner ears revealed that specific alternative exons were skipped at abnormally high rates in the bv mice. Minigene experiments in a heterologous expression system confirmed that these skipped exons require Srrm4 for inclusion into the mature mRNA. Sequence analysis and mutagenesis experiments showed that the affected transcripts share a novel motif that is necessary for the Srrm4-dependent alternative splicing. Functional annotations and protein-protein interaction data indicated that the encoded proteins cluster in the secretion and neurotransmission pathways. In addition, the splicing of a few transcriptional regulators was found to be Srrm4 dependent, and several of the genes known to be targeted by these regulators were expressed at reduced levels in the bv mice. Although Srrm4 expression was detected in neural tissues as well as hair cells, analyses of the bv mouse cerebellum and neocortex failed to detect splicing defects. Our data suggest that Srrm4 function is critical in the hearing and balance organs, but not in all neural tissues. Srrm4 is the first alternative-splicing regulator to be associated with hearing, and the analysis of bv mice provides exon-level insights into hair-cell development. PMID:23055939

  18. Functional characterization of two novel splicing mutations in the OCA2 gene associated with oculocutaneous albinism type II.

    PubMed

    Rimoldi, Valeria; Straniero, Letizia; Asselta, Rosanna; Mauri, Lucia; Manfredini, Emanuela; Penco, Silvana; Gesu, Giovanni P; Del Longo, Alessandra; Piozzi, Elena; Soldà, Giulia; Primignani, Paola

    2014-03-01

    Oculocutaneous albinism (OCA) is characterized by hypopigmentation of the skin, hair and eye, and by ophthalmologic abnormalities caused by a deficiency in melanin biosynthesis. OCA type II (OCA2) is one of the four commonly-recognized forms of albinism, and is determined by mutation in the OCA2 gene. In the present study, we investigated the molecular basis of OCA2 in two siblings and one unrelated patient. The mutational screening of the OCA2 gene identified two hitherto-unknown putative splicing mutations. The first one (c.1503+5G>A), identified in an Italian proband and her affected sibling, lies in the consensus sequence of the donor splice site of OCA2 intron 14 (IVS14+5G>A), in compound heterozygosity with a frameshift mutation, c.1450_1451insCTGCCCTGACA, which is predicted to determine the premature termination of the polypeptide chain (p.I484Tfs*19). In-silico prediction of the effect of the IVS14+5G>A mutation on splicing showed a score reduction for the mutant splice site and indicated the possible activation of a newly-created deep-intronic acceptor splice site. The second mutation is a synonymous transition (c.2139G>A, p.K713K) involving the last nucleotide of exon 20. This mutation was found in a young African albino patient in compound heterozygosity with a previously-reported OCA2 missense mutation (p.T404M). In-silico analysis predicted that the mutant c.2139G>A allele would result in the abolition of the splice donor site. The effects on splicing of these two novel mutations were investigated using an in-vitro hybrid-minigene approach that led to the demonstration of the causal role of the two mutations and to the identification of aberrant transcript variants. PMID:24361966

  19. Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa

    PubMed Central

    Pan, Xinyuan; Chen, Xue; Liu, Xiaoxing; Gao, Xiang; Kang, Xiaoli; Xu, Qihua; Chen, Xuejuan; Zhao, Kanxing; Zhang, Xiumei; Chu, Qiaomei; Wang, Xiuying

    2014-01-01

    Purpose Seven genes involved in precursor mRNA (pre-mRNA) splicing have been implicated in autosomal dominant retinitis pigmentosa (adRP). We sought to detect mutations in all seven genes in Chinese families with RP, to characterize the relevant phenotypes, and to evaluate the prevalence of mutations in splicing genes in patients with adRP. Methods Six unrelated families from our adRP cohort (42 families) and two additional families with RP with uncertain inheritance mode were clinically characterized in the present study. Targeted sequence capture with next-generation massively parallel sequencing (NGS) was performed to screen mutations in 189 genes including all seven pre-mRNA splicing genes associated with adRP. Variants detected with NGS were filtered with bioinformatics analyses, validated with Sanger sequencing, and prioritized with pathogenicity analysis. Results Mutations in pre-mRNA splicing genes were identified in three individual families including one novel frameshift mutation in PRPF31 (p.Leu366fs*1) and two known mutations in SNRNP200 (p.Arg681His and p.Ser1087Leu). The patients carrying SNRNP200 p.R681H showed rapid disease progression, and the family carrying p.S1087L presented earlier onset ages and more severe phenotypes compared to another previously reported family with p.S1087L. In five other families, we identified mutations in other RP-related genes, including RP1 p. Ser781* (novel), RP2 p.Gln65* (novel) and p.Ile137del (novel), IMPDH1 p.Asp311Asn (recurrent), and RHO p.Pro347Leu (recurrent). Conclusions Mutations in splicing genes identified in the present and our previous study account for 9.5% in our adRP cohort, indicating the important role of pre-mRNA splicing deficiency in the etiology of adRP. Mutations in the same splicing gene, or even the same mutation, could correlate with different phenotypic severities, complicating the genotype–phenotype correlation and clinical prognosis. PMID:24940031

  20. Identification of alternative splice variants in Aspergillus flavus through comparison of multiple tandem MS search algorithms

    PubMed Central

    2011-01-01

    were reported based on the consensus peptide-spectrum matches. This suggests that applications of multiple search engines effectively reduced the possible false positive results and validated the protein identifications from tandem mass spectra using an alternative splicing database. PMID:21745387

  1. mRNA trans-splicing in gene therapy for genetic diseases.

    PubMed

    Berger, Adeline; Maire, Séverine; Gaillard, Marie-Claude; Sahel, José-Alain; Hantraye, Philippe; Bemelmans, Alexis-Pierre

    2016-07-01

    Spliceosome-mediated RNA trans-splicing, or SMaRT, is a promising strategy to design innovative gene therapy solutions for currently intractable genetic diseases. SMaRT relies on the correction of mutations at the post-transcriptional level by modifying the mRNA sequence. To achieve this, an exogenous RNA is introduced into the target cell, usually by means of gene transfer, to induce a splice event in trans between the exogenous RNA and the target endogenous pre-mRNA. This produces a chimeric mRNA composed partly of exons of the latter, and partly of exons of the former, encoding a sequence free of mutations. The principal challenge of SMaRT technology is to achieve a reaction as complete as possible, i.e., resulting in 100% repairing of the endogenous mRNA target. The proof of concept of SMaRT feasibility has already been established in several models of genetic diseases caused by recessive mutations. In such cases, in fact, the repair of only a portion of the mutant mRNA pool may be sufficient to obtain a significant therapeutic effect. However in the case of dominant mutations, the target cell must be freed from the majority of mutant mRNA copies, requiring a highly efficient trans-splicing reaction. This likely explains why only a few examples of SMaRT approaches targeting dominant mutations are reported in the literature. In this review, we explain in details the mechanism of trans-splicing, review the different strategies that are under evaluation to lead to efficient trans-splicing, and discuss the advantages and limitations of SMaRT. WIREs RNA 2016, 7:487-498. doi: 10.1002/wrna.1347 For further resources related to this article, please visit the WIREs website. PMID:27018401

  2. Co-evolution of SNF spliceosomal proteins with their RNA targets in trans-splicing nematodes.

    PubMed

    Strange, Rex Meade; Russelburg, L Peyton; Delaney, Kimberly J

    2016-08-01

    Although the mechanism of pre-mRNA splicing has been well characterized, the evolution of spliceosomal proteins is poorly understood. The U1A/U2B″/SNF family (hereafter referred to as the SNF family) of RNA binding spliceosomal proteins participates in both the U1 and U2 small interacting nuclear ribonucleoproteins (snRNPs). The highly constrained nature of this system has inhibited an analysis of co-evolutionary trends between the proteins and their RNA binding targets. Here we report accelerated sequence evolution in the SNF protein family in Phylum Nematoda, which has allowed an analysis of protein:RNA co-evolution. In a comparison of SNF genes from ecdysozoan species, we found a correlation between trans-splicing species (nematodes) and increased phylogenetic branch lengths of the SNF protein family, with respect to their sister clade Arthropoda. In particular, we found that nematodes (~70-80 % of pre-mRNAs are trans-spliced) have experienced higher rates of SNF sequence evolution than arthropods (predominantly cis-spliced) at both the nucleotide and amino acid levels. Interestingly, this increased evolutionary rate correlates with the reliance on trans-splicing by nematodes, which would alter the role of the SNF family of spliceosomal proteins. We mapped amino acid substitutions to functionally important regions of the SNF protein, specifically to sites that are predicted to disrupt protein:RNA and protein:protein interactions. Finally, we investigated SNF's RNA targets: the U1 and U2 snRNAs. Both are more divergent in nematodes than arthropods, suggesting the RNAs have co-evolved with SNF in order to maintain the necessarily high affinity interaction that has been characterized in other species. PMID:27450547

  3. Pharmacodynamic assays to facilitate preclinical and clinical development of pre-mRNA splicing modulatory drug candidates.

    PubMed

    Shi, Yihui; Joyner, Amanda S; Shadrick, William; Palacios, Gustavo; Lagisetti, Chandraiah; Potter, Philip M; Sambucetti, Lidia C; Stamm, Stefan; Webb, Thomas R

    2015-08-01

    The spliceosome has recently emerged as a new target for cancer chemotherapy and novel antitumor spliceosome targeted agents are under development. Here, we describe two types of novel pharmacodynamic assays that facilitate drug discovery and development of this intriguing class of innovative therapeutics; the first assay is useful for preclinical optimization of small-molecule agents that target the SF3B1 spliceosomal protein in animals, the second assay is an ex vivo validated, gel-based assay for the measurement of drug exposure in human leukocytes. The first assay utilizes a highly specific bioluminescent splicing reporter, based on the skipping of exons 4-11 of a Luc-MDM2 construct, which specifically yields active luciferase when treated with small-molecule spliceosome modulators. We demonstrate that this reporter can be used to monitor alternative splicing in whole cells in vitro. We describe here that cell lines carrying the reporter can be used in vivo for the efficient pharmacodynamic analysis of agents during drug optimization and development. We also demonstrate dose- and time-dependent on-target activity of sudemycin D6 (SD6), which leads to dramatic tumor regression. The second assay relies on the treatment of freshly drawn human blood with SD6 ex vivo treatment. Changes in alternative splicing are determined by RT-PCR using genes previously identified in in vitro experiments. The Luc-MDM2 alternative splicing bioluminescent reporter and the splicing changes observed in human leukocytes should allow for the more facile translation of novel splicing modulators into clinical application. PMID:26171237

  4. The Mitochondrial Genome of the Prasinophyte Prasinoderma coloniale Reveals Two Trans-Spliced Group I Introns in the Large Subunit rRNA Gene

    PubMed Central

    Pombert, Jean-François; Otis, Christian; Turmel, Monique; Lemieux, Claude

    2013-01-01

    Organelle genes are often interrupted by group I and or group II introns. Splicing of these mobile genetic occurs at the RNA level via serial transesterification steps catalyzed by the introns'own tertiary structures and, sometimes, with the help of external factors. These catalytic ribozymes can be found in cis or trans configuration, and although trans-arrayed group II introns have been known for decades, trans-spliced group I introns have been reported only recently. In the course of sequencing the complete mitochondrial genome of the prasinophyte picoplanktonic green alga Prasinoderma coloniale CCMP 1220 (Prasinococcales, clade VI), we uncovered two additional cases of trans-spliced group I introns. Here, we describe these introns and compare the 54,546 bp-long mitochondrial genome of Prasinoderma with those of four other prasinophytes (clades II, III and V). This comparison underscores the highly variable mitochondrial genome architecture in these ancient chlorophyte lineages. Both Prasinoderma trans-spliced introns reside within the large subunit rRNA gene (rnl) at positions where cis-spliced relatives, often containing homing endonuclease genes, have been found in other organelles. In contrast, all previously reported trans-spliced group I introns occur in different mitochondrial genes (rns or coxI). Each Prasinoderma intron is fragmented into two pieces, forming at the RNA level a secondary structure that resembles those of its cis-spliced counterparts. As observed for other trans-spliced group I introns, the breakpoint of the first intron maps to the variable loop L8, whereas that of the second is uniquely located downstream of P9.1. The breakpoint In each Prasinoderma intron corresponds to the same region where the open reading frame (ORF) occurs when present in cis-spliced orthologs. This correlation between the intron breakpoint and the ORF location in cis-spliced orthologs also holds for other trans-spliced introns; we discuss the possible implications

  5. Connecting the dots: chromatin and alternative splicing in EMT

    PubMed Central

    Warns, Jessica A.; Davie, James R.; Dhasarathy, Archana

    2015-01-01

    Nature has devised sophisticated cellular machinery to process mRNA transcripts produced by RNA Polymerase II, removing intronic regions and connecting exons together, to produce mature RNAs. This process, known as splicing, is very closely linked to transcription. Alternative splicing, or the ability to produce different combinations of exons that are spliced together from the same genomic template, is a fundamental means of regulating protein complexity. Similar to transcription, both constitutive and alternative splicing can be regulated by chromatin and its associated factors in response to various signal transduction pathways activated by external stimuli. This regulation can vary between different cell types, and interference with these pathways can lead to changes in splicing, often resulting in aberrant cellular states and disease. The epithelial to mesenchymal transition (EMT), which leads to cancer metastasis, is influenced by alternative splicing events of chromatin remodelers and epigenetic factors such as DNA methylation and non-coding RNAs. In this review, we will discuss the role of epigenetic factors including chromatin, chromatin remodelers, DNA methyltransferases and microRNAs in the context of alternative splicing, and discuss their potential involvement in alternative splicing during the EMT process. PMID:26291837

  6. Identification of a new splice variant of BDNF in chicken

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brain-derived neurotrophic factor (BDNF) appears to be involved in the central regulation of energy homeostasis. BDNF splicing variants were discovered in vertebrates. Results from human, mouse and rat suggest that alternative BDNF splicing variants potentially play a role in fat deposition. Using t...

  7. Alternative splicing of inner-ear-expressed genes.

    PubMed

    Wang, Yanfei; Liu, Yueyue; Nie, Hongyun; Ma, Xin; Xu, Zhigang

    2016-09-01

    Alternative splicing plays a fundamental role in the development and physiological function of the inner ear. Inner-ear-specific gene splicing is necessary to establish the identity and maintain the function of the inner ear. For example, exon 68 of Cadherin 23 (Cdh23) gene is subject to inner-ear-specific alternative splicing, and as a result, Cdh23(+ 68) is only expressed in inner ear hair cells. Alternative splicing along the tonotopic axis of the cochlea contributes to frequency tuning, particularly in lower vertebrates, such as chickens and turtles. Differential splicing of Kcnma1, which encodes for the α subunit of the Ca(2+)-activated K(+) channel (BK channel), has been suggested to affect the channel gating properties and is important for frequency tuning. Consequently, deficits in alternative splicing have been shown to cause hearing loss, as we can observe in Bronx Waltzer (bv) mice and Sfswap mutant mice. Despite the advances in this field, the regulation of alternative splicing in the inner ear remains elusive. Further investigation is also needed to clarify the mechanism of hearing loss caused by alternative splicing deficits. PMID:27376950

  8. Alternative Splicing of Pre-mRNA in Cancer

    PubMed Central

    Körner, Meike; Miller, Laurence J.

    2009-01-01

    Through alternative splicing, multiple different transcripts can be generated from a single gene. Alternative splicing represents an important molecular mechanism of gene regulation in physiological processes such as developmental programming as well as in disease. In cancer, splicing is significantly altered. Tumors express a different collection of alternative spliceoforms than normal tissues. Many tumor-associated splice variants arise from genes with an established role in carcinogenesis or tumor progression, and their functions can be oncogenic. This raises the possibility that products of alternative splicing play a pathogenic role in cancer. Moreover, cancer-associated spliceoforms represent potential diagnostic biomarkers and therapeutic targets. G protein-coupled peptide hormone receptors provide a good illustration of alternative splicing in cancer. The wild-type forms of these receptors have long been known to be expressed in cancer and to modulate tumor cell functions. They are also recognized as attractive clinical targets. Recently, splice variants of these receptors have been increasingly identified in various types of cancer. In particular, alternative cholecystokinin type 2, secretin, and growth hormone-releasing hormone receptor spliceoforms are expressed in tumors. Peptide hormone receptor splice variants can fundamentally differ from their wild-type receptor counterparts in pharmacological and functional characteristics, in their distribution in normal and malignant tissues, and in their potential use for clinical applications. PMID:19574427

  9. Involvement of PARP1 in the regulation of alternative splicing

    PubMed Central

    Matveeva, Elena; Maiorano, John; Zhang, Qingyang; Eteleeb, Abdallah M; Convertini, Paolo; Chen, Jing; Infantino, Vittoria; Stamm, Stefan; Wang, Jiping; Rouchka, Eric C; Fondufe-Mittendorf, Yvonne N

    2016-01-01

    Specialized chromatin structures such as nucleosomes with specific histone modifications decorate exons in eukaryotic genomes, suggesting a functional connection between chromatin organization and the regulation of pre-mRNA splicing. Through profiling the functional location of Poly (ADP) ribose polymerase, we observed that it is associated with the nucleosomes at exon/intron boundaries of specific genes, suggestive of a role for this enzyme in alternative splicing. Poly (ADP) ribose polymerase has previously been implicated in the PARylation of splicing factors as well as regulation of the histone modification H3K4me3, a mark critical for co-transcriptional splicing. In light of these studies, we hypothesized that interaction of the chromatin-modifying factor, Poly (ADP) ribose polymerase with nucleosomal structures at exon–intron boundaries, might regulate pre-mRNA splicing. Using genome-wide approaches validated by gene-specific assays, we show that depletion of PARP1 or inhibition of its PARylation activity results in changes in alternative splicing of a specific subset of genes. Furthermore, we observed that PARP1 bound to RNA, splicing factors and chromatin, suggesting that Poly (ADP) ribose polymerase serves as a gene regulatory hub to facilitate co-transcriptional splicing. These studies add another function to the multi-functional protein, Poly (ADP) ribose polymerase, and provide a platform for further investigation of this protein’s function in organizing chromatin during gene regulatory processes. PMID:27462443

  10. Global analysis of alternative splicing differences between humans and chimpanzees.

    PubMed

    Calarco, John A; Xing, Yi; Cáceres, Mario; Calarco, Joseph P; Xiao, Xinshu; Pan, Qun; Lee, Christopher; Preuss, Todd M; Blencowe, Benjamin J

    2007-11-15

    Alternative splicing is a powerful mechanism affording extensive proteomic and regulatory diversity from a limited repertoire of genes. However, the extent to which alternative splicing has contributed to the evolution of primate species-specific characteristics has not been assessed previously. Using comparative genomics and quantitative microarray profiling, we performed the first global analysis of alternative splicing differences between humans and chimpanzees. Surprisingly, 6%-8% of profiled orthologous exons display pronounced splicing level differences in the corresponding tissues from the two species. Little overlap is observed between the genes associated with alternative splicing differences and the genes that display steady-state transcript level differences, indicating that these layers of regulation have evolved rapidly to affect distinct subsets of genes in humans and chimpanzees. The alternative splicing differences we detected are predicted to affect diverse functions including gene expression, signal transduction, cell death, immune defense, and susceptibility to diseases. Differences in expression at the protein level of the major splice variant of Glutathione S-transferase omega-2 (GSTO2), which functions in the protection against oxidative stress and is associated with human aging-related diseases, suggests that this enzyme is less active in human cells compared with chimpanzee cells. The results of this study thus support an important role for alternative splicing in establishing differences between humans and chimpanzees. PMID:17978102

  11. Splice Form Dependence of b-Neurexin/Neuroligin Binding Interactions

    SciTech Connect

    Koehnke, J.; Katsamba, P; Ahlsen, G; Bahna, F; Vendome, J; Honig, B; Shapiro, L; Jin, X

    2010-01-01

    Alternatively spliced {beta}-neurexins ({beta}-NRXs) and neuroligins (NLs) are thought to have distinct extracellular binding affinities, potentially providing a {beta}-NRX/NL synaptic recognition code. We utilized surface plasmon resonance to measure binding affinities between all combinations of alternatively spliced {beta}-NRX 1-3 and NL 1-3 ectodomains. Binding was observed for all {beta}-NRX/NL pairs. The presence of the NL1 B splice insertion lowers {beta}-NRX binding affinity by 2-fold, while {beta}-NRX splice insertion 4 has small effects that do not synergize with NL splicing. New structures of glycosylated {beta}-NRXs 1 and 2 containing splice insertion 4 reveal that the insertion forms a new {beta} strand that replaces the {beta}10 strand, leaving the NL binding site intact. This helps to explain the limited effect of splice insert 4 on NRX/NL binding affinities. These results provide new structural insights and quantitative binding information to help determine whether and how splice isoform choice plays a role in {beta}-NRX/NL-mediated synaptic recognition.

  12. Dual Function for U2AF35 in AG-Dependent Pre-mRNA Splicing

    PubMed Central

    Guth, Sabine; Tange, Thomas O/.; Kellenberger, Esther; Valcárcel, Juan

    2001-01-01

    The splicing factor U2AF is required for the recruitment of U2 small nuclear RNP to pre-mRNAs in higher eukaryotes. The 65-kDa subunit of U2AF (U2AF65) binds to the polypyrimidine (Py) tract preceding the 3′ splice site, while the 35-kDa subunit (U2AF35) contacts the conserved AG dinucleotide at the 3′ end of the intron. It has been shown that the interaction between U2AF35 and the 3′ splice site AG can stabilize U2AF65 binding to weak Py tracts characteristic of so-called AG-dependent pre-mRNAs. U2AF35 has also been implicated in arginine-serine (RS) domain-mediated bridging interactions with splicing factors of the SR protein family bound to exonic splicing enhancers (ESE), and these interactions can also stabilize U2AF65 binding. Complementation of the splicing activity of nuclear extracts depleted of U2AF by chromatography in oligo(dT)-cellulose requires, for some pre-mRNAs, only the presence of U2AF65. In contrast, splicing of a mouse immunoglobulin M (IgM) M1-M2 pre-mRNA requires both U2AF subunits. In this report we have investigated the sequence elements (e.g., Py tract strength, 3′ splice site AG, ESE) responsible for the U2AF35 dependence of IgM. The results indicate that (i) the IgM substrate is an AG-dependent pre-mRNA, (ii) U2AF35 dependence correlates with AG dependence, and (iii) the identity of the first nucleotide of exon 2 is important for U2AF35 function. In contrast, RS domain-mediated interactions with SR proteins bound to the ESE appear to be dispensable, because the purine-rich ESE present in exon M2 is not essential for U2AF35 activity and because a truncation mutant of U2AF35 consisting only of the pseudo-RNA recognition motif domain and lacking the RS domain is active in our complementation assays. While some of the effects of U2AF35 can be explained in terms of enhanced U2AF65 binding, other activities of U2AF35 do not correlate with increased cross-linking of U2AF65 to the Py tract. Collectively, the results argue that

  13. Functional impact of splice isoform diversity in individual cells

    PubMed Central

    Yap, Karen; Makeyev, Eugene V.

    2016-01-01

    Alternative pre-mRNA splicing provides an effective means for expanding coding capacity of eukaryotic genomes. Recent studies suggest that co-expression of different splice isoforms may increase diversity of RNAs and proteins at a single-cell level. A pertinent question in the field is whether such co-expression is biologically meaningful or, rather, represents insufficiently stringent splicing regulation. Here we argue that isoform co-expression may produce functional outcomes that are difficult and sometimes impossible to achieve using other regulation strategies. Far from being a ‘splicing noise’, co-expression is often established through co-ordinated activity of specific cis-elements and trans-acting factors. Further work in this area may uncover new biological functions of alternative splicing (AS) and generate important insights into mechanisms allowing different cell types to attain their unique molecular identities. PMID:27528755

  14. Detecting Image Splicing Using Merged Features in Chroma Space

    PubMed Central

    Liu, Guangjie; Dai, Yuewei

    2014-01-01

    Image splicing is an image editing method to copy a part of an image and paste it onto another image, and it is commonly followed by postprocessing such as local/global blurring, compression, and resizing. To detect this kind of forgery, the image rich models, a feature set successfully used in the steganalysis is evaluated on the splicing image dataset at first, and the dominant submodel is selected as the first kind of feature. The selected feature and the DCT Markov features are used together to detect splicing forgery in the chroma channel, which is convinced effective in splicing detection. The experimental results indicate that the proposed method can detect splicing forgeries with lower error rate compared to the previous literature. PMID:24574877

  15. Co-transcriptional commitment to alternative splice site selection.

    PubMed

    Roberts, G C; Gooding, C; Mak, H Y; Proudfoot, N J; Smith, C W

    1998-12-15

    Production of mRNA in eukaryotic cells involves not only transcription but also various processing reactions such as splicing. Recent experiments have indicated that there are direct physical connections between components of the transcription and processing machinery, supporting previous suggestions that pre-mRNA splicing occurs co-transcriptionally. Here we have used a novel functional approach to demonstrate co-transcriptional regulation of alternative splicing. Exon 3 of the alpha-tropomyosin gene is specifically repressed in smooth muscle cells. By delaying synthesis of an essential downstream inhibitory element, we show that the decision to splice or repress exon 3 occurs during a limited window of opportunity following transcription, indicating that splice site selection proceeds rapidly after transcription. PMID:9837984

  16. The evolutionary landscape of alternative splicing in vertebrate species.

    PubMed

    Barbosa-Morais, Nuno L; Irimia, Manuel; Pan, Qun; Xiong, Hui Y; Gueroussov, Serge; Lee, Leo J; Slobodeniuc, Valentina; Kutter, Claudia; Watt, Stephen; Colak, Recep; Kim, TaeHyung; Misquitta-Ali, Christine M; Wilson, Michael D; Kim, Philip M; Odom, Duncan T; Frey, Brendan J; Blencowe, Benjamin J

    2012-12-21

    How species with similar repertoires of protein-coding genes differ so markedly at the phenotypic level is poorly understood. By comparing organ transcriptomes from vertebrate species spanning ~350 million years of evolution, we observed significant differences in alternative splicing complexity between vertebrate lineages, with the highest complexity in primates. Within 6 million years, the splicing profiles of physiologically equivalent organs diverged such that they are more strongly related to the identity of a species than they are to organ type. Most vertebrate species-specific splicing patterns are cis-directed. However, a subset of pronounced splicing changes are predicted to remodel protein interactions involving trans-acting regulators. These events likely further contributed to the diversification of splicing and other transcriptomic changes that underlie phenotypic differences among vertebrate species. PMID:23258890

  17. Splice Resistance Measurements in 2G YBCO Coated Conductor

    SciTech Connect

    Rey, Christopher M; Duckworth, Robert C; Zhang, Yifei

    2009-01-01

    Abstract The Oak Ridge National Laboratory has been investigating the electrical splice resistance of second-generation (2G) YBCO coated conductor. The purpose of the experimental investigation is to study the splice resistance of 2G YBCO coated conductor as a function of: a) operating temperature, b) magnetic field strength (B-field), and c) magnetic field orientation ( ). Understanding the splice resistance with its corresponding variation as a function of surface preparation and operating conditions is essential to the practical implementation of electric utility devices; e.g., motors, generators, transformers, cables, and fault-current limiters, etc. Preliminary test results indicate that the 2G YBCO splice resistance shows a weak temperature dependence and a significantly stronger dependence upon magnetic field strength and magnetic field orientation. Surface preparation conditions are also briefly discussed. Index Terms coated conductor, splice, critical current, YBCO

  18. Characterization of a novel TYMP splice site mutation associated with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE).

    PubMed

    Taanman, Jan-Willem; Daras, Mariza; Albrecht, Juliane; Davie, Charles A; Mallam, Elizabeth A; Muddle, John R; Weatherall, Mark; Warner, Thomas T; Schapira, Anthony H V; Ginsberg, Lionel

    2009-02-01

    Mitochondrial neurogastrointestinal encephalomyopathy is an autosomal recessive disorder caused by loss-of-function mutations in the thymidine phosphorylase gene (TYMP). We report here a patient compound heterozygous for two TYMP mutations: a novel g.4009G>A transition affecting the consensus splice donor site of intron 9, and a previously reported g.675G>C splice site mutation. The novel mutation causes exon 9 skipping but leaves the reading frame intact; however, TYMP protein was not detected by immunoblot analysis, suggesting that neither mutant allele is expressed as protein. The patient's fibroblasts showed gradual loss of the mitochondrial DNA-encoded subunit I of cytochrome-c oxidase, suggesting a progressive mitochondrial DNA defect in culture. PMID:19056268

  19. Position-dependent splicing activation and repression by SR and hnRNP proteins rely on common mechanisms

    PubMed Central

    Erkelenz, Steffen; Mueller, William F.; Evans, Melanie S.; Busch, Anke; Schöneweis, Katrin; Hertel, Klemens J.; Schaal, Heiner

    2013-01-01

    Alternative splicing is regulated by splicing factors that modulate splice site selection. In some cases, however, splicing factors show antagonistic activities by either activating or repressing splicing. Here, we show that these opposing outcomes are based on their binding location relative to regulated 5′ splice sites. SR proteins enhance splicing only when they are recruited to the exon. However, they interfere with splicing by simply relocating them to the opposite intronic side of the splice site. hnRNP splicing factors display analogous opposing activities, but in a reversed position dependence. Activation by SR or hnRNP proteins increases splice site recognition at the earliest steps of exon definition, whereas splicing repression promotes the assembly of nonproductive complexes that arrest spliceosome assembly prior to splice site pairing. Thus, SR and hnRNP splicing factors exploit similar mechanisms to positively or negatively influence splice site selection. PMID:23175589

  20. Age-Related Nuclear Translocation of P2X6 Subunit Modifies Splicing Activity Interacting with Splicing Factor 3A1

    PubMed Central

    Díaz-Hernández, Juan Ignacio; Sebastián-Serrano, Álvaro; Gómez-Villafuertes, Rosa

    2015-01-01

    P2X receptors are ligand-gated ion channels sensitive to extracellular nucleotides formed by the assembling of three equal or different P2X subunits. In this work we report, for the first time, the accumulation of the P2X6 subunit inside the nucleus of hippocampal neurons in an age-dependent way. This location is favored by its anchorage to endoplasmic reticulum through its N-terminal domain. The extracellular domain of P2X6 subunit is the key to reach the nucleus, where it presents a speckled distribution pattern and is retained by interaction with the nuclear envelope protein spectrin α2. The in vivo results showed that, once inside the nucleus, P2X6 subunit interacts with the splicing factor 3A1, which ultimately results in a reduction of the mRNA splicing activity. Our data provide new insights into post-transcriptional regulation of mRNA splicing, describing a novel mechanism that could explain why this process is sensitive to changes that occur with age. PMID:25874565

  1. A synonymous mutation in SPINK5 exon 11 causes Netherton syndrome by altering exonic splicing regulatory elements.

    PubMed

    Fortugno, Paola; Grosso, Fabiana; Zambruno, Giovanna; Pastore, Serena; Faletra, Flavio; Castiglia, Daniele

    2012-05-01

    Netherton syndrome (NS) is a rare, life-threatening ichthyosiform syndrome caused by recessive loss-of-function mutations in SPINK5 gene encoding lymphoepithelial Kazal-type-related inhibitor (LEKTI), a serine protease inhibitor expressed in the most differentiated epidermal layers and crucial for skin barrier function. We report the functional characterization of a previously unrecognized synonymous variant, c.891C>T (p.Cys297Cys), identified in the SPINK5 exon 11 of an NS patient. We demonstrated that the c.891C>T mutation is associated with abnormal pre-mRNA splicing and residual LEKTI expression in the patient's keratinocytes. Subsequent minigene splicing assays and in silico predictions confirmed the direct role of the synonymous mutation in inhibiting exon 11 inclusion by a mechanism that involves the activity of exonic regulatory sequences, namely splicing enhancer and silencer. However, this deleterious effect was not complete and a residual amount of normal mRNA and LEKTI protein could be detected, correlating with the relatively mild patient's phenotype. Our study represents the first identification of a disease-causing SPINK5 mutation that alters splicing without affecting canonical splice sites. PMID:22377713

  2. The Effects of a Rapid Response Team on Decreasing Cardiac Arrest Rates and Improving Outcomes for Cardiac Arrests Outside Critical Care Areas.

    PubMed

    Angel, Melissa; Ghneim, Mira; Song, Juhee; Brocker, Jason; Tipton, Phyllis Hart; Davis, Matthew

    2016-01-01

    A retrospective study was conducted to determine the effects of a well-functioning rapid response team (RRT) within one facility. A well-functioning RRT was associated with fewer cardiac arrests outside critical care settings and decreased critical care length of stay. PMID:27522841

  3. Seismic reflection imaging in the ruptured area of The Tohoku-Oki Earthquake - Results from rapid response seismic reflection surveys -

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; No, T.; Fujie, G.; Kaiho, Y.; Sato, T.; Barnes, J.; Boston, B.; Yamashita, M.; Park, J.; Miura, S.; Takahashi, N.; Kodaira, S.; Kaneda, Y.; Moore, G. F.

    2011-12-01

    The 2011 off the Pacific coast of Tohoku Earthquake is one of the largest earthquakes ever observed and generated devastating Tsunamis. Seismological analysis revealed that the large slip occurred beneath the lower trench slope area, close to the Japan trench axis, (e.g. Ide et al. 2011), which seems to be related with the Tsunami generation. We conducted rapid response reflection seismic surveys using R/V Kairei after the main shock to delineate the structure of the ruptured area off Miyagi. Ten E-W lines with at least 120 km of length were surveyed using a 6 km-long, 444 channel streamer cable and a 7800 inch^3 tuned air gun array. The line spacing was 10-20 km. Preliminary processed data and their interpretation demonstrate that the structure considerably varies from south to north in the survey area. Normal faults dominate in the deep sea terrace. Those faults cut sedimentary sequence in this area, and sometimes offset the reflector at the top of cretaceous sequence. Beneath the trench slope, there are few reflectors especially in the shallower depth below the seafloor. Low angle landward dipping reflectors are observed in most of the survey area, some of them coincides with the backstop interface pointed out by Tsuru et al. (2000), but apparent shape and location of these reflectors are not consistent through the survey area. These reflectors may represent faults, but it is difficult to determine the sense of faulting. In the northern part of the survey area, prominent seaward dipping normal faults are observed in the upper to middle slope. Similar normal faults in small scale can be also recognized in some other lines, and should be one of key features offshore Tohoku region.

  4. Mechanisms and Regulation of Alternative Pre-mRNA Splicing

    PubMed Central

    Lee, Yeon

    2015-01-01

    Precursor messenger RNA (pre-mRNA) splicing is a critical step in the posttranscriptional regulation of gene expression, providing significant expansion of the functional proteome of eukaryotic organisms with limited gene numbers. Split eukaryotic genes contain intervening sequences or introns disrupting protein-coding exons, and intron removal occurs by repeated assembly of a large and highly dynamic ribonucleoprotein complex termed the spliceosome, which is composed of five small nuclear ribonucleoprotein particles, U1, U2, U4/U6, and U5. Biochemical studies over the past 10 years have allowed the isolation as well as compositional, functional, and structural analysis of splicing complexes at distinct stages along the spliceosome cycle. The average human gene contains eight exons and seven introns, producing an average of three or more alternatively spliced mRNA isoforms. Recent high-throughput sequencing studies indicate that 100% of human genes produce at least two alternative mRNA isoforms. Mechanisms of alternative splicing include RNA–protein interactions of splicing factors with regulatory sites termed silencers or enhancers, RNA–RNA base-pairing interactions, or chromatin-based effects that can change or determine splicing patterns. Disease-causing mutations can often occur in splice sites near intron borders or in exonic or intronic RNA regulatory silencer or enhancer elements, as well as in genes that encode splicing factors. Together, these studies provide mechanistic insights into how spliceosome assembly, dynamics, and catalysis occur; how alternative splicing is regulated and evolves; and how splicing can be disrupted by cis- and trans-acting mutations leading to disease states. These findings make the spliceosome an attractive new target for small-molecule, antisense, and genome-editing therapeutic interventions. PMID:25784052

  5. Congenital contractural arachnodactyly due to a novel splice site mutation in the FBN2 gene

    PubMed Central

    Mehar, Virendra; Yadav, Dinesh; Kumar, Ravindra; Yadav, Summi; Singh, Kuldeep; Callewaert, Bert; Pathan, Shahnawaz; De Paepe, Anne; Coucke, Paul J.

    2014-01-01

    Congenital contractural arachnodactyly is a rare autosomal dominant disorder characterized by crumpled ears, congenital contractures, arachnodactyly and scoliosis. Only few cases have been described to date. Here we report a newborn with congenital contractures, crumpled ears and scoliosis. Molecular analysis revealed a novel fibrillin-2 mutation at the donor splice site of intron 28. We discuss the differential diagnosis of neonates with congenital contractures and review the current knowledge on congenital contractural arachnodactyly.

  6. The impact of RNA binding motif protein 4-regulated splicing cascade on the progression and metabolism of colorectal cancer cells

    PubMed Central

    Lin, Ying-Ju; Lin, Jung-Chun

    2015-01-01

    Dysregulated splicing of pre-messenger (m)RNA is considered a molecular occasion of carcinogenesis. However, the underlying mechanism is complex and remains to be investigated. Herein, we report that the upregulated miR-92a reduced the RNA-binding motif 4 (RBM4) protein expression, leading to the imbalanced expression of the neuronal polypyrimidine tract-binding (nPTB) protein through alternative splicing-coupled nonsense mediated decay (NMD) mechanism. Increase in nPTB protein enhances the relative level of fibroblast growth factor receptor 2 IIIc (FGFR2) and pyruvate kinase M2 (PKM2) transcripts which contribute to the progression and metabolic signature of CRC cells. Expression profiles of RBM4 and downstream alternative splicing events are consistently observed in cancerous tissues compared to adjacent normal tissues. These results constitute a mechanistic understanding of RBM4 on repressing the carcinogenesis of colorectal cells. PMID:26506517

  7. In vitro Splicing of Influenza Viral NS1 mRNA and NS1-β -globin Chimeras: Possible Mechanisms for the Control of Viral mRNA Splicing

    NASA Astrophysics Data System (ADS)

    Plotch, Stephen J.; Krug, Robert M.

    1986-08-01

    In influenza virus-infected cells, the splicing of the viral NS1 mRNA catalyzed by host nuclear enzymes is controlled so that the steady-state amount of the spliced NS2 mRNA is only 5-10% of that of the unspliced NS1 mRNA. Here we examine the splicing of NS1 mRNA in vitro, using nuclear extracts from HeLa cells. We show that in addition to its consensus 5' and 3' splice sites, NS1 mRNA has an intron branch-point adenosine residue that was functional in lariat formation. Nonetheless, this RNA was not detectably spliced in vitro under conditions in which a human β -globin precursor was efficiently spliced. Using chimeric RNA precursors containing both NS1 and β -globin sequences, we show that the NS1 5' splice site was effectively utilized by the β -globin branch-point sequence and 3' splice site to form a spliced RNA, whereas the NS1 3' splice site did not function in detectable splicing in vitro, even in the presence of the β -globin branch-point sequence or in the presence of both the branch-point sequence and 5' exon and splice site from β -globin With the chimeric precursors that were not detectably spliced, as with NS1 mRNA itself, a low level of a lariat structure containing only intron and not 3' exon sequences was formed. The inability of the consensus 3' splice site of NS1 mRNA to function effectively in in vitro splicing suggests that this site is structurally inaccessible to components of the splicing machinery. Based on these results, we propose two mechanisms whereby NS1 mRNA splicing in infected cells is controlled via the accessibility of its 3' splice site.

  8. Splicing is required for transactivation by the immediate early gene 1 of the Lymantria dispar multinucleocapsid nuclear polyhedrosis virus.

    PubMed

    Pearson, M N; Rohrmann, G F

    1997-08-18

    A region of the Lymantria disper multinucleocapsid nuclear polyhedrosis virus (LdMNPV) genome containing the homolog of the baculovirus ie-1 gene was identified using a series of overlapping cosmids and individual plasmids in a transient transcriptional expression assay. Sequence analysis of the active region identified two ORFs, one of which is 32% identical to AcMNPV ORF141 (ie-0) and contains a putative splice donor site and the other of which is 29% identical to AcMNPV ie-1 and contains a highly conserved splice acceptor consensus sequences. Plasmids containing the LdMNPV ORF141 and ie-1 regions were able to stimulate expression of a GUS reporter gene, while plasmids containing the ie-1 region alone were inactive, suggesting that only the spliced, IE-0 form of the gene product is an active transactivator. Primer extension analysis confirmed the presence of spliced ie-0 mRNA transcripts starting at 6 hr and continuing throughout the time course of viral infection of the L dispar cell line Ld652Y. Using a plasmid containing the ie-0 spliced form of the gene as a transactivator, hr4, one of the eight homologous regions of LdMNPV, was shown to act as a transcriptional enhancer. In contrast, a reporter plasmid containing the AcMNPV hr5 enhancer did not show increased activity when cotransfected with LdMNPV ie-0, suggesting that these enhancer sequences are viral specific. In a transient replication assay system. LdMNPV ie-0 acted as an essential replication gene, but LdMNPV ie-1 was inactive. These results indicate that splicing is required to obtain an active gene product in LdMNPV in the Ld652Y cell line. PMID:9300047

  9. Regulation of Telomerase Alternative Splicing: A New Target for Chemotherapy

    PubMed Central

    Wong, Mandy S.; Chen, Ling; Foster, Christopher; Kainthla, Radhika; Shay, Jerry W.; Wright, Woodring E.

    2013-01-01

    SUMMARY Telomerase is present in human cancer cells but absent in most somatic tissues. The mRNA of human telomerase (hTERT) is alternatively spliced into mostly non-functional products. We sought to understand splicing so we could decrease functional splice isoforms to reduce telomerase activity to complement direct enzyme inhibition. Unexpectedly, minigenes containing hTERT exons 5–10 flanked by 150–300bp intronic sequences did not produce alternative splicing. A 1.1kb region of 38bp repeats ~2kb from the exon 6/intron junction restored exclusion of exons 7/8. An element within intron 8, also >1kb from intron/exon junctions, modulated this effect. Transducing an oligonucleotide complementary to this second element increased non-functional hTERT mRNA from endogenous telomerase. These results demonstrate the potential of manipulating hTERT splicing for both chemotherapy and regenerative medicine, and provide the first specific sequences deep within introns that regulate alternative splicing in mammalian cells by mechanisms other than introducing cryptic splice sites. PMID:23562158

  10. Regulation of alternative splicing of tau exon 10.

    PubMed

    Qian, Wei; Liu, Fei

    2014-04-01

    The neuronal microtubule-associated protein tau is abnormally hyperphosphorylated and aggregated into neurofibrillary tangles in the brains of individuals with Alzheimer's disease and related neurodegenerative disorders. The adult human brain expresses six isoforms of tau generated by alternative splicing of exons 2, 3, and 10 of its pre-mRNA. Exon 10 encodes the second microtubule-binding repeat of tau. Its alternative splicing produces tau isoforms with either three or four microtubule-binding repeats, termed 3R-tau and 4Rtau. In the normal adult human brain, the level of 3R-tau is approximately equal to that of 4R-tau. Several silent and intronic mutations of the tau gene associated with FTDP-17T (frontotemporal dementia with Parkinsonism linked to chromosome 17 and specifically characterized by tau pathology) only disrupt exon 10 splicing, but do not influence the primary sequence of the tau protein. Thus, abnormal exon 10 splicing is sufficient to cause neurodegeneration and dementia. Here, we review the regulation of tau exon 10 splicing by cis-elements and trans-factors and summarize all the mutations associated with FTDP-17T and related tauopathies. The findings suggest that correction of exon 10 splicing may be a potential target for tau exon 10 splicing-related tauopathies. PMID:24627328

  11. Genome-wide survey of Alternative Splicing in Sorghum Bicolor.

    PubMed

    Panahi, Bahman; Abbaszadeh, Bahram; Taghizadeghan, Mehdi; Ebrahimie, Esmaeil

    2014-07-01

    Sorghum bicolor is a member of grass family which is an attractive model plant for genome study due to interesting genome features like low genome size. In this research, we performed comprehensive investigation of Alternative Splicing and ontology aspects of genes those have undergone these events in sorghum bicolor. We used homology based alignments between gene rich transcripts, represented by tentative consensus (TC) transcript sequences, and genomic scaffolds to deduce the structure of genes and identify alternatively spliced transcripts in sorghum. Using homology mapping of assembled expressed sequence tags with genomics data, we identified 2,137 Alternative Splicing events in S. bicolor. Our study showed that complex events and intron retention are the main types of Alternative Splicing events in S. bicolor and highlights the prevalence of splicing site recognition for definition of introns in this plant. Annotations of the alternatively spliced genes revealed that they represent diverse biological process and molecular functions, suggesting a fundamental role for Alternative Splicing in affecting the development and physiology of S. bicolor. PMID:25049459

  12. Interaction of human GTP cyclohydrolase I with its splice variants

    PubMed Central

    Pandya, Maya J.; Golderer, Georg; Werner, Ernst R.; Werner-Felmayer, Gabriele

    2006-01-01

    Tetrahydrobiopterin is an essential cofactor for aromatic amino acid hydroxylases, ether lipid oxidase and nitric oxide synthases. Its biosynthesis in mammals is regulated by the activity of the homodecameric enzyme GCH (GTP cyclohydrolase I; EC 3.5.4.16). In previous work, catalytically inactive human GCH splice variants differing from the wild-type enzyme within the last 20 C-terminal amino acids were identified. In the present study, we searched for a possible role of these splice variants. Gel filtration profiles of purified recombinant proteins showed that variant GCHs form high-molecular-mass oligomers similar to the wild-type enzyme. Co-expression of splice variants together with wild-type GCH in mammalian cells revealed that GCH levels were reduced in the presence of splice variants. Commensurate with these findings, the GCH activity obtained for wild-type enzyme was reduced 2.5-fold through co-expression with GCH splice variants. Western blots of native gels suggest that splice variants form decamers despite C-terminal truncation. Therefore one possible explanation for the effect of GCH splice variants could be that inactive variants are incorporated into GCH heterodecamers, decreasing the enzyme stability and activity. PMID:16848765

  13. Evolution of a tissue-specific splicing network

    PubMed Central

    Taliaferro, J. Matthew; Alvarez, Nehemiah; Green, Richard E.; Blanchette, Marco; Rio, Donald C.

    2011-01-01

    Alternative splicing of precursor mRNA (pre-mRNA) is a strategy employed by most eukaryotes to increase transcript and proteomic diversity. Many metazoan splicing factors are members of multigene families, with each member having different functions. How these highly related proteins evolve unique properties has been unclear. Here we characterize the evolution and function of a new Drosophila splicing factor, termed LS2 (Large Subunit 2), that arose from a gene duplication event of dU2AF50, the large subunit of the highly conserved heterodimeric general splicing factor U2AF (U2-associated factor). The quickly evolving LS2 gene has diverged from the splicing-promoting, ubiquitously expressed dU2AF50 such that it binds a markedly different RNA sequence, acts as a splicing repressor, and is preferentially expressed in testes. Target transcripts of LS2 are also enriched for performing testes-related functions. We therefore propose a path for the evolution of a new splicing factor in Drosophila that regulates specific pre-mRNAs and contributes to transcript diversity in a tissue-specific manner. PMID:21406555

  14. The Silent Sway of Splicing by Synonymous Substitutions.

    PubMed

    Mueller, William F; Larsen, Liza S Z; Garibaldi, Angela; Hatfield, G Wesley; Hertel, Klemens J

    2015-11-13

    Alternative splicing diversifies mRNA transcripts in human cells. This sequence-driven process can be influenced greatly by mutations, even those that do not change the protein coding potential of the transcript. Synonymous mutations have been shown to alter gene expression through modulation of splicing, mRNA stability, and translation. Using a synonymous position mutation library in SMN1 exon 7, we show that 23% of synonymous mutations across the exon decrease exon inclusion, suggesting that nucleotide identity across the entire exon has been evolutionarily optimized to support a particular exon inclusion level. Although phylogenetic conservation scores are insufficient to identify synonymous positions important for exon inclusion, an alignment of organisms filtered based on similar exon/intron architecture is highly successful. Although many of the splicing neutral mutations are observed to occur, none of the exon inclusion reducing mutants was found in the filtered alignment. Using the modified phylogenetic comparison as an approach to evaluate the impact on pre-mRNA splicing suggests that up to 45% of synonymous SNPs are likely to alter pre-mRNA splicing. These results demonstrate that coding and pre-mRNA splicing pressures co-evolve and that a modified phylogenetic comparison based on the exon/intron architecture is a useful tool in identifying splice altering SNPs. PMID:26424794

  15. Rapid Response Products of The ARIA Project for the M6.0 August 24, 2014 South Napa Earthquake

    NASA Astrophysics Data System (ADS)

    Yun, S. H.; Owen, S. E.; Hua, H.; Milillo, P.; Fielding, E. J.; Hudnut, K. W.; Dawson, T. E.; Mccrink, T. P.; Jo, M. J.; Barnhart, W. D.; Manipon, G. J. M.; Agram, P. S.; Moore, A. W.; Jung, H. S.; Webb, F.; Milillo, G.; Rosinski, A.

    2014-12-01

    A magnitude 6.0 earthquake struck southern Napa county northeast of San Francisco, California, on Aug. 24, 2014, causing significant damage in the city of Napa and nearby areas. One day after the earthquake, the Advanced Rapid Imaging and Analysis (ARIA) team produced and released observations of coseismic ground displacement measured with continuous GPS stations of the Plate Boundary Observatory (operated by UNAVCO for the National Science Foundation) and the Bay Area Rapid Deformation network (operated by Berkeley Seismological Laboratory). Three days after the earthquake (Aug. 27), the Italian Space Agency's (ASI) COSMO-SkyMed (CSK) satellite acquired their first post-event data. On the same day, the ARIA team, in collaboration with ASI and University of Basilicata, produced and released a coseismic interferogram that revealed ground deformation and surface rupture. The depiction of the surface rupture - discontinuities of color fringes in the CSK interferogram - helped guide field geologists from the US Geological Survey and the California Geological Survey (CGS) to features that may have otherwise gone undetected. Small-scale cracks were found on a runway of the Napa County Airport, as well as bridge damage and damaged roads. ARIA's response to this event highlighted the importance of timeliness for mapping surface deformation features. ARIA's rapid response products were shared through Southern California Earthquake Center's response website and the California Earthquake Clearinghouse. A damage proxy map derived from InSAR coherence of CSK data was produced and distributed on Aug. 27. Field crews from the CGS identified true and false positives, including mobile home damage, newly planted grape vines, and a cripple wall failure of a house. Finite fault slip models constrained from CSK interferograms and continuous GPS observations reveal a north-propagating rupture with well-resolved slip from 0-10.5 km depth. We also measured along-track coseismic

  16. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false High-voltage trailing cables; splices. 75.810... § 75.810 High-voltage trailing cables; splices. In the case of high-voltage cables used as trailing cables, temporary splices shall not be used and all permanent splices shall be made in accordance...

  17. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false High-voltage trailing cables; splices. 75.810... § 75.810 High-voltage trailing cables; splices. In the case of high-voltage cables used as trailing cables, temporary splices shall not be used and all permanent splices shall be made in accordance...

  18. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage trailing cables; splices. 75.810... § 75.810 High-voltage trailing cables; splices. In the case of high-voltage cables used as trailing cables, temporary splices shall not be used and all permanent splices shall be made in accordance...

  19. 30 CFR 75.810 - High-voltage trailing cables; splices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false High-voltage trailing cables; splices. 75.810... § 75.810 High-voltage trailing cables; splices. In the case of high-voltage cables used as trailing cables, temporary splices shall not be used and all permanent splices shall be made in accordance...

  20. Influence of Intron Length on Alternative Splicing of CD44

    PubMed Central

    Bell, Martyn V.; Cowper, Alison E.; Lefranc, Marie-Paule; Bell, John I.; Screaton, Gavin R.

    1998-01-01

    Although the splicing of transcripts from most eukaryotic genes occurs in a constitutive fashion, some genes can undergo a process of alternative splicing. This is a genetically economical process which allows a single gene to give rise to several protein isoforms by the inclusion or exclusion of sequences into or from the mature mRNA. CD44 provides a unique example; more than 1,000 possible isoforms can be produced by the inclusion or exclusion of a central tandem array of 10 alternatively spliced exons. Certain alternatively spliced exons have been ascribed specific functions; however, independent regulation of the inclusion or skipping of each of these exons would clearly demand an extremely complex regulatory network. Such a network would involve the interaction of many exon-specific trans-acting factors with the pre-mRNA. Therefore, to assess whether the exons are indeed independently regulated, we have examined the alternative exon content of a large number of individual CD44 cDNA isoforms. This analysis shows that the downstream alternatively spliced exons are favored over those lying upstream and that alternative exons are often included in blocks rather than singly. Using a novel in vivo alternative splicing assay, we show that intron length has a major influence upon the alternative splicing of CD44. We propose a kinetic model in which short introns may overcome the poor recognition of alternatively spliced exons. These observations suggest that for CD44, intron length has been exploited in the evolution of the genomic structure to enable tissue-specific patterns of splicing to be maintained. PMID:9742110

  1. A Novel Splice Variant in the N-propeptide of COL5A1 Causes an EDS Phenotype with Severe Kyphoscoliosis and Eye Involvement

    PubMed Central

    Symoens, Sofie; Malfait, Fransiska; Vlummens, Philip; Hermanns-Lê, Trinh; Syx, Delfien; De Paepe, Anne

    2011-01-01

    Background The Ehlers-Danlos Syndrome (EDS) is a heritable connective tissue disorder characterized by hyperextensible skin, joint hypermobility and soft tissue fragility. The classic subtype of EDS is caused by mutations in one of the type V collagen genes (COL5A1 and COL5A2). Most mutations affect the type V collagen helical domain and lead to a diminished or structurally abnormal type V collagen protein. Remarkably, only two mutations were reported to affect the extended, highly conserved N-propeptide domain, which plays an important role in the regulation of the heterotypic collagen fibril diameter. We identified a novel COL5A1 N-propeptide mutation, resulting in an unusual but severe classic EDS phenotype and a remarkable splicing outcome. Methodology/Principal Findings We identified a novel COL5A1 N-propeptide acceptor-splice site mutation (IVS6-2A>G, NM_000093.3_c.925-2A>G) in a patient with cutaneous features of EDS, severe progressive scoliosis and eye involvement. Two mutant transcripts were identified, one with an exon 7 skip and one in which exon 7 and the upstream exon 6 are deleted. Both transcripts are expressed and secreted into the extracellular matrix, where they can participate in and perturb collagen fibrillogenesis, as illustrated by the presence of dermal collagen cauliflowers. Determination of the order of intron removal and computational analysis showed that simultaneous skipping of exons 6 and 7 is due to the combined effect of delayed splicing of intron 7, altered pre-mRNA secondary structure, low splice site strength and possibly disturbed binding of splicing factors. Conclusions/Significance We report a novel COL5A1 N-propeptide acceptor-splice site mutation in intron 6, which not only affects splicing of the adjacent exon 7, but also causes a splicing error of the upstream exon 6. Our findings add further insights into the COL5A1 splicing order and show for the first time that a single COL5A1 acceptor-splice site mutation can perturb

  2. Bacterial group II introns: not just splicing.

    PubMed

    Toro, Nicolás; Jiménez-Zurdo, José Ignacio; García-Rodríguez, Fernando Manuel

    2007-04-01

    Group II introns are both catalytic RNAs (ribozymes) and mobile retroelements that were discovered almost 14 years ago. It has been suggested that eukaryotic mRNA introns might have originated from the group II introns present in the alphaproteobacterial progenitor of the mitochondria. Bacterial group II introns are of considerable interest not only because of their evolutionary significance, but also because they could potentially be used as tools for genetic manipulation in biotechnology and for gene therapy. This review summarizes what is known about the splicing mechanisms and mobility of bacterial group II introns, and describes the recent development of group II intron-based gene-targetting methods. Bacterial group II intron diversity, evolutionary relationships, and behaviour in bacteria are also discussed. PMID:17374133

  3. Gene and splicing therapies for neuromuscular diseases.

    PubMed

    Benchaouir, Rachid; Robin, Valerie; Goyenvalle, Aurelie

    2015-01-01

    Neuromuscular disorders (NMD) are heterogeneous group of genetic diseases characterized by muscle weakness and wasting. Duchenne Muscular dystrophy (DMD) and Spinal muscular atrophy (SMA) are two of the most common and severe forms in humans and although the molecular mechanisms of these diseases have been extensively investigated, there is currently no effective treatment. However, new gene-based therapies have recently emerged with particular noted advances in using conventional gene replacement strategies and RNA-based technology. Whilst proof of principle have been demonstrated in animal models, several clinical trials have recently been undertaken to investigate the feasibility of these strategies in patients. In particular, antisense mediated exon skipping has shown encouraging results and hold promise for the treatment of dystrophic muscle. In this review, we summarize the recent progress of therapeutic approaches to neuromuscular diseases, with an emphasis on gene therapy and splicing modulation for DMD and SMA, focusing on the advantages offered by these technologies but also their challenges. PMID:25961553

  4. A TFIIB-like protein is indispensable for spliced leader RNA gene transcription in Trypanosoma brucei

    PubMed Central

    Schimanski, Bernd; Brandenburg, Jens; Nguyen, Tu Ngoc; Caimano, Melissa Jo; Günzl, Arthur

    2006-01-01

    The lack of general class II transcription factors was a hallmark of the genomic sequences of the human parasites Trypanosoma brucei, Trypanosoma cruzi and Leishmania major. However, the recent identification of TFIIA as part of a protein complex essential for RNA polymerase II-mediated transcription of SLRNA genes, which encode the trans splicing-specific spliced leader RNA, suggests that trypanosomatids assemble a highly divergent set of these factors at the SLRNA promoter. Here we report the identification of a trypanosomatid TFIIB-like (TFIIBlike) protein which has limited overall sequence homology to eukaryotic TFIIB and archaeal TFB but harbors conserved residues within the N-terminal zinc ribbon domain, the B finger and cyclin repeat I. In accordance with the function of TFIIB, T.brucei TFIIBlike is encoded by an essential gene, localizes to the nucleus, specifically binds to the SLRNA promoter, interacts with RNA polymerase II, and is absolutely required for SLRNA transcription. PMID:16554554

  5. Novel splice mutation in microthalmia-associated transcription factor in Waardenburg Syndrome.

    PubMed

    Brenner, Laura; Burke, Kelly; Leduc, Charles A; Guha, Saurav; Guo, Jiancheng; Chung, Wendy K

    2011-01-01

    Waardenburg Syndrome (WS) is a syndromic form of hearing loss associated with mutations in six different genes. We identified a large family with WS that had previously undergone clinical testing, with no reported pathogenic mutation. Using linkage analysis, a region on 3p14.1 with an LOD score of 6.6 was identified. Microthalmia-Associated Transcription Factor, a gene known to cause WS, is located within this region of linkage. Sequencing of Microthalmia-Associated Transcription Factor demonstrated a c.1212 G>A synonymous variant that segregated with the WS in the family and was predicted to cause a novel splicing site that was confirmed with expression analysis of the mRNA. This case illustrates the need to computationally analyze novel synonymous sequence variants for possible effects on splicing to maximize the clinical sensitivity of sequence-based genetic testing. PMID:21438779

  6. Novel perforin mutation in a patient with hemophagocytic lymphohistiocytosis and CD45 abnormal splicing.

    PubMed

    McCormick, James; Flower, Darren R; Strobel, Stephan; Wallace, Diana L; Beverley, Peter C L; Tchilian, Elma Z

    2003-03-15

    Hemophagocytic lymphohistiocytosis (HLH) composes a group of rare heterogenous disorders characterized by uncontrolled accumulation and infiltration of activated T lymphocytes and macrophages. Cytotoxic T and natural killer cell activity is significantly reduced or absent in these patients. Mutations in the important mediator of lymphocyte cytotoxicity perforin were identified in a number of HLH individuals. Here we report a novel missense mutation thr435met in the conserved Ca(2+) binding domain of perforin in a patient with HLH. Prediction of the 3-dimensional structure of the thr435met perforin mutant using comparative molecular modeling indicates that the protein's ability to bind Ca(2+), and therefore its cytolytic function, would be strongly compromised. In addition, this patient exhibited abnormal CD45 splicing caused by a C77G mutation in the gene encoding CD45 (PTPRC). Our findings suggest a combined role for perforin mutation and abnormal CD45 splicing as significant contributory factors in the pathogenesis of HLH. PMID:12599189

  7. Association of Carney Complex with an Intronic Splice Site Mutation in the PRKAR1A Gene.

    PubMed

    Guo, H; Xiong, H; Li, Z; Xu, J; Zhang, H; Chen, X; Hu, S

    2016-06-01

    This study was aimed to investigate the clinical features and mutations in the PRKAR1A gene of a multigenerational kindred including 17 individuals at risk for Carney complex. Eight patients were diagnosed with Carney complex among the 17 individuals (47.1%). Among the 8 affected patients, 4 had cardiac myxomas, 8 had skin pigmentation, and 3 had diabetes. Genomic DNA sequencing in 14 surviving patients showed 6 had the same germline mutation in the sixth intron and affected the splice site. cDNA sequencing and DNAMAN software showed 159 bases were absent, resulting in the absence of the amino acids 249 to 301 from the protein. All 6 patients with this PRKAR1A gene mutation had skin pigmentation. In conclusion, the present study reported for the first time an intronic splice site mutation in the PRKAR1A gene of a Chinese family with Carney complex, which probably caused skin pigmentation observed in affected family members. PMID:26788925

  8. Rapid Responses and Mechanism of Action for Low-Dose Bisphenol S on ex Vivo Rat Hearts and Isolated Myocytes: Evidence of Female-Specific Proarrhythmic Effects

    PubMed Central

    Gao, Xiaoqian; Ma, Jianyong; Chen, Yamei

    2015-01-01

    Background Bisphenol S (BPS) has increasingly been used as a substitute for bisphenol A (BPA) in some “BPA-free” consumer goods and in thermal papers. Wide human exposure to BPS has been reported; however, the biological and potential toxic effects of BPS are poorly understood. Objective In this study, we sought to elucidate the sex-specific rapid effect of BPS in rat hearts and its underlying mechanism. Methods We examined the rapid effects of BPS in rat hearts using electrophysiology, confocal and conventional fluorescence imaging, and immunoblotting. Treatment was administered via acute perfusion of excised hearts or isolated cardiac myocytes. Results In female rat hearts acutely exposed to 10–9 M BPS, the heart rate was increased; in the presence of catecholamine-induced stress, the frequency of ventricular arrhythmia events was markedly increased. BPS-exposed hearts showed increased incidence of arrhythmogenic-triggered activities in female ventricular myocytes and altered myocyte Ca2+ handling, particularly spontaneous Ca2+ release from the sarcoplasmic reticulum. The dose responses of BPS actions were inverted U-shaped. The impact of BPS on myocyte Ca2+ handling was mediated by estrogen receptor β signaling and by rapid increases in the phosphorylation of key Ca2+ handling proteins, including ryanodine receptor and phospholamban. The proarrhythmic effects of BPS were female specific; male rat hearts were not affected by BPS at the organ, myocyte, or protein levels. Conclusion Rapid exposure to low-dose BPS showed proarrhythmic impact on female rat hearts; these effects at the organ, cellular, and molecular levels are remarkably similar to those reported for BPA. Evaluation of the bioactivity and safety of BPS and other BPA analogs is necessary before they are used as BPA alternatives in consumer products. Citation Gao X, Ma J, Chen Y, Wang HS. 2015. Rapid responses and mechanism of action for low-dose bisphenol S on ex vivo rat hearts and isolated

  9. Splicing mutation of a gene within the Duchenne muscular dystrophy family.

    PubMed

    Zhu, Y B; Gan, J H; Luo, J W; Zheng, X Y; Wei, S C; Hu, D

    2016-01-01

    The aim of this study was to identify the mutation site and phenotype of the Duchenne muscular dystrophy (DMD) gene in a DMD family. The DMD gene is by far the largest known gene in humans. Up to 34% of the point mutations reported to date affect splice sites of the DMD gene. However, no hotspot mutation has been reported. Capture sequencing of second-generation exons was used to investigate the DMD gene in a proband. Sanger sequencing was performed for mutation scanning in eight family members. Scale-invariant feature transform and PolyPhen were applied to predict the functional impact of protein mutations. A hemizygous splicing mutation IVS44ds +1G-A (c.6438 +1G>A) that induces abnormal splicing variants during late transcription and produces abnormal proteins was located in intron 44. Four missense mutations (p.Arg2937Gln, p.Asp882Gly, p.Lys2366Gln, and p.Arg1745His) that are known multiple-polymorphic sites were found in the coding region of the DMD gene. A heterozygous c.6438+1G>A mutation was detected on the X chromosome of the proband's mother and maternal grandmother. PMID:27421007

  10. Splicing modulation therapy in the treatment of genetic diseases

    PubMed Central

    Arechavala-Gomeza, Virginia; Khoo, Bernard; Aartsma-Rus, Annemieke

    2014-01-01

    Antisense-mediated splicing modulation is a tool that can be exploited in several ways to provide a potential therapy for rare genetic diseases. This approach is currently being tested in clinical trials for Duchenne muscular dystrophy and spinal muscular atrophy. The present review outlines the versatility of the approach to correct cryptic splicing, modulate alternative splicing, restore the open reading frame, and induce protein knockdown, providing examples of each. Finally, we outline a possible path forward toward the clinical application of this approach for a wide variety of inherited rare diseases. PMID:25506237

  11. Mass fusion splicing machine for ribbon-type optical fibers

    NASA Astrophysics Data System (ADS)

    Osaka, K.; Yanagi, T.; Asano, Y.

    1986-11-01

    A mass fusion splicer was designed and manufactured. Using this splicer, mass fusion splicing of optical fiber ribbons was investigated. Ten-fiber ribbon tapes were cut and spliced at an average loss of 0.08 dB for GI and 0.24 dB for SM. They were reinforced by heat-shrinkable tubes with EVA adhesive improved for ribbon tape. An average tensile strength until break was about 3.2 kg soon after splice and about 8.3 kg after reinforcement.

  12. Monitoring Alternative Splicing Changes in Arabidopsis Circadian Clock Genes.

    PubMed

    Simpson, Craig G; Fuller, John; Calixto, Cristiane P G; McNicol, Jim; Booth, Clare; Brown, John W S; Staiger, Dorothee

    2016-01-01

    Posttranscriptional control makes an important contribution to circadian regulation of gene expression. In higher plants, alternative splicing is particularly prevalent upon abiotic and biotic stress and in the circadian system. Here we describe in detail a high-resolution reverse transcription-PCR based panel (HR RT-PCR) to monitor alternative splicing events. The use of the panel allows the quantification of changes in the proportion of splice isoforms between different samples, e.g., different time points, different tissues, genotypes, ecotypes, or treatments. PMID:26867620

  13. Cryptic splice site usage in exon 7 of the human fibrinogen Bβ-chain gene is regulated by a naturally silent SF2/ASF binding site within this exon

    PubMed Central

    Spena, Silvia; Tenchini, Maria Luisa; Buratti, Emanuele

    2006-01-01

    In this work we report the identification of a strong SF2/ASF binding site within exon 7 of the human fibrinogen Bβ-chain gene (FGB). Its disruption in the wild-type context has no effect on exon recognition. However, when the mutation IVS7 + 1G>T—initially described in a patient suffering from congenital afibrinogenemia—is present, this SF2/ASF binding site is critical for cryptic 5′ss (splice site) definition. These findings, besides confirming and extending previous results regarding the effect of SF2/ASF on cryptic splice site activation, identify for the first time an enhancer sequence in the FGB gene specific for cryptic splice site usage. Taken together, they suggest the existence of a splicing-regulatory network that is normally silent in the FGB natural splicing environment but which can nonetheless influence splicing decisions when local contexts allow. On a more general note, our conclusions have implications for the evolution of alternative splicing processes and for the development of methods to control aberrant splicing in the context of disease-causing mutations. PMID:16611940

  14. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy.

    PubMed Central

    Shiga, N; Takeshima, Y; Sakamoto, H; Inoue, K; Yokota, Y; Yokoyama, M; Matsuo, M

    1997-01-01

    The mechanism of exon skipping induced by nonsense mutations has not been well elucidated. We now report results of in vitro splicing studies which disclosed that a particular example of exon skipping is due to disruption of a splicing enhancer sequence located within the exon. A nonsense mutation (E1211X) due to a G to T transversion at the 28th nucleotide of exon 27 (G3839T) was identified in the dystrophin gene of a Japanese Becker muscular dystrophy case. Partial skipping of the exon resulted in the production of truncated dystrophin mRNA, although the consensus sequences for splicing at both ends of exon 27 were unaltered. To determine how E1211X induced exon 27 skipping, the splicing enhancer activity of purine-rich region within exon 27 was examined in an in vitro splicing system using chimeric doublesex gene pre-mRNA. The mutant sequence containing G3839T abolished splicing enhancer activity of the wild-type purine-rich sequence for the upstream intron in this chimeric pre-mRNA. An artificial polypurine oligonucleotide mimicking the purine-rich sequence of exon 27 also showed enhancer activity that was suppressed by the introduction of a T nucleotide. Furthermore, the splicing enhancer activity was more markedly inhibited when a nonsense codon was created by the inserted T residue. This is the first evidence that partial skipping of an exon harboring a nonsense mutation is due to disruption of a splicing enhancer sequence. PMID:9410897

  15. Disruption of the splicing enhancer sequence within exon 27 of the dystrophin gene by a nonsense mutation induces partial skipping of the exon and is responsible for Becker muscular dystrophy.

    PubMed

    Shiga, N; Takeshima, Y; Sakamoto, H; Inoue, K; Yokota, Y; Yokoyama, M; Matsuo, M

    1997-11-01

    The mechanism of exon skipping induced by nonsense mutations has not been well elucidated. We now report results of in vitro splicing studies which disclosed that a particular example of exon skipping is due to disruption of a splicing enhancer sequence located within the exon. A nonsense mutation (E1211X) due to a G to T transversion at the 28th nucleotide of exon 27 (G3839T) was identified in the dystrophin gene of a Japanese Becker muscular dystrophy case. Partial skipping of the exon resulted in the production of truncated dystrophin mRNA, although the consensus sequences for splicing at both ends of exon 27 were unaltered. To determine how E1211X induced exon 27 skipping, the splicing enhancer activity of purine-rich region within exon 27 was examined in an in vitro splicing system using chimeric doublesex gene pre-mRNA. The mutant sequence containing G3839T abolished splicing enhancer activity of the wild-type purine-rich sequence for the upstream intron in this chimeric pre-mRNA. An artificial polypurine oligonucleotide mimicking the purine-rich sequence of exon 27 also showed enhancer activity that was suppressed by the introduction of a T nucleotide. Furthermore, the splicing enhancer activity was more markedly inhibited when a nonsense codon was created by the inserted T residue. This is the first evidence that partial skipping of an exon harboring a nonsense mutation is due to disruption of a splicing enhancer sequence. PMID:9410897

  16. The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the beta-tropomyosin alternative exon 6A.

    PubMed Central

    Gallego, M E; Gattoni, R; Stévenin, J; Marie, J; Expert-Bezançon, A

    1997-01-01

    Exons 6A and 6B of the chicken beta-tropomyosin gene are mutually exclusive and selected in a tissue-specific manner. Exon 6A is present in non-muscle and smooth muscle cells, while exon 6B is present in skeletal muscle cells. In this study we have investigated the mechanism underlying exon 6A recognition in non-muscle cells. Previous reports have identified a pyrimidine-rich intronic enhancer sequence (S4) downstream of exon 6A as essential for exon 6A 5'-splice site recognition. We show here that preincubation of HeLa cell extracts with an excess of RNA containing this sequence specifically inhibits exon 6A recognition by the splicing machinery. Splicing inhibition by an excess of this RNA can be rescued by addition of the SR protein ASF/SF2, but not by the SR proteins SC35 or 9G8. ASF/SF2 stimulates exon 6A splicing through specific interaction with the enhancer sequence. Surprisingly, SC35 behaves as an inhibitor of exon 6A splicing, since addition to HeLa nuclear extracts of increasing amounts of the SC35 protein completely abolish the stimulatory effect of ASF/SF2 on exon 6A splicing. We conclude that exon 6A recognition in vitro depends on the ratio of the ASF/SF2 to SC35 SR proteins. Taken together our results suggest that variations in the level or activity of these proteins could contribute to the tissue-specific choice of beta-tropomyosin exon 6A. In support of this we show that SR proteins isolated from skeletal muscle tissues are less efficient for exon 6A stimulation than SR proteins isolated from HeLa cells. PMID:9130721

  17. Splicing changes in SMA mouse motoneurons and SMN-depleted neuroblastoma cells: Evidence for involvement of splicing regulatory proteins

    PubMed Central

    Huo, Qing; Kayikci, Melis; Odermatt, Philipp; Meyer, Kathrin; Michels, Olivia; Saxena, Smita; Ule, Jernej; Schümperli, Daniel

    2014-01-01

    Spinal Muscular Atrophy (SMA) is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene. The second gene copy, SMN2, produces some, but not enough, functional SMN protein. SMN is essential to assemble small nuclear ribonucleoproteins (snRNPs) that form the spliceosome. However, it is not clear whether SMA is caused by defects in this function that could lead to splicing changes in all tissues, or by the impairment of an additional, less well characterized, but motoneuron-specific SMN function. We addressed the first possibility by exon junction microarray analysis of motoneurons (MNs) isolated by laser capture microdissection from a severe SMA mouse model. This revealed changes in multiple U2-dependent splicing events. Moreover, splicing appeared to be more strongly affected in MNs than in other cells. By testing mutiple genes in a model of progressive SMN depletion in NB2a neuroblastoma cells, we obtained evidence that U2-dependent splicing changes occur earlier than U12-dependent ones. As several of these changes affect genes coding for splicing regulators, this may acerbate the splicing response induced by low SMN levels and induce secondary waves of splicing alterations. PMID:25692239

  18. Defective control of pre–messenger RNA splicing in human disease

    PubMed Central

    Shkreta, Lulzim

    2016-01-01

    Examples of associations between human disease and defects in pre–messenger RNA splicing/alternative splicing are accumulating. Although many alterations are caused by mutations in splicing signals or regulatory sequence elements, recent studies have noted the disruptive impact of mutated generic spliceosome components and splicing regulatory proteins. This review highlights recent progress in our understanding of how the altered splicing function of RNA-binding proteins contributes to myelodysplastic syndromes, cancer, and neuropathologies. PMID:26728853

  19. Alternative 5' exons and differential splicing regulate expression of protein 4.1R isoforms with distinct N-termini.

    PubMed

    Parra, Marilyn K; Gee, Sherry L; Koury, Mark J; Mohandas, Narla; Conboy, John G

    2003-05-15

    Among the alternative pre-mRNA splicing events that characterize protein 4.1R gene expression, one involving exon 2' plays a critical role in regulating translation initiation and N-terminal protein structure. Exon 2' encompasses translation initiation site AUG1 and is located between alternative splice acceptor sites at the 5' end of exon 2; its inclusion or exclusion from mature 4.1R mRNA regulates expression of longer or shorter isoforms of 4.1R protein, respectively. The current study reports unexpected complexity in the 5' region of the 4.1R gene that directly affects alternative splicing of exon 2'. Identified far upstream of exon 2 in both mouse and human genomes were 3 mutually exclusive alternative 5' exons, designated 1A, 1B, and 1C; all 3 are associated with strong transcriptional promoters in the flanking genomic sequence. Importantly, exons 1A and 1B splice differentially with respect to exon 2', generating transcripts with different 5' ends and distinct N-terminal protein coding capacity. Exon 1A-type transcripts splice so as to exclude exon 2' and therefore utilize the downstream AUG2 for translation of 80-kDa 4.1R protein, whereas exon 1B transcripts include exon 2' and initiate at AUG1 to synthesize 135-kDa isoforms. RNA blot analyses revealed that 1A transcripts increase in abundance in late erythroblasts, consistent with the previously demonstrated up-regulation of 80-kDa 4.1R during terminal erythroid differentiation. Together, these results suggest that synthesis of structurally distinct 4.1R protein isoforms in various cell types is regulated by a novel mechanism requiring coordination between upstream transcription initiation events and downstream alternative splicing events. PMID:12522012

  20. Role of Bmznf-2, a Bombyx mori CCCH zinc finger gene, in masculinisation and differential splicing of Bmtra-2.

    PubMed

    Gopinath, Gajula; Arunkumar, Kallare P; Mita, Kazuei; Nagaraju, Javaregowda

    2016-08-01

    Deciphering the regulatory factors involved in Bombyx mori sex determination has been a puzzle, challenging researchers for nearly a century now. The pre-mRNA of B. mori doublesex (Bmdsx), a master regulator gene of sexual differentiation, is differentially spliced, producing Bmdsxm and Bmdsxf transcripts in males and females respectively. The putative proteins encoded by these differential transcripts orchestrate antagonistic functions, which lead to sexual differentiation. A recent study in B. mori illustrated the role of a W-derived fem piRNA in conferring femaleness. In females, the fem piRNA was shown to suppress the activity of a Z-linked CCCH type zinc finger (znf) gene, Masculiniser (masc), which indirectly promotes the Bmdsxm type of splicing. In this study, we report a novel autosomal (Chr 25) CCCH type znf motif encoding gene Bmznf-2 as one of the potential factors in the Bmdsx sex specific differential splicing, and we also provide insights into its role in the alternative splicing of Bmtra2 by using ovary derived BmN cells. Over-expression of Bmznf-2 induced Bmdsxm type of splicing (masculinisation) with a correspondingly reduced expression of Bmdsxf type isoform in BmN cells. Further, the site-directed mutational studies targeting the tandem CCCH znf motifs revealed their indispensability in the observed phenotype of masculinisation. Additionally, the dual luciferase assays in BmN cells using 5' UTR region of the Bmznf-2 strongly implied the existence of a translational repression over this gene. From these findings, we propose Bmznf-2 to be one of the potential factors of masculinisation similar to Masc. From the growing number of Bmdsx splicing regulators, we assume that the sex determination cascade of B. mori is quite intricate in nature; hence, it has to be further investigated for its comprehensive understanding. PMID:27260399

  1. Alternative 5' exons and differential splicing regulate expression of protein 4.1R isoforms with distinct n-termini

    SciTech Connect

    Parra, Marilyn K.; Gee, Sherry L.; Koury, Mark J.; Mohandas, Narla; Conboy, John G.

    2003-03-25

    Among the alternative pre-mRNA splicing events that characterize protein 4.1R gene expression, one involving exon 2' plays a critical role in regulating translation initiation and N-terminal protein structure. Exon 2' encompasses translation initiation site AUG1 and is located between alternative splice acceptor sites at the 5' end of exon 2; its inclusion or exclusion from mature 4.1R mRNA regulates expression of longer or shorter isoforms of 4.1R protein, respectively. The current study reports unexpected complexity in the 5' region of the 4.1R gene that directly affects alternative splicing of exon 2'. Three mutually exclusive alternative 5' exons, designated 1A, 1B, and 1C, were identified far upstream of exon 2 in both mouse and human genomes; all three are associated with strong transcriptional promoters in the flanking genomic sequence. Importantly, exons 1A and 1B splice differentially with respect to exon 2', generating transcripts with different 5' ends and distinct N-terminal protein coding capacity. Exon 1A-type transcripts splice so as to exclude exon 2' and therefore utilize the downstream AUG2 for translation of 80kD 4.1R protein, whereas exon 1B transcripts include exon 2' and initiate at AUG1 to synthesize 135kD isoforms. RNA blot analyses revealed that 1A transcripts increase in abundance in late erythroblasts, consistent with the previously demonstrated upregulation of 80kD 4.1R during terminal erythroid differentiation. Together these results suggest that synthesis of structurally distinct 4.1R protein isoforms in various cell types is regulated by a novel mechanism requiring coordination between upstream transcription initiation events and downstream alternative splicing events.

  2. Alternative splicing at C terminus of Ca(V)1.4 calcium channel modulates calcium-dependent inactivation, activation potential, and current density.

    PubMed

    Tan, Gregory Ming Yeong; Yu, Dejie; Wang, Juejin; Soong, Tuck Wah

    2012-01-01

    The Ca(V)1.4 voltage-gated calcium channel is predominantly expressed in the retina, and mutations to this channel have been associated with human congenital stationary night blindness type-2. The L-type Ca(V)1.4 channel displays distinct properties such as absence of calcium-dependent inactivation (CDI) and slow voltage-dependent inactivation (VDI) due to the presence of an autoinhibitory domain (inhibitor of CDI) in the distal C terminus. We hypothesized that native Ca(V)1.4 is subjected to extensive alternative splicing, much like the other voltage-gated calcium channels, and employed the transcript scanning method to identify alternatively spliced exons within the Ca(V)1.4 transcripts isolated from the human retina. In total, we identified 19 alternative splice variations, of which 16 variations have not been previously reported. Characterization of the C terminus alternatively spliced exons using whole-cell patch clamp electrophysiology revealed a splice variant that exhibits robust CDI. This splice variant arose from the splicing of a novel alternate exon (43*) that can be found in 13.6% of the full-length transcripts screened. Inclusion of exon 43* inserts a stop codon that truncates half the C terminus. The Ca(V)1.4 43* channel exhibited robust CDI, a larger current density, a hyperpolarized shift in activation potential by ∼10 mV, and a slower VDI. Through deletional experiments, we showed that the inhibitor of CDI was responsible for modulating channel activation and VDI, in addition to CDI. Calcium currents in the photoreceptors were observed to exhibit CDI and are more negatively activated as compared with currents elicited from heterologously expressed full-length Ca(V)1.4. Naturally occurring alternative splice variants may in part contribute to the properties of the native Ca(V)1.4 channels. PMID:22069316

  3. Staufen1 Regulates Multiple Alternative Splicing Events either Positively or Negatively in DM1 Indicating Its Role as a Disease Modifier

    PubMed Central

    Bondy-Chorney, Emma; Crawford Parks, Tara E.; Ravel-Chapuis, Aymeric; Klinck, Roscoe; Rocheleau, Lynda; Pelchat, Martin; Chabot, Benoit; Jasmin, Bernard J.; Côté, Jocelyn

    2016-01-01

    Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by an expansion of CUG repeats in the 3' UTR of the DMPK gene. The CUG repeats form aggregates of mutant mRNA, which cause misregulation and/or sequestration of RNA-binding proteins, causing aberrant alternative splicing in cells. Previously, we showed that the multi-functional RNA-binding protein Staufen1 (Stau1) was increased in skeletal muscle of DM1 mouse models and patients. We also showed that Stau1 rescues the alternative splicing profile of pre-mRNAs, e.g. the INSR and CLC1, known to be aberrantly spliced in DM1. In order to explore further the potential of Stau1 as a therapeutic target for DM1, we first investigated the mechanism by which Stau1 regulates pre-mRNA alternative splicing. We report here that Stau1 regulates the alternative splicing of exon 11 of the human INSR via binding to Alu elements located in intron 10. Additionally, using a high-throughput RT-PCR screen, we have identified numerous Stau1-regulated alternative splicing events in both WT and DM1 myoblasts. A number of these aberrant ASEs in DM1, including INSR exon 11, are rescued by overexpression of Stau1. However, we find other ASEs in DM1 cells, where overexpression of Stau1 shifts the splicing patterns away from WT conditions. Moreover, we uncovered that Stau1-regulated ASEs harbour Alu elements in intronic regions flanking the alternative exon more than non-Stau1 targets. Taken together, these data highlight the broad impact of Stau1 as a splicing regulator and suggest that Stau1 may act as a disease modifier in DM1. PMID:26824521

  4. Staufen1 Regulates Multiple Alternative Splicing Events either Positively or Negatively in DM1 Indicating Its Role as a Disease Modifier.

    PubMed

    Bondy-Chorney, Emma; Crawford Parks, Tara E; Ravel-Chapuis, Aymeric; Klinck, Roscoe; Rocheleau, Lynda; Pelchat, Martin; Chabot, Benoit; Jasmin, Bernard J; Côté, Jocelyn

    2016-01-01

    Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder caused by an expansion of CUG repeats in the 3' UTR of the DMPK gene. The CUG repeats form aggregates of mutant mRNA, which cause misregulation and/or sequestration of RNA-binding proteins, causing aberrant alternative splicing in cells. Previously, we showed that the multi-functional RNA-binding protein Staufen1 (Stau1) was increased in skeletal muscle of DM1 mouse models and patients. We also showed that Stau1 rescues the alternative splicing profile of pre-mRNAs, e.g. the INSR and CLC1, known to be aberrantly spliced in DM1. In order to explore further the potential of Stau1 as a therapeutic target for DM1, we first investigated the mechanism by which Stau1 regulates pre-mRNA alternative splicing. We report here that Stau1 regulates the alternative splicing of exon 11 of the human INSR via binding to Alu elements located in intron 10. Additionally, using a high-throughput RT-PCR screen, we have identified numerous Stau1-regulated alternative splicing events in both WT and DM1 myoblasts. A number of these aberrant ASEs in DM1, including INSR exon 11, are rescued by overexpression of Stau1. However, we find other ASEs in DM1 cells, where overexpression of Stau1 shifts the splicing patterns away from WT conditions. Moreover, we uncovered that Stau1-regulated ASEs harbour Alu elements in intronic regions flanking the alternative exon more than non-Stau1 targets. Taken together, these data highlight the broad impact of Stau1 as a splicing regulator and suggest that Stau1 may act as a disease modifier in DM1. PMID:26824521

  5. Group II Intron-Mediated Trans-Splicing in the Gene-Rich Mitochondrial Genome of an Enigmatic Eukaryote, Diphylleia rotans

    PubMed Central

    Kamikawa, Ryoma; Shiratori, Takashi; Ishida, Ken-Ichiro; Miyashita, Hideaki; Roger, Andrew J.

    2016-01-01

    Although mitochondria have evolved from a single endosymbiotic event, present day mitochondria of diverse eukaryotes display a great range of genome structures, content and features. Group I and group II introns are two features that are distributed broadly but patchily in mitochondrial genomes across branches of the tree of eukaryotes. While group I intron-mediated trans-splicing has been reported from some lineages distantly related to each other, findings of group II intron-mediated trans-splicing has been restricted to members of the Chloroplastida. In this study, we found the mitochondrial genome of the unicellular eukaryote Diphylleia rotans possesses currently the second largest gene repertoire. On the basis of a probable phylogenetic position of Diphylleia, which is located within Amorphea, current mosaic gene distribution in Amorphea must invoke parallel gene losses from mitochondrial genomes during evolution. Most notably, although the cytochrome c oxidase subunit (cox) 1 gene was split into four pieces which located at a distance to each other, we confirmed that a single mature mRNA that covered the entire coding region could be generated by group II intron-mediated trans-splicing. This is the first example of group II intron-mediated trans-splicing outside Chloroplastida. Similar trans-splicing mechanisms likely work for bipartitely split cox2 and nad3 genes to generate single mature mRNAs. We finally discuss origin and evolution of this type of trans-splicing in D. rotans as well as in eukaryotes. PMID:26833505

  6. Splicing mutations in glycogen-storage disease type II: evaluation of the full spectrum of mutations and their relation to patients' phenotypes

    PubMed Central

    Zampieri, Stefania; Buratti, Emanuele; Dominissini, Silvia; Montalvo, Anna Lisa; Pittis, Maria Gabriela; Bembi, Bruno; Dardis, Andrea

    2011-01-01

    Glycogen-storage disease type II is an autosomal recessive-inherited disorder due to the deficiency of acid α-glucosidase. A large number of mutations in the acid α-glucosidase gene have been described to date. Among them, ∼15% are variations that may affect mRNA splicing process. In this study, we have for the first time comprehensively reviewed the available information on splicing mutations of the acid α-glucosidase gene and we have evaluated their possible impact on the splicing process using different in silico approaches. Out of the 39 different GAA-sequence variations described, an in silico analysis using seven different programs showed that 97% of them are predicted to have an impact on the splicing process. Moreover, this analysis showed a quite good correlation between the impact of the mutation on the splicing process and the clinical phenotype. In addition, we have performed the functional characterization of three novel sequence variants found in Italian patients and still uncharacterized. Using a minigene system, we have confirmed their pathogenic nature. In conclusion, this study has shown that in silico analysis represents a useful tool to select mutations that affect the splicing process of the acid α-glucosidase gene and provides an updated picture of all this kind of mutations reported till now. PMID:21179066

  7. Group II Intron-Mediated Trans-Splicing in the Gene-Rich Mitochondrial Genome of an Enigmatic Eukaryote, Diphylleia rotans.

    PubMed

    Kamikawa, Ryoma; Shiratori, Takashi; Ishida, Ken-Ichiro; Miyashita, Hideaki; Roger, Andrew J

    2016-02-01

    Although mitochondria have evolved from a single endosymbiotic event, present day mitochondria of diverse eukaryotes display a great range of genome structures, content and features. Group I and group II introns are two features that are distributed broadly but patchily in mitochondrial genomes across branches of the tree of eukaryotes. While group I intron-mediated trans-splicing has been reported from some lineages distantly related to each other, findings of group II intron-mediated trans-splicing has been restricted to members of the Chloroplastida. In this study, we found the mitochondrial genome of the unicellular eukaryote Diphylleia rotans possesses currently the second largest gene repertoire. On the basis of a probable phylogenetic position of Diphylleia, which is located within Amorphea, current mosaic gene distribution in Amorphea must invoke parallel gene losses from mitochondrial genomes during evolution. Most notably, although the cytochrome c oxidase subunit (cox) 1 gene was split into four pieces which located at a distance to each other, we confirmed that a single mature mRNA that covered the entire coding region could be generated by group II intron-mediated trans-splicing. This is the first example of group II intron-mediated trans-splicing outside Chloroplastida. Similar trans-splicing mechanisms likely work for bipartitely split cox2 and nad3 genes to generate single mature mRNAs. We finally discuss origin and evolution of this type of trans-splicing in D. rotans as well as in eukaryotes. PMID:26833505

  8. The Exon Junction Complex Controls the Efficient and Faithful Splicing of a Subset of Transcripts Involved in Mitotic Cell-Cycle Progression

    PubMed Central

    Fukumura, Kazuhiro; Wakabayashi, Shunichi; Kataoka, Naoyuki; Sakamoto, Hiroshi; Suzuki, Yutaka; Nakai, Kenta; Mayeda, Akila; Inoue, Kunio

    2016-01-01

    The exon junction complex (EJC) that is deposited onto spliced mRNAs upstream of exon–exon junctions plays important roles in multiple post-splicing gene expression events, such as mRNA export, surveillance, localization, and translation. However, a direct role for the human EJC in pre-mRNA splicing has not been fully understood. Using HeLa cells, we depleted one of the EJC core components, Y14, and the resulting transcriptome was analyzed by deep sequencing (RNA-Seq) and confirmed by RT–PCR. We found that Y14 is required for efficient and faithful splicing of a group of transcripts that is enriched in short intron-containing genes involved in mitotic cell-cycle progression. Tethering of EJC core components (Y14, eIF4AIII or MAGOH) to a model reporter pre-mRNA harboring a short intron showed that these core components are prerequisites for the splicing activation. Taken together, we conclude that the EJC core assembled on pre-mRNA is critical for efficient and faithful splicing of a specific subset of short introns in mitotic cell cycle-related genes. PMID:27490541

  9. CDC2L5, a Cdk-like kinase with RS domain, interacts with the ASF/SF2-associated protein p32 and affects splicing in vivo.

    PubMed

    Even, Yasmine; Durieux, Sandrine; Escande, Marie-Line; Lozano, Jean Claude; Peaucellier, Gérard; Weil, Dominique; Genevière, Anne-Marie

    2006-10-15

    The human CDC2L5 gene encodes a protein of unknown physiological function. This protein is closely related to the cyclin-dependent kinase (Cdks) family and contains an arginine/serine-rich (RS) domain. The Cdks were first identified as crucial regulators of cell-cycle progression, more recently they were found to be involved in transcription and mRNA processing. RS domains are mainly present in proteins regulating pre-mRNA splicing, suggesting CDC2L5 having a possible role in this process. In this study, we demonstrate that CDC2L5 is located in the nucleoplasm, at a higher concentration in speckles, the storage sites for splicing factors. Furthermore, this localization is dependent on the presence of the N-terminal sequence including the RS domain. Then, we report that CDC2L5 directly interacts with the ASF/SF2-associated protein p32, a protein involved in splicing regulation. Overexpression of CDC2L5 constructs disturbs constitutive splicing and switches alternative splice site selection in vivo. These results argue in favor of a functional role of the CDC2L5 kinase in splicing regulation. PMID:16721827

  10. The Exon Junction Complex Controls the Efficient and Faithful Splicing of a Subset of Transcripts Involved in Mitotic Cell-Cycle Progression.

    PubMed

    Fukumura, Kazuhiro; Wakabayashi, Shunichi; Kataoka, Naoyuki; Sakamoto, Hiroshi; Suzuki, Yutaka; Nakai, Kenta; Mayeda, Akila; Inoue, Kunio

    2016-01-01

    The exon junction complex (EJC) that is deposited onto spliced mRNAs upstream of exon-exon junctions plays important roles in multiple post-splicing gene expression events, such as mRNA export, surveillance, localization, and translation. However, a direct role for the human EJC in pre-mRNA splicing has not been fully understood. Using HeLa cells, we depleted one of the EJC core components, Y14, and the resulting transcriptome was analyzed by deep sequencing (RNA-Seq) and confirmed by RT-PCR. We found that Y14 is required for efficient and faithful splicing of a group of transcripts that is enriched in short intron-containing genes involved in mitotic cell-cycle progression. Tethering of EJC core components (Y14, eIF4AIII or MAGOH) to a model reporter pre-mRNA harboring a short intron showed that these core components are prerequisites for the splicing activation. Taken together, we conclude that the EJC core assembled on pre-mRNA is critical for efficient and faithful splicing of a specific subset of short introns in mitotic cell cycle-related genes. PMID:27490541

  11. Involvement of the nuclear cap-binding protein complex in alternative splicing in Arabidopsis thaliana

    PubMed Central

    Raczynska, Katarzyna Dorota; Simpson, Craig G.; Ciesiolka, Adam; Szewc, Lukasz; Lewandowska, Dominika; McNicol, Jim; Szweykowska-Kulinska, Zofia; Brown, John W. S.; Jarmolowski, Artur

    2010-01-01

    The nuclear cap-binding protein complex (CBC) participates in 5′ splice site selection of introns that are proximal to the mRNA cap. However, it is not known whether CBC has a role in alternative splicing. Using an RT–PCR alternative splicing panel, we analysed 435 alternative splicing events in Arabidopsis thaliana genes, encoding mainly transcription factors, splicing factors and stress-related proteins. Splicing profiles were determined in wild type plants, the cbp20 and cbp80(abh1) single mutants and the cbp20/80 double mutant. The alternative splicing events included alternative 5′ and 3′ splice site selection, exon skipping and intron retention. Significant changes in the ratios of alternative splicing isoforms were found in 101 genes. Of these, 41% were common to all three CBC mutants and 15% were observed only in the double mutant. The cbp80(abh1) and cbp20/80 mutants had many more changes in alternative splicing in common than did cbp20 and cbp20/80 suggesting that CBP80 plays a more significant role in alternative splicing than CBP20, probably being a platform for interactions with other splicing factors. Cap-binding proteins and the CBC are therefore directly involved in alternative splicing of some Arabidopsis genes and in most cases influenced alternative splicing of the first intron, particularly at the 5′ splice site. PMID:19864257

  12. Rapid response behavior, at room temperature, of a nanofiber-structured TiO2 sensor to selected simulant chemical-warfare agents.

    PubMed

    Ma, Xingfa; Zhu, Tao; Xu, Huizhong; Li, Guang; Zheng, Junbao; Liu, Aiyun; Zhang, Jianqin; Du, Huatai

    2008-02-01

    A chemical prototype sensor was constructed based on nanofiber-structured TiO2 and highly sensitive quartz resonators. The gas-sensing behavior of this new sensor to selected simulant warfare agents was investigated at room temperature. Results showed rapid response and good reversibility of this sensor when used with high-purity nitrogen. This provides a simple approach to preparation of materials needed as chemical sensors for selected organic volatiles or warfare agents. PMID:18094961

  13. Splicing Regulators and Their Roles in Cancer Biology and Therapy

    PubMed Central

    da Silva, Maria Roméria; Moreira, Gabriela Alves; Gonçalves da Silva, Ronni Anderson; de Almeida Alves Barbosa, Éverton; Pais Siqueira, Raoni; Teixera, Róbson Ricardo; Almeida, Márcia Rogéria; Silva Júnior, Abelardo; Fietto, Juliana Lopes Rangel; Bressan, Gustavo Costa

    2015-01-01

    Alternative splicing allows cells to expand the encoding potential of their genomes. In this elegant mechanism, a single gene can yield protein isoforms with even antagonistic functions depending on the cellular physiological context. Alterations in splicing regulatory factors activity in cancer cells, however, can generate an abnormal protein expression pattern that promotes growth, survival, and other processes, which are relevant to tumor biology. In this review, we discuss dysregulated alternative splicing events and regulatory factors that impact pathways related to cancer. The SR proteins and their regulatory kinases SRPKs and CLKs have been frequently found altered in tumors and are examined in more detail. Finally, perspectives that support splicing machinery as target for the development of novel anticancer therapies are discussed. PMID:26273588

  14. Designing oligo libraries taking alternative splicing into account

    NASA Astrophysics Data System (ADS)

    Shoshan, Avi; Grebinskiy, Vladimir; Magen, Avner; Scolnicov, Ariel; Fink, Eyal; Lehavi, David; Wasserman, Alon

    2001-06-01

    We have designed sequences for DNA microarrays and oligo libraries, taking alternative splicing into account. Alternative splicing is a common phenomenon, occurring in more than 25% of the human genes. In many cases, different splice variants have different functions, are expressed in different tissues or may indicate different stages of disease. When designing sequences for DNA microarrays or oligo libraries, it is very important to take into account the sequence information of all the mRNA transcripts. Therefore, when a gene has more than one transcript (as a result of alternative splicing, alternative promoter sites or alternative poly-adenylation sites), it is very important to take all of them into account in the design. We have used the LEADS transcriptome prediction system to cluster and assemble the human sequences in GenBank and design optimal oligonucleotides for all the human genes with a known mRNA sequence based on the LEADS predictions.

  15. 3. Detail of beam splice and column capital on the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Detail of beam splice and column capital on the second floor of the Cloth Room Building/Old Bleach House, Monadnock Mills. Beam and column edges are chamfered. - Monadnock Mills, 15 Water Street, Claremont, Sullivan County, NH

  16. Chord Splicing & Joining Detail; Chord & CrossBracing Joint Details; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Chord Splicing & Joining Detail; Chord & Cross-Bracing Joint Details; Cross Bracing Center Joint Detail; Chord & Diagonal Joint Detail - Vermont Covered Bridge, Highland Park, spanning Kokomo Creek at West end of Deffenbaugh Street (moved to), Kokomo, Howard County, IN

  17. Splicing: is there an alternative contribution to Parkinson's disease?

    PubMed

    La Cognata, Valentina; D'Agata, Velia; Cavalcanti, Francesca; Cavallaro, Sebastiano

    2015-10-01

    Alternative splicing is a crucial mechanism of gene expression regulation that enormously increases the coding potential of our genome and represents an intermediate step between messenger RNA (mRNA) transcription and protein posttranslational modifications. Alternative splicing occupies a central position in the development and functions of the nervous system. Therefore, its deregulation frequently leads to several neurological human disorders. In the present review, we provide an updated overview on the impact of alternative splicing in Parkinson's disease (PD), the second most common neurodegenerative disorder worldwide. We will describe the alternative splicing of major PD-linked genes by collecting the current evidences about this intricate and not carefully explored aspect. Assessing the role of this mechanism on PD pathobiology may represent a central step toward an improved understanding of this complex disease. PMID:25980689

  18. Network of evolutionary processors with splicing rules and permitting context.

    PubMed

    Choudhary, Ashish; Krithivasan, Kamala

    2007-02-01

    In this paper we consider networks of evolutionary processors with splicing rules and permitting context (NEPPS) as language generating and computational devices. Such a network consists of several processors placed on the nodes of a virtual graph and are able to perform splicing (which is a biologically motivated operation) on the words present in that node, according to the splicing rules present there. Before applying the splicing operation on words, we check for the presence of certain symbols (permitting context) in the strings on which the rule is applied. Each node is associated with an input and output filter. When the filters are based on random context conditions, one gets the computational power of Turing machines with networks of size two. We also show how these networks can be used to solve NP-complete problems in linear time. PMID:17045388

  19. Determinants of Plant U12-Dependent Intron Splicing Efficiency

    PubMed Central

    Lewandowska, Dominika; Simpson, Craig G.; Clark, Gillian P.; Jennings, Nikki S.; Barciszewska-Pacak, Maria; Lin, Chiao-Feng; Makalowski, Wojciech; Brown, John W.S.; Jarmolowski, Artur

    2004-01-01

    Factors affecting splicing of plant U12-dependent introns have been examined by extensive mutational analyses in an in vivo tobacco (Nicotiana tabacum) protoplast system using introns from three different Arabidopsis thaliana genes: CBP20, GSH2, and LD. The results provide evidence that splicing efficiency of plant U12 introns depends on a combination of factors, including UA content, exon bridging interactions between the U12 intron and flanking U2-dependent introns, and exon splicing enhancer sequences (ESEs). Unexpectedly, all three plant U12 introns required an adenosine at the upstream purine position in the branchpoint consensus UCCUURAUY. The exon upstream of the LD U12 intron is a major determinant of its higher level of splicing efficiency and potentially contains two ESE regions. These results suggest that in plants, U12 introns represent a level at which expression of their host genes can be regulated. PMID:15100401

  20. Probabilistic flood forecasting for Rapid Response Catchments using a countrywide distributed hydrological model: experience from the UK

    NASA Astrophysics Data System (ADS)

    Cole, Steven J.; Moore, Robert J.; Robson, Alice J.; Mattingley, Paul S.

    2014-05-01

    Across Britain, floods in rapidly responding catchments are a major concern and regularly cause significant damage (e.g. Boscastle 2004, Morpeth 2008, Cornwall 2010 and Comrie 2012). Typically these catchments have a small area and are characterised by steep slopes and/or significant suburban/urban land-cover. The meteorological drivers can be of convective origin or frontal with locally intense features (e.g. embedded convection or orographic enhancement); saturated catchments can amplify the flood response. Both rainfall and flood forecasting for Rapid Response Catchments (RRCs)are very challenging due to the often small-scale nature of the intense rainfall which is of most concern, the small catchment areas, and the short catchment response times. Over the last 3 to 4 years, new countrywide Flood Forecasting Systems based on the Grid-to-Grid (G2G) distributed hydrological (rainfall-runoff and routing) model have been implemented across Britain for use by the Flood Forecasting Centre and Scottish Flood Forecasting Service. This has achieved a step-change in operational capability with forecasts of flooding several days ahead "everywhere" on a 1 km grid now possible. The modelling and forecasting approach underpins countrywide Flood Guidance Statements out to 5 days which are used by emergency response organisations for planning and preparedness. The initial focus of these systems has been to provide a countrywide overview of flood risk. However, recent research has explored the potential of the G2G approach to support more frequent and detailed alerts relevant to flood warning in RRCs. Integral to this activity is the use of emerging high-resolution (~1.5km) rainfall forecast products, in deterministic and ensemble form. High spatial resolutions are required to capture some of the small-scale processes and intense rainfall features such as orographic enhancement and convective storm evolution. Even though a deterministic high-resolution numerical weather

  1. The Rapid Response Radiation Survey (R3S) Mission Using the HiSat Conformal Satellite Architecture

    NASA Technical Reports Server (NTRS)

    Miller, Nathanael A.; Norman, Ryan B.; Soto, Hector L.; Stewart, Victor A.; Jones, Mark L.; Kowalski, Matthew C.; Ben Shabat, Adam; Gough, Kerry M.; Stavely, Rebecca L.; Shim, Alex C.; Jaeger, Gene T. K.

    2015-01-01

    The Rapid Response Radiation Survey (R3S) experiment, designed as a quick turnaround mission to make radiation measurements in Low Earth Orbit (LEO), will fly as a hosted payload in partnership with NovaWurks using their Hyper-integrated Satlet (HISat) architecture. The need for the mission arises as the Nowcast of Atmospheric Ionization Radiation for Aviation Safety (NAIRAS) model moves from a research effort into an operational radiation assessment tool. Currently, airline professionals are the second largest demographic of radiation workers and to date their radiation exposure is undocumented in the USA. The NAIRAS model seeks to fill this information gap. The data collected by R3S, in addition to the complementary data from a NASA Langley Research Center (LaRC) atmospheric balloon mission entitled Radiation Dosimetry Experiment (RaD-X), will validate exposure prediction capabilities of NAIRAS. The R3S mission collects total dose and radiation spectrum measurements using a Teledyne µDosimeter and a Liulin-6SA2 LED spectrometer. These two radiation sensors provide a cross correlated radiometric measurement in combination with the Honeywell HMR2300 Smart Digital Magnetometer. The magnetometer assesses the Earth's magnetic field in the LEO environment and allows radiation dose to be mapped as a function of the Earth's magnetic shielding. R3S is also unique in that the radiation sensors will be exposed on the outer surface of the spacecraft, possibly making this the first measurements of the LEO radiation environment with bare sensors. Viability of R3S as an extremely fast turnaround mission is due, in part, to the nature of the robust, well-defined interfaces of the conformal satellite HiSat Architecture. The HiSat architecture, which was developed with the support of the Defense Advanced Research Projects Agency's (DARPA's) Phoenix Program, enabled the R3S system to advance from the first concept to delivery of preliminary design review (PDR) level documents in

  2. Optimization of Antitumor Modulators of Pre-mRNA Splicing

    PubMed Central

    Lagisetti, Chandraiah; Palacios, Gustavo; Goronga, Tinopiwa; Freeman, Burgess; Caufield, William; Webb, Thomas R.

    2014-01-01

    The spliceosome regulates pre-mRNA splicing, which is a critical process in normal mammalian cells. Recently recurrent mutations in numerous spliceosomal proteins have been associated with a number of cancers. Previously natural product antitumor agents have been shown to interact with one of the proteins that is subject to recurrent mutations (SF3B1). We report the optimization of a class of tumor-selective spliceosome modulators, which demonstrate significant in vivo antitumor activity. This optimization culminated in the discovery of sudemycin D6, which shows potent cytotoxic activity in the melanoma line SK-MEL-2 (IC50= 39 nM) and other tumor lines, including: JeKo-1 (IC50= 26 nM), HeLa (IC50= 50 nM), and SK-N-AS (IC50= 81 nM). We also report improved processes for the synthesis of these compounds. Our work supports the idea that sudemycin D6 is worthy of further investigation as a novel preclinical anticancer agent with application in the treatment of numerous human cancers. PMID:24325474

  3. Design and Implementation of a Low-Cost Uav-Based Multi-Sensor Payload for Rapid-Response Mapping Applications

    NASA Astrophysics Data System (ADS)

    Sakr, M.; Lari, Z.; El-Sheimy, N.

    2016-06-01

    The main objective of this paper is to investigate the potential of using Unmanned Aerial Vehicles (UAVs) as a platform to collect geospatial data for rapid response applications, especially in hard-to-access and hazardous areas. The UAVs are low-cost mapping vehicles, and they are easy to handle and deploy in-field. These characteristics make UAVs ideal candidates for rapid-response and disaster mitigation scenarios. The majority of the available UAV systems are not capable of real-time/near real-time data processing. This paper introduces a low-cost UAV-based multi-sensor mapping payload which supports real-time processing and can be effectively used in rapid-response applications. The paper introduces the main components of the system, and provides an overview of the proposed payload architecture. Then, it introduces the implementation details of the major building blocks of the system. Finally, the paper presents our conclusions and the future work, in order to achieve real-time/near real-time data processing and product delivery capabilities.

  4. Tissue-specific alternative splicing of TCF7L2.

    PubMed

    Prokunina-Olsson, Ludmila; Welch, Cullan; Hansson, Ola; Adhikari, Neeta; Scott, Laura J; Usher, Nicolle; Tong, Maurine; Sprau, Andrew; Swift, Amy; Bonnycastle, Lori L; Erdos, Michael R; He, Zhi; Saxena, Richa; Harmon, Brennan; Kotova, Olga; Hoffman, Eric P; Altshuler, David; Groop, Leif; Boehnke, Michael; Collins, Francis S; Hall, Jennifer L

    2009-10-15

    Common variants in the transcription factor 7-like 2 (TCF7L2) gene have been identified as the strongest genetic risk factors for type 2 diabetes (T2D). However, the mechanisms by which these non-coding variants increase risk for T2D are not well-established. We used 13 expression assays to survey mRNA expression of multiple TCF7L2 splicing forms in up to 380 samples from eight types of human tissue (pancreas, pancreatic islets, colon, liver, monocytes, skeletal muscle, subcutaneous adipose tissue and lymphoblastoid cell lines) and observed a tissue-specific pattern of alternative splicing. We tested whether the expression of TCF7L2 splicing forms was associated with single nucleotide polymorphisms (SNPs), rs7903146 and rs12255372, located within introns 3 and 4 of the gene and most strongly associated with T2D. Expression of two splicing forms was lower in pancreatic islets with increasing counts of T2D-associated alleles of the SNPs: a ubiquitous splicing form (P = 0.018 for rs7903146 and P = 0.020 for rs12255372) and a splicing form found in pancreatic islets, pancreas and colon but not in other tissues tested here (P = 0.009 for rs12255372 and P = 0.053 for rs7903146). Expression of this form in glucose-stimulated pancreatic islets correlated with expression of proinsulin (r(2) = 0.84-0.90, P < 0.00063). In summary, we identified a tissue-specific pattern of alternative splicing of TCF7L2. After adjustment for multiple tests, no association between expression of TCF7L2 in eight types of human tissue samples and T2D-associated genetic variants remained significant. Alternative splicing of TCF7L2 in pancreatic islets warrants future studies. GenBank Accession Numbers: FJ010164-FJ010174. PMID:19602480

  5. The landscape of alternative splicing in cervical squamous cell carcinoma

    PubMed Central

    Guo, Peng; Wang, Dan; Wu, Jun; Yang, Junjun; Ren, Tong; Zhu, Baoli; Xiang, Yang

    2015-01-01

    Background Alternative splicing (AS) is a key regulatory mechanism in protein synthesis and proteome diversity. In this study, we identified alternative splicing events in four pairs of cervical squamous cell carcinoma (CSCC) and adjacent nontumor tissues using RNA sequencing. Methods The transcripts of the four paired samples were thoroughly analyzed by RNA sequencing. SpliceMap software was used to detect the splicing junctions. Kyoto Encyclopedia of Genes and Genomes pathway analysis was conducted to detect the alternative spliced genes-related signal pathways. The alternative spliced genes were validated by reverse transcription-polymerase chain reaction (RT-PCR). Results There were 35 common alternative spliced genes in the four CSCC samples; they were novel and CSCC specific. Sixteen pathways were significantly enriched (P<0.05). One novel 5′AS site in the KLHDC7B gene, encoding kelch domain-containing 7B, and an exon-skipping site in the SYCP2 gene, encoding synaptonemal complex 2, were validated by RT-PCR. The KLHDC7B gene with 5′AS was found in 67.5% (27/40) of CSCC samples and was significantly related with cellular differentiation and tumor size. The exon-skipping site of the SYCP2 gene was found in 35.0% (14/40) of CSCC samples and was significantly related with depth of cervical invasion. Conclusion The KLHDC7B and the SYCP2 genes with alternative spliced events might be involved in the development and progression of CSCC and could be used as biomarkers in the diagnosis and prognosis of CSCC. PMID:25565867

  6. Intronic motif pairs cooperate across exons to promote pre-mRNA splicing

    PubMed Central

    2010-01-01

    Background A very early step in splice site recognition is exon definition, a process that is as yet poorly understood. Communication between the two ends of an exon is thought to be required for this step. We report genome-wide evidence for exons being defined through the combinatorial activity of motifs located in flanking intronic regions. Results Strongly co-occurring motifs were found to specifically reside in four intronic regions surrounding a large number of human exons. These paired motifs occur around constitutive and alternative exons but not pseudo exons. Most co-occurring motifs are limited to intronic regions within 100 nucleotides of the exon. They are preferentially associated with weaker exons. Their pairing is conserved in evolution and they exhibit a lower frequency of single nucleotide polymorphism when paired. Paired motifs display specificity with respect to distance from the exon borders and in constitutive versus alternative splicing. Many resemble binding sites for heterogeneous nuclear ribonucleoproteins. Specific pairs are associated with tissue-specific genes, the higher expression of which coincides with that of the pertinent RNA binding proteins. Tested pairs acted synergistically to enhance exon inclusion, and this enhancement was found to be exon-specific. Conclusions The exon-flanking sequence pairs identified here by genomic analysis promote exon inclusion and may play a role in the exon definition step in pre-mRNA splicing. We propose a model in which multiple concerted interactions are required between exonic sequences and flanking intronic sequences to effect exon definition. PMID:20704715

  7. Tardbpl splicing rescues motor neuron and axonal development in a mutant tardbp zebrafish

    PubMed Central

    Hewamadduma, Channa A.A.; Grierson, Andrew J.; Ma, Taylur P.; Pan, Luyuan; Moens, Cecilia B.; Ingham, Philip W.; Ramesh, Tennore; Shaw, Pamela J.

    2013-01-01

    Mutations in the transactive response DNA binding protein-43 (TARDBP/TDP-43) gene, which regulates transcription and splicing, causes a familial form of amyotrophic lateral sclerosis (ALS). Here, we characterize and report the first tardbp mutation in zebrafish, which introduces a premature stop codon (Y220X), eliminating expression of the Tardbp protein. Another TARDBP ortholog, tardbpl, in zebrafish is shown to encode a Tardbp-like protein which is truncated compared with Tardbp itself and lacks part of the C-terminal glycine-rich domain (GRD). Here, we show that tardbp mutation leads to the generation of a novel tardbpl splice form (tardbpl-FL) capable of making a full-length Tardbp protein (Tardbpl-FL), which compensates for the loss of Tardbp. This finding provides a novel in vivo model to study TDP-43-mediated splicing regulation. Additionally, we show that elimination of both zebrafish TARDBP orthologs results in a severe motor phenotype with shortened motor axons, locomotion defects and death at around 10 days post fertilization. The Tardbp/Tardbpl knockout model generated in this study provides an excellent in vivo system to study the role of the functional loss of Tardbp and its involvement in ALS pathogenesis. PMID:23427147

  8. The CD44s splice isoform is a central mediator for invadopodia activity.

    PubMed

    Zhao, Pu; Xu, Yilin; Wei, Yong; Qiu, Qiong; Chew, Teng-Leong; Kang, Yibin; Cheng, Chonghui

    2016-04-01

    The ability for tumor cells to spread and metastasize to distant organs requires proteolytic degradation of extracellular matrix (ECM). This activity is mediated by invadopodia, actin-rich membrane protrusions that are enriched for proteases. However, the mechanisms underlying invadopodia activity are not fully understood. Here, we report that a specific CD44 splice isoform, CD44s, is an integral component in invadopodia. We show that CD44s, but not another splice isoform CD44v, is localized in invadopodia. Small hairpin (sh)RNA-mediated depletion of CD44s abolishes invadopodia activity, prevents matrix degradation and decreases tumor cell invasiveness. Our results suggest that CD44s promotes cortactin phosphorylation and recruits MT1-MMP (also known as MMP14) to sites of matrix degradation, which are important activities for invadopodia function. Importantly, we show that depletion of CD44s inhibits breast cancer cell metastasis to the lung in animals. These findings suggest a crucial mechanism underlying the role of the CD44s splice isoform in breast cancer metastasis. PMID:26869223

  9. Tuning of alternative splicing--switch from proto-oncogene to tumor suppressor.

    PubMed

    Shchelkunova, Aleksandra; Ermolinsky, Boris; Boyle, Meghan; Mendez, Ivan; Lehker, Michael; Martirosyan, Karen S; Kazansky, Alexander V

    2013-01-01

    STAT5B, a specific member of the STAT family, is intimately associated with prostate tumor progression. While the full form of STAT5B is thought to promote tumor progression, a naturally occurring truncated isoform acts as a tumor suppressor. We previously demonstrated that truncated STAT5 is generated by insertion of an alternatively spliced exon and results in the introduction of an early termination codon. Present approaches targeting STAT proteins based on inhibition of functional domains of STAT's, such as DNA-binding, cooperative binding (protein-protein interaction), dimerization and phosphorylation will halt the action of the entire gene, both the proto-oncogenic and tumor suppressor functions of Stat5B. In this report we develop a new approach aimed at inhibiting the expression of full-length STAT5B (a proto-oncogene) while simultaneously enhancing the expression of STAT5∆B (a tumor suppressor). We have demonstrated the feasibility of using steric-blocking splice-switching oligonucleotides (SSOs) with a complimentary sequence to the targeted exon-intron boundary to enhance alternative intron/exon retention (up to 10%). The functional effect of the intron/exon proportional tuning was validated by cell proliferation and clonogenic assays. The new scheme applies specific steric-blocking splice-switching oligonucleotides and opens an opportunity for anti-tumor treatment as well as for the alteration of functional abilities of other STAT proteins. PMID:23289016

  10. Tuning of Alternative Splicing - Switch From Proto-Oncogene to Tumor Suppressor

    PubMed Central

    Shchelkunova, Aleksandra; Ermolinsky, Boris; Boyle, Meghan; Mendez, Ivan; Lehker, Michael; Martirosyan, Karen S.; Kazansky, Alexander V.

    2013-01-01

    STAT5B, a specific member of the STAT family, is intimately associated with prostate tumor progression. While the full form of STAT5B is thought to promote tumor progression, a naturally occurring truncated isoform acts as a tumor suppressor. We previously demonstrated that truncated STAT5 is generated by insertion of an alternatively spliced exon and results in the introduction of an early termination codon. Present approaches targeting STAT proteins based on inhibition of functional domains of STAT's, such as DNA-binding, cooperative binding (protein-protein interaction), dimerization and phosphorylation will halt the action of the entire gene, both the proto-oncogenic and tumor suppressor functions of Stat5B. In this report we develop a new approach aimed at inhibiting the expression of full-length STAT5B (a proto-oncogene) while simultaneously enhancing the expression of STAT5∆B (a tumor suppressor). We have demonstrated the feasibility of using steric-blocking splice-switching oligonucleotides (SSOs) with a complimentary sequence to the targeted exon-intron boundary to enhance alternative intron/exon retention (up to 10%). The functional effect of the intron/exon proportional tuning was validated by cell proliferation and clonogenic assays. The new scheme applies specific steric-blocking splice-switching oligonucleotides and opens an opportunity for anti-tumor treatment as well as for the alteration of functional abilities of other STAT proteins. PMID:23289016

  11. Splicing mutation in MVK is a cause of porokeratosis of Mibelli.

    PubMed

    Zeng, Kang; Zhang, Qi-Guo; Li, Li; Duan, Yan; Liang, Yan-Hua

    2014-10-01

    Porokeratosis is a chronic skin disorder characterized by the presence of patches with elevated, thick, keratotic borders, with histological cornoid lamella. Classic porokeratosis of Mibelli (PM) frequently appears in childhood with a risk of malignant transformation. Disseminated superficial actinic porokeratosis (DSAP) is the most common subtype of porokeratosis with genetic heterogeneities, and mevalonate kinase gene (MVK) mutations have been identified in minor portion of DSAP families of Chinese origin. To confirm the previous findings about MVK mutations in DSAP patients and test MVK's role(s) in PM development, we performed genomic sequence analysis for 3 DSAP families and 1 PM family of Chinese origin. We identified a splicing mutation of MVK gene, designated as c.1039+1G>A, in the PM family. No MVK mutations were found in three DSAP families. Sequence analysis for complementary DNA templates from PM lesions of all patients revealed a mutation at splice donor site of intron 10, designated as c.1039+1G>A, leading to the splicing defect and termination codon 52 amino acids after exon 10. Although no MVK mutations in DSAP patients were found as reported previously, we identified MVK simultaneously responsible for PM development. PMID:24781643

  12. Identification and characterization of a human smad3 splicing variant lacking part of the linker region.

    PubMed

    Kjellman, Christian; Honeth, Gabriella; Järnum, Sofia; Lindvall, Magnus; Darabi, Anna; Nilsson, Ingar; Edvardsen, Klaus; Salford, Leif G; Widegren, Bengt

    2004-03-01

    Smad3 is one of the signal transducers that are activated in response to transforming growth factor-beta (TGF-beta). We have identified and characterized a splicing variant of smad3. The splicing variant (smad3-Delta3) lacks exon 3 resulting in a truncated linker region. We could detect mRNA expression of smad3-Delta3 in all investigated human tissues. Real-time PCR analyses demonstrated that the fraction of smad3-Delta3 mRNA compared to normal smad3 varies between tissues. The amount of spliced mRNA was estimated to represent 0.5-5% of the normal smad3 mRNA. When smad3-Delta3 is overexpressed in a fibrosarcoma cell line, the Smad3-Delta3 is translocated to the nucleus upon TGF-beta stimulation and binds the Smad responsive element. Using a CAGA luciferase reporter system, we demonstrate that Smad3-Delta3 has transcriptional activity and we conclude that Smad3-Delta3 possesses functional transactivating properties. PMID:14980711

  13. A CD45 polymorphism associated with abnormal splicing is absent in African populations.

    PubMed

    Tchilian, Elma Z; Dawes, Ritu; Ramaley, Patricia A; Whitworth, James A; Yuldasheva, Nadira; Wells, R Spencer; Watera, Christine; French, Neil; Gilks, Charles F; Kunachiwa, Warunee; Ruzibakiev, Ruslan; Leetrakool, Nipapan; Carrington, Christine V F; Ramdath, D Dan; Gotch, Frances; Stephens, Henry A; Hill, Adrian V; Beverley, Peter C L

    2002-02-01

    The CD45 antigen is essential for normal antigen receptor-mediated signalling in lymphocytes, and different patterns of splicing of CD45 are associated with distinct functions in lymphocytes. Abnormal CD45 splicing has been recognized in humans, caused by a C77G transversion in the gene encoding CD45 (PTPRC). Recently the C77G polymorphism has been associated with multiple sclerosis and increased susceptibility to HIV-1 infection. These studies suggest that the regulation of CD45 splicing may be critical for the proper function of the immune system. Because of these data we examined the frequency of the C77G allele in African and Asian populations from countries with high or low prevalence of HIV infection. Here we report that the variant CD45 C77G allele is absent in African populations. We further show that populations living in the Pamir mountains of Central Asia have a very high prevalence of the C77G variant. PMID:11862398

  14. Fruitless alternative splicing and sex behaviour in insects: an ancient and unforgettable love story?

    PubMed

    Salvemini, Marco; Polito, Catello; Saccone, Giuseppe

    2010-09-01

    Courtship behaviours are common features of animal species that reproduce sexually. Typically, males are involved in courting females. Insects display an astonishing variety of courtship strategies primarily based on innate stereotyped responses to various external stimuli. In Drosophila melanogaster, male courtship requires proteins encoded by the fruitless (fru) gene that are produced in different sex-specific isoforms via alternative splicing. Drosophila mutant flies with loss-of-function alleles of the fru gene exhibit blocked male courtship behaviour. However, various individual steps in the courtship ritual are disrupted in fly strains carrying different fru alleles. These findings suggest that fru is required for specific steps in courtship. In distantly related insect species, various fru paralogues were isolated, which shows conservation of sex-specific alternative splicing and protein expression in neural tissues and suggests an evolutionary functional conservation of fru in the control of male-specific courtship behaviour. In this review, we report the seminal findings regarding the fru gene, its splicing regulation and evolution in insects. PMID:20876995

  15. CD44 alternative splicing in gastric cancer cells is regulated by culture dimensionality and matrix stiffness.

    PubMed

    Branco da Cunha, Cristiana; Klumpers, Darinka D; Koshy, Sandeep T; Weaver, James C; Chaudhuri, Ovijit; Seruca, Raquel; Carneiro, Fátima; Granja, Pedro L; Mooney, David J

    2016-08-01

    Two-dimensional (2D) cultures often fail to mimic key architectural and physical features of the tumor microenvironment. Advances in biomaterial engineering allow the design of three-dimensional (3D) cultures within hydrogels that mimic important tumor-like features, unraveling cancer cell behaviors that would not have been observed in traditional 2D plastic surfaces. This study determined how 3D cultures impact CD44 alternative splicing in gastric cancer (GC) cells. In 3D cultures, GC cells lost expression of the standard CD44 isoform (CD44s), while gaining CD44 variant 6 (CD44v6) expression. This splicing switch was reversible, accelerated by nutrient shortage and delayed at lower initial cell densities, suggesting an environmental stress-induced response. It was further shown to be dependent on the hydrogel matrix mechanical properties and accompanied by the upregulation of gen