Science.gov

Sample records for rare-earth-doped yttrium aluminium

  1. Evidence of dilute ferromagnetism in rare-earth doped yttrium aluminium garnet

    SciTech Connect

    Farr, Warrick G.; Goryachev, Maxim; Le Floch, Jean-Michel; Tobar, Michael E.; Bushev, Pavel

    2015-09-21

    This work demonstrates strong coupling regime between an erbium ion spin ensemble and microwave hybrid cavity-whispering gallery modes in a yttrium aluminium garnet dielectric crystal. Coupling strengths of 220 MHz and mode quality factors in excess of 10{sup 6} are demonstrated. Moreover, the magnetic response of high-Q modes demonstrates behaviour which is unusual for paramagnetic systems. This behaviour includes hysteresis and memory effects. Such qualitative change of the system's magnetic field response is interpreted as a phase transition of rare earth ion impurities. This phenomenon is similar to the phenomenon of dilute ferromagnetism in semiconductors. The clear temperature dependence of the phenomenon is demonstrated.

  2. Rare Earth Doped Yttrium Aluminum Garnet (YAG) Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie T.; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study presents a spectral emittance model for films and cylinders of rare earth doped yttrium aluminum garnets. Good agreement between experimental and theoretical film spectral emittances was found for erbium and holmium aluminum garnets. Spectral emittances of films are sensitive to temperature differences across the film. For operating conditions of interest, the film emitter experiences a linear temperature variation whereas the cylinder emitter has a more advantageous uniform temperature. Emitter efficiency is also a sensitive function of temperature. For holminum aluminum garnet film the efficiency is 0.35 at 1446K but only 0.27 at 1270 K.

  3. Radioluminescence study of rare earth doped some yttrium based phosphors

    NASA Astrophysics Data System (ADS)

    Ayvacıklı, Mehmet; Ege, Arzu; Ekdal, Elçin; Popovici, Elisabeth-Jeanne; Can, Nurdoğan

    2012-09-01

    This paper reports the luminescence emission spectra of Y(Ta,Nb)O4 activated by rare earth ions such as Eu3+ and Tb3+. The influence of these rare earth ions on the radioluminescence (RL) of yttrium niobate and tantalate phosphors was investigated. The luminescent properties were studied under X-ray and preliminary RL measurements to further evaluate prepared materials. The emission centers of the rare earth activators (Eu3+, Tb3+) were found to contribute efficiently to the total luminescence. With their various luminescence chromaticities, these rare earth activated phosphors are promising materials for solid-state lighting applications as well as for X-ray intensifying screens in medical diagnosis, providing the broad band variation of visible RL from blue to red.

  4. Luminescence studies of rare earth doped yttrium gadolinium mixed oxide phosphor

    NASA Astrophysics Data System (ADS)

    Som, S.; Choubey, A.; Sharma, S. K.

    2012-09-01

    This paper reports the photoluminescence and thermoluminescence properties of gamma ray induced rare earth doped yttrium gadolinium mixed oxide phosphor. The europium (Eu3+) was used as rare earth dopant. The phosphor was prepared by chemical co-precipitation method according to the formula (Y2-x-yGdx) O3: Euy3+ (x=0.5; y=0.05). The photoluminescence emission spectrum of the prepared phosphor shows intense peaks in the red region at 615 nm for 5D0→7F2 transitions and the photoluminescence excitation spectra show a broad band located around 220-270 nm for the emission wavelength fixed at 615 nm. The thermoluminescence studies were carried out after irradiating the phosphor by gamma rays in the dose range from 100 Gy to 1 KGy. In the thermoluminescence glow curves, one single peak was observed at about 300 °C of which the intensity increases linearly in the studied dose range of gamma rays. The glow peak was deconvoluted by GlowFit program and the kinetic parameters associated with the deconvoluted peaks were calculated. The kinetic parameters were also calculated by various glow curve shape and heating rate methods.

  5. Synthesis of rare earth doped yttrium-vanadate nanoparticles encapsulated within apoferritin.

    PubMed

    Harada, Tomoaki; Yoshimura, Hideyuki

    2014-07-28

    Luminescent europium (Eu) and dysprosium (Dy) doped yttrium-vanadate (Y-V) nanoparticles (NPs) were synthesized in the cavity of the protein, apoferritin. Y-V NPs were synthesized by incubating a solution of apoferritin with Y(3+) and VO3(-) ions in the presence of ethylene diamine-N-N'-diacetic acid (EDDA). EDDA plays an important role in preventing Y-vanadate precipitation in bulk solution by chelating the Y(3+) ions. Using high resolution electron microscopy, the obtained NPs in the apoferritin cavities were confirmed to be amorphous, and to consist of Y and V. Eu-doped Y-V (Y-V:Eu) NPs were synthesized by the same procedure as Y-V NPs, except that Eu(NO3)3 was added. Y-V:Eu NPs exhibited a strong absorption peak due to the O-V charge transfer transition and remarkable luminescence at 618 nm due to the (5)D0 → (7)F2 transition. The luminescence lifetime of Y:Eu and Y-V:Eu NPs measured in H2O and D2O solution showed reduction of non-radiative transition to the O-H vibration in Y-V:Eu NPs. Accordingly, Y-V NPs showed strong luminescence compared to Y:Eu NPs. Dy-doped Y-V NPs were also synthesized in apoferritin cavities and showed luminescence peaks at 482 nm and 572 nm, corresponding to (4)F9/2 → (6)H15/2 and (4)F9/2 → (6)H13/2 transitions. These NPs stably dispersed in water solution since their aggregation was prevented by the protein shell. NPs encapsulated in the protein are likely to be biocompatible and would have significant potential for biological imaging applications. PMID:24930497

  6. Tunable, rare earth-doped solid state lasers

    DOEpatents

    Emmett, John L.; Jacobs, Ralph R.; Krupke, William F.; Weber, Marvin J.

    1980-01-01

    Laser apparatus comprising combinations of an excimer pump laser and a rare earth-doped solid matrix, utilizing the 5d-4f radiative transition in a rare earth ion to produce visible and ultra-violet laser radiation with high overall efficiency in selected cases and relatively long radiative lifetimes.

  7. High quality factor nanophotonic resonators in bulk rare-earth doped crystals.

    PubMed

    Zhong, Tian; Rochman, Jake; Kindem, Jonathan M; Miyazono, Evan; Faraon, Andrei

    2016-01-11

    Numerous bulk crystalline materials exhibit attractive nonlinear and luminescent properties for classical and quantum optical applications. A chip-scale platform for high quality factor optical nanocavities in these materials will enable new optoelectronic devices and quantum light-matter interfaces. In this article, photonic crystal nanobeam resonators fabricated using focused ion beam milling in bulk insulators, such as rare-earth doped yttrium orthosilicate and yttrium vanadate, are demonstrated. Operation in the visible, near infrared, and telecom wavelengths with quality factors up to 27,000 and optical mode volumes close to one cubic wavelength is measured. These devices enable new nanolasers, on-chip quantum optical memories, single photon sources, and non-linear devices at low photon numbers based on rare-earth ions. The techniques are also applicable to other luminescent centers and crystal. PMID:26832284

  8. Multicomponent, Rare-Earth-Doped Thermal-Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Miller, Robert A.; Zhu, Dongming

    2005-01-01

    Multicomponent, rare-earth-doped, perovskite-type thermal-barrier coating materials have been developed in an effort to obtain lower thermal conductivity, greater phase stability, and greater high-temperature capability, relative to those of the prior thermal-barrier coating material of choice, which is yttria-partially stabilized zirconia. As used here, "thermal-barrier coatings" (TBCs) denotes thin ceramic layers used to insulate air-cooled metallic components of heat engines (e.g., gas turbines) from hot gases. These layers are generally fabricated by plasma spraying or physical vapor deposition of the TBC materials onto the metal components. A TBC as deposited has some porosity, which is desirable in that it reduces the thermal conductivity below the intrinsic thermal conductivity of the fully dense form of the material. Undesirably, the thermal conductivity gradually increases because the porosity gradually decreases as a consequence of sintering during high-temperature service. Because of these and other considerations such as phase transformations, the maximum allowable service temperature for yttria-partially stabilized zirconia TBCs lies in the range of about 1,200 to 1,300 C. In contrast, the present multicomponent, rare-earth-doped, perovskite-type TBCs can withstand higher temperatures.

  9. Thermopower studies of rare earth doped lanthanum barium manganites

    NASA Astrophysics Data System (ADS)

    Reddy, G. Lalitha; Lakshmi, Y. Kalyana; kumar, N. Pavan; Rao, S. Manjunath; Reddy, P. Venugopal

    2014-08-01

    Influence of rare earth doping on electrical, magnetic and thermopower studies of La0.34Re0.33Ba0.33MnO3 compound was investigated. Ferro to paramagnetic transition and metal to insulator transition temperatures decrease with decreasing ionic radius of the dopant ion. Electrical resistivity in the entire temperature range is explained by phase separation model. The magnitude of Seebeck coefficient increases with increasing dopant ionic radius. A cross over from negative to positive sign has also been observed in thermopower data with decreasing A site ionic radius (). The low temperature thermopower data has been explained using a qualitative model containing diffusion; magnon drag and phonon drag effects while the paramagnetic insulating part has been analyzed using small polaron hopping mechanism.

  10. Rare Earth Doped High Temperature Ceramic Selective Emitters

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Pal, AnnaMarie; Patton, Martin O.; Jenkins, Phillip P.

    1999-01-01

    As a result of their electron structure, rare earth ions in crystals at high temperature emit radiation in several narrow bands rather than in a continuous blackbody manner. This study develops a spectral emittance model for films of rare earth containing materials. Although there are several possible rare earth doped high temperature materials, this study was confined to rare earth aluminum garnets. Good agreement between experimental and theoretical spectral emittances was found for erbium, thulium and erbium-holmium aluminum garnets. Spectral emittances of these films are sensitive to temperature differences across the film. Emitter efficiency is also a sensitive function of temperature. For thulium aluminum garnet the efficiency is 0.38 at 1700 K but only 0.19 at 1262 K.

  11. 40 CFR 721.10423 - Complex strontium aluminate, rare earth doped (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... earth doped (generic). 721.10423 Section 721.10423 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10423 Complex strontium aluminate, rare earth doped... substances identified generically as complex strontium aluminate, rare earth doped (PMNs P-12-22, P-12-23,...

  12. Impurity-sensitized luminescence of rare earth-doped materials

    SciTech Connect

    Smentek, Lidia . E-mail: smentek1@aol.com

    2005-02-15

    The accuracy of the theoretical model of impurity-sensitized luminescence in rare earth-doped materials presented here is adjusted to the demands of precise modern experimental techniques. The description is formulated within the double perturbation theory, and it is based on the assumption that electrostatic interactions between the subsystems that take part in the luminescence process are the most important ones. The amplitude of the energy transfer is determined by the contributions that represent the perturbing influence of the crystal-field potential and also electron correlation effects taken into account within the rare earth ions. In this way, the model is defined beyond the standard free ionic system and single configuration approximations. The new contributions to the energy transfer amplitude are expressed in the terms of effective tensor operators, and they contain the perturbing influence of various excited configurations. In order to maintain the high accuracy of the model, the radial integrals of all effective operators are defined within the so-called perturbed function approach. This means that they are evaluated for the complete radial basis sets of one electron functions of given symmetry, including the continuum.

  13. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films.

    PubMed

    Figueroa, A I; van der Laan, G; Harrison, S E; Cibin, G; Hesjedal, T

    2016-01-01

    The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi(3+) in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state. PMID:26956771

  14. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films

    PubMed Central

    Figueroa, A. I.; van der Laan, G.; Harrison, S. E.; Cibin, G.; Hesjedal, T.

    2016-01-01

    The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi3+ in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state. PMID:26956771

  15. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films

    NASA Astrophysics Data System (ADS)

    Figueroa, A. I.; van der Laan, G.; Harrison, S. E.; Cibin, G.; Hesjedal, T.

    2016-03-01

    The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi3+ in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state.

  16. Review on dielectric properties of rare earth doped barium titanate

    NASA Astrophysics Data System (ADS)

    Ismail, Fatin Adila; Osman, Rozana Aina Maulat; Idris, Mohd Sobri

    2016-07-01

    Rare earth doped Barium Titanate (BaTiO3) were studied due to high permittivity, excellent electrical properties and have wide usage in various applications. This paper reviewed on the electrical properties of RE doped BaTiO3 (RE: Lanthanum (La), Erbium (Er), Samarium (Sm), Neodymium (Nd), Cerium (Ce)), processing method, phase transition occurred and solid solution range for complete study. Most of the RE doped BaTiO3 downshifted the Curie temperature (TC). Transition temperature also known as Curie temperature, TC where the ceramics had a transition from ferroelectric to a paraelectric phase. In this review, the dielectric constant of La-doped BaTiO3, Er-doped BaTiO3, Sm-doped BaTiO3, Nd-doped BaTiO3 and Ce-doped BaTiO3 had been proved to increase and the transition temperature or also known as TC also lowered down to room temperature as for all the RE doped BaTiO3 except for Er-doped BaTiO3.

  17. Energetics of Rare Earth Doped Uranium Oxide Solid Solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Lei

    The physical and chemical properties of UO2 nuclear fuels are affected as fission products accumulate during irradiation. The lanthanides, a main group of fission products, form extensive solid solutions with uranium oxide in the fluorite structure. Thermodynamic studies of such solid solutions had been performed to obtain partial molar free energies of oxygen as a function of dopant concentration and temperature; however, direct measurement of formation enthalpies was hampered by the refractory nature of these oxides. In this work, high temperature oxide melt solution calorimetry was utilized to study the thermochemistry of various rare earth doped uranium oxide LnxU 1-xO2-0.5x+y (Ln = La, Y, Nd) over a wide range of dopant concentrations and oxygen contents. The sintered solid solutions were carefully characterized to determine their phase purity, chemical composition, and uranium oxidation state, with most of the materials in the oxygen excess regime. The enthalpies of formation of LnxU1-xO2-0.5x+y were calculated from the calorimetric data. The oxidation enthalpies of these solid solutions are similar to that of UO2. The formation enthalpies from constituent oxides (LnO1.5, UO2, and UO3) become increasingly negative with addition of dopant cations and appear relatively independent of the uranium oxidation state (oxygen content) when the type and concentration of the dopants are the same. This is valid in the oxygen excess regime; thus an estimation of formation enthalpies of LnxU1-xO2 materials can be made. The formation enthalpies from elements of hyperstoichiometric LnxU1-xO 2-0.5x+y materials obtained from calorimetric measurements are in good agreement with those calculated from free energy data. A direct comparison between the formation enthalpies from calorimetric study and computational research using density functional theory was also performed. The experimental and computational energies of LnxU 1-xO2 (Ln = La, Y, Nd) generally agree within 10 k

  18. Dynamic colour and utilizable white fluorescence from Eu/Tb ions codoped lithium-yttrium-aluminium-silicate glasses

    NASA Astrophysics Data System (ADS)

    Shen, Lifan; Liu, Xiao; Chen, Baojie; Bun Pun, Edwin Yue; Lin, Hai

    2012-03-01

    A group of dynamic-colour white fluorescences with various colour temperatures that can be applied to circadian lighting are achieved in Eu/Tb-codoped lithium-yttrium-aluminium-silicate (LYAS) glasses, which can be attributed to the simultaneous generation of three primary colours emitting from Eu3+ (red), Eu2+ (blue) and Tb3+ (green) by varying the ultraviolet (UV) radiation wavelength. Fluorescence colour coordinates pass through the whole white region of the CIE x, y chromaticity diagram when the UV excitation wavelength is increased from 300 to 370 nm. A favourable white light with colour coordinates (0.338, 0.298) close to the equal energy white is obtained under 360 nm excitation. These results indicate that the Eu/Tb-codoped LYAS glasses are a promising candidate to develop white lighting devices under the excitation of commercial UV light-emitting diodes, and a smart lighting system based on rare-earth doped glasses will be a potential illumination source offering controllability of the colour temperature that can adjust to specific environments and requirements, and benefit human health, well-being and productivity.

  19. Origin of enhanced magnetization in rare earth doped multiferroic bismuth ferrite

    SciTech Connect

    Nayek, C.; Thirmal, Ch.; Murugavel, P.; Tamilselvan, A.; Balakumar, S.

    2014-02-21

    We report structural and magnetic properties of rare earth doped Bi{sub 0.95}R{sub 0.05} FeO{sub 3} (R = Y, Ho, and Er) submicron particles. Rare earth doping enhances the magnetization and the magnetization shows an increasing trend with decreasing dopant ionic radii. In contrast to the x-ray diffraction pattern, we have seen a strong evidence for the presence of rare earth iron garnets R{sub 3}Fe{sub 5}O{sub 12} in magnetization measured as a function of temperature, in selected area electron diffraction, and in Raman measurements. Our results emphasised the role of secondary phases in the magnetic property of rare earth doped BiFeO{sub 3} compounds along with the structural distortion favoring spin canting by increase in Dzyaloshinskii-Moriya exchange energy.

  20. Resonant photoemission of rare earth doped GaN thin films

    NASA Astrophysics Data System (ADS)

    McHale, S. R.; McClory, J. W.; Petrosky, J. C.; Wu, J.; Palai, R.; Losovyj, Ya. B.; Dowben, P. A.

    2011-10-01

    The 4d → 4f Fano resonances for various rare earth doped GaN thin films (RE = Gd, Er, Yb) were investigated using synchrotron photoemission spectroscopy. The resonant photoemission Fano profiles show that the major Gd and Er rare earth 4f weight is at about 5-6 eV below the valence band maximum, similar to the 4f weights in the valence band of many other rare earth doped semiconductors. For Yb, there is very little resonant enhancement of the valence band of Yb doped GaN, consistent with a largely 4f14 occupancy.

  1. Capillary-force-induced formation of luminescent polystyrene/(rare-earth-doped nanoparticle) hybrid hollow spheres.

    PubMed

    Chen, Min; Xie, Lin; Li, Fuyou; Zhou, Shuxue; Wu, Limin

    2010-10-01

    This paper presents a "one-pot" procedure to synthesize polystyrene/(rare-earth-doped nanoparticles) (PS/REDNPs) hybrid hollow spheres via the in situ diffusion of organic core into inorganic shell under strong capillary force. In this approach, when carboxyl-capped PS colloids were deposited by different REDNPs in aqueous medium, such as LaF3:Eu3+, LaF3:Ce3+-Tb3+, and YVO4:Dy3+, PS/REDNPs inorganic-organic hybrid hollow spheres could be directly obtained via the in situ diffusion of core PS chains into the voids between rare-earth-doped nanoparticles through the strong capillary force. Not only is the synthetic procedure versatile and very simple, but also the obtained hybrid hollow spheres are hydrophilic and luminescent and could be directly used in chemical and biological fields. PMID:20828167

  2. Anomalous Magneto-Optical Behavior of Rare Earth Doped Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Helbers, Andrew; Mitchell, Brandon; Woodward, Nathaniel; Dierolf, Volkmar

    We have observed unusual magneto-optical properties in rare earth doped gallium nitride. Specifically, the reversal of a magnetic field applied parallel to the c-axis produces unexpected, marked differences in luminescence spectra in several of our samples. Notably, relative emission strengths of Zeeman-split lines from the rare earth ions appear to change when the field is reversed. These effects were not observed in rare earth doped lithium niobate and lithium tantalate, which are also hexagonal and polar. Measurements for erbium doped gallium nitride suggest that these asymmetries seem to be linked to the degree of ferromagnetism of the samples. Results are presented showing these differences. The symmetry of the observed effects requires a perturbation of the RE states with a screw like symmetry. We explore whether this may be accomplished by defects such as threading dislocations. The work related to ferroelectric materials was supported by NSF Grant (DMR-1008075).

  3. Schottky barrier formation at the Au to rare earth doped GaN thin film interface

    NASA Astrophysics Data System (ADS)

    McHale, S. R.; McClory, J. W.; Petrosky, J. C.; Wu, J.; Rivera, A.; Palai, R.; Losovyj, Ya. B.; Dowben, P. A.

    2011-09-01

    The Schottky barriers formed at the interface between gold and various rare earth doped GaN thin films (RE = Yb, Er, Gd) were investigated in situ using synchrotron photoemission spectroscopy. The resultant Schottky barrier heights were measured as 1.68 ± 0.1 eV (Yb:GaN), 1.64 ± 0.1 eV (Er:GaN), and 1.33 ± 0.1 eV (Gd:GaN). We find compelling evidence that thin layers of gold do not wet and uniformly cover the GaN surface, even with rare earth doping of the GaN. Furthermore, the trend of the Schottky barrier heights follows the trend of the rare earth metal work function.

  4. Luminescence studies of rare-earth doped and Co-doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Vasugi, G.; Thamizhavel, A.; Girija, E. K.

    2012-06-01

    Rare-earth doped and co-doped hydroxyapatite (Eu: HA, Eu-Y: HA) were prepared by wet precipitation method by using CTAB as the organic modifier. The synthesized samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and Photoluminescence spectra (PL). Upon excitation at 350 nm the samples Eu: HA and Eu-Y: HA shows the emission band in the visible region, which makes it suitable for potential application such as bio-imaging.

  5. Ferromagnetism and Photoluminescence in Rare-Earth doped GaN via Diffusion

    NASA Astrophysics Data System (ADS)

    Luen, M. Oliver; Nepal, N.; Bedair, S. M.; Zavada, J. M.; Brown, Ei Ei; Hommerich, U.; Frajtag, P.; El-Masry, N. A.

    2009-03-01

    Rare-earth doped GaN is attracting attention both as a diluted magnetic semiconductor (DMS) material and for optical devices useful in communications and multi-color semiconductor display technology. GaN's large band gap (3.4 eV) gives rise to optical transparency over a wide spectral range, from the infrared (IR) to the ultraviolet. These properties make it an optimum host for the various emissions that are possible from rare-earth (RE) ions. Recently, rare-earth doped GaN also has demonstrated above room temperature ferromagnetism. In this study, we report the diffusion of RE (Nd, Sm, Gd and Er) into undoped, Mg-doped and Si-doped GaN templates. Room temperature optical and ferromagnetic properties were studied using photoluminescence (PL) and alternating gradient magnetometer, respectively. Ferromagnetic properties show a preference for undoped and n-type GaN. PL spectra exhibit RE ion inner shell transitions in the visible and infrared regions. The mechanisms for above room temperature ferromagnetism and emission intensity related to the RE concentration, is discussed.

  6. The effects of rare earth doping on gallium nitride thin films

    NASA Astrophysics Data System (ADS)

    McHale, Stephen R.

    The thermal neutron capture cross section of the rare earth (RE) metal isotope Gd-157 is the largest of all known natural elements, which distinguishes the material as a logical candidate for neutron detection. To address an incomplete understanding of rare earth doped Gallium Nitride (GaN) materials, investigations of the surface electronic structure and interface properties of GaN thin films doped with rare earths (Yb, Er, Gd) were undertaken. Lattice ion occupation, bonding, rare earth 4f occupation, and gold Schottky barrier formation were examined using synchrotron photoemission spectroscopy. Measured Debye temperatures indicate substitutional occupation of Ga sites by RE ions. The occupied RE 4f levels, deep within the valence band, suggest that intra-atomic f-f transitions may be more 'blue' than predicted by theoretical models. Thin layers of gold did not wet and uniformly cover the GaN surface, even with rare earth doping of the GaN. The resultant Schottky barrier heights for GaN:Yb, GaN:Er, and GaN:Gd, are 25--55% larger than those reported at the gold to undoped GaN interface. The utility of gadolinium as a neutron detection material was examined via fundamental nuclear and semiconductor physics. Low charge production and the large range of internal conversion electrons limits charge collection efficiency.

  7. Luminescence of Rare-Earth-Doped Nanoparticles with Aromatic Linker Molecules

    NASA Astrophysics Data System (ADS)

    Senty, Tess; Yalamanchi, Mohita; Zhang, Yanwei; Leach, Anya; Seehra, Mohindar; Shi, Xiaodong; Bristow, Alan

    2012-02-01

    Rare-earth-doped vanadate glasses retain their luminescence when formed as shells around magnetic cores [1]. This property has prompted speculation that composite magneto-photoluminescent (CMPL) structures can be used in biological applications. For example, CMPL nanoparticles can be magnetically tuned to separate cells, proteins and nucleic acids [2]. A crucial step in realizing this goal is to attach organic linkers (between the rare-earth-doped shell and bio-probes), which do not affect the luminescence. We demonstrate with IR spectroscopy that Eu:YVO4 nanoparticles treated with benzoic acid, 3-nitro 4-chloro-benzoic acid and 3,4-dimethoxy benzoic acid all result in the modification of the surface states, replacing the native metal-hydroxyl bond with a longer chain aromatic linker, which can be later functionalized. Photoluminescence spectra under UV-excitation show that the dominant ^5D0 -> ^7F2 transition at ˜620 nm is unaffected by the chemical treatment. The result provides a platform to facilitate the attachment of bio-probes to Eu:YVO4 nanoparticles and related CMPL nanostructures with Fe2O4 cores. [1] N. B. McDowell et al, J. Appl. Phys. 107, 09B327 (2010). [2] T. R. Sathe et al, Anal. Chem. 78, 5627 (2006).

  8. Infrared spectroscopy of rare-earth-doped CaFe2As2

    NASA Astrophysics Data System (ADS)

    Xing, Zhen; Huffman, T. J.; Xu, Peng; Qazilbash, M. M.; Saha, S. R.; Drye, Tyler; Paglione, J.

    2014-03-01

    Recently, rare-earth doping in CaFe2As2 has been used to tune its electronic, magnetic, and structural properties. The substitution of rare-earth ions at the alkaline-earth sites leads to the suppression of the spin-density wave (SDW) phase transition in CaFe2As2. For example, Pr substitution results in a paramagnetic metal in the tetragonal phase that is susceptible to a low temperature structural transition to a collapsed tetragonal phase. However, La-doped CaFe2As2 remains in the uncollapsed tetragonal structure down to the lowest measured temperatures. Both the uncollapsed and collapsed tetragonal structures exhibit superconductivity with maximum Tc reaching 47 K, the highest observed in inter-metallics albeit with a small superconducting volume fraction. In this work, we perform ab-plane infrared spectroscopy of rare-earth-doped CaFe2As2 at different cryogenic temperatures. Our aim is to ascertain the contributions of electron doping and chemical pressure to the charge and lattice dynamics of this iron-arsenide system.

  9. PAL spectroscopy of rare-earth doped Ga-Ge-Te/Se glasses

    NASA Astrophysics Data System (ADS)

    Shpotyuk, Ya.; Ingram, A.; Shpotyuk, O.

    2016-04-01

    Positron annihilation lifetime (PAL) spectroscopy was applied for the first time to study free-volume void evolution in chalcogenide glasses of Ga-Ge-Te/Se cut-section exemplified by glassy Ga10Ge15Te75 and Ga10Ge15Te72Se3 doped with 500 ppm of Tb3+ or Pr3+. The collected PAL spectra reconstructed within two-state trapping model reveal decaying tendency in positron trapping efficiency in these glasses under rare-earth doping. This effect results in unchanged or slightly increased defect-related lifetimes τ2 at the cost of more strong decrease in I2 intensities, as well as reduced positron trapping rate in defects and fraction of trapped positrons. Observed changes are ascribed to rare-earth activated elimination of intrinsic free volumes associated mainly with negatively-charged states of chalcogen atoms especially those neighboring with Ga-based polyhedrons.

  10. Multilayer Thermal Barrier Coating (TBC) Architectures Utilizing Rare Earth Doped YSZ and Rare Earth Pyrochlores

    NASA Technical Reports Server (NTRS)

    Schmitt, Michael P.; Rai, Amarendra K.; Bhattacharya, Rabi; Zhu, Dongming; Wolfe, Douglas E.

    2014-01-01

    To allow for increased gas turbine efficiencies, new insulating thermal barrier coatings (TBCs) must be developed to protect the underlying metallic components from higher operating temperatures. This work focused on using rare earth doped (Yb and Gd) yttria stabilized zirconia (t' Low-k) and Gd2Zr2O7 pyrochlores (GZO) combined with novel nanolayered and thick layered microstructures to enable operation beyond the 1200 C stability limit of current 7 wt% yttria stabilized zirconia (7YSZ) coatings. It was observed that the layered system can reduce the thermal conductivity by approximately 45 percent with respect to YSZ after 20 hr of testing at 1316 C. The erosion rate of GZO is shown to be an order to magnitude higher than YSZ and t' Low-k, but this can be reduced by almost 57 percent when utilizing a nanolayered structure. Lastly, the thermal instability of the layered system is investigated and thought is given to optimization of layer thickness.

  11. Defect association mediated ionic conductivity of rare earth doped nanoceria: Dependency on ionic radius

    NASA Astrophysics Data System (ADS)

    Anirban, Sk.; Sinha, A.; Bandyopadhyay, S.; Dutta, A.

    2016-05-01

    Rare earth doped nanoceria Ce0.9RE0.1O1.95 (RE = Pr, Nd, Eu and Gd) were prepared through citrate auto-ignition method. The single phase cubic fluorite structure with space group Fm3 ¯m of the compositions were confirmed from Rietveld analysis of XRD data. The particle size of the compositions were in the range 49.77 nm to 66.20 nm. An ionic radius dependent lattice parameter variation was found. The DC conductivity of each composition was evaluated using Random Barrier Model. The conductivity decreased and activation energy increased with increasing ionic radius from Gd to Pr doping due to the size mismatch with host ions and formation of stable defect associate. The formation of different defect associates and their correlation with ionic conductivity has been discussed.

  12. Rare Earth Doped Semiconductors and Materials Research Society Symposium Proceedings, Volume 301

    NASA Astrophysics Data System (ADS)

    Ballance, John

    1994-02-01

    The properties of rare earth ions in solids were studied in detail for decades, but until recently this work was restricted to dominantly ionic hosts such as fluorides and oxides, and to a lesser extent to more covalently bonded hosts, such as tetrahedral 2-6 semiconductors. The idea of rare earth elements incorporated into covalent semiconductors such as GaAs and Si may be traced to a short communication in 1963 by R.L. Bell (J. Appl. Phys. 34, 1563 (1963)) proposing a dc-pumped rare earth laser. At about the same time, three unpublished technical reports appeared as a result of U.S. Department of Defense sponsored research in rare earth doped Si, GaAs, and InP to fabricate LED's. Attempts by other researchers to identify sharp 4f specific emissions in these hosts essentially failed.

  13. Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles.

    PubMed

    Tikhomirov, V K; Mortier, M; Gredin, P; Patriarche, G; Görller-Walrand, C; Moshchalkov, V V

    2008-09-15

    Free-standing, 8 nm diameter, rare-earth doped nanoparticles Re(10)Pb(25)F(65) have been prepared, where Re stands for either single rare-earth ion, such as Er(3+), Yb(3+), Eu(3+), Dy(3+), Ho(3+), Tm(3+) or combinations of those ions. The nanoparticles have been extracted by chemical etching from the oxyfluoride nano-glass-ceramics template and analyzed by transmission electron microscope with energy dispersion spectroscopy. The nanoparticles show durable up-conversion photoluminescence, which is neither concentration nor impurity quenched after 6 months ageing in ambient atmosphere. High doping levels in these nanoparticles ensure high, up to 15%, quantum yield of up-conversion luminescence. PMID:18794989

  14. Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation

    NASA Astrophysics Data System (ADS)

    Song, Liang; Zhao, Xueyuan; Cao, Lixin; Moon, Ji-Won; Gu, Baohua; Wang, Wei

    2015-10-01

    A two-step process is developed to synthesize rare earth doped titania nanorods (RE-TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE-TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu-TiO2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10-3 s-1. The La3+, Sm3+, Eu3+ and Er3+ doped TiO2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO2. We further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products.A two-step process is developed to synthesize rare earth doped titania nanorods (RE-TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE-TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu-TiO2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10-3 s-1

  15. Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy.

    PubMed

    Furukawa, Taichi; Fukushima, Shoichiro; Niioka, Hirohiko; Yamamoto, Naoki; Miyake, Jun; Araki, Tsutomu; Hashimoto, Mamoru

    2015-05-01

    We describe rare-earth-doped nanophosphors (RE-NPs) for biological imaging using cathodoluminescence(CL) microscopy based on scanning transmission electron microscopy (STEM). We report the first demonstration of multicolor CL nanobioimaging using STEM with nanophosphors. The CL spectra of the synthesized nanophosphors (Y2O3∶Eu, Y2O3∶Tb) were sufficiently narrow to be distinguished. From CL images of RE-NPs on an elastic carbon-coated copper grid, the spatial resolution was beyond the diffraction limit of light.Y2O3∶Tb and Y2O3∶Eu RE-NPs showed a remarkable resistance against electron beam exposure even at high acceleration voltage (80 kV) and retained a CL intensity of more than 97% compared with the initial intensity for 1 min. In biological CL imaging with STEM, heavy-metal-stained cell sections containing the RE-NPs were prepared,and both the CL images of RE-NPs and cellular structures, such as mitochondria, were clearly observed from STEM images with high contrast. The cellular CL imaging using RE-NPs also had high spatial resolution even though heavy-metal-stained cells are normally regarded as highly scattering media. Moreover, since theRE-NPs exhibit photoluminescence (PL) excited by UV light, they are useful for multimodal correlative imaging using CL and PL. PMID:26000793

  16. Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation

    DOE PAGESBeta

    Song, Liang; Zhao, Xueyuan; Cao, Lixin; Moon, Ji-Won; Gu, Baohua; Wang, Wei

    2015-09-10

    In this paper, a two-step process is developed to synthesize rare earth doped titania nanorods (RE–TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE–TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu–TiO2more » NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10-3 s-1. The La3+, Sm3+, Eu3+ and Er3+ doped TiO2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO2. Finally, we further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products.« less

  17. Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation.

    PubMed

    Song, Liang; Zhao, Xueyuan; Cao, Lixin; Moon, Ji-Won; Gu, Baohua; Wang, Wei

    2015-10-28

    A two-step process is developed to synthesize rare earth doped titania nanorods (RE-TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE-TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu-TiO2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10(-3) s(-1). The La(3+), Sm(3+), Eu(3+) and Er(3+) doped TiO2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO2. We further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products. PMID:26400095

  18. Rare-earth doped colour tuneable up-conversion ZBLAN phosphor for enhancing photocatalysis

    NASA Astrophysics Data System (ADS)

    Méndez-Ramos, J.; Acosta-Mora, P.; Ruiz-Morales, J. C.; Sierra, M.; Redondas, A.; Ruggiero, E.; Salassa, L.; Borges, M. E.; Esparza, P.

    2015-03-01

    Rare-earth doped ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) fluoride glasses have been successfully synthesized showing outstanding UV-VIS up-conversion luminescence of Er3+ and Tm3+, sensitized by Yb3+ ions, under near-infrared excitation at 980 nm. The ratio between blue, green and red up-conversion emission bands can be adjusted by varying the pump power density of the incident infrared radiation, resulting in a controlled tuneability of the overall emitting colour from greenish to yellowish. Additionally, the observed high energy UV intense up-conversion emissions are suitable to enhance photocatalytic activity of main water-splitting semiconductor electrodes (such as TiO2) used in sustainable production of hydrogen. Photocatalysis and photolysis degradation of methylene blue in water under sun-like irradiation using benchmark photocatalyst (TiO2 Degussa P25) have been boosted by 20% and by a factor of 2.5 respectively, due to the enhancement of UV radiation that reaches the TiO2 particles by the addition of ZBLAN powder into a slurry-type photo-reactor. Hence, up-conversion ZBLAN phosphors contribute to demonstrate the possibility of transforming the incoming infrared radiation into the UV region needed to bridge the gap of photocatalytic semiconductors.

  19. Rare-earth-doped nanophosphors for multicolor cathodoluminescence nanobioimaging using scanning transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Furukawa, Taichi; Fukushima, Shoichiro; Niioka, Hirohiko; Yamamoto, Naoki; Miyake, Jun; Araki, Tsutomu; Hashimoto, Mamoru

    2015-05-01

    We describe rare-earth-doped nanophosphors (RE-NPs) for biological imaging using cathodoluminescence (CL) microscopy based on scanning transmission electron microscopy (STEM). We report the first demonstration of multicolor CL nanobioimaging using STEM with nanophosphors. The CL spectra of the synthesized nanophosphors (Y2O3:Eu, Y2O3:Tb) were sufficiently narrow to be distinguished. From CL images of RE-NPs on an elastic carbon-coated copper grid, the spatial resolution was beyond the diffraction limit of light. Y2O3:Tb and Y2O3:Eu RE-NPs showed a remarkable resistance against electron beam exposure even at high acceleration voltage (80 kV) and retained a CL intensity of more than 97% compared with the initial intensity for 1 min. In biological CL imaging with STEM, heavy-metal-stained cell sections containing the RE-NPs were prepared, and both the CL images of RE-NPs and cellular structures, such as mitochondria, were clearly observed from STEM images with high contrast. The cellular CL imaging using RE-NPs also had high spatial resolution even though heavy-metal-stained cells are normally regarded as highly scattering media. Moreover, since the RE-NPs exhibit photoluminescence (PL) excited by UV light, they are useful for multimodal correlative imaging using CL and PL.

  20. Thermochemistry of rare earth doped uranium oxides LnxU1-xO2-0.5x+y (Ln = La, Y, Nd)

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Navrotsky, Alexandra

    2015-10-01

    Lanthanum, yttrium, and neodymium doped uranium dioxide samples in the fluorite structure have been synthesized, characterized in terms of metal ratio and oxygen content, and their enthalpies of formation measured by high temperature oxide melt solution calorimetry. For oxides doped with 10-50 mol % rare earth (Ln) cations, the formation enthalpies from constituent oxides (LnO1.5, UO2 and UO3 in a reaction not involving oxidation or reduction) become increasingly exothermic with increasing rare earth content, while showing no significant dependence on the varying uranium oxidation state. The oxidation enthalpy of LnxU1-xO2-0.5x+y is similar to that of UO2 to UO3 for all three rare earth doped systems. Though this may suggest that the oxidized uranium in these systems is energetically similar to that in the hexavalent state, thermochemical data alone can not constrain whether the uranium is present as U5+, U6+, or a mixture of oxidation states. The formation enthalpies from elements calculated from the calorimetric data are generally consistent with those from free energy measurements.

  1. Progress in rare-earth-doped nanocrystalline glass-ceramics for laser cooling

    NASA Astrophysics Data System (ADS)

    Venkata Krishnaiah, Kummara; Ledemi, Yannick; Soares de Lima Filho, Elton; Loranger, Sebastien; Nemova, Galina; Messaddeq, Younes; Kashyap, Raman

    2016-03-01

    Laser cooling with anti-Stokes fluorescencewas predicted by Pringsheim in 1929, but for solids was only demonstrated in 1995. There are many difficulties which have hindered laser assisted cooling, principally the chemical purity of a sample and the availability of suitable hosts. Recent progress has seen the cooled temperature plummet to 93K in Yb:YLF. One of the challenges for laser cooling to become ubiquitous, is incorporating the rare-earthcooling ion in a more easily engineered material, rather than a pure crystalline host. Rare-earth-doped nanocrystalline glass-ceramics were first developed by Wang and Ohwaki for enhanced luminescence and mechanical properties compared to their parent glasses. Our work has focused on creating a nanocrystalline environment for the cooling ion, in an easy to engineer glass. The glasses with composition 30SiO2-15Al2O3-27CdF2-22PbF2-4YF3-2YbF3 (mol%), have been prepared by the conventional melt-quenching technique. By a simple post fabrication thermal treatment, the rare-earth ions are embedded in the crystalline phase within the glass matrix. Nanocrystals with various sizes and rare-earth concentrations have been fabricated and their photoluminescence properties assessed in detail. These materials show close to unity photoluminescence quantum yield (PLQY) when pumped above the band. However, they exhibit strong up-conversion into the blue, characteristic of Tm trace impurity whose presence was confirmed. The purification of the starting materials is underway to reduce the background loss to demonstrate laser cooling. Progress in the development of these nano-glass-ceramics and their experimental characterization will be discussed.

  2. Health Sensing Functions in Thermal Barrier Coatings Incorporating Rare-Earth-Doped Luminescent Sublayers

    NASA Technical Reports Server (NTRS)

    Eldridge, J. I.; Singh, J.; Wolfe, D. E.

    2004-01-01

    Great effort has been directed towards developing techniques to monitor the health of thermal barrier coatings (TBCs) that would detect the approach of safety-threatening conditions. An unconventional approach is presented here where health sensing functionality is integrated into the TBC itself by the incorporation of rare-earth-doped luminescent sublayers to monitor erosion as well as whether the TBC is maintaining the underlying substrate at a sufficiently low temperature. Erosion indication is demonstrated in electron-beam physical vapor deposited (EB-PVD) TBCs consisting of 7wt% yttria-stabilized zirconia (7YSZ) with europium-doped and terbium-doped sublayers. Multiple ingot deposition produced sharp boundaries between the doped sublayers without interrupting the columnar growth of the TBC. The TBC-coated specimens were subjected to alumina particle jet erosion, and the erosion depth was then indicated under ultraviolet illumination that excited easily visible luminescence characteristic of sublayer that was exposed by erosion. In addition, temperature measurements from a bottom-lying europium-doped sublayer in a TBC produced by multiple ingot EB-PVD were accomplished by measuring the temperature-dependent decay time from the 606 nm wavelength emission excited in that sublayer with a 532 nm wavelength laser that was selected for its close match to one of the europium excitation wavelengths as well as being at a wavelength where the TBC is relatively transparent. It is proposed the low dopant levels and absence of interruption of the TBC columnar growth allow the addition of the erosion and temperature sensing functions with minimal effects on TBC performance.

  3. Polarization dependence of two-photon transition intensities in rare-earth doped crystals

    SciTech Connect

    Le Nguyen, An-Dien

    1996-05-01

    A polarization dependence technique has been developed as a tool to investigate phonon scattering (PS), electronic Raman scattering (ERS), and two-photon absorption (TPA) transition intensities in vanadate and phosphate crystals. A general theory for the polarization dependence (PD) of two-photon transition intensities has been given. Expressions for the polarization dependent behavior of two-photon transition intensities have been tabulated for the 32 crystallographic point groups. When the wavefunctions for the initial and final states of a rare-earth doped in crystals are known, explicit PD expressions with no unknown parameters can be obtained. A spectroscopic method for measuring and interpreting phonon and ERS intensities has been developed to study PrVO{sub 4}, NdVO{sub 4}, ErVO{sub 4}, and TmVO{sub 4} crystals. Relative phonon intensities with the polarization of the incident and scattered light arbitrarily varied were accurately predicted and subsequently used for alignment and calibration in ERS measurements in these systems for the first time. Since ERS and PS intensities generally follow different polarization curves as a function of polar angles, the two can be uniquely identified by comparing their respective polarization behavior. The most crucial application of the technique in ERS spectroscopy is the establishment of a stringent test for the Axe theory. For the first time, the F{sub 1}/F{sub 2} ratio extracted from the experimental fits of the ERS intensities were compared with those predicted by theories which include both the second- and third-order contributions. Relatively good agreement between the fitted values of F{sub 1}/F{sub 2} and the predicted values using the second-order theory has been found.

  4. Visualization of melanoma tumor with lectin-conjugated rare-earth doped fluoride nanocrystals

    PubMed Central

    Dumych, Tetiana; Lutsyk, Maxym; Banski, Mateusz; Yashchenko, Antonina; Sojka, Bartlomiej; Horbay, Rostyslav; Lutsyk, Alexander; Stoika, Rostyslav; Misiewicz, Jan; Podhorodecki, Artur; Bilyy, Rostyslav

    2014-01-01

    Aim To develop specific fluorescent markers for melanoma tumor visualization, which would provide high selectivity and reversible binding pattern, by the use of carbohydrate-recognizing proteins, lectins, combined with the physical ability for imaging deep in the living tissues by utilizing red and near infrared fluorescent properties of specific rare-earth doped nanocrystals (NC). Methods B10F16 melanoma cells were inoculated to C57BL/6 mice for inducing experimental melanoma tumor. Tumors were removed and analyzed by lectin-histochemistry using LABA, PFA, PNA, HPA, SNA, GNA, and NPL lectins and stained with hematoxylin and eosin. NPL lectin was conjugated to fluorescent NaGdF4:Eu3+-COOH nanoparticles (5 nm) via zero length cross-linking reaction, and the conjugates were purified from unbound substances and then used for further visualization of histological samples. Fluorescent microscopy was used to visualize NPL-NaGdF4:Eu3+ with the fluorescent emission at 600-720 nm range. Results NPL lectin selectively recognized regions of undifferentiated melanoblasts surrounding neoangiogenic foci inside melanoma tumor, PNA lectin recognized differentiated melanoblasts, and LCA and WGA were bound to tumor stroma regions. NPL-NaGdF4:Eu3+ conjugated NC were efficiently detecting newly formed regions of melanoma tumor, confirmed by fluorescent microscopy in visible and near infrared mode. These conjugates possessed high photostability and were compatible with convenient xylene-based mounting systems and preserved intensive fluorescent signal at samples storage for at least 6 months. Conclusion NPL lectin-NaGdF4:Eu3+ conjugated NC permitted distinct identification of contours of the melanoma tissue on histological sections using red excitation at 590-610 nm and near infrared emission of 700-720 nm. These data are of potential practical significance for development of glycans-conjugated nanoparticles to be used for in vivo visualization of melanoma tumor. PMID:24891277

  5. Catholuminescence properties of rare earth doped CaSnO3 phosphor.

    PubMed

    Canimoglu, A; Garcia-Guinea, J; Karabulut, Y; Ayvacikli, M; Jorge, A; Can, N

    2015-05-01

    The present study describes cathodoluminescence (CL) properties of CaSnO3 phosphors doped with Eu(3+), Tb(3+) and Dy(3+) synthesized by a solid-state method. X-ray diffraction (XRD) patterns confirm that CaSnO3 sintered at 1200°C exhibits orthorhombic structure. The evidence and rationale for two strong broad emission bands appeared at 360 and 780nm for undoped CaSnO3 are presented. The CL measurements exhibit that the 4f-4f emissions from (5)D4→(7)F6 (490nm), (5)D4 →(7)F5 (544nm), (5)D4 →(7)F4 (586nm) and (5)D4 →(7)F3 (622nm), assigned to possible transitions of Tb(3+) ions are seen. The strongest one, observed at 544nm, due to its probability of both magnetic and electric transitions make the sample emission green. Emissions at 480, 574, 662 and 755nm were detected for the CaSnO3:Dy(3+) and attributed to the transitions from the (4)F9/2 to various energy levels (6)H15/2, (6)H13/2, (6)H11/2 and (6)H9/2+(6)F11/2 of Dy(3+), respectively. CL spectra of Eu doped CaSnO3 reveal that there is a strong emission peak appeared at 615nm due to the electric dipole transition (5)D0→(7)F2 (red). Finally, our results show that the rare earth doped CaSnO3 have remarkable potential for applications as optical materials since it exhibits efficient and sharp emission due to rare earth ions. PMID:25766113

  6. Chalcogenide glasses for infrared applications: New synthesis routes and rare earth doping

    NASA Astrophysics Data System (ADS)

    Hubert, Mathieu

    shift the optical band gap toward higher wavelengths. A systematic ceramization study emphasizes the difficulty of controlling the crystallization for glasses in the systems GeSe2-Ga2Se3-In2Se 3 and GeSe2-Ga2Se3-PbSe. No crystallization of the In2Se3 and PbSe crystalline phase was obtained. Finally, the possibility of producing rare-earth doped 80GeSe2 -20Ga2Se3 glass-ceramics transparent in the infrared region up to 16 microm is demonstrated. Enhanced photoluminescence intensity and reduced radiative lifetimes are observed with increased crystallinity in these materials.

  7. New Mid-IR Lasers Based on Rare-Earth-Doped Sulfide and Chloride Materials

    SciTech Connect

    Nostrand, M

    2000-09-01

    Applications in remote-sensing and military countermeasures have driven a need for compact, solid-state mid-IR lasers. Due to multi-phonon quenching, non-traditional hosts are needed to extend current solid-state, room-temperature lasing capabilities beyond {approx} 4 {micro}m. Traditional oxide and fluoride hosts have effective phonon energies in the neighborhood of 1000 cm{sup -1} and 500 cm{sup -1}, respectively. These phonons can effectively quench radiation above 2 and 4 {micro}m, respectively. Materials with lower effective phonon energies such as sulfides and chlorides are the logical candidates for mid-IR (4-10 {micro}m) operation. In this report, laser action is demonstrated in two such hosts, CaGa{sub 2}S{sub 4} and KPb{sub 2}Cl{sub 5}. The CaGa{sub 2}S{sub 4}:Dy{sup 3+} laser operating at 4.3 {micro}m represents the first sulfide laser operating beyond 2 {micro}m. The KPb{sub 2}Cl{sub 5}:Dy{sup 3+} laser operating at 2.4 {micro}m represents the first operation of a chloride-host laser in ambient conditions. Laser action is also reported for CaGa{sub 2}S{sub 4}:Dy{sup 3+} at 2.4 {micro}m, CaGa{sub 2}S{sub 4}:Dy{sup 3+} at 1.4 {micro}m, and KPb{sub 2}Cl{sub 5}:Nd{sup 3+} at 1.06 {micro}m. Both host materials have been fully characterized, including lifetimes, absorption and emission cross sections, radiative branching ratios, and radiative quantum efficiencies. Radiative branching ratios and radiative quantum efficiencies have been determined both by the Judd-Ofelt method (which is based on absorption measurements), and by a novel method described herein which is based on emission measurements. Modeling has been performed to predict laser performance, and a new method to determine emission cross section from slope efficiency and threshold data is developed. With the introduction and laser demonstration of rare-earth-doped CaGa{sub 2}S{sub 4} and KPb{sub 2}Cl{sub 5}, direct generation of mid-IR laser radiation in a solid-state host has been demonstrated. In

  8. Rare-earth doped fibre optic devices and asymmetric fibre couplers

    NASA Astrophysics Data System (ADS)

    Sanaei, Farin

    The objective of the work reported in this thesis was to improve the quality and range of rare-earth doped fibre optic devices and asymmetric fibre couplers which can be fabricated for all-optical systems. This objective has been realised by improvements to the existing fibre fabrication processes and fused tapered coupler machine and by the generation of new fabrication techniques. An improved Flash-Condensation technique for the deposition of multi-layer highly-doped cladding fibre has been developed and tested. As a result a highly Yb-doped cladding fibre has been fabricated and characterised. It has been shown that up to 7wt% phosphorous pentoxide together with up to 1.4wt% lanthanide oxide can be doped into a multi-layer cladding fibre successfully. As far as it is known, no previous work on doping a thick cladding with Yb 3+ ions has been reported. We have shown experimentally that a 94% efficient superfluorescent fibre source in the 950-1150nm range using a highly doped cladding fibre can be designed and fabricated. This is the highest superfluorescent efficiency ever reported in the literature. By taking advantage of the superfluorescence of a large Yb-cladding doped fibre, we have demonstrated a singlemode fibre laser with a linewidth of 0.3nm and a slope efficiency of 79%. This means that by using a high pump power we can achieve many watts of laser power in the fibre very easily. Again, this is the highest slope efficiency ever reported. For the purpose of making application specific couplers, we have designed and improved the equipment control system for the fabrication of fused tapered fibre devices, and have developed various procedures for making better couplers. We have also successfully fabricated and analysed asymmetric fused fibre couplers, with the highest reported asymmetric coupling of 24:1. Using eight of these low loss asymmetric couplers, a prototype passive all-optical fibre data bus was constructed and analysed. Such data buses are very

  9. Crystal growth of rare-earth-doped ternary potassium lead chloride single crystals by the Bridgman method

    NASA Astrophysics Data System (ADS)

    Voda, M.; Al-Saleh, M.; Lobera, G.; Balda, R.; Fernández, J.

    2004-09-01

    High optical quality pure and rare-earth-doped ternary-potassium-lead-chloride (KPb 2Cl 5) single crystals have been grown using the Bridgman technique in a two-zone transparent vertical furnace. Combining the chlorination of the melt, to eliminate oxygen impurities, with a horizontal zone-refining, followed by the Bridgman growth itself using sealed silica ampoules, we successfully grew non-moisture-sensitive crystals of a high optical quality. The moisture content in the raw materials determines the quality of the resulting crystals.

  10. Molecular beam epitaxy (MBE) growth of rare earth doped gallium nitride for laser diode application

    NASA Astrophysics Data System (ADS)

    Park, Jeongho

    The goal of this dissertation is to demonstrate the visible laser emission from rare earth doped GaN grown on sapphire and silicon substrate. The research presented in this dissertation focused on exploration of RE's physics and laser characteristics and investigating site selective laser emission. In this study, the first visible (red) lasing emission from Eu-doped GaN thin films grown on sapphire substrates was demonstrated. The edge emission fulfills the requirements of stimulated emission properties: super-linear characteristic, spectrum line narrowing, polarization effect, lifetime reduction, and longitudinal modes in a Fabry-Perot cavity. The GaN:Eu active layer has low threshold (˜10kW/cm2) for the onset of lasing. The optical gain and loss are of the order of 50 and 20cm-1, respectively. Growth conditions are investigated for gain enhancement and loss reduction. To obtain the high gain and low loss active layer, N-rich growth conditions are required. Channel waveguide cavities result in 5x increases in gain value compared to planar waveguides. To utilize the performance and flexibility of silicon microelectronics, we used silicon (111) substrate, which incorporated several AlGaN and AIN thin films as buffer, strain compensation and bottom optical cladding layers. With this substrate, we developed the laser structure emitting visible wavelength. We have utilized Eu-doped GaN for the active medium within a structure consisting of a top cladding AlGaN layers grown by MBE on a Si substrate. Stimulated emission (SE) was obtained at room temperature from Eu3+ at 620nm, with a threshold of ˜117kW/cm 2. Values of modal gain and loss of ˜100 and 46 cm-1 were measured. This demonstration indicates that utilizing rare earths a range of lasers on Si can be obtained, covering the UV, visible and IR regions, thus enabling a significant expansion of optoelectronic and microelectronic integration. The dependence of optical modal gain and loss on GaN:Eu growth

  11. Microstructure and properties of in-flight rare-earth doped thermal barrier coatings prepared by suspension plasma spray

    NASA Astrophysics Data System (ADS)

    Gong, Stephanie

    Thermal barrier coatings with lower thermal conductivity improve the efficiency of gas turbine engines by allowing higher operating temperatures. Recent studies were shown that coatings containing a pair of rare-earth oxides with equal molar ratio have lower thermal conductivity and improved sintering resistance compared to the undoped 4-4.5 mol.% yttria-stabilized zirconia (YSZ). In the present work, rare-earth doped coatings were fabricated via suspension plasma spray by spraying YSZ powder-ethanol suspensions that contained dissolved rare-earth nitrates. The compositions of the coatings determined by inductively coupled plasma mass spectroscopy verified that 68 +/- 8% of the rare-earth nitrates added into the suspension was incorporated into the coatings. Two coatings containing different concentrations of the same dopant pair (Nd2O3/Yb2O3), and three coatings having similar concentrations of different dopant pairs (Nd 2O3/Yb2O3, Nd2O3/Gd 2O3, and Gd2O3/Yb2O 3) were produced and compared. The effect of dopant concentration and dopant pair type on the microstructure and properties of the coatings in the as-sprayed and heat treated conditions were investigated using XRD, SEM, TEM, STEM-EDX, and the laser flash method. The cross-sectional morphology of all coatings displayed columnar structure. The porosity content of the coating was found to increase with increasing dopant concentration, but did not significantly change with dopant pairs. Similarly, increasing the Nd2O3/Yb2O 3 concentration lowered the thermal conductivity of the as-sprayed coatings. Although the effect of changing dopant pair type is not as significant as increasing the dopant concentration, the coating that contained Gd2O 3/Yb2O3 exhibited the lowest conductivity compared to coatings that had other dopant pairs. Thermal conductivity measurement performed on the heat treated coatings indicated a larger conductivity increase for the rare-earth doped coatings. A detailed study on the

  12. Effect of temperature and rare-earth doping on charge-carrier mobility in indium-monoselenide crystals

    SciTech Connect

    Abdinov, A. Sh.; Babayeva, R. F.; Amirova, S. I.; Rzayev, R. M.

    2013-08-15

    In the temperature range T = 77-600 K, the dependence of the charge-carrier mobility ({mu}) on the initial dark resistivity is experimentally investigated at 77 K ({rho}d{sub 0}), as well as on the temperature and the level (N) of rare-earth doping with such elements as gadolinium (Gd), holmium (Ho), and dysprosium (Dy) in n-type indium-monoselenide (InSe) crystals. It is established that the anomalous behavior of the dependences {mu}(T), {mu}({rho}d{sub 0}), and {mu}(N) found from the viewpoint of the theory of charge-carrier mobility in crystalline semiconductors is related, first of all, to partial disorder in indium-monoselenide crystals and can be attributed to the presence of random drift barriers in the free energy bands.

  13. The unusually high Tc in rare-earth-doped single crystalline CaFe2As2

    NASA Astrophysics Data System (ADS)

    Wei, Fengyan; Lv, Bing; Deng, Liangzi; Meen, James K.; Xue, Yu-Yi; Chu, Ching-Wu

    2014-08-01

    In rare-earth-doped single crystalline CaFe2As2, the mysterious small volume fraction which superconducts up to 49 K, much higher than the bulk Tc ~ 30 s K, has prompted a long search for a hidden variable that could enhance the Tc by more than 30% in iron-based superconductors of the same structure. Here we report a chemical, structural and magnetic study of CaFe2As2 systematically doped with La, Ce, Pr and Nd. Coincident with the high Tc phase, we find extreme magnetic anisotropy, accompanied by an unexpected doping-independent Tc and equally unexpected superparamagnetic clusters associated with As vacancies. These observations lead us to conjecture that the tantalizing Tc enhancement may be associated with naturally occurring chemical interfaces and may thus provide a new paradigm in the search for superconductors with higher Tc.

  14. Nanophotonic coherent light–matter interfaces based on rare-earth-doped crystals

    PubMed Central

    Zhong, Tian; Kindem, Jonathan M.; Miyazono, Evan; Faraon, Andrei

    2015-01-01

    Quantum light–matter interfaces connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching and studies of fundamental physics. Rare-earth-ion-doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium rare-earth-ions to photonic nanocavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent 4I9/2–4F3/2 optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled rare-earth ions is performed via photon echoes. Long optical coherence times (T2∼100 μs) and small inhomogeneous broadening are measured for the cavity-coupled rare-earth ions, thus demonstrating their potential for on-chip scalable quantum light–matter interfaces. PMID:26364586

  15. Nanophotonic photon echo memory based on rare-earth-doped crystals

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Kindem, Jonathan; Miyazono, Evan; Faraon, Andrei; Caltech nano quantum optics Team

    2015-03-01

    Rare earth ions (REIs) are promising candidates for implementing solid-state quantum memories and quantum repeater devices. Their high spectral stability and long coherence times make REIs a good choice for integration in an on-chip quantum nano-photonic platform. We report the coupling of the 883 nm transition of Neodymium (Nd) to a Yttrium orthosilicate (YSO) photonic crystal nano-beam resonator, achieving Purcell enhanced spontaneous emission by 21 times and increased optical absorption. Photon echoes were observed in nano-beams of different doping concentrations, yielding optical coherence times T2 up to 80 μs that are comparable to unprocessed bulk samples. This indicates the remarkable coherence properties of Nd are preserved during nanofabrication, therefore opening the possibility of efficient on-chip optical quantum memories. The nano-resonator with mode volume of 1 . 6(λ / n) 3 was fabricated using focused ion beam, and a quality factor of 3200 was measured. Purcell enhanced absorption of 80% by an ensemble of ~ 1 × 106 ions in the resonator was measured, which fulfills the cavity impedance matching condition that is necessary to achieve quantum storage of photons with unity efficiency.

  16. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals

    NASA Astrophysics Data System (ADS)

    Zhong, Tian; Kindem, Jonathan M.; Miyazono, Evan; Faraon, Andrei

    2015-09-01

    Quantum light-matter interfaces connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching and studies of fundamental physics. Rare-earth-ion-doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium rare-earth-ions to photonic nanocavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent 4I9/2-4F3/2 optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled rare-earth ions is performed via photon echoes. Long optical coherence times (T2~100 μs) and small inhomogeneous broadening are measured for the cavity-coupled rare-earth ions, thus demonstrating their potential for on-chip scalable quantum light-matter interfaces.

  17. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals.

    PubMed

    Zhong, Tian; Kindem, Jonathan M; Miyazono, Evan; Faraon, Andrei

    2015-01-01

    Quantum light-matter interfaces connecting stationary qubits to photons will enable optical networks for quantum communications, precise global time keeping, photon switching and studies of fundamental physics. Rare-earth-ion-doped crystals are state-of-the-art materials for optical quantum memories and quantum transducers between optical photons, microwave photons and spin waves. Here we demonstrate coupling of an ensemble of neodymium rare-earth-ions to photonic nanocavities fabricated in the yttrium orthosilicate host crystal. Cavity quantum electrodynamics effects including Purcell enhancement (F=42) and dipole-induced transparency are observed on the highly coherent (4)I(9/2)-(4)F(3/2) optical transition. Fluctuations in the cavity transmission due to statistical fine structure of the atomic density are measured, indicating operation at the quantum level. Coherent optical control of cavity-coupled rare-earth ions is performed via photon echoes. Long optical coherence times (T2∼100 μs) and small inhomogeneous broadening are measured for the cavity-coupled rare-earth ions, thus demonstrating their potential for on-chip scalable quantum light-matter interfaces. PMID:26364586

  18. Composition-driven structural phase transitions in rare-earth-doped BiFeO3 ceramics: a review.

    PubMed

    Arnold, Donna C

    2015-01-01

    Bismuth ferrite suffers from high leakage currents and the presence of a complex incommensurate spin cycloidal magnetic ordering, which has limited its commercial viability and has led researchers to investigate the functionality of doped BiFeO3 ceramics. In particular, the substitution of rare earths onto the Bi(3+) site of the perovskite lattice have been shown to lead to improved functional properties, including lower leakage currents and the suppression of the magnetic spin cycloid. There is particular interest in materials with compositions close to structural morphotropic phase boundaries, because these may lead to materials with enhanced electronic and magnetic properties analogous to the highly relevant PbZrO3- PbTiO3 solid solution. However, many contradictory crystal structures and physical behaviors are reported within the literature. To understand the structure-property relationships in these materials, it is vital that we first unravel the complex structural phase diagrams. We report here a comprehensive review of structural phase transitions in rare-earth-doped bismuth ferrite ceramics across the entire lanthanide series. We attempt to rationalize the literature in terms of the perovskite tool kit and propose an updated phase diagram based on an interpretation of the literature. PMID:25585391

  19. Synthesis of rare earth doped TiO2 nanorods as photocatalysts for lignin degradation

    SciTech Connect

    Song, Liang; Zhao, Xueyuan; Cao, Lixin; Moon, Ji-Won; Gu, Baohua; Wang, Wei

    2015-09-10

    In this paper, a two-step process is developed to synthesize rare earth doped titania nanorods (RE–TiO2 NRs) as photocatalysts for efficient degradation of lignin under simulated sunlight irradiation. In this approach, protonated titanate nanotubes with layered structures were first prepared by a hydrothermal approach, and rare earth metal ions were subsequently bound to the negatively charged surface of the synthesized titanate via electrostatic incorporation. The as-synthesized RE–TiO2 NRs after calcination generally showed much higher photocatalytic efficiencies than those of undoped TiO2 NRs or the commercial P25 TiO2 photocatalyst. Using methyl orange (MO) as a probing molecule, we demonstrate that Eu–TiO2 NRs are among the best for degrading MO, with an observed rate constant of 4.2 × 10-3 s-1. The La3+, Sm3+, Eu3+ and Er3+ doped TiO2 NRs also showed higher photocatalytic efficiencies in degrading MO than the commercial P25 TiO2. Finally, we further demonstrate that lignin can be photodegraded effectively and rapidly at room temperature under simulated sunlight through two reaction routes, which could be important in controlling ways of lignin depolymerization or the formation of reaction products.

  20. Laser-induced generation of micrometer-sized luminescent patterns on rare-earth-doped amorphous films

    SciTech Connect

    Zanatta, A.R.; Ribeiro, C.T.M.

    2004-12-01

    Room-temperature photoluminescence has been achieved from rare-earth-doped amorphous (a-) GeN films. The samples were prepared by the radio-frequency-sputtering method, and light emission from the rare-earth (RE) centers was obtained after irradiating the films with a highly focused laser beam. As a result of this laser annealing procedure, almost circular holes with approximately 1-{mu}m diameter were produced on the surface of the a-GeN films. The area nearby these holes correspond to crystalline Ge and coincide with the regions, where relatively strong RE-related luminescence takes place. These laser-annealed areas can be easily and conveniently managed in order to generate different microscopic luminescent patterns. Depending on the RE ion employed, visible and near-infrared light emission were obtained from the patterns so produced. The development of these micrometer-sized luminescent centers, as well as their probable mechanisms of excitation-recombination, will be presented and discussed. The importance of the current experimental results to future technological applications such as microdevices, for example, will also be outlined.

  1. Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers.

    PubMed

    Jain, Deepak; Jung, Yongmin; Barua, Pranabesh; Alam, Shaiful; Sahu, Jayanta K

    2015-03-23

    In this paper, we report the mode area scaling of a rare-earth doped step index fiber by using low numerical aperture. Numerical simulations show the possibility of achieving an effective area of ~700 um² (including bend induced effective area reduction) at a bend diameter of 32 cm from a 35 μm core fiber with a numerical aperture of 0.038. An effective single mode operation is ensured following the criterion of the fundamental mode loss to be lower than 0.1 dB/m while ensuring the higher order modes loss to be higher than 10 dB/m at a wavelength of 1060 nm. Our optimized modified chemical vapor deposition process in conjunction with solution doping process allows fabrication of an Yb-doped step index fiber having an ultra-low numerical aperture of ~0.038. Experimental results confirm a Gaussian output beam from a 35 μm core fiber validating our simulation results. Fiber shows an excellent laser efficiency of ~81%and aM² less than 1.1. PMID:25837082

  2. High pressure effects on the superconductivity in rare-earth-doped CaFe2As2

    NASA Astrophysics Data System (ADS)

    Uhoya, Walter; Cargill, Daniel; Gofryk, Krzysztof; Tsoi, Georgiy M.; Vohra, Yogesh K.; Sefat, Athena S.; Weir, S. T.

    2014-01-01

    High pressure superconductivity in a rare-earth-doped Ca0.86Pr0.14Fe2As2 single-crystalline sample has been studied up to 12 GPa and temperatures down to 11 K using the designer diamond anvil cell under a quasi-hydrostatic pressure medium. The electrical resistance measurements were complemented by high pressure and low-temperature X-ray diffraction studies at a synchrotron source. The electrical resistance measurements show an intriguing observation of superconductivity under pressure, with Tc as high as ∼51 K at 1.9 GPa, presenting the highest Tc reported in the intermetallic class of 122 iron-based superconductors. The resistive transition observed suggests a possible existence of two superconducting phases at low pressures of 0.5 GPa: one phase starting at Tc1 ∼ 48 K and the other starts at Tc2 ∼ 16 K. The two superconducting transitions show distinct variations with increasing pressure. High pressure and low-temperature structural studies indicate that the superconducting phase is a collapsed tetragonal ThCr2Si2-type (122) crystal structure.

  3. Evidence for interface superconductivity in rare-earth doped CaFe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Lv, Bing; Deng, L. Z.; Wei, F. Y.; Xue, Y. Y.; Chu, C. W.

    2014-03-01

    To unravel to the mysterious non-bulk superconductivity up to 49K observed in rare-earth (R =La, Ce, Pr and Nd) doped CaFe2As2 single-crystals whose Tc is higher than that of any known compounds consisting of one or more of its constituent elements of R, Ca, Fe, and As at ambient or under pressures, systematic magnetic, compositional and structural have carried out on different rare-earth-doped (Ca1-xRx) Fe2As2 samples. We have detected extremely large magnetic anisotropy, doping-level independent Tc, unexpected superparamagnetic clusters associated with As vacancies and their close correlation with the superconducting volume fraction, the existence of mesoscopic-2D structures and Josephson-junction arrays in this system. These observations lead us to conjecture that the Tc enhancement may be associated with naturally occurring chemical interfaces and thus provided evidence for the possible interface-enhanced Tc in naturally-grown single crystals of Fe-based superconductors.

  4. Fluorescence in nanocomposites based on polyethylene oxides and block copolymers of polyethylene oxide-polypropylene oxide loaded with rare earth doped fluorides

    NASA Astrophysics Data System (ADS)

    Yust, Brian; Pedraza, Francisco; Sardar, Dhiraj; Saenz, Aaron; Chipara, Mircea

    2015-03-01

    Rare earth doped fluoride nanoparticles with a size of about 25 nm have been synthesized by a solvothermal process. Polymer-based nanocomposites, containing various weight fraction of nanofillers, have been obtained by dissolving the polymeric matrix (polyethylene oxide) within a solvent (deionized water), adding the nanoparticles, sonicating the mixture, and finally removing the solvent. The complete removal of the solvent has been confirmed by Thermogravimetric Analysis. Additional information about the thermal features have been obtained by Differential Scanning Calorimetry, Wide Angle X-Ray Scattering, FTIR, UV-Visible, and Raman. The effect of the loading with nanoparticles on the glass, crystallization, and melting transition temperatures of the polymeric matrix are reported. Fluorescence of rare earth doped nanoparticles dispersed within the polymeric matrix has been tested by laser spectroscopy. The dependence of fluorescence intensity on the concentration of nanofillers and on temperature in the range 300 to 400 K is analyzed.

  5. Combinatorial pulsed laser deposition of doped yttrium iron garnet films on yttrium aluminium garnet

    SciTech Connect

    Sposito, A. Eason, R. W.; Gregory, S. A.; Groot, P. A. J. de

    2014-02-07

    We investigate the crystalline growth of yttrium iron garnet (YIG) films doped with bismuth (Bi) and cerium (Ce) by combinatorial pulsed laser deposition, co-ablating a YIG target and either a Bi{sub 2}O{sub 3} or a CeO{sub 2} target, for applications in microwave and optical communications. Substrate temperature is critical for crystalline growth of YIG with simultaneous inclusion of Bi in the garnet lattice, whereas Ce is not incorporated in the garnet structure, but forms a separate CeO{sub 2} phase.

  6. Synthesis rare earth doped TiO2 nanorods and their application in the photocatalytic degradation of lignin

    DOE PAGESBeta

    Song, Liang; Zhao, Xueyuan; Cao, Lixin; Moon, Ji Won; Gu, Baohua; Wang, Wei

    2015-01-01

    This research studied the degradation of macromolecular lignin in aqueous environments catalyzed by rare earth doped titania nonorods (RE-TiO2 NRs) under simulated sunlight irradiation. In this work, we developed a two-step process to synthesize the RE-TiO2 NRs. Protonated titanate nanotubes with layered structure and negative surface charges were first prepared by a hydrothermal approach, then rare earth metal ions were hemogeneously bound onto the titanate via electrostatic incorporation. The RE-TiO2 NRs with average diameter of ~10 nm were obtained through calcination treatment . Enhanced photocatalytic activities of the RE-TiO2 NRs were observed in comparison with undoped TiO2 NRs and commercialmore » TiO2 photocatalysts. Photooxidation of methyl orange, as probe reaction, was chosen to evaluate the efficiency of the photocatalysts, and Eu-TiO2 NRs showed the fastest apparent reaction rate constant, which was evaluated as 42*10-4 s-1 in this catalytic system. La3+, Sm3+, Eu3+ and Er3+ doped TiO2 NRs showed higher photocatalytic efficiency on the photo-oxidation of azo groups. We have demonstrated that natural macromolecule lignin could be photodegraded effectively and rapidly at room temperature under simulated sunlight irradiation with a light intensity of 36.8 0.2 mW cm-2. Catalyzed by RE-TiO2 NRs, the reaction mechanism of photocatalytic depolymerization of lignin was based on two reaction routes, which were revealed by spectroscopic analysis of intermediate products.« less

  7. Facile fabrication and photoluminescence properties of rare-earth-doped Gd₂O₃ hollow spheres via a sacrificial template method.

    PubMed

    Gao, Yu; Zhao, Qian; Fang, Qinghong; Xu, Zhenhe

    2013-08-21

    Rare-earth-doped gadolinium oxide (Gd₂O₃) hollow spheres were successfully fabricated on a large scale by using PS spheres as sacrificed templates and urea as a precipitating agent, which involved the deposition of an inorganic coating Gd(OH)CO3 on the surface of PS spheres and subsequent calcination in the air. Various approaches including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), as well as photoluminescence spectroscopies were used to characterize the samples. The results indicate that the sample is composed of uniform hollow Gd₂O₃ spheres with a mean particle size of about 2.3 μm and these hollow spheres have the mesoporous shell that are composed of a large amount of nanoparticles. The possible mechanism of evolution from PS spheres to the amorphous precursor and to the final hollow Gd₂O₃ spheres have been proposed. The as-obtained samples show strong light emission with different colors corresponding to different Ln³⁺ ions under ultraviolet-visible light and electron-beam excitation. Under 980 nm NIR irradiation, Gd₂O₃:Ln³⁺ (Ln³⁺ = Yb³⁺/Er³⁺, Yb³⁺/Tm³⁺ and Yb³⁺/Ho³⁺) exhibit characteristic up-conversion (UC) emissions of red (Er³⁺, ²H11/2, ⁴S3/2, ⁴F9/2 → ⁴I15/2), blue (Tm³⁺, ¹G₄ → ³H₆) and green (Ho³⁺, ⁵F₄, ⁵S₂ → ⁵I₈), respectively. These merits of multicolor emissions in the visible region endow these kinds of materials with potential applications in the field of light display systems, lasers, optoelectronic devices, and MRI contrast agents. PMID:23801272

  8. Multicolor upconversion luminescence of rare-earth doped Y2CaZnO5 nanophosphors for white lighting-emitting diodes

    NASA Astrophysics Data System (ADS)

    Rajeswari, R.; Surendra Babu, S.; Jayasankar, C. K.

    2014-02-01

    Rare earth doped Y2CaZnO5 nanophosphors were synthesized via the citrate-gel combustion method. Transmission electron microscopy measurements reveal that the particles are distributed uniformly within the size range of 10-30 nm. The Er3+-doped Y2CaZnO5 nanophosphors show strong green upconversion luminescence, which is visible to the naked eye even at 20 mW excitation power of 980 nm diode laser. When these phosphors are codoped with Yb3+ ions, the emission changed to reddish color at higher Yb3+ ion concentrations. Moreover, these phosphors emitted bright white light luminescence when it is triply doped with Er3+/Tm 3+/Yb3+ ions, indicates Y2CaZnO5 nanophosphors are an ideal candidate for phosphor converted white light emitting diodes.

  9. Novel kinds of down/up-conversion luminescent rare earth doped fluoride BaMgF{sub 4}: RE{sup 3+} microcrystals

    SciTech Connect

    Yan, Zhi-Yuan; Yan, Bing Jia, Li-Ping

    2013-10-15

    Graphical abstract: We achieve the liquid phase chemical synthesis of rare earth fluoride system BaMgF4: RE{sup 3+} microphosphors, which realize down/up-conversion luminescence. - Highlights: • Doped BaMgF{sub 4} microphosphors are firstly prepared by hydrothermal process. • Doped BaMgF{sub 4} nanosheets are firstly prepared by high temperature solution reaction. • The down-conversion luminescence is realized in the rare earth doped BaMgF{sub 4}. • The upconversion luminescence is realized in the rare earth doped BaMgF{sub 4}. - Abstract: In this paper, we realize the liquid-phase chemical synthesis of high-quality orthorhombic polycrystalline BaMgF{sub 4}: RE{sup 3+} (RE = Eu, Tb, Sm, Dy, Yb–Er/Tm) compounds with hydrothermal and high-temperature solution methods, respectively. The products from hydrothermal technology show the micrometer size while the products from hydrothermal technology present nanosheet morphology. The rare earth ions doped BaMgF{sub 4} from hydrothermal synthesis are discussed in details, which can realize the downconversion luminescence for doped Eu{sup 3+} or Tb{sup 3+} and upconversion luminescence for Yb{sup 3+}/Er{sup 3+} (Tm{sup 3+}), respectively. To our knowledge, the hydrothermal or high temperature solution synthesis and photoluminescence (Eu{sup 3+}, Tb{sup 3+} or Yb{sup 3+}/Er{sup 3+}(Tm{sup 3+})) of these fluoride systems are firstly reported.

  10. Neodymium:yttrium-aluminium-garnet laser for excision of pulmonary nodules: an institutional review.

    PubMed

    Moghissi, Keyvan; Dixon, Kate

    2009-03-01

    Eighty patients amongst 850 undergoing pulmonary surgery with the use of neodymium:yttrium-aluminium-garnet (Nd:YAG) laser had a solitary pulmonary nodule (< or = 50 mm) on chest radiography, which was confirmed or suspected pre-operatively to be primary lung cancer. All patients had a mini-thoracotomy to expose the lesion. They then had Nd:YAG laser to excise the nodule locally. There was no hospital mortality. Six patients had non-fatal post-operative complications. Pathologically, 46 patients had primary lung cancer and ten had secondary lung cancer. Twenty-four others had benign lesions. Mean hospital stay was 5.5 days. Post-operative reduction of forced vital capacity (FVC) and forced expiratory volume in one second (FEV(1)) was 14% and 13% (mean), respectively. Thirty-seven patients with primary lung cancer were followed up for between 12 months and 60 months. Mean survival time of these patients was 39 months (s.d. 13 months). It was concluded that Nd:YAG laser for pulmonary nodular lesions should be considered for a selected group of patients unsuitable for standard resection. PMID:18214573

  11. Colour centres investigation in pure and doped yttrium aluminium garnet epitaxial films

    NASA Astrophysics Data System (ADS)

    Ubizskii, S. B.; Syvorotka, I. M.; Melnyk, S. S.; Matkovskii, A. O.

    Epitaxial films with thickness of 10-250 μm of yttrium aluminium garnet (YAG) doped with Cr were grown by liquid phase epitaxy technique on YAG: Nd substrateds. Co-doping with Mg2+ was used to force the Cr4+ valent state formation. Dependence of absorption spectra of obtained films on melt-solution composition, growth conditiions and thermal treatment in reducing and oxidizing atmospheres is studied. The absorption being characteristic for YAG:Cr4+ crystals is found in co-doped films grown at higher temperatures (1000-1100°C). The chromium entering in the tetravalent state is confirmed by the annealing experiments. A very intensive absorption band in UV region with maximum at 275 nm was found both in co-doped and YAG: Mg2+ epifilms caused probbly by oxygen vacancies compensating the excess charge of Mg2+. Its intensity correlates with Cr4+ content in the film in the following way: it decreases with Cr4+ entering in the film.

  12. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources

    PubMed Central

    2013-01-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence. PMID:24180684

  13. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources.

    PubMed

    Ganem, Joseph; Bowman, Steven R

    2013-01-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence. PMID:24180684

  14. Use of thulium-sensitized rare earth-doped low phonon energy crystalline hosts for IR sources

    NASA Astrophysics Data System (ADS)

    Ganem, Joseph; Bowman, Steven R.

    2013-11-01

    Crystalline hosts with low phonon energies enable novel energy transfer processes when doped with rare earth ions. Two applications of energy transfer for rare earth ions in thulium-sensitized low phonon energy crystals that result in infrared luminescence are discussed. One application is an endothermic, phonon-assisted cross-relaxation process in thulium-doped yttrium chloride that converts lattice phonons to infrared emission, which raises the possibility of a fundamentally new method for achieving solid-state optical cooling. The other application is an optically pumped mid-IR phosphor using thulium-praseodymium-doped potassium lead chloride that converts 805-nm diode light to broadband emission from 4,000 to 5,500 nm. These two applications in chloride crystals are discussed in terms of critical radii calculated from Forster-Dexter energy transfer theory. It is found that the critical radii for electric dipole-dipole interactions in low phonon energy chloride crystals are comparable to those in conventional oxide and fluoride crystals. It is the reduction in multi-phonon relaxation rates in chloride crystals that enable these additional energy transfer processes and infrared luminescence.

  15. Multicolor and near-infrared electroluminescence from the light-emitting devices with rare-earth doped TiO{sub 2} films

    SciTech Connect

    Zhu, Chen; Gao, Zhifei; Wang, Canxing; Li, Dongsheng; Ma, Xiangyang Yang, Deren; Lv, Chunyan

    2015-09-28

    We report on multicolor and near-infrared electroluminescence (EL) from the devices using rare-earth doped TiO{sub 2} (TiO{sub 2}:RE) films as light-emitting layers, which are ascribed to the impact excitation of RE{sup 3+} ions, with the EL onset voltages below 10 V. The devices are in the structure of ITO/TiO{sub 2}:RE/SiO{sub 2}/Si, in which the SiO{sub 2} layer is ∼10 nm thick and RE includes Eu, Er, Tm, Nd, and so on. With sufficiently high positive voltage applied on the ITO electrode, the conduction electrons in Si can tunnel into the conduction band of SiO{sub 2} layer via the trap-assisted tunneling mechanism, gaining the potential energy ∼4 eV higher than the conduction band edge of TiO{sub 2}. Therefore, as the electrons in the SiO{sub 2} layer drift into the TiO{sub 2}:RE layer, they become hot electrons. Such hot electrons impact-excite the RE{sup 3+} ions incorporated into the TiO{sub 2} host, leading to the characteristic emissions.

  16. Rare-Earth Doped Particles as Dual-Modality Contrast Agent for Minimally-Invasive Luminescence and Dual-Wavelength Photoacoustic Imaging

    NASA Astrophysics Data System (ADS)

    Sheng, Yang; Liao, Lun-De; Thakor, Nitish; Tan, Mei Chee

    2014-10-01

    Multi-modal imaging is an emerging area that integrates multiple imaging modalities to simultaneously capture visual information over many spatial scales. Complementary contrast agents need to be co-developed in order to achieve high resolution and contrast. In this work, we demonstrated that rare-earth doped particles (REDPs) can be employed as dual-modal imaging agents for both luminescence and photoacoustic (PA) imaging to achieve intrinsic high contrast, temporal and spatial resolution, reaching deeper depth. REDPs synthesized with different surfactants (citric acid, polyacrylic acid, ethylenediaminetetraacetic acid and sodium citrate) exhibit tunable emission properties and PA signal amplitudes. Amongst these samples, sodium citrate-modified REDPs showed the strongest PA signals. Furthermore, since REDPs have multiple absorption peaks, they offer a unique opportunity for multi-wavelength PA imaging (e.g. PA signals were measured using 520 and 975 nm excitations). The in vivo PA images around the cortical superior sagittal sinus (SSS) blood vessel captured with enhanced signal arising from REDPs demonstrated that in addition to be excellent luminescent probes, REDPs can also be used as successful PA contrast agents. Anisotropic polyacrylic acid-modified REDPs were found to be the best candidates for dual-modal luminescence and PA imaging due to their strong luminescence and PA signal intensities.

  17. Rare-Earth Doped Particles as Dual-Modality Contrast Agent for Minimally-Invasive Luminescence and Dual-Wavelength Photoacoustic Imaging

    PubMed Central

    Sheng, Yang; Liao, Lun-De; Thakor, Nitish; Tan, Mei Chee

    2014-01-01

    Multi-modal imaging is an emerging area that integrates multiple imaging modalities to simultaneously capture visual information over many spatial scales. Complementary contrast agents need to be co-developed in order to achieve high resolution and contrast. In this work, we demonstrated that rare-earth doped particles (REDPs) can be employed as dual-modal imaging agents for both luminescence and photoacoustic (PA) imaging to achieve intrinsic high contrast, temporal and spatial resolution, reaching deeper depth. REDPs synthesized with different surfactants (citric acid, polyacrylic acid, ethylenediaminetetraacetic acid and sodium citrate) exhibit tunable emission properties and PA signal amplitudes. Amongst these samples, sodium citrate-modified REDPs showed the strongest PA signals. Furthermore, since REDPs have multiple absorption peaks, they offer a unique opportunity for multi-wavelength PA imaging (e.g. PA signals were measured using 520 and 975 nm excitations). The in vivo PA images around the cortical superior sagittal sinus (SSS) blood vessel captured with enhanced signal arising from REDPs demonstrated that in addition to be excellent luminescent probes, REDPs can also be used as successful PA contrast agents. Anisotropic polyacrylic acid-modified REDPs were found to be the best candidates for dual-modal luminescence and PA imaging due to their strong luminescence and PA signal intensities. PMID:25297843

  18. Fabrication and characterization of fluorescent rare-earth-doped glass-particle-based tips for near-field optical imaging applications.

    PubMed

    Aigouy, Lionel; De Wilde, Yannick; Mortier, Michel; Giérak, Jacques; Bourhis, Eric

    2004-07-01

    Fluorescent rare-earth-doped glass particles glued to the end of an atomic force microscope tip have been used to perform scanning near-field optical measurements on nanostructured samples. The fixation procedure of the fluorescent fragment at the end of the tip is described in detail. The procedure consists of depositing a thin adhesive layer on the tip. Then a tip approach is performed on a fragment that remains stuck near the tip extremity. To displace the particle and position it at the very end of the tip, a nanomanipulation is achieved by use of a second tip mounted on piezoelectric scanners. Afterward, the particle size is reduced by focused ion beam milling. These particles exhibit a strong green luminescence where excited in the near infrared by an upconversion mechanism. Images obtained near a metallic edge show a lateral resolution in the 180-200-nm range. Images we obtained by measuring the light scattered by 250-nm holes show a resolution well below 100 nm. This phenomenon can be explained by a local excitation of the particle and by the nonlinear nature of the excitation. PMID:15250549

  19. Synthesis and characterization of A-site deficient rare-earth doped BaZr xTi 1- xO 3 perovskite-type compounds

    NASA Astrophysics Data System (ADS)

    Ostos, C.; Mestres, L.; Martínez-Sarrión, M. L.; García, J. E.; Albareda, A.; Perez, R.

    2009-05-01

    A-site deficient rare-earth doped BaZr xTi 1- xO 3 (BZT) ceramics were prepared from a soft-chemistry route and by solid-state reaction (SSR). Perovskite-like single-phase diagrams for the BaTiO 3-La 2/3TiO 3-BaZrO 3 system were constructed for each method of synthesis. Infrared spectroscopy on (Ba 1- yLa 2 y/3 )Zr xTi 1- xO 3 solid solution revealed a dramatic stress on the M-O (M = Ti, Zr) bonds due to the combined effect of A-site vacancies and the lower ionic radius of La 3+ than that of Ba 2+. A relationship between the M-O stretching vibration ( υ) and the tolerance factor ( t) was determined. (Ba 1- yLn 2 y/3 )Zr 0.09Ti 0.91O 3 (Ln = La, Pr, Nd) samples synthesized by SSR were selected for detailed studies. X-ray diffraction data were refined by the Rietveld method. Scanning electron microscopy on sintered compacts detected abnormal crystal growth and grain sizes in the range of about 1 μm up to 10 μm when the dopant concentration is 6.7 at. %. Impedance measurements exhibited that ferroelectric to paraelectric phase-transition temperature shifted to lower values as increasing rare-earth content. (Ba 1- yLn 2 y/3 )Zr 0.09Ti 0.91O 3 system showed a diffuse phase transition with a relaxor-like ferroelectric behaviour. Furthermore, the dielectric constant was enhanced with respect to non-doped BZT system.

  20. Energy Transfer in Rare Earth Ion Clusters and Fluorescence from Rare Earth Doped LANTHANUM(1.85)STRONTIUM(0.15)COPPER -OXYGEN(4) Superconductors.

    NASA Astrophysics Data System (ADS)

    Tissue, Brian Max

    1988-12-01

    Laser spectroscopy of rare earth ions in solids was used to study mechanisms of non-resonant energy transfer within rare earth clusters, and to detect insulating, impurity phases in rare earth doped La_{1.85 }Sr_{0.15}CuO _4 superconductors. The mechanisms of phonon-assisted, non-resonant energy transfer were studied in well-defined dimer sites in Er^{3+ }:SrF_2 and Pr ^{3+}:CaF_2. Application of a magnetic field to Er^{3+} :SrF_2 greatly increased the energy transfer rate. The magnetic field dependence in Er^{3+}:SrF _2 indicates that the mechanism of non-resonant energy transfer is a two-phonon, resonant process (Orbach process). Application of a magnetic field to Pr ^{3+}:CaF_2 had no effect on the energy transfer rate because no significant Zeeman splittings occurred. The temperature dependence of the energy transfer rate in Pr^{3+ }:CaF_2 showed the mechanism to be a one-phonon-assisted process at low temperatures and predominantly an Orbach process above 10 K. In the second part of this thesis, laser spectroscopy of a Eu ^{3+} probe ion is developed to detect impurity phases in La_{1.85 }Sr_{0.15}CuO _4 superconductors. Two impurity phases were found in polycrystalline La_ {1.85}Sr_{0.15} CuO_4: unreacted La _2O_3 starting material, and a La-silicate phase, which formed from contamination during sintering. The spectroscopic technique was found to be more than 100 times more sensitive than powder x -ray diffraction to detect minor impurity phases. In preparing the superconductors, several studies were made on the effect of Pr^{3+}, Eu ^{3+}, Bi^{3+ }, and fluorine dopants on the superconducting properties of La_{1.85}Sr _{0.15}CuO_4 and La_2Cuo_4 . Pr^{3+}, Eu ^{3+}, Bi^ {3+}, and F_2 doping all decreased the superconductivity in La_ {1.85}Sr^{0.15} CuO_4. Treating semi-conducting La_2CuO_4 in F_2 gas converted it to a superconductor with an onset T_{rm c} of 30-35 K.

  1. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    SciTech Connect

    Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A.

    2015-12-28

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y{sub 3}Al{sub 5}O{sub 12} are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet is mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y{sub 3}Al{sub 5}O{sub 12} and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa.

  2. Combined Intralesional Neodymium-Doped Yttrium Aluminium Garnet Laser and Intratumoral Ligation as Curative Treatment for Craniofacial Arteriovenous Malformations.

    PubMed

    Rojvachiranonda, Nond; Lerdlum, Sukalaya; Mahatumarat, Charan

    2016-03-01

    Craniofacial arteriovenous malformation (AVM), although very rare, has been a very difficult problem to treat especially when it is large and involves important structures. Surgical resection often results in unacceptable complications but still not curative. At our institution, treatment by combined intralesional neodymium-doped yttrium aluminium garnet laser and intratumoral ligation has been successful in venous malformation. This minimally invasive technique was then applied to more challenging AVM on the head and neck. Disease control was studied using clinical parameters and magnetic resonance imaging.Four patients with moderate-to-severe (Schobinger 2-4) craniofacial AVM were treated by this technique from 2001 to 2011. Patient age ranged from 2 to 51 years (mean: 25 years). After 2 to 4 treatments and follow-up period of 1456 days, 3 (75%) were cured. One of them was infant with huge mass and secondary pulmonary hypertension. Clinical cure was achieved after 3 treatments without residual cardiovascular compromise. The other patient (25%) had cheek mass with intraorbital involvement. The authors did not treat periorbital lesion so as to avoid triggering intraorbital spreading. The rest of the cheek lesion was clinically and radiologically cured.Laser energy setting, ablative technique, and skin cooling are the main factors determining the success. Individualized laser settings and properly set endpoints can increase treatment effectiveness in shorter period. In conclusion, this minimally invasive technique was successful in curing AVM without complication. With more clinical study and development of soft tissue monitoring tools, it is possible that intralesional laser could become the treatment of choice for all cutaneous AVM. PMID:26825744

  3. A randomized controlled trial of peeling and aspiration of Elschnig pearls and neodymium: yttrium-aluminium-garnet laser capsulotomy

    PubMed Central

    Bhargava, Rahul; Kumar, Prachi; Sharma, Shiv Kumar; Kaur, Avinash

    2015-01-01

    AIM To compare surgical peeling and aspiration and neodymium yttrium garnet laser capsulotomy for pearl form of posterior capsule opacification (PCO). METHODS A prospective, randomized, double blind, study was done at Rotary Eye Hospital, Maranda, Palampur, India, Santosh Medical College Hospital, Ghaziabad, India and Laser Eye Clinic, Noida India. Consecutive patients with pearl form of PCO following surgery, phacoemulsification, manual small incision cataract surgery and conventional extracapsular cataract extraction (ECCE) for age related cataract, were randomized to have peeling and aspiration or neodymium yttrium garnet laser capsulotomy. Corrected distance visual acuity (CDVA), intra-operative and post-operative complications were compared. RESULTS A total of 634 patients participated in the study, and 314 (49.5%) patients were randomized to surgical peeling and aspiration group and 320 (50.5%) to the Nd:YAG laser group. The mean pre-procedural logMAR CDVA in peeling and neodymium: yttrium-aluminium-garnet (Nd:YAG) laser group was 0.80±0.25 and 0.86±0.22, respectively. The mean final CDVA in peeling group (0.22±0.23) was comparable to Nd:YAG group (0.24±0.28; t test, P=0.240). There was a significant improvement in vision after both the procedures (P<0.001). A slightly higher percentage of patients in Nd:YAG laser group (283/88.3%) than in peeling group (262/83.4%) had a CDVA of 0.5 (20/63) or better at 9mo (P<0.001). On the contrary, patients having CDVA worse than 1.00 (20/200) was also significantly higher in Nd:YAG laser group as compared to peeling group (25/7.7% vs 15/4.7%, respectively). On application of ANCOVA, there was less than 0.001% risk that PCO thickness and total laser energy had no effect on rate of complications in Nd:YAG laser group and less than 0.001 % risk that PCO thickness had no effect on complications in peeling group respectively. Sum of square analysis suggests that in the Nd:YAG laser group, thick PCO had a stronger impact on

  4. Intense red-emitting multi-rare-earth doped nanoparticles of YVO4 for spectrum conversion towards improved energy harvesting by solar cells

    NASA Astrophysics Data System (ADS)

    Kumar, Vineet; Khan, A. F.; Chawla, Santa

    2013-09-01

    Yttrium vanadate nano-particles doped with single and multi ions (Sm3+, Eu3+, Bi3+) have been successfully synthesized at room temperature by optimized co-precipitation method. Doped orthovanadate forms monophasic nanocrystals in the 10-50 nm size range. Photoluminescence (PL) excitation shows broad band in the range 250-350 nm due to vanadate absorption and sharp peaks in the range of 390-470 nm due to f-f transitions of Sm3+/Eu3+ and emission in intense red/orange (614, 645, 699 nm). The nanoparticles can efficiently convert UV and blue photons (250-470 nm) to intense red and orange light that can be harnessed by both Si and dye sensitized solar cells for photovoltaic conversion. PL and time-resolved decay suggest that excitation and charge transfer between host, dopant and co-dopants play a profound role in the photophysical processes of multi-ion doped yttrium vanadate nanophosphor. Thin films of such nanophosphor exhibit 80-90% transparency in the visible range. Nanophosphor films convert UV to visible leading to better photon harvesting by solar cells.

  5. Physicochemical properties of rare earth doped ceria Ce0.9Ln0.1O1.95 (Ln = Nd, Sm, Gd) as an electrolyte material for IT-SOFC/SOEC

    NASA Astrophysics Data System (ADS)

    Chaubey, Nityanand; Wani, B. N.; Bharadwaj, S. R.; Chattopadhyaya, M. C.

    2013-06-01

    Nanosized crystallites of rare earth doped ceria Ce0.9Ln0.1O1.95 (Ln = Nd, Sm, Gd) a promising electrolyte material for Intermediate Temperature - Solid Oxide Fuel Cells/electrolysis cells have been synthesized by standard ceramic route. Detection of impurities in the samples was done by FTIR spectroscopy. X-ray diffraction studies were used for the determination of phase purity, crystal structure and average crystallite size of the samples. Kinetics involved in phase formation has been discussed. Raman study showed a major band around 465 cm-1 in all the samples, which is attributed to the cubic fluorite structure of ceria. It was also found that for samples Ce0.9Ln0.1O1.95 (Ln = Nd, Sm, Gd) the frequency of F2g shifts to lower value. Electrochemical impedance spectroscopy has been used to measure the ionic conductivity of the samples at elevated temperatures. The Gd doped sample showed the highest grain boundary and total conductivity in comparison to Sm and Nd doped sample. Bulk thermal expansion behavior, sintered densities and micro structural features of the samples have also been studied.

  6. Ultrashort optical pulse generation from a chromium(4)- doped yttrium aluminium garnet tunable solid-state laser

    NASA Astrophysics Data System (ADS)

    Chang, Yongmao

    2000-11-01

    In this thesis, experimental results of ultrashort pulse generation from Cr4+-doped yttrium aluminium garnet (YAG) laser system are presented. The Cr4+:YAG crystal is a vibronically broadened solid state laser gain medium, which lases at room temperature from 1.34 to 1.58 μm and can be pumped by a Nd:YAG laser at 1.06 μm. Ultrashort pulses from this coherent light source are potentially important in technology applications such as ultrafast fiber-optic communications and time-resolved spectroscopy of narrow- bandgap, semiconductors. It is a practical alternative to more conventional cryogenic colour center lasers at this wavelength such as NaCl:OH- or complex optical parametric oscillators synchronously pumped by a Ti:sapphire laser. The cw power performance of a Cr4+:YAG laser was characterized and several unique properties were identified. A broad tuning range of 210 nm, i.e., from 1345 to 1557 nm, was demonstrated by means of one set of mirrors with useful cw output power of as high as 730 mW at 1.46 μm (with a Nd:YAG pump power of 6.5 W). The lasing action was found to be strongly influenced by the temperature of the crystal and the combined effects of thermal lensing and saturable absorption of the pump beam. The excited-state absorption (ESA) at the pump and lasing wavelengths were investigated both experimentally and theoretically. ESA at the lasing wavelength occurs for the transition from the state 3B2(3T2) to 3E(3T1(F)), while the pump ESA comes from the transition from 3A2(3T2 ) to 3E(3T1(P)). The emission ESA cross sections for the free-running modes were estimated from the laser efficiency data by taking into account the pump and cavity parameters. Ultrashort pulse generation with a Cr4+:YAG laser was investigated using passive mode-locking with a semiconductor quantum well saturable absorber. Self-starting of the laser system was demonstrated using a strained GaInAs/InAlAs saturable Bragg reflector (SBR) with a single prism for dispersion

  7. Rare earth doped zinc oxide varistors

    DOEpatents

    McMillan, April D.; Modine, Frank A.; Lauf, Robert J.; Alim, Mohammad A.; Mahan, Gerald D.; Bartkowiak, Miroslaw

    1998-01-01

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.

  8. Rare earth doped zinc oxide varistors

    DOEpatents

    McMillan, A.D.; Modine, F.A.; Lauf, R.J.; Alim, M.A.; Mahan, G.D.; Bartkowiak, M.

    1998-12-29

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2--4.0% oxide of at least one rare earth element, 0.5--4.0% Co{sub 3}O{sub 4}, 0.05--0.4% K{sub 2}O, 0.05--0.2% Cr{sub 2}O{sub 3}, 0--0.2% CaO, 0.00005--0.01% Al{sub 2}O{sub 3}, 0--2% MnO, 0--0.05% MgO, 0--0.5% TiO{sub 3}, 0--0.2% SnO{sub 2}, 0--0.02% B{sub 2}O{sub 3}, balance ZnO. 4 figs.

  9. Effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of sand-blasted, large grit, acid-etched implants

    PubMed Central

    Lee, Ji-Hun; Kwon, Young-Hyuk; Herr, Yeek; Shin, Seung-Il

    2011-01-01

    Purpose The present study was performed to evaluate the effect of erbium-doped: yttrium, aluminium and garnet (Er:YAG) laser irradiation on sand-blasted, large grit, acid-etched (SLA) implant surface microstructure according to varying energy levels and application times of the laser. Methods The implant surface was irradiated by the Er:YAG laser under combined conditions of 100, 140, or 180 mJ/pulse and an application time of 1 minute, 1.5 minutes, or 2 minutes. Scanning electron microscopy (SEM) was used to examine the surface roughness of the specimens. Results All experimental conditions of Er:YAG laser irradiation, except the power setting of 100 mJ/pulse for 1 minute and 1.5 minutes, led to an alteration in the implant surface. SEM evaluation showed a decrease in the surface roughness of the implants. However, the difference was not statistically significant. Alterations of implant surfaces included meltdown and flattening. More extensive alterations were present with increasing laser energy and application time. Conclusions To ensure no damage to their surfaces, it is recommended that SLA implants be irradiated with an Er:YAG laser below 100 mJ/pulse and 1.5 minutes for detoxifying the implant surfaces. PMID:21811689

  10. Treatment of Urethral/Bladder Neck Stricture After High-Intensity Focused Ultrasound for Prostate Cancer With Holmium: Yttrium-Aluminium-Garnet Laser

    PubMed Central

    Cho, Won Jin; Kim, Tae Heon; Lee, Hyo Serk; Chung, Jin Woo; Lee, Ha Na

    2013-01-01

    Purpose To evaluate the efficacy and safety of the Holmium: yttrium-aluminium-garnet (YAG) laser for the treatment of urethral/bladder neck strictures after high-intensity focused ultrasound for prostate cancer. Methods Between February 2007 and July 2010, Holmium: YAG laser urethrotomies were performed in eleven patients for bladder neck strictures or prostatic urethral strictures. The laser was used with a 550-µm fiber at 2 J and frequency 30 to 50 Hz. The medical records were retrospectively reviewed for medical history, perioperative and postoperative data, uroflowmetry, International Prostate Symptoms Score/quality of life, and stricture recurrence. Results At a median follow-up of 12.0 months (range, 4 to 35 months), the mean postoperative maximal flow rate and residual volume were improved significantly (P<0.05). The mean postoperative total, voiding and quality of life of international prostate symptom score were improved significantly (P<0.05). Of the 11 patients, 7 patients required one treatment, 4 patients two treatment, and 1 patients three treatment. 2 patients who had a documented urinary incontinence prior to the laser treatment subsequently required artificial urinary sphincter implantation and reported satisfaction without developing any recurrent strictures or artificial urinary sphincter erosion. All patients exhibited well-healed strictures and could void without difficulty. Conclusions Holmium: YAG laser therapy represents a safe, effective and minimally invasive treatment for urethral/bladder neck strictures occurring secondary to high-intensity focused ultrasound for prostate cancer. PMID:23610708

  11. Histological Evaluation of Retina after Photo Disruption for Vitreous Humor by Q-Switched Neodymium-Doped Yttrium Aluminium Garnet (Nd:YAG) Laser

    PubMed Central

    Kameel Ghaly, Sally; Foad Ghoneim, Dina; Abdelkawi Ahmed, Salwa; Medhat Abdel-Salam, Ahmed

    2013-01-01

    Introduction: Rabbits’ eyes were exposed to vitreous humor liquefaction with Q - switched (sometimes called “ giant pulses”) Neodymium-Doped Yttrium Aluminium Garnet (Nd:YAG) laser using two different energy protocols (5 mJ X 100 pulse and 10 mJ X 50 pulse)with and without vitamin C administration. The histological changes in the retina were investigated to evaluate the protective role of vitamin C. Methods: The rabbits were divided into four main groups (n= 12 each). The first group was divided into three subgroups (n=4) and then treated with 5 mJ X 100 pulse (X means times) delivered to the anterior, middle and posterior vitreous humor respectively. The second group received a daily dose of 25 mg/Kg vitamin C for two weeks then was divided into three subgroups and treated with laser in the same manner as the first group.The third group was divided into three subgroups (n=4) and then treated with 10 mJ X 50 pulse delivered to the anterior, middle and posterior vitreous respectively. The fourth group received a daily dose of 25 mg/Kg vitamin C for two weeks then was divided into three subgroups and treated with laser in the same manner as the third group. After two weeks, rabbits were decapitated and histological examination for the retina was performed. Results: The results showed that, the anterior vitreous group exposed to 5mJX100 pulse and supplemented with vitamin C, showed no obvious change. Furthermore, all other treated groups showed alteration in retina’s tissues histology after laser. Conclusion: Application of Q-switched Nd: YAG laser in vitreous humor liquefaction induces changes in retina’s layers. Although there were some sorts of improvements in retinas supplemented with vitamin C, it cannot protect them against laser oxidative damage. PMID:25606329

  12. Study of Interaction of Laser with Tissue Using Monte Carlo Method for 1064nm Neodymium-Doped Yttrium Aluminium Garnet (Nd:YAG) Laser

    PubMed Central

    Majdabadi, Abbas; Abazari, Mohammad

    2015-01-01

    Introduction: Liposuction using laser is now one of the most common cosmetic surgery. This new method has minimized the disadvantages of the conventional liposuction including blood loss, skin laxity and long recovery time. Benefits of the new liposuction methods which include less trauma, bleeding and skin tightening prove the superiority of these methods over the traditional mechanical methods. Interaction of laser with fat tissue has the vital role in the development of these new procedures because this interaction simultaneously results in retraction of skin layers and coagulation of small blood vessels so skin tightening and less bleeding is achieved. Method: Laser lipolysis uses a laser fiber inserted inside a metal cannula of 1 mm delivering the laser radiation directly to the target tissue. Laser lipolysis has a wavelength dependent mechanism, tissue heating and therefor thermal effects are achieved through absorption of radiation by the target tissue cells, causing their temperature to rise and their volumes to expand. We used Monte Carlo (MC) method to simulate the photons propagation within the tissue. This method simulates physical variables by random sampling of their probability distribution. We also simulated temperature rise and tissue heating using Comsol Multiphysics software. Conclusion: Because optimum and safe laser lipolysis operation highly depends on optical characteristics of both tissue and laser radiation such as laser fluence, laser power and etc. having physical understanding of these procedures is of vital importance. In this study we aim to evaluate the effects of these important parameters. Results: Findings of our simulation prove that 1064 nm Neodymium-Doped Yttrium Aluminium Garnet (Nd:YAG) has good penetration depth into fat tissue and can reach inside the deeper layers of fat tissue. We see that this wavelength also resulted in good temperature rise; after irradiation of fat tissue with this wavelength we observed that tissue

  13. Sealing ability of three root-end filling materials prepared using an erbium: Yttrium aluminium garnet laser and endosonic tip evaluated by confocal laser scanning microscopy

    PubMed Central

    Nanjappa, A Salin; Ponnappa, KC; Nanjamma, KK; Ponappa, MC; Girish, Sabari; Nitin, Anita

    2015-01-01

    Aims: (1) To compare the sealing ability of mineral trioxide aggregate (MTA), Biodentine, and Chitra-calcium phosphate cement (CPC) when used as root-end filling, evaluated under confocal laser scanning microscope using Rhodamine B dye. (2) To evaluate effect of ultrasonic retroprep tip and an erbium:yttrium aluminium garnet (Er:YAG) laser on the integrity of three different root-end filling materials. Materials and Methods: The root canals of 80 extracted teeth were instrumented and obturated with gutta-percha. The apical 3 mm of each tooth was resected and 3 mm root-end preparation was made using ultrasonic tip (n = 30) and Er:YAG laser (n = 30). MTA, Biodentine, and Chitra-CPC were used to restore 10 teeth each. The samples were coated with varnish and after drying, they were immersed in Rhodamine B dye for 24 h. The teeth were then rinsed, sectioned longitudinally, and observed under confocal laser scanning microscope. Statistical Analysis Used: Data were analyzed using one-way analysis of variance (ANOVA) and a post-hoc Tukey's test at P < 0.05 (R software version 3.1.0). Results: Comparison of microleakage showed maximum peak value of 0.45 mm for Biodentine, 0.85 mm for MTA, and 1.05 mm for Chitra-CPC. The amount of dye penetration was found to be lesser in root ends prepared using Er:YAG laser when compared with ultrasonics, the difference was found to be statistically significant (P < 0.05). Conclusions: Root-end cavities prepared with Er:YAG laser and restored with Biodentine showed superior sealing ability compared to those prepared with ultrasonics. PMID:26180420

  14. Rare Earth Doped Magnetic Clusters of Gold for Medical Application

    NASA Astrophysics Data System (ADS)

    Yadav, Brahm Deo; Kumar, Vijay

    2011-03-01

    In recent years gold clusters have been studied extensively due to their unusual properties and applications in cancer treatment and catalysis. Small gold clusters having up to 15 atoms are planar as shown in figure 1. Thereafter a transition occurs to 3D structures but the atomic structures continue to have high dispersion. Doping of these clusters could transform them in to new structures and affect the properties. Gold clusters with cage structures such as W@Au12 can be prepared with large highest occupied-lowest unoccupied molecular orbital (HOMO-LUMO) gap by doping with a transition metal atom such as W. By changing the transition metal atom, cage structures of different sizes as well as different HOMO-LUMO gaps can be formed which could be useful in different optical applications. In these structures gold clusters are generally non-magnetic. However, it is also possible to form magnetic clusters of gold such as Gold clusters have been found to be good for cancer treatment. We have performed ab initio calculations on doping of rare earths in small gold clusters to obtain magnetic clusters using projector augmented wave pseudopotential method within generalized gradient approximation for the exchange-correlation energy. Elemental gold clusters having up to 15 atoms are planar and thereafter 3D structures become favorable. We have explored the changes in the growth behavior when a rare earth atom is doped and studied the variation in the magnetic behavior as a function of size. Our results suggest that gold clusters may have twin advantage of treating cancer as well as be helful in magnetic imaging such as by MRI.

  15. Sensing Using Rare-Earth-Doped Upconversion Nanoparticles

    PubMed Central

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near infrared (NIR) light that are silent to tissues. These features allow not only a high penetration depth in biological tissues but also a high detection sensitivity. Indeed, the energy transfer between UCNPs and biomolecular or chemical indicators provide opportunities for high-sensitive bio- and chemical-sensing. A temperature-sensitive change of the intensity ratio between two close UC bands promises them for use in temperature mapping of a single living cell. In this work, we review recent investigations on using UCNPs for the detection of biomolecules (avidin, ATP, etc.), ions (cyanide, mecury, etc.), small gas molecules (oxygen, carbon dioxide, ammonia, etc.), as well as for in vitro temperature sensing. We also briefly summarize chemical methods in synthesizing UCNPs of high efficiency that are important for the detection limit. PMID:23650480

  16. Promising wastewater treatment using rare earth-doped nanoferrites

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Bishay, Samiha T.; Khafagy, Rasha M.; Saleh, N. M.

    2014-01-01

    Single-phases of the spinel nanoferrites Zn0.5Co0.5Al0.5R0.04Fe1.46O4; R=Sm, Pr, Ce and La, were synthesized using the flash auto combustion method. X-ray diffraction (XRD) results indicated that doping nanoferrites with small concentrations of rare earth elements (RE) allowed their entrance to the spinel lattice. Transmission electron microscope (TEM) images revealed that doping with different RE elements resulted in the formation of different nanometric shapes such as nanospheres and nanowires. Doping with Sm3+ and Ce3+ resulted in the formation of nanospheres with average diameter of 14 and 30 nm respectively. In addition to the granular nanospheres, doping with Pr3+ and La3+ resulted in the formation of some nanowires with different aspect ratios (average length of ≈100 nm and diameter of ≈9 nm) and (average length of ≈150 nm and outer diameter of ≈22 nm) respectively. At fixed temperature, the Ac conductivity (σ) increased as the RE ionic radius increases except for Ce, due to the role of valance fluctuation from Ce3+ to Ce4+ ions. La- and Pr-doped nanoferrites showed the highest ac conductivity values, which is most probably due to the presence of large numbers of nanowires in these two types of ferrites. For all entire samples, the effective magnetic moment (μeff) decreased, while the Curie temperature (TC) increased as the RE ionic radius increases. The synthesized rare earth nanoferrites showed promising results in purifying colored wastewater. La-doped ferrite was capable for up-taking 92% of the dye content, followed by Pr-doped ferrite, which adsorbed 85% of the dye, while Sm- and Ce-doped ferrites showed lower dye removal efficiency of 80% and 72% respectively. High dye uptake shown by La- and Pr-doped ferrites is most probably due to the presence of nanowires and their higher Ac conductivity values. These excellent results were not previously reported.

  17. Rare Earth doped nanoparticles in imaging and PDT

    PubMed Central

    Yust, Brian G.; Sardar, Dhiraj K.; Mimun, Lawrence C.; Gangadharan, Ajith K.; Tsin, Andrew T.

    2014-01-01

    Nanoparticles doped with rare earth ions for biomedical imaging and infrared photodynamic therapy (IRPDT) have been synthesized, characterized, and compared. Specifically, these nanoparticles utilize two primary modalities: near infrared excitation and emission for imaging, and near infrared upconversion for photodynamic therapy. These nanoparticles are optimized for both their infrared emission and upconversion energy transfer to a photoactive agent conjugated to the surface. Finally, these nanoparticles are tested for toxicity, imaged in cells using the near infrared emission pathway, and used for selective killing of cells through the upconversion driven IRPDT. PMID:25429335

  18. Fluorescence in rare earth-doped fluorozirconate fibers

    SciTech Connect

    Saissy, A.; Ostrowsky, D.B. ); Maze, G. )

    1991-05-20

    Spontaneous fluorescence band of erbium-, holmium-, and thulium-doped fluorozirconate fibers are studied experimentally and theoretically. From experimental data and for each trivalent ion we identify the set of optical transitions that gives rise to the observed linear fluorescence and unconversion process. Fiber perturbation theory and density matrix formalism are used to model fluorescence spectra with particular attention to modal structure, loss, and mode coupling in the fiber. The relationship between the experimental emission spectrum of thulium-doped fiber and the theoretical model is discussed.

  19. Fluorescence in rare earth-doped fluorozirconate fibers.

    PubMed

    Saissy, A; Ostrowsky, D B; Maze, G

    1991-05-20

    Spontaneous fluorescence bands of erbium-, holmium-, and thulium-doped fluorozirconate fibers are studied experimentally and theoretically. From experimental data and for each trivalent ion we identify the set of optical transitions that gives rise to the observed linear fluorescence and upconversion process. Fiber perturbation theory and density matrix formalism are used to model fluorescence spectra with particular attention to modal structure, loss, and mode coupling in the fiber. The relationship between the experimental emission spectrum of thulium-doped fiber and the theoretical model is discussed. PMID:20700160

  20. Design and refinement of rare earth doped multicore fiber lasers

    NASA Astrophysics Data System (ADS)

    Prudenzano, F.; Mescia, L.; Di Tommaso, A.; Surico, M.; De Sario, M.

    2013-09-01

    A novel multicore ytterbium doped fiber laser is designed, with the target of maximizing both the effective mode area and the beam quality, by means of a complete home-made computer code. It can be employed to construct high power and Quasi-Gaussian beam lasers. The novel laser configuration exploits a single mode multicore fiber and does not need Talbot cavity or other in-phase mode selection mechanisms. This is an innovative solution, because to the best of our knowledge, for the first time, we have designed a truly single-mode multicore fiber laser. For comparison we have optimized two other laser configurations which are well known in literature, both employing a multimode multicore fiber and a Talbot cavity as a feedback for the in-phase supermode selection. All three multicore fibers, constituted by the same glass, are doped with the same ytterbium ion concentration and pumped with the same input power. Multimodal fiber lasers exhibit lower beam quality, i.e. a higher beam quality factor M2, with respect to the single mode one, even if suitable Talbot cavities are designed, but they are very competitive when a more compact laser cavity is required for the same output power. The novel single mode nineteen core laser exhibits a simulated effective mode area Aeff = 703 μm2 and a beam quality factor M2 = 1.05, showing better characteristics than the other two lasers.

  1. Sensing using rare-earth-doped upconversion nanoparticles.

    PubMed

    Hao, Shuwei; Chen, Guanying; Yang, Chunhui

    2013-01-01

    Optical sensing plays an important role in theranostics due to its capability to detect hint biochemical entities or molecular targets as well as to precisely monitor specific fundamental psychological processes. Rare-earth (RE) doped upconversion nanoparticles (UCNPs) are promising for these endeavors due to their unique frequency converting capability; they emit efficient and sharp visible or ultraviolet (UV) luminescence via use of ladder-like energy levels of RE ions when excited at near infrared (NIR) light that are silent to tissues. These features allow not only a high penetration depth in biological tissues but also a high detection sensitivity. Indeed, the energy transfer between UCNPs and biomolecular or chemical indicators provide opportunities for high-sensitive bio- and chemical-sensing. A temperature-sensitive change of the intensity ratio between two close UC bands promises them for use in temperature mapping of a single living cell. In this work, we review recent investigations on using UCNPs for the detection of biomolecules (avidin, ATP, etc.), ions (cyanide, mecury, etc.), small gas molecules (oxygen, carbon dioxide, ammonia, etc.), as well as for in vitro temperature sensing. We also briefly summarize chemical methods in synthesizing UCNPs of high efficiency that are important for the detection limit. PMID:23650480

  2. Rare earth doped upconverting particles for different photonic applications

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab; Gangadharan, Ajith Kumar; Sardar, Dhiraj Kumar

    2013-03-01

    Trivalent rare earth ions especially erbium (Er3+) and ytterbium (Yb3+) co-doped in various host nanoparticles are known for their extraordinary spectroscopic properties. A thorough optical characterization including the absolute upconversion quantum yield (QY) measurement is of critical importance in evaluating their potential for various photonic applications. In this paper, we will be presenting a measured absolute upconversion QYs for Yb3+ and Er3+ doped in La2O2S under 980 and 1550 nm excitation at various power densities. Comparison of absolute QYs for different concentrations of Yb3+ and Er3+ doped in La2O2S will be made for all the upconversion emissions with respect to reported most efficient upconverting phosphor NaYF4 doped with 20% Yb3+ and 2% Er3+. Furthermore, applications of these phosphors in different areas such as bio-imaging, solar cell, security, etc. will be explored depending on the measured absolute upconversion quantum yields. In addition, preliminary results on in vitro imaging using upconverting nanoparticles as a contrast agent will be reported. This work was supported by the National Science Foundation Partnerships for Research and Education in Materials (PREM) Grant No. DMR-0934218.

  3. Plasma synthesis of rare earth doped integrated optical waveguides

    SciTech Connect

    Raoux, S.; Anders, S.; Yu, K.M.; Brown, I.G.; Ivanov, I.C.

    1995-03-01

    We describe a novel means for the production of optically active planar waveguides. The makes use of a low energy plasma deposition. Cathodic-arc-produced metal plasmas the metallic components of the films and gases are added to form compound films. Here we discuss the synthesis of Al{sub 2{minus}x}ER{sub x}O{sub 3} thin films. The erbium concentration (x) can vary from 0 to 100% and the thickness of the film can be from Angstroms to microns. In such material, at high active center concentration (x=l% to 20%), erbium ions give rise to room temperature 1.53{mu}m emission which has minimum loss in silica-based optical fibers. With this technique, multilayer integrated planar waveguide structures can be grown, such as Al{sub 2}O{sub 3}/Al{sub 2{minus}x}Er{sub x}O{sub 3}/Al{sub 2}O{sub 3}/Si, for example.

  4. Structural and optical properties of yttrium oxide thin films for planar waveguiding applications

    SciTech Connect

    Pearce, Stuart J.; Parker, Greg J.; Charlton, Martin D. B.; Wilkinson, James S.

    2010-11-15

    Thin films of yttrium oxide, Y{sub 2}O{sub 3}, were deposited by reactive sputtering and reactive evaporation to determine their suitability as a host for a rare earth doped planar waveguide upconversion laser. The optical properties, structure, and crystalline phase of the films were found to be dependent on the deposition method and process parameters. X-ray diffraction analysis on the ''as-deposited'' thin films revealed that the films vary from amorphous to highly crystalline with a small broad peak at 29 deg. corresponding to the <222> reflections of Y{sub 2}O{sub 3}. The samples with the polycrystalline structure had a stoichiometry close to bulk cubic Y{sub 2}O{sub 3}. Scanning electron microscopy imaging revealed a regular column structure confirming their crystalline nature. The thin film layers which allowed guiding in both visible and infrared regions had lower refractive indices, higher oxygen content, and a more amorphous structure. Higher oxygen pressures during the deposition lead to a more amorphous layer.

  5. Aluminium plasmonics

    SciTech Connect

    Gerard, Davy; Gray, Stephen K.

    2014-12-15

    In this study, we present an overview of 'aluminium plasmonics', i.e. the study of both fundamental and practical aspects of surface plasmon excitations in aluminium structures, in particular thin films and metal nanoparticles. After a brief introduction noting both some recent and historical contributions to aluminium plasmonics, we discuss the optical properties of aluminium and aluminium nanostructures and highlight a few selected studies in a host of areas ranging from fluorescence to data storage.

  6. Metals Fact Sheet: Yttrium

    SciTech Connect

    1992-09-01

    Yttrium is a metallic element usually included among the rare earth metals, which it resembles chemically and with which it usually occurs in minerals. Yttrium was named after the village of Ytterby in Sweden---the element was discovered in a quarry near the village. This article discusses sources of the element, the world market for the element, and various applications of the material.

  7. Yttrium oxide ceramic body

    SciTech Connect

    Greskovich, C.D.; O'Clair, C.R.

    1988-07-05

    This patent describes a process for producing a sintered yttrium oxide body which is at least optically translucent having an in-line spectral transmission greater than 1% taken at a wavelength of 590 nanometers on a thickness of 0.85 millimeter of the sintered body and having an average grain size ranging from about 5 microns to about 50 microns which consists essentially of producing an yttrium oxide powder having an average particle size of less than about 5 microns and being free of particles greater than about 5 microns and having a specific surface area ranging from about 4 square meters per gram to about 25 square meters per gram, forming the powder into a compact having a density of at least about 45% of the density for yttrium oxide, firing the compact at a temperature ranging from about 1625C, to about 1900C, for a time sufficient to produce the sintered body, and reducing the firing temperature at a rate which has no significant deleterious effect on the sintered body. The firing being carried out in an atmosphere of hydrogen, the hydrogen atmosphere containing at least a sufficient partial pressure of oxygen at least after the compact becomes a closed pore body to produce the optically translucent sintered body. The yttrium oxide powder being produced by providing an aqueous yttrium nitrate solution of at least about 0.1 mole of yttrium per liter of solution, providing an aqueous oxalic acid solution having a concentration of at least about 10% excess of that required for complete reaction with the yttrium nitrate, admixing the solutions thereby precipitating yttrium oxalate hydrate, recovering the yttrium oxalate hydrate precipitate.

  8. Fibre Tip Sensors for Localised Temperature Sensing Based on Rare Earth-Doped Glass Coatings

    PubMed Central

    Schartner, Erik P.; Monro, Tanya M.

    2014-01-01

    We report the development of a point temperature sensor, based on monitoring upconversion emission from erbium:ytterbium-doped tellurite coatings on the tips of optical fibres. The dip coating technique allows multiple sensors to be fabricated simultaneously, while confining the temperature-sensitive region to a localised region on the end-face of the fibre. The strong response of the rare earth ions to changing temperature allows a resolution of 0.1–0.3 °C to be recorded over the biologically relevant range of temperatures from 23–39 °C. PMID:25407907

  9. Laser induced breakdown spectroscopy diagnosis of rare earth doped optical glasses

    SciTech Connect

    Dwivedi, Y.; Thakur, S. N.; Rai, S. B.

    2010-05-01

    In the present work, rare earth (Nd, Eu, Er, Ho) doped oxyfluoroborate glasses were studied using laser induced breakdown spectroscopy (LIBS) technique. It has been observed that rare earth elements other than the doped one also reveal their presence in the spectrum. In addition the spectral lines of elements constituting the glass matrix have also been observed. Different plasma parameters such as plasma temperature and electron density have been estimated. It is concluded that the LIBS is a potential technique to identify simultaneously the light elements (B, O, F) as well as the heavy elements (Fe, Ba, Ca, Eu, Nd, Ho, Er) present in optical glasses.

  10. Characterization of rare-earth-doped nanophosphors for photodynamic therapy excited by clinical ionizing radiation beams

    NASA Astrophysics Data System (ADS)

    Darafsheh, Arash; Najmr, Stan; Paik, Taejong; Tenuto, Michael E.; Murray, Christopher B.; Finlay, Jarod C.; Friedberg, Joseph S.

    2015-03-01

    We investigated the optical properties of novel terbium (Tb3+)-doped nanophosphors with various host compounds irradiated by clinical electron, photon, and proton beams for their potential as optical probes. The emission spectra of nanophosphors embedded in tissue-mimicking phantoms were collected by an optical fiber connected to a CCD-coupled spectrograph while the samples were irradiated with electron and photon beams generated by a medical linear accelerator and proton beams generated by a clinical cyclotron. We characterized the luminescence of such nanophosphors as a function of the beam energy and observed a dose dependency of the luminescence signal. We demonstrated x-ray luminescence, cathodoluminescence, and ionoluminescence of the nanophosphors in clinical ionizing radiation fields, which indicates their potential as downconverters of high-energy radiation into visible light.

  11. Up-conversion in rare earth-doped silica hollow spheres

    NASA Astrophysics Data System (ADS)

    Fortes, Luís M.; Li, Yigang; Réfega, Ricardo; Clara Gonçalves, M.

    2012-06-01

    In the present work, Er/Yb co-doped silica hollow spheres are prepared in a two-step process. In a first step, polystyrene-core is silica coated in situ by a modified Stöber sol-gel method and in the second one, the sacrificial polystyrene core is thermally removed. The core-shell and the hollow spheres are characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and photoluminescence spectroscopy (PL). PL measurements show up-conversion phenomena upon excitation at 975 nm, through the emission of blue (˜490 nm), green (˜523 nm and ˜536 nm) and red (˜655 nm) light. The up-conversion phenomena are discussed and modelled. The developed model explains the up-conversion phenomena of Er/Yb co-doped silica hollow spheres, with special agreement for high Yb/Er ratio.

  12. Rare earth-doped materials with enhanced thermoelectric figure of merit

    DOEpatents

    Venkatasubramanian, Rama; Cook, Bruce Allen; Levin, Evgenii M.; Harringa, Joel Lee

    2016-09-06

    A thermoelectric material and a thermoelectric converter using this material. The thermoelectric material has a first component including a semiconductor material and a second component including a rare earth material included in the first component to thereby increase a figure of merit of a composite of the semiconductor material and the rare earth material relative to a figure of merit of the semiconductor material. The thermoelectric converter has a p-type thermoelectric material and a n-type thermoelectric material. At least one of the p-type thermoelectric material and the n-type thermoelectric material includes a rare earth material in at least one of the p-type thermoelectric material or the n-type thermoelectric material.

  13. The relationship between magnetism and magneto-optical effects in rare earth doped aluminophosphate glasses

    NASA Astrophysics Data System (ADS)

    Valeanu, M.; Sofronie, M.; Galca, A. C.; Tolea, F.; Elisa, M.; Sava, B.; Boroica, L.; Kuncser, V.

    2016-02-01

    Aluminophosphate glasses from the Li2O-BaO-Al2O3-P2O5 system with the addition of nonmagnetic and paramagnetic rare earth ions, were prepared using a wet nonconventional method to process the raw materials, followed by a melting-quenching procedure. The glasses obtained were characterized with respect to their magnetic and magneto-optical properties using superconducting quantum interference device magnetometry and spectroscopic ellipsometry. The assumption of a linear dependence of the Verdet constant on the magnetic susceptibility, with a proportionality constant dependent on the type of vitreous matrix and doping ion, is critically discussed. The diamagnetic and paramagnetic contributions to the Faraday rotation were separately analyzed and specific designs for optimal active and passive elements are proposed.

  14. Structure and distortion of lead fluoride nanocrystals in rare earth doped oxyfluoride glass ceramics.

    PubMed

    Ge, Jin; Zhao, Lijuan; Guo, Hui; Lan, Zijian; Chang, Lifen; Li, Yiming; Yu, Hua

    2013-10-28

    A series of rare earth (RE) doped oxyfluoride glasses with the composition of (45-x) SiO2-5Al2O3-40PbF2-10CdF2-xRe2O3 (x = 1, 5, 10, 15) (mol%) were prepared by a traditional melt-quenching method. Glass ceramics (GCs) were obtained after thermal treatment and characterized by X-ray diffraction (XRD) to investigate the nanocrystal structure and distortion. Both the dopant type and the doping level play an important role in the distortion of the PbF2-RE lattice. It is found that a cubic Pb3REF9 phase forms in low doping GCs, a tetragonal PbREF5 phase forms in middle doping GCs and cubic PbRE3F11 forms in high doping GCs. Accordingly, the site symmetry of RE(3+) dopants in β-PbF2 nanocrystal undergoes a transition of Oh···D4h···Oh with the increase of doping level. The change in the ligands coordinating the RE(3+) ions was further illustrated by the optical changes in Yb-doped GCs. This paper provides insights on the nanocrystal structure of RE at the atomic level and tries to make a complete description of the nanocrystal structure and distortion in these glass-ceramic materials, which will benefit the optimization of optical properties. PMID:24019159

  15. Rare-earth-doped biological composites as in vivo shortwave infrared reporters

    PubMed Central

    Naczynski, D.J.; Tan, M.C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C.M.; Riman, R.E.; Moghe, P.V.

    2013-01-01

    The extension of in vivo optical imaging for disease screening and image-guided surgical interventions requires brightly-emitting, tissue-specific materials that optically transmit through living tissue and can be imaged with portable systems that display data in real-time. Recent work suggests that a new window across the short wavelength infrared region can improve in vivo imaging sensitivity over near infrared light. Here we report on the first evidence of multispectral, real-time short wavelength infrared imaging offering anatomical resolution using brightly-emitting rare-earth nanomaterials and demonstrate their applicability toward disease-targeted imaging. Inorganic-protein nanocomposites of rare-earth nanomaterials with human serum albumin facilitated systemic biodistribution of the rare-earth nanomaterials resulting in the increased accumulation and retention in tumor tissue that was visualized by the localized enhancement of infrared signal intensity. Our findings lay the groundwork for a new generation of versatile, biomedical nanomaterials that can advance disease monitoring based on a pioneering infrared imaging technique. PMID:23873342

  16. Synthesis and characterization of rare earth doped barium fluoride nanoparticles and derivatized copper phthalocyanine nanoparticles

    NASA Astrophysics Data System (ADS)

    Bender, Christopher Mark

    1998-12-01

    Nanoparticles of neodymium doped barium fluoride (Nd:BaFsb2) were synthesized for use as the inorganic component of an optical amplifier composite. Microemulsions were used to maintain domain size in the nano-regime (˜100 nm), and decreasing the volume fraction of the aqueous content, while simultaneously increasing the volume fraction of the cosurfactant (methanol), gave a linear relationship between decreasing domain size and increasing volume fraction of alcohol. As Nd was added to the BaFsb2 host, direct incorporation was observed at low dopant levels (0-10 mol-%), a two-phase mixture was observed at intermediate dopant levels (10-50 mol-%), and a nearly amorphous product resulted with very high Nd-dopant levels (>50 mol-%). Fluorescence measurements of the solids showed that concentration quenching was delayed until unusually high levels, probably as a result of the lost crystallinity. Praseodymium and ytterbium codoped barium fluoride (Pr,Yb:BaFsb2) were also synthesized in microemulsions. Though as-prepared powders did not fluoresce, treatment with high temperatures (900sp°C) and dynamic vacuum resulted in products which would fluoresce at 1.3 mum. Lower temperature treatments (500-750sp°C) were used to decrease sintering, however this resulted in Ybsp{3+} products in which Ybsp{3+} fluorescence was quenched by exposure to air. Contamination due to water and hydroxide is believed to be the reason. Ethanolic microemulsions were used to make copper phthalocyanine (CuPc), which was modified with either zinc phthalocyanine (ZnPc) or copper phthalcyaninesulfonic acid by means of a flow system. The sulfonic acid derivative was lost upon aqueous washing. The zinc derivatized product gave a dispersion in n-hexylamine, which was stable for seven days. The mole ratio of Cu:Zn was 1:1 for the solids dispersed in n-hexylamine, and was 6:1 for the solids that were not dispersed. Because underivatized CuPc formed by the same method did not result in a dispersed product, the dispersion mechanism is postulated to be due to interaction between the ZnPc on the surface and the n-hexylamine.

  17. Synthesis, characterization and processing of active rare earth-doped chalcohalide glasses

    NASA Astrophysics Data System (ADS)

    Debari, Roberto Mauro

    Applications for infrared-transmitting non-oxide glass fibers span a broad range of topics. They can be used in the military, the medical field, telecommunications, and even in agriculture. Rare earth ions are used as dopants in these glasses in order to stimulate emissions in the infrared spectral region. In order to extend the host glass transmission further into the infrared, selenium atoms were substituted for sulfur in the established Ge-S-I chalcohalide glass system and the fundamental properties of these latter glasses were explored. Over 30 different compositions in the Ge-Se-I glass system were investigated as to their thermal and optical properties. The resulting optimum host with a composition of Ge15Se80I5 has a broad transmission range from 0.7 mum to 17.0 mum and a high working range over 145°C. The host glass also exhibited a Tg of 125°C, making rotational casting of a cladding tube for rod-and-tube fiberization a possibility. The base glass was doped with 1000 to 4000 ppm/wt of erbium, dysprosium, or neodymium. When doped with Er3+-ions, absorptions at 1.54 mum and 3.42 mum were observed. Nd3+-doping resulted in an absorption peak near 4.24 mum and Dy3+ ions caused absorption at 1.30 mum. Fluorescence emissions were found for neodymium at 1.396 mum with a FWHM of 74 nm, and for dysprosium at 1.145 mum with a FWHM of 75 nm, at 1.360 mum with a FWHM of 98 rim and at 1.674 mum with a FWHM of 60 nm. High optical quality tubes of the host glass could be formed using rotational casting in silica ampoules. Glass tubes, 4 to 6 cm long with a 1 cm outer diameter and a tailored inner-hole diameter ranging from 0.4 to 0.6 cm could be synthesized by this process with excellent dimensional tolerances around the circumference as well as along the length. A preform of this size provided 25 continuous meters of unclad fiber with diameters ranging from 140 to 200 mum. A UV-curable acrylate cladding was applied via an external coating cup. An x-ray analysis of the resulting fiber verified the constituents of the fiber. Due to tradeoffs between thermal properties, optical properties and rare earth solubility, the Ge-Se-I glass system must still be optimized prior to use as an active fiber device. Nevertheless, the viability of this host system has been demonstrated in this investigation. Some very promising advantages to adding halides to chalcogenide glass systems have been confirmed, including the tailoring of glass transition temperatures, enhancement of rare earth solubility, expanded fluorescence emissions in the IR, and suppression of some impurity absorption bands. Also, the potential for rod-and-tube fiberization utilizing the rotational casting method for tube synthesis has been established along with its resulting pristine core-clad interface. This research provides a foundation for active fiber device applications in the 2 to 10 mum spectral region.

  18. Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

    1990-01-01

    Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

  19. Compensation for effects of ambient temperature on rare-earth doped fiber optic thermometer

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sotomayor, J. L.; Krasowski, M. J.; Eustace, J. G.

    1989-01-01

    Variations in ambient temperature have a negative effect on the performance of any fiber optic sensing system. A change in ambient temperature may alter the design parameters of fiber optic cables, connectors, sources, detectors, and other fiber optic components and eventually the performance of the entire system. The thermal stability of components is especially important in a system which employs intensity modulated sensors. Several referencing schemes have been developed to account for the variable losses that occur within the system. However, none of these conventional compensating techniques can be used to stabilize the thermal drift of the light source in a system based on the spectral properties of the sensor material. The compensation for changes in ambient temperature becomes especially important in fiber optic thermometers doped with rare earths. Different approaches to solving this problem are searched and analyzed.

  20. Luminescence properties of rare earth doped metal oxide nanostructures: A case of Eu-ZnO

    NASA Astrophysics Data System (ADS)

    Sahu, D.; Acharya, B. S.; Panda, N. R.

    2016-05-01

    The present study reports the growth and luminescence properties of Eu doped ZnO nanostructures. The experiment has been carried out by synthesizing the materials by simple wet-chemical method. X-ray diffraction (XRD) studies show expansion of ZnO lattice with the incorporation of Eu ions which has been confirmed from the appearance of Eu2O3 as a minor phase in the XRD pattern. The estimation of crystallite size from XRD results matches closely with the results obtained from transmission electron microscopy. Further, these results show the formation of nanosized Eu-ZnO particles of average size around 60 nm stacked on each other. FTIR studies show the presence of both Zn-O and Eu-O modes in the spectra supporting the results obtained from XRD. The interesting results obtained from photoluminescence (PL) measurements show the presence of both band edge emission in UV region and the defect emissions in violet, blue and green region. The appearance of 5D0→7FJ transitions of Eu3+ ions in red region clearly suggests the possible occurrence of energy transfer between the energy states of ZnO host and Eu3+ ions.

  1. Properties and Applications of Laser-Induced Gratings in Rare Earth Doped Glasses.

    NASA Astrophysics Data System (ADS)

    Behrens, Edward Grady

    Scope and method of study. Four-wave-mixing techniques were used in an attempt to create permanent laser-induced grating in Pr^{3+}-, Nd ^{3+}-, Eu^ {3+}-, and Er^{3+ }-doped glasses. The permanent laser-induced grating signal intensity and build-up and erase times were investigated as function of the write beam crossing angle, write beam power, and temperature. Thermal lensing measurements were conducted on Eu^{3+} - and Nd^{3+}-doped glasses and room temperature Raman and resonant Raman spectra were obtained for Eu^{3+}-doped glasses. The permanent laser-induced grating signal intensity was studied in Eu^{3+} -doped alkali-metal glasses as a function of the alkali -metal network modifier ion and a model was developed by treating the sample as a two-level system. Optical device applications of the permanent laser-induced gratings were studied by creating some simple devices. Findings and conclusions. Permanent laser-induced gratings were created in the Pr^{3+ }- and Eu^{3+} -doped glasses. The permanent laser-induced grating is associated with a structural phase change of the glass host. The structural change is produced by high energy phonons which are emitted by radiationless relaxation processes of the rare earth ion. Nd^{3+} and Er^{3+} relax nonradiatively by the emission of phonons of much lower energy which are unable to produce the structural phase change needed to form a permanent laser-induced grating. The difference in energy of the emitted phonons is responsible for the differing characteristics of the thermal lensing experiments. The model does a good job of predicting the experimental results for the asymmetry and other parameters of the two-level system. The application of these laser -induced gratings for optical devices demonstrates their importance to optical technology.

  2. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    SciTech Connect

    Kunkel, Nathalie Goldner, Philippe; Ferrier, Alban; Thiel, Charles W.; Cone, Rufus L.; Ramírez, Mariola O.; Bausá, Luisa E.; Ikesue, Akio

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu{sup 3+} doped Y {sub 2}O{sub 3} transparent ceramics. This result is obtained on the {sup 7}F{sub 0}→{sup 5}D{sub 0} transition in Eu{sup 3+} doped Y {sub 2}O{sub 3} ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ∼15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu{sup 3+} concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  3. Rare-earth-doped photonic crystals for the development of solid-state optical cryocoolers

    NASA Astrophysics Data System (ADS)

    Garcia-Adeva, Angel J.; Balda, Rolindes; Fernández, Joaquín

    2009-02-01

    Optical cryocoolers made of luminescent solids are very promising for many applications in the fields of optical telecommunications, aerospace industry, bioimaging, and phototherapy. To the present day, researchers have employed a number of crystal and glass host materials doped with rare-earth ions (Yb3+, Tm3+, and Er3+) to yield anti-Stokes optical refrigeration. In these host materials, the attainable minimum temperature is limited by the average phonon energy of the lattice and the impurity concentration. However, recently Ruan and Kaviany have theoretically demonstrated that the cooling efficiency can be dramatically enhanced when the host material doped with rare-earth ions is ground into a powder made of sub-micron size grains. This is due to two facts: firstly, the phonon spectrum is modified due to finite size of the grains and, secondly, light localization effects increase the photon density, leading to an enhanced absorptivity. In the present work, we propose that using a photonic crystal doped with rare earth ions offers many advantages with regards to getting a larger cooling efficiency at room temperature when compared to standard bulk materials or nano-powders. Indeed, apart to analogous phenomena to the ones predicted in nano-crystalline powders, there is the possibility of directly controlling the spontaneous emission rate of the ions embedded in the structure and, also, the absorption rate in the Stokes side of the absorption band by adequately tuning the density of photonic states, thus obtaining a large improvement in the cooling efficiency.

  4. Power scaling estimate of crystalline fiber waveguides with rare earth doped YAG cores

    NASA Astrophysics Data System (ADS)

    Li, Da; Hong, Pengda; Meissner, Stephanie K.; Meissner, Helmuth E.

    2016-03-01

    Power scaling analysis based on the model by Dawson et al. [1,2] for circular core fibers has been applied to estimating power scaling of crystalline fiber waveguides (CFWs) with RE3+ doped single crystalline or ceramic YAG (RE=rare earth: Yb, Er, Tm and Ho). Power scaling limits include stimulated Brillouin scattering, thermal lensing effect, and limits to coupling of pump light into CFWs. The CFW designs we have considered consist, in general, of a square doped RE3+:YAG core, an inner cladding of either undoped or laser-inactive-ion-doped YAG and an outer cladding of sapphire. The presented data have been developed for the structures fabricated using the Adhesive-Free Bonding (AFB®) technique, but the results should be essentially independent of fabrication technique, assuming perfect core/inner cladding/outer cladding interfaces. Hard power scaling limits exist for a specific CFW design and are strongly based on the physical constants of the material and its spectroscopic specifics. For example, power scaling limit was determined as ~16 kW for 2.5% ceramic Yb:YAG/YAG (core material/inner cladding material) at fiber length of 1.7 m and core diameter of 69 μm. Considering the present manufacturing limit for CFW length to be, e.g., 0.5 m, the actual maximum output power will be limited to ~4.4 kW for a Yb:YAG/YAG CFW. Power limit estimates have also been computed for Er3+, Tm3+ and Ho3+doped core based CFWs.

  5. Influence of rare earth doping on thermoelectric properties of SrTiO{sub 3} ceramics

    SciTech Connect

    Liu, J. Wang, C. L.; Li, Y.; Su, W. B.; Zhu, Y. H.; Li, J. C.; Mei, L. M.

    2013-12-14

    Thermoelectric properties of SrTiO{sub 3} ceramics, doped with different rare earth elements, were investigated in this work. It's found that the ionic radius of doping elements plays an important role on thermoelectric properties: SrTiO{sub 3} ceramics doped with large rare earth ions (such as La, Nd, and Sm) exhibit large power factors, and those doped with small ions (such as Gd, Dy, Er, and Y) exhibit low thermal conductivities. Therefore, a simple approach for enhancing the thermoelectric performance of SrTiO{sub 3} ceramics is proposed: mainly doped with large ions to obtain a large power factor and, simultaneously, slightly co-doped with small ions to obtain a low thermal conductivity. Based on this rule, Sr{sub 0.8}La{sub 0.18}Yb{sub 0.02}TiO{sub 3} ceramics were prepared, whose ZT value at 1 023 K reaches 0.31, increasing by a factor of 19% compared with the single-doped counterpart Sr{sub 0.8}La{sub 0.2}TiO{sub 3} (ZT = 0.26)

  6. Low-temperature thermoluminescence spectra of rare-earth-doped lanthanum fluoride

    SciTech Connect

    Yang, B.; Townsend, P.D.; Rowlands, A.P.

    1998-01-01

    Lanthanum fluoride consistently shows two strong thermoluminescence glow peaks at low temperature in pure material near 90 and 128 K. A model is proposed in which these thermoluminescence peaks arise from the annealing of halogen defect sites, similar to the H and V{sub k} centers of the alkali halides. Relaxation and decay of these defects in the pure LaF{sub 3} lattice results in broad-band intrinsic luminescence. Addition of rare-earth-impurity ions has two effects. First, the broad-band emission is replaced by narrow-band line emission defined by the trivalent rare-earth dopants. Second, it preferentially determines the formation of the halogen defect sites at impurity lattice sites and such sites appear to increase in thermal stability since the glow peak temperature increases from 128 K in the intrinsic material up to 141 K through the sequence of rare-earth dopants from La to Er. The temperature movement directly correlates with the changes in ionic size of the rare-earth ions, when allowance is made for differences in effective coordination number of the impurity ions. The data suggest two alternative lattice sites can be occupied. The model emphasizes that the intense thermoluminescence signals arise from internal charge rearrangements and annealing of defect complexes, rather than through the more conventional model of separated charge traps and recombination centers. At higher temperatures there is a complex array of glow peaks which depend not only on the dopant concentration but also are specific to each rare earth. Such effects imply defect models giving thermoluminescence within localized complexes and possible reasons are mentioned. {copyright} {ital 1998} {ital The American Physical Society}

  7. Synthesis and characterization of rare earth doped ZrO{sub 2} nanophosphors

    SciTech Connect

    Agrawal, Sadhana E-mail: jsvikasdubey@gmail.com; Dubey, Vikas E-mail: jsvikasdubey@gmail.com

    2014-10-24

    In this paper, we reports synthesis, characterization and thermoluminescence (TL) glow curves of europium and dysprosium activated zirconium dioxide (ZrO{sub 2}: Eu{sup 3+}, Dy{sup 3+}) phosphor with variable concentration of europium and fixed concentration of dysprosium. The sample was prepared by the Solid state method; thereafter, the TL glow curves were recorded for different concentration of europium with 20 min UV exposure at a heating rate of 6.7°C/s. The trapping parameters for synthesized phosphors of ZrO{sub 2}: Eu{sup 3+}, Dy{sup 3+} have been calculated by using a peak shape method. The sample was characterized for structural analysis by XRD (X-ray diffraction) and morphological analysis by FEGSEM (field emission gun scanning electron microscope) and FTIR (Fourier transform infrared spectroscopy). The effect of variable europium concentration and fixed dysprosium concentration on TL studies were interpreted and the formation of trap depth and reproducibility of prepared phosphor were analyzed by TL glow curves. The peak temperature on TL less than 200°C shows the formation of deep trapping in prepared sample. The high temperature peak shows the less fading and more stability in prepared sample.

  8. Synthesis and thermoluminescence properties of rare earth-doped NaMgBO3 phosphor.

    PubMed

    Khan, Z S; Ingale, N B; Omanwar, S K

    2016-05-01

    Rare earth (Dy(3+) and Sm(3+))-doped sodium magnesium borate (NaMgBO3) is synthesized by solution combustion synthesis method keeping their thermoluminescence properties in mind. The reaction produced very stable crystalline NaMgBO3:RE (RE = Dy(3+), Sm(3+)) phosphors. The phosphors are exposed to (60)Co gamma-ray radiations dose of varying rate from 5 to 25 Gy, and their TL characteristics with kinetic parameters are studied. NaMgBO3:Dy(3+) phosphor shows two peaks for lower doping concentration of Dy(3+) while it reduced to single peak for the higher concentrations of activator Dy(3+). NaMgBO3:Dy(3+) shows the major glow peak around 200 °C while NaMgBO3:Sm(3+) phosphors show two well-separated glow peaks at 200 and 332 °C respectively. The thermoluminescence intensity of these phosphors was compare with the commercially available TLD-100 (Harshaw) phosphor. The TL responses for gamma-ray radiations dose were found to be linear from 5 to 25 Gy for both phosphors while the fading in each case is calculated for the tenure of 45 days. PMID:26178829

  9. Refinement and design of rare earth doped photonic crystal fibre amplifier using an ANN approach

    NASA Astrophysics Data System (ADS)

    Mescia, Luciano; Fornarelli, Girolamo; Magarielli, Donato; Prudenzano, Francesco; De Sario, Marco; Vacca, Francesco

    2011-10-01

    A number of numerical and analytical methods with different complexity can be exploited to analyse fibre amplifiers. Conventional approaches make the refinement and design of the devices extremely time consuming, especially when several design parameters have to be simultaneously optimised to obtain the desired performance in terms of gain and noise figure. In order to tackle this issue, a method based on an artificial neural network to perform the refinement and design of erbium doped photonic crystal fibre amplifiers is proposed in this paper. The capability of the neural network to capture the nonlinear functional link among the physical and geometrical characteristics of the fibre amplifier and its gain and noise figure is exploited. In the refinement it is employed to determine the optimal values of the parameters maximising the gain. In the design, it is used to develop an inverse problem solver in order to determine the values of the parameters corresponding to the known values of gain. Numerical results show that the proposed approach finds the refinement/design parameters in good accordance with respect to the conventional one.

  10. Thermoluminescence mechanism in rare-earth-doped magnesium tetra borate phosphors

    NASA Astrophysics Data System (ADS)

    Annalakshmi, O.; Jose, M. T.; Madhusoodanan, U.; Sridevi, J.; Venkatraman, B.; Amarendra, G.; Mandal, A. B.

    2014-07-01

    Magnesium tetra borate (MTB) doped with rare earths (REs) was prepared by the solid state sintering technique. Among the different RE dopants studied in this phosphor, gadolinium-doped phosphors resulted in a dosimetric peak at a relatively higher temperature. The thermoluminescence (TL) emission spectra of RE-doped MTB showed characteristic RE 3+ emissions. Electron paramagnetic resonance measurements were carried out in these phosphors to identify the defect centers formed during gamma irradiation and to establish a mechanism for the TL process. Signals corresponding to (BO 3)2-, O v- were seen upon irradiation which vanished on annealing at 250 °C, showing the role of these centers in the TL process. The thermal activation energies calculated based on the decay of these signals matched well with those calculated on the basis of the usual conventional method showing the validity of the mechanism of TL.

  11. A spray drying system for synthesis of rare-earth doped cerium oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sharma, Vaneet; Eberhardt, Kathryn M.; Sharma, Renu; Adams, James B.; Crozier, Peter A.

    2010-08-01

    We have constructed a spray dryer to synthesize doped ceria nanoparticles. The system was employed to synthesize mixed oxide nanoparticles of praseodymium doped CeO 2 (Ce 0.97Pr 0.03O 2, Ce 0.90Pr 0.10O 2, and Ce 0.80Pr 0.20O 2). X-ray diffraction confirmed the fluorite-like cubic crystal structure of the synthesized materials after heat treatment at 700 °C for 2 h. As-dried CeO 2 samples were found to have an average particle size of (6.0 ± 0.2) nm which increased to (17.0 ± 0.4) nm after heat treatment with an improvement in crystallinity. The particle size increased steadily with Pr content. The lattice parameter of Pr-doped CeO 2 was found to increase or decrease with Pr content depending on the heat treatment process.

  12. Direct quantification of rare earth doped titania nanoparticles in individual human cells.

    PubMed

    Jeynes, J C G; Jeynes, C; Palitsin, V; Townley, H E

    2016-07-15

    There are many possible biomedical applications for titania nanoparticles (NPs) doped with rare earth elements (REEs), from dose enhancement and diagnostic imaging in radiotherapy, to biosensing. However, there are concerns that the NPs could disintegrate in the body thus releasing toxic REE ions to undesired locations. As a first step, we investigate how accurately the Ti/REE ratio from the NPs can be measured inside human cells. A quantitative analysis of whole, unsectioned, individual human cells was performed using proton microprobe elemental microscopy. This method is unique in being able to quantitatively analyse all the elements in an unsectioned individual cell with micron resolution, while also scanning large fields of view. We compared the Ti/REE signal inside cells to NPs that were outside the cells, non-specifically absorbed onto the polypropylene substrate. We show that the REE signal in individual cells co-localises with the titanium signal, indicating that the NPs have remained intact. Within the uncertainty of the measurement, there is no difference between the Ti/REE ratio inside and outside the cells. Interestingly, we also show that there is considerable variation in the uptake of the NPs from cell-to-cell, by a factor of more than 10. We conclude that the NPs enter the cells and remain intact. The large heterogeneity in NP concentrations from cell-to-cell should be considered if they are to be used therapeutically. PMID:27255758

  13. Pulsed laser deposition of rare-earth-doped glasses: a step toward lightwave circuits

    NASA Astrophysics Data System (ADS)

    Morea, R.; Fernandez, J.; Balda, R.; Gonzalo, J.

    2016-02-01

    Pulsed Laser Deposition (PLD) is used to produce Er-doped lead-niobium germanate (PbO-Nb2O5-GeO2) and fluorotellurite (TeO2-ZnO-ZnF2) thin film glasses. Films having high refractive index, low absorption and large transmission are obtained in a narrow processing window that depends on the actual PLD configuration (O2 pressure ˜a few Pa, Laser energy density ˜2-3 J cm-2 for the results presented in this work). However, Er-doped thin film glasses synthetized at room temperature using these experimental parameters show poor photoluminescence (PL) performance due to non-radiative decay channels, such as a large OH- concentration. Thermal annealing allows improving PL intensity and lifetime (τPL), the latter becoming close to that of the parent Er-doped bulk glass. In addition, the use of alternate PLD from host glass and rare-earth targets allows the synthesis of nanostructured thin film glasses with a controlled rare-earth concentration and in-depth distribution, as it is illustrated for Er-doped PbO-Nb2O5-GeO2 film glasses. In this case, PL intensity at 1.53 μm increases with the spacing between Er-doped layers to reach a maximum for a separation between Er-doped layers >= 5 nm, while τPL is close to the bulk value independently of the spacing. Finally, the comparison of these results with those obtained for films grown by standard PLD from Er-doped glass targets suggests that nanostructuration allows reducing rare-earth clustering and concentration quenching effects.

  14. An alternative experimental approach to produce rare-earth-doped SiOx films

    NASA Astrophysics Data System (ADS)

    Zanatta, A. R.

    2016-04-01

    Rare-earth (RE) doped silicon-oxide (SiOx) films were prepared by sputtering a combined Si + RE2O3 target with argon ions. The study comprised the neodymium (Nd) and samarium (Sm) rare-earth species and the Si + RE2O3 targets were obtained by partially covering a solid disc of Si with area-defined thin layers of Nd2O3 or Sm2O3 powders. The films were investigated by energy-dispersive x-ray, Raman scattering, optical transmission, and photo-luminescence measurements. According to the experimental results, in the as-deposited form, the films were amorphous and presented RE and oxygen concentrations that scaled with the RE2O3 target area. Additional compositional-structural changes were obtained by thermal annealing the films under a flow of oxygen. Within these changes, one can mention: increase of oxygen concentration, optical bandgap widening, partial Si crystallization, and the development of RE-related light emission. The main aspects associated to the production and structural-optical properties of the films, as determined either by the deposition conditions or by the annealing treatments, are presented and discussed in detail.

  15. Synthesis and characterization of rare earth doped novel optical materials and their potential applications

    NASA Astrophysics Data System (ADS)

    Pokhrel, Madhab

    There are many application of photonic materials but selection of photonic materials are always constrained by number of factors such as cost, availability of materials, thermal and chemical stability, toxicity, size and more importantly ease of synthesis and processing along with the efficient emission. For example, quantum dots are efficient emitter but they are significantly toxic, whereas dyes are also efficient emitters but they are chemically unstable. On the other hand, display and LED requires the micron size particles but bio application requires the nano-sized particles. On the other hand, laser gain media requires the ceramics glass or single crystal not the nanoparticles. So, realization of practical optical systems critically depends on suitable materials that offer specific combinations of properties. Solid-state powders such as rare-earth ions doped nano and micron size phosphors are one of the most promising candidates for several photonic applications discussed above. In this dissertation, we investigate the upconversion (UC) fluorescence characteristics of rare earth (RE) doped M2O2S (M = Y, Gd, La) oxysulphide phosphors, for near-infrared to visible UC. Both nano and micron size phosphors were investigated depending on their applications of interest. This oxysulphide phosphor possesses several excellent properties such as chemical stability, low toxicity and can be easily mass produced at low cost. Mainly, Yb3+, Er3+, and Ho3+ were doped in the host lattice, resulting in bright red, green, blue and NIR emissions under 980 nm and 1550 nm excitation at various excitation power densities. Maximum UC quantum yields (QY) up to 6.2 %, 5.8%, and 4.6% were respectively achieved in Yb3+/Er3+ :La2O2S, Y2O2S, and Gd2O 2S. Comparisons have been made with respect to reported most efficient upconverting phosphors beta-NaYF4:20 % Yb/ 2% Er. We believe that present phosphors are the most efficient and lower excitation threshold upconverting phosphors at 980 and 1550 nm excitation reported to date for UV, green, red and NIR emissions, which makes them potential candidates for many photonic applications. In addition, UC mechanisms were proposed in these phosphors based on the time resolved spectroscopic measurements, including concentration, and power dependence studies. Potential applications of these phosphors in different areas such as solar cells, displays, etc. have been explored depending on the measured absolute quantum yield as well as color coordinate measurements. In addition, the application of nanophosphors for bioimaging application has been explored. Results from imaging of the nanoparticles together with aggregates of cultured cells have been studied. In vitro toxicity tests were conducted too. Nanoparticles internalization into the nucleus and cytoplasm were conformed using 3D reconstruction of the Z-stack images collected using the confocal mode of the two photon microscope. Measurement of the magnetization of the phosphor was conducted to study the paramagnetic strength of these Gd based nanoparticles. Magnetic resonance imaging with better contrast was also collected using these particles. Finally, the application of these UC phosphors for solar cell and display has been discussed briefly.

  16. Monolithically integrated active waveguides and lasers using rare-earth doped spin-on glass

    SciTech Connect

    Ashby, C.I.H.; Sullivan, C.T.; Vawter, G.A.

    1996-09-01

    This LDRD program No. 3505.230 explored a new approach to monolithic integration of active waveguides and rare-earth solid state lasers directly onto III-V substrates. It involved selectively incorporating rare-earth ions into spin-on glasses (SOGs) that could be solvent cast and then patterned with conventional microelectronic processing. The patterned, rare-earth spin-on glasses (RESOGs) were to be photopumped by laser diodes prefabricated on the wafer and would serve as directly integrated active waveguides and/or rare-earth solid state lasers.

  17. Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium

    SciTech Connect

    Page, R.H.; Schaffers, K.I.; Waide, P.A.; Tassano, J.B.; Payne, S.A.; Kruplce, W.F.; Bischel, W.K.

    1997-07-26

    We discuss the upconversion luminescence efficiencies of phosphors that generate red, green, and blue light. The phosphors studied are single crystals and powders co-doped with Er{sup 3+} and Yb{sup 3+}, and with Tm{sup 3+} and Yb{sup 3+}. The Yb ions are pumped near 980 nm; transfers of two or three quanta to the co-doped rare earth ion generate visible luminescence. The main contribution embodied in this work is the quantitative measurement of this upconversion efficiency, based on the use of a calibrated integrating sphere, determination of the fraction of pump light absorbed, and careful control of the pump laser beam profile. The green phosphors are the most efficient, yielding efficiency values as high as 4 %, with the red and blue materials giving 1 - 2 %. Saturation was observed in all cases, suggesting that populations of upconversion steps of the ions are maximized at higher power. Quasi-CW modeling of the intensity- dependent upconversion efficiency was attempted; input data included level lifetimes, transition cross sections, and cross-relaxation rate coefficients. The saturation of the Yb,Er:fluoride media is explained as the pumping of Er{sup 3+} ions into a bottleneck (long-lived state)- the {sup 4}I{sub 13/2} metastable level, making them unavailable for further excitation transfer. 32 refs., 5 figs., 3 tabs.

  18. Metal enhanced fluorescence in rare earth doped plasmonic core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Derom, S.; Berthelot, A.; Pillonnet, A.; Benamara, O.; Jurdyc, A. M.; Girard, C.; Colas des Francs, G.

    2013-12-01

    We theoretically and numerically investigate metal enhanced fluorescence of plasmonic core-shell nanoparticles doped with rare earth (RE) ions. Particle shape and size are engineered to maximize the average enhancement factor (AEF) of the overall doped shell. We show that the highest enhancement (11 in the visible and 7 in the near-infrared) is achieved by tuning either the dipolar or the quadrupolar particle resonance to the rare earth ion’s excitation wavelength. Additionally, the calculated AEFs are compared to experimental data reported in the literature, obtained in similar conditions (plasmon mediated enhancement) or when a metal-RE energy transfer mechanism is involved.

  19. Infrared emission from zinc sulfide: Rare-earth doped thin films

    NASA Astrophysics Data System (ADS)

    Kale, Ajay; Shepherd, Nigel; Glass, William; DeVito, David; Davidson, Mark; Holloway, Paul H.

    2003-09-01

    Infrared (IR) electroluminescent (EL) thin film phosphors were radio frequency magnetron sputter deposited by cosputtering of an undoped ZnS target together with ZnS: 1.5 mole % ErF3 or ZnS: 1.5 mole % NdF3 targets. The ZnS:ErF3 and ZnS:NdF3 thin film phosphors were annealed in a N2 ambient at temperatures ranging from 350 to 475 °C for 1 h to increase radiance. The maximum EL radiance observed was 28 μW/cm2 at 1550 nm for ZnS:ErF3, and 26 μW/cm2 at 910 nm and 15 μW/cm2 at 1060 nm for ZnS:NdF3 (at 40 V above the threshold voltage) after a 425 °C, 1 h anneal in nitrogen. For anneals above 425 °C visible emission increased, while near infrared (NIR) emission from both ZnS:ErF3 and ZnS:NdF3 was either constant or decreased. For ZnS:ErF3, the 1550 nm NIR peak decreased, but the 990 nm peak remained constant in intensity. The crystallinity of ZnS was improved by annealing, and these results are consistent with the postulate that residual defects limit the acceleration of "hot" electrons for anneals at ⩽425 °C. Under these conditions, hot electrons only have sufficient energy to excite Er+3 into the lower lying 4I13/2 excited state which leads to 1550 nm NIR emission. With increasing annealing temperatures, hot electrons can excite from the 4I15/2 ground state into higher energy excited states (e.g., the 4F7/2 state for 990 nm emission). The NIR emissions from ZnS:NdF3 at 910 and 1060 nm originate from the same excited state and both peaks exhibited maximum NIR intensities after annealing at 425 °C. While the emission spectra from Er were independent of annealing temperature, peak shifts were observed for Nd. These shifts were discussed in terms of the nephelauxetic effect and hybridization of the 5d-4f orbitals.

  20. Magneto-Optical Studies of Rare Earth Doped III-V Nitrides

    NASA Astrophysics Data System (ADS)

    Mitchell, Brandon; Woodward, Nathaniel; Poplawsky, Jonathan; Dierolf, Volkmar; Jiang, H. X.

    2012-02-01

    We investigated the site selective optical and magneto-optical properties of Neodymium doped Gallium and Aluminum Nitride and Erbium doped Gallium Nitride. For our current study, we applied magnetic fields parallel and antiparallel to the C-axis of the crystals and observed the resulting Zeeman splitting both in excitation and emission transitions. On the basis of these measurements, we determined the effective g-factors of all the states involved in the Nd^3+ transitions. For erbium doping, we observed the Zeeman splitting of the ^4I13/2 and ^4I15/2 levels. Due to small crystal field splitting and large Zeeman splitting, the assignment of levels and corresponding g-factors is very complex. In addition, we observed unexpected asymmetries in the emission intensities when we compared the spectra obtained for fields parallel and antiparallel to the growth direction. The degree of this asymmetry depends on the substrate material and is unambiguously related to the strain and resulting internal fields that are induced by lattice mismatch. The asymmetry behavior parallels the ferromagnetic behavior that is induced by the rare earth ions in GaN and hence our observation suggests that magnetization can be controlled by strain.

  1. Piezoelectric/photoluminescence effects in rare-earth doped lead-free ceramics

    NASA Astrophysics Data System (ADS)

    Yao, Qirong; Wang, Feifei; Jin, Chengchao; Tang, Yanxue; Wang, Tao; Shi, Wangzhou

    2013-10-01

    In the present work, we report the environmentally-friendly multifunctional effects—piezoelectric/photoluminescence effects, which originated from the combination of the electromechanical properties and the photoluminescence effect through introducing the rare-earth elements (Pr and Eu) into the (Bi0.5Na0.5)TiO3-BaTiO3 ceramics with the composition around the morphotropic phase boundary. Compared to the pure piezoelectric ceramic, the proposed system simultaneously exhibited enhanced ferroelectric, piezoelectric, dielectric properties along with strong photoluminescence effects, which exhibited potential applications in sensor, and electro-mechano-optical integration. In addition, the present work also provides a promising path for us to fabricate multifunctional composites.

  2. Pressure studies of alkali, alkaline earth and rare earth doped C{sub 60} superconductors

    SciTech Connect

    Schirber, J.E.; Bayless, W.R.; Kortan, A.R.; Ozdas, E.; Zhou, O.; Murphy, D.; Fischer, J.E.

    1994-06-01

    Pressure studies of the superconducting transition temperature T{sub c} of the alkali metal doped C{sub 60} compounds helped to establish a universal curve of T{sub c} versus lattice constant upon which nearly all of these materials lie. Various theoretical schemes incorporate this finding and suggest that only the lattice parameter and not the details of the dopant determine T{sub c}. Ca{sub 5}C{sub 60}, the highest T{sub c} member of the alkaline earth doped C{sub 60} superconductor has a T{sub c} which lies on this universal curve so this material, from these considerations, should have the same large negative pressure derivative as the alkali doped superconductors. We have measured dT{sub c}/dP for Ca{sub 5}C{sub 60} and for Yb{sub x}C{sub 60} (x near 3) and find small and positive values indicating that the theoretical models must be expanded to include band structure effects.

  3. In vivo demonstration of enhanced radiotherapy using rare earth doped titania nanoparticles

    NASA Astrophysics Data System (ADS)

    Townley, Helen E.; Kim, Jeewon; Dobson, Peter J.

    2012-07-01

    Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal structure. Specific activation of the nanoparticles by X-ray can result in generation of ROS leading to cell death in a tumour-localized manner. We show here that intratumoural injection of RE doped titania nanoparticles can enhance the efficacy of radiotherapy in vivo.Radiation therapy is often limited by damage to healthy tissue and associated side-effects; restricting radiation to ineffective doses. Preferential incorporation of materials into tumour tissue can enhance the effect of radiation. Titania has precedent for use in photodynamic therapy (PDT), generating reactive oxygen species (ROS) upon photoexcitation, but is limited by the penetration depth of UV light. Optimization of a nanomaterial for interaction with X-rays could be used for deep tumour treatment. As such, titania nanoparticles were doped with gadolinium to optimize the localized energy absorption from a conventional medical X-ray, and further optimized by the addition of other rare earth (RE) elements. These elements were selected due to their large X-ray photon interaction cross-section, and potential for integration into the titania crystal structure. Specific activation of the nanoparticles by X-ray can result in generation of ROS leading to cell death in a tumour-localized manner. We show here that intratumoural injection of RE doped titania nanoparticles can enhance the efficacy of radiotherapy in vivo. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30769c

  4. Direct quantification of rare earth doped titania nanoparticles in individual human cells

    NASA Astrophysics Data System (ADS)

    Jeynes, J. C. G.; Jeynes, C.; Palitsin, V.; Townley, H. E.

    2016-07-01

    There are many possible biomedical applications for titania nanoparticles (NPs) doped with rare earth elements (REEs), from dose enhancement and diagnostic imaging in radiotherapy, to biosensing. However, there are concerns that the NPs could disintegrate in the body thus releasing toxic REE ions to undesired locations. As a first step, we investigate how accurately the Ti/REE ratio from the NPs can be measured inside human cells. A quantitative analysis of whole, unsectioned, individual human cells was performed using proton microprobe elemental microscopy. This method is unique in being able to quantitatively analyse all the elements in an unsectioned individual cell with micron resolution, while also scanning large fields of view. We compared the Ti/REE signal inside cells to NPs that were outside the cells, non-specifically absorbed onto the polypropylene substrate. We show that the REE signal in individual cells co-localises with the titanium signal, indicating that the NPs have remained intact. Within the uncertainty of the measurement, there is no difference between the Ti/REE ratio inside and outside the cells. Interestingly, we also show that there is considerable variation in the uptake of the NPs from cell-to-cell, by a factor of more than 10. We conclude that the NPs enter the cells and remain intact. The large heterogeneity in NP concentrations from cell-to-cell should be considered if they are to be used therapeutically.

  5. Infrared and visible emissions of rare-earth-doped CeO2 phosphor.

    PubMed

    Chandrakar, D; Kaur, J; Dubey, V; Suryanarayana, N S; Parganiha, Y

    2015-12-01

    This paper reports the synthesis and characterization of Er(3+)-doped CeO2 phosphor with variable concentrations of erbium. The sample was synthesized using a solid-state reaction method, which is useful for the large-scale production of phosphors and is also eco-friendly. The prepared sample was characterized using an X-ray diffraction (XRD) technique. The XRD pattern confirmed that sample has the pure cubic fluorite crystal structure of CeO2. The crystallite size of the prepared phosphor was determined by Scherer's formula and the crystallite size giving an intense XRD peak is 40.06 nm. The surface morphology of the phosphor was determined by field emission gun scanning electron microscopy (FEGSEM). From the FEGSEM image, good surface morphology with some agglomerates was found. The functional group in the prepared sample was analysed by Fourier transform infrared (FTIR) spectroscopy. All samples prepared with variable concentrations of Er(3+) (0.1-2 mol%) were studied by photoluminescence analysis and it was found that the excitation spectra of the prepared phosphor shows broad excitation centred at 251 nm. Emission spectra at different concentrations of Er(3+) show strong peaks at 413 and 470 nm and a weaker peak at 594 nm. The dominant peaks at 413 and 470 nm are caused by the allowed electronic transition (4)S3/2 → (4)I15/2 and the weaker transition at 594 nm is due to the transition (4)F9/2 → (4)I15/2. Spectrophotometric determinations of peaks were evaluated using the Commission Internationale de I'Eclairage (CIE) technique. The emission spectra were also observed using an infrared (IR) laser 980 nm source, and three distinct peaks were found in the IR region at 848, 870 and 980 nm. The prepared phosphor has utility for application in display devices. PMID:25810371

  6. Rare earth doped silicon nanocrystals derived from an erbium amidinate precursor

    NASA Astrophysics Data System (ADS)

    Ji, Jumin; Senter, Robert A.; Tessler, Leandro R.; Back, Dwayne; Winter, Charles H.; Coffer, Jeffery L.

    2004-05-01

    We describe the use of Er(tBuNC(CH3)NtBu)3 as a dopant source in the preparation of silicon nanocrystals, particularly as regards their observed structure, composition, and photophysical properties. These nanocrystals were prepared by the co-pyrolysis of Er(tBuNC(CH3)NtBu)3 and disilane in a dilute helium stream at 1000 °C. Characterization methods include high resolution electron microscopy, selected area electron diffraction, energy dispersive x-ray measurements, extended x-ray absorption spectroscopy, and photoluminescence spectroscopy. In conditions identical to those used previously for bgr-diketonate precursors, nanocrystals doped using this amidinate source are larger in size, of a narrower size distribution, and contain more erbium in the nanocrystal on average. Steady state photoluminescence measurements as a function of excitation wavelength confirm that the characteristic 1540 nm emission detected in these nanocrystals emit by a silicon exciton-mediated pathway. These results are a clear example of precursor dopant chemistry exerting a significant effect on resultant nanoparticle properties.

  7. Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials

    NASA Astrophysics Data System (ADS)

    Thiel, C. W.; Macfarlane, R. M.; Sun, Y.; Böttger, T.; Sinclair, N.; Tittel, W.; Cone, R. L.

    2014-10-01

    A method is introduced for quantitatively analyzing photon echo decay measurements to characterize excitation-induced decoherence resulting from the phenomenon of instantaneous spectral diffusion. Detailed analysis is presented that allows fundamental material properties to be extracted that predict and describe excitation-induced decoherence for a broad range of measurements, applications and experimental conditions. Motivated by the need for a method that enables systematic studies of ultra-low decoherence systems and direct comparison of properties between optical materials, this approach employs simple techniques and analytical expressions that avoid the need for difficult to measure and often unknown material parameters or numerical simulations. This measurement and analysis approach is demonstrated for the 3H6 to 3H4 optical transition of three thulium-doped crystals, Tm3+:YAG, Tm3+:LiNbO3 and Tm3+:YGG, that are currently employed in quantum information and classical signal processing demonstrations where minimizing decoherence is essential to achieve high efficiencies and large signal bandwidths. These new results reveal more than two orders of magnitude variation in sensitivity to excitation-induced decoherence among the materials studied and establish that the Tm3+:YGG system offers the longest optical coherence lifetimes and the lowest levels of excitation-induced decoherence yet observed for any known thulium-doped material.

  8. Low temperature glassy relaxation in rare earth doped Fe3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Laha, Suvra; Lawes, Gavin

    2012-10-01

    Magnetic nanoparticles typically exhibit glassy relaxation at low temperature, which can be affected by doping. Gadolinium and Lanthanum doped Fe3O4 nanoparticles were synthesized using a chemical co-precipitation method. The structural and optical properties of these nanoparticles were characterized by using Transmission Electron Microscope (TEM) and the Raman spectroscopy. The TEM images show the formation of nanoparticles of size ranging between 12-14 nm and Raman spectra are consistent with the formation of Fe3O4. AC magnetic measurements were also conducted on these nanoparticles. From the ac out-of-phase susceptibility (χ//) vs temperature (T) graphs, it is observed that the doped nanoparticles show larger amplitude relaxation peaks at low temperature as compared to the undoped particles. These magnetic relaxation features develop roughly between 25K to 35K and show frequency dependence. The increased magnetic relaxation at low temperatures can be attributed to structural defects which may arise due to the doping of lanthanides in Fe3O4 nanoparticles.

  9. Rare-earth-doped biological composites as in vivo shortwave infrared reporters.

    PubMed

    Naczynski, D J; Tan, M C; Zevon, M; Wall, B; Kohl, J; Kulesa, A; Chen, S; Roth, C M; Riman, R E; Moghe, P V

    2013-01-01

    The extension of in vivo optical imaging for disease screening and image-guided surgical interventions requires brightly emitting, tissue-specific materials that optically transmit through living tissue and can be imaged with portable systems that display data in real-time. Recent work suggests that a new window across the short-wavelength infrared region can improve in vivo imaging sensitivity over near infrared light. Here we report on the first evidence of multispectral, real-time short-wavelength infrared imaging offering anatomical resolution using brightly emitting rare-earth nanomaterials and demonstrate their applicability toward disease-targeted imaging. Inorganic-protein nanocomposites of rare-earth nanomaterials with human serum albumin facilitated systemic biodistribution of the rare-earth nanomaterials resulting in the increased accumulation and retention in tumour tissue that was visualized by the localized enhancement of infrared signal intensity. Our findings lay the groundwork for a new generation of versatile, biomedical nanomaterials that can advance disease monitoring based on a pioneering infrared imaging technique. PMID:23873342

  10. Rare-earth doped transparent ceramics for spectral filtering and quantum information processing

    NASA Astrophysics Data System (ADS)

    Kunkel, Nathalie; Ferrier, Alban; Thiel, Charles W.; Ramírez, Mariola O.; Bausá, Luisa E.; Cone, Rufus L.; Ikesue, Akio; Goldner, Philippe

    2015-09-01

    Homogeneous linewidths below 10 kHz are reported for the first time in high-quality Eu3+ doped Y 2O3 transparent ceramics. This result is obtained on the 7F0→5D0 transition in Eu3+ doped Y 2O3 ceramics and corresponds to an improvement of nearly one order of magnitude compared to previously reported values in transparent ceramics. Furthermore, we observed spectral hole lifetimes of ˜15 min that are long enough to enable efficient optical pumping of the nuclear hyperfine levels. Additionally, different Eu3+ concentrations (up to 1.0%) were studied, resulting in an increase of up to a factor of three in the peak absorption coefficient. These results suggest that transparent ceramics can be useful in applications where narrow and deep spectral holes can be burned into highly absorbing lines, such as quantum information processing and spectral filtering.

  11. Structure and optical properties of rare earth-doped zinc oxyhalide tellurite glasses

    SciTech Connect

    Sidebottom, D.L.; Hruschka, M.A.; Potter, B.G.; Brow, R.K.

    1997-10-01

    Zinc tellurite glasses appear to be excellent candidates for hosting rare earth ions since they provide a low phonon energy environment to minimize non-radiative losses as well as possess good chemical durability and optical properties. The optical behavior of the rare earth ion can be manipulated by modifying its local environment in the glass host. The authors report measurements of the emission lifetime, optical absorption, and vibrational density of states of the glass system (ZnO){sub x}(ZnF{sub 2}){sub y}(TeO{sub 2}){sub 1{minus}x{minus}y}doped (0.1 mol%) with a series of rare earths. Phonon sideband spectroscopy has been successfully employed to probe vibrational structure in the immediate vicinity of the rare earth ion. The authors observe a significant increase in the emission lifetime (from approximately 150 {mu}s to 250 {mu}s) of Nd{sup 3+} with increasing fluorine substitution.

  12. Spintronics: Towards room temperature ferromagnetic devices via manganese and rare earth doped gallium nitride

    NASA Astrophysics Data System (ADS)

    Luen, Melvyn Oliver

    Spintronics is a multidisciplinary field aimed at the active manipulation of spin degrees of freedom in solid-state systems. The goal being the understanding of the interaction between the particle spin and its solid-state environment, and the making of useful devices based on the acquired knowledge. If Moore's law is to continue, then we need to find alternatives to conventional microelectronics. Where conventional electronic devices rely on manipulating charge to produce desired functions, spintronic devices would manipulate both the charge flow and electron spin within that flow. This would add an extra degree of freedom to microelectronics and usher in the era of truly nanoelectronic devices. Research aimed at a whole new generation of electronic devices is underway by introducing electron spin as a new or additional physical variable, and semiconductor devices that exploit this new freedom will operate faster and more efficiently than conventional microelectronic devices and offer new functionality that promises to revolutionize the electronics industry. Long recognized as the material of choice for next-generation solid-state lighting, gallium nitride (GaN) also has proven uses in the field of high power, high frequency field-effect transistors (FETs). But its promise as a material system for spintronic applications may be its ultimate legacy. In this dissertation, the growth of gallium-manganese-nitride (GaMnN) compound semiconductor alloy was investigated through the use of an in-house built metal-organic chemical vapor deposition (MOCVD) reactor. Building on previous investigations of ferromagnetic mechanisms in GaMnN, where ferromagnetism was shown to be carrier mediated, a above room temperature ferromagnetic GaMnN i-p-n diode structure was conceived. This device proved to be the first of its kind in the world, where ferromagnetic properties are controlled via proximity of the mediating holes, upon voltage bias of adjacent structure layers. Simultaneously, post-growth diffusion of ferromagnetic, rare earth species into GaN template thin films also was investigated. Structural, electrical, optical and magnetic characterization of diffused films grown on sapphire was performed. Optimization of the conditions leading to the first successful diffusion of neodymium into GaN thin films, and the magnetic and optical studies that followed are detailed. A mechanism governing and conditions promoting ferromagnetism in rare earth (RE) doped GaN is proposed. The magnetic relationship between two similar and dissimilar rare earth elements, in a single GaN crystal are investigated. Finally, spin valve and magnetic tunnel junction devices based on the magnetic properties of RE-GaN thin films are investigated.

  13. Evidence of aluminium accumulation in aluminium welders.

    PubMed Central

    Elinder, C G; Ahrengart, L; Lidums, V; Pettersson, E; Sjögren, B

    1991-01-01

    Using atomic absorption spectrometry the aluminium concentrations in blood and urine and in two iliac bone biopsies obtained from welders with long term exposure to fumes containing aluminium were measured. The urinary excretion of two workers who had welded for 20 and 21 years varied between 107 and 351 micrograms Al/l, more than 10 times the concentration found in persons without occupational exposure. Urinary aluminium excretion remained high many years after stopping exposure. Blood and bone aluminium concentrations (4-53 micrograms Al/l and 18-29 micrograms Al/g respectively) were also raised but not to the same extent as urine excretion. It is concluded that long term exposure to aluminium by inhalation gives rise to accumulation of aluminium in the body and skeleton of health persons, and that the elimination of retained aluminium is very slow, in the order of several years. PMID:1954151

  14. Dislocations in yttrium orthovanadate

    NASA Astrophysics Data System (ADS)

    Eakins, D. E.; LeBret, J. B.; Norton, M. G.; Bahr, D. F.

    2004-06-01

    Dislocation structures in single crystals of yttrium orthovanadate have been identified by transmission electron microscopy. Electron diffraction was used to predict possible Burgers vectors for the dislocations. Results suggest vectors of the type {1}/{2}[1 1 1] or {1}/{4}[0 2 1] . Arguments for the likelihood of each possible vector have been presented.

  15. Yttrium oxide stabilized zirconium oxide

    SciTech Connect

    Ritsko, J.E.; Houck, D.L.; Acla, H.L.R.

    1987-09-22

    This patent describes a process comprising: (a) forming a solution by mixing yttrium hydroxide and a sufficient amount of an aqueous solution of acetic acid to dissolve the yttrium hydroxide. The solution has a concentration of yttrium ion of about 5% to about 20% by weight of the solution, (b) adding from about 80% to about 95% by weight of zirconium oxide having a particle size range from about 1 to about 5 microns to yield a Zr to Y weight ratio of from about 4:1 to about 19:1 and thereby forming a slurry, (c) spray drying the slurry to form spherical agglomerates consisting essentially of zirconium oxide and a relatively uniform distribution of yttrium acetate whereby the agglomerates have a size from about 20 to about 200 micrometers, (d) heating the agglomerates to about 600/sup 0/C to about 700/sup 0/C in a neutral or oxidizing atmosphere to convert yttrium acetate to yttrium oxide to thereby form zirconium oxide yttrium oxide agglomerates with about 5% to about 20% by weight of yttrium oxide.

  16. Joining of aluminium structures with aluminium foams

    SciTech Connect

    Burzer, J.; Bernard, T.; Bergmann, H.W.

    1998-12-31

    The aim of this work is the evaluation of new construction elements for applications in transportation industry which are based on new designs incorporating commonly applied aluminium structures and aluminium foams. The work includes the characterization of the joining process, the joining mechanism and the mechanical properties of the joining zone. A testing method for the joints is developed which is based on a common tensile test in order to evaluate the influence of the main laser welding parameters on the toughness of the joints and to afford a comparison between laser beam welding and gluing process. The analysis of the joining mechanism is investigated with the help of metallographic studies. In addition, the energy absorption properties of aluminium hollows filled and joined with foam structures are characterized.

  17. Effect of aluminum and yttrium doping on zinc sulphide nanoparticles

    NASA Astrophysics Data System (ADS)

    Sharma, Swati; Kashyap, Jyoti; Gupta, Shubhra; Natasha, Kapoor, A.

    2016-05-01

    In this work, pristine and doped Zinc Sulphide (ZnS) nanoparticles have been synthesized via chemical co-precipitation method. ZnS nanoparticles have been doped with Aluminium (Al) and Yttrium (Y) with doping concentration of 5wt% each. The structural and optical properties of the as prepared nanoparticles have been studied using X-Ray diffraction (XRD) technique and Photoluminescence spectroscopy. Average grain size of 2-3nm is observed through the XRD analysis. Effect of doping on stress, strain and lattice constant of the nanoparticles has also been analyzed. Photoluminescence spectra of the as prepared nanoparticles is enhanced due to Al doping and quenched due to Y doping. EDAX studies confirm the relative doping percentage to be 3.47 % and 3.94% by wt. for Al and Y doped nanoparticles respectively. Morphology of the nanoparticles studied using TEM and SEM indicates uniform distribution of spherical nanoparticles.

  18. Effect of γ-radiation on thermoluminescence in rare earths doped NaMgSO4Cl material

    NASA Astrophysics Data System (ADS)

    Choubey, S. R.; Gedam, S. C.; Dhoble, S. J.

    2015-01-01

    The thermoluminescence (TL) characteristics, effect of γ-radiation on NaMgSO4Cl: X (X = Tb; Ce, Tb; Dy; Dy, Eu) and trapping parameters in TL material prepared by wet chemical synthesis (WCS) method are studied. The intensity of these phosphors is compared with TLD CaSO4: Dy phosphor. The phosphor has a simple TL glow curve structure. The phosphors NaMgSO4Cl: Tb (between the range of 257-284°C); NaMgSO4Cl: Dy (173°C) and NaMgSO4Cl: Dy, Eu (156°C) have a single prominent peak, whereas NaMgSO4Cl: Ce, Tb has two peaks located at 154°C and 233°C indicating single and double trapping sites, respectively. It is found that intensity tends to be increase with increased concentrations of the activators. The TL glow curves of the phosphors have been recorded and irradiated at a rate of 0.99 kGyh-1 for 5 Gy γ-rays dose. The paper also discusses the kinetic parameters evaluated by Chen's half width method such as activation energy E (eV) and frequency factor S (s-1).

  19. A novel contrast agent with rare earth-doped up-conversion luminescence and Gd-DTPA magnetic resonance properties

    SciTech Connect

    Lu Qing; Wei Daixu; Cheng Jiejun; Xu Jianrong; Zhu Jun

    2012-08-15

    The magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF{sub 4}:Yb, Er were successfully synthesized by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF{sub 4}:Yb, Er nanoparticles through EDC/NHS coupling chemistry. The as-prepared products were characterized by powder X-ray diffraction, transmission electron microscopy, dynamic light scattering, energy dispersive X-ray analysis, and fourier transform infrared spectrometry. The room-temperature upconversion luminescent spectra and T{sub 1}-weighted maps of the obtained nanoparticles were carried out by 980 nm NIR light excitation and a 3T MR imaging scanner, respectively. The results indicated that the as-synthesized multifunctional nanoparticles with small size, highly solubility in water, and both high MR relaxivities and upconversion luminescence may have potential usage for MR imaging in future. - Graphical abstract: We have synthesized magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF4:Yb, Er by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF4:Yb, Er nanoparticles through EDC/NHS coupling chemistry. Highlights: Black-Right-Pointing-Pointer A novel magnetic-luminescent multifunctional nanoparticles are synthesized. Black-Right-Pointing-Pointer The nanoparticles are highly efficient for luminescence and T{sub 1}-weighted MR imaging. Black-Right-Pointing-Pointer The nanoparticles are small in size and highly solubility in water. Black-Right-Pointing-Pointer The nanoparticles hold great potential usage for future biomedical engineering.

  20. Synthesis and optical characterizations of undoped and rare-earth-doped CaF{sub 2} nanoparticles

    SciTech Connect

    Bensalah, A. . E-mail: amina-bensalah@enscp.fr; Mortier, M.; Patriarche, G.; Gredin, P.; Vivien, D.

    2006-08-15

    The synthesis of undoped as well as Yb or Er-doped CaF{sub 2} nanocrystals using a reverse micelle method is reported. X-ray powder diffraction and transmission electron microscopy analysis showed that the products were single phased and rather monodispersed with an average particles size around 20 nm. The emission spectra and fluorescence decay times of both Yb{sup 3+} and Er{sup 3+} rare earths (RE) ions in CaF{sub 2} nanoparticles are presented. The particles size is increased by heating the as-obtained nanoparticles at different temperatures. The effect of annealing on the optical properties of the two RE ions in CaF{sub 2} is also investigated. - Graphical abstract: Transmission Electron Microscopy micrograph of CaF{sub 2} nanoparticles synthesized by a reverse-micelle method.

  1. Synthesis and upconversion emission of rare earth-doped olive-like YF{sub 3} micro-particles

    SciTech Connect

    Lin, Hang; Chen, Daqin; Niu, Mutong; Yu, Yunlong; Huang, Ping; Wang, Yuansheng

    2010-01-15

    The olive-like YF{sub 3} micro-particles were fabricated via a two-step route. The precursor NH{sub 4}Y{sub 3}F{sub 10} nano-cages sized 8 nm with hollow interiors were first synthesized in a solid reaction at room temperature. In the course of subsequent hydrothermal treating, the unstable NH{sub 4}Y{sub 3}F{sub 10} nano-cages were decomposed, resulted in the formation of Y(OH){sub 1.63}F{sub 1.37} micro-tubes. Prolonging the hydrothermal reaction induced the further decomposition of Y(OH){sub 1.63}F{sub 1.37} to produce YF{sub 3} nano-crystals, which then aggregated together forming the final olive-like YF{sub 3} micro-particles. For the Er{sup 3+}/Yb{sup 3+} co-doped olive-like YF{sub 3} micro-particles, intense visible upconversion emissions were measured under 976 nm excitation owing to the partition of rare earth ions in the lattice, indicating this material a promising luminescent host.

  2. Effect of rare-earth doping in RCrSb3 (R = La, Pr, Sm, and Gd)

    SciTech Connect

    Jackson, D D; Fisk, Z

    2005-11-08

    We report on the electrical resistivity and magnetic susceptibility of La or Gd doped RCrSb{sub 3} (R=La, Pr, Sm, and Gd). Single crystals were grown by increasing the nominal dopant by 25%. In general, two magnetic ordering transitions are found, T{sub C1} is attributed to ferromagnetic ordering of the itinerant Cr sub-lattice, and, at lower temperatures, T{sub C2} is attributed to ordering of the localized rare-earth sub-lattice. Alloying on the rare-earth site varies the de Gennes factor, DG = (g-1){sup 2}J(J+1), and dT{sub C1}/d(DG) = -2K, while dT{sub C2}/d(DG) = 5K. These ordering temperatures are found to converge at GdCrSb{sub 3}, where a single ferrimagnetic transition is found at T{sub C2} = 86 K due to an anti-alignment of the itinerant Cr moments and the localized rare-earth moments. Initially, for DG < 3.5, the rare-earth moments are found to align ferromagnetically, and the paramagnetic Weiss temperature decreases at the same rate as T{sub C1}. But for DG > 4.5, the rare-earth sub-lattice anti-alignes with respect to the Cr sub-lattice, and the Weiss temperature decreases five times as fast. In the region between (3.5 < DG < 4.5), a first order phase transition is found at T{sub C2}.

  3. Thermoluminescent response of rare earth doped nanocrystalline Ba0.97Ca0.03SO4

    NASA Astrophysics Data System (ADS)

    Bahl, Shaila; Lochab, S. P.; Pandey, Anant; Kumar, Pratik

    2013-02-01

    The effects of Ce co-doping on the thermoluminescence (TL) characteristics of nanocrystalline Ba0.97Ca0.03SO4:Eu phosphor are studied. Formation of the compound and particle size was confirmed by XRD with particle size around 45 nm. The Eu doped phosphor has a simple TL glow curve structure with a single prominent peak at around 187°C with a small hump at around 250°C. Ce co-doping, decreases the TL intensity considerably, though the shape of the glow curve remains same. The photoluminescence (PL) emission spectrum has been examined and studied for the Co-doped sample to get an insight into the emission mechanism of the phosphor which involves transfer of energy from Eu2+ to Ce3+ to examine the decrease in peak intensity of the phosphor. The TL response for different doses has also been reported to check the linearity range and it is found that the phosphor is quite suitable for use in dosimetry of ionizing radiations.

  4. Structural and optical properties of rare-earth doped lithium niobate waveguides formed by MeV helium ion implantation

    SciTech Connect

    Herreros, B.; Lifante, G.; Cusso, F.; Kling, A.; Soares, J.C.; Silva, M.F. da; Townsend, P.D.; Chandler, P.J.

    1996-12-31

    Results of investigations of optical waveguides formed by high energy helium implantation into lithium niobate codoped with 5 mol% MgO and 1 mol% Tm{sup 3+} or 1 mol% Er{sup 3+} are reported. A comparative study of structural and luminescence properties between implanted and untreated samples has been performed by means of Rutherford backscattering (RBS) combined with channeling and photoluminescence methods, respectively in order to investigate residual lattice damage and the incorporation of the optical active rare earths. For the case of Tm a full substitutional incorporation of the optical active rare earths. For the case of Tm a full substitutional incorporation on the lithium site and a high crystal quality in both bulk and implanted waveguide material has been found. For Er doped lithium niobate the channeling results show a fraction of Er randomly incorporated or forming precipitates and a deterioration of the waveguide`s lattice. The optical investigations show in both cases only a slight broadening of the emission lines of the rare earths in the waveguides compared to the bulk material.

  5. Reversible Luminescence Modulation upon Photochromic Reactions in Rare-Earth Doped Ferroelectric Oxides by in Situ Photoluminescence Spectroscopy.

    PubMed

    Zhang, Qiwei; Sun, Haiqin; Wang, Xusheng; Hao, Xihong; An, Shengli

    2015-11-18

    Reversible luminescence photoswitching upon photochromic reactions with excellent reproducibility is achieved in a new inorganic luminescence material: Na(0.5)Bi(2.5)Nb2O9: Pr(3+) (NBN:Pr) ferroelectric oxides. Upon blue light (452 nm) or sunlight irradiation, the material exhibits a reversible photochromism (PC) performance between dark gray and green color by alternating visible light and thermal stimulus without inducing any structure changes and is accompanied by a red emission at 613 nm. The coloration and decoloration process can be quantitatively evaluated by in situ photoluminescence spectroscopy. Meanwhile, the luminescence emission intensity based on PC reactions is effectively tuned by changing irradiation time and excitation wavelength, and the degree of luminescence modulation has no significant degradation after several periods, showing very excellent reproducibility. On the basis of the luminescence modulation behavior, a double-exponential relaxation model is proposed, and a combined equation is adopted to well describe the luminescence response to light irradiation, being in agreement with the experimental data. PMID:26496504

  6. Red, green and blue low-voltage cathodoluminescence of rare-earth doped BaWO4 phosphors

    NASA Astrophysics Data System (ADS)

    Li, H. L.; Wang, Z. L.; Hao, J. H.

    2009-02-01

    Spherical phosphors BaWO4 doped with rare-earth ions (RE = Eu, Tb, Tm) were prepared by the polyol method. The crystal structure and morphology of the powders were investigated using X-ray diffraction, field emission scanning electron microscopy and Fourier transform spectroscopy. The as-prepared BaWO4-based phosphors processed as low as 160 °C show mono-dispersive and highly crystalline nanostructure. The optical characteristics of the phosphors were investigated using low-voltage cathodoluminescence. Efficient energy transfer between the host and RE ions were revealed in the spectra. Red, green and blue cathodoluminescence were observed corresponding to sharp dominant emission peaks located at 616 nm, 545 nm and 473 nm for Eu3+, Tb3+ and Tm3+ doped phosphors, respectively. Those peaks are attributed to the characteristic emission from Eu3+ (5D0 - 7FJ transitions), Tb3+ (5D3 - 7FJ and 5D4 - 7FJ transitions) and Tm3+ (1D2 - 3F4 and 1D2 - 3H4 transitions) under low-voltage (<=5 kV) excitation of electron beam. Luminescent intensities in the annealed BaWO4-based phosphors were significantly enhanced. The characteristics of the phosphors are investigated in terms of luminance, chromaticity and color purity. Fundamental mechanisms responsible for the low-voltage cathodoluminescence of BaWO4-based phosphors are discussed.

  7. High contrast in vivo bioimaging using multiphoton upconversion in novel rare-earth-doped fluoride upconversion nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Guanying; Yang, Chunhui; Prasad, Paras N.

    2013-02-01

    Upconversion in rare-earth ions is a sequential multiphoton process that efficiently converts two or more low-energy photons, which are generally near infrared (NIR) light, to produce anti-Stokes emission of a higher energy photon (e.g., NIR, visible, ultraviolet) using continuous-wave (cw) diode laser excitation. Here, we show the engineering of novel, efficient, and biocompatible NIRin-to-NIRout upconversion nanoparticles for biomedical imaging with both excitation and emission being within the "optical transparency window" of tissues. The small animal whole-body imaging with exceptional contrast (signal-to-noise ratio of 310) was shown using BALB/c mice intravenously injected with aqueously dispersed nanoparticles. An imaging depth as deep as 3.2-cm was successfully demonstrated using thick animal tissue (pork) under cw laser excitation at 980 nm.

  8. Electronic structure of rare-earth doped SrFBiS2 superconductors from photoemission spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Mishra, P.; Lohani, H.; Jha, Rajveer; Awana, V. P. S.; Sekhar, B. R.

    2016-06-01

    The electronic structure study of the Rare Earth (La, Ce) doped SrFBiS2 superconductors using valence band photoemission in conjugation with the band structure calculations have been presented. The spectral features shift towards higher binding energy, consistent with the electron doping, for the doped compounds. An enhanced metallicity in addition to the shift in the Fermi level towards the conduction band occurs for the Rare Earth (RE) doped compounds. Further, the degeneracy of bands along X-M direction at valence band maximum (VBM) and conduction band minimum (CBM) is lifted due to RE doping. An enhanced spectral weight near EF accompanied by a decrease in density of states at higher binding energy occurs for the doped compounds. This unusual spectral weight shift is substantiated by the change in Fermi surface topology and reduced distortion of Bi-S plane for the doped compounds.

  9. Coherency strain enhanced dielectric-temperature property of rare-earth doped BaTiO{sub 3}

    SciTech Connect

    Jeon, Sang-Chae; Kang, Suk-Joong L.

    2013-03-18

    Core/shell-grained BaTiO{sub 3} samples were prepared with addition of rare earth elements. The core/shell interface was semi-coherent, and many misfit dislocations formed in Dy-doped samples. In contrast, a coherent interface and few dislocations were observed in Ho- and Er-doped samples. Dy-doped samples exhibited poor temperature stability, showing a peak with no frequency dispersion. Ho- and Er-doped samples exhibited a broad curve with frequency dispersion. This improved temperature stability is attributed to the coherency strain, which leads to the formation of polar nano-regions in the shell. Coherency at the core/shell interface is critical to improve the temperature stability of core/shell-structured BaTiO{sub 3}.

  10. The Role of Defect Complexes in the Magneto-Optical Properties of Rare Earth Doped Gallium Nitride

    NASA Astrophysics Data System (ADS)

    Mitchell, Brandon

    Wide band gap semiconductors doped with rare earth ions (RE) have shown great potential for applications in optoelectronics, photonics, and spintronics. The 1.54mum Erbium (Er) emission has been extensively utilized in optical fiber communications, and Europium (Eu) is commonly used as a red color component for LEDs and fluorescence lamps. For the realization of spintronic-type devices, a dilutely doped semiconductor that exhibits room temperature ferromagnetic behavior would be desirable. Such behavior has been observed in GaN:Er. Furthermore, it was demonstrated that strain may play an important role in the control of this ferromagnetism; however, this requires further investigation. One motivation of this work is the realization of an all solid state white light source monolithically integrated into III/V nitride semiconductor materials, ideally GaN. For this, the current AlGaAs-based LEDs need to be replaced. One approach for achieving efficient red emission from GaN is dilute doping with fluorescent ions. In this regard, Eu has consistently been the most promising candidate as a dopant in the active layer for a red, GaN based, LED due to the sharp 5D0 to 7F2 transitions that result in red emission around 620nm. The success of GaN:Eu as the active layer for a red LED is based on the ability for the Eu ions to be efficiently excited by electron hole pairs. Thus, the processes by which energy is transferred from the host to the Eu ions has been studied. Complications arise, however, from the fact that Eu ions incorporate into multiple center environments, the structures of which are found to have a profound influence on the excitation pathways and efficiencies of the Eu ion. Therefore the nature of Eu incorporation and the resulting luminescence efficiency in GaN has been extensively investigated. By performing a comparative study on GaN:Eu samples grown under a variety of controlled conditions and using a variety of experimental techniques, the majority site has been concluded to contain a nitrogen vacancy (V N) in its immediate structure. The nitrogen vacancy can appear in two symmetries, which has a profound impact on the luminescence and magnetic properties of the sample. The structure of the minority site has also been identified. For both sites, we give substantial evidence that the excitation efficiency of the red Eu emission is improved by the presence of donor-acceptor pairs in the vicinity of the Eu. Furthermore, when Mg was co-doped into GaN:Eu, additional incorporation environments were discovered that show high excitation efficiency at room temperature. These have been attributed to the coupling of Mg-H complexes to the majority Eu site. Electron beam irradiation, indirect and resonant (direct) laser excitation were found to modify these complexes, indicating that vibrational energy alone can trigger the migration of the H, while the presence of additional charges and excess energy controls the type of reconfiguration and the activation of non-radiative decay channels. We identify, experimentally, a two-step process in the dissociation of Mg-H complexes and propose, based on density functional theory, that the presence of minority carriers and the resulting charge states of complexes can also influence this process. In GaN:Er, we have given a more thorough overview of the optical and magneto-optical properties by extending to the 800nm excitation range and drastically improving the signal-to-noise ratio in the magnetic measurements, as well as applying a perpendicular magnetic field. This has allowed us to calculate g-factors for the parallel case, but revealed that the Zeeman interaction is not quite linear for perpendicular magnetic fields. We were able to assign crystal field numbers of mu = 3/2 to two crystal field levels. We have also given strong evidence that the strain in the sample, which results from lattice mismatch, enhances its magnetization, as seen through fluorescence line narrowing and asymmetry between the Zeeman transition intensities, under application of magnetic fields in anti-parallel directions.

  11. A novel contrast agent with rare earth-doped up-conversion luminescence and Gd-DTPA magnetic resonance properties

    NASA Astrophysics Data System (ADS)

    Lu, Qing; Wei, Daixu; Cheng, Jiejun; Xu, Jianrong; Zhu, Jun

    2012-08-01

    The magnetic-luminescent multifunctional nanoparticles based on Gd-DTPA and NaYF4:Yb, Er were successfully synthesized by the conjugation of activated DTPA and silica-coated/surface-aminolated NaYF4:Yb, Er nanoparticles through EDC/NHS coupling chemistry. The as-prepared products were characterized by powder X-ray diffraction, transmission electron microscopy, dynamic light scattering, energy dispersive X-ray analysis, and fourier transform infrared spectrometry. The room-temperature upconversion luminescent spectra and T1-weighted maps of the obtained nanoparticles were carried out by 980 nm NIR light excitation and a 3T MR imaging scanner, respectively. The results indicated that the as-synthesized multifunctional nanoparticles with small size, highly solubility in water, and both high MR relaxivities and upconversion luminescence may have potential usage for MR imaging in future.

  12. Rare earth doped LiYbF{sub 4} phosphors with controlled morphologies: Hydrothermal synthesis and luminescent properties

    SciTech Connect

    Huang, Wenjuan; Lu, Chunhua; Jiang, Chenfei; Jin, Junyang; Ding, Mingye; Ni, Yaru; Xu, Zhongzi

    2012-06-15

    Highlights: ► LiYbF{sub 4} microparticles as an excellent upconverting materials. ► High temperature and long time can favor high crystalline LiYbF{sub 4} microparticles. ► The shape of LiYbF{sub 4} microparticles can be tuned by the molar ratio of EDTA to Yb{sup 3+}. ► Bright green emission can be obtained by changing the doping concentration of Er{sup 3+}. -- Abstract: High quality monodisperse LiYbF{sub 4} microparticles with shape of octahedron had been prepared via a facile hydrothermal route. The crystalline phase, size, morphology and luminescence properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectra and Commission Internationale de L’Eclairage (CIE 1931) chromaticity coordinates, respectively. The influences of reaction temperature, reaction time and the molar ratio of EDTA to Yb{sup 3+} on the crystal phases and shapes of as-prepared products had been investigated in detail. The upconversion (UC) luminescence properties of LiYb{sub 1−x}F{sub 4}:xEr{sup 3+} (x =0.1, 0.2, 0.5, 1, 2, 5 and 10 mol%) particles with octahedral microstructures were studied under 976 nm excitation. The results showed that the luminescence colors of the corresponding products could be tuned to bright green by changing the doping concentration of Er{sup 3+} ion. The luminescence mechanisms for the doped Er{sup 3+} ion were thoroughly analyzed, showing great potential in applications such as biolabels, displays and other optical technologies.

  13. Fatal aluminium phosphide poisoning

    PubMed Central

    Mittal, Sachin; Rani, Yashoda

    2015-01-01

    Aluminium phosphide (AlP) is a cheap solid fumigant and a highly toxic pesticide which is commonly used for grain preservation. AlP has currently aroused interest with a rising number of cases in the past four decades due to increased use for agricultural and non-agricultural purposes. Its easy availability in the markets has increased also its misuse for committing suicide. Phosphine inhibits cellular oxygen utilization and can induce lipid peroxidation. Poisoning with AlP has often occurred in attempts to commit suicide, and that more often in adults than in teenagers. This is a case of suicidal consumption of aluminium phosphide by a 32-year-old young medical anesthetist. Toxicological analyses detected aluminium phosphide. We believe that free access of celphos tablets in grain markets should be prohibited by law. PMID:27486362

  14. Theranostic Imaging of Yttrium-90.

    PubMed

    Wright, Chadwick L; Zhang, Jun; Tweedle, Michael F; Knopp, Michael V; Hall, Nathan C

    2015-01-01

    This paper overviews Yttrium-90 ((90)Y) as a theranostic and nuclear medicine imaging of (90)Y radioactivity with bremsstrahlung imaging and positron emission tomography. In addition, detection and optical imaging of (90)Y radioactivity using Cerenkov luminescence will also be reviewed. Methods and approaches for qualitative and quantitative (90)Y imaging will be briefly discussed. Although challenges remain for (90)Y imaging, continued clinical demand for predictive imaging response assessment and target/nontarget dosimetry will drive research and technical innovation to provide greater clinical utility of (90)Y as a theranostic agent. PMID:26106608

  15. Theranostic Imaging of Yttrium-90

    PubMed Central

    Wright, Chadwick L.; Zhang, Jun; Tweedle, Michael F.; Knopp, Michael V.; Hall, Nathan C.

    2015-01-01

    This paper overviews Yttrium-90 (90Y) as a theranostic and nuclear medicine imaging of 90Y radioactivity with bremsstrahlung imaging and positron emission tomography. In addition, detection and optical imaging of 90Y radioactivity using Cerenkov luminescence will also be reviewed. Methods and approaches for qualitative and quantitative 90Y imaging will be briefly discussed. Although challenges remain for 90Y imaging, continued clinical demand for predictive imaging response assessment and target/nontarget dosimetry will drive research and technical innovation to provide greater clinical utility of 90Y as a theranostic agent. PMID:26106608

  16. Optical detection of a single rare-earth ion in a crystal

    PubMed Central

    Kolesov, R.; Xia, K.; Reuter, R.; Stöhr, R.; Zappe, A.; Meijer, J.; Hemmer, P.R.; Wrachtrup, J.

    2012-01-01

    Rare-earth-doped laser materials show strong prospects for quantum information storage and processing, as well as for biological imaging, due to their high-Q 4f↔4f optical transitions. However, the inability to optically detect single rare-earth dopants has prevented these materials from reaching their full potential. Here we detect a single photostable Pr3+ ion in yttrium aluminium garnet nanocrystals with high contrast photon antibunching by using optical upconversion of the excited state population of the 4f↔4f optical transition into ultraviolet fluorescence. We also demonstrate on-demand creation of Pr3+ ions in a bulk yttrium aluminium garnet crystal by patterned ion implantation. Finally, we show generation of local nanophotonic structures and cell death due to photochemical effects caused by upconverted ultraviolet fluorescence of praseodymium-doped yttrium aluminium garnet in the surrounding environment. Our study demonstrates versatile use of rare-earth atomic-size ultraviolet emitters for nanoengineering and biotechnological applications. PMID:22929786

  17. Optical detection of a single rare-earth ion in a crystal

    NASA Astrophysics Data System (ADS)

    Kolesov, R.; Xia, K.; Reuter, R.; Stöhr, R.; Zappe, A.; Meijer, J.; Hemmer, P. R.; Wrachtrup, J.

    2012-08-01

    Rare-earth-doped laser materials show strong prospects for quantum information storage and processing, as well as for biological imaging, due to their high-Q 4f↔4f optical transitions. However, the inability to optically detect single rare-earth dopants has prevented these materials from reaching their full potential. Here we detect a single photostable Pr3+ ion in yttrium aluminium garnet nanocrystals with high contrast photon antibunching by using optical upconversion of the excited state population of the 4f↔4f optical transition into ultraviolet fluorescence. We also demonstrate on-demand creation of Pr3+ ions in a bulk yttrium aluminium garnet crystal by patterned ion implantation. Finally, we show generation of local nanophotonic structures and cell death due to photochemical effects caused by upconverted ultraviolet fluorescence of praseodymium-doped yttrium aluminium garnet in the surrounding environment. Our study demonstrates versatile use of rare-earth atomic-size ultraviolet emitters for nanoengineering and biotechnological applications.

  18. Electronic transitions of yttrium monophosphide

    NASA Astrophysics Data System (ADS)

    Li, Biu Wa; Chan, Man-Chor; Cheung, A. S.-C.

    2015-11-01

    The electronic transition spectrum of the yttrium monophosphide (YP) molecule in the near infrared region between 715 nm and 880 nm has been recorded using laser ablation/reaction free-jet expansion and laser induced fluorescence spectroscopy. The YP molecule was produced by reacting laser - ablated yttrium atoms with PH3 gas seeded in argon. Eleven vibrational bands were analyzed and six electronic transitions have been identified, namely the [12.17] Ω = 3 - X3Π2, [13.27] Ω = 3 - X3Π2, [13.44] Ω = 3 - X3Π2, [13.46] Ω = 3 - X3Π2 and [13.40] Ω = 2 - X3Π2 transitions and a [13.69] Ω = 3 - a1Δ2 transition. Least squares fits of the measured rotational lines yielded molecular constants for the ground and excited states. The ground state has been determined to be a X3Π2 state and the bond length ro and vibrational separation, ΔG1/2, were determined to be 2.4413 Å and 390.77 cm-1 respectively. A molecular orbital energy level diagram has been used to aid the assignment of the observed electronic states. This work represents the first experimental investigation of the electronic spectrum of the YP molecule.

  19. Electronic Transitions of Yttrium Monophosphide

    NASA Astrophysics Data System (ADS)

    Cheung, Allan S. C.; Li, Biu Wa; Chan, MAN-CHOR

    2015-06-01

    Electronic transition spectrum of the yttrium monophosphide (YP) molecule in the visible region between 715 nm and 880 nm has been recorded using laser ablation/reaction free-jet expansion and laser induced fluorescence spectroscopy. The YP molecule was produced by reacting laser - ablated yttrium atoms with PH3 seeded in argon. Thirteen vibrational bands were analyzed and five electronic transition systems have identified, namely the [12.2] Ω = 3 - X3 Π_2 transition, [13.3] Ω = 3 - X3 Π_2 transition, [13.4] Ω = 3 - X3 Π_2 transition, [13.5] Ω = 3 - X3 Π_2 transition, and [13.4] Ω = 2 - X3 Π_2 transition. Least squares fits of the measured rotational lines yielded molecular constants for the ground and excited states. The ground state symmetry and the bond length r_0 of the YP molecule have been determined to be a X3 Π_2 state and 2.4413 Å respectively in this work. A molecular orbital energy level diagram has been used to help the assignment of the observed electronic states. This work represents the first experimental investigation of the spectrum of the YP molecule.

  20. Aluminium and human breast diseases.

    PubMed

    Darbre, P D; Pugazhendhi, D; Mannello, F

    2011-11-01

    The human breast is exposed to aluminium from many sources including diet and personal care products, but dermal application of aluminium-based antiperspirant salts provides a local long-term source of exposure. Recent measurements have shown that aluminium is present in both tissue and fat of the human breast but at levels which vary both between breasts and between tissue samples from the same breast. We have recently found increased levels of aluminium in noninvasively collected nipple aspirate fluids taken from breast cancer patients (mean 268 ± 28 μg/l) compared with control healthy subjects (mean 131 ± 10 μg/l) providing evidence of raised aluminium levels in the breast microenvironment when cancer is present. The measurement of higher levels of aluminium in type I human breast cyst fluids (median 150 μg/l) compared with human serum (median 6 μg/l) or human milk (median 25 μg/l) warrants further investigation into any possible role of aluminium in development of this benign breast disease. Emerging evidence for aluminium in several breast structures now requires biomarkers of aluminium action in order to ascertain whether the presence of aluminium has any biological impact. To this end, we report raised levels of proteins that modulate iron homeostasis (ferritin, transferrin) in parallel with raised aluminium in nipple aspirate fluids in vivo, and we report overexpression of mRNA for several S100 calcium binding proteins following long-term exposure of MCF-7 human breast cancer cells in vitro to aluminium chlorhydrate. PMID:22099158

  1. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Hedrick, J.B.

    2006-01-01

    In 2005, rare earths were not mined in the United States. The major supplier, Molycorp, continued to maintain a large stockpile of rare-earth concentrates and compounds. Consumption decreased of refined rare-earth products. The United States remained a major importer and exporter of rare earths in 2005. During the same period, yttrium was not mined or refined in the US. Hence, supply of yttrium compounds for refined yttrium products came from China, France and Japan. Scandium was not also mined. World production was primarily in China, Russia and Ukraine. Demand for rare earths in 2006 is expected to be closely tied to economic conditions in the US.

  2. Occupational lung fibrosis in an aluminium polisher.

    PubMed

    De Vuyst, P; Dumortier, P; Rickaert, F; Van de Weyer, R; Lenclud, C; Yernault, J C

    1986-02-01

    An aluminium polisher developed severe lung fibrosis complicated by bronchial carcinoma. Although he was not submitted to the exposure risks usually described in aluminium lung (bauxite smelting, use of aluminium powders, aluminium welding), he worked in a high concentration of aluminium dust. This was demonstrated by mineralogical analyses which revealed large amounts of small metallic aluminium particles (0.5 micron - 5 micron) in bronchoalveolar lavage, lung tissue and lymph nodes 5 years after the end of exposure. Aluminium polishing seems to be a potential cause of aluminium lung. PMID:3699115

  3. Rare earths, the lanthanides, yttrium and scandium

    USGS Publications Warehouse

    Bedinger, G.; Bleiwas, D.

    2012-01-01

    In 2011, rare earths were recovered from bastnasite concentrates at the Mountain Pass Mine in California. Consumption of refined rare-earth products decreased in 2011 from 2010. U.S. rare-earth imports originated primarily from China, with lesser amounts from Austria, Estonia, France and Japan. The United States imported all of its demand for yttrium metal and yttrium compounds, with most of it originating from China. Scandium was imported in various forms and processed domestically.

  4. Aluminium, antiperspirants and breast cancer.

    PubMed

    Darbre, P D

    2005-09-01

    Aluminium salts are used as the active antiperspirant agent in underarm cosmetics, but the effects of widespread, long term and increasing use remain unknown, especially in relation to the breast, which is a local area of application. Clinical studies showing a disproportionately high incidence of breast cancer in the upper outer quadrant of the breast together with reports of genomic instability in outer quadrants of the breast provide supporting evidence for a role for locally applied cosmetic chemicals in the development of breast cancer. Aluminium is known to have a genotoxic profile, capable of causing both DNA alterations and epigenetic effects, and this would be consistent with a potential role in breast cancer if such effects occurred in breast cells. Oestrogen is a well established influence in breast cancer and its action, dependent on intracellular receptors which function as ligand-activated zinc finger transcription factors, suggests one possible point of interference from aluminium. Results reported here demonstrate that aluminium in the form of aluminium chloride or aluminium chlorhydrate can interfere with the function of oestrogen receptors of MCF7 human breast cancer cells both in terms of ligand binding and in terms of oestrogen-regulated reporter gene expression. This adds aluminium to the increasing list of metals capable of interfering with oestrogen action and termed metalloestrogens. Further studies are now needed to identify the molecular basis of this action, the longer term effects of aluminium exposure and whether aluminium can cause aberrations to other signalling pathways in breast cells. Given the wide exposure of the human population to antiperspirants, it will be important to establish dermal absorption in the local area of the breast and whether long term low level absorption could play a role in the increasing incidence of breast cancer. PMID:16045991

  5. The toxicity of aluminium in humans.

    PubMed

    Exley, C

    2016-06-01

    We are living in the 'aluminium age'. Human exposure to aluminium is inevitable and, perhaps, inestimable. Aluminium's free metal cation, Alaq(3+), is highly biologically reactive and biologically available aluminium is non-essential and essentially toxic. Biologically reactive aluminium is present throughout the human body and while, rarely, it can be acutely toxic, much less is understood about chronic aluminium intoxication. Herein the question is asked as to how to diagnose aluminium toxicity in an individual. While there are as yet, no unequivocal answers to this problem, there are procedures to follow to ascertain the nature of human exposure to aluminium. It is also important to recognise critical factors in exposure regimes and specifically that not all forms of aluminium are toxicologically equivalent and not all routes of exposure are equivalent in their delivery of aluminium to target sites. To ascertain if Alzheimer's disease is a symptom of chronic aluminium intoxication over decades or breast cancer is aggravated by the topical application of an aluminium salt or if autism could result from an immune cascade initiated by an aluminium adjuvant requires that each of these is considered independently and in the light of the most up to date scientific evidence. The aluminium age has taught us that there are no inevitabilities where chronic aluminium toxicity is concerned though there are clear possibilities and these require proving or discounting but not simply ignored. PMID:26922890

  6. Reactions for yttrium silicate high-k dielectrics

    NASA Astrophysics Data System (ADS)

    Chambers, James Joseph

    The continued scaling of metal-oxide-semiconductor-field-effect-transistors (MOSFETs) will require replacing the silicon dioxide gate dielectric with an alternate high dielectric constant (high-k) material. We have exploited the high reactivity of yttrium with both silicon and oxygen to form yttrium silicate high-k dielectrics. Yttrium silicate films with composition of (Y 2O3)x ·(SiO2)1-x and x = 0.32 to 0.87 are formed by oxidizing yttrium on silicon where yttrium reacts concurrently with silicon and oxygen. The competition between silicon and oxygen for yttrium is studied using X-ray photoelectron spectroscopy (XPS) and medium energy ion scattering (MEIS). The initial yttrium thickness mediates the silicon consumption, and a critical thickness (˜40--80 A) exists below which silicon is consumed to form yttrium silicate and above which Y2O3 forms without silicon incorporation. Engineered interfaces modify the silicon consumption, and a nitrided silicon interface results in film with composition close to Y2O3. The silicon consumption also depends on the oxidation temperature, and oxidation at higher temperature generally results in greater silicon incorporation with an activation energy of 0.3--0.5 eV. Yttrium silicate films (˜40 A) formed by oxidation of yttrium on silicon have an amorphous microstructure and an equivalent silicon dioxide thickness of ˜12 A with leakage current <1 A/cm2. Yttrium silicate formation on silicon is also demonstrated using plasma oxidation of yttrium on silicon, reactive sputtering of yttrium and annealing/oxidation of yttrium on thermal SiO 2. The interface reactions described here for yttrium are expected to be active during both physical and chemical vapor deposition of other high-k dielectrics containing Hf, Zr and La.

  7. Aluminium phosphide-induced leukopenia.

    PubMed

    Ntelios, Dimitrios; Mandros, Charalampos; Potolidis, Evangelos; Fanourgiakis, Panagiotis

    2013-01-01

    Acute intoxication from the pesticide aluminium phosphide is a relatively rare, life-threatening condition in which cardiovascular decompensation is the most feared problem. We report the case of a patient exposed to aluminium phosphide-liberated phosphine gas. It resulted in the development of a gastroenteritis-like syndrome accompanied by severe reduction in white blood cell numbers as an early and prominent manifestation. By affecting important physiological processes such as mitochondrial function and reactive oxygen species homeostasis, phosphine could cause severe toxicity. After presenting the characteristics of certain leucocyte subpopulations we provide the current molecular understanding of the observed leukopenia which in part seems paradoxical. PMID:24172776

  8. Aluminium phosphide-induced leukopenia

    PubMed Central

    Ntelios, Dimitrios; Mandros, Charalampos; Potolidis, Evangelos; Fanourgiakis, Panagiotis

    2013-01-01

    Acute intoxication from the pesticide aluminium phosphide is a relatively rare, life-threatening condition in which cardiovascular decompensation is the most feared problem. We report the case of a patient exposed to aluminium phosphide-liberated phosphine gas. It resulted in the development of a gastroenteritis-like syndrome accompanied by severe reduction in white blood cell numbers as an early and prominent manifestation. By affecting important physiological processes such as mitochondrial function and reactive oxygen species homeostasis, phosphine could cause severe toxicity. After presenting the characteristics of certain leucocyte subpopulations we provide the current molecular understanding of the observed leukopenia which in part seems paradoxical. PMID:24172776

  9. Dispersion Properties of Silicon Nitride Powder Coated with Yttrium and Aluminium Precursors.

    PubMed

    Yang; Ferreira; Weng

    1998-10-01

    A coated silicon nitride (Si3N4) powder with yttria and alumina precursors as sintering additives was prepared by a heterogeneous precipitation method. The rheological and electrophoretic properties of the suspensions obtained from the coated (CO) powder were investigated and compared with those of pure Si3N4 powder and of the mechanically mixed (MM) powders of Al2O3, Si3N4, and Y2O3. The results showed that the CO powder calcined at 500 degreesC exhibited improved dispersion properties compared with the pure Si3N4 powders. The CO powder possessed the surface character of Al2O3 and Y2O3 particles, that made it easier to process in aqueous media, yielding a higher solid loading than the pure Si3N4 powder. These improvements were attributed to a change in the resultant interaction forces between particles from attractive (pure Si3N4, and MM powders) to repulsive in the case of the CO powder. A homogeneous distribution of sintering additives in the Si3N4 matrix was obtained. Copyright 1998 Academic Press. PMID:9761653

  10. The prophylactic reduction of aluminium intake.

    PubMed

    Lione, A

    1983-02-01

    The use of modern analytical methods has demonstrated that aluminium salts can be absorbed from the gut and concentrated in various human tissues, including bone, the parathyroids and brain. The neurotoxicity of aluminium has been extensively characterized in rabbits and cats, and high concentrations of aluminium have been detected in the brain tissue of patients with Alzheimer's disease. Various reports have suggested that high aluminium intakes may be harmful to some patients with bone disease or renal impairment. Fatal aluminium-induced neuropathies have been reported in patients on renal dialysis. Since there are no demonstrable consequences of aluminium deprivation, the prophylactic reduction of aluminium intake by many patients would appear prudent. In this report, the major sources of aluminium in foods and non-prescription drugs are summarized and alternative products are described. The most common foods that contain substantial amounts of aluminium-containing additives include some processed cheeses, baking powders, cake mixes, frozen doughs, pancake mixes, self-raising flours and pickled vegetables. The aluminium-containing non-prescription drugs include some antacids, buffered aspirins, antidiarrhoeal products, douches and haemorrhoidal medications. The advisability of recommending a low aluminium diet for geriatric patients is discussed in detail. PMID:6337934

  11. Aluminium toxicity in chronic renal insufficiency

    SciTech Connect

    Savory, J.; Bertholf, R.L.; Wills, M.R.

    1985-08-01

    Aluminium is a ubiquitous element in the environment and has been demonstrated to be toxic, especially in individuals with impaired renal function. Not much is known about the biochemistry of aluminium and the mechanisms of its toxic effects. Most of the interest in aluminium has been in the clinical setting of the hemodialysis unit. Here aluminium toxicity occurs due to contamination of dialysis solutions, and treatment of the patients with aluminium-containing phosphate binding gels. Aluminium has been shown to be the major contributor to the dialysis encephalopathy syndrome and an osteomalacic component of dialysis osteodystrophy. Other clinical disturbances associated with aluminium toxicity are a microcytic anemia and metastatic extraskeletal calcification. Aluminium overload can be treated effectively by chelation therapy with desferrioxamine and hemodialysis. Aluminium is readily transferred from the dialysate to the patient's -bloodstream during hemodialysis. Once transferred, the aluminium is tightly bound to non-dialysable plasma constituents. Very low concentrations of dialysate aluminium in the range of 10-15 micrograms/l are recommended to guard against toxic effects. Very few studies have been directed towards the separation of the various plasma species which bind eluminium. Gel filtration chromatography has been used to identify five major fractions, one of which is of low molecular weight and the others appear to be protein-aluminium complexes. Recommendations on aluminium monitoring have been published and provide safe and toxic concentrations. Also, the frequency of monitoring has been addressed. Major problems exist with the analytical methods for measuring aluminium which result from inaccurate techniques and contamination difficulties. 136 references.

  12. Astatine and Yttrium Resonant Ionization Laser Spectroscopy

    NASA Astrophysics Data System (ADS)

    Teigelhoefer, Andrea

    Providing intense, contamination-free beams of rare isotopes to experiments is a challenging task. At isotope separator on-line facilities such as ISAC at TRIUMF, the choice of production target and ion source are key to the successful beam delivery. Due to their element-selectivity, high efficiency and versatility, resonant ionization laser ion sources (RILIS) gain increasingly in importance. The spectroscopic data available are typically incomplete in the region of excited- and autoionizing atomic states. In order to find the most efficient ionization scheme for a particular element, further spectroscopy is often required. The development of efficient laser resonant ionization schemes for yttrium and astatine is presented in this thesis. For yttrium, two ionization schemes with comparable relative intensities were found. Since for astatine, only two transitions were known, the focus was to provide data on atomic energy levels using resonance ionization spectroscopy. Altogether 41 previously unknown astatine energy levels were found.

  13. Recovery of aluminium, nickel-copper alloys and salts from spent fluorescent lamps

    SciTech Connect

    Rabah, Mahmoud A

    2004-07-01

    This study explores a combined pyro-hydrometallurgical method to recover pure aluminium, nickel-copper alloy(s), and some valuable salts from spent fluorescent lamps (SFLs). It also examines the safe recycling of clean glass tubes for the fluorescent lamp industry. Spent lamps were decapped under water containing 35% acetone to achieve safe capture of mercury vapour. Cleaned glass tubes, if broken, were cut using a rotating diamond disc to a standard shorter length. Aluminium and copper-nickel alloys in the separated metallic parts were recovered using suitable flux to decrease metal losses going to slag. Operation variables affecting the quality of the products and the extent of recovery with the suggested method were investigated. Results revealed that total loss in the glass tube recycling operation was 2% of the SFLs. Pure aluminium meeting standard specification DIN 1712 was recovered by melting at 800 deg. C under sodium chloride/carbon flux for 20 min. Standard nickel-copper alloys with less than 0.1% tin were prepared by melting at 1250 deg. C using a sodium borate/carbon flux. De-tinning of the molten nickel-copper alloy was carried out using oxygen gas. Tin in the slag as oxide was recovered by reduction using carbon or hydrogen gas at 650-700 deg. C. Different valuable chloride salts were also obtained in good quality. Further research is recommended on the thermodynamics of nickel-copper recovery, yttrium and europium recovery, and process economics.

  14. Bumblebee Pupae Contain High Levels of Aluminium

    PubMed Central

    Exley, Christopher; Rotheray, Ellen; Goulson, David

    2015-01-01

    The causes of declines in bees and other pollinators remains an on-going debate. While recent attention has focussed upon pesticides, other environmental pollutants have largely been ignored. Aluminium is the most significant environmental contaminant of recent times and we speculated that it could be a factor in pollinator decline. Herein we have measured the content of aluminium in bumblebee pupae taken from naturally foraging colonies in the UK. Individual pupae were acid-digested in a microwave oven and their aluminium content determined using transversely heated graphite furnace atomic absorption spectrometry. Pupae were heavily contaminated with aluminium giving values between 13.4 and 193.4 μg/g dry wt. and a mean (SD) value of 51.0 (33.0) μg/g dry wt. for the 72 pupae tested. Mean aluminium content was shown to be a significant negative predictor of average pupal weight in colonies. While no other statistically significant relationships were found relating aluminium to bee or colony health, the actual content of aluminium in pupae are extremely high and demonstrate significant exposure to aluminium. Bees rely heavily on cognitive function and aluminium is a known neurotoxin with links, for example, to Alzheimer’s disease in humans. The significant contamination of bumblebee pupae by aluminium raises the intriguing spectre of cognitive dysfunction playing a role in their population decline. PMID:26042788

  15. Microwave-assisted one-pot synthesis of water-soluble rare-earth doped fluoride luminescent nanoparticles with tunable colors

    PubMed Central

    Mi, Cong-Cong; Tian, Zhen-huang; Han, Bao-fu; Mao, Chuan-bin; Xu, Shu-kun

    2012-01-01

    Polyethyleneimine (PEI) functionalized multicolor luminescent LaF3 nanoparticles were synthesized via a novel microwave-assisted method, which can achieve fast and uniform heating under eco-friendly and energy efficient conditions. The as-prepared nanoparticles possess a pure hexagonal structure with an average size of about 12 nm. When doped with different ions (Tb3+ and Eu3+), the morphology and structure of the nanoparticles were not changed, whereas the optical properties varied with doped ions and their molar ratio, and as a result emission of four different colors (green, yellow, orange and red) were achieved by simply switching the types of doping ions (Eu3+ versus Tb3 +) and the molar ratio of the two doping ions. PMID:22879690

  16. Why are the Tcs so high in rare-earth doped CaFe2As2 single crystals and ultrathin FeSe epi-films?

    NASA Astrophysics Data System (ADS)

    Chu, C. W.

    2015-03-01

    Recent reports of non-bulk superconductivity with unexpectedly high onset-Tcs up to 49 K in the Pr-doped CaFe2As2 [(Ca,Pr)122] single crystals and up to 100 K in one-unit-cell (1UC) FeSe epi-films, respectively, offer an unusual opportunity to seek an answer to the question posed in the title. Through systematic compositional, structural, resistive, and magnetic investigations on (Ca,R)122 single crystals with R = La, Ce, Pr, and Nd, we have observed a doping-level-independent Tc, a large magnetic anisotropy, and the existence of mesoscopic-2D structures in these crystals, thus providing evidence consistent with the proposed interface-enhanced Tc in these naturally assembled Fe-based superconductors. Similar resistive and magnetic measurements were also made on the 1-4UC FeSe ultra thin epi-films. We have detected a Meissner state below 1 Oe with extensive weak-links up to ~ 20 K, unconnected small superconducting patches up to ~ 40 K, and an unusual dispersion of diamagnetic moment with frequency up to 80 K. The unusual frequency dependences of the diamagnetic moment observed in the films at different temperature ranges suggest that collective excitations of electron and/or spin nature may exist in the FeSe films below 20 K and 40-80 K. The experimental results will be presented and the implications discussed. Collaborators: Liangzi Deng, Bing Lv, Fengyan Wei, and Yu-Yi Xue, University of Houston; Li-Li Wang, Xu-Cun Ma, and Qi-Kun Xue, Tsinghua University, Beijing.

  17. Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films.

    PubMed

    Zhang, Huairuo; Reaney, Ian M; Marincel, Daniel M; Trolier-McKinstry, Susan; Ramasse, Quentin M; MacLaren, Ian; Findlay, Scott D; Fraleigh, Robert D; Ross, Ian M; Hu, Shunbo; Ren, Wei; Rainforth, W Mark

    2015-01-01

    Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15)(3+) Fe(3+)O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community. PMID:26272264

  18. Blue, yellow and orange color emitting rare earth doped BaCa2Al8O15 phosphors prepared by combustion method

    NASA Astrophysics Data System (ADS)

    Yerpude, A. N.; Dhoble, S. J.; Reddy, B. Sudhakar

    2014-12-01

    Eu2+, Dy3+, Sm3+ activated BaCa2Al8O15 phosphors were prepared by the combustion method. The phosphor powders were well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and photoluminescence (PL) spectrophotometer. Photoluminescence spectra of BaCa2Al8O15:Eu2+ phosphors show emission wavelength at 435 nm that corresponds to 4f65d1→4f7 transition of Eu2+ ion by keeping excitation wavelength extending broad-band from 270 to 400 nm centered at 334 nm. The Dy3+ doped BaCa2Al8O15 phosphors shows blue emission (485 nm) and yellow emission (566 nm) under the excitation of 347 nm, corresponding to the 4F9/2→6H15/2 transition and 4F9/2→6H13/2 transition of Dy3+ ions, respectively. The Sm3+ doped BaCa2Al8O15 phosphors have shown strong orange emission at 604 nm corresponding to the 4G5/2→6H7/2 transition of Sm3+ with intense excitation wavelength at 406 nm. Scanning electron microscopy has been used for exploring the size and morphological properties of the prepared phosphors. The obtained results show that the phosphors have potential application in the field of solid state lighting.

  19. Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films

    PubMed Central

    Zhang, Huairuo; Reaney, Ian M.; Marincel, Daniel M.; Trolier-McKinstry, Susan; Ramasse, Quentin M.; MacLaren, Ian; Findlay, Scott D.; Fraleigh, Robert D.; Ross, Ian M.; Hu, Shunbo; Ren, Wei; Mark Rainforth, W.

    2015-01-01

    Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15)3+ Fe3+O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community. PMID:26272264

  20. Photoluminescence properties of rare-earth-doped (Er(3+) ,Yb(3+) ) Y2 O3 nanophosphors by a combustion synthesis method.

    PubMed

    Kaur, Manmeet; Bisen, D P; Brahme, N; Singh, Prabhjot; Sahu, I P

    2016-05-01

    In this work, we report the synthesis of Y2 O3 :Er(3+) , Y2 O3 :Yb(3+) and Y2 O3 :Er(3+) ,Yb(3+) nanophosphors by the combustion synthesis method using urea as fuel. The doping agents were incorporated in the form of erbium nitrate and ytterbium nitrate. X-Ray diffraction (XRD) patterns revealed that the synthesized particles have a body-centered cubic structure with space group Ia-3. The photoluminescence (PL) properties were investigated after UV and infrared irradiation at room temperature. A strong characteristic emission of Er(3+) and Yb(3+) ions was identified, and the influence of doping concentration on the PL properties was systematically studied. Energy transfer from Yb(3+) to Er(3+) ions was observed in Y2 O3 nanophosphors. The obtained result may be useful in potential applications such as bioimaging. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26394709

  1. Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films

    NASA Astrophysics Data System (ADS)

    Zhang, Huairuo; Reaney, Ian M.; Marincel, Daniel M.; Trolier-McKinstry, Susan; Ramasse, Quentin M.; MacLaren, Ian; Findlay, Scott D.; Fraleigh, Robert D.; Ross, Ian M.; Hu, Shunbo; Ren, Wei; Mark Rainforth, W.

    2015-08-01

    Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15)3+ Fe3+O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community.

  2. Modal cutoff in rare-earth-doped photonic crystal fibers with multi-layer air-holes missing in the core

    NASA Astrophysics Data System (ADS)

    Zhao, Xing-tao; Zheng, Yi; Liu, Xiao-xu; Li, Shu-guang; Han, Ying; Hou, Zhi-yun; Wang, Na; Hou, Lan-tian

    2013-05-01

    The various mode effective indices of the doped photonic crystal fibers (PCFs) are compared, the mode field distributions of the fundamental mode and the second-order mode are analyzed, and the single-mode condition is presented. The mode effective indices of large-core doped PCFs with different core indices and structure parameters are simulated by the finite element method (FEM). The relations of the core index with the fiber structure parameters of pitch, hole-to-pitch ratio and core diameter are obtained for single-mode propagation. In the design and fabrication of the doped PCF, we can adjust the core index and fiber structure parameters to achieve large mode area and single-mode propagation.

  3. Synthesis and characterization of rare-earth doped SrBi{sub 2}Nb{sub 2}O{sub 9} phase in lithium borate based nanocrystallized glasses

    SciTech Connect

    Harihara Venkataraman, B.; Fujiwara, Takumi; Komatsu, Takayuki

    2009-06-15

    Glass composites comprising of un-doped and samarium-doped SrBi{sub 2}Nb{sub 2}O{sub 9} nanocrystallites are fabricated in the glass system 16.66SrO-16.66[(1-x)Bi{sub 2}O{sub 3}-xSm{sub 2}O{sub 3}]-16.66Nb{sub 2}O{sub 5}-50Li{sub 2}B{sub 4}O{sub 7} (0<=x<=0.5, in mol%) via the melt quenching technique. The glassy nature of the as-quenched samples is established by differential thermal analyses. Transmission electron microscopic studies reveal the presence of about 15 nm sized spherical crystallites of the fluorite-like SrBi{sub 1.9}Sm{sub 0.1}Nb{sub 2}O{sub 9} phase in the samples heat treated at 530 deg. C. The formation of layered perovskite-type un-doped and samarium-doped SrBi{sub 2}Nb{sub 2}O{sub 9} nanocrystallites with an orthorhombic structure through the intermediate fluorite phase is confirmed by X-ray powder diffraction and micro-Raman spectroscopic studies. The influence of samarium doping on the lattice parameters, lattice distortions, and the Raman peak positions of SrBi{sub 2}Nb{sub 2}O{sub 9} perovskite phase is clarified. The dielectric constants of the perovskite SrBi{sub 2}Nb{sub 2}O{sub 9} and SrBi{sub 1.9}Sm{sub 0.1}Nb{sub 2}O{sub 9} nanocrystals are relatively larger than those of the corresponding fluorite-like phase and the precursor glass. - Graphical Abstract: This figure shows the XRD patterns at room temperature for the as-quenched and heat treated samples in Sm{sub 2}O{sub 3}-doped (x=0.1) glass. Based on these results, it is concluded that the formation of samarium-doped perovskite SBN phase takes place via an intermediate fluorite-like phase in the crystallization of this glass.

  4. Efficient, green laser based on a blue-diode pumped rare-earth-doped fluoride crystal in an extremely short resonator

    NASA Astrophysics Data System (ADS)

    Strotkamp, Michael; Schwarz, Thomas; Jungbluth, Bernd; Faidel, Heinrich; Leers, Michael

    2010-02-01

    The green cw laser presented in this work is realized by means of a Pr:YLF crystal emitting at 523 nm that is pumped by a blue GaN laser diode in an extremely short resonator. With a 500 mW-diode a laser has been achieved with M2 = 1, a slope of 40 % and an output power of 140mW with an absorbed pump power of 410 mW which results in an electrooptical efficiency of 6.5 %. Despite the reduced overlap with a 1 W-diode the output power rises to 290 mW with an absorbed pump power of 850 mW and the M2 increases only slightly. Based on these results a compact laser package has been accomplished using a monolithic micro optics for the beam shaping of the diode light and joining all components with a low-shrinkage adhesive on a common base plate. In a first test of the alignment strategy a laser with an output power of 92 mW has been achieved by means of the 500 mW pump power.

  5. Synthesis and characterization of visible emission from rare-earth doped aluminum nitride, gallium nitride and gallium aluminum nitride powders and thin films

    NASA Astrophysics Data System (ADS)

    Tao, Jonathan Huai-Tse

    A three-step solution-based process had been used synthesize powders of GaN, AlN and their alloys. The complete solid solubility and tunable nature of these nitride band gaps in the visible spectrum were the motivation of these studies due to their application in solid state lighting. Energy dispersive X-ray spectroscopy confirmed the reduction in oxygen content for the GaN powders to as low as 4 atom % with an 8 % oxygen to nitrogen ratio. Relative to commercial GaN powders, the bandedge of the powders synthesized by such approach also shifted to higher energy, which indicated fewer defects, as observed from reflectance measurements. Inspired by the use of rare-earth elements as color emitters in fluorescent lamp phosphors, these elements were also used as activators in our nitride material. Visible emission was demonstrated through photoluminescence measurements in AlN powders activated with rare-earth elements Eu3+, Tb3+, Tm3+. These ions showed emission in the red, green and blue regions of the visible spectrum, respectively. Eu3+ and Tb3+ co-activation was also observed in an AlN sample that indicated successful energy transfer from the host to sensitizer, and subsequently to another activator. Tb3+ emission was observed under cathodoluminescence in GaN powders synthesized by the same method, and a concentration study showed no effect of concentration quenching up to 8 atom %. Using the same source powder, a pulsed-laser deposited thin film was fabricated that showed both band gap emission and activator-related emission, suggesting a reduction of defects when the powders were deposited as thin films. Additionally, GaN:Tb3+ films were also fabricated using metallorganic vapor phase epitaxy using precursors with and without oxygen ligands. Tb3+ emission was only observed in the sample fabricated from the precursor with oxygen ligand, suggestion that oxygen may be required for effective rare earth luminescence. Finally, Ga1-xAl xN alloy powders (x=0.5) and Ga1-x-yAlxDy yN (x=0.10, 0.30, y=0.01) powders were synthesized using the solution method while incorporating a stainless steel pressure vessel, which increased the synthesis pressure and aided the formation of a single phase hydroxide precursor. This in turn produced a single phase alloy nitride in the final step. Dy3+ emission that was not observed in GaN powders was also observed in the Ga1-x-yAlxDyyN powder. This suggested that the incorporation of aluminum enabled rare-earth emission in the nitrides synthesized for these experiments. However, attempts to sputter nitride alloy thin films via radio frequency sputtering were unsuccessful; only very minor peak shifts in the X-ray diffraction patterns were observed. Nevertheless, energy dispersive X-ray spectroscopy indicates the presence of Al in the Ga0.5Al0.5N film deposited on a Si substrate. This suggested that Al atoms may have segregated from the alloy lattice during the deposition process, with only a small amount of Al atoms incorporated into the GaN lattice.

  6. Influence of rare-earth doping on the microstructure and conductivity of BaCe 0.9Ln 0.1O 3- δ proton conductors

    NASA Astrophysics Data System (ADS)

    Amsif, M.; Marrero-Lopez, D.; Ruiz-Morales, J. C.; Savvin, S. N.; Gabás, M.; Nunez, P.

    Doped barium cerates BaCe 0.9Ln 0.1O 3- δ containing earth-rare dopants with different ionic radii, Ln = La, Nd, Sm, Gd, Yb, Tb and Y, have been investigated as candidate materials for fuel cells and other electrochemical applications. The synthesis of these materials was performed using a precursor method based on freeze-drying, which allows a precise control of the homogeneity of the ceramic powders. Dense ceramic pellets were obtained at 1400 °C under identical sintering conditions. The microstructure of the ceramics exhibits similar features with relative density higher than 95% and the grain size decreasing as the ionic radius of the dopant decreases. Impedance spectroscopy measurements were performed to study separately the different contributions to the total conductivity. The bulk, grain boundary and total conductivities depend on the ionic radius of the dopant, reaching a maximum for Gd-doped samples with a value of 0.02 S cm -1 for the total conductivity at 600 °C.

  7. Multimodal bioimaging using rare earth doped Gd2O2S: Yb/Er phosphor with upconversion luminescence and magnetic resonance properties.

    PubMed

    Ajithkumar, G; Yoo, Benjamin; Goral, Dara E; Hornsby, Peter J; Lin, Ai-Ling; Ladiwala, Uma; Dravid, Vinayak P; Sardar, Dhiraj K

    2013-03-21

    While infrared upconversion imaging using halide nanoparticles are so common the search for a very efficient halide free upconverting phosphors is still lacking. In this article we report Gd2O2S:Yb/Er,YbHo,YbTm systems as a very efficient alternative phosphors that show upconversion efficiency comparable or even higher than existing halide phosphors. While the majority of rare earth dopants provide the necessary features for optical imaging, the paramagnetic Gd ion also contributes to the magnetic imaging,thereby resulting in a system with bimodal imaging features. Results from imaging of the nanoparticles together with aggregates of cultured cells have suggested that imaging of the particles in living animals may be possible. In vitro tests revealed no signficant toxicity because no cell death was observed when the nanoparticles were in the presence of growing cells in culture. Measurement of the magnetization of the phosphor shows that the particles are strongly magnetic, thus making them suitable as an MRI agent. PMID:25191618

  8. Multimodal bioimaging using rare earth doped Gd2O2S: Yb/Er phosphor with upconversion luminescence and magnetic resonance properties

    PubMed Central

    Ajithkumar, G.; Yoo, Benjamin; Goral, Dara E.; Hornsby, Peter J.; Lin, Ai-Ling; Ladiwala, Uma; Dravid, Vinayak P.; Sardar, Dhiraj K

    2013-01-01

    While infrared upconversion imaging using halide nanoparticles are so common the search for a very efficient halide free upconverting phosphors is still lacking. In this article we report Gd2O2S:Yb/Er,YbHo,YbTm systems as a very efficient alternative phosphors that show upconversion efficiency comparable or even higher than existing halide phosphors. While the majority of rare earth dopants provide the necessary features for optical imaging, the paramagnetic Gd ion also contributes to the magnetic imaging,thereby resulting in a system with bimodal imaging features. Results from imaging of the nanoparticles together with aggregates of cultured cells have suggested that imaging of the particles in living animals may be possible. In vitro tests revealed no signficant toxicity because no cell death was observed when the nanoparticles were in the presence of growing cells in culture. Measurement of the magnetization of the phosphor shows that the particles are strongly magnetic, thus making them suitable as an MRI agent. PMID:25191618

  9. Aluminium in foodstuffs and diets in Sweden.

    PubMed

    Jorhem, L; Haegglund, G

    1992-01-01

    The levels of aluminium have been determined in a number of individual foodstuffs on the Swedish market and in 24 h duplicate diets collected by women living in the Stockholm area. The results show that the levels in most foods are very low and that the level in vegetables can vary by a factor 10. Beverages from aluminium cans were found to have aluminium levels not markedly different from those in glass bottles. Based on the results of the analysis of individual foods, the average Swedish daily diet was calculated to contain about 0.6 mg aluminium, whereas the mean content of the collected duplicate diets was 13 mg. A cake made from a mix containing aluminium phosphate in the baking soda was identified as the most important contributor of aluminium to the duplicate diets. Tea and aluminium utensils were estimated to increase the aluminium content of the diets by approximately 4 and 2 mg/day, respectively. The results also indicate that a considerable amount of aluminium must be introduced from other sources. PMID:1542992

  10. Terbium photoluminescence in yttrium aluminum garnet xerogels

    SciTech Connect

    Maliarevich, G. K.; Gaponenko, N. V. Mudryi, A. V.; Drozdov, Yu. N.; Stepikhova, M. V.; Stepanova, E. A.

    2009-02-15

    Based on a colloidal solution containing terbium, yttrium, and aluminum metal ions, a powder was synthesized and films of terbium-doped yttrium aluminum garnet Tb{sub 0.15}Y{sub 2.85}Al{sub 5}O{sub 12} were grown on single-crystal silicon and porous anodic alumina. Annealing of the sample in a temperature range from 200-1100 deg. C results in an increase in the photoluminescence intensity in the wavelength range from 480-640 nm, which is caused by Tb{sup 3+} ion intra-atomic transitions {sup 5}D{sub 4}{sup {yields}}{sup 7}F{sub j} (j = 3, 4, 5, 6). Annealing at 900 deg. C and higher temperatures gives rise to low-intensity photoluminescence bands in the region of 667 and 681 nm, which correspond to transitions {sup 5}D{sub 4}{sup {yields}}{sup 7}F{sub 0}, {sup 5}D{sub 4}{sup {yields}}{sup 7}F{sub 1}, and room-temperature Stark term splitting, which suggests the existence of a crystalline environment of Tb{sup 3+} ions. The FWHM of spectral lines in the region of 543 nm decreases from {approx}10 to {approx}(2-3) nm as the xerogel annealing temperature is increased from 700 to 900 deg. C and higher. Three bands with maxima at 280, 330, and 376 nm, which correspond to Tb{sup 3+} ion transitions {sup 7}F{sub 6}{sup {yields}}{sup 5}I{sub 8}, {sup 5}L{sub 6}, {sup 5}G{sub 6}, {sup 5}D{sub 3}, are observed in the photoluminescence excitation spectra of the studied structures for the emission wavelength at 543 nm. X-ray diffraction detected the formation of a crystalline phase for a terbium-doped yttrium aluminum garnet powder after annealing at 1100 deg. C.

  11. Safety of knee radiosynovectomy with yttrium - 90

    NASA Astrophysics Data System (ADS)

    Kempińska, M.; Lass, P.; Ćwikła, J. B.; Żbikowski, P.

    2011-09-01

    Radioisotope knee synovectomy is based on an Yttrium - 90 citrate injection (185 - 222 MBq) into the knee joint cavity. The performance of procedure needs participation of a nuclear medicine specialist as well as an orthopedist or a rheumatologist and a technologist, who prepares radiopharmaceuticals. The ionization doses for patients and personnel depend not only on the injected activity, but also on the method and process of injection and the radioactivity measurement procedure used. The aim of this study is the evaluation of the degree of radiation exposure of patients and medical personnel during the performance of therapy with 90Y.

  12. Abscopal Effects and Yttrium-90 Radioembolization.

    PubMed

    Ghodadra, Anish; Bhatt, Sumantha; Camacho, Juan C; Kim, Hyun S

    2016-07-01

    We present the case of an 80-year-old male with squamous cell carcinoma with bilobar hepatic metastases who underwent targeted Yttrium-90 radioembolization of the right hepatic lobe lesion. Subsequently, there was complete regression of the nontargeted, left hepatic lobe lesion. This may represent the first ever reported abscopal effect in radioembolization. The abscopal effect refers to the phenomenon of tumor response in nontargeted sites after targeted radiotherapy. In this article, we briefly review the immune-mediated mechanisms responsible for the abscopal effect. PMID:26662290

  13. Side Effects of Yttrium-90 Radioembolization

    PubMed Central

    Riaz, Ahsun; Awais, Rafia; Salem, Riad

    2014-01-01

    Limited therapeutic options are available for hepatic malignancies. Image guided targeted therapies have established their role in management of primary and secondary hepatic malignancies. Radioembolization with yttrium-90 (90Y) microspheres is safe and efficacious for treatment of hepatic malignancies. The tumoricidal effect of radioembolization is predominantly due to radioactivity and not ischemia. This article will present a comprehensive review of the side effects that have been associated with radioembolization using 90Y microspheres. Some of the described side effects are associated with all transarterial procedures. Side effects specific to radioembolization will also be discussed in detail. Methods to decrease the incidence of these potential side effects will also be discussed. PMID:25120955

  14. Cerium and yttrium oxide nanoparticles are neuroprotective

    SciTech Connect

    Schubert, David . E-mail: schubert@salk.edu; Dargusch, Richard; Raitano, Joan; Chan, S.-W.

    2006-03-31

    The responses of cells exposed to nanoparticles have been studied with regard to toxicity, but very little attention has been paid to the possibility that some types of particles can protect cells from various forms of lethal stress. It is shown here that nanoparticles composed of cerium oxide or yttrium oxide protect nerve cells from oxidative stress and that the neuroprotection is independent of particle size. The ceria and yttria nanoparticles act as direct antioxidants to limit the amount of reactive oxygen species required to kill the cells. It follows that this group of nanoparticles could be used to modulate oxidative stress in biological systems.

  15. Metallic glass ingots based on yttrium

    NASA Astrophysics Data System (ADS)

    Guo, Faqiang; Poon, S. Joseph; Shiflet, Gary J.

    2003-09-01

    We report a family of yttrium metallic alloys that are able to form glassy ingots directly from the liquid, as well as forming bulk-sized amorphous rods with diameters over 2 cm by water cooling of the alloy melt sealed in quartz tubes. It is apparent that, in addition to the strong chemical interaction among the components, the simultaneous occurrence of well-distributed atom sizes and a strongly depressed liquidus temperature in multicomponent metallic alloys is responsible for the formation of glassy ingots.

  16. Unconventional Superfluidity in Yttrium Iron Garnet Films.

    PubMed

    Sun, Chen; Nattermann, Thomas; Pokrovsky, Valery L

    2016-06-24

    We argue that the magnon condensate in yttrium iron garnet may display experimentally observable superfluidity at room temperature despite the 100 times dominance of the normal density over superfluid ones. The superfluidity has a more complicated nature than in known superfluids since the U(1) symmetry of the global phase shift is violated by the dipolar interaction leading to the exchange of spin moment between the condensate and the crystal lattice. It produces periodic inhomogeneity in the stationary superfluid flow. We discuss the manner of observation and possible applications of magnon superfluidity. It may strongly enhance the spin-torque effects and reduce the energy consumption of the magnonic devices. PMID:27391750

  17. Unconventional Superfluidity in Yttrium Iron Garnet Films

    NASA Astrophysics Data System (ADS)

    Sun, Chen; Nattermann, Thomas; Pokrovsky, Valery L.

    2016-06-01

    We argue that the magnon condensate in yttrium iron garnet may display experimentally observable superfluidity at room temperature despite the 100 times dominance of the normal density over superfluid ones. The superfluidity has a more complicated nature than in known superfluids since the U(1) symmetry of the global phase shift is violated by the dipolar interaction leading to the exchange of spin moment between the condensate and the crystal lattice. It produces periodic inhomogeneity in the stationary superfluid flow. We discuss the manner of observation and possible applications of magnon superfluidity. It may strongly enhance the spin-torque effects and reduce the energy consumption of the magnonic devices.

  18. Pressure-stabilized superconductive yttrium hydrides

    PubMed Central

    Li, Yinwei; Hao, Jian; Liu, Hanyu; Tse, John S.; Wang, Yanchao; Ma, Yanming

    2015-01-01

    The search for high-temperature superconductors has been focused on compounds containing a large fraction of hydrogen, such as SiH4(H2)2, CaH6 and KH6. Through a systematic investigation of yttrium hydrides at different hydrogen contents using an structure prediction method based on the particle swarm optimization algorithm, we have predicted two new yttrium hydrides (YH4 andYH6), which are stable above 110 GPa. Three types of hydrogen species with increased H contents were found, monatomic H in YH3, monatomic H+molecular “H2” in YH4 and hexagonal “H6” unit in YH6. Interestingly, H atoms in YH6 form sodalite-like cage sublattice with centered Y atom. Electron-phonon calculations revealed the superconductive potential of YH4 and YH6 with estimated transition temperatures (Tc) of 84–95 K and 251–264 K at 120 GPa, respectively. These values are higher than the predicted maximal Tc of 40 K in YH3. PMID:25942452

  19. Lactobacillus plantarum CCFM639 alleviates aluminium toxicity.

    PubMed

    Yu, Leilei; Zhai, Qixiao; Liu, Xiaoming; Wang, Gang; Zhang, Qiuxiang; Zhao, Jianxin; Narbad, Arjan; Zhang, Hao; Tian, Fengwei; Chen, Wei

    2016-02-01

    Aluminium (Al) is the most abundant metal in the earth's crust. Al exposure can cause a variety of adverse physiological effects in humans and animals. Our aim was to demonstrate that specific probiotic bacteria can play a special physiologically functional role in protection against Al toxicity in mice. Thirty strains of lactic acid bacteria (LAB) were tested for their aluminium-binding ability, aluminium tolerance, their antioxidative capacity, and their ability to survive the exposure to artificial gastrointestinal (GI) juices. Lactobacillus plantarum CCFM639 was selected for animal experiments because of its excellent performance in vitro. Forty mice were divided into four groups: control, Al only, Al plus CCFM639, and Al plus deferiprone (DFP). CCFM639 was administered at 10(9) CFU once daily for 10 days, followed by a single oral dose of aluminium chloride hexahydrate at 5.14 mg aluminium (LD50) for each mouse. The results showed that CCFM639 treatment led to a significant reduction in the mortality rates with corresponding decrease in intestinal aluminium absorption and in accumulation of aluminium in the tissues and amelioration of hepatic histopathological damage. This probiotic treatment also resulted in alleviation of hepatic, renal, and cerebral oxidative stress. The treatment of L. plantarum CCFM639 has potential as a therapeutic dietary strategy against acute aluminium toxicity. PMID:26610803

  20. Aluminium Diphosphamethanides: Hidden Frustrated Lewis Pairs.

    PubMed

    Styra, Steffen; Radius, Michael; Moos, Eric; Bihlmeier, Angela; Breher, Frank

    2016-07-01

    The synthesis and characterisation of two aluminium diphosphamethanide complexes, [Al(tBu)2 {κ(2) P,P'-Mes*PCHPMes*}] (3) and [Al(C6 F5 )2 {κ(2) P,P'-Mes*PCHPMes*}] (4), and the silylated analogue, Mes*PCHP(SiMe3 )Mes* (5), are reported. The aluminium complexes feature four-membered PCPAl core structures consisting of diphosphaallyl ligands. The silylated phosphine 5 was found to be a valuable precursor for the synthesis of 4 as it cleanly reacts with the diaryl aluminium chloride [(C6 F5 )2 AlCl]2 . The aluminium complex 3 reacts with molecular dihydrogen at room temperature under formation of the acyclic σ(2) λ(3) ,σ(3) λ(3) -diphosphine Mes*PCHP(H)Mes* and the corresponding dialkyl aluminium hydride [tBu2 AlH]3 . Thus, 3 belongs to the family of so-called hidden frustrated Lewis pairs. PMID:27271936

  1. Biological indicators of exposure to total and respirable aluminium dust fractions in a primary aluminium smelter.

    PubMed Central

    Röllin, H B; Theodorou, P; Cantrell, A C

    1996-01-01

    OBJECTIVES: The study attempts to define biological indicators of aluminium uptake and excretion in workers exposed to airborne aluminium compounds in a primary aluminium smelter. Also, this study defines the total and respirable aluminium dust fractions in two different potrooms, and correlates their concentrations with biological indicators in this group of workers. METHODS: Air was sampled at defined work sites. Non-destructive and conventional techniques were used to find total and respirable aluminium content of the dust. Blood and urine was collected from 84 volunteers employed at various work stations throughout the smelter and from two different cohorts of controls matched for sex, age, and socioeconomic status. Aluminium in serum samples and urine specimens was measured by flameless atomic absorption with a PE 4100 ZL spectrometer. RESULTS: The correlation of aluminium concentrations in serum and urine samples with the degree of exposure was assessed for three arbitrary exposure categories; low (0.036 mg Al/m3), medium (0.35 mg Al/m3) and high (1.47 mg Al/m3) as found in different areas of the smelter. At medium and high exposure, the ratio of respirable to total aluminium in the dust samples varied significantly. At high exposure, serum aluminium, although significantly raised, was still within the normal range of an unexposed population. The workers with low exposure excreted aluminium in urine at levels significantly higher than the controls, but still within the normal range of the population. However, potroom workers with medium and high exposure had significantly higher urinary aluminium than the normal range. CONCLUSIONS: It is concluded that only urinary aluminium constitutes a practical index of occupational exposure at or above 0.35 mg Al/m3, and that the respirable fraction of the dust may play a major role in the biological response to exposure to aluminium in a smelter environment. PMID:8758038

  2. Synthesis of yttrium hydroxide and oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Tang, Qun; Liu, Zhaoping; Li, Shu; Zhang, Shuyuan; Liu, Xianming; Qian, Yitai

    2003-11-01

    Yttrium hydroxide nanotubes were hydrothermally synthesized via a metastable precursor, PEG-Y(NO 3) 3 complex. XRD patterns showed the product was a pure hexagonal phase of Y(OH) 3. TEM images displayed that the nanotubes have outer diameters ranging from 80 to 200 nm, wall thicknesses of about 30 nm, and lengths up to several micrometers. The nanotube growth may have three stages: formation of a metastable PEG-Y(NO 3) 3 complex; nucleation and formation of Y(OH) 3 nanorods; developing Y(OH) 3 nanotubes. We proposed the Y(OH) 3 nanotubes growth mechanism to be a nucleation-diffusion growth based on the characterization results. Y 2O 3 nanotubes were formed with smaller diameters after post-treatment at 500°C for 2 h.

  3. Yttrium-90 microsphere radioembolization for hepatocellular carcinoma.

    PubMed

    Edeline, Julien; Gilabert, Marine; Garin, Etienne; Boucher, Eveline; Raoul, Jean-Luc

    2015-03-01

    Yttrium-90 (Y90) radioembolization is an emerging strategy to treat liver malignancies, and clinical data supporting its use have accumulated in recent years. Y90-radioembolization has shown clinical effectiveness in intermediate and advanced hepatocellular carcinoma, with a favorable safety profile. Retrospective data show similar levels of effectiveness to transarterial chemoembolization in intermediate hepatocellular carcinoma, with some evidence of better tolerance. While phase 3 studies comparing Y90-radioembolization to chemoembolization in intermediate hepatocellular carcinoma would be difficult to conduct, studies comparing or combining Y90-radioembolization with sorafenib are under way. Questions also remain about the most suitable modalities for defining the dose to administer. Phase 3 studies are under way to clarify the place of Y90-radioembolization in the algorithm of HCC treatment. PMID:26020026

  4. Enthalpy of crystallization of amorphous yttrium oxide

    SciTech Connect

    Reznitskii, L.A.

    1988-02-01

    Measurements have been made on the enthalpies of crystallization of amorphous Fe/sub 2/O/sub 3/ and Y/sub 3/Fe/sub 5/O/sub 12/ from amorphous Fe/sub 2/O/sub 3/ and Y/sub 2/O/sub 3/ as determined by the DSC method. The heat of crystallization for Y/sub 2/O/sub 3am/ does not make itself felt on the heating thermogram, in contrast to that for Fe/sub 2/O/sub 3/, evidently because it is spread out over a wide temperature range, so it is difficult to measure. One can combine thermochemical equations to calculate the enthalpy of crystallization for amorphous yttrium oxide as ..delta..H = -24.9 kJ/mole.

  5. Alveolar proteinosis associated with aluminium dust inhalation.

    PubMed

    Chew, R; Nigam, S; Sivakumaran, P

    2016-08-01

    Secondary alveolar proteinosis is a rare lung disease which may be triggered by a variety of inhaled particles. The diagnosis is made by detection of anti-granulocyte-macrophage colony-stimulating factor antibodies in bronchoalveolar lavage fluid, which appears milky white and contains lamellar bodies. Aluminium has been suggested as a possible cause, but there is little evidence in the literature to support this assertion. We report the case of a 46-year-old former boilermaker and boat builder who developed secondary alveolar proteinosis following sustained heavy aluminium exposure. The presence of aluminium was confirmed both by histological examination and metallurgical analysis of a mediastinal lymph node. Despite cessation of exposure to aluminium and treatment with whole-lung lavage which normally results in improvements in both symptoms and lung function, the outcome was poor and novel therapies are now being used for this patient. It may be that the natural history in aluminium-related alveolar proteinosis is different, with the metal playing a mediating role in the disease process. Our case further supports the link between aluminium and secondary alveolar proteinosis and highlights the need for measures to prevent excessive aluminium inhalation in relevant industries. PMID:27099254

  6. Aluminium in Biological Environments: A Computational Approach

    PubMed Central

    Mujika, Jon I; Rezabal, Elixabete; Mercero, Jose M; Ruipérez, Fernando; Costa, Dominique; Ugalde, Jesus M; Lopez, Xabier

    2014-01-01

    The increased availability of aluminium in biological environments, due to human intervention in the last century, raises concerns on the effects that this so far “excluded from biology” metal might have on living organisms. Consequently, the bioinorganic chemistry of aluminium has emerged as a very active field of research. This review will focus on our contributions to this field, based on computational studies that can yield an understanding of the aluminum biochemistry at a molecular level. Aluminium can interact and be stabilized in biological environments by complexing with both low molecular mass chelants and high molecular mass peptides. The speciation of the metal is, nonetheless, dictated by the hydrolytic species dominant in each case and which vary according to the pH condition of the medium. In blood, citrate and serum transferrin are identified as the main low molecular mass and high molecular mass molecules interacting with aluminium. The complexation of aluminium to citrate and the subsequent changes exerted on the deprotonation pathways of its tritable groups will be discussed along with the mechanisms for the intake and release of aluminium in serum transferrin at two pH conditions, physiological neutral and endosomatic acidic. Aluminium can substitute other metals, in particular magnesium, in protein buried sites and trigger conformational disorder and alteration of the protonation states of the protein's sidechains. A detailed account of the interaction of aluminium with proteic sidechains will be given. Finally, it will be described how alumnium can exert oxidative stress by stabilizing superoxide radicals either as mononuclear aluminium or clustered in boehmite. The possibility of promotion of Fenton reaction, and production of hydroxyl radicals will also be discussed. PMID:24757505

  7. Investigation of the aluminium-aluminium oxide reversible transformation as observed by hot stage electron microscopy.

    NASA Technical Reports Server (NTRS)

    Grove, C. A.; Judd, G.; Ansell, G. S.

    1972-01-01

    Thin foils of high purity aluminium and an Al-Al2O3 SAP type of alloy were oxidised in a specially designed hot stage specimen chamber in an electron microscope. Below 450 C, amorphous aluminium oxide formed on the foil surface and was first detectable at foil edges, holes, and pits. Islands of aluminium then nucleated in this amorphous oxide. The aluminium islands displayed either a lateral growth with eventual coalescence with other islands, or a reoxidation process which caused the islands to disappear. The aluminium island formation was determined to be related to the presence of the electron beam. A mechanism based upon electron charging due to the electron beam was proposed to explain the nucleation, growth, coalescence, disappearance, and geometry of the aluminium islands.

  8. Structural study of VO {sub x} doped aluminium fluoride and aluminium oxide catalysts

    SciTech Connect

    Scheurell, Kerstin; Scholz, Gudrun; Kemnitz, Erhard

    2007-02-15

    The structural properties of vanadium doped aluminium oxyfluorides and aluminium oxides, prepared by a modified sol-gel synthesis route, were thoroughly investigated. The influence of the preparation technique and the calcination temperature on the coordination of vanadium, aluminium and fluorine was analysed by different spectroscopic methods such as Raman, MAS NMR and ESR spectroscopy. In all samples calcined at low temperatures (350 deg. C), vanadium coexists in two oxidation states V{sup IV} and V{sup V}, with V{sup IV} as dominating species in the vanadium doped aluminium oxyfluorides. In the fluoride containing solids aluminium as well as vanadium are coordinated by fluorine and oxygen. Thermal annealing of 800 deg. C leads to an extensive reorganisation of the original matrices and to the oxidation of V{sup IV} to V{sup V} in both systems. - Graphical abstract: Structure model for VO {sub x} doped aluminium oxide.

  9. The removal of iron from molten aluminium

    SciTech Connect

    Donk, H.M. van der; Nijhof, G.H.; Castelijns, C.A.M.

    1995-12-31

    In this work an overview is given about the techniques available for the removal of metallic impurities from molten aluminium. The overview is focused on the removal of iron. Also, some experimental results are given about the creation of iron-rich intermetallic compounds in an aluminium system, which are subsequently removed by gravity segregation and filtration techniques. This work is part of an ongoing research project of three major European aluminium companies who are co-operating on the subject of recycling of aluminium packaging materials recovered from household waste by means of Eddy-Current techniques. Using this technique the pick-up of some contaminating metals, particularly iron, is almost unavoidable.

  10. Alkali metal yttrium neo-pentoxide double alkoxide precursors to alkali metal yttrium oxide nanomaterials

    DOE PAGESBeta

    Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; Cramer, Roger

    2016-03-15

    In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep)4]) compounds were developed as precursors to alkali yttrium oxide (AYO2) nanomaterials. The reaction of yttrium amide ([Y(NR2)3] where R=Si(CH3)3) with four equivalents of H-ONep followed by addition of [A(NR2)] (A=Li, Na, K) or Ao (Ao=Rb, Cs) led to the formation of a complex series of AnY(ONep)3+n species, crystallographically identified as [Y2Li3(μ3-ONep)(μ3-HONep)(μ-ONep)5(ONep)3(HONep)2] (1), [YNa2(μ3-ONep)4(ONep)]2 (2), {[Y2K3(μ3-ONep)3(μ-ONep)4(ONep)2(ηξ-tol)2][Y4K2(μ4-O)(μ3-ONep)8(ONep)4]•ηx-tol]} (3), [Y4K2(μ4-O)(μ3-ONep)8(ONep)4] (3a), [Y2Rb3(μ4-ONep)3(μ-ONep)6] (4), and [Y2Cs4(μ6-O)(μ3-ONep)6(μ3-HONep)2(ONep)2(ηx-tol)4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing weremore » found by powder X-ray diffraction experiments to be Y2O3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less

  11. Mechanical properties of lanthanum and yttrium chromites

    SciTech Connect

    Paulik, S.W.; Armstrong, T.R.

    1996-12-31

    In an operating high-temperature (1000{degrees}C) solid oxide fuel cell (SOFC), the interconnect separates the fuel (P(O{sub 2}){approx}10{sup -16} atm) and the oxidant (P(O2){approx}10{sup 0.2} atm), while being electrically conductive and connecting the cells in series. Such severe atmospheric and thermal demands greatly reduce the number of viable candidate materials. Only two materials, acceptor substituted lanthanum chromite and yttrium chromite, meet these severe requirements. In acceptor substituted chromites (Sr{sup 2+} or Ca{sup 2+} for La{sup 3+}), charge compensation is primarily electronic in oxidizing conditions (through the formation of Cr{sup 4+}). Under reducing conditions, ionic charge compensation becomes significant as the lattice becomes oxygen deficient. The formation of oxygen vacancies is accompanied by the reduction of Cr{sup 4+} ions to Cr{sup 3+} and a resultant lattice expansion. The lattice expansion observed in large chemical potential gradients is not desirable and has been found to result in greatly reduced mechanical strength.

  12. Aluminium in the blood and urine of industrially exposed workers.

    PubMed Central

    Sjögren, B; Lundberg, I; Lidums, V

    1983-01-01

    Blood and urine aluminium concentrations were studied in industrially exposed workers using electrothermal atomic absorption spectrometry. Welders and workers making aluminium powder and aluminium sulphate had higher concentrations in blood and urine than non-exposed referents. Workers in the electrolytic production of aluminium had higher urine but not blood concentrations than the referents. Thus aluminium was found to be absorbed by all industrially exposed workers. Blood concentrations were lower than those presumably associated with aluminium induced encephalopathy in patients receiving dialysis. PMID:6871119

  13. Surface modification for aluminium pigment inhibition.

    PubMed

    Karlsson, Philip; Palmqvist, Anders E C; Holmberg, Krister

    2006-12-21

    This review concerns surface treatment of aluminium pigments for use in water borne coatings. Aluminium pigments are commonly used in coatings to give a silvery and shiny lustre to the substrate. Such paints and inks have traditionally been solvent borne, since aluminium pigment particles react with water. For environmental and health reasons solvent borne coatings are being replaced by water borne and the aluminium pigments then need to be surface modified in order to stand exposure to water. This process is called inhibition and both organic and inorganic substances are used as inhibiting agents. The organic inhibiting agents range from low molecular weight substances, such as phenols and aromatic acids, via surfactants, in particular alkyl phosphates and other anionic amphiphiles, to high molecular weight compounds, such as polyelectrolytes. A common denominator for them all is that they contain a functional group that interacts specifically with aluminium at the surface. A particularly strong interaction is obtained if the inhibiting agent contains functional groups that form chelating complex with surface Al(III). Encapsulation of the pigment can be made by in situ polymerization at the surface of the pigment and a recent approach is to have the polymerization occur within a double layer of adsorbed surfactant. The inorganic route is dominated by coating with silica, and recent progress has been made using an alkoxide, such as tetraethoxysilane as silica precursor. Such silica coated aluminium pigments are comparable in performance to chromate inhibited pigments and thus offer a possible heavy metal-free alternative. There are obvious connections between surface modifications made to prevent the pigment to react with water and inhibition of corrosion of macroscopic aluminium surfaces. PMID:17239333

  14. Aluminium and the human breast.

    PubMed

    Darbre, P D

    2016-06-01

    The human population is exposed to aluminium (Al) from diet, antacids and vaccine adjuvants, but frequent application of Al-based salts to the underarm as antiperspirant adds a high additional exposure directly to the local area of the human breast. Coincidentally the upper outer quadrant of the breast is where there is also a disproportionately high incidence of breast cysts and breast cancer. Al has been measured in human breast tissues/fluids at higher levels than in blood, and experimental evidence suggests that at physiologically relevant concentrations, Al can adversely impact on human breast epithelial cell biology. Gross cystic breast disease is the most common benign disorder of the breast and evidence is presented that Al may be a causative factor in formation of breast cysts. Evidence is also reviewed that Al can enable the development of multiple hallmarks associated with cancer in breast cells, in particular that it can cause genomic instability and inappropriate proliferation in human breast epithelial cells, and can increase migration and invasion of human breast cancer cells. In addition, Al is a metalloestrogen and oestrogen is a risk factor for breast cancer known to influence multiple hallmarks. The microenvironment is established as another determinant of breast cancer development and Al has been shown to cause adverse alterations to the breast microenvironment. If current usage patterns of Al-based antiperspirant salts contribute to causation of breast cysts and breast cancer, then reduction in exposure would offer a strategy for prevention, and regulatory review is now justified. PMID:26997127

  15. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  16. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  17. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  18. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  19. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  20. 40 CFR 721.10627 - Yttrium borate phosphate vanadate with europium and additional dopants (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Yttrium borate phosphate vanadate with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10627 Yttrium borate phosphate... subject to reporting. (1) The chemical substance identified generically as yttrium borate...

  1. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  2. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  3. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  4. 40 CFR 721.10627 - Yttrium borate phosphate vanadate with europium and additional dopants (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Yttrium borate phosphate vanadate with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10627 Yttrium borate phosphate... subject to reporting. (1) The chemical substance identified generically as yttrium borate...

  5. Investigation of detonation initiation in aluminium suspensions

    NASA Astrophysics Data System (ADS)

    Veyssiere, B.; Khasainov, B. A.; Briand, A.

    2008-09-01

    Detonation initiation is investigated in aluminium/oxygen and aluminium/air mixtures. Critical conditions for initiation of spherical detonations are examined in analogy with the criteria defined for gaseous mixtures, which correlate critical parameters of detonation initiation to the characteristic size of the cellular structure. However, experimental data on the detonation cell size in these two-phase mixtures are very scarce, on account of the difficulty to perform large-scale experiments. Therefore, 2D numerical simulations of the detonation cellular structure have been undertaken, with the same combustion model for Al/air and Al/O2 mixtures. The cell size is found to be λ = 37.5 cm for a rich ( r = 1.61) aluminium-air mixture, and λ = 7.5 cm for a stoichiometric aluminium-oxygen mixture, which is in reasonable agreement with available experimental data. Calculations performed in large-scale configurations (up to 25 m in length and 1.5 m in lateral direction) suggest that the critical initiation energy and predetonation radius for direct initiation of the unconfined detonation in the aluminium-air mixture are, respectively, 10 kg of TNT and 8 m. Moreover, numerical simulations reveal that the structure of the detonation wave behind the leading front is even more complicated than in pure gaseous mixtures, due to two-phase flow effects.

  6. Intercalation of ethylene glycol into yttrium hydroxide layered materials.

    PubMed

    Xi, Yuanzhou; Davis, Robert J

    2010-04-19

    Intercalation of ethylene glycol into layered yttrium hydroxide containing nitrate counterions was accomplished by heating the reagents in a methanol solution of sodium methoxide under autogenous pressure at 413 K for 20 h. The resulting crystalline material had an expanded interlayer distance of 10.96 A, confirming the intercalation of an ethylene glycol derived species. Characterization of the material by FT-IR spectroscopy, thermogravimetric analysis, and the catalytic transesterification of tributyrin with methanol was consistent with direct bonding of ethylene glycolate anions (O(2)C(2)H(5)(-)) to the yttrium hydroxide layers, forming Y-O-C bonds. The layers of the material are proposed to be held together by H-bonding between the hydroxyls of grafted ethylene glycol molecules attached to adjacent layers. Glycerol can also be intercalated into yttrium hydroxide layered materials by a similar method. PMID:20302308

  7. Yttrium and rare earth stabilized fast reactor metal fuel

    DOEpatents

    Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  8. Thermochromism in yttrium iron garnet compounds.

    PubMed

    Serier-Brault, Hélène; Thibault, Lucile; Legrain, Magalie; Deniard, Philippe; Rocquefelte, Xavier; Leone, Philippe; Perillon, Jean-Luc; Le Bris, Stéphanie; Waku, Jean; Jobic, Stéphane

    2014-12-01

    Polycrystalline yttrium iron garnet (Y3Fe5O12, hereafter labeled YIG) has been synthesized by solid-state reaction, characterized by X-ray diffraction, Mössbauer spectroscopy, and UV-vis-NIR diffuse reflectance spectroscopy, and its optical properties from room temperature (RT) to 300 °C are discussed. Namely, its greenish color at RT is assigned to an O(2-) → Fe(3+) ligand-to-metal charge transfer at 2.57 eV coupled with d-d transitions peaking at 1.35 and 2.04 eV. When the temperature is raised, YIG displays a marked thermochromic effect; i.e., the color changes continuously from greenish to brownish, which offers opportunities for potential application as a temperature indicator for everyday uses. The origin of the observed thermochromism is assigned to a gradual red shift of the ligand-to-metal charge transfer with temperature while the positioning in energy of the d-d transitions is almost unaltered. Attempts to achieve more saturated colors via doping (e.g., Al(3+), Ga(3+), Mn(3+), ...) remained unsuccessful except for chromium. Indeed, Y3Fe5O12:Cr samples exhibit at RT the same color than the undoped garnet at 200 °C. The introduction of Cr(3+) ions strongly impacts the color of the Y3Fe5O12 parent either by an inductive effect or, more probably, by a direct effect on the electronic structure of the undoped material with formation of a midgap state. PMID:25382733

  9. Enhancement of Superconductivity of Lanthanum and Yttrium Sesquicarbide

    DOEpatents

    Krupka, M. C.; Giorgi, A. L.; Krikorian, N. H.; Szklarz, E. G.

    1972-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  10. Enhancement of superconductivity of lanthanum and yttrium sesquicarbide

    DOEpatents

    Krupka, M.C.; Giorgi, A.L.; Krikorian, N.H.; Szklarz, E.G.

    1971-06-22

    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  11. Hot tearing evaluation for aluminium alloys

    NASA Astrophysics Data System (ADS)

    Brůna, Marek

    2016-06-01

    Hot tearing during solidification of aluminium alloys castings can be a serious problem. This phenomenon is well known but still insufficiently investigated. Hot tearing occurs in form of irregular cracks in metal castings that develop during solidification and cooling. The cause of hot tearing is generally attributed to the development of thermally induced tensile stresses and strains in a casting as the molten metal contracts during solidification and solid state shrinkage. Submited paper consists of two parts. The first part introduces the reader to the phenomenon of hot tearing. The second part describes newly developed method for assessing hot tearing susceptibility of aluminium alloys, and also gives the results on hot tearing for various aluminium alloys.

  12. Diamond grooving of rapidly solidified optical aluminium

    NASA Astrophysics Data System (ADS)

    Abou-El-Hossein, Khaled; Hsu, Wei-Yao; Ghobashy, Sameh; Cheng, Yuan-Chieh; Mkoko, Zwelinzima

    2015-10-01

    Traditional optical aluminium grades such as Al 6061 are intensively used for making optical components for applications ranging from mould insert fabrication to laser machine making. However, because of their irregular microstructure and relative inhomogeneity of material properties at micro scale, traditional optical aluminium may exhibit some difficulties when ultra-high precision diamond turned. Inhomogeneity and micro-variation in the material properties combined with uneven and coarse microstructure may cause unacceptable surface finish and accelerated tool wear, especially in grooving operation when the diamond tool edge is fully immersed in the material surface. Recently, new grades of optical aluminium that are featured by their ultra-fine microstructure and improved material properties have been developed to overcome the problem of high tool wear rates. The new aluminium grades have been developed using rapid solidification process which results in extremely small grain sizes combined with improved mechanical properties. The current study is concerned with investigating the performance of single-point diamond turning when grooving two grades of rapidly solidified aluminium (RSA) grades: RSA905 which is a high-alloyed aluminium grade and RSA443 which has a high silicon content. In this study, two series of experiments employed to create radial microgrooves on the two RSA grades. The surface roughness obtained on the groove surface is measured when different combinations of cutting parameters are used. Cutting speed is varied while feed rate and depth of cut were kept constant. The results show that groove surface roughness produced on RSA443 is higher than that obtained on RSA905. Also, the paper reports on the effect of cutting speed on surface roughness for each RSA grade.

  13. PROCESS FOR SEPARATING YTTRIUM FROM THE RARE EARTHS BY SOLVENT EXTRACTION

    DOEpatents

    Peppard, D.F.; Mason, G.W.

    1963-11-12

    A process of isolating yttrium from other rare earths present together with it in aqueous solutions is presented. Yttrium and rare earths heavier than yttrium are first extracted with dialkyl phosphoric acid, after adjustment of the acidity to 2 N, and then back-extracted with 5-6 N mineral acid to form a strip solution. Thiocyanate is added to the strip solution and the rare earths heavier than yttrium are then selectively extracted with trialkyl phosphate, dialkyl phosphoric acid, alkyl phosphonate, or dialkyl aryl phosphonate, leaving the yttrium in the aqueous solution. (AEC)

  14. Highly efficient yttrium-doped ZnO nanorods for quantum dot-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Kyoung; Gopi, Chandu V. V. M.; Srinivasa Rao, S.; Punnoose, Dinah; Kim, Hee-Je

    2016-03-01

    Yttrium-doped ZnO nanorod arrays were applied to photoanodes of quantum dot-sensitized solar cells (QDSCs). The introduction of yttrium to ZnO nanostructures facilitates the growth of ZnO nanorods and increases the amount of QD deposition with a large surface area. Furthermore, lower electrical resistance and longer electron lifetime were achieved with yttrium-doping owing to fewer defects and trap sites on the surface of yttrium-doped ZnO nanorods. As a result, the conversion efficiency of 3.3% was achieved with the optimized concentration of yttrium.

  15. Yttrium and rare earth stabilized fast reactor metal fuel

    SciTech Connect

    Guon, J.; Grantham, L.F.; Specht, E.R.

    1992-05-12

    This patent describes an improved metal alloy reactor fuel consisting essentially of uranium, plutonium, and at least one element from the group consisting of yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.

  16. OXIDATION-RESISTANT COATING ON ARTICLES OF YTTRIUM METAL

    DOEpatents

    Wilder, D.R.; Wirkus, C.D.

    1963-11-01

    A process for protecting yttrium metal from oxidation by applying thereto and firing thereon a liquid suspension of a fritted ground silicate or phosphate glass plus from 5 to 35% by weight of CeO/sub 2/ is presented. (AEC)

  17. Evaluation of mineral content of dentin treated with desensitizing agents and neodymium yttrium-aluminium-garnet (Nd:YAG) laser.

    PubMed

    Malkoç, Meral Arslan; Sevimay, Müjde

    2012-07-01

    The aim of this study was to evaluate the mineral content of dentin prepared using three different desensitizing agents and the Nd:YAG laser. The occlusal third of the crowns of 30 molar teeth were cut with a slow-speed diamond saw sectioning machine under water cooling. Dentin slabs from the 30 teeth were randomly divided into five experimental groups, each comprising six slabs. The five groups were treated as follows: group A, no treatment; group B, treatment with oxalate-containing desensitizing agent (BisBlock); group C, treatment with resin-based desensitizing agent (Admira Protect); group D, treatment with glutaraldehyde-containing desensitizing agent (Systemp); and group E, irradiation with the Nd:YAG laser (DEKATM ) at 0.40 W. The levels of Mg, P, Ca, K, and Na in each slab were measured by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Data were analyzed by one-way analysis of variance and the Tukey HSD test. The effect of desensitizing agents and laser irradiation on the dentin surface were evaluated using a scanning electron microscope. There were no significant differences between the groups (p > 0.05). Group E was showed the lowest Ca/P ratio. SEM showed that the resin-based agent occluded the dentinal tubules, the glutaraldehyde-containing agent increased the Ca/P ratio, and Nd:YAG laser irradiation decreased the Ca/P ratio. The mean percentages by weight of Ca, Mg, K, Na and P were not affected by Nd:YAG laser irradiation or any of the desensitizing agents. PMID:21789631

  18. Osteoradionecrosis of the Posterior Maxilla: A New Approach Combining Erbium: Yttrium Aluminium Garnet Laser and Bichat Bulla Flap.

    PubMed

    Porcaro, Gianluca; Amosso, Ernesto; Mirabelli, Luca; Busa, Alberto; Carini, Fabrizio; Maddalone, Marcello

    2015-10-01

    Osteoradionecrosis (ORN) of the jaw is a complication of radiation therapy for head and neck cancers. We report a case of ORN of the posterior maxilla treated with Er: YAG laser and a pedicled buccal fat pad (bichat bulla adipose) flap. A 69-year-old man presented complaining of pain on left maxilla. He had received high-dose radiotherapy (90 Gy) for squamous cell carcinoma of the left soft palate 2 years earlier. Clinical and radiographic examinations revealed ORN of the left maxillary molar region and maxillary sinusitis. Daily home care consisted of 0.9% saline irrigation and 0.8% H2O2 gel application. Sequestrectomy and tooth extraction were followed by debridement with Er: YAG laser and repair with a pedicled buccal fat pad flap. Complete resolution of ORN and maxillary sinusitis was established one year postsurgically. The excellent clinical outcome suggests that Er: YAG laser debridement and pedicled buccal fat pad flap are a viable option to treat ORN of the posterior maxilla. PMID:26468848

  19. Evaluation of the Removal Bacteria on Failed Titanium Implants After Irradiation With Erbium-Doped Yttrium Aluminium Garnet Laser.

    PubMed

    Scarano, Antonio; Nardi, Gianna; Murmura, Giovanna; Rapani, Manuela; Mortellaro, Carmen

    2016-07-01

    Peri-implantitis may occur because of biologic or mechanical factors. It can be treated by a variety of methods. The aim of the present study is to evaluate implant surface of failed oral titanium implants after being irradiated with erbium laser. PMID:27391491

  20. Effect of aluminium chloride on human spermatozoa

    SciTech Connect

    Kaur, S.

    1988-03-01

    Aluminium (Al), which is the most prevalent metal in the earth's crust, has been implicated as an etiological factor in a variety of clinical disorders. Only recently Al has been discussed in the pathogenesis of the parenteral nutrition - associated liver disease. Included in this report are the preliminary findings on its effects on the reproductive functions of human beings.

  1. Molecular breeding of cereals for aluminium resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminium (Al3+) toxicity is the primary factor limiting crop production on acidic soils worldwide. In addition to an application of lime for soil amelioration, Al3+ resistant plant varieties have been deployed to raise productivity on such hostile soils. This has been possible due to the exploita...

  2. An ultrafast rechargeable aluminium-ion battery

    NASA Astrophysics Data System (ADS)

    Lin, Meng-Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-04-01

    The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage (about 0.55 volts ref. 5), capacitive behaviour without discharge voltage plateaus (1.1-0.2 volts or 1.8-0.8 volts) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26-85 per cent over 100 cycles). Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g-1 and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g-1 (equivalent to ~3,000 W kg-1), and to withstand more than 7,500 cycles without capacity decay.

  3. Toxicity of dissolved and precipitated aluminium to marine diatoms.

    PubMed

    Gillmore, Megan L; Golding, Lisa A; Angel, Brad M; Adams, Merrin S; Jolley, Dianne F

    2016-05-01

    Localised aluminium contamination can lead to high concentrations in coastal waters, which have the potential for adverse effects on aquatic organisms. This research investigated the toxicity of 72-h exposures of aluminium to three marine diatoms (Ceratoneis closterium (formerly Nitzschia closterium), Minutocellus polymorphus and Phaeodactylum tricornutum) by measuring population growth rate inhibition and cell membrane damage (SYTOX Green) as endpoints. Toxicity was correlated to the time-averaged concentrations of different aluminium size-fractions, operationally defined as <0.025μm filtered, <0.45μm filtered (dissolved) and unfiltered (total) present in solution over the 72-h bioassay. The chronic population growth rate inhibition after aluminium exposure varied between diatom species. C. closterium was the most sensitive species (10% inhibition of growth rate (72-h IC10) of 80 (55-100)μg Al/L (95% confidence limits)) while M. polymorphus (540 (460-600)μg Al/L) and P. tricornutum (2100 (2000-2200)μg Al/L) were less sensitive (based on measured total aluminium). Dissolved aluminium was the primary contributor to toxicity in C. closterium, while a combination of dissolved and precipitated aluminium forms contributed to toxicity in M. polymorphus. In contrast, aluminium toxicity to the most tolerant diatom P. tricornutum was due predominantly to precipitated aluminium. Preliminary investigations revealed the sensitivity of C. closterium and M. polymorphus to aluminium was influenced by initial cell density with aluminium toxicity significantly (p<0.05) increasing with initial cell density from 10(3) to 10(5)cells/mL. No effects on plasma membrane permeability were observed for any of the three diatoms suggesting that mechanisms of aluminium toxicity to diatoms do not involve compromising the plasma membrane. These results indicate that marine diatoms have a broad range in sensitivity to aluminium with toxic mechanisms related to both dissolved and precipitated

  4. Structural and magnetic properties of yttrium and lanthanum-doped Ni-Co and Ni-Co-Zn spinel ferrites

    SciTech Connect

    Stergiou, Charalampos; Litsardakis, George

    2014-11-05

    Rare earth doping of Co-rich spinel ferrites is investigated through the preparation of two groups of polycrystalline Ni-Co and Ni-Co-Zn ferrites, where Fe is partly substituted by Y and La. The characterization of the sintered ferrites by means of X-ray powder diffraction and Rietveld profile analysis, indicates the subtle expansion of the spinel unit cell and the cation redistribution in the doped ferrites in order to accommodate the incorporation of Y and La in the lattice. The impurity traces, detected only in the Ni-Co-Zn group, is ascribed to the Zn population in the tetrahedral A-sites impeding the cation transfer. Moreover, the examined microstructure of the doped Ni-Co samples comprises enlarged and more homogeneous grains, whereas grain growth is moderated in the doped Ni-Co-Zn ferrites. The discussed characteristics of the crystal and magnetic structure along with the morphological aspects define the impact of Y and La doping on the static magnetic properties of Ni-Co and Ni-Co-Zn ferrites, saturation magnetization MS and coercivity HC, which were extracted from the respective hysteresis loops.

  5. Bladder cancer in the aluminium industry.

    PubMed

    Thériault, G; Tremblay, C; Cordier, S; Gingras, S

    1984-04-28

    The incidence of bladder cancer is unusually high in aluminium smelter workers. An epidemiological study showed that workers in Soderberg potrooms are at highest risk for bladder cancer, the adjusted overall relative risk being 2.39 (1.34-4.28). Exposure to polycyclic aromatic hydrocarbons, of which benz(a)pyrene (BaP) served as an indicator, seems to be the causative factor. The relative risk was evaluated at 12.38 for workers with 20 or more equivalent years of BaP exposure. Cigarette smoking contributed significantly to the appearance of bladder cancer in the population studied. There is a synergistic effect when cigarette smoking and BaP exposure are combined; the numbers in our population are too small to determine whether this interaction effect is multiplicative or additive. It is concluded that bladder cancer is associated with aluminium smelting (primarily with the Soderberg process). PMID:6143877

  6. Structural study of yttrium substituted BiFeO3

    NASA Astrophysics Data System (ADS)

    Mejía Gómez, J. A.; Canaria, C.; Ochoa Burgos, R.; Ortiz, C. A.; Supelano, G. I.; Parra Vargas, C. A.

    2016-02-01

    Yttrium-substituted Bi1-xYxFeO3 (x=0, 0.03, 0.07, 0.15, 0.2 and 0.5) samples were prepared by solid state reaction technique. Morphological analysis was obtained by Scanning Electron Microscopy (SEM) technique indicating mainly granular behaviour. In addition, the substitution of yttrium promotes smaller particle size of BiFeO3. The obtained samples were also studied by X-ray diffraction (XRD). The crystal structure and the lattice parameters were confirmed by XRD. Rietveld refinement of experimental X-ray diffraction patterns showed that substituted BiFeO3 compounds crystallize in a R3c type structure and the lattice parameters decrease as Y concentration increases.

  7. Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia

    DOE PAGESBeta

    Li, Chen W.; Smith, Hillary L.; Lan, Tian; Niedziela, Jennifer L.; Munoz, Jorge A.; Keith, J. Brian; Mauger, L.; Abernathy, Douglas L; Fultz, B.

    2015-04-13

    Inelastic neutron scattering measurements on monoclinic zirconia (ZrO2) and 8 mol% yttrium-stabilized zirconia were performed at temperatures from 300 to 1373 ωK. We reported temperature-dependent phonon densities of states (DOS) and Raman spectra obtained at elevated temperatures. First-principles lattice dynamics calculations with density functional theory gave total and partial phonon DOS curves and mode Grüneisen parameters. These mode Grüneisen parameters were used to predict the experimental temperature dependence of the phonon DOS with partial success. However, substantial anharmonicity was found at elevated temperatures, especially for phonon modes dominated by the motions of oxygen atoms. Yttrium-stabilized zirconia (YSZ) was somewhat moremore » anharmonic and had a broader phonon spectrum at low temperatures, owing in part to defects in its structure. YSZ also has a larger vibrational entropy than monoclinic zirconia.« less

  8. Synthesis of aluminum-based scandium-yttrium master alloys

    NASA Astrophysics Data System (ADS)

    Bazhin, V. Yu.; Kosov, Ya. I.; Lobacheva, O. L.; Dzhevaga, N. V.

    2015-07-01

    The preparation technology for an Al-2% Sc-0.5% Y master alloy using aluminum-manganese alloys has been developed and tested. The microstructure of the prepared master alloy is studied and the compositions of intermetallics is determined. The efficient technological parameters of the synthesis are determined. It is shown that varying the compositions of starting reagents and alloying additions and optimizing the process conditions (temperature, mixing, etc.) allow us to forecast the manufacturing and operating characteristics of aluminum-based master alloys. Joint additions of scandium and yttrium oxides to a charge favor a substantial decrease in the grain size of the formed intermetallics; this effect appears to the utmost in the case of microallying with yttrium up to 0.5 wt %.

  9. Phonon anharmonicity of monoclinic zirconia and yttrium-stabilized zirconia

    SciTech Connect

    Li, Chen W.; Smith, Hillary L.; Lan, Tian; Niedziela, Jennifer L.; Munoz, Jorge A.; Keith, J. Brian; Mauger, L.; Abernathy, Douglas L; Fultz, B.

    2015-04-13

    Inelastic neutron scattering measurements on monoclinic zirconia (ZrO2) and 8 mol% yttrium-stabilized zirconia were performed at temperatures from 300 to 1373 ωK. We reported temperature-dependent phonon densities of states (DOS) and Raman spectra obtained at elevated temperatures. First-principles lattice dynamics calculations with density functional theory gave total and partial phonon DOS curves and mode Grüneisen parameters. These mode Grüneisen parameters were used to predict the experimental temperature dependence of the phonon DOS with partial success. However, substantial anharmonicity was found at elevated temperatures, especially for phonon modes dominated by the motions of oxygen atoms. Yttrium-stabilized zirconia (YSZ) was somewhat more anharmonic and had a broader phonon spectrum at low temperatures, owing in part to defects in its structure. YSZ also has a larger vibrational entropy than monoclinic zirconia.

  10. An ultrafast rechargeable aluminium-ion battery.

    PubMed

    Lin, Meng-Chang; Gong, Ming; Lu, Bingan; Wu, Yingpeng; Wang, Di-Yan; Guan, Mingyun; Angell, Michael; Chen, Changxin; Yang, Jiang; Hwang, Bing-Joe; Dai, Hongjie

    2015-04-16

    The development of new rechargeable battery systems could fuel various energy applications, from personal electronics to grid storage. Rechargeable aluminium-based batteries offer the possibilities of low cost and low flammability, together with three-electron-redox properties leading to high capacity. However, research efforts over the past 30 years have encountered numerous problems, such as cathode material disintegration, low cell discharge voltage (about 0.55 volts; ref. 5), capacitive behaviour without discharge voltage plateaus (1.1-0.2 volts or 1.8-0.8 volts) and insufficient cycle life (less than 100 cycles) with rapid capacity decay (by 26-85 per cent over 100 cycles). Here we present a rechargeable aluminium battery with high-rate capability that uses an aluminium metal anode and a three-dimensional graphitic-foam cathode. The battery operates through the electrochemical deposition and dissolution of aluminium at the anode, and intercalation/de-intercalation of chloroaluminate anions in the graphite, using a non-flammable ionic liquid electrolyte. The cell exhibits well-defined discharge voltage plateaus near 2 volts, a specific capacity of about 70 mA h g(-1) and a Coulombic efficiency of approximately 98 per cent. The cathode was found to enable fast anion diffusion and intercalation, affording charging times of around one minute with a current density of ~4,000 mA g(-1) (equivalent to ~3,000 W kg(-1)), and to withstand more than 7,500 cycles without capacity decay. PMID:25849777

  11. Feet sunk in molten aluminium: The burn and its prevention.

    PubMed

    Alonso-Peña, David; Arnáiz-García, María Elena; Valero-Gasalla, Javier Luis; Arnáiz-García, Ana María; Campillo-Campaña, Ramón; Alonso-Peña, Javier; González-Santos, Jose María; Fernández-Díaz, Alaska Leonor; Arnáiz, Javier

    2015-08-01

    Nowadays, despite improvements in safety rules and inspections in the metal industry, foundry workers are not free from burn accidents. Injuries caused by molten metals include burns secondary to molten iron, aluminium, zinc, copper, brass, bronze, manganese, lead and steel. Molten aluminium is one of the most common causative agents of burns (60%); however, only a few publications exist concerning injuries from molten aluminium. The main mechanisms of lesion from molten aluminium include direct contact of the molten metal with the skin or through safety apparel, or when the metal splash burns through the pants and rolls downward along the leg. Herein, we report three cases of deep dermal burns after 'soaking' the foot in liquid aluminium and its evolutive features. This paper aims to show our experience in the management of burns due to molten aluminium. We describe the current management principles and the key features of injury prevention. PMID:25687835

  12. Solitons in yttrium iron garnet thin films with localized gain

    NASA Astrophysics Data System (ADS)

    Pal, Ritu; Loomba, Shally; Kumar, C. N.

    2016-05-01

    We present the exact analytical solutions of cubic-quintic nonlinear Schrödinger equation with localized gain. We have demonstrated that the bright and dark solitons exist for the repulsive cubic and attractive quintic nonlinearity. These solutions have been obtained for those values of parameters which support the formation of solitons in Yttrium iron garnet thin films. Our results may be useful to understand the nonlinear pulse excitations in thin films.

  13. Growth and scintillation properties of gadolinium and yttrium orthovanadate crystals

    NASA Astrophysics Data System (ADS)

    Voloshina, O. V.; Baumer, V. N.; Bondar, V. G.; Kurtsev, D. A.; Gorbacheva, T. E.; Zenya, I. M.; Zhukov, A. V.; Sidletskiy, O. Ts.

    2012-02-01

    Aiming to explore the possibility of using the undoped rare-earth orthovanadates as scintillation materials, we developed the procedure for growth of gadolinium (GdVO 4) and yttrium (YVO 4) orthovanadate single crystals by Czochralski method, and determined the optimal conditions of their after-growth annealing. Optical, luminescent, and scintillation properties of YVO 4 and GdVO 4 were discussed versus known literature data. Scintillation characteristics of GdVO 4 were determined for the first time.

  14. Structural and dielectric properties of yttrium substituted nickel ferrites

    SciTech Connect

    Ognjanovic, Stevan M.; Tokic, Ivan; Cvejic, Zeljka; Rakic, Srdjan; Srdic, Vladimir V.

    2014-01-01

    Graphical abstract: - Highlights: • Dense NiFe{sub 2−x}Y{sub x}O{sub 4} ceramics (with 0 ≤ x ≤ 0.3) were prepared. • Pure spinels were obtained for x ≤ 0.07 while for x ≥ 0.15 samples had secondary phases. • With addition of yttrium, ac conductivity slightly increased. • We suggest several effects that can explain the observed changes in ac conduction. • With addition of yttrium, dielectric constant increased while the tg δ decreased. - Abstract: The influence of Y{sup 3+} ions on structural and dielectric properties of nickel ferrites (NiFe{sub 2−x}Y{sub x}O{sub 4}, where 0 ≤ x ≤ 0.3) has been studied. The as-synthesized samples, prepared by the co-precipitation method, were analyzed by XRD and FTIR which suggested that Y{sup 3+} ions were incorporated into the crystal lattice for all the samples. However, the XRD analysis of the sintered samples showed that secondary phases appear in the samples with x > 0.07. The samples have densities greater than 90% TD and the SEM images showed that the grain size decreases with the addition of yttrium. Dielectric properties measured from 150 to 25 °C in the frequency range of 100 Hz–1 MHz showed that the addition of yttrium slightly increases the ac conductivity and decreases the tg δ therefore making the materials better suited for the use in microwave devices.

  15. Inhalation exposure in secondary aluminium smelting.

    PubMed

    Healy, J; Bradley, S D; Northage, C; Scobbie, E

    2001-04-01

    Inhalation exposure at seven UK secondary aluminium smelters was investigated to quantify the main exposures and identify their sources. The substances monitored were gases (carbon monoxide, hydrogen sulphide and nitrogen dioxide), total inhalable dust, metals, ammonia, polycyclic aromatic hydrocarbons (PAHs), particulate fluoride salts and acids. The results showed that people were exposed to a range of workplace air pollutants. Personal exposure results for total inhalable dust were between 700 and 5600 microg x m(-3) and the maximum personal exposure result for particulate fluoride salts was 690 microg x m(-3) (as F). The maximum aluminium, total PAH and lead personal exposure results were 900, 19 and 18 microg x m(-3) respectively. The average proportion of aluminium in total inhalable dust samples was 13% and rotary furnace processes generated the most dust. Particulate fluoride salt exposure was more widespread than hydrofluoric acid exposure. The source of the salt exposure was fluoride containing fluxes. The lead exposure source was lead solder contamination in the furnace charge. PMID:11295145

  16. Plasmonic enhancement of photoluminescence from aluminium nitride

    NASA Astrophysics Data System (ADS)

    Flynn, Chris; Stewart, Matthew

    2016-03-01

    Aluminium nitride (AlN) films were grown on c-plane sapphire wafers by molecular beam epitaxy (MBE) under aluminium-rich conditions. The excess aluminium (Al) accumulated on the surface of the films as micro-scale droplets 1-10 μm in size, and as Al nanoparticles with diameters in the range 10-110 nm. Photoluminescence (PL) measurements were performed on the AlN samples using a 193 nm Excimer laser as the excitation source. Prior to PL measurements the wafers were cleaved in half. One half of each wafer was submitted to a 10 min treatment in H3PO4 heated to 70 °C to remove the excess Al from the film surface. The remaining half was left in the as-deposited condition. The mean intensities of the near-band-edge PL peaks of the as-deposited samples were 2.0-3.4 times higher compared to the samples subjected to the H3PO4 Al-removal treatment. This observation motivated calculations to determine the optimal Al surface nanosphere size for plasmonic enhancement of PL from AlN. The PL enhancement was found to peak for an Al nanosphere radius of 15 nm, which is within the range of the experimentally-observed Al nanoparticle sizes.

  17. Improving the Crashworthiness of Aluminium Rail Vehicles

    NASA Astrophysics Data System (ADS)

    Zangani, Donato; Robinson, Mark; Kotsikos, George

    An experimental and modelling programme of work have been undertaken to predict the performance of aluminium welds in rail vehicles under highly dynamic loading conditions and provide design guidelines to reduce the likelihood of the occurrence of weld unzipping. Modelling of weld unzipping in large rail structures is a challenging task since it requires to deal with material instability, to take into account the uncertainties in material parameters and to address the problem of mesh resolution which together pose severe challenges to computability. The proposed methodology to the prediction of weld failure is based on the validation of the numerical models through correlation with laboratory scale tearing tests. The tearing tests were conducted on samples taken from real rail extrusions with the purpose of obtaining the failure parameters under dynamic loading and understanding the effect of weld material composition on joint behaviour. The validated material models were used to construct a FEA simulation of the collision of an aluminium rail car and investigate the effect of both joint geometry and welding techniques on the failure mechanism. Comparisons of the model with the failures observed in an aluminium rail vehicle that was involved in a high speed collision, have shown that it is possible to model the phenomenon of weld unzipping with good accuracy. The numerical models have also been used as a tool for the optimisation of joint design to improve crashworthiness.

  18. Thermodynamic properties of uranium in gallium-aluminium based alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Chukin, A. V.; Smolenski, V. V.; Novoselova, A. V.; Osipenko, A. G.

    2015-10-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga-Al alloys containing 0.014-20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated.

  19. The aluminium content of infant formulas remains too high

    PubMed Central

    2013-01-01

    Background Recent research published in this journal highlighted the issue of the high content of aluminium in infant formulas. The expectation was that the findings would serve as a catalyst for manufacturers to address a significant problem of these, often necessary, components of infant nutrition. It is critically important that parents and other users have confidence in the safety of infant formulas and that they have reliable information to use in choosing a product with a lower content of aluminium. Herein, we have significantly extended the scope of the previous research and the aluminium content of 30 of the most widely available and often used infant formulas has been measured. Methods Both ready-to-drink milks and milk powders were subjected to microwave digestion in the presence of 15.8 M HNO3 and 30% w/v H2O2 and the aluminium content of the digests was measured by TH GFAAS. Results Both ready-to-drink milks and milk powders were contaminated with aluminium. The concentration of aluminium across all milk products ranged from ca 100 to 430 μg/L. The concentration of aluminium in two soya-based milk products was 656 and 756 μg/L. The intake of aluminium from non-soya-based infant formulas varied from ca 100 to 300 μg per day. For soya-based milks it could be as high as 700 μg per day. Conclusions All 30 infant formulas were contaminated with aluminium. There was no clear evidence that subsequent to the problem of aluminium being highlighted in a previous publication in this journal that contamination had been addressed and reduced. It is the opinion of the authors that regulatory and other non-voluntary methods are now required to reduce the aluminium content of infant formulas and thereby protect infants from chronic exposure to dietary aluminium. PMID:24103160

  20. Thermodynamic properties of uranium in gallium-aluminium based alloys

    NASA Astrophysics Data System (ADS)

    Volkovich, V. A.; Maltsev, D. S.; Yamshchikov, L. F.; Chukin, A. V.; Smolenski, V. V.; Novoselova, A. V.; Osipenko, A. G.

    2015-10-01

    Activity, activity coefficients and solubility of uranium was determined in gallium-aluminium alloys containing 1.6 (eutectic), 5 and 20 wt.% aluminium. Additionally, activity of uranium was determined in aluminium and Ga-Al alloys containing 0.014-20 wt.% Al. Experiments were performed up to 1073 K. Intermetallic compounds formed in the alloys were characterized by X-ray diffraction. Partial and excess thermodynamic functions of U in the studied alloys were calculated.

  1. Application of POR-Tveks to the radiochemical recovery of yttrium-90

    SciTech Connect

    Maksimova, A.M.; Kvasnitskii, I.B.

    1988-01-01

    The authors describe a method for the radiochemical analysis of fish bones for the accumulation of strontium 90 and yttrium 90 from power plant contamination of surface waters which involves labelling the sample with isotopes and subsequent adsorption of the yttrium component with the use of POR-Tveks, an adsorbent based on a copolymer of styrene and divinylbenzene with heteroradical phosphine oxide. The yield of yttrium is determined from the mass of the oxide and from the half-life of the yttrium isotope.

  2. Direct measurements of grain boundary sliding in yttrium-doped alumina bicrystals

    NASA Astrophysics Data System (ADS)

    Matsunaga, K.; Nishimura, H.; Muto, H.; Yamamoto, T.; Ikuhara, Y.

    2003-02-01

    The behavior of grain boundary sliding in pure and yttrium-doped Al2O3 was directly measured at a high temperature, using bicrystal experiments. For this purpose, we fabricated Al2O3 bicrystals containing a random grain boundary with or without yttrium ions. High-resolution transmission electron microscopy observations and energy dispersive x-ray spectroscopy analyses showed that bicrystals were successfully joined at an atomic scale, and doped yttrium ions segregated along the grain boundaries. It was found by compressive creep tests that the grain boundary sliding rate was restrained by two orders of magnitude due to yttrium addition, as compared to that of undoped bicrystals.

  3. Cold-impregnated aluminium. A new source of nickel exposure.

    PubMed

    Lidén, C

    1994-07-01

    A new technique for finishing anodized aluminium was introduced during the 1980s--cold impregnation with nickel. Nickel is available on the surface of cold-impregnated aluminium, as shown by the dimethylglyoxime test. Chemical analysis with EDXA showed that nickel was in the form of NiSO4. A case of work-related allergic contact dermatitis in an engraver with nickel allergy is reported. It transpired that the patient was exposed to nickel in connection with aluminium. It is concluded that cold-impregnated aluminium is a new source of nickel exposure, probably previously unknown to dermatologists. PMID:7924288

  4. Effects of aluminium surface morphology and chemical modification on wettability

    NASA Astrophysics Data System (ADS)

    Rahimi, M.; Fojan, P.; Gurevich, L.; Afshari, A.

    2014-03-01

    Aluminium alloys are some of the predominant metals in industrial applications such as production of heat exchangers, heat pumps. They have high heat conductivity coupled with a low specific weight. In cold working conditions, there is a risk of frost formation on the surface of aluminium in the presence of water vapour, which can lead to the deterioration of equipment performance. This work addresses the methods of surface modification of aluminium and their effect of the underlying surface morphology and wettability, which are the important parameters for frost formation. Three groups of real-life aluminium surfaces of different morphology: unpolished aluminium, polished aluminium, and aluminium foil, were subjected to surface modification procedures which involved the formation of a layer of hydrophilic hyperbranched polyethyleneglycol via in situ polymerization, molecular vapour deposition of a monolayer of fluorinated silane, and a combination of those. The effect of these surface modification techniques on roughness and wettability of the aluminium surfaces was elucidated by ellipsometry, contact angle measurements and atomic force microscopy. We demonstrated that by employing different types of surface modifications the contact angle of water droplets on aluminium samples can be varied from 12° to more than 120°. A crossover from Cassie-Baxter to Wenzel regime upon changing the surface roughness was also observed.

  5. Production of aluminium metal matrix composites by liquid processing methods

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Kumar, R.; Tharmaraj, R.; Velu, P. Shenbaga

    2016-05-01

    Owing to high strength to low weight ratio, Aluminium matrix composites are widely used in diverse applications of many industries. This lucrative property is achieved by reinforcing the brittle ceramic particles in the aluminium matrix. Aluminium matrix composites are produced by liquid processing methods and solid processing methods. Nevertheless, liquidprocessing techniques stand out because of its simplicity and its suitability for mass production. In this review article, the production of aluminium matrix composites by different liquid processing technique is discussed and a comparative study is carried out.

  6. Electrodeposition of aluminium, aluminium/magnesium alloys, and magnesium from organometallic electrolytes

    SciTech Connect

    Mayer, A.

    1988-01-01

    The electrodeposition of aluminum, magnesium, and the combination of these metals from nonaqueous media is discussed. Plating baths for depositing Al/Mg alloys or for plating essentially pure Mg were developed. These solutions contain alkali meal fluoride or quaternary ammonium halide/aluminium alkyl complexes and dialkyl magnesium dissolved in aromatic hydrocarbons. Alloy deposits over the whole composition range can be plated from these solutions by varying the relative quantities of the aluminium and magnesium alkyls and by changing the bath-operating parameters. 18 refs., 4 figs.

  7. Prevalence of beryllium sensitization among aluminium smelter workers

    PubMed Central

    Slade, M. D.; Cantley, L. F.; Kirsche, S. R.; Wesdock, J. C.; Cullen, M. R.

    2010-01-01

    Background Beryllium exposure occurs in aluminium smelters from natural contamination of bauxite, the principal source of aluminium. Aims To characterize beryllium exposure in aluminium smelters and determine the prevalence rate of beryllium sensitization (BeS) among aluminium smelter workers. Methods A population of 3185 workers from nine aluminium smelters owned by four different aluminium-producing companies were determined to have significant beryllium exposure. Of these, 1932 workers participated in medical surveillance programmes that included the serum beryllium lymphocyte proliferation test (BeLPT), confirmation of sensitization by at least two abnormal BeLPT test results and further evaluation for chronic beryllium disease in workers with BeS. Results Personal beryllium samples obtained from the nine aluminium smelters showed a range of <0.01–13.00 μg/m3 time-weighted average with an arithmetic mean of 0.25 μg/m3 and geometric mean of 0.06 μg/m3. Nine workers were diagnosed with BeS (prevalence rate of 0.47%, 95% confidence interval = 0.21–0.88%). Conclusions BeS can occur in aluminium smelter workers through natural beryllium contamination of the bauxite and further concentration during the refining and smelting processes. Exposure levels to beryllium observed in aluminium smelters are similar to those seen in other industries that utilize beryllium. However, compared with beryllium-exposed workers in other industries, the rate of BeS among aluminium smelter workers appears lower. This lower observed rate may be related to a more soluble form of beryllium found in the aluminium smelting work environment as well as the consistent use of respiratory protection. PMID:20610489

  8. Aluminium salt slag characterization and utilization--a review.

    PubMed

    Tsakiridis, P E

    2012-05-30

    Aluminium salt slag (also known as aluminium salt cake), which is produced by the secondary aluminium industry, is formed during aluminium scrap/dross melting and contains 15-30% aluminium oxide, 30-55% sodium chloride, 15-30% potassium chloride, 5-7% metallic aluminium and impurities (carbides, nitrides, sulphides and phosphides). Depending on the raw mix the amount of salt slag produced per tonne of secondary aluminium ranges from 200 to 500 kg. As salt slag has been classified as toxic and hazardous waste, it should be managed in compliance with the current legislation. Its landfill disposal is forbidden in most of the European countries and it should be recycled and processed in a proper way by taking the environmental impact into consideration. This paper presents a review of the aluminium salt slag chemical and mineralogical characteristics, as well as various processes for metal recovery, recycling of sodium and potassium chlorides content back to the smelting process and preparation of value added products from the final non metallic residue. PMID:22480708

  9. Preparation and characterization of yttrium oxide by a sol-gel process

    SciTech Connect

    Hours, T.; Bergez, P.; Charpin, J. ); Larbott, A.; Guizard, C.; Cot, L. )

    1992-02-01

    This paper reports that submicron yttrium oxide was prepared from hydroxide precursors through a precipitation method. A parametric study was conducted at every stage from the yttrium hydroxide sols and powders, and also calcined oxide powders, were characterized with various techniques: light scattering, X-ray diffraction, infrared spectroscopy, specific area and particle size measurements, thermal analysis, and scanning electron microscopy.

  10. 40 CFR 721.10177 - Phosphoric acid, yttrium(3+) salt (1:1).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, yttrium(3+) salt (1:1... Specific Chemical Substances § 721.10177 Phosphoric acid, yttrium(3+) salt (1:1). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  11. 40 CFR 721.10177 - Phosphoric acid, yttrium(3+) salt (1:1).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, yttrium(3+) salt (1:1... Specific Chemical Substances § 721.10177 Phosphoric acid, yttrium(3+) salt (1:1). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  12. 40 CFR 721.10177 - Phosphoric acid, yttrium(3+) salt (1:1).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, yttrium(3+) salt (1:1... Specific Chemical Substances § 721.10177 Phosphoric acid, yttrium(3+) salt (1:1). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  13. 40 CFR 721.10177 - Phosphoric acid, yttrium(3+) salt (1:1).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, yttrium(3+) salt (1:1... Specific Chemical Substances § 721.10177 Phosphoric acid, yttrium(3+) salt (1:1). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  14. 40 CFR 721.10177 - Phosphoric acid, yttrium(3+) salt (1:1).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, yttrium(3+) salt (1:1... Specific Chemical Substances § 721.10177 Phosphoric acid, yttrium(3+) salt (1:1). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  15. Apoferritin-Templated Yttrium Phosphate Nanoparticle Conjugates for Radioimmunotherapy of Cancers

    SciTech Connect

    Wu, Hong; Wang, Jun; Wang, Zheming; Fisher, Darrell R.; Lin, Yuehe

    2008-05-01

    We report a templated-synthetic approach based on apoferritin to prepare radionuclide nanoparticle (NP) conjugates. Non-radioactive yttrium (89Y) was used as model target and surrogate for radioyttrium (90Y) to prepare the nanoparticle conjugate. The center cavity and multiple channel structure of apoferritin offer a fast and facile method to precipitate yttrium phosphate by diffusing yttrium and phosphate ions into the cavity of apofrritin, resulting a core-shell nanocomposite. The yttrium phosphate/apoferritin nanoparticle was functionalized with biotin for further application. The synthesized nanoparticle was characterized by transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS). We found that the resulting nanoparticles were uniform in size, with a diameter of around 8 nm. We tested the pre-targeting capability of the biotin-modified yttrium phosphate/apoferritin nanoparticle (yttrium phosphate/apoferritin nanoparticle) conjugate with streptavidin-modified magnetic beads and with aid of biotin-modified fluorecein isothiocyanate (FITC) tracer. This work shows that an yttrium phosphate NP conjugate provides a fast, simple and efficient method to prepare radioactive yttrium conjugate for applications in radioimmunotherapy of cancer.

  16. Deviatoric response of the aluminium alloy, 5083

    NASA Astrophysics Data System (ADS)

    Appleby-Thomas, Gareth; Hazell, Paul; Millett, Jeremy; Bourne, Neil

    2009-06-01

    Aluminium alloys such as 5083 are established light weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.

  17. Aluminium Electroplating on Steel from a Fused Bromide Electrolyte

    SciTech Connect

    Prabhat Tripathy; Laura Wurth; Eric Dufek; Toni Y. Gutknecht; Natalie Gese; Paula Hahn; Steven Frank; Guy Fredrickson; J Stephen Herring

    2014-08-01

    A quaternary bromide bath (LiBr-KBr-CsBr-AlBr3) was used to electro-coat aluminium on steel substrates. The electrolyte was prepared by the addition of AlBr3 into the eutectic LiBr-KBr-CsBr melt. A smooth, thick, adherent and shiny aluminium coating could be obtained with 80 wt.% AlBr3 in the ternary melt. The SEM photographs of the coated surfaces suggest the formation of thick and dense coatings with good aluminium coverage. Both salt immersion and open circuit potential measurement suggest that the coatings did display good corrosion-resistance behavior. Annealing of the coated surfaces, prior to corrosion tests, suggested the robustness of the metallic aluminium coating in preventing the corrosion of the steel surfaces. Studies also indicated that the quaternary bromide plating bath can potentially provide a better aluminium coating on both ferrous and non-ferrous metals, including complex surfaces/geometries.

  18. Galvanised steel to aluminium joining by laser and GTAW processes

    SciTech Connect

    Sierra, G.; Peyre, P.; Deschaux Beaume, F. Stuart, D.; Fras, G.

    2008-12-15

    A new means of assembling galvanised steel to aluminium involving a reaction between solid steel and liquid aluminium was developed, using laser and gas tungsten arc welding (GTAW) processes. A direct aluminium melting strategy was investigated with the laser process, whereas an aluminium-induced melting by steel heating and heat conduction through the steel was carried out with the GTAW process. The interfaces generated during the interaction were mainly composed of a 2-40 {mu}m thick intermetallic reaction layers. The linear strength of the assemblies can be as high as 250 N/mm and 190 N/mm for the assemblies produced respectively by laser and GTAW processes. The corresponding failures were located in the fusion zone of aluminium (laser assemblies), or in the reaction layer (GTAW assemblies)

  19. Multilayer roll bonded aluminium foil: processing, microstructure and flow stress

    SciTech Connect

    Barlow, C.Y.; Nielsen, P.; Hansen, N

    2004-08-02

    Bulk aluminium has been produced by warm-rolling followed by cold-rolling of commercial purity (99% purity) aluminium foil. The bonding appeared perfect from observation with the naked eye, light and transmission electron microscopy. By comparison with bulk aluminium of similar purity (AA1200) rolled to a similar strain (90%RA), the roll-bonded metal showed a much higher density of high-angle grain boundaries, similar strength and improved thermal stability. This study has implications for a number of applications in relation to the processing of aluminium. Roll bonding is of interest as a method for grain size refinement; oxide-containing materials have increased strength, enhanced work-hardening behaviour, and exhibit alterations in recrystallisation behaviour. The behaviour of the hard oxide film is of interest in aluminium processing, and has been investigated by characterising the size and distribution of oxide particles in the roll-bonded samples.

  20. Usage of Neural Network to Predict Aluminium Oxide Layer Thickness

    PubMed Central

    Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel

    2015-01-01

    This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A·dm−2 and 3 A·dm−2 for creating aluminium oxide layer. PMID:25922850

  1. Usage of neural network to predict aluminium oxide layer thickness.

    PubMed

    Michal, Peter; Vagaská, Alena; Gombár, Miroslav; Kmec, Ján; Spišák, Emil; Kučerka, Daniel

    2015-01-01

    This paper shows an influence of chemical composition of used electrolyte, such as amount of sulphuric acid in electrolyte, amount of aluminium cations in electrolyte and amount of oxalic acid in electrolyte, and operating parameters of process of anodic oxidation of aluminium such as the temperature of electrolyte, anodizing time, and voltage applied during anodizing process. The paper shows the influence of those parameters on the resulting thickness of aluminium oxide layer. The impact of these variables is shown by using central composite design of experiment for six factors (amount of sulphuric acid, amount of oxalic acid, amount of aluminium cations, electrolyte temperature, anodizing time, and applied voltage) and by usage of the cubic neural unit with Levenberg-Marquardt algorithm during the results evaluation. The paper also deals with current densities of 1 A · dm(-2) and 3 A · dm(-2) for creating aluminium oxide layer. PMID:25922850

  2. Albumin adsorption on to aluminium oxide and polyurethane surfaces.

    PubMed

    Sharma, C P; Sunny, M C

    1990-05-01

    The changes in protein adsorption onto aluminium surfaces coated with different thicknesses of oxide layers were examined. The oxide layers on aluminium substrates were derived by the anodizing technique. Protein adsorption studies were conducted using 125I-labelled albumin and the amount of albumin adsorbed was estimated with the help of a gamma counter. An increase in albumin adsorption was observed on oxide layer coated aluminium surfaces. The effect of anti-Hageman factor on albumin and fibrinogen adsorption on to bare aluminium, oxide layer coated aluminium and bare polyether urethane urea surfaces was also investigated. It was observed that the presence of anti-Hageman factor increased the adsorption of albumin and fibrinogen on to all these substrates. PMID:2383620

  3. RBS and GAXRD contributions to yttrium implanted extra low carbon steel characterization

    SciTech Connect

    Caudron, E.; Buscail, H.; Jacob, Y.P.; Stroosnijder, M.F.

    1999-02-01

    Extra low carbon steel samples were yttrium implanted using an ion implantation method. Composition and structural studies were carried out before and after yttrium implantations by several analytical and structural techniques (Rutherford backscattering spectrometry, reflection high energy electron diffraction, scanning electron microscopy, X-ray diffraction, and glancing angle X-ray diffraction) to characterize the yttrium implantation effect on extra low carbon steel. The aim of this article is to show the contributions of Rutherford back-scattering spectrometry (RBS) and glancing angle X-ray diffraction (GAXRD) to the determination of yttrium depth profiles in the samples. The results obtained by these techniques are compared to those of the other analyses performed in this work to show the existing correlation between composition and structural studies. Their results allow a better understanding of the effect of yttrium implantation in extra low carbon steel before studying their corrosion resistance at high temperature.

  4. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces

    SciTech Connect

    Biganzoli, Laura; Gorla, Leopoldo; Nessi, Simone; Grosso, Mario

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Aluminium packaging partitioning in MSW incineration residues is evaluated. Black-Right-Pointing-Pointer The amount of aluminium packaging recoverable from the bottom ashes is evaluated. Black-Right-Pointing-Pointer Aluminium packaging oxidation rate in the residues of MSW incineration is evaluated. Black-Right-Pointing-Pointer 80% of aluminium cans, 51% of trays and 27% of foils can be recovered from bottom ashes. - Abstract: Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy.

  5. Knee arthroscopy after yttrium or osmic acid injection

    SciTech Connect

    Guaydier-Souquieres, C.; Beguin, J.; Ollivier, D.; Loyau, G.

    1989-01-01

    This study presents the macroscopic and histologic results of 35 knee arthroscopies performed on patients with rheumatoid arthritis, some months after an yttrium or osmic acid intraarticular injection. The procedure was most often performed after a failure of the injection or a relapse of synovitis. Arthroscopy provides an understanding of the cause of synoviorthesis failure--insufficient action of the product on the synovitis or its poor diffusion, fibri-nonecrotic deposits, or cartilaginous lesions--and may be used both diagnostically and therapeutically.

  6. Enhanced spin pumping at yttrium iron garnet/Au interfaces

    SciTech Connect

    Burrowes, C.; Heinrich, B.; Kardasz, B.; Montoya, E. A.; Girt, E.; Sun Yiyan; Song, Young-Yeal; Wu Mingzhong

    2012-02-27

    Spin injection across the ferrimagnetic insulator yttrium iron garnet (YIG)/normal metal Au interface was studied using ferromagnetic resonance. The spin mixing conductance was determined by comparing the Gilbert damping parameter {alpha} in YIG/Au and YIG/Au/Fe heterostructures. The main purpose of this study was to correlate the spin pumping efficiency with chemical modifications of the YIG film surface using in situ etching and deposition techniques. By means of Ar{sup +} ion beam etching, one is able to increase the spin mixing conductance at the YIG/Au interface by a factor of 5 compared to the untreated YIG/Au interface.

  7. Some aspects of the geochemistry of yttrium and the lanthanides

    USGS Publications Warehouse

    Fleischer, Michael

    1965-01-01

    Recent data on the relative abundances of the lanthanides and yttrium in meteorites, basaltic rocks, granitic rocks and sedimentary rocks are reviewed. It is shown that the data are inadequate to substantiate or to disprove Taylor's derivation from these data of a 1:1 abundance ratio of basaltic to granitic rocks in the continental crust. Graphs are given to illustrate the variation of lanthanides in minerals with paragenesis. Both the paragenesis and the crystal chemistry of minerals affect the composition of the lanthanides.

  8. Development of photocatalyst by combined nitrogen and yttrium doping

    SciTech Connect

    Khan, Matiullah; Cao, Wenbin

    2014-01-01

    Graphical abstract: The simulated compensated YN{sub SUB} co-doped TiO{sub 2} model can reasonably explain the experimental observations. Calculation results show that substitutional Y at Ti sites and substitutional N at O sites with an oxygen vacancy give stable configuration, reduced band gap, better visible light absorption and enhance separations of photoexcited charge carriers. The experimental observations confirmed the theoretical findings. - Highlights: • (Y, N) codoped TiO{sub 2} was synthesized by mild one pot hydrothermal method. • The Y doping concentration was varied from 0.01 to 1.38 at%. • 0.05% (Y, N) codoped TiO{sub 2} shows enhanced visible light photocatalytic activity. • Compensated and noncompensated ab-initio calculations were performed. • Calculation results reasonably explained the experimental findings. - Abstract: Titanium dioxide co-doped with yttrium and nitrogen with different yttrium doping concentration has been synthesized by mild one pot hydrothermal method without any post calcination for crystallization. Irrespective of the yttrium doping concentration, all the synthesized samples were composed of pure anatase phase with good crystallinity. And the synthesized co-doped samples have spherical morphology with uniform particle size distribution. The absorption edge of the co-doped TiO{sub 2} was shifted toward visible light region depicting that the intrinsic band gap of TiO{sub 2} was affected by the co-doping. Among the different samples, the co-doped sample with 0.05% yttrium doping concentration exhibits enhanced visible light photocatalytic activity by degradation of methylene blue in aqueous solution. Compensated and non-compensated yttrium–nitrogen co-doped TiO{sub 2} models were simulated using density functional theory to explain the experimental findings. The calculation results show that the compensated yttrium–nitrogen co-doped TiO{sub 2} model may reasonably explain the experimental observations due to its

  9. Characteristics of yttrium oxide laser ceramics with additives

    SciTech Connect

    Osipov, V V; Solomonov, V I; Orlov, A N; Shitov, V A; Maksimov, R N; Spirina, A V

    2013-03-31

    Neodymium- or ytterbium-doped laser ceramics with a disordered crystal-field structure formed by introduction of iso- and heterovalent elements into yttrium oxide are studied. It is shown that these additives broaden the spectral band of laser transitions, which makes it possible to use ceramics as active laser media emitting ultrashort pulses. Lasing was obtained in several samples of this ceramics. At the same time, it is shown that addition of zirconium and hafnium stimulates the Foerster quenching of upper laser levels and pump levels. (extreme light fields and their applications)

  10. Treatment of exhaust fluorescent lamps to recover yttrium: experimental and process analyses.

    PubMed

    De Michelis, Ida; Ferella, Francesco; Varelli, Ennio Fioravante; Vegliò, Francesco

    2011-12-01

    The paper deals with recovery of yttrium from fluorescent powder coming from dismantling of spent fluorescent tubes. Metals are leached by using different acids (nitric, hydrochloric and sulphuric) and ammonia in different leaching tests. These tests show that ammonia is not suitable to recover yttrium, whereas HNO(3) produces toxic vapours. A full factorial design is carried out with HCl and H(2)SO(4) to evaluate the influence of operating factors. HCl and H(2)SO(4) leaching systems give similar results in terms of yttrium extraction yield, but the last one allows to reduce calcium extraction with subsequent advantage during recovery of yttrium compounds in the downstream. The greatest extraction of yttrium is obtained by 20% w/v S/L ratio, 4N H(2)SO(4) concentration and 90°C. Yttrium and calcium yields are nearly 85% and 5%, respectively. The analysis of variance shows that acid concentration alone and interaction between acid and pulp density have a significant positive effect on yttrium solubilization for both HCl and H(2)SO(4) medium. Two models are empirically developed to estimate yttrium and calcium concentration during leaching. Precipitation tests demonstrate that at least the stoichiometric amount of oxalic acid is necessary to recover yttrium efficiently and a pure yttrium oxalate n-hydrate can be produced (99% grade). The process is economically feasible if other components of the fluorescent lamps (glass, ferrous and non-ferrous scraps) are recovered after the equipment dismantling and valorized, besides the cost that is usually paid to recycling companies for collection, treatment or final disposal of such fluorescent powders. PMID:21840197

  11. Hearing conservation in the primary aluminium industry

    PubMed Central

    Frisch, N.; Dixon-Ernst, C.; Chesson, B. J.; Cullen, M. R.

    2016-01-01

    Background Noise-induced hearing loss has been an intractable problem for heavy industry. Aims To report our experience in reducing the incidence of age-corrected confirmed 10 dB hearing shifts (averaged over 2, 3 and 4kHz) in employees in the primary aluminium industry in Australia over the period 2006–13. Methods We analysed annual audiometric data to determine the number of permanent hearing shifts that occurred in employees in two bauxite mines, three alumina refineries and two aluminium smelters. Annual hearing shift rates were calculated based on the number of employees tested per year. Hearing conservation initiatives undertaken during the study period are described. An assessment of similar exposure group noise exposures was also undertaken to determine the magnitude of noise exposure reduction during the study period. Results Across all operations, hearing shift rates declined from 5.5% per year in 2006 to 1.3% per year in 2013 (P < 0.001). The decline in shift rates was greater in mines and refineries, where baseline shift rates were higher, than in smelter workers. Modest reductions in noise exposure occurred during the study period. Conclusions We observed a substantial decline in hearing shift rates during the study period. We describe the hearing conservation initiatives that were collectively associated with this decline. We suspect these initiatives could be deployed relatively easily and at modest cost in other industries with noise-exposed employees. PMID:26470945

  12. Accidents in the aluminium smelting industry.

    PubMed

    Das, B C; Chaudhury, S

    1995-01-01

    Analysis of the accident records of an aluminium smelting industry, covering about 2,100 employees, over a period of three years, showed a total of 465 accidents of male employees. Out of these, 5 were fatal, 40.86% were from contacts with extreme temperatures, causing burn injury to 42.58%. Hot materials were the agents causing 44.52% of the burn injuries. Molten aluminium constituted 43.96% amongst hot materials. Injury to lower limbs constituted 38.71% and that to upper limbs 36.99%. The accidents occurring to the employees, in the age group of 26-33 years, amounted to 61.72% of the total accidents. The average number of man-days lost per year was 11,153. Average frequency rate of accidents was 30.75 accidents per million man-hours worked. Severity rate of accidents was 2.196 per million man-hours worked. Incident rate per thousand employees was 73.81. Average number of days lost per accidents was 71.95 days and average duration of man-hours between accidents was 32,516. Mean age of the employees, who met with the accidents were 29.53 years. Share of accidents in the second half of each shift was always more than that in the first half, and this average was 66.66%. PMID:8557540

  13. Precipitate strengthening of nanostructured aluminium alloy.

    PubMed

    Wawer, Kinga; Lewandowska, Malgorzata; Kurzydlowski, Krzysztof J

    2012-11-01

    Grain boundaries and precipitates are the major microstructural features influencing the mechanical properties of metals and alloys. Refinement of the grain size to the nanometre scale brings about a significant increase in the mechanical strength of the materials because of the increased number of grain boundaries which act as obstacles to sliding dislocations. A similar effect is obtained if nanoscale precipitates are uniformly distributed in coarse grained matrix. The development of nanograin sized alloys raises the important question of whether or not these two mechanisms are "additive" and precipitate strengthening is effective in nanostructured materials. In the reported work, hydrostatic extrusion (HE) was used to obtain nanostructured 7475 aluminium alloy. Nanosized precipitates were obtained by post-HE annealing. It was found that such annealing at the low temperatures (100 degrees C) results in a significant increase in the microhardness (HV0.2) and strength of the nanostructured 7475 aluminium alloy. These results are discussed in terms of the interplay between the precipitation and deformation of nanocrystalline metals. PMID:23421286

  14. Study on aluminium-based single films.

    PubMed

    Vinod Kumar, G S; García-Moreno, F; Babcsán, N; Brothers, A H; Murty, B S; Banhart, J

    2007-12-28

    In the present paper the authors studied isolated metallic films made from the same material used for making metallic foams, and then characterised their properties. Metal films were made from a liquid aluminium alloy reinforced with ceramic particles of known concentration. Melts without such particles were also investigated. It is shown that stable films could not be made from Al-Si alloy having no particles, and just extremely thin and fragile films could be made from commercially-pure Al. In contrast, aluminium alloys containing particles such as SiC and TiB(2) allowed pulling thin, stable films, which did not rupture. Significant thinning of films was observed when the particle concentration in the melt decreased. By in situ X-ray monitoring of liquid films during pulling, film thickness and drainage effects within the liquid film could be studied. The morphology and microstructure of films was characterised after solidification. Our work shows that the question of how foams are stabilised can be studied using a simplified system such as a film, instead of having to deal with the multitude of different structural elements present in a foam. PMID:18060172

  15. Yttrium oxide based three dimensional metamaterials for visible light cloaking

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.; Ruffin, Paul; Brantley, Christina; Edwards, Eugene

    2014-04-01

    Metamaterial with negative refractive index is the key phenomenon behind the concept of a cloaking device to hide an object from light in visible spectrum. Metamaterials made of two and three dimensional lattices of periodically placed electromagnetic resonant cells can achieve absorption and propagation of incident electromagnetic radiation as confined electromagnetic fields confined to a waveguide as surface plasmon polaritons, which can be used for shielding an object from in-tune electromagnetic radiation. The periodicity and dimensions of resonant cavity determine the frequency, which are very small as compared to the wavelength of incident light. Till now the phenomena have been demonstrated only for lights in near infrared spectrum. Recent advancements in fabrication techniques have made it possible to fabricate array of three dimensional nanostructures with cross-sections as small as 25 nm that are required for negative refractive index for wavelengths in visible light spectrum of 400-700 nm and for wider view angle. Two types of metamaterial designs, three dimensional concentric split ring and fishnet, are considered. Three dimensional structures consisted of metal-dielectric-metal stacks. The metal is silver and dielectric is yttrium oxide, other than conventional materials such as FR4 and Duroid. High κ dielectric and high refractive index as well as large crystal symmetry of Yttrium oxide has been investigated as encapsulating medium. Dependence of refractive index on wavelength and bandwidth of negative refractive index region are analyzed for application towards cloaking from light in visible spectrum.

  16. Proton trapping in yttrium-doped barium zirconate

    NASA Astrophysics Data System (ADS)

    Yamazaki, Yoshihiro; Blanc, Frédéric; Okuyama, Yuji; Buannic, Lucienne; Lucio-Vega, Juan C.; Grey, Clare P.; Haile, Sossina M.

    2013-07-01

    The environmental benefits of fuel cells have been increasingly appreciated in recent years. Among candidate electrolytes for solid-oxide fuel cells, yttrium-doped barium zirconate has garnered attention because of its high proton conductivity, particularly in the intermediate-temperature region targeted for cost-effective solid-oxide fuel cell operation, and its excellent chemical stability. However, fundamental questions surrounding the defect chemistry and macroscopic proton transport mechanism of this material remain, especially in regard to the possible role of proton trapping. Here we show, through a combined thermogravimetric and a.c. impedance study, that macroscopic proton transport in yttrium-doped barium zirconate is limited by proton-dopant association (proton trapping). Protons must overcome the association energy, 29 kJ mol-1, as well as the general activation energy, 16 kJ mol-1, to achieve long-range transport. Proton nuclear magnetic resonance studies show the presence of two types of proton environment above room temperature, reflecting differences in proton-dopant configurations. This insight motivates efforts to identify suitable alternative dopants with reduced association energies as a route to higher conductivities.

  17. Thick-Film Yttrium Iron Garnet Coatings via Aerosol Deposition

    NASA Astrophysics Data System (ADS)

    Johnson, Scooter D.; Glaser, Evan R.; Cheng, Shu-Fan; Eddy, Charles R.; Kub, Fritz; Gorzkowski, Edward P.

    2016-03-01

    Aerosol deposition is a thick-film deposition process that can produce layers up to several hundred micrometers thick with densities greater than 95 pct of the theoretical value. The primary advantage of aerosol deposition is that the deposition takes place entirely at room temperature, thereby enabling film growth in material systems with disparate melting temperatures. We show representative characterization results of yttrium iron garnet thick films deposited onto a <111> gadolinium gallium garnet substrate by aerosol deposition using scanning electron microscopy, X-ray diffraction, profilometry, vibrating sample magnetometry, and ferromagnetic resonance. To further elucidate the effect of density and grain size on the magnetic properties, we perform post-deposition annealing of the films to study the effect on the structural and magnetic properties of the films. Our results indicate that our system can successfully deposit dense, thick yttrium iron garnet films and that with moderate annealing the films can achieve a ferromagnetic resonance linewidth comparable to that reported for polycrystalline films deposited by other higher temperature growth techniques.

  18. MCrAlY bond coat with enhanced Yttrium layer

    DOEpatents

    Jablonski, Paul D; Hawk, Jeffrey A

    2015-04-21

    One or more embodiments relates to an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y--Al oxides, providing advantage in the maintainability of the Yttrium reservoir within the MCrAlY bulk. The MCrAlY bond coat may be fabricated through application of a Y.sub.2O.sub.3 paste to an MCrAlY material, followed by heating in a non-oxidizing environment.

  19. The varied functions of aluminium-activated malate transporters-much more than aluminium resistance.

    PubMed

    Palmer, Antony J; Baker, Alison; Muench, Stephen P

    2016-06-15

    The ALMT (aluminium-activated malate transporter) family comprises a functionally diverse but structurally similar group of ion channels. They are found ubiquitously in plant species, expressed throughout different tissues, and located in either the plasma membrane or tonoplast. The first family member identified was TaALMT1, discovered in wheat root tips, which was found to be involved in aluminium resistance by means of malate exudation into the soil. However, since this discovery other family members have been shown to have many other functions such as roles in stomatal opening, general anionic homoeostasis, and in economically valuable traits such as fruit flavour. Recent evidence has also shown that ALMT proteins can act as key molecular actors in GABA (γ-aminobutyric acid) signalling, the first evidence that GABA can act as a signal transducer in plants. PMID:27284052

  20. A quest for super dense aluminium

    NASA Astrophysics Data System (ADS)

    Fiquet, G.; Narayana, C.; Bellin, C.; Shukla, A.; Esteve, I.; Mezouar, N.

    2013-12-01

    The extreme pressure phase diagram of materials is important not only for understanding the interiors of planets or stars, but also for the fundamental understanding of the relation between crystal structure and electronic structure. Structural transitions induced by extreme pressure are governed by the deformation of valence electron charge density which bears the brunt of increasing compression while the relative volume occupied by the nearly incompressible ionic core electrons increases. At extreme pressures common materials are expected to transform into new dense phases with extremely compact atomic arrangements that may also have unusual physical properties. In this report, we present new experiments carried out on aluminium. A simple system like Al is not only important as a benchmark for theory, but can also be used as a standard for pressures in the TPa range and beyond which are targeted at new dynamic compression facilities such as the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory in the US or Laser Mégajoule (LMJ) in Bordeaux in France. For aluminium, first principle calculations have consistently predicted a phase transition sequence from fcc to hcp and hcp to bcc in a pressure range below 0.5 TPa [Tambe et al., Phys. Rev. B 77, 172102, 2008]. The hcp phase was identified at 217 GPa in a recent experiment [Akahama et al., Phys. Rev. Lett. 96, 45505, 2006] but the detection of the predicted bcc phase has been hampered by the difficulty of routine static high pressure experiments beyond 350 GPa. Here, we report on the overcoming of this obstacle and the detection of all the structural phase transitions predicted in Al by achieving a pressure in excess of 500 GPa in the static regime in a diamond-anvil cell. In particular, using X-ray diffraction at the high-pressure beamline ID27 at the European Synchrotron Radiation Facility (ESRF), we find a bcc super-dense phase of aluminium at a pressure of 380 GPa. In this report

  1. Aluminium and iron air pollution near an iron casting and aluminium foundry in Turin district (Italy).

    PubMed

    Polizzi, Salvatore; Ferrara, Mauro; Bugiani, Massimiliano; Barbero, Domenico; Baccolo, Tiziana

    2007-09-01

    This work reports the results of an environmental survey carried out in an industrial area in the Province of Turin: its main aim is to assess the levels of iron and aluminium in the outside air during the period from July to September to assess the influence of industrial activity (a cast-iron and aluminium foundry) which is interrupted during the month of August, on the level of metals present in the air. Conducting the analysis during this period of time made it possible to avoid the confounding effect of pollution due to domestic central heating. The measurements were taken from nine areas at different distances from the foundry in the area and according to the direction of the prevailing winds, as deduced from the historical data. The results of this survey show a statistically significant difference in iron and aluminium levels in the outside air in the geographic areas between the two main periods examined: during August (no foundry activity) v/s July-September (foundry activity). The values recorded are: Aluminium 0.4+/-0.45 microg/m(3) v/s 1.12+/-1.29 microg/m(3) (p<0.0001); Iron 0.95+/-0.56 microg/m(3) v/s 1.6+/-1.0 microg/m(3) (p<0.0001). There were no statistically significant differences between the nine sampling points from the point of view of the sampling sites, climate conditions and wind directions. We found no correlation with car traffic, in terms of the number of vehicles, and metals. The values of iron tended to be higher in the areas farther away from the foundry site in the areas located along the path of the prevailing winds. PMID:17637476

  2. Enhanced Arsenate Removal Performance in Aqueous Solution by Yttrium-Based Adsorbents

    PubMed Central

    Lee, Sang-Ho; Kim, Kyoung-Woong; Lee, Byung-Tae; Bang, Sunbaek; Kim, Hyunseok; Kang, Hyorang; Jang, Am

    2015-01-01

    Arsenic contamination in drinking water has become an increasingly important issue due to its high toxicity to humans. The present study focuses on the development of the yttrium-based adsorbents, with basic yttrium carbonate (BYC), Ti-loaded basic yttrium carbonate (Ti-loaded BYC) and yttrium hydroxide prepared using a co-precipitation method. The Langmuir isotherm results confirmed the maximum adsorption capacity of Ti-loaded BYC (348.5 mg/g) was 25% higher than either BYC (289.6 mg/g) or yttrium hydroxide (206.5 mg/g) due to its increased specific surface area (82 m2/g) and surface charge (PZC: 8.4). Pseudo first- and second-order kinetic models further confirmed that the arsenate removal rate of Ti-loaded BYC was faster than for BYC and yttrium hydroxide. It was subsequently posited that the dominant removal mechanism of BYC and Ti-loaded BYC was the carbonate-arsenate ion exchange process, whereas yttrium hydroxide was regarded to be a co-precipitation process. The Ti-loaded BYC also displayed the highest adsorption affinity for a wide pH range (3–11) and in the presence of coexisting anionic species such as phosphate, silicate, and bicarbonate. Therefore, it is expected that Ti-loaded BYC can be used as an effective and practical adsorbent for arsenate remediation in drinking water. PMID:26516879

  3. Enhanced Arsenate Removal Performance in Aqueous Solution by Yttrium-Based Adsorbents.

    PubMed

    Lee, Sang-Ho; Kim, Kyoung-Woong; Lee, Byung-Tae; Bang, Sunbaek; Kim, Hyunseok; Kang, Hyorang; Jang, Am

    2015-10-01

    Arsenic contamination in drinking water has become an increasingly important issue due to its high toxicity to humans. The present study focuses on the development of the yttrium-based adsorbents, with basic yttrium carbonate (BYC), Ti-loaded basic yttrium carbonate (Ti-loaded BYC) and yttrium hydroxide prepared using a co-precipitation method. The Langmuir isotherm results confirmed the maximum adsorption capacity of Ti-loaded BYC (348.5 mg/g) was 25% higher than either BYC (289.6 mg/g) or yttrium hydroxide (206.5 mg/g) due to its increased specific surface area (82 m²/g) and surface charge (PZC: 8.4). Pseudo first- and second-order kinetic models further confirmed that the arsenate removal rate of Ti-loaded BYC was faster than for BYC and yttrium hydroxide. It was subsequently posited that the dominant removal mechanism of BYC and Ti-loaded BYC was the carbonate-arsenate ion exchange process, whereas yttrium hydroxide was regarded to be a co-precipitation process. The Ti-loaded BYC also displayed the highest adsorption affinity for a wide pH range (3-11) and in the presence of coexisting anionic species such as phosphate, silicate, and bicarbonate. Therefore, it is expected that Ti-loaded BYC can be used as an effective and practical adsorbent for arsenate remediation in drinking water. PMID:26516879

  4. Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrites prepared by microemulsion method

    NASA Astrophysics Data System (ADS)

    Akhtar, Majid Niaz; Bakar Sulong, Abu; Khan, Muhammad Azhar; Ahmad, Mukhtar; Murtaza, Ghulam; Raza, M. R.; Raza, R.; Saleem, M.; Kashif, M.

    2016-03-01

    Yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrite samples were synthesized by microemulsion method. The effect of sintering was examined by heating the samples at 900, 1000, and 1100 °C. The YIG and YAIG samples were then characterized using X-ray diffraction and field-emission scanning electron microscopy. Static and dynamic magnetic properties were measured by evaluating initial permeability, Q factor, and vibrating sample magnetometry properties of YIG and YAIG samples. YIG samples sintered at 1100 °C showed higher initial permeability and Q factor compared with YAIG samples. However, hysteresis loops also showed variations in the saturation magnetization, remanence, and coercivity of YIG and YAIG samples sintered at 900, 1000, and 1100 °C. The observed magnetic parameter such as saturation magnetization, coercivity and initial permeability are strongly affected by increasing temperature. The saturation magnetization and coercivity of YIG and YAIG nanoferrites were found in the range 11.56-19.92 emu/g and 7.30-87.70 Oe respectively. Furthermore, the decreasing trends in the static and magnetic properties of YAIG samples may be due to the introduction of Al ions in the YIG crystal lattice. Thus, YIG and YAIG sintered at 1100 °C can be used for wide-ranging frequency applications.

  5. Coordination between yttrium ions and amide groups of polyamide 6 and the crystalline behavior of polyamide 6/yttrium composites

    NASA Astrophysics Data System (ADS)

    Liu, Shaoxuan; Zhang, Chengfeng; Liu, Yuhai; Zhao, Ying; Xu, Yizhuang; Ozaki, Yukihiro; Wu, Jinguang

    2012-08-01

    Different amounts of yttrium ions were introduced into polyamide 6 (PA6) matrix by solution casting process. Structure, morphology and properties of the obtained PA6/Y3+ composite films were investigated by using FT-IR spectroscopy, Raman spectroscopy, scanning electron microscope (SEM), polarized optical microscope (POM) and differential scanning calorimeter (DSC) methods. Yttrium ions show strong coordination ability and their complexation with amide groups of PA6 can be reflected by the appearance of new bands in the amide A and amide I regions in FT-IR and Raman spectra. Furthermore, the FT-IR and Raman spectra of the PA6/Y3+ composite show that the resultant chain conformations of the amide groups in the composite films are twisted from the ideal trans conformation. The DSC results reveal that Y3+ ions cause a significant reduction of the melting point of PA6. In addition, the existence of Y3+ prevents the crystallization of molten PA6/Y3+ composite films during the cooling process. Moreover, the PA6/Y3+ composite can convert into γ phase PA6 or α phase PA6 when different solvents are used to remove Y3+ ions and induce crystallization of PA6.

  6. Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation

    SciTech Connect

    Innocenzi, V. De Michelis, I.; Ferella, F.; Vegliò, F.

    2013-11-15

    Highlights: • Fluorescent powder of lamps. • Fluorescent powder of cathode ray rubes. • Recovery of yttrium from fluorescent powders. • Economic simulation for the processes to recover yttrium from WEEE. - Abstract: In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary to purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.

  7. Melt spun aluminium alloys for moulding optics

    NASA Astrophysics Data System (ADS)

    Gubbels, G.; Tegelaers, L.; Senden, R.

    2013-09-01

    Melt spinning is a rapid quenching process that makes it possible to create materials with a very fine microstructure. Due to this very fine microstructure the melt spinning process is an enabler for diamond turning optics and moulds without the need of post-polishing. Using diamond turning of melt spun aluminium one can achieve <=2 nm Rq surface roughness. Application areas are imaging and projection optics, mirrors, moulds for contact lenses and spectacles. One of the alloys that RSP produces is RSA-905. This alloy has a solid track record as a better and cheaper concept in the application of moulds for optical components such as contact lenses. The RSA-905 is a dispersion hardened amorphous-like alloy that keeps its properties when exposed to elevated temperatures (up to 380°C). This gives the material unique features for optics moulding applications. RSA-905 moulds are cheaper and better than traditional mould concepts such as copper or brass with or without NiP plating. In addition logistics can be simplified significantly: from typical weeks-months into days-week. Lifetime is typically in the range of 100.000 - 200.000 shots. For high volume production typically ranging from several 100.000 - several 1.000.000 shots, NiP plated steel moulds are typically used. By using an appropriate optical coating concept RSA-905 can be upgraded to a competitive alternative to steel in terms of price, performance and logistics. This paper presents some recent developments for improved mould performance of such concept. Hardness, wear resistance and adhesion are topics of interest and they can be applied by special coatings such as diamond-like carbon (DLC) and chromium nitride (CrN). These coatings make the aluminium alloy suitable for moulding mass production of small as well as larger optics, such as spectacle lenses.

  8. Modification of aluminide coating with yttrium for improved resistance to corrosive erosion

    SciTech Connect

    Zhang, T.; Luo, Y.; Li, D.Y.

    1999-12-01

    Aluminide coatings on a mild steel substrate were modified by using an oxygen-active element, yttrium, for improved resistance to corrosive erosion. The performance of the yttrium-containing coating during the following three erosion conditions was evaluated: dry sand erosion at different temperatures, erosion in a dilute NaCl slurry containing 30% silica sand, and erosion in a dilute H{sub 2}SO{sub 4} slurry containing 30% silica sand. Results of the study demonstrated that yttrium significantly improved the resistance of the aluminide coating to both corrosive erosion and dry sand erosion.

  9. Treatment of exhaust fluorescent lamps to recover yttrium: Experimental and process analyses

    SciTech Connect

    De Michelis, Ida; Ferella, Francesco; Varelli, Ennio Fioravante; Veglio, Francesco

    2011-12-15

    Highlights: > Recovery of yttrium from spent fluorescent lamps by sulphuric acid leaching. > The use of sulphuric acid allows to reduce calcium dissolutions. > Main contaminant of fluorescent powder are Si, Pb, Ca and Ba. > Hydrated yttrium oxalate, recovered by selective precipitation, is quite pure (>90%). > We have studied the whole process for the treatment of dangerous waste (plant capability). - Abstract: The paper deals with recovery of yttrium from fluorescent powder coming from dismantling of spent fluorescent tubes. Metals are leached by using different acids (nitric, hydrochloric and sulphuric) and ammonia in different leaching tests. These tests show that ammonia is not suitable to recover yttrium, whereas HNO{sub 3} produces toxic vapours. A full factorial design is carried out with HCl and H{sub 2}SO{sub 4} to evaluate the influence of operating factors. HCl and H{sub 2}SO{sub 4} leaching systems give similar results in terms of yttrium extraction yield, but the last one allows to reduce calcium extraction with subsequent advantage during recovery of yttrium compounds in the downstream. The greatest extraction of yttrium is obtained by 20% w/v S/L ratio, 4 N H{sub 2}SO{sub 4} concentration and 90 deg. C. Yttrium and calcium yields are nearly 85% and 5%, respectively. The analysis of variance shows that acid concentration alone and interaction between acid and pulp density have a significant positive effect on yttrium solubilization for both HCl and H{sub 2}SO{sub 4} medium. Two models are empirically developed to estimate yttrium and calcium concentration during leaching. Precipitation tests demonstrate that at least the stoichiometric amount of oxalic acid is necessary to recover yttrium efficiently and a pure yttrium oxalate n-hydrate can be produced (99% grade). The process is economically feasible if other components of the fluorescent lamps (glass, ferrous and non-ferrous scraps) are recovered after the equipment dismantling and valorized

  10. Nickel hexa­yttrium deca­iodide, [NiY6]I10

    PubMed Central

    Steinberg, Simon; Meyer, Gerd

    2014-01-01

    Comproportionation reactions of yttrium triiodide, yttrium and nickel led to the formation of the compound [NiY6]I10, which is isostructural with the prototypical [RuY6]I10. In particular, [NiY6]I10 is composed of isolated nickel centered yttrium octa­hedra (site symmetry -1) that are further surrounded by iodide ligands to construct a three-dimensional cluster complex framework. Although this compound has been previously detected by powder X-ray diffraction techniques [Payne & Corbett (1990 ▶). Inorg. Chem. 29, 2246–2251], details of the crystal structure for triclinic [NiY6]I10 were not provided. PMID:24940186

  11. Nanocomposite scintillator, detector, and method

    DOEpatents

    Cooke, D. Wayne; McKigney, Edward A.; Muenchausen, Ross E.; Bennett, Bryan L.

    2009-04-28

    A compact includes a mixture of a solid binder and at least one nanopowder phosphor chosen from yttrium oxide, yttrium tantalate, barium fluoride, cesium fluoride, bismuth germanate, zinc gallate, calcium magnesium pyrosilicate, calcium molybdate, calcium chlorovanadate, barium titanium pyrophosphate, a metal tungstate, a cerium doped nanophosphor, a bismuth doped nanophosphor, a lead doped nanophosphor, a thallium doped sodium iodide, a doped cesium iodide, a rare earth doped pyrosilicate, or a lanthanide halide. The compact can be used in a radiation detector for detecting ionizing radiation.

  12. Effect of trivalent rare earth doping on magnetic and magnetocaloric properties of Pr0.5(Ce,Eu,Y)0.1Sr0.4MnO3 manganites

    NASA Astrophysics Data System (ADS)

    Sakka, A.; M'nassri, R.; Chniba-Boudjada, N.; Ommezzine, M.; Cheikhrouhou, A.

    2016-06-01

    Experimental studies of the structural, magnetic and magnetocaloric properties of the three compounds Pr0.5X0.1Sr0.4MnO3 (X = Ce, Eu and Y) are reported. Our samples were synthesized using the Pechini sol-gel method. X-ray powder diffraction at room temperature indicates that our materials crystallize in the orthorhombic structure with Pbnm space group. The compounds undergo a second-order magnetic transition from paramagnetic to ferromagnetic state around their own Curie temperatures T C ~ 310, 270 and 230 K for X = Ce, Eu and Y, respectively. A considerable magnetocaloric effect (MCE) is observed around room temperature. The maximum values of magnetic entropy change ∆ S max are 3.54, 3.81 and 2.99 J/kgK for the samples with X = Ce, Eu and Y, respectively, when a magnetic field of 5 T was applied. The relative cooling power (RCP) values for the corresponding materials are 246.60, 261.66 and 298 J/kg. It is shown that for Pr0.5X0.1Sr0.4MnO3 the exponent n and the magnetic entropy change follow a master curve behavior. With the universal scaling curve, the experimental ∆ S at several temperatures and fields can be extrapolated.

  13. Superconductivity by rare earth doping in the 1038-type compounds (Ca1-xREx) 10(FeAs)10(Pt3As8) with RE=Y, La-Nd, Sm-Lu

    NASA Astrophysics Data System (ADS)

    Stürzer, Tobias; Derondeau, Gerald; Bertschler, Eva-Maria; Johrendt, Dirk

    2015-01-01

    We report superconductivity in polycrystalline samples of the 1038-type compounds (Ca1-xREx) 10(FeAs)10(Pt3As8) up to Tc=35 K with RE=Y, La-Nd, Sm, Gd-Lu. The critical temperatures are nearly independent of the trivalent rare earth element used, yielding a common Tc(xRE) phase diagram for electron doping in all these systems. The absence of superconductivity in Eu2+ doped samples, as well as the close resemblance of (Ca1-xREx) 10(FeAs)10(Pt3As8) to the 1048 compound substantiate that the electron doping scenario in the RE-1038 and 1048 phases is analogous to other iron-based superconductors with simpler crystal structures.

  14. Aluminium alloys in municipal solid waste incineration bottom ash.

    PubMed

    Hu, Yanjun; Rem, Peter

    2009-05-01

    With the increasing growth of incineration of household waste, more and more aluminium is retained in municipal solid waste incinerator bottom ash. Therefore recycling of aluminium from bottom ash becomes increasingly important. Previous research suggests that aluminium from different sources is found in different size fractions resulting in different recycling rates. The purpose of this study was to develop analytical and sampling techniques to measure the particle size distribution of individual alloys in bottom ash. In particular, cast aluminium alloys were investigated. Based on the particle size distribution it was computed how well these alloys were recovered in a typical state-of-the-art treatment plant. Assessment of the cast alloy distribution was carried out by wet physical separation processes, as well as chemical methods, X-ray fluorescence analysis and electron microprobe analysis. The results from laboratory analyses showed that cast alloys tend to concentrate in the coarser fractions and therefore are better recovered in bottom ash treatment plants. PMID:19423581

  15. Aluminium leaching from red mud by filamentous fungi.

    PubMed

    Urík, Martin; Bujdoš, Marek; Milová-Žiaková, Barbora; Mikušová, Petra; Slovák, Marek; Matúš, Peter

    2015-11-01

    This contribution investigates the efficient and environmentally friendly aluminium leaching from red mud (bauxite residue) by 17 species of filamentous fungi. Bioleaching experiments were examined in batch cultures with the red mud in static, 7-day cultivation. The most efficient fungal strains in aluminium bioleaching were Penicillium crustosum G-140 and Aspergillus niger G-10. The A. niger G-10 strain was capable to extract up to approximately 141 mg·L(-1) of aluminium from 0.2 g dry weight red mud. Chemical leaching with organic acids mixture, prepared according to A. niger G-10 strain's respective fungal excretion during cultivation, proved that organic acids significantly contribute to aluminium solubilization from red mud. PMID:26365318

  16. Preparation and thermal decomposition of yttrium hydroxide fluorides

    NASA Astrophysics Data System (ADS)

    Nishizawa, H.; Okumoto, K.; Mitsushio, T.

    1991-06-01

    The hydrothermal treatment of Y 2O 3 in KF solution at 400°C gave single phase of yttrium hydroxide fluorides, Y(OH) 3- xF x (0.65 < x < 1.43). Rietveld refinements of X-ray powder intensity data were performed for these solid solution phases. The hexagonal UCl 3 type system was retained over the whole range of x observed. All these solid solutions were thermally decomposed to oxide fluorides up to 500°C. Single phase of metastable cubic YOF and tetragonal YO 1- XF 1+2 x were obtained at 450°C for the solid solution with x = 0.98 and x = 1.43, respectively. The interatomic distances of anions (OH -,F -), IR data, and dehydration temperature of x < 1 phases supported the existence of hydrogen bonds.

  17. Yttrium-90 Radioembolization of Hepatic Metastases from Colorectal Cancer

    PubMed Central

    Raval, Mihir; Bande, Dinesh; Pillai, Anil K.; Blaszkowsky, Lawrence S.; Ganguli, Suvranu; Beg, Muhammad S.; Kalva, Sanjeeva P.

    2014-01-01

    Liver metastases from colorectal cancer (CRC) result in substantial morbidity and mortality. The primary treatment is systemic chemotherapy, and in selected patients, surgical resection; however, for patients who are not surgical candidates and/or fail systemic chemotherapy, liver-directed therapies are increasingly being utilized. Yttrium-90 (Y-90) microsphere therapy, also known as selective internal radiation therapy (SIRT) or radioembolization, has proven to be effective in terms of extending time to progression of disease and also providing survival benefit. This review focuses on the use of Y-90 microsphere therapy in the treatment of liver metastases from CRC, including a comprehensive review of published clinical trials and prospective studies conducted thus far. We review the methodology, outcomes, and side effects of Y-90 microsphere therapy for metastatic CRC. PMID:25120951

  18. Investigation of optical properties of epitaxial yttrium iron garnet films

    NASA Astrophysics Data System (ADS)

    Paranin, V. D.

    2016-04-01

    In work we investigated yttrium iron garnet epitaxial films with a thickness of 10 µm and 55 µm which were grown on the surface of garnet substrate. Using the polarizing microscopy method the branching domain structure of films was shown with the period of domains 21.5 µm and 42.5 µm. Disappearance of domains at presence of an external magnetic field up to 100 Oe was noted. The optical transmission of films for the polarized beam of HeNe laser is investigated and zero diffraction order and odd diffraction rings orders were shown. Interconnection of the period of chaotically oriented domains with angles of axially symmetric diffraction rings orders was shown. Diffraction patterns at various longitudinal magnetic fields are investigated. Disappearance of odd diffraction orders and increasing in intensity of zero diffraction order were fixed. Optical transmission of epitaxial films was measured in range of 500 - 900 nm.

  19. A divalent rare earth oxide semiconductor: Yttrium monoxide

    NASA Astrophysics Data System (ADS)

    Kaminaga, Kenichi; Sei, Ryosuke; Hayashi, Kouichi; Happo, Naohisa; Tajiri, Hiroo; Oka, Daichi; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2016-03-01

    Rare earth oxides are usually widegap insulators like Y2O3 with closed shell trivalent rare earth ions. In this study, solid phase rock salt structure yttrium monoxide, YO, with unusual valence of Y2+ (4d1) was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO has been recognized as gaseous phase in previous studies. In contrast with Y2O3, YO was dark-brown colored and narrow gap semiconductor. The tunable electrical conductivity ranging from 10-1 to 103 Ω-1 cm-1 was attributed to the presence of oxygen vacancies serving as electron donor. Weak antilocalization behavior observed in magnetoresistance indicated significant role of spin-orbit coupling as a manifestation of 4d electron carrier.

  20. Electrical properties of strontium doped yttrium manganite oxide

    NASA Astrophysics Data System (ADS)

    Thakur, Rajesh K.; Thakur, Rasna; Kaurav, N.; Okram, G. S.; Gaur, N. K.

    2013-02-01

    Powders of Y1-xSrxMnO3 (x = 0.1 and 0.2) pervoskites were obtained by using conventional solid state reaction method and their electrical properties are carefully analyzed. The XRD pattern showed the pointed peaks which correspond to the hexagonal structure of the reported compounds with space group P63cm (25-1079). The resistivity versus temperature plot infers a semiconducting like behavior in both reported compounds. The suppression in the resistivity has been witnessed with increasing concentration Sr2+ ions at yttrium site. The small polaron hopping conductivity model adequately describes the electrical conductivity behavior. The activation energy (Ea) is found to decrease as the 'x' (Sr content) increases.

  1. Celiac Artery Stenting to Facilitate Hepatic Yttrium-90 Radioembolization Therapy

    PubMed Central

    Chamarthy, Murthy R.; Hughes, Terence W.; Gupta, Mohit; Vossen, Josephina A.; Velasco, Noel B.; Zinn, Kenneth M.

    2012-01-01

    Radioembolization offers a novel way to treat the nonresectable, liver predominant hepatic malignancies with better tumor response and overall progression-free survival rates. Transarterial catheter-based radioembolization procedure involves the hepatic arterial administration of glass- or resin-based beta emitting Yttirum-90 microspheres. Safe delivery of the tumoricidal radiation dose requires careful angiogram planning and coil embolization to quantify lung shunting and prevent systemic toxicity, respectively. Diagnostic pretreatment angiogram also serves to identify the hepatic arterial variant anatomy and other coexisting pathologies that might require a different or alternative approach. We describe a complex case of celiac artery stenosis with tortuous pancreaticoduodenal arterial arcade precluding access to the right hepatic artery for performing radioembolization. Celiac artery stenting of the stenosis was performed to facilitate subsequent safe and successful Yttrium-90 microsphere radioembolization. PMID:23304610

  2. Sodium yttrium fluoride based upconversion nano phosphors for biosensing

    NASA Astrophysics Data System (ADS)

    Parameswaran Nampi, Padmaja; Varma, Harikrishna; Biju, P. R.; Kakkar, Tarun; Jose, Gin; Saha, Sikha; Millner, Paul

    2015-06-01

    In the present study, NaYF4-Yb3+/Er3+ having the composition NaYF4-18%Yb3+/2%Er3+ and NaYF4-20%Yb3+/2%Er3+ with and without the addition of PVP (polyvinyl pyrolidone) have been synthesised by a solution method using NaF, yttrium nitrate, ytterbium nitrate and erbium nitrate as precursors. Upconversion spectra of prepared nanomaterial under 980 nm laser excitation have been studied. The variation in upconversion spectra with new born calf serum and myoglobin has been studied. Myoglobin (Mb) may be helpful when used in conjunction with other cardiac markers for rapid determination of acute myocardial ischemia, especially in patients with a typical chest pain or nonspecific ECG changes. The variation of UC fluorescence with addition of Mb indicates the suitability of using NaYF4 based UC nanoparticles in cardiac marker detection. The detailed study is currently under progress.

  3. Nanocrystal formation via yttrium ion implantation into sapphire

    SciTech Connect

    Hunt, E.M.; Hampikian, J.M.; Poker, D.B.

    1995-12-31

    Ion implantation has been used to form nanocrystals in the near surface of single crystal {alpha}-Al{sub 2}O{sub 3}. The ion fluence was 5 x 10{sup 16} Y{sup +}/cm{sup 2}, and the implant energies investigated were 100, 150, and 170 keV. The morphology of the implanted region was investigated using transmission electron microscopy, x-ray energy dispersive spectroscopy, Rutherford backscattering spectroscopy and ion channeling. The implantation causes the formation of an amorphous surface layer which contains spherical nanosized crystals with a diameter of {approximately}13 nm. The nanocrystals are randomly oriented and exhibit a face-centered cubic structure with a lattice parameter of {approximately}4.1 A {+-} .02 A. Preliminary chemical analysis shows that these nanocrystals are rich in aluminum and yttrium and poor in oxygen relative to the amorphous matrix.

  4. Tetra­yttrium(III) tris­ulfide disilicate

    PubMed Central

    Koscielski, Lukasz A.; Ibers, James A.

    2011-01-01

    Tetra­yttrium(III) tris­ulfide disilicate, Y4S3(Si2O7), crystallizes in the Sm4S3(Si2O7) structure type. The structure consists of isolated (Si2O7)6− units (2mm. symmetry) and two crystallo­graphically independent Y3+ cations bridged by one S and one O atom. The first Y atom (site symmetry .m.) is coordinated by three O atoms and three S atoms in a trigonal–prismatic arrangement whereas the second Y atom (site symmetry ..2) is coordinated by six O atoms and three S atoms in a tricapped trigonal–prismatic arrangement. PMID:21522813

  5. Enhanced optical constants of nanocrystalline yttrium oxide thin films

    SciTech Connect

    Ramana, C. V.; Mudavakkat, V. H.; Bharathi, K. Kamala; Atuchin, V. V.; Pokrovsky, L. D.; Kruchinin, V. N.

    2011-01-17

    Yttrium oxide (Y{sub 2}O{sub 3}) films with an average crystallite-size (L) ranging from 5 to 40 nm were grown by sputter-deposition onto Si(100) substrates. The optical properties of grown Y{sub 2}O{sub 3} films were evaluated using spectroscopic ellipsometry measurements. The size-effects were significant on the optical constants and their dispersion profiles of Y{sub 2}O{sub 3} films. A significant enhancement in the index of refraction (n) is observed in well-defined Y{sub 2}O{sub 3} nanocrystalline films compared to that of amorphous Y{sub 2}O{sub 3}. A direct, linear L-n relationship found for Y{sub 2}O{sub 3} films suggests that tuning optical properties for desired applications can be achieved by controlling the size at the nanoscale dimensions.

  6. Ferromagnetic resonance of sputtered yttrium iron garnet nanometer films

    SciTech Connect

    Liu, Tao; Chang, Houchen; Sun, Yiyan; Kabatek, Michael; Wu, Mingzhong; Vlaminck, Vincent; Hoffmann, Axel; Deng, Longjiang

    2014-05-07

    Growth of nm-thick yttrium iron garnet (YIG) films by sputtering and ferromagnetic resonance (FMR) properties in the films were studied. The FMR linewidth of the YIG film decreased as the film thickness was increased from several nanometers to about 100 nm. For films with very smooth surfaces, the linewidth increased linearly with frequency. In contrast, for films with big grains on the surface, the linewidth-frequency response was strongly nonlinear. Films in the 7–26 nm thickness range showed a surface roughness between 0.1 nm and 0.4 nm, a 9.48-GHz FMR linewidth in the 6–10 Oe range, and a damping constant of about 0.001.

  7. Nanoscale nonlinear effects in Erbium-implanted Yttrium Orthosilicate

    NASA Astrophysics Data System (ADS)

    Kukharchyk, Nadezhda; Shvarkov, Stepan; Probst, Sebastian; Xia, Kangwei; Becker, Hans-Werner; Pal, Shovon; Markmann, Sergej; Kolesov, Roman; Siyushev, Petr; Wrachtrup, Jörg; Ludwig, Arne; Ustinov, Alexey V.; Wieck, Andreas D.; Bushev, Pavel

    2016-09-01

    Doping of substrates at desired locations is a key technology for spin-based quantum memory devices. Focused ion beam implantation is well-suited for this task due to its high spacial resolution. In this work, we investigate ion-beam implanted erbium ensembles in Yttrium Orthosilicate crystals by means of confocal photoluminescence spectroscopy. The sample temperature and the post-implantation annealing step strongly reverberate in the properties of the implanted ions. We find that hot implantation leads to a higher activation rate of the ions. At high enough fluences, the relation between the fluence and final concentration of ions becomes non-linear. Two models are developed explaining the observed behaviour.

  8. Novel light emissive yttrium-based nanoparticles and composites

    NASA Astrophysics Data System (ADS)

    Hill, Laura Burka

    Yttrium-based inorganic optical materials generally are of practical interest for three applications: solid state lighting/displays, lasers, and scintillators. Solid-state lighting is particularly desirable commercially for its efficiency and lifetime compared to traditional incandescent alternatives. This type of lighting technology is of increasing interest as incandescent light bulbs are being gradually phased-out due to government regulations on maximum wattage of these devices. Additionally, shortcomings in the current state of the art have driven the need for a more thermally stable material for use in this area. In this dissertation, we develop and characterize a novel composite material consisting of optically active yttrium-based nanoparticles doped into silica sol-gels. For lighting and display applications, low-cost, low-temperature synthesis methods for materials that meet or exceed the quality of the materials currently on the market are highly desirable. During the course of this work, we discuss the characterization of yttrium-based nanoparticles with respect to their incorporation in a sol-gel matrix composite. We then prepared these composite materials using a variety of methods and assess their quality according to a set of selection criteria and for lighting/display applications. Novel light-emitting composites consisting of Ce:YAG or Eu:Y2O 3 (yttria) nanoparticles in an inorganic medium were successfully developed and characterized. The optical properties of the nanoparticles were maintained when incorporated into the sol-gel medium and were shown to be comparable with the current state of the art. Comparison was made between the nanoparticle emission and the composite emission and, in the case of the Ce:YAG, the CIE coordinates, showing no change between the emission intensities or peak locations. We successfully demonstrated the conversion of fluoride-based particles into Y2O3 during sol-gel processing and demonstrated that no reaction took

  9. Surface roughness when diamond turning RSA 905 optical aluminium

    NASA Astrophysics Data System (ADS)

    Otieno, T.; Abou-El-Hossein, K.; Hsu, W. Y.; Cheng, Y. C.; Mkoko, Z.

    2015-08-01

    Ultra-high precision machining is used intensively in the photonics industry for the production of various optical components. Aluminium alloys have proven to be advantageous and are most commonly used over other materials to make various optical components. Recently, the increasing demand from optical systems for optical aluminium with consistent material properties has led to the development of newly modified grades of aluminium alloys produced by rapid solidification in the foundry process. These new aluminium grades are characterised by their finer microstructures and refined mechanical and physical properties. However the machining database of these new optical aluminium grades is limited and more research is still required to investigate their machinability performance when they are diamond turned in ultrahigh precision manufacturing environment. This work investigates the machinability of rapidly solidified aluminium RSA 905 by varying a number of diamond-turning cutting parameters and measuring the surface roughness over a cutting distance of 4 km. The machining parameters varied in this study were the cutting speed, feed rate and depth of cut. The results showed a common trend of decrease in surface roughness with increasing cutting distance. The lowest surface roughness Ra result obtained after 4 km in this study was 3.2 nm. This roughness values was achieved using a cutting speed of 1750 rpm, feed rate of 5 mm/min and depth of cut equal to 25 μm.

  10. Volatilisation and oxidation of aluminium scraps fed into incineration furnaces.

    PubMed

    Biganzoli, Laura; Gorla, Leopoldo; Nessi, Simone; Grosso, Mario

    2012-12-01

    Ferrous and non-ferrous metal scraps are increasingly recovered from municipal solid waste incineration bottom ash and used in the production of secondary steel and aluminium. However, during the incineration process, metal scraps contained in the waste undergo volatilisation and oxidation processes, which determine a loss of their recoverable mass. The present paper evaluates the behaviour of different types of aluminium packaging materials in a full-scale waste to energy plant during standard operation. Their partitioning and oxidation level in the residues of the incineration process are evaluated, together with the amount of potentially recoverable aluminium. About 80% of post-consumer cans, 51% of trays and 27% of foils can be recovered through an advanced treatment of bottom ash combined with a melting process in the saline furnace for the production of secondary aluminium. The residual amount of aluminium concentrates in the fly ash or in the fine fraction of the bottom ash and its recovery is virtually impossible using the current eddy current separation technology. The average oxidation levels of the aluminium in the residues of the incineration process is equal to 9.2% for cans, 17.4% for trays and 58.8% for foils. The differences between the tested packaging materials are related to their thickness, mechanical strength and to the alloy. PMID:22749723

  11. Sorptive separation of yttrium and cerium on a weakly basic anionite

    NASA Astrophysics Data System (ADS)

    Cheremisina, O. V.; Ponomareva, M. A.; Chirkst, D. E.; Lobacheva, O. L.; Shul'gin, I. A.

    2015-01-01

    The sorption of complex yttrium ions with Trilon B onto the weakly basic anionite D-403 in nitrate form from an acidic medium at pH 3 with constant ionic strength (NaNO3, 1 mol/kg) is investigated. A thermodynamic evaluation of the sorption isotherm of anionic yttrium complexes is performed using a method based on the linearization of the equation of the law of active mass, modified for ionic exchange reactions. The ionic exchange constant, the Gibbs free energy of ionic exchange, the capacity of the anionite, and the sorption limit of ethylenediaminetetraacetatoyttrate ions (EDTA yttrate ions) are calculated. Using a frontal version of ion exchange chromatography, cerium and yttrium are separated on D-403 anionite with a fraction of pure yttrium at the column outlet of no less than 30%.

  12. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    SciTech Connect

    Innocenzi, Valentina; De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Kopacek, Bernd

    2013-11-15

    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2{sup 2} full factorial plan and the highest extraction yields for yttrium and zinc equal to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H{sub 2}O{sub 2} concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2{sup 2} full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na{sub 2}S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%.

  13. Aluminium content of some foods and food products in the USA, with aluminium food additives.

    PubMed

    Saiyed, Salim M; Yokel, Robert A

    2005-03-01

    The primary objective was to determine the aluminium (Al) content of selected foods and food products in the USA which contain Al as an approved food additive. Intake of Al from the labeled serving size of each food product was calculated. The samples were acid or base digested and analysed for Al using electrothermal atomic absorption spectrometry. Quality control (QC) samples, with matrices matching the samples, were generated and used to verify the Al determinations. Food product Al content ranged from <1-27,000 mg kg(-1). Cheese in a serving of frozen pizzas had up to 14 mg of Al, from basic sodium aluminium phosphate; whereas the same amount of cheese in a ready-to-eat restaurant pizza provided 0.03-0.09 mg. Many single serving packets of non-dairy creamer had approximately 50-600 mg Al kg(-1) as sodium aluminosilicate, providing up to 1.5 mg Al per serving. Many single serving packets of salt also had sodium aluminosilicate as an additive, but the Al content was less than in single-serving non-dairy creamer packets. Acidic sodium aluminium phosphate was present in many food products, pancakes and waffles. Baking powder, some pancake/waffle mixes and frozen products, and ready-to-eat pancakes provided the most Al of the foods tested; up to 180 mg/serving. Many products provide a significant amount of Al compared to the typical intake of 3-12 mg/day reported from dietary Al studies conducted in many countries. PMID:16019791

  14. Elevated urinary excretion of aluminium and iron in multiple sclerosis.

    PubMed

    Exley, Christopher; Mamutse, Godwin; Korchazhkina, Olga; Pye, Eleanor; Strekopytov, Stanislav; Polwart, Anthony; Hawkins, Clive

    2006-10-01

    Multiple sclerosis (MS) is a chronic, immune-mediated, demyelinating disease of the central nervous system of as yet unknown aetiology. A consensus of opinion has suggested that the disorder is the result of an interplay between environmental factors and susceptibility genes. We have used a battery of analytical techniques to determine if the urinary excretion of i) markers of oxidative damage; ii) iron and iii) the environmental toxin aluminium and its antagonist, silicon, are altered in relapsing-remitting (RRMS) and secondary progressive MS (SPMS). Urinary concentrations of oxidative biomarkers, MDA and TBARS, were not found to be useful indicators of inflammatory disease in MS. However, urinary concentrations of another potential marker for inflammation and oxidative stress, iron, were significantly increased in SPMS (P<0.01) and insignificantly increased in RRMS (P>0.05). Urinary concentrations of aluminium were also significantly increased in RRMS (P<0.001) and SPMS (P <0.05) such that the levels of aluminium excretion in the former were similar to those observed in individuals undergoing metal chelation therapy. The excretion of silicon was lower in MS and significantly so in SPMS (P<0.05). Increased excretion of iron in urine supported a role for iron dysmetabolism in MS. Levels of urinary aluminium excretion similar to those seen in aluminium intoxication suggested that aluminium may be a hitherto unrecognized environmental factor associated with the aetiology of MS. If aluminium is involved in MS then an increased dietary intake of its natural antagonist, silicon, might be a therapeutic option. PMID:17086897

  15. Orthorhombic aluminium oxyfluoride, AlOF.

    PubMed

    Vasiliev, Alexander D; Melnikova, Svetlana V; Isaenko, Lyudmila I

    2009-04-01

    Crystals of the title compound were extracted from the bulk of grown SrAlF(5) crystals as unexpected inclusions that were identified as the long sought after aluminium oxyfluoride. The structure of AlOF is built up from tetrahedral and octahedral polyhedra. Each tetrahedron is bisected by a mirror plane, with the Al atom and two vertex anions in the plane. All tetrahedral vertices are positions of competing oxide and fluoride ions and are shared with octahedra. These shared vertices belong to two octahedral edges which join the octahedra to form infinite zigzag chains. The chains are strung along twofold screw axes that run parallel to the unit-cell b axis. The remaining two octahedral vertices are occupied only by fluoride ions. A small deficiency in the occupation of the octahedral Al position was suggested by the refinement. However, the stoichiometry of the compound is AlOF within experimental uncertainty. The Al-F(O) distances are separated into three groups with average values of 1.652 (3) (tetrahedra), 1.800 (2) (octahedra) and 1.894 (2) A (octahedra). This structure differs widely from the reported tetragonal phase Al(1-x)O(1-3x)F(1+3x) (x = 0.0886) [Kutoglu (1992). Z. Kristallogr. 199, 197-201], which consists solely of octahedral structural units. PMID:19346595

  16. Adsorption of aluminium by stream particulates.

    PubMed

    Tipping, E; Ohnstad, M; Woof, C

    1989-01-01

    An experimental study was made of the adsorption of aluminium by fine particulates from Whitray Beck, a hill stream in NW England. Adsorption increased with Al(3) activity, pH and concentration of particles, and could be quantitatively described by the empirical equation: [Formula: see text] [particles] where square brackets indicate concentrations, curly brackets, activities, and alpha, beta and gamma are constants with values of 5.14x10(-10) (mol litre(-1))(2.015) (g particles litre(-1))(-1), 0.457, and 1.472, respectively. For the experimental data, the equation gave a correlation ratio of 0.99. The equation accounts reasonably well for the adsorption of Al by particulates from seven other streams. In applying the equation, it must be borne in mind that the desorption kinetics of Al depend on pH, and rapid reversibility (<15min) can only be assumed for pHor=10%) of total monomeric Al. PMID:15092454

  17. A systematic review of aluminium phosphide poisoning.

    PubMed

    Mehrpour, Omid; Jafarzadeh, Mostafa; Abdollahi, Mohammad

    2012-03-01

    Every year, about 300,000 people die because of pesticide poisoning worldwide. The most common pesticide agents are organophosphates and phosphides, aluminium phosphide (AlP) in particular. AlP is known as a suicide poison that can easily be bought and has no effective antidote. Its toxicity results from the release of phosphine gas as the tablet gets into contact with moisture. Phosphine gas primarily affects the heart, lungs, gastrointestinal tract, and kidneys. Poisoning signs and symptoms include nausea, vomiting, restlessness, abdominal pain, palpitation, refractory shock, cardiac arrhythmias, pulmonary oedema, dyspnoea, cyanosis, and sensory alterations. Diagnosis is based on clinical suspicion, positive silver nitrate paper test to phosphine, and gastric aspirate and viscera biochemistry. Treatment includes early gastric lavage with potassium permanganate or a combination with coconut oil and sodium bicarbonate, administration of charcoal, and palliative care. Specific therapy includes intravenous magnesium sulphate and oral coconut oil. Moreover, acidosis can be treated with early intravenous administration of sodium bicarbonate, cardiogenic shock with fluid, vasopresor, and refractory cardiogenic shock with intra-aortic baloon pump or digoxin. Trimetazidine may also have a useful role in the treatment, because it can stop ventricular ectopic beats and bigeminy and preserve oxidative metabolism. This article reviews the epidemiological, toxicological, and clinical/pathological aspects of AlP poisoning and its management. PMID:22450207

  18. Fuzzy Multicriteria Ranking of Aluminium Coating Methods

    NASA Astrophysics Data System (ADS)

    Batzias, A. F.

    2007-12-01

    This work deals with multicriteria ranking of aluminium coating methods. The alternatives used are: sulfuric acid anodization, A1; oxalic acid anodization, A2; chromic acid anodization, A3; phosphoric acid anodization, A4; integral color anodizing, A5; chemical conversion coating, A6; electrostatic powder deposition, A7. The criteria used are: cost of production, f1; environmental friendliness of production process, f2; appearance (texture), f3; reflectivity, f4; response to coloring, f5; corrosion resistance, f6; abrasion resistance, f7; fatigue resistance, f8. Five experts coming from relevant industrial units set grades to the criteria vector and the preference matrix according to a properly modified Delphi method. Sensitivity analysis of the ranked first alternative A1 against the `second best', which was A3 at low and A7 at high resolution levels proved that the solution is robust. The dependence of anodized products quality on upstream processes is presented and the impact of energy price increase on industrial cost is discussed.

  19. Improving Efficiency of Aluminium Sacrificial Anode Using Cold Work Process

    NASA Astrophysics Data System (ADS)

    Asmara, Y. P.; Siregar, J. P.; Tezara, C.; Ann, Chang Tai

    2016-02-01

    Aluminium is one of the preferred materials to be used as sacrificial anode for carbon steel protection. The efficiency of these can be low due to the formation of oxide layer which passivate the anodes. Currently, to improve its efficiency, there are efforts using a new technique called surface modifications. The objective of this research is to study corrosion mechanism of aluminium sacrificial anode which has been processed by cold work. The cold works are applied by reducing the thickness of aluminium sacrificial anodes at 20% and 40% of thickness reduction. The cathodic protection experiments were performed by immersion of aluminium connected to carbon steel cylinder in 3% NaCl solutions. Visual inspections using SEM had been conducted during the experiments and corrosion rate data were taken in every week for 8 weeks of immersion time. Corrosion rate data were measured using weight loss and linear polarization technique (LPR). From the results, it is observed that cold worked aluminium sacrificial anode have a better corrosion performance. It shows higher corrosion rate and lower corrosion potential. The anodes also provided a long functional for sacrificial anode before it stop working. From SEM investigation, it is shown that cold works have changed the microstructure of anodes which is suspected in increasing corrosion rate and cause de-passivate of the surface anodes.

  20. Corrosion of aluminium metal in OPC- and CAC-based cement matrices

    SciTech Connect

    Kinoshita, Hajime; Swift, Paul; Utton, Claire; Carro-Mateo, Beatriz; Collier, Nick; Milestone, Neil

    2013-08-15

    Corrosion of aluminium metal in ordinary Portland cement (OPC) based pastes produces hydrogen gas and expansive reaction products causing problems for the encapsulation of aluminium containing nuclear wastes. Although corrosion of aluminium in cements has been long known, the extent of aluminium corrosion in the cement matrices and effects of such reaction on the cement phases are not well established. The present study investigates the corrosion reaction of aluminium in OPC, OPC-blast furnace slag (BFS) and calcium aluminate cement (CAC) based systems. The total amount of aluminium able to corrode in an OPC and 4:1 BFS:OPC system was determined, and the correlation between the amount of calcium hydroxide in the system and the reaction of aluminium obtained. It was also shown that a CAC-based system could offer a potential matrix to incorporate aluminium metal with a further reduction of pH by introduction of phosphate, producing a calcium phosphate cement.

  1. Stimulation of eryptosis by aluminium ions

    SciTech Connect

    Niemoeller, Olivier M.; Kiedaisch, Valentin; Dreischer, Peter; Wieder, Thomas; Lang, Florian . E-mail: florian.lang@uni-tuebingen.de

    2006-12-01

    Aluminium salts are utilized to impede intestinal phosphate absorption in chronic renal failure. Toxic side effects include anemia, which could result from impaired formation or accelerated clearance of circulating erythrocytes. Erythrocytes may be cleared secondary to suicidal erythrocyte death or eryptosis, which is characterized by cell shrinkage and exposure of phosphatidylserine (PS) at the erythrocyte surface. As macrophages are equipped with PS receptors, they bind, engulf and degrade PS-exposing cells. The present experiments have been performed to explore whether Al{sup 3+} ions trigger eryptosis. The PS exposure was estimated from annexin binding and cell volume from forward scatter in FACS analysis. Exposure to Al{sup 3+} ions ({>=} 10 {mu}M Al{sup 3+} for 24 h) indeed significantly increased annexin binding, an effect paralleled by decrease of forward scatter at higher concentrations ({>=} 30 {mu}M Al{sup 3+}). According to Fluo3 fluorescence Al{sup 3+} ions ({>=} 30 {mu}M for 3 h) increased cytosolic Ca{sup 2+} activity. Al{sup 3+} ions ({>=} 10 {mu}M for 24 h) further decreased cytosolic ATP concentrations. Energy depletion by removal of glucose similarly triggered annexin binding, an effect not further enhanced by Al{sup 3+} ions. The eryptosis was paralleled by release of hemoglobin, pointing to loss of cell membrane integrity. In conclusion, Al{sup 3+} ions decrease cytosolic ATP leading to activation of Ca{sup 2+}-permeable cation channels, Ca{sup 2+} entry, stimulation of cell membrane scrambling and cell shrinkage. Moreover, Al{sup 3+} ions lead to loss of cellular hemoglobin, a feature of hemolysis. Both effects are expected to decrease the life span of circulating erythrocytes and presumably contribute to the development of anemia during Al{sup 3+} intoxication.

  2. IEC 61267: Feasibility of type 1100 aluminium and a copper/aluminium combination for RQA beam qualities.

    PubMed

    Leong, David L; Rainford, Louise; Zhao, Wei; Brennan, Patrick C

    2016-01-01

    In the course of performance acceptance testing, benchmarking or quality control of X-ray imaging systems, it is sometimes necessary to harden the X-ray beam spectrum. IEC 61267 specifies materials and methods to accomplish beam hardening and, unfortunately, requires the use of 99.9% pure aluminium (Alloy 1190) for the RQA beam quality, which is expensive and difficult to obtain. Less expensive and more readily available filters, such as Alloy 1100 (99.0% pure) aluminium and copper/aluminium combinations, have been used clinically to produce RQA series without rigorous scientific investigation to support their use. In this paper, simulation and experimental methods are developed to determine the differences in beam quality using Alloy 1190 and Alloy 1100. Additional simulation investigated copper/aluminium combinations to produce RQA5 and outputs from this simulation are verified with laboratory tests using different filter samples. The results of the study demonstrate that although Alloy 1100 produces a harder beam spectrum compared to Alloy 1190, it is a reasonable substitute. A combination filter of 0.5 mm copper and 2 mm aluminium produced a spectrum closer to that of Alloy 1190 than Alloy 1100 with the added benefits of lower exposures and lower batch variability. PMID:26776501

  3. Yttrium-90 Microspheres: A Review of Its Emerging Clinical Indications

    PubMed Central

    Khajornjiraphan, Natthida; Thu, Nyein Aye; Chow, Pierce Kah Hoe

    2015-01-01

    Background Many patients with liver malignancies are not candidates for resection, and systemic therapies are often not effective. Radioembolization (RE) is an alternative treatment for this group of patients. The safety and efficacy of RE with yttrium 90 (Y90) in patients with hepatocellular carcinoma (HCC) or metastatic colon cancer to the liver have been proven in several studies. However, fewer studies have focussed on the safety and efficacy of RE with Y90 in other extrahepatic primary and secondary liver cancers. The effect on outcomes of concomitant use of Y90 with a systemic therapy is still currently under investigation. Summary A review of the published data on the use of RE as stand-alone, concomitant or sequential with other treatment modalities in HCC and other primary and secondary liver cancer is reported here. Key message RE for the treatment of HCC and other extrahepatic, primary and secondary liver cancer has reasonable efficacy and acceptable toxicities. Definitive studies to establish the role of RE in the treatment of such malignancies are warranted. PMID:26020025

  4. Cavity mediated coherent coupling between yttrium iron garnet magnets

    NASA Astrophysics Data System (ADS)

    Lambert, Nicholas; Haigh, James; Langenfeld, Stefan; Doherty, Andrew; Ferguson, Andrew

    Strong coupling between the magnetostatic modes of an yttrium iron garnet (YIG) magnet and a microwave frequency electromagnetic cavity is now readily achievable. Recently, coupling between a magnon and a superconducting qubit mediated by a cavity has also been demonstrated. In this talk, we describe dispersive measurement of the cavity-mediated coupling of magnetostatic modes in two YIG magnets. We find they are strongly coupled even when detuned from the cavity modes. We study the strength of the coupling as a function of the detuning, and find a 1 / Δ dependence when close to individual cavity modes. Dark states of the coupled magnets are observed, in which the symmetry of the microwave drive does not match that of the new eigenstates. Our results are described well within the framework of circuit QED. Such an approach to coupling magnets might be used to phase-lock many spatially separated magnetic oscillators, such as those in spin-torque nano-oscillators or magnetic metamaterials.

  5. Laser self-doubling in neodymium yttrium aluminum borate

    NASA Astrophysics Data System (ADS)

    Lu, Bao-Sheng; Wang, Jun; Pan, Heng-Fu; Jiang, Min-Hua; Liu, En-Quan

    1989-12-01

    The nonlinear effects of neodymium yttrium aluminum borate Nd(x)Y(1-x)Al3(BO3)4 (NYAB) crystal powder samples with different Nd(3+) mole percentages are reported. The optimum X values for the growth of NYAB crystals with high optical homogeneity has been determined. The performance of laser self-frequency doubling from 1.06-0.53 micron has been realized, for the first time, in a 5 x 3 x 3 cu mm NYAB crystal. The Nd(3+) ions in crystal show weak absorption at 0.53 micron. The threshold energy is measured to be less than 2 mJ; the output energy of green light at 0.53 micron is more than 5 mJ and the conversion efficiency is over 10 percent. The experiments show that the performance is improved if the optical path length is increased and the cavity design is improved. The refractive indices n(0) and n(e) of the crystal have been measured by the prism method at different wavelengths. The phase-matching angles of Types I and II have been obtained by solving equations for the phase-matching angles. The results are in good agreement with the experimental values. The nonlinear coefficient d(11) of the NYAB crystal has been measured to be 4 x 10 to the-9th esu.

  6. Optical Spectroscopy of Defects in Yttrium Orthovanadate (YVO4) Crystals

    NASA Astrophysics Data System (ADS)

    Sze Cheung, Wai; Wiechmann, Katrina; Sheldon, Peter; Yochum, Hank; Yochum, Marcia

    2007-04-01

    Yttrium orthovanadate (YVO4) is an insulating crystal used in several important and emerging optical technologies such as a solid-state laser host material and in fiber optic components for telecommunications. We are engaged in a study of the growth-related and radiation-related point defects that result in discoloration of commercial quality YVO4. These defects can reduce the usefulness of the material. Alternatively, these same defects may actually play a beneficial role in the use of YVO4 for other applications, such as the observed Anti-Stokes Luminescence (light which is converted to a higher energy due to a two-photon process in the crystal) which could make the YVO4 a candidate for blue lasers. It has been surmised [1] that some of these ``useful'' defects are related to oxygen vacancies in the crystal, so we are exploring the effects on defects after annealing the YVO4 in Oxygen and other gas atmospheres. [1] Anti-Stokes emission in undoped YVO4, W. Ryba-Romanowksi, S. Golab, P. Solarz, and G. Dominiak-Dzik, Applied Physics Letters, 80, 1183 (2002).

  7. Low-voltage cathodeluminescence of europium-activated yttrium orthovanadate

    NASA Astrophysics Data System (ADS)

    Phillips, Mark L. F.

    1995-04-01

    Emissive flat panel display systems operating in full color demand higher performance at low voltages (ca. 50 - 1000 V) from cathodoluminescent (CL) phosphors than cathode ray tubes require. Hydrothermal synthesis has been suggested as a route to phosphors with improved efficiencies, lower voltage thresholds, and increased saturation power. This hypothesis was tested in europium-doped yttrium orthovanadate (YVO4:Eu), an efficient, red emitting CL phosphor. The CL efficiency of YVO4:Eu crystallized from aqueous solution at 200 degree(s)C is relatively low until it is annealed. The distribution of particle sizes in the low- temperature phosphor is similar to that in material made via a solid-state route, but crystallites remain much smaller (ca. 400 angstrom) until they are annealed. These observations, along with the anomalously strong dependence of CL intensity on europium concentration, support a model in which efficiency principally depends on crystallite size. CL efficiency of both solid state and hydrothermal YVO4:Eu increases with voltage at constant power. Surface-bound electrons are likely the dominant influence on efficiency at voltages near threshold. Saturation power is independent of synthetic route. It is apparent that the CL properties of hydrothermally synthesized YVO4:Eu are essentially the same as those of YVO4:Eu produced via conventional, high-temperature routes.

  8. RBS and XRD Characterization of Yttrium Iron Garnet Thin Films

    NASA Astrophysics Data System (ADS)

    Mansour, M.; Roumie, M.; Abdel Samad, B.; Basma, H.; Korek, M.

    2015-03-01

    Magnetic materials such as yttrium iron garnet (YIG or Y3Fe5O12) present a great importance for their magneto-optic properties. They are potential materials used for applications in the domain of optical telecommunications for example. In this work, we have investigated YIG thin films deposited on substrates of quartz and GGG (gadolinium gallium garnet or Gd3Ga5O12). Using Rutherford backscattering spectrometry (RBS) we characterized the performed layers (thickness and stoichiometry) in order to correlate the films preparation conditions with the quality of the final material. We determined the optimal energy of the alpha particles beam used for RBS measurements and we fitted the experimental spectra using the SIMNRA simulated code. Our RBS results showed that the films have a stoichiometry close to that of the starting material. In addition, we found that the film thickness is proportional to deposition time but inversely proportional to the substrate temperature. Moreover, using x-ray diffraction (XRD) we determined the annealing effect on the structure of the profile of our thin films.

  9. Nanoscale inhomogeneities in yttrium-barium-copper-oxide (YBCO) superconductors

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Sinha, S. K.; Lang, J. C.; Liu, X.; Haskel, D.; Moss, S. C.; Srajer, G.; Veal, B. W.; Wermeille, D.; Lee, D. R.; Haeffner, D. R.; Welp, U.; Wochner, P.

    2004-03-01

    X-ray diffraction studies at the Advanced Photon Source reveal that nanoscale inhomogeneities, electronic or structural in origin, form in yttrium-barium-copper-oxide (YBa_2Cu_3O_6+x) superconductors and coexist with the superconducting (SC) state. Diffuse scattering from these inhomogeneous superstructures is due to atomic displacements with respect to equilibrium lattice sites (Z. Islam et al. Phys. Rev. B 66, 92501 (2002)), that are characterized by a wavevector of the form q=(q_x,0,0), where qx varies with hole doping from 2 unit cells (along shorter Cu-O-Cu direction) for very low doping to 4 unit cells at optimal doping. Interestingly, while these superstructures are 3-dimensionally ordered when the SC state is weakened (e.g., at x=0.4), as the doping increases, they become quasi 1D with correlation lengths comparable to SC coherence lengths in these cuprates. Recent first-principles calculations (D. de Fontaine et al., to be published) for the x=0.63 compound show that atomic displacements consistent with experimental data can be the result of ordering of O vacancies in YBCO. Models for various superstructures and their role in the phase diagram will be discussed.

  10. Phase Diagram for Magnon Condensate in Yttrium Iron Garnet Film

    PubMed Central

    Li, Fuxiang; Saslow, Wayne M.; Pokrovsky, Valery L.

    2013-01-01

    Recently, magnons, which are quasiparticles describing the collective motion of spins, were found to undergo Bose-Einstein condensation (BEC) at room temperature in films of Yttrium Iron Garnet (YIG). Unlike other quasiparticle BEC systems, this system has a spectrum with two degenerate minima, which makes it possible for the system to have two condensates in momentum space. Recent Brillouin Light Scattering studies for a microwave-pumped YIG film of thickness d = 5 μm and field H = 1 kOe find a low-contrast interference pattern at the characteristic wavevector Q of the magnon energy minimum. In this report, we show that this modulation pattern can be quantitatively explained as due to unequal but coherent Bose-Einstein condensation of magnons into the two energy minima. Our theory predicts a transition from a high-contrast symmetric state to a low-contrast non-symmetric state on varying the d and H, and a new type of collective oscillation. PMID:23455849

  11. MCrAlY bond coat with enhanced yttrium

    DOEpatents

    Jablonski, Paul D.; Hawk, Jeffrey A.

    2016-08-30

    One or more embodiments relates to a method of producing an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. The method comprises depositing an MCrAlY material on a substrate, applying an Y.sub.2O.sub.3 paste, and heating the substrate in a non-oxidizing atmosphere at a temperature between 400-1300.degree. C. for a time sufficient to generate the Y--Al.sub.2O.sub.3 layer. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y.sub.2O.sub.3, YAG, and YAP phases.

  12. Different Approach to the Aluminium Oxide Topography Characterisation

    SciTech Connect

    Poljacek, Sanja Mahovic; Gojo, Miroslav; Raos, Pero; Stoic, Antun

    2007-04-07

    Different surface topographic techniques are being widely used for quantitative measurements of typical industrial aluminium oxide surfaces. In this research, specific surface of aluminium oxide layer on the offset printing plate has been investigated by using measuring methods which have previously not been used for characterisation of such surfaces. By using two contact instruments and non-contact laser profilometer (LPM) 2D and 3D roughness parameters have been defined. SEM micrographs of the samples were made. Results have shown that aluminium oxide surfaces with the same average roughness value (Ra) and mean roughness depth (Rz) typically used in the printing plate surface characterisation, have dramatically different surface topographies. According to the type of instrument specific roughness parameters should be used for defining the printing plate surfaces. New surface roughness parameters were defined in order to insure detailed characterisation of the printing plates in graphic reproduction process.

  13. Time-resolved aluminium laser-induced plasma temperature measurements

    NASA Astrophysics Data System (ADS)

    Surmick, D. M.; Parigger, C. G.

    2014-11-01

    We seek to characterize the temperature decay of laser-induced plasma near the surface of an aluminium target from laser-induced breakdown spectroscopy measurements of aluminium alloy sample. Laser-induced plasma are initiated by tightly focussing 1064 nm, nanosecond pulsed Nd:YAG laser radiation. Temperatures are inferred from aluminium monoxide spectra viewed at systematically varied time delays by comparing experimental spectra to theoretical calculations with a Nelder Mead algorithm. The temperatures are found to decay from 5173 ± 270 to 3862 ± 46 Kelvin from 10 to 100 μs time delays following optical breakdown. The temperature profile along the plasma height is also inferred from spatially resolved spectral measurements and the electron number density is inferred from Stark broadened Hβ spectra.

  14. Modelling of micro- and macrosegregation for industrial multicomponent aluminium alloys

    NASA Astrophysics Data System (ADS)

    Ellingsen, K.; Mortensen, D.; M'Hamdi, M.

    2015-06-01

    Realistic predictions of macrosegregation formation during casting of aluminium alloys requires an accurate modeling of solute microsegregation accounting for multicomponent phase diagrams and secondary phase formation. In the present work, the stand alone Alstruc model, a microsegregation model for industrial multicomponent aluminium alloys, is coupled with the continuum model ALSIM which calculates the macroscopic transport of mass, enthalpy, momentum, and solutes as well as stresses and deformation during solidification of aluminium. Alstruc deals with multicomponent alloys accounting for temperature dependent partition coefficients, liquidus slopes and the precipitation of secondary phases. The challenge associated with computation of microsegregation for multicomponent alloys is solved in Alstruc by approximating the phase diagram data by simple, analytical expressions which allows for a CPU-time efficient coupling with the macroscopic transport model. In the present work, the coupled model has been applied in a study of macrosegregation including thermal and solutal convection, solidification shrinkage and surface exudation on an industrial DC-cast billet.

  15. Synthesis and characterization of a new aluminium-based compound.

    PubMed

    Pascual-Cosp, José; Artiaga, Ramón; Corpas-Iglesias, Francisco; Benítez-Guerrero, Mónica

    2009-08-28

    A new aluminium polynuclear crystalline species, Al(13)(OH)(30)(H(2)O)(15)Cl(9) has been synthesized and characterized. It is a particular case of the Al(13)(OH)(30-y)(H(2)O)(18-x)Cl(9) x zH(2)O family. It has been obtained from aluminium waste cans treated with HCl solution in strong acid media, followed by an ageing period. The crystalline structure of the complex was determined by XRD spectroscopy. Twelve reflections were found and indexed with the DICVOL04 software. Morphologically, a flattened preferred orientation was observed by SEM and FESEM. The chemical structure was studied by several absorption spectroscopy techniques: FTIR, ATR-FTIR and Raman dispersion spectroscopy. The coordination of the aluminium nuclei was determined by Al-MAS-NMR. Only octahedral sites were observed. Thermal characterization of the compound was performed by evolved gas analysis (EGA) coupled to simultaneous TGA-DSC. PMID:19655063

  16. Aluminium toxicity in the rat liver and brain

    NASA Astrophysics Data System (ADS)

    Yumoto, S.; Ohashi, H.; Nagai, H.; Kakimi, S.; Ishikawa, A.; Kobayashi, K.; Ogawa, Y.; Ishii, K.

    1993-04-01

    To investigate the etiology of Alzheimer's disease, we examined the brain and liver tissue uptake of aluminium 5-75 days after aluminium injection into healthy rats. Ten days after the last injection, Al was detected in the brain and the brain cell nuclei by particle-induced X-ray emission (PIXE) analysis. Al was also demonstrated in the liver and the liver cell nuclei by PIXE analysis and electron energy loss spectrometry (EELS). The morphological changes of the rat brain examined 75 days after the injection were similar to those which have been reportedly observed in the brain of patients with Alzheimer's disease. These results support the theory that Alzheimer's disease is caused by irreversible accumulation of aluminium in the brain, as well as in the nuclei of brain cells.

  17. Laser micro welding of copper and aluminium using filler materials

    NASA Astrophysics Data System (ADS)

    Esser, Gerd; Mys, Ihor; Schmidt, Michael H.

    2004-10-01

    The most evident trend in electronics production is towards miniaturization. Regarding the materials involved, another trend can be observed: intelligent combinations of different materials. One example is the combination of copper and aluminium. Copper is the material of choice for electronic packaging applications due to its superior electrical and thermal conductivity. On the other hand, aluminium offers technical and economical advantages with respect to cost and component weight -- still providing thermal and electrical properties acceptable for numerous applications. Especially for high volume products, the best solution often seems to be a combination of both materials. This fact raises the question of joining copper and aluminium. With respect to miniaturization laser micro welding is a very promising joining technique. Unfortunately, the metallurgical incompatibility of copper and aluminium easily results in the formation of brittle intermetallic phases and segregations during laser welding, thus generating an unacceptable quality of the joints. This paper presents investigations on enhancing the quality during laser micro welding of copper and aluminium for applications in electronics production. In order to eliminate the formation of brittle intermetallic phases, the addition of a filter material in form of a foil has been investigated. It can be shown that the addition of pure metals such as nickel and especially silver significantly reduces the occurrence of brittle phases in the joining area and therefore leads to an increase in welding quality. The proper control of the volume fractions of copper, aluminium and filler material in the melting zone helps to avoid materials segregation and reduces residual stress, consequently leading to a reduction of crack affinity and a stabilization of the mechanical and electrical properties.

  18. Facile synthesis of highly active hydrated yttrium oxide towards arsenate adsorption.

    PubMed

    Yu, Yang; Yu, Ling; Sun, Min; Paul Chen, J

    2016-07-15

    A novel hydrated yttrium oxide adsorbent with high capacity towards the arsenate (As(V)) adsorption was fabricated by a one-step hydrothermal process. Structure analysis identified the hydrated yttrium oxide to be Y2O(OH)4·1.5H2O, which displayed as irregular rods in the range of tens to hundreds of nanometers. The adsorbent exhibited favorable As(V) adsorption efficiency in a wide pH range from 4.0 to 7.0, with the maximum adsorption capacity of 480.2mg-As/g obtained at pH 5.0. Both the kinetics and isotherm studies demonstrated that the adsorption of the As(V) was a monolayer chemical adsorption process, in which the ion exchange between the hydroxyl groups on the hydrated yttrium oxide and arsenate anions played a key role in the uptake of the As(V). During the adsorption, the As(V) anions were replaced the hydroxyl groups and bound to the hydrated yttrium oxide via the linkage of AsOY. The presence of fluoride and phosphate greatly hindered the As(V) uptake on the hydrated yttrium oxide, whereas the bicarbonate, sulfate and humic acid showed insignificant impacts on the removal. PMID:27135142

  19. Treatment of unresectable intrahepatic cholangiocarcinoma with yttrium-90 radioembolization: A systematic review and pooled analysis

    PubMed Central

    Al-Adra, D.P.; Gill, R.S.; Axford, S.J.; Shi, X.; Kneteman, N.; Liau, S.-S.

    2015-01-01

    Radioembolization with yttrium-90 microspheres offers an alternative treatment option for patients with unresectable intrahepatic cholangiocarcinoma (ICC). However, the rarity and heterogeneity of ICC makes it difficult to draw firm conclusions about treatment efficacy. Therefore, the goal of the current study is to systematically review the existing literature surrounding treatment of unresectable ICCs with yttrium-90 microspheres and provide a comprehensive review of the current experience and clinical outcome of this treatment modality. We performed a comprehensive search of electronic databases for ICC treatment and identified 12 studies with relevant data regarding radioembolization therapy with yttrium-90 microspheres. Based on pooled analysis, the overall weighted median survival was 15.5 months. Tumour response based on radiological studies demonstrated a partial response in 28% and stable disease in 54% of patients at three months. Seven patients were able to be downstaged to surgical resection. The complication profile of radioembolization is similar to that of other intra-arterial treatment modalities. Overall survival of patients with ICC after treatment with yttrium-90 microspheres is higher than historical survival rates and shows similar survival to those patients treated with systemic chemotherapy and/or trans-arterial chemoembolization therapy. Therefore, the use of yttrium-90 microspheres should be considered in the list of available treatment options for ICC. However, future randomized trials comparing systemic chemotherapy, TACE and local radiation will be required to identify the optimal treatment modality for unresectable ICC. PMID:25449754

  20. Method of forming a relatively stable slip of silicon metal particles and yttrium containing particles

    DOEpatents

    Dickie, Ray A.; Mangels, John A.

    1984-01-01

    The method concerns forming a relatively stable slip of silicon metal particles and yttrium containing particles. In one embodiment, a casting slip of silicon metal particles is formed in water. Particles of a yttrium containing sintering aid are added to the casting slip. The yttrium containing sintering aid is a compound which has at least some solubility in water to form Y.sup.+3 ions which have a high potential for totally flocculating the silicon metal particles into a semiporous solid. A small amount of a fluoride salt is added to the casting slip which contains the yttrium containing sintering aid. The fluoride salt is one which will produce fluoride anions when dissolved in water. The small amount of the fluoride anions produced are effective to suppress the flocculation of the silicon metal particles by the Y.sup.+3 ions so that all particles remain in suspension in the casting slip and the casting slip has both an increased shelf life and can be used to cast articles having a relatively thick cross-section. The pH of the casting slip is maintained in a range from 7.5 to 9. Preferably, the fluoride salt used is one which is based on a monovalent cation such as sodium or ammonia. The steps of adding the yttrium containing sintering aid and the fluoride salt may be interchanged if desired, and the salt may be added to a solution containing the sintering aid prior to addition of the silicon metal particles.

  1. Yttrium-doped cobalt nanoferrites prepared by sol-gel combustion method and its characterization.

    PubMed

    Shobana, M K; Nam, Wonjong; Choe, Heeman

    2013-05-01

    Ferrites are extremely important magnetic ceramics in the production of electronic components because they reduce the energy losses by the induced currents acting as electrical insulators. Similarly, the spinel-structured cobalt-based ferrites are promising materials for stress, torsion sensors and energy storage applications (anode materials in lithium batteries, fuel cells and solar cells). Therefore, many studies have focused on cobalt ferrites obtained using conventional techniques. Different sintering conditions, types and levels of substitution result in different microstructures and magnetostriction coefficients under a wide range of preparation conditions. Despite many attempts, there are no specific reports on the trivalent substitution of yttrium in cobalt ferrite to the best of our knowledge. In the present study, yttrium-doped cobalt ferrite was prepared with different concentrations to identify the crystallite size with respect to the yttrium concentration, temperature and changes in the structural and electrical properties. In addition, the resistance of the nanostructured yttrium-doped cobalt ferrites nanopowders was analyzed. The resistance was increased by the addition of yttrium to cobalt ferrites. PMID:23858896

  2. Hydrothermal synthesis and formation mechanism of hexagonal yttrium hydroxide fluoride nanobundles

    SciTech Connect

    Tian, Li; Sun, QiLiang; Zhao, RuiNi; He, HuiLin; Xue, JianRong; Lin, Jun

    2013-11-15

    Graphical abstract: The formation of yttrium hydroxide fluorides nanobundles can be expressed as a precipitation transformation from cubic NaYF{sub 4} to hexagonal NaYF{sub 4} and to hexagonal Y(OH){sub 2.02}F{sub 0.98} owing to ion exchange. - Highlights: • Novel Y(OH){sub 2.02}F{sub 0.98} nanobundles have been successfully prepared by hydrothermal method. • The branched nanobundles composed of numerous oriented-attached nanoparticles has been studied. • The growth mechanism is proposed to be ion exchange and precipitation transformation. - Abstract: This article presents the fabrication of hexagonal yttrium hydroxide fluoride nanobundles via one-pot hydrothermal process, using yttrium nitrate, sodium hydroxide and ammonia fluoride as raw materials to react in propanetriol solvent. The X-ray diffraction pattern clearly reveals that the grown product is pure yttrium hydroxide fluoride, namely Y(OH){sub 2.02}F{sub 0.98}. The morphology and microstructure of the synthesized product is testified to be nanobundles composed of numerous oriented-attached nanoparticles as observed from the field emission scanning electron microscopy (FESEM). The chemical composition was analyzed by the energy dispersive spectrum (EDS), confirming the phase transformation of the products which was clearly consistent with the result of XRD analysis. It is proposed that the growth of yttrium hydroxide fluoride nanobundles be attributed to ion exchange and precipitation transformation.

  3. Treatment of unresectable intrahepatic cholangiocarcinoma with yttrium-90 radioembolization: a systematic review and pooled analysis.

    PubMed

    Al-Adra, D P; Gill, R S; Axford, S J; Shi, X; Kneteman, N; Liau, S-S

    2015-01-01

    Radioembolization with yttrium-90 microspheres offers an alternative treatment option for patients with unresectable intrahepatic cholangiocarcinoma (ICC). However, the rarity and heterogeneity of ICC makes it difficult to draw firm conclusions about treatment efficacy. Therefore, the goal of the current study is to systematically review the existing literature surrounding treatment of unresectable ICCs with yttrium-90 microspheres and provide a comprehensive review of the current experience and clinical outcome of this treatment modality. We performed a comprehensive search of electronic databases for ICC treatment and identified 12 studies with relevant data regarding radioembolization therapy with yttrium-90 microspheres. Based on pooled analysis, the overall weighted median survival was 15.5 months. Tumour response based on radiological studies demonstrated a partial response in 28% and stable disease in 54% of patients at three months. Seven patients were able to be downstaged to surgical resection. The complication profile of radioembolization is similar to that of other intra-arterial treatment modalities. Overall survival of patients with ICC after treatment with yttrium-90 microspheres is higher than historical survival rates and shows similar survival to those patients treated with systemic chemotherapy and/or trans-arterial chemoembolization therapy. Therefore, the use of yttrium-90 microspheres should be considered in the list of available treatment options for ICC. However, future randomized trials comparing systemic chemotherapy, TACE and local radiation will be required to identify the optimal treatment modality for unresectable ICC. PMID:25449754

  4. Dopant effect of yttrium and the growth and adherence of alumina on nickel-aluminum alloys

    NASA Technical Reports Server (NTRS)

    Anderson, A. B.; Mehandru, S. P.; Smialek, J. L.

    1985-01-01

    The atom superposition and electron delocalization molecular orbital theory and large cluster models have been employed to study cation vacancy diffusion in alpha-Al2O3 and the bonding of alpha-Al2O3 to nickel, aluminum, and yttrium surfaces. Al(3+) diffusion barriers in alpha-Al2O3 by the vacancy mechanism are in reasonable agreement with experiment. The barrier to Y(3+) diffusion is predicted to be much higher. Since addition of yttrium to transition metal alloys is known to reduce the growth rate and stress convolutions in protective alumina scales, this result suggests the rate-limiting step in scale growth is cation vacancy diffusion. This may partially explain the beneficial effect of yttrium dopants on scale adhesion. The theory also predicts a very strong bonding between alumina and yttrium at the surface of the alloy. This may also be important to the adhesion phenomenon. It is also found that aluminum and yttrium atoms bond very strongly to nickel because of charge transfer from their higher lying valence orbitals to the lower lying nickel s-d band.

  5. Carbon treated commercial aluminium alloys as anodes for aluminium-air batteries in sodium chloride electrolyte

    NASA Astrophysics Data System (ADS)

    Pino, M.; Herranz, D.; Chacón, J.; Fatás, E.; Ocón, P.

    2016-09-01

    An easy treatment based in carbon layer deposition into aluminium alloys is presented to enhance the performance of Al-air primary batteries with neutral pH electrolyte. The jellification of aluminate in the anode surface is described and avoided by the carbon covering. Treated commercial Al alloys namely Al1085 and Al7475 are tested as anodes achieving specific capacities above 1.2 Ah g-1vs 0.5 Ah g-1 without carbon covering. The influence of the binder proportion in the treatment as well as different carbonaceous materials, Carbon Black, Graphene and Pyrolytic Graphite are evaluated as candidates for the covering. Current densities of 1-10 mA cm-2 are measured and the influence of the alloy explored. A final battery design of 4 cells in series is presented for discharges with a voltage plateau of 2 V and 1 Wh g-1 energy density.

  6. Accumulation of aluminium and physiological status of tree foliage in the vicinity of a large aluminium smelter.

    PubMed

    Wannaz, E D; Rodriguez, J H; Wolfsberger, T; Carreras, H A; Pignata, M L; Fangmeier, A; Franzaring, J

    2012-01-01

    A pollution gradient was observed in tree foliage sampled in the vicinity of a large aluminium production facility in Patagonia (Argentina). Leaves of Eucalyptus rostrata, and Populus hybridus and different needle ages of Pinus spec. were collected and concentrations of aluminium (Al) and sulphur (S) as well as physiological parameters (chlorophyll and lipid oxidation products) were analyzed. Al and S concentrations indicate a steep pollution gradient in the study showing a relationship with the physiological parameters in particular membrane lipid oxidation products. The present study confirms that aluminium smelting results in high Al and sulphur deposition in the study area, and therefore further studies should be carried out taking into account potentially adverse effects of these compounds on human and ecosystem health. PMID:22654642

  7. Accumulation of Aluminium and Physiological Status of Tree Foliage in the Vicinity of a Large Aluminium Smelter

    PubMed Central

    Wannaz, E. D.; Rodriguez, J. H.; Wolfsberger, T.; Carreras, H. A.; Pignata, M. L.; Fangmeier, A.; Franzaring, J.

    2012-01-01

    A pollution gradient was observed in tree foliage sampled in the vicinity of a large aluminium production facility in Patagonia (Argentina). Leaves of Eucalyptus rostrata, and Populus hybridus and different needle ages of Pinus spec. were collected and concentrations of aluminium (Al) and sulphur (S) as well as physiological parameters (chlorophyll and lipid oxidation products) were analyzed. Al and S concentrations indicate a steep pollution gradient in the study showing a relationship with the physiological parameters in particular membrane lipid oxidation products. The present study confirms that aluminium smelting results in high Al and sulphur deposition in the study area, and therefore further studies should be carried out taking into account potentially adverse effects of these compounds on human and ecosystem health. PMID:22654642

  8. A Numerical Analysis of the Resistance and Stiffness of the Aluminium and Concrete Composite Beam

    NASA Astrophysics Data System (ADS)

    Polus, Łukasz; Szumigała, Maciej

    2015-03-01

    In this paper a numerical analysis of the resistance and stiffness of the aluminium and concrete composite beam is presented. Composite aluminium and concrete structures are quite new and they have not been thoroughly tested. Composite structures have a lot of advantages. The composite aluminium and concrete beam is more corrosion-resistant, fire-resistant and stiff than the aluminium beam. The contemporary idea of sustainable buildings relies on new solutions which are more environmentally friendly. Aluminium is lighter and more resistant to corrosion than steel, which is often used in composite structures.

  9. The effects of aluminum, iron, chromium, and yttrium on rat intestinal smooth muscle in vitro.

    PubMed

    Cunat, L; Membre, H; Marchal, L; Chaussidon, M; Burnel, D

    1998-01-01

    The modification of peristaltic activity in the presence of several metal ions has been investigated in the rat intestine by the isolated organ technique. The metals tested modify the intestinal movements: aluminum, chromium, and yttrium cause a decrease of amplitude, while iron showed no effect. By use of microscopic techniques, the presence of yttrium hydroxide was observed in the intestinal tissues. Iron also appears as a precipitate outside of the intestinal serosal, which may explain why iron did not modify the peristaltism. Chromium and aluminum were not apparent to microscope, despite being detected and quantified in the tissues by means of atomic emission spectrometer. We conclude that the trivalent ions of these elements may operate differently on the mechanisms of intestinal contractions: yttrium precipitates in intercellular spaces, iron precipitates outside the intestines, and chromium and aluminum remain in solution and are distributed homogeneously in the smooth intestinal muscle. PMID:9845462

  10. Improved Yttrium and Zirconium Abundances in Metal-Poor Stars

    NASA Astrophysics Data System (ADS)

    Violante, Renata; Biemont, E.; Cowan, J. J.; Sneden, C.

    2012-01-01

    Abstract We present new abundances of the lighter n-capture elements, Yttrium (Z=39) and Zirconium (Z=40) in the very metal poor, r-process rich stars BD+17 3248 and HD 221170. Very accurate abundances were obtained by use of the new transition probabilities for Y II published by Biémont et al. 2011, and Zr II by Malcheva et al. 2006, and by expanding the number of transitions employed for each element. For example, in BD+17 3248, we find log ɛπσιλον=-0.03 +/- 0.03 (σιγμα=0.15, from 23 lines) for Y II. As for Zr II, log ɛπσιλον = 0.65 +/- 0.03 (σɛγμα = 0.1, from 13 lines). The resulting abundance ratio is log ɛπσιλον [Y/Zr] = -0.68 +/- 0.05. The results for HD 221170 are in accord with those of BD+17 3248. The quantity of lines used to form the abundance means has increased significantly since the original studies of these stars, resulting in more trustworthy abundances. These observed abundance ratios are in agreement with an r-process-only value predicted from stellar models, but is under-abundant compared to an empirical model derived from direct analyses of meteoritic material. This ambiguity should stimulate further nucleosynthetic analysis to explain this abundance ratio. We would like to extend our gratitude to NSF grant AST-0908978 and the University of Texas Astronomy Department Rex G. Baker, Jr. Endowment for their financial support in this project.

  11. High-Pressure Optical Studies of Doped Yttrium Aluminum Garnet

    NASA Astrophysics Data System (ADS)

    Wamsley, Paula

    This thesis demonstrates the application of high pressure spectroscopy to the study of doped insulator laser materials. We investigated transition metal ion and rare -earth ion doped yttrium aluminum garnet (YAG) crystals. Our goal was to explore the relationship between the local bonding environment of the dopant ion and the bulk optical properties of the crystals. Pressure is a useful probe for this type of investigation because pressure changes the local bonding environment of the dopant ion. We conducted laser induced fluorescence experiments and time-resolved laser induced fluorescence experiments on samples in modified Merrill-Basset style diamond anvil cells. We measured the effect of pressure on the laser induced emission of Cr^{3+} and Tm^{3+} in Cr ^{3+}:YAG and Tm^ {3+}:YAG. These experiments provided information about the energy level structure of Cr ^{3+} and Tm^{3+ } as a function of the crystal field strength. In Cr^{3+}:YAG we were able to correlate changes in the emission spectrum to pressure induced changes in the local site-symmetry of the Cr ^{3+} ions. In Tm^ {3+}:YAG we determined that several emission features were incorrectly assigned and observed previously unreported Tm^{3+} emission features. We also measured the time-resolved laser induced emission of Cr^{3+} in Cr^{3+}:YAG and Cr ^{3+}:Tm^{3+ }:YAG. With these measurements we were able to determine the effect of thermal and spin-orbit coupling on the fluorescence properties of Cr^{3+ }. In addition we determined that the fluorescence properties of Cr^{3+} strongly influence the rate of energy transfer and the efficiency of energy transfer from Cr^{3+ } to Tm^{3+} in Cr^{3+}:Tm ^{3+}:YAG.

  12. Hanford isotope project strategic business analysis yttrium-90 (Y-90)

    SciTech Connect

    1995-10-01

    The purpose of this analysis is to address the short-term direction for the Hanford yttrium-90 (Y-90) project. Hanford is the sole DOE producer of Y-90, and is the largest repository for its source in this country. The production of Y-90 is part of the DOE Isotope Production and Distribution (IP and D) mission. The Y-90 is ``milked`` from strontium-90 (Sr-90), a byproduct of the previous Hanford missions. The use of Sr-90 to produce Y-90 could help reduce the amount of waste material processed and the related costs incurred by the clean-up mission, while providing medical and economic benefits. The cost of producing Y-90 is being subsidized by DOE-IP and D due to its use for research, and resultant low production level. It is possible that the sales of Y-90 could produce full cost recovery within two to three years, at two curies per week. Preliminary projections place the demand at between 20,000 and 50,000 curies per year within the next ten years, assuming FDA approval of one or more of the current therapies now in clinical trials. This level of production would incentivize private firms to commercialize the operation, and allow the government to recover some of its sunk costs. There are a number of potential barriers to the success of the Y-90 project, outside the control of the Hanford Site. The key issues include: efficacy, Food and Drug Administration (FDA) approval and medical community acceptance. There are at least three other sources for Y-90 available to the US users, but they appear to have limited resources to produce the isotope. Several companies have communicated interest in entering into agreements with Hanford for the processing and distribution of Y-90, including some of the major pharmaceutical firms in this country.

  13. Peptoid-ligated pentadecanuclear yttrium and dysprosium hydroxy clusters.

    PubMed

    Thielemann, Dominique T; Wagner, Anna T; Lan, Yanhua; Oña-Burgos, Pascual; Fernández, Ignacio; Rösch, Esther S; Kölmel, Dominik K; Powell, Annie K; Bräse, Stefan; Roesky, Peter W

    2015-02-01

    A new family of pentadecanuclear coordination cluster compounds (from now on simply referred to as clusters) [{Ln15 (OH)20 (PepCO2 )10 (DBM)10 Cl}Cl4 ] (PepCO2 =2-[{3-(((tert-butoxycarbonyl)amino)methyl)benzyl}amino]acetate, DBM=dibenzoylmethanide) with Ln=Y and Dy was obtained by using the cell-penetrating peptoid (CPPo) monomer PepCO2 H and dibenzoylmethane (DBMH) as supporting ligands. The combination of an inorganic cluster core with an organic cell-penetrating peptoid in the coordination sphere resulted in a core component {Ln15 (μ3 -OH)20 Cl}(24+) (Ln=Y, Dy), which consists of five vertex-sharing heterocubane {Ln4 (μ3 -OH)4 }(8+) units that assemble to give a pentagonal cyclic structure with one Cl atom located in the middle of the pentagon. The solid-state structures of both clusters were established by single-crystal X-ray crystallography. MS (ESI) experiments suggest that the cluster core is robust and maintained in solution. Pulsed gradient spin echo (PGSE) NMR diffusion measurements were carried out on the diamagnetic yttrium compound and confirmed the stability of the cluster in its dicationic form [{Y15 (μ3 -OH)20 (PepCO2 )10 (DBM)10 Cl}Cl2 ](2+) . The investigation of both static (dc) and dynamic (ac) magnetic properties in the dysprosium cluster revealed a slow relaxation of magnetization, indicative of single-molecule magnet (SMM) behavior below 8 K. Furthermore, the χT product as a function of temperature for the dysprosium cluster gave evidence that this is a ferromagnetically coupled compound below 11 K. PMID:25483296

  14. Yttrium-90 radioembolization for advanced inoperable hepatocellular carcinoma

    PubMed Central

    Lee, Victor Ho-Fun; Leung, Dennis KC; Luk, Mai-Yee; Tong, Chi-Chung; Law, Martin WM; Ng, Sherry CY; Wong, Ka-Kin; Poon, Ronnie TP; Kwong, Dora LW; Leung, To-Wai

    2015-01-01

    Background Advanced inoperable hepatocellular carcinoma (HCC) conferring a grave prognosis may benefit from yttrium-90 (90Y) radioembolization. Methods Thirty patients with advanced inoperable HCC including those with any lesion >8 cm in maximal diameter or multiple bi-lobar lesions (totally more than five lesions), or portal vein thrombosis treated with radioembolization were reviewed. Treatment efficacy and safety were evaluated. Univariate and multivariate analyses were performed for identifying potential prognostic factors. Results After a median follow-up of 18.3 months, the response rate was 30.0%, and the disease control rate was 50.0%. Median overall progression-free survival (PFS) and overall survival (OS) were 3.3 months and 13.2 months, respectively. Longer median PFS was noted in those who had transarterial chemoembolization before radioembolization (7.3 months vs 3.1 months; P=0.021) and duration of alfafeto protein (AFP) response ≥6 months (11.8 months vs 3.0 months; P<0.001). Longer median OS was also revealed in those without portal vein thrombosis (17.1 months vs 4.4 months; P=0.015) and those whose duration of AFP response was ≥6 months (21.2 months vs 8.6 months; P=0.001). Seventeen patients (56.7%) developed treatment-related complications including five (16.7%) grade 3 events. Multivariate analysis revealed that treatment responders (P=0.001) and duration of AFP response ≥6 months (P=0.006) were prognostic of PFS, whereas the absence of portal vein invasion (P=0.025), treatment responders (P=0.010), and duration of AFP response ≥6 months (P=0.001) were prognostic of OS. Conclusion 90Y radioembolization is an alternative treatment with a promising outcome for poor-risk advanced inoperable HCC. PMID:26640386

  15. Root Cause Analysis of Gastroduodenal Ulceration After Yttrium-90 Radioembolization

    SciTech Connect

    Lam, Marnix G. E. H.; Banerjee, Subhas; Louie, John D.; Abdelmaksoud, Mohamed H. K.; Iagaru, Andrei H.; Ennen, Rebecca E.; Sze, Daniel Y.

    2013-12-15

    IntroductionA root cause analysis was performed on the occurrence of gastroduodenal ulceration after hepatic radioembolization (RE). We aimed to identify the risk factors in the treated population and to determine the specific mechanism of nontarget RE in individual cases. Methods: The records of 247 consecutive patients treated with yttrium-90 RE for primary (n = 90) or metastatic (n = 157) liver cancer using either resin (n = 181) or glass (n = 66) microspheres were reviewed. All patients who developed a biopsy-proven microsphere-induced gastroduodenal ulcer were identified. Univariate and multivariate analyses were performed on baseline parameters and procedural data to determine possible risk factors in the total population. Individual cases were analyzed to ascertain the specific cause, including identification of the culprit vessel(s) leading to extrahepatic deposition of the microspheres. Results: Eight patients (3.2 %) developed a gastroduodenal ulcer. Stasis during injection was the strongest independent risk factor (p = 0.004), followed by distal origin of the gastroduodenal artery (p = 0.004), young age (p = 0.040), and proximal injection of the microspheres (p = 0.043). Prolonged administrations, pain during administration, whole liver treatment, and use of resin microspheres also showed interrelated trends in multivariate analysis. Retrospective review of intraprocedural and postprocedural imaging showed a probable or possible culprit vessel, each a tiny complex collateral vessel, in seven patients. Conclusion: Proximal administrations and those resulting in stasis of flow presented increased risk for gastroduodenal ulceration. Patients who had undergone bevacizumab therapy were at high risk for developing stasis.

  16. Rare earth activated yttrium aluminate phosphors with modulated luminescence.

    PubMed

    Muresan, L E; Popovici, E J; Perhaita, I; Indrea, E; Oro, J; Casan Pastor, N

    2016-06-01

    Yttrium aluminate (Y3 A5 O12 ) was doped with different rare earth ions (i.e. Gd(3+) , Ce(3+) , Eu(3+) and/or Tb(3+) ) in order to obtain phosphors (YAG:RE) with general formula,Y3-x-a Gdx REa Al5 O12 (x = 0; 1.485; 2.97 and a = 0.03). The synthesis of the phosphor samples was done using the simultaneous addition of reagents technique. This study reveals new aspects regarding the influence of different activator ions on the morpho-structural and luminescent characteristics of garnet type phosphor. All YAG:RE phosphors are well crystallized powders containing a cubic-Y3 Al5 O12 phase as major component along with monoclinic-Y4 Al2 O9 and orthorhombic-YAlO3 phases as the impurity. The crystallites dimensions of YAG:RE phosphors vary between 38 nm and 88 nm, while the unit cell slowly increase as the ionic radius of the activator increases. Under UV excitation, YAG:Ce exhibits yellow emission due to electron transition in Ce(3+) from the 5d level to the ground state levels ((2) F5/2 , (2) F7/2 ). The emission intensity of Ce(3+) is enhanced in the presence of the Tb(3+) ions and is decreased in the presence of Eu(3+) ions due to some radiative or non-radiative processes that take place between activator ions. By varying the rare earth ions, the emission colour can be modulated from green to white and red. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26553167

  17. Anisotropic Optical-Response of Eu-doped Yttrium Orthosilicate

    NASA Technical Reports Server (NTRS)

    Liu, Huimin; Santiago, Miguel; Jia, Weiyi; Zhang, Shoudu

    1998-01-01

    Eu-doped yttrium orthosilicate (Eu(3+) : Y2SiO5) had been a subject being investigated for coherent time-domain optical memory and information processing applications since its ultraslow optical dephasing was discovered several years ago. In this crystal the weakly allowed (7)F0 - (5)D0 transition of europium ions exhibits a sufficient long dephasing time and no spectral difli.usion on a time scale of several hours at low temperature, thus an information pattern or data can be stored as a population grating in the ground state hyperfine levels. On the other hand, the study on photon-echo relaxation shows that the dephasing time T2 of Eu (3+) and other rare-earth ions doped YAG, YAlO3 strongly depends on the intensity of the excitation pulses. In Eu (3+) :YAlO3, an exponential decay of photon-echo with T2 = 53 microseconds if the excitation pulses are weak (5 vJ/pulse) was observed. However, when the excitation pulses are strong (80 pJ/pulse) they observed a much shortened T2 with a highly nonexponential decay pattern. The conclusion they derived is that the intensity-dependent dephasing rate effects are quite general, and it depends on how much the excitation intensity varies. In this paper we use transient grating formation technique showing that a temporal lattice distortion may only occur along crystal c axis, caused by EU (3+) excitation. At high excitation level the produced exciton in conduction band may also couple to the dynamical lattice relaxation process, giving rise to an apparently much shortened dephasing time.

  18. Porphyry copper enrichment linked to excess aluminium in plagioclase

    NASA Astrophysics Data System (ADS)

    Williamson, B. J.; Herrington, R. J.; Morris, A.

    2016-03-01

    Porphyry copper deposits provide around 75%, 50% and 20% of world copper, molybdenum and gold, respectively. The deposits are mainly centred on calc-alkaline porphyry magmatic systems in subduction zone settings. Although calc-alkaline magmas are relatively common, large porphyry copper deposits are extremely rare and increasingly difficult to discover. Here, we compile existing geochemical data for magmatic plagioclase, a dominant mineral in calc-alkaline rocks, from fertile (porphyry-associated) and barren magmatic systems worldwide, barren examples having no associated porphyry deposit. We show that plagioclase from fertile systems is distinct in containing `excess’ aluminium. This signature is clearly demonstrated in a case study carried out on plagioclase from the fertile La Paloma and Los Sulfatos copper porphyry systems in Chile. Further, the presence of concentric zones of high excess aluminium suggests its incorporation as a result of magmatic processes. As excess aluminium has been linked to high melt water contents, the concentric zones may record injections of hydrous fluid or fluid-rich melts into the sub-porphyry magma chamber. We propose that excess aluminium may exclude copper from plagioclase, so enriching the remaining melts. Furthermore, this chemical signature can be used as an exploration indicator for copper porphyry deposits.

  19. Molecular Characterization of Aluminium (aluminum) Tolerance in Rye

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aluminium (Al) toxicity, affecting around half of the world’s arable land, severely hinders the ability of crop plants to utilize moisture and nutrients by restricting root growth and function. Among the cultivated cereals, rye is the most Al-tolerant and represents an important potential source of ...

  20. On the anodic aluminium oxide refractive index of nanoporous templates

    NASA Astrophysics Data System (ADS)

    Hierro-Rodriguez, A.; Rocha-Rodrigues, P.; Valdés-Bango, F.; Alameda, J. M.; Jorge, P. A. S.; Santos, J. L.; Araujo, J. P.; Teixeira, J. M.; Guerreiro, A.

    2015-11-01

    In the present study, we have determined the intrinsic refractive index of anodic aluminium oxide, which is originated by the formation of nanoporous alumina templates. Different templates have been fabricated by the conventional two-step anodization procedure in oxalic acid. Their porosities were modified by chemical wet etching allowing the tuning of their effective refractive indexes (air-filled nanopores  +  anodic aluminium oxide). By standard spectroscopic light transmission measurements, the effective refractive index for each different template was extracted in the VIS-NIR region. The determination of the intrinsic anodic aluminium oxide refractive index was performed by using the Maxwell-Garnett homogenization theory. The results are coincident for all the fabricated samples. The obtained refractive index (~1.55) is quite lower (~22%) than the commonly used Al2O3 handbook value (~1.75), showing that the amorphous nature of the anodic oxide structure strongly conditions its optical properties. This difference is critical for the correct design and modeling of optical plasmonic metamaterials based on anodic aluminium oxide nanoporous templates.

  1. Aluminium in food and daily dietary intake estimate in Greece.

    PubMed

    Bratakos, Sotirios M; Lazou, Andriana E; Bratakos, Michael S; Lazos, Evangelos S

    2012-01-01

    Aluminium content of foods, as well as dietary aluminium intake of the Greek adult population, was determined using graphite furnace atomic absorption spectroscopy after microwave sample digestion and food consumption data. Al content ranged from 0.02 to 741.2 mg kg⁻¹, with spices, high-spice foods, cereal products, vegetables and pulses found to be high in Al. Differences in aluminium content were found between different food classes from Greece and those from some other countries. Aluminium intake of Greeks is 3.7 mg/day based on DAFNE Food Availability Databank, which uses data from the Household Budget Surveys. On the other hand, according to the per capita food consumption data collected by both national and international organisations, Al intake is 6.4 mg day⁻¹. Greek adult population has an Al intake lower than the Provisional Tolerable Weekly Intake of 7 mg kg⁻¹ body weight established by EFSA. Cereals and vegetables are the main Al contributors, providing 72.4% of daily intake. PMID:24779693

  2. The effects of ingested aluminium on brain cytochrome oxidase activity.

    PubMed

    Mohan, N; Alleyne, T; Adogwa, A

    2009-11-01

    Aluminium has a unique combination of physical and chemical properties which has enabled man to put this metal to very wide and varied use. However prolonged exposure to aluminium ions may lead to adverse health effects. In this study, we evaluated the effects of dietary aluminium on the protein composition and the intrinsic activity of cytochrome oxidase (COX) for brain mitochondria. New Zealand white rabbits were maintained on a diet of commercial rabbit pellets and distilled water for a period of 12 weeks. For the experimental group, AlCl3, 330 mg/kg/L was added to the drinking water. When compared to the control, mitochondria isolated from the brains of the AICl3 fed rabbits showed no change in Km but an approximate 35% decrease in both the low and high affinity Vmax values. Also, whereas the protein composition of the mitochondria from both sources appeared to be normal, isolation of highly purified COX proved to be difficult and for the AlCl3 fed rabbits, a number of the enzyme's low molecular weight subunits were absent. These results appear to confirm a relationship between long term aluminium consumption and low brain COX activity; they further suggest that an altered COX structure may be the cause of the low enzymic activity. PMID:20441059

  3. LASERS IN MEDICINE: Two-photon excitation of aluminium phthalocyanines

    NASA Astrophysics Data System (ADS)

    Meshalkin, Yu P.; Alfimov, E. E.; Vasil'ev, N. E.; Denisov, A. N.; Makukha, V. K.; Ogirenko, A. P.

    1999-12-01

    A demonstration is given of the feasibility of two-photon excitation of aluminium phthalocyanine and of the pharmaceutical preparation 'Fotosens', used in photodynamic therapy. The excitation source was an Nd:YAG laser emitting at the 1064 nm wavelength. The spectra of the two-photon-excited luminescence were obtained and the two-photon absorption cross sections were determined.

  4. Aluminium hydride: a reversible material for hydrogen storage.

    PubMed

    Zidan, Ragaiy; Garcia-Diaz, Brenda L; Fewox, Christopher S; Stowe, Ashley C; Gray, Joshua R; Harter, Andrew G

    2009-07-01

    Aluminium hydride has been synthesized electrochemically, providing a synthetic route which closes a reversible cycle for regeneration of the material and bypasses expensive thermodynamic costs which have precluded AlH(3) from being considered as a H(2) storage material. PMID:19557259

  5. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    PubMed

    Maeda, Y

    1994-01-10

    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection. PMID:20862016

  6. Hydrothermal synthesis, crystal structures and photoluminescence properties of mixed europium-yttrium organic frameworks

    NASA Astrophysics Data System (ADS)

    Han, Yinfeng; Fu, Lianshe; Mafra, Luís; Shi, Fa-Nian

    2012-02-01

    Three mixed europium-yttrium organic frameworks: Eu2-xYx(Mel)(H2O)6 (Mel=mellitic acid or benzene-1,2,3,4,5,6-hexacarboxylic acid, x=0.38 1, 0.74 2, and 0.86 3) have been synthesized and characterized. All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu3+ lifetime becomes longer in these MOFs than those of the Eu analog.

  7. The Influence of Yttrium on High Temperature Oxidation of Valve Steels

    NASA Astrophysics Data System (ADS)

    Grzesik, Z.; Migdalska, M.; Mrowec, S.

    2015-04-01

    The influence of small amounts of yttrium, electrochemically deposited on the surface of four steels utilized in the production of valves in car engines, on the protective properties of the oxide scale and its adherence to the surface of the oxidized materials has been studied under isothermal and thermal cycle conditions. Oxidation measurements have been carried out at 1173 K. It has been found that yttrium addition improves considerably the scale adherence to the substrate surface, increasing thereby corrosion resistance of the studied materials.

  8. The nature of photoinduced changes in the magnetostriction of yttrium-iron garnet single crystals

    SciTech Connect

    Vorob'eva, N. V.

    2011-05-15

    A model of the occurrence of photoinduced changes in linear magnetostriction is proposed based on a complex experimental study of magnetostrictive strains in yttrium-iron garnets Y{sub 3}Fe{sub 5}O{sub 12} with low contents of different impurities. Analytical expressions for calculating the magnetostriction in yttrium-iron garnet single crystals with different types of doping are presented. The correlation of the photoinduced change in the magnetostriction with the crystallographic features of the samples is demonstrated. The changes in the magnetostriction constants are analyzed quantitatively for samples prepared in different ways.

  9. Study of lattice dynamics in yttrium doped NdMnO{sub 3} using Raman spectroscopy

    SciTech Connect

    Yadav, Ruchika Elizabeth, Suja; Nair, Harikrishnan S.

    2014-04-24

    A systematic study of Raman spectra on Yttrium doped NdMnO{sub 3} polycrystalline samples was undertaken to understand the lattice dynamics in this compound. Raman active phonons were analyzed and the observed peak were assigned to elucidate various phonon modes in the range (200 - 800) cm{sup −1}. It was observed that at 325 cm{sup −1} phonon frequency shifts upward as much as upto 4 % with increase in Yttrium content. Lattice distortions manifest themselves by frequency shifts in both bending and tilt modes of MnO{sub 6} octahedra, resulting in increase of Raman band line-widths.

  10. Aluminium in allergen-specific subcutaneous immunotherapy--a German perspective.

    PubMed

    Kramer, Matthias F; Heath, Matthew D

    2014-07-16

    We are living in an "aluminium age" with increasing bioavailability of the metal for approximately 125 years, contributing significantly to the aluminium body burden of humans. Over the course of life, aluminium accumulates and is stored predominantly in the lungs, bones, liver, kidneys and brain. The toxicity of aluminium in humans is briefly summarised, highlighting links and possible causal relationships between a high aluminium body burden and a number of neurological disorders and disease states. Aluminium salts have been used as depot-adjuvants successfully in essential prophylactic vaccinations for almost 100 years, with a convincing positive benefit-risk assessment which remains unchanged. However, allergen-specific immunotherapy commonly consists of administering a long-course programme of subcutaneous injections using preparations of relevant allergens. Regulatory authorities currently set aluminium limits for vaccines per dose, rather than per treatment course. Unlike prophylactic vaccinations, numerous injections with higher proportions of aluminium-adjuvant per injection are applied in subcutaneous immunotherapy (SCIT) and will significantly contribute to a higher cumulative life dose of aluminium. While the human body may cope robustly with a daily aluminium overload from the environment, regulatory cumulative threshold values in immunotherapy need further addressing. Based on the current literature, predisposing an individual to an unusually high level of aluminium, such as through subcutaneous immunotherapy, has the potential to form focal accumulations in the body with the propensity to exert forms of toxicity. Particularly in relation to longer-term health effects, the safety of aluminium adjuvants in immunotherapy remains unchallenged by health authorities - evoking the need for more consideration, guidance, and transparency on what is known and not known about its safety in long-course therapy and what measures can be taken to prevent or

  11. Two-Dimensional Simulations on Heat Transfer and Fluid Flow for Yttrium Aluminium Garnet Single-Crystal Fiber in Laser-Heated Pedestal Growth System

    NASA Astrophysics Data System (ADS)

    Chen, Peng-Yi; Chang, Chun-Lin; Lan, Chung-Wen; Cheng, Wood-Hi; Huang, Sheng-Lung

    2009-11-01

    Heat transfer and fluid flow in a laser-heated pedestal growth (LHPG) system are analyzed near the deformed interfaces. The global thermal distributions of the crystal fiber, the melt, and the source rod are described by their temperature and axial gradient over a length of ˜10 mm. Compared with the growth of bulk crystal of several centimeters in diameter, natural convection is 6 orders of magnitude smaller owing to the smaller melt volume; therefore, conduction rather than convection determines the temperature distribution in the molten zone. Moreover, thermocapillary convection rather than mass-transfer convection becomes dominant. The symmetry and mass flow rate of the double eddy pattern are significantly influenced by the molten-zone shape owing to the diameter reduction and the surface-tension-temperature coefficient when it is more than 10-4-10-3 dyn cm-1 K-1.

  12. Laser structuring of ultra-fine circuit lines in printed circuit boards: Laser structuring, neodymium-doped yttrium aluminium garnet laser, fine circuit lines

    NASA Astrophysics Data System (ADS)

    Zhang, Bin

    Laser structuring technique emerged in recent years for the need of fabricating fine circuit lines and spaces in printed circuit board. Most of the previous work only introduced laser structuring as a new method in the fabrication of fine circuit lines and mentioned that the width of circuit line can be reduced under 50 pin or helox with this technique. Laser structuring technique will have a prosperous future only when the relationship between process parameters and fabrication results are deeply understood. This study focuses on the control, prediction and optimization of circuit geometry by studying relations between the process parameters and fabrication results in laser structuring technology. The effects of laser parameters (Frequency-tripled Nd:YAG laser) on the geometry of circuits were carried out by experiments and analyzed by mathematical method. The geometry of circuit space can efficiently be controlled by investigating the main factors that influence the characteristic parameters of circuit space with Taguchi methodology. ANN was firstly used in the study of laser structuring technique. With ANN models, the optimization of process parameters in laser writing step can be realized and the 2-D cross-sectional profile of circuit space can be calculated with the combination of ANN model and mathematical method. At last, the final circuit lines and circuit spaces fabricated were tested using the quality and reliability tests---electrical open/short test, peel test and surface insulation resistance test (SIR test). The minimum widths of circuit lines and circuit spaces with good quality and reliability fabricated by laser structuring were 25 mum and 45 mum respectively. The project is significant for both applied and academic fields. This study contributes to the understanding of the laser structuring technology and is of benefit in the fabrication of very fine line circuits in advanced printed circuit board industry.

  13. Weldability of Advanced High Strength Steels using Ytterbium:Yttrium Aluminium Garnet high power laser for Tailor-Welded Blank applications

    NASA Astrophysics Data System (ADS)

    Sharma, Rajashekhar Shivaram

    Use of a high power Yb:YAG laser is investigated for joining advanced high strength steel materials for use in tailor-welded blank (TWB) applications. TWB's are materials of different chemistry, coating or thicknesses that are joined before metal forming and other operations such as trimming, assembly and painting are carried out. TWB is becoming an important design tool in the automotive industry for reducing weight, improving fuel economy and passenger safety, while reducing the overall costs for the customer. Three advanced high strength steels, TRIP780, DP980 and USIBOR, which have many unique properties that are conducive to achieving these objectives, along with mild steel, are used in this work. The objective of this work is to ensure that high quality welds can be obtained using Yb:YAG lasers which are also becoming popular for metal joining operations, since they produce high quality laser beams that suffer minimal distortion when transported via fiber optic cables. Various power levels and speeds for the laser beam were used during the investigation. Argon gas was consistently used for shielding purposes during the welding process. After the samples were welded, metallographic examination of the fusion and heat-affected zones using optical and scanning electron microscopes were carried out to determine the microstructures as well as weld defects. Optical and scanning electron microscopes were also used to examine the top of welds as well as fracture surfaces. Additionally, cross-weld microhardness evaluations, tensile tests using Instron tester, limited fatigue tests as well as formability evaluations using OSU plane strain evaluation were carried out. The examinations included a 2-factor full factorial design of experiments to determine the impact of coatings on the surface roughness on the top of the welds. Tensile strengths of DP980, TRIP780 and mild steel materials as well as DP980 welded to TRIP780 and mild steel in the rolling direction as well as transverse direction were evaluated. Metallographic examinations determined that most of the fusion zone is martensitic with small regions of bainite and ferrite. High microhardness values of the order of 550--600 Hv were noted in most joints, which are attributed to high alloy content of the fusion zone as well as high rates of cooling typical of laser welds. During tensile, fatigue and formability tests, no fractures in the fusion or heat affected zones were observed. Geometric variability evaluations indicated that coatings such as aluminum (in the case of USIBOR) and galvanized zinc (TRIP780) can affect the variability of the weld zone and the surface roughness on the top of the weld. Excessive variability in the form of weld concavity in the weld zones can lead to fractures in the weld region, even though higher hardness can, to some extent, compensate for these surface irregularities. The 2-factor design of experiments further confirmed that coatings adversely affect the surface roughness on the top of the welds. Although thickness differentials alone do not make a significant impact on surface roughness, together with coatings, they can have an adverse effect on roughness. Tensile tests in the direction of rolling as well as in the transverse direction indicate that TRIP780 seems weaker in the direction of rolling when compared to transverse direction while mild steel is stronger in the direction of rolling. Weldability analyses revealed that the typical melting efficiency is on the order of 50--70% for full penetration welding. Formability tests showed that TR/MS joints fractured in a direction parallel to the weld line when tested with the loads perpendicular to the weld line. Tests have also confirmed that weld speed and power have no impact on the outcome of formability results. Overall, this work conclusively proves that high power Yb:YAG lasers can effectively join high strength materials such as DP980, TRIP780, USIBOR, as well as mild steel, for use in tailor-welded blank applications, contributing to lighter, more fuel-efficient and safer vehicles.

  14. Electrically driven magnetization dynamics in yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Jungfleisch, Matthias Benjamin

    Creation and manipulation of magnetization states by spin-orbital torques are important for novel spintronics applications. Magnetic insulators were mostly ignored for this particular purpose, despite their low Gilbert damping, which makes them outstanding materials for magnonic applications and investigation of nonlinear spin-wave phenomena. Here, we demonstrate the propagation of spin-wave modes in micro-structured yttrium iron garnet (Y3Fe5O12,YIG) stripes. Spin waves propagating along the long side of the stripe are detected by means of spatially-resolved Brillouin light scattering (BLS) microscopy. The propagation distance of spin waves is determined in the linear regime, where an exponential decay of 10 μm is observed. We also explored the possibility of driving magnetization dynamics with spin Hall effects (SHE) in bilayers of YIG/Pt microstructures. For this purpose we adopted a spin-transfer torque ferromagnetic resonance (ST-FMR) approach. Here a rf charge current is passed through the Pt layer, which generates a spin-transfer torque at the interface from an oscillating spin current via the SHE. This gives rise to a resonant excitation of the magnetization dynamics. In all metallic systems the magnetization dynamics is detected via the homodyne anisotropic magnetoresistance of the ferromagnetic layer. However, since there is no charge flowing through ferromagnetic insulators there is no anisotropic magnetoresistance. Instead, we show that for the case of YIG/Pt the spin Hall magnetoresistance can be used. Our measured voltage spectra can be well fitted to an analytical model evidencing that the ST-FMR concept can be extended to insulating systems. Furthermore, we employ spatially-resolved BLS spectroscopy to map the ST-FMR driven spin dynamics. We observe the formation of a strong, self-localized spin-wave intensity in the center of the sample. This spin-wave `bullet' is created due to nonlinear cross coupling of eigenmodes existing in the magnetic

  15. Excited state dynamics of thulium ions in yttrium aluminum garnets

    NASA Technical Reports Server (NTRS)

    Armagan, G.; Buoncristiani, A. M.; Dibartolo, B.

    1991-01-01

    The processes that take place in the excited states of a trivalent Thulium (Tm) ion in an Yttrium Aluminum Garnet (YAG) crystal, being relevant to the use of this system for laser applications, have been the object of several studies. We have reexamined this system focusing our attention on the dynamics of Tm following its excitation in the H-3(sub 4) level. Under these conditions the system relaxes through a cross-relaxation process. H-3(sub 4) yields F-3(sub 4), H-3(sub 6) yields F-3(sub 4), whose rate depends upon both the concentration of the Tm ion and the temperature of the crystal. The excitation spectrum obtained by monitoring the 1.8 micron emission of Tm (due to the F-3(sub 4) yields H-3(sub 6) transition) indicates an increase in the contribution to this emission from the H-3(sub 4) level relative to the H-3(sub 5) level as the Tm concentration increases; this shows the increased role played by the H-3(sub 4) level in pumping the infrared emission. Correspondingly, the duration of the luminescence originating in the H-3(sub 4) level is shortened as the concentration of Tm increases. The concentration quenching of this lifetime can be fit to a model which assumes that the cross-relaxation is due to a dipole-dipole interaction; from this fit, the intrinsic Tm lifetime in the absence of cross relaxation can be derived. We have used this lifetime to calculate the rate of the cross-relaxation process. We have evaluated this rate as a function of the temperature and found it to be fastest at 77 K. We have also calculated the microscopic interaction parameters for the cross-relaxation process by using two independent experimental features: (1) the time evolution of the emission from the H-3(sub 4) level; and (2) the spectral overlap between the H-3(sub 4) yields F-3(sub 4) emission and the H-3(sub 6) yields F-3(sub 4) absorption. We have also considered the migration of excitation among the Tm ions in the F-3(sub 4) level and calculated the relevant

  16. Aluminium content of foods originating from aluminium-containing food additives.

    PubMed

    Ogimoto, Mami; Suzuki, Kumi; Haneishi, Nahoko; Kikuchi, Yuu; Takanashi, Mayu; Tomioka, Naoko; Uematsu, Yoko; Monma, Kimio

    2016-09-01

    Aluminium (Al) levels of 90 food samples were investigated. Nineteen samples contained Al levels exceeding the tolerable weekly intake (TWI) for young children [body weight (bw): 16 kg] when consuming two servings/week. These samples were purchased multiple times at specific intervals and were evaluated for Al levels. Al was detected in 27 of the 90 samples at levels ranging from 0.01 (limit of quantitation) to 1.06 mg/g. Of these, the Al intake levels in two samples (cookie and scone mix, 1.3 and 2 mg/kg bw/week, respectively) exceeded the TWI as established by European Food Safety Authority, although the level in the scone mix was equivalent to the provisional TWI (PTWI) as established by Joint Food and Agriculture Organization of the United Nations/World Health Organization Expert Committee on Food Additives. The Al levels markedly decreased in 14 of the 19 samples with initially high Al levels. These results indicated reductions in the Al levels to below the PTWI limits in all but two previously identified food samples. PMID:27092423

  17. Performance of commercial aluminium alloys as anodes in gelled electrolyte aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Pino, M.; Chacón, J.; Fatás, E.; Ocón, P.

    2015-12-01

    The evaluation of commercial aluminium alloys, namely, Al2024, Al7475 and Al1085, for Al-air batteries is performed. Pure Al cladded Al2024 and Al7475 are also evaluated. Current rates from 0.8 mA cm-2 to 8.6 mA cm-2 are measured in a gel Al-air cell composed of the commercial alloy sample, a commercial air-cathode and an easily synthesizable gelled alkaline electrolyte. The influence of the alloying elements and the addition to the electrolyte of ZnO and ZnCl2, as corrosion inhibitors is studied and analysed via EDX/SEM. Specific capacities of up to 426 mAh/g are obtained with notably flat potential discharges of 1.3-1.4 V. The competition between self-corrosion and oxidation reactions is also discussed, as well as the influence of the current applied on that process. Al7475 is determined to have the best behaviour as anode in Al-air primary batteries, and cladding process is found to be an extra protection against corrosion at low current discharges. Conversely, Al1085 provided worse results because of an unfavourable metallic composition.

  18. Raman calibration of the HT-7 yttrium aluminum garnet Thomson scattering for electron density measurements

    SciTech Connect

    Zang Qing; Zhao Junyu; Gao Xiang; Shi Lingwei; Zhang Tao; Xi Xiaoqi; Yang Li; Hu Qingsheng; Sajjad, S.

    2007-11-15

    A multipulse neodym doped yttrium aluminum garnet laser Thomson scattering system calibrated by the anti-Stokes rotational Raman scattering from nitrogen gas had been developed in the HT-7 superconducting Tokmak. By virtue of this system, measured electron density results of the plasma were obtained. The results showed good repeatability and its total uncertainty was estimated to be {+-}18%.

  19. The structure of rare earth thin films: holmium and gadolinium on yttrium

    NASA Astrophysics Data System (ADS)

    Bentall, M. J.; Cowley, R. A.; Ward, R. C. C.; Wells, M. R.; Stunault, A.

    2003-11-01

    Single-crystal holmium and gadolinium layers have been grown on yttrium substrates using the molecular beam epitaxy technique and their structures investigated using high resolution x-ray scattering. The experiments were performed using a Philips MRD diffractometer in Oxford, and with the XMaS facility at the ESRF. Holmium layers with a thickness below T_{\\mathrm {c}}'=115\

  20. Spectrophotometric studies and applications for the determination of yttrium in pure and in nickel base alloys.

    PubMed

    Amin, A S; Mohammed, T Y; Mousa, A A

    2003-09-01

    Yttrium reacts with 5-(4'-chlorophenylazo)-6-hydroxypyrimidine-2,4-dione (I), 5-(2'-bromophenylazo)-6-hydroxypyrimidine-2,4-dione (II), 5-(2',4'-dimethylphenylazo)-6-hydroxypyrimidine-2,4-dione (III), 5-(4'-nitro-2',6'-dichlorophenylazo)-6-hydroxypyrimidine-2,4-dione (IV), 5-(2'-methyl-4'-hydroxyphenylazo)-6-hydroxypyrimidine-2,4-dione (V) to form a dark pink complexes, having an absorption maximum at 610, 577, 596, 567 and 585 nm, respectively. The complex formation was completed spontaneously in theil buffer solution and the resulting complex was stable for at least 3 h after dilution. Under the optimum conditions employed, the molar absorptivities were found to be 1.60 x 10(4), 1.29 x 10(4), 1.96 x 10(4), 1.45 x 10(4) and 1.21 x 10(4) l mol(-1) cm(-1) and the molar ratios were (1:1) and (1:2) (M:L). The linear ranges were found within 95 microg of yttrium in 25 ml solution. One of the characteristics of the complex was its high tolerance for calcium and hence a method of separation and enrichment of microamounts of yttrium by using calcium oxalate precipitate was developed and applied to measure yttrium in nickel-base alloys. Interfering species and their elimination have been studied. The precision and recovery are both satisfactory. PMID:12963454

  1. Temperature evolution of electromotive force from Pt on yttrium-iron-garnet under ferromagnetic resonance

    SciTech Connect

    Ohshima, Ryo; Emoto, Hiroyuki; Shinjo, Teruya; Ando, Yuichiro; Shiraishi, Masashi

    2015-05-07

    Temperature evolution of electromotive force from Pt due to the inverse spin Hall effect is studied. Pure spin current is injected from yttrium-iron-garnet by using spin pumping technique. The electromotive force from the Pt monotonically decreases with decreasing temperature, and it is showed that there is a deviation between the measured and the calculated electromotive forces.

  2. Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes

    SciTech Connect

    Innocenzi, Valentina; De Michelis, Ida; Kopacek, Bernd

    2014-07-15

    Highlights: • Review of the main hydrometallurgical processes to recover yttrium. • Recovery of yttrium from primary sources. • Recovery of yttrium from e-waste and other types of waste. - Abstract: Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority. The present review summarized the main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources. Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal.

  3. Oscillator strengths for Y I and Y II and the solar abundance of yttrium

    SciTech Connect

    Hannaford, P.; Lowe, R.M.; Grevesse, N.; Biemont, E.; Whaling, W.

    1982-10-15

    Oscillator strengths have been determined from measurements of radiative lifetimes and branching ratios for 154 lines of Y I and 66 lines of Y II. These data are used, together with equivalent widths measured on the Jungfraujoch solar atlas, to perform a new determination of the solar abundance of yttrium: A/sub Y/ = 2.24 +- 0.03.

  4. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Nasrallah, M.; Douglass, D. L.

    1974-01-01

    The effect of quaternary additions of 0.5% Y, 0.5 and 1.0% Th to a base alloy of Ni-10CR-5Al on the oxidation behavior and mechanism was studied during oxidation in air over the range of 1000 to 1200 C. The presence of yttrium decreased the oxidation kinetics slightly, whereas, the addition of thorium caused a slight increase. Oxide scale adherence was markedly improved by the addition of the quaternary elements. Although a number of oxides formed on yttrium containing alloys, quantitative X-ray diffraction clearly showed that the rate-controlling step was the diffusion of aluminum through short circuit paths in a thin layer of alumina that formed parabolically with time. Although the scale adherence of the yttrium containing alloy was considerably better than the base alloys, spalling did occur that was attributed to the formation of the voluminous YAG particles which grew in a mushroom-like manner, lifting the protective scale off the subrate locally. The YAG particles formed primarily at grain boundaries in the substrate in which the yttrium originally existed as YNi9.

  5. The lanthanides and yttrium in minerals of the apatite group; a review

    USGS Publications Warehouse

    Fleischer, Michael; Altschuler, Z.S.

    1982-01-01

    More than 1000 analyses have been tabulated of the distribution of the lanthanides and yttrium in minerals of the apatite group, recalculated to atomic percentages. Average compositions have been calculated for apatites from 14 types of rocks. These show a progressive change of composition from apatites of granitic pegmatites, highest in the heavy lanthanides and yttrium, to those from alkalic pegmatites, highest in the light lanthanides and lowest in yttrium. This progression is clearly shown in plots of S (= at % La+Ce+Pr) vs the ratio La/Nd and of S vs the ratio 100Y/(Y+Ln), where Ln is the sum of the lanthanides. Apatites of sedimentary phosphorites occupy a special position, being relatively depleted in Ce and relatively enriched in yttrium and the heavy lanthanides, consequences of deposition from sea water. Apatites associated with iron ores are close in composition to apatites of carbonatites, alkalic ultramafic, and ultramafic rocks, being enriched in the light lanthanides and depleted in the heavy lanthanides. Their compositions do not support the hypothesis of Parak that the Kiruna-type ores are of sedimentary origin. Table 9 and Figures 1-3 show the dependence of lanthanide distribution on the nature of the host rock. Although a given analysis of the lanthanides does not unequivocally permit certain identification of the host rock, it can indicate a choice of highly probable host rocks.

  6. Luminescence spectra, efficiency, and color characteristics of white-light-emitting diodes based on p-n InGaN/GaN heterostructures with phosphor coatings

    SciTech Connect

    Badgutdinov, M. L.; Korobov, E. V.; Luk'yanov, F. A.; Yunovich, A. E. Kogan, L. M.; Gal'china, N. A.; Rassokhin, I. T.; Soshchin, N. P.

    2006-06-15

    The luminescence spectra, efficiency, and color characteristics of white-light-emitting diodes fabricated from p-n InGaN/AlGaN/GaN blue-light-emitting heterostructures grown on SiC substrates and coated with yellow-green phosphors based on the rare-earth-doped yttrium-aluminum garnets were studied. The efficiency of blue-emitting diodes is as high as 22% at a current of 350 mA and a voltage of 3.3 V. The white-emitting diodes have luminous efficiency as high as 40 lm/W and luminous flux up to 50 lm at 350 mA.

  7. Effect of Temperature Gradient on Thick Film Selective Emitter Emittance

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Good, Brian S.; Clark, Eric B.; Chen, Zheng

    1997-01-01

    A temperature gradient across a thick (greater than or equal to .1 mm) film selective emitter will produce a significant reduction in the spectral emittance from the no temperature gradient case. Thick film selective emitters of rare earth doped host materials such as yttrium-aluminum-garnet (YAG) are examples where temperature gradient effects are important. In this paper a model is developed for the spectral emittance assuming a linear temperature gradient across the film. Results of the model indicate that temperature gradients will result in reductions the order of 20% or more in the spectral emittance.

  8. The Effect of Temperature on the Radiative Performance of Ho-Yag Thin Film Selective Emitters

    NASA Technical Reports Server (NTRS)

    Lowe, Roland A.; Chubb, Donald L.; Good, Brian S.

    1995-01-01

    We present the emitter efficiency results for the thin film 25 percent Ho YAG (Yttrium Aluminum Garnet, Y3Al5O12) selective emitter from 1000 to 1700 K with a platinum substrate. Spectral emittance and emissive power measurements were made (1.2 less than lambda less than 3.2 microns) and used to calculate the radiative efficiency. The radiative efficiency and power density of rare earth doped selective emitters are strongly dependent on temperature and experimental results indicate an optimum temperature (1650 K for Ho YAG) for thermophotovoltaic (TPV) applications.

  9. The effect of yttrium addition on oxidation of a sputtered nanocrystalline coating with moderate amount of tantalum in composition

    NASA Astrophysics Data System (ADS)

    Wang, Jinlong; Chen, Minghui; Yang, Lanlan; Liu, Li; Zhu, Shenglong; Wang, Fuhui; Meng, Guozhe

    2016-03-01

    The effect of yttrium addition on isothermal oxidation at 1050 °C of a sputtered nanocrystalline coating with moderate amount of tantalum in composition was investigated. Results indicate that yttrium addition delays transformation of metastable θ-Al2O3 to equilibrium α-Al2O3 grown on the nanocrystalline coatings. It prevents scale rumpling and promotes the formation of oxide pegs at interface between the oxide scale and the underlying coating. Besides, yttrium prefers to segregate at grain boundaries of the nanocrystalline coating and retards the outward transportation of tantalum from coating to oxide scale, thus reducing the excessive oxidation of tantalum.

  10. Effects of yttrium, aluminum and chromium concentrations in bond coatings on the performance of zirconia-yttria thermal barriers

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1980-01-01

    A cyclic furnace study was conducted on thermal barrier systems to evaluate the effects of yttrium, chromium, and aluminum in nickel-base alloy bond coatings and the effect of bond coating thickness on yttria-stabilized zirconia thermal barrier coating life. Without yttrium in the bond coatings, the zirconia coatings failed very rapidly. Increasing chromium and aluminum in the Ni-Cr-Al-Y bond coatings increased total coating life. This effect was not as great as that due to yttrium. Increased bond coat thickness was also found to increase life.

  11. Effects of yttrium, aluminum and chromium concentrations in bond coatings on the performance of zirconia-yttria thermal barriers

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1980-01-01

    A cyclic furnace study was conducted on thermal barrier systems to evaluate the effects of yttrium, chromium and aluminum in nickel-base alloy bond coatings and the influence of the bond coating thickness on yttria-stabilized zirconia thermal barrier coating lifetimes. Without yttrium in the bond coatings, the zirconia coatings failed very rapidly. Increasing concentrations of chromium and aluminum in the Ni-Cr-Al-Y bond coatings increased the total coating lifetimes. This effect was not as great as that due to yttrium. Increased bond coating thickness was also found to increase the lifetimes.

  12. Effects of yttrium, aluminum and chromium concentrations in bond coatings on the performance of zirconia-yttria thermal barriers

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1980-01-01

    A cyclic furnace study was conducted on thermal barrier systems to evaluate the effects of yttrium, chromium and aluminum in nickel-base alloy bond coatings and the effect of bond coating thickness on yttria-stabilized zirconia thermal barrier coating life. Without yttrium in the bond coatings, the zirconia coatings failed very rapidly. Increasing chromium and aluminum in the Ni-Cr-Al-Y bond coatings increased total coating life. This effect was not as great as that due to yttrium. Increased bond coat thickness was also found to increase life.

  13. Ultra large deflection of thin PZT/aluminium cantilever beam

    NASA Astrophysics Data System (ADS)

    Seveno, Raynald; Guiffard, Benoit; Regoin, Jean-Pierre

    2015-04-01

    Flexible piezoelectric cantilever beam has been realized by depositing lead zirconate titanate (PZT) thin film (4.5 μm) by chemical solution deposition (CSD) onto very thin aluminium foil (16 μm). The tip deflection of the beam has been measured as a function of the frequency of the applied sinusoidal voltage to the PZT film for different amplitudes. Resonance curves have been compared to a classical model of an oscillating system under sinusoidal stress with a very good agreement. Despite of weak ferroelectric properties (remnant polarization: 13 μC/cm2), ultra-large deflection amplitudes have been measured under very moderate applied voltage values: 750 μm@10 V for quasi-static mode and 5 mm@10 V at the resonance frequency ( 12 Hz), which makes this PZT/aluminium composite film very promising for highly flexible actuation applications where large displacements are wanted.

  14. Histopathological changes in cases of aluminium phosphide poisoning.

    PubMed

    Sinha, U S; Kapoor, A K; Singh, A K; Gupta, A; Mehrotra, Ravi

    2005-04-01

    Of a total of 205 poisoning deaths in our hospital in 2003, 83 cases were due to Aluminium phosphide poisoning and were further analyzed. Most vulnerable age group was 21-40 years and M:F ratio was 2:1. On naked eye examination, almost all the vital organs were found to be congested. On microscopic study, the liver showed central venous congestion, degeneration, haemorrhage, sinusoidal dilation, bile stasis, centrilobular necrosis, Kupffer cell hyperplasia, infiltration by mononuclear cells and fatty change. Microscopy of the lungs revealed alveolar thickening, oedema, dilated capillaries, collapsed alveoli and haemorrhage. In the kidney, changes were degeneration, infiltration, tubular dilation and cloudy swelling. Changes in the brain included congestion and coagulative necrosis and in the stomach, congestion and haemorrhage. Easy availability of this cheap and highly toxic substance was responsible for the sudden spurt of poisoning with aluminium phosphide. PMID:16758658

  15. Experimental evidence for a dynamical crossover in liquid aluminium.

    PubMed

    Demmel, F; Fraile, A; Szubrin, D; Pilgrim, W-C; Morkel, C

    2015-11-18

    The temperature dependence of the dynamic structure factor at next-neighbour distances has been investigated for liquid aluminium. This correlation function is a sensitive parameter for changes in the local environment and its Fourier transform was measured in a coherent inelastic neutron scattering experiment. The zero frequency amplitude decreases in a nonlinear way and indicates a change in dynamics around 1.4 ∙ Tmelting. From that amplitude a generalized viscosity can be derived which is a measure of local stress correlations on next-neighbour distances. The derived generalized longitudinal viscosity shows a changing slope at the same temperature range. At this temperature the freezing out of degrees of freedom for structural relaxation upon cooling sets in which can be understood as a precursor towards the solid state. That crossover in dynamics of liquid aluminium shows the same signatures as previously observed in liquid rubidium and lead, indicating an universal character. PMID:26465204

  16. Experimental evidence for a dynamical crossover in liquid aluminium

    NASA Astrophysics Data System (ADS)

    Demmel, F.; Fraile, A.; Szubrin, D.; Pilgrim, W.-C.; Morkel, C.

    2015-11-01

    The temperature dependence of the dynamic structure factor at next-neighbour distances has been investigated for liquid aluminium. This correlation function is a sensitive parameter for changes in the local environment and its Fourier transform was measured in a coherent inelastic neutron scattering experiment. The zero frequency amplitude decreases in a nonlinear way and indicates a change in dynamics around 1.4\\cdot {{T}\\text{melting}} . From that amplitude a generalized viscosity can be derived which is a measure of local stress correlations on next-neighbour distances. The derived generalized longitudinal viscosity shows a changing slope at the same temperature range. At this temperature the freezing out of degrees of freedom for structural relaxation upon cooling sets in which can be understood as a precursor towards the solid state. That crossover in dynamics of liquid aluminium shows the same signatures as previously observed in liquid rubidium and lead, indicating an universal character.

  17. The precipitation of potassium aluminium sulphate from aqueous solution

    NASA Astrophysics Data System (ADS)

    Mullin, J. W.; Žáček, S.

    1981-06-01

    A precipitation study has been made with potassium aluminium sulphate (potash alum) produced by mixing aqueous solutions of its constituent salts. Rates of nucleation, as indicated by the induction period, were measured for both agitated and non-agitated solutions over the temperature range 15-35°C. Nucleation rates increase with increases in agitation, temperature and supersaturation, but the latter has the dominant effect, as predicted by classical nucleation theory. The temperature-dependence of the interfacial tension is evaluated.

  18. RESPONSE OF PHENOLIC METABOLISM INDUCED BY ALUMINIUM TOXICITY IN FAGOPYRUM ESCULENTUM MOENCH. PLANTS.

    PubMed

    Smirnov, O E; Kosyan, A M; Kosyk, O I; Taran, N Yu

    2015-01-01

    Buckwheat genus (Fagopyrum Mill.) is one of the aluminium tolerant taxonomic units of plants. The aim of the study was an evaluation of the aluminium (50 μM effect on phenolic accumulation in various parts of buckwheat plants (Fagopyrum esculentum Moench). Detection of increasing of total phenolic content, changes in flavonoid and anthocyanin content and phenylalanine ammonia-lyase activity (PAL) were revealed over a period of 10 days of exposure to aluminium. The most significant effects of aluminium treatment on phenolic compounds accumulation were total phenolic content increasing (by 27.2%) and PAL activity rising by 2.5 times observed in leaves tissues. Received data could be helpful to understand the aluminium tolerance principles and relationships of phenolic compounds to aluminium phytotoxicity. PMID:27025067

  19. Aluminium in food and daily dietary intake assessment from 15 food groups in Zhejiang Province, China.

    PubMed

    Zhang, Hexiang; Tang, Jun; Huang, Lichun; Shen, Xianghong; Zhang, Ronghua; Chen, Jiang

    2016-06-01

    Aluminium was measured in 2580 samples of 15 food groups and dietary exposure was estimated. Samples were purchased and analysed during 2010 to 2014. High aluminium levels were found in jellyfish (mean 4862 mg/kg), laver (mean 455.2 mg/kg) and fried twisted cruller (mean 392.4 mg/kg). Dietary exposure to aluminium was estimated for Zhejiang residents. The average dietary exposure to aluminium via 15 food groups in Zhejiang Province was 1.15 mg/kg bw/week, which is below the provisional tolerable weekly intake of 2 mg/kg bw /week. Jellyfish is the main Al contributor, providing 37.6% of the daily intake via these 15 food groups. This study provided new information on aluminium levels and assessment of aluminium (Al) dietary exposure in Zhejiang Province of China. PMID:26727195

  20. Aluminium localization in root tips of the aluminium-accumulating plant species buckwheat (Fagopyrum esculentum Moench).

    PubMed

    Klug, Benjamin; Specht, André; Horst, Walter J

    2011-11-01

    Aluminium (Al) uptake and transport in the root tip of buckwheat is not yet completely understood. For localization of Al in root tips, fluorescent dyes and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were compared. The staining of Al with morin is an appropriate means to study qualitatively the radial distribution along the root tip axis of Al which is complexed by oxalate and citrate in buckwheat roots. The results compare well with the distribution of total Al determined by LA-ICP-MS which could be reliably calibrated to compare with Al contents by conventional total Al determination using graphite furnace atomic absorption spectrometry. The Al localization in root cross-sections along the root tip showed that in buckwheat Al is highly mobile in the radial direction. The root apex predominantly accumulated Al in the cortex. The subapical root section showed a homogenous Al distribution across the whole section. In the following root section Al was located particularly in the pericycle and the xylem parenchyma cells. With further increasing distance from the root apex Al could be detected only in individual xylem vessels. The results support the view that the 10 mm apical root tip is the main site of Al uptake into the symplast of the cortex, while the subapical 10-20 mm zone is the main site of xylem loading through the pericycle and xylem parenchyma cells. Progress in the better molecular understanding of Al transport in buckwheat will depend on the consideration of the tissue specificity of Al transport and complexation. PMID:21831842

  1. High rate constitutive modeling of aluminium alloy tube

    NASA Astrophysics Data System (ADS)

    Salisbury, C. P.; Worswick, M. J.; Mayer, R.

    2006-08-01

    As the need for fuel efficient automobiles increases, car designers are investigating light-weight materials for automotive bodies that will reduce the overall automobile weight. Aluminium alloy tube is a desirable material to use in automotive bodies due to its light weight. However, aluminium suffers from lower formability than steel and its energy absorption ability in a crash event after a forming operation is largely unknown. As part of a larger study on the relationship between crashworthiness and forming processes, constitutive models for 3mm AA5754 aluminium tube were developed. A nominal strain rate of 100/s is often used to characterize overall automobile crash events, whereas strain rates on the order of 1000/s can occur locally. Therefore, tests were performed at quasi-static rates using an Instron test fixture and at strain rates of 500/s to 1500/s using a tensile split Hopkinson bar. High rate testing was then conducted at rates of 500/s, 1000/s and 1500/s at 21circC, 150circC and 300circC. The generated data was then used to determine the constitutive parameters for the Johnson-Cook and Zerilli-Armstrong material models.

  2. Pulse electrodeposition of adherent nickel coatings onto anodized aluminium surfaces

    NASA Astrophysics Data System (ADS)

    Frantz, Cédric; Vichery, Charlotte; Zechner, Johannes; Frey, Damian; Bürki, Gerhard; Cebeci, Halil; Michler, Johann; Philippe, Laetitia

    2015-03-01

    Aluminium is one of the mostly used elements in the industry because of its abundance and low weight. However, the deposition of a metallic coating requires performing the so-called zincate pre-treatment in order to allow the formation of inter-metallic bonds and thereby achieving sufficient adherence. In this work, porous anodic aluminium oxide (AAO) is used as an anchoring intermediate layer for nickel coatings. AAO is grown anodically in sulfuric acid and nickel coatings are deposited by potentiostatic reverse pulse electrodeposition onto as-anodized aluminium surfaces. The electrodeposition of nickel is initiated onto the electrochemically thinned barrier layer of AAO and pursued until the complete covering of the oxide. The electrochemical behavior of Watts and sulfamate baths is investigated by cyclic voltammetry for different barrier layer thickness, allowing to validate the thinning conditions and to determine the appropriate deposition potential of nickel. GD-OES measurements show that low duty cycles are necessary to achieve high filling ratio of the AAO. SEM micrographs show that a smooth uniform coating is obtained when nickel is deposited in presence of additives.

  3. Modelling of detonation cellular structure in aluminium suspensions

    NASA Astrophysics Data System (ADS)

    Briand, A.; Veyssiere, B.; Khasainov, B. A.

    2010-12-01

    Heterogeneous detonations involving aluminium suspensions have been studied for many years for industrial safety policies, and for military and propulsion applications. Owing to their weak detonability and to the lack of available experimental results on the detonation cellular structure, numerical simulations provide a convenient way to improve the knowledge of such detonations. One major difficulty arising in numerical study of heterogeneous detonations involving suspensions of aluminium particles in oxidizing atmospheres is the modelling of aluminium combustion. Our previous two-step model provided results on the effect on the detonation cellular structure of particle diameter and characteristic chemical lengths. In this study, a hybrid model is incorporated in the numerical code EFAE, combining both kinetic and diffusion regimes in parallel. This more realistic model provides good agreement with the previous two-step model and confirms the correlations found between the detonation cell width, and particle diameter and characteristic lengths. Moreover, the linear dependence found between the detonation cell width and the induction length remains valid with the hybrid model.

  4. Recycling of aluminium scrap for secondary Al-Si alloys.

    PubMed

    Velasco, Eulogio; Nino, Jose

    2011-07-01

    An increasing amount of recycled aluminium is going into the production of aluminium alloy used for automotive applications. In these applications, it is necessary to control and remove alloy impurities and inclusions. Cleaning and fluxing processes are widely used during processing of the alloys for removal of inclusions, hydrogen and excess of magnesium. These processes use salt fluxes based in the system NaCl-KCl, injection of chlorine or mixture of chlorine with an inert gas. The new systems include a graphite wand and a circulation device to force convection in the melt and permit the bubbling and dispersion of reactive and cleaning agents. This paper discusses the recycling of aluminium alloys in rotary and reverberatory industrial furnaces. It focuses on the removal of magnesium during the melting process. In rotary furnaces, the magnesium lost is mainly due to the oxidation process at high temperatures. The magnesium removal is carried out by the reaction between chlorine and magnesium, with its efficiency associated to kinetic factors such as concentration of magnesium, mixing, and temperature. These factors are also related to emissions generated during the demagging process. Improvements in the metallic yield can be reached in rotary furnaces if the process starts with a proper salt, with limits of addition, and avoiding long holding times. To improve throughput in reverberatories, start the charging with high magnesium content material and inject chlorine gas if the molten metal is at the right temperature. Removal of magnesium through modern technologies can be efficiently performed to prevent environmental problems. PMID:20837560

  5. Control of Microthrix parvicella by aluminium salts addition.

    PubMed

    Durban, N; Juzan, L; Krier, J; Gillot, S

    2016-01-01

    Aluminium and iron chloride were added to a biological nutrient removal pilot plant (1,500 population equivalent) treating urban wastewater to investigate the control of Microthrix parvicella bulking and foaming by metallic salts. Monitoring plant performance over two 6-month periods showed a slight impact on the removal efficiencies. Addition of metallic salts (Me; aluminium or aluminium + iron) at a concentration of 41 mmol Me(kg MLSS·d) (MLSS: mixed liquor suspended solids) over 70 days allowed a stabilization of the diluted sludge volume index (DSVI), whereas higher dosages (94 mmol Me(kg MLSS·d) over 35 days or 137 mmol Me(kg MLSS·d) over 14 days induced a significant improvement of the settling conditions. Microscopic observations showed a compaction of biological aggregates with an embedding of filamentous bacteria into the flocs that is not specific to M. parvicella as bacteria from phylum Chloroflexi are embedded too. The quantitative polymerase chain reaction targeting M. parvicella further indicated a possible growth limitation in addition to the flocculation impact at the high dosages of metallic salts investigated. DSVI appeared to be correlated with the relative abundance of M. parvicella. PMID:26819398

  6. Di- and triphenylacetate complexes of yttrium and europium.

    PubMed

    Minyaev, Mikhail E; Vinogradov, Alexandr A; Roitershtein, Dmitrii M; Lyssenko, Konstantin A; Ananyev, Ivan V; Nifant'ev, Ilya E

    2016-07-01

    The significant variety in the crystal structures of rare-earth carboxylate complexes is due to both the large coordination numbers of the rare-earth cations and the ability of the carboxylate anions to form several types of bridges between rare-earth metal atoms. Therefore, these complexes are represented by mono-, di- and polynuclear complexes, and by coordination polymers. The interaction of LnCl3(thf)x (Ln = Eu or Y; thf is tetrahydrofuran) with sodium or diethylammonium diphenylacetate in methanol followed by recrystallization from a DME/THF/hexane solvent mixture (DME is 1,2-dimethoxyethane) leads to crystals of the non-isomorphic dinuclear complexes tetrakis(μ-2,2-diphenylacetato)-κ(4)O:O';κ(3)O,O':O';κ(3)O:O,O'-bis[(1,2-dimethoxyethane-κ(2)O,O')(2,2-diphenylacetato-κ(2)O,O')europium(III)], [Eu(C14H11O2)6(C4H10O2)2], (I), and tetrakis(μ-2,2-diphenylacetato)-κ(4)O:O';κ(3)O,O':O';κ(3)O:O,O'-bis[(1,2-dimethoxyethane-κ(2)O,O')(2,2-diphenylacetato-κ(2)O,O')yttrium(III)], [Y(C14H11O2)6(C4H10O2)2], (II), possessing monoclinic (P21/c) symmetry. The [Ln(Ph2CHCOO)3(dme)]2 molecule (Ln = Eu or Y) lies on an inversion centre and exhibits three different coordination modes of the diphenylacetate ligands, namely bidentate κ(2)O,O'-terminal, bidentate μ2-κ(1)O:κ(1)O'-bridging and tridentate μ2-κ(1)O:κ(2)O,O'-semibridging. The terminal and bridging ligands in (I) are disordered over two positions, with an occupancy ratio of 0.806 (2):0.194 (2). The interaction of EuCl3(thf)2 with Na[Ph3CCOO] in methanol followed by crystallization from hot methanol produces crystals of tetrakis(methanol-κO)tris(2,2,2-triphenylacetato)-κ(4)O:O';κO-europium(III) methanol disolvate, [Eu(C19H15O2)3(CH3OH)4]·2CH3OH, (III)·2MeOH, with triclinic (P-1) symmetry. The molecule of (III) contains two O,O'-bidentate and one O-monodentate terminal triphenylacetate ligand. (III)·2MeOH possesses one intramolecular and four intermolecular hydrogen bonds, forming a [(III)·2Me

  7. Effects of rare earth yttrium on microstructure and properties of Ni–16Mo–7Cr–4Fe nickel-based superalloy

    SciTech Connect

    Li, X.L.; He, S.M.; Zhou, X.T.; Zou, Y.; Li, Z.J.; Li, A.G.; Yu, X.H.

    2014-09-15

    Effects of rare earth yttrium on microstructure of Ni–16Mo–7Cr–4Fe alloy were examined by optical microscopy, scanning electron microscopy, transmission electron microscopy and X-ray fluorescence. M{sub 6}C phase was observed in the alloys with and without yttrium addition, and Ni{sub 17}Y{sub 2} phase existed in the alloys containing 0.05–0.43 wt.% yttrium simultaneously. The amount of Ni{sub 17}Y{sub 2} phase increased as yttrium concentration increased. When the concentration of yttrium increased to 0.43 wt.%, some multi-precipitated phase regions appeared in the form of large amount of coarse Ni{sub 3}Y phase surrounded by M{sub 6}C phase and γ phase in the alloy. Influences of rare earth yttrium on high temperature static oxidation and mechanical properties of Ni–16Mo–7Cr–4Fe alloy were also investigated. The alloy containing 0.05 wt.% yttrium showed the best oxidation resistance and mechanical properties simultaneously. The adequate concentration of yttrium at grain boundary and in the solid-solution (γ phase) and the adhesion enhancement of the outer oxidation scale to the substrate are key factors for the improvements in the mechanical properties and oxidation resistance respectively. - Highlights: • When the content of yttrium reaches to 0.43%, some multiphase regions appear. • When the content of yttrium reaches to 0.43%, some Ni{sub 17}Y{sub 2} chains appear. • The morphology of M{sub 6}C changes with increasing concentration of yttrium. • The Ni–16Mo–7Cr–4Fe alloy with 0.05% yttrium performs the best mechanical property. • The Ni–16Mo–7Cr–4Fe alloy with 0.05% yttrium performs the best oxidation resistance.

  8. Comparison of the x-ray attenuation properties of breast calcifications, aluminium, hydroxyapatite and calcium oxalate

    NASA Astrophysics Data System (ADS)

    Warren, L. M.; Mackenzie, A.; Dance, D. R.; Young, K. C.

    2013-04-01

    Aluminium is often used as a substitute material for calcifications in phantom measurements in mammography. Additionally, calcium oxalate, hydroxyapatite and aluminium are used in simulation studies. This assumes that these materials have similar attenuation properties to calcification, and this assumption is examined in this work. Sliced mastectomy samples containing calcification were imaged at ×5 magnification using a digital specimen cabinet. Images of the individual calcifications were extracted, and the diameter and contrast of each calculated. The thicknesses of aluminium required to achieve the same contrast as each calcification when imaged under the same conditions were calculated using measurements of the contrast of aluminium foils. As hydroxyapatite and calcium oxalate are also used to simulate calcifications, the equivalent aluminium thicknesses of these materials were also calculated using tabulated attenuation coefficients. On average the equivalent aluminium thickness was 0.85 times the calcification diameter. For calcium oxalate and hydroxyapatite, the equivalent aluminium thicknesses were 1.01 and 2.19 times the thickness of these materials respectively. Aluminium and calcium oxalate are suitable substitute materials for calcifications. Hydroxyapatite is much more attenuating than the calcifications and aluminium. Using solid hydroxyapatite as a substitute for calcification of the same size would lead to excessive contrast in the mammographic image.

  9. Comparison of the x-ray attenuation properties of breast calcifications, aluminium, hydroxyapatite and calcium oxalate.

    PubMed

    Warren, L M; Mackenzie, A; Dance, D R; Young, K C

    2013-04-01

    Aluminium is often used as a substitute material for calcifications in phantom measurements in mammography. Additionally, calcium oxalate, hydroxyapatite and aluminium are used in simulation studies. This assumes that these materials have similar attenuation properties to calcification, and this assumption is examined in this work. Sliced mastectomy samples containing calcification were imaged at ×5 magnification using a digital specimen cabinet. Images of the individual calcifications were extracted, and the diameter and contrast of each calculated. The thicknesses of aluminium required to achieve the same contrast as each calcification when imaged under the same conditions were calculated using measurements of the contrast of aluminium foils. As hydroxyapatite and calcium oxalate are also used to simulate calcifications, the equivalent aluminium thicknesses of these materials were also calculated using tabulated attenuation coefficients. On average the equivalent aluminium thickness was 0.85 times the calcification diameter. For calcium oxalate and hydroxyapatite, the equivalent aluminium thicknesses were 1.01 and 2.19 times the thickness of these materials respectively. Aluminium and calcium oxalate are suitable substitute materials for calcifications. Hydroxyapatite is much more attenuating than the calcifications and aluminium. Using solid hydroxyapatite as a substitute for calcification of the same size would lead to excessive contrast in the mammographic image. PMID:23470559

  10. Thermoelectric power in low-density interstitial-free iron-aluminium alloys

    NASA Astrophysics Data System (ADS)

    Rana, Radhakanta; Liu, Cheng

    2013-09-01

    Thermoelectric power (TEP) studies on low-density interstitial-free iron-aluminium alloys reveal that the TEP decreases with increase in the aluminium content on account of the introduction of lattice dispersion centres. The TEP coefficients, determined from the Nordheim-Gorter law, for 6.8 and 8.1 wt.% aluminium additions to α-iron are found to be higher than values reported in previous literature for small aluminium additions. The grain size has a very weak effect on the TEP of these alloys.

  11. Dietary Exposure to Aluminium and Health Risk Assessment in the Residents of Shenzhen, China

    PubMed Central

    Yang, Mei; Jiang, Lixin; Huang, Huiping; Zeng, Shengbo; Qiu, Fen; Yu, Miao; Li, Xiaorong; Wei, Sheng

    2014-01-01

    Although there are great changes of dietary in the past few decades in China, few are known about the aluminium exposure in Chinese diet. The aim of this study is to systematically evaluate the dietary aluminium intake level in residents of Shenzhen, China. A total of 853 persons from 244 household were investigated their diet by three days food records. Finally, 149 kinds of foods in 17 food groups were selected to be the most consumed foods. From them, 1399 food samples were collected from market to test aluminium concentration. High aluminium levels were found in jellyfish (median, 527.5 mg/kg), fried twisted cruller (median, 466.0 mg/kg), shell (median, 107.1 mg/kg). The Shenzhen residents' average dietary aluminium exposure was estimated at 1.263 mg/kg bw/week which is lower than the PTWI (provisional tolerable weekly intake). But 0–2 and 3–13 age groups have the highest aluminium intake exceeding the PTWI (3.356 mg/kg bw/week and 3.248 mg/kg bw/week) than other age groups. And the main dietary aluminium exposure sources are fried twisted cruller, leaf vegetables and bean products. Our study suggested that even three decades rapid economy development, children in Shenzhen still have high dietary aluminium exposure risk. How to control high dietary aluminium exposure still is a great public health challenge in Shenzhen, China. PMID:24594670

  12. Neuroprotective effect of Allium cepa L. in aluminium chloride induced neurotoxicity.

    PubMed

    Singh, Tanveer; Goel, Rajesh Kumar

    2015-07-01

    The present study was envisaged to investigate the neuroprotective potential of Allium cepa (A. cepa) in aluminium chloride induced neurotoxicity. Aluminium chloride (50 mg/kg/day) was administered orally in mice supplemented with different doses of A. cepa hydroethanolic extract for a period of 60 days. Various behavioural, biochemical and histopathological parameters were estimated in aluminium exposed animals. Chronic aluminium administration resulted in significant motor incoordination and memory deficits, which were also endorsed biochemically as there was increased oxidative stress as well as elevated acetylcholinesterase (AChE) and aluminium levels in the brain. Supplementation with A. cepa in aluminium exposed animals significantly improved muscle coordination and memory deficits as well as reduced oxidative stress, AChE and decreased abnormal aluminium deposition in the brain. Histopathologically, there was marked deterioration visualized as decreased vacuolated cytoplasm as well as decreased pyramidal cells in the hippocampal area of mice brain which were found to be reversed with A. cepa supplementation. Administration of BADGE (PPARγ antagonist) in aluminium exposed animals reversed the neuroprotective potential of A. cepa as assessed with various behavioural, biochemical, neurochemical and histopathological estimations. In conclusion, finding of this study suggested significant neuroprotective potential of A. cepa in aluminium induced neurotoxicity. Further, the role of PPARγ receptor agonism has also been suggested as a putative neuroprotective mechanism of A. cepa, which needs further studies for confirmation. PMID:25940660

  13. Do aluminium-based phosphate binders continue to have a role in contemporary nephrology practice?

    PubMed Central

    2011-01-01

    Background Aluminium-containing phosphate binders have long been used for treatment of hyperphosphatemia in dialysis patients. Their safety became controversial in the early 1980's after reports of aluminium related neurological and bone disease began to appear. Available historical evidence however, suggests that neurological toxicity may have primarily been caused by excessive exposure to aluminium in dialysis fluid, rather than aluminium-containing oral phosphate binders. Limited evidence suggests that aluminium bone disease may also be on the decline in the era of aluminium removal from dialysis fluid, even with continued use of aluminium binders. Discussion The K/DOQI and KDIGO guidelines both suggest avoiding aluminium-containing binders. These guidelines will tend to promote the use of the newer, more expensive binders (lanthanum, sevelamer), which have limited evidence for benefit and, like aluminium, limited long-term safety data. Treating hyperphosphatemia in dialysis patients continues to represent a major challenge, and there is a large body of evidence linking serum phosphate concentrations with mortality. Most nephrologists agree that phosphate binders have the potential to meaningfully reduce mortality in dialysis patients. Aluminium is one of the cheapest, most effective and well tolerated of the class, however there are no prospective or randomised trials examining the efficacy and safety of aluminium as a binder. Aluminium continues to be used as a binder in Australia as well as some other countries, despite concern about the potential for toxicity. There are some data from selected case series that aluminium bone disease may be declining in the era of reduced aluminium content in dialysis fluid, due to rigorous water testing. Summary This paper seeks to revisit the contemporary evidence for the safety record of aluminium-containing binders in dialysis patients. It puts their use into the context of the newer, more expensive binders and increasing

  14. Comparison of the erbium-yttrium aluminum garnet and carbon dioxide lasers for in vitro bone and cartilage ablation

    SciTech Connect

    Gonzalez, C.; van de Merwe, W.P.; Smith, M.; Reinisch, L. )

    1990-01-01

    The in vitro bone- and cartilage-ablation characteristics of the solid-state erbium:yttrium aluminum garnet laser were compared to those of the carbon dioxide laser. Ablations of fresh, frozen cadaver septal cartilage and maxillary sinus bone were performed using total energies between 1 and 6 J. Specimens were studied using hematoxylin and eosin stain and digitized, computer-assisted measurements of 35-mm photographs. Erbium-yttrium aluminum garnet-ablated bone averaged 5 microns of adjacent tissue thermal injury, compared with 67 microns with carbon dioxide-ablated bone. Erbium-yttrium aluminum garnet-ablated cartilage averaged 2 microns of adjacent tissue thermal injury, compared with 21 microns with the carbon dioxide-ablated cartilage. The tissue-ablation characteristics of the erbium-yttrium aluminum garnet laser are promising for future otolaryngologic applications.

  15. Effects of yttrium, aluminum, and chromium concentrations in bond coatings on the performance of zirconia-yttria thermal barriers

    NASA Technical Reports Server (NTRS)

    Stecura, S.

    1979-01-01

    A cyclic furnace study was conducted between 990 - 280 C and 1095 - 280 C to evaluate the effects of yttrium, chromium, and aluminum concentrations in nickel base alloy bond coatings and also the effect of the bond coating thickness on the performance of yttria-stabilized zirconia thermal barrier coatings. The presence and the concentration of yttrium is very critical. Without yttrium, rapid oxidation of Ni-Al, Ni-Cr, and Ni-Cr-Al bond coatings causes zirconia thermal barrier coatings to fail very rapidly. Concentrations of chrominum and aluminum in Ni-Cr-Al-Y bond coating have a very significant effect on the thermal barrier coating life. This effect, however, is not as great as that due to yttrium. Furthermore, the thickness and the thickness uniformity also have a very significant effect on the life of the thermal barrier system.

  16. Electronic and magnetic properties of yttrium-doped silicon carbide nanotubes: Density functional theory investigations

    SciTech Connect

    Khaira, Jobanpreet S.; Jain, Richa N.; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2015-06-24

    The electronic structure of yttrium-doped Silicon Carbide Nanotubes has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom is bonded strongly on the surface of the nanotube with a binding energy of 2.37 eV and prefers to stay on the hollow site at a distance of around 2.25 Å from the tube. The semi-conducting nanotube with chirality (4, 4) becomes half mettalic with a magnetic moment of 1.0 µ{sub B} due to influence of Y atom on the surface. There is strong hybridization between d orbital of Y with p orbital of Si and C causing a charge transfer from d orbital of the Y atom to the tube. The Fermi level is shifted towards higher energy with finite Density of States for only upspin channel making the system half metallic and magnetic which may have application in spintronic devices.

  17. First principles DFT investigation of yttrium-doped graphene: Electronic structure and hydrogen storage

    SciTech Connect

    Desnavi, Sameerah; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2014-04-24

    The electronic structure and hydrogen storage capability of Yttrium-doped grapheme has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom prefers the hollow site of the hexagonal ring with a binding energy of 1.40 eV. Doping by Y makes the system metallic and magnetic with a magnetic moment of 2.11 μ{sub B}. Y decorated graphene can adsorb up to four hydrogen molecules with an average binding energy of 0.415 eV. All the hydrogen atoms are physisorbed with an average desorption temperature of 530.44 K. The Y atoms can be placed only in alternate hexagons, which imply a wt% of 6.17, close to the DoE criterion for hydrogen storage materials. Thus, this system is potential hydrogen storage medium with 100% recycling capability.

  18. Mechanism for radiation damage resistance in yttrium oxide dispersion strengthened steels

    NASA Astrophysics Data System (ADS)

    Brodrick, J.; Hepburn, D. J.; Ackland, G. J.

    2014-02-01

    ODS steels based on yttrium oxide have been suggested as potential fusion reactor wall materials due to their observed radiation resistance properties. Presumably this radiation resistance can be related to the interaction of the particle with vacancies, self-interstitial atoms (SIAs) and other radiation damage debris. Density functional theory has been used to investigate this at the atomic scale. Four distinct interfaces, some based on HRTEM observations, between iron and yttrium oxide were investigated. It is been shown that the Y2O3-Fe interface acts as a strong trap with long-range attraction for both interstitial and vacancy defects, allowing recombination without altering the interface structure. The catalytic elimination of defects without change to the microstructure explains the improved behaviour of ODS steels with respect to radiation creep and swelling.

  19. The Effect of Yttrium on Ti-5111 Gas Tungsten Arc Welds

    NASA Astrophysics Data System (ADS)

    Neuberger, B. W.; Oberson, P. G.; Ankem, S.

    2011-05-01

    Much interest has developed in the near- α titanium alloy Ti-5Al-1Sn-1V-1Zr-0.8Mo (Ti-5111) for naval applications. When gas tungsten arc welded with filler metal that has the same chemical composition as the base metal, however, the weld FZ tends to be harder and less ductile than the base metal, which may make the weld susceptible to failure. This behavior may be attributed to the presence of oxygen impurities and the large prior- β grain size in the weld. In this investigation, the addition of a small amount of yttrium to the weld filler metal can decrease hardening and increase the ductility of Ti-5111 welds, which is beneficial for weld performance. Microstructural and chemical analyses of unmodified and yttrium-modified Ti-5111 welds are presented along with results from mechanical testing of the welds.

  20. Electronic and magnetic properties of yttrium-doped silicon carbide nanotubes: Density functional theory investigations

    NASA Astrophysics Data System (ADS)

    Khaira, Jobanpreet S.; Jain, Richa N.; Chakraborty, Brahmananda; Ramaniah, Lavanya M.

    2015-06-01

    The electronic structure of yttrium-doped Silicon Carbide Nanotubes has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom is bonded strongly on the surface of the nanotube with a binding energy of 2.37 eV and prefers to stay on the hollow site at a distance of around 2.25 Å from the tube. The semi-conducting nanotube with chirality (4, 4) becomes half mettalic with a magnetic moment of 1.0 µB due to influence of Y atom on the surface. There is strong hybridization between d orbital of Y with p orbital of Si and C causing a charge transfer from d orbital of the Y atom to the tube. The Fermi level is shifted towards higher energy with finite Density of States for only upspin channel making the system half metallic and magnetic which may have application in spintronic devices.

  1. Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties

    SciTech Connect

    Olsen, T.; Schroeder, U.; Mueller, S.; Krause, A.; Martin, D.; Singh, A.; Mueller, J.; Geidel, M.; Mikolajick, T.

    2012-08-20

    Thin film capacitors were fabricated by sputtering TiN-Y doped HfO{sub 2}-TiN stacks on silicon substrates. Yttrium was incorporated into the HfO{sub 2} layers by simultaneously sputtering from Y{sub 2}O{sub 3} and HfO{sub 2} sources. Electric polarization and relative permittivity measurements yield distinct ferroelectric properties as a result of low yttrium dopant concentrations in the range of 0.9-1.9 mol. %. Grazing incidence x-ray diffraction measurements show the formation of an orthorhombic phase in this range. Compared to atomic layer deposition films, the highest remanent polarization and the highest relative permittivity were obtained at significantly lower doping concentrations in these sputtered films.

  2. Effect of sintering on electrical properties of yttrium doped Li-based NASICON compounds

    SciTech Connect

    Kothari, Dharmesh H.; Kanchan, D. K. Dave, Gargi

    2015-08-28

    Electrical properties of Lithium based Li{sub 1.3}Al{sub 0.3-x}Y{sub x}Ti{sub 1.7}(PO{sub 4}){sub 3} (LAYTP) system was prepared using solid state reaction route. The samples were subjected to differing duration of sintering. X-ray diffraction was used to investigate the microstructure while density measurement was performed to determine the effect of sintering on the density of the prepared samples. Electrical properties of the material were studied using impedance spectroscopy, in frequency range 20 MHz to 1 Hz and in temperature range 303 K to 423 K. It was found that sample with least amount of yttrium and which was sintered for least duration had superior conductivity over other samples. It was also found that grain boundary conductivity improved marginally for sample with higher proportion of yttrium heat treated for longer duration.

  3. Spectroscopic investigation of the Cr to Tm energy transfer in Yttrium Aluminum Garnet (YAG) crystals

    NASA Technical Reports Server (NTRS)

    Dibartolo, B.

    1988-01-01

    New and interesting schemes have recently been considered for the efficient operation of solid-state ionic laser systems. Often the available data on these systems were obtained only because they seemed directly related to the laser performance and provide no insight into the physical processes. A more systematic approach is desirable, where more attention is devoted to the elementary basic processes and to the nature of the mechanisms at work. It is with this aim that we have undertaken the present study. Yttrium Aluminum Garnet (Y4Al5O12), called YAG, has two desirable properties as host for rare earth impurities: (1) trivalent rare earth ions can replace the yttrium without any charge compensation problem, and (2) YAG crystals have high cutoff energies. The results of measurements and calculations indicate that the Cr(3+) ion in YAG can be used to sensitize efficiently the Tm(3+) ion.

  4. Generalized stochastic Landau-Lifshitz-Gilbert equation for yttrium-iron garnet films

    NASA Astrophysics Data System (ADS)

    Rückriegel, Andreas; Kopietz, Peter

    2015-03-01

    We derive a generalization of the well-known stochastic Landau-Lifshitz-Gilbert equation starting from a microscopic Heisenberg model coupled to the lattice degrees of freedom. By integrating out the phonons we obtain a non-Markovian, stochastic equation of motion for the spin degrees of freedom satisfying a Fluctuation-Dissipation theorem. We apply our theory to study the parametric pumping and thermalization of spin excitations in thin yttrium-iron garnet films.

  5. Superselective Internal Radiation With Yttrium-90 Microspheres in the Management of a Chemorefractory Testicular Liver Metastasis

    SciTech Connect

    Sideras, Panagiotis A.; Sofocleous, Constantinos T. Brody, Lynn A.; Siegelbaum, Robert H.; Shah, Rajesh P.; Taskar, Neeta-Pandit

    2012-04-15

    We treated a patient with biopsy-proven, chemotherapy-resistant testicular cancer liver metastasis using Y-90 selective internal radiation treatment. We chose yttrium-90 rather than surgery and ablation due to tumor location and size as well as the patient's clinical history. The result was marked tumor response by positron emission tomography and computed tomography as well as significant improvement of the patient's quality of life accompanied by a substantial decrease of his tumor markers.

  6. Peripheral Blood Lymphocyte Depletion After Hepatic Arterial {sup 90}Yttrium Microsphere Therapy for Hepatocellular Carcinoma

    SciTech Connect

    Carr, Brian I.; Metes, Diana M.

    2012-03-01

    Purpose: The short- and long-term effects of {sup 90}Yttrium microspheres therapy for hepatocellular carcinoma (HCC) on peripheral blood lymphocytes are unknown and were therefore examined. Methods and Materials: Ninety-two HCC patients were enrolled in a {sup 90}Yttrium therapy study and routine blood counts were examined as part of standard clinical monitoring. Results: We found an early, profound, and prolonged lymphopenia. In a subsequent cohort of 25 additional HCC patients, prospective flow cytometric immune-monitoring analysis was performed to identify specific changes on distinct lymphocyte subsets (i.e., CD3, CD4, CD8 T, and CD19 B lymphocytes) and NK cells absolute numbers, in addition to the granulocytes and platelets subsets. We found that the pretreatment lymphocyte subset absolute numbers (with the exception of NK cells) had a tendency to be lower compared with healthy control values, but no significant differences were detected between groups. Posttherapy follow-up revealed that overall, all lymphocyte subsets, except for NK cells, were significantly (>50% from pretherapy values), promptly (as early as 24 h) and persistently (up to 30 months) depleted post-{sup 90}Yttrium microspheres therapy. In contrast, granulocytes increased rapidly (24 h) to compensate for lymphocyte depletion, and remained increased at 1-year after therapy. We further stratified patients into two groups, according to survival at 1 year. We found that lack of recovery of CD19, CD3, CD8, and especially CD4 T cells was linked to poor patient survival. No fungal or bacterial infections were noted during the 30-month follow-up period. Conclusions: The results show that lymphocytes (and not granulocytes, platelets, or NK cells) are sensitive to hepatic arterial {sup 90}Yttrium without associated clinical toxicity, and lack of lymphocyte recovery (possibly leading to dysregulation of adaptive cellular immunity) posttherapy indicates poor survival.

  7. Obliterated urethra: holmium:yttrium-aluminum-garnet cut-to-light with urolume stenting.

    PubMed

    Monga, M; Gordon, Z; Alexandrescu, B

    2001-12-01

    Antegrade-retrograde urethrotomy, or the cut-to-light procedure, performed for obliterated urethra is associated with a high rate of recurrence of urethra] stricture. With the goal of reducing the stricture recurrence rate, we performed a modified cut-to-light procedure using a holmium:yttrium-aluminum-garnet laser and UroLume stenting in a 76-year-old man with urethral obliteration. PMID:11763485

  8. Hydrothermal synthesis, crystal structures and photoluminescence properties of mixed europium-yttrium organic frameworks

    SciTech Connect

    Han Yinfeng; Fu Lianshe; Mafra, Luis; Shi, Fa-Nian

    2012-02-15

    Three mixed europium-yttrium organic frameworks: Eu{sub 2-x}Y{sub x}(Mel)(H{sub 2}O){sub 6} (Mel=mellitic acid or benzene-1,2,3,4,5,6-hexacarboxylic acid, x=0.38 1, 0.74 2, and 0.86 3) have been synthesized and characterized. All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu{sup 3+} lifetime becomes longer in these MOFs than those of the Eu analog. - Graphical abstract: Three mixed europium and yttrium organic frameworks: Eu{sub 2-x}Y{sub x}(Mel)(H{sub 2}O){sub 6} (Mel=mellitic acid) have been synthesized and characterized. All the compounds contain a 3-D net with (4, 8)-flu topology. The study indicates that the photoluminescence properties are effectively affected by the different ratios of europium and yttrium ions, the quantum efficiency is increased and the Eu{sup 3+} lifetime becomes longer in these MOFs than those of the Eu analog. Highlights: Black-Right-Pointing-Pointer Three (4, 8)-flu topological mixed Eu and Y MOFs were synthesized under mild conditions. Black-Right-Pointing-Pointer Metal ratios were refined by the single crystal data consistent with the EDS analysis. Black-Right-Pointing-Pointer Mixed Eu and Y MOFs show longer lifetime and higher quantum efficiency than the Eu analog. Black-Right-Pointing-Pointer Adding inert lanthanide into luminescent MOFs enlarges the field of luminescent MOFs.

  9. Spin orbital theory for the high temperature magnetic phase transitions in Yttrium orthovanadate

    NASA Astrophysics Data System (ADS)

    de Silva, Theja; Joshi, Anuvrat; Zhang, Fu Chun; Ma, Michael

    2003-03-01

    Motivated by recent diffraction experiments, we develope a theoritical model for Yttrium orthovanadate(YVO_3). The key parameters governing the system are on-site coulomb repulsion, Hund's coupling, crystal field splitting between 3d levels and hopping amplitude between nearest neighbor ions. Then, we use a mean field theory to illustrate the relevent physics of the system and verify the existence of the high temperature G-type orbital transition before C-type spin ordering at a lower temperature.

  10. Long-Pulsed Neodymium-Doped Yttrium Aluminum Garnet Laser for Glomuvenous Malformations in Adolescents.

    PubMed

    Trost, Jaren; Buckley, Colin; Smidt, Aimee C

    2015-01-01

    Currently there exist few reported cases where lasers are used successfully to treat glomuvenous malformations in adolescents. In the two cases described here, we provide evidence that the long-pulsed neodymium-doped yttrium aluminum garnet laser is an effective and safe alternative treatment for these lesions. Our case series is unique because it focuses on adolescents, the population that most often seeks treatment for this dermatologic condition. PMID:26138991

  11. Engineering of the band gap and optical properties of thin films of yttrium hydride

    SciTech Connect

    You, Chang Chuan; Mongstad, Trygve; Maehlen, Jan Petter; Karazhanov, Smagul

    2014-07-21

    Thin films of oxygen-containing yttrium hydride show photochromic effect at room temperature. In this work, we have studied structural and optical properties of the films deposited at different deposition pressures, discovering the possibility of engineering the optical band gap by variation of the oxygen content. In sum, the transparency of the films and the wavelength range of photons triggering the photochromic effect can be controlled by variation of the deposition pressure.

  12. Efficient holmium:yttrium lithium fluoride laser longitudinally pumped by a semiconductor laser array

    NASA Technical Reports Server (NTRS)

    Hemmati, H.

    1987-01-01

    Optical pumping of a holmium:yttrium lithium floride (Ho:YLF) crystal with a 790-nm continuous-wave diode-laser array has generated 56 mW of 2.1-micron laser radiation with an optical-to-optical conversion slope efficiency of 33 percent while the crystal temperature is held at 77 K. The lasing threshold occurs at 7 mW of input power, and laser operation continues up to a crystal temperature of 124 K.

  13. Observation of spin rectification in Pt/yttrium iron garnet bilayer

    SciTech Connect

    Rao, Jinwei; Fan, Xiaolong Zhou, Hengan; Zhao, Xiaobing; Zhao, Jing; Zhang, Fengzhen; Xue, Desheng; Ma, Li; Zhou, Shiming

    2015-05-07

    We used the ferromagnetic resonance (FMR) to study the dc voltage generation in Pt 20 nm layer deposited on yttrium iron garnet. Although the main contribution to the FMR voltage comes from the inverse spin Hall effect associated with spin pumping, the spin rectification would also contribute the resonance signal via the “new” magnetoresistance effect in Pt layer. Based on a symmetry consideration, we can separate those two effects through angular dependent resonance amplitude.

  14. Spin wave localization in one-dimensional magnonic microcavity comprising yttrium iron garnet

    SciTech Connect

    Kanazawa, Naoki; Goto, Taichi Inoue, Mitsuteru

    2014-08-28

    We demonstrate the localization of magnetostatic surface waves, i.e., spin waves, in a one-dimensional magnonic microcavity substantialized with periodical conductivity modulation. The narrow localized state is observed inside band gaps and is responsible for a sharp transmission peak. The experimental results strongly agree with the theoretical prediction made with the shape magnetic anisotropy of the propagating medium composed of yttrium iron garnet taken into account.

  15. Ongoing trials with yttrium 90-labeled ibritumomab tiuxetan in patients with non-Hodgkin's lymphoma.

    PubMed

    Micallef, Ivana N M

    2004-10-01

    Targeted radiation therapy or radioimmunotherapy has been an important recent advance in the treatment of patients with B-cell non-Hodgkin's lymphoma (NHL). Yttrium 90-labeled ibritumomab tiuxetan (Zevalin) comprises the murine monoclonal antibody ibritumomab, the linker chelator tiuxetan, and the radiolabeled isotope yttrium 90. Yttrium 90 ibritumomab tiuxetan has been shown to be efficacious in the treatment of B-cell NHL. Initial phase I/II trials established the therapeutic dose of ibritumomab tiuxetan for low-grade NHL to be 0.4 mCi/kg, or 0.3 mCi/kg for patients with mild thrombocytopenia. Currently, there are many ongoing trials of ibritumomab tiuxetan with different dose schedules and dose intensities in combination with chemotherapy and autologous or allogeneic stem cell transplantation in an attempt to improve response rate and duration and to study its effectiveness in other B-cell lymphomas including mantle cell lymphoma, and chronic lymphocytic leukemia. This article reviews the ongoing trials with 90Y ibritumomab tiuxetan. Radioimmunotherapy has great promise, and the safe incorporation of 90Y ibritumomab tiuxetan into treatment will hopefully result in improved survival for patients with NHL. PMID:15498147

  16. Novel syntergistic agent for selective separation of yttrium from other rare earth metals

    SciTech Connect

    Miyata, Terufumi; Goto, Masahiro; Nakashio, Fumiyuki

    1995-06-01

    An oil-soluble synergistic agent has been developed for the selective separation of yttrium (Y) from the other rare earth metals. The synergistic agent is a polyaminocarboxylic acid alkylderivative and has interfacial activity like that of surfactants. Separation of yttrium from heavy rare earth metals (erbium (Er) and holmium (Ho)) in the presence of the synergistic agent was carried out with a 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester as a carrier using a hollow-fiber membrane extractor. The new agent shows a synergistic effect on the permeation rate of rare earth metals at the oil-water interface. By the addition of a small amount of the agent, the selectivity for yttrium from the two rare earth metals was enhanced remarkably, because of the permeation rate of Y was selectively decreased compared with those of Er and Ho. The synergistic effect is discussed from the viewpoint of the stability constant for rare earth metals and the interfacial activity of the synergistic agent. The difference in interaction between the synergistic agent and rare earth ions at the oil-water interface results in an increase in the separation efficiency.

  17. Time of formation and genesis of yttrium-zirconium mineralization in the Sakharjok massif, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Vetrin, V. R.; Skublov, S. G.; Balashov, Yu. A.; Lyalina, L. M.; Rodionov, N. V.

    2014-12-01

    The Kola geotectonic province in the northeastern Fennoscandian Shield accommodates a significant number of alkaline rock massifs differing in age. They are of mantle and mantle-crustal origin (alkali and nepheline syenites, carbonatites) and related to crustal sources (Neoarchean alkali granites). Among them, the Neoarchean Sakharjok nepheline syenite massif is related to the oldest intrusions of this kind bearing yttrium-zirconium mineralization. The crystallization of alkali syenite pertaining to the first intrusive phase of the intrusive Sakharjok massif is dated to 2645 ± 7 Ma, and this implies that this syenite postdated alkali granites (2.66-2.67 Ga). To date the yttrium-zirconium ore, we applied the local U-Pb method to zircon crystals occurring in the mineralized block hosted in nepheline syenite. The earliest fragments of zircon crystallized 1832 ± 7 Ma ago; the age of metamorphism is estimated at 1784 ± 13 Ma. These dates indicate the Paleoproterozoic age of the yttrium-zirconium mineralization, which was formed as a product of fluid reworking of the Neoarchean nepheline syenite of the Sakharjok massif.

  18. Off-line studies of the laser ionization of yttrium at the IGISOL facility

    NASA Astrophysics Data System (ADS)

    Kessler, T.; Moore, I. D.; Kudryavtsev, Y.; Peräjärvi, K.; Popov, A.; Ronkanen, P.; Sonoda, T.; Tordoff, B.; Wendt, K. D. A.; Äystö, J.

    2008-02-01

    A laser ion source is under development at the IGISOL facility, Jyväskylä, in order to address deficiencies in the ion guide technique. The key elements of interest are those of a refractory nature, whose isotopes and isomers are widely studied using both laser spectroscopic and high precision mass measurement techniques. Yttrium has been the first element of choice for the new laser ion source. In this work, we present a new coupled dye-Ti:Sapphire laser scheme and give a detailed discussion of the results obtained from laser ionization of yttrium atoms produced in an ion guide via resistive heating of a filament. The importance of not only gas purity, but indeed the baseline vacuum pressure in the environment outside the ion guide is discussed in light of the fast gas phase chemistry seen in the yttrium system. A single laser shot model is introduced and is compared to the experimental data in order to extract the level of impurities within the gas cell.

  19. Spark plasma sintering of tungsten-yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization

    NASA Astrophysics Data System (ADS)

    Yar, M. A.; Wahlberg, Sverker; Bergqvist, Hans; Salem, H. G.; Johnsson, Mats; Muhammed, Mamoun

    2011-05-01

    Nano-crystalline W-1%Y 2O 3 (wt.%) powder was produced by a modified solution chemical reaction of ammonium paratungstate (APT) and yttrium nitrate. The precursor powder was found to consist of particles of bimodal morphology i.e. large APT-like particles up to 20 μm and rectangular yttrium containing ultrafine plates. After thermal processing tungsten crystals were evolved from W-O-Y plate like particles. spark plasma sintering (SPS) was used to consolidate the powder at 1100 and 1200 °C for different holding times in order to optimize the sintering conditions to yield high density but with reduced grain growth. Dispersion of yttrium oxide enhanced the sinterability of W powder with respect to lanthanum oxide. W-1%Y 2O 3 composites with sub-micron grain size showed improved density and mechanical properties as compared to W-La 2O 3 composites. Sample sintered in two steps showed improved density, due to longer holding time at lower temperature (900 °C) and less grain growth due to shorter holding time at higher temperature i.e. 1 min at 1100 °C.

  20. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma: A review

    SciTech Connect

    Salem, Riad . E-mail: r-salem@northwestern.edu; Hunter, Russell D.

    2006-10-01

    To present a critical review of yttrium-90 (TheraSphere) for the treatment of hepatocellular carcinoma (HCC). Medical literature databases (Medline, Cochrane Library, and CANCERLIT) were searched for available literature concerning the treatment of HCC with TheraSphere. These publications were reviewed for scientific and clinical validity. Studies pertaining to the use of yttrium-90 for HCC date back to the 1960s. The results from the early animal safety studies established a radiation exposure range of 50-100 Gy to be used in human studies. Phase I dose escalation studies followed, which were instrumental in delineating radiation dosimetry and safety parameters in humans. These early studies emphasized the importance of differential arteriolar density between hypervascular HCC and surrounding liver parenchyma. Current trends in research have focused on advancing techniques to safely implement this technology as an alternative to traditional methods of treating unresectable HCC, such as external beam radiotherapy, conformal beam radiotherapy, ethanol ablation, trans-arterial chemoembolization, and radiofrequency ablation. Yttrium-90 (TheraSphere) is an outpatient treatment option for HCC. Current and future research should focus on implementing multicenter phase II and III trials comparing TheraSphere with other therapies for HCC.

  1. Polymorphism in yttrium molybdate Y{sub 2}Mo{sub 3}O{sub 12}

    SciTech Connect

    Gates, Stacy D.; Lind, Cora

    2007-12-15

    Yttrium molybdate (Y{sub 2}Mo{sub 3}O{sub 12}) has been prepared by non-hydrolytic sol-gel chemistry. The phase evolution upon heating was investigated using in situ and ex situ heat treatments combined with powder X-ray diffraction. This method has led to the isolation of two orthorhombic phases with different atomic connectivity. Yttrium adopts 6- and 7-coordinate sites in the Pbcn and Pba2 structures, respectively. Cocrystallization of both phases was observed in a narrow temperature range, suggesting that crystallization kinetics play a major role in phase formation. It was found that the Pba2 phase is the stable polymorph below 550 deg. C, and converts to Pbcn at higher temperatures. - Graphical abstract: Yttrium molybdate (Y{sub 2}Mo{sub 3}O{sub 12}) prepared by non-hydrolytic sol-gel chemistry crystallizes in a mixture of orthorhombic polymorphs with different atomic connectivities. The Pbcn and Pba2 phases coexist over a narrow temperature range. Crystallization of the Pbcn structure is kinetically favored. The Pba2 polymorph is the thermodynamically stable phase at low temperatures, and converts to Pbcn above 550 deg. C.

  2. The chemical transformation of copper in aluminium oxide during heating

    NASA Astrophysics Data System (ADS)

    Wei, Yu-Ling; Wang, Hsi-Chih; Yang, Yaw-Wen; Lee, Jyh-Fu

    2004-08-01

    Thermal treatment has recently been emerging as a promising environmental technology to stabilize heavy metal-containing industrial sludge. This study used x-ray absorption spectroscopy (XAS) to identify the species of copper contaminant contained in aluminium oxide that is one of the main compositions of sludge and soil. Results indicate that the originally loaded copper nitrate was transformed into Cu(OH)2 after its dissolution in the aluminium oxide slurry. Extended x-ray absorption fine structure (EXAFS) fitting indicates that the main copper species in the 105 °C dried Cu(NO3)2-loaded aluminium oxide is Cu(OH)2 which accounts for ca. 75% of the loaded copper. After thermal treatment at 500 °C for 1 h, both x-ray absorption near-edge structure (XANES) and EXAFS fitting results show that CuO became the prevailing copper species (about 85%); the rest of the copper consisted of {\\sim }15{%} Cu(OH)2 and a negligible amount of Cu(NO3)2. It was found that most Cu(OH)2 and Cu(NO3)2 decomposed into CuO at 500 °C. Further increase of the heating temperature from 500 to 900 °C resulted in more decomposition of Cu(OH)2 and Cu(NO3)2; therefore CuO remained as the main copper species. However, it was suggested that about 15% of the loaded copper formed CuAl2O4 through the chemical reaction between CuO and Al2O3 at 900 °C.

  3. Insight into the cellular fate and toxicity of aluminium adjuvants used in clinically approved human vaccinations

    PubMed Central

    Mold, Matthew; Shardlow, Emma; Exley, Christopher

    2016-01-01

    Aluminium adjuvants remain the most widely used and effective adjuvants in vaccination and immunotherapy. Herein, the particle size distribution (PSD) of aluminium oxyhydroxide and aluminium hydroxyphosphate adjuvants was elucidated in attempt to correlate these properties with the biological responses observed post vaccination. Heightened solubility and potentially the generation of Al3+ in the lysosomal environment were positively correlated with an increase in cell mortality in vitro, potentially generating a greater inflammatory response at the site of simulated injection. The cellular uptake of aluminium based adjuvants (ABAs) used in clinically approved vaccinations are compared to a commonly used experimental ABA, in an in vitro THP-1 cell model. Using lumogallion as a direct-fluorescent molecular probe for aluminium, complemented with transmission electron microscopy provides further insight into the morphology of internalised particulates, driven by the physicochemical variations of the ABAs investigated. We demonstrate that not all aluminium adjuvants are equal neither in terms of their physical properties nor their biological reactivity and potential toxicities both at the injection site and beyond. High loading of aluminium oxyhydroxide in the cytoplasm of THP-1 cells without immediate cytotoxicity might predispose this form of aluminium adjuvant to its subsequent transport throughout the body including access to the brain. PMID:27515230

  4. The effect of aluminium chlorhydrate on sweat gland activity in cattle.

    PubMed

    Rees-Jones, A M; Jenkinson, D M

    1978-03-01

    Topical application of aluminium chlorhydrate had no appreciable antiperspirant action on the epitrichial glands of cattle. There was no evidence of penetration of the salt into the dermis or of any change in the morphology of the glands. It is probable that the antiperspirant activity of aluminium chlorhydrate in the human axilla, is only on the atrichial glands. PMID:632617

  5. Insight into the cellular fate and toxicity of aluminium adjuvants used in clinically approved human vaccinations.

    PubMed

    Mold, Matthew; Shardlow, Emma; Exley, Christopher

    2016-01-01

    Aluminium adjuvants remain the most widely used and effective adjuvants in vaccination and immunotherapy. Herein, the particle size distribution (PSD) of aluminium oxyhydroxide and aluminium hydroxyphosphate adjuvants was elucidated in attempt to correlate these properties with the biological responses observed post vaccination. Heightened solubility and potentially the generation of Al(3+) in the lysosomal environment were positively correlated with an increase in cell mortality in vitro, potentially generating a greater inflammatory response at the site of simulated injection. The cellular uptake of aluminium based adjuvants (ABAs) used in clinically approved vaccinations are compared to a commonly used experimental ABA, in an in vitro THP-1 cell model. Using lumogallion as a direct-fluorescent molecular probe for aluminium, complemented with transmission electron microscopy provides further insight into the morphology of internalised particulates, driven by the physicochemical variations of the ABAs investigated. We demonstrate that not all aluminium adjuvants are equal neither in terms of their physical properties nor their biological reactivity and potential toxicities both at the injection site and beyond. High loading of aluminium oxyhydroxide in the cytoplasm of THP-1 cells without immediate cytotoxicity might predispose this form of aluminium adjuvant to its subsequent transport throughout the body including access to the brain. PMID:27515230

  6. A cluster of equine granulomatous enteritis cases: the link with aluminium.

    PubMed

    Fogarty, U; Perl, D; Good, P; Ensley, S; Seawright, A; Noonan, J

    1998-10-01

    A cluster of 6 cases of equine granulomatous enteritis is described. Aluminium was demonstrated in the tissues and lesions of these horses and in the intimal bodies of intestinal vessels. The relationship between granulomatous lesions, aluminium, acidity and invading microorganisms, particularly parasites, is presented and discussed. PMID:9778770

  7. Effects of erbium:yttrium-aluminum-garnet and neodymium:yttrium-aluminum-garnet laser hypersensitivity treatment parameters on the bond strength of self-etch adhesives.

    PubMed

    Yazici, E; Gurgan, S; Gutknecht, N; Imazato, S

    2010-07-01

    This in vitro study evaluated the shear bond strength (SBS) of two self-etch adhesives to coronal and root dentin treated with erbium:yttrium-aluminum-garnet (Er:YAG) or neodymium:yttrium-aluminum-garnet (Nd:YAG) lasers for dentin hypersensitivity. The coronal and root dentin surfaces of 60 extracted human cuspids were divided into three groups (n = 20): (1) control (without treatment); (2) treated with Er:YAG; (3) treated with Nd:YAG laser and a one-step (S3) or two-step self-etch adhesive (SE). A nano-composite was applied and SBS tests were performed. The mean SBS values were calculated, failure modes were determined, and data were subjected to statistical analysis (P = 0.05). Control/SE exhibited higher values than did control/S3 and Nd:YAG/S3 on coronal dentin (P < 0.05). No significant differences were observed between the SE and S3 groups in root dentin (P > 0.05). Comparisons of two dentin substrates did not show any difference except control/SE (P < 0.05). The failure modes were mainly adhesive. The SBSs of self-etch adhesives to Er:YAG or Nd:YAG laser-treated surfaces were comparable with control for both coronal and root dentin. PMID:19475475

  8. Deviatoric Response of AN Armour-Grade Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    Appleby-Thomas, G. J.; Hazell, P. J.; Millett, J.; Bourne, N. K.

    2009-12-01

    Aluminium alloys such as 5083 H32 are established light-weight armour materials. As such, the shock response of these materials is of great importance. The shear strength of a material under shock loading provides an insight into its ballistic performance. In this investigation embedded manganin stress gauges have been employed to measure both the longitudinal and lateral components of stress during plate-impact experiments over a range of impact stresses. In turn, these results were used to determine the shear strength and to investigate the time dependence of lateral stress behind the shock front to give an indication of material response.

  9. Determination of phosphorus in hypereutectic aluminium-silicon alloys.

    PubMed

    Mukai, K

    1972-04-01

    A reproducible method is described for determination of small amounts of phosphorus (from 0.0005% to 0.02%) in hypereutectic aluminium-silicon complex alloys. The method permits the separate determination of phosphorus in acid-soluble and acid-insoluble fractions. Phosphomolybdate is extracted with n-butanol-chloroform solvent mixture and back-extracted with a btannous chloride reducing solution. The phosphorus content of a sample cut into small pieces decreases during storage; loss of phosphorus is negligible on acid dissolution under oxidizing conditions. PMID:18961077

  10. Modeling of recrystallization texture of aluminium: symmetric and asymmetric rolling

    NASA Astrophysics Data System (ADS)

    Wierzbanowski, K.; Kotra, M.; Wronski, M.; Sztwiertnia, K.; Wronski, S.; Lodini, A.

    2015-04-01

    In some metallic materials the dominating recrystallization mechanism can be described by the oriented growth behaviour. Phenomenological laws state that in selected materials only these nuclei grow intensively which have a given misorientation relation with the deformed matrix. This description is frequently verified in f.c.c. metals and generally reported misorientations correspond approximately to 400 rotation around the <111> axis. Basing on the above ideas the recrystallization model, including the compromise condition, was formulated and applied to the study of recrystallization textures of rolled polycrystalline aluminium.

  11. Compressive tensile and shear testing of melt-foamed aluminium

    SciTech Connect

    Von Hagen, H.; Bleck, W.

    1998-12-31

    For construction purposes it is utterly important to get detailed information on the possible influence of the foam thickness on the mechanical properties and on the deformation behavior of metallic foams. The effect of compressive, tensile and shear loads on aluminium foam samples has been examined with the testing methods for sandwich material as described in German and ASTM-standards. The aim is to provide more data on these mechanical properties varying the sample density and thickness. Regarding the results the most reliable material parameters as well as steps towards a relationship between the different strength parameters can be obtained.

  12. Mechanism of aluminium bio-mineralization in the apoferritin cavity

    NASA Astrophysics Data System (ADS)

    Chiarpotto, M.; Ciasca, G.; Vassalli, M.; Rossi, C.; Campi, G.; Ricci, A.; Bocca, B.; Pino, A.; Alimonti, A.; De Sole, P.; Papi, M.

    2013-08-01

    Many experimental evidences point out the correlation between the presence of aluminum-ferritin complex and neursopathological disorders. In these complexes, two different ranges of Aluminium (Al) atoms are usually found, i.e., just few atoms or several hundreds. Here, we investigated the in-vitro Al-apoferritin binding, with the aim to elucidate the mechanism behind the formation of Al-ferritin complexes in-vivo. To this purpose, we studied the mineralization of Al in its ionic and complexed form with citrate demonstrating that high Al levels found in clinical studies can be obtained only conveying Al by small physiological ligands.

  13. Modelling work hardening of aluminium alloys containing dispersoids

    NASA Astrophysics Data System (ADS)

    Zhao, Qinglong; Holmedal, Bjørn

    2013-08-01

    The influence of dispersoids on tensile deformation behaviour has been studied by comparison of aluminium alloys containing different dispersoid densities. It was found that a fine dispersion of non-shearable particles led to an increased work hardening at the initial plastic deformation, but the effect was opposite at higher strains. The reason has been attributed to the generation of geometrically necessary dislocations (GNDs). A new model has been proposed for the evolution of GNDs based on a balance of storage and dynamic recovery of GNDs. The model predicts a rapid saturation of GNDs and a reduced work hardening at small strains, consistent with the experimental results.

  14. Effects of silicon on gastrointestinal absorption of aluminium

    SciTech Connect

    Edwardson, J.A.; Moore, P.B.; Ferrier, I.N.; Lilley, J.S.; Newton, G.W.A.; Barker, J.; Templar, J.; Day, J.P.

    1993-07-24

    The reported geographical association between Alzheimer's disease and levels of aluminium (Al) in water supplies may reflect the inverse relation between Al and silicon (Si) concentrations in water, and the potential for Si to reduce the bioavailability of the metal. The authors tested this hypothesis using isotopic [sup 26]Al tracer administered orally to five healthy volunteers in the presence and absence of Si. Dissolved Si, at a concentration found in some water supplies reduced the peak plasma [sup 26]Al concentration to 15% of the value obtained in the absence of Si. The results indicate that dissolved Si is an important factor in limiting the absorption of dietary Al.

  15. The fracture of boron fibre-reinforced 6061 aluminium alloy

    NASA Technical Reports Server (NTRS)

    Wright, M. A.; Welch, D.; Jollay, J.

    1979-01-01

    The fracture of 6061 aluminium alloy reinforced with unidirectional and cross-plied 0/90 deg, 0/90/+ or - 45 deg boron fibres has been investigated. The results have been described in terms of a critical stress intensity, K(Q). Critical stress intensity factors were obtained by substituting the failure stress and the initial crack length into the appropriate expression for K(Q). Values were obtained that depended on the dimensions of the specimens. It was therefore concluded that, for the size of specimen tested, the values of K(Q) did not reflect any basic materials property.

  16. A lead-film electrode on an aluminium substrate to serve as a lead-acid battery plate

    NASA Astrophysics Data System (ADS)

    Yolshina, L. A.; Kudyakov, V. Ya; Zyryanov, V. G.

    Compact lead layers have been deposited on the surfaces of aluminium and aluminium alloys. These coatings are uniform in thickness and have high porosity. The lead-film electrode produced on aluminium plate can be used as the positive electrode in a lead-acid battery.

  17. Reflectance, Optical Properties, and Stability of Molybdenum/Strontium and Molybdenum/Yttrium Multilayer Mirrors

    SciTech Connect

    Kjornrattanawanich, B

    2002-09-01

    The motivation of this work is to develop high reflectance normal-incidence multilayer mirrors in the 8-12 nm wavelength region for applications in astronomy and extreme ultraviolet lithography. To achieve this goal, Mo/Sr and Mo/Y multilayers were studied. These multilayers were deposited with a UHV magnetron sputtering system and their reflectances were measured with synchrotron radiation. High normal-incidence reflectances of 23% at 8.8 nm, 40.8% at 9.4 nm, and 48.3% at 10.5 nm were achieved. However, the reflectance of Mo/Sr multilayers decreased rapidly after exposure to air. Attempts to use thin layers of carbon to passivate the surface of Mo/Sr multilayers were unsuccessful. Experimental results on the refractive index {tilde n} = 1-{delta} + i{beta} of yttrium and molybdenum in the 50-1300 eV energy region are reported in this work. This is the first time ever that values on the refractive index of yttrium are measured in this energy range. The absorption part {beta} was determined through transmittance measurements. The dispersive part {delta} was calculated by means of the Kramers-Kronig formalism. The newly determined values of the refractive index of molybdenum are in excellent agreement with the published data. Those of yttrium are more accurate and contain fine structures around the yttrium M-absorption edges where Mo/Y multilayers operate. These improved sets of optical data lead to better design and modeling of the optical properties of Mo/Y multilayers. The reflectance quality of Mo/Y multilayers is dependent on their optical and structural properties. To correlate these properties with the multilayer reflectance, x-ray diffraction, Rutherford backscattering spectrometry, and transmission electron microscopy were used to analyze samples. Normal-incidence reflectances of 32.6% at 9.27 nm, 38.4% at 9.48 nm, and 29.6% at 9.46 nm were obtained from three representative Mo/Y multilayers which had about 0%, 25%, and 39% atomic oxygen assimilated in their

  18. A 3D printed superconducting aluminium microwave cavity

    NASA Astrophysics Data System (ADS)

    Creedon, Daniel L.; Goryachev, Maxim; Kostylev, Nikita; Sercombe, Timothy B.; Tobar, Michael E.

    2016-07-01

    3D printing of plastics, ceramics, and metals has existed for several decades and has revolutionized many areas of manufacturing and science. Printing of metals, in particular, has found a number of applications in fields as diverse as customized medical implants, jet engine bearings, and rapid prototyping in the automotive industry. Although many techniques are used for 3D printing metals, they commonly rely on computer controlled melting or sintering of a metal alloy powder using a laser or electron beam. The mechanical properties of parts produced in such a way have been well studied, but little attention has been paid to their electrical properties. Here we show that a microwave cavity (resonant frequencies 9.9 and 11.2 GHz) 3D printed using an Al-12Si alloy exhibits superconductivity when cooled below the critical temperature of aluminium (1.2 K), with a performance comparable with the common 6061 alloy of aluminium. Superconducting cavities find application in numerous areas of physics, from particle accelerators to cavity quantum electrodynamics experiments. The result is achieved even with a very large concentration of non-superconducting silicon in the alloy of 12.18%, compared with Al-6061, which has between 0.4% and 0.8%. Our results may pave the way for the possibility of 3D printing superconducting cavity configurations that are otherwise impossible to machine.

  19. Multiscale modelling of gallium induced embrittlement in aluminium

    NASA Astrophysics Data System (ADS)

    Bhogireddy, Venkata Sai Pavan Kumar; Todorova, Mira; Spatschek, Robert; Neugebauer, Jörg

    Liquid metal embrittlement is a degradation phenomenon in which a solid metal undergoes brittle failure when it is stressed while in contact with a liquid metal. The transition from ductile to brittle metal failure manifests itself by rapid crack propagations which reduces the elongation to failure ratio. Combining density functional theory calculations with continuum methods, we study the liquid metal embrittlement of aluminium in contact with gallium. Comparing ab initio calculated energies for a Σ 3 and a Σ 5 Al grain boundary and their corresponding surface energies in the presence and absence of Ga, we identify critical Ga concentrations which result in a weakening of the mechanical strength of aluminium. Parametrising the DFT results in continuum model we obtain the concentration as a function of the strain in the system. In a final step we extend this approach and compute the stress field induced by cracks in bulk and at grain boundaries. The stress field explains the large segregation of gallium atoms at the crack tip and the crack tip's subsequent propagation.

  20. Catalytic spectrophotometric determination of trace aluminium with indigo carmine

    NASA Astrophysics Data System (ADS)

    Zheng, Huai-Li; Xiong, Wen-Qiang; Gong, Ying-Kun; Peng, De-Jun; Li, Ling-Chun

    2007-04-01

    A new catalytic spectrophotometric method is described for the determination of trace amounts of Al(III). The methods based on catalytic action of Al(III) on the oxidation of indigo carmine (IC) by ammonium persulfate in hexamethylene tetramine-hydrochloric acid ((CH 2) 6N 4-HCl) buffer medium (pH 5.4) and in the presence of surfactant—TritonX-100. The effects of some factors on the reaction speed were investigated. Aluminium concentration is linear for 0-1.2 × 10 -7 g/ml in this method. The detection limit of the proposed method is 1.96 × 10 -8 g/ml. Most of the foreign ions except for Cu(II), Fe(III) do not interfere with the determination, and the interference of Cu(II) and Fe(III) in this method can be removed by extraction with sodium diethyldithiocarbamate-carbon tetrachloride (DDTC-CCl 4). This system is a quasi-zero-order reaction for Al(III), but it is a quasi-first-order reaction for IC. The apparent rate constant is 2.62 × 10 -5 s -1 and the apparent activation energy is 6.60 kJ/mol in the system. The proposed method was applied to the determination of trace aluminium(III) in real samples with satisfactory results.