Science.gov

Sample records for rare-earth isotopes studied

  1. Decay studies of neutron deficient rare earth isotopes with OASIS

    SciTech Connect

    Gilat, J.; Nitschke, J.M.; Wilmarth, P.A.; Vierinen, K.; Firestone, R.B.

    1987-09-01

    We report results on the decay of /sup 124/Pr, /sup 124,125/Ce, /sup 124,125/La, /sup 134-136/Eu, /sup 134-136/Sm, /sup 134-136/Pm, /sup 144/Ho, /sup 141,142,144/Dy, /sup 140,141,142,144/Tb, /sup 140-142/Gd, and /sup 140-142/Eu, produced by /sup 92/Mo(H.I.,xpyn) reactions at the Berkeley SuperHILAC, and studied with the OASIS on-line mass separator facility. Half-lives, delayed proton branching ratios, ..gamma..-ray energies and intensities, partial decay schemes and several J/sup ..pi../ assignments are presented. Level systematics of the even mass Nd and Sm isotopes and of the nu h/sub 11/2/ - nu s/sub 1/2/ isomers for N = 77 are discussed.

  2. Deformation in the neutron-deficient rare earth isotopes: Radioactive decay scheme studies in the neodymium, promethium, and samarium isotopes

    SciTech Connect

    Breitenbach, J.B.

    1993-12-31

    Several experiments were performed at the UNISOR isotope separator facility at HHIRF at the Oak Ridge National Laboratory on the {beta}{sup +}/EC decay of neutron-deficient rare earth isotopes. Data for the decay chain {sup 133}Sm {yields} {sup 133}Pm {yields} {sup 133}Nd was obtained, consisting of multiscaled spectra of {gamma} rays, X rays, and conversion electrons, as well as {gamma}{gamma}t, X{gamma}t, e{gamma}t and eXt coincidences. Gamma rays associated with the decay of {sup 133}Sm and {sup 133}Pm were observed for the first time. The decay of a new low-spin (1/2) isomeric state, with a half life of about 70 sec was established for {sup 133}Nd. The level schemes for {sup 133}Nd and {sup 133}Pr were constructed. An M3 and two E1 isomers are established in {sup 133}Nd and an E3 isomer is confirmed in {sup 133}Pr. The energy level systematics for the nuclear region bounded by Z {ge} 58 and N {le} 78 is discussed. Theoretical interpretations are based on the particle-plus-triaxial rotor model calculations. In the framework of these calculations, the {beta}{sub 2} deformation is moderate for these nuclei ({beta}{sub 2} {approx} 0.20-0.25). A sudden onset of strong deformation is not observed, in contrast with the theoretical predictions by Leander and Moeller [Lea82].

  3. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe-oxide (Fe-P-REE) systems

    NASA Astrophysics Data System (ADS)

    Gleason, James D.; Marikos, Mark A.; Barton, Mark D.; Johnson, David A.

    2000-03-01

    Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium isotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, ɛ Nd for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of the same age (ɛ Nd = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, ɛ Nd for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks (-1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks (ɛ Nd = -2.0 to -4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar ɛ Nd (-1.7 to -2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with ɛ Nd = -2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.

  4. Neodymium isotopic study of rare earth element sources and mobility in hydrothermal Fe oxide (Fe-P-REE) systems

    SciTech Connect

    Gleason, J.D.; Marikos, M.A.; Barton, M.D.; Johnson, D.A.

    2000-03-01

    Rare earth element (REE)-enriched, igneous-related hydrothermal Fe-oxide hosted (Fe-P-REE) systems from four areas in North America have been analyzed for their neodymium iosotopic composition to constrain REE sources and mobility in these systems. The Nd isotopic results evidence a common pattern of REE concentration from igneous sources despite large differences in age (Proterozoic to Tertiary), tectonic setting (subduction vs. intraplate), and magmatic style (mafic vs. felsic). In the Middle Proterozoic St. Francois Mountains terrane of southeastern Missouri, {epsilon}{sub Nd} for Fe-P-REE (apatite, monazite, xenotime) deposits ranges from +3.5 to +5.1, similar to associated felsic to intermediate igneous rocks of the same age ({epsilon}{sub Nd} = +2.6 to +6.2). At the mid-Jurassic Humboldt mafic complex in western Nevada, {epsilon}{sub Nd} for Fe-P-REE (apatite) mineralization varies between +1.1 and +2.4, similar to associated mafic igneous rocks ({minus}1.0 to +3.5). In the nearby Cortez Mountains in central Nevada, mid-Jurassic felsic volcanic and plutonic rocks ({epsilon}{sub Nd} = {minus}2.0 to {minus}4.4) are associated with Fe-P-REE (apatite-monazite) mineralization having similar {epsilon}{sub Nd}({minus}1.7 to {minus}2.4). At Cerro de Mercado, Durango, Mexico, all assemblages analyzed in this Tertiary rhyolite-hosted Fe oxide deposit have identical isotopic compositions with {epsilon}{sub Nd} = {minus}2.5. These data are consistent with coeval igneous host rocks being the primary source of REE in all four regions, and are inconsistent with a significant contribution of REE from other sources. Interpretations of the origin of these hydrothermal systems and their concomitant REE mobility must account for nonspecialized igneous sources and varied tectonic settings.

  5. Isotopic fractionation of rare earth elements in geochemical samples

    NASA Astrophysics Data System (ADS)

    Ishibashi, T.; Ohno, T.

    2015-12-01

    The isotopic composition of Rare Earth Elements(REEs) can be fractionated through various physical and chemical reactions in nature [1]. The isotopic variations of REEs occurring naturally has a potentially significant influence in geochemical research fields. The REEs has key features that their chemical similarities and gradual changes of ionic radius, which may help us to understand the mechanisms of isotopic variations of REEs in nature. Among the REEs, geochemical and physicochemical features of Ce, which could be presence as the tetravalent state, be anomalous, and oxidation state of Ce can change by reflecting the redox conditions of the environment. Therefore, the study of the difference in the degree of isotopic fractionation between Ce and other REEs may provide information on the redox conditions. In this study, we developed a new separation method to determine the mass-dependent isotopic fractionations of REEs in geochemical samples, and examined the optimum concentration of hydrochloric acid for the separation. The samples were decomposed by a mixture of acids, then REEs were separated as a group from major elements using cation exchange resin columns and RE Spec resin. The separations within the REEs group were carried out using Ln2Spec resin. For the recovery of La, Ce, Pr, and Nd, 0.1 M HCl was used, and for isolation of Sm, Eu, and Gd, 0.25 M HCl was used. Then, 0.6 M HCl was used for separation of Tb, and Dy, 1 M HCl was used for separation of Ho, Y, and Er, finally, Tm, Yb, and Lu were collected using 2 M HCl. The yields of all REEs were enough to examine isotopic fractionation in geochemical samples. [1] Ohno and Hirata,Analytical Sciences, 29, 271, 2013

  6. Investigations of hyperfine and isotope structures in optical spectra of crystals with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Popova, M. N.

    2015-10-01

    This is a review of works on hyperfine and isotope structures in the spectra of rare-earth ions in crystals that have been performed at the Laboratory of Fourier Spectroscopy of the Institute for Spectroscopy, Russian Academy of Sciences. The applicability of these studies to the development of optical quantum memory is discussed.

  7. Rare earth elements and neodymium isotopes in sedimentary organic matter

    NASA Astrophysics Data System (ADS)

    Freslon, Nicolas; Bayon, Germain; Toucanne, Samuel; Bermell, Sylvain; Bollinger, Claire; Chéron, Sandrine; Etoubleau, Joel; Germain, Yoan; Khripounoff, Alexis; Ponzevera, Emmanuel; Rouget, Marie-Laure

    2014-09-01

    We report rare earth element (REE) and neodymium (Nd) isotope data for the organic fraction of sediments collected from various depositional environments, i.e. rivers (n = 25), estuaries (n = 18), open-ocean settings (n = 15), and cold seeps (n = 12). Sedimentary organic matter (SOM) was extracted using a mixed hydrogen peroxide/nitric acid solution (20%-H2O2-0.02 M-HNO3), after removal of carbonate and oxy-hydroxide phases with dilute hydrochloric acid (0.25 M-HCl). A series of experimental tests indicate that extraction of sedimentary organic compounds using H2O2 may be complicated occasionally by partial dissolution of sulphide minerals and residual carbonates. However, this contamination is expected to be minor for REE because measured concentrations in H2O2 leachates are about two-orders of magnitude higher than in the above mentioned phases. The mean REE concentrations determined in the H2O2 leachates for samples from rivers, estuaries, coastal seas and open-ocean settings yield relatively similar levels, with ΣREE = 109 ± 86 ppm (mean ± s; n = 58). The organic fractions leached from cold seep sediments display even higher concentration levels (285 ± 150 ppm; mean ± s; n = 12). The H2O2 leachates for most sediments exhibit remarkably similar shale-normalized REE patterns, all characterized by a mid-REE enrichment compared to the other REE. This suggests that the distribution of REE in leached sedimentary organic phases is controlled primarily by biogeochemical processes, rather than by the composition of the source from which they derive (e.g. pore, river or sea-water). The Nd isotopic compositions for organic phases leached from river sediments are very similar to those for the corresponding detrital fractions. In contrast, the SOM extracted from marine sediments display εNd values that typically range between the εNd signatures for terrestrial organic matter (inferred from the analysis of the sedimentary detrital fractions) and marine organic matter

  8. Radioluminescence study of rare earth doped some yttrium based phosphors

    NASA Astrophysics Data System (ADS)

    Ayvacıklı, Mehmet; Ege, Arzu; Ekdal, Elçin; Popovici, Elisabeth-Jeanne; Can, Nurdoğan

    2012-09-01

    This paper reports the luminescence emission spectra of Y(Ta,Nb)O4 activated by rare earth ions such as Eu3+ and Tb3+. The influence of these rare earth ions on the radioluminescence (RL) of yttrium niobate and tantalate phosphors was investigated. The luminescent properties were studied under X-ray and preliminary RL measurements to further evaluate prepared materials. The emission centers of the rare earth activators (Eu3+, Tb3+) were found to contribute efficiently to the total luminescence. With their various luminescence chromaticities, these rare earth activated phosphors are promising materials for solid-state lighting applications as well as for X-ray intensifying screens in medical diagnosis, providing the broad band variation of visible RL from blue to red.

  9. Rare earth element and stable sulphur (δ 34S) isotope study of baryte-copper mineralization in Gulani area, Upper Benue Trough, NE Nigeria

    NASA Astrophysics Data System (ADS)

    El-Nafaty, Jalo Muhammad

    2015-06-01

    The geology of Gulani area comprises of inliers of diorite and granites of the Older Granite suite of the Pan-African (600 ± 150 Ma) age within Cretaceous sediments of the Bima, Yolde and Pindiga Formations and the Tertiary/Quaternary basalts of the Biu Plateau. Epigenetic baryte-copper mineralization occurs as baryte veins within the Bima and Yolde sandstones and fracture-filling malachite in Pan-African granites. Unaltered (distal), hydrothermally altered (proximal) granites and sandstones and vein materials (mineral separates of baryte and chalcopyrite/malachite mineralized rocks) were analysed for rare earth elements (REE) and stable sulphur isotopes. The REE patterns of the unaltered rocks (both granites and sandstones) indicate background values before mineralization, depicted by enriched LREE, depleted HREE and weak negative Eu anomalies typical of Pan-African (calc-alkaline) granites and sandstones derived from them. On the other hand, the hydrothermally altered and mineralized rocks and mineral separates show a distinct baryte and copper mineralization sub-systems characterized by similar high LREE and corresponding low HREE abundances. However, the negative Eu anomalies of the copper sub-system hosted by granites are typical of Pan-African (calc-alkaline) granites. The sandstone host rocks of the baryte sub-system are marked by positive Eu anomalies interpreted as reflecting the injection and subsequent deposition of the baryte-bearing hydrothermal solutions under oxidizing conditions. The baryte mineral separates show δ (34S) isotope range of 12.3-13.1‰ (CDT) indicating sulphur from sedimentary formation sources. This ruled out magmatic source of the sulphur from the nearby Tertiary/Quaternary volcanic rocks of the Biu Plateau as well as ocean water. However, the stable sulphur isotopic determination of the sulphides (chalcopyrite/malachite mineral separates and mineralized rocks) did not yield peaks and therefore no inferences drawn in this regard.

  10. Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging.

    PubMed

    Paik, Taejong; Chacko, Ann-Marie; Mikitsh, John L; Friedberg, Joseph S; Pryma, Daniel A; Murray, Christopher B

    2015-09-22

    Isotopically labeled nanomaterials have recently attracted much attention in biomedical research, environmental health studies, and clinical medicine because radioactive probes allow the elucidation of in vitro and in vivo cellular transport mechanisms, as well as the unambiguous distribution and localization of nanomaterials in vivo. In addition, nanocrystal-based inorganic materials have a unique capability of customizing size, shape, and composition; with the potential to be designed as multimodal imaging probes. Size and shape of nanocrystals can directly influence interactions with biological systems, hence it is important to develop synthetic methods to design radiolabeled nanocrystals with precise control of size and shape. Here, we report size- and shape-controlled synthesis of rare earth fluoride nanocrystals doped with the β-emitting radioisotope yttrium-90 ((90)Y). Size and shape of nanocrystals are tailored via tight control of reaction parameters and the type of rare earth hosts (e.g., Gd or Y) employed. Radiolabeled nanocrystals are synthesized in high radiochemical yield and purity as well as excellent radiolabel stability in the face of surface modification with different polymeric ligands. We demonstrate the Cerenkov radioluminescence imaging and magnetic resonance imaging capabilities of (90)Y-doped GdF3 nanoplates, which offer unique opportunities as a promising platform for multimodal imaging and targeted therapy. PMID:26257288

  11. Magnetic alignment study of rare-earth-containing liquid crystals.

    PubMed

    Galyametdinov, Yury G; Haase, Wolfgang; Goderis, Bart; Moors, Dries; Driesen, Kris; Van Deun, Rik; Binnemans, Koen

    2007-12-20

    The liquid-crystalline rare-earth complexes of the type [Ln(LH)3(DOS)3]-where Ln is Tb, Dy, Ho, Er, Tm, or Yb; LH is the Schiff base N-octadecyl-4-tetradecyloxysalicylaldimine; and DOS is dodecylsulfate-exhibit a smectic A phase. Because of the presence of rare-earth ions with a large magnetic anisotropy, the smectic A phase of these liquid crystals can be easier aligned in an external magnetic field than smectic A phases of conventional liquid crystals. The magnetic anisotropy of the [Ln(LH)3(DOS)3] complexes was determined by measurement of the temperature-dependence of the magnetic susceptibility using a Faraday balance. The highest value for the magnetic anisotropy was found for the dysprosium(III) complex. The magnetic alignment of these liquid crystals was studied by time-resolved synchrotron small-angle X-ray scattering experiments. Depending on the sign of the magnetic anisotropy, the director of the liquid-crystalline molecules was aligned parallel or perpendicular to the magnetic field lines. A positive value of the magnetic anisotropy (and parallel alignment) was found for the thulium(III) and the ytterbium(III) complexes, whereas a negative value of the magnetic anisotropy (and perpendicular alignment) was observed for the terbium(III) and dysprosium(III) complexes. PMID:18044875

  12. Thermochemical study of rare earth and nitrogen incorporation in glasses

    NASA Astrophysics Data System (ADS)

    Zhang, Yahong

    Rare earth containing aluminosilicate, borosilicate, aluminate and nitrogen containing aluminosilicate glasses are technically important materials. They have extraordinary physical and chemical properties such as high glass transition temperature, very low electrical conductivity, and excellent chemical stability. These unique properties lead to applications as coatings on metals and ceramics, optical fibers, semiconductors, and nuclear waste containment materials. In addition, such systems contain the most widely used additives for sintering of Si3N4, SiAlON and SiC ceramics for high temperature applications. Thermodynamic properties and the relations among energetics, structure and bonding are essential to controlling processing parameters to synthesize, at lower cost, materials having better properties. Earlier investigations mainly pertained to specific physical properties of rare-earth doped oxide and oxynitride glasses. Work on the thermodynamic stability and materials compatibility has been very sparse. High temperature solution calorimetry in molten oxide solvents is a powerful tool for the thermodynamic study of refractory materials. With implementation and improvement, this technique has been applied to the first measurement of enthalpies of formation of RE-Si-Al-O glasses, REAlO3 glasses, RE-Si-Al-O-N glasses, and Si3N 4 and Ge3N4 with high pressure spinel structure. The first successful synthesis of REAlO3 glasses has been achieved by containerless melting. Their large enthalpies of crystallization confirm that they are reluctant glass formers. For glasses along the 2REAlO3 -3SiO2 join, the strongly negative heats of mixing support the absence of miscibility gaps except possibly at very high silica content. Energetic evidence has been presented for incipient phase-ordered regions in Gd- or Hf-containing sodium alumino-borosilicate glasses for plutonium immobilization. Linear relations between enthalpies of formation of RESiAlON glasses from elements and

  13. Thermopower studies of rare earth doped lanthanum barium manganites

    NASA Astrophysics Data System (ADS)

    Reddy, G. Lalitha; Lakshmi, Y. Kalyana; kumar, N. Pavan; Rao, S. Manjunath; Reddy, P. Venugopal

    2014-08-01

    Influence of rare earth doping on electrical, magnetic and thermopower studies of La0.34Re0.33Ba0.33MnO3 compound was investigated. Ferro to paramagnetic transition and metal to insulator transition temperatures decrease with decreasing ionic radius of the dopant ion. Electrical resistivity in the entire temperature range is explained by phase separation model. The magnitude of Seebeck coefficient increases with increasing dopant ionic radius. A cross over from negative to positive sign has also been observed in thermopower data with decreasing A site ionic radius (). The low temperature thermopower data has been explained using a qualitative model containing diffusion; magnon drag and phonon drag effects while the paramagnetic insulating part has been analyzed using small polaron hopping mechanism.

  14. Rare earth elements and neodymium isotopes in world river sediments revisited

    NASA Astrophysics Data System (ADS)

    Bayon, G.; Toucanne, S.; Skonieczny, C.; André, L.; Bermell, S.; Cheron, S.; Dennielou, B.; Etoubleau, J.; Freslon, N.; Gauchery, T.; Germain, Y.; Jorry, S. J.; Ménot, G.; Monin, L.; Ponzevera, E.; Rouget, M.-L.; Tachikawa, K.; Barrat, J. A.

    2015-12-01

    Over the past decades, rare earth elements (REE) and their radioactive isotopes have received tremendous attention in sedimentary geochemistry, as tracers for the geological history of the continental crust and provenance studies. In this study, we report on elemental concentrations and neodymium (Nd) isotopic compositions for a large number of sediments collected near the mouth of rivers worldwide, including some of the world's major rivers. Sediments were leached for removal of non-detrital components, and both clay and silt fractions were retained for separate geochemical analyses. Our aim was to re-examine, at the scale of a large systematic survey, whether or not REE and Nd isotopes could be fractionated during Earth surface processes. Our results confirmed earlier assumptions that river sediments do not generally exhibit any significant grain-size dependent Nd isotopic variability. Most sediments from rivers draining old cratonic areas, sedimentary systems and volcanic provinces displayed similar Nd isotopic signatures in both clay and silt fractions, with ΔεNd(clay-silt) < |1|. A subtle decoupling of Nd isotopes between clays and silts was identified however in a few major river systems (e.g. Nile, Mississippi, Fraser), with clays being systematically shifted towards more radiogenic values. This observation suggests that preferential weathering of volcanic and/or sedimentary rocks relative to more resistant lithologies may occur in river basins, possibly leading locally to Nd isotopic decoupling between different size fractions. Except for volcanogenic sediments, silt fractions generally displayed homogeneous REE concentrations, exhibiting relatively flat shale-normalized patterns. However, clay fractions were almost systematically characterized by a progressive enrichment from the heavy to the light REE and a positive europium (Eu) anomaly. In agreement with results from previous soil investigations, the observed REE fractionation between clays and silts

  15. The Use of Lead Isotope and Rare Earth Element Geochemistry for Forensic Geographic Provenancing

    NASA Astrophysics Data System (ADS)

    Carey, A.; Darrah, T.; Harrold, Z.; Prutsman-Pfeiffer, J.; Poreda, R.

    2008-12-01

    Lead isotope and rare earth element composition of modern human bones are analyzed to explore their utility for geographical provenancing. DNA analysis is the standard for identification of individuals. DNA analysis requires a DNA match for comparison. Thus, DNA analysis is of limited use in cases involving unknown remains. Trace elements are incorporated into bones and teeth during biomineralization, recording the characteristics of an individual's geochemical environment. Teeth form during adolescence, recording the geochemical environment of an individual's youth. Bones remodel throughout an individual's lifetime. Bones consist of two types of bone tissue (cortical and trabecular) that remodel at different rates, recording the geochemical environment at the time of biomineralization. Cortical bone tissue, forming the outer surface of bones, is dense, hard tissue that remodels in 25-30 yrs. Conversely, trabecular bone tissue, the inner cavity of bones, is low density, porous and remodels in 2-5 years. Thus, analyzing teeth and both bone tissues allows for the development of a geographical time line capable of tracking immigration patterns through time instead of only an individual's youth. Geochemical isotopic techniques (Sr, O, C, N) have been used for geographical provenancing in physical anthropology. The isotopic values of Sr, C, O, N are predominantly a function of soil compositions in areas where food is grown or water is consumed. Application of these provenancing techniques has become difficult as an individual's diet may reflect the isotopic composition of foods obtained at the local grocer as opposed to local soil compositions. Thus, we explore the use of REEs and Pb isotopes for geographical provenancing. Pb and REEs are likely more reliable indicators of modern geographical location as their composition are high in bio-available sources such as local soils, atmospheric aerosols, and dust as opposed to Sr, C, O, N that are controlled by food and

  16. Origin and Dynamics of Rare Earth Elements during Flood Events in Contaminated River Basins: Sr-Nd-Pb Isotopic Evidence.

    PubMed

    Hissler, Christophe; Stille, Peter; Iffly, Jean François; Guignard, Cédric; Chabaux, François; Pfister, Laurent

    2016-05-01

    In order to precisely quantify the contribution of anthropogenic activities and geogenic sources to the dissolved and suspended loads of rivers we have combined for the first time Rare Earth Element (REE) concentrations with Sr-Nd-Pb isotope ratios. We observed enrichments in Anthropogenic Rare Earth Elements (AREE) for dissolved (Gd) and suspended (Ce and Nd) loads of river water. During flood events, AREE anomalies progressively disappeared and gave way to the geogenic chemical signature of the basin in both dissolved and suspended loads. The isotopic data confirm these observations and shed new light on the trace elements sources. On the one hand, dissolved loads have peculiar isotopic characteristics and carry mainly limestone-derived and anthropogenic Sr and Nd as well as significant amounts of anthropogenic Pb. On the other hand, the results clearly indicate that anthropogenic contributions impact the suspended loads in all hydrological conditions. This study demonstrates that anthropogenic contributions to the river may change not only Pb but also Sr and Nd isotopic compositions in both dissolved and suspended loads. This is of importance for future provenance studies. PMID:27045616

  17. Decay spectroscopy of neutron-rich rare-earth isotopes and collectivity around double midshell

    SciTech Connect

    Watanabe, Hiroshi

    2015-10-15

    Neutron-rich rare-earth isotopes with A ≈ 170, which locate near the middle of the major shells for both proton and neutron between the doubly magic nuclei {sup 132}Sn and {sup 208}Pb, have been investigated by means of decay spectroscopy techniques at the RIBF facility at RIKEN. The nuclei of interest were produced by in-flight fission of a high-intensity {sup 238}U beam at 345 MeV/u. In this contribution, scientific motivations, the details of experimental procedures, and some prospects of the data analysis are reported.

  18. Biogeochemical implications from dissolved rare earth element and Nd isotope distributions in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    Haley, Brian A.; Frank, Martin; Hathorne, Ed; Pisias, Nick

    2014-02-01

    Dissolved rare earth element (REE) concentrations and Nd isotope compositions were measured for surface waters and full water column profiles of the Gulf of Alaska (GoA), and compared to water mass properties and circulation in order to better understand the mechanisms controlling the input and transport of REEs in the ocean. The REEs display a typical open-ocean range of concentrations (i.e., La: 12-66 pM; Lu: 0.2-2.5 pM) and depth distributions (i.e., surface ocean depletion and enrichment with water depth). Nd isotope signatures are highly radiogenic, as expected for the North Pacific margin (ranging from -3.8 to +0.2 ɛNd). The most radiogenic values were found in the coastal waters but also in the cores of eddies, indicating efficient export of REEs from the margins and across the mixed layer. This is the first time that distinct Nd isotope distributions in near surface waters can be directly assigned to offshore eddy transport. A distinct mid-depth (˜2200 m) Nd isotope signal was found that most likely reflects advection of a water mass that formed through past down-welling in the Northern Pacific. Subsurface Nd isotope compositions appear to behave conservatively and can be explained through a REE distribution model proposed here. This model is based on multivariate analysis of the REEs and invokes two distinct “pools” of dissolved REEs: a “passive pool” complexed by carbonate ions, and a “bio-reactive pool” that is microbially manipulated. The latter “pool” is only significant in the upper water column and most likely reflects the indirect effects of microbial cycling of iron. Our model of the open ocean REE distribution contributes to explaining the conservative nature of Nd isotopes and provides a mechanism linking surface ocean and pore water REE dynamics.

  19. Theoretical and Computational Studies of Rare Earth Substitutes: A Test-bed for Accelerated Materials Development

    SciTech Connect

    Benedict, Lorin X.

    2015-10-26

    Hard permanent magnets in wide use typically involve expensive Rare Earth elements. In this effort, we investigated candidate permanent magnet materials which contain no Rare Earths, while simultaneously exploring improvements in theoretical methodology which enable the better prediction of magnetic properties relevant for the future design and optimization of permanent magnets. This included a detailed study of magnetocrystalline anisotropy energies, and the use of advanced simulation tools to better describe magnetic properties at elevated temperatures.

  20. Rare Earth Element Partitioning in Lunar Minerals: An Experimental Study

    NASA Technical Reports Server (NTRS)

    McIntosh, E. C.; Rapp, J. F.; Draper, D. S.

    2016-01-01

    The partitioning behavior of rare earth elements (REE) between minerals and melts is widely used to interpret the petrogenesis and geologic context of terrestrial and extra-terrestrial samples. REE are important tools for modelling the evolution of the lunar interior. The ubiquitous negative Eu anomaly in lunar basalts is one of the main lines of evidence to support the lunar magma ocean (LMO) hypothesis, by which the plagioclase-rich lunar highlands were formed as a flotation crust during differentiation of a global-scale magma ocean. The separation of plagioclase from the mafic cumulates is thought to be the source of the Eu depletion, as Eu is very compatible in plagioclase. Lunar basalts and volcanic glasses are commonly depleted in light REEs (LREE), and more enriched in heavy REEs (HREE). However, there is very little experimental data available on REE partitioning between lunar minerals and melts. In order to interpret the source of these distinctive REE patterns, and to model lunar petrogenetic processes, REE partition coefficients (D) between lunar minerals and melts are needed at conditions relevant to lunar processes. New data on D(sub REE) for plagioclase, and pyroxenes are now available, but there is limited available data for olivine/melt D(sub REE), particularly at pressures higher than 1 bar, and in Fe-rich and reduced compositions - all conditions relevant to the lunar mantle. Based on terrestrial data, REE are highly incompatible in olivine (i.e. D much less than 1), however olivine is the predominant mineral in the lunar interior, so it is important to understand whether it is capable of storing even small amounts of REE, and how the REEs might be fractionatied, in order to understand the trace element budget of the lunar interior. This abstract presents results from high-pressure and temperature experiments investigating REE partitioning between olivine and melt in a composition relevant to lunar magmatism.

  1. Strontium isotopes and rare-earth element geochemistry of hydrothermal carbonate deposits from Lake Tanganyika, East Africa

    SciTech Connect

    Barrat, J.A.; Boulegue, J.; Tiercelin, J.J.; Lesourd, M.

    2000-01-01

    At Cape Banza (North Tanganyika Lake), fluids and aragonite chimneys have been collected many times since the discovery of this sublacustrine field in 1987. This sampling has been investigated here for the Sr isotopic compositions and the rare-earth element features of the carbonates and a few fluid samples. The {sup 87}Sr/{sup 86}Sr ratios of the chimneys indicate that they have precipitated from a mixture of lake water (more than 95%) and hydrothermal fluids. No zoning in the chimneys was detected with the Sr data. For the rare-earth elements, the situation is more complex. The external walls of the chimneys are rare-earth-element-poor (La {approx} 500 ppb, Yb {approx} 200 ppb, La/Yb = 2 to 3.4). Their shale normalized rare-earth element patterns suggest that they are in equilibrium with the inferred carbonate-depositing fluids. The rare-earth element concentrations of the internal walls of the chimneys are significantly light rare earth elements (LREE)-enriched with La contents sometimes up to 5 ppm. The authors suggest that they contain more vent-fluid rare-earth elements than the external wall samples, possibly adsorbed on the surface of growing crystals or simply hosted by impurities. It was not possible to constrain the nature of these phases, but the variations of the compositions of the internal wall materials of the active chimneys with time, as well as data obtained on an inactive chimney indicate that this rare-earth element excess is mobile. Partition coefficients were calculated between the external wall aragonite and carbonate-depositing fluid. The results are strikingly similar to the values obtained by Sholkovitz and Shen (1995) on coral aragonite, and suggest that there is no significant biologic effect on the incorporation of rare-earth elements into coral aragonite and that the various carbonate complexes involved Me(CO{sub 3}{sup +}) complexes are the main LREE carriers in seawater instead of Me(CO{sub 3}){sub 2}{sup {minus}} in Banza fluids

  2. Rare earths exposure and male infertility: the injury mechanism study of rare earths on male mice and human sperm.

    PubMed

    Chen, Jun; Xiao, Heng-Jun; Qi, Tao; Chen, Di-Ling; Long, He-Ming; Liu, Song-Hao

    2015-02-01

    The weight; testis/body coefficient; levels of LDH, SDH, SODH, G-6PD, and testosterone; cell cycle; and cell apoptosis of the male mice were influenced after being treated with 200 mg/[kg/day] of rare earths suspension for 3 weeks. The "Raman fingerprints" of the human sperm DNA exposed to 0.040 mg/ml CeCl3 were very different from those of the untreated; the Raman bands at 789 cm(-1) (backbone phosphodiester), PO4 backbone at 1,094 cm(-1), methylene deformation mode at 1,221 cm(-1), methylene deformation mode at 1,485 cm(-1), and amide II at 1,612 cm(-1), of which intensities and shifts were changed, might be the diagnostic biomarkers or potential therapeutic targets. The injury mechanism might be that the rare earths influence the oxidative stress and blood testosterone barrier, tangle the big biomolecule concurrently, which might cause the testicular cells and vascular system disorder and/or dysfunction, and at the same time change the physical and chemical properties of the sperm directly. PMID:25167826

  3. Preparation of radioactive rare earth targets for neutron capture study

    SciTech Connect

    Miller, G. G.; Rogers, P. S. Z.; Palmer, P. D.; Dry, D. E.; Rundberg, R. S.; Fowler, Malcolm M.; Wilhelmy, J. B.

    2002-01-01

    The understanding of thc details of nucleosynthesis in stars remains a great challenge. Though the basic mechanisms governing the processes have been known since the pioneering work of Burbidge, Burbidge, Fowler and Hoyle (l), we are now evolving into a condition where we can ask more specific questions. Of particular interest are the dynamics of the s ('slow') process. In this process the general condition is one in which sequential neutron captures occur at time scales long compared with the beta decay half lives of the capturing nuclides. The nucleosynthesis period for C or Ne burning stellar shells is believed to be in the year to few year time frame (2). This means that radionuclides with similar half lives to this burning period serve as 'branch point' nuclides. That is, there will be a competition between a capture to the next heavier isotope and a beta decay to the element of nexl higher atomic number. By understanding the abundances of these competing reactions we can learn about the dynamics of the nucleosynthesis process in the stellar medium. Crucial to this understanding is that we have a knowledge of the underlying neutron reaction cross sections on these unstable nuclides in the relevant stellar energy regions (neutrons of 0.1-100 KeV). Tm (1.9 years) and ls'Sm (90 ycws) have decay properties that permit their handling in an open fume hood. These Iwo were therefore selected to be the first radionuclides for neutron capture study in what will be an ongoing effort.

  4. Studying the volatility of pyrazolone complexes of rare-earth elements by means of Knudsen effusion

    NASA Astrophysics Data System (ADS)

    Lazarev, N. M.; Petrov, B. I.; Bochkarev, L. N.; Safronova, A. V.; Abakumov, G. A.; Arapova, A. V.; Bessonova, Yu. A.

    2014-08-01

    The temperature dependences of the pressure of saturated vapor of pyrazolone complexes of rare-earth elements Ln(PMIP)3 (where Ln = Y, Ho, Er, Tm, Lu; PMIP = 1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone) are studied via Knudsen effusion, and the enthalpy of their sublimation is determined. Mass spectra and differential scanning calorimetry data are obtained.

  5. A study on artificial rare earth (RE2O3) based neutron absorber.

    PubMed

    Kim, Kyung-O; Kim, Jong Kyung

    2015-11-01

    A new concept of a neutron absorption material (i.e., an artificial rare earth compound) was introduced for criticality control in a spent fuel storage system. In particular, spent nuclear fuels were considered as a potential source of rare earth elements because the nuclear fission of uranium produces a full range of nuclides. It was also found that an artificial rare earth compound (RE2O3) as a High-Level Waste (HLW) was naturally extracted from pyroprocessing technology developed for recovering uranium and transuranic elements (TRU) from spent fuels. In this study, various characteristics (e.g., activity, neutron absorption cross-section) were analyzed for validating the application possibility of this waste compound as a neutron absorption material. As a result, the artificial rare earth compound had a higher neutron absorption probability in the entire energy range, and it can be used for maintaining sub-criticality for more than 40 years on the basis of the neutron absorption capability of Boral™. Therefore, this approach is expected to vastly improve the efficiency of radioactive waste management by simultaneously keeping HLW and spent nuclear fuel in a restricted space. PMID:26241833

  6. Nuclear-decay studies of neutron-rich rare-earth nuclides

    SciTech Connect

    Chasteler, R.M. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1990-04-26

    Neutron-rich rare-earth nuclei were produced in multinucleon transfer reactions of {sup 170}Er and {sup 176}Yb projectiles on {sup nat}W targets at the Lawrence Berkeley Laboratory SuperHILAC and their radioactive decays properties studied at the on-line mass separation facility OASIS. Two unknown isotopes, {sup 169}Dy (t {sub 1/2} {equals} 39 {plus minus} 8 s) and {sup 174}Er(t{sub 1/2} {equals} 3.3 {plus minus} 0.2 m) were discovered and their decay characteristics determined. The decay schemes for two previously identified isotopes, {sup 168}Dy (t{sub 1/2} {equals} 8.8 {plus minus} 0.3 m) and {sup 171}Ho (t{sub 1/2} {equals} 55 {plus minus} 3 s), were characterized. Evidence for a new isomer of 3.0 m {sup 168}Ho{sup g}, {sup 168}Ho{sup m} (t{sub 1/2} {equals} 132 {plus minus} 4 s) which decays by isomeric transition (IT) is presented. Beta particle endpoint energies were determined for the decay of {sup 168}Ho{sup g}, {sup 169}Dy, {sup 171}Ho, and {sup 174}Er, the resulting Q{beta}-values are: 2.93 {plus minus} 0.03, 3.2 {plus minus} 0.3, 3.2 {plus minus} 0.6, and 1.8 {plus minus} 0.2 MeV, respectively. These values were compared with values calculated using recent atomic mass formulae. Comparisons of various target/ion source geometries used in the OASIS mass separator facility for these multinucleon transfer reactions were performed. 73 refs., 40 figs., 11 tabs.

  7. Rare earth elements, S and Sr isotopes and origin of barite from Bahariya Oasis, Egypt: Implication for the origin of host iron ores

    NASA Astrophysics Data System (ADS)

    Baioumy, Hassan M.

    2015-06-01

    Based on their occurrences and relation to the host iron ores, barites are classified into: (1) fragmented barite occurs as pebble to sand-size white to yellowish white barite along the unconformity between the Bahariya Formation and iron ores, (2) interstitial barite is present as pockets and lenses of large and pure crystals inside the iron ores interstitial barite inside the iron ores, and (3) disseminated barite occurs at the top of the iron ores of relatively large crystals of barite embedded in hematite and goethite matrix. In the current study, these barites have been analyzed for their rare earth elements (REE) as well as strontium and sulfur isotopes to assess their source and origin as well as the origin of host iron ores. Barite samples from the three types are characterized by low ΣREE contents ranging between 12 and 21 ppm. Disseminated barite shows relatively lower ΣREE contents (12 ppm) compared to the fragmented (19 ppm) and interstitial (21 ppm) barites. This is probably due to the relatively higher Fe2O3 in the disseminated barite that might dilute its ΣREE content. Chondrite-normalized REE patterns for the three barite mineralizations exhibit enrichment of light rare earth elements (LREE) relative to heavy rare earth elements (HREE) as shown by the high (La/Yb)N ratios that range between 14 and 45 as well as pronounced negative Ce anomalies varying between 0.03 and 0.18. The 87Sr/86Sr ratios in the analyzed samples vary between 0.707422 and 0.712237. These 87Sr/86Sr values are higher than the 87Sr/86Sr ratios of the seawater at the time of barite formation (Middle Eocene with 87Sr/86Sr ratios of 0.70773 to 0.70778) suggesting a contribution of hydrothermal fluid of high Sr isotope ratios. The δ34S values in the analyzed barites range between 14.39‰ and 18.92‰. The lower δ34S ratios in the studied barites compared with those of the seawater at the time of barite formation (Middle Eocene with δ34S ratios of 20-22‰) is attributed to a

  8. Fluorescence line-narrowing studies of rare earths in disordered solids

    SciTech Connect

    Hall, D.W.

    1982-08-10

    This dissertation is made up of two experimental studies dealing with apparently diverse topics within the subject of rare earths (RE) in solids. The first study, described in Part II, concerns the vibrations of a disordered host material about an optically active rare-earth ion as manifested by vibrationally-assisted-electronic, or vibronic transitions. Part III of the dissertation describes an investigation of the influence of site anisotropy on the purely electronic, laser transition of Nd/sup 3 +/ in glass. These two studies are bound together by the common experimental technique of laser-induced fluorescence line narrowing (FLN). By exciting fluorescence with monochromatic light of well-characterized polarization, one may select and observe the response of a single subset of the optically active ions and obtain information that is usually masked by the inhomogeneous nature of disordered solids.

  9. First-principles study of He point-defects in HCP rare-earth metals

    SciTech Connect

    Li, Yang; Chen, Ru; Peng, SM; Long, XG; Wu, Z.; Gao, Fei; Zu, Xiaotao

    2011-05-01

    He defect properties in Sc, Y, Gd, Tb, Dy, Ho, Er and Lu were studied using first-principles calculations based on density functional theory. The results indicate that the formation energy of an interstitial He atom is smaller than that of a substitutional He atom in all hcp rare-earth metals considered. Furthermore, the tetrahedral interstitial position is more favorable than an octahedral position for He defects. The results are compared with those from bcc and fcc metals.

  10. Photoluminescence studies on rare earth titanates prepared by self-propagating high temperature synthesis method.

    PubMed

    Joseph, Lyjo K; Dayas, K R; Damodar, Soniya; Krishnan, Bindu; Krishnankutty, K; Nampoori, V P N; Radhakrishnan, P

    2008-12-15

    The laser-induced luminescence studies of the rare earth titanates (R2Ti2O7) (R=La, Nd and Gd) using 355 nm radiation from an Nd:YAG laser are presented. These samples with submicron or nanometer size are prepared by the self-propagating high temperature synthesis (SHS) method and there is no known fluorescence shown by these rare earths in the visible region. Hence, the luminescence transitions shown by the La2Ti2O7 near 610 nm and Gd2Ti2O7 near 767 nm are quite interesting. Though La3+ ions with no 4f electrons have no electronic energy levels that can induce excitation and luminescence processes in the visible region, the presence of the Ti3+ ions leads to luminescence in this region. PMID:18455955

  11. Geological, rare earth elemental and isotopic constraints on the origin of the Banbanqiao Zn-Pb deposit, southwest China

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zhou, Jia-Xi; Huang, Zhi-Long; Yan, Zai-Fei; Bao, Guang-Ping; Sun, Hai-Rui

    2015-11-01

    elemental and isotopic data suggest that the REE, C and S in the ore-forming fluids of the Banbanqiao deposit were mainly originated from the carbonate host rocks, while the Pb and O were primarily derived from radiogenic Pb- and 18O-depleted sources, which are most likely to be the underlying Proterozoic basement rocks. Studies on the geology, rare earth elements and isotope geochemistry indicate that the Banbanqiao deposit is a carbonate-hosted, stratiform, anticline-controlled, epigenetic and high grade Zn-Pb deposit formed by elemental compositions of mixed origin, and is a typical SYG-type deposit in the western Yangtze Block, southwest China.

  12. First-principles study of crystal and electronic structure of rare-earth cobaltites

    NASA Astrophysics Data System (ADS)

    Topsakal, M.; Leighton, C.; Wentzcovitch, R. M.

    2016-06-01

    Using density functional theory plus self-consistent Hubbard U (DFT + Usc) calculations, we have investigated the structural and electronic properties of the rare-earth cobaltites RCoO3 (R = Pr - Lu). Our calculations show the evolution of crystal and electronic structure of the insulating low-spin RCoO3 with increasing rare-earth atomic number (decreasing ionic radius), including the invariance of the Co-O bond distance (dCo-O), the decrease of the Co-O-Co bond angle (Θ), and the increase of the crystal field splitting (ΔCF) and band gap energy (Eg). Agreement with experiment for the latter improves considerably with the use of DFT + Usc and all trends are in good agreement with the experimental data. These trends enable a direct test of prior rationalizations of the trend in spin-gap associated with the spin crossover in this series, which is found to expose significant issues with simple band based arguments. We also examine the effect of placing the rare-earth f-electrons in the core region of the pseudopotential. The effect on lattice parameters and band structure is found to be small, but distinct for the special case of PrCoO3 where some f-states populate the middle of the gap, consistent with the recent reports of unique behavior in Pr-containing cobaltites. Overall, this study establishes a foundation for future predictive studies of thermally induced spin excitations in rare-earth cobaltites and similar systems.

  13. β-decay half-lives of new neutron-rich rare-earth isotopes 159Pm,162Sm, and 166Gd

    NASA Astrophysics Data System (ADS)

    Ichikawa, S.; Asai, M.; Tsukada, K.; Haba, H.; Nagame, Y.; Shibata, M.; Sakama, M.; Kojima, Y.

    2005-06-01

    The new neutron-rich rare-earth isotopes 159Pm, 162Sm, and 166Gd produced in the proton-induced fission of 238U were identified using the JAERI on-line isotope separator (JAERI-ISOL) coupled to a gas-jet transport system. The half-lives of 159Pm, 162Sm, and 166Gd were determined to be 1.5 ± 0.2, 2.4 ± 0.5, and 4.8 ± 1.0 s respectively. The partial decay scheme of 166Gd was constructed from γγ-coincidence data. A more accurate half-life value of 25.6 ± 2.2 s was obtained for the previously identified isotope 166Tb. The half-lives measured in the present study are in good agreement with the theoretical predictions calculated by the second generation of the gross theory with the atomic masses evaluated by Audi and Wapstra.

  14. The effect of particulate dissolution on the neodymium (Nd) isotope and Rare Earth Element (REE) composition of seawater

    NASA Astrophysics Data System (ADS)

    Pearce, Christopher R.; Jones, Morgan T.; Oelkers, Eric H.; Pradoux, Catherine; Jeandel, Catherine

    2013-05-01

    The exchange of material between particulates and seawater along the continental margins, a process commonly referred to as boundary exchange, is thought to play a significant role in controlling the neodymium (Nd) isotope and Rare Earth Element (REE) composition of the oceans. This study provides experimental verification of this concept by quantifying the effect of particulate dissolution in seawater on dissolved ɛNd and REE compositions. Three closed-system experiments were performed using basaltic particulate material of riverine, estuarine and marine origin. The release of Nd from this basaltic material increased the ɛNd composition of seawater in all three experiments, with a ɛNd value close to that of the associated sediment being achieved within 80 days in all experiments. Mass balance indicates that up to 0.4% of Nd from the particulate phase was released to the seawater over the duration of these experiments, and that the rate of release varied according to particulate origin and surface area. Progressive variations in the PAAS normalised REE patterns, as well as the Eu and Ce anomalies and La/Yb ratio, demonstrate that REEs were also transferred from the basaltic particulates to seawater during the experiments. Despite evidence for the release of REEs from the particulate material, dissolved REE abundances decreased during the experiments, and are thought to reflect incorporation into the REE-phosphate mineral rhabdophane. Together these experimental results confirm that elemental release from basaltic sediments on the ocean margins is a significant marine flux that can have a major control on the composition of seawater.

  15. From the subtropics to the central equatorial Pacific Ocean: Neodymium isotopic composition and rare earth element concentration variations

    NASA Astrophysics Data System (ADS)

    Grenier, MéLanie; Jeandel, Catherine; Lacan, FrançOis; Vance, Derek; Venchiarutti, CéLia; Cros, Alexandre; Cravatte, Sophie

    2013-02-01

    Neodymium isotopic compositions (ɛNd) and rare earth element (REE) concentrations were measured for filtered surface to deep waters (112 samples) in the Southern Tropical Pacific. The relatively detailed picture of these tracer distributions allowed us to refine the areas where oceanic ɛNd variations occur. ɛNd values increase for most of the water masses flowing from Samoa to the Solomon Sea and in the Papua New Guinea (PNG) area, as already observed. Furthermore, water masses arriving from the eastern equatorial Pacific (200-550 m depth) also revealed radiogenic values, possibly acquired in the vicinity of the South American coasts and Galapagos Islands. These ɛNd variations affect the whole water column. The most likely process causing such variations is "boundary exchange" between the numerous radiogenic slopes/margins located in this area and seawater flowing past. Dissolution of atmospheric deposition and/or diffuse streaming of volcanic ash are also suggested to explain the radiogenic ɛNd observed at the surface in the PNG area. Interestingly, a positive europium (Eu) anomaly characterizes the normalized REE patterns of most of the studied water masses. This anomaly is consistent with the REE patterns of sediment and rock samples that are potential sources for the local waters. Such consistency reinforces the hypothesis that lithogenic sources play a major role in the oceanic REE budget, thanks to "boundary exchange." The data set presented here is a good basis for further sampling that will be realized in the framework of the ongoing GEOTRACES program (www.geotraces.org).

  16. Photoemission Study of the Rare Earth Intermetallic Compounds: RNi2Ge2 (R=Eu, Gd)

    SciTech Connect

    Jongik Park

    2004-12-19

    EuNi{sub 2}Ge{sub 2} and GdNi{sub 2}Ge{sub 2} are two members of the RT{sub 2}X{sub 2} (R = rare earth, T = transition metal and X = Si, Ge) family of intermetallic compounds, which has been studied since the early 1980s. These ternary rare-earth intermetallic compounds with the tetragonal ThCr{sub 2}Si{sub 2} structure are known for their wide variety of magnetic properties, Extensive studies of the RT{sub 2}X{sub 2} series can be found in Refs [ 1,2,3]. The magnetic properties of the rare-earth nickel germanides RNi{sub 2}Ge{sub 2} were recently studied in more detail [4]. The purpose of this dissertation is to investigate the electronic structure (both valence band and shallow core levels) of single crystals of EuNi{sub 2}Ge{sub 2} and GdNi{sub 2}Ge{sub 2} and to check the assumptions that the f electrons are non-interacting and, consequently, the rigid-band model for these crystals would work [11], using synchrotron radiation because, to the best of our knowledge, no photoemission measurements on those have been reported. Photoemission spectroscopy has been widely used to study the detailed electronic structure of metals and alloys, and especially angle-resolved photoemission spectroscopy (ARPES) has proven to be a powerful technique for investigating Fermi surfaces (FSs) of single-crystal compounds.

  17. Synchrotron Diffraction Studies of Spontaneous Magnetostriction in Rare Earth Transition Metal Compounds

    SciTech Connect

    Ning Yang

    2004-12-19

    Thermal expansion anomalies of R{sub 2}Fe{sub 14}B and R{sub 2}Fe{sub 17}C{sub x} (x = 0,2) (R = Y, Nd, Gd, Tb, Er) stoichiometric compounds are studied with high-energy synchrotron X-ray powder diffraction using Debye-Schemer geometry in temperature range 10K to 1000K. Large spontaneous magnetostriction up to their Curie temperatures (T{sub c}) is observed. The a-axes show relatively larger invar effects than c-axes in the R{sub 2}Fe{sub 14}B compounds whereas the R{sub 2}Fe{sub 17}C{sub x} show the contrary anisotropies. The iron sub-lattice is shown to dominate the spontaneous magnetostriction of the compounds. The contribution of the rare earth sublattice is roughly proportional to the spin magnetic moment of the rare earth in the R{sub 2}Fe{sub 14}B compounds but in R{sub 2}Fe{sub 17}C{sub x}, the rare earth sub-lattice contribution appears more likely to be dominated by the local bonding. The calculation of spontaneous magnetostrain of bonds shows that the bonds associated with Fe(j2) sites in R{sub 2}Fe{sub 14}B and the dumbbell sites in R{sub 2}Fe{sub 17}C{sub x} have larger values, which is strongly related to their largest magnetic moment and Wigner-Seitz atomic cell volume. The roles of the carbon atoms in increasing the Curie temperatures of the R{sub 2}Fe{sub 17} compounds are attributed to the increased separation of Fe hexagons. The R{sub 2}Fe{sub 17} and R{sub 2}Fe{sub 14}B phases with magnetic rare earth ions also show anisotropies of thermal expansion above T{sub c}. For R{sub 2}Fe{sub 17} and R{sub 2}Fe{sub 14}B the a{sub a}/a{sub c} > 1 whereas the anisotropy is reversed with the interstitial carbon in R{sub 2}Fe{sub 17}. The average bond magnetostrain is shown to be a possible predictor of the magnetic moment of Fe sites in the compounds. Both of the theoretical and phenomenological models on spontaneous magnetostriction are discussed and a Landau model on the spontaneous magnetostriction is proposed.

  18. Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor

    NASA Astrophysics Data System (ADS)

    Som, S.; Choubey, A.; Sharma, S. K.

    2012-09-01

    This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y2-x-yGdx) O3: Euy3+ (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for 5D0→7F2 transitions and the photoluminescence excitation spectra show a broad band located around 220-270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 °C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.

  19. Determination of boron isotope ratios and rare earth elements by ETC-ICP-MS

    SciTech Connect

    Richner, P.; Wanner, B.

    1994-12-31

    Matrix modifiers play an important role in ETV-ICP-MS as they do in GF-AAS. In ETV-ICP-MS matrix modifiers, which are used as carriers for the analyte from the furnace to the ICP, enhance both sensitivity and reproducibility. Furthermore, matrix modifiers can be used to bring the element investigated into a specific compound with certain properties. The graphite furnace plays the role of a chemical reactor. In GF-AAS volatile elements are transformed into refractory compounds in order to prevent loss during the ashing stage of the temperature program. In ETV-ICP-MS, refractory elements can be transformed into volatile compounds with the help of matrix modifiers. Both B and the REE`s are known to form refractory compounds such as carbides and oxides which make them difficult to analyze by GF-AAS. However, halides of both B and the REE`s have boiling points below 2000{degrees}C. If these compounds are formed within the furnace the analyte elements can then be effectively transported into the ICP where they will be consequentially atomized and ionized. The technique will be applied to the determination of boron isotope ratios in a tracer study of the boron metabolism in vegetables, using NH4F as a matrix modifier, and the determination of REE`s in geological samples, with CHF{sub 3} as matrix modifier.

  20. Recent μSR Studies of Insulating Rare-Earth Pyrochlore Magnets

    NASA Astrophysics Data System (ADS)

    Dalmas de Réotier, Pierre; Maisuradze, Alexander; Yaouanc, Alain

    2016-09-01

    We review recent muon spin rotation and relaxation (μSR) studies performed on insulating magnetic systems crystallizing in the pyrochlore structure and for which the only magnetic species are rare-earth ions. Different points are discussed: attempts to measure directly the magnetic charge of the monopoles in classical spin-ice systems, the frequency shift of Tb2Ti2O7 at 20 mK which is at variance with expectation for a quantum spin-ice system, and the detection of unexpected short-range magnetic correlations in the magnetically ordered state of Yb2Ti2O7, Yb2Sn2O7, and Er2Ti2O7. An explanation for the ubiquitous persistent spin dynamics is given in terms of spin loops. Their description requires to go beyond mean-field, i.e., at least Gaussian fluctuations have to be taken into account. While in the magnetically ordered state a spontaneous field is detected for some systems, such as Nd2Sn2O7, it is absent for others, such as Yb2Sn2O7. A theoretical work suggests this feature to be related to the magnetic structure adopted by the magnetic moments. A μSR work on praseodymium-based pyrochlore compounds is also discussed. Normal rare-earth spinel systems for which the magnetic ions form a network of corner sharing regular tetrahedra as in the pyrochlores are finally mentioned.

  1. A high pressure low temperature study on rare earth compounds: Semiconductor to metal transition

    NASA Astrophysics Data System (ADS)

    Neuenschwander, J.; Wachter, P.

    1990-01-01

    This work studies the pressure induced semiconductor to metal transition (SMT) in several rare earth compounds. This SMT is accompanied by a valence instability. Single crystalline semiconducting TmSe 1- xTe x, Tm 1- xEu xSe and SmS 1- xSe x alloys are investigated under high pressure at low temperatures. Measurements of electrical resistivity, magnetic susceptibility, neutron diffraction, volume and optical properties are presented and discussed. A very unusual peak structure in the resistivity-pressure relation of TmSe 1- xTe x at low temperatures is observed. A discussion of the novel feature involves the concept of the excitonic insulator and f-d hybridization. The magnetic behavior of the Tm and Eu based compounds is significantly influenced by the SMT. This is thought to be mainly due to the additional coupling between the rare earth moments via free carriers which are present in the metallic state. In SmS 1- xSe x a considerable softening of the lattice is observed before the valence transition occurs. It is speculated that Poisson's ratio might become negative already in the semiconducting state.

  2. A high pressure low temperature study on rare earth compounds: Semiconductor to metal transition

    NASA Astrophysics Data System (ADS)

    Neuenschwander, J.; Wachter, P.

    1989-12-01

    This work studies the pressure induced semiconductor to metal transition (SMT) in several rare earth compounds. This SMT is accompanied by a valence instability. Single crystalline semiconducting TmSe1-xTex, Tm1-xEuxSe and SmS1-xSex alloys are investigated under high pressure at low temperatures. Measurements of electrical resistivity, magnetic susceptibility, neutron diffraction, volume and optical properties are presented and discussed. A very unusual peak structure in the resistivity-pressure relation of TmSe1-xTex at low temperatures is observed. A discussion of the novel feature involves the concept of the excitonic insulator and f-d hybridization. The magnetic behavior of the Tm and Eu based compounds is significantly influenced by the SMT. This is thought to be mainly due to the additional coupling between the rare earth moments via free carriers which are present in the metallic state. In SmS1-xSex a considerable softening of the lattice is observed before the valence transition occurs. It is speculated that Poisson's ratio might become negative already in the semiconducting state.

  3. Rare earth element and stable isotope (O, S) geochemistry of barite from the Bijgan deposit, Markazi Province, Iran

    NASA Astrophysics Data System (ADS)

    Ehya, Farhad

    2012-01-01

    The Bijgan barite deposit, which is located northeast of Delijan in Markazi Province of Iran, occurs as a small lenticular body at the uppermost part of an Eocene volcano-sedimentary rock unit. The presence of fossiliferous and carbonaceous strata suggests that the host rocks were deposited in a quiet marine sedimentary environment. Barite, calcite, iron oxides and carbonaceous clay materials are found as massive patches as well as thin layers in the deposit. Barite is marked by very low concentrations of Sr (1-2%) and total amounts of rare earth elements (REEs) (6.25-17.39 ppm). Chondrite-normalized REE patterns of barite indicate a fractionation of light REEs (LREEs) from La to Sm, similar to those for barite of different origins from elsewhere. The LaCN/LuCN ratios and chondrite-normalized REE patterns reveal that barite in the Bijgan deposit is enriched in LREE relative to heavy rare earth elements (HREEs). The similarity between the Ce/La ratios in the barite samples and those found in deep-sea barite supports a marine origin for barite. Lanthanum and Gd exhibit positive anomalies, which are common features of marine chemical sediments. Cerium shows a negative anomaly in most samples that was inherited from the negative Ce anomaly of hydrothermal fluid that mixed with seawater at the time of barite precipitation. The δ18O values of barites show a narrow range of 9.1-11.4‰, which is close to or slightly lower than that of contemporaneous seawater at the end of the Eocene. This suggests a contribution of oxygen from seawater in the barite-forming solution. The δ34S values of barites (9.5-15.3‰) are lower than that of contemporaneous seawater, which suggests a contribution of magmatic sulfur to the ore-forming solution. The oxygen and sulfur isotope ratios indicate that submarine hydrothermal vent fluids are a good analog for solutions that precipitated barite, due to similarities in the isotopic composition of the sulfates. The available data including

  4. Transmission electron microscopic study of pyrochlore to defect-fluorite transition in rare-earth pyrohafnates

    SciTech Connect

    Karthik, Chinnathambi; Anderson, Thomas J.; Gout, Delphine; Ubic, Rick

    2012-10-15

    A structural transition in rare earth pyrohafnates, Ln{sub 2}Hf{sub 2}O{sub 7} (Ln=Y, La, Pr, Nd, Tb, Dy, Yb and Lu), has been identified. Neutron diffraction showed that the structure transforms from well-ordered pyrochloric to fully fluoritic through the lanthanide series from La to Lu with a corresponding increase in the position parameter x of the 48f (Fd3{sup Macron }m) oxygen site from 0.330 to 0.375. As evidenced by the selected area electron diffraction, La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} exhibited a well-ordered pyrocholoric structure with the presence of intense superlattice spots, which became weak and diffuse (in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}) before disappearing completely as the series progressed towards the Lu end. High resolution electron microscopic studies showed the breakdown of the pyrochlore ordering in the form of antiphase domains resulting in diffused smoke-like superlattice spots in the case of Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. - Graphical abstract: Transmission electron microscopic studies showed the ordered pyrochlore to defect fluorite transition in rare-earth pyrohafnates to occur via the formation of anti-phase domains to start with. Highlights: Black-Right-Pointing-Pointer Pyrochlore to fluorite structural transition in rare earth pyrohafnates. Black-Right-Pointing-Pointer La{sub 2}Hf{sub 2}O{sub 7}, Pr{sub 2}Hf{sub 2}O{sub 7} and Nd{sub 2}Hf{sub 2}O{sub 7} showed well ordered pyrochlore structure. Black-Right-Pointing-Pointer Short range ordering in Dy{sub 2}Hf{sub 2}O{sub 7} and Tb{sub 2}Hf{sub 2}O{sub 7}. Black-Right-Pointing-Pointer Break down of pyrochlore ordering due to antiphase boundaries. Black-Right-Pointing-Pointer Rest of the series showed fluoritic structure.

  5. Photo-neutron cross-section calculations of 142,143,144,145,146,150Nd rare-earth isotopes for ( γ, n) reaction

    NASA Astrophysics Data System (ADS)

    Kaplan, A.; Özdoğan, H.; Aydin, A.; Tel, E.

    2014-11-01

    The theoretical photo-neutron cross sections for ( γ, n) reaction have been calculated on 142,143,144,145,146,150Nd rare-earth isotopes at photon energies of 8-23 MeV using the PCROSS, TALYS 1.2, and EMPIRE 3.1 computer codes. TALYS 1.2 two-component exciton model and EMPIRE 3.1 exciton model has been used to calculate the pre-equilibrium photo-neutron cross sections. PCROSS Weisskopf-Ewing model has been used for the reaction equilibrium cross-section calculations. The obtained cross sections have been compared with each other and against the experimental values existing in the EXFOR database. Generally, pre-equilibrium model cross-section calculations are in good agreement with the experimental data for all reactions along the incident photon energy in this study.

  6. Neutron Scattering Studies of Structural and Magnetic Properties of Rare-Earth - COPPER(6) Compounds

    NASA Astrophysics Data System (ADS)

    Vrtis, Mary Louise

    The structure of the RECu(,6) series (RE = La,Ce,Pr,Nd) has been studied at various temperatures from 10 K to 573 K by time-of-flight neutron powder diffraction. The high temperature orthorhombic cell transforms to a monoclinic cell at a temperature determined by the rare earth ion. Rietveld structural refinements at each temperature give details of the structural distortion associated with the transition. The space groups and the temperature dependence of the monoclinic strain for each compound are consistent with a second order phase transition driven by a soft acoustic phonon mode. By comparing the structural transition in these compounds, we see that the force constants acting on the rare-earth ion in this structure are significantly different for cerium, presumably due to its more delocalized 4f electrons. Polarized neutron scattering techniques have beem used to study the spatial distribution and temperature dependence of the magnetization induced by an externally applied magnetic field in a single crystal of CeCu(,6). This heavy fermion compound remains paramagnetic and non-superconducting down to (TURN)10 mK. The measurements were performed at 4.2 K and 92 K in an applied magnetic field of 50 KGauss. We found that the induced magnetization is predominately of 4f electronic character and exhibits Pauli-like behavior in the 4.2 K to 92 mK temperature region. The value of (chi)(0,0), which was obtained from extrapolating the form factor to the forward direction, is somewhat smaller than the bulk susceptibility measured in the same sample.

  7. {beta}-decay half-lives of new neutron-rich rare-earth isotopes {sup 159}Pm,{sup 162}Sm, and {sup 166}Gd

    SciTech Connect

    Ichikawa, S.; Asai, M.; Tsukada, K.; Nagame, Y.; Haba, H.; Shibata, M.; Sakama, M.; Kojima, Y.

    2005-06-01

    The new neutron-rich rare-earth isotopes {sup 159}Pm, {sup 162}Sm, and {sup 166}Gd produced in the proton-induced fission of {sup 238}U were identified using the JAERI on-line isotope separator (JAERI-ISOL) coupled to a gas-jet transport system. The half-lives of {sup 159}Pm, {sup 162}Sm, and {sup 166}Gd were determined to be 1.5 {+-} 0.2, 2.4 {+-} 0.5, and 4.8 {+-} 1.0 s respectively. The partial decay scheme of {sup 166}Gd was constructed from {gamma}{gamma}-coincidence data. A more accurate half-life value of 25.6 {+-} 2.2 s was obtained for the previously identified isotope {sup 166}Tb. The half-lives measured in the present study are in good agreement with the theoretical predictions calculated by the second generation of the gross theory with the atomic masses evaluated by Audi and Wapstra.

  8. Hawaiian imprint on dissolved Nd and Ra isotopes and rare earth elements in the central North Pacific: Local survey and seasonal variability

    NASA Astrophysics Data System (ADS)

    Fröllje, Henning; Pahnke, Katharina; Schnetger, Bernhard; Brumsack, Hans-Jürgen; Dulai, Henrietta; Fitzsimmons, Jessica N.

    2016-09-01

    Dissolved neodymium isotopes (143Nd/144Nd, expressed as εNd) and rare earth elements (REEs) have the potential to trace the provenance of lithogenic material as well as water masses. The central North Pacific is poorly investigated with respect to its Nd isotope signature and REE cycling, and little is known about the contributions of volcanic islands, such as Hawaii, relative to dust input from Asian deserts to the surface water REE budgets. Here we present dissolved Nd isotope and REE data along with long-lived radium isotope activities from Hawaii Ocean Time-Series Station ALOHA and coastal waters from Oahu, sampled for a GEOTRACES process study in February 2011. The data are supplemented with seasonal samples from ALOHA. Our results show a clear influence of the Hawaiian Islands on the coastal ocean and surface waters at ALOHA during February, expressed by higher surface water Ra activities, radiogenic surface εNd (εNd = +1.4 to -1.0), and elevated Eu anomalies (Eu/Eu∗ ⩾ 1.3). Seasonal cycles of Asian dust deposition most likely contribute to the seasonal εNd variability of surface waters at ALOHA, as suggested by more negative εNd and the lack of Eu anomalies in summer. Neodymium isotopes in the intermediate and deep water column at ALOHA trace typical North Pacific water masses, such as North Pacific Intermediate Water and North Pacific Deep Water. We suggest that a radiogenic εNd excursion in 1000-2000 m water depth, observed in various North Pacific profiles, is controlled by advection of a modified Upper Circumpolar Deep Water or North Equatorial Pacific Intermediate Water. We further present an updated average εNd signature of -3.5 ± 0.5 for North Pacific Deep Water and show that REE patterns of deep waters at ALOHA are dominantly controlled by vertical processes.

  9. Rare earth magnetism in CeFeAsO: a single crystal study

    NASA Astrophysics Data System (ADS)

    Jesche, A.; Krellner, C.; de Souza, M.; Lang, M.; Geibel, C.

    2009-10-01

    Single crystals of CeFeAsO, large enough to study the anisotropy of the magnetic properties, were grown by an optimized Sn-flux technique. The high quality of our single crystals is apparent from the highest residual resistivity ratio (RRR)≈12, reported among undoped RFeAsO compounds (R=rare earth) as well as sharp anomalies in resistivity, specific heat, C(T), and thermal expansion at the different phase transitions. The magnetic susceptibility χ(T) presents a large easy-plane anisotropy consistent with the lowest crystal electric field doublet having a dominant Γ6 character. Curie-Weiss-like susceptibilities for magnetic field parallel and perpendicular to the crystallographic c-axis do not reveal an influence of a staggered field on the Ce site induced by magnetic ordering of the Fe. Furthermore, the standard signatures for antiferromagnetic order of Ce at TN4f=3.7 K observed in χ(T) and C(T) are incompatible with a Zeeman splitting Δ≈10 K of the CEF ground state doublet at low temperature due to the Fe-magnetic order as previously proposed. Our results can be reconciled with the earlier observation by assuming a comparatively stronger effect of the Ce-Ce exchange leading to a reduction of this Zeeman splitting below 15 K.

  10. Neutron scattering studies of the structures and vibrational dynamics of the hcp rare earth trihydrides

    SciTech Connect

    Udovic, T.J.; Rush, J.J.; Huang, Q.

    1998-12-31

    Both neutron-powder-diffraction and neutron-vibrational-spectroscopy studies have been undertaken to characterize the structures and vibrational dynamics of a variety of bulk hcp rare-earth trihydrides RH{sub 3} (where R = Y, Tb, Dy, Ho, Er, and Lu). The results are consistent with P{bar 3}c1 as the prevalent structural symmetry for all trihydrides investigated except LuH{sub 3}. Corresponding results for LuH{sub 3} are suggestive of an atypical arrangement of H atoms. Preliminary analyses of LuD{sub 3} diffraction patterns indicate that the main peaks can be satisfactorily modeled using P6{sub 3}/mmc symmetry with a reduced unit cell, although numerous minor diffraction features and a relatively unusual vibrational spectrum hint at either a more complex structure or an unknown secondary phase. The deviations from P{bar 3}c1 symmetry are likely a consequence of the relatively smaller metal-hydrogen bond distances for LuH{sub 3}.

  11. Magneto-Optical Studies of Rare Earth Doped III-V Nitrides

    NASA Astrophysics Data System (ADS)

    Mitchell, Brandon; Woodward, Nathaniel; Poplawsky, Jonathan; Dierolf, Volkmar; Jiang, H. X.

    2012-02-01

    We investigated the site selective optical and magneto-optical properties of Neodymium doped Gallium and Aluminum Nitride and Erbium doped Gallium Nitride. For our current study, we applied magnetic fields parallel and antiparallel to the C-axis of the crystals and observed the resulting Zeeman splitting both in excitation and emission transitions. On the basis of these measurements, we determined the effective g-factors of all the states involved in the Nd^3+ transitions. For erbium doping, we observed the Zeeman splitting of the ^4I13/2 and ^4I15/2 levels. Due to small crystal field splitting and large Zeeman splitting, the assignment of levels and corresponding g-factors is very complex. In addition, we observed unexpected asymmetries in the emission intensities when we compared the spectra obtained for fields parallel and antiparallel to the growth direction. The degree of this asymmetry depends on the substrate material and is unambiguously related to the strain and resulting internal fields that are induced by lattice mismatch. The asymmetry behavior parallels the ferromagnetic behavior that is induced by the rare earth ions in GaN and hence our observation suggests that magnetization can be controlled by strain.

  12. Study on the activated laser welding of ferritic stainless steel with rare earth elements yttrium

    NASA Astrophysics Data System (ADS)

    Wang, Yonghui; Hu, Shengsun; Shen, Junqi

    2015-10-01

    The ferritic stainless steel SUS430 was used in this work. Based on a multi-component activating flux, composed of 50% ZrO2, 12.09 % CaCO3, 10.43 % CaO, and 27.49 % MgO, a series of modified activating fluxes with 0.5%, 1%, 2%, 5%, 10%, 15%, and 20% of rare earth (RE) element yttrium (Y) respectively were produced, and their effects on the weld penetration (WP) and corrosion resistant (CR) property were studied. Results showed that RE element Y hardly had any effects on increasing the WP. In the FeCl3 spot corrosion experiment, the corrosion rates of almost all the samples cut from welded joints turned out to be greater than the parent metal (23.51 g/m2 h). However, there was an exception that the corrosion rate of the sample with 5% Y was only 21.96 g/m2 h, which was even better than parent metal. The further Energy Dispersive Spectrometer (EDS) test showed the existence of elements Zr, Ca, O, and Y in the molten slag near the weld seam while none of them were found in the weld metal, indicating the direct transition of element from activating fluxes to the welding seam did not exist. It was known that certain composition of activating fluxes effectively restrain the loss of Cr element in the process of laser welding, and as a result, the CR of welded joints was improved.

  13. Design and construction of the RPI enhanced thermal neutron target and thermal cross-section measurements of rare earth isotopes

    SciTech Connect

    Danon, Y.

    1993-12-31

    In order to perform thermal cross section measurements the neutron flux in the RPI linac facility had to be increased. A new Enhanced Thermal Target (ETT) was designed, constructed and used. The thermal flux of the new target was up to six times higher than the previous RPI Bounce Target (BT). The ETT was also designed to be coupled to a cold moderator that will give an additional flux increase in the MeV energy region. Design calculations for the cold moderator including neutronics and cryogenics are also presented. The ETT was used for transmission measurements of rare earth metal samples of Ho, Er and Tm and enriched oxide samples of {sup 166}Er{sub 2}O{sub 3} and {sup 167}Er{sub 2}O{sub 3} in the energy range from 0.001 eV to 20 eV. The measurements were done with a 15 meter time-of-flight spectrometer and provide high quality data in the thermal and subthermal region as well as in the low energy resonance region. These measurements allowed a systematic study of paramagnetic scattering for the materials with Z = 67, 68 and 69 for which the paramagnetic scattering has the strongest effect. The paramagnetic scattering was inferred from the total cross section and compared to theoretical results and other experiments.

  14. Preliminary study on using rare earth elements to trace non-point source phosphorous loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The environmental fate of phosphorus (P) is of concern as P is a primary cause of freshwater eutrophication. Rare earth elements (REEs) have been successfully used in the analysis of soil erosion and pollutant sources, as well as in the analysis of mineral genesis. To better understand the potential...

  15. Use of NURE HSSR data for resource studies of rare earth minerals

    SciTech Connect

    Price, V. Jr.; Ferguson, R.B.; Griffin, V.S. Jr.

    1980-01-01

    SRL is conducting geochemical surveys in 37 eastern and western states of USA. The sampling pattern used is described. The utility of the NURE data for outlining areas containing rare-earth minerals in streams sediments is illustrated using monazite in the southeastern US (TN, NC, SC, and GA) as an example. 4 figures. (DLC)

  16. SEDIMENT REWORKING AND TRANSPORT IN EASTERN LAKE SUPERIOR: IN SITU RARE EARTH ELEMENT TRACER STUDIES

    EPA Science Inventory

    A rare earth element (REE) tracer pellet was deployed at the floor of the Ile Parisienne basin of eastern Lake Superior to measure representative sediment reworking and transport processes in the benthic boundary layer of the prnfundal Great Lakes. Samarium oxide, a high neutron-...

  17. Geochemical Fingerprinting of Trans-Atlantic African Dust Based on Radiogenic Sr-Nd-Hf Isotopes and Rare Earth Element Anomalies

    NASA Astrophysics Data System (ADS)

    Pourmand, A.; Prospero, J. M.; Sharifi, A.

    2014-12-01

    Mineral dust is an important component of Earth's climate system and biogeochemical cycles on a global scale. In order to understand the relationship between climate processes in the source areas and the properties of aerosols at distant receptor sites, we must be able to identify the source provenance of dust. Here we present a multiproxy study that characterizes the temporal variability in the geochemical composition of long-range African dust (LRAD) collected between 2003 and 2011 in the trade winds on the Caribbean island of Barbados. We find systematic differences between Sr-Nd-Hf isotopic composition and rare earth element anomalies of individual dust events and evidence of seasonal shifts in dust source activity and transport. These results indicate that coherent geochemical source signatures of LRAD can be preserved even after transport across thousands of kilometers. We investigated the possibility of identifying the potential source areas through comparisons with literature data. However, these data are almost entirely based on measurements of soil and sediment samples; this could lead to biases because of soil-aerosol particle size and composition differences. Nonetheless, our data suggest that many samples are linked to sources in Mali and sub-Saharan regions. Radiogenic Nd-Hf composition of aerosols can potentially be a useful proxy to study the proximity of mineral dust sources to depositional sites. In order to establish firmer links between LRAD and dust source areas, however, we require much more data on the geochemical composition of aerosols from potential source areas in North Africa.

  18. Geochemical Fingerprinting of Trans-Atlantic African Dust Based on Radiogenic Sr-Nd-Hf Isotopes and Rare Earth Element Anomalies

    NASA Astrophysics Data System (ADS)

    Pourmand, Ali; Prospero, Joseph; Sharifi, Arash

    2015-04-01

    Mineral dust is an important component of Earth's climate system and biogeochemical cycles on a global scale. In order to understand the relationship between climate processes in the source areas and the properties of aerosols at distant receptor sites, we must be able to identify the source provenance of dust. Here we present a multiproxy study that characterizes the temporal variability in the geochemical composition of long-range African dust (LRAD) collected between 2003 and 2011 in the trade winds on the Caribbean island of Barbados. We find systematic differences between Sr-Nd-Hf isotopic composition and rare earth element anomalies of individual dust events and evidence of seasonal shifts in dust source activity and transport. These results indicate that coherent geochemical source signatures of LRAD can be preserved even after transport across thousands of kilometers. We investigated the possibility of identifying the potential source areas through comparisons with literature data. However, these data are almost entirely based on measurements of soil and sediment samples; this could lead to biases because of soil-aerosol particle size and composition differences. Nonetheless, our data suggest that many samples are linked to sources in Mali and sub-Saharan regions. Radiogenic Nd-Hf composition of aerosols can potentially be a useful proxy to study the proximity of mineral dust sources to depositional sites. In order to establish firmer links between LRAD and dust source areas, however, we require much more data on the geochemical composition of aerosols from potential source areas in North Africa.

  19. Study of Suspended Solid in Constructed Wetland Using Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Xiao, Z. X. Z.

    2015-12-01

    Constructed wetland (CW) is one of the commonly used technologies in wastewater treatment. By means of the biochemical interactions among water, microscopic organism, aquatic plant and sediments in natural environment CW can remove biochemical oxygen demand (BOD), ammoniacal nitrogen, suspended solid (SS) and heavy metals. In this study, rare earth elements (REEs) were used as a natural tracer for the study of SS in the CW. The studied CW, Hebao Island free water surface CW, is located in Chiayi County, south Taiwan. The CW is designed for removing SS and BOD due to the pollution from livestock farms in the upstream area. However, the removal of SS was not effective. In some cases, the SS concentration of inflow is even higher than that of outflow. That the sediments on the slope were flushed into the CW was considered as the main problem. After all the refinement, the issue has not improved yet. In the study, the water samples were filtered with 1.0μm filter paper. Then, part of water samples were digested by ultrapure nitric acid to obtain the water representing the total of dissolved and suspended matters. The others were filtered by 0.1μm filter, which represent the matters in dissolved form. REEs and most of metals were subsequently measured with ICP-MS. REEs generally have a unique source and would fractionate in certain regular patterns during biochemical reactions due to lanthanide contraction. They can be an excellent natural tracer in the environmental researches. After normalized by North American Shale Composite, the REEs pattern for the samples with the total of dissolved and suspended matters is characterized by a middle REE (MREE) enrichment and light REE (LREE) depletion. According to the previous theoretical studies, the MREE enrichment could be achieved by a selected adsorption of MREEs by organic matters, which is generally humic substance in natural surface water. It is suggested that the refinement of removal efficiency of SS should focus on

  20. Electronic structure of rare-earth doped SrFBiS2 superconductors from photoemission spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Mishra, P.; Lohani, H.; Jha, Rajveer; Awana, V. P. S.; Sekhar, B. R.

    2016-06-01

    The electronic structure study of the Rare Earth (La, Ce) doped SrFBiS2 superconductors using valence band photoemission in conjugation with the band structure calculations have been presented. The spectral features shift towards higher binding energy, consistent with the electron doping, for the doped compounds. An enhanced metallicity in addition to the shift in the Fermi level towards the conduction band occurs for the Rare Earth (RE) doped compounds. Further, the degeneracy of bands along X-M direction at valence band maximum (VBM) and conduction band minimum (CBM) is lifted due to RE doping. An enhanced spectral weight near EF accompanied by a decrease in density of states at higher binding energy occurs for the doped compounds. This unusual spectral weight shift is substantiated by the change in Fermi surface topology and reduced distortion of Bi-S plane for the doped compounds.

  1. Luminescence studies of rare-earth doped and Co-doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Vasugi, G.; Thamizhavel, A.; Girija, E. K.

    2012-06-01

    Rare-earth doped and co-doped hydroxyapatite (Eu: HA, Eu-Y: HA) were prepared by wet precipitation method by using CTAB as the organic modifier. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Photoluminescence spectra (PL). Upon excitation at 350 nm the samples Eu: HA and Eu-Y: HA shows the emission band in the visible region, which makes it suitable for potential application such as bio-imaging.

  2. Rare earth gas laser

    DOEpatents

    Krupke, W.F.

    1975-10-31

    A high energy gas laser with light output in the infrared or visible region of the spectrum is described. Laser action is obtained by generating vapors of rare earth halides, particularly neodymium iodide or, to a lesser extent, neodymium bromide, and disposing the rare earth vapor medium in a resonant cavity at elevated temperatures; e.g., approximately 1200/sup 0/ to 1400/sup 0/K. A particularly preferred gaseous medium is one involving a complex of aluminum chloride and neodymium chloride, which exhibits tremendously enhanced vapor pressure compared to the rare earth halides per se, and provides comparable increases in stored energy densities.

  3. Re-evaluation of interferences of doubly charged ions of heavy rare earth elements on Sr isotopic analysis using multi-collector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yang, Yue-Heng; Wu, Fu-Yuan; Xie, Lie-Wen; Chu, Zhu-Yin; Yang, Jin-Hui

    2014-07-01

    We re-evaluate the interference of doubly charged heavy rare earth elements during Sr isotopic analysis using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). A series of mixed solutions of standard reference material SRM 987, rare earth elements, and Sr separated from rock reference materials are measured to assess the influence of isobaric interferences on the MC-ICP-MS analysis of Sr isotopes. After sample dissolution, conventional cation-exchange chromatography is employed for Sr purification of rock reference materials prior to MC-ICP-MS measurement. It has been demonstrated that if the natural abundances of Er and Yb are used to correct for doubly charged ion interferences on Sr, an overcorrection results. In contrast, the use of measured doubly charged ion ratios results in an accurate and precise correction of isobaric interference. This finding is confirmed by analytical results for several certified reference materials from mafic (basaltic) to felsic (granitic) silicate rocks. It is noteworthy that, because Er is more prone to doubly charged ion formation, it dominates over Yb doubly charged ions as an interference source.

  4. Crystallization studies on rare-earth co-doped fluorozirconate-based glasses

    PubMed Central

    Paßlick, C.; Johnson, J.A.; Schweizer, S.

    2013-01-01

    This work focuses on the structural changes of barium chloride (BaCl2) nanoparticles in fluorochlorozirconate-based glass ceramics when doped with two different luminescent activators, in this case rare-earth (RE) ions, and thermally processed using a differential scanning calorimeter. In a first step, only europium in its divalent and trivalent oxidation states, Eu2+ and Eu3+, is investigated, which shows no significant influence on the crystallization of hexagonal phase BaCl2. However, higher amounts of Eu2+ increase the activation energy of the phase transition to an orthorhombic crystal structure. In a second step, nucleation and nanocrystal growth are influenced by changing the structural environment of the glasses by co-doping with Eu2+ and trivalent Gd3+, Nd3+, Yb3+, or Tb3+, due to the different atomic radii and electro-negativity of the co-dopants. PMID:23745010

  5. Structural, electronic and mechanical properties of rare earth nitride-ErN: A first principles study

    SciTech Connect

    Murugan, A.; Rajeswarapalanichamy, R. Santhosh, M.; Priyanga, G. Sudha; Kanagaprabha, S.; Iyakutti, K.

    2015-06-24

    The structural, electronic and mechanical properties of rare earth nitride ErN is investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure ErN is stable in the ferromagnetic state with NaCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that ErN is half metallic at normal pressure. A pressure-induced structural phase transition from NaCl (B1) to CsCl (B2) phase is observed in ErN. Ferromagnetic to non magnetic phase transition is predicted in ErN at high pressure.

  6. Study on the electrochemical extraction of rare earth elements from FLINAK

    SciTech Connect

    Long, Dewu; Huang, Wei; Jiang, Feng; Tian, Lifang; Li, Qingnuan

    2013-07-01

    Electrochemical behaviors of rare earth elements, such as NdF{sub 3}, GdF{sub 3}, SmF{sub 3}, YF{sub 3}, and EuF{sub 3}, were investigated in a LiF-NaF-KF (46.5-11.5-42.0 mol %, FLINAK, m. p. 454 Celsius degrees) solvent. The results indicated that it is possible to extract Nd, Gd and Y directly by electrochemical deposition since the reductions of those cations to metal are located in the electrochemical window of the FLINAK eutectic, while the reductions of Sm and Eu metal are out of the range of the medium. Subsequently electro-deposition of Nd was carried out with two kinds of cathodic materials, namely, an inert cathode, Pt, and a reactive electrode, Cu. The collected products were characterized by various techniques revealing that a Nd-rich product was obtained. (authors)

  7. An x-ray absorption spectroscopic study of the electronic structure and bonding of rare-earth orthoferrites.

    PubMed

    Hayes, J R; Grosvenor, A P

    2011-11-23

    Rare-earth orthoferrites, REFeO₃ (RE D rare earth; Y), are tremendously adaptable compounds that are being investigated for use in a wide variety of applications including gas sensors, vehicle catalytic converters, and solid-oxide fuel cells. They also exhibit interesting magnetic properties such as high-temperature antiferromagnetism, making them useful for data storage applications. The compounds adopt a distorted perovskite-type structure where the tilt angle of the octahedra increases (Fe-O-Fe bond angle decreases) as the size of the rare-earth atom decreases. Despite intensive study of the physical properties of these compounds, very few studies have investigated how the bonding and electronic structure of these systems change with substitution of the RE. X-ray absorption near-edge spectroscopy (XANES) is a technique well-suited for such a study, and, in view of this, Fe L-, Fe K- and O K-edge spectra from a series of REFeO₃ compounds (RE D La, Pr, Nd, Sm, Eu, Gd, Ho, Yb, Y) have been collected, and are presented here. Fe L-edge spectra show that Fe is octahedrally coordinated and that the Fe-centered octahedra do not appear to distort with changes in the identity of the RE. The Fe K-edge spectra contain an intersite hybrid peak, which is an ill-studied feature that is attributed to non-local transitions of 1s electrons to 3d states on the next-nearest-neighbor atom that are hybridized with 4p states on the absorbing atom through O 2p states. In this study, it is shown that the intensity of this feature is strongly dependent on the Fe-O-Fe bond angle; the lower the Fe-O-Fe bond angle, the less intense the intersite hybrid peak is. PMID:22056809

  8. An x-ray absorption spectroscopic study of the electronic structure and bonding of rare-earth orthoferrites

    NASA Astrophysics Data System (ADS)

    Hayes, J. R.; Grosvenor, A. P.

    2011-11-01

    Rare-earth orthoferrites, REFeO3 (RE=rare earth; Y), are tremendously adaptable compounds that are being investigated for use in a wide variety of applications including gas sensors, vehicle catalytic converters, and solid-oxide fuel cells. They also exhibit interesting magnetic properties such as high-temperature antiferromagnetism, making them useful for data storage applications. The compounds adopt a distorted perovskite-type structure where the tilt angle of the octahedra increases (Fe-O-Fe bond angle decreases) as the size of the rare-earth atom decreases. Despite intensive study of the physical properties of these compounds, very few studies have investigated how the bonding and electronic structure of these systems change with substitution of the RE. X-ray absorption near-edge spectroscopy (XANES) is a technique well-suited for such a study, and, in view of this, Fe L-, Fe K- and O K-edge spectra from a series of REFeO3 compounds (RE=La, Pr, Nd, Sm, Eu, Gd, Ho, Yb, Y) have been collected, and are presented here. Fe L-edge spectra show that Fe is octahedrally coordinated and that the Fe-centered octahedra do not appear to distort with changes in the identity of the RE. The Fe K-edge spectra contain an intersite hybrid peak, which is an ill-studied feature that is attributed to non-local transitions of 1s electrons to 3d states on the next-nearest-neighbor atom that are hybridized with 4p states on the absorbing atom through O 2p states. In this study, it is shown that the intensity of this feature is strongly dependent on the Fe-O-Fe bond angle; the lower the Fe-O-Fe bond angle, the less intense the intersite hybrid peak is.

  9. An x-ray absorption spectroscopic study of the electronic structure and bonding of rare-earth orthoferrites

    SciTech Connect

    Hayes, J.R.; Grosvenor, A.P.

    2011-11-07

    Rare-earth orthoferrites, REFeO{sub 3} (RE=rare earth; Y), are tremendously adaptable compounds that are being investigated for use in a wide variety of applications including gas sensors, vehicle catalytic converters, and solid-oxide fuel cells. They also exhibit interesting magnetic properties such as high-temperature antiferromagnetism, making them useful for data storage applications. The compounds adopt a distorted perovskite-type structure where the tilt angle of the octahedra increases (Fe-O-Fe bond angle decreases) as the size of the rare-earth atom decreases. Despite intensive study of the physical properties of these compounds, very few studies have investigated how the bonding and electronic structure of these systems change with substitution of the RE. X-ray absorption near-edge spectroscopy (XANES) is a technique well-suited for such a study, and, in view of this, Fe L-, Fe K- and O K-edge spectra from a series of REFeO{sub 3} compounds (RE=La, Pr, Nd, Sm, Eu, Gd, Ho, Yb, Y) have been collected, and are presented here. Fe L-edge spectra show that Fe is octahedrally coordinated and that the Fe-centered octahedra do not appear to distort with changes in the identity of the RE. The Fe K-edge spectra contain an intersite hybrid peak, which is an ill-studied feature that is attributed to non-local transitions of 1s electrons to 3d states on the next-nearest-neighbor atom that are hybridized with 4p states on the absorbing atom through O 2p states. In this study, it is shown that the intensity of this feature is strongly dependent on the Fe-O-Fe bond angle; the lower the Fe-O-Fe bond angle, the less intense the intersite hybrid peak is.

  10. Adsorption of rare-earth atoms onl silicon carbide nanotube: a density-functional study

    NASA Astrophysics Data System (ADS)

    An, Zhiwei; Shen, Jiang

    2014-07-01

    In this paper, we investigate the adsorption of a series of rare-earth (RE) metal atoms (La, Pr, Nd, Sm and Eu) on the pristine zigzag (8, 0) silicon carbide nanotube (SiCNT) using density functional theory (DFT). Main focuses are placed on the stable adsorption sites, the corresponding binding energies, and the modified electronic properties of the SiC nanotubes due to the adsorbates. A single RE atom prefers to adsorb strongly at the hollow site with relatively high binding energy (larger than 1.0 eV). Due to the rolling effect of single-walled SiCNTs, the inside configurations are more stable than the outside ones. For RE-adsorbed systems, the adsorption of metal atoms induces certain impurity states within the band gap of the pristine SiCNT. Furthermore, we analyze there exists hybridizations between RE-5d, 6s, C-2p and Si-3p orbitals for the RE atom adsorption on the SiCNTs.

  11. Study of Kα2 /Kα1 RYIED in closed and open shell Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Chaves, P. C.; Tribolet, A. D.; Reis, M. A.

    2016-01-01

    Relative Yield Ion Energy Dependence (RYIED) was observed, named and reported as phenomenological evidence in 2005 (Reis et al., 2005). Since then, it was observed in transitions to the same subshell, and plausible explanations for the physics behind the phenomena have been proposed. In this work we present experimental evidence of the RYIED effect on the most inner transition possible in two Rare Earth Elements (REE), namely variations in the intensity ratio of Kα2 /Kα1 X-rays from Tm and Yb irradiated under different conditions. These REE are particularly interesting to start with since Yb has an electronic configuration where all the subshells are completely filled, whilst Tm misses one electron in the 4f subshell. Ultrapure oxides of each element were irradiated using proton beams having energies in the range of 0.9-3.6 MeV, in steps of 100 keV. Spectra were collected using the CdTe detector of the HRHE-PIXE set-up of C2TN and analysed using the DT2 code. Finally, the vanishing of the effect upon charging up of the target has been observed and will be discussed.

  12. Mixing of fluids in hydrothermal ore-forming (Sn,W) systems: stable isotope and rare earth elements data

    NASA Astrophysics Data System (ADS)

    Sushchevskaya, T. M.; Popova, J. A.; Velivetskaya, T. A.; Ignatiev, A. V.; Matveeva, S. S.; Limantseva, O. A.

    2012-04-01

    Experimental and physico-chemical modeling data witness to important role of mixing of different type of fluids during tin and tungsten ore formation in hydrothermal systems. Mixing of magmatogeneous fluids, exsolved from granite melts, with exogenic, initially meteoric waters in hydrothermal ore-forming systems may change chemical composition of ore-forming fluid, causing cassiterite and/or wolframite precipitation (Heinrich, 1990; Sushchevskaya, Ryzhenko, 2002). We studied the process of genetically different fluids mixing for two economic Sn-W deposits, situated in the Iultin ore region (North-East of Russia, Chukotka Penninsula). The Iultin and Svetloe deposits are located in the apical parts of close situated leucogranite stocks, formed at the final stage of the Iultin complex emplacement. Both deposits are composed of a series of quartz veins among the flyschoid rocks (T 1-2), cut by the dikes (K1) of lamprophyre, granodiorite porphyre and alpite. The veins of the deposits are dominated by the productive quartz-wolframite-cassiterite-arsenopyrite-muscovite mineral assemblage. Topaz, beryl, fluorite, and albite occur sporadically. The later sulfide (loellingite-stannite-chalcopyrite) and quartz-fluorite-calcite assemblages show insignificant development. The preore quartz veinlets in host hornfels contain disseminated iron sulfides, chalcopyrite, muscovite. Isotopic (H, O, Ar) study of minerals, supplemented by oxygen isotope data of host granites and metamorphic rocks gave us possibility to conclude, that at the Iultin and the Svetloye deposits fluid mixing was fixed on the early stages of deposit formation and could be regarded as probable cause of metal (W, Sn) precipitation. During postore time the intensive involvement of isotopically light exogenic waters have changed: a) the initial character of oxygen isotope zonality; b) the initial hydrogen isotope composition of muscovites, up to meteoric calculated values for productive fluid (while the δ18O

  13. Geochemical studies of rare earth elements in the Portuguese pyrite belt, and geologic and geochemical controls on gold distribution

    USGS Publications Warehouse

    Grimes, David J.; Earhart, Robert L.; de Carvalho, Delfim; Oliveira, Vitor; Oliveira, Jose T.; Castro, Paulo

    1998-01-01

    This report describes geochemical and geological studies which were conducted by the U.S. Geological Survey (USGS) and the Servicos Geologicos de Portugal (SPG) in the Portuguese pyrite belt (PPB) in southern Portugal. The studies included rare earth element (REE) distributions and geological and geochemical controls on the distribution of gold. Rare earth element distributions were determined in representative samples of the volcanic rocks from five west-trending sub-belts of the PPB in order to test the usefulness of REE as a tool for the correlation of volcanic events, and to determine their mobility and application as hydrothermal tracers. REE distributions in felsic volcanic rocks show increases in the relative abundances of heavy REE and a decrease in La/Yb ratios from north to south in the Portuguese pyrite belt. Anomalous amounts of gold are distributed in and near massive and disseminated sulfide deposits in the PPB. Gold is closely associated with copper in the middle and lower parts of the deposits. Weakly anomalous concentrations of gold were noted in exhalative sedimentary rocks that are stratigraphically above massive sulfide deposits in a distal manganiferous facies, whereas anomalously low concentrations were detected in the barite-rich, proximal-facies exhalites. Altered and pyritic felsic volcanic rocks locally contain highly anomalous concentrations of gold, suggesting that disseminated sulfide deposits and the non-ore parts of massive sulfide deposits should be evaluated for their gold potential.

  14. Rare earth complexes with 3-carbaldehyde chromone-(benzoyl) hydrazone: synthesis, characterization, DNA binding studies and antioxidant activity.

    PubMed

    Li, Yong; Yang, Zheng-Yin

    2010-01-01

    A new ligand, 3-carbaldehyde chromone-(benzoyl) hydrazone (L), was prepared by condensation of 3-carbaldehyde chromone with benzoyl hydrazine. Its four rare earth complexes have been prepared and characterized on the basis of elemental analyses, molar conductivities, mass spectra, (1)H NMR spectra, UV-vis spectra, fluorescence studies and IR spectra. The Sm(III) complex exhibits red fluorescence under UV light and the fluorescent properties of Sm(III) complex in solid state and different solutions were investigated. In addition, the DNA binding properties of the ligand and its complexes have been investigated by electronic absorption spectroscopy, fluorescence spectra, ethidium bromide displacement experiments, iodide quenching experiments, salt effect and viscosity measurements. Experimental results suggest that all the compounds can bind to DNA via an intercalation binding mode. Furthermore, the antioxidant activities of the ligand and its complexes were determined by superoxide and hydroxyl radical scavenging methods in vitro. The rare earth complexes were found to possess potent antioxidant activities that are better than those of the ligand alone. PMID:19856083

  15. A Study on Removal of Rare Earth Elements from U.S. Coal Byproducts by Ion Exchange

    NASA Astrophysics Data System (ADS)

    Rozelle, Peter L.; Khadilkar, Aditi B.; Pulati, Nuerxida; Soundarrajan, Nari; Klima, Mark S.; Mosser, Morgan M.; Miller, Charles E.; Pisupati, Sarma V.

    2016-03-01

    Rare earth elements are known to occur in low concentrations in U.S. coals and coal byproducts. These low concentrations may make rare earth element recovery from these materials unattractive, using only physical separation techniques. However, given the significant production of rare earths through ion exchange extraction in China, two U.S. coal byproducts were examined for ion extraction, using ammonium sulfate, an ionic liquid, and a deep eutectic solvent as lixiviants. Extraction of rare earth elements in each case produced high recoveries of rare earth elements to the solution. This suggests that in at least the cases of the materials examined, U.S. coal byproducts may be technically suitable as REE ores. More work is required to establish economic suitability.

  16. Rare earth elements and Sr-Nd-Pb isotopic analyses of the Arima hot spring waters, Southwest Japan: Implications for origin of the Arima-type brine

    NASA Astrophysics Data System (ADS)

    Nakamura, H.; Fujita, Y.; Nakai, S.; Yokoyama, T.; Iwamori, H.

    2014-12-01

    Rare earth elements (REEs) and Sr-Nd-Pb isotopic compsotions of the Arima hot spring waters, a specific type of deep-seated brine (up to 6 wt.% NaCl) in the non-volcanic fore-arc region of southwest Japan, have been analyzed in order to discuss their source materials and origins. We have first examined the matrix effect associated with variable salinity (0 to 5 wt.% NaCl), and found that above 1 wt.% NaCl, the intensity of REE in ICP-MS measurement is drastically reduced due to the matrix effect. Accordingly, we have diluted the sample waters to contain ~0.6 wt.% NaCl, and then analyzed them by the standard addition method. The result shows that the abundance is appreciably high compared to near-surface waters, and exhibits almost a flat DMM-normalized pattern, which can be explained by mixing of a slab-derived fluid at relatively low temparature (400 to 500 ºC) and a near-surface water. The Sr-Nd-Pb isotopic compositions of the brine are consistent with the above interpretation on REEs, in that the deep brine is isotopically similar to a slab-derived fluid of the subducted Philippine Sea slab. These evidences suggest that the slab-derived fluid is upwelling even in the non-volcanic region possibly through a fault zone along the tectonic line.

  17. Trace Metals, Rare Earths, Carbon and Pb Isotopes as Proxies of Environmental Catastrophe at the Permian - Triassic Boundary in Spiti Himalayas, India

    NASA Astrophysics Data System (ADS)

    Ghosh, N.; Basu, A. R.; Garzione, C. N.; Ghatak, A.; Bhargava, O. N.; Shukla, U. K.; Ahluwalia, A. D.

    2015-12-01

    Himalayan sediments from Spiti Valley, India preserve geochemical signatures of the Permian - Triassic (P-Tr) mass extinction in the Neo-Tethys Ocean. We integrate new sedimentological and fossil record with high-resolution geochemical-isotopic data from Spiti that reveals an ecological catastrophe of global proportions. Trace elements of U, Th, Nb, Ta, Zr, Hf, the rare earths (REE) and carbon, oxygen and lead isotopes measured across the P-Tr boundary in Spiti are used as proxies for evaluating abrupt changes in this continental shelf environment. δ13Corg excursions of 2.4‰ and 3.1‰ in Atargu and Guling P-Tr sections in Spiti Valley are associated with an abrupt fall of biological productivity while δ13Ccarb and δ18Ocarb record of these sediments shows effects of diagenesis. Here, the P-Tr boundary is compositionally distinct from the underlying Late Permian gray shales, as a partly gypsiferous ferruginous layer that allows additional geochemical-isotopic investigation of sedimentary sources. Conspicuous Ce - Eu anomalies in the light REE-enriched Late Permian shales reflect the source composition of the adjacent Panjal Trap basalts of Kashmir. An abrupt change of this source to continental crust is revealed by Nb - Ta and Zr - Hf anomalies at the P-Tr ferruginous layer and continuing through the overlying Early Triassic carbonate rocks. Pb concentration and isotope ratios of 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb identify changes in the sedimentary element flux, distinguishing the Late Permian shales from the distinct siliciclastic continental crustal signature in the Early Triassic carbonates. These geochemical-isotopic constraints on the sedimentary geochemistry of one of the most critical transitions in geological record establish the utility of multi-proxy datasets for paleoenvironmental reconstructions.

  18. Study on a recovery of rare earth oxides from a LiCl-KCl-RECl 3 system

    NASA Astrophysics Data System (ADS)

    Eun, H. C.; Cho, Y. Z.; Park, H. S.; Lee, T. K.; Kim, I. T.; Park, K. I.; Lee, H. S.

    2011-01-01

    Radioactive rare earth chlorides in waste LiCl-KCl molten salts have to be separated as a stable form to minimize waste volume and to achieve stable solidification. In this work, thermal behavior of rare earth chlorides (CeCl 3, GdCl 3, NdCl 3, PrCl 3) was investigated in an oxygen condition to recover rare earth oxides from a LiCl-KCl-RECl 3 system. The rare earth chlorides in the LiCl-KCl molten salts were smoothly converted to an oxychloride form at a higher temperature than 650 °C, except for CeCl 3. CeCl 3 was totally converted to an oxide from at a higher temperature than 450 °C. The rare earth oxychlorides (GdOCl, NdOCl, PrOCl) were effectively converted to oxide forms at a higher temperature than 1100 °C. It was confirmed that rare earth oxides can be recovered from a LiCl-KCl-RECl 3 system without impurity generation.

  19. The lunar neutron energy spectrum inferred from the isotope compositions of rare-earth elements and hafnium in Apollo samples

    NASA Astrophysics Data System (ADS)

    Albalat, Emmanuelle; Blichert-Toft, Janne; Telouk, Philippe; Albarède, Francis

    2015-11-01

    The isotopic abundances of Sm, Gd, Dy, Er, Yb, and Hf have been measured in nine lunar samples by MC-ICP-MS. The data were corrected for both instrumental mass bias and natural isotope fractionation. We used the data to calculate the total flux and energy spectrum of the neutrons absorbed by the rocks. We write the constitutive equations of the isotopic changes for these elements induced by neutrons and solve the inverse problem by computing local energy averages. Resonant absorption peaks can be used as convenient kernels to define the spectrum of epithermal neutrons. We find that 149Sm and 157Gd anomalies correlate with neutron flux density for E < 0.015 eV (r2 > 0.98) and E ≈ 0.13 eV (r2 > 0.85), while no significant correlation exists between the ratio of these anomalies and the epithermal/thermal flux ratio at any value of energy. Neutron flux density variations can be used to trace the proportions of neutrons scattered out of the samples. The spectrum in the thermal region follows the expected E - 1 / 2 dependence but with 'notches' corresponding to neutron absorption. A major notch at the lowest end of the epithermal neutron spectrum (0.2-0.8 eV) is possibly due to absorption of neutrons by 151Eu, 167Er, and 149Sm. In general, we find a rather good correlation between the neutron flux density at specific energies and the exposure age, which suggests a mean residence time of the samples at the surface of the regolith of 2-300 Ma. Another correlation of epithermal neutrons with sample wt% FeO + TiO2 is consistent with orbital reflectance observations.

  20. Ames Lab 101: Rare Earths

    SciTech Connect

    Gschneidner, Karl

    2010-01-01

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  1. Ames Lab 101: Rare Earths

    ScienceCinema

    Gschneidner, Karl

    2012-08-29

    "Mr. Rare Earth," Ames Laboratory scientist Karl Gschneidner Jr., explains the importance of rare-earth materials in many of the technologies we use today -- ranging from computers to hybrid cars to wind turbines. Gschneidner is a world renowned rare-earths expert at the U.S. Department of Energy's Ames Laboratory.

  2. Rare earth elements materials production from apatite ores

    NASA Astrophysics Data System (ADS)

    Anufrieva, A. V.; Andrienko, O. S.; Buynovskiy, A. S.; Makaseev, Y. N.; Mazov, I. N.; Nefedov, R. A.; Sachkov, V. I.; Stepanova, O. B.; Valkov, A. V.

    2016-01-01

    The paper deals with the study of processing apatite ores with nitric acid and extraction of the rare earth elements. The rare earth elements can be successfully separated and recovered by extraction from the nitrate- phosphate solution, being an tributyl phosphate as extraction agent. The developed scheme of the processing apatite concentrate provides obtaining rare earth concentrates with high qualitative characteristics.

  3. Residential heating contribution to level of air pollutants (PAHs, major, trace, and rare earth elements): a moss bag case study.

    PubMed

    Vuković, Gordana; Aničić Urošević, Mira; Pergal, Miodrag; Janković, Milan; Goryainova, Zoya; Tomašević, Milica; Popović, Aleksandar

    2015-12-01

    In areas with moderate to continental climates, emissions from residential heating system lead to the winter air pollution peaks. The EU legislation requires only the monitoring of airborne concentrations of particulate matter, As, Cd, Hg, Ni, and B[a]P. Transition metals and rare earth elements (REEs) have also arisen questions about their detrimental health effects. In that sense, this study examined the level of extensive set of air pollutants: 16 polycyclic aromatic hydrocarbons (PAHs), and 41 major elements, trace elements, and REEs using Sphagnum girgensohnii moss bag technique. During the winter of 2013/2014, the moss bags were exposed across Belgrade (Serbia) to study the influence of residential heating system to the overall air quality. The study was set as an extension to our previous survey during the summer, i.e., non-heating season. Markedly higher concentrations of all PAHs, Sb, Cu, V, Ni, and Zn were observed in the exposed moss in comparison to the initial values. The patterns of the moss REE concentrations normalized to North American Shale Composite and Post-Archean Australian Shales were identical across the study area but enhanced by anthropogenic activities. The results clearly demonstrate the seasonal variations in the moss enrichment of the air pollutants. Moreover, the results point out a need for monitoring of air quality during the whole year, and also of various pollutants, not only those regulated by the EU Directive. PMID:26213134

  4. Assessment of groundwater dynamics by applying rare earth elements and stable isotopes &ndash; the case of the Tiberias Basin, Jordan Valley.

    NASA Astrophysics Data System (ADS)

    Siebert, Christian; Möller, Peter; Rödiger, Tino; Al-Raggad, Marwan; Magri, Fabien

    2015-04-01

    The Tiberias basin, situated in the northern part of the Jordan-Dead Sea Transform Valley, is hydraulically connected to the surrounding aquifers of Cretaceous to Cenozoic age. As a result of the local erosion base, the basin hosts Lake Tiberias, recharged mainly by the Upper Jordan River and by fresh groundwater from the Galilee and Golan Heights. However, variably ascending deep-seated brines enhance the chlorinity of the lake to about 250-280 mg/l. In addition to these hot brines, also hot fresh waters emerge on surface, particularly to both sides of the Yarmouk gorge, SE of the basin. Investigation of rare earth element patterns and stable isotopes of water and sulfur, in combination with major elements reveal, that the gorge acts at least partially as a water divide between north and south with enhanced hydraulic conductivity along its axis. Although there are no geological evidences given, we suppose a swarm of hydraulic active fractures/faults parallel to the Lower Yarmouk gorge axis, which force the upward movement of hot fluids, as also suggested by numerical modeling. Additionally, these faults may channel SW-oriented groundwater flow, which has its origin in the Syrian Hauran Plateau. Although exercised in the Tiberias Basin, the application of trace and major element geochemistry in combination with stable isotopes allows analyzing (supra-) regional groundwater movements. This method is even more relevant in areas with either limited access to recharge areas or boreholes along proposed flow-paths and particularly in areas suffering from data scarcity and poor infrastructure.

  5. Identifying the Source and Generation of Thermal Groundwaters based on Stable Isotopes and Rare Earths - the Case of the Lower Yarmouk Gorge Artesian Wells.

    NASA Astrophysics Data System (ADS)

    Siebert, C.; Möller, P.; Magri, F.; Kraushaar, S.; Dulski, P.; Guttman, J.; Rödiger, T.

    2014-12-01

    Along the Lower Yarmouk Gorge, thermal groundwaters with varying chemical and isotopic signatures emerge from Cenozoic Limestones. The bordering semiarid Golan and Ajloun Heights host fresh and variable tempered groundwaters in Cretaceous and Cenozoic strata. Sources and mineralisation of these groundwaters are derived from mutual discussion of d2H, d18O and d34S, major elements, rare earth distribution patterns and the (hydro)geological setting. Positive shift of d18O and d2H occur due to evaporation before replenishment and the interaction with basalts. Major infiltration areas for Golan Heights are the limy foothills of the Mt. Hermon and for the Ajloun Heights the Plateau itself. To a less degree, precipitation infiltrates also the basaltic catchments. Groundwaters are mineralised by water/rock (i) variably altered limestones by diagenesis, (ii) evaporates and seawater brines enclosed in limestone matrix and (iii) locally occurring basaltic intrusiva. In the Yarmouk Gorge, a deep-seated brine of the Ha'on type ascends and mixes with the fresh shallow groundwater. REY and isotope fingerprints prove that water from the Syrian Hauran Plateau is recharging springs and wells in the lowermost Yamouk Gorge. Although capping wide areas, the basaltic cover of the Golan Heights is of minor importance for recharge of the underlying A7/B2 aquifer, which becomes recharged at the foothills of Mt. Hermon and gets confined southwards, leading ibid. to ascension of water into the basaltic cover. Anomalous heat flux near the Yarmouk gorge and locally in the western escarpment of the Ajloun may be produced by ascending fluids from greater depth and/or by basaltic intrusions.

  6. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni

    DOE PAGESBeta

    Higgs, T. D. C.; Bonetti, S.; Ohldag, H.; Banerjee, N.; Wang, X. L.; Rosenberg, A. J.; Cai, Z.; Zhao, J. H.; Moler, K. A.; Robinson, J. W. A.

    2016-07-22

    Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using themore » element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. In conclusion, the results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.« less

  7. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni

    NASA Astrophysics Data System (ADS)

    Higgs, T. D. C.; Bonetti, S.; Ohldag, H.; Banerjee, N.; Wang, X. L.; Rosenberg, A. J.; Cai, Z.; Zhao, J. H.; Moler, K. A.; Robinson, J. W. A.

    2016-07-01

    Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using the element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. The results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications.

  8. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni

    PubMed Central

    Higgs, T. D. C.; Bonetti, S.; Ohldag, H.; Banerjee, N.; Wang, X. L.; Rosenberg, A. J.; Cai, Z.; Zhao, J. H.; Moler, K. A.; Robinson, J. W. A.

    2016-01-01

    Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using the element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. The results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications. PMID:27444683

  9. Adsorption and growth morphology of rare-earth metals on graphene studied by ab initio calculations and scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojie; Wang, C. Z.; Hupalo, M.; Yao, Y. X.; Tringides, M. C.; Lu, W. C.; Ho, K. M.

    2010-12-01

    Adsorption of rare-earth (RE) adatoms (Nd, Gd, Eu, and Yb) on graphene was studied by first-principles calculations based on the density-functional theory. The calculations show that the hollow site of graphene is the energetically favorable adsorption site for all the RE adatoms studied. The adsorption energies and diffusion barriers of Nd and Gd on graphene are found to be larger than those of Eu and Yb. Comparison with scanning tunneling microscopy experiments for Gd and Eu epitaxially grown on graphene confirms these calculated adsorption and barrier differences, since fractal-like islands are observed for Gd and flat-topped crystalline islands for Eu. The formation of flat Eu islands on graphene can be attributed to its low diffusion barrier and relatively larger ratio of adsorption energy to its bulk cohesive energy. The interactions between the Nd and Gd adatoms and graphene cause noticeable in-plane lattice distortions in the graphene layer. Adsorption of the RE adatoms on graphene also induces significant electric dipole and magnetic moments.

  10. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni.

    PubMed

    Higgs, T D C; Bonetti, S; Ohldag, H; Banerjee, N; Wang, X L; Rosenberg, A J; Cai, Z; Zhao, J H; Moler, K A; Robinson, J W A

    2016-01-01

    Thin film magnetic heterostructures with competing interfacial coupling and Zeeman energy provide a fertile ground to study phase transition between different equilibrium states as a function of external magnetic field and temperature. A rare-earth (RE)/transition metal (TM) ferromagnetic multilayer is a classic example where the magnetic state is determined by a competition between the Zeeman energy and antiferromagnetic interfacial exchange coupling energy. Technologically, such structures offer the possibility to engineer the macroscopic magnetic response by tuning the microscopic interactions between the layers. We have performed an exhaustive study of nickel/gadolinium as a model system for understanding RE/TM multilayers using the element-specific measurement technique x-ray magnetic circular dichroism, and determined the full magnetic state diagrams as a function of temperature and magnetic layer thickness. We compare our results to a modified Stoner-Wohlfarth-based model and provide evidence of a thickness-dependent transition to a magnetic fan state which is critical in understanding magnetoresistance effects in RE/TM systems. The results provide important insight for spintronics and superconducting spintronics where engineering tunable magnetic inhomogeneity is key for certain applications. PMID:27444683

  11. Fundamental and Magnetic-Hardening Studies of Rare-Earth and Nanocomposite Magnets

    SciTech Connect

    Sellmyer, David J.

    2003-12-22

    In this project we study new nanocrystalline and nanocomposite structures that have high potential for permanent-magnet development. These materials, which can be synthesized to have either very high or intermediate coercivities, have many applications in electric power, transportation, and information-storage industries. There is great interest in further development of understanding and application of these materials.

  12. Studies on the non rare earth oxide superconductors fabricated by sintering

    NASA Astrophysics Data System (ADS)

    Sekine, H.; Inoue, K.; Maeda, H.; Numata, K.; Mori, K.

    1989-03-01

    Wire, tape, and bulk specimens of Bi-(Pb)-Sr-Ca-Cu-O material have been prepared. Studies on the superconducting properties and metallurgical studies have been conducted. The results of thermogravimetric analysis indicate that the phase transformation which accompanies absorption of oxygen does not occur in this material from 860 C down to 400 C. Tape specimens prepared by a combination of cold work and sintering showed Jc of 1100 A/sq cm at 77 K with a good reproducibility. In these tape specimens, the c-axis of the grains tends to align perpendicularly to the tape surface. A 1330-filament Bi-Pb-Sr-Ca-Cu-O wire with a Ag matrix has been fabricated, showing high-Tc transitions when sintered at relatively low temperature. The concentration of Pb in the oxide must be controlled (reduced) before packing into a Ag sheath for the superconducting phase to be formed in a long wire. The results of this study indicate that the Bi-Sr-Ca-Cu-O system material has several favorable features which could make practical use of this material possible.

  13. Raman scattering of rare earth sesquioxide Ho2O3: A pressure and temperature dependent study

    NASA Astrophysics Data System (ADS)

    Pandey, Sugandha Dogra; Samanta, K.; Singh, Jasveer; Sharma, Nita Dilawar; Bandyopadhyay, A. K.

    2014-10-01

    Pressure and temperature dependent Raman scattering studies on Ho2O3 have been carried out to investigate the structural transition and the anharmonic behavior of the phonons. Ho2O3 undergoes a transition from cubic to monoclinic phase above 15.5 GPa, which is partially reversible on decompression. The anharmonic behavior of the phonon modes of Ho2O3 from 80 K to 440 K has been investigated. We find an anomalous line-width change with temperature. The mode Grüneisen parameter of bulk Ho2O3 was estimated from high pressure Raman investigation up to 29 GPa. Furthermore, the anharmonic components were calculated from the temperature dependent Raman scattering.

  14. Raman scattering of rare earth sesquioxide Ho₂O₃: A pressure and temperature dependent study

    SciTech Connect

    Pandey, Sugandha Dogra; Samanta, K.; Singh, Jasveer; Sharma, Nita Dilawar; Bandyopadhyay, A. K.

    2014-10-07

    Pressure and temperature dependent Raman scattering studies on Ho₂O₃ have been carried out to investigate the structural transition and the anharmonic behavior of the phonons. Ho₂O₃ undergoes a transition from cubic to monoclinic phase above 15.5 GPa, which is partially reversible on decompression. The anharmonic behavior of the phonon modes of Ho₂O₃ from 80 K to 440 K has been investigated. We find an anomalous line-width change with temperature. The mode Grüneisen parameter of bulk Ho₂O₃ was estimated from high pressure Raman investigation up to 29 GPa. Furthermore, the anharmonic components were calculated from the temperature dependent Raman scattering.

  15. A Study on the Microstructures and Toughness of Fe-B Cast Alloy Containing Rare Earth

    NASA Astrophysics Data System (ADS)

    Yi, Dawei; Zhang, Zhiyun; Fu, Hanguang; Yang, Chengyan; Ma, Shengqiang; Li, Yefei

    2015-02-01

    This study investigates the effect of cerium on the microstructures, mechanical properties of medium carbon Fe-B cast alloy. The as-cast microstructure of Fe-B cast alloy consists of the eutectic boride, pearlite, and ferrite. Compared with the coarse eutectic borides in the unmodified alloy, the eutectic boride structures in the modified alloy are greatly refined. Cerium promotes the formation of Ce2O3 phase. Ce2O3 can act as effective heterogeneous nuclei of primary austenite, and refine austenite and boride. After heat treatment, the impact toughness of the modified alloy is higher than that of the unmodified alloy because there are more broken borides in the modified alloy. Meanwhile, the fracture mechanism of medium carbon Fe-B alloy is depicted and analyzed by using fractography.

  16. The adsorption of nitrogen oxides and water on rare-earth ion-exchanged ZSM-5: a density functional study

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Wan, Xiaohong; Ito, Yuki; Takami, Seiichi; Kubo, Momoji; Miyamoto, Akira

    2002-12-01

    In this study, we present the adsorption behavior of NO, NO 2 and H 2O on trivalent rare-earth ion-exchanged ZSM-5 (RE-ZSM-5; RE=La, Ce, Nd, Sm, Gd and Dy) using density functional theory. The results show that Ce-ZSM-5 is more effective for the activation of NO x than La-ZSM-5 and Nd-ZSM-5, which is in good agreement with experimental results. The present investigation also suggests that Dy-ZSM-5 has a considerable ability for the activation of NO 2 as compared to Sm-ZSM-5 and Gd-ZSM-5. Furthermore, the Ce-, Nd- and Dy-analogues posses a quite stronger affinity for NO x and that the low affinity of H 2O indicate the poisoning resistance ability of these catalysts. In addition, the relationship between the adsorption energy of NO and the contribution of NO-2π g1 molecular orbital was also investigated in the NO/RE-ZSM-5 adsorption complex.

  17. Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique, neutron activation analysis and GIS technology.

    PubMed

    Allajbeu, Sh; Yushin, N S; Qarri, F; Duliu, O G; Lazo, P; Frontasyeva, M V

    2016-07-01

    Rare earth elements (REEs) are typically conservative elements that are scarcely derived from anthropogenic sources. The mobilization of REEs in the environment requires the monitoring of these elements in environmental matrices, in which they are present at trace level. The determination of 11 REEs in carpet-forming moss species (Hypnum cupressiforme) collected from 44 sampling sites over the whole territory of the country were done by using epithermal neutron activation analysis (ENAA) at IBR-2 fast pulsed reactor in Dubna. This paper is focused on REEs (lanthanides) and Sc. Fe as typical consistent element and Th that appeared good correlations between the elements of lanthanides are included in this paper. Th, Sc, and REEs were never previously determined in the air deposition of Albania. Descriptive statistics were used for data treatment using MINITAB 17 software package. The median values of the elements under investigation were compared with those of the neighboring countries such as Bulgaria, Macedonia, Romania, and Serbia, as well as Norway which is selected as a clean area. Geographical distribution maps of the elements over the sampled territory were constructed using geographic information system (GIS) technology. Geochemical behavior of REEs in moss samples has been studied by using the ternary diagram of Sc-La-Th, Spider diagrams and multivariate analysis. It was revealed that the accumulation of REEs in current mosses is associated with the wind-blowing metal-enriched soils that is pointed out as the main emitting factor of the elements under investigation. PMID:27044293

  18. Pressure studies of alkali, alkaline earth and rare earth doped C{sub 60} superconductors

    SciTech Connect

    Schirber, J.E.; Bayless, W.R.; Kortan, A.R.; Ozdas, E.; Zhou, O.; Murphy, D.; Fischer, J.E.

    1994-06-01

    Pressure studies of the superconducting transition temperature T{sub c} of the alkali metal doped C{sub 60} compounds helped to establish a universal curve of T{sub c} versus lattice constant upon which nearly all of these materials lie. Various theoretical schemes incorporate this finding and suggest that only the lattice parameter and not the details of the dopant determine T{sub c}. Ca{sub 5}C{sub 60}, the highest T{sub c} member of the alkaline earth doped C{sub 60} superconductor has a T{sub c} which lies on this universal curve so this material, from these considerations, should have the same large negative pressure derivative as the alkali doped superconductors. We have measured dT{sub c}/dP for Ca{sub 5}C{sub 60} and for Yb{sub x}C{sub 60} (x near 3) and find small and positive values indicating that the theoretical models must be expanded to include band structure effects.

  19. Rare earth elements in the sedimentary cycle - A pilot study of the first leg

    NASA Technical Reports Server (NTRS)

    Basu, A.; Blanchard, D. P.; Brannon, J. C.

    1982-01-01

    The effects of source rock composition and climate on the natural abundances of rare elements (REE) in the first leg of the sedimentary cycle are evaluated using a study with Holocene fluvia sands. The medium grained sand fraction of samples collected from first order streams exclusively draining granitic plutons in Montana (semi-arid), Georgia (humid), and South Carolina (humid) are analyzed. It is found that the REE distribution patterns (but not the total absolute abundances) of the daughter sands are very similar, despite compositional differences between parent plutons. Averages of the three areas are determined to have a La/Lu ratio of about 103, showing a depletion of heavy REE with respect to an average granite (La/Lu = 79) or the composition of North American Shales (La/Lu = 55). However, the Eu/Sm ratio in sands from these areas is about 0.22, which is very close to this ratio in North American Shales (0.21), although the overall REE distribution of these sands is not similar to that of the North American Shales in any way. It is concluded that the major rock type, but neither its minor subdivisions nor the climate, controls the REE distribution patterns in first cycle daughter sands, although the total and the parent rock-normalized abundances of REE in sands from humid areas are much lower than those in sands from arid areas.

  20. Soft X-ray appearance potential study of rare earth-manganese compounds

    SciTech Connect

    Chourasia, A. R.; Deshpande, S. D.

    1999-06-10

    Soft X-ray appearance potential spectroscopy (SXAPS) has been employed to study the changes in the electronic structure of RMn{sub 2} compounds (where R=Pr, Sm, Gd and Dy). In this technique the total x-ray emission associated with the thresholds for the excitation of core levels of the atoms in the surface region of the materials is measured. The SXAPS spectra of the Mn L{sub 2,3} levels in these intermetallics are compared with the corresponding elemental manganese spectrum. The normalized spectra exhibit an increasing trend in the unoccupied density of states at the Fermi level as the atomic number of R increases. This has been interpreted as increasing hybridization between the R 5d and Mn 3d bands. The hybridization is found to influence the magnetic properties of these intermetallics. The core levels are also found to display crystal field splitting that seems to disappear for DyMn{sub 2}. This correlates very well with the disappearance of the Mn magnetic moment at Dy in these intermetallics.

  1. Study of rare-earth fluoride oxalate tetrahydrates by IR spectroscopy

    SciTech Connect

    Pushkina, G.Ya.; Kizhlo, M.R.; Komissarova, L.N.; Shatskii, V.M.

    1987-01-01

    The IR spectra of ..cap alpha..-LnC/sub 2/O/sub 4/F x 4H/sub 2/O (Ln = Tb, Dy, Ho, Y) and ..beta..-LnC/sub 2/O/sub 4/F x 4H/sub 2/O (Ln = Tb-Lu, Y) and their deuteration products have been studied. The structural features of these fluoride oxalate tetrahydrates have been discussed on the basis of a comparison of data from IR and PMR spectroscopy and a complex thermal analysis. It has been shown that the ..cap alpha.. and ..beta.. modifications differ with respect to the coordination of the water molecules. In ..beta..-LnC/sub 2/O/sub 4/F x 4H/sub 2/O two H/sub 2/O molecules are coordinated by the metal, and the remaining water participates in the creation of a system of strong hydrogen bonds. In ..cap alpha..-LnC/sub 2/O/sub 4/F x 4H/sub 2/O the character of the coordination of the H/sub 2/O molecules is more complicated, at least three different types of water molecules can be identified, and more than two water molecules are probably coordinated by the metal. The type of coordination of the oxalato groups in the compounds has been discussed.

  2. Effect of chemical and hydrostatic pressures on structural and magnetic properties of rare-earth orthoferrites: a first-principles study.

    PubMed

    Zhao, Hong Jian; Ren, Wei; Yang, Yurong; Chen, Xiang Ming; Bellaiche, L

    2013-11-20

    The dependence of structural and magnetic properties of rare-earth orthoferrites (in their Pbnm ground state) on the rare-earth ionic radius is systematically investigated from first principles. The effects of this 'chemical pressure' on lattice constants, Fe-O bond lengths, Fe-O-Fe bond angles and Fe-O bond length splittings are all well reproduced by these ab initio calculations. The simulations also offer novel predictions (on tiltings of FeO6 octahedra, cation antipolar displacements and weak magnetization) to be experimentally checked. In particular, the weak ferromagnetic moment of rare-earth orthoferrites is predicted to be a linear function of the rare-earth ionic radius. Finally, the effects of applying hydrostatic pressure on structural and magnetic behavior of SmFeO3 is also studied. It is found that, unlike previously assumed, hydrostatic pressure typically generates changes in physical properties that are quantitatively and even qualitatively different from those associated with the chemical pressure. PMID:24135000

  3. Beta delayed alpha emission from the neutron deficient rare earth isotopes {sup 152}Tm and {sup 150}Ho

    SciTech Connect

    Nacher, E.; Tain, J. L.; Rubio, B.; Algora, A.; Estevez Aguado, M. E.; Gadea, A.; Batist, L.; Briz, J. A.; Cano-Ott, D.; Doering, J.; Mukha, I.; Plettner, C.; Roeckl, E.; Gierlik, M.; Janas, Z.

    2011-11-30

    The study of beta-delayed proton emission is a well known method to aid the determination of the beta strength distribution in nuclei far from the stability line. At the neutron deficient side of the nuclear chart the process of proton or alpha emission from excited states is energetically allowed when one goes far enough from stability. However, beta-delayed alphas have seldom been measured for nuclei heavier than A = 20. Here we present a study of the beta-delayed alpha-particle emission from {sup 152}Tm and {sup 150}Ho and their importance in the full B(GT) distribution.

  4. Deformation of the very neutron-deficient rare-earth nuclei produced with the SPIRAL 76Kr radioactive beam and studied with EXOGAM + DIAMANT

    NASA Astrophysics Data System (ADS)

    Redon, N.; Prévost, A.; Guinet, D.; Lautesse, Ph.; Meyer, M.; Rossé, B.; Stézowski, O.; Nolan, P. J.; Andreoiu, C.; Boston, A. J.; Descovich, M.; Evans, A. O.; Gros, S.; Norman, J.; Page, R. D.; Paul, E. S.; Rainovski, G.; Sampson, J.; de France, G.; Casandjian, J. M.; Theisen, Ch.; Scheurer, J. N.; Nyakó, B. M.; Gál, J.; Kalinka, G.; Molnár, J.; Dombrádi, Zs.; Timár, J.; Zolnai, L.; Juhász, K.; Astier, A.; Deloncle, I.; Porquet, M. G.; Wadsworth, R.; Raddon, P.; Lee, Y.; Wilkinson, A.; Joshi, P.; Simpson, J.; Appelbe, D.; Joss, D.; Lemmon, R.; Smith, J.; Cullen, D.; Brondi, A.; La Rana, G.; Moro, R.; Vardacci, E.; Girod, M.

    2004-02-01

    The structure of the very neutron-deficient rare-earth nuclei has been investigated in the first experiment with the EXOGAM gamma array coupled to the DIAMANT light charged particle detector using radioactive beam of 76Kr delivered by the SPIRAL facility. Very neutron-deficient Pr, Nd and Pm isotopes have been populated at rather high spin by the reaction 76Kr + 58Ni at a beam energy of 328 MeV. We report here the first results of this experiment.

  5. Deformation of the very neutron-deficient rare-earth nuclei produced with the SPIRAL 76Kr radioactive beam and studied with EXOGAM + DIAMANT

    SciTech Connect

    Redon, N.; Guinet, D.; Lautesse, Ph.; Meyer, M.; Rosse, B.; Stezowski, O.; France, G. de; Casandjian, J. M.

    2004-02-27

    The structure of the very neutron-deficient rare-earth nuclei has been investigated in the first experiment with the EXOGAM gamma array coupled to the DIAMANT light charged particle detector using radioactive beam of 76Kr delivered by the SPIRAL facility. Very neutron-deficient Pr, Nd and Pm isotopes have been populated at rather high spin by the reaction 76Kr + 58Ni at a beam energy of 328 MeV. We report here the first results of this experiment.

  6. China's rare-earth industry

    USGS Publications Warehouse

    Tse, Pui-Kwan

    2011-01-01

    Introduction China's dominant position as the producer of over 95 percent of the world output of rare-earth minerals and rapid increases in the consumption of rare earths owing to the emergence of new clean-energy and defense-related technologies, combined with China's decisions to restrict exports of rare earths, have resulted in heightened concerns about the future availability of rare earths. As a result, industrial countries such as Japan, the United States, and countries of the European Union face tighter supplies and higher prices for rare earths. This paper briefly reviews China's rare-earth production, consumption, and reserves and the important policies and regulations regarding the production and trade of rare earths, including recently announced export quotas. The 15 lanthanide elements-lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium (atomic numbers 57-71)-were originally known as the rare earths from their occurrence in oxides mixtures. Recently, some researchers have included two other elements-scandium and yttrium-in their discussion of rare earths. Yttrium (atomic number 39), which lies above lanthanum in transition group III of the periodic table and has a similar 3+ ion with a noble gas core, has both atomic and ionic radii similar in size to those of terbium and dysprosium and is generally found in nature with lanthanides. Scandium (atomic number 21) has a smaller ionic radius than yttrium and the lanthanides, and its chemical behavior is intermediate between that of aluminum and the lanthanides. It is found in nature with the lanthanides and yttrium. Rare earths are used widely in high-technology and clean-energy products because they impart special properties of magnetism, luminescence, and strength. Rare earths are also used in weapon systems to obtain the same properties.

  7. Phase stable rare earth garnets

    SciTech Connect

    Kuntz, Joshua D.; Cherepy, Nerine J.; Roberts, Jeffery J.; Payne, Stephen A.

    2013-06-11

    A transparent ceramic according to one embodiment includes a rare earth garnet comprising A.sub.hB.sub.iC.sub.jO.sub.12, where h is 3.+-.10%, i is 2.+-.10%, and j is 3.+-.10%. A includes a rare earth element or a mixture of rare earth elements, B includes at least one of aluminum, gallium and scandium, and C includes at least one of aluminum, gallium and scandium, where A is at a dodecahedral site of the garnet, B is at an octahedral site of the garnet, and C is at a tetrahedral site of the garnet. In one embodiment, the rare earth garment has scintillation properties. A radiation detector in one embodiment includes a transparent ceramic as described above and a photo detector optically coupled to the rare earth garnet.

  8. Methodology Measuring Rare Earth Elements in High TDS Reservoir Brines Application as Natural Tracers in CCUS Studies

    NASA Astrophysics Data System (ADS)

    Smith, W.; Mcling, T. L.; Smith, R. W.; Neupane, H.

    2013-12-01

    In recent years rare earth elements (REE) have been demonstrated to be useful natural tracers for geochemical processes in aqueous environments. The application of REE's to carbon dioxide utilization and storage (CCUS) could provide researchers with a sensitive, inexpensive tool for tracking the movement of CO2 and displaced formation brines. By definition, geologic reservoirs that have been deemed suitable for carbon capture and storage contain formation brine with total dissolved solids (TDS) greater than 10,000 ppm and often these formation brines exceed 75,000 ppm TDS. This high TDS water makes it very difficult to measure REE, which typically occur at part per trillion concentrations. Critical to the use of REE for CCUS studies is the development of a procedure, which allows for the pre-concentration of REE's across a wide range of water quality. Additionally, due to the large number of samples that will need analysis, any developed procedure must be inexpensive, reproducible, and quick to implement. As part of the Big Sky Carbon Sequestration Project the INL's Center for Advance Energy Studies is developing REE pre-concentration procedures based on methods reported in the literature. While there are many REE pre-concentration procedures in the literature, our tests have shown these methods have difficulty at TDS greater than seawater (roughly 35,000 ppm TDS). Therefore, the ability to quantitatively measure REE's in formation brines with very high TDS has required the modification of an already developed procedure. After careful consideration and testing we selected methods modified after those described by Kingston et al., 1978 and Strachan et al., 1989 utilizing chelating media for very high TDS waters and ion-exchange media as detailed by Crock et al., 1984; Robinson et al., 1985; and Stetzenbach et al., 1994 for low TDS (<10,000 ppm TDS) waters. These modified procedures have been successfully tested in our laboratory and have proven effective in greatly

  9. The Not-So-Rare Earths.

    ERIC Educational Resources Information Center

    Muecke, Gunter K.; Moller, Peter

    1988-01-01

    Describes the characteristics of rare earth elements. Details the physical chemistry of rare earths. Reviews the history of rare earth chemistry and mineralogy. Discusses the mineralogy and crystallography of the formation of rare earth laden minerals found in the earth's crust. Characterizes the geologic history of rare earth elements. (CW)

  10. An Experimental Study on Using Rare Earth Elements to Trace Non-point source Phosphorous LossA

    NASA Astrophysics Data System (ADS)

    Liang, T.

    2011-12-01

    Controlling phosphorous (P) inputs through management of its sources and transport is critical for limiting freshwater eutrophication. Rare earth elements (REEs) have been successfully used in the analysis of soil erosion and pollutant sources, as well as in the analysis of mineral genesis. To better understand the potential for REE use in tracing non-point sources of P, we examined the combined fate of REEs and P in Chinese soils amended with REEs and documented the formation of REE-P compounds. Laboratory leaching experiments and artificial simulated rainfall experiments were conducted. Vertical leaching transfers of REEs and P were relatively small, with transport depths less than 6 cm for most REEs and P. Export of applied REEs in leachate accounted for less that 5% of inputs. The vertical mobility order of REEs and P in Chinese soils was greatest for purple soil, followed by terra nera soil, then red soil, followed by cinnamon soil, and finally loess soil. Losses of rare earth elements and P in surface runoff exhibited a parabolic relationship to simulated rainfall intensity. With greater exogenous La application, the amount of water soluble P, bicarbonate-extractable P and hydroxide-extractable P decreased significantly, while acid-extractable and residual forms of P increased significantly. In addition, characteristics of exogenous rare earth elements (REEs) and P and their losses with surface runoff (both in the water and sediments) during simulated rainfall experiments (83 mm h-1) were investigated. The results revealed that most REEs (La, 94%; Nd, 93%; Sm, 96%) and P (96%) transported with sediments in the runoff. The total amounts of losses of REEs and P in the runoff were significantly correlated, suggesting the possibility of using REEs to trace the fate of agricultural nonpoint P losses.

  11. A first principles study of structural, electronic mechanical and magnetic properties of rare earth nitride:TmN

    NASA Astrophysics Data System (ADS)

    Murugan, A.; Rajeswarapalanichamy, R.; Santhosh, M.; Manikandan, M.

    2016-05-01

    The structural, electronic and mechanical properties of rare earth nitride TmN is investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure TmN is stable in the ferromagnetic state with NaCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that TmN is metallic at normal pressure. Ferromagnetic to non magnetic phase transition is predicted in TmN at high pressure.

  12. Fluid inclusion, rare earth element geochemistry, and isotopic characteristics of the eastern ore zone of the Baiyangping polymetallic Ore district, northwestern Yunnan Province, China

    NASA Astrophysics Data System (ADS)

    Feng, Caixia; Bi, Xianwu; Liu, Shen; Hu, Ruizhong

    2014-05-01

    The Baiyangping Cu-Ag polymetallic ore district is located in the northern part of the Lanping-Simao foreland fold belt, which lies between the Jinshajiang-Ailaoshan and Lancangjiang faults in western Yunnan Province, China. The source of ore-forming fluids and materials within the eastern ore zone were investigated using fluid inclusion, rare earth element (REE), and isotopic (C, O, and S) analyses undertaken on sulfides, gangue minerals, wall rocks, and ores formed during the hydrothermal stage of mineralization. These analyses indicate: (1) The presence of five types of fluid inclusion, which contain various combinations of liquid (l) and vapor (v) phases at room temperature: (a) H2O (l), (b) H2O (l) + H2O (v), (c) H2O (v), (d) CmHn (v), and (e) H2O (l) + CO2 (l), sometimes with CO2 (v). These inclusions have salinities of 1.4-19.9 wt.% NaCl equivalents, with two modes at approximately 5-10 and 16-21 wt.% NaCl equivalent, and homogenization temperatures between 101 °C and 295 °C. Five components were identified in fluid inclusions using Raman microspectrometry: H2O, dolomite, calcite, CH4, and N2. (2) Calcite, dolomitized limestone, and dolomite contain total REE concentrations of 3.10-38.93 ppm, whereas wall rocks and ores contain REE concentrations of 1.21-196 ppm. Dolomitized limestone, dolomite, wall rock, and ore samples have similar chondrite-normalized REE patterns, with ores in the Huachangshan, Xiaquwu, and Dongzhiyan ore blocks having large negative δCe and δEu anomalies, which may be indicative of a change in redox conditions during fluid ascent, migration, and/or cooling. (3) δ34S values for sphalerite, galena, pyrite, and tetrahedrite sulfide samples range from -7.3‰ to 2.1‰, a wide range that indicates multiple sulfur sources. The basin contains numerous sources of S, and deriving S from a mixture of these sources could have yielded these near-zero values, either by mixing of S from different sources, or by changes in the geological

  13. Rare Earth Optical Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Jenkins, Phillip (Inventor)

    2004-01-01

    A rare earth optical temperature sensor is disclosed for measuring high temperatures. Optical temperature sensors exist that channel emissions from a sensor to a detector using a light pipe. The invention uses a rare earth emitter to transform the sensed thermal energy into a narrow band width optical signal that travels to a detector using a light pipe. An optical bandpass filter at the detector removes any noise signal outside of the band width of the signal from the emitter.

  14. First-principles study of rare-earth (RE) cobaltites (RE=Nd,Sm,Gd,Dy,Er,Lu)

    NASA Astrophysics Data System (ADS)

    Topsakal, M.; Wentzcovitch, R. M.

    2014-12-01

    The lanthanide series of the periodic table comprises 15 members ranging from Lanthanum (La) to Lutetium (Lu). Although they are more abundant than silver, and some of them are more abundant than lead, they are known as rare-earth (RE) elements. The "rare" in their name refers to the difficulty of obtaining the pure elements, not to their abundances in nature. They are never found as free metals in the Earth's crust and do not exist as pure minerals. Using first-principles plane-wave calculations, we investigate the structural and electronic properties of rare-earth cobaltites (RECoO3). Structurally consistent Hubbard U treatment was shown to essential for proper description of strongly correlated cobalt-d electrons. We successfully capture the experimentally observed structural trends and give first-principles insights on interesting phenomena related with the cobalt spin state change. It was demonstrated that increase of crystal-field splitting energy between eg-t2g orbitals and shrinking of unoccupied σ*-bonding eg bands are responsible for the increase of onset spin-state transition temperature along the series.

  15. Wall rock-magma interactions in Etna, Italy, studied by U-Th disequilibrium and rare earth element systematics

    SciTech Connect

    Villemant, B. CNRS URA 196, Paris ); Michaud, V.; Metrich, N. )

    1993-03-01

    [sup 230]Th/[sup 238]U disequilibria have been studied in xenoliths and associated lavas of the 1892 and 1989 eruptions of Etna. Most xenoliths are out of secular equilibrium within 1 [sigma] errors and have lower [sup 230]Th/[sup 232]Th ratios than their host magmas. Siliceous and peraluminous xenoliths display large ranges of Th/U ratios for similar [sup 230]Th/[sup 232]Th values, which are interpreted in terms of Th isotopic rehomogenization. The siliceous xenoliths have also suffered thorium and uranium enrichments, which are best explained by chemical diffusion between xenolith melts and differentiated magmas. Estimates of thorium self-diffusivities and [sup 230]Th-[sup 238]U disequilibria give age constraints on these events corresponding to the last major volcanic event of Etna at 14 ka (formation of the elliptic crater caldera). These results suggest that magma storage in superficial and long-lived magma chambers favors the thorium isotopic homogenization of wall rocks by a thermal effect. Chemical diffusion of uranium and thorium and isotopic homogenization between siliceous melts of wall rocks and differentiated magmas may significantly modify the initial thorium isotopic compositions. Such contamination processes could explain the large variations of the [sup 230]Th/[sup 232]Th initial ratios of Etna magmas. 33 refs., 7 figs., 1 tab.

  16. Theoretical studies of strongly correlated rare-earth intermetallics RIn₃ and RSn₃ (R=Sm, Eu, and Gd)

    SciTech Connect

    Shafiq, M.; Ahmad, Iftikhar E-mail: dr.iftikhar@uom.edu.pk; Jalali Asadabadi, S.

    2014-09-14

    In this paper, the structural, elastic, and electronic properties of RIn₃ and RSn₃ (R = Sm, Eu, Gd) compounds have been investigated using the full potential linearized augmented plane wave plus local orbital method within the density functional theory. The structural properties are investigated using the LDA, GGA, and the band correlated LDA+U and GGA+U schemes. The lattice parameters are in good agreement with the available experimental results and the divalent state of Eu is also verified. The spin-orbit coupling is included in order to predict the correct electronic properties and splitting of 4f states of the rare earth elements is also incorporated. We calculated Bulk modulus, shear modulus, Young's modulus, anisotropic ratio, Kleinman parameters, Poisson's ratio, Lame's co-efficient, sound velocities for shear and longitudinal waves, and Debye temperature. We also predict the Cauchy pressure and B/G ratio in order to explore the ductile and brittle behaviors of these compounds.

  17. Precambrian tholeiitic-dacitic rock-suites and Cambrian ultramafic rocks in the Pennine nappe system of the Alps: Evidence from Sm-Nd isotopes and rare earth elements

    USGS Publications Warehouse

    Stille, P.; Tatsumoto, M.

    1985-01-01

    Major element, trace element and Sm-Nd isotope analyses were made of polymetamorphic hornblendefelses, plagioclase amphibolites and banded amphibolites from the Berisal complex in the Simplon area (Italy, Switzerland) to determine their age, origin and genetic relationships. In light of major and rare earth element data, the hornblendefelses are inferred to have originally been pyroxene-rich cumulates, the plagioclase amphibolites and the dark layers of the banded amphibolites to have been tholeiitic basalts and the light layers dacites. The Sm-Nd isotope data yield isochron ages of 475??81 Ma for the hornblendefelses, 1,018??59 Ma for the plagioclase amphibolites and 1,071??43 Ma for the banded amphibolites. The 1 Ga magmatic event is the oldest one ever found in the crystalline basement of the Pennine nappes. The Sm -Nd isotope data support the consanguinity of the tholeiitic dark layers and the dacitic light layers of the banded amphibolites with the tholeiitic plagioclase amphibolites and the ultramafic hornblendefelses. The initial e{open}Nd values indicate that all three rock types originated from sources depleted in light rare earth elements. We suggest that plagioclase and banded amphibolites were a Proterozoic tholeiite-dacite sequence that was strongly deformed and flattened during subsequent folding. The hornblendefelses are thought to be Cambrian intrusions of pyroxene-rich material. ?? 1985 Springer-Verlag.

  18. Rare earths in nanocrystalline glass ceramics

    NASA Astrophysics Data System (ADS)

    Lahoz, F.; Martín, I. R.; Rodríguez-Mendoza, U. R.; Iparraguirre, I.; Azkargorta, J.; Mendioroz, A.; Balda, R.; Fernández, J.; Lavín, V.

    2005-10-01

    The optical spectroscopic analysis of rare earth ions in transparent oxyfluoride glass-ceramics obtained from SiO2-Al2O3-PbF2-CdF2 based precursor glasses is presented. The oscillator strengths of the optical transitions were measured from the absorption spectra of glasses and glass-ceramics doped with rare earth ions. The results were analysed in the framework of the Judd-Ofelt theory giving the values of the three Ω2, Ω4 and Ω6 intensity parameters over the rare earth series. On the other hand, high efficient infrared-to-blue upconversion has been observed in Tm3+-Yb3+ codoped glass and glass-ceramic compared to the Tm3+ single doped matrices. The contributions to the upconversion process of the rare earth ions in the nanocrystalline and in the vitreous phase of the glass-ceramics have been distinguished. Finally, laser action in Nd3+-doped glass-ceramic has been studied. Losses due to UV and visible upconverted emissions inside the laser cavity have been also estimated.

  19. Studies of transport pathways of Th, U, rare earths, Ra-228, and Ra-226 from soil to plants and farm animals: Final progress report, 1983-1988

    SciTech Connect

    Linsalata, P

    1988-07-01

    This report consists of three parts. Part 1 discusses a field study conducted in an area of enhanced, natural radioactivity to assess the soil to edible vegetable concentration ratios (CR = concentration in dry vegetable/concentration in dry soil) of Th-232, Th-230, Ra-226, Ra-228, and the light rare earth elements (REE's), La, Ce, and Nd. Twenty-eight soil, and approximately 42 vegetable samples consisting of relatively equal numbers of seven varieties, were obtained from 11 farms on the Pocos de Caldas Plateau in the state of Minas Gerais, Brazil. This region is the site of a major natural analogue study to assess the mobilization and retardation processes affecting thorium and the REE's at the Morro do Ferro ore body, and uranium series radionuclides at the Osamu Utsumi open pit uranium mine. Thorium (IV) serves as a chemical analogue for quadrivalent plutonium, the light REE's (III) as chemical analogues for trivalent americium and curium, and uranium (VI) as an analogue for transuranics with stable oxidation states above IV, e.g., Pu(VI). Part 2 includes our final measurement results for naturally occurring light rare earth elements (REE's include La, Ce, Nd, and SM), U-series and Th-series radionuclides in adult farm animal tissues, feeds and soils. Our findings on soil-to-tissue concentration ratios (CR's) and the comparative behavior of these elements in farm animals raised under natural conditions by local farmers are presented. Part 3 summarizes our findings to date on the distribution and mobilization of Th-232, light rare earth elements (LREE), U-238 and Ra-228 in the MF basin. Estimates of first order, present day, mobilization rate constants resulting from ground water solubilization and seepage/stream transport are calculated using revised inventory estimates for the occurrence of these elements in the ore body and annual flux estimates for the transport of these elements away from the ore body. 151 refs., 20 figs., 40 tabs.

  20. Selective Emitter Pumped Rare Earth Laser

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L. (Inventor); Patton, Martin O. (Inventor)

    2001-01-01

    A selective emitter pumped rare earth laser provides an additional type of laser for use in many laser applications. Rare earth doped lasers exist which are pumped with flashtubes or laser diodes. The invention uses a rare earth emitter to transform thermal energy input to a spectral band matching the absorption band of a rare earth in the laser in order to produce lasing.

  1. Mechanistic study of the hydrodesulfurization of methanethiol over tungsten disulfide; a survey of rare earth sulfides for hydrodesulfurization activity

    SciTech Connect

    Dowd, D.Q.

    1985-06-01

    Hydrodesulfurization is a process whereby sulfur bound in organic compounds is removed as hydrogen sulfide, and is important to the control of sulfur dioxide emissions in the combustion of petroleum and coal fuels. It involves the cleavage of carbon sulfur bonds, and is catalyzed by layered disulfides such as molybdenum and tungsten disulfide. The simplest example is the reaction CH/sub 3/SH + H/sub 2/ ..-->.. CH/sub 4/ + H/sub 2/S. The mechanism of even this protypical reaction is unclear. In an effort to clarify it, the kinetics of methanethiol hydrodesulfurization over tungsten disulfide at low pressures was established, with partial pressures of methanethiol and hydrogen varied over a hundred fold. The kinetic order in each reactant was positive when its partial pressure was low negative when its partial pressure was high. The negative order in hydrogen had not been previously seen. The product gases, methane and hydrogen sulfide, each exhibited negative kinetic orders at high partial pressures, zero kinetic orders at low partial pressures. A dual site Langmuir-Hinshelwood type mechanism, which defines one active site as two adjacent edge sulfur vacancies and the second as a neighboring sulfur atom, describes these results quite well. Seventeen rare earth sulfides were surveyed for catalytic activity toward methanethiol hydrodesulfurization. These sulfides included both stoichiometric and nonstoichiometric compositions and four different morphologies. In general, nonconductors were inactive and conductors were active. This correlation extended to the nonstoichiometric ..gamma..-phase sesquisulfides which exhibit both insulating and conducting properties. 96 refs.

  2. Mechanistic study of the hydrodesulfurization of methanethiol over tungsten disulfide. II. A survey of rare earth sulfides for hydrodesulfurization activity

    SciTech Connect

    Dowd, D.Q.

    1985-01-01

    I. Hydrodesulfurization is a process whereby sulfur bound in organic compounds is removed as hydrogen sulfide, and is important to the control of sulfur dioxide emissions in the combustion of petroleum and coal fuels. It involves the cleavage of carbon sulfur bonds, and is catalyzed by layered disulfides such as molybdenum and tungsten disulfide. The simplest example is the reaction CH/sub 3/SH + H/sub 2/ ..-->.. CH/sub 4/ + H/sub 2/S. The mechanism of even this prototypical reaction is unclear. In an effort to clarify it, the kinetics of methanethiol hydro desulfurization over tungsten disulfide at low pressures was established, with partial pressures of methanethiol and hydrogen varied over a hundred fold. The kinetic order in each reactant was positive when its partial pressure was low, negative when its partial pressure was high. The negative order in hydrogen had not been previously seen. The product gases, methane and hydrogen sulfide, each exhibited negative kinetic orders at high partial pressures, zero kinetic orders at low partial pressures. A dual site Langmuir-Hinshelwood type mechanism, which defines one active site as two adjacent edge sulfur vacancies and the second as a neighboring sulfur atom, describes these results quite well. II. Seventeen rare earth sulfides were surveyed for catalytic activity toward methanethiol hydrodesulfurization. These sulfides included both stoichiometric and nonstoichiometric compositions and four different morphologies. In general, nonconductors were inactive and conductors were active. This correlation extended to the nonstoichiometric ..gamma..-phase sesquisulfides which exhibit both insulating and conducting properties.

  3. Study on the Microstructure and Wettability of an Al-Cu-Si Braze Containing Small Amounts of Rare Earth Erbium

    NASA Astrophysics Data System (ADS)

    Shi, Yaowu; Yu, Yang; Li, Yapeng; Xia, Zhidong; Lei, Yongping; Li, Xiaoyan; Guo, Fu

    2009-04-01

    The effect of adding small amounts of rare earth Er on the microstructure of an Al-Cu-Si braze alloy has been investigated. Several Al-20Cu-7Si braze alloys containing various contents of Er were prepared, and their melting temperature, microstructure, hardness, and wettability in contact with 3003 aluminum alloy substrates were determined. The results indicate that the constituents of the microstructure of Al-20Cu-7Si-Er braze alloys are similar to those in the Al-20Cu-7Si alloy, and comprise of solid solutions of aluminum, silicon, and the intermetallic compound CuAl2. When the Er content increases, the size of the Al phase decreases, and the needle-like Si phase is thickened, and transformed to a blocky shape. Moreover, small amounts of Er can improve the wettability and hardness of the Al-20Cu-7Si braze alloy; however, the melting temperature of the Al-20Cu-7Si alloy does not change.

  4. Framework for resilience in material supply chains, with a case study from the 2010 Rare Earth Crisis.

    PubMed

    Sprecher, Benjamin; Daigo, Ichiro; Murakami, Shinsuke; Kleijn, Rene; Vos, Matthijs; Kramer, Gert Jan

    2015-06-01

    In 2010, Chinese export restrictions caused the price of the rare earth element neodymium to increase by a factor of 10, only to return to almost normal levels in the following months. This despite the fact that the restrictions were not lifted. The significant price peak shows that this material supply chain was only weakly resistant to a major supply disruption. However, the fact that prices rapidly returned to lower levels implies a certain resilience. With the help of a novel approach, based on resilience theory combined with a material flow analysis (MFA) based representation of the neodymium magnet (NdFeB) supply chain, we show that supply chain resilience is composed of various mechanisms, including (a) resistance, (b) rapidity, and (c) flexibility, that originate from different parts of the supply chain. We make recommendations to improve the capacity of the NdFeB system to deal with future disruptions and discuss potential generalities for the resilience of other material supply chains. PMID:25965803

  5. Rare-earth occurrences in the Pea Ridge tailings

    SciTech Connect

    Vierrether, C.W.; Cornell, W.I.

    1993-01-01

    Tailings from the Pea Ridge iron mine contain significant amounts of apatite, which has rare-earth element values associated with it. In association with the recovery of rare-earth minerals as a secondary resource, the US Bureau of Mines conducted an investigation on the recoverability of the rare-earth minerals from the tailings. The mill tailings were subjected to a phosphate flotation to separate the apatite from other constituents. More than 70-pct recovery of the rare-earth values was achieved. Based on mineralogical characterization and prior analysis of rare-earth-bearing breccia pipe material at Pea Ridge, it is proposed that processing this phosphate concentrate on a vanner table would yield up to a 95-pct recovery of the rare earths in the concentrate, with the apatite reporting to the tailings. Intensive ore microscopy studies of the original tailings to the flotation products led to the identification of monazite, xenotime, and rare-earth-enriched apatite as the major rare-earth-bearing minerals in the tailings.

  6. High-precision, systematic study of hyperfine structure in the 4f/sup N/6s/sup 2/ configuration of the neutral rare earths

    SciTech Connect

    Childs, W.J.; Goodman, L.S.; Pfeufer, V.

    1983-01-01

    Although the hyperfine structure (hfs) of many-electron atoms has been studied intensively in recent years, it is still difficult to distinguish between the competing effects of relativity and configuration interaction. The 4f/sup N/6s/sup 2/ configuration of the neutral rare earths is of particular interest because (a) the low-lying terms are relatively free of configuration interaction, and (b) trends can be examined systematically as one proceeds through the long 4f-shell. The procedure is to deduce, from the measured hfs constants of low levels, the underlying hyperfine radial integrals for comparison with ab initio predictions. Since some of these integrals are extremely sensitive to any configuration interaction and others are not, it is possible to determine both the extent and type of configuration interaction present in some cases. Prior to the start of the present research no precise hfs information existed for the entire second half of the 4f shell of the rare earths. The present measurements were designed both to provide such data and to make possible a systematic study of the hfs throughout the 4f shell. The atomic-beam, laser-rf, double-resonance method was used for the measurements. With this technique, the occurrence of a radiofrequency transition between atomic hfs levels is detected by noting an increase in the laser-induced fluorescence.

  7. Evaluation of water quality in surface water and shallow groundwater: a case study of a rare earth mining area in southern Jiangxi Province, China.

    PubMed

    Hao, Xiuzhen; Wang, Dengjun; Wang, Peiran; Wang, Yuxia; Zhou, Dongmei

    2016-01-01

    This study was conducted to evaluate the quality of surface water and shallow groundwater near a rare earth mining area in southern Jiangxi Province, China. Water samples from paddy fields, ponds, streams, wells, and springs were collected and analyzed. The results showed that water bodies were characterized by low pH and high concentrations of total nitrogen (total N), ammonium nitrogen (NH4 (+)-N), manganese (Mn), and rare earth elements (REEs), which was likely due to residual chemicals in the soil after mining activity. A comparison with the surface water standard (State Environmental Protection Administration & General Administration of Quality Supervision, Inspection and Quarantine of China GB3838, 2002) and drinking water sanitary standard (Ministry of Health & National Standardization Management Committee of China GB5749, 2006) of China revealed that 88 % of pond and stream water samples investigated were unsuitable for agricultural use and aquaculture water supply, and 50 % of well and spring water samples were unsuitable for drinking water. Moreover, significant cerium (Ce) negative and heavy REEs enrichment was observed after the data were normalized to the Post-Archean Australian Shales (PAAS). Principal component analysis indicated that the mining activity had a more significant impact on local water quality than terrace field farming and poultry breeding activities. Moreover, greater risk of water pollution and adverse effects on local residents' health was observed with closer proximity to mining sites. Overall, these findings indicate that effective measures to prevent contamination of surrounding water bodies from the effects of mining activity are needed. PMID:26661960

  8. Levels of rare earth elements, heavy metals and uranium in a population living in Baiyun Obo, Inner Mongolia, China: a pilot study.

    PubMed

    Hao, Zhe; Li, Yonghua; Li, Hairong; Wei, Binggan; Liao, Xiaoyong; Liang, Tao; Yu, Jiangping

    2015-06-01

    The Baiyun Obo deposit is the world's largest rare earth elements (REE) deposit. We aimed to investigate levels of REE, heavy metals (HMs) and uranium (U) based on morning urine samples in a population in Baiyun Obo and to assess the possible influence of rare earth mining processes on human exposure. In the mining area, elevated levels were found for the sum of the concentrations of light REE (LREE) and heavy REE (HREE) with mean values at 3.453 and 1.151 μg g(-1) creatinine, which were significantly higher than those in the control area. Concentrations of HMs and U in the population increased concomitantly with increasing REE levels. The results revealed that besides REE, HMs and U were produced with REE exploitation. Gender, age, educational level, alcohol and smoking habit were major factors contributing to inter-individual variation. Males were more exposed to these metals than females. Concentrations in people in the senior age group and those with only primary education were low. Drinking and smoking were associated with the levels of LREE, Cr, Cu, Cd and Pb in morning urine. Hence this study provides basic and useful information when addressing public and environmental health challenges in the areas where REE are mined and processed. PMID:25703899

  9. Rare Earth Garnet Selective Emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approx. = 0.75, sup 4)|(sub 15/2) - (sup 4)|(sub 13/2),for Er-YAG and epsilon(sub lambda) approx. = 0.65, (sup 5)|(sub 7) - (sup 5)|(sub 8) for Ho-YAG) at 1500 K. In addition, low out-of-band spectral emittance, epsilon(sub lambda) less than 0.2, suggest these materials would be excellent candidates for high efficiency selective emitters in thermophotovoltaic (TPV) systems operating at moderate temperatures (1200-1500 K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. Selective emitters in the near IR are of special interest for thermophotovoltaic (TPV) energy conversion. The most promising solid selective emitters for use in a TPV system are rare earth oxides. Early spectral emittance work on rare earth oxides showed strong emission bands in the infrared (0.9 - 3 microns). However, the emittance outside the emission band was also significant and the efficiency of these emitters was low. Recent improvements in efficiency have been made with emitters fabricated from fine (5 - 10 microns) rare earth oxide fibers similar to the Welsbach mantle used in gas lanterns. However, the rare earth garnet emitters are more rugged than the mantle type emitters. A thin film selective emitter on a low emissivity substrate such as gold, platinum etc., is rugged and easily adapted to a wide variety of thermal sources. The garnet structure and its many subgroups have been successfully used as hosts for rare earth ions, introduced as substitutional

  10. Rare Earth Optical Temperature Sensor

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Wolford, David S.

    2000-01-01

    A new optical temperature sensor suitable for high temperatures (greater than 1700 K) and harsh environments is introduced. The key component of the sensor is the rare earth material contained at the end of a sensor that is in contact with the sample being measured. The measured narrow wavelength band emission from the rare earth is used to deduce the sample temperature. A simplified relation between the temperature and measured radiation was verified experimentally. The upper temperature limit of the sensor is determined by material limits to be approximately 2000 C. The lower limit, determined by the minimum detectable radiation, is found to be approximately 700 K. At high temperatures 1 K resolution is predicted. Also, millisecond response times are calculated.

  11. A summary of niobium and rare earth localities from Ha'il and other areas in western Saudi Arabia: a preliminary study

    USGS Publications Warehouse

    Matzko, John J.; Naqvi, Mohammed Ibne

    1978-01-01

    Investigations in 1965 located veins containing radioactive material in the Halaban Group on the east side of a granite pluton at Jabal Aja near Ha'il. Later study extended the known area of radioactivity to a total length of about 30 km. Mineralogic studies indicated that the samples were low in uranium and that the radioactivity was due principally to thorium in niobium-bearing minerals. Two samples were reexamined to identify the sources of radioactivity, but X-ray and alpha plate studies did not reveal the radioactive minerals, even though uranium mineralization was indicated by the alpha plates. Further sampling is suggested to isolate the sources of radioactivity. This study indicates that niobium occurrences are related to alkaline intrusives in many areas of western Saudi Arabia. These areas should be investigated for their possible niobium and rare earth contents; their uranium content is apparently too low to be of economic interest.

  12. Stages of weathering mantle formation from carbonate rocks in the light of rare earth elements (REE) and Sr-Nd-Pb isotopes

    NASA Astrophysics Data System (ADS)

    Hissler, Christophe; Stille, Peter

    2015-04-01

    Weathering mantles are widespread and include lateritic, sandy and kaolinite-rich saprolites and residuals of partially dissolved rocks. These old regolith systems have a complex history of formation and may present a polycyclic evolution due to successive geological and pedogenetic processes that affected the profile. Until now, only few studies highlighted the unusual high content of associated trace elements in weathering mantles originating from carbonate rocks, which have been poorly studied, compared to those developing on magmatic bedrocks. For instance, these enrichments can be up to five times the content of the underlying carbonate rocks. However, these studies also showed that the carbonate bedrock content only partially explains the soil enrichment for all the considered major and trace elements. Up to now, neither soil, nor saprolite formation has to our knowledge been geochemically elucidated. Therefore, the aim of this study was to examine more closely the soil forming dynamics and the relationship of the chemical soil composition to potential sources. REE distribution patterns and Sr-Nd-Pb isotope ratios have been used because they are particularly well suited to identify trace element migration, to recognize origin and mixing processes and, in addition, to decipher possible anthropogenic and/or "natural" atmosphere-derived contributions to the soil. Moreover, leaching experiments have been applied to identify mobile phases in the soil system and to yield information on the stability of trace elements and especially on their behaviour in these Fe-enriched carbonate systems. All these geochemical informations indicate that the cambisol developing on such a typical weathering mantle ("terra fusca") has been formed through weathering of a condensed Bajocian limestone-marl facies. This facies shows compared to average world carbonates important trace element enrichments. Their trace element distribution patterns are similar to those of the soil

  13. Strong Input and Removal of Rare Earth Elements (REEs) Affect Dissolved Nd Isotope Composition of Seawater in the Panama Basin and the Eastern Equatorial Pacific

    NASA Astrophysics Data System (ADS)

    Frank, M.; Bosse, L. M.; Grasse, P.; Pahnke, K.; Hathorne, E. C.

    2014-12-01

    The distributions of dissolved REEs and Nd isotopes are controlled by inputs from land and water mass mixing. We present new data from the Panama Basin in the Eastern Equatorial Pacific (EEP) extending previous studies in the frame of the German SFB 754 project. The samples were taken following GEOTRACES protocols along a section from close to the Panamanian coast into the deep Panama Basin during FS Meteor cruise M90 in October/November 2012. Elevated Nd concentrations near 13 pmol/kg are found at the surface, which rapidly decrease to a subsurface minimum of 8 pmol/kg near 100m depth and then increase with water depth reaching maximum values of 18 pmol/kg at 3000 m water depth. However, these deep water concentrations are more than a factor of 2 lower than observed for North Pacific Deep Water (NPDW), which is the prevailing Pacific deep water mass at the sampling locations. All the REEs are depleted compared to NPDW suggesting that efficient uptake and scavenging dominate compared to release from remineralized particles. The surface waters show the most radiogenic Nd isotope values (ɛNd = +4.3) so far obtained globally. In combination with the Nd concentration maxima at the surface this suggests riverine dissolved and fine grained particulate inputs from southern Panama and Colombia where highly radiogenic volcanic rocks are exposed. Elevated ɛNd values above -1 in the entire water column are more radiogenic than in NPDW in the Central Pacific and in waters further south in the EEP, which confirms that release of REEs from the sinking volcanogenic material affects the entire water column. These data clearly document that significant inputs from land combined with efficient scavenging and removal in surface and deep waters control the distribution of REEs and Nd isotopes in the Panama Basin and the adjacent EEP (Grasse et al., 2012), which also has important implications for the distribution of other trace metals.

  14. Rare earth element association with foraminifera

    NASA Astrophysics Data System (ADS)

    Roberts, Natalie L.; Piotrowski, Alexander M.; Elderfield, Henry; Eglinton, Timothy I.; Lomas, Michael W.

    2012-10-01

    Neodymium isotopes are becoming widely used as a palaeoceanographic tool for reconstructing the source and flow direction of water masses. A new method using planktonic foraminifera which have not been chemically cleaned has proven to be a promising means of avoiding contamination of the deep ocean palaeoceanographic signal by detrital material. However, the exact mechanism by which the Nd isotope signal from bottom waters becomes associated with planktonic foraminifera, the spatial distribution of rare earth element (REE) concentrations within the shell, and the possible mobility of REE ions during changing redox conditions, have not been fully investigated. Here we present REE concentration and Nd isotope data from mixed species of planktonic foraminifera taken from plankton tows, sediment traps and a sediment core from the NW Atlantic. We used multiple geochemical techniques to evaluate how, where and when REEs become associated with planktonic foraminifera as they settle through the water column, reside at the surface and are buried in the sediment. Analyses of foraminifera shells from plankton tows and sediment traps between 200 and 2938 m water depth indicate that only ˜20% of their associated Nd is biogenically incorporated into the calcite structure. The remaining 80% is associated with authigenic metal oxides and organic matter, which form in the water column, and remain extraneous to the carbonate structure. Remineralisation of these organic and authigenic phases releases ions back into solution and creates new binding sites, allowing the Nd isotope ratio to undergo partial equilibration with the ambient seawater, as the foraminifera fall through the water column. Analyses of fossil foraminifera shells from sediment cores show that their REE concentrations increase by up to 10-fold at the sediment-water interface, and acquire an isotopic signature of bottom water. Adsorption and complexation of REE3+ ions between the inner layers of calcite contributes

  15. Investigations into Rare Earth Oxide Use and Behaviour

    NASA Astrophysics Data System (ADS)

    Pryce, Owen

    2010-05-01

    Quinton, 2008), and alternative REO extraction methods was compared using tagged and untagged soils. Extractions were also performed upon REO powders and a certified reference soil to identify which of the commonly used REOs are unsuitable for tracing studies. This paper will also report on investigations into the transport behaviour of REO tracers at different slope gradients, including comparisons between the transport of sediment bound phosphorus and REOs. References: Kimoto, A., Nearing, M., Shipitalo, M., Polyakov, V., 2006. Multi-year tracking of sediment sources in a small agricultural watershed using rare earth elements. Earth Surface Processes and Landforms, 31, pp.1763-1774. Li, M., Li, Z., Ding, W., Liu, P., Yao, W., 2006. Using rare earth element tracers and neutron activation analysis to study rill erosion processes. Applied Radiation and Isotopes, 64, pp.402-408. Polyakov, V., Nearing, M., Shipitalo, M., 2004. Tracking sediment redistribution in a small watershed: Implications for agro-landscape evolution. Earth Surface Processes and Landforms, 29, pp.1275-1291. Stevens, C., Quinton, J., 2008. Investigating source areas of eroded sediments transported in concentrated overland flow using rare earth element tracers. Catena, 74, pp.31-36. Zhang, X., Friedrich, J., Nearing, M., Norton, L., 2001. Potential use of Rare Earth Oxides as Tracers for Soil Erosion and Aggregation Studies. Soil Science Society of America Journal, 65, pp.1508-1515. Zhang, X., Nearing, M., Polyakov, V., Friedrich, J., 2003. Using Rare-Earth Oxide Tracers for Studying Soil Erosion Dynaimcs. Soil Science Society of America Journal, 67, pp.279-288.

  16. Anthropogenic Cycles of Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Du, X.; Graedel, T. E.

    2009-12-01

    This research will develop quantitatively resolved anthropogenic cycles and in-use stocks for the rare earth metals specifically cerium, lanthanum and dysprosium in Japan, China, and the U.S. for the year of 2007. Rare earth elements (REE) is a group of 17 scare metals widely used in a growing number of emerging technologies and have been in high demand for emerging technologies as raw materials during past the three decades. New market participants from newly industrializing countries, primarily China, have had strong impacts on the demand of share. Consequently, the importance to sustain a reliable, steady, uninterrupted supply on global market triggered comprehensive research to recognize and understand the life cycles of rare earths. Moreover, because China plays a dominant role in mining production since 1990, it requires the assessment for the countries, which are almost completely dependent on imports from China with respect to rare earth resources. The study aims to analyze the flows and stocks of rare earth elements individually as elemental form in spite of their natural geological co-occurrence and mixed composition in applications. By applying the method of Material Flow Analysis (MFA) work has been done on evaluating current and historical flows of specific technologically significant materials, for example, copper, zinc, nickel, etc., determining the stocks available in different types of reservoirs (e.g., lithosphere, in-use) and the flows among the reservoirs, developing scenarios of possible futures of metal use, and assessing the environmental and policy implications of the results. Therefore, REE as a new target deserves inclusion because of its potential demand-supply conflict and importance to secure the competitive advantage of technical innovation in future. This work will generate a quantitatively resolved anthropogenic life cycle and in-use stocks for REE for the main target countries for a chosen year, 2007, providing flows and stocks from

  17. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Hedrick, J.B.

    2006-01-01

    In 2005, rare earths were not mined in the United States. The major supplier, Molycorp, continued to maintain a large stockpile of rare-earth concentrates and compounds. Consumption decreased of refined rare-earth products. The United States remained a major importer and exporter of rare earths in 2005. During the same period, yttrium was not mined or refined in the US. Hence, supply of yttrium compounds for refined yttrium products came from China, France and Japan. Scandium was not also mined. World production was primarily in China, Russia and Ukraine. Demand for rare earths in 2006 is expected to be closely tied to economic conditions in the US.

  18. Production method for making rare earth compounds

    DOEpatents

    McCallum, R.W.; Ellis, T.W.; Dennis, K.W.; Hofer, R.J.; Branagan, D.J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g., a transition metal and optional boron), and a carbide-forming element (e.g., a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g., Nd{sub 2}Fe{sub 14}B or LaNi{sub 5}) and a carbide of the carbide-forming element are formed.

  19. Production method for making rare earth compounds

    DOEpatents

    McCallum, R. William; Ellis, Timothy W.; Dennis, Kevin W.; Hofer, Robert J.; Branagan, Daniel J.

    1997-11-25

    A method of making a rare earth compound, such as a earth-transition metal permanent magnet compound, without the need for producing rare earth metal as a process step, comprises carbothermically reacting a rare earth oxide to form a rare earth carbide and heating the rare earth carbide, a compound-forming reactant (e.g. a transition metal and optional boron), and a carbide-forming element (e.g. a refractory metal) that forms a carbide that is more thermodynamically favorable than the rare earth carbide whereby the rare earth compound (e.g. Nd.sub.2 Fe.sub.14 B or LaNi.sub.5) and a carbide of the carbide-forming element are formed.

  20. Rare earth garnet selective emitter

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Farmer, Serene C.; Good, Brian S.

    1994-01-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon(sub lambda) approximately equal to 0.74, ((4)l(sub 15/2)) - ( (4)l(sub13/2)), for Er-YAG and epsilon(sub lambda) approximately equal to 0.65, ((5)l(sub 7))-((5)l(sub 8)) for Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper we present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon(sub lambda), measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  1. Rare earth garnet selective emitter

    SciTech Connect

    Lowe, R.A.; Chubb, D.L.; Farmer, S.C.; Good, B.S.

    1994-09-01

    Thin film Ho-YAG and Er-YAG emitters with a platinum substrate exhibit high spectral emittance in the emission band (epsilon{sub {lambda}}) approximately equal to 0.74, ((4)l{sub 15/2}) - ((4)l{sub 13/2}), for Er-YAG and epsilon{sub {lambda}} approximately equal to 0.65, ((5)l{sub 7})-((5)l{sub 8}) for (Ho-YAG) at excellent candidates for high efficiency selective emitters in the thermophotovoltaics (TPV) systems operating at moderate temperatures (1200-1500K). Spectral emittance measurements of the thin films were made (1.2 less than lambda less than 3.0 microns) and compared to the theoretical emittances calculated using measured values of the spectral extinction coefficient. In this paper the authors present the results for a new class of rare earth ion selective emitters. These emitters are thin sections (less than 1 mm) of yttrium aluminum garnet (YAG) single crystal with a rare earth substitutional impurity. This paper presents normal spectral emittance, epsilon{sub {lambda}} measurements of holmium (Ho), and erbium (Er) doped YAG thin film selective emitters at 1500 K, and compares those results with the theoretical spectral emittance.

  2. Scarcity of rare earth elements.

    PubMed

    de Boer, M A; Lammertsma, K

    2013-11-01

    Rare earth elements (REEs) are important for green and a large variety of high-tech technologies and are, therefore, in high demand. As a result, supply with REEs is likely to be disrupted (the degree of depends on the REE) in the near future. The 17 REEs are divided into heavy and light REEs. Other critical elements besides REEs, identified by the European Commission, are also becoming less easily available. Although there is no deficiency in the earth's crust of rare earth oxides, the economic accessibility is limited. The increased demand for REEs, the decreasing export from China, and geopolitical concerns on availability contributed to the (re)opening of mines in Australia and the USA and other mines are slow to follow. As a result, short supply of particularly terbium, dysprosium, praseodymium, and neodymium is expected to be problematic for at least the short term, also because they cannot be substituted. Recycling REEs from electronic waste would be a solution, but so far there are hardly any established REE recycling methods. Decreasing the dependency on REEs, for example, by identifying possible replacements or increasing their efficient use, represents another possibility. PMID:24009098

  3. Rare Earth Doped High Temperature Ceramic Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study develops a spectral emittance model for films of rare earth containing materials. Although there are several possible rare earth doped high temperature materials, this study was confined to rare earth aluminum garnets. Good agreement between experimental and theoretical spectral emittances was found for erbium, thulium and erbium-holmium aluminum garnets. Spectral emittances of these films are sensitive to temperature differences across the film. Emitter efficiency is also a sensitive function of temperature. For thulium aluminum garnet the efficiency is 0.38 at 1700 K but only 0.19 at 1262 K.

  4. Rare-earth abundances in chondritic meteorites

    NASA Technical Reports Server (NTRS)

    Evensen, N. M.; Hamilton, P. J.; Onions, R. K.

    1978-01-01

    Fifteen chondrites, including eight carbonaceous chondrites, were analyzed for rare earth element abundances by isotope dilution. Examination of REE for a large number of individual chondrites shows that only a small proportion of the analyses have flat unfractionated REE patterns within experimental error. While some of the remaining analyses are consistent with magmatic fractionation, many patterns, in particular those with positive Ce anomalies, can not be explained by known magmatic processes. Elemental abundance anomalies are found in all major chondrite classes. The persistence of anomalies in chondritic materials relatively removed from direct condensational processes implies that anomalous components are resistant to equilibrium or were introduced at a late stage of chondrite formation. Large-scale segregation of gas and condensate is implied, and bulk variations in REE abundances between planetary bodies is possible.

  5. Rare-earth-metal dialkynyl dimethyl aluminates.

    PubMed

    Nieland, Anja; Mix, Andreas; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W

    2013-06-17

    A new class of rare-earth-metal alkynyl complexes has been prepared. The reactions of the tris(tetramethylaluminate)s of lanthanum, praseodymium, samarium, yttrium, holmium, and thulium, [Ln(AlMe₄)₃], with phenylacetylene afforded compounds [Ln{(μ-C≡CPh)₂AlMe₂}₃] (Ln=La (1), Pr (2), Sm (3), Y (4), Ho (5), Tm (6)). All of these compounds have been characterized by NMR spectroscopy, X-ray crystallography, and by elemental analysis. NMR spectroscopic studies of the series of para- magnetic compounds [Ln(AlMe₄)₃] and [Ln{(μ-C≡CPh)₂AlMe₂}₃] have also been performed. PMID:23616205

  6. Studies of transport pathways of Th, rare earths, Ra-228, and Ra-226 from soil to plants and farm animals. Progress report, April 1, 1985-February 28, 1986

    SciTech Connect

    Linsalata, P.

    1986-02-01

    The field study is to assess the soil-to-plant and soil-to-animal concentration factors of the naturally occurring radionuclides /sup 226/Ra, /sup 228/Ra, /sup 232/Th, /sup 230/Th, and /sup 228/Th, as well as of the light rare earth elements (REE), La, Ce and Nd. Farms situated near the center of a deeply weathered alkalic intrusive known as the Pocos de Caldas (PC) plateau were selected for study because of their proximity (i.e., within a few kilometers) to what may be the largest single near-surface deposit of Th (approx.30,000 tonnes) and REE's (>100,000 tonnes) situated near the summit of a hill (the Morro do Ferro (MF)). An ancillary field study is being conducted in Orange County, New York, where a local cattleman has permitted sampling members of the herd as well as soil and feeds which are all grown on the premises. Vegetable samples and soil have also been analyzed from five additional farms in Orange County, NY. 64 refs., 25 figs., 45 tabs.

  7. Theoretical and experimental study of high-magnetic-field XMCD spectra at the L2,3 absorption edges of mixed-valence rare-earth compounds

    NASA Astrophysics Data System (ADS)

    Kotani, Akio; Matsuda, Yasuhiro H.; Nojiri, Hiroyuki

    2009-11-01

    X-ray magnetic circular dichroism(XMCD) spectra at the L2,3 edges of mixed-valence rare-earth compounds in high magnetic fields are studied both theoretically and experimentally. The theoretical study is based on a new framework proposed recently by Kotani. The Zeeman splitting of 4f states, the mixed-valence character of 4f states, and the 4f-5d exchange interaction are incorporated into a single impurity Anderson model. New XMCD experiments in high magnetic fields up to 40 T are carried out for the mixed-valence compounds EuNi2(Si0.18Ge0.82)2 and YbInCu4 by using a miniature pulsed magnet, which was developed recently by Matsuda et al. The XMCD data are taken at 5 K by transmission measurements for incident X-rays with ± helicities at BL39XU in SPring-8. After giving a survey on recent developments in the theory of XMCD spectra for mixed-valence Ce and Yb compounds, we calculate the XMCD spectra of YbInCu4 at the field-induced valence transition around 32 T by applying the recent theoretical framework and by newly introducing at 32 T a discontinuous change in the Yb 4f level and that in the hybridization strength between the Yb 4f and conduction electrons. The calculated results are compared with the experimental ones.

  8. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Bedinger, G.; Bleiwas, D.

    2012-01-01

    In 2011, rare earths were recovered from bastnasite concentrates at the Mountain Pass Mine in California. Consumption of refined rare-earth products decreased in 2011 from 2010. U.S. rare-earth imports originated primarily from China, with lesser amounts from Austria, Estonia, France and Japan. The United States imported all of its demand for yttrium metal and yttrium compounds, with most of it originating from China. Scandium was imported in various forms and processed domestically.

  9. Improved method for preparing rare earth sesquichalcogenides

    DOEpatents

    Takeshita, T.; Beaudry, B.J.; Gschneidner, K.A. Jr.

    1982-04-14

    An improved method for the preparation of high purity rare earth sesquichalcogenides is described. The rare earth, as one or more pieces of the metal, is sealed under a vacuum with a stoichiometric amount of sulfur or selenium and a small amount of iodine into a quartz reaction vessel. The sealed vessel is then heated to above the vaporization temperature of the chalcogen and below the melting temperature of the rare earth metal and maintained until the product has been formed. The iodine is then vaporized off leaving a pure product. The rare earth sulfides and selenides thus formed are useful as semiconductors and as thermoelectric generators. 3 tables.

  10. Alaska's rare earth deposits and resource potential

    USGS Publications Warehouse

    Barker, James C.; Van Gosen, Bradley S.

    2012-01-01

    Alaska’s known mineral endowment includes some of the largest and highest grade deposits of various metals, including gold, copper and zinc. Recently, Alaska has also been active in the worldwide search for sources of rare earth elements (REE) to replace exports now being limitedby China. Driven by limited supply of the rare earths, combined with their increasing use in new ‘green’ energy, lighting, transportation, and many other technological applications, the rare earth metals neodymium, europium and, in particular, the heavy rare earth elements terbium, dysprosium and yttrium are forecast to soon be in critical short supply (U.S. Department of Energy, 2010).

  11. Ab initio study on rare-earth iron-pnictides RFeAsO (R = Pr, Nd, Sm, Gd) in low-temperature Cmma phase

    NASA Astrophysics Data System (ADS)

    Eryigit, Resul; Gurel, Tanju; Erturk, Esra; Lukoyanov, A. V.; Akcay, Guven; Anisimov, V. I.

    2014-03-01

    We present density functional theory calculations on iron-based pnictides RFeAsO (R = Pr, Nd, Sm, Gd). The calculations have been carried out using plane-waves and projector augmented wave (PAW) pseudopotential approach. Structural, magnetic and electronic properties are studied within generalized gradient approximation (GGA) and also within GGA+U in order to investigate the influence of electron correlation effects. Low-temperature Cmma structure is fully optimized by GGA considering both non-magnetic and magnetic cells. We have found that spin-polarized structure improves the agreement with experiments on equilibrium lattice parameters, particularly c lattice parameter and Fe-As bond-lengths. Electronic band structure, total density of states, and spin-dependent orbital-resolved density of states are also analyzed in the frameworks of GGA and GGA+U and discussed. For all materials, by including on-site Coulomb correction, rare earth 4f states move away from the Fermi level and the Fermi level features of the systems are found to be mostly defined by the 3d electron-electron correlations in Fe. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK Project No. TBAG-111T796) and the Russian Foundation for Basic Research (Project No. 12-02-91371-CT_a).

  12. Structure of A Equals 76 Nuclei and Fast-Timing Studies of the Rare-Earth Region

    NASA Astrophysics Data System (ADS)

    Cooper, Nathan Michael

    produce useful results. Such cases include estimation of total -gamma-decay widths of neutron resonances and -gamma-ray spectra following nuclear reactions. Of particular interest in modern research are so-called pygmy resonances which may be due, for example, to a neutron skin resonance or other exotic modes of excitation. Another topic of continued interest is that of double-beta decay and in particular the search for neutrinoless double-beta (0vbeta) decay. Conclusive observation of 0 vbeta decay would show that the neutrino is its own anti-particle, and evaluation of the neutrino mass could be performed if the matrix element of the decay were known. Constraining parameters of theoretical models using experimental data is of the utmost importance to these calculations. In this dissertation, the structure of A = 76 nuclei near stability, candidates for involvement in the hypothetical 0vbeta decay of 76Ge, is explored though seven experiments performed at the Darmstadt High-Intensity Photon Source, the High Intensity Gamma-Ray Source, and at the Wright Nuclear Structure Laboratory. Of particular concern is the analysis and interpretation of nuclear resonance fluorescence data on 76Se, 76Ge, and nuclei in general. Details and results of experiments performed using fast-timing electronics to study structure of low-lying states of 174W and 176Hf at WNSL are additionally presented as an appendix.

  13. Ames Lab 101: Rare-Earth Recycling

    SciTech Connect

    Ryan Ott

    2012-09-05

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  14. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner JR., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  15. Ames Lab 101: Rare-Earth Recycling

    ScienceCinema

    Ryan Ott

    2013-06-05

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  16. Investigating Heavy Metal Pollution in Mining Brownfield and Its Policy Implications: A Case Study of the Bayan Obo Rare Earth Mine, Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Pan, Yuxue; Li, Haitao

    2016-04-01

    The rapid urbanization of China and associated demand for land resources necessitates remediation, redevelopment, and reclamation of contaminated soil. Before these measures are taken, a basic investigation and inventory of heavy metal (HM) pollution levels in contaminated soil is necessary for establishing and implementing the redevelopment plan. In the present study, to identify the policy implications of inventorying and mapping HM pollution of soil in brownfields throughout China, the Bayan Obo giant rare earth element (REE)-Nb-Fe ore deposit of Baotou in Inner Mongolia, China, which is the largest REE mineral deposit in the world, was taken as a case study. Soil samples from 24 sites in Bayan Obo mining area (MA) and 76 sites in mine tailing area (TA) were collected for determining contents of soil HMs (Cr, Cd, Pb, Cu, and Zn). The results showed that the average concentrations of Cr, Cd, Pb, Cu, and Zn in both MA and TA were all higher than their corresponding background values for Inner Mongolia but lower than the Class II criteria of the National Soil Quality Standards of China (GB 15618—1995). Enrichment factor (EF) analysis of the soil samples indicated that the soil in the brownfield sites was highly enriched with Cr, Cd, Pb, Cu, and Zn compared to the corresponding background values. In MA, the EF for Cd was the highest among the studied elements, while in TA, the EF for Cr (3.45) was the highest, closely followed by the EF for Cd (3.34). The potential ecological risk index (RI) indicated a moderate potential ecological risk from the studied HMs in MA and a low potential ecological risk in TA, and the results of RI also suggested that the soil was most heavily polluted by Cd. According to the spatial distribution maps of HM, contamination hot-spots were primarily located near mining-related high-pollution plants. Based on the results, policy recommendations are proposed related to brownfield management in urban planning.

  17. Rare Earth Metals: Resourcefulness and Recovery

    NASA Astrophysics Data System (ADS)

    Wang, Shijie

    2013-10-01

    When we appreciate the digital revolution carried over from the twentieth century with mobile communication and the Internet, and when we enjoy our high-tech lifestyle filled with iDevices, hybrid cars, wind turbines, and solar cells in this new century, we should also appreciate that all of these advanced products depend on rare earth metals to function. Although there are only 136,000 tons of annual worldwide demand, (Cho, Rare Earth Metals, Will We Have Enough?)1 rare earth metals are becoming such hot commodities on international markets, due to not only to their increasing uses, including in most critical military hardware, but also to Chinese growth, which accounts for 95% of global rare earth metal production. Hence, the 2013 technical calendar topic, planned by the TMS/Hydrometallurgy and Electrometallurgy Committee, is particularly relevant, with four articles (including this commentary) contributed to the JOM October Issue discussing rare earth metals' resourcefulness and recovery.

  18. Soluble rare-earth chalcogenides

    NASA Astrophysics Data System (ADS)

    Pernin, Christopher G.

    1999-11-01

    The cluster Eu8(DMF)13(mu4-O)(mu 3-OH)12(Se3)(Se4)2(Se 5)2 was synthesized from the reaction of EuCl3 dissolved in tetrahydrofaran with K2Se4 dissolved in N,N-dimethylformamide (DMF). The Eu8(O)(OH)12 10+ core is the first example such a polyoxometallo-core. The compound is further unusual in that it contains three different polyselenide chain lengths attaching adjacent Eu atoms. A similar reaction between Ln Cl3·6H2O and K2Se4 in DMF was found to produce the cluster compounds Gd8(DMF) 13(mu4-O)(mu3-OH)12(Se3)(Se 4)2(Se5)2, Yb8 (DMF) 11(mu4-O)(mu3-OH)12(Se4) 2(Se5)2Cl2·(DMF), and Y 8(DMF)12(mu4-O)(mu3-OH)12 (Se4)4Cl2·(DMF)6. Each of these clusters has a similar Ln8(mu 4-OH)(mu3-OH)1210+ core coordinated by a variety of polyselenide and chloride ligands. The organometallic rare-earth chalcogenide compounds (C5H 5)2Y [N( Q PPh2)2] ( Q = S, Se) have been prepared in good yield from the protonolysis reaction between CP3Y and HN( Q PPh2)2 in THF. In both compounds, the [N( Q PPh2)2]-- ligand is bound eta 3 to the Y center. The Y atom is also coordinated to two (C5 H5)-- ligands and so is formally 9-coordinate. 1H, 31P, 77Se, and 89Y NMR data indicate that the solid state connectivity is retained in solution. The compounds (C5H5)2Ln[N( Q PPh2)2] (Ln = La, Gd, Er, Yb, for Q = Se; Ln = Yb for Q = S) were synthesized. The series of compounds indicates that the smaller rare-earth elements cannot accommodate eta3-bonding from the imidodiphosphinochalcogenido ligand. The compounds Y[N( Q PPh2)2]3 ( Q = S (1), Se(2)) have been synthesized from the reactions between Y[N(SiMe3)2]3 and HN( Q PPh2)2. In 1, the Y atom is surrounded by three similar [N(SPPh2)2]-- ligands bound eta3 through two S atoms and an N atom. In 2 , the Y atom is surrounded again by three [N(SePPh2) 2]-- ligands, but two are bound eta2 through the two Se atoms and the other ligand is bound eta3 through the two Se atoms and an N atom. Although a fluxional process is detected in the 31P and 77Se NMR spectra

  19. Rare earth element and Nd isotope geochemistry of an ombrotrophic peat bog at Karukinka (Chile, 53.9° S): a palaeo-record of Holocene dust deposition in Tierra del Fuego.

    NASA Astrophysics Data System (ADS)

    Vanneste, Heleen; De Vleeschouwer, François; Vanderstraeten, Aubry; Mattielli, Nadine; Triquet, Delphine; Piotrowska, Natalia; Le Roux, Gael

    2013-04-01

    The value of ombrotrophic peat bogs as past atmospheric dust records, has been increasingly recognized over the past 10 years. Their high accumulation rates provide high resolution archives of natural atmospheric dust deposition since the Late Glacial, often missing in marine, lake and ice core records. Consequently, peat deposits can be used as a proxy for atmospheric circulation patterns and thus palaeoclimate. In the Southern Hemisphere, the climate is considered to be driven by the Southern Westerly Wind belt (SSW), as it significantly affects the Antarctic Circumpolar Current and hence atmospheric CO2 levels. Palaeo SSW belt migrations have been observed in palaeoclimate records but, reconstructions of SSW shifts and associated climatic changes are incoherent, in particular for the Holocene. As peatlands thrive in southwest Tierra del Fuego due to its high annual precipitation, a remote ombrotrophic peat bog at Karukinka (southwest on the Isla Grande de Tierra del Fuego) was sampled, to investigate the Holocene palaeoclimate in southern South America based on dust deposition records. A 4,5 m long Russian D-core was recovered and subsequently subsampled for elemental and isotope geochemistry in addition to density and radiocarbon dating measurements. Initial results show a number of layers enriched in scandium, indicating the presence of lithogenic material, i.e. dust. Rare earth element patterns indicate at least 2 different sources. The most significant dust peak occurs at the base of the core at ~7300 Cal years B.P and has a neodymium isotopic composition of 2.2, suggesting a volcanic origin.

  20. Spin and orbital magnetic moments and spin anisotropy energies of light rare earth atoms embedded in graphene: A first-principles study

    NASA Astrophysics Data System (ADS)

    Li, Ya-Jing; Wang, Min; Tang, Meng-yu; Tian, Xing; Gao, Shan; He, Zhen; Li, Ying; Zhou, Tie-Ge

    2016-01-01

    The geometries, electronic structures, spin magnetic moments (SMMs), orbital magnetic moments (OMMs) and spin anisotropy energies (SAEs) of light rare earth atoms (La, Ce, Pr, Nd, Pm, Sm, Eu, and Gd) embedded in graphene were studied by using first-principles calculations based on Density Functional Theory (DFT). The spin-orbital coupling effect was taken into account and GGA+U method was adopted to describe the strongly localized and correlated 4f electrons. There is a significant deformation of the graphene plane after doping and optimization. The deformation of Gd doped graphene is the largest, while Eu the smallest. The results show that the valence is +3 for La, Ce, Pr, Nd, Pm, Sm and Gd, and +2 for Eu. Except Eu and Gd, there are obvious OMMs. When the spin is in the Z direction, the OMMs are -0.941 μB, -1.663 μB, -3.239 μB, -3.276 μB and -3.337 μB for Ce, Pr, Nd, Pm and Sm, respectively, and point the opposite direction of SMMs. All the doped systems except Gd show considerable SAEs. For Ce, Pr, Nd, Pm, Sm, and Eu, the SAEs are -0.928 meV, 20.941 meV, -8.848 meV, 7.855 meV, 75.070 meV and 0.810 meV, respectively. When the spin orientation is different, different orbital angular moments lead to apparent charge density difference of the 4f atoms, which can also explain the origin of SAEs.

  1. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor.

    PubMed

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A

    2015-11-01

    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents. PMID:26025644

  2. A study of the complex formation of some rare-earth elements with 1,2,3-benzotriazole and 3-amino-1,2,4-triazole

    SciTech Connect

    Akhrimenko, Z.M.; Panyushkin, V.T.; Akhrimenko, N.V.; Atamanchuk, T.A.

    1994-01-01

    Complex compounds of a number of rare-earth chlorides with 1,2,3-benzotriazole (L{sup 1}) and 3-amino-1,2,4-triazole (L{sup 2}) of compositions LnCl{sub 3}{center_dot}3L{sup 1} (Ln=La, Pr, Nd, Sm, Eu, and Gd) and LnCl{sub 3}{center_dot}L{sup 2}{center_dot}2H{sub 2}O{center_dot}2EtOH (Ln=La, Pr, Nd, Sm, Gd, Tb, Ho, Er, Yb, and Lu) were synthesized, and their IR spectra (4000 - 200 cm{sup {minus}1}) were examined. It is established that the complexes of rare-earth elements with L{sup 1} are more stable in comparison with the complexes with L{sup 2}.

  3. BOREHOLE NEUTRON ACTIVATION: THE RARE EARTHS.

    USGS Publications Warehouse

    Mikesell, J.L.; Senftle, F.E.

    1987-01-01

    Neutron-induced borehole gamma-ray spectroscopy has been widely used as a geophysical exploration technique by the petroleum industry, but its use for mineral exploration is not as common. Nuclear methods can be applied to mineral exploration, for determining stratigraphy and bed correlations, for mapping ore deposits, and for studying mineral concentration gradients. High-resolution detectors are essential for mineral exploration, and by using them an analysis of the major element concentrations in a borehole can usually be made. A number of economically important elements can be detected at typical ore-grade concentrations using this method. Because of the application of the rare-earth elements to high-temperature superconductors, these elements are examined in detail as an example of how nuclear techniques can be applied to mineral exploration.

  4. Rare Earth-Bearing Murataite Ceramics

    SciTech Connect

    Stefanovsky, Sergey; Stefanovsky, Olga; Yudintsev, Sergey; Nikonov, Boris

    2007-07-01

    Phase composition of the murataite-based ceramics containing 10 wt.% lanthanum, cerium, neodymium, europium, gadolinium, yttrium, zirconium oxides was studied. The ceramics were prepared by melting of oxide mixtures in 20 mL glass-carbon crucibles in air at {approx}1500 deg. C. They are composed of predominant murataite-type phases and minor extra phases: rutile, crichtonite, perovskite, ilmenite/pyrophanite, and zirconolite (in the Zr-bearing sample only). Three murataite-related phases with five- (5C), eight- (8C), and three-fold (3C) elementary fluorite unit cell are normally present in all the ceramics. These phases form core, intermediate zone, and rim of the murataite grains, respectively. They are predominant host phases for the rare earth elements whose concentrations are reduced in a row: 5C>8C>3C. Appreciate fraction of La and Ce may enter the perovskite phase. (authors)

  5. Development of a Rare Earth Element Paleoproxy

    NASA Astrophysics Data System (ADS)

    Haley, B. A.; Klinkhammer, G. P.; McManus, J.

    2002-12-01

    The rare earth elements (REEs) have demonstrated considerable potential as paleoproxies for changes in seawater chemistry. However, their utilization in paleoceanographic investigations has been mainly limited to neodymium isotopic analyses in metalliferous deposits and fossil apatite. The goal of being able to use the entire group of elements in foraminiferal shells has proven difficult. The problem with analysis of these elements in this matrix stems mainly from: (1) the ability to clean the shells of diagenetic aberrations and (2) the paucity of REE data in the environment where forams obtain their primary signature. We recently measured pore water profiles of REEs using an interfaced Ion Chromatograph (IC) and Inductively Coupled Plasma Mass Spectrometer (ICP-MS) in a depth transect off the Coast of California, and a profile from off the Peru-Chile margin. The pore water results are surprising and will alter our view of REE marine geochemistry. For example, they call into question the traditional method of calculating a "Ce-anomaly." The profiles also show dramatic changes in REE concentrations and patterns with depth, and demonstrate that the REE signature preserved in epifaunal benthic versus infaunal foram species and diagenetically added phases should be easily identifiable. Preliminary REE results from forams cleaned via a recently developed flow-through technique will be shown and compared to matching pore water data. We will conclude by outlining the potential of foraminiferal REE content for paleoceanography that ranges from water mass tracer to proxies for organic carbon flux and oxygen concentration.

  6. Optical Frequency Comb Spectroscopy of Rare Earth Atoms

    NASA Astrophysics Data System (ADS)

    Swiatlowski, Jerlyn; Palm, Christopher; Joshi, Trinity; Montcrieffe, Caitlin; Jackson Kimball, Derek

    2013-05-01

    We discuss progress in our experimental program to employ optical-frequency-comb-based spectroscopy to understand the complex spectra of rare-earth atoms. We plan to carry out systematic measurements of atomic transitions in rare-earth atoms to elucidate the energy level structure and term assignment and determine presently unknown atomic state parameters. This spectroscopic information is important in view of the increasing interest in rare-earth atoms for atomic frequency standards, in astrophysical investigations of chemically peculiar stars, and in tests of fundamental physics (tests of parity and time-reversal invariance, searches for time variation of fundamental constants, etc.). We are presently studying the use of hollow cathode lamps as atomic sources for two-photon frequency comb spectroscopy. Supported by the National Science Foundation under grant PHY-0958749.

  7. Removal of Phosphorus in Metallurgical Silicon by Rare Earth Elements

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Løvvik, Ole Martin; Safarian, Jafar; Ma, Xiang; Tangstad, Merete

    2014-09-01

    Removal of phosphorus in metallurgical silicon is one of the crucial steps for the production of solar grade Si feedstock. The possibility of doping rare earth elements for phosphorus removal has in this work been studied both theoretically and experimentally. Thermochemical properties of Ce, Nd, and Pr monophosphides have first been estimated by ab initio thermodynamic simulations based on density functional theory and the direct phonon method. The reliability of the first principles calculations was assessed by coupling with the phase diagram data of the Pr-P system. Equilibrium calculations confirmed the existence of stable rare earth monophosphides in solid silicon. Experimental investigations were then carried out, employing a high temperature resistance furnace. The Ce-doped silicon samples were examined by electron probe micro analyzer and inductively coupled plasma analysis. The efficiency of phosphorus removal by means of rare earth doping was discussed in detail in the paper.

  8. Investigating Heavy Metal Pollution in Mining Brownfield and Its Policy Implications: A Case Study of the Bayan Obo Rare Earth Mine, Inner Mongolia, China.

    PubMed

    Pan, Yuxue; Li, Haitao

    2016-04-01

    The rapid urbanization of China and associated demand for land resources necessitates remediation, redevelopment, and reclamation of contaminated soil. Before these measures are taken, a basic investigation and inventory of heavy metal (HM) pollution levels in contaminated soil is necessary for establishing and implementing the redevelopment plan. In the present study, to identify the policy implications of inventorying and mapping HM pollution of soil in brownfields throughout China, the Bayan Obo giant rare earth element (REE)-Nb-Fe ore deposit of Baotou in Inner Mongolia, China, which is the largest REE mineral deposit in the world, was taken as a case study. Soil samples from 24 sites in Bayan Obo mining area (MA) and 76 sites in mine tailing area (TA) were collected for determining contents of soil HMs (Cr, Cd, Pb, Cu, and Zn). The results showed that the average concentrations of Cr, Cd, Pb, Cu, and Zn in both MA and TA were all higher than their corresponding background values for Inner Mongolia but lower than the Class II criteria of the National Soil Quality Standards of China (GB 15618-1995). Enrichment factor (EF) analysis of the soil samples indicated that the soil in the brownfield sites was highly enriched with Cr, Cd, Pb, Cu, and Zn compared to the corresponding background values. In MA, the EF for Cd was the highest among the studied elements, while in TA, the EF for Cr (3.45) was the highest, closely followed by the EF for Cd (3.34). The potential ecological risk index (RI) indicated a moderate potential ecological risk from the studied HMs in MA and a low potential ecological risk in TA, and the results of RI also suggested that the soil was most heavily polluted by Cd. According to the spatial distribution maps of HM, contamination hot-spots were primarily located near mining-related high-pollution plants. Based on the results, policy recommendations are proposed related to brownfield management in urban planning. PMID:26787014

  9. Theoretical study of mixed LiLnX4 (Ln = La, Dy; X = F, Cl, Br, I) rare earth/alkali halide complexes.

    PubMed

    Groen, C P; Oskam, A; Kovács, A

    2000-12-25

    The structure, bonding and vibrational properties of the mixed LiLnX4 (Ln = La, Dy; X = F, Cl, Br, I) rare earth/alkali halide complexes were studied using various quantum chemical methods (HF, MP2 and the Becke3-Lee-Yang-Parr exchange-correlation density functional) in conjunction with polarized triple-zeta valence basis sets and quasi-relativistic effective core potentials for the heavy atoms. Our comparative study indicated the superiority of MP2 theory while the HF and B3-LYP methods as well as less sophisticated basis sets failed for the correct energetic relations. In particular, f polarization functions on Li and X proved to be important for the Li...X interaction in the complexes. From the three characteristic structures of such complexes, possessing 1-(C3v), 2-(C2v), or 3-fold coordination (C3v) between the alkali metal and the bridging halide atoms, the bi- and tridentate forms are located considerably lower on the potential energy surface then the monodentate isomer. Therefore only the bi- and tridentate isomers have chemical relevance. The monodentate isomer is only a high-lying local minimum in the case of X = F. For X = Cl, Br, and I this structure is found to be a second-order saddle point. The bidentate structure was found to be the global minimum for the systems with X = F, Cl, and Br. However, the relative stability with respect to the tridentate structure is very small (1-5 kJ/mol) for the heavier halide derivatives and the relative order is reversed in the case of the iodides. The energy difference between the three structures and the dissociation energy decrease in the row F to I. The ionic bonding in the complexes was characterized by natural charges and a topological analysis of the electron density distribution according to Bader's theorem. Variation of the geometrical and bonding characteristics between the lanthanum and dysprosium complexes reflects the effect of "lanthanide contraction". The calculated vibrational data indicate that

  10. Trace and rare earth elements fractionation in volcanic- and sediment-hosted Mn ores: a study case of Sardinia (western Italy).

    NASA Astrophysics Data System (ADS)

    Sinisi, Rosa

    2015-04-01

    It is widely accepted that, regardless of the geological environment (continental, marine or hydrothermal), the occurrences of clay minerals and/or mineral phases with clay-type crystal structure (as zeolites and Mn-oxides), play a key role in the trace elements and REEs uptake processes. The REE resources are produced mostly from ion-adsorption type REE deposits of southern China that are formed by weathering of granitic rocks and subsequent chemical adsorption of REE on clay minerals. A significant group of minerals with a high metal uptake capacity is represented by Mn oxides. Their "tunnel" structure, in fact, allows both the absorption (inside the minerals) and adsorption (outside the minerals) of cations and anions producing metal accumulations with economic and environmental significance. However, the ores, mainly that forming within sedimentary environment, often have impurities due to presence of minerals unrelated to mineralization. These minerals can significantly alter the compositional features of the ores and suggest misleading conclusions. In Sardinia (Italy, western Mediterranean), Mn-oxide mineralizations occur and recently their origin has been discussed and identified (Sinisi et al. 2012). In this study the mineralogical and chemical compositions of the Sardinian sediment-hosted and volcanic-hosted Mn-ore are exhibit exploring the possibility that they can represent exploitable trace and REE mineralizations. High contents of metals characterize these Mn deposits. Besides some trace elements (Ni, Cr, Zn, Cu, As, Pb, and U) that commonly typify the Mn oxi-hydroxide ores, all rare earth elements showed high concentrations in the Sardinian deposits, comparable to those of the main actually exploited REE sinks. For this reason, a simple statistical data treatment (R-mode Factor Analysis) was performed on fifteen and nineteen samples of sediment-hosted and volcanic-hosted Mn ore respectively, in order to identify both the mineral phases trapping trace

  11. High temperature rare earth solid lubricants

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1970-01-01

    Rare earth trifluorides have potential use as lubricating fillers for mechanical carbons and as coatings on metallic substrates. Friction experiments show that they are effective in reducing metallic wear.

  12. Thermal Expansion and Thermal Conductivity of Rare Earth Silicates

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Lee, Kang N.; Bansal, Narottam P.

    2006-01-01

    Rare earth silicates are considered promising candidate materials for environmental barrier coatings applications at elevated temperature for ceramic matrix composites. High temperature thermophysical properties are of great importance for coating system design and development. In this study, the thermal expansion and thermal conductivity of hot-pressed rare earth silicate materials were characterized at temperatures up to 1400 C. The effects of specimen porosity, composition and microstructure on the properties were also investigated. The materials processing and testing issues affecting the measurements will also be discussed.

  13. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  14. In-situ gamma-ray survey of rare-earth tailings dams--A case study in Baotou and Bayan Obo Districts, China.

    PubMed

    Li, Baochuan; Wang, Nanping; Wan, Jianhua; Xiong, Shengqing; Liu, Hongtao; Li, Shijun; Zhao, Rong

    2016-01-01

    An in-situ gamma-ray spectrometer survey with a scintillation detector of NaI(Tl) (Φ75 mm × 75 mm) was carried out in the Baotou and Bayan Obo Districts in order to estimate the levels of natural radionuclides near rare-earth (RE) tailings dams. In the RE tailings dam of Baotou, the mean concentrations of (238)U and (232)Th were 3.0 ± 1.0 mg/kg (range: 1.9-4.6 mg/kg) and 321 ± 31 mg/kg (range: 294-355 mg/kg), respectively. In the Bayan Obo tailings dam, the mean concentrations of (238)U and (232)Th were 5.7 ± 0.5 mg/kg (range: 5.3-6.1 mg/kg) and 276 ± 0.5 mg/kg (range: 275.5-276.3 mg/kg), respectively. The average (232)Th concentrations in the mining areas of the Bayan Obo Mine and the living areas of the Bayan Obo Town were 18.7 ± 7.5 and 26.2 ± 9.1 mg/kg, respectively. The (232)Th concentration recorded in the tailings dams was much higher than the global average (7.44 mg/kg). Our investigation shows that the (232)Th concentration in the tailings in the Baotou dam was 34.6 times greater than that in the local soil (in Guyang County); the average concentrations of (232)Th in the soil in the Baotou District and Bayan Obo Districts were about 1.35 and 2.82 times greater, respectively, than that in the soil in Guyang County. Based on our results, the highest estimated effective dose due to gamma irradiation was 1.15 mSv per year, estimated from the data observed in the Baotou tailings dams. The results of this preliminary study indicate the potential importance of radioactivity in RE tailings dams and that remedial measures may be required. PMID:26555365

  15. Studies of rare-earth stannates by sup 119 Sn MAS NMR. The use of paramagnetic shift probes in the solid state

    SciTech Connect

    Grey, C.P.; Dobson, C.M.; Cheetham, A.K.; Jakeman, R.J.B. )

    1989-01-18

    {sup 119}Sn MAS NMR spectra have been obtained from members of a series of rare-earth stannates Ln{sub 2}Sn{sub 2}O{sub 7} (Ln = La, Pr, Nd, Sm, Eu, Tm, Yb, Lu, and Y), all of which adopt the pyrochlore structure. Apart from La{sub 2}Sn{sub 2}O{sub 7}, Lu{sub 2}Sn{sub 2}O{sub 7}, and Y{sub 2}Sn{sub 2}O{sub 7}, these compounds are paramagnetic and exhibit a very large variation in {sup 119}Sn chemical shifts (from approximately +5,400 to {minus}4,200 ppm), which can be attributed principally to a Fermi contact shift mechanism. The spectra from the paramagnetic samples have large overall line widths associated with the substantial anisotropy of the shift, but the individual peaks within the spinning sideband manifolds remain sharp. Several tin pyrochlore solid solutions have also been studied (namely Y{sub 2-y}Ln{sub y}Sn{sub 2}O{sub 7} where Ln = Sm, Nd, Pr, and Eu and La{sub 2-y}Nd{sub y}Sn{sub 2}O{sub u}) by {sup 119}Sn MAS NMR. When the short relaxation times of nuclei close to paramagnetic centers were exploited, a series of peaks were observed, associated with the substitution of paramagnetic for diamagnetic lanthanide ions in the local coordination around a tin atom. For Y{sub 2-y}Sm{sub y}Sn{sub 2}O{sub 7} the composition of the solid solution could be determined from the intensities of these peaks. In the solid solutions the {sup 119}Sn nuclei were found to be sensitive not only to neighboring paramagnetic ions but also to paramagnetic ions in the second and third coordination spheres. The shifts induced in these cases arise primarily from a through-space dipolar pseudocontact mechanism and can be interpreted with a model for the site symmetry based on the crystal structure. 30 refs., 8 figs., 3 tabs.

  16. Molecular rare-earth-metal hydrides in non-cyclopentadienyl environments.

    PubMed

    Fegler, Waldemar; Venugopal, Ajay; Kramer, Mathias; Okuda, Jun

    2015-02-01

    Molecular hydrides of the rare-earth metals play an important role as homogeneous catalysts and as counterparts of solid-state interstitial hydrides. Structurally well-characterized non-metallocene-type hydride complexes allow the study of elementary reactions that occur at rare-earth-metal centers and of catalytic reactions involving bonds between rare-earth metals and hydrides. In addition to neutral hydrides, cationic derivatives have now become available. PMID:25413985

  17. {sup 57}Fe Moessbauer and x-ray magnetic circular dichroism study of magnetic compensation of the rare-earth sublattice in Nd{sub 2-x}Ho{sub x}Fe{sub 14}B compounds

    SciTech Connect

    Chaboy, J.; Piquer, C.; Plugaru, N.; Bartolome, F.; Laguna-Marco, M. A.

    2007-10-01

    We present here a study of the magnetic properties of the Nd{sub 2-x}Ho{sub x}Fe{sub 14}B series. The macroscopic properties of these compounds evolve continuously from those of Nd{sub 2}Fe{sub 14}B to those of Ho{sub 2}Fe{sub 14}B as Ho gradually replaces Nd. The system shows a compensation of the rare-earth sublattice magnetization for a critical concentration, x{sub c}=0.55, that is reflected into the anomalous behavior of both macroscopic and microscopic magnetic probes. The combined analysis of magnetization, {sup 57}Fe Moessbauer spectroscopy and Fe K-edge x-ray magnetic circular dichroism (XMCD) measurements suggests that the origin of the anomalous magnetic behavior found at x{sub c}=0.55 is mainly due to the Ho sublattice. Moreover, the analysis of the Fe K-edge XMCD signals reveal the presence of a rare-earth contribution, reflecting the coupling of the rare-earth and Fe magnetic moments, which can lead to the possibility of disentangling the magnetic behavior of both Fe and R atoms using a single absorption edge.

  18. Multi-objective optimization of chromatographic rare earth element separation.

    PubMed

    Knutson, Hans-Kristian; Holmqvist, Anders; Nilsson, Bernt

    2015-10-16

    The importance of rare earth elements in modern technological industry grows, and as a result the interest for developing separation processes increases. This work is a part of developing chromatography as a rare earth element processing method. Process optimization is an important step in process development, and there are several competing objectives that need to be considered in a chromatographic separation process. Most studies are limited to evaluating the two competing objectives productivity and yield, and studies of scenarios with tri-objective optimizations are scarce. Tri-objective optimizations are much needed when evaluating the chromatographic separation of rare earth elements due to the importance of product pool concentration along with productivity and yield as process objectives. In this work, a multi-objective optimization strategy considering productivity, yield and pool concentration is proposed. This was carried out in the frame of a model based optimization study on a batch chromatography separation of the rare earth elements samarium, europium and gadolinium. The findings from the multi-objective optimization were used to provide with a general strategy for achieving desirable operation points, resulting in a productivity ranging between 0.61 and 0.75 kgEu/mcolumn(3), h(-1) and a pool concentration between 0.52 and 0.79 kgEu/m(3), while maintaining a purity above 99% and never falling below an 80% yield for the main target component europium. PMID:26375205

  19. Improved provenance tracing of Asian dust sources using rare earth elements and selected trace elements for palaeomonsoon studies on the eastern Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ferrat, Marion; Weiss, Dominik J.; Strekopytov, Stanislav; Dong, Shuofei; Chen, Hongyun; Najorka, Jens; Sun, Youbin; Gupta, Sanjeev; Tada, Ryuji; Sinha, Rajiv

    2011-11-01

    The Asian Monsoon forms an important part of the earth's climate system, yet our understanding of the past interactions between its different sub-systems, the East Asian and Indian monsoons, and between monsoonal winds and other prevailing wind currents such as the Westerly jet, is limited, particularly in central Asia. This in turn affects our ability to develop climate models capable of accurately predicting future changes in atmospheric circulation patterns and monsoon intensities in Asia. Provenance studies of mineral dust deposited in terrestrial settings such as peat bogs can address this problem directly, by offering the possibility to examine past deposition rates and wind direction, and hence reconstruct past atmospheric circulation patterns. However, such studies are challenged by several issues, most importantly the identification of proxies that unambiguously distinguish between the different potential dust sources and that are independent of particle size. In addition, a single analytical method that is suitable for sample preparation of both dust source (i.e. desert sand, soil) and receptor (i.e. dust archive such as peat or soil profiles) material is desirable in order to minimize error propagation derived from the experimental and analytical work. Here, an improved geochemical framework of provenance tracers to study atmospheric circulation patterns and palaeomonsoon variability in central Asia is provided, by combining for the first time mineralogical as well as major and trace elemental (Sc, Y, Th and the rare earth elements) information on Chinese (central Chinese loess plateau, northern Qaidam basin and Taklamakan, Badain Juran and Tengger deserts), Indian (Thar desert) and Tibetan (eastern Qinghai-Tibetan Plateau) dust sources. Quartz, feldspars and clay minerals are the major constituents of all studied sources, with highly variable calcite contents reflected in the CaO concentrations. Chinese and Tibetan dust sources are enriched in middle

  20. Rare earth element scavenging in seawater

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Kim, Ki-Hyun

    1990-10-01

    Examinations of rare earth element (REE) adsorption in seawater, using a variety of surface-types, indicated that, for most surfaces, light rare earth elements (LREEs) are preferentially adsorbed compared to the heavy rare earths (HREEs). Exceptions to this behavior were observed only for silica phases (glass surfaces, acid-cleaned diatomaceous earth, and synthetic SiO 2). The affinity of the rare earths for surfaces can be strongly affected by thin organic coatings. Glass surfaces which acquired an organic coating through immersion in Tampa Bay exhibited adsorptive behavior typical of organic-rich, rather than glass, surfaces. Models of rare earth distributions between seawater and carboxylate-rich surfaces indicate that scavenging processes which involve such surfaces should exhibit a strong dependence on pH and carbonate complexation. Scavenging models involving carboxylate surfaces produce relative REE abundance patterns in good general agreement with observed shale-normalized REE abundances in seawater. Scavenging by carboxylate-rich surfaces should produce HREE enrichments in seawater relative to the LREEs and may produce enrichments of lanthanum relative to its immediate trivalent neighbors. Due to the origin of distribution coefficients as a difference between REE solution complexation (which increases strongly with atomic number) and surface complexation (which apparently also increases with atomic number) the relative solution abundance patterns of the REEs produced by scavenging reactions can be quite complex.

  1. Rare earth elements and permanent magnets (invited)

    NASA Astrophysics Data System (ADS)

    Dent, Peter C.

    2012-04-01

    Rare earth (RE) magnets have become virtually indispensible in a wide variety of industries such as aerospace, automotive, electronics, medical, and military. RE elements are essential ingredients in these high performance magnets based on intermetallic compounds RECo5, RE2TM17 (TM: transition metal), and RE2TM14B. Rare earth magnets are known for their superior magnetic properties—high induction, and coercive force. These properties arise due to the extremely high magnetocrystalline anisotropy made possible by unique 3d-4f interactions between transition metals and rare earths. For more than 40 years, these magnets remain the number one choice in applications that require high magnetic fields in extreme operating conditions—high demagnetization forces and high temperature. EEC produces and specializes in RECo5 and RE2TM17 type sintered magnets. Samarium and gadolinium are key RE ingredients in the powder metallurgical magnet production processes which include melting, crushing, jet milling, pressing, sintering, and heat treating. The magnetic properties and applications of these magnets will be discussed. We will also briefly discuss the past, current, and future of the permanent magnet business. Currently, over 95% of all pure rare earth oxides are sourced from China, which currently controls the market. We will provide insights regarding current and potential new magnet technologies and designer choices, which may mitigate rare earth supply chain issues now and into the future.

  2. Potential synergy: the thorium fuel cycle and rare earths processing

    SciTech Connect

    Ault, T.; Wymer, R.; Croff, A.; Krahn, S.

    2013-07-01

    The use of thorium in nuclear power programs has been evaluated on a recurring basis. A concern often raised is the lack of 'thorium infrastructure'; however, for at least a part of a potential thorium fuel cycle, this may less of a problem than previously thought. Thorium is frequently encountered in association with rare earth elements and, since the U.S. last systematically evaluated the large-scale use of thorium (the 1970's,) the use of rare earth elements has increased ten-fold to approximately 200,000 metric tons per year. Integration of thorium extraction with rare earth processing has been previously described and top-level estimates have been done on thorium resource availability; however, since ores and mining operations differ markedly, what is needed is process flowsheet analysis to determine whether a specific mining operation can feasibly produce thorium as a by-product. Also, the collocation of thorium with rare earths means that, even if a thorium product stream is not developed, its presence in mining waste streams needs to be addressed and there are previous instances where this has caused issues. This study analyzes several operational mines, estimates the mines' ability to produce a thorium by-product stream, and discusses some waste management implications of recovering thorium. (authors)

  3. Rare earth phosphors and phosphor screens

    DOEpatents

    Buchanan, Robert A.; Maple, T. Grant; Sklensky, Alden F.

    1981-01-01

    This invention relates to rare earth phosphor screens for converting image carrying incident radiation to image carrying visible or near-visible radiation and to the rare earth phosphor materials utilized in such screens. The invention further relates to methods for converting image carrying charged particles to image carrying radiation principally in the blue and near-ultraviolet region of the spectrum and to stabilized rare earth phosphors characterized by having a continuous surface layer of the phosphors of the invention. More particularly, the phosphors of the invention are oxychlorides and oxybromides of yttrium, lanthanum and gadolinium activated with trivalent cerium and the conversion screens are of the type illustratively including x-ray conversion screens, image amplifier tube screens, neutron imaging screens, cathode ray tube screens, high energy gamma ray screens, scintillation detector screens and screens for real-time translation of image carrying high energy radiation to image carrying visible or near-visible radiation.

  4. Preparation and processing of rare earth chalcogenides

    SciTech Connect

    Gschneidner, K.A. Jr.

    1998-10-01

    Rare earth chalcogenides are initially prepared by a direct combination of the pure rare earth metal and the pure chalcogen element with or without a catalyst. The use of iodine (10 to 100 mg) as a fluxing agent (catalyst), especially to prepare heavy lanthanide chalcogenides, greatly speeds up the formation of the rare earth chalcogenide. The resultant powders are consolidated by melting, pressure assisted sintering (PAS), or pressure assisted reaction sintering (PARS) to obtain near theoretical density solids. Mechanical alloying is a useful technique for preparing ternary alloys. In addition, mechanical alloying and mechanical milling can be used to form metastable allotropic forms of the yttrium and heavy lanthanide sulfides. Chemical analysis techniques are also described because it is strongly recommended that samples prepared by melting should have their chemical compositions verified because of chalcogen losses in the melting step.

  5. Comparative studies on the concentration of rare earth elements and heavy metals in the atmospheric particulate matter in Beijing, China, and in Delft, The Netherlands.

    PubMed

    Wang, C X; Zhu, W; Peng, A; Guichreit, R

    2001-05-01

    Atmospheric particulate matter (APM) was collected at three sampling sites in Beijing, China, from February to June 1998. The concentrations of rare earth elements (REE) and cobalt (Co), zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) in the APM were determined by inductively coupled plasma mass spectrometry (ICP-MS). The results obtained in Beijing, China, were compared to that obtained in Delft, the Netherlands, in 1997. The influence of coal combustion was considered. The results demonstrated that the content of APM, the concentrations of REE and Co, Zn, Cd, Pb in the APM in Beijing, China, were higher than that in Delft, the Netherlands. From the ratios of La to Ce, and La to Sm, which may be used as tracers for the origin of the REE, it is concluded that the origins of REE in China differ from those in the Netherlands. PMID:11392744

  6. Correlated topological phase in rare earth Hexaboride

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Shi, X.; Biswas, P.; Matt, C.; Dhaka, R.; Huang, Y.; Plumb, N.; Radovic, M.; Dil, J.; Pomjakushina, E.; Conder, K.; Amato, A.; Salman, Z.; Paul, D.; Mesot, J.; Ding, Hong; Shi, Ming

    2014-03-01

    We have performed an angle-resolved photoemission spectroscopy study on SmB6 in order to elucidate elements of the electronic structure relevant to the possible occurrence of a topological Kondo insulator state. Our results reveal one electron-like 5d bulk band centered at the X point of the bulk Brillouin zone that is hybridized with strongly correlated f electrons, as well as the opening of a Kondo band gap (~20 meV) at low temperature. In addition, we observe electron-like bands forming three Fermi surfaces at the center Gamma-bar point and boundary X-bar point of the surface Brillouin zone. These bands are not expected from calculations of the bulk electronic structure, and their observed dispersion characteristics are consistent with surface states. Our results suggest that the unusual low-temperature transport behavior of SmB6 is likely to be related to the pronounced surface states sitting inside the band hybridization gap and the presence of a topological Kondo insulating state. Recent result on rare earth Hexboride will be shown. This work was supported by the Sino-Swiss Science and Technology Cooperation (Project No. IZLCZ2138954), the Swiss National Science Foundation (Grant No. 200021-137783), and MOST (Grant No. 2010CB923000) and NSFC.

  7. Studies of valence of selected rare earth silicides determined using Si K and Pd/Rh L2,3 XANES and LAPW numerical studies

    NASA Astrophysics Data System (ADS)

    Zajdel, P.; Kisiel, A.; Szytuła, A.; Goraus, J.; Balerna, A.; Banaś, A.; Starowicz, P.; Konior, J.; Cinque, G.; Grilli, A.

    2015-12-01

    We report on the investigation of Si and Pd/Rh chemical environments using X-ray Absorption Near Edge Spectroscopy in two different families of rare earth silicides R2PdSi3 (R = Ce, Nd, Tb, Dy, Ho, Er) and HoRh2-xPdxSi2 (x = 0, 0.5, 0.75, 1.0, 1.5, 1.8, 2.0). The Si K, Pd L3 and Rh L3 absorption edges were recorded in order to follow their changes upon the variation of 4f and 4d5s electron numbers. In both cases it was found that the Si K edge was shifted ≈0.5 eV toward lower energies, relative to pure silicon. In the first family, the shift decreases with increasing number of f-electrons, while the Si K edge remains constant upon rhodium-palladium substitution. In all cases the Pd L3 edge was shifted to higher energies relative to metallic Pd. No visible change in the Pd L3 position was observed either with a varying 4f electron count or upon Pd/Rh substitution. Also, the Rh L3 edge did not change. For two selected members, Ho2PdSi3 and HoPd2Si2, the Wien2K'09 (LDA + U) package was used to calculate the electronic structure and the absorption edges. Si K edges were reproduced well for both compounds, while Pd L3 only exhibited a fair agreement for the second compound. This discrepancy between the Pd L3 theory and experiment for the Ho2PdSi3 sample can be attributed to the specific ordered superstructure used in the numerical calculations. The observed changes indicate that despite possessing a formal inter-metallic character, the chemical bond between the R-Si and R-Pd interactions are different. The variation and the direction of the chemical shift of the Si K edge suggests a weak ionic character of the R-Si bonds, in agreement with the localized character of the 4f electrons. In turn, the changes of the Pd/Rh edge are consistent with a metallic band that is affected by its long range chemical environment.

  8. Replacing the Rare Earth Intellectual Capital

    SciTech Connect

    Gschneidner, Jr., Karl

    2011-04-01

    The rare earth crisis slowly evolved during a 10 to 15 year period beginning in the mid-1980s, when the Chinese began to export mixed rare earth concentrates. In the early 1990s, they started to move up the supply chain and began to export the individual rare earth oxides and metals. By the late 1990s the Chinese exported higher value products, such as magnets, phosphors, polishing compounds, catalysts; and in the 21st century they supplied finished products including electric motors, computers, batteries, liquid-crystal displays (LCDs), TVs and monitors, mobile phones, iPods and compact fluorescent lamp (CFL) light bulbs. As they moved to higher value products, the Chinese slowly drove the various industrial producers and commercial enterprises in the US, Europe and Japan out of business by manipulating the rare earth commodity prices. Because of this, the technically trained rare earth engineers and scientists who worked in areas from mining to separations, to processing to production, to manufacturing of semifinished and final products, were laid-off and moved to other fields or they retired. However, in the past year the Chinese have changed their philosophy of the 1970s and 1980s of forming a rare earth cartel to control the rare earth markets to one in which they will no longer supply the rest of the world (ROW) with their precious rare earths, but instead will use them internally to meet the growing demand as the Chinese standard of living increases. To this end, they have implemented and occasionally increased export restrictions and added an export tariff on many of the high demand rare earth elements. Now the ROW is quickly trying to start up rare earth mines, e.g. Molycorp Minerals in the US and Lynas Corp. in Australia, to cover this shortfall in the worldwide market, but it will take about five years for the supply to meet the demand, even as other mines in the ROW become productive. Unfortunately, today there is a serious lack of technically trained

  9. What about the rare-earth elements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is insufficient understanding of the nutritional physiology of pecan trees and orchards; thus, affecting nutmeat yield and quality, disease resistance and alternate bearing. An analysis of the rare-earth element composition of pecan and related hickory cousins found that they hyperaccumulate ...

  10. Crystalline rare-earth activated oxyorthosilicate phosphor

    DOEpatents

    McClellan, Kenneth J.; Cooke, D. Wayne

    2004-02-10

    Crystalline, transparent, rare-earth activated lutetium oxyorthosilicate phosphor. The phosphor consists essentially of lutetium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of lutetium gadolinium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Lu(.sub.2-x-z)Gd.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor also consists essentially of gadolinium yttrium oxyorthosilicate activated with a rare-earth metal dopant M and having the general formula Gd(.sub.2-x-z)Y.sub.x M.sub.z SiO.sub.5, wherein 0.00.ltoreq.x.ltoreq.1.95, wherein 0.001.ltoreq.z.ltoreq.0.02, and wherein M is selected from Sm, Tb, Tm, Eu, Yb, and Pr. The phosphor may be optically coupled to a photodetector to provide a radiation detector.

  11. Rare earth elements in synthetic zircon. 1. synthesis, and rare earth element and phosphorus doping.

    SciTech Connect

    Hanchar, J. M.; Finch, R. J.; Hoskin, W. O.; Watson, E. B.; Cherniak, D. J.; Mariano, A. N.; Chemical Engineering; George Washington Univ.; Univ. of Canterbury; Australian National Univ.; Rensselaer Polytechnic Inst.

    2001-05-01

    Sedimentary mineral assemblages commonly contain detrital zircon crystals as part of the heavy-mineral fraction. Age spectra determined by U-Pb isotopic analysis of single zircon crystals within a sample may directly image the age composition--but not the chemical composition--of the source region. Rare earth element (REE) abundances have been measured for zircons from a range of common crustal igneous rock types from different tectonic environments, as well as kimberlite, carbonatite, and high-grade metamorphic rocks, to assess the potential of using zircon REE characteristics to infer the rock types present in sediment source regions. Except for zircon with probable mantle affinities, zircon REE abundances and normalized patterns show little intersample and intrasample variation. To evaluate the actual variation in detrital zircon REE composition in a true sediment of known mixed provenance, zircons from a sandstone sample from the Statfjord Formation (North Sea) were analyzed. Despite a provenance including high-grade metasediment and granitoids and a range in zircon age of 2.82 b.y., the zircon REEs exhibit a narrow abundance range with no systematic differences in pattern shape. These evidences show zircon REE patterns and abundances are generally not useful as indicators of provenance.

  12. Comparitive study of the sample decomposition procedures in the determination of trace and rare earth elements in anorthosites and related rocks by ICP-MS.

    PubMed

    Balaram, V; Ramesh, S L; Anjaiah, K V

    1995-09-01

    ICP-MS has been used for the determination of over 30 geochemically significant trace elements (Sc, V, Cr, Co, Ni, Cu, Zn, Ga, Rb, Sr, Y, Zr, Nb, Cs, Ba, Hf, Ta, Pb, Th, U and REEs) in anorthosites and related rock reference samples. Open acid digestion, pressure decomposition using HF, HNO(3) and HClO(4), and a fusion method using lithium metaborate and subsequent dissolution in dil. HNO(3) were adopted for the decomposition of these rock samples before analysis. The dissolution problems and interference effects are discussed. Rh and Bi were used as internal standards. The first set of data on several rare earths and other trace elements in the Russian anorthosite reference sample, MO-6 are presented along with data on other samples. The data are compared with the available data. The results obtained with different dissolution methods were found to be in good agreement for the majority of the trace elements. The accuracy and precision achieved (better than 6% RSD in most cases) suggested that the data obtained by ICP-MS for such samples are best suited for geochemical interpretations. PMID:15048536

  13. Review on the Oxidation of Metallic Thermal Sprayed Coatings: A Case Study with Reference to Rare-Earth Permanent Magnetic Coatings

    NASA Astrophysics Data System (ADS)

    Gan, Jo Ann; Berndt, Christopher C.

    2013-10-01

    Thermal spray fabrication of rare-earth permanent magnetic coatings (PMCs) presents potential manufacturing routes for micro-magnetic devices. Despite this potential, thermal spray of PMCs is still not widely explored due to oxidation concerns. It was established that oxidation leads to the loss of ferromagnetic phases in these materials and results in deterioration of magnetic performance. Although this review focuses on a specific class of material, i.e., magnetic materials, there is significant technical crossover to all classes of feedstocks that are employed in thermal spray processing. The oxidation mechanisms and the associated influencing factors are explored in this work to implement effective processing techniques during the deposition process. This paper reviews the various stages and mechanisms of oxidation in thermal spray processes. The factors that influence the extent of oxidation depend on the type of oxidation that is dominant and rely on the type of spray system, powder injection position, and the particle size of feedstock. Among the aspects that are reviewed include the oxygen-fuel ratio for high velocity oxygen-fuel (HVOF), current intensity, gas flow rate, particle size, spray distance, and substrate temperature. Protection strategies to minimize oxidation in thermal spray processes, such as gas shrouding and shielding, are presented.

  14. Raman spectra of R2O3 (R—rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study

    NASA Astrophysics Data System (ADS)

    Abrashev, M. V.; Todorov, N. D.; Geshev, J.

    2014-09-01

    Raman spectra of R2O3 (R—Sc, Er, Y, Ho, Gd, Eu, and Sm) powders with C-type bixbyite crystal structure are measured. With the help of these data and ones, previously published for other oxides from the same structural family, general dependencies of the frequencies of the Raman peaks on the cubic crystal unit cell parameter are constructed. Using these dependencies and knowing the symmetry of the peaks for one of the oxides, determined from previous single-crystal measurements, it is possible to find out the symmetry of the peaks from the spectra of all compounds. It was found that the frequency of the six lowest frequency peaks scales with the square root of the mass of the rare earth showing that mainly R ions take part in these vibrations. These results agree with performed here lattice dynamical calculations. The anomalous softening of the frequency of some peaks in the spectra of Eu2O3 is discussed.

  15. Raman spectra of R{sub 2}O{sub 3} (R—rare earth) sesquioxides with C-type bixbyite crystal structure: A comparative study

    SciTech Connect

    Abrashev, M. V.; Todorov, N. D.; Geshev, J.

    2014-09-14

    Raman spectra of R{sub 2}O{sub 3} (R—Sc, Er, Y, Ho, Gd, Eu, and Sm) powders with C-type bixbyite crystal structure are measured. With the help of these data and ones, previously published for other oxides from the same structural family, general dependencies of the frequencies of the Raman peaks on the cubic crystal unit cell parameter are constructed. Using these dependencies and knowing the symmetry of the peaks for one of the oxides, determined from previous single-crystal measurements, it is possible to find out the symmetry of the peaks from the spectra of all compounds. It was found that the frequency of the six lowest frequency peaks scales with the square root of the mass of the rare earth showing that mainly R ions take part in these vibrations. These results agree with performed here lattice dynamical calculations. The anomalous softening of the frequency of some peaks in the spectra of Eu{sub 2}O{sub 3} is discussed.

  16. The formation of crystals in glasses containing rare earth oxides

    NASA Astrophysics Data System (ADS)

    Fadzil, Syazwani Mohd; Hrma, Pavel; Crum, Jarrod; Siong, Khoo Kok; Ngatiman, Mohammad Fadzlee; Said, Riduan Mt

    2014-02-01

    Korean spent nuclear fuel will reach the capacity of the available temporary storage by 2016. Pyroprocessing and direct disposal seems to be an alternative way to manage and reuse spent nuclear fuel while avoiding the wet reprocessing technology. Pyroprocessing produces several wastes streams, including metals, salts, and rare earths, which must be converted into stabilized form. A suitable form for rare earth immobilization is borosilicate glass. The borosilicate glass form exhibits excellent durability, allows a high waste loading, and is easy to process. In this work, we combined the rare earths waste of composition (in wt%) 39.2Nd2O3-22.7CeO2-11.7La2O3-10.9PrO2-1.3Eu2O3-1.3Gd2O3-8.1Sm2O3-4.8Y2O3 with a baseline glass of composition 60.2SiO2-16.0B2O3-12.6Na2O-3.8Al2O3-5.7CaO-1.7ZrO2. Crystallization in waste glasses occurs as the waste loading increases. It may produce complicate glass processing and affect the product quality. To study crystal formation, we initially made glasses containing 5%, 10% and 15% of La2O3 and then glasses with 5%, 10% and 15% of the complete rare earth mix. Samples were heat-treated for 24 hours at temperatures 800°C to 1150°C in 50°C increments. Quenched samples were analyzed using an optical microscope, scanning electron microscope with energy dispersive spectroscopy, and x-ray diffraction. Stillwellite (LaBSiO5) and oxyapatite (Ca2La8Si6O26) were found in glasses containing La2O3, while oxyapatite (Ca2La8Si6O26 and NaNd9Si6O26) precipitated in glasses with additions of mixed rare earths. The liquidus temperature (TL) of the glasses containing 5%, 10% and 15% La2O3 were 800°C, 959°C and 986°C, respectively; while TL was 825°C, 1059°C and 1267°C for glasses with 5%, 10% and 15% addition of mixed rare earth oxides. The component coefficients TB2O3, TSiO2, TCaO, and TRE2O3 were also evaluated using a recently published study.

  17. The excited state dynamics of KLa(MoO{sub 4}){sub 2}:Pr{sup 3+}: From a case study to the determination of the energy levels of rare earth impurities relative to the bandgap in oxidising host lattices

    SciTech Connect

    Cavalli, Enrico Boutinaud, Philippe; Bettinelli, Marco; Dorenbos, Pieter

    2008-05-15

    The luminescence properties of KLa(MoO{sub 4}){sub 2} (KLM) single crystals doped with Pr{sup 3+} have been measured in the 10-600 K temperature range in order to investigate the mechanisms involved in the radiationless processes. At variance with previously studied scheelite-like molybdates activated with Pr{sup 3+}, no effects attributed to the formation of intervalence charge transfer states have been observed. The model proposed in order to account for this behaviour allows the determination of the energy of the Pr{sup 3+} levels relative to the valence and conduction bands of the host. This model has firstly been confirmed for Tb{sup 3+}-doped KLM, for which suitable experimental data are available, and then extended to the other rare earth ions on the basis of the systematic nature of the lanthanide energy levels properties. The obtained conclusions are finally supported in the light of the comparison with some other representative cases. - Graphical abstract: The study of the excited state dynamics of KLa(MoO{sub 4}){sub 2} single crystals doped with Pr{sup 3+} allows to determine the energies of the levels of the active ion relative to the valence and conduction bands of the host. This model has then been extended to the other rare earth ions on the basis of the systematic nature of the lanthanide energy levels properties.

  18. A divalent rare earth oxide semiconductor: Yttrium monoxide

    NASA Astrophysics Data System (ADS)

    Kaminaga, Kenichi; Sei, Ryosuke; Hayashi, Kouichi; Happo, Naohisa; Tajiri, Hiroo; Oka, Daichi; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2016-03-01

    Rare earth oxides are usually widegap insulators like Y2O3 with closed shell trivalent rare earth ions. In this study, solid phase rock salt structure yttrium monoxide, YO, with unusual valence of Y2+ (4d1) was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO has been recognized as gaseous phase in previous studies. In contrast with Y2O3, YO was dark-brown colored and narrow gap semiconductor. The tunable electrical conductivity ranging from 10-1 to 103 Ω-1 cm-1 was attributed to the presence of oxygen vacancies serving as electron donor. Weak antilocalization behavior observed in magnetoresistance indicated significant role of spin-orbit coupling as a manifestation of 4d electron carrier.

  19. Study on depth-related microstructure and wear property of rare earth nitrocarburized layer of M50NiL steel

    NASA Astrophysics Data System (ADS)

    Yan, M. F.; Zhang, C. S.; Sun, Z.

    2014-01-01

    The quenched M50NiL steel was plasma nitrocarburized at 500 °C with rare earth (RE) addition. The RE nitrocarburized layer of M50NiL steel was removed stepwise (0 μm, 12 μm, 65 μm and 100 μm from the surface) and characterized using SEM equipped with EDS, XRD and microhardness tester respectively. Depth-related wear behavior of the RE nitrocarburized layer of M50NiL steel was investigated using pin-on-disk tribometer. The results show that the surface layer (0 μm from the surface) mainly consists of α‧N,C (expanded martensite), γ‧-Fe4(N,C), ɛ-Fe2-3(N,C) and a trace of Fe3O4 phase. The phase structure of the inner layers is single α‧N,C or α‧-Fe. There is a lower steady stage for all the depth-related friction coefficients of the layers due to the generation of the compact oxide film. The layer 12 μm from the surface has the lowest wear rate which is 2.4660 × 10-5 mm3 N-1 m-1. The work hardening effect only occurred on the layer 100 μm from the surface. The wear mechanisms of the layers transformed from mild abrasive and oxidative wear (0 μm from the surface) to severe adhesive and oxidative wear (100 μm from the surface) due to different phase structures and hardness. The oxygen content of the wear scar increases as the flash temperature rises and the hardness decreases when the layer comes inwards. The highest wolfram content for the layer 65 μm from the surface results in the dual role of the wear mechanism and hardness.

  20. Rare-earth pneumoconiosis: a new case

    SciTech Connect

    Sulotto, F.; Romano, C.; Berra, A.; Botta, G.C.; Rubino, G.F.; Sabbioni, E.; Pietra, R.

    1986-01-01

    A new case of rare-earth (RE) pneumoconiosis is described. The subject had worked as a photoengraver for 13 years and had not been exposed for 17 years. Chest X-ray showed a diffuse nodular pattern (q 2/3-ILO/1980). The patient was asymptomatic despite a restrictive spirometric impairment. The diagnosis derived from the finding, in the bronchoalveolar lavage fluid, of abnormal levels of La, Ce, Nd, Sm, Tb, Yb, and Lu. The presence of these elements was demonstrated by two methods: the neutron activation analysis and (as regards Ce alone) the X-ray energy spectrometry of mineral particles observed with electron microscope. Abnormal levels of rare earths were demonstrated also in the nails, suggesting an absorption of the RE from the lung.

  1. Rare-earth-metal nitridophosphates through high-pressure metathesis.

    PubMed

    Kloss, Simon David; Schnick, Wolfgang

    2015-09-14

    Developing a synthetic method to target an broad spectrum of unknown phases can lead to fascinating discoveries. The preparation of the first rare-earth-metal nitridophosphate LiNdP4 N8 is reported. High-pressure solid-state metathesis between LiPN2 and NdF3 was employed to yield a highly crystalline product. The in situ formed LiF is believed to act both as the thermodynamic driving force and as a flux to aiding single-crystal formation in dimensions suitable for crystal structure analysis. Magnetic properties stemming from Nd(3+) ions were measured by SQUID magnetometry. LiNdP4 N8 serves as a model system for the exploration of rare-earth-metal nitridophosphates that may even be expanded to transition metals. High-pressure metathesis enables the systematic study of these uncharted regions of nitride-based materials with unprecedented properties. PMID:26352033

  2. Rare Earth Doped Yttrium Aluminum Garnet (YAG) Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie T.; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study presents a spectral emittance model for films and cylinders of rare earth doped yttrium aluminum garnets. Good agreement between experimental and theoretical film spectral emittances was found for erbium and holmium aluminum garnets. Spectral emittances of films are sensitive to temperature differences across the film. For operating conditions of interest, the film emitter experiences a linear temperature variation whereas the cylinder emitter has a more advantageous uniform temperature. Emitter efficiency is also a sensitive function of temperature. For holminum aluminum garnet film the efficiency is 0.35 at 1446K but only 0.27 at 1270 K.

  3. Pressure and temperature induced elastic properties of rare earth chalcogenides

    NASA Astrophysics Data System (ADS)

    Shriya, S.; Singh, N.; Sapkale, R.; Varshney, M.; Varshney, Dinesh

    2016-05-01

    The pressure and temperature dependent mechanical properties as Young modulus, Thermal expansion coefficient of rare earth REX (RE = La, Pr, Eu; X = O, S, Se, and Te) chalcogenides are studied. The rare earth chalcogenides showed a structural phase transition (B1-B2). Pressure dependence of Young modulus discerns an increase in pressure inferring the hardening or stiffening of the lattice as a consequence of bond compression and bond strengthening. Suppressed Young modulus as functions of temperature infers the weakening of the lattice results in bond weakening in REX. Thermal expansion coefficient demonstrates that REX (RE = La, Pr, Eu; X = O, S, Se, and Te) chalcogenides is mechanically stiffened, and thermally softened on applied pressure and temperature.

  4. Structural properties of rare earth chalcogenides

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Ramakant; Bhardwaj, Purvee; Singh, Sadhna

    2016-05-01

    The pressure induced NaCl (B1) to CsCl (B2) structural phase transition of rare earth mono-chalcogenide (PuTe) has been investigated in this paper. A modified interaction potential model (MIPM) (including the covalency effect) has been developed. Phase transition pressures are associated with a sudden collapse in volume. The phase transition pressures and associated volume collapses obtained from present potential model show a generally good agreement with available experimental data than others.

  5. Rare earth element systematics in hydrothermal fluids

    SciTech Connect

    Michard, A. )

    1989-03-01

    Rare earth element concentrations have been measured in hydrothermal solutions from geothermal fields in Italy, Dominica, Valles Caldera, Salton Sea and the Mid-Atlantic Ridge. The measured abundances show that hydrothermal activity is not expected to affect the REE balance of either continental or oceanic rocks. The REE enrichment of the solutions increases when the pH decreases. High-temperature solutions (> 230{degree}C) percolating through different rock types may show similar REE patterns.

  6. SEPARATION OF RARE EARTHS BY SOLVENT EXTRACTION

    DOEpatents

    Peppard, D.F.; Mason, G.W.

    1960-10-11

    A process is given for separating lanthanide rare earths from each other from an aqueous mineral acid solution, e.g., hydrochloric or nitric acid of a concentration of above 3 M, preferably 12 to 16 M, by extraction with a water- immiscible alkyl phosphate, such as tributyl phosphate or a mixture of mono-, di- and tributyl phosphate, and fractional back-extraction with mineral acid whereby the lanthanides are taken up by the acid in the order of increasing atomic number.

  7. Electronic structure of rare-earth hexaborides

    NASA Astrophysics Data System (ADS)

    Kimura, S.; Nanba, T.; Tomikawa, M.; Kunii, S.; Kasuya, T.

    1992-11-01

    Reflectivity spectra of all rare-earth hexaboride RB6 (R=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb, and Y) single crystals have been measured systematically in the energy region from 1 meV to 40 eV at 300 K in order to investigate the electronic state and the contribution of the 4f electron to the band structure. The analysis of the optical conductivity and the loss-function spectra, which were derived from the Kramers-Kronig transformation of the reflectivity spectra, allowed us to make clear the origin of the peak structure in the spectrum due to the various interband transitions. The origins of the main peaks in the spectrum were assigned to the interband transitions from the bonding to the antibonding bands of the boron 2s and 2p states and to the rare-earth 5d state. The intra-atomic transition from the 4f and the 5p to the 5d(t2g) states in the rare-earth ion was also observed.

  8. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, T.W.; Schmidt, F.A.

    1995-08-01

    A method is described for treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation. 2 figs.

  9. Recycling of rare earth metals from rare earth-transition metal alloy scrap by liquid metal extraction

    DOEpatents

    Ellis, Timothy W.; Schmidt, Frederick A.

    1995-08-01

    Method of treating rare earth metal-bearing scrap, waste or other material (e.g. Nd--Fe--B or Dy--Tb--Fe scrap) to recover the rare earth metal comprising melting the rare earth metal-bearing material, melting a Group IIA metal extractant, such as Mg, Ca, or Ba, in which the rare earth is soluble in the molten state, and contacting the melted material and melted extractant at a temperature and for a time effective to extract the rare earth from the melted material into the melted extractant. The rare earth metal is separated from the extractant metal by vacuum sublimation or distillation.

  10. Fabrication and Characterization of Rare-Earth Hexaboride Thin Films

    NASA Astrophysics Data System (ADS)

    Zhong, Zhenchen

    2001-03-01

    Rare-earth hexaboride ReB6 (Re = Gd, Ce and Nd) thin films were fabricated by a novel laser-initiated chemical processing Laser-induced deposition form solution (LISD). The advantage of this LISD technique is selective patterned area deposition and uniform thin films. This technique also has both privileges of chemical vapor deposition (CVD) and electroless deposition - efficient and simple (no chambers, no electrodes, and at room temperature). The Structures and Surfaces of the deposited rare-earth hexaboride ReB6 (Re = Gd, Ce and Nd) thin films were studied by scanning electron microscope (SEM), X-ray emission spectroscopy (XES), and X-ray diffraction (XRD). We found that these films grew with a strong texture axis. The microstructure, morphology and surface evolution in the deposited films are dependent both on the choice of solvents and laser parameters (e.g, wavelength, laser power etc) used in LISD. Rare-earth hexaborides are typically low work function materials. They can be applied as cathodes in DC plasma display panels and micro X-ray tubes.

  11. Magnetism of perovskite cobaltites with Kramers rare-earth ions

    SciTech Connect

    Jirák, Z. Hejtmánek, J.; Knížek, K.; Novák, P.; Šantavá, E.; Fujishiro, H.

    2014-05-07

    The band-gap insulators RECoO{sub 3} (RE = Nd{sup 3+}, Sm{sup 3+}, and Dy{sup 3+}) with Co{sup 3+} ions stabilized in the non-magnetic low-spin state have been investigated by specific heat measurements. The experiments evidence an antiferromagnetic ordering of the rare earths with Néel temperature of T{sub N} = 1.25, 1.50, and 3.60 K for NdCoO{sub 3}, SmCoO{sub 3}, and DyCoO{sub 3}, respectively. With increasing external field, the lambda peak in specific heat, indicative of the transition, shifts to lower temperatures and vanishes for field of about 3 T. Starting from this point, a broader Schottky peak is formed, centered in 1 K range, and its position is moved to higher temperatures proportionally to applied field. The origin of the peak is in Zeeman splitting of the ground Kramers doublet, and the gradual shift with field defines effective g-factors for the rare-earth pseudospins in studied compounds. The results obtained are confronted with the calculations of crystal field splitting of the rare-earth multiplets.

  12. Restoration of rare earth mine areas: organic amendments and phytoremediation.

    PubMed

    Zhou, Lingyan; Li, Zhaolong; Liu, Wen; Liu, Shenghong; Zhang, Limin; Zhong, Liyan; Luo, Ximei; Liang, Hong

    2015-11-01

    Overexploitation of rare earth mine has caused serious desertification and various environmental issues, and ecological restoration of a mining area is an important concern in China. In this study, experiments involving dry grass landfilling, chicken manure broadcasting, and plant cultivation were carried out to reclaim a rare earth mine area located in Heping County, Guangdong Province, China. The prime focus was to improve soil quality in terms of nutrients, microbial community, enzyme activity, and physicochemical properties so as to reclaim the land. After 2 years of restoration, an increase of organic matter (OM), available potassium (K), available phosphorus (P) levels, and acid phosphatase (ACP) activity and a reduction of the available nitrogen (N) level and urease (URE) activity in soil were achieved compared to the original mined land. The nutrients and enzyme activities in soil with 5 years of restoration were close to or surpass those in the unexploited land as control. The bulk density, total porosity, water holding capacity, pH, and electrical conductivity (EC) of soil were improved, and the number of cultivable microorganisms and the bacterial diversity in soil were greatly increased with time during ecological restoration, especially for surface soil. Furthermore, the artificial vegetation stably grew at the restored mining sites. The results indicated that organic amendments and phytoremediation could ecologically restore the rare earth mining sites and the mined land could finally be planted as farmland. PMID:26139395

  13. Electronically- and crystal-structure-driven magnetic structures and physical properties of RScSb (R = rare earth) compounds. A neutron diffraction, magnetization and heat capacity study

    SciTech Connect

    Ritter, C; Dhar, S K; Kulkarni, R; Provino, A; Paudyal, Durga; Manfrinetti, Pietro; Gschneidner, Karl A

    2014-08-14

    The synthesis of the new equiatomic RScSb ( R = La-Nd, Sm, Gd-Tm, Lu, Y) compounds has been recently reported. These rare earth compounds crystallize in two different crystal structures, adopting the CeScSi-type ( I 4/ mmm) for the lighter R (La-Nd, Sm) and the CeFeSi-type (P4 /nmm) structure for the heavier R ( R = Gd-Tm, Lu, Y). Here we report the results of neutron diffraction, magnetization and heat capacity measurements on some of these compounds ( R = Ce, Pr, Nd, Gd and Tb). Band structure calculations have also been performed on CeScSb and GdScGe (CeScSi-type), and on GdScSb and TbScSb (CeFeSi-type) to compare and understand the exchange interactions in CeScSi and CeFeSi structure types. The neutron diffraction investigation shows that all five compounds order magnetically, with the highest transition temperature of 66 K in TbScSb and the lowest of about 9 K in CeScSb. The magnetic ground state is simple ferromagnetic (τ = [0 0 0]) in CeScSb, as well in NdScSb for 32 >T > 22 K. Below 22 K a second magnetic transition, with propagation vector τ = [¼ ¼ 0], appears in NdScSb. PrScSb has a magnetic structure within, determined by mostly ferromagnetic interactions and antiferromagnetic alignment of the Pr-sites connected through the I-centering ( τ = [1 0 0]). A cycloidal spiral structure with a temperature dependent propagation vector τ = [δ δ ½] is found in TbScSb. The results of magnetization and heat capacity lend support to the main conclusions derived from neutron diffraction. As inferred from a sharp peak in magnetization, GdScSb orders antiferromagnetically at 56 K. First principles calculations show lateral shift of spin split bands towards lower energy from the Fermi level as the CeScSi-type structure changes to the CeFeSi-type structure. This rigid shift may force the system to transform from exchange split ferromagnetic state to the antiferromagnetic state in RScSb compounds (as seen for example in GdScSb and TbScSb) and is proposed to

  14. Rare earth deposits in a deceased movie projectionist. A new case of rare earth pneumoconiosis?

    PubMed

    Waring, P M; Watling, R J

    The subject described in this case report, a movie projectionist, had approximately 25 years of occupational exposure to carbon arc lamp fumes. The carbon arc deposits were visible in histological sections as small granules within macrophages of the tracheobronchial lymph nodes and hepatic Kupffer's cells. Electron microprobe analysis by energy dispersive analysis of x-rays showed the granules to be composed of the rare earth elements cerium, lanthanum and neodymium, which are the major constituents of carbon arc rods. Tissue concentrations, as determined by inductively coupled plasma spectroscopy, were approximately 250-2000 times those of unexposed controls, and there was evidence of their redistribution throughout the reticuloendothelial system. There were no respiratory symptoms, or radiographic or histological pulmonary changes attributable to the progressive accumulation of the rare earth elements, and as such the patient cannot be considered to have suffered from pneumoconiosis. Twenty-one published cases of rare earth pneumoconiosis, mainly in photoengravers exposed to carbon arc fumes, are reviewed and suggest that rare earth oxides are not innocuous dusts. With the increasingly widespread use of rare earth elements there is a likelhood that further occupational groups may have significant but unrecognised exposure. PMID:2247001

  15. 40 CFR 721.6005 - Rare earth phosphate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Rare earth phosphate (generic). 721... Substances § 721.6005 Rare earth phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as rare earth phophate (PMNs...

  16. 40 CFR 721.6005 - Rare earth phosphate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Rare earth phosphate (generic). 721... Substances § 721.6005 Rare earth phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as rare earth phophate (PMNs...

  17. 40 CFR 721.6005 - Rare earth phosphate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Rare earth phosphate (generic). 721... Substances § 721.6005 Rare earth phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as rare earth phophate (PMNs...

  18. 40 CFR 721.6005 - Rare earth phosphate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Rare earth phosphate (generic). 721... Substances § 721.6005 Rare earth phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as rare earth phophate (PMNs...

  19. 40 CFR 721.6005 - Rare earth phosphate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Rare earth phosphate (generic). 721... Substances § 721.6005 Rare earth phosphate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as rare earth phophate (PMNs...

  20. Effects of rare-earth co-doping on the local structure of rare-earth phosphate glasses using high and low energy X-ray diffraction.

    PubMed

    Cramer, Alisha J; Cole, Jacqueline M; FitzGerald, Vicky; Honkimaki, Veijo; Roberts, Mark A; Brennan, Tessa; Martin, Richard A; Saunders, George A; Newport, Robert J

    2013-06-14

    Rare-earth co-doping in inorganic materials has a long-held tradition of facilitating highly desirable optoelectronic properties for their application to the laser industry. This study concentrates specifically on rare-earth phosphate glasses, (R2O3)x(R'2O3)y(P2O5)(1-(x+y)), where (R, R') denotes (Ce, Er) or (La, Nd) co-doping and the total rare-earth composition corresponds to a range between metaphosphate, RP3O9, and ultraphosphate, RP5O14. Thereupon, the effects of rare-earth co-doping on the local structure are assessed at the atomic level. Pair-distribution function analysis of high-energy X-ray diffraction data (Q(max) = 28 Å(-1)) is employed to make this assessment. Results reveal a stark structural invariance to rare-earth co-doping which bears testament to the open-framework and rigid nature of these glasses. A range of desirable attributes of these glasses unfold from this finding; in particular, a structural simplicity that will enable facile molecular engineering of rare-earth phosphate glasses with 'dial-up' lasing properties. When considered together with other factors, this finding also demonstrates additional prospects for these co-doped rare-earth phosphate glasses in nuclear waste storage applications. This study also reveals, for the first time, the ability to distinguish between P-O and P[double bond, length as m-dash]O bonding in these rare-earth phosphate glasses from X-ray diffraction data in a fully quantitative manner. Complementary analysis of high-energy X-ray diffraction data on single rare-earth phosphate glasses of similar rare-earth composition to the co-doped materials is also presented in this context. In a technical sense, all high-energy X-ray diffraction data on these glasses are compared with analogous low-energy diffraction data; their salient differences reveal distinct advantages of high-energy X-ray diffraction data for the study of amorphous materials. PMID:23518599

  1. Derivation of an optical potential for statically deformed rare-earth nuclei from a global spherical potential

    SciTech Connect

    Nobre, G. P. A.; Palumbo, A.; Herman, M.; Brown, D.; Hoblit, S.; Dietrich, F. S.

    2015-02-25

    The coupled-channel theory is a natural way of treating nonelastic channels, in particular those arising from collective excitations characterized by nuclear deformations. A proper treatment of such excitations is often essential to the accurate description of experimental nuclear-reaction data and to the prediction of a wide variety of scattering observables. Stimulated by recent work substantiating the near validity of the adiabatic approximation in coupled-channel calculations for scattering on statically deformed nuclei, we explore the possibility of generalizing a global spherical optical model potential (OMP) to make it usable in coupled-channel calculations on this class of nuclei. To do this, we have deformed the Koning-Delaroche global spherical potential for neutrons, coupling a sufficient number of states of the ground state band to ensure convergence. We present an extensive study of the effects of collective couplings and nuclear deformations on integrated cross sections as well as on angular distributions for neutron-induced reactions on statically deformed nuclei in the rare-earth region. We choose isotopes of three rare-earth elements (Gd, Ho, W), which are known to be nearly perfect rotors, to exemplify the results of the proposed method. Predictions from our model for total, elastic and inelastic cross sections, as well as for elastic and inelastic angular distributions, are in reasonable agreement with measured experimental data. In conclusion, these results suggest that the deformed Koning-Delaroche potential provides a useful regional neutron optical potential for the statically deformed rare earth nuclei.

  2. Raman investigations of rare earth orthovanadates

    NASA Astrophysics Data System (ADS)

    Santos, C. C.; Silva, E. N.; Ayala, A. P.; Guedes, I.; Pizani, P. S.; Loong, C.-K.; Boatner, L. A.

    2007-03-01

    Polarized Raman spectroscopy has been used to obtain the room-temperature phonon spectra of the series of rare earth orthovanadate single crystals: SmVO4, HoVO4, YbVO4, and LuVO4. The observed Raman frequencies follow the overall mode distribution expected for REVO4 compounds with the tetragonal zircon structure. The variation of the mode frequency with atomic number across the lanthanide orthovanadate series was investigated, and the trend exhibited by the internal modes was explained by considering the force constants of VO4 tetrahedron.

  3. Raman Investigations of Rare-Earth Orthovanadates

    SciTech Connect

    Santos, C. C.; Silva, E. N.; Ayala, A. P.; Guedes, I.; Pizani, P. S.; Loong, C. K.; Boatner, Lynn A

    2007-01-01

    Polarized Raman spectroscopy has been used to obtain the room-temperature phonon spectra of the series of rare earth orthovanadate single crystals: SmVO4, HoVO4, YbVO4 and LuVO4. The observed Raman frequencies follow the overall mode distribution expected for RVO4 compounds with the tetragonal zircon structure. The variation of the mode frequency with atomic number across the lanthanide orthovanadate series was investigated, and the trend exhibited by the internal modes was explained by considering the force constants of VO4 tetrahedron.

  4. Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications

    SciTech Connect

    2012-01-01

    REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike today’s large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldor’s motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

  5. Characterization of a rare earth oxide obtained from xenotime mineral

    SciTech Connect

    Vernilli, Fernando . E-mail: fernando.vernilli@demar.faenquil.br; Camargo Vernilli, Daniela; Ferreira, Bento; Silva, Gilbert

    2007-01-15

    This paper reports on the characterization of a rare earth oxide obtained by hydrometallurgy of the mineral xenotime, an yttrium phosphate containing other rare earths, and comparison with mixtures of rare earth oxides prepared in different ways. The results indicated that hydrometallurgy from xenotime yielded a solid solution of the rare earth oxides. However, when the pure rare earth oxides were simply mixed physically then heat-treated at 1000 deg. C, a similar solid solution was not obtained. On the other hand, when the mixtures were prepared using a co-precipitation process, subsequent heat treatment did produce oxide solid solutions similar to that produced by hydrometallurgy of xenotime.

  6. Note: Portable rare-earth element analyzer using pyroelectric crystal.

    PubMed

    Imashuku, Susumu; Fuyuno, Naoto; Hanasaki, Kohei; Kawai, Jun

    2013-12-01

    We report a portable rare-earth element analyzer with a palm-top size chamber including the electron source of a pyroelectric crystal and the sample stage utilizing cathodoluminescence (CL) phenomenon. The portable rare-earth element analyzer utilizing CL phenomenon is the smallest reported so far. The portable rare-earth element analyzer detected the rare-earth elements Dy, Tb, Er, and Sm of ppm order in zircon, which were not detected by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. We also performed an elemental mapping of rare-earth elements by capturing a CL image using CCD camera. PMID:24387481

  7. Note: Portable rare-earth element analyzer using pyroelectric crystal

    SciTech Connect

    Imashuku, Susumu Fuyuno, Naoto; Hanasaki, Kohei; Kawai, Jun

    2013-12-15

    We report a portable rare-earth element analyzer with a palm-top size chamber including the electron source of a pyroelectric crystal and the sample stage utilizing cathodoluminescence (CL) phenomenon. The portable rare-earth element analyzer utilizing CL phenomenon is the smallest reported so far. The portable rare-earth element analyzer detected the rare-earth elements Dy, Tb, Er, and Sm of ppm order in zircon, which were not detected by scanning electron microscopy-energy dispersive X-ray spectroscopy analysis. We also performed an elemental mapping of rare-earth elements by capturing a CL image using CCD camera.

  8. Reflectives: Phosphors and lasers - shedding light on rare earths

    SciTech Connect

    Tonneson, L.C.; Fox, G.J.

    1996-04-01

    The first powder electroluminescent phosphor was introduced in 1936. Today, phosphors, particularly those made of high-purity rare earths, have found their way into a variety of products: industrial, commercial, and consumer, alike. The fluorescent lamp industry which remains the leading market for the use of high-purity rare earths, lit the way for the future of rare earths in the optical, x-ray, and display screen applications. Light combined with rare earth materials is also a successful recipe for reflectivity needed in filtering applications such as optics, lasers, and conductors. This article discusses the applications and markets for phosphors and rare earths.

  9. Decomposition of Rare Earth Loaded Resin Particles

    SciTech Connect

    Voit, Stewart L; Rawn, Claudia J

    2010-09-01

    resin is made of sulfonic acid functional groups attached to a styrene divinylbenzene copolymer lattice (long chained hydrocarbon). The metal cation binds to the sulfur group, then during thermal decomposition in air the hydrocarbons will form gaseous species leaving behind a spherical metal-oxide particle. Process development for resin applications with radioactive materials is typically performed using surrogates. For americium and curium, a trivalent metal like neodymium can be used. Thermal decomposition of Nd-loaded resin in air has been studied by Hale. Process conditions were established for resin decomposition and the formation of Nd{sub 2}O{sub 3} particles. The intermediate product compounds were described using x-ray diffraction (XRD) and wet chemistry. Leskela and Niinisto studied the decomposition of rare earth (RE) elements and found results consistent with Hale. Picart et al. demonstrated the viability of using a resin loading process for the fabrication of uranium-actinide mixed oxide microspheres for transmutation of minor actinides in a fast reactor. For effective transmutation of actinides, it will be desirable to extend the in-reactor burnup and minimize the number of recycles of used actinide materials. Longer burn times increases the chance of Fuel Clad Chemical or Mechanical Interaction (FCCI, FCMI). Sulfur is suspected of contributing to Irradiation Assisted Stress Corrosion Cracking (IASCC) thus it is necessary to maximize the removal of sulfur during decomposition of the resin. The present effort extends the previous work by quantifying the removal of sulfur during the decomposition process. Neodymium was selected as a surrogate for trivalent actinide metal cations. As described above Nd was dissolved in nitric acid solution then contacted with the AG-50W resin column. After washing the column, the Nd-resin particles are removed and dried. The Nd-resin, seen in Figure 1 prior to decomposition, is ready to be converted to Nd oxide microspheres.

  10. Rare Earth Doped Semiconductors and Materials Research Society Symposium Proceedings, Volume 301

    NASA Astrophysics Data System (ADS)

    Ballance, John

    1994-02-01

    The properties of rare earth ions in solids were studied in detail for decades, but until recently this work was restricted to dominantly ionic hosts such as fluorides and oxides, and to a lesser extent to more covalently bonded hosts, such as tetrahedral 2-6 semiconductors. The idea of rare earth elements incorporated into covalent semiconductors such as GaAs and Si may be traced to a short communication in 1963 by R.L. Bell (J. Appl. Phys. 34, 1563 (1963)) proposing a dc-pumped rare earth laser. At about the same time, three unpublished technical reports appeared as a result of U.S. Department of Defense sponsored research in rare earth doped Si, GaAs, and InP to fabricate LED's. Attempts by other researchers to identify sharp 4f specific emissions in these hosts essentially failed.

  11. Cross sections for deeply inelastic transfer reactions induced by heavy ions in rare-earth targets

    NASA Astrophysics Data System (ADS)

    Rivet, M. F.; Bimbot, R.; Gardès, D.; Fleury, A.; Hubert, F.; Llabador, Y.

    1982-04-01

    Cross sections have been measured for deeply inelastic transfer reactions leading to the production of several radio-nuclides. Rare-earth targets were used and the projectiles were Ar, Cr, Fe and Cu ions. The reactions studied corresponded to transfers of two to nine protons and variable numbers of neutrons. The results obtained were used to study the evolution of some characteristics of these reactions, such as integrated cross sections and widths of the isotopic distributions, versus incident mass and transferred mass. These results confirm that mass transfer is driven by the potential energy of the composite system. The decrease of cross sections for increasing charge transfer may be quantitatively explained by assuming thermodynamical equilibrium of the mass asymmetry degree of freedom.

  12. Fluorescent lifetime measurements of rare-earth elements in gallium arsenide. Master's thesis

    SciTech Connect

    Topp, D.J.

    1990-12-01

    Lifetime measurements of the excited states of three GaAs semiconductors doped with the rare earth elements Erbium (Er), Praseodymium (Pr), and Thulium (Tm) has been studied using a pulsed nitrogen laser and germanium detector. The measurements were made with an experimental set up with a system response time of 0.34 microseconds. A 330 milliwatt nitrogen laser with a wavelength of 3370 angstroms was used to excite transitions of the rare earth elements.

  13. Experimental Parameters Affecting Stripping of Rare Earth Elements from Loaded Sorptive Media in Simulated Geothermal Brines

    DOE Data Explorer

    Dean Stull

    2016-05-24

    Experimental results from several studies exploring the impact of pH and acid volume on the stripping of rare earth elements (REEs) loaded onto ligand-based media via an active column. The REEs in this experiment were loaded onto the media through exposure to a simulated geothermal brine with known mineral concentrations. The data include the experiment results, rare earth element concentrations, and the experimental parameters varied.

  14. Equilibrium deformations and excitation energies of single-quasiproton band heads of rare-earth nuclei

    NASA Astrophysics Data System (ADS)

    Nazarewicz, W.; Riley, M. A.; Garrett, J. D.

    1990-05-01

    Noncollective single-proton states in odd- Z (Eu, Tb, Ho, Tm, Lu, Ta, Ir and Au) rare-earth nuclei have been calculated using the shell correction method with an average Woods-Saxon potential and a monopole pairing residual interaction. Calculated equilibrium deformations of the lowest single-proton states are presented, and calculated band head excitation energies are compared with experimental proton band heads for odd- Z rare-earth nuclei. Good agreement is found between the experimental and calculated band heads. We find that strong polarisation effects due to the odd proton explain many of the systematic trends of known band heads. Different deformation driving forces of the odd-proton orbitals can also partly explain deviations seen in high-spin data. Shape co-existence effects in Ir and Au isotopes are discussed. In addition, equilibrium deformations of even-even rare-earth nuclei are computed and compared with experimental values.

  15. The effects of rare earth doping on gallium nitride thin films

    NASA Astrophysics Data System (ADS)

    McHale, Stephen R.

    The thermal neutron capture cross section of the rare earth (RE) metal isotope Gd-157 is the largest of all known natural elements, which distinguishes the material as a logical candidate for neutron detection. To address an incomplete understanding of rare earth doped Gallium Nitride (GaN) materials, investigations of the surface electronic structure and interface properties of GaN thin films doped with rare earths (Yb, Er, Gd) were undertaken. Lattice ion occupation, bonding, rare earth 4f occupation, and gold Schottky barrier formation were examined using synchrotron photoemission spectroscopy. Measured Debye temperatures indicate substitutional occupation of Ga sites by RE ions. The occupied RE 4f levels, deep within the valence band, suggest that intra-atomic f-f transitions may be more 'blue' than predicted by theoretical models. Thin layers of gold did not wet and uniformly cover the GaN surface, even with rare earth doping of the GaN. The resultant Schottky barrier heights for GaN:Yb, GaN:Er, and GaN:Gd, are 25--55% larger than those reported at the gold to undoped GaN interface. The utility of gadolinium as a neutron detection material was examined via fundamental nuclear and semiconductor physics. Low charge production and the large range of internal conversion electrons limits charge collection efficiency.

  16. Transition Probabilities of the Rare Earth Neutral Lanthanum

    NASA Astrophysics Data System (ADS)

    Palmer, Andria; Lawler, James E.; Den Hartog, Elizabeth

    2015-01-01

    In continuation of a long-standing project to measure transition probabilities for rare earth elements, La i is currently being studied. Transition probabilities of the rare earths and other elements are determined in order to assist astronomers in making stellar spectroscopy more quantitative. Atomic spectroscopy is a key tool for astronomers as it provides nearly all the details about the physics and chemistry of the universe outside of our solar system. Rare earth elements tend to have complex electronic structure due to their open 4f, 5d, 6s, and 6p shells. This leads to a rich spectrum throughout the ultraviolet, visible and near-infrared, making them very accessible elements for study in stellar photospheric spectra. A transition probability is the probability per unit time for a transition to occur between an upper level and a lower level. The process for measuring transition probabilities is by using the well-established technique of time-resolved laser-induced fluorescence to measure the radiative lifetimes for each upper level. This is then combined with branching fractions measured using a 1m high-resolution Fourier Transform Spectrometer. Radiative lifetimes for ~70 upper levels of neutral La along with their associated branching fractions will be reported, resulting in the determination of several hundred new transition probabilities. These transition probabilities will assist astronomers in analyzing the chemical compositions of older, cooler stars which give insight into the origins of the chemical elements.This work supported by by NSF grant AST-1211055 (JEL & EDH) and by the NSF REU program (AJP).

  17. The formation of crystals in glasses containing rare earth oxides

    SciTech Connect

    Fadzil, Syazwani Mohd; Hrma, Pavel; Crum, Jarrod; Siong, Khoo Kok; Ngatiman, Mohammad Fadzlee; Said, Riduan Mt

    2014-02-12

    Korean spent nuclear fuel will reach the capacity of the available temporary storage by 2016. Pyroprocessing and direct disposal seems to be an alternative way to manage and reuse spent nuclear fuel while avoiding the wet reprocessing technology. Pyroprocessing produces several wastes streams, including metals, salts, and rare earths, which must be converted into stabilized form. A suitable form for rare earth immobilization is borosilicate glass. The borosilicate glass form exhibits excellent durability, allows a high waste loading, and is easy to process. In this work, we combined the rare earths waste of composition (in wt%) 39.2Nd{sub 2}O{sub 3}–22.7CeO{sub 2}–11.7La{sub 2}O{sub 3}–10.9PrO{sub 2}–1.3Eu{sub 2}O{sub 3}–1.3Gd{sub 2}O{sub 3}–8.1Sm{sub 2}O{sub 3}–4.8Y{sub 2}O{sub 3} with a baseline glass of composition 60.2SiO{sub 2}–16.0B{sub 2}O{sub 3}–12.6Na{sub 2}O–3.8Al{sub 2}O{sub 3}–5.7CaO–1.7ZrO{sub 2}. Crystallization in waste glasses occurs as the waste loading increases. It may produce complicate glass processing and affect the product quality. To study crystal formation, we initially made glasses containing 5%, 10% and 15% of La{sub 2}O{sub 3} and then glasses with 5%, 10% and 15% of the complete rare earth mix. Samples were heat-treated for 24 hours at temperatures 800°C to 1150°C in 50°C increments. Quenched samples were analyzed using an optical microscope, scanning electron microscope with energy dispersive spectroscopy, and x-ray diffraction. Stillwellite (LaBSiO{sub 5}) and oxyapatite (Ca{sub 2}La{sub 8}Si{sub 6}O{sub 26}) were found in glasses containing La{sub 2}O{sub 3}, while oxyapatite (Ca{sub 2}La{sub 8}Si{sub 6}O{sub 26} and NaNd{sub 9}Si{sub 6}O{sub 26}) precipitated in glasses with additions of mixed rare earths. The liquidus temperature (T{sub L}) of the glasses containing 5%, 10% and 15% La{sub 2}O{sub 3} were 800°C, 959°C and 986°C, respectively; while T{sub L} was 825°C, 1059°C and 1267°C for glasses

  18. Anomalous Hall Effect in a Feromagnetic Rare-Earth Cobalite

    NASA Technical Reports Server (NTRS)

    Samoilov, A. V.; Yeh, N. C.; Vasquez, R. P.

    1996-01-01

    Rare-Earth manganites and cobalites with the perovskite structure have been a subject of great recent interest because their electrical resistance changes significantly when a magnetic field is applied...we have studied the Hall effect in thin film La(sub 0.5)Ca(sub 0.5)CoO(sub 3) material and have obtained convincing evidence fo the so called anomalous Hall effect, typical for magnetic metals...Our results suggest that near the ferromagnetic ordering temperature, the dominant electron scattering mechanism is the spin fluctuation.

  19. Resonance electronic Raman scattering in rare earth crystals

    SciTech Connect

    Williams, G.M.

    1988-11-10

    The intensities of Raman scattering transitions between electronic energy levels of trivalent rare earth ions doped into transparent crystals were measured and compared to theory. A particle emphasis was placed on the examination of the effect of intermediate state resonances on the Raman scattering intensities. Two specific systems were studied: Ce/sup 3 +/(4f/sup 1/) in single crystals of LuPO/sub 4/ and Er/sup 3 +/(4f/sup 11/) in single crystals of ErPO/sub 4/. 134 refs., 92 figs., 33 tabs.

  20. Rare-earth pnictides and chalcogenides from first-principles.

    PubMed

    Petit, L; Szotek, Z; Lüders, M; Svane, A

    2016-06-01

    This review tries to establish what is the current understanding of the rare-earth monopnictides and monochalcogenides from first principles. The rock salt structure is assumed for all the compounds in the calculations and wherever possible the electronic structure/properties of these compounds, as obtained from different ab initio methods, are compared and their relation to the experimental evidence is discussed. The established findings are summarised in a set of conclusions and provide outlook for future study and possible design of new materials. PMID:27165563

  1. Rare-earth pnictides and chalcogenides from first-principles

    NASA Astrophysics Data System (ADS)

    Petit, L.; Szotek, Z.; Lüders, M.; Svane, A.

    2016-06-01

    This review tries to establish what is the current understanding of the rare-earth monopnictides and monochalcogenides from first principles. The rock salt structure is assumed for all the compounds in the calculations and wherever possible the electronic structure/properties of these compounds, as obtained from different ab initio methods, are compared and their relation to the experimental evidence is discussed. The established findings are summarised in a set of conclusions and provide outlook for future study and possible design of new materials.

  2. Rare earth doped zinc oxide varistors

    DOEpatents

    McMillan, April D.; Modine, Frank A.; Lauf, Robert J.; Alim, Mohammad A.; Mahan, Gerald D.; Bartkowiak, Miroslaw

    1998-01-01

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.

  3. Rare earth doped zinc oxide varistors

    DOEpatents

    McMillan, A.D.; Modine, F.A.; Lauf, R.J.; Alim, M.A.; Mahan, G.D.; Bartkowiak, M.

    1998-12-29

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2--4.0% oxide of at least one rare earth element, 0.5--4.0% Co{sub 3}O{sub 4}, 0.05--0.4% K{sub 2}O, 0.05--0.2% Cr{sub 2}O{sub 3}, 0--0.2% CaO, 0.00005--0.01% Al{sub 2}O{sub 3}, 0--2% MnO, 0--0.05% MgO, 0--0.5% TiO{sub 3}, 0--0.2% SnO{sub 2}, 0--0.02% B{sub 2}O{sub 3}, balance ZnO. 4 figs.

  4. Rare earth elements in river waters

    NASA Technical Reports Server (NTRS)

    Goldstein, Steven J.; Jacobsen, Stein B.

    1988-01-01

    To characterize the input to the oceans of rare earth elements (REE) in the dissolved and the suspended loads of rivers, the REE concentrations were measured in samples of Amazon, Indus, Mississippi, Murray-Darling, and Ohio rivers and in samples of smaller rivers that had more distinct drainage basin lithology and water chemistry. It was found that, in the suspended loads of small rivers, the REE pattern was dependent on drainage basin geology, whereas the suspended loads in major rivers had relatively uniform REE patterns and were heavy-REE depleted relative to the North American Shale composite (NASC). The dissolved loads in the five major rivers had marked relative heavy-REE enrichments, relative to the NASC and the suspended material, with the (La/Yb)N ratio of about 0.4 (as compared with the ratio of about 1.9 in suspended loads).

  5. Gaining control over rare earth valence fluctuations

    SciTech Connect

    Wohlleben, D.

    1987-05-31

    This paper briefly deals with the problem of narrow band materials. It addresses a new theoretical approach to the fluctuation of valence electrons in rare earth elements. It is believed that the phenomena of interest arize from an instability of the partially filled d or f shell of certain atoms when they are put into a metallic host. The theoretical models which dominate the scene work with two local d or f states on one hand and a structureless sea of free conduction electrons on the other. This procedure ignores at least half of the essential physics; the other held is kept alive in the term valence fluctuation. Basically, what the prevalent models ignore is that, in all these systems, the entire atoms as the source of the anomalies are being dealt with, not just their f shells. In other words, there is important structure in the sea of conduction electrons.

  6. Zirconium, hafnium, and rare earth element partition coefficients for ilmenite and other minerals in high-Ti lunar mare basalts - An experimental study

    NASA Technical Reports Server (NTRS)

    Mckay, G.; Wagstaff, J.; Yang, S.-R.

    1986-01-01

    Partition coefficients were determined for Gd, Lu, Hf and Zr among ilmenite, armalcolite, and synthetic high-Ti mare basaltic melts at temperatures from 1122 deg to 1150 deg, and at oxygen fugacities of IW x 10 exp 0.5, by in situ analysis with an electron microprobe, using samples doped to present concentration levels. Coefficients for Zr were also measured for samples containing 600-1600 ppm Zr using this microprobe. In addition, coefficients were determined for Hf and Zr between chromian ulvospinel and melt, for Hf between pigeonite and melt, and for Lu between olivine and melt by microprobe analysis of samples doped to present levels. Values measured using the microprobe were in agreement with the values measured by analyzing mineral separates from the same run products by isotope dilution. Coefficient values for ilmenite are less than 0.01 for the LREE, are around 0.1 for the HREE, and are several times greater than this for Zr and Hf.

  7. Enhanced pinning in mixed rare earth-123 films

    SciTech Connect

    Driscoll, Judith L.; Foltyn, Stephen R.

    2009-06-16

    An superconductive article and method of forming such an article is disclosed, the article including a substrate and a layer of a rare earth barium cuprate film upon the substrate, the rare earth barium cuprate film including two or more rare earth metals capable of yielding a superconductive composition where ion size variance between the two or more rare earth metals is characterized as greater than zero and less than about 10.times.10.sup.-4, and the rare earth barium cuprate film including two or more rare earth metals is further characterized as having an enhanced critical current density in comparison to a standard YBa.sub.2Cu.sub.3O.sub.y composition under identical testing conditions.

  8. SALICYLATE PROCESS FOR THORIUM SEPARATION FROM RARE EARTHS

    DOEpatents

    Cowan, G.A.

    1959-08-25

    The separation of thorium from rare earths is accomplished by forming an aqueous solution of salts of thorium and rare earths and sufficient acetate buffer to provide a pH of between 2 and 5, adding an ammonium salicylate to the aqueous buffered solution, contacting the resultant solution with a substantially water-immiscible organic solvent mixture of an ether and an ester, and separating the solvent extract phase containing thorium salicylate from the aqueous phase containing the rare earths.

  9. Half-sandwich rare-earth-catalyzed olefin polymerization, carbometalation, and hydroarylation.

    PubMed

    Nishiura, Masayoshi; Guo, Fang; Hou, Zhaomin

    2015-08-18

    -site catalysts. This Account is intended to give an overview of our recent studies on organo rare-earth catalysis, in particular the synthesis and application of half-sandwich rare-earth alkyl complexes bearing monocyclopentadienyl ligands for olefin polymerization, carbometalation, and hydroarylation. Treatment of half-sandwich rare-earth dialkyl complexes having the general formula CpMR2 with an equimolar amount of an appropriate borate compound such as [Ph3C][B(C6F5)4] can generate the corresponding cationic monoalkyl species, which serve as excellent single-site catalysts for the polymerization and copolymerization of a wide range of olefin monomers such as ethylene, 1-hexene, styrene, conjugated and nonconjugated dienes, and cyclic olefins. The cationic half-sandwich rare-earth alkyl complexes can also catalyze the regio- and stereoselective alkylative alumination of alkenes and alkynes through insertion of the unsaturated C-C bond into the metal-alkyl bond followed by transmetalation between the resulting new alkyl or alkenyl species and an alkylaluminum compound. Moreover, a combination of deprotonative C-H bond activation of appropriate organic compounds such as anisoles and pyridines by the rare-earth alkyl species and insertion of alkenes into the resulting new metal-carbon bond can lead to catalytic C-H bond alkylation of the organic substrates. Most of these transformations are unique to the rare-earth catalysts with selectivity and functional group tolerance different from those of late-transition-metal catalysts. PMID:26214733

  10. Mechanism of Rare Earth Incorporation and Crystal Growth of Rare Earth Containing Type-I Clathrates

    PubMed Central

    2015-01-01

    Type-I clathrates possess extremely low thermal conductivities, a property that makes them promising materials for thermoelectric applications. The incorporation of cerium into one such clathrate has recently been shown to lead to a drastic enhancement of the thermopower, another property determining the thermoelectric efficiency. Here we explore the mechanism of the incorporation of rare earth elements into type-I clathrates. Our investigation of the crystal growth and the composition of the phase Ba8–xRExTMySi46–y (RE = rare earth element; TM = Au, Pd, Pt) reveals that the RE content x is mainly governed by two factors, the free cage space and the electron balance. PMID:26823658