Sample records for ras signaling pathway

  1. Rabex-5 ubiquitin ligase activity restricts Ras signaling to establish pathway homeostasis in Drosophila.

    PubMed

    Yan, Hua; Jahanshahi, Maryam; Horvath, Elizabeth A; Liu, Hsiu-Yu; Pfleger, Cathie M

    2010-08-10

    The Ras signaling pathway allows cells to translate external cues into diverse biological responses. Depending on context and the threshold reached, Ras signaling can promote growth, proliferation, differentiation, or cell survival. Failure to maintain precise control of Ras can have adverse physiological consequences. Indeed, excess Ras signaling disrupts developmental patterning and causes developmental disorders [1, 2], and in mature tissues, it can lead to cancer [3-5]. We identify Rabex-5 as a new component of Ras signaling crucial for achieving proper pathway outputs in multiple contexts in vivo. We show that Drosophila Rabex-5 restricts Ras signaling to establish organism size, wing vein pattern, and eye versus antennal fate. Rabex-5 has both Rab5 guanine nucleotide exchange factor (GEF) activity that regulates endocytic trafficking [6] and ubiquitin ligase activity [7, 8]. Surprisingly, overexpression studies demonstrate that Rabex-5 ubiquitin ligase activity, not its Rab5 GEF activity, is required to restrict wing vein specification and to suppress the eye phenotypes of oncogenic Ras expression. Furthermore, genetic interaction experiments indicate that Rabex-5 acts at the step of Ras, and tissue culture studies show that Rabex-5 promotes Ras ubiquitination. Together, these findings reveal a new mechanism for attenuating Ras signaling in vivo and suggest an important role for Rabex-5-mediated Ras ubiquitination in pathway homeostasis. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors.

    PubMed

    Loboda, Andrey; Nebozhyn, Michael; Klinghoffer, Rich; Frazier, Jason; Chastain, Michael; Arthur, William; Roberts, Brian; Zhang, Theresa; Chenard, Melissa; Haines, Brian; Andersen, Jannik; Nagashima, Kumiko; Paweletz, Cloud; Lynch, Bethany; Feldman, Igor; Dai, Hongyue; Huang, Pearl; Watters, James

    2010-06-30

    Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast tumors.

  3. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors

    PubMed Central

    2010-01-01

    Background Hyperactivation of the Ras signaling pathway is a driver of many cancers, and RAS pathway activation can predict response to targeted therapies. Therefore, optimal methods for measuring Ras pathway activation are critical. The main focus of our work was to develop a gene expression signature that is predictive of RAS pathway dependence. Methods We used the coherent expression of RAS pathway-related genes across multiple datasets to derive a RAS pathway gene expression signature and generate RAS pathway activation scores in pre-clinical cancer models and human tumors. We then related this signature to KRAS mutation status and drug response data in pre-clinical and clinical datasets. Results The RAS signature score is predictive of KRAS mutation status in lung tumors and cell lines with high (> 90%) sensitivity but relatively low (50%) specificity due to samples that have apparent RAS pathway activation in the absence of a KRAS mutation. In lung and breast cancer cell line panels, the RAS pathway signature score correlates with pMEK and pERK expression, and predicts resistance to AKT inhibition and sensitivity to MEK inhibition within both KRAS mutant and KRAS wild-type groups. The RAS pathway signature is upregulated in breast cancer cell lines that have acquired resistance to AKT inhibition, and is downregulated by inhibition of MEK. In lung cancer cell lines knockdown of KRAS using siRNA demonstrates that the RAS pathway signature is a better measure of dependence on RAS compared to KRAS mutation status. In human tumors, the RAS pathway signature is elevated in ER negative breast tumors and lung adenocarcinomas, and predicts resistance to cetuximab in metastatic colorectal cancer. Conclusions These data demonstrate that the RAS pathway signature is superior to KRAS mutation status for the prediction of dependence on RAS signaling, can predict response to PI3K and RAS pathway inhibitors, and is likely to have the most clinical utility in lung and breast

  4. Molecular pathways: targeting RAC-p21-activated serine-threonine kinase signaling in RAS-driven cancers.

    PubMed

    Baker, Nicole M; Yee Chow, Hoi; Chernoff, Jonathan; Der, Channing J

    2014-09-15

    Cancers driven by oncogenic Ras proteins encompass some of the most deadly human cancer types, and there is a pressing need to develop therapies for these diseases. Although recent studies suggest that mutant Ras proteins may yet be druggable, the most promising and advanced efforts involve inhibitors of Ras effector signaling. Most efforts to target Ras signaling have been aimed at the ERK mitogen-activated protein kinase and the phosphoinositide 3-kinase signaling networks. However, to date, no inhibitors of these Ras effector pathways have been effective against RAS-mutant cancers. This ineffectiveness is due, in part, to the involvement of additional effectors in Ras-dependent cancer growth, such as the Rac small GTPase and the p21-activated serine-threonine kinases (PAK). PAK proteins are involved in many survival, cell motility, and proliferative pathways in the cell and may present a viable new target in Ras-driven cancers. In this review, we address the role and therapeutic potential of Rac and group I PAK proteins in driving mutant Ras cancers. ©2014 American Association for Cancer Research.

  5. Disorders of dysregulated signal traffic through the RAS-MAPK pathway: phenotypic spectrum and molecular mechanisms.

    PubMed

    Tartaglia, Marco; Gelb, Bruce D

    2010-12-01

    RAS GTPases control a major signaling network implicated in several cellular functions, including cell fate determination, proliferation, survival, differentiation, migration, and senescence. Within this network, signal flow through the RAF-MEK-ERK pathway-the first identified mitogen-associated protein kinase (MAPK) cascade-mediates early and late developmental processes controlling morphology determination, organogenesis, synaptic plasticity, and growth. Signaling through the RAS-MAPK cascade is tightly controlled; and its enhanced activation represents a well-known event in oncogenesis. Unexpectedly, in the past few years, inherited dysregulation of this pathway has been recognized as the cause underlying a group of clinically related disorders sharing facial dysmorphism, cardiac defects, reduced postnatal growth, ectodermal anomalies, variable cognitive deficits, and susceptibility to certain malignancies as major features. These disorders are caused by heterozygosity for mutations in genes encoding RAS proteins, regulators of RAS function, modulators of RAS interaction with effectors, or downstream signal transducers. Here, we provide an overview of the phenotypic spectrum associated with germline mutations perturbing RAS-MAPK signaling, the unpredicted molecular mechanisms converging toward the dysregulation of this signaling cascade, and major genotype-phenotype correlations. © 2010 New York Academy of Sciences.

  6. Molecular interaction between K-Ras and H-REV107 in the Ras signaling pathway.

    PubMed

    Han, Chang Woo; Jeong, Mi Suk; Jang, Se Bok

    2017-09-16

    Ras proteins are small GTPases that serve as master moderators of a large number of signaling pathways involved in various cellular processes. Activating mutations in Ras are found in about one-third of cancers. H-REV107, a K-Ras binding protein, plays an important role in determining K-Ras function. H-REV107 is a member of the HREV107 family of class II tumor suppressor genes and a growth inhibitory Ras target gene that suppresses cellular growth, differentiation, and apoptosis. Expression of H-REV107 was strongly reduced in about 50% of human carcinoma cell lines. However, the specific molecular mechanism by which H-REV107 inhibits Ras is still unknown. In the present study, we suggest that H-REV107 forms a strong complex with activating oncogenic mutation Q61H K-Ras from various biochemical binding assays and modeled structures. In addition, the interaction sites between K-Ras and H-REV107 were predicted based on homology modeling. Here, we found that some structure-based mutants of the K-Ras disrupted the complex formation with H-REV107. Finally, a novel molecular mechanism describing K-Ras and H-REV107 binding is suggested and insights into new K-Ras effector target drugs are provided. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Ras signaling in aging and metabolic regulation.

    PubMed

    Slack, Cathy

    2017-12-07

    Aberrant signal transduction downstream of the Ras GTPase has a well-established role in tumorigenesis. Mutations that result in hyperactivation of Ras are responsible for a third of all human cancers. Hence, small molecule inhibitors of the Ras signal transduction cascade have been under intense focus as potential cancer treatments. In both invertebrate and mammalian models, emerging evidence has also implicated components of the Ras signaling pathway in aging and metabolic regulation. Here, I review the current evidence for Ras signaling in these newly discovered roles highlighting the interactions between the Ras pathway and other longevity assurance mechanisms. Defining the role of Ras signaling in maintaining age-related health may have important implications for the development of interventions that could not only increase lifespan but also delay the onset and/or progression of age-related functional decline.

  8. Platelet-derived growth factor receptor mediates activation of ras through different signaling pathways in different cell types.

    PubMed Central

    Satoh, T; Fantl, W J; Escobedo, J A; Williams, L T; Kaziro, Y

    1993-01-01

    A series of pieces of evidence have shown that Ras protein acts as a transducer of the platelet-derived growth factor (PDGF) receptor-mediated signaling pathway: (i) formation of Ras.GTP is detected immediately on PDGF stimulation, and (ii) a dominant inhibitory mutant Ras, as well as a neutralizing anti-Ras antibody, can interfere with PDGF-induced responses. On the other hand, several signal transducing molecules including phosphatidylinositol 3-kinase (PI3-K), GTPase-activating protein (GAP), and phospholipase C gamma (PLC gamma) bind directly to the PDGF receptor and become tyrosine phosphorylated. Recently, it was shown that specific phosphorylated tyrosines of the PDGF receptor are responsible for interaction between the receptor and each signaling molecule. However, the roles of these signaling molecules have not been elucidated, and it remains unclear which molecules are implicated in the Ras pathway. In this study, we measured Ras activation in cell lines expressing mutant PDGF receptors that are deficient in coupling with specific molecules. In fibroblast CHO cells, a mutant receptor (Y708F/Y719F [PI3-K-binding sites]) was unable to stimulate Ras, whereas another mutant (Y739F [the GAP-binding site]) could do so, suggesting an indispensable role of PI3-K or a protein that binds to the same sites as PI3-K for PDGF-stimulated Ras activation. By contrast, both of the above mutants were capable of stimulating Ras protein in a pro-B-cell line, BaF3. Furthermore, a mutant receptor (Y977F/Y989F [PLC gamma-binding sites]) could fully activate Ras, and the direct activation of protein kinase C and calcium mobilization had almost no effect on the GDP/GTP state of Ras in this cell line. These results suggest that, in the pro-B-cell transfectants, each of the above pathways (PI3-K, GAP, and PLC gamma) can be eliminated without a loss of Ras activation. It remains unclear whether another unknown essential pathway which regulates Ras protein exists within BaF3 cells

  9. Ras plasma membrane signalling platforms

    PubMed Central

    2005-01-01

    The plasma membrane is a complex, dynamic structure that provides platforms for the assembly of many signal transduction pathways. These platforms have the capacity to impose an additional level of regulation on cell signalling networks. In this review, we will consider specifically how Ras proteins interact with the plasma membrane. The focus will be on recent studies that provide novel spatial and dynamic insights into the micro-environments that different Ras proteins utilize for signal transduction. We will correlate these recent studies suggesting Ras proteins might operate within a heterogeneous plasma membrane with earlier biochemical work on Ras signal transduction. PMID:15954863

  10. The Ras/Raf signaling pathway is required for progression of mouse embryos through the two-cell stage.

    PubMed Central

    Yamauchi, N; Kiessling, A A; Cooper, G M

    1994-01-01

    We have used microinjection of antisense oligonucleotides, monoclonal antibody, and the dominant negative Ras N-17 mutant to interfere with Ras expression and function in mouse oocytes and early embryos. Microinjection of either ras antisense oligonucleotides or anti-Ras monoclonal antibody Y13-259 did not affect normal progression of oocytes through meiosis and arrest at metaphase II. However, microinjection of fertilized eggs with constructs expressing Ras N-17 inhibited subsequent development through the two-cell stage. The inhibitory effect of Ras N-17 was overcome by simultaneous injection of a plasmid expressing an active raf oncogene, indicating that it resulted from interference with the Ras/Raf signaling pathway. In contrast to the inhibition of two-cell embryo development resulting from microinjection of pronuclear stage eggs, microinjection of late two-cell embryos with Ras N-17 expression constructs did not affect subsequent cleavages and development to morulae and blastocysts. It thus appears that the Ras/Raf signaling pathway, presumably activated by autocrine growth factor stimulation, is specifically required at the two-cell stage, which is the time of transition between maternal and embryonic gene expression in mouse embryos. Images PMID:7935384

  11. In TCR-Stimulated T-cells, N-ras Regulates Specific Genes and Signal Transduction Pathways

    PubMed Central

    Lynch, Stephen J.; Zavadil, Jiri; Pellicer, Angel

    2013-01-01

    It has been recently shown that N-ras plays a preferential role in immune cell development and function; specifically: N-ras, but not H-ras or K-ras, could be activated at and signal from the Golgi membrane of immune cells following a low level T-cell receptor stimulus. The goal of our studies was to test the hypothesis that N-ras and H-ras played distinct roles in immune cells at the level of the transcriptome. First, we showed via mRNA expression profiling that there were over four hundred genes that were uniquely differentially regulated either by N-ras or H-ras, which provided strong evidence in favor of the hypothesis that N-ras and H-ras have distinct functions in immune cells. We next characterized the genes that were differentially regulated by N-ras in T cells following a low-level T-cell receptor stimulus. Of the large pool of candidate genes that were differentially regulated by N-ras downstream of TCR ligation, four genes were verified in qRT-PCR-based validation experiments (Dntt, Slc9a6, Chst1, and Lars2). Finally, although there was little overlap between individual genes that were regulated by N-ras in unstimulated thymocytes and stimulated CD4+ T-cells, there was a nearly complete correspondence between the signaling pathways that were regulated by N-ras in these two immune cell types. PMID:23755101

  12. An Interdisciplinary Approach for Designing Kinetic Models of the Ras/MAPK Signaling Pathway.

    PubMed

    Reis, Marcelo S; Noël, Vincent; Dias, Matheus H; Albuquerque, Layra L; Guimarães, Amanda S; Wu, Lulu; Barrera, Junior; Armelin, Hugo A

    2017-01-01

    We present in this article a methodology for designing kinetic models of molecular signaling networks, which was exemplarily applied for modeling one of the Ras/MAPK signaling pathways in the mouse Y1 adrenocortical cell line. The methodology is interdisciplinary, that is, it was developed in a way that both dry and wet lab teams worked together along the whole modeling process.

  13. Graded inhibition of oncogenic Ras-signaling by multivalent Ras-binding domains

    PubMed Central

    2014-01-01

    Background Ras is a membrane-associated small G-protein that funnels growth and differentiation signals into downstream signal transduction pathways by cycling between an inactive, GDP-bound and an active, GTP-bound state. Aberrant Ras activity as a result of oncogenic mutations causes de novo cell transformation and promotes tumor growth and progression. Results Here, we describe a novel strategy to block deregulated Ras activity by means of oligomerized cognate protein modules derived from the Ras-binding domain of c-Raf (RBD), which we named MSOR for multivalent scavengers of oncogenic Ras. The introduction of well-characterized mutations into RBD was used to adjust the affinity and hence the blocking potency of MSOR towards activated Ras. MSOR inhibited several oncogenic Ras-stimulated processes including downstream activation of Erk1/2, induction of matrix-degrading enzymes, cell motility and invasiveness in a graded fashion depending on the oligomerization grade and the nature of the individual RBD-modules. The amenability to accurate experimental regulation was further improved by engineering an inducible MSOR-expression system to render the reversal of oncogenic Ras effects controllable. Conclusion MSOR represent a new tool for the experimental and possibly therapeutic selective blockade of oncogenic Ras signals. PMID:24383791

  14. Fendiline Inhibits K-Ras Plasma Membrane Localization and Blocks K-Ras Signal Transmission

    PubMed Central

    van der Hoeven, Dharini; Cho, Kwang-jin; Ma, Xiaoping; Chigurupati, Sravanthi; Parton, Robert G.

    2013-01-01

    Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics. PMID:23129805

  15. PI3K: A Crucial Piece in the RAS Signaling Puzzle.

    PubMed

    Krygowska, Agata Adelajda; Castellano, Esther

    2018-06-01

    RAS proteins are key signaling switches essential for control of proliferation, differentiation, and survival of eukaryotic cells. RAS proteins are mutated in 30% of human cancers. In addition, mutations in upstream or downstream signaling components also contribute to oncogenic activation of the pathway. RAS proteins exert their functions through activation of several signaling pathways and dissecting the contributions of these effectors in normal cells and in cancer is an ongoing challenge. In this review, we summarize our current knowledge about how RAS regulates type I phosphatidylinositol 3-kinase (PI3K), one of the main RAS effectors. RAS signaling through PI3K is necessary for normal lymphatic vasculature development and for RAS-induced transformation in vitro and in vivo, especially in lung cancer, where it is essential for tumor initiation and necessary for tumor maintenance. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  16. Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 1: Growth factor and Ras signaling pathways.

    PubMed

    Newton, Herbert B

    2003-10-01

    Brain tumors are a diverse group of malignancies that remain refractory to conventional treatment approaches, including radiotherapy and cytotoxic chemotherapy. Molecular neuro-oncology has now begun to clarify the transformed phenotype of brain tumors and identify oncogenic pathways that may be amenable to targeted therapy. Growth factor signaling pathways are often upregulated in brain tumors and may contribute to oncogenesis through autocrine and paracrine mechanisms. Excessive growth factor receptor stimulation can also lead to overactivity of the Ras signaling pathway, which is frequently aberrant in brain tumors. Receptor tyrosine kinase inhibitors, antireceptor monoclonal antibodies and antisense oligonucleotides are targeted approaches under investigation as methods to regulate aberrant growth factor signaling pathways in brain tumors. Several receptor tyrosine kinase inhibitors, including imatinib mesylate (Gleevec), gefitinib (Iressa) and erlotinib (Tarceva), have entered clinical trials for high-grade glioma patients. Farnesyl transferase inhibitors, such as tipifarnib (Zarnestra), which impair processing of proRas and inhibit the Ras signaling pathway, have also entered clinical trials for patients with malignant gliomas. Further development of targeted therapies and evaluation of these new agents in clinical trials will be needed to improve survival and quality of life of patients with brain tumors.

  17. Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway

    PubMed Central

    Drosten, Matthias; Sum, Eleanor Y. M.; Lechuga, Carmen G.; Simón-Carrasco, Lucía; Jacob, Harrys K. C.; García-Medina, Raquel; Huang, Sidong; Beijersbergen, Roderick L.; Bernards, Rene; Barbacid, Mariano

    2014-01-01

    The Ras family of small GTPases constitutes a central node in the transmission of mitogenic stimuli to the cell cycle machinery. The ultimate receptor of these mitogenic signals is the retinoblastoma (Rb) family of pocket proteins, whose inactivation is a required step to license cell proliferation. However, little is known regarding the molecular events that connect Ras signaling with the cell cycle. Here, we provide genetic evidence to illustrate that the p53/p21 Cdk-interacting protein 1 (Cip1)/Rb axis is an essential component of the Ras signaling pathway. Indeed, knockdown of p53, p21Cip1, or Rb restores proliferative properties in cells arrested by ablation of the three Ras loci, H-, N- and K-Ras. Ras signaling selectively inactivates p53-mediated induction of p21Cip1 expression by inhibiting acetylation of specific lysine residues in the p53 DNA binding domain. Proliferation of cells lacking both Ras proteins and p53 can be prevented by reexpression of the human p53 ortholog, provided that it retains an active DNA binding domain and an intact lysine residue at position 164. These results unveil a previously unidentified role for p53 in preventing cell proliferation under unfavorable mitogenic conditions. Moreover, we provide evidence that cells lacking Ras and p53 proteins owe their proliferative properties to the unexpected retroactivation of the Raf/Mek/Erk cascade by a Ras-independent mechanism. PMID:25288756

  18. BMP suppresses PTEN expression via RAS/ERK signaling.

    PubMed

    Beck, Stayce E; Carethers, John M

    2007-08-01

    Bone morphogenetic protein (BMP), a member of the transforming growth factor beta family, classically utilizes the SMAD signaling pathway for its growth suppressive effects,and loss of this signaling cascade may accelerate cell growth. In the colon cancer predisposition syndrome Juvenile Polyposis, as well as in the late progression stages of nonsyndromic colorectal cancers, SMAD4 function is typically abrogated. Here, we utilized the SMAD4-null SW480 colon cancer cell line to examine BMPs effect on a potential target gene, PTEN, and how its expression might be regulated. Initial treatment of the SMAD4-null cells with BMP resulted in mild growth suppression, but with prolonged exposure to BMP, the cells become growth stimulatory, which coincided with observed decreases in transcription and translation of PTEN, and with corresponding increases in phospho-AKT protein levels. BMP-induced PTEN suppression was mediated via the RAS/ERK pathway, as pharmacologic inhibition of RAS/ERK, or interference with protein function in the cytosol by DN-RAS prevented BMP-induced growth promotion and changes in PTEN levels, as did treatment with noggin, a BMP ligand inhibitor. Thus, BMP downregulates PTEN via RAS/ERK in a SMAD4-null environment that contributes to cell growth, and constitutes a SMAD4-independent but BMP-responsive signaling pathway.

  19. CREBBP knockdown enhances RAS/RAF/MEK/ERK signaling in Ras pathway mutated acute lymphoblastic leukemia but does not modulate chemotherapeutic response.

    PubMed

    Dixon, Zach A; Nicholson, Lindsay; Zeppetzauer, Martin; Matheson, Elizabeth; Sinclair, Paul; Harrison, Christine J; Irving, Julie A E

    2017-04-01

    Relapsed acute lymphoblastic leukemia is the most common cause of cancer-related mortality in young people and new therapeutic strategies are needed to improve outcome. Recent studies have shown that heterozygous inactivating mutations in the histone acetyl transferase, CREBBP , are particularly frequent in relapsed childhood acute lymphoblastic leukemia and associated with a hyperdiploid karyotype and KRAS mutations. To study the functional impact of CREBBP haploinsufficiency in acute lymphoblastic leukemia, RNA interference was used to knock down expression of CREBBP in acute lymphoblastic leukemia cell lines and various primagraft acute lymphoblastic leukemia cells. We demonstrate that attenuation of CREBBP results in reduced acetylation of histone 3 lysine 18, but has no significant impact on cAMP-dependent target gene expression. Impaired induction of glucocorticoid receptor targets was only seen in 1 of 4 CREBBP knockdown models, and there was no significant difference in glucocorticoid-induced apoptosis, sensitivity to other acute lymphoblastic leukemia chemotherapeutics or histone deacetylase inhibitors. Importantly, we show that CREBBP directly acetylates KRAS and that CREBBP knockdown enhances signaling of the RAS/RAF/MEK/ERK pathway in Ras pathway mutated acute lymphoblastic leukemia cells, which are still sensitive to MEK inhibitors. Thus, CREBBP mutations might assist in enhancing oncogenic RAS signaling in acute lymphoblastic leukemia but do not alter response to MEK inhibitors. Copyright© Ferrata Storti Foundation.

  20. Noncanonical control of C. elegans germline apoptosis by the insulin/IGF-1 and Ras/MAPK signaling pathways.

    PubMed

    Perrin, A J; Gunda, M; Yu, B; Yen, K; Ito, S; Forster, S; Tissenbaum, H A; Derry, W B

    2013-01-01

    The insulin/IGF-1 pathway controls a number of physiological processes in the nematode worm Caenorhabditis elegans, including development, aging and stress response. We previously found that the Akt/PKB ortholog AKT-1 dampens the apoptotic response to genotoxic stress in the germline by negatively regulating the p53-like transcription factor CEP-1. Here, we report unexpected rearrangements to the insulin/IGF-1 pathway, whereby the insulin-like receptor DAF-2 and 3-phosphoinositide-dependent protein kinase PDK-1 oppose AKT-1 to promote DNA damage-induced apoptosis. While DNA damage does not affect phosphorylation at the PDK-1 site Thr350/Thr308 of AKT-1, it increased phosphorylation at Ser517/Ser473. Although ablation of daf-2 or pdk-1 completely suppressed akt-1-dependent apoptosis, the transcriptional activation of CEP-1 was unaffected, suggesting that daf-2 and pdk-1 act independently or downstream of cep-1 and akt-1. Ablation of the akt-1 paralog akt-2 or the downstream target of the insulin/IGF-1 pathway daf-16 (a FOXO transcription factor) restored sensitivity to damage-induced apoptosis in daf-2 and pdk-1 mutants. In addition, daf-2 and pdk-1 mutants have reduced levels of phospho-MPK-1/ERK in their germ cells, indicating that the insulin/IGF-1 pathway promotes Ras signaling in the germline. Ablation of the Ras effector gla-3, a negative regulator of mpk-1, restored sensitivity to apoptosis in daf-2 mutants, suggesting that gla-3 acts downstream of daf-2. In addition, the hypersensitivity of let-60/Ras gain-of-function mutants to damage-induced apoptosis was suppressed to wild-type levels by ablation of daf-2. Thus, insulin/IGF-1 signaling selectively engages AKT-2/DAF-16 to promote DNA damage-induced germ cell apoptosis downstream of CEP-1 through the Ras pathway.

  1. Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway.

    PubMed

    Jeong, Woo-Jeong; Ro, Eun Ji; Choi, Kang-Yell

    2018-01-01

    Aberrant activation of the Wnt/β-catenin and RAS-extracellular signal-regulated kinase (ERK) pathways play important roles in the tumorigenesis of many different types of cancer, most notably colorectal cancer (CRC). Genes for these two pathways, such as adenomatous polyposis coli ( APC ) and KRAS are frequently mutated in human CRC, and involved in the initiation and progression of the tumorigenesis, respectively. Moreover, recent studies revealed interaction of APC and KRAS mutations in the various stages of colorectal tumorigenesis and even in metastasis accompanying activation of the cancer stem cells (CSCs). A key event in the synergistic cooperation between Wnt/β-catenin and RAS-ERK pathways is a stabilization of both β-catenin and RAS especially mutant KRAS by APC loss, and pathological significance of this was indicated by correlation of increased β-catenin and RAS levels in human CRC where APC mutations occur as high as 90% of CRC patients. Together with the notion of the protein activity reduction by lowering its level, inhibition of both β-catenin and RAS especially by degradation could be a new ideal strategy for development of anti-cancer drugs for CRC. In this review, we will discuss interaction between the Wnt/β-catenin and RAS-ERK pathways in the colorectal tumorigenesis by providing the mechanism of RAS stabilization by aberrant activation of Wnt/β-catenin. We will also discuss our small molecular anti-cancer approach controlling CRC by induction of specific degradations of both β-catenin and RAS via targeting Wnt/β-catenin pathway especially for the KYA1797K, a small molecule specifically binding at the regulator of G-protein signaling (RGS)-domain of Axin.

  2. Ras Signaling Regulates Stem Cells and Amelogenesis in the Mouse Incisor.

    PubMed

    Zheng, X; Goodwin, A F; Tian, H; Jheon, A H; Klein, O D

    2017-11-01

    The role of Ras signaling during tooth development is poorly understood. Ras proteins-which are activated by many upstream pathways, including receptor tyrosine kinase cascades-signal through multiple effectors, such as the mitogen-activated protein kinase (MAPK) and PI3K pathways. Here, we utilized the mouse incisor as a model to study how the MAPK and PI3K pathways regulate dental epithelial stem cells and amelogenesis. The rodent incisor-which grows continuously throughout the life of the animal due to the presence of epithelial and mesenchymal stem cells-provides a model for the study of ectodermal organ renewal and regeneration. Utilizing models of Ras dysregulation as well as inhibitors of the MAPK and PI3K pathways, we found that MAPK and PI3K regulate dental epithelial stem cell activity, transit-amplifying cell proliferation, and enamel formation in the mouse incisor.

  3. RAS signalling in energy metabolism and rare human diseases.

    PubMed

    Dard, L; Bellance, N; Lacombe, D; Rossignol, R

    2018-05-08

    The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation-arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis.

    PubMed

    Tsujita, Maristela; Batista, Wagner L; Ogata, Fernando T; Stern, Arnold; Monteiro, Hugo P; Arai, Roberto J

    2008-05-16

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras(C118S)) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinases by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.

  5. The nitric oxide-sensitive p21Ras-ERK pathway mediates S-nitrosoglutathione-induced apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsujita, Maristela; Faculdade de Ciencias Farmaceuticas, Universidade de Sao Paulo, SP; Batista, Wagner L.

    2008-05-16

    p21Ras protein plays a critical role in cellular signaling that induces either cell cycle progression or apoptosis. Nitric oxide (NO) has been consistently reported to activate p21Ras through the redox sensitive cysteine residue (118). In this study, we demonstrated that the p21Ras-ERK pathway regulates THP-1 monocyte/macrophage apoptosis induced by S-nitrosoglutathione (SNOG). This was apparent from studies in THP-1 cells expressing NO-insensitive p21Ras (p21Ras{sup C118S}) where the pro-apoptotic action of SNOG was almost abrogated. Three major MAP kinase pathways (ERK, JNK, and p38) that are downstream to p21Ras were investigated. It was observed that only the activation of ERK1/2 MAP kinasesmore » by SNOG in THP-1 cells was attributable to p21Ras. The inhibition of the ERK pathway by PD98059 markedly attenuated apoptosis in SNOG-treated THP-1 cells, but had a marginal effect on SNOG-treated THP-1 cells expressing NO-insensitive p21Ras. The inhibition of the JNK and p38 pathways by selective inhibitors had no marked effects on the percentage of apoptosis. The induction of p21Waf1 expression by SNOG was observed in THP-1 cells harboring mutant and wild-type p21Ras, however in cells expressing mutant Ras, the expression of p21Waf1 was significantly attenuated. The treatment of THP-1 cells expressing wild-type p21Ras with PD98059 resulted in significant attenuation of p21Waf1 expression. These results indicate that the redox sensitive p21Ras-ERK pathway plays a critical role in sensing and delivering the pro-apoptotic signaling mediated by SNOG.« less

  6. siRNA blocking the RAS signalling pathway and inhibits the growth of oesophageal squamous cell carcinoma in nude mice.

    PubMed

    Wang, Xinjie; Zheng, Yuling; Fan, Qingxia; Zhang, Xudong; Shi, Yonggang

    2014-12-01

    The aim of this study was to study RAS-siRNA blocking RAS pathway and suppressing cell growth in human oesophageal squamous cell carcinoma in nude mice. The methods in this study was to construct RAS-siRNA expression vector, establish 40 oesophageal squamous cell carcinoma xenograft animal models and divided them into five groups: control group, siRNA control group, RAS-siRNA group, paclitaxel group and RAS-siRNA and paclitaxel group. We observed tumour growth in nude mice, studied histology by HE staining, tumour growth inhibition by TUNEL assay and detected the RAS, MAPK and cyclin D1 protein expression by immunohistochemistry and western blot. We have obtained the following results: (i) successfully established animal models; (ii) nude mice in each group after treatment inhibited tumour volume was significantly reduced compared with the control group (p < 0.05); (iii) compared with the control group, the number of apoptotic cells were significantly increased in the siRNA control group and the RAS-siRNA group, and the number of apoptosis cells in the paclitaxel and RAS-siRNA group is significantly most than the paclitaxel group and RAS-siRNA group (p < 0.05); and (iv) after treatment, RAS, MAPK and cyclin D1 expression in five groups was decreasing gradually. After adding paclitaxel, the protein expression in the paclitaxel and RAS-siRNA group was significantly lower than that of paclitaxel group, negative control and paclitaxel group (p < 0.05). We therefore conclude that RAS-siRNA can block the RAS signal transduction pathway, reduce the activity of tumour cells, arrest tumour cell cycle, promote apoptosis, inhibit cell proliferation and increase tumour cell sensitivity to chemotherapeutic drugs. Copyright © 2014 John Wiley & Sons, Ltd.

  7. Inhibition of the Ras-Net (Elk-3) pathway by a novel pyrazole that affects microtubules.

    PubMed

    Wasylyk, Christine; Zheng, Hong; Castell, Christelle; Debussche, Laurent; Multon, Marie-Christine; Wasylyk, Bohdan

    2008-03-01

    Net (Elk-3/SAP-2/Erp) is a transcription factor that is phosphorylated and activated by the Ras-extracellular signal-regulated kinase (Erk) signaling pathway and is involved in wound healing, angiogenesis, and tumor growth. In a cell-based screen for small molecule inhibitors of Ras activation of Net transcriptional activity, we identified a novel pyrazole, XRP44X. XRP44X inhibits fibroblast growth factor 2 (FGF-2)-induced Net phosphorylation by the Ras-Erk signaling upstream from Ras. It also binds to the colchicine-binding site of tubulin, depolymerizes microtubules, stimulates cell membrane blebbing, and affects the morphology of the actin skeleton. Interestingly, Combretastin-A4, which produces similar effects on the cytoskeleton, also inhibits FGF-2 Ras-Net signaling. This differs from other classes of agents that target microtubules, which have either little effect (vincristine) or no effect (docetaxel and nocodazole) on the Ras-Net pathway. XRP44X inhibits various cellular properties, including cell growth, cell cycle progression, and aortal sprouting, similar to other molecules that bind to the tubulin colchicine site. XRP44X has the potentially interesting property of connecting two important pathways involved in cell transformation and may thereby represent an interesting class of molecules that could be developed for cancer treatment.

  8. Yeast as a model for Ras signalling.

    PubMed

    Tisi, Renata; Belotti, Fiorella; Martegani, Enzo

    2014-01-01

    For centuries yeast species have been popular hosts for classical biotechnology processes, such as baking, brewing, and wine making, and more recently for recombinant proteins production, thanks to the advantages of unicellular organisms (i.e., ease of genetic manipulation and rapid growth) together with the ability to perform eukaryotic posttranslational modifications. Moreover, yeast cells have been used for few decades as a tool for identifying the genes and pathways involved in basic cellular processes such as the cell cycle, aging, and stress response. In the budding yeast S. cerevisiae the Ras/cAMP/PKA pathway is directly involved in the regulation of metabolism, cell growth, stress resistance, and proliferation in response to the availability of nutrients and in the adaptation to glucose, controlling cytosolic cAMP levels and consequently the cAMP-dependent protein kinase (PKA) activity. Moreover, Ras signalling has been identified in several pathogenic yeasts as a key controller for virulence, due to its involvement in yeast morphogenesis. Nowadays, yeasts are still useful for Ras-like proteins investigation, both as model organisms and as a test tube to study variants of heterologous Ras-like proteins.

  9. A Phenotype-Based RNAi Screening for Ras-ERK/MAPK Signaling-Associated Stem Cell Regulators in C. elegans.

    PubMed

    Lee, Myon-Hee; Yoon, Dong Suk

    2017-01-01

    Stem cells have the ability to self-renew and to generate differentiated cell types. A regulatory network that controls this balance is critical for stem cell homeostasis and normal animal development. Particularly, Ras-ERK/MAPK signaling pathway is critical for stem cell self-renewal and differentiation in mammals, including humans. Aberrant regulation of Ras-ERK/MAPK signaling pathway results in either stem cell or overproliferation. Therefore, the identification of Ras-ERK/MAPK signaling pathway-associated regulators is critical to understand the mechanism of stem cell (possibly cancer stem cell) control. In this report, using the nematode C. elegans mutants, we developed a methodology for a phenotype-based RNAi screening that identifies stem cell regulator genes associated with Ras-ERK/MAPK signaling within the context of a whole organism. Importantly, this phenotype-based RNAi screening can be applied for other stem cell-associated signaling pathways such as Wnt/β-catenin and Notch using the C. elegans.

  10. Small molecule stabilization of the KSR inactive state antagonizes oncogenic Ras signalling

    PubMed Central

    Dhawan, Neil S.; scopton, Alex P.; Dar, Arvin C.

    2016-01-01

    Deregulation of the Ras–mitogen activated protein kinase (MAPK) pathway is an early event in many different cancers and a key driver of resistance to targeted therapies1. Sustained signalling through this pathway is caused most often by mutations in K-Ras, which biochemically favours the stabilization of active RAF signalling complexes2. Kinase suppressor of Ras (KSR) is a MAPK scaffold3–5 that is subject to allosteric regulation through dimerization with RAF6,7. Direct targeting of KSR could have important therapeutic implications for cancer; however, testing this hypothesis has been difficult owing to a lack of small-molecule antagonists of KSR function. Guided by KSR mutations that selectively suppress oncogenic, but not wild-type, Ras signalling, we developed a class of compounds that stabilize a previously unrecognized inactive state of KSR. These compounds, exemplified by APS-2-79, modulate KSR-dependent MAPK signalling by antagonizing RAF heterodimerization as well as the conformational changes required for phosphorylation and activation of KSR-bound MEK (mitogen-activated protein kinase kinase). Furthermore, APS-2-79 increased the potency of several MEK inhibitors specifically within Ras-mutant cell lines by antagonizing release of negative feedback signalling, demonstrating the potential of targeting KSR to improve the efficacy of current MAPK inhibitors. These results reveal conformational switching in KSR as a druggable regulator of oncogenic Ras, and further suggest co-targeting of enzymatic and scaffolding activities within Ras–MAPK signalling complexes as a therapeutic strategy for overcoming Ras-driven cancers. PMID:27556948

  11. Ras promotes cell survival by antagonizing both JNK and Hid signals in the Drosophila eye.

    PubMed

    Wu, Yue; Zhuang, Yuan; Han, Min; Xu, Tian; Deng, Kejing

    2009-10-20

    Programmed cell death, or apoptosis, is a fundamental physiological process during normal development or in pathological conditions. The activation of apoptosis can be elicited by numerous signalling pathways. Ras is known to mediate anti-apoptotic signals by inhibiting Hid activity in the Drosophila eye. Here we report the isolation of a new loss-of-function ras allele, rasKP, which causes excessive apoptosis in the Drosophila eye. This new function is likely to be mediated through the JNK pathway since the inhibition of JNK signalling can significantly suppress rasKP-induced apoptosis, whereas the removal of hid only weakly suppresses the phenotype. Furthermore, the reduction of JNK signalling together with the expression of the baculovirus caspase inhibitor p35, which blocks Hid activity, strongly suppresses the rasKP cell death. In addition, we find a strong correlation between rasKP-induced apoptosis in the eye disc and the activation of JNK signalling. In the Drosophila eye, Ras may protect cells from apoptosis by inhibiting both JNK and Hid activities. Surprisingly, reducing Ras activity in the wing, however, does not cause apoptosis but rather affects cell and organ size. Thus, in addition to its requirement for cell viability, Ras appears to mediate different biological roles depending on the developmental context and on the level of its expression.

  12. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway

    DOE PAGES

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; ...

    2015-06-16

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referredmore » to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRas G12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRas G12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors.« less

  13. Ras-GTP dimers activate the Mitogen-Activated Protein Kinase (MAPK) pathway

    PubMed Central

    Nan, Xiaolin; Tamgüney, Tanja M.; Collisson, Eric A.; Lin, Li-Jung; Pitt, Cameron; Galeas, Jacqueline; Lewis, Sophia; Gray, Joe W.; McCormick, Frank; Chu, Steven

    2015-01-01

    Rat sarcoma (Ras) GTPases regulate cell proliferation and survival through effector pathways including Raf-MAPK, and are the most frequently mutated genes in human cancer. Although it is well established that Ras activity requires binding to both GTP and the membrane, details of how Ras operates on the cell membrane to activate its effectors remain elusive. Efforts to target mutant Ras in human cancers to therapeutic benefit have also been largely unsuccessful. Here we show that Ras-GTP forms dimers to activate MAPK. We used quantitative photoactivated localization microscopy (PALM) to analyze the nanoscale spatial organization of PAmCherry1-tagged KRas 4B (hereafter referred to KRas) on the cell membrane under various signaling conditions. We found that at endogenous expression levels KRas forms dimers, and KRasG12D, a mutant that constitutively binds GTP, activates MAPK. Overexpression of KRas leads to formation of higher order Ras nanoclusters. Conversely, at lower expression levels, KRasG12D is monomeric and activates MAPK only when artificially dimerized. Moreover, dimerization and signaling of KRas are both dependent on an intact CAAX (C, cysteine; A, aliphatic; X, any amino acid) motif that is also known to mediate membrane localization. These results reveal a new, dimerization-dependent signaling mechanism of Ras, and suggest Ras dimers as a potential therapeutic target in mutant Ras-driven tumors. PMID:26080442

  14. Ras-Mediated Signal Transduction and Virulence in Human Pathogenic Fungi

    PubMed Central

    Fortwendel, Jarrod R.

    2013-01-01

    Signal transduction pathways regulating growth and stress responses are areas of significant study in the effort to delineate pathogenic mechanisms of fungi. In-depth knowledge of signal transduction events deepens our understanding of how a fungal pathogen is able to sense changes in the environment and respond accordingly by modulation of gene expression and re-organization of cellular activities to optimize fitness. Members of the Ras protein family are important regulators of growth and differentiation in eukaryotic organisms, and have been the focus of numerous studies exploring fungal pathogenesis. Here, the current data regarding Ras signal transduction are reviewed for three major pathogenic fungi: Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus. Particular emphasis is placed on Ras-protein interactions during control of morphogenesis, stress response and virulence. PMID:24855584

  15. Ras trafficking, localization and compartmentalized signalling

    PubMed Central

    Prior, Ian A.; Hancock, John F.

    2012-01-01

    Ras proteins are proto-oncogenes that are frequently mutated in human cancers. Three closely related isoforms, HRAS, KRAS and NRAS, are expressed in all cells and have overlapping but distinctive functions. Recent work has revealed how differences between the Ras isoforms in their trafficking, localization and protein-membrane orientation enable signalling specificity to be determined. We review the various strategies used to characterize compartmentalized Ras localization and signalling. Localization is an important contextual modifier of signalling networks and insights from the Ras system are of widespread relevance for researchers interested in signalling initiated from membranes. PMID:21924373

  16. PTPRS Regulates Colorectal Cancer RAS Pathway Activity by Inactivating Erk and Preventing Its Nuclear Translocation.

    PubMed

    Davis, Thomas B; Yang, Mingli; Schell, Michael J; Wang, Heiman; Ma, Le; Pledger, W Jack; Yeatman, Timothy J

    2018-06-18

    Colorectal cancer (CRC) growth and progression is frequently driven by RAS pathway activation through upstream growth factor receptor activation or through mutational activation of KRAS or BRAF. Here we describe an additional mechanism by which the RAS pathway may be modulated in CRC. PTPRS, a receptor-type protein tyrosine phosphatase, appears to regulate RAS pathway activation through ERK. PTPRS modulates ERK phosphorylation and subsequent translocation to the nucleus. Native mutations in PTPRS, present in ~10% of CRC, may reduce its phosphatase activity while increasing ERK activation and downstream transcriptional signaling.

  17. Targeting the RAS oncogene

    PubMed Central

    Takashima, Asami

    2013-01-01

    Introduction The Ras proteins (K-Ras, N-Ras, H-Ras) are GTPases that function as molecular switches for a variety of critical cellular activities and their function is tightly and temporally regulated in normal cells. Oncogenic mutations in the RAS genes, which create constitutively-active Ras proteins, can result in uncontrolled proliferation or survival in tumor cells. Areas covered The paper discusses three therapeutic approaches targeting the Ras pathway in cancer: 1) Ras itself, 2) Ras downstream pathways, and 3) synthetic lethality. The most adopted approach is targeting Ras downstream signaling, and specifically the PI3K-AKT-mTOR and Raf-MEK pathways, as they are frequently major oncogenic drivers in cancers with high Ras signaling. Although direct targeting of Ras has not been successful clinically, newer approaches being investigated in preclinical studies, such as RNA interference-based and synthetic lethal approaches, promise great potential for clinical application. Expert opinion The challenges of current and emerging therapeutics include the lack of “tumor specificity” and their limitation to those cancers which are “dependent” upon aberrant Ras signaling for survival. While the newer approaches have the potential to overcome these limitations, they also highlight the importance of robust preclinical studies and bidirectional translational research for successful clinical development of Ras-related targeted therapies. PMID:23360111

  18. Poricoic acid ZA, a novel RAS inhibitor, attenuates tubulo-interstitial fibrosis and podocyte injury by inhibiting TGF-β/Smad signaling pathway.

    PubMed

    Wang, Ming; Chen, Dan-Qian; Wang, Min-Chang; Chen, Hua; Chen, Lin; Liu, Dan; Zhao, Hui; Zhao, Ying-Yong

    2017-12-01

    The pathogenesis of tubulo-interstitial fibrosis and glomerulosclerosisis was characterized by cellular hypertrophy, extracellular matrix accumulation and podocyte detachment. Poricoic acid ZA (PZA) is a tetracyclic triterpenoid compound extracted from the surface layer of Poria cocos (LPC), which have been used extensively for diuretic and renoprotective effects. The anti-fibrotic effect of PZA is investigated in HK-2 cells and podocytes induced by TGF-β1 and angiotensin II (ANGII). qRT-PCR, siRNA, immunofluorescence staining, co-immunoprecipitation and Western blot analyses are used to evaluate the expression of RAS signaling, TGF-β/Smad pathway, epithelial-to-mesenchymal transition (EMT) and podocyte markers. PZA restores the mRNA and protein expression of EMT in HK-2 cells. Specific TGF-β1-siRNA efficiently blocks ANGII-induced protein expression of TGF-β1 and further inhibits activated Smad signaling. PZA significantly attenuates up-regulation of angiotensinogen, renin, ACE and AT1. Further, PZA reverses up-regulation of TGFβRII and suppresses Smad proteins. Simultaneously, PZA inhibits the protein interaction of TGF-β receptor and Smads and PZA also inhibits activated RAS and TGF-β/Smad signaling cascade and up-regulates protein expression of podocyte markers and mitigates podocyte injury. This study demonstrated the beneficial role of PZA in renal fibrosis and podocyte injury. Our study highlighted that PZA inhibits RAS and further suppresses TGF-β/Smad pathway through inhibiting Smad2/3 phosphorylation via blocking Smad2/3-TGFβRI protein interaction. PZA is implicated in activation of RAS/TGF-β/Smad axis in HK-2 cells and podocytes. PZA could be considered as a novel RAS inhibitor for treating CKD. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Systemic Regulation of RAS/MAPK Signaling by the Serotonin Metabolite 5-HIAA.

    PubMed

    Schmid, Tobias; Snoek, L Basten; Fröhli, Erika; van der Bent, M Leontien; Kammenga, Jan; Hajnal, Alex

    2015-05-01

    Human cancer is caused by the interplay of mutations in oncogenes and tumor suppressor genes and inherited variations in cancer susceptibility genes. While many of the tumor initiating mutations are well characterized, the effect of genetic background variation on disease onset and progression is less understood. We have used C. elegans genetics to identify genetic modifiers of the oncogenic RAS/MAPK signaling pathway. Quantitative trait locus analysis of two highly diverged C. elegans isolates combined with allele swapping experiments identified the polymorphic monoamine oxidase A (MAOA) gene amx-2 as a negative regulator of RAS/MAPK signaling. We further show that the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), which is a product of MAOA catalysis, systemically inhibits RAS/MAPK signaling in different organs of C. elegans. Thus, MAOA activity sets a global threshold for MAPK activation by controlling 5-HIAA levels. To our knowledge, 5-HIAA is the first endogenous small molecule that acts as a systemic inhibitor of RAS/MAPK signaling.

  20. Statins induce apoptosis through inhibition of Ras signaling pathways and enhancement of Bim and p27 expression in human hematopoietic tumor cells.

    PubMed

    Fujiwara, Daichiro; Tsubaki, Masanobu; Takeda, Tomoya; Tomonari, Yoshika; Koumoto, Yu-Ichi; Sakaguchi, Katsuhiko; Nishida, Shozo

    2017-10-01

    Recently, statins have been demonstrated to improve cancer-related mortality or prognosis in patients of various cancers. However, the details of the apoptosis-inducing mechanisms remain unknown. This study showed that the induction of apoptosis by statins in hematopoietic tumor cells is mediated by mitochondrial apoptotic signaling pathways, which are activated by the suppression of mevalonate or geranylgeranyl pyrophosphate biosynthesis. In addition, statins decreased the levels of phosphorylated extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin through suppressing Ras prenylation. Furthermore, inhibition of extracellular signal-regulated kinase 1/2 and mammalian target of rapamycin by statins induced Bim expression via inhibition of Bim phosphorylation and ubiquitination and cell-cycle arrest at G1 phase via enhancement of p27 expression. Moreover, combined treatment of U0126, a mitogen-activated protein kinase kinase 1/2 inhibitor, and rapamycin, a mammalian target of rapamycin inhibitor, induced Bim and p27 expressions. The present results suggested that statins induce apoptosis by decreasing the mitochondrial transmembrane potential, increasing the activation of caspase-9 and caspase-3, enhancing Bim expression, and inducing cell-cycle arrest at G1 phase through inhibition of Ras/extracellular signal-regulated kinase and Ras/mammalian target of rapamycin pathways. Therefore, our findings support the use of statins as potential anticancer agents or concomitant drugs of adjuvant therapy.

  1. A distinct class of dominant negative Ras mutants: cytosolic GTP-bound Ras effector domain mutants that inhibit Ras signaling and transformation and enhance cell adhesion.

    PubMed

    Fiordalisi, James J; Holly, Stephen P; Johnson, Ronald L; Parise, Leslie V; Cox, Adrienne D

    2002-03-29

    Cytosolic GTP-bound Ras has been shown to act as a dominant negative (DN) inhibitor of Ras by sequestering Raf in non-productive cytosolic complexes. Nevertheless, this distinct class of DN mutants has been neither well characterized nor extensively used to analyze Ras signaling. In contrast, DN Ras17N, which functions by blocking Ras guanine nucleotide exchange factors, has been well characterized and is widely used. Cytosolic GTP-bound Ras mutants could be used to inhibit particular Ras effectors by introducing additional mutations (T35S, E37G or Y40C) that permit them to associate selectively with and inhibit Raf, RalGDS, or phosphoinositide 3-kinase, respectively. When the wild-type Ras effector binding region is used, cytosolic Ras should associate with all Ras effectors, even those that are not yet identified, making these DN Ras mutants effective inhibitors of multiple Ras functions. We generated cytosolic GTP-bound H-, N-, and K-Ras, and we assessed their ability to inhibit Ras-induced phenotypes. In fibroblasts, cytosolic H-, N-, and K-Ras inhibited Ras-induced Elk-1 activation and focus formation, induced a flattened cell morphology, and increased adhesion to fibronectin through modulation of a beta(1)-subunit-containing integrin, thereby demonstrating that DN activity is not limited to a subset of Ras isoforms. We also generated cytosolic GTP-bound Ras effector domain mutants (EDMs), each of which reduced the ability of cytosolic GTP-bound Ras proteins to inhibit Elk-1 activation and to induce cell flattening, implicating multiple pathways in these phenotypes. In contrast, Ras-induced focus formation, platelet-derived growth factor (PDGF)-, or Ras-induced phospho-Akt levels and cell adhesion to fibronectin were affected by T35S and Y40C EDMs, whereas PDGF- or Ras-induced phospho-Erk levels were affected only by the T35S EDM, implying that a more limited set of Ras-mediated pathways participate in these phenotypes. These data constitute the first

  2. Prx I Suppresses K-ras-Driven Lung Tumorigenesis by Opposing Redox-Sensitive ERK/Cyclin D1 Pathway

    PubMed Central

    Park, Young-Ho; Kim, Sun-Uk; Lee, Bo-Kyoung; Kim, Hyun-Sun; Song, In-Sung; Shin, Hye-Jun; Han, Ying-Hao; Chang, Kyu-Tae; Kim, Jin-Man; Lee, Dong-Seok; Kim, Yeul-Hong; Choi, Chang-Min; Kim, Bo-Yeon

    2013-01-01

    Abstract Aims: Coupled responses of mutated K-ras and oxidative stress are often an important etiological factor in non–small-cell lung cancer (NSCLC). However, relatively few studies have examined the control mechanism of oxidative stress in oncogenic K-ras-driven NSCLC progression. Here, we studied whether the redox signaling pathway governed by peroxiredoxin I (Prx I) is involved in K-rasG12D-mediated lung adenocarcinogenesis. Results: Using human-lung adenocarcinoma tissues and lung-specific K-rasG12D-transgenic mice, we found that Prx I was significantly up-regulated in the tumor regions via activation of nuclear erythroid 2-related factor 2 (Nrf2) transcription. Interestingly, the increased reactive oxygen species (ROS) by null mutation of Prx I greatly promoted K-rasG12D-driven lung tumorigenesis in number and size, which appeared to require the activation of the ROS-dependent extracellular signal-regulated kinase (ERK)/cyclin D1 pathway. Innovation: Taken together, these results suggest that Prx I functions as an Nrf2-dependently inducible tumor suppressant in K-ras-driven lung adenocarcinogenesis by opposing ROS/ERK/cyclin D1 pathway activation. Conclusion: These findings provide a better understanding of oxidative stress-mediated lung tumorigenesis. Antioxid. Redox Signal. 19, 482–496. PMID:23186333

  3. Signaling threshold regulation by the Ras effector IMP.

    PubMed

    Matheny, Sharon A; White, Michael A

    2009-04-24

    The Ras effector and E3 ligase family member IMP (impedes mitogenic signal propagation) acts as a steady-state resistor within the Raf-MEK-ERK kinase module. IMP concentrations are directly regulated by Ras, through induction of autoubiquitination, to permit productive Raf-MEK complex assembly. Inhibition of Raf-MEK pathway activation by IMP occurs through the inactivation of KSR, a scaffold/adapter protein that couples activated Raf to its substrate MEK1. The capacity of IMP to inhibit signal propagation through Raf to MEK is, in part, a consequence of disrupting KSR1 homo-oligomerization and c-Raf-B-Raf hetero-oligomerization. These observations suggest that IMP functions as a threshold modulator, controlling sensitivity of the cascade to stimulus by directly limiting the assembly of functional KSR1-dependent Raf-MEK complexes.

  4. Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP.

    PubMed

    Matheny, Sharon A; Chen, Chiyuan; Kortum, Robert L; Razidlo, Gina L; Lewis, Robert E; White, Michael A

    2004-01-15

    The signal transduction cascade comprising Raf, mitogen-activated protein (MAP) kinase kinase (MEK) and MAP kinase is a Ras effector pathway that mediates diverse cellular responses to environmental cues and contributes to Ras-dependent oncogenic transformation. Here we report that the Ras effector protein Impedes Mitogenic signal Propagation (IMP) modulates sensitivity of the MAP kinase cascade to stimulus-dependent activation by limiting functional assembly of the core enzymatic components through the inactivation of KSR, a scaffold/adaptor protein that couples activated Raf to its substrate MEK. IMP is a Ras-responsive E3 ubiquitin ligase that, on activation of Ras, is modified by auto-polyubiquitination, which releases the inhibition of Raf-MEK complex formation. Thus, Ras activates the MAP kinase cascade through simultaneous dual effector interactions: induction of Raf kinase activity and derepression of Raf-MEK complex formation. IMP depletion results in increased stimulus-dependent MEK activation without alterations in the timing or duration of the response. These observations suggest that IMP functions as a threshold modulator, controlling sensitivity of the cascade to stimulus and providing a mechanism to allow adaptive behaviour of the cascade in chronic or complex signalling environments.

  5. Interactions of Ras proteins with the plasma membrane and their roles in signaling.

    PubMed

    Eisenberg, Sharon; Henis, Yoav I

    2008-01-01

    The complex dynamic structure of the plasma membrane plays critical roles in cellular signaling; interactions with the membrane lipid milieu, spatial segregation within and between cellular membranes and/or targeting to specific membrane-associated scaffolds are intimately involved in many signal transduction pathways. In this review, we focus on the membrane interactions of Ras proteins. These small GTPases play central roles in the regulation of cell growth and proliferation, and their excessive activation is commonly encountered in human tumors. Ras proteins associate with the membrane continuously via C-terminal lipidation and additional interactions in both their inactive and active forms; this association, as well as the targeting of specific Ras isoforms to plasma membrane microdomains and to intracellular organelles, have recently been implicated in Ras signaling and oncogenic potential. We discuss biochemical and biophysical evidence for the roles of specific domains of Ras proteins in mediating their association with the plasma membrane, and consider the potential effects of lateral segregation and interactions with membrane-associated protein assemblies on the signaling outcomes.

  6. Deconstructing Ras Signaling in the Thymus

    PubMed Central

    Kortum, Robert L.; Sommers, Connie L.; Pinski, John M.; Alexander, Clayton P.; Merrill, Robert K.; Li, Wenmei; Love, Paul E.

    2012-01-01

    Thymocytes must transit at least two distinct developmental checkpoints, governed by signals that emanate from either the pre-T cell receptor (pre-TCR) or the TCR to the small G protein Ras before emerging as functional T lymphocytes. Recent studies have shown a role for the Ras guanine exchange factor (RasGEF) Sos1 at the pre-TCR checkpoint. At the second checkpoint, the quality of signaling through the TCR is interrogated to ensure the production of an appropriate T cell repertoire. Although RasGRP1 is the only confirmed RasGEF required at the TCR checkpoint, current models suggest that the intensity and character of Ras activation, facilitated by both Sos and RasGRP1, will govern the boundary between survival (positive selection) and death (negative selection) at this stage. Using mouse models, we have assessed the independent and combined roles for the RasGEFs Sos1, Sos2, and RasGRP1 during thymocyte development. Although Sos1 was the dominant RasGEF at the pre-TCR checkpoint, combined Sos1/RasGRP1 deletion was required to effectively block development at this stage. Conversely, while RasGRP1 deletion efficiently blocked positive selection, combined RasGRP1/Sos1 deletion was required to block negative selection. This functional redundancy in RasGEFs during negative selection may act as a failsafe mechanism ensuring appropriate central tolerance. PMID:22586275

  7. Development of a High-Throughput Gene Expression Screen for Modulators of RAS-MAPK Signaling in a Mutant RAS Cellular Context.

    PubMed

    Severyn, Bryan; Nguyen, Thi; Altman, Michael D; Li, Lixia; Nagashima, Kumiko; Naumov, George N; Sathyanarayanan, Sriram; Cook, Erica; Morris, Erick; Ferrer, Marc; Arthur, Bill; Benita, Yair; Watters, Jim; Loboda, Andrey; Hermes, Jeff; Gilliland, D Gary; Cleary, Michelle A; Carroll, Pamela M; Strack, Peter; Tudor, Matt; Andersen, Jannik N

    2016-10-01

    The RAS-MAPK pathway controls many cellular programs, including cell proliferation, differentiation, and apoptosis. In colorectal cancers, recurrent mutations in this pathway often lead to increased cell signaling that may contribute to the development of neoplasms, thereby making this pathway attractive for therapeutic intervention. To this end, we developed a 26-member gene signature of RAS-MAPK pathway activity utilizing the Affymetrix QuantiGene Plex 2.0 reagent system and performed both primary and confirmatory gene expression-based high-throughput screens (GE-HTSs) using KRAS mutant colon cancer cells (SW837) and leveraging a highly annotated chemical library. The screen achieved a hit rate of 1.4% and was able to enrich for hit compounds that target RAS-MAPK pathway members such as MEK and EGFR. Sensitivity and selectivity performance measurements were 0.84 and 1.00, respectively, indicating high true-positive and true-negative rates. Active compounds from the primary screen were confirmed in a dose-response GE-HTS assay, a GE-HTS assay using 14 additional cancer cell lines, and an in vitro colony formation assay. Altogether, our data suggest that this GE-HTS assay will be useful for larger unbiased chemical screens to identify novel compounds and mechanisms that may modulate the RAS-MAPK pathway. © 2016 Society for Laboratory Automation and Screening.

  8. Interaction of the Wnt/β-catenin and RAS-ERK pathways involving co-stabilization of both β-catenin and RAS plays important roles in the colorectal tumorigenesis.

    PubMed

    Lee, Sang-Kyu; Hwang, Jeong-Ha; Choi, Kang-Yell

    2018-05-01

    Cancer development is usually driven by multiple genetic and molecular alterations rather than by a single defect. In the human colorectal cancer (CRC), series of mutations of genes are involved in the different stages of tumorigenesis. For example, adenomatous polyposis coli (APC) and KRAS mutations have been known to play roles in the initiation and progression of the tumorigenesis, respectively. However, many studies indicate that mutations of these two genes, which play roles in the Wnt/β-catenin and RAS-extra-cellular signal regulated kinase (ERK) pathways, respectively, cooperatively interact in the tumorigenesis in several different cancer types including CRC. Both Apc and Kras mutations critically increase number and growth rate of tumors although single mutation of these genes does not significantly enhance the small intestinal tumorigenesis of mice. Both APC and KRAS mutations even result in the liver metastasis with inductions of the cancer stem cells (CSCs) markers in a mice xenograft model. In this review, we are going to describe the history for interaction between the Wnt/β-catenin and RAS/ERK pathways especially related with CRC, and provide the mechanical basis for the cross-talk between the two pathways. The highlight of the crosstalk involving the stability regulation of RAS protein via the Wnt/β-catenin signaling which is directly related with the cellular proliferation and transformation will be discussed. Activation status of GSK3β, a key enzyme involving both β-catenin and RAS degradations, is regulated by the status of the Wnt/β-catenin signaling dependent upon extracellular stimuli or intracellular abnormalities of the signaling components. The levels of both β-catenin and RAS proteins are co-regulated by the Wnt/β-catenin signaling, and these proteins are overexpressed with a positive correlation in the tumor tissues of CRC patients. These results indicate that the elevation of both β-catenin and RAS proteins is pathologically

  9. Novel approach to abuse the hyperactive K-Ras pathway for adenoviral gene therapy of colorectal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naumov, Inna; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv; Kazanov, Dina

    2012-01-15

    Background: Functional activation of oncogenic K-Ras signaling pathway plays an important role in the early events of colorectal carcinogenesis (CRC). K-Ras proto-oncogene is involved in 35-40% of CRC cases. Mutations in the Ras gene trigger the transduction of proliferative and anti-apoptotic signals, even in the absence of extra cellular stimuli. The objective of the current study was to use a gene-targeting approach to kill human CRC cells selectively harboring mutated K-Ras. Results: A recombinant adenovirus that carries a lethal gene, PUMA, under the control of a Ras responsive promoter (Ad-Py4-SV40-PUMA) was used selectively to target CRC cells (HCT116, SW480, DLD1more » and RIE-Ras) that possess a hyperactive Ras pathway while using HT29 and RIE cells as a control that harbors wild type Ras and exhibit very low Ras activity. Control vector, without the Ras responsive promoter elements was used to assess the specificity of our 'gene therapy' approach. Both adenoviral vectors were assed in vitro and in xenograft model in vivo. Ad-Py4-SV40-PUMA showed high potency to induce {approx} 50% apoptosis in vitro, to abolish completely tumor formation by infecting cells with the Ad-Py4-SV40-PUMA prior xenografting them in nude mice and high ability to suppress by {approx} 35% tumor progression in vivo in already established tumors. Conclusions: Selective targeting of CRC cells with the activated Ras pathway may be a novel and effective therapy in CRC. The high potency of this adenoviral vector may help to overcome an undetectable micro metastasis that is the major hurdle in challenging with CRC.« less

  10. RasGRP1 opposes proliferative EGFR–SOS1–Ras signals and restricts intestinal epithelial cell growth

    PubMed Central

    Depeille, Philippe; Henricks, Linda M.; van de Ven, Robert A. H.; Lemmens, Ed; Wang, Chih-Yang; Matli, Mary; Werb, Zena; Haigis, Kevin M.; Donner, David; Warren, Robert; Roose, Jeroen P.

    2015-01-01

    The character of EGFR signals can influence cell fate but mechanistic insights into intestinal EGFR-Ras signalling are limited. Here we show that two distinct Ras nucleotide exchange factors, RasGRP1 and SOS1, lie downstream of EGFR but act in functional opposition. RasGRP1 is expressed in intestinal crypts where it restricts epithelial growth. High RasGRP1 expression in colorectal cancer (CRC) patient samples correlates with a better clinical outcome. Biochemically, we find that RasGRP1 creates a negative feedback loop that limits proliferative EGFR–SOS1–Ras signals in CRC cells. Genetic Rasgrp1 depletion from mice with either an activating mutation in KRas or with aberrant Wnt signalling due to a mutation in Apc resulted in both cases in exacerbated Ras–ERK signalling and cell proliferation. The unexpected opposing cell biological effects of EGFR–RasGRP1 and EGFR–SOS1 signals in the same cell shed light on the intricacy of EGFR-Ras signalling in normal epithelium and carcinoma. PMID:26005835

  11. Normal p21Ras/MAP kinase pathway expression and function in PBMC from patients with polycystic ovary disease.

    PubMed

    Buchs, A; Chagag, P; Weiss, M; Kish, E; Levinson, R; Aharoni, D; Rapoport, M J

    2004-04-01

    Polycystic ovary disease (PCOD) is associated with insulin resistance and increased prevalence of type II diabetes mellitus (T2DM). The p21Ras/MAP kinase is a major intracellular signaling pathway mediating insulin signaling in insulin responsive tissues. The expression, regulation and function of the p21Ras/MAP kinase pathway in PCOD patients were examined. Peripheral blood mononuclear cells (PBMC) were isolated from ten patients with PCOD and ten controls. The expression of p21Ras and its regulatory proteins; hSOS1 and p120GAP were studied. The basal and phytohemaglutinin (PHA) or insulin stimulated phosphorylation of MAP kinase was determined. Expression of p21Ras, and its regulatory proteins hSOS1 and p120GAP were similar in PCOD patients and controls. Basal, PHA and insulin stimulated phosphorylation of MAP kinase, were also comparable in the two groups as well as their PBMC proliferative response. These data indicate that the expression and overall function of the p21Ras/MAP kinase pathway remain intact in non-diabetic patients with PCOD.

  12. Genetic Validation of Cell Proliferation via Ras-Independent Activation of the Raf/Mek/Erk Pathway.

    PubMed

    Lechuga, Carmen G; Simón-Carrasco, Lucía; Jacob, Harrys K C; Drosten, Matthias

    2017-01-01

    Signaling transmitted by the Ras family of small GTPases (H-, N-, and K-Ras) is essential for proliferation of mouse embryonic fibroblasts (MEFs). However, constitutive activation of the downstream Raf/Mek/Erk pathway can bypass the requirement for Ras proteins and allow cells to proliferate in the absence of the three Ras isoforms. Here we describe a protocol for a colony formation assay that permits evaluating the role of candidate proteins that are positive or negative regulators of cell proliferation mediated via Ras-independent Raf/Mek/Erk pathway activation. K-Ras lox (H-Ras -/- , N-Ras -/- , K-Ras lox/lox , RERT ert/ert ) MEFs are infected with retro- or lentiviral vectors expressing wild-type or constitutively activated candidate cDNAs, shRNAs, or sgRNAs in combination with Cas9 to ascertain the possibility of candidate proteins to function either as an activator or inhibitor of Ras-independent Raf/Mek/Erk activation. These cells are then seeded in the absence or presence of 4-Hydroxytamoxifen (4-OHT), which activates the resident CreERT2 alleles resulting in elimination of the conditional K-Ras alleles and ultimately generating Rasless cells. Colony formation in the presence of 4-OHT indicates cell proliferation via Ras-independent Raf/Mek/Erk activation.

  13. Effects of Germline Mutations in the Ras/MAPK Signaling Pathway on Adaptive Behavior: Cardiofaciocutaneous Syndrome and Noonan Syndrome

    PubMed Central

    Pierpont, Elizabeth I.; Pierpont, Mary Ella; Mendelsohn, Nancy J.; Roberts, Amy E.; Tworog-Dube, Erica; Rauen, Katherine A.; Seidenberg, Mark S.

    2011-01-01

    Cardiofaciocutaneous syndrome (CFC) and Noonan syndrome (NS) are two phenotypically overlapping genetic disorders whose underlying molecular etiologies affect a common signaling pathway. Mutations in the BRAF, MEK1 and MEK2 genes cause most cases of CFC and mutations in PTPN11, SOS1, KRAS and RAF1 typically cause NS. Although both syndromes are associated with developmental delays of varying severity, the extent to which the behavioral profiles differ may shed light on the different roles these respective genes play in development of skills necessary for everyday functioning. In this study, profiles of adaptive behavior of individuals with CFC and NS who had confirmed pathogenic mutations in Ras/MAPK pathway genes were investigated. Patterns of strengths and weaknesses, age-related differences, and risk factors for difficulties in adaptive skills were assessed. Although genes acting more downstream in the Ras/MAPK pathway were associated with more difficulties in adaptive functioning than genes more upstream in the pathway, several inconsistencies highlight the wide spectrum of possible developmental courses in CFC and NS. Along with clinical and genetic factors, variables such as chronological age, gestational age at birth and parental education levels accounted for significant variance in adaptive skills. Results indicate that there is wide heterogeneity in adaptive ability in CFC and NS, but that these abilities are correlated to some extent with the specific disease-causing genes. PMID:20186801

  14. Quantitative Assays for RAS Pathway Proteins and Phosphorylation States

    Cancer.gov

    The NCI CPTAC program is applying its expertise in quantitative proteomics to develop assays for RAS pathway proteins. Targets include key phosphopeptides that should increase our understanding of how the RAS pathway is regulated.

  15. A Raf-competitive K-Ras binder can fail to functionally antagonize signaling.

    PubMed

    Kauke, Monique J; Tisdale, Alison W; Kelly, Ryan L; Braun, Christian J; Hemann, Michael T; Wittrup, K Dane

    2018-05-02

    Mutated in approximately 30% of human cancers, Ras GTPases are the most common drivers of oncogenesis and render tumors unresponsive to many standard therapies. Despite decades of research, no drugs directly targeting Ras are currently available. We have previously characterized a small protein antagonist of K-Ras, R11.1.6, and demonstrated its direct competition with Raf for Ras binding. Here we evaluate the effects of R11.1.6 on Ras signaling and cellular proliferation in a panel of human cancer cell lines. Through lentiviral transduction, we generated cell lines that constitutively or through induction with doxycycline express R11.1.6 or a control protein YW1 and show specific binding by R11.1.6 to endogenous Ras through microscopy and co-immunoprecipitation experiments. Genetically-encoded intracellular expression of this high-affinity Ras antagonist, however, fails to measurably disrupt signaling through either the MAPK or PI3K pathway. Consistently, cellular proliferation was unaffected as well. To understand this lack of signaling inhibition, we quantified the number of molecules of R11.1.6 expressed by the inducible cell lines and developed a simple mathematical model describing the competitive binding of Ras by R11.1.6 and Raf. This model supports a potential mechanism for the lack of biological effects that we observed, suggesting stoichiometric and thermodynamic barriers that should be overcome in pharmacological efforts to directly compete with downstream effector proteins localized to membranes at very high effective concentrations. Copyright ©2018, American Association for Cancer Research.

  16. Ras1 interacts with multiple new signaling and cytoskeletal loci in Drosophila eggshell patterning and morphogenesis.

    PubMed Central

    Schnorr, J D; Holdcraft, R; Chevalier, B; Berg, C A

    2001-01-01

    Little is known about the genes that interact with Ras signaling pathways to regulate morphogenesis. The synthesis of dorsal eggshell structures in Drosophila melanogaster requires multiple rounds of Ras signaling followed by dramatic epithelial sheet movements. We took advantage of this process to identify genes that link patterning and morphogenesis; we screened lethal mutations on the second chromosome for those that could enhance a weak Ras1 eggshell phenotype. Of 1618 lethal P-element mutations tested, 13 showed significant enhancement, resulting in forked and fused dorsal appendages. Our genetic and molecular analyses together with information from the Berkeley Drosophila Genome Project reveal that 11 of these lines carry mutations in previously characterized genes. Three mutations disrupt the known Ras1 cell signaling components Star, Egfr, and Blistered, while one mutation disrupts Sec61beta, implicated in ligand secretion. Seven lines represent cell signaling and cytoskeletal components that are new to the Ras1 pathway; these are Chickadee (Profilin), Tec29, Dreadlocks, POSH, Peanut, Smt3, and MESK2, a suppressor of dominant-negative Ksr. A twelfth insertion disrupts two genes, Nrk, a "neurospecific" receptor tyrosine kinase, and Tpp, which encodes a neuropeptidase. These results suggest that Ras1 signaling during oogenesis involves novel components that may be intimately associated with additional signaling processes and with the reorganization of the cytoskeleton. To determine whether these Ras1 Enhancers function upstream or downstream of the Egf receptor, four mutations were tested for their ability to suppress an activated Egfr construct (lambdatop) expressed in oogenesis exclusively in the follicle cells. Mutations in Star and l(2)43Bb had no significant effect upon the lambdatop eggshell defect whereas smt3 and dock alleles significantly suppressed the lambdatop phenotype. PMID:11606538

  17. Ras1 interacts with multiple new signaling and cytoskeletal loci in Drosophila eggshell patterning and morphogenesis.

    PubMed

    Schnorr, J D; Holdcraft, R; Chevalier, B; Berg, C A

    2001-10-01

    Little is known about the genes that interact with Ras signaling pathways to regulate morphogenesis. The synthesis of dorsal eggshell structures in Drosophila melanogaster requires multiple rounds of Ras signaling followed by dramatic epithelial sheet movements. We took advantage of this process to identify genes that link patterning and morphogenesis; we screened lethal mutations on the second chromosome for those that could enhance a weak Ras1 eggshell phenotype. Of 1618 lethal P-element mutations tested, 13 showed significant enhancement, resulting in forked and fused dorsal appendages. Our genetic and molecular analyses together with information from the Berkeley Drosophila Genome Project reveal that 11 of these lines carry mutations in previously characterized genes. Three mutations disrupt the known Ras1 cell signaling components Star, Egfr, and Blistered, while one mutation disrupts Sec61beta, implicated in ligand secretion. Seven lines represent cell signaling and cytoskeletal components that are new to the Ras1 pathway; these are Chickadee (Profilin), Tec29, Dreadlocks, POSH, Peanut, Smt3, and MESK2, a suppressor of dominant-negative Ksr. A twelfth insertion disrupts two genes, Nrk, a "neurospecific" receptor tyrosine kinase, and Tpp, which encodes a neuropeptidase. These results suggest that Ras1 signaling during oogenesis involves novel components that may be intimately associated with additional signaling processes and with the reorganization of the cytoskeleton. To determine whether these Ras1 Enhancers function upstream or downstream of the Egf receptor, four mutations were tested for their ability to suppress an activated Egfr construct (lambdatop) expressed in oogenesis exclusively in the follicle cells. Mutations in Star and l(2)43Bb had no significant effect upon the lambdatop eggshell defect whereas smt3 and dock alleles significantly suppressed the lambdatop phenotype.

  18. An orthosteric inhibitor of the RAS-SOS interaction.

    PubMed

    Nickerson, Seth; Joy, Stephen T; Arora, Paramjit S; Bar-Sagi, Dafna

    2013-01-01

    Rat sarcoma (RAS) proteins are signaling nodes that transduce extracellular cues into precise alterations in cellular physiology by engaging effector pathways. RAS signaling thus regulates diverse cell processes including proliferation, migration, differentiation, and survival. Owing to this central role in governing mitogenic signals, RAS pathway components are often dysregulated in human diseases. Targeted therapy of RAS pathways has generally not been successful, largely because of the robust biochemistry of the targets and their multifaceted network of molecular regulators. The rate-limiting step of RAS activation is Son of Sevenless (SOS)-mediated nucleotide exchange involving a single evolutionarily conserved catalytic helix from SOS. Structure function data of this mechanism provided a strong platform to design an SOS-derived, helically constrained peptide mimic as an inhibitor of the RAS-SOS interaction. In this chapter, we review RAS-SOS signaling dynamics and present evidence supporting the novel paradigm of inhibiting their interaction as a therapeutic strategy. We then describe a method of generating helically constrained peptide mimics of protein surfaces, which we have employed to inhibit the RAS-SOS active site interaction. The biochemical and functional properties of this SOS mimic support the premise that inhibition of RAS-nucleotide exchange can effectively block RAS activation and downstream signaling. © 2013 Elsevier Inc. All rights reserved.

  19. Inhibition of the Ras-ERK pathway in mitotic COS7 cells is due to the inability of EGFR/Raf to transduce EGF signaling to downstream proteins.

    PubMed

    Shi, Huaiping; Zhang, Tianying; Yi, Yongqing; Ma, Yue

    2016-06-01

    Although previous studies have shown that Ras-ERK signaling in mitosis is closed due to the inhibition of signal transduction, the events involved in the molecular mechanisms are still unclear. In the present study, we investigated the Ras-ERK signaling pathway in mitotic COS7 cells. The results demonstrated that treatment with epidermal growth factor (EGF) failed to increase the endocytosis of EGF-EGFR (EGF receptor) complexes in mitotic COS7 cells, although a large amount of endosomes were found in asynchronous COS7 cells. Clathrin expression levels in mitotic COS7 cells were inhibited whereas caveolin expression levels in mitotic COS7 cells were almost unaffected. Y1068 and Y1086 residues of EGFR in the mitotic COS7 cells were activated. However, Grb2 and Shc in the mitotic COS7 cells did not bind to activated EGFR. Ras activity was inhibited in the mitotic COS7 cells whereas its downstream protein, Raf, was obviously phosphorylated by EGF in mitosis. Treatment with phorbol 12-myristate 13-acetate (PMA) also increased the phosphorylation levels of Raf in the mitotic COS7 cells. Nevertheless, Raf phosphorylation in mitosis was significantly inhibited by AG1478. Lastly, activation of EGF-mediated MEK and ERK in the mitotic COS7 cells was obviously inhibited. In summary, our results suggest that the Ras-ERK pathway is inhibited in mitotic COS7 cells which may be the dual result of the difficulty in the transduction of EGF signaling by EGFR or Raf to downstream proteins.

  20. Secreted Glioblastoma Nanovesicles Contain Intracellular Signaling Proteins and Active Ras Incorporated in a Farnesylation-dependent Manner*

    PubMed Central

    Luhtala, Natalie; Aslanian, Aaron; Yates, John R.; Hunter, Tony

    2017-01-01

    Glioblastomas (GBMs) are malignant brain tumors with a median survival of less than 18 months. Redundancy of signaling pathways represented within GBMs contributes to their therapeutic resistance. Exosomes are extracellular nanovesicles released from cells and present in human biofluids that represent a possible biomarker of tumor signaling state that could aid in personalized treatment. Herein, we demonstrate that mouse GBM cell-derived extracellular nanovesicles resembling exosomes from an H-RasV12 myr-Akt mouse model for GBM are enriched for intracellular signaling cascade proteins (GO: 0007242) and Ras protein signal transduction (GO: 0007265), and contain active Ras. Active Ras isolated from human and mouse GBM extracellular nanovesicles lysates using the Ras-binding domain of Raf also coprecipitates with ESCRT (endosomal sorting complex required for transport)-associated exosome proteins Vps4a and Alix. Although we initially hypothesized a role for active Ras protein signaling in exosome biogenesis, we found that GTP binding of K-Ras was dispensable for its packaging within extracellular nanovesicles and for the release of Alix. By contrast, farnesylation of K-Ras was required for its packaging within extracellular nanovesicles, yet expressing a K-Ras farnesylation mutant did not decrease the number of nanovesicles or the amount of Alix protein released per cell. Overall, these results emphasize the primary importance of membrane association in packaging of extracellular nanovesicle factors and indicate that screening nanovesicles within human fluids could provide insight into tissue origin and the wiring of signaling proteins at membranes to predict onset and behavior of cancer and other diseases linked to deregulated membrane signaling states. PMID:27909058

  1. De novo mutations in inhibitors of Wnt, BMP, and Ras/ERK signaling pathways in non-syndromic midline craniosynostosis.

    PubMed

    Timberlake, Andrew T; Furey, Charuta G; Choi, Jungmin; Nelson-Williams, Carol; Loring, Erin; Galm, Amy; Kahle, Kristopher T; Steinbacher, Derek M; Larysz, Dawid; Persing, John A; Lifton, Richard P

    2017-08-29

    Non-syndromic craniosynostosis (NSC) is a frequent congenital malformation in which one or more cranial sutures fuse prematurely. Mutations causing rare syndromic craniosynostoses in humans and engineered mouse models commonly increase signaling of the Wnt, bone morphogenetic protein (BMP), or Ras/ERK pathways, converging on shared nuclear targets that promote bone formation. In contrast, the genetics of NSC is largely unexplored. More than 95% of NSC is sporadic, suggesting a role for de novo mutations. Exome sequencing of 291 parent-offspring trios with midline NSC revealed 15 probands with heterozygous damaging de novo mutations in 12 negative regulators of Wnt, BMP, and Ras/ERK signaling (10.9-fold enrichment, P = 2.4 × 10 -11 ). SMAD6 had 4 de novo and 14 transmitted mutations; no other gene had more than 1. Four familial NSC kindreds had mutations in genes previously implicated in syndromic disease. Collectively, these mutations contribute to 10% of probands. Mutations are predominantly loss-of-function, implicating haploinsufficiency as a frequent mechanism. A common risk variant near BMP2 increased the penetrance of SMAD6 mutations and was overtransmitted to patients with de novo mutations in other genes in these pathways, supporting a frequent two-locus pathogenesis. These findings implicate new genes in NSC and demonstrate related pathophysiology of common non-syndromic and rare syndromic craniosynostoses. These findings have implications for diagnosis, risk of recurrence, and risk of adverse neurodevelopmental outcomes. Finally, the use of pathways identified in rare syndromic disease to find genes accounting for non-syndromic cases may prove broadly relevant to understanding other congenital disorders featuring high locus heterogeneity.

  2. Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells

    PubMed Central

    Herrero, Ana; Casar, Berta; Colón-Bolea, Paula; Agudo-Ibáñez, Lorena; Crespo, Piero

    2016-01-01

    Signals conveyed through the RAS-ERK pathway are essential for the determination of cell fate. It is well established that signal variability is achieved in the different microenvironments in which signals unfold. It is also known that signal duration is critical for decisions concerning cell commitment. However, it is unclear how RAS-ERK signals integrate time and space in order to elicit a given biological response. To investigate this, we used MCF-7 cells, in which EGF-induced transient ERK activation triggers proliferation, whereas sustained ERK activation in response to heregulin leads to adipocytic differentiation. We found that both proliferative and differentiating signals emanate exclusively from plasma membrane–disordered microdomains. Of interest, the EGF signal can be transformed into a differentiating stimulus by HRAS overexpression, which prolongs ERK activation, but only if HRAS localizes at disordered membrane. On the other hand, HRAS signals emanating from the Golgi complex induce apoptosis and can prevent heregulin-induced differentiation. Our results indicate that within the same cellular context, RAS can exert different, even antagonistic, effects, depending on its sublocalization. Thus cell destiny is defined by the ability of a stimulus to activate RAS at the appropriate sublocalization for an adequate period while avoiding switching on opposing RAS signals. PMID:27099370

  3. Non-Smad signaling pathways.

    PubMed

    Mu, Yabing; Gudey, Shyam Kumar; Landström, Maréne

    2012-01-01

    Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.

  4. The SH2-containing tyrosine phosphatase corkscrew is required during signaling by sevenless, Ras1 and Raf.

    PubMed

    Allard, J D; Chang, H C; Herbst, R; McNeill, H; Simon, M A

    1996-04-01

    The sevenless gene encodes a receptor tyrosine kinase which is required for the development of the R7 photoreceptor cell in each ommatidium of the Drosophila eye. We have previously used a sensitized genetic screen to identify mutations, designated Enhancers of sevenless (E(sev)), which affect genes that encode components of the sevenless signaling pathway. Here, we report that one of these mutations, E(sev)1Ae0P is a dominantly inhibiting allele of corkscrew, which encodes an SH2 domain-containing protein tyrosine phosphatase (Perkins et al., 1992). We show that corkscrew function is essential for sevenless signaling and that expression of a membrane-targeted form of corkscrew can drive R7 photoreceptor development in the absence of sevenless function. Furthermore, we have used the dominantly inhibiting corkscrew allele to examine the role of corkscrew during signaling by activated forms of Ras1 and Raf. Our analysis indicates that corkscrew function is still required during signaling by activated forms Ras1 and Raf proteins. These results define a function for corkscrew that is either downstream of Ras1 activation or in a parallel pathway that acts with activated Ras1/Raf to specify R7 photoreceptor development.

  5. Allosteric modulation of Ras and the PI3K/AKT/mTOR pathway: emerging therapeutic opportunities

    PubMed Central

    Hubbard, Paul A.; Moody, Colleen L.; Murali, Ramachandran

    2014-01-01

    GTPases and kinases are two predominant signaling modules that regulate cell fate. Dysregulation of Ras, a GTPase, and the three eponymous kinases that form key nodes of the associated phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3K)/AKT/mTOR pathway have been implicated in many cancers, including pancreatic cancer, a disease noted for its current lack of effective therapeutics. The K-Ras isoform of Ras is mutated in over 90% of pancreatic ductal adenocarcinomas (PDAC) and there is growing evidence linking aberrant PI3K/AKT/mTOR pathway activity to PDAC. Although these observations suggest that targeting one of these nodes might lead to more effective treatment options for patients with pancreatic and other cancers, the complex regulatory mechanisms and the number of sequence-conserved isoforms of these proteins have been viewed as significant barriers in drug development. Emerging insights into the allosteric regulatory mechanisms of these proteins suggest novel opportunities for development of selective allosteric inhibitors with fragment-based drug discovery (FBDD) helping make significant inroads. The fact that allosteric inhibitors of Ras and AKT are currently in pre-clinical development lends support to this approach. In this article, we will focus on the recent advances and merits of developing allosteric drugs targeting these two inter-related signaling pathways. PMID:25566081

  6. Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway.

    PubMed

    Takeda, Kosuke; Shao, Danying; Adler, Micha; Charest, Pascale G; Loomis, William F; Levine, Herbert; Groisman, Alex; Rappel, Wouter-Jan; Firtel, Richard A

    2012-01-03

    Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor.

  7. Investigating RAS Signaling in Cancer | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    CPTAC expertise has been charged to develop RAS specific targeted proteomic assays to study the important pathways of human cancer. The oncogene RAS is linked to 30 percent of human cancers, but the search for a targeted therapy for RAS has remained elusive. To advance our understanding of this oncogene and to develop improved targeted therapies against RAS pathway, the National Cancer Institute (NCI) has launched a RAS Initiative.

  8. The mucin MUC4 is a transcriptional and post-transcriptional target of K-ras oncogene in pancreatic cancer. Implication of MAPK/AP-1, NF-κB and RalB signaling pathways.

    PubMed

    Vasseur, Romain; Skrypek, Nicolas; Duchêne, Belinda; Renaud, Florence; Martínez-Maqueda, Daniel; Vincent, Audrey; Porchet, Nicole; Van Seuningen, Isabelle; Jonckheere, Nicolas

    2015-12-01

    The membrane-bound mucinMUC4 is a high molecularweight glycoprotein frequently deregulated in cancer. In pancreatic cancer, one of the most deadly cancers in occidental countries, MUC4 is neo-expressed in the preneoplastic stages and thereafter is involved in cancer cell properties leading to cancer progression and chemoresistance. K-ras oncogene is a small GTPase of the RAS superfamily, highly implicated in cancer. K-ras mutations are considered as an initiating event of pancreatic carcinogenesis and K-ras oncogenic activities are necessary components of cancer progression. However, K-ras remains clinically undruggable. Targeting early downstream K-ras signaling in cancer may thus appear as an interesting strategy and MUC4 regulation by K-ras in pancreatic carcinogenesis remains unknown. Using the Pdx1-Cre; LStopL-K-rasG12D mouse model of pancreatic carcinogenesis, we show that the in vivo early neo-expression of the mucin Muc4 in pancreatic intraepithelial neoplastic lesions (PanINs) induced by mutated K-ras is correlated with the activation of ERK, JNK and NF-κB signaling pathways. In vitro, transfection of constitutively activated K-rasG12V in pancreatic cancer cells led to the transcriptional upregulation of MUC4. This activation was found to be mediated at the transcriptional level by AP-1 and NF-κB transcription factors via MAPK, JNK and NF-κB pathways and at the posttranscriptional level by a mechanism involving the RalB GTPase. Altogether, these results identify MUC4 as a transcriptional and post-transcriptional target of K-ras in pancreatic cancer. This opens avenues in developing new approaches to target the early steps of this deadly cancer.

  9. The E3 ubiquitin ligase Trim7 mediates c-Jun/AP-1 activation by Ras signalling

    PubMed Central

    Chakraborty, Atanu; Diefenbacher, Markus E.; Mylona, Anastasia; Kassel, Olivier; Behrens, Axel

    2015-01-01

    The c-Jun/AP-1 transcription factor controls key cellular behaviours, including proliferation and apoptosis, in response to JNK and Ras/MAPK signalling. While the JNK pathway has been well characterised, the mechanism of activation by Ras was elusive. Here we identify the uncharacterised ubiquitin ligase Trim7 as a critical component of AP-1 activation via Ras. We found that MSK1 directly phosphorylates Trim7 in response to direct activation by the Ras–Raf–MEK–ERK pathway, and this modification stimulates Trim7 E3 ubiquitin ligase activity. Trim7 mediates Lys63-linked ubiquitination of the AP-1 coactivator RACO-1, leading to RACO-1 protein stabilisation. Consequently, Trim7 depletion reduces RACO-1 levels and AP-1-dependent gene expression. Moreover, transgenic overexpression of Trim7 increases lung tumour burden in a Ras-driven cancer model, and knockdown of Trim7 in established xenografts reduces tumour growth. Thus, phosphorylation-ubiquitination crosstalk between MSK1, Trim7 and RACO-1 completes the long sought-after mechanism linking growth factor signalling and AP-1 activation. PMID:25851810

  10. KIT Suppresses BRAFV600E-Mutant Melanoma by Attenuating Oncogenic RAS/MAPK Signaling.

    PubMed

    Neiswender, James V; Kortum, Robert L; Bourque, Caitlin; Kasheta, Melissa; Zon, Leonard I; Morrison, Deborah K; Ceol, Craig J

    2017-11-01

    The receptor tyrosine kinase KIT promotes survival and migration of melanocytes during development, and excessive KIT activity hyperactivates the RAS/MAPK pathway and can drive formation of melanomas, most notably of rare melanomas that occur on volar and mucosal surfaces of the skin. The much larger fraction of melanomas that occur on sun-exposed skin is driven primarily by BRAF- or NRAS-activating mutations, but these melanomas exhibit a surprising loss of KIT expression, which raises the question of whether loss of KIT in these tumors facilitates tumorigenesis. To address this question, we introduced a kit(lf) mutation into a strain of Tg(mitfa:BRAF V600E ); p53(lf) melanoma-prone zebrafish. Melanoma onset was accelerated in kit(lf); Tg(mitfa:BRAF V600E ); p53(lf) fish. Tumors from kit(lf) animals were more invasive and had higher RAS/MAPK pathway activation. KIT knockdown also increased RAS/MAPK pathway activation in a BRAF V600E -mutant human melanoma cell line. We found that pathway stimulation upstream of BRAF V600E could paradoxically reduce signaling downstream of BRAF V600E , and wild-type BRAF was necessary for this effect, suggesting that its activation can dampen oncogenic BRAF V600E signaling. In vivo , expression of wild-type BRAF delayed melanoma onset, but only in a kit -dependent manner. Together, these results suggest that KIT can activate signaling through wild-type RAF proteins, thus interfering with oncogenic BRAF V600E -driven melanoma formation. Cancer Res; 77(21); 5820-30. ©2017 AACR . ©2017 American Association for Cancer Research.

  11. AMPK and Endothelial Nitric Oxide Synthase Signaling Regulates K-Ras Plasma Membrane Interactions via Cyclic GMP-Dependent Protein Kinase 2

    PubMed Central

    Cho, Kwang-jin; Casteel, Darren E.; Prakash, Priyanka; Tan, Lingxiao; van der Hoeven, Dharini; Salim, Angela A.; Kim, Choel; Capon, Robert J.; Lacey, Ernest; Cunha, Shane R.; Gorfe, Alemayehu A.

    2016-01-01

    K-Ras must localize to the plasma membrane and be arrayed in nanoclusters for biological activity. We show here that K-Ras is a substrate for cyclic GMP-dependent protein kinases (PKGs). In intact cells, activated PKG2 selectively colocalizes with K-Ras on the plasma membrane and phosphorylates K-Ras at Ser181 in the C-terminal polybasic domain. K-Ras phosphorylation by PKG2 is triggered by activation of AMP-activated protein kinase (AMPK) and requires endothelial nitric oxide synthase and soluble guanylyl cyclase. Phosphorylated K-Ras reorganizes into distinct nanoclusters that retune the signal output. Phosphorylation acutely enhances K-Ras plasma membrane affinity, but phosphorylated K-Ras is progressively lost from the plasma membrane via endocytic recycling. Concordantly, chronic pharmacological activation of AMPK → PKG2 signaling with mitochondrial inhibitors, nitric oxide, or sildenafil inhibits proliferation of K-Ras-positive non-small cell lung cancer cells. The study shows that K-Ras is a target of a metabolic stress-signaling pathway that can be leveraged to inhibit oncogenic K-Ras function. PMID:27697864

  12. Mutational spectrum of myeloid malignancies with inv(3)/t(3;3) reveals a predominant involvement of RAS/RTK signaling pathways

    PubMed Central

    Gröschel, Stefan; Sanders, Mathijs A.; Hoogenboezem, Remco; Zeilemaker, Annelieke; Havermans, Marije; Erpelinck, Claudia; Bindels, Eric M. J.; Beverloo, H. Berna; Döhner, Hartmut; Löwenberg, Bob; Döhner, Konstanze; Delwel, Ruud

    2015-01-01

    Myeloid malignancies bearing chromosomal inv(3)/t(3;3) abnormalities are among the most therapy-resistant leukemias. Deregulated expression of EVI1 is the molecular hallmark of this disease; however, the genome-wide spectrum of cooperating mutations in this disease subset has not been systematically elucidated. Here, we show that 98% of inv(3)/t(3;3) myeloid malignancies harbor mutations in genes activating RAS/receptor tyrosine kinase (RTK) signaling pathways. In addition, hemizygous mutations in GATA2, as well as heterozygous alterations in RUNX1, SF3B1, and genes encoding epigenetic modifiers, frequently co-occur with the inv(3)/t(3;3) aberration. Notably, neither mutational patterns nor gene expression profiles differ across inv(3)/t(3;3) acute myeloid leukemia, chronic myeloid leukemia, and myelodysplastic syndrome cases, suggesting recognition of inv(3)/t(3;3) myeloid malignancies as a single disease entity irrespective of blast count. The high incidence of activating RAS/RTK signaling mutations may provide a target for a rational treatment strategy in this high-risk patient group. PMID:25381062

  13. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling.

    PubMed Central

    Denhardt, D T

    1996-01-01

    The features of three distinct protein phosphorylation cascades in mammalian cells are becoming clear. These signalling pathways link receptor-mediated events at the cell surface or intracellular perturbations such as DNA damage to changes in cytoskeletal structure, vesicle transport and altered transcription factor activity. The best known pathway, the Ras-->Raf-->MEK-->ERK cascade [where ERK is extracellular-signal-regulated kinase and MEK is mitogen-activated protein (MAP) kinase/ERK kinase], is typically stimulated strongly by mitogens and growth factors. The other two pathways, stimulated primarily by assorted cytokines, hormones and various forms of stress, predominantly utilize p21 proteins of the Rho family (Rho, Rac and CDC42), although Ras can also participate. Diagnostic of each pathway is the MAP kinase component, which is phosphorylated by a unique dual-specificity kinase on both tyrosine and threonine in one of three motifs (Thr-Glu-Tyr, Thr-Phe-Tyr or Thr-Gly-Tyr), depending upon the pathway. In addition to activating one or more protein phosphorylation cascades, the initiating stimulus may also mobilize a variety of other signalling molecules (e.g. protein kinase C isoforms, phospholipid kinases, G-protein alpha and beta gamma subunits, phospholipases, intracellular Ca2+). These various signals impact to a greater or lesser extent on multiple downstream effectors. Important concepts are that signal transmission often entails the targeted relocation of specific proteins in the cell, and the reversible formation of protein complexes by means of regulated protein phosphorylation. The signalling circuits may be completed by the phosphorylation of upstream effectors by downstream kinases, resulting in a modulation of the signal. Signalling is terminated and the components returned to the ground state largely by dephosphorylation. There is an indeterminant amount of cross-talk among the pathways, and many of the proteins in the pathways belong to families

  14. Loss of the Drosophila cell polarity regulator Scribbled promotes epithelial tissue overgrowth and cooperation with oncogenic Ras-Raf through impaired Hippo pathway signaling

    PubMed Central

    2011-01-01

    Background Epithelial neoplasias are associated with alterations in cell polarity and excessive cell proliferation, yet how these neoplastic properties are related to one another is still poorly understood. The study of Drosophila genes that function as neoplastic tumor suppressors by regulating both of these properties has significant potential to clarify this relationship. Results Here we show in Drosophila that loss of Scribbled (Scrib), a cell polarity regulator and neoplastic tumor suppressor, results in impaired Hippo pathway signaling in the epithelial tissues of both the eye and wing imaginal disc. scrib mutant tissue overgrowth, but not the loss of cell polarity, is dependent upon defective Hippo signaling and can be rescued by knockdown of either the TEAD/TEF family transcription factor Scalloped or the transcriptional coactivator Yorkie in the eye disc, or reducing levels of Yorkie in the wing disc. Furthermore, loss of Scrib sensitizes tissue to transformation by oncogenic Ras-Raf signaling, and Yorkie-Scalloped activity is required to promote this cooperative tumor overgrowth. The inhibition of Hippo signaling in scrib mutant eye disc clones is not dependent upon JNK activity, but can be significantly rescued by reducing aPKC kinase activity, and ectopic aPKC activity is sufficient to impair Hippo signaling in the eye disc, even when JNK signaling is blocked. In contrast, warts mutant overgrowth does not require aPKC activity. Moreover, reducing endogenous levels of aPKC or increasing Scrib or Lethal giant larvae levels does not promote increased Hippo signaling, suggesting that aPKC activity is not normally rate limiting for Hippo pathway activity. Epistasis experiments suggest that Hippo pathway inhibition in scrib mutants occurs, at least in part, downstream or in parallel to both the Expanded and Fat arms of Hippo pathway regulation. Conclusions Loss of Scrib promotes Yorkie/Scalloped-dependent epithelial tissue overgrowth, and this is also

  15. High-throughput screening identifies small molecules that bind to the RAS:SOS:RAS complex and perturb RAS signaling.

    PubMed

    Burns, Michael C; Howes, Jennifer E; Sun, Qi; Little, Andrew J; Camper, DeMarco V; Abbott, Jason R; Phan, Jason; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2018-05-01

    K-RAS is mutated in approximately 30% of human cancers, resulting in increased RAS signaling and tumor growth. Thus, RAS is a highly validated therapeutic target, especially in tumors of the pancreas, lung and colon. Although directly targeting RAS has proven to be challenging, it may be possible to target other proteins involved in RAS signaling, such as the guanine nucleotide exchange factor Son of Sevenless (SOS). We have previously reported on the discovery of small molecules that bind to SOS1, activate SOS-mediated nucleotide exchange on RAS, and paradoxically inhibit ERK phosphorylation (Burns et al., PNAS, 2014). Here, we describe the discovery of additional, structurally diverse small molecules that also bind to SOS1 in the same pocket and elicit similar biological effects. We tested >160,000 compounds in a fluorescence-based assay to assess their effects on SOS-mediated nucleotide exchange. X-Ray structures revealed that these small molecules bind to the CDC25 domain of SOS1. Compounds that elicited high levels of nucleotide exchange activity in vitro increased RAS-GTP levels in cells, and inhibited phospho ERK levels at higher treatment concentrations. The identification of structurally diverse SOS1 binding ligands may assist in the discovery of new molecules designed to target RAS-driven tumors. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. New insights into RAS biology reinvigorate interest in mathematical modeling of RAS signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Keesha E.; Rukhlenko, Oleksii S.; Posner, Richard G.

    RAS is the most frequently mutated gene across human cancers, but developing inhibitors of mutant RAS has proven to be challenging. Given the difficulties of targeting RAS directly, drugs that impact the other components of pathways where mutant RAS operates may potentially be effective. However, the system-level features, including different localizations of RAS isoforms, competition between downstream effectors, and interlocking feedback and feed-forward loops, must be understood to fully grasp the opportunities and limitations of inhibiting specific targets. Mathematical modeling can help us discern the system-level impacts of these features in normal and cancer cells. New technologies enable the acquisitionmore » of experimental data that will facilitate development of realistic models of oncogenic RAS behavior. In light of the wealth of empirical data accumulated over decades of study and the advancement of experimental methods for gathering new data, modelers now have the opportunity to advance progress toward realization of targeted treatment for mutant RAS-driven cancers.« less

  17. New insights into RAS biology reinvigorate interest in mathematical modeling of RAS signaling

    DOE PAGES

    Erickson, Keesha E.; Rukhlenko, Oleksii S.; Posner, Richard G.; ...

    2018-03-05

    RAS is the most frequently mutated gene across human cancers, but developing inhibitors of mutant RAS has proven to be challenging. Given the difficulties of targeting RAS directly, drugs that impact the other components of pathways where mutant RAS operates may potentially be effective. However, the system-level features, including different localizations of RAS isoforms, competition between downstream effectors, and interlocking feedback and feed-forward loops, must be understood to fully grasp the opportunities and limitations of inhibiting specific targets. Mathematical modeling can help us discern the system-level impacts of these features in normal and cancer cells. New technologies enable the acquisitionmore » of experimental data that will facilitate development of realistic models of oncogenic RAS behavior. In light of the wealth of empirical data accumulated over decades of study and the advancement of experimental methods for gathering new data, modelers now have the opportunity to advance progress toward realization of targeted treatment for mutant RAS-driven cancers.« less

  18. New insights into RAS biology reinvigorate interest in mathematical modeling of RAS signaling.

    PubMed

    Erickson, Keesha E; Rukhlenko, Oleksii S; Posner, Richard G; Hlavacek, William S; Kholodenko, Boris N

    2018-03-05

    RAS is the most frequently mutated gene across human cancers, but developing inhibitors of mutant RAS has proven to be challenging. Given the difficulties of targeting RAS directly, drugs that impact the other components of pathways where mutant RAS operates may potentially be effective. However, the system-level features, including different localizations of RAS isoforms, competition between downstream effectors, and interlocking feedback and feed-forward loops, must be understood to fully grasp the opportunities and limitations of inhibiting specific targets. Mathematical modeling can help us discern the system-level impacts of these features in normal and cancer cells. New technologies enable the acquisition of experimental data that will facilitate development of realistic models of oncogenic RAS behavior. In light of the wealth of empirical data accumulated over decades of study and the advancement of experimental methods for gathering new data, modelers now have the opportunity to advance progress toward realization of targeted treatment for mutant RAS-driven cancers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Hydrogen peroxide toxicity induces Ras signaling in human neuroblastoma SH-SY5Y cultured cells.

    PubMed

    Chetsawang, Jirapa; Govitrapong, Piyarat; Chetsawang, Banthit

    2010-01-01

    It has been reported that overproduction of reactive oxygen species occurs after brain injury and mediates neuronal cells degeneration. In the present study, we examined the role of Ras signaling on hydrogen peroxide-induced neuronal cells degeneration in dopaminergic neuroblastoma SH-SY5Y cells. Hydrogen peroxide significantly reduced cell viability in SH-SY5Y cultured cells. An inhibitor of the enzyme that catalyzes the farnesylation of Ras proteins, FTI-277, and a competitive inhibitor of GTP-binding proteins, GDP-beta-S significantly decreased hydrogen peroxide-induced reduction in cell viability in SH-SY5Y cultured cells. The results of this study might indicate that a Ras-dependent signaling pathway plays a role in hydrogen peroxide-induced toxicity in neuronal cells.

  20. RAS diseases in children

    PubMed Central

    Niemeyer, Charlotte M.

    2014-01-01

    RAS genes encode a family of 21 kDa proteins that are an essential hub for a number of survival, proliferation, differentiation and senescence pathways. Signaling of the RAS-GTPases through the RAF-MEK-ERK pathway, the first identified mitogen-associated protein kinase (MAPK) cascade is essential in development. A group of genetic syndromes, named “RASopathies”, had been identified which are caused by heterozygosity for germline mutations in genes that encode protein components of the RAS/MAPK pathway. Several of these clinically overlapping disorders, including Noonan syndrome, Noonan-like CBL syndrome, Costello syndrome, cardio-facio-cutaneous (CFC) syndrome, neurofibromatosis type I, and Legius syndrome, predispose to cancer and abnormal myelopoiesis in infancy. This review focuses on juvenile myelomonocytic leukemia (JMML), a malignancy of early childhood characterized by initiating germline and/or somatic mutations in five genes of the RAS/MAPK pathway: PTPN11, CBL, NF-1, KRAS and NRAS. Natural courses of these five subtypes differ, although hematopoietic stem cell transplantation remains the only curative therapy option for most children with JMML. With whole-exome sequencing studies revealing few secondary lesions it will be crucial to better understand the RAS/MAPK signaling network with its crosstalks and feed-back loops to carefully design early clinical trials with novel pharmacological agents in this still puzzling leukemia. PMID:25420281

  1. Enhanced MET Translation and Signaling Sustains K-Ras-Driven Proliferation under Anchorage-Independent Growth Conditions.

    PubMed

    Fujita-Sato, Saori; Galeas, Jacqueline; Truitt, Morgan; Pitt, Cameron; Urisman, Anatoly; Bandyopadhyay, Sourav; Ruggero, Davide; McCormick, Frank

    2015-07-15

    Oncogenic K-Ras mutation occurs frequently in several types of cancers, including pancreatic and lung cancers. Tumors with K-Ras mutation are resistant to chemotherapeutic drugs as well as molecular targeting agents. Although numerous approaches are ongoing to find effective ways to treat these tumors, there are still no effective therapies for K-Ras mutant cancer patients. Here we report that K-Ras mutant cancers are more dependent on K-Ras in anchorage-independent culture conditions than in monolayer culture conditions. In seeking to determine mechanisms that contribute to the K-Ras dependency in anchorage-independent culture conditions, we discovered the involvement of Met in K-Ras-dependent, anchorage-independent cell growth. The Met signaling pathway is enhanced and plays an indispensable role in anchorage-independent growth even in cells in which Met is not amplified. Indeed, Met expression is elevated under anchorage-independent growth conditions and is regulated by K-Ras in a MAPK/ERK kinase (MEK)-dependent manner. Remarkably, in spite of a global downregulation of mRNA translation during anchorage-independent growth, we find that Met mRNA translation is specifically enhanced under these conditions. Importantly, ectopic expression of an active Met mutant rescues K-Ras ablation-derived growth suppression, indicating that K-Ras-mediated Met expression drives "K-Ras addiction" in anchorage-independent conditions. Our results indicate that enhanced Met expression and signaling is essential for anchorage-independent growth of K-Ras mutant cancer cells and suggests that pharmacological inhibitors of Met could be effective for K-Ras mutant tumor patients. ©2015 American Association for Cancer Research.

  2. Enhanced MET translation and signaling sustains K-Ras driven proliferation under anchorage-independent growth conditions

    PubMed Central

    Fujita-Sato, Saori; Galeas, Jacqueline; Truitt, Morgan; Pitt, Cameron; Urisman, Anatoly; Bandyopadhyay, Sourav; Ruggero, Davide; McCormick, Frank

    2015-01-01

    Oncogenic K-Ras mutation occurs frequently in several types of cancers including pancreatic and lung cancers. Tumors with K-Ras mutation are resistant to chemotherapeutic drugs as well as molecular targeting agents. Although numerous approaches are ongoing to find effective ways to treat these tumors, there are still no effective therapies for K-Ras mutant cancer patients. Here we report that K-Ras mutant cancers are more dependent on K-Ras in anchorage independent culture conditions than in monolayer culture conditions. In seeking to determine mechanisms that contribute to the K-Ras dependency in anchorage independent culture conditions, we discovered the involvement of Met in K-Ras-dependent, anchorage independent cell growth. The Met signaling pathway is enhanced and plays an indispensable role in anchorage independent growth even in cells in which Met is not amplified. Indeed, Met expression is elevated under anchorage-independent growth conditions and is regulated by K-Ras in a MAPK/ERK kinase (MEK)-dependent manner. Remarkably, in spite of a global down-regulation of mRNA translation during anchorage independent growth, we find that Met mRNA translation is specifically enhanced under these conditions. Importantly, ectopic expression of an active Met mutant rescues K-Ras ablation-derived growth suppression, indicating that K-Ras mediated Met expression drives “K-Ras addiction” in anchorage independent conditions. Our results indicate that enhanced Met expression and signaling is essential for anchorage independent growth of K-Ras mutant cancer cells and suggests that pharmacological inhibitors of Met could be effective for K-Ras mutant tumor patients. PMID:25977330

  3. Cold atmospheric plasma (CAP), a novel physicochemical source, induces neural differentiation through cross-talk between the specific RONS cascade and Trk/Ras/ERK signaling pathway.

    PubMed

    Jang, Ja-Young; Hong, Young June; Lim, Junsup; Choi, Jin Sung; Choi, Eun Ha; Kang, Seongman; Rhim, Hyangshuk

    2018-02-01

    Plasma, formed by ionization of gas molecules or atoms, is the most abundant form of matter and consists of highly reactive physicochemical species. In the physics and chemistry fields, plasma has been extensively studied; however, the exact action mechanisms of plasma on biological systems, including cells and humans, are not well known. Recent evidence suggests that cold atmospheric plasma (CAP), which refers to plasma used in the biomedical field, may regulate diverse cellular processes, including neural differentiation. However, the mechanism by which these physicochemical signals, elicited by reactive oxygen and nitrogen species (RONS), are transmitted to biological system remains elusive. In this study, we elucidated the physicochemical and biological (PCB) connection between the CAP cascade and Trk/Ras/ERK signaling pathway, which resulted in neural differentiation. Excited atomic oxygen in the plasma phase led to the formation of RONS in the PCB network, which then interacted with reactive atoms in the extracellular liquid phase to form nitric oxide (NO). Production of large amounts of superoxide radical (O 2 - ) in the mitochondria of cells exposed to CAP demonstrated that extracellular NO induced the reversible inhibition of mitochondrial complex IV. We also demonstrated that cytosolic hydrogen peroxide, formed by O 2 - dismutation, act as an intracellular messenger to specifically activate the Trk/Ras/ERK signaling pathway. This study is the first to elucidate the mechanism linking physicochemical signals from the CAP cascade to the intracellular neural differentiation signaling pathway, providing physical, chemical and biological insights into the development of therapeutic techniques to treat neurological diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Single cell analysis of low-power laser irradiation-induced activation of signaling pathway in cell proliferation

    NASA Astrophysics Data System (ADS)

    Xing, Da; Gao, Xuejuan

    2007-02-01

    Low-power laser irradiation (LPLI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. Investigating the signaling pathways involved in the laser irradiation is important for understanding these processes. The small G protein Ras works as a binary switch in many important intracellular signaling pathways and, therefore, has been one of the focal targets of signal-transduction investigations and drug development. The Ras/Raf/MEK/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that governs proliferation, differentiation and cell survival. Recent studies suggest that Ras/Raf signaling pathway is involved in the LPLI-induced cell proliferation. On the other hand, Protein kinase Cs (PKCs), the Ca 2+ activated, phospholipid-dependent serine/threonine protein kinases, have been recently presumed to be involved in the regulation of cell proliferation induced by LPLI. In this report, to monitor the direct activations of Ras and PKCs after LPLI treatment in living cells in real time, Raichu-Ras reporter and C kinase activity reporter (CKAR) were utilized, both of which were constructed based on fluorescence resonance energy transfer (FRET) technique. The direct activation of Ras is predominantly initiated from the different microdomains of the plasma membrane. The results are monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved COS-7 cells expressing Raichu-Ras reporter using FRET imaging on laser scanning confocal microscope. Furthermore, the increasing activation of PKCs is also monitored during cell proliferation induced by LPLI (0.8 J/cm2) in serum-starved human lung adenocarcinoma cells (ASTC-a-1) expressing CKAR reporter using the similar way. Taken together, the dynamic increases of H-Ras and PKCs activities are observed during the processes of cell proliferation induced by LPLI.

  5. Differential role of gp130-dependent STAT and Ras signalling for haematopoiesis following bone-marrow transplantation.

    PubMed

    Kroy, Daniela C; Hebing, Lisa; Sander, Leif E; Gassler, Nikolaus; Erschfeld, Stephanie; Sackett, Sara; Galm, Oliver; Trautwein, Christian; Streetz, Konrad L

    2012-01-01

    Bone marrow transplantation (BMT) is a complex process regulated by different cytokines and growth factors. The pleiotropic cytokine IL-6 (Interleukin-6) and related cytokines of the same family acting on the common signal transducer gp130 are known to play a key role in bone marrow (BM) engraftment. In contrast, the exact signalling events that control IL-6/gp130-driven haematopoietic stem cell development during BMT remain unresolved. Conditional gp130 knockout and knockin mice were used to delete gp130 expression (gp130(ΔMx)), or to selectively disrupt gp130-dependent Ras (gp130(ΔMxRas)) or STAT signalling (gp130(ΔMxSTAT)) in BM cells. BM derived from the respective strains was transplanted into irradiated wildtype hosts and repopulation of various haematopoietic lineages was monitored by flow cytometry. BM derived from gp130 deficient donor mice (gp130(ΔMx)) displayed a delayed engraftment, as evidenced by reduced total white blood cells (WBC), marked thrombocytopenia and anaemia in the early phase after BMT. Lineage analysis unravelled a restricted development of CD4(+) and CD8(+) T-cells, CD19(+) B-cells and CD11b(+) myeloid cells after transplantation of gp130-deficient BM grafts. To further delineate the two major gp130-induced signalling cascades, Ras-MAPK and STAT1/3-signalling respectively, we used gp130(ΔMxRas) and gp130(ΔMxSTAT) donor BM. BMT of gp130(ΔMxSTAT) cells significantly impaired engraftment of CD4(+), CD8(+), CD19(+) and CD11b(+) cells, whereas gp130(ΔMxRas) BM displayed a selective impairment in early thrombopoiesis. Importantly, gp130-STAT1/3 signalling deficiency in BM grafts severely impaired survival of transplanted mice, thus demonstrating a pivotal role for this pathway in BM graft survival and function. Our data unravel a vital function of IL-6/gp130-STAT1/3 signals for BM engraftment and haematopoiesis, as well as for host survival after transplantation. STAT1/3 and ras-dependent pathways thereby exert distinct functions on

  6. Aurora kinase A interacts with H-Ras and potentiates Ras-MAPK signaling | Office of Cancer Genomics

    Cancer.gov

    In cancer, upregulated Ras promotes cellular transformation and proliferation in part through activation of oncogenic Ras-MAPK signaling. While directly inhibiting Ras has proven challenging, new insights into Ras regulation through protein-protein interactions may offer unique opportunities for therapeutic intervention. Here we report the identification and validation of Aurora kinase A (Aurora A) as a novel Ras binding protein. We demonstrate that the kinase domain of Aurora A mediates the interaction with the N-terminal domain of H-Ras.

  7. Defined spatiotemporal features of RAS-ERK signals dictate cell fate in MCF-7 mammary epithelial cells.

    PubMed

    Herrero, Ana; Casar, Berta; Colón-Bolea, Paula; Agudo-Ibáñez, Lorena; Crespo, Piero

    2016-06-15

    Signals conveyed through the RAS-ERK pathway are essential for the determination of cell fate. It is well established that signal variability is achieved in the different microenvironments in which signals unfold. It is also known that signal duration is critical for decisions concerning cell commitment. However, it is unclear how RAS-ERK signals integrate time and space in order to elicit a given biological response. To investigate this, we used MCF-7 cells, in which EGF-induced transient ERK activation triggers proliferation, whereas sustained ERK activation in response to heregulin leads to adipocytic differentiation. We found that both proliferative and differentiating signals emanate exclusively from plasma membrane-disordered microdomains. Of interest, the EGF signal can be transformed into a differentiating stimulus by HRAS overexpression, which prolongs ERK activation, but only if HRAS localizes at disordered membrane. On the other hand, HRAS signals emanating from the Golgi complex induce apoptosis and can prevent heregulin-induced differentiation. Our results indicate that within the same cellular context, RAS can exert different, even antagonistic, effects, depending on its sublocalization. Thus cell destiny is defined by the ability of a stimulus to activate RAS at the appropriate sublocalization for an adequate period while avoiding switching on opposing RAS signals. © 2016 Herrero et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Ras mutation cooperates with β-catenin activation to drive bladder tumourigenesis.

    PubMed

    Ahmad, I; Patel, R; Liu, Y; Singh, L B; Taketo, M M; Wu, X-R; Leung, H Y; Sansom, O J

    2011-03-03

    Mutations in the Ras family of proteins (predominantly in H-Ras) occur in approximately 40% of urothelial cell carcinoma (UCC). However, relatively little is known about subsequent mutations/pathway alterations that allow tumour progression. Indeed, expressing mutant H-Ras within the mouse bladder does not lead to tumour formation, unless this is expressed at high levels. The Wnt signalling pathway is deregulated in approximately 25% of UCC, so we examined if this correlated with the activation of MAPK signalling in human UCC and found a significant correlation. To test the functional significance of this association we examined the impact of combining Ras mutation (H-Ras(Q61L) or K-Ras(G12D)) with an activating β-catenin mutation within the mouse bladder using Cre-LoxP technology. Although alone, neither Ras mutation nor β-catenin activation led to UCC (within 12 months), mice carrying both mutations rapidly developed UCC. Mechanistically this was associated with reduced levels of p21 with dependence on the MAPK signalling pathway. Moreover, tumours from these mice were sensitive to MEK inhibition. Importantly, in human UCC there was a negative correlation between levels of p-ERK and p21 suggesting that p21 accumulation may block tumour progression following Ras mutation. Taken together these data definitively show Ras pathway activation strongly cooperates with Wnt signalling to drive UCC in vivo.

  9. Atorvastatin inhibits insulin synthesis by inhibiting the Ras/Raf/ERK/CREB pathway in INS-1 cells

    PubMed Central

    Sun, Hongxi; Li, Yu; Sun, Bei; Hou, Ningning; Yang, Juhong; Zheng, Miaoyan; Xu, Jie; Wang, Jingyu; Zhang, Yi; Zeng, Xianwei; Shan, Chunyan; Chang, Bai; Chen, Liming; Chang, Baocheng

    2016-01-01

    Abstract Backround: Type 2 diabetes has become a global epidemic disease. Atorvastatin has become a cornerstone in the prevention and treatment of atherosclerosis. However, increasing evidence showed that statins can dose-dependently increase the risk of diabetes mellitus. The mechanism is not clear. Objective: The Ras complex pathway (Ras/Raf/extracellular signal-regulated kinase [ERK]/cAMP response element-binding protein [CREB]) is the major pathway that regulates the gene transcription. Except for the inhibition of cholesterol synthesis by inhibiting the 3-hydroxy-3-methyl glutaryl coenzyme A (HMG-COA) reductase, statins can also downregulate the phosphorylation of a series of downstream substrates including the key proteins of the Ras complex pathway, therefore may inhibit the insulin syntheses in pancreatic beta cells. In our study, we investigated the inhibitory effect and the underlying mechanism of atorvastatin on insulin synthesis in rat islets. Methods: Islets were isolated from Wistar rats and cultured in Roswell Park Memorial Institute (RPMI)-1640 medium. The insulin content in the medium was measured by radioimmunoassay before and after the treatment of 50 μM atorvastatin. Effect of atorvastatin on the expression of insulin message Ribonucleic acid (mRNA) in pancreatic islet beta cells was also detected using quantitative real-time polymerase chain reaction. Western blotting was used to explore the possible role of the Ras complex pathway (Ras/Raf/ERK/CREB) in atorvastatin-inhibited insulin synthesis. The effects of atorvastatin on the binding of nuclear transcription factor p-CREB with CRE in INS-1 cells were examined via chromatin immunoprecipitation assay. Results: Compared with the control group, the insulin level decreased by 27.1% at 24 hours after atorvastatin treatment. Atorvastatin inhibited insulin synthesis by decreasing insulin mRNA expression of pancreatic islet beta cells. The activities of Ras, Raf-1, and p-CREB in the Ras complex

  10. Differential activation of the Ras/extracellular-signal-regulated protein kinase pathway is responsible for the biological consequences induced by the Axl receptor tyrosine kinase.

    PubMed

    Fridell, Y W; Jin, Y; Quilliam, L A; Burchert, A; McCloskey, P; Spizz, G; Varnum, B; Der, C; Liu, E T

    1996-01-01

    To understand the mechanism of Axl signaling, we have initiated studies to delineate downstream components in interleukin-3-dependent 32D cells by using a chimeric receptor containing the recombinant epidermal growth factor (EGF) receptor extracellular and transmembrane domains and the Axl kinase domain (EAK [for EGF receptor-Axl kinase]). We have previously shown that upon exogenous EGF stimulation, 32D-EAK cells are capable of proliferation in the absence of interleukin-3. With this system, we determined that EAK-induced cell survival and mitogenesis are dependent upon the Ras/extracellular-signal-regulated protein kinase (ERK) cascade. Although the phosphatidylinositol-3 kinase pathway is activated upon EAK signaling, it appears to be dispensable for the biological actions of the Axl kinase. Furthermore, we demonstrated that different threshold levels of Ras/ERK activation are needed to induce a block to apoptosis or proliferation in 32D cells. Recently, we have identified an Axl ligand, GAS6. Surprisingly, GAS6-stimulated 32D-Axl cells exhibited no blockage to apoptosis or mitogenic response which is correlated with the absence of Ras/ERK activation. Taken together, these data suggest that different extracellular domains dramatically alter the intracellular response of the Axl kinase. Furthermore, our data suggest that the GAS6-Axl interaction does not induce mitogenesis and that its exact role remains to be determined.

  11. Dusp6 attenuates Ras/MAPK signaling to limit zebrafish heart regeneration.

    PubMed

    Missinato, Maria A; Saydmohammed, Manush; Zuppo, Daniel A; Rao, Krithika S; Opie, Graham W; Kühn, Bernhard; Tsang, Michael

    2018-03-06

    Zebrafish regenerate cardiac tissue through proliferation of pre-existing cardiomyocytes and neovascularization. Secreted growth factors such as FGFs, IGF, PDGFs and Neuregulin play essential roles in stimulating cardiomyocyte proliferation. These factors activate the Ras/MAPK pathway, which is tightly controlled by the feedback attenuator Dual specificity phosphatase 6 (Dusp6), an ERK phosphatase. Here, we show that suppressing Dusp6 function enhances cardiac regeneration. Inactivation of Dusp6 by small molecules or by gene inactivation increased cardiomyocyte proliferation, coronary angiogenesis, and reduced fibrosis after ventricular resection. Inhibition of Erbb or PDGF receptor signaling suppressed cardiac regeneration in wild-type zebrafish, but had a milder effect on regeneration in dusp6 mutants. Moreover, in rat primary cardiomyocytes, NRG1-stimulated proliferation can be enhanced upon chemical inhibition of Dusp6 with BCI. Our results suggest that Dusp6 attenuates Ras/MAPK signaling during regeneration and that suppressing Dusp6 can enhance cardiac repair. © 2018. Published by The Company of Biologists Ltd.

  12. Myostatin regulates miR-431 expression via the Ras-Mek-Erk signaling pathway.

    PubMed

    Wu, Rimao; Li, Hu; Li, Tingting; Zhang, Yong; Zhu, Dahai

    2015-05-29

    MicroRNAs (miRNAs) play critical regulatory roles in controlling myogenic development both in vitro and in vivo; however, the molecular mechanisms underlying transcriptional regulation of miRNA genes in skeletal muscle cells are largely unknown. Here, using a microarray hybridization approach, we identified myostatin-regulated miRNA genes in skeletal muscle tissues by systematically searching miRNAs that are differentially expressed between wild-type and myostatin-null mice during development. We found that 116 miRNA genes were differentially expressed in muscles between these mice across different developmental stages. We further characterized myostatin-regulated miR-431 was upregulated in skeletal muscle tissues of myostatin-null mice. In functional studies, we found that overexpression of miR-431 in C2C12 myoblast cells attenuated myostatin-induced suppression of myogenic differentiation. Mechanistic studies further demonstrated that myostatin acted through the Ras-Mek-Erk signaling pathway to transcriptionally regulate miR-431 expression C2C12 cells. Our findings provide new insight into the mechanisms underlying transcriptional regulation of miRNA genes by myostatin during skeletal muscle development. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Ras/ERK signaling pathway is involved in curcumin-induced cell cycle arrest and apoptosis in human gastric carcinoma AGS cells.

    PubMed

    Cao, Ai-Li; Tang, Qing-Feng; Zhou, Wen-Chao; Qiu, Yan-Yan; Hu, Song-Jiao; Yin, Pei-Hao

    2015-01-01

    Curcumin, the biologically active compound from the rhizome of Curcuma longa, could inhibit cell growth and induce apoptosis in gastric carcinoma. However, the underlying mechanism of curcumin on gastric carcinoma cells still needs further investigation. In this study, morphological observation indicated that curcumin inhibited the proliferation of AGS cells in a dose-dependent manner. According to the flow cytometric analysis, curcumin treatment resulted in G2/M arrest in AGS cells, accompanied with an increased expression of cyclin B1 and a decreased expression of cyclin D1. In addition, DNA ladders were observed by gel electrophoresis. Meanwhile, the activities of caspase-3, -8, and -9 were also enhanced in curcumin-treated AGS cells. Nevertheless, the increased activities could be inhibited by benzyloxycarbonyl-Val-Ala-Asp (OME)-fluoromethylketone (z-VAD-fmk), which suggested that the apoptosis was caspase-dependent. Furthermore, downregulation of rat sarcoma (Ras) and upregulation of extracellular-signal-regulated kinase (ERK) were also observed in AGS cells treated with curcumin by Western blot. U0126, an ERK inhibitor, blocked curcumin-induced apoptosis. The results suggested that curcumin inhibited the growth of the AGS cells and induced apoptosis through the activation of Ras/ERK signaling pathway and downstream caspase cascade, and curcumin might be a potential target for the treatment of gastric carcinoma.

  14. Effect of Angiotensin II and Small GTPase Ras Signaling Pathway Inhibition on Early Renal Changes in a Murine Model of Obstructive Nephropathy

    PubMed Central

    Rodríguez-Peña, Ana B.; Fuentes-Calvo, Isabel; Docherty, Neil G.; Arévalo, Miguel; Grande, María T.; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M.

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis. PMID:25101263

  15. Effect of angiotensin II and small GTPase Ras signaling pathway inhibition on early renal changes in a murine model of obstructive nephropathy.

    PubMed

    Rodríguez-Peña, Ana B; Fuentes-Calvo, Isabel; Docherty, Neil G; Arévalo, Miguel; Grande, María T; Eleno, Nélida; Pérez-Barriocanal, Fernando; López-Novoa, José M

    2014-01-01

    Tubulointerstitial fibrosis is a major feature of chronic kidney disease. Unilateral ureteral obstruction (UUO) in rodents leads to the development of renal tubulointerstitial fibrosis consistent with histopathological changes observed in advanced chronic kidney disease in humans. The purpose of this study was to assess the effect of inhibiting angiotensin II receptors or Ras activation on early renal fibrotic changes induced by UUO. Animals either received angiotensin II or underwent UUO. UUO animals received either losartan, atorvastatin, and farnesyl transferase inhibitor (FTI) L-744,832, or chaetomellic acid A (ChA). Levels of activated Ras, phospho-ERK1/2, phospho-Akt, fibronectin, and α-smooth muscle actin were subsequently quantified in renal tissue by ELISA, Western blot, and/or immunohistochemistry. Our results demonstrate that administration of angiotensin II induces activation of the small GTPase Ras/Erk/Akt signaling system, suggesting an involvement of angiotensin II in the early obstruction-induced activation of renal Ras. Furthermore, upstream inhibition of Ras signalling by blocking either angiotensin AT1 type receptor or by inhibiting Ras prenylation (atorvastatin, FTI o ChA) reduced the activation of the Ras/Erk/Akt signaling system and decreased the early fibrotic response in the obstructed kidney. This study points out that pharmacological inhibition of Ras activation may hold promise as a future strategy in the prevention of renal fibrosis.

  16. The role of the RAS pathway in iAMP21-ALL

    PubMed Central

    Ryan, S L; Matheson, E; Grossmann, V; Sinclair, P; Bashton, M; Schwab, C; Towers, W; Partington, M; Elliott, A; Minto, L; Richardson, S; Rahman, T; Keavney, B; Skinner, R; Bown, N; Haferlach, T; Vandenberghe, P; Haferlach, C; Santibanez-Koref, M; Moorman, A V; Kohlmann, A; Irving, J A E; Harrison, C J

    2016-01-01

    Intrachromosomal amplification of chromosome 21 (iAMP21) identifies a high-risk subtype of acute lymphoblastic leukaemia (ALL), requiring intensive treatment to reduce their relapse risk. Improved understanding of the genomic landscape of iAMP21-ALL will ascertain whether these patients may benefit from targeted therapy. We performed whole-exome sequencing of eight iAMP21-ALL samples. The mutation rate was dramatically disparate between cases (average 24.9, range 5–51) and a large number of novel variants were identified, including frequent mutation of the RAS/MEK/ERK pathway. Targeted sequencing of a larger cohort revealed that 60% (25/42) of diagnostic iAMP21-ALL samples harboured 42 distinct RAS pathway mutations. High sequencing coverage demonstrated heterogeneity in the form of multiple RAS pathway mutations within the same sample and diverse variant allele frequencies (VAFs) (2–52%), similar to other subtypes of ALL. Constitutive RAS pathway activation was observed in iAMP21 samples that harboured mutations in the predominant clone (⩾35% VAF). Viable iAMP21 cells from primary xenografts showed reduced viability in response to the MEK1/2 inhibitor, selumetinib, in vitro. As clonal (⩾35% VAF) mutations were detected in 26% (11/42) of iAMP21-ALL, this evidence of response to RAS pathway inhibitors may offer the possibility to introduce targeted therapy to improve therapeutic efficacy in these high-risk patients. PMID:27168466

  17. Identification of a novel human kinase supporter of Ras (hKSR-2) that functions as a negative regulator of Cot (Tpl2) signaling.

    PubMed

    Channavajhala, Padma L; Wu, Leeying; Cuozzo, John W; Hall, J Perry; Liu, Wei; Lin, Lih-Ling; Zhang, Yuhua

    2003-11-21

    Kinase suppressor of Ras (KSR) is an integral and conserved component of the Ras signaling pathway. Although KSR is a positive regulator of the Ras/mitogen-activated protein (MAP) kinase pathway, the role of KSR in Cot-mediated MAPK activation has not been identified. The serine/threonine kinase Cot (also known as Tpl2) is a member of the MAP kinase kinase kinase (MAP3K) family that is known to regulate oncogenic and inflammatory pathways; however, the mechanism(s) of its regulation are not precisely known. In this report, we identify an 830-amino acid novel human KSR, designated hKSR-2, using predictions from genomic data base mining based on the structural profile of the KSR kinase domain. We show that, similar to the known human KSR, hKSR-2 co-immunoprecipitates with many signaling components of the Ras/MAPK pathway, including Ras, Raf, MEK-1, and ERK-1/2. In addition, we demonstrate that hKSR-2 co-immunoprecipitates with Cot and that co-expression of hKSR-2 with Cot significantly reduces Cot-mediated MAPK and NF-kappaB activation. This inhibition is specific to Cot, because Ras-induced ERK and IkappaB kinase-induced NF-kappaB activation are not significantly affected by hKSR-2 co-expression. Moreover, Cot-induced interleukin-8 production in HeLa cells is almost completely inhibited by the concurrent expression of hKSR-2, whereas transforming growth factor beta-activated kinase 1 (TAK1)/TAK1-binding protein 1 (TAB1)-induced interleukin-8 production is not affected by hKSR-2 co-expression. Taken together, these results indicate that hKSR-2, a new member of the KSR family, negatively regulates Cot-mediated MAP kinase and NF-kappaB pathway signaling.

  18. Ras, an Actor on Many Stages

    PubMed Central

    Arozarena, Imanol; Calvo, Fernando; Crespo, Piero

    2011-01-01

    Among the wealth of information that we have gathered about Ras in the past decade, the introduction of the concept of space in the field has constituted a major revolution that has enabled many pieces of the Ras puzzle to fall into place. In the early days, it was believed that Ras functioned exclusively at the plasma membrane. Today, we know that within the plasma membrane, the 3 Ras isoforms—H-Ras, K-Ras, and N-Ras—occupy different microdomains and that these isoforms are also present and active in endomembranes. We have also discovered that Ras proteins are not statically associated with these localizations; instead, they traffic dynamically between compartments. And we have learned that at these localizations, Ras is under site-specific regulatory mechanisms, distinctively engaging effector pathways and switching on diverse genetic programs to generate different biological responses. All of these processes are possible in great part due to the posttranslational modifications whereby Ras proteins bind to membranes and to regulatory events such as phosphorylation and ubiquitination that Ras is subject to. As such, space and these control mechanisms act in conjunction to endow Ras signals with an enormous signal variability that makes possible its multiple biological roles. These data have established the concept that the Ras signal, instead of being one single, homogeneous entity, results from the integration of multiple, site-specified subsignals, and Ras has become a paradigm of how space can differentially shape signaling. PMID:21779492

  19. Retinoblastoma protein (pRB) was significantly phosphorylated through a Ras-to-MAPK pathway in mutant K-ras stably transfected human adrenocortical cells.

    PubMed

    Chen, Y-F; Chiu, H-H; Wu, C-H; Wang, J-Y; Chen, F-M; Tzou, W-H; Shin, S-J; Lin, S-R

    2003-10-01

    Our previous studies have shown that the cell proliferation rate, mRNA levels of p450scc, p450c17, and 3betaHSD, and secretion of cortisol were significantly increased in human adrenocortical cells stably transfected with mutated K-ras expression plasmid "pK568MRSV" after being inducted with IPTG. In addition, the increased level was a time-dependent manner. However, the levels of p450, p450scc, p450c17, 3betaHSD, cortisol, and cell proliferation rate were inhibited by a MEK phospholation inhibitor, PD098059. The above results prove that mutated K-ras oncogene is able to regulate tumorigenesis and steroidogenesis through a Ras-RAF-MEK-MAPK signal transduction pathway. The aim of this study was to investigate regulated factors in this pathway and also examine whether the other signal transduction pathways or other moles involved in tumorigenesis or steroidogenesis. In the first year, we analyzed gene profiles of mutant K-ras-transfected adrenocortical cells by DNA microarray to determine the gene expression related to cell cycle, signal transduction, apoptosis, tumorigenesis, steroidogenesis, and other expressed sequence tag. After being affected by the K-ras mutant, gene expression was significantly increased in some upregulated genes. Human zinc-finger protein 22 increased by 28.5 times, Osteopontin increased by 5.8 times, LIM domain Kinase 2 (LIMK2) increased by 3.3 times, Homo sapiens dual-specificity tyrosine-(Y)-phosphorylation regulated Kinase 2 (DYRK2) increased by 2.2 times, and human syntaxin 3 increased by two times. On the other hand, significant decreases in gene expression were also observed in some downregulated genes. Retinoblastoma binding protein 1 (RBBP1) decreased by four times, Homo sapiens craniofacial development protein 1 (CFDP1) decreased by 2.4 times, DAP Kinase-related apoptosis-inducing protein Kinase 1 (DRAK1) decreased by 2.3 times, SKI-interacting protein (SKIP) decreased by 2.2 times, and human poly(A)-Binding protein (PABP) decreased

  20. [Effect of ERK1/2 Signaling Pathway Inhibitor PD98059 on the Expression of Ras, BRaf, MEK, ERK1/2 in Marrow Nucleated Red Blood Cells of CMS Patients].

    PubMed

    Han, Yuan-Fang; Ji, Lin-Hua; Feng, Ting-Ting; Liu, Fang; Cui, Sen; Su, Juan

    2017-10-01

    To investigate the effect of ERK1 / 2 signaling pathway inhibitor PD98059 on Ras, Raf, MEK, ERK1, ERK2 expression in order to explore a new way for basic research and clinical treatment of the chronic mountain sickness(CMS). Sixteen CMS patients were selected, the bone marrow was collected for isolation of monomuclear cells (MNC), the cells were sorted by using CD71 and CD235a antibody magnetic beads, then positive cells were diveded into 5 groups: blank control, DMSO and PD98059 5, 10 and 20 µmol/L, and were cultured in hypoxid condition for 72 hours. The Ras-GTP levels in supernatant was detected by ELISA, the RT-PCR was used to determine the expression of BRaf, MEK, ERK1, ERK2 mRNA in nucleated red blood cells, and the Western blot method was used to detect expression of BRaf, MEK, ERK1, ERK2 protein. PD98059 had no effect on the level of Ras-GTP in each groups. Compared with the blank control group, the expression levels of BRaf, MEK mRNA in DMSO group were not statistically significant (P values were 0.826, 0.298). Compared with the PD98059 20 mol/L group, the expression level of ERK1/2 mRNA was statistically significant (P=0.001, 0.002). Compared with the blank control group, expression levels of p-BRaf, p-MEK protein in DMSO group were not statistically significant (P=0.370, 0.351). Compared with the PD98059 20 mol/L group, the difference of p-ERK1/2 protein level in other 4 groups were statistically significant (P values were <0.001, 0.007). PD98059 can up-regulate the expressions of ERK1/2 miRNA and p-ERK1/2 protein in bone marrow nucleated red blood cells, the Ras / Raf / MEK / ERK 1/2 pathway is the main signal transduction pathway in regulating bone marrow nucleated red blood cells, suggesting that Ras/Raf /MEK /ERK 1/2 pathway may be involved in the pathogenesis of chronic mountain sickness process.

  1. The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting.

    PubMed

    Jonckheere, Nicolas; Vasseur, Romain; Van Seuningen, Isabelle

    2017-03-01

    RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ral signaling pathway in health and cancer.

    PubMed

    Moghadam, Adel Rezaei; Patrad, Elham; Tafsiri, Elham; Peng, Warner; Fangman, Benjamin; Pluard, Timothy J; Accurso, Anthony; Salacz, Michael; Shah, Kushal; Ricke, Brandon; Bi, Danse; Kimura, Kyle; Graves, Leland; Najad, Marzieh Khajoie; Dolatkhah, Roya; Sanaat, Zohreh; Yazdi, Mina; Tavakolinia, Naeimeh; Mazani, Mohammad; Amani, Mojtaba; Ghavami, Saeid; Gartell, Robyn; Reilly, Colleen; Naima, Zaid; Esfandyari, Tuba; Farassati, Faris

    2017-12-01

    The Ral (Ras-Like) signaling pathway plays an important role in the biology of cells. A plethora of effects is regulated by this signaling pathway and its prooncogenic effectors. Our team has demonstrated the overactivation of the RalA signaling pathway in a number of human malignancies including cancers of the liver, ovary, lung, brain, and malignant peripheral nerve sheath tumors. Additionally, we have shown that the activation of RalA in cancer stem cells is higher in comparison with differentiated cancer cells. In this article, we review the role of Ral signaling in health and disease with a focus on the role of this multifunctional protein in the generation of therapies for cancer. An improved understanding of this pathway can lead to development of a novel class of anticancer therapies that functions on the basis of intervention with RalA or its downstream effectors. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  3. Identification of Ras-degrading small molecules that inhibit the transformation of colorectal cancer cells independent of β-catenin signaling.

    PubMed

    Shin, Wookjin; Lee, Sang-Kyu; Hwang, Jeong-Ha; Park, Jong-Chan; Cho, Yong-Hee; Ro, Eun Ji; Song, Yeonhwa; Seo, Haeng Ran; Choi, Kang-Yell

    2018-06-06

    Although the development of drugs that control Ras is an emerging topic in cancer therapy, no clinically applicable drug is currently available. We have previously utilized knowledge of the Wnt/β-catenin signaling-dependent mechanism of Ras protein stability regulation to identify small molecules that inhibit the proliferation and transformation of various colorectal cancer (CRC) cells via degradation of both β-catenin and Ras. Due to the absence of Ras degradation in cells expressing a nondegradable mutant form of β-catenin and the need to determine an alternative mechanism of Ras degradation, we designed a cell-based system to screen compounds that degrade Ras independent of the Wnt/β-catenin signaling pathway. A cell-based high-content screening (HCS) system that monitors the levels of EGFP-K-Ras G12V was established using HCT-116 cells harboring a nondegradable mutant CTNNB1 (ΔS45). Through HCS of a chemical library composed of 10,000 compounds and subsequent characterization of hits, we identified several compounds that degrade Ras without affecting the β-catenin levels. KY7749, one of the most effective compounds, inhibited the proliferation and transformation of CRC cells, especially KRAS-mutant cells that are resistant to the EGFR monoclonal antibody cetuximab. Small molecules that degrade Ras independent of β-catenin may able to be used in treatments for cancers caused by aberrant EGFR and Ras.

  4. CAVEOLIN-1 REGULATES HIV-1 TAT-INDUCED ALTERATIONS OF TIGHT JUNCTION PROTEIN EXPRESSION VIA MODULATION OF THE RAS SIGNALING

    PubMed Central

    Zhong, Yu; Smart, Eric J.; Weksler, Babette; Couraud, Pierre-Olivier; Hennig, Bernhard; Toborek, Michal

    2009-01-01

    The blood-brain barrier (BBB) is the critical structure for preventing HIV trafficking into the brain. Specific HIV proteins, such as Tat protein, can contribute to the dysfunction of tight junctions at the BBB and HIV entry into the brain. Tat is released by HIV-1 infected cells and can interact with a variety of cell surface receptors activating several signal transduction pathways, including those localized in caveolae. The present study focused on the mechanisms of Tat-induced caveolae-associated Ras signaling at the level of the BBB. Treatment with Tat activated the Ras pathway in human brain microvascular endothelial cells (HBMEC). However, caveolin-1 silencing markedly attenuated these effects. Because the integrity of the brain endothelium is regulated by intercellular tight junctions, these structural elements of the BBB were also evaluated in the present study. Exposure to Tat diminished the expression of several tight junction proteins, namely, occludin, zonula occludens (ZO)-1, and ZO-2 in the caveolar fraction of HBMEC. These effects were effectively protected by pharmacological inhibition of the Ras signaling and by silencing of caveolin-1. The present data indicate the importance of caveolae-associated signaling in the disruption of tight junctions upon Tat exposure. They also demonstrate that caveolin-1 may constitute an early and critical modulator that controls signaling pathways leading to the disruption of tight junction proteins. Thus, caveolin-1 may provide an effective target to protect against Tat-induced HBMEC dysfunction and the disruption of the BBB in HIV-1-infected patients. PMID:18667611

  5. DA-Raf-Mediated Suppression of the Ras--ERK Pathway Is Essential for TGF-β1-Induced Epithelial-Mesenchymal Transition in Alveolar Epithelial Type 2 Cells.

    PubMed

    Watanabe-Takano, Haruko; Takano, Kazunori; Hatano, Masahiko; Tokuhisa, Takeshi; Endo, Takeshi

    2015-01-01

    Myofibroblasts play critical roles in the development of idiopathic pulmonary fibrosis by depositing components of extracellular matrix. One source of lung myofibroblasts is thought to be alveolar epithelial type 2 cells that undergo epithelial-mesenchymal transition (EMT). Rat RLE-6TN alveolar epithelial type 2 cells treated with transforming growth factor-β1 (TGF-β1) are converted into myofibroblasts through EMT. TGF-β induces both canonical Smad signaling and non-canonical signaling, including the Ras-induced ERK pathway (Raf-MEK-ERK). However, the signaling mechanisms regulating TGF-β1-induced EMT are not fully understood. Here, we show that the Ras-ERK pathway negatively regulates TGF-β1-induced EMT in RLE-6TN cells and that DA-Raf1 (DA-Raf), a splicing isoform of A-Raf and a dominant-negative antagonist of the Ras-ERK pathway, plays an essential role in EMT. Stimulation of the cells with fibroblast growth factor 2 (FGF2), which activated the ERK pathway, prominently suppressed TGF-β1-induced EMT. An inhibitor of MEK, but not an inhibitor of phosphatidylinositol 3-kinase, rescued the TGF-β1-treated cells from the suppression of EMT by FGF2. Overexpression of a constitutively active mutant of a component of the Ras-ERK pathway, i.e., H-Ras, B-Raf, or MEK1, interfered with EMT. Knockdown of DA-Raf expression with siRNAs facilitated the activity of MEK and ERK, which were only weakly and transiently activated by TGF-β1. Although DA-Raf knockdown abrogated TGF-β1-induced EMT, the abrogation of EMT was reversed by the addition of the MEK inhibitor. Furthermore, DA-Raf knockdown impaired the TGF-β1-induced nuclear translocation of Smad2, which mediates the transcription required for EMT. These results imply that intrinsic DA-Raf exerts essential functions for EMT by antagonizing the TGF-β1-induced Ras-ERK pathway in RLE-6TN cells.

  6. The Bcr Kinase Downregulates Ras Signaling by Phosphorylating AF-6 and Binding to Its PDZ Domain

    PubMed Central

    Radziwill, G.; Erdmann, R. A.; Margelisch, U.; Moelling, K.

    2003-01-01

    The protein kinase Bcr is a negative regulator of cell proliferation and oncogenic transformation. We identified Bcr as a ligand for the PDZ domain of the cell junction and Ras-interacting protein AF-6. The Bcr kinase phosphorylates AF-6, which subsequently allows efficient binding of Bcr to AF-6, showing that the Bcr kinase is a regulator of the PDZ domain-ligand interaction. Bcr and AF-6 colocalize in epithelial cells at the plasma membrane. In addition, Bcr, AF-6, and Ras form a trimeric complex. Bcr increases the affinity of AF-6 to Ras, and a mutant of AF-6 that lacks a specific phosphorylation site for Bcr shows a reduced binding to Ras. Wild-type Bcr, but not Bcr mutants defective in binding to AF-6, interferes with the Ras-dependent stimulation of the Raf/MEK/ERK pathway. Since AF-6 binds to Bcr via its PDZ domain and to Ras via its Ras-binding domain, we propose that AF-6 functions as a scaffold-like protein that links Bcr and Ras to cellular junctions. We suggest that this trimeric complex is involved in downregulation of Ras-mediated signaling at sites of cell-cell contact to maintain cells in a nonproliferating state. PMID:12808105

  7. The Caenorhabditis elegans EGL-15 Signaling Pathway Implicates a DOS-Like Multisubstrate Adaptor Protein in Fibroblast Growth Factor Signal Transduction

    PubMed Central

    Schutzman, Jennifer L.; Borland, Christina Z.; Newman, John C.; Robinson, Matthew K.; Kokel, Michelle; Stern, Michael J.

    2001-01-01

    EGL-15 is a fibroblast growth factor receptor in the nematode Caenorhabditis elegans. Components that mediate EGL-15 signaling have been identified via mutations that confer a Clear (Clr) phenotype, indicative of hyperactivity of this pathway, or a suppressor-of-Clr (Soc) phenotype, indicative of reduced pathway activity. We have isolated a gain-of-function allele of let-60 ras that confers a Clr phenotype and implicated both let-60 ras and components of a mitogen-activated protein kinase cascade in EGL-15 signaling by their Soc phenotype. Epistasis analysis indicates that the gene soc-1 functions in EGL-15 signaling by acting either upstream of or independently of LET-60 RAS. soc-1 encodes a multisubstrate adaptor protein with an amino-terminal pleckstrin homology domain that is structurally similar to the DOS protein in Drosophila and mammalian GAB1. DOS is known to act with the cytoplasmic tyrosine phosphatase Corkscrew (CSW) in signaling pathways in Drosophila. Similarly, the C. elegans CSW ortholog PTP-2 was found to be involved in EGL-15 signaling. Structure-function analysis of SOC-1 and phenotypic analysis of single and double mutants are consistent with a model in which SOC-1 and PTP-2 act together in a pathway downstream of EGL-15 and the Src homology domain 2 (SH2)/SH3-adaptor protein SEM-5/GRB2 contributes to SOC-1-independent activities of EGL-15. PMID:11689700

  8. Acquisition of contextual discrimination involves the appearance of a RAS-GRF1/p38 mitogen-activated protein (MAP) kinase-mediated signaling pathway that promotes long term potentiation (LTP).

    PubMed

    Jin, Shan-Xue; Arai, Junko; Tian, Xuejun; Kumar-Singh, Rajendra; Feig, Larry A

    2013-07-26

    RAS-GRF1 is a guanine nucleotide exchange factor with the ability to activate RAS and RAC GTPases in response to elevated calcium levels. We previously showed that beginning at 1 month of age, RAS-GRF1 mediates NMDA-type glutamate receptor (NMDAR)-induction of long term depression in the CA1 region of the hippocampus of mice. Here we show that beginning at 2 months of age, when mice first acquire the ability to discriminate between closely related contexts, RAS-GRF1 begins to contribute to the induction of long term potentiation (LTP) in the CA1 hippocampus by mediating the action of calcium-permeable, AMPA-type glutamate receptors (CP-AMPARs). Surprisingly, LTP induction by CP-AMPARs through RAS-GRF1 occurs via activation of p38 MAP kinase rather than ERK MAP kinase, which has more frequently been linked to LTP. Moreover, contextual discrimination is blocked by knockdown of Ras-Grf1 expression specifically in the CA1 hippocampus, infusion of a p38 MAP kinase inhibitor into the CA1 hippocampus, or the injection of an inhibitor of CP-AMPARs. These findings implicate the CA1 hippocampus in the developmentally dependent capacity to distinguish closely related contexts through the appearance of a novel LTP-supporting signaling pathway.

  9. Acquisition of Contextual Discrimination Involves the Appearance of a RAS-GRF1/p38 Mitogen-activated Protein (MAP) Kinase-mediated Signaling Pathway That Promotes Long Term Potentiation (LTP)*

    PubMed Central

    Jin, Shan-Xue; Arai, Junko; Tian, Xuejun; Kumar-Singh, Rajendra; Feig, Larry A.

    2013-01-01

    RAS-GRF1 is a guanine nucleotide exchange factor with the ability to activate RAS and RAC GTPases in response to elevated calcium levels. We previously showed that beginning at 1 month of age, RAS-GRF1 mediates NMDA-type glutamate receptor (NMDAR)-induction of long term depression in the CA1 region of the hippocampus of mice. Here we show that beginning at 2 months of age, when mice first acquire the ability to discriminate between closely related contexts, RAS-GRF1 begins to contribute to the induction of long term potentiation (LTP) in the CA1 hippocampus by mediating the action of calcium-permeable, AMPA-type glutamate receptors (CP-AMPARs). Surprisingly, LTP induction by CP-AMPARs through RAS-GRF1 occurs via activation of p38 MAP kinase rather than ERK MAP kinase, which has more frequently been linked to LTP. Moreover, contextual discrimination is blocked by knockdown of Ras-Grf1 expression specifically in the CA1 hippocampus, infusion of a p38 MAP kinase inhibitor into the CA1 hippocampus, or the injection of an inhibitor of CP-AMPARs. These findings implicate the CA1 hippocampus in the developmentally dependent capacity to distinguish closely related contexts through the appearance of a novel LTP-supporting signaling pathway. PMID:23766509

  10. Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling

    PubMed Central

    Ariotti, Nicholas; Fernández-Rojo, Manuel A.; Zhou, Yong; Hill, Michelle M.; Rodkey, Travis L.; Inder, Kerry L.; Tanner, Lukas B.; Wenk, Markus R.

    2014-01-01

    The molecular mechanisms whereby caveolae exert control over cellular signaling have to date remained elusive. We have therefore explored the role caveolae play in modulating Ras signaling. Lipidomic and gene array analyses revealed that caveolin-1 (CAV1) deficiency results in altered cellular lipid composition, and plasma membrane (PM) phosphatidylserine distribution. These changes correlated with increased K-Ras expression and extensive isoform-specific perturbation of Ras spatial organization: in CAV1-deficient cells K-RasG12V nanoclustering and MAPK activation were enhanced, whereas GTP-dependent lateral segregation of H-Ras was abolished resulting in compromised signal output from H-RasG12V nanoclusters. These changes in Ras nanoclustering were phenocopied by the down-regulation of Cavin1, another crucial caveolar structural component, and by acute loss of caveolae in response to increased osmotic pressure. Thus, we postulate that caveolae remotely regulate Ras nanoclustering and signal transduction by controlling PM organization. Similarly, caveolae transduce mechanical stress into PM lipid alterations that, in turn, modulate Ras PM organization. PMID:24567358

  11. PKI-587 and sorafenib targeting PI3K/AKT/mTOR and Ras/Raf/MAPK pathways synergistically inhibit HCC cell proliferation.

    PubMed

    Gedaly, Roberto; Angulo, Paul; Hundley, Jonathan; Daily, Michael F; Chen, Changguo; Evers, B Mark

    2012-08-01

    Deregulated Ras/Raf/MAPK and PI3K/AKT/mTOR signaling pathways are found in hepatocellular carcinoma (HCC). This study aimed to test the inhibitory effects of PKI-587 and sorafenib as single agents or in combination on HCC (Huh7 cell line) proliferation. (3)H-thymidine incorporation and MTT assay were used to assess Huh7 cell proliferation. Phosphorylation of the key enzymes in the Ras/Raf/MAPK and PI3K/AKT/mTOR pathways was detected by Western blot. We found that PKI-587 is a more potent PI3K/mTOR inhibitor than PI-103. Combination of PKI-587 and sorafenib was a more effective inhibitor of Huh7 proliferation than the combination of PI-103 and sorafenib. Combination of PKI-587 and sorafenib synergistically inhibited epidermal growth factor (EGF)-stimulated Huh7 proliferation compared with monodrug therapy. EGF increased phosphorylation of Ras/Raf downstream signaling proteins MEK and ERK; EGF-stimulated activation was inhibited by sorafenib. However, sorafenib, as a single agent, increased AKT (Ser473) phosphorylation. EGF-stimulated AKT (ser473) activation was inhibited by PKI-587. PKI-587 is a potent inhibitor of AKT (Ser473), mTOR (Ser2448), and S6K (Thr389) phosphorylation; in contrast, rapamycin stimulated mTOR complex 2 substrate AKT(Ser473) phosphorylation although it inhibited mTOR complex 1 substrate S6K phosphorylation. PKI-587, as a single agent, stimulated MEK and ERK phosphorylation. However, when PKI-587 and sorafenib were used in combination, they inhibited all the tested kinases in the Ras/Raf /MAPK and PI3K/AKT/mTOR pathways. The combination of PKI-587 and sorafenib has the advantage over monodrug therapy on inhibition of HCC cell proliferation by blocking both PI3K/AKT/mTOR and Ras/Raf/MAPK signaling pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Integrin-mediated signal transduction linked to Ras pathway by GRB2 binding to focal adhesion kinase.

    PubMed

    Schlaepfer, D D; Hanks, S K; Hunter, T; van der Geer, P

    The cytoplasmic focal adhesion protein-tyrosine kinase (FAK) localizes with surface integrin receptors at sites where cells attach to the extracellular matrix. Increased FAK tyrosine phosphorylation occurs upon integrin engagement with fibronectin. Here we show that adhesion of murine NIH3T3 fibroblasts to fibronectin promotes SH2-domain-mediated association of the GRB2 adaptor protein and the c-Src protein-tyrosine kinase (PTK) with FAK in vivo, and also results in activation of mitogen-activated protein kinase (MAPK). In v-Src-transformed NIH3T3, the association of v-Src, GRB2 and Sos with FAK is independent of cell adhesion to fibronectin. The GRB2 SH2 domain binds directly to tyrosine-phosphorylated FAK. Mutation of tyrosine residue 925 of FAK (YENV motif) to phenylalanine blocks GRB2 SH2-domain binding to FAK in vitro. Our results show that fibronectin binding to integrins on NIH3T3 fibroblasts promotes c-Src and FAK association and formation of an integrin-activated signalling complex. Phosphorylation of FAK at Tyr 925 upon fibronectin stimulation creates an SH2-binding site for GRB2 which may link integrin engagement to the activation of the Ras/MAPK signal transduction pathway.

  13. Kindlin-2 regulates renal tubular cell plasticity by activation of Ras and its downstream signaling.

    PubMed

    Wei, Xiaofan; Wang, Xiang; Xia, Yang; Tang, Yan; Li, Feng; Fang, Weigang; Zhang, Hongquan

    2014-01-01

    Kindlin-2 is an adaptor protein that contributes to renal tubulointerstitial fibrosis (TIF). Epithelial-to-mesenchymal transition (EMT) in tubular epithelial cells was regarded as one of the key events in TIF. To determine whether kindlin-2 is involved in the EMT process, we investigated its regulation of EMT in human kidney tubular epithelial cells (TECs) and explored the underlying mechanism. In this study, we found that overexpression of kindlin-2 suppressed epithelial marker E-cadherin and increased the expression of fibronectin and the myofibroblast marker α-smooth muscle actin (SMA). Kindlin-2 significantly activated ERK1/2 and Akt, and inhibition of ERK1/2 or Akt reversed kindlin-2-induced EMT in human kidney TECs. Mechanistically, kindlin-2 interacted with Ras and son of sevenless (Sos)-1. Furthermore, overexpression of kindlin-2 increased Ras activation through recruiting Sos-1. Treatment with a Ras inhibitor markedly repressed kindlin-2-induced ERK1/2 and Akt activation, leading to restraint of EMT. We further demonstrated that knockdown of kindlin-2 inhibited EGF-induced Ras-Sos-1 interaction, resulting in reduction of Ras activation and suppression of EMT stimulated by EGF. Importantly, we found that depletion of kindlin-2 significantly inhibited activation of ERK1/2 and Akt signaling in mice with unilateral ureteral obstruction. We conclude that kindlin-2, through activating Ras and the downstream ERK1/2 and Akt signaling pathways, plays an important role in regulating renal tubular EMT and could be a potential therapeutic target for the treatment of fibrotic kidney diseases.

  14. Cognitive Dysfunctions in Intellectual Disabilities: The Contributions of the Ras-MAPK and PI3K-AKT-mTOR Pathways.

    PubMed

    Borrie, Sarah C; Brems, Hilde; Legius, Eric; Bagni, Claudia

    2017-08-31

    The Ras-MAPK and PI3K-AKT-mTOR signaling cascades were originally identified as cancer regulatory pathways but have now been demonstrated to be critical for synaptic plasticity and behavior. Neurodevelopmental disorders arising from mutations in these pathways exhibit related neurological phenotypes, including cognitive dysfunction, autism, and intellectual disability. The downstream targets of these pathways include regulation of transcription and protein synthesis. Other disorders that affect protein translation include fragile X syndrome (an important cause of syndromal autism), and other translational regulators are now also linked to autism. Here, we review how mechanisms of synaptic plasticity have been revealed by studies of mouse models for Ras-MAPK, PI3K-AKT-mTOR, and translation regulatory pathway disorders. We discuss the face validity of these mouse models and review current progress in clinical trials directed at ameliorating cognitive and behavioral symptoms.

  15. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  16. Ras Dimer Formation as a New Signaling Mechanism and Potential Cancer Therapeutic Target

    PubMed Central

    Chen, Mo; Peters, Alec; Huang, Tao; Nan, Xiaolin

    2016-01-01

    The K-, N-, and HRas small GTPases are key regulators of cell physiology and are frequently mutated in human cancers. Despite intensive research, previous efforts to target hyperactive Ras based on known mechanisms of Ras signaling have been met with little success. Several studies have provided compelling evidence for the existence and biological relevance of Ras dimers, establishing a new mechanism for regulating Ras activity in cells additionally to GTP-loading and membrane localization. Existing data also start to reveal how Ras proteins dimerize on the membrane. We propose a dimer model to describe Ras-mediated effector activation, which contrasts existing models of Ras signaling as a monomer or as a 5-8 membered multimer. We also discuss potential implications of this model in both basic and translational Ras biology. PMID:26423697

  17. Discovery of Aminopiperidine Indoles That Activate the Guanine Nucleotide Exchange Factor SOS1 and Modulate RAS Signaling.

    PubMed

    Abbott, Jason R; Hodges, Timothy R; Daniels, R Nathan; Patel, Pratiq A; Kennedy, Jack Phillip; Howes, Jennifer E; Akan, Denis T; Burns, Michael C; Sai, Jiqing; Sobolik, Tammy; Beesetty, Yugandhar; Lee, Taekyu; Rossanese, Olivia W; Phan, Jason; Waterson, Alex G; Fesik, Stephen W

    2018-06-01

    Deregulated RAS activity, often the result of mutation, is implicated in approximately 30% of all human cancers. Despite this statistic, no clinically successful treatment for RAS-driven tumors has yet been developed. One approach for modulating RAS activity is to target and affect the activity of proteins that interact with RAS, such as the guanine nucleotide exchange factor (GEF) son of sevenless homologue 1 (SOS1). Here, we report on structure-activity relationships (SAR) in an indole series of compounds. Using structure-based design, we systematically explored substitution patterns on the indole nucleus, the pendant amino acid moiety, and the linker unit that connects these two fragments. Best-in-class compounds activate the nucleotide exchange process at sub-micromolar concentrations in vitro, increase levels of active RAS-GTP in HeLa cells, and elicit signaling changes in the mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway, resulting in a decrease in pERK1/2 T202/Y204 protein levels at higher compound concentrations.

  18. Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras.

    PubMed

    Akutagawa, J; Huang, T Q; Epstein, I; Chang, T; Quirindongo-Crespo, M; Cottonham, C L; Dail, M; Slusher, B S; Friedman, L S; Sampath, D; Braun, B S

    2016-06-01

    Chronic and juvenile myelomonocytic leukemias (CMML and JMML) are myelodysplastic/myeloproliferative neoplasia (MDS/MPN) overlap syndromes that respond poorly to conventional treatments. Aberrant Ras activation because of NRAS, KRAS, PTPN11, CBL and NF1 mutations is common in CMML and JMML. However, no mechanism-based treatments currently exist for cancers with any of these mutations. An alternative therapeutic strategy involves targeting Ras-regulated effector pathways that are aberrantly activated in CMML and JMML, which include the Raf/MEK/ERK and phosphoinositide-3'-OH kinase (PI3K)/Akt cascades. Mx1-Cre, Kras(D12) and Mx1-Cre, Nf1(flox/)(-) mice accurately model many aspects of CMML and JMML. Treating Mx1-Cre, Kras(D12) mice with GDC-0941 (also referred to as pictilisib), an orally bioavailable inhibitor of class I PI3K isoforms, reduced leukocytosis, anemia and splenomegaly while extending survival. However, GDC-0941 treatment attenuated activation of both PI3K/Akt and Raf/MEK/ERK pathways in primary hematopoietic cells, suggesting it could be acting through suppression of Raf/MEK/ERK signals. To interrogate the importance of the PI3K/Akt pathway specifically, we treated mice with the allosteric Akt inhibitor MK-2206. This compound had no effect on Raf/MEK/ERK signaling, yet it also induced robust hematologic responses in Kras and Nf1 mice with MPN. These data support investigating PI3K/Akt pathway inhibitors as a therapeutic strategy in JMML and CMML patients.

  19. Ras-sensitive IMP modulation of the Raf/MEK/ERK cascade through KSR1.

    PubMed

    Matheny, Sharon A; White, Michael A

    2006-01-01

    The E3 ubiquitin ligase IMP (impedes mitogenic signal propagation) was isolated as a novel Ras effector that negatively regulates ERK1/2 activation. Current evidence suggests that IMP limits the functional assembly of Raf/MEK complexes by inactivation of the KSR1 adaptor/scaffold protein. Interaction with Ras-GTP stimulates IMP autoubiquitination to relieve limitations on KSR function. The elevated sensitivity of IMP-depleted cells to ERK1/2 pathway activation suggests IMP acts as a signal threshold regulator by imposing reversible restrictions on the assembly of functional Raf/MEK/ERK kinase modules. These observations challenge commonly held concepts of signal transmission by Ras to the MAPK pathway and provide evidence for the role of amplitude modulation in tuning cellular responses to ERK1/2 pathway engagement. Here we describe details of the methods, including RNA interference, ubiquitin ligase assays, and protein complex analysis, that can be used to display the Ras-sensitive contribution of IMP to KSR-dependent modulation of the Raf/MEK/ERK pathway.

  20. RasGAP Shields Akt from Deactivating Phosphatases in Fibroblast Growth Factor Signaling but Loses This Ability Once Cleaved by Caspase-3*

    PubMed Central

    Cailliau, Katia; Lescuyer, Arlette; Burnol, Anne-Françoise; Cuesta-Marbán, Álvaro; Widmann, Christian; Browaeys-Poly, Edith

    2015-01-01

    Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling. PMID:26109071

  1. RasGAP Shields Akt from Deactivating Phosphatases in Fibroblast Growth Factor Signaling but Loses This Ability Once Cleaved by Caspase-3.

    PubMed

    Cailliau, Katia; Lescuyer, Arlette; Burnol, Anne-Françoise; Cuesta-Marbán, Álvaro; Widmann, Christian; Browaeys-Poly, Edith

    2015-08-07

    Fibroblast growth factor receptors (FGFRs) are involved in proliferative and differentiation physiological responses. Deregulation of FGFR-mediated signaling involving the Ras/PI3K/Akt and the Ras/Raf/ERK MAPK pathways is causally involved in the development of several cancers. The caspase-3/p120 RasGAP module is a stress sensor switch. Under mild stress conditions, RasGAP is cleaved by caspase-3 at position 455. The resulting N-terminal fragment, called fragment N, stimulates anti-death signaling. When caspase-3 activity further increases, fragment N is cleaved at position 157. This generates a fragment, called N2, that no longer protects cells. Here, we investigated in Xenopus oocytes the impact of RasGAP and its fragments on FGF1-mediated signaling during G2/M cell cycle transition. RasGAP used its N-terminal Src homology 2 domain to bind FGFR once stimulated by FGF1, and this was necessary for the recruitment of Akt to the FGFR complex. Fragment N, which did not associate with the FGFR complex, favored FGF1-induced ERK stimulation, leading to accelerated G2/M transition. In contrast, fragment N2 bound the FGFR, and this inhibited mTORC2-dependent Akt Ser-473 phosphorylation and ERK2 phosphorylation but not phosphorylation of Akt on Thr-308. This also blocked cell cycle progression. Inhibition of Akt Ser-473 phosphorylation and entry into G2/M was relieved by PHLPP phosphatase inhibition. Hence, full-length RasGAP favors Akt activity by shielding it from deactivating phosphatases. This shielding was abrogated by fragment N2. These results highlight the role played by RasGAP in FGFR signaling and how graded stress intensities, by generating different RasGAP fragments, can positively or negatively impact this signaling. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Exploring the interactions of the RAS family in the human protein network and their potential implications in RAS-directed therapies

    PubMed Central

    Bueno, Anibal; Morilla, Ian; Diez, Diego; Moya-Garcia, Aurelio A.; Lozano, José; Ranea, Juan A.G.

    2016-01-01

    RAS proteins are the founding members of the RAS superfamily of GTPases. They are involved in key signaling pathways regulating essential cellular functions such as cell growth and differentiation. As a result, their deregulation by inactivating mutations often results in aberrant cell proliferation and cancer. With the exception of the relatively well-known KRAS, HRAS and NRAS proteins, little is known about how the interactions of the other RAS human paralogs affect cancer evolution and response to treatment. In this study we performed a comprehensive analysis of the relationship between the phylogeny of RAS proteins and their location in the protein interaction network. This analysis was integrated with the structural analysis of conserved positions in available 3D structures of RAS complexes. Our results show that many RAS proteins with divergent sequences are found close together in the human interactome. We found specific conserved amino acid positions in this group that map to the binding sites of RAS with many of their signaling effectors, suggesting that these pairs could share interacting partners. These results underscore the potential relevance of cross-talking in the RAS signaling network, which should be taken into account when considering the inhibitory activity of drugs targeting specific RAS oncoproteins. This study broadens our understanding of the human RAS signaling network and stresses the importance of considering its potential cross-talk in future therapies. PMID:27713118

  3. RAS signaling and anti-RAS therapy: lessons learned from genetically engineered mouse models, human cancer cells, and patient-related studies.

    PubMed

    Fang, Bingliang

    2016-01-01

    Activating mutations of oncogenic RAS genes are frequently detected in human cancers. The studies in genetically engineered mouse models (GEMMs) reveal that Kras-activating mutations predispose mice to early onset tumors in the lung, pancreas, and gastrointestinal tract. Nevertheless, most of these tumors do not have metastatic phenotypes. Metastasis occurs when tumors acquire additional genetic changes in other cancer driver genes. Studies on clinical specimens also demonstrated that KRAS mutations are present in premalignant tissues and that most of KRAS mutant human cancers have co-mutations in other cancer driver genes, including TP53, STK11, CDKN2A, and KMT2C in lung cancer; APC, TP53, and PIK3CA in colon cancer; and TP53, CDKN2A, SMAD4, and MED12 in pancreatic cancer. Extensive efforts have been devoted to develop therapeutic agents that target enzymes involved in RAS posttranslational modifications, that inhibit downstream effectors of RAS signaling pathways, and that kill RAS mutant cancer cells through synthetic lethality. Recent clinical studies have revealed that sorafenib, a pan-RAF and VEGFR inhibitor, has impressive benefits for KRAS mutant lung cancer patients. Combination therapy of MEK inhibitors with either docetaxel, AKT inhibitors, or PI3K inhibitors also led to improved clinical responses in some KRAS mutant cancer patients. This review discusses knowledge gained from GEMMs, human cancer cells, and patient-related studies on RAS-mediated tumorigenesis and anti-RAS therapy. Emerging evidence demonstrates that RAS mutant cancers are heterogeneous because of the presence of different mutant alleles and/or co-mutations in other cancer driver genes. Effective subclassifications of RAS mutant cancers may be necessary to improve patients' outcomes through personalized precision medicine. © The Author 2015. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology

  4. Effects of mutant human Ki-ras{sup G12C} gene dosage on murine lung tumorigenesis and signaling to its downstream effectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dance-Barnes, Stephanie T.; Kock, Nancy D.; Floyd, Heather S.

    2008-08-15

    Studies in cell culture have suggested that the level of RAS expression can influence the transformation of cells and the signaling pathways stimulated by mutant RAS expression. However, the levels of RAS expression in vivo appear to be subject to feedback regulation, limiting the total amount of RAS protein that can be expressed. We utilized a bitransgenic mouse lung tumor model that expressed the human Ki-ras{sup G12C} allele in a tetracycline-inducible, lung-specific manner. Treatment for 12 months with 500 {mu}g/ml of doxycycline (DOX) allowed for maximal expression of the human Ki-ras{sup G12C} allele in the lung, and resulted in themore » development of focal hyperplasia and adenomas. We determined if different levels of mutant RAS expression would influence the phenotype of the lung lesions. Treatment with 25, 100 and 500 {mu}g/ml of DOX resulted in dose-dependent increases in transgene expression and tumor multiplicity. Microscopic analysis of the lungs of mice treated with the 25 {mu}g/ml dose of DOX revealed infrequent foci of hyperplasia, whereas mice treated with the 100 and 500 {mu}g/ml doses exhibited numerous hyperplastic foci and also adenomas. Immunohistochemical and RNA analysis of the downstream effector pathways demonstrated that different levels of mutant RAS transgene expression resulted in differences in the expression and/or phosphorylation of specific signaling molecules. Our results suggest that the molecular alterations driving tumorigenesis may differ at different levels of mutant Ki-ras{sup G12C} expression, and this should be taken into consideration when inducible transgene systems are utilized to promote tumorigenesis in mouse models.« less

  5. [Arnold-Chiari malformation in Noonan syndrome and other syndromes of the RAS/MAPK pathway].

    PubMed

    Ejarque, Ismael; Millán-Salvador, José M; Oltra, Silvestre; Pesudo-Martínez, José V; Beneyto, Magdalena; Pérez-Aytés, Antonio

    2015-05-01

    Noonan syndrome (NS) and other syndromes with a similar phenotype, such as LEOPARD, cardiofaciocutaneous, Costello and Legius, are associated to mutations in genes included in the RAS/MAPK pathway (RASopathies), which is an important signalling pathway related to cell proliferation. Tonsillar descent into the upper cervical spinal canal, known as Arnold-Chiari malformation (ACM), has been reported in patients with NS and this has led some researchers to suggest that ACM could be part of the phenotypic spectrum of NS. We report two cases of NS and ACM. Case 1: 29-year-old female with Noonan phenotype who underwent surgery at the age of nine years due to pulmonary valve stenosis. At the age of 27, she presented symptomatic ACM that required surgical decompression. She presented the c.922A>G (N308D) mutation in the gene PTPN that belongs to the RAS/MAPK pathway. Case 2: a 10-year-old female with Noonan phenotype and asymptomatic ACM detected in magnetic resonance imaging of the brain. She was a carrier of the c.923A>G (N308S) mutation in gene PTPN11. Six patients with this association have been found in the literature, four with the Noonan phenotype and two with LEOPARD. Our two patients provide supplementary evidence that backs up the hypothesis by which ACM would be part of the phenotypic spectrum of NS. The small number of reported cases of patients with this association does not allow us to draw up recommendations about when and how often neuroimaging studies should be performed; a careful neurological examination, however, should be included in the anticipatory health guidelines in syndromes involving the RAS/MAPK pathway.

  6. Menin determines K-RAS proliferative outputs in endocrine cells

    PubMed Central

    Chamberlain, Chester E.; Scheel, David W.; McGlynn, Kathleen; Kim, Hail; Miyatsuka, Takeshi; Wang, Juehu; Nguyen, Vinh; Zhao, Shuhong; Mavropoulos, Anastasia; Abraham, Aswin G.; O’Neill, Eric; Ku, Gregory M.; Cobb, Melanie H.; Martin, Gail R.; German, Michael S.

    2014-01-01

    Endocrine cell proliferation fluctuates dramatically in response to signals that communicate hormone demand. The genetic alterations that override these controls in endocrine tumors often are not associated with oncogenes common to other tumor types, suggesting that unique pathways govern endocrine proliferation. Within the pancreas, for example, activating mutations of the prototypical oncogene KRAS drive proliferation in all pancreatic ductal adenocarcimomas but are never found in pancreatic endocrine tumors. Therefore, we asked how cellular context impacts K-RAS signaling. We found that K-RAS paradoxically suppressed, rather than promoted, growth in pancreatic endocrine cells. Inhibition of proliferation by K-RAS depended on antiproliferative RAS effector RASSF1A and blockade of the RAS-activated proproliferative RAF/MAPK pathway by tumor suppressor menin. Consistent with this model, a glucagon-like peptide 1 (GLP1) agonist, which stimulates ERK1/2 phosphorylation, did not affect endocrine cell proliferation by itself, but synergistically enhanced proliferation when combined with a menin inhibitor. In contrast, inhibition of MAPK signaling created a synthetic lethal interaction in the setting of menin loss. These insights suggest potential strategies both for regenerating pancreatic β cells for people with diabetes and for targeting menin-sensitive endocrine tumors. PMID:25133424

  7. Activation of Extracellular Signal-Regulated Kinase but Not of p38 Mitogen-Activated Protein Kinase Pathways in Lymphocytes Requires Allosteric Activation of SOS

    PubMed Central

    Jun, Jesse E.; Yang, Ming; Chen, Hang; Chakraborty, Arup K.

    2013-01-01

    Thymocytes convert graded T cell receptor (TCR) signals into positive selection or deletion, and activation of extracellular signal-related kinase (ERK), p38, and Jun N-terminal protein kinase (JNK) mitogen-activated protein kinases (MAPKs) has been postulated to play a discriminatory role. Two families of Ras guanine nucleotide exchange factors (RasGEFs), SOS and RasGRP, activate Ras and the downstream RAF-MEK-ERK pathway. The pathways leading to lymphocyte p38 and JNK activation are less well defined. We previously described how RasGRP alone induces analog Ras-ERK activation while SOS and RasGRP cooperate to establish bimodal ERK activation. Here we employed computational modeling and biochemical experiments with model cell lines and thymocytes to show that TCR-induced ERK activation grows exponentially in thymocytes and that a W729E allosteric pocket mutant, SOS1, can only reconstitute analog ERK signaling. In agreement with RasGRP allosterically priming SOS, exponential ERK activation is severely decreased by pharmacological or genetic perturbation of the phospholipase Cγ (PLCγ)-diacylglycerol-RasGRP1 pathway. In contrast, p38 activation is not sharply thresholded and requires high-level TCR signal input. Rac and p38 activation depends on SOS1 expression but not allosteric activation. Based on computational predictions and experiments exploring whether SOS functions as a RacGEF or adaptor in Rac-p38 activation, we established that the presence of SOS1, but not its enzymatic activity, is critical for p38 activation. PMID:23589333

  8. Imaging of Ras/Raf activity induced by low energy laser irradiation in living cell using FRET

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Chen, Tong-Sheng; Xing, Da

    2005-01-01

    Ras/Raf signaling pathway is an important signaling pathway that governs cell proliferation, differential and apoptosis. Low-energy laser irradiation (LELI) was found to modulate various processes. Generally, cell proliferation is induced by low doses LELI and apoptosis is induced by high doses LELI. Mechanism of biological effect of LELI has not been clear. Recently, activation of MEK (mitogen-activated protein kinase) and ERK (extracellular-signal-regulated kinase), which are downstream protein kinases of Ras/Raf, are observed during LELI-induced cell proliferation by immunoprecipitation and western blot analysis. RaichuRas reporter consisting of fusions of H-ras, the Ras-binding domain of Raf (RafRBD), a cyan fluorescent protein (CFP) and a yellow fluorescent protein (YFP). Therefore, intramolecular binding of GTP-Ras to RafRBD brings CFP close to YFP and increases FRET between CFP and YFP. Human lung adenocarcinoma cell line (ASTC-a-1) was transfected with the plasmid (pRaichuRas) and then treated with LELI at dose of 60J/cm2. Effect of LELI on Ras/Raf in physiological condition of living cells was observed by fluorescence resonance energy transfer (FRET) technique during lung adenocarcinoma cell apoptosis induced by high dose (60J/cm2) LELI. Experimental results showed that after high dose LELI treatment, the binding of Ras and Raf decreases obviously, Ras/Raf signaling pathway deregulates and cell apoptosis occurs.

  9. Circular RNA circITGA7 inhibits colorectal cancer growth and metastasis by modulating the Ras pathway and upregulating transcription of its host gene ITGA7.

    PubMed

    Li, Xiaomin; Wang, Jianjun; Zhang, Chao; Lin, Chun; Zhang, Jianming; Zhang, Wei; Zhang, Wenjuan; Lu, Yanxia; Zheng, Lin; Li, Xuenong

    2018-06-26

    Circular RNAs (circRNAs) are significantly dysregulated in various cancer types. However, the roles and mechanisms of circRNAs in cancer remain largely unknown. In this study, we demonstrated that a novel circRNA (circITGA7) and its linear host gene ITGA7 are both significantly downregulated in colorectal cancer (CRC) tissues and cell lines. These decreased expression levels correlated with CRC progression. Functional assays demonstrated that ectopic circITGA7 expression suppressed the growth and metastasis of CRC cell in vitro and in vivo. Knockdown of circITGA7 or ITGA7 promoted the proliferation and migration of CRC cells in vitro and enhanced CRC growth in vivo. Mechanistically, we found that circITGA7 is a negative regulator of the Ras signalling pathway and ITGA7 is associated with cytokine-related signalling pathways through RNA-seq and KEGG enrichment analysis. In addition, circITGA7 binds to miR-370-3p to antagonize its suppression of NF1, which is a well-known negative regulator of the Ras pathway. Finally, circITGA7 upregulates the transcription of ITGA7 by suppressing RREB1 via the Ras pathway. In conclusion, our findings indicate a suppressor role of circITGA7 and ITGA7 in CRC and reveal that circITGA7 inhibits proliferation and metastasis of CRC cells by suppressing the Ras signalling pathway and promoting the transcription of ITGA7, suggesting that circITGA7 is a potential target for CRC treatment. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. The Fibroblast Growth Factor signaling pathway.

    PubMed

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. For further resources related to this article, please visit the WIREs website. © 2015 The Authors. WIREs Developmental Biology published by Wiley Periodicals, Inc.

  11. Targeting the PI3K/Akt pathway in murine MDS/MPN driven by hyperactive Ras

    PubMed Central

    Akutagawa, Jon; Huang, Tannie Q.; Epstein, Inbal; Chang, Tiffany; Quirindongo-Crespo, Maricel; Cottonham, Charisa L.; Dail, Monique; Slusher, Barbara S.; Friedman, Lori S.; Sampath, Deepak; Braun, Benjamin S.

    2016-01-01

    Chronic and juvenile myelomonocytic leukemias (CMML and JMML) are myelodysplastic/myeloproliferative neoplasia (MDS/MPN) overlap syndromes that respond poorly to conventional treatments. Aberrant Ras activation due to NRAS, KRAS, PTPN11, CBL, and NF1 mutations is common in CMML and JMML. However, no mechanism-based treatments currently exist for cancers with any of these mutations. An alternative therapeutic strategy involves targeting Ras-regulated effector pathways that are aberrantly activated in CMML and JMML, which include the Raf/MEK/ERK and phosphoinositide-3´-OH kinase (PI3K)/Akt cascades. Mx1-Cre, KrasD12 and Mx1-Cre, Nf1flox/− mice accurately model many aspects of CMML and JMML. Treating Mx1-Cre, KrasD12 mice with GDC-0941 (also referred to as pictilisib), an orally bioavailable inhibitor of class I PI3K isoforms, reduced leukocytosis, anemia, and splenomegaly while extending survival. However, GDC-0941 treatment attenuated activation of both PI3K/Akt and Raf/MEK/ERK pathways in primary hematopoietic cells, suggesting it could be acting through suppression of Raf/MEK/ERK signals. To interrogate the importance of the PI3K/Akt pathway specifically, we treated mice with the allosteric Akt inhibitor MK-2206. This compound had no effect on Raf/MEK/ERK signaling, yet it also induced robust hematologic responses in Kras and Nf1 mice with MPN. These data support investigating PI3K/Akt pathway inhibitors as a therapeutic strategy in JMML and CMML patients. PMID:26965285

  12. DA-Raf, a dominant-negative antagonist of the Ras-ERK pathway, is a putative tumor suppressor.

    PubMed

    Kanno, Emiri; Kawasaki, Osamu; Takahashi, Kazuya; Takano, Kazunori; Endo, Takeshi

    2018-01-01

    Activating mutations of RAS genes, particularly KRAS, are detected with high frequency in human tumors. Mutated Ras proteins constitutively activate the ERK pathway (Raf-MEK-ERK phosphorylation cascade), leading to cellular transformation and tumorigenesis. DA-Raf1 (DA-Raf) is a splicing variant of A-Raf and contains the Ras-binding domain (RBD) but lacks the kinase domain. Accordingly, DA-Raf antagonizes the Ras-ERK pathway in a dominant-negative fashion and suppresses constitutively activated K-Ras-induced cellular transformation. Thus, we have addressed whether DA-Raf serves as a tumor suppressor of Ras-induced tumorigenesis. DA-Raf(R52Q), which is generated from a single nucleotide polymorphism (SNP) in the RBD, and DA-Raf(R52W), a mutant detected in a lung cancer, neither bound to active K-Ras nor interfered with the activation of the ERK pathway. They were incapable of suppressing activated K-Ras-induced cellular transformation and tumorigenesis in mice, in which K-Ras-transformed cells were transplanted. Furthermore, although DA-Raf was highly expressed in lung alveolar epithelial type 2 (AE2) cells, its expression was silenced in AE2-derived lung adenocarcinoma cell lines with oncogenic KRAS mutations. These results suggest that DA-Raf represents a tumor suppressor protein against Ras-induced tumorigenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Dynamics and control of the ERK signaling pathway: Sensitivity, bistability, and oscillations.

    PubMed

    Arkun, Yaman; Yasemi, Mohammadreza

    2018-01-01

    Cell signaling is the process by which extracellular information is transmitted into the cell to perform useful biological functions. The ERK (extracellular-signal-regulated kinase) signaling controls several cellular processes such as cell growth, proliferation, differentiation and apoptosis. The ERK signaling pathway considered in this work starts with an extracellular stimulus and ends with activated (double phosphorylated) ERK which gets translocated into the nucleus. We model and analyze this complex pathway by decomposing it into three functional subsystems. The first subsystem spans the initial part of the pathway from the extracellular growth factor to the formation of the SOS complex, ShC-Grb2-SOS. The second subsystem includes the activation of Ras which is mediated by the SOS complex. This is followed by the MAPK subsystem (or the Raf-MEK-ERK pathway) which produces the double phosphorylated ERK upon being activated by Ras. Although separate models exist in the literature at the subsystems level, a comprehensive model for the complete system including the important regulatory feedback loops is missing. Our dynamic model combines the existing subsystem models and studies their steady-state and dynamic interactions under feedback. We establish conditions under which bistability and oscillations exist for this important pathway. In particular, we show how the negative and positive feedback loops affect the dynamic characteristics that determine the cellular outcome.

  14. Genetic epistasis between heparan sulfate and FGF-Ras signaling controls lens development

    PubMed Central

    Qu, Xiuxia; Hertzler, Kristina; Pan, Yi; Grobe, Kay; Robinson, Michael L.; Zhang, Xin

    2011-01-01

    Vertebrate lens development depends on a complex network of signaling molecules to coordinate cell proliferation, migration and differentiation. In this study, we have studied the role of heparan sulfate in lens specific signaling by generating a conditional ablation of heparan sulfate modification genes, Ndst1 and Ndst2. In this mutant, N-sulfation of heparan sulfate was disrupted after the lens induction stage, resulting in reduced lens cell proliferation, increased cell death and defective lens fiber differentiation in later lens development. The loss of Ndst function also prevented the assembly of Fgf/Fgfr complexes on the lens cell surface and disrupted ERK signaling within the lens. We further demonstrated that Ndst mutation completely inhibited the FGF1 and Fgf3 overexpression phenotypes, but Kras reactivation was sufficient to reverse the Ndst deficient lens differentiation defect. The epistatic relationship between Ndst and FGF-Ras signaling demonstrates that FGF signaling is the predominant signaling pathway controlled by Ndst in lens development. PMID:21536023

  15. CNS germinomas are characterized by global demethylation, chromosomal instability and mutational activation of the Kit-, Ras/Raf/Erk- and Akt-pathways

    PubMed Central

    Schulte, Simone Laura; Waha, Andreas; Steiger, Barbara; Denkhaus, Dorota; Dörner, Evelyn; Calaminus, Gabriele; Leuschner, Ivo; Pietsch, Torsten

    2016-01-01

    CNS germinomas represent a unique germ cell tumor entity characterized by undifferentiated tumor cells and a high response rate to current treatment protocols. Limited information is available on their underlying genomic, epigenetic and biological alterations. We performed a genome-wide analysis of genomic copy number alterations in 49 CNS germinomas by molecular inversion profiling. In addition, CpG dinucleotide methylation was studied by immunohistochemistry for methylated cytosine residues. Mutational analysis was performed by resequencing of candidate genes including KIT and RAS family members. Ras/Erk and Akt pathway activation was analyzed by immunostaining with antibodies against phospho-Erk, phosho-Akt, phospho-mTOR and phospho-S6. All germinomas coexpressed Oct4 and Kit but showed an extensive global DNA demethylation compared to other tumors and normal tissues. Molecular inversion profiling showed predominant genomic instability in all tumors with a high frequency of regional gains and losses including high level gene amplifications. Activating mutations of KIT exons 11, 13, and 17 as well as a case with genomic KIT amplification and activating mutations or amplifications of RAS gene family members including KRAS, NRAS and RRAS2 indicated mutational activation of crucial signaling pathways. Co-activation of Ras/Erk and Akt pathways was present in 83% of germinomas. These data suggest that CNS germinoma cells display a demethylated nuclear DNA similar to primordial germ cells in early development. This finding has a striking coincidence with extensive genomic instability. In addition, mutational activation of Kit-, Ras/Raf/Erk- and Akt- pathways indicate the biological importance of these pathways and their components as potential targets for therapy. PMID:27391150

  16. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution.

    PubMed

    Coyle, Scott M; Lim, Wendell A

    2016-01-14

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras's ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease.

  17. The Fourth International Symposium on Genetic Disorders of the Ras/MAPK Pathway

    PubMed Central

    Stevenson, David A.; Schill, Lisa; Schoyer, Lisa; Andresen, Brage S.; Bakker, Annette; Bayrak-Toydemir, Pinar; Burkitt-Wright, Emma; Chatfield, Kathryn; Elefteriou, Florent; Elgersma, Ype; Fisher, Michael J.; Franz, David; Gelb, Bruce D.; Goriely, Anne; Gripp, Karen W.; Hardan, Antonio Y.; Keppler-Noreuil, Kim M.; Kerr, Bronwyn; Korf, Bruce; Leoni, Chiara; McCormick, Frank; Plotkin, Scott R.; Rauen, Katherine A.; Reilly, Karlyne; Roberts, Amy; Sandler, Abby; Siegel, Dawn; Walsh, Karin; Widemann, Brigitte C.

    2016-01-01

    The RASopathies are a group of disorders due to variations of genes associated with the Ras/MAPK pathway. Some of the RASopathies include neurofibromatosis type 1 (NF1), Noonan syndrome, Noonan syndrome with multiple lentigines, cardiofaciocutaneous (CFC) syndrome, Costello syndrome, Legius syndrome, and capillary malformation–arteriovenous malformation (CM-AVM) syndrome. In combination, the RASopathies are a frequent group of genetic disorders. This report summarizes the proceedings of the 4th International Symposium on Genetic Disorders of the Ras/MAPK pathway and highlights gaps in the field. PMID:27155140

  18. Wild-type H- and N-Ras promote mutant K-Ras driven tumorigenesis by modulating the DNA damage response

    PubMed Central

    Grabocka, Elda; Pylayeva-Gupta, Yuliya; Jones, Mathew JK; Lubkov, Veronica; Yemanaberhan, Eyoel; Taylor, Laura; Jeng, Hao Hsuan; Bar-Sagi, Dafna

    2014-01-01

    SUMMARY Mutations in KRAS are prevalent in human cancers and universally predictive of resistance to anti-cancer therapeutics. Although it is widely accepted that acquisition of an activating mutation endows RAS genes with functional autonomy, recent studies suggest that the wild-type forms of Ras may contribute to mutant Ras-driven tumorigenesis. Here we show that downregulation of wild-type H-Ras or N-Ras in mutant K-Ras cancer cells leads to hyperactivation of the Erk/p90RSK and PI3K/Akt pathways, and consequently, the phosphorylation of Chk1 at an inhibitory site, Ser 280. The resulting inhibition of ATR/Chk1 signaling abrogates the activation of the G2 DNA damage checkpoint and confers specific sensitization of mutant K-Ras cancer cells to DNA damage chemotherapeutic agents in vitro and in vivo. PMID:24525237

  19. Ras GTPases Modulate Morphogenesis, Sporulation and Cellulase Gene Expression in the Cellulolytic Fungus Trichoderma reesei

    PubMed Central

    Zhang, Jiwei; Zhang, Yanmei; Zhong, Yaohua; Qu, Yinbo; Wang, Tianhong

    2012-01-01

    Background The model cellulolytic fungus Trichoderma reesei (teleomorph Hypocrea jecorina) is capable of responding to environmental cues to compete for nutrients in its natural saprophytic habitat despite its genome encodes fewer degradative enzymes. Efficient signalling pathways in perception and interpretation of environmental signals are indispensable in this process. Ras GTPases represent a kind of critical signal proteins involved in signal transduction and regulation of gene expression. In T. reesei the genome contains two Ras subfamily small GTPases TrRas1 and TrRas2 homologous to Ras1 and Ras2 from S. cerevisiae, but their functions remain unknown. Methodology/Principal Findings Here, we have investigated the roles of GTPases TrRas1 and TrRas2 during fungal morphogenesis and cellulase gene expression. We show that both TrRas1 and TrRas2 play important roles in some cellular processes such as polarized apical growth, hyphal branch formation, sporulation and cAMP level adjustment, while TrRas1 is more dominant in these processes. Strikingly, we find that TrRas2 is involved in modulation of cellulase gene expression. Deletion of TrRas2 results in considerably decreased transcription of cellulolytic genes upon growth on cellulose. Although the strain carrying a constitutively activated TrRas2G16V allele exhibits increased cellulase gene transcription, the cbh1 and cbh2 expression in this mutant still strictly depends on cellulose, indicating TrRas2 does not directly mediate the transmission of the cellulose signal. In addition, our data suggest that the effect of TrRas2 on cellulase gene is exerted through regulation of transcript abundance of cellulase transcription factors such as Xyr1, but the influence is independent of cAMP signalling pathway. Conclusions/Significance Together, these findings elucidate the functions for Ras signalling of T. reesei in cellular morphogenesis, especially in cellulase gene expression, which contribute to deciphering the

  20. Dietary olive oil and corn oil differentially affect experimental breast cancer through distinct modulation of the p21Ras signaling and the proliferation-apoptosis balance.

    PubMed

    Solanas, Montserrat; Grau, Laura; Moral, Raquel; Vela, Elena; Escrich, Raquel; Escrich, Eduard

    2010-05-01

    Extra-virgin olive oil (EVOO) has been hypothesized to have chemopreventive effects on breast cancer, unlike high corn oil (HCO) diets that stimulate it. We have investigated mechanisms of these differential modulatory actions on experimental mammary cancer. In 7,12-dimethylbenz(a)anthracene adenocarcinomas of rats fed a high EVOO, HCO and control diets (n = 20 for each group), we have analyzed the expression and activity of ErbB receptors, p21Ras and its extracellular signal-regulated kinase (ERK) 1/2, Akt and RalA/B effectors by immunoblotting analyses. We explored the Ha-ras1 mutation status by Southern blot, mismatch amplification mutation assay and sequencing, and the 3-hydroxy-3-methylglutaryl-coenzyme A reductase and squalene synthase messenger RNA expression by real-time polymerase chain reaction. We analyzed the tumor mitotic index, proliferating cell nuclear antigen (PCNA) levels, and apoptosis through Caspase-3 analysis and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assays. Finally, we measured the 8-oxo-2'-deoxyguanosine levels. Non-parametrical statistics were used. The EVOO diet decreased Ras activation, downregulated the Ras/phosphatidyl inositol 3-kinase/Akt pathway and upregulated the Raf/Erk pathway, compared with the control. In contrast, the HCO diet did not modify Ras activity but rather enhanced the Raf/Erk pathway. The EVOO diet decreased the cleaved ErbB4 levels, compared with the HCO diet, increased apoptosis and diminished the mono-ubiquitylated PCNA levels, which is related to DNA damage. Tumors from rats fed the EVOO diet displayed a more benign phenotype, whereas those from rats fed the HCO diet were biologically more aggressive. In conclusion, high EVOO and corn oil diets exert their modulatory effects on breast cancer through a different combination of Ras signaling pathways, a different proliferation-apoptosis balance and probably distinct levels of DNA damage.

  1. Transcriptional and translational control of ornithine decarboxylase during Ras transformation.

    PubMed Central

    Shantz, Lisa M

    2004-01-01

    ODC (ornithine decarboxylase) activity is induced following ras activation. However, the Ras effector pathways responsible are unknown. These experiments used NIH-3T3 cells expressing partial-loss-of-function Ras mutants to activate selectively pathways downstream of Ras and examined the contribution of each pathway to ODC induction. Overexpression of Ras12V, a constitutively active mutant, resulted in ODC activities up to 20-fold higher than controls. Stable transfections of Ras partial-loss-of-function mutants and constitutively active forms of MEK (MAPK kinase) and Akt indicated that activation of more than one Ras effector pathway is necessary for the complete induction of ODC activity. The increase in ODC activity in Ras12V-transformed cells is not owing to a substantial change in ODC protein half-life, which increased by <2-fold. Northern-blot analysis and reporter assays suggested that the mechanism of ODC induction involves both a modest increase in the transcription of ODC mRNA and a much more considerable increase in the translation of mRNA into protein. ODC transcription was controlled through a pathway dependent on Raf/MEK/ERK (where ERK stands for extracellular-signal-regulated kinase) activation, whereas activation of the phosphoinositide 3-kinase and the Raf/MEK/ERK pathways were necessary for translational regulation of ODC. The increase in ODC synthesis was accompanied by changes in phosphorylation of eukaryotic initiation factor 4E and its binding protein 4E-BP1. Results show that the phosphoinositide 3-kinase pathway regulates phosphorylation of both proteins, whereas the Raf/MEK/ERK pathway affects only the eukaryotic initiation factor 4E phosphorylation. PMID:14519103

  2. Mapping the functional versatility and fragility of Ras GTPase signaling circuits through in vitro network reconstitution

    PubMed Central

    Coyle, Scott M; Lim, Wendell A

    2016-01-01

    The Ras-superfamily GTPases are central controllers of cell proliferation and morphology. Ras signaling is mediated by a system of interacting molecules: upstream enzymes (GEF/GAP) regulate Ras’s ability to recruit multiple competing downstream effectors. We developed a multiplexed, multi-turnover assay for measuring the dynamic signaling behavior of in vitro reconstituted H-Ras signaling systems. By including both upstream regulators and downstream effectors, we can systematically map how different network configurations shape the dynamic system response. The concentration and identity of both upstream and downstream signaling components strongly impacted the timing, duration, shape, and amplitude of effector outputs. The distorted output of oncogenic alleles of Ras was highly dependent on the balance of positive (GAP) and negative (GEF) regulators in the system. We found that different effectors interpreted the same inputs with distinct output dynamics, enabling a Ras system to encode multiple unique temporal outputs in response to a single input. We also found that different Ras-to-GEF positive feedback mechanisms could reshape output dynamics in distinct ways, such as signal amplification or overshoot minimization. Mapping of the space of output behaviors accessible to Ras provides a design manual for programming Ras circuits, and reveals how these systems are readily adapted to produce an array of dynamic signaling behaviors. Nonetheless, this versatility comes with a trade-off of fragility, as there exist numerous paths to altered signaling behaviors that could cause disease. DOI: http://dx.doi.org/10.7554/eLife.12435.001 PMID:26765565

  3. EGFR and Ras regulate DDX59 during lung cancer development.

    PubMed

    Yang, Lin; Zhang, Hanyin; Chen, Dan; Ding, Peikun; Yuan, Yunchang; Zhang, Yandong

    2018-02-05

    Oncogenes EGFR and ras are frequently mutated and activated in human lung cancers. In this report, we found that both EGFR and Ras signaling can upregulate RNA helicase DDX59 in lung cancer cells. DDX59 can be induced through the mitogen activated protein kinase (MAPK) pathway after EGFR or Ras activation. Inhibitors for Ras/Raf/MAP pathway significantly decreased DDX59 expression at both protein and mRNA levels. Through immunohistochemistry, we found that DDX59 protein expression correlated with Ras and EGFR mutation status in human lung adenocarcinoma. Finally, through a xenograft nude mice model, we demonstrated that DDX59 is pivotal for EGFR mutated lung cancer cell growth in vivo. Our study identified a novel protein downstream of Ras and EGFR, which may serve as a potential therapeutic drug target for lung cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Impairment of K-Ras signaling networks and increased efficacy of epidermal growth factor receptor inhibitors by a novel synthetic miR-143.

    PubMed

    Akao, Yukihiro; Kumazaki, Minami; Shinohara, Haruka; Sugito, Nobuhiko; Kuranaga, Yuki; Tsujino, Takuya; Yoshikawa, Yuki; Kitade, Yukio

    2018-05-01

    Despite considerable research on K-Ras inhibitors, none had been established until now. We synthesized nuclease-resistant synthetic miR-143 (miR-143#12), which strongly silenced K-Ras, its effector signal molecules AKT and ERK, and the K-Ras activator Sos1. We examined the anti-proliferative effect of miR-143#12 and the mechanism in human colon cancer DLD-1 cell (G13D) and other cell types harboring K-Ras mutations. Cell growth was markedly suppressed in a concentration-dependent manner by miR-143#12 (IC 50 : 1.32 nmol L -1 ) with a decrease in the K-Ras mRNA level. Interestingly, this mRNA level was also downregulated by either a PI3K/AKT or MEK inhibitor, which indicates a positive circuit of K-Ras mRNA expression. MiR-143#12 silenced cytoplasmic K-Ras mRNA expression and impaired the positive circuit by directly targeting AKT and ERK mRNA. Combination treatment with miR-143#12 and a low-dose EGFR inhibitor induced a synergistic inhibition of growth with a marked inactivation of both PI3K/AKT and MAPK/ERK signaling pathways. However, silencing K-Ras by siR-KRas instead of miR-143#12 did not induce this synergism through the combined treatment with the EGFR inhibitor. Thus, miR-143#12 perturbed the K-Ras expression system and K-Ras activation by silencing Sos1 and, resultantly, restored the efficacy of the EGFR inhibitors. The in vivo results also supported those of the in vitro experiments. The extremely potent miR-143#12 enabled us to understand K-Ras signaling networks and shut them down by combination treatment with this miRNA and EGFR inhibitor in K-Ras-driven colon cancer cell lines. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. A Novel Ras-interacting Protein Required for Chemotaxis and Cyclic Adenosine Monophosphate Signal Relay in Dictyostelium

    PubMed Central

    Lee, Susan; Parent, Carole A.; Insall, Robert; Firtel, Richard A.

    1999-01-01

    We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced ∼60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras-regulated pathway

  6. A novel Ras-interacting protein required for chemotaxis and cyclic adenosine monophosphate signal relay in Dictyostelium.

    PubMed

    Lee, S; Parent, C A; Insall, R; Firtel, R A

    1999-09-01

    We have identified a novel Ras-interacting protein from Dictyostelium, RIP3, whose function is required for both chemotaxis and the synthesis and relay of the cyclic AMP (cAMP) chemoattractant signal. rip3 null cells are unable to aggregate and lack receptor activation of adenylyl cyclase but are able, in response to cAMP, to induce aggregation-stage, postaggregative, and cell-type-specific gene expression in suspension culture. In addition, rip3 null cells are unable to properly polarize in a cAMP gradient and chemotaxis is highly impaired. We demonstrate that cAMP stimulation of guanylyl cyclase, which is required for chemotaxis, is reduced approximately 60% in rip3 null cells. This reduced activation of guanylyl cyclase may account, in part, for the defect in chemotaxis. When cells are pulsed with cAMP for 5 h to mimic the endogenous cAMP oscillations that occur in wild-type strains, the cells will form aggregates, most of which, however, arrest at the mound stage. Unlike the response seen in wild-type strains, the rip3 null cell aggregates that form under these experimental conditions are very small, which is probably due to the rip3 null cell chemotaxis defect. Many of the phenotypes of the rip3 null cell, including the inability to activate adenylyl cyclase in response to cAMP and defects in chemotaxis, are very similar to those of strains carrying a disruption of the gene encoding the putative Ras exchange factor AleA. We demonstrate that aleA null cells also exhibit a defect in cAMP-mediated activation of guanylyl cyclase similar to that of rip3 null cells. A double-knockout mutant (rip3/aleA null cells) exhibits a further reduction in receptor activation of guanylyl cyclase, and these cells display almost no cell polarization or movement in cAMP gradients. As RIP3 preferentially interacts with an activated form of the Dictyostelium Ras protein RasG, which itself is important for cell movement, we propose that RIP3 and AleA are components of a Ras

  7. Oncogenic Signaling Pathways in The Cancer Genome Atlas.

    PubMed

    Sanchez-Vega, Francisco; Mina, Marco; Armenia, Joshua; Chatila, Walid K; Luna, Augustin; La, Konnor C; Dimitriadoy, Sofia; Liu, David L; Kantheti, Havish S; Saghafinia, Sadegh; Chakravarty, Debyani; Daian, Foysal; Gao, Qingsong; Bailey, Matthew H; Liang, Wen-Wei; Foltz, Steven M; Shmulevich, Ilya; Ding, Li; Heins, Zachary; Ochoa, Angelica; Gross, Benjamin; Gao, Jianjiong; Zhang, Hongxin; Kundra, Ritika; Kandoth, Cyriac; Bahceci, Istemi; Dervishi, Leonard; Dogrusoz, Ugur; Zhou, Wanding; Shen, Hui; Laird, Peter W; Way, Gregory P; Greene, Casey S; Liang, Han; Xiao, Yonghong; Wang, Chen; Iavarone, Antonio; Berger, Alice H; Bivona, Trever G; Lazar, Alexander J; Hammer, Gary D; Giordano, Thomas; Kwong, Lawrence N; McArthur, Grant; Huang, Chenfei; Tward, Aaron D; Frederick, Mitchell J; McCormick, Frank; Meyerson, Matthew; Van Allen, Eliezer M; Cherniack, Andrew D; Ciriello, Giovanni; Sander, Chris; Schultz, Nikolaus

    2018-04-05

    Genetic alterations in signaling pathways that control cell-cycle progression, apoptosis, and cell growth are common hallmarks of cancer, but the extent, mechanisms, and co-occurrence of alterations in these pathways differ between individual tumors and tumor types. Using mutations, copy-number changes, mRNA expression, gene fusions and DNA methylation in 9,125 tumors profiled by The Cancer Genome Atlas (TCGA), we analyzed the mechanisms and patterns of somatic alterations in ten canonical pathways: cell cycle, Hippo, Myc, Notch, Nrf2, PI-3-Kinase/Akt, RTK-RAS, TGFβ signaling, p53 and β-catenin/Wnt. We charted the detailed landscape of pathway alterations in 33 cancer types, stratified into 64 subtypes, and identified patterns of co-occurrence and mutual exclusivity. Eighty-nine percent of tumors had at least one driver alteration in these pathways, and 57% percent of tumors had at least one alteration potentially targetable by currently available drugs. Thirty percent of tumors had multiple targetable alterations, indicating opportunities for combination therapy. Copyright © 2018. Published by Elsevier Inc.

  8. Low proliferation and high apoptosis of osteoblastic cells on hydrophobic surface are associated with defective Ras signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Eun-Ju; Kim, Hong-Hee; Huh, Jung-Eun

    2005-02-01

    The hydrophobic (HPB) nature of most polymeric biomaterials has been a major obstacle in using those materials in vivo due to low compatibility with cells. However, there is little knowledge of the molecular detail to explain how surface hydrophobicity affects cell responses. In this study, we compared the proliferation and apoptosis of human osteoblastic MG63 cells adhered to hydrophilic (HPL) and hydrophobic surfaces. On the hydrophobic surface, less formation of focal contacts and actin stress fibers, a delay in cell cycle progression, and an increase in apoptosis were observed. By using fibroblast growth factor 1 (FGF1) as a model growthmore » factor, we also investigated intracellular signaling pathways on hydrophilic and hydrophobic surfaces. The activation of Ras, Akt, and ERK by FGF1 was impaired in MG63 cells on the hydrophobic surface. The overexpression of constitutively active form of Ras and Akt rescued those cells from apoptosis and recovered cell cycle progression. Furthermore, their overexpression also restored the actin cytoskeletal organization on the hydrophobic surface. Finally, the proliferative, antiapoptotic, and cytoskeletal effects of constitutively active Ras in MG63 cells on the hydrophobic surface were blocked by wortmannin and PD98059 that inhibit Akt and ERK activation, respectively. Therefore, our results suggest that the activation of Ras and its downstream molecules Akt and ERK to an appropriate level is one of crucial elements in the determination of osteoblast cell responses. The Ras pathway may represent a cell biological target that should be considered for successful surface modification of biomaterials to induce adequate cell responses in the bone tissue.« less

  9. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange.

    PubMed

    Burns, Michael C; Sun, Qi; Daniels, R Nathan; Camper, DeMarco; Kennedy, J Phillip; Phan, Jason; Olejniczak, Edward T; Lee, Taekyu; Waterson, Alex G; Rossanese, Olivia W; Fesik, Stephen W

    2014-03-04

    Aberrant activation of the small GTPase Ras by oncogenic mutation or constitutively active upstream receptor tyrosine kinases results in the deregulation of cellular signals governing growth and survival in ∼30% of all human cancers. However, the discovery of potent inhibitors of Ras has been difficult to achieve. Here, we report the identification of small molecules that bind to a unique pocket on the Ras:Son of Sevenless (SOS):Ras complex, increase the rate of SOS-catalyzed nucleotide exchange in vitro, and modulate Ras signaling pathways in cells. X-ray crystallography of Ras:SOS:Ras in complex with these molecules reveals that the compounds bind in a hydrophobic pocket in the CDC25 domain of SOS adjacent to the Switch II region of Ras. The structure-activity relationships exhibited by these compounds can be rationalized on the basis of multiple X-ray cocrystal structures. Mutational analyses confirmed the functional relevance of this binding site and showed it to be essential for compound activity. These molecules increase Ras-GTP levels and disrupt MAPK and PI3K signaling in cells at low micromolar concentrations. These small molecules represent tools to study the acute activation of Ras and highlight a pocket on SOS that may be exploited to modulate Ras signaling.

  10. Pleiotrophin mediates hematopoietic regeneration via activation of RAS

    PubMed Central

    Himburg, Heather A.; Yan, Xiao; Doan, Phuong L.; Quarmyne, Mamle; Micewicz, Eva; McBride, William; Chao, Nelson J.; Slamon, Dennis J.; Chute, John P.

    2014-01-01

    Hematopoietic stem cells (HSCs) are highly susceptible to ionizing radiation–mediated death via induction of ROS, DNA double-strand breaks, and apoptotic pathways. The development of therapeutics capable of mitigating ionizing radiation–induced hematopoietic toxicity could benefit both victims of acute radiation sickness and patients undergoing hematopoietic cell transplantation. Unfortunately, therapies capable of accelerating hematopoietic reconstitution following lethal radiation exposure have remained elusive. Here, we found that systemic administration of pleiotrophin (PTN), a protein that is secreted by BM-derived endothelial cells, substantially increased the survival of mice following radiation exposure and after myeloablative BM transplantation. In both models, PTN increased survival by accelerating the recovery of BM hematopoietic stem and progenitor cells in vivo. PTN treatment promoted HSC regeneration via activation of the RAS pathway in mice that expressed protein tyrosine phosphatase receptor-zeta (PTPRZ), whereas PTN treatment did not induce RAS signaling in PTPRZ-deficient mice, suggesting that PTN-mediated activation of RAS was dependent upon signaling through PTPRZ. PTN strongly inhibited HSC cycling following irradiation, whereas RAS inhibition abrogated PTN-mediated induction of HSC quiescence, blocked PTN-mediated recovery of hematopoietic stem and progenitor cells, and abolished PTN-mediated survival of irradiated mice. These studies demonstrate the therapeutic potential of PTN to improve survival after myeloablation and suggest that PTN-mediated hematopoietic regeneration occurs in a RAS-dependent manner. PMID:25250571

  11. Pleiotrophin mediates hematopoietic regeneration via activation of RAS.

    PubMed

    Himburg, Heather A; Yan, Xiao; Doan, Phuong L; Quarmyne, Mamle; Micewicz, Eva; McBride, William; Chao, Nelson J; Slamon, Dennis J; Chute, John P

    2014-11-01

    Hematopoietic stem cells (HSCs) are highly susceptible to ionizing radiation-mediated death via induction of ROS, DNA double-strand breaks, and apoptotic pathways. The development of therapeutics capable of mitigating ionizing radiation-induced hematopoietic toxicity could benefit both victims of acute radiation sickness and patients undergoing hematopoietic cell transplantation. Unfortunately, therapies capable of accelerating hematopoietic reconstitution following lethal radiation exposure have remained elusive. Here, we found that systemic administration of pleiotrophin (PTN), a protein that is secreted by BM-derived endothelial cells, substantially increased the survival of mice following radiation exposure and after myeloablative BM transplantation. In both models, PTN increased survival by accelerating the recovery of BM hematopoietic stem and progenitor cells in vivo. PTN treatment promoted HSC regeneration via activation of the RAS pathway in mice that expressed protein tyrosine phosphatase receptor-zeta (PTPRZ), whereas PTN treatment did not induce RAS signaling in PTPRZ-deficient mice, suggesting that PTN-mediated activation of RAS was dependent upon signaling through PTPRZ. PTN strongly inhibited HSC cycling following irradiation, whereas RAS inhibition abrogated PTN-mediated induction of HSC quiescence, blocked PTN-mediated recovery of hematopoietic stem and progenitor cells, and abolished PTN-mediated survival of irradiated mice. These studies demonstrate the therapeutic potential of PTN to improve survival after myeloablation and suggest that PTN-mediated hematopoietic regeneration occurs in a RAS-dependent manner.

  12. TRPC6 channel-mediated neurite outgrowth in PC12 cells and hippocampal neurons involves activation of RAS/MEK/ERK, PI3K, and CAMKIV signaling.

    PubMed

    Heiser, Jeanine H; Schuwald, Anita M; Sillani, Giacomo; Ye, Lian; Müller, Walter E; Leuner, Kristina

    2013-11-01

    The non-selective cationic transient receptor canonical 6 (TRPC6) channels are involved in synaptic plasticity changes ranging from dendritic growth, spine morphology changes and increase in excitatory synapses. We previously showed that the TRPC6 activator hyperforin, the active antidepressant component of St. John's wort, induces neuritic outgrowth and spine morphology changes in PC12 cells and hippocampal CA1 neurons. However, the signaling cascade that transmits the hyperforin-induced transient rise in intracellular calcium into neuritic outgrowth is not yet fully understood. Several signaling pathways are involved in calcium transient-mediated changes in synaptic plasticity, ranging from calmodulin-mediated Ras-induced signaling cascades comprising the mitogen-activated protein kinase, PI3K signal transduction pathways as well as Ca(2+) /calmodulin-dependent protein kinase II (CAMKII) and CAMKIV. We show that several mechanisms are involved in TRPC6-mediated synaptic plasticity changes in PC12 cells and primary hippocampal neurons. Influx of calcium via TRPC6 channels activates different pathways including Ras/mitogen-activated protein kinase/extracellular signal-regulated kinases, phosphatidylinositide 3-kinase/protein kinase B, and CAMKIV in both cell types, leading to cAMP-response element binding protein phosphorylation. These findings are interesting not only in terms of the downstream targets of TRPC6 channels but also because of their potential to facilitate further understanding of St. John's wort extract-mediated antidepressant activity. Alterations in synaptic plasticity are considered to play an important role in the pathogenesis of depression. Beside several other proteins, TRPC6 channels regulate synaptic plasticity. This study demonstrates that different pathways including Ras/MEK/ERK, PI3K/Akt, and CAMKIV are involved in the improvement of synaptic plasticity by the TRPC6 activator hyperforin, the antidepressant active constituent of St. John

  13. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis.

    PubMed

    Johnson Hamlet, M R; Perkins, L A

    2001-11-01

    The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway.

  14. Analysis of corkscrew signaling in the Drosophila epidermal growth factor receptor pathway during myogenesis.

    PubMed Central

    Johnson Hamlet, M R; Perkins, L A

    2001-01-01

    The Drosophila nonreceptor protein tyrosine phosphatase, Corkscrew (Csw), functions positively in multiple receptor tyrosine kinase (RTK) pathways, including signaling by the epidermal growth factor receptor (EGFR). Detailed phenotypic analyses of csw mutations have revealed that Csw activity is required in many of the same developmental processes that require EGFR function. However, it is still unclear where in the signaling hierarchy Csw functions relative to other proteins whose activities are also required downstream of the receptor. To address this issue, genetic interaction experiments were performed to place csw gene activity relative to the EGFR, spitz (spi), rhomboid (rho), daughter of sevenless (DOS), kinase-suppressor of ras (ksr), ras1, D-raf, pointed (pnt), and moleskin. We followed the EGFR-dependent formation of VA2 muscle precursor cells as a sensitive assay for these genetic interaction studies. First, we established that Csw has a positive function during mesoderm development. Second, we found that tissue-specific expression of a gain-of-function csw construct rescues loss-of-function mutations in other positive signaling genes upstream of rolled (rl)/MAPK in the EGFR pathway. Third, we were able to infer levels of EGFR signaling in various mutant backgrounds during myogenesis. This work extends previous studies of Csw during Torso and Sevenless RTK signaling to include an in-depth analysis of the role of Csw in the EGFR signaling pathway. PMID:11729154

  15. A PLC-γ1-independent, RasGRP1-ERK dependent pathway drives lymphoproliferative disease in LAT-Y136F mutant mice

    PubMed Central

    Kortum, Robert L.; Rouquette-Jazdanian, Alexandre K.; Miyaji, Michihiko; Merrill, Robert K.; Markegard, Evan; Pinski, John M.; Wesselink, Amelia; Nath, Nandan N.; Alexander, Clayton P.; Li, Wenmei; Kedei, Noemi; Roose, Jeroen P.; Blumberg, Peter M.; Samelson, Lawrence E.; Sommers, Connie L.

    2012-01-01

    Mice expressing a germline mutation in the PLC-γ1 binding site of LAT (linker for activation of T cells) show progressive lymphoproliferation and ultimately die at 4–6 months of age. The hyper-activated T cells in these mice show defective TCR-induced calcium flux, but enhanced Ras/ERK activation that is critical for disease progression. Despite the loss of LAT-dependent PLC-γ1 binding and activation, genetic analysis revealed RasGRP1, and not Sos1 or Sos2, to be the major RasGEF responsible for ERK activation and the lymphoproliferative phenotype in these mice. Analysis of isolated CD4+ T cells from LAT-Y136F mice showed altered proximal TCR-dependent kinase signaling, which activated a Zap70- and LAT-independent pathway. Moreover, LAT-Y136F T cells showed ERK activation that was dependent on Lck and/or Fyn, PKCθ, and RasGRP1. These data demonstrate a novel route to Ras activation in vivo in a pathological setting. PMID:23209318

  16. Carboxyl methylation of Ras-related proteins during signal transduction in neutrophils.

    PubMed

    Philips, M R; Pillinger, M H; Staud, R; Volker, C; Rosenfeld, M G; Weissmann, G; Stock, J B

    1993-02-12

    In human neutrophils, as in other cell types, Ras-related guanosine triphosphate-binding proteins are directed toward their regulatory targets in membranes by a series of posttranslational modifications that include methyl esterification of a carboxyl-terminal prenylcysteine residue. In intact cells and in a reconstituted in vitro system, the amount of carboxyl methylation of Ras-related proteins increased in response to the chemoattractant N-formyl-methionyl-leucyl-phenylalanine (FMLP). Activation of Ras-related proteins by guanosine-5'-O-(3-thiotriphosphate) had a similar effect and induced translocation of p22rac2 from cytosol to plasma membrane. Inhibitors of prenylcysteine carboxyl methylation effectively blocked neutrophil responses to FMLP. These findings suggest a direct link between receptor-mediated signal transduction and the carboxyl methylation of Ras-related proteins.

  17. Qingfei Xiaoyan Wan, a traditional Chinese medicine formula, ameliorates Pseudomonas aeruginosa–induced acute lung inflammation by regulation of PI3K/AKT and Ras/MAPK pathways

    PubMed Central

    Hou, Yuanyuan; Nie, Yan; Cheng, Binfeng; Tao, Jin; Ma, Xiaoyao; Jiang, Min; Gao, Jie; Bai, Gang

    2016-01-01

    Gram-negative pathogen–induced nosocomial infections and resistance are a most serious menace to global public health. Qingfei Xiaoyan Wan (QF), a traditional Chinese medicine (TCM) formula, has been used clinically in China for the treatment of upper respiratory tract infections, acute or chronic bronchitis and pulmonary infection. In this study, the effects of QF on Pseudomonas aeruginosa–induced acute pneumonia in mice were evaluated. The mechanisms by which four typical anti-inflammatory ingredients from QF, arctigenin (ATG), cholic acid (CLA), chlorogenic acid (CGA) and sinapic acid (SPA), regulate anti-inflammatory signaling pathways and related targets were investigated using molecular biology and molecular docking techniques. The results showed that pretreatment with QF significantly inhibits the release of cytokines (TNF-α and IL-6) and chemokines (IL-8 and RANTES), reduces leukocytes recruitment into inflamed tissues and ameliorates pulmonary edema and necrosis. In addition, ATG was identified as the primary anti-inflammatory agent with action on the PI3K/AKT and Ras/MAPK pathways. CLA and CGA enhanced the actions of ATG and exhibited synergistic NF-κB inactivation effects possibly via the Ras/MAPK signaling pathway. Moreover, CLA is speculated to target FGFR and MEK firstly. Overall, QF regulated the PI3K/AKT and Ras/MAPK pathways to inhibit pathogenic bacterial infections effectively. PMID:27175332

  18. How Genetics Has Helped Piece Together the MAPK Signaling Pathway.

    PubMed

    Ashton-Beaucage, Dariel; Therrien, Marc

    2017-01-01

    Cells respond to changes in their environment, to developmental cues, and to pathogen aggression through the action of a complex network of proteins. These networks can be decomposed into a multitude of signaling pathways that relay signals from the microenvironment to the cellular components involved in eliciting a specific response. Perturbations in these signaling processes are at the root of multiple pathologies, the most notable of these being cancer. The study of receptor tyrosine kinase (RTK) signaling led to the first description of a mechanism whereby an extracellular signal is transmitted to the nucleus to induce a transcriptional response. Genetic studies conducted in drosophila and nematodes have provided key elements to this puzzle. Here, we briefly discuss the somewhat lesser known contribution of these multicellular organisms to our understanding of what has come to be known as the prototype of signaling pathways. We also discuss the ostensibly much larger network of regulators that has emerged from recent functional genomic investigations of RTK/RAS/ERK signaling.

  19. Targeting RAS-driven human cancer cells with antibodies to upregulated and essential cell-surface proteins.

    PubMed

    Martinko, Alexander J; Truillet, Charles; Julien, Olivier; Diaz, Juan E; Horlbeck, Max A; Whiteley, Gordon; Blonder, Josip; Weissman, Jonathan S; Bandyopadhyay, Sourav; Evans, Michael J; Wells, James A

    2018-01-23

    While there have been tremendous efforts to target oncogenic RAS signaling from inside the cell, little effort has focused on the cell-surface. Here, we used quantitative surface proteomics to reveal a signature of proteins that are upregulated on cells transformed with KRAS G12V , and driven by MAPK pathway signaling. We next generated a toolkit of recombinant antibodies to seven of these RAS-induced proteins. We found that five of these proteins are broadly distributed on cancer cell lines harboring RAS mutations. In parallel, a cell-surface CRISPRi screen identified integrin and Wnt signaling proteins as critical to RAS-transformed cells. We show that antibodies targeting CDCP1, a protein common to our proteomics and CRISPRi datasets, can be leveraged to deliver cytotoxic and immunotherapeutic payloads to RAS-transformed cancer cells and report for RAS signaling status in vivo. Taken together, this work presents a technological platform for attacking RAS from outside the cell. © 2018, Martinko et al.

  20. Activated platelet-derived growth factor β receptor and Ras-mitogen-activated protein kinase pathway in natural bovine urinary bladder carcinomas.

    PubMed

    Corteggio, Annunziata; Di Geronimo, Ornella; Roperto, Sante; Roperto, Franco; Borzacchiello, Giuseppe

    2012-03-01

    Bovine papillomavirus types 1 or 2 (BPV-1/2) are involved in the aetiopathogenesis of bovine urinary bladder cancer. BPV-1/2 E5 activates the platelet-derived growth factor β receptor (PDGFβR). The aim of this study was to analyse the Ras/mitogen-activated protein kinase (MAPK) pathway in relation to activation of PDGFβR in natural bovine urinary bladder carcinomas. Co-immunoprecipitation and Western blot analysis demonstrated that recruitment of growth factor receptor bound protein 2 (GRB-2) and Sos-1 to the activated PDGFβR was increased in carcinomas compared to normal tissues. Higher grade bovine urinary bladder carcinomas were associated with activation of Ras, but not with activation of downstream mitogen-activated protein kinase/extracellular signal-regulated kinase (Mek 1/2) or extracellular signal-regulated kinase (Erk 1/2). Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Identification of Differentially Expressed K-Ras Transcript Variants in Patients With Leiomyoma.

    PubMed

    Zolfaghari, Nooshin; Shahbazi, Shirin; Torfeh, Mahnaz; Khorasani, Maryam; Hashemi, Mehrdad; Mahdian, Reza

    2017-10-01

    Molecular studies have demonstrated a wide range of gene expression variations in uterine leiomyoma. The rat sarcoma virus/rapidly accelerated fibrosarcoma/mitogen-activated protein kinase (RAS/RAF/MAPK) is the crucial cellular pathway in transmitting external signals into nucleus. Deregulation of this pathway contributes to excessive cell proliferation and tumorigenesis. The present study aims to investigate the expression profile of the K-Ras transcripts in tissue samples from patients with leiomyoma. The patients were leiomyoma cases who had no mutation in mediator complex subunit 12 ( MED12) gene. A quantitative approach has been applied to determine the difference in the expression of the 2 main K-Ras messenger RNA (mRNA) variants. The comparison between gene expression levels in leiomyoma and normal myometrium group was performed using relative expression software tool. The expression of K-Ras4B gene was upregulated in leiomyoma group ( P = .016), suggesting the involvement of K-Ras4B in the disease pathogenesis. Pairwise comparison of the K-Ras4B expression between each leiomyoma tissue and its matched adjacent normal myometrium revealed gene upregulation in 68% of the cases. The expression of K-Ras4A mRNA was relatively upregulated in leiomyoma group ( P = .030). In addition, the mean expression of K-Ras4A gene in leiomyoma tissues relative to normal samples was 4.475 (95% confidence interval: 0.10-20.42; standard error: 0.53-12.67). In total, 58% of the cases showed more than 2-fold increase in K-Ras4A gene expression. Our results demonstrated increased expression of both K-Ras mRNA splicing variants in leiomyoma tissue. However, the ultimate result of KRAS expression on leiomyoma development depends on the overall KRAS isoform balance and, consequently, on activated signaling pathways.

  2. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS.

    PubMed

    Yao, Zhan; Yaeger, Rona; Rodrik-Outmezguine, Vanessa S; Tao, Anthony; Torres, Neilawattie M; Chang, Matthew T; Drosten, Matthias; Zhao, Huiyong; Cecchi, Fabiola; Hembrough, Todd; Michels, Judith; Baumert, Hervé; Miles, Linde; Campbell, Naomi M; de Stanchina, Elisa; Solit, David B; Barbacid, Mariano; Taylor, Barry S; Rosen, Neal

    2017-08-10

    Approximately 200 BRAF mutant alleles have been identified in human tumours. Activating BRAF mutants cause feedback inhibition of GTP-bound RAS, are RAS-independent and signal either as active monomers (class 1) or constitutively active dimers (class 2). Here we characterize a third class of BRAF mutants-those that have impaired kinase activity or are kinase-dead. These mutants are sensitive to ERK-mediated feedback and their activation of signalling is RAS-dependent. The mutants bind more tightly than wild-type BRAF to RAS-GTP, and their binding to and activation of wild-type CRAF is enhanced, leading to increased ERK signalling. The model suggests that dysregulation of signalling by these mutants in tumours requires coexistent mechanisms for maintaining RAS activation despite ERK-dependent feedback. Consistent with this hypothesis, melanomas with these class 3 BRAF mutations also harbour RAS mutations or NF1 deletions. By contrast, in lung and colorectal cancers with class 3 BRAF mutants, RAS is typically activated by receptor tyrosine kinase signalling. These tumours are sensitive to the inhibition of RAS activation by inhibitors of receptor tyrosine kinases. We have thus defined three distinct functional classes of BRAF mutants in human tumours. The mutants activate ERK signalling by different mechanisms that dictate their sensitivity to therapeutic inhibitors of the pathway.

  3. Constitutively active RAS signaling reduces 1,25 dihydroxyvitamin D-mediated gene transcription in intestinal epithelial cells by reducing vitamin D receptor expression.

    PubMed

    DeSmet, Marsha L; Fleet, James C

    2017-10-01

    High vitamin D status is associated with reduced colon cancer risk but these studies ignore the diversity in the molecular etiology of colon cancer. RAS activating mutations are common in colon cancer and they activate pro-proliferative signaling pathways. We examined the impact of RAS activating mutations on 1,25 dihydroxyvitamin D (1,25(OH) 2 D)-mediated gene expression in cultured colon and intestinal cell lines. Transient transfection of Caco-2 cells with a constitutively active mutant K-RAS (G12 V) significantly reduced 1,25(OH) 2 D-induced activity of both a human 25-hydroxyvitamin D, 24 hydroxyase (CYP24A1) promoter-luciferase and an artificial 3X vitamin D response element (VDRE) promoter-luciferase reporter gene. Young Adult Mouse Colon (YAMC) and Rat Intestinal Epithelial (RIE) cell lines with stable expression of mutant H-RAS had suppressed 1,25(OH) 2 D-mediated induction of CYP24A1 mRNA. The RAS effects were associated with lower Vitamin D receptor (VDR) mRNA and protein levels in YAMC and RIE cells and they could be partially reversed by VDR overexpression. RAS-mediated suppression of VDR levels was not due to either reduced VDR mRNA stability or increased VDR gene methylation. However, chromatin accessibility to the VDR gene at the proximal promoter (-300bp), an enhancer region at -6kb, and an enhancer region located in exon 3 was significantly reduced in RAS transformed YAMC cells (YAMC-RAS). These data show that constitutively active RAS signaling suppresses 1,25(OH) 2 D-mediated gene transcription in colon epithelial cells by reducing VDR gene transcription but the mechanism for this suppression is not yet known. These data suggest that cancers with RAS-activating mutations may be less responsive to vitamin D mediated treatment or chemoprevention. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Differences in the Regulation of K-Ras and H-Ras Isoforms by Monoubiquitination*

    PubMed Central

    Baker, Rachael; Wilkerson, Emily M.; Sumita, Kazutaka; Isom, Daniel G.; Sasaki, Atsuo T.; Dohlman, Henrik G.; Campbell, Sharon L.

    2013-01-01

    Ras GTPases are signaling switches that control critical cellular processes including gene expression, differentiation, and apoptosis. The major Ras isoforms (K, H, and N) contain a conserved core GTPase domain, but have distinct biological functions. Among the three Ras isoforms there are clear differences in post-translational regulation, which contribute to differences in localization and signaling output. Modification by ubiquitination was recently reported to activate Ras signaling in cells, but the mechanisms of activation are not well understood. Here, we show that H-Ras is activated by monoubiquitination and that ubiquitination at Lys-117 accelerates intrinsic nucleotide exchange, thereby promoting GTP loading. This mechanism of Ras activation is distinct from K-Ras monoubiquitination at Lys-147, which leads to impaired regulator-mediated GTP hydrolysis. These findings reveal that different Ras isoforms are monoubiquitinated at distinct sites, with distinct mechanisms of action, but with a common ability to chronically activate the protein in the absence of a receptor signal or oncogenic mutation. PMID:24247240

  5. Regulation of Ras Exchange Factors and Cellular Localization of Ras Activation by Lipid Messengers in T Cells

    PubMed Central

    Jun, Jesse E.; Rubio, Ignacio; Roose, Jeroen P.

    2013-01-01

    The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells. PMID:24027568

  6. A non-cell-autonomous role for Ras signaling in C. elegans neuroblast delamination

    PubMed Central

    Parry, Jean M.; Sundaram, Meera V.

    2014-01-01

    Receptor tyrosine kinase (RTK) signaling through Ras influences many aspects of normal cell behavior, including epithelial-to-mesenchymal transition, and aberrant signaling promotes both tumorigenesis and metastasis. Although many such effects are cell-autonomous, here we show a non-cell-autonomous role for RTK-Ras signaling in the delamination of a neuroblast from an epithelial organ. The C. elegans renal-like excretory organ is initially composed of three unicellular epithelial tubes, namely the canal, duct and G1 pore cells; however, the G1 cell later delaminates from the excretory system to become a neuroblast and is replaced by the G2 cell. G1 delamination and G2 intercalation involve cytoskeletal remodeling, interconversion of autocellular and intercellular junctions and migration over a luminal extracellular matrix, followed by G1 junction loss. LET-23/EGFR and SOS-1, an exchange factor for Ras, are required for G1 junction loss but not for initial cytoskeletal or junction remodeling. Surprisingly, expression of activated LET-60/Ras in the neighboring duct cell, but not in the G1 or G2 cells, is sufficient to rescue sos-1 delamination defects, revealing that Ras acts non-cell-autonomously to permit G1 delamination. We suggest that, similarly, oncogenic mutations in cells within a tumor might help create a microenvironment that is permissive for other cells to detach and ultimately metastasize. PMID:25371363

  7. Association of p21ras with phosphatidylinositol 3-kinase.

    PubMed Central

    Sjölander, A; Yamamoto, K; Huber, B E; Lapetina, E G

    1991-01-01

    In mammalian cells, ras genes code for 21-kDa GTP-binding proteins. Increased expression and mutations in specific amino acids have been closely linked to alterations of normal cell morphology, growth, and differentiation and, in particular, to neoplastic transformation. The signal transduction induced by these p21ras proteins is largely unknown; however, the signaling pathways of several growth factors have been reported to involve phosphatidylinositol (PtdIns) 3-kinase. In the present study of a Ha-ras-transformed epithelial cell line, we demonstrated increased PtdIns 3-kinase activity in anti-phosphotyrosine and anti-receptor (insulin and hybrid insulin-like growth factor I) immunoprecipitates of cells that had been stimulated with insulin or insulin-like growth factor I. The PtdIns 3-kinase activity was also immunoprecipitated in these experiments by the anti-Ras monoclonal antibody Y13-259. The specificity of this association with p21ras was ascertained by the neutralizing effect of the antigen peptide and the absence of PtdIns 3-kinase activity in Y13-259 immunoprecipitates from cells in which the ras gene was turned off. These data indicate that PtdIns 3-kinase activity is an important step in the cascade of reactions in p21ras signal transduction, suggesting that the alterations of the cytoskeleton and growth in ras-transformed cells could be mediated by PtdIns 3-kinase activity. Images PMID:1716764

  8. The frequencies of calcium oscillations are optimized for efficient calcium-mediated activation of Ras and the ERK/MAPK cascade.

    PubMed

    Kupzig, Sabine; Walker, Simon A; Cullen, Peter J

    2005-05-24

    Ras proteins are binary switches that, by cycling through inactive GDP- and active GTP-bound conformations, regulate multiple cellular signaling pathways, including those that control growth and differentiation. For some time, it has been known that receptor-mediated increases in the concentration of intracellular free calcium ([Ca(2+)](i)) can modulate Ras activation. Increases in [Ca(2+)](i) often occur as repetitive Ca(2+) spikes or oscillations. Induced by electrical or receptor stimuli, these repetitive Ca(2+) oscillations increase in frequency with the amplitude of receptor stimuli, a phenomenon critical for the induction of selective cellular functions. Here, we show that Ca(2+) oscillations are optimized for Ca(2+)-mediated activation of Ras and signaling through the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) cascade. We present additional evidence that Ca(2+) oscillations reduce the effective Ca(2+) threshold for the activation of Ras and that the oscillatory frequency is optimized for activation of Ras and the ERK/MAPK pathway. Our results describe a hitherto unrecognized link between complex Ca(2+) signals and the modulation of the Ras/ERK/MAPK signaling cascade.

  9. Ras-related tumorigenesis is suppressed by BNIP3-mediated autophagy through inhibition of cell proliferation.

    PubMed

    Wu, Shan-Ying; Lan, Sheng-Hui; Cheng, Da-En; Chen, Wei-Kai; Shen, Cheng-Huang; Lee, Ying-Ray; Zuchini, Roberto; Liu, Hsiao-Sheng

    2011-12-01

    Autophagy plays diverse roles in Ras-related tumorigenesis. H-ras(val12) induces autophagy through multiple signaling pathways including Raf-1/ERK pathway, and various ERK downstream molecules of autophagy have been reported. In this study, Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3) is identified as a downstream transducer of the Ras/Raf/ERK signaling pathway to induce autophagy. BNIP3 was upregulated by H-ras(val12) at the transcriptional level to compete with Beclin 1 for binding with Bcl-2. H-ras(val12)-induced autophagy suppresses cell proliferation demonstrated both in vitro and in vivo by expression of ectopic BNIP3, Atg5, or interference RNA of BNIP3 (siBNIP3) and Atg5 (shAtg5) using mouse NIH3T3 and embryo fibroblast cells. H-ras(val12) induces different autophagic responses depending on the duration of Ras overexpression. After a short time (48 hours) of Ras overexpression, autophagy inhibits cell proliferation. In contrast, a longer time (2 weeks) of Ras overexpression, cell proliferation was enhanced by autophagy. Furthermore, overexpression of mutant Ras, BNIP3, and LC3-II was detected in bladder cancer T24 cells and the tumor parts of 75% of bladder cancer specimens indicating a positive correlation between autophagy and tumorigenesis. Taken together, our mouse model demonstrates a balance between BNIP3-mediated autophagy and H-ras(val12)-induced tumor formation and reveals that H-ras(val12) induces autophagy in a BNIP3-dependent manner, and the threshold of autophagy plays a decisive role in H-ras(val12)-induced tumorigenesis. Our findings combined with others' reports suggest a new therapeutic strategy against Ras-related tumorigenesis by negative or positive regulation of autophagic activity, which is determined by the level of autophagy and tumor progression stages.

  10. RasGRP3 regulates the migration of glioma cells via interaction with Arp3

    PubMed Central

    Lee, Hae Kyung; Finniss, Susan; Cazacu, Simona; Xiang, Cunli; Poisson, Laila M.; Blumberg, Peter M.; Brodie, Chaya

    2015-01-01

    Glioblastoma (GBM), the most aggressive primary brain tumors, are highly infiltrative. Although GBM express high Ras activity and Ras proteins have been implicated in gliomagenesis, Ras-activating mutations are not frequent in these tumors. RasGRP3, an important signaling protein responsive to diacylglycerol (DAG), increases Ras activation. Here, we examined the expression and functions of RasGRP3 in GBM and glioma cells. RasGRP3 expression was upregulated in GBM specimens and glioma stem cells compared with normal brains and neural stem cells, respectively. RasGRP3 activated Ras and Rap1 in glioma cells and increased cell migration and invasion partially via Ras activation. Using pull-down assay and mass spectroscopy we identified the actin-related protein, Arp3, as a novel interacting protein of RasGRP3. The interaction of RasGRP3 and Arp3 was validated by immunofluorescence staining and co-immunoprecipitation, and PMA, which activates RasGRP3 and induces its translocation to the peri-nuclear region, increased the association of Arp3 and RasGRP3. Arp3 was upregulated in GBM, regulated cell spreading and migration and its silencing partially decreased these effects of RasGRP3 in glioma cells. In summary, RasGRP3 acts as an important integrating signaling protein of the DAG and Ras signaling pathways and actin polymerization and represents an important therapeutic target in GBM. PMID:25682201

  11. Nitrative and oxidative DNA damage caused by K-ras mutation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohnishi, Shiho; Saito, Hiromitsu; Suzuki, Noboru

    2011-09-23

    Highlights: {yields} Mutated K-ras in transgenic mice caused nitrative DNA damage, 8-nitroguanine. {yields} The mutagenic 8-nitroguanine seemed to be generated by iNOS via Ras-MAPK signal. {yields} Mutated K-ras produces additional mutagenic lesions, as a new oncogenic role. -- Abstract: Ras mutation is important for carcinogenesis. Carcinogenesis consists of multi-step process with mutations in several genes. We investigated the role of DNA damage in carcinogenesis initiated by K-ras mutation, using conditional transgenic mice. Immunohistochemical analysis revealed that mutagenic 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) were apparently formed in adenocarcinoma caused by mutated K-ras. 8-Nitroguanine was co-localized with iNOS, eNOS, NF-{kappa}B, IKK, MAPK, MEK,more » and mutated K-ras, suggesting that oncogenic K-ras causes additional DNA damage via signaling pathway involving these molecules. It is noteworthy that K-ras mutation mediates not only cell over-proliferation but also the accumulation of mutagenic DNA lesions, leading to carcinogenesis.« less

  12. Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1

    PubMed Central

    Iwig, Jeffrey S; Vercoulen, Yvonne; Das, Rahul; Barros, Tiago; Limnander, Andre; Che, Yan; Pelton, Jeffrey G; Wemmer, David E; Roose, Jeroen P; Kuriyan, John

    2013-01-01

    RasGRP1 and SOS are Ras-specific nucleotide exchange factors that have distinct roles in lymphocyte development. RasGRP1 is important in some cancers and autoimmune diseases but, in contrast to SOS, its regulatory mechanisms are poorly understood. Activating signals lead to the membrane recruitment of RasGRP1 and Ras engagement, but it is unclear how interactions between RasGRP1 and Ras are suppressed in the absence of such signals. We present a crystal structure of a fragment of RasGRP1 in which the Ras-binding site is blocked by an interdomain linker and the membrane-interaction surface of RasGRP1 is hidden within a dimerization interface that may be stabilized by the C-terminal oligomerization domain. NMR data demonstrate that calcium binding to the regulatory module generates substantial conformational changes that are incompatible with the inactive assembly. These features allow RasGRP1 to be maintained in an inactive state that is poised for activation by calcium and membrane-localization signals. DOI: http://dx.doi.org/10.7554/eLife.00813.001 PMID:23908768

  13. Downregulation of Ras C-terminal processing by JNK inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouri, Wataru; Department of Neurosurgery, Yamagata University School of Medicine, Yamagata 990-9585; Biology Division, National Cancer Center Research Institute, Tokyo 104-0045

    2008-06-27

    After translation, Ras proteins undergo a series of modifications at their C-termini. This post-translational C-terminal processing is essential for Ras to become functional, but it remains unknown whether and how Ras C-terminal processing is regulated. Here we show that the C-terminal processing and subsequent plasma membrane localization of H-Ras as well as the activation of the downstream signaling pathways by H-Ras are prevented by JNK inhibition. Conversely, JNK activation by ultraviolet irradiation resulted in promotion of C-terminal processing of H-Ras. Furthermore, increased cell density promoted C-terminal processing of H-Ras most likely through an autocrine/paracrine mechanism, which was also blocked undermore » JNK-inhibited condition. Ras C-terminal processing was sensitive to JNK inhibition in the case of H- and N-Ras but not K-Ras, and in a variety of cell types. Thus, our results suggest for the first time that Ras C-terminal processing is a regulated mechanism in which JNK is involved.« less

  14. What makes Ras an efficient molecular switch: a computational, biophysical, and structural study of Ras-GDP interactions with mutants of Raf.

    PubMed

    Filchtinski, Daniel; Sharabi, Oz; Rüppel, Alma; Vetter, Ingrid R; Herrmann, Christian; Shifman, Julia M

    2010-06-11

    Ras is a small GTP-binding protein that is an essential molecular switch for a wide variety of signaling pathways including the control of cell proliferation, cell cycle progression and apoptosis. In the GTP-bound state, Ras can interact with its effectors, triggering various signaling cascades in the cell. In the GDP-bound state, Ras looses its ability to bind to known effectors. The interaction of the GTP-bound Ras (Ras(GTP)) with its effectors has been studied intensively. However, very little is known about the much weaker interaction between the GDP-bound Ras (Ras(GDP)) and Ras effectors. We investigated the factors underlying the nucleotide-dependent differences in Ras interactions with one of its effectors, Raf kinase. Using computational protein design, we generated mutants of the Ras-binding domain of Raf kinase (Raf) that stabilize the complex with Ras(GDP). Most of our designed mutations narrow the gap between the affinity of Raf for Ras(GTP) and Ras(GDP), producing the desired shift in binding specificity towards Ras(GDP). A combination of our best designed mutation, N71R, with another mutation, A85K, yielded a Raf mutant with a 100-fold improvement in affinity towards Ras(GDP). The Raf A85K and Raf N71R/A85K mutants were used to obtain the first high-resolution structures of Ras(GDP) bound to its effector. Surprisingly, these structures reveal that the loop on Ras previously termed the switch I region in the Ras(GDP).Raf mutant complex is found in a conformation similar to that of Ras(GTP) and not Ras(GDP). Moreover, the structures indicate an increased mobility of the switch I region. This greater flexibility compared to the same loop in Ras(GTP) is likely to explain the natural low affinity of Raf and other Ras effectors to Ras(GDP). Our findings demonstrate that an accurate balance between a rigid, high-affinity conformation and conformational flexibility is required to create an efficient and stringent molecular switch. Copyright 2010 Elsevier Ltd

  15. A p53-inducible microRNA-34a downregulates Ras signaling by targeting IMPDH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hwa-Ryeon; Roe, Jae-Seok; Lee, Ji-Eun

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer p53 downregulates IMPDH. Black-Right-Pointing-Pointer p53-dependent miR-34a transactivation inhibits IMPDH transcription. Black-Right-Pointing-Pointer miR-34a-mediated inhibition of IMPDH downregulates GTP-dependent Ras signal. -- Abstract: p53 is a well-known transcription factor that controls cell cycle arrest and cell death in response to a wide range of stresses. Moreover, p53 regulates glucose metabolism and its mutation results in the metabolic switch to the Warburg effect found in cancer cells. Nucleotide biosynthesis is also critical for cell proliferation and the cell division cycle. Nonetheless, little is known about whether p53 regulates nucleotide biosynthesis. Here we demonstrated that p53-inducible microRNA-34a (miR-34a) repressed inosine 5 Primemore » -monophosphate dehydrogenase (IMPDH), a rate-limiting enzyme of de novo GTP biosynthesis. Treatment with anti-miR-34a inhibitor relieved the expression of IMPDH upon DNA damage. Ultimately, miR-34a-mediated inhibition of IMPDH resulted in repressed activation of the GTP-dependent Ras signaling pathway. In summary, we suggest that p53 has a novel function in regulating purine biosynthesis, aided by miR-34a-dependent IMPDH repression.« less

  16. S-Nitrosylation of Ras Mediates Nitric Oxide-Dependent Post-Injury Neurogenesis in a Seizure Model.

    PubMed

    Santos, Ana Isabel; Carreira, Bruno Pereira; Izquierdo-Álvarez, Alicia; Ramos, Elena; Lourenço, Ana Sofia; Filipa Santos, Daniela; Morte, Maria Inês; Ribeiro, Luís Filipe; Marreiros, Ana; Sánchez-López, Nuria; Marina, Anabel; Carvalho, Caetana Monteiro; Martínez-Ruiz, Antonio; Araújo, Inês Maria

    2018-01-01

    Nitric oxide (NO) is involved in the upregulation of endogenous neurogenesis in the subventricular zone and in the hippocampus after injury. One of the main neurogenic pathways activated by NO is the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway, downstream of the epidermal growth factor receptor. However, the mechanism by which NO stimulates cell proliferation through activation of the ERK/MAPK pathway remains unknown, although p21Ras seems to be one of the earliest targets of NO. Here, we aimed at studying the possible neurogenic action of NO by post-translational modification of p21Ras as a relevant target for early neurogenic events promoted by NO in neural stem cells (NSCs). We show that NO caused S-nitrosylation (SNO) of p21Ras in Cys118, which triggered downstream activation of the ERK/MAPK pathway and proliferation of NSC. Moreover, in cells overexpressing a mutant Ras in which Cys118 was replaced by a serine-C118S-, cells were insensitive to NO, and no increase in SNO, in ERK phosphorylation, or in cell proliferation was observed. We also show that, after seizures, in the presence of NO derived from inducible nitric oxide synthase, there was an increase in p21Ras cysteine modification that was concomitant with the previously described stimulation of proliferation in the dentate gyrus. Our work identifies p21Ras and its SNO as an early target of NO during signaling events that lead to NSC proliferation and neurogenesis. Our data highlight Ras SNO as an early event leading to NSC proliferation, and they may provide a target for NO-induced stimulation of neurogenesis with implications for brain repair. Antioxid. Redox Signal. 28, 15-30.

  17. Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS.

    PubMed

    Zuidervaart, W; van Nieuwpoort, F; Stark, M; Dijkman, R; Packer, L; Borgstein, A-M; Pavey, S; van der Velden, P; Out, C; Jager, M J; Hayward, N K; Gruis, N A

    2005-06-06

    In contrast to cutaneous melanoma, there is no evidence that BRAF mutations are involved in the activation of the mitogen-activated protein kinase (MAPK) pathway in uveal melanoma, although there is increasing evidence that this pathway is activated frequently in the latter tumours. In this study, we performed mutation analysis of the RAS and BRAF genes in a panel of 11 uveal melanoma cell lines and 19 primary uveal melanoma tumours. In addition, Western blot and immunohistochemical analyses were performed on downstream members of the MAPK pathway in order to assess the contribution of each of these components. No mutations were found in any of the three RAS gene family members and only one cell line carried a BRAF mutation (V599E). Despite this, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK), ERK and ELK were constitutively activated in all samples. These data suggest that activation of the MAPK pathway is commonly involved in the development of uveal melanoma, but occurs through a mechanism different to that of cutaneous melanoma.

  18. Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS

    PubMed Central

    Zuidervaart, W; van Nieuwpoort, F; Stark, M; Dijkman, R; Packer, L; Borgstein, A-M; Pavey, S; van der Velden, P; Out, C; Jager, M J; Hayward, N K; Gruis, N A

    2005-01-01

    In contrast to cutaneous melanoma, there is no evidence that BRAF mutations are involved in the activation of the mitogen-activated protein kinase (MAPK) pathway in uveal melanoma, although there is increasing evidence that this pathway is activated frequently in the latter tumours. In this study, we performed mutation analysis of the RAS and BRAF genes in a panel of 11 uveal melanoma cell lines and 19 primary uveal melanoma tumours. In addition, Western blot and immunohistochemical analyses were performed on downstream members of the MAPK pathway in order to assess the contribution of each of these components. No mutations were found in any of the three RAS gene family members and only one cell line carried a BRAF mutation (V599E). Despite this, mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK), ERK and ELK were constitutively activated in all samples. These data suggest that activation of the MAPK pathway is commonly involved in the development of uveal melanoma, but occurs through a mechanism different to that of cutaneous melanoma. PMID:15928660

  19. Signal Transduction Pathways through TRK‐A and TRK‐B Receptors in Human Neuroblastoma Cells

    PubMed Central

    Kuroda, Hiroshi; Horii, Yoshihiro; Moritake, Hiroshi; Tanaka, Takeo; Hattori, Seisuke

    2001-01-01

    Little is known about the signal transduction pathways of TRK family receptors in neuroblastoma (NB) cells. In this study, an NB cell line, designated MP‐N‐TS, was established from an adrenal tumor taken from a 2‐year‐old boy. This cell line expressed both TRK‐A and TRK‐B receptors, which is rare in a single NB cell line. Therefore, the MP‐N‐TS cell line was used to determine whether the signal transduction through these constitutive receptors is functional. Three neurotrophins, nerve growth factor (NGF), brain‐derived neurotrophic factor (BDNF) and neurotrophin‐4/ 5 (NT‐4/5), induced tyrosine phosphorylation of panTRK, and BDNF and NT‐4/5 induced tyrosine phosphorylation of TRK‐B. Tyrosine phosphorylation of panTRK and/or TRK‐B by the neurotro‐phins was inhibited in the presence of a tyrosine kinase inhibitor K252a. Tyrosine phosphorylation of Src homologous and collagen (She), extracellular signal‐regulated kinase (ERK)‐l and ERK‐2, and phospholipase C‐γl (PLC‐γl) was increased by the three neurotrophins and the increase was inhibited in the presence of K252a. Activation of Ras, detected as the GTP‐bound form of Ras, was induced by the three neurotrophins. The neurotrophins did not modulate the expressions of TRK‐A or TRK‐B mRNA, but they did induce the expression of c‐fos mRNA. Exogenous NGF induced weak neurite outgrowth, whereas exogenous BDNF and NT‐4/5 induced distinct neurite outgrowth. Exogenous BDNF and NT‐4/5 increased the number of viable cells, while NGF did not. Our results demonstrate that the signal transduction pathways through TRK‐A and TRK‐B in MP‐N‐TS cells are functional and similar, and the main downstream signaling pathways from the three neurotrophins are mitogen‐activated protein kinase (MAPK) cascades through She, activated Ras, ERK‐1 and ERK‐2, and the transduction pathway through PLC‐γl. Further, BDNF and NT‐4/5 increased cell viability. The MP‐N‐TS cell line

  20. Reduced signaling of PI3K-Akt and RAS-MAPK pathways are the key targets for weight loss-induced cancer prevention by dietary calorie restriction and/or physical activity

    PubMed Central

    Standard, Joseph; Jiang, Yu; Yu, Miao; Su, Xiaoyu; Zhao, Zhihui; Xu, Jianteng; Chen, Jie; King, Brenee; Lu, Lizhi; Tomich, John; Baybutt, Richard; Wang, Weiqun

    2014-01-01

    Weight control through either dietary calorie restriction (DCR) or exercise has been associated with cancer prevention in animal models. However, the underlying mechanisms are not fully defined. Bioinformatics using genomics, proteomics, and lipidomics were employed to elucidate the molecular targets of weight control in a mouse skin cancer model. SENCAR mice were randomly assigned into 4 groups for 10 weeks: ad lib-fed sedentary control, ad lib-fed exercise (AE), exercise but pair-fed isocaloric amount of control (PE), and 20% DCR. Two hours after topical TPA treatment, skin epidermis was analyzed by Affymetrix for gene expression, DIGE for proteomics, and lipidomics for phospholipids. Body weights were significantly reduced in both DCR and PE but not AE mice versus the control. Among 39,000 transcripts, 411, 67, and 110 genes were significantly changed in DCR, PE, and AE, respectively. The expression of genes relevant to PI3K-Akt and Ras-MAPK signaling was effectively reduced by DCR and PE but not AE as measured through GenMAPP software. Proteomics analysis identified ~120 proteins, with 27 proteins significantly changed by DCR, including upregulated apolipoprotein A-1, a key antioxidant protein that decreases Ras-MAPK activity. Of the total 338 phospholipids analyzed by lipidomics, 57 decreased by PE including 5 phophatidylinositol species that serve as PI3K substrates. Although a full impact has not been determined yet, it appears the reduction of both Ras-MAPK and PI3K-Akt signaling pathways are cancer preventive targets that have been consistently demonstrated by three bioinformatics approaches. PMID:25283328

  1. Inhibitors of Ras-SOS Interactions.

    PubMed

    Lu, Shaoyong; Jang, Hyunbum; Zhang, Jian; Nussinov, Ruth

    2016-04-19

    Activating Ras mutations are found in about 30 % of human cancers. Ras activation is regulated by guanine nucleotide exchange factors, such as the son of sevenless (SOS), which form protein-protein interactions (PPIs) with Ras and catalyze the exchange of GDP by GTP. This is the rate-limiting step in Ras activation. However, Ras surfaces lack any evident suitable pockets where a molecule might bind tightly, rendering Ras proteins still 'undruggable' for over 30 years. Among the alternative approaches is the design of inhibitors that target the Ras-SOS PPI interface, a strategy that is gaining increasing recognition for treating Ras mutant cancers. Herein we focus on data that has accumulated over the past few years pertaining to the design of small-molecule modulators or peptide mimetics aimed at the interface of the Ras-SOS PPI. We emphasize, however, that even if such Ras-SOS therapeutics are potent, drug resistance may emerge. To counteract this development, we propose "pathway drug cocktails", that is, drug combinations aimed at parallel (or compensatory) pathways. A repertoire of classified cancer, cell/tissue, and pathway/protein combinations would be beneficial toward this goal. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and Their Role in Human Tumorigenesis

    PubMed Central

    Cazzanelli, Giulia; Francisco, Rita; Azevedo, Luísa; Carvalho, Patrícia Dias; Almeida, Ana; Côrte-Real, Manuela; Oliveira, Maria José; Lucas, Cândida; Sousa, Maria João

    2018-01-01

    The exploitation of the yeast Saccharomyces cerevisiae as a biological model for the investigation of complex molecular processes conserved in multicellular organisms, such as humans, has allowed fundamental biological discoveries. When comparing yeast and human proteins, it is clear that both amino acid sequences and protein functions are often very well conserved. One example of the high degree of conservation between human and yeast proteins is highlighted by the members of the RAS family. Indeed, the study of the signaling pathways regulated by RAS in yeast cells led to the discovery of properties that were often found interchangeable with RAS proto-oncogenes in human pathways, and vice versa. In this work, we performed an updated critical literature review on human and yeast RAS pathways, specifically highlighting the similarities and differences between them. Moreover, we emphasized the contribution of studying yeast RAS pathways for the understanding of human RAS and how this model organism can contribute to unveil the roles of RAS oncoproteins in the regulation of mechanisms important in the tumorigenic process, like autophagy. PMID:29463063

  3. Inhibition of Fas (CD95) expression and Fas-mediated apoptosis by oncogenic Ras.

    PubMed

    Fenton, R G; Hixon, J A; Wright, P W; Brooks, A D; Sayers, T J

    1998-08-01

    The ras oncogene plays an important role in the multistep progression to cancer by activation of signal transduction pathways that contribute to aberrant growth regulation. Although many of these effects are cell autonomous, the ras oncogene also regulates the expression of genes that alter host/tumor interactions. We now extend the mechanisms through which ras promotes tumor survival by demonstrating that oncogenic Ras inhibits expression of the fas gene and renders Ras-transformed cells resistant to Fas-induced apoptosis. A panel of Ras-transformed clones exhibited a marked inhibition in fas mRNA and Fas cell surface expression as compared with untransformed parental cell lines. Fas expression was induced by culture in the presence of IFN-gamma + tumor necrosis factor alpha; however, the maximal level attained in Ras transformants was approximately 10-fold below the level of untransformed cells. Whereas untransformed cells were sensitive to apoptotic death induced by cross-linking surface Fas (especially after cytokine treatment), Ras-transformed cells were very resistant to Fas-induced death even under the most stringent assay conditions. To demonstrate that this resistance was mediated by oncogenic Ras and not secondary genetic events, pools of Ras-transformed cells were generated using a highly efficient retroviral transduction technique. Transformed pools were assayed 6 days after infection and demonstrated a marked decrease in fas gene expression and Fas-mediated apoptosis. Oncogenic Ras did not promote general resistance to apoptosis, because ectopic expression of a fas cDNA in Ras-transformed cells restored sensitivity to Fas-induced apoptosis. These data indicate that oncogenic Ras inhibits basal levels of expression of the fas gene, and although cytokine signal transduction pathways are functional in these cells, the level of surface Fas expression remains below the threshold required for induction of apoptosis. These data identify a mechanism by which

  4. MEK-1 Activates C-Raf Through a Ras-Independent Mechanism

    PubMed Central

    Leicht, Deborah T.; Balan, Vitaly; Zhu, Jun; Kaplun, Alexander; Bronisz, Agnieszka; Rana, Ajay; Tzivion, Guri

    2013-01-01

    C-Raf is a member of the Ras-Raf-MEK-ERK mitogen-activated protein kinase (MAPK) signaling pathway that plays key roles in diverse physiological processes and is upregulated in many human cancers. C-Raf activation involves binding to Ras, increased phosphorylation and interactions with co-factors. Here, we describe a Ras-independent in vivo pathway for C-Raf activation by its downstream target MEK. Using 32P-metabolic labeling and 2D-phosphopeptide mapping experiments, we show that MEK increases C-Raf phosphorylation by up-to 10-fold. This increase was associated with C-Raf kinase activation, matching the activity seen with growth factor stimulation. Consequently, coexpression of wildtype C-Raf and MEK was sufficient for full and constitutive activation of ERK. Notably, the ability of MEK to activate C-Raf was completely Ras independent, since mutants impaired in Ras binding that are irresponsive to growth factors or Ras were fully activated by MEK. The ability of MEK to activate C-Raf was only partially dependent on MEK kinase activity but required MEK binding to C-Raf, suggesting that the binding results in a conformational change that increases C-Raf susceptibility to phosphorylation and activation or in the stabilization of the phosphorylated-active form. These findings propose a novel Ras-independent mechanism for activating C-Raf and the MAPK pathway without the need for mutations in the pathway. This mechanism could be of significance in pathological conditions or cancers overexpressing C-Raf and MEK or in conditions where C-Raf-MEK interaction is enhanced due to the downregulation of RKIP and MST2. PMID:23360980

  5. Phosphorylation of serine 779 in fibroblast growth factor receptor 1 and 2 by protein kinase C(epsilon) regulates Ras/mitogen-activated protein kinase signaling and neuronal differentiation.

    PubMed

    Lonic, Ana; Powell, Jason A; Kong, Yang; Thomas, Daniel; Holien, Jessica K; Truong, Nhan; Parker, Michael W; Guthridge, Mark A

    2013-05-24

    The FGF receptors (FGFRs) control a multitude of cellular processes both during development and in the adult through the initiation of signaling cascades that regulate proliferation, survival, and differentiation. Although FGFR tyrosine phosphorylation and the recruitment of Src homology 2 domain proteins have been widely described, we have previously shown that FGFR is also phosphorylated on Ser(779) in response to ligand and binds the 14-3-3 family of phosphoserine/threonine-binding adaptor/scaffold proteins. However, whether this receptor phosphoserine mode of signaling is able to regulate specific signaling pathways and biological responses is unclear. Using PC12 pheochromocytoma cells and primary mouse bone marrow stromal cells as models for growth factor-regulated neuronal differentiation, we show that Ser(779) in the cytoplasmic domains of FGFR1 and FGFR2 is required for the sustained activation of Ras and ERK but not for other FGFR phosphotyrosine pathways. The regulation of Ras and ERK signaling by Ser(779) was critical not only for neuronal differentiation but also for cell survival under limiting growth factor concentrations. PKCε can phosphorylate Ser(779) in vitro, whereas overexpression of PKCε results in constitutive Ser(779) phosphorylation and enhanced PC12 cell differentiation. Furthermore, siRNA knockdown of PKCε reduces both growth factor-induced Ser(779) phosphorylation and neuronal differentiation. Our findings show that in addition to FGFR tyrosine phosphorylation, the phosphorylation of a conserved serine residue, Ser(779), can quantitatively control Ras/MAPK signaling to promote specific cellular responses.

  6. Activation of antioxidant pathways in ras-mediated oncogenic transformation of human surface ovarian epithelial cells revealed by functional proteomics and mass spectrometry.

    PubMed

    Young, Travis W; Mei, Fang C; Yang, Gong; Thompson-Lanza, Jennifer A; Liu, Jinsong; Cheng, Xiaodong

    2004-07-01

    Cellular transformation is a complex process involving genetic alterations associated with multiple signaling pathways. Development of a transformation model using defined genetic elements has provided an opportunity to elucidate the role of oncogenes and tumor suppressor genes in the initiation and development of ovarian cancer. To study the cellular and molecular mechanisms of Ras-mediated oncogenic transformation of ovarian epithelial cells, we used a proteomic approach involving two-dimensional electrophoresis and mass spectrometry to profile two ovarian epithelial cell lines, one immortalized with SV40 T/t antigens and the human catalytic subunit of telomerase and the other transformed with an additional oncogenic ras(V12) allele. Of approximately 2200 observed protein spots, we have identified >30 protein targets that showed significant changes between the immortalized and transformed cell lines using peptide mass fingerprinting. Among these identified targets, one most notable group of proteins altered significantly consists of enzymes involved in cellular redox balance. Detailed analysis of these protein targets suggests that activation of Ras-signaling pathways increases the threshold of reactive oxidative species (ROS) tolerance by up-regulating the overall antioxidant capacity of cells, especially in mitochondria. This enhanced antioxidant capacity protects the transformed cells from high levels of ROS associated with the uncontrolled growth potential of tumor cells. It is conceivable that an enhanced antioxidation capability may constitute a common mechanism for tumor cells to evade apoptosis induced by oxidative stresses at high ROS levels.

  7. Modulation of Ras signaling alters the toxicity of hydroquinone, a benzene metabolite and component of cigarette smoke

    PubMed Central

    2014-01-01

    Background Benzene is an established human leukemogen, with a ubiquitous environmental presence leading to significant population exposure. In a genome-wide functional screen in the yeast Saccharomyces cerevisiae, inactivation of IRA2, a yeast ortholog of the human tumor suppressor gene NF1 (Neurofibromin), enhanced sensitivity to hydroquinone, an important benzene metabolite. Increased Ras signaling is implicated as a causal factor in the increased pre-disposition to leukemia of individuals with mutations in NF1. Methods Growth inhibition of yeast by hydroquinone was assessed in mutant strains exhibiting varying levels of Ras activity. Subsequently, effects of hydroquinone on both genotoxicity (measured by micronucleus formation) and proliferation of WT and Nf1 null murine hematopoietic precursors were assessed. Results Here we show that the Ras status of both yeast and mammalian cells modulates hydroquinone toxicity, indicating potential synergy between Ras signaling and benzene toxicity. Specifically, enhanced Ras signaling increases both hydroquinone-mediated growth inhibition in yeast and genotoxicity in mammalian hematopoetic precursors as measured by an in vitro erythroid micronucleus assay. Hydroquinone also increases proliferation of CFU-GM progenitor cells in mice with Nf1 null bone marrow relative to WT, the same cell type associated with benzene-associated leukemia. Conclusions Together our findings show that hydroquinone toxicity is modulated by Ras signaling. Individuals with abnormal Ras signaling could be more vulnerable to developing myeloid diseases after exposure to benzene. We note that hydroquinone is used cosmetically as a skin-bleaching agent, including by individuals with cafe-au-lait spots (which may be present in individuals with neurofibromatosis who have a mutation in NF1), which could be unadvisable given our findings. PMID:24386979

  8. Modulation of Ras signaling alters the toxicity of hydroquinone, a benzene metabolite and component of cigarette smoke.

    PubMed

    North, Matthew; Shuga, Joe; Fromowitz, Michele; Loguinov, Alexandre; Shannon, Kevin; Zhang, Luoping; Smith, Martyn T; Vulpe, Chris D

    2014-01-05

    Benzene is an established human leukemogen, with a ubiquitous environmental presence leading to significant population exposure. In a genome-wide functional screen in the yeast Saccharomyces cerevisiae, inactivation of IRA2, a yeast ortholog of the human tumor suppressor gene NF1 (Neurofibromin), enhanced sensitivity to hydroquinone, an important benzene metabolite. Increased Ras signaling is implicated as a causal factor in the increased pre-disposition to leukemia of individuals with mutations in NF1. Growth inhibition of yeast by hydroquinone was assessed in mutant strains exhibiting varying levels of Ras activity. Subsequently, effects of hydroquinone on both genotoxicity (measured by micronucleus formation) and proliferation of WT and Nf1 null murine hematopoietic precursors were assessed. Here we show that the Ras status of both yeast and mammalian cells modulates hydroquinone toxicity, indicating potential synergy between Ras signaling and benzene toxicity. Specifically, enhanced Ras signaling increases both hydroquinone-mediated growth inhibition in yeast and genotoxicity in mammalian hematopoetic precursors as measured by an in vitro erythroid micronucleus assay. Hydroquinone also increases proliferation of CFU-GM progenitor cells in mice with Nf1 null bone marrow relative to WT, the same cell type associated with benzene-associated leukemia. Together our findings show that hydroquinone toxicity is modulated by Ras signaling. Individuals with abnormal Ras signaling could be more vulnerable to developing myeloid diseases after exposure to benzene. We note that hydroquinone is used cosmetically as a skin-bleaching agent, including by individuals with cafe-au-lait spots (which may be present in individuals with neurofibromatosis who have a mutation in NF1), which could be unadvisable given our findings.

  9. Differential Expression of IL-17, 22 and 23 in the Progression of Colorectal Cancer in Patients with K-ras Mutation: Ras Signal Inhibition and Crosstalk with GM-CSF and IFN-γ

    PubMed Central

    Petanidis, Savvas; Anestakis, Doxakis; Argyraki, Maria; Hadzopoulou-Cladaras, Margarita; Salifoglou, Athanasios

    2013-01-01

    Recent studies have suggested that aberrant K-ras signaling is responsible for triggering immunological responses and inflammation-driven tumorigenesis. Interleukins IL-17, IL-22, and IL-23 have been reported in various types of malignancies, but the exact mechanistic role of these molecules remains to be elucidated. Given the role of K-ras and the involvement of interleukins in colorectal tumorigenesis, research efforts are reported for the first time, showing that differentially expressed interleukin IL-17, IL-22, and IL-23 levels are associated with K-ras in a stage-specific fashion along colorectal cancer progression. Specifically, a) the effect of K-ras signaling was investigated in the overall expression of interleukins in patients with colorectal cancer and healthy controls, and b) an association was established between mutant K-ras and cytokines GM-CSF and IFN-γ. The results indicate that specific interleukins are differentially expressed in K-ras positive patients and the use of K-ras inhibitor Manumycin A decreases both interleukin levels and apoptosis in Caco-2 cells by inhibiting cell viability. Finally, inflammation-driven GM-CSF and IFN-γ levels are modulated through interleukin expression in tumor patients, with interleukin expression in the intestinal lumen and cancerous tissue mediated by aberrant K-ras signaling. Collectively, the findings a) indicate that interleukin expression is influenced by ras signaling and specific interleukins play an oncogenic promoter role in colorectal cancer, highlighting the molecular link between inflammation and tumorigenesis, and b) accentuate the interwoven molecular correlations as leads to new therapeutic approaches in the future. PMID:24040001

  10. Studying the Immunomodulatory Effects of Small Molecule Ras-Inhibitors in Animal Models of Rheumatoid Arthritis

    DTIC Science & Technology

    2015-10-01

    Models of Rheumatoid Arthritis PRINCIPAL INVESTIGATOR: Yoel Kloog RECIPIENT: Tel Aviv University TEL AVIV 69978 Israel REPORT DATE: October...TITLE AND SUBTITLE Studying the Immunomodulatory Effects of Small Molecule Ras- Inhibitors in Animal Models of Rheumatoid Arthritis 5a. CONTRACT NUMBER... Rheumatoid Arthritis (RA) display augmented activation of the Ras/Raf/MEK/ERK1/2 signaling pathway, and accordingly overexpression of active K-RAS in

  11. Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway

    PubMed Central

    Goodwin, J. Shawn; Drake, Kimberly R.; Rogers, Carl; Wright, Latasha; Lippincott-Schwartz, Jennifer; Philips, Mark R.; Kenworthy, Anne K.

    2005-01-01

    Palmitoylation is postulated to regulate Ras signaling by modulating its intracellular trafficking and membrane microenvironment. The mechanisms by which palmitoylation contributes to these events are poorly understood. Here, we show that dynamic turnover of palmitate regulates the intracellular trafficking of HRas and NRas to and from the Golgi complex by shifting the protein between vesicular and nonvesicular modes of transport. A combination of time-lapse microscopy and photobleaching techniques reveal that in the absence of palmitoylation, GFP-tagged HRas and NRas undergo rapid exchange between the cytosol and ER/Golgi membranes, and that wild-type GFP-HRas and GFP-NRas are recycled to the Golgi complex by a nonvesicular mechanism. Our findings support a model where palmitoylation kinetically traps Ras on membranes, enabling the protein to undergo vesicular transport. We propose that a cycle of depalmitoylation and repalmitoylation regulates the time course and sites of Ras signaling by allowing the protein to be released from the cell surface and rapidly redistributed to intracellular membranes. PMID:16027222

  12. Reduced signaling of PI3K-Akt and RAS-MAPK pathways is the key target for weight-loss-induced cancer prevention by dietary calorie restriction and/or physical activity.

    PubMed

    Standard, Joseph; Jiang, Yu; Yu, Miao; Su, Xiaoyu; Zhao, Zhihui; Xu, Jianteng; Chen, Jie; King, Brenee; Lu, Lizhi; Tomich, John; Baybutt, Richard; Wang, Weiqun

    2014-12-01

    Weight control through either dietary calorie restriction (DCR) or exercise has been associated with cancer prevention in animal models. However, the underlying mechanisms are not fully defined. Bioinformatics using genomics, proteomics and lipidomics was employed to elucidate the molecular targets of weight control in a mouse skin cancer model. SENCAR mice were randomly assigned into four groups for 10 weeks: ad-libitum-fed sedentary control, ad-libitum-fed exercise (AE), exercise but pair-fed isocaloric amount of control (PE) and 20% DCR. Two hours after topical TPA treatment, skin epidermis was analyzed by Affymetrix for gene expression, DIGE for proteomics and lipidomics for phospholipids. Body weights were significantly reduced in both DCR and PE but not AE mice versus the control. Among 39,000 transcripts, 411, 67 and 110 genes were significantly changed in DCR, PE and AE, respectively. The expression of genes relevant to PI3K-Akt and Ras-MAPK signaling was effectively reduced by DCR and PE but not AE as measured through GenMAPP software. Proteomics analysis identified ~120 proteins, with 27 proteins significantly changed by DCR, including up-regulated apolipoprotein A-1, a key antioxidant protein that decreases Ras-MAPK activity. Of the total 338 phospholipids analyzed by lipidomics, 57 decreased by PE including 5 phophatidylinositol species that serve as PI3K substrates. Although a full impact has not been determined yet, it appears that the reduction of both Ras-MAPK and PI3K-Akt signaling pathways is a cancer preventive target that has been consistently demonstrated by three bioinformatics approaches. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. A New Strategy to Control and Eradicate "Undruggable" Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology.

    PubMed

    Van Sciver, Robert E; Lee, Michael P; Lee, Caroline Dasom; Lafever, Alex C; Svyatova, Elizaveta; Kanda, Kevin; Colliver, Amber L; Siewertsz van Reesema, Lauren L; Tang-Tan, Angela M; Zheleva, Vasilena; Bwayi, Monicah N; Bian, Minglei; Schmidt, Rebecca L; Matrisian, Lynn M; Petersen, Gloria M; Tang, Amy H

    2018-05-14

    Oncogenic K-RAS mutations are found in virtually all pancreatic cancers, making K-RAS one of the most targeted oncoproteins for drug development in cancer therapies. Despite intense research efforts over the past three decades, oncogenic K-RAS has remained largely "undruggable". Rather than targeting an upstream component of the RAS signaling pathway (i.e., EGFR/HER2) and/or the midstream effector kinases (i.e., RAF/MEK/ERK/PI3K/mTOR), we propose an alternative strategy to control oncogenic K-RAS signal by targeting its most downstream signaling module, Seven-In-Absentia Homolog (SIAH). SIAH E3 ligase controls the signal output of oncogenic K-RAS hyperactivation that drives unchecked cell proliferation, uncontrolled tumor growth, and rapid cancer cell dissemination in human pancreatic cancer. Therefore, SIAH is an ideal therapeutic target as it is an extraordinarily conserved downstream signaling gatekeeper indispensable for proper RAS signaling. Guided by molecular insights and core principles obtained from developmental and evolutionary biology, we propose an anti-SIAH-centered anti-K-RAS strategy as a logical and alternative anticancer strategy to dampen uncontrolled K-RAS hyperactivation and halt tumor growth and metastasis in pancreatic cancer. The clinical utility of developing SIAH as both a tumor-specific and therapy-responsive biomarker, as well as a viable anti-K-RAS drug target, is logically simple and conceptually innovative. SIAH clearly constitutes a major tumor vulnerability and K-RAS signaling bottleneck in pancreatic ductal adenocarcinoma (PDAC). Given the high degree of evolutionary conservation in the K-RAS/SIAH signaling pathway, an anti-SIAH-based anti-PDAC therapy will synergize with covalent K-RAS inhibitors and direct K-RAS targeted initiatives to control and eradicate pancreatic cancer in the future.

  14. Ras regulation of DNA-methylation and cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Samir Kumar

    2008-04-01

    Genome wide hypomethylation and regional hypermethylation of cancer cells and tissues remain a paradox, though it has received a convincing confirmation that epigenetic switching systems, including DNA-methylation represent a fundamental regulatory mechanism that has an impact on genome maintenance and gene transcription. Methylated cytosine residues of vertebrate DNA are transmitted by clonal inheritance through the strong preference of DNA methyltransferase, DNMT1, for hemimethylated-DNA. Maintenance of methylation patterns is necessary for normal development of mice, and aberrant methylation patterns are associated with many human tumours. DNMT1 interacts with many proteins during cell cycle progression, including PCNA, p53, EZH2 and HP1. Rasmore » family of GTPases promotes cell proliferation by its oncogenic nature, which transmits signals by multiple pathways in both lipid raft dependent and independent fashion. DNA-methylation-mediated repression of DNA-repair protein O6-methylguanine DNA methyltransferase (MGMT) gene and increased rate of K-Ras mutation at codon for amino acids 12 and 13 have been correlated with a secondary role for Ras-effector homologues (RASSFs) in tumourigenesis. Lines of evidence suggest that DNA-methylation associated repression of tumour suppressors and apoptotic genes and ceaseless proliferation of tumour cells are regulated in part by Ras-signaling. Control of Ras GTPase signaling might reduce the aberrant methylation and accordingly may reduce the risk of cancer development.« less

  15. Alphavirus production is inhibited in neurofibromin 1-deficient cells through activated RAS signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolokoltsova, Olga A.; Domina, Aaron M.; Kolokoltsov, Andrey A.

    2008-07-20

    Virus-host interactions essential for alphavirus pathogenesis are poorly understood. To address this shortcoming, we coupled retrovirus insertional mutagenesis and a cell survival selection strategy to generate clonal cell lines broadly resistant to Sindbis virus (SINV) and other alphaviruses. Resistant cells had significantly impaired SINV production relative to wild-type (WT) cells, although virus binding and fusion events were similar in both sets of cells. Analysis of the retroviral integration sites identified the neurofibromin 1 (NF1) gene as disrupted in alphavirus-resistant cell lines. Subsequent analysis indicated that expression of NF1 was significantly reduced in alphavirus-resistant cells. Importantly, independent down-regulation of NF1 expressionmore » in WT HEK 293 cells decreased virus production and increased cell viability during SINV infection, relative to infected WT cells. Additionally, we observed hyperactive RAS signalling in the resistant HEK 293 cells, which was anticipated because NF1 is a negative regulator of RAS. Expression of constitutively active RAS (HRAS-G12V) in a WT HEK 293 cell line resulted in a marked delay in virus production, compared with infected cells transfected with parental plasmid or dominant-negative RAS (HRAS-S17N). This work highlights novel host cell determinants required for alphavirus pathogenesis and suggests that RAS signalling may play an important role in neuronal susceptibility to SINV infection.« less

  16. HTLV-1 Tax protein cooperates with Ras in protecting cells from apoptosis.

    PubMed

    Vajente, Nicola; Trevisan, Roberta; Saggioro, Daniela

    2009-02-01

    Tax protein of the human T-cell leukemia virus type 1 (HTLV-1) plays a critical role in HTLV-I-correlated diseases through its ability to deregulate the expression of a vast array of cellular genes. We have previously shown that Tax counteracts apoptosis induced by stimuli triggering mitochondria apoptotic pathway, most likely by activating CREB-mediated transcription and affecting the phosphorylation levels of CREB at Ser-133. Here, we report data that indicate the oncoprotein Ras as a possible mediator of Tax-induced apoptosis protection and suggest a possible role of Tax in Ras activation. In addition, using inhibitors of down stream effectors of Ras, we found that ERK signaling is the most relevant for Tax-mediated apoptosis protection. As a whole, our findings provide intriguing evidence of a possible link between Ras signaling and Tax capability to counteract apoptosis and to enhance P-CREB levels, and implicates a potential role for Ras in HTLV-1-induced diseases.

  17. A New Strategy to Control and Eradicate “Undruggable” Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology

    PubMed Central

    Lee, Michael P.; Lee, Caroline Dasom; Lafever, Alex C.; Svyatova, Elizaveta; Kanda, Kevin; Collier, Amber L.; Siewertsz van Reesema, Lauren L.; Tang-Tan, Angela M.; Zheleva, Vasilena; Bwayi, Monicah N.; Bian, Minglei; Schmidt, Rebecca L.; Petersen, Gloria M.

    2018-01-01

    Oncogenic K-RAS mutations are found in virtually all pancreatic cancers, making K-RAS one of the most targeted oncoproteins for drug development in cancer therapies. Despite intense research efforts over the past three decades, oncogenic K-RAS has remained largely “undruggable”. Rather than targeting an upstream component of the RAS signaling pathway (i.e., EGFR/HER2) and/or the midstream effector kinases (i.e., RAF/MEK/ERK/PI3K/mTOR), we propose an alternative strategy to control oncogenic K-RAS signal by targeting its most downstream signaling module, Seven-In-Absentia Homolog (SIAH). SIAH E3 ligase controls the signal output of oncogenic K-RAS hyperactivation that drives unchecked cell proliferation, uncontrolled tumor growth, and rapid cancer cell dissemination in human pancreatic cancer. Therefore, SIAH is an ideal therapeutic target as it is an extraordinarily conserved downstream signaling gatekeeper indispensable for proper RAS signaling. Guided by molecular insights and core principles obtained from developmental and evolutionary biology, we propose an anti-SIAH-centered anti-K-RAS strategy as a logical and alternative anticancer strategy to dampen uncontrolled K-RAS hyperactivation and halt tumor growth and metastasis in pancreatic cancer. The clinical utility of developing SIAH as both a tumor-specific and therapy-responsive biomarker, as well as a viable anti-K-RAS drug target, is logically simple and conceptually innovative. SIAH clearly constitutes a major tumor vulnerability and K-RAS signaling bottleneck in pancreatic ductal adenocarcinoma (PDAC). Given the high degree of evolutionary conservation in the K-RAS/SIAH signaling pathway, an anti-SIAH-based anti-PDAC therapy will synergize with covalent K-RAS inhibitors and direct K-RAS targeted initiatives to control and eradicate pancreatic cancer in the future. PMID:29757973

  18. Evaluation of Signaling Pathways Involved in γ-Globin Gene Induction Using Fetal Hemoglobin Inducer Drugs.

    PubMed

    Rahim, Fakher; Allahmoradi, Hossein; Salari, Fatemeh; Shahjahani, Mohammad; Fard, Ali Dehghani; Hosseini, Seyed Ahmad; Mousakhani, Hadi

    2013-01-01

    Potent induction of fetal hemoglobin (HbF) production results in alleviating the complications of β-thalassemia and sickle cell disease (SCD). HbF inducer agents can trigger several molecular signaling pathways critical for erythropoiesis. Janus kinase/Signal transducer and activator of transcription (JAK/STAT), mitogen activated protein kinas (MAPK) and Phosphoinositide 3-kinase (PI3K) are considered as main signaling pathways, which may play a significant role in HbF induction. All these signaling pathways are triggered by erythropoietin (EPO) as the main growth factor inducing erythroid differentiation, when it binds to its cell surface receptor, erythropoietin receptor (EPO-R) HbF inducer agents have been shown to upregulate HbF production level by triggering certain signaling pathways. As a result, understanding the pivotal signaling pathways influencing HbF induction leads to effective upregulation of HbF. In this mini review article, we try to consider the correlation between HbF inducer agents and their molecular mechanisms of γ-globin upregulation. Several studies suggest that activating P38 MAPK, RAS and STAT5 signaling pathways result in efficient HbF induction. Nevertheless, the role of other erythroid signaling pathways in HbF induction seems to be indispensible and should be emphasized.

  19. R-Ras contributes to LTP and contextual discrimination.

    PubMed

    Darcy, M J; Jin, S-X; Feig, L A

    2014-09-26

    The ability to discriminate between closely related contexts is a specific form of hippocampal-dependent learning that may be impaired in certain neurodegenerative disorders such as Alzheimer's and Down Syndrome. However, signaling pathways regulating this form of learning are poorly understood. Previous studies have shown that the calcium-dependent exchange factor Ras-GRF1, an activator of Rac, Ras and R-Ras GTPases, is important for this form of learning and memory. Moreover, the ability to discriminate contexts was linked to the ability of Ras-GRF1 to promote high-frequency stimulation long-term potentiation (HFS-LTP) via the activation of p38 Map kinase. Here, we show that R-Ras is involved in this form of learning by using virally-delivered miRNAs targeting R-Ras into the CA1 region of the dorsal hippocampus and observing impaired contextual discrimination. Like the loss of GRF1, knockdown of R-Ras in the CA1 also impairs the induction of HFS-LTP and p38 Map kinase. Nevertheless, experiments indicate that this involvement of R-Ras in HFS-LTP that is required for contextual discrimination is independent of Ras-GRF1. Thus, R-Ras is a novel regulator of a form of hippocampal-dependent LTP as well as learning and memory that is affected in certain forms of neurodegenerative diseases. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. R-Ras Contributes to LTP and Contextual Discrimination

    PubMed Central

    Darcy, Michael J.; Jin, Shan-Xue; Feig, Larry A.

    2014-01-01

    The ability to discriminate between closely related contexts is a specific form of hippocampal-dependent learning that may be impaired in certain neurodegenerative disorders such as Alzheimer's and Down Syndrome. However, signaling pathways regulating this form of learning are poorly understood. Previous studies have shown that the calcium-dependent exchange factor Ras-GRF1, an activator of Rac, Ras and R-Ras GTPases, is important for this form of learning and memory. Moreover, the ability to discriminate contexts was linked to the ability of Ras-GRF1 to promote high-frequency stimulation (HFS)-LTP via the activation of p38 Map kinase. Here, we show that R-Ras is involved in this form of learning by using virally-delivered miRNAs targeting R-Ras into the CA1 region of dorsal hippocampus and observing impaired contextual discrimination. Like the loss of GRF1, knockdown of R-Ras in the CA1 also impairs the induction of HFS-LTP and p38 Map kinase. Nevertheless, experiments indicate that this involvement of R-Ras in HFS-LTP that is required for contextual discrimination is independent of Ras-GRF1. Thus, R-Ras is a novel regulator of a form of hippocampal-dependent LTP as well as learning and memory that is affected in certain forms of neurodegenerative diseases. PMID:25043327

  1. Integration of the tricarboxylic acid (TCA) cycle with cAMP signaling and Sfl2 pathways in the regulation of CO2 sensing and hyphal development in Candida albicans

    PubMed Central

    Tao, Li; Zhang, Yulong; Fan, Shuru; Nobile, Clarissa J.; Guan, Guobo; Huang, Guanghua

    2017-01-01

    Morphological transitions and metabolic regulation are critical for the human fungal pathogen Candida albicans to adapt to the changing host environment. In this study, we generated a library of central metabolic pathway mutants in the tricarboxylic acid (TCA) cycle, and investigated the functional consequences of these gene deletions on C. albicans biology. Inactivation of the TCA cycle impairs the ability of C. albicans to utilize non-fermentable carbon sources and dramatically attenuates cell growth rates under several culture conditions. By integrating the Ras1-cAMP signaling pathway and the heat shock factor-type transcription regulator Sfl2, we found that the TCA cycle plays fundamental roles in the regulation of CO2 sensing and hyphal development. The TCA cycle and cAMP signaling pathways coordinately regulate hyphal growth through the molecular linkers ATP and CO2. Inactivation of the TCA cycle leads to lowered intracellular ATP and cAMP levels and thus affects the activation of the Ras1-regulated cAMP signaling pathway. In turn, the Ras1-cAMP signaling pathway controls the TCA cycle through both Efg1- and Sfl2-mediated transcriptional regulation in response to elevated CO2 levels. The protein kinase A (PKA) catalytic subunit Tpk1, but not Tpk2, may play a major role in this regulation. Sfl2 specifically binds to several TCA cycle and hypha-associated genes under high CO2 conditions. Global transcriptional profiling experiments indicate that Sfl2 is indeed required for the gene expression changes occurring in response to these elevated CO2 levels. Our study reveals the regulatory role of the TCA cycle in CO2 sensing and hyphal development and establishes a novel link between the TCA cycle and Ras1-cAMP signaling pathways. PMID:28787458

  2. Pressure modulation of Ras-membrane interactions and intervesicle transfer.

    PubMed

    Kapoor, Shobhna; Werkmüller, Alexander; Goody, Roger S; Waldmann, Herbert; Winter, Roland

    2013-04-24

    Proteins attached to the plasma membrane frequently encounter mechanical stresses, including high hydrostatic pressure (HHP) stress. Signaling pathways involving membrane-associated small GTPases (e.g., Ras) have been identified as critical loci for pressure perturbation. However, the impact of mechanical stimuli on biological outputs is still largely terra incognita. The present study explores the effect of HHP on the membrane association, dissociation, and intervesicle transfer process of N-Ras by using a FRET-based assay to obtain the kinetic parameters and volumetric properties along the reaction path of these processes. Notably, membrane association is fostered upon pressurization. Conversely, depending on the nature and lateral organization of the lipid membrane, acceleration or retardation is observed for the dissociation step. In addition, HHP can be inferred as a positive regulator of N-Ras clustering, in particular in heterogeneous membranes. The susceptibility of membrane interaction to pressure raises the idea of a role of lipidated signaling molecules as mechanosensors, transducing mechanical stimuli to chemical signals by regulating their membrane binding and dissociation. Finally, our results provide first insights into the influence of pressure on membrane-associated Ras-controlled signaling events in organisms living under extreme environmental conditions such as those that are encountered in the deep sea and sub-seafloor environments, where pressures reach the kilobar (100 MPa) range.

  3. Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis.

    PubMed

    Blum, Roy; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Kloog, Yoel

    2006-09-01

    The Ras inhibitor farnesylthiosalicylic acid (FTS) has been shown to induce apoptosis in glioblastoma multiforme, but its mechanism of action was unknown. We show that FTS or dominant-negative Ras, by deregulating extracellular signal-regulated kinase and Akt signaling, decreases survivin gene transcripts in U87 glioblastoma multiforme, leading to disappearance of survivin protein and cell death. FTS affected both Ras-controlled regulators of survivin transcription and Ras-regulated survival signals. Thus, Ras inhibition by FTS resulted in release of the survivin "brake" on apoptosis and in activation of the mitochondrial apoptotic pathway: dephosphorylation of Bad, activation of Bax, release of cytochrome c, and caspase activation. FTS-induced apoptosis of U87 cells was strongly attenuated by forced expression of survivin or by caspase inhibitors. These results show that resistance to apoptosis in glioblastoma multiforme can be abolished by a single Ras inhibitor, which targets both survivin, a critical inhibitor of apoptosis, and the intrinsic mitochondrial apoptotic machinery.

  4. Phosphoinositide 3-kinase-dependent Ras activation by tauroursodesoxycholate in rat liver.

    PubMed Central

    Kurz, A K; Block, C; Graf, D; Dahl, S V; Schliess, F; Häussinger, D

    2000-01-01

    Ursodesoxycholic acid, widely used for the treatment of cholestatic liver disease, causes choleretic, anti-apoptotic and immunomodulatory effects. Here the effects on choleresis of its taurine conjugate tauroursodesoxycholate (TUDC), which is present in the enterohepatic circulation, were correlated with the activation of important elements of intracellular signal transduction in cultured rat hepatocytes and perfused rat liver. TUDC induced a time- and concentration-dependent activation of the small GTP-binding protein Ras and of phosphoinositide 3-kinase (PI 3-kinase) in cultured hepatocytes. Ras activation was dependent on PI 3-kinase activity, without the involvement of protein kinase C- and genistein-sensitive tyrosine kinases. Ras activation by TUDC was followed by an activation of the mitogen-activated protein kinases extracellular-signal-regulated kinase-1 (Erk-1) and Erk-2. In perfused rat liver, PI 3-kinase inhibitors largely abolished the stimulatory effect of TUDC on taurocholate excretion, suggesting an important role for a PI 3-kinase/Ras/Erk pathway in the choleretic effect of TUDC. PMID:10926845

  5. CHMP6 and VPS4A mediate recycling of Ras to the plasma membrane to promote growth factor signaling

    PubMed Central

    Zheng, Ze-Yi; Cheng, Chiang-Min; Fu, Xin-Rong; Chen, Liuh-Yow; Xu, Lizhong; Terrillon, Sonia; Wong, Stephen T.; Bar-Sagi, Dafna; Songyang, Zhou; Chang, Eric C.

    2011-01-01

    While Ras is well-known to function on the plasma membrane (PM) to mediate growth factor signaling, increasing evidence suggests that Ras has complex roles in the cytoplasm. To uncover these roles, we screened a cDNA library and isolated H-Ras-binding proteins that also influence Ras functions. Many isolated proteins regulate trafficking involving endosomes; CHMP6/VPS20 and VPS4A, which interact with ESCRT-III, were chosen for further study. We showed that the binding is direct and occurs in endosomes. Furthermore, the binding is most efficient when H-Ras has a functional effector-binding-loop and is GTP-bound and ubiquitylated. CHMP6 and VPS4A also bound N-Ras, but not K-Ras. Repressing CHMP6 and VPS4A blocked Ras-induced transformation, which correlated with inefficient Ras localization to the PM as measured by cell fractionation and photobleaching. Moreover, silencing CHMP6 and VPS4A also blocked EGFR recycling. These data suggest that Ras interacts with key ESCRT-III components to promote recycling of itself and EGFR back to the PM to create a positive feedback loop to enhance growth factor signaling. PMID:22231449

  6. [Carcinogenesis and its mechanism of mutant-type[12Asp]K-ras4B gene].

    PubMed

    Gui, Li-ming; Wei, Li-hui; Zhang, Ying-mei; Wang, Jian-liu; Wang, Ying; Chen, Ying; Ma, Da-long

    2002-01-01

    Ras gene plays an important role in the extra- and intra-cellular signal transduction pathway. It mediates series cascade reactions, and eventually actives transcriptional factors in nucleus. It is unknown on the mechanism of carcinogenesis of Ras gene in endometrial carcinoma, though K-ras mutant is very common in endometrial atypical hyperplasia and carcinoma. On basis of discovering the mutation in 12th codon of K-ras in endometrial carcinoma cell line, HEC-1A, we explored the carcinogenesis and molecular mechanism of mutant-type [12Asp] K-ras4B gene. (1) Full-length [12Asp]K-ras4B cDNA was amplified with RT-PCR, then inserted into pcDI eukaryotic expressive vector. (2) Morphological change, growth kinetics in vitro and tumorigencity in nude mice in vivo after-before transfection were observed. (3) To test the cell growth kinetics by methyl thiazolium tetrazolium (MTT) and [3H]thymidine incorporation method. (1) The authors have successfully constructed eukaryotic expression plasmid pcDI-[12Asp] K-ras4B; (2) To confirm that [12Asp] K-ras4B mutant can trigger the neoplastic transformation of NIH3T3 cells by test in vitro and in vivo. (3) After pMCV-RasN17 plasmid, a Ras mutant were transfected into pcDI-[12Asp] K-ras4B cells, the growth of this cell were restrained significantly in comparison with control group. (4) These findings indicate the expression of RafS621A resulted in remarkable inhibition in proliferation of pcDI-[12Asp]K-ras4B cell (P < 0.05). However, RafCAAX mutant can enhance pcDI-[12Asp]K-ras4B cell growth (P < 0.05). (1) [12Asp]K-ras4B gene alone is able to cause neoplastic transformation in NIH3T3 cells in vitro and in vivo. (2) [12Asp]K-ras4B-induced NIH3T3 cells neoplastic transformation required Raf signaling pathway.

  7. Coupling between p210bcr-abl and Shc and Grb2 adaptor proteins in hematopoietic cells permits growth factor receptor-independent link to ras activation pathway.

    PubMed

    Tauchi, T; Boswell, H S; Leibowitz, D; Broxmeyer, H E

    1994-01-01

    Enforced expression of p210bcr-abl transforms interleukin 3 (IL-3)-dependent hematopoietic cell lines to growth factor-independent proliferation. It has been demonstrated that nonreceptor tyrosine kinase oncogenes may couple to the p21ras pathway to exert their transforming effect. In particular, p210bcr-abl was recently found to effect p21ras activation in hematopoietic cells. In this context, experiments were performed to evaluate a protein signaling pathway by which p210bcr-abl might regulate p21ras. It was asked whether Shc p46/p52, a protein containing a src-homology region 2 (SH2) domain, and known to function upstream from p21ras, might form specific complexes with p210bcr-abl and thus, possibly alter p21ras activity by coupling to the guanine nucleotide exchange factor (Sos/CDC25) through the Grb2 protein-Sos complex. This latter complex has been previously demonstrated to occur ubiquitously. We found that p210bcr-abl formed a specific complex with Shc and with Grb2 in three different murine cell lines transfected with a p210bcr-abl expression vector. There appeared to be a higher order complex containing Shc, Grb2, and bcr-abl proteins. In contrast to p210bcr-abl transformed cells, in which there was constitutive tight association between Grb2 and Shc, binding between Grb2 and Shc was Steel factor (SLF)-dependent in a SLF-responsive, nontransformed parental cell line. The SLF-dependent association between Grb2 and Shc in nontransformed cells involved formation of a complex of Grb2 with c-kit receptor after SLF treatment. Thus, p210bcr-abl appears to function in a hematopoietic p21ras activation pathway to allow growth factor-independent coupling between Grb2, which exists in a complex with the guanine nucleotide exchange factor (Sos), and p21ras. Shc may not be required for Grb2-c-kit interaction, because it fails to bind strongly to c-kit.

  8. Ras inhibitors display an anti-metastatic effect by downregulation of lysyl oxidase through inhibition of the Ras-PI3K-Akt-HIF-1α pathway.

    PubMed

    Yoshikawa, Yoko; Takano, Osamu; Kato, Ichiro; Takahashi, Yoshihisa; Shima, Fumi; Kataoka, Tohru

    2017-12-01

    Metastasis stands as the major obstacle for the survival from cancers. Nonetheless most existing anti-cancer drugs inhibit only cell proliferation, and discovery of agents having both anti-proliferative and anti-metastatic properties would be more beneficial. We previously reported the discovery of small-molecule Ras inhibitors, represented by Kobe0065, that displayed anti-proliferative activity on xenografts of human colorectal cancer (CRC) cell line SW480 carrying the K-ras G12V gene. Here we show that treatment of cancer cells carrying the activated ras genes with Kobe0065 or a siRNA targeting Ras downregulates the expression of lysyl oxidase (LOX), which has been implicated in metastasis. LOX expression is enhanced by co-expression of Ras G12V through activation of phosphatidylinositol 3-kinase (PI3K)/Akt and concomitant accumulation of hypoxia-inducible factor (HIF)-1α. Furthermore, Kobe0065 effectively inhibits not only migration and invasion of cancer cells carrying the activated ras genes but also lung metastasis of human CRC cell line SW620 carrying the K-ras G12V gene. Collectively, these results indicate that Kobe0065 prevents metastasis through inhibition of the Ras-PI3K-Akt-HIF-1α-LOX signaling and suggest that Ras inhibitors in general might exhibit both anti-proliferative and anti-metastatic properties toward cancer cells carrying the activated ras genes. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Involvement of H- and N-Ras isoforms in transforming growth factor-{beta}1-induced proliferation and in collagen and fibronectin synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez-Salgado, Carlos; Fuentes-Calvo, Isabel; Instituto 'Reina Sofia' de Investigacion Nefrologica, Universidad de Salamanca, 37007 Salamanca

    2006-07-01

    Transforming growth factor {beta}1 (TGF-{beta}1) has a relevant role in the origin and maintenance of glomerulosclerosis and tubule-interstitial fibrosis. TGF-{beta} and Ras signaling pathways are closely related: TGF-{beta}1 overcomes Ras mitogenic effects and Ras counteracts TGF-{beta} signaling. Tubule-interstitial fibrosis is associated to increases in Ras, Erk, and Akt activation in a renal fibrosis model. We study the role of N- and H-Ras isoforms, and the involvement of the Ras effectors Erk and Akt, in TGF-{beta}1-mediated extracellular matrix (ECM) synthesis and proliferation, using embrionary fibroblasts from double knockout (KO) mice for H- and N-Ras (H-ras {sup -/-}/N-ras {sup -/-}) isoforms andmore » from heterozygote mice (H-ras {sup +/-}/N-ras {sup +/-}). ECM synthesis is increased in basal conditions in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts, this increase being higher after stimulation with TGF-{beta}1. TGF-{beta}1-induced fibroblast proliferation is smaller in H-ras {sup -/-}/N-ras {sup -/-} than in H-ras {sup +/-}/N-ras {sup +/-} fibroblasts. Erk activation is decreased in H-ras {sup -/-}/N-ras {sup -/-} fibroblasts; inhibition of Erk activation reduces fibroblast proliferation. Akt activation is higher in double KO fibroblasts than in heterozygotes; inhibition of Akt activation also inhibits ECM synthesis. We suggest that H- and N-Ras isoforms downregulate ECM synthesis, and mediate proliferation, in part through MEK/Erk activation. PI3K-Akt pathway activation may be involved in the increase in ECM synthesis observed in the absence of H- and N-Ras.« less

  10. DRoP: a water analysis program identifies Ras-GTP-specific pathway of communication between membrane-interacting regions and the active site.

    PubMed

    Kearney, Bradley M; Johnson, Christian W; Roberts, Daniel M; Swartz, Paul; Mattos, Carla

    2014-02-06

    Ras GTPase mediates several cellular signal transduction pathways and is found mutated in a large number of cancers. It is active in the GTP-bound state, where it interacts with effector proteins, and at rest in the GDP-bound state. The catalytic domain is tethered to the membrane, with which it interacts in a nucleotide-dependent manner. Here we present the program Detection of Related Solvent Positions (DRoP) for crystallographic water analysis on protein surfaces and use it to study Ras. DRoP reads and superimposes multiple Protein Data Bank coordinates, transfers symmetry-related water molecules to the position closest to the protein surface, and ranks the waters according to how well conserved and tightly clustered they are in the set of structures. Coloring according to this rank allows visualization of the results. The effector-binding region of Ras is hydrated with highly conserved water molecules at the interface between the P-loop, switch I, and switch II, as well as at the Raf-RBD binding pocket. Furthermore, we discovered a new conserved water-mediated H-bonding network present in Ras-GTP, but not in Ras-GDP, that links the nucleotide sensor residues R161 and R164 on helix 5 to the active site. The double mutant RasN85A/N86A, where the final link between helix 5 and the nucleotide is not possible, is a severely impaired enzyme, while the single mutant RasN86A, with partial connection to the active site, has a wild-type hydrolysis rate. DRoP was instrumental in determining the water-mediated connectivity networks that link two lobes of the catalytic domain in Ras. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Interactive roles of Ras, insulin receptor substrate-1, and proteins with Src homology-2 domains in insulin signaling in Xenopus oocytes.

    PubMed

    Chuang, L M; Hausdorff, S F; Myers, M G; White, M F; Birnbaum, M J; Kahn, C R

    1994-11-04

    Insulin receptor substrate-1 (IRS-1) serves as the major immediate substrate of insulin/insulin-like growth factor (IGF)-1 receptors and following tyrosine phosphorylation binds to specific Src homology-2 (SH2) domain-containing proteins including the p85 subunit of phosphatidylinositol (PI) 3-kinase and GRB2, a molecule believed to link IRS-1 to the Ras pathway. To investigate how these SH2-containing signaling molecules interact to regulate insulin/IGF-1 action, IRS-1, glutathione S-transferase (GST)-SH2 domain fusion proteins and Ras proteins were microinjected into Xenopus oocytes. We found that pleiotropic insulin actions are mediated by IRS-1 through two independent, but convergent, pathways involving PI 3-kinase and GRB2. Thus, microinjection of GST-fusion proteins of either p85 or GRB2 inhibited IRS-1-dependent activation of mitogen-activated protein (MAP) and S6 kinases and oocyte maturation, although only the GST-SH2 of p85 reduced insulin-stimulated PI 3-kinase activation. Co-injection of a dominant negative Ras (S17N) with IRS-1 inhibited insulin-stimulated MAP and S6 kinase activation. Micro-injection of activated [Arg12,Thr59]Ras increased basal MAP and S6 kinase activities and sensitized the oocytes to insulin-stimulated maturation without altering insulin-stimulated PI 3-kinase. The Ras-enhanced oocyte maturation response, but not the elevated basal level of MAP and S6 kinase, was partially blocked by the SH2-p85, but not SH2-GRB2. These data strongly suggest that IRS-1 can mediate many of insulin's actions on cellular enzyme activation and cell cycle progression requires binding and activation of multiple different SH2-domain proteins.

  12. Aberrant Ras regulation and reduced p190 tyrosine phosphorylation in cells lacking p120-Gap.

    PubMed Central

    van der Geer, P; Henkemeyer, M; Jacks, T; Pawson, T

    1997-01-01

    The Ras guanine nucleotide-binding protein functions as a molecular switch in signalling downstream of protein-tyrosine kinases. Ras is activated by exchange of GDP for GTP and is turned off by hydrolysis of bound GTP to GDP. Ras itself has a low intrinsic GTPase activity that can be stimulated by GTPase-activating proteins (GAPs), including p120-Gap and neurofibromin. These GAPs possess a common catalytic domain but contain distinct regulatory elements that may couple different external signals to control of the Ras pathway. p120-Gap, for example, has two N-terminal SH2 domains that directly recognize phosphotyrosine motifs on activated growth factor receptors and cytoplasmic phosphoproteins. To analyze the role of p120-Gap in Ras regulation in vivo, we have used fibroblasts derived from mouse embryos with a null mutation in the gene for p120-Gap (Gap). Platelet-derived growth factor stimulation of Gap-/- cells led to an abnormally large increase in the level of Ras-GTP and in the duration of mitogen-activated protein (MAP) kinase activation compared with wild-type cells, suggesting that p120-Gap is specifically activated following growth factor stimulation. Induction of DNA synthesis in response to platelet-derived growth factor and morphological transformation by the v-src and EJ-ras oncogenes were not significantly affected by the absence of p120-Gap. However, we found that normal tyrosine phosphorylation of p190-rhoGap, a cytoplasmic protein that associates with the p120-Gap SH2 domains, was dependent on the presence of p120-Gap. Our results suggest that p120-Gap has specific functions in downregulating the Ras/MAP kinase pathway following growth factor stimulation, and in modulating the phosphorylation of p190-rhoGap, but is not required for mitogenic signalling. PMID:9121432

  13. Unbiased RNAi screen for hepcidin regulators links hepcidin suppression to proliferative Ras/RAF and nutrient-dependent mTOR signaling

    PubMed Central

    Mleczko-Sanecka, Katarzyna; Roche, Franziska; Rita da Silva, Ana; Call, Debora; D’Alessio, Flavia; Ragab, Anan; Lapinski, Philip E.; Ummanni, Ramesh; Korf, Ulrike; Oakes, Christopher; Damm, Georg; D’Alessandro, Lorenza A.; Klingmüller, Ursula; King, Philip D.; Boutros, Michael; Hentze, Matthias W.

    2014-01-01

    The hepatic hormone hepcidin is a key regulator of systemic iron metabolism. Its expression is largely regulated by 2 signaling pathways: the “iron-regulated” bone morphogenetic protein (BMP) and the inflammatory JAK-STAT pathways. To obtain broader insights into cellular processes that modulate hepcidin transcription and to provide a resource to identify novel genetic modifiers of systemic iron homeostasis, we designed an RNA interference (RNAi) screen that monitors hepcidin promoter activity after the knockdown of 19 599 genes in hepatocarcinoma cells. Interestingly, many of the putative hepcidin activators play roles in signal transduction, inflammation, or transcription, and affect hepcidin transcription through BMP-responsive elements. Furthermore, our work sheds light on new components of the transcriptional machinery that maintain steady-state levels of hepcidin expression and its responses to the BMP- and interleukin-6–triggered signals. Notably, we discover hepcidin suppression mediated via components of Ras/RAF MAPK and mTOR signaling, linking hepcidin transcriptional control to the pathways that respond to mitogen stimulation and nutrient status. Thus using a combination of RNAi screening, reverse phase protein arrays, and small molecules testing, we identify links between the control of systemic iron homeostasis and critical liver processes such as regeneration, response to injury, carcinogenesis, and nutrient metabolism. PMID:24385536

  14. Reduction of metastasis, cell invasion, and adhesion in mouse osteosarcoma by YM529/ONO-5920-induced blockade of the Ras/MEK/ERK and Ras/PI3K/Akt pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsubaki, Masanobu; Satou, Takao; Itoh, Tatsuki

    Osteosarcoma is one of the most common primary malignant bone tumors in children and adolescents. Some patients continue to have a poor prognosis, because of the metastatic disease. YM529/ONO-5920 is a nitrogen-containing bisphosphonate that has been used for the treatment of osteoporosis. YM529/ONO-5920 has recently been reported to induce apoptosis in various tumors including osteosarcoma. However, the mode of metastasis suppression in osteosarcoma by YM529/ONO-5920 is unclear. In the present study, we investigated whether YM529/ONO-5920 inhibited tumor cell migration, invasion, adhesion, or metastasis in the LM8 mouse osteosarcoma cell line. We found that YM529/ONO-5920 significantly inhibited metastasis, cell migration, invasion,more » and adhesion at concentrations that did not have antiproliferative effects on LM8 cells. YM529/ONO-5920 also inhibited the mRNA expression and protein activities of matrix metalloproteinases (MMPs). In addition, YM529/ONO-5920 suppressed phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and the serine/threonine protein kinase B (Akt) by the inhibition of Ras prenylation. Moreover, U0126, a mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, and LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor, also inhibited LM8 cell migration, invasion, adhesion, and metastasis, as well as the mRNA expression and protein activities of MMP-1, MMP-2, MMP-9, and MT1-MMP. The results indicated that YM529/ONO-5920 suppressed the Ras/MEK/ERK and Ras/PI3K/Akt pathways, thereby inhibiting LM8 cell migration, invasion, adhesion, and metastasis. These findings suggest that YM529/ONO-5920 has potential clinical applications for the treatment of tumor cell metastasis in osteosarcoma. -- Highlights: ► We investigated whether YM529/ONO-5920 inhibited tumor metastasis in osteosarcoma. ► YM529/ONO-5920 inhibited metastasis, cell migration, invasion, and adhesion. ► YM529/ONO-5920 suppressed Ras signalings. ► YM529

  15. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

    PubMed

    Martín-Sánchez, Paloma; Luengo, Alicia; Griera, Mercedes; Orea, María Jesús; López-Olañeta, Marina; Chiloeches, Antonio; Lara-Pezzi, Enrique; de Frutos, Sergio; Rodríguez-Puyol, Manuel; Calleros, Laura; Rodríguez-Puyol, Diego

    2018-02-01

    Ras proteins regulate cell survival, growth, differentiation, blood pressure, and fibrosis in some organs. We have demonstrated that H- ras gene deletion produces mice hypotension via a soluble guanylate cyclase-protein kinase G (PKG)-dependent mechanism. In this study, we analyzed the consequences of H- ras deletion on cardiac remodeling induced by continuous angiotensin II (AngII) infusion and the molecular mechanisms implied. Left ventricular posterior wall thickness and mass and cardiomyocyte cross-sectional area were similar between AngII-treated H-Ras knockout (H -ras -/- ) and control wild-type (H -ras +/+ ) mice, as were extracellular matrix protein expression. Increased cardiac PKG-Iβ protein expression in H -ras -/- mice suggests the involvement of this protein in heart protection. Ex vivo experiments on cardiac explants could support this mechanism, as PKG blockade blunted protection against AngII-induced cardiac hypertrophy and fibrosis markers in H -ras -/- mice. Genetic modulation studies in cardiomyocytes and cardiac and embryonic fibroblasts revealed that the lack of H-Ras down-regulates the B-RAF/MEK/ERK pathway, which induces the glycogen synthase kinase-3β-dependent activation of the transcription factor, cAMP response element-binding protein, which is responsible for PKG-Iβ overexpression in H -ras -/- mouse embryonic fibroblasts. This study demonstrates that H- ras deletion protects against AngII-induced cardiac remodeling, possibly via a mechanism in which PKG-Iβ overexpression could play a partial role, and points to H-Ras and/or downstream proteins as potential therapeutic targets in cardiovascular disease.-Martín-Sánchez, P., Luengo, A., Griera, M., Orea, M. J., López-Olañeta, M., Chiloeches, A., Lara-Pezzi, E., de Frutos, S., Rodríguez-Puyol, M., Calleros, L., Rodríguez-Puyol, D. H- ras deletion protects against angiotensin II-induced arterial hypertension and cardiac remodeling through protein kinase G-Iβ pathway activation.

  16. Noncanonical Gβ Gib2 is a scaffolding protein promoting cAMP signaling through functions of Ras1 and Cac1 proteins in Cryptococcus neoformans.

    PubMed

    Wang, Yanli; Shen, Gui; Gong, Jinjun; Shen, Danyu; Whittington, Amy; Qing, Jiang; Treloar, Joshua; Boisvert, Scott; Zhang, Zhengguang; Yang, Cai; Wang, Ping

    2014-05-02

    Gβ-like/RACK1 functions as a key mediator of various pathways and contributes to numerous cellular functions in eukaryotic organisms. In the pathogenic fungus Cryptococcus neoformans, noncanonical Gβ Gib2 promotes cAMP signaling in cells lacking normal Gpa1 function while displaying versatility in interactions with Gα Gpa1, protein kinase Pkc1, and endocytic intersectin Cin1. To elucidate the Gib2 functional mechanism(s), we demonstrate that Gib2 is required for normal growth and virulence. We show that Gib2 directly binds to Gpa1 and Gγ Gpg1/Gpg2 and that it interacts with phosphodiesterase Pde2 and monomeric GTPase Ras1. Pde2 remains functionally dispensable, but Ras1 is found to associate with adenylyl cyclase Cac1 through the conserved Ras association domain. In addition, the ras1 mutant exhibits normal capsule formation, whereas the ras1 gpa1 mutant displays enhanced capsule formation, and the ras1 gpa1 cac1 mutant is acapsular. Collectively, these findings suggest that Gib2 promotes cAMP levels by relieving an inhibitory function of Ras1 on Cac1 in the absence of Gpa1. In addition, using GST affinity purification combined with mass spectrometry, we identified 47 additional proteins that interact with Gib2. These proteins have putative functions ranging from signal transduction, energy generation, metabolism, and stress response to ribosomal function. After establishing and validating a protein-protein interactive network, we believe Gib2 to be a key adaptor/scaffolding protein that drives the formation of various protein complexes required for growth and virulence. Our study reveals Gib2 as an essential component in deciphering the complexity of regulatory networks that control growth and virulence in C. neoformans.

  17. w09, a novel autophagy enhancer, induces autophagy-dependent cell apoptosis via activation of the EGFR-mediated RAS-RAF1-MAP2K-MAPK1/3 pathway.

    PubMed

    Zhang, Pinghu; Zheng, Zuguo; Ling, Li; Yang, Xiaohui; Zhang, Ni; Wang, Xue; Hu, Maozhi; Xia, Yu; Ma, Yiwen; Yang, Haoran; Wang, Yunyi; Liu, Hongqi

    2017-07-03

    The EGFR (epidermal growth factor receptor) signaling pathway is frequently deregulated in many malignancies. Therefore, targeting the EGFR pathway is regarded as a promising strategy for anticancer drug discovery. Herein, we identified a 2-amino-nicotinonitrile compound (w09) as a novel autophagy enhancer, which potently induced macroautophagy/autophagy and consequent apoptosis in gastric cancer cells. Mechanistic studies revealed that EGFR-mediated activation of the RAS-RAF1-MAP2K-MAPK1/3 signaling pathway played a critical role in w09-induced autophagy and apoptosis of gastric cancer cells. Inhibition of the MAPK1/3 pathway with U0126 or blockade of autophagy by specific chemical inhibitors markedly attenuated the effect of w09-mediated growth inhibition and caspase-dependent apoptosis. Furthermore, these conclusions were supported by knockdown of ATG5 or knockout of ATG5 and/or ATG7. Notably, w09 increased the expression of SQSTM1 by transcription, and knockout of SQSTM1 or deleting the LC3-interaction region domain of SQSTM1, significantly inhibited w09-induced PARP1 cleavage, suggesting the central role played by SQSTM1 in w09-induced apoptosis. In addition, in vivo administration of w09 effectively inhibited tumor growth of SGC-7901 xenografts. Hence, our findings not only suggested that activation of the EGFR-RAS-RAF1-MAP2K-MAPK1/3 signaling pathway may play a critical role in w09-induced autophagy and apoptosis, but also imply that induction of autophagic cancer cell death through activation of the EGFR pathway may be a potential therapeutic strategy for EGFR-disregulated gastric tumors.

  18. Potential signaling pathways as therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer

    PubMed Central

    Niiro, Emiko; Morioka, Sachiko; Iwai, Kana; Yamada, Yuki; Ogawa, Kenji; Kawahara, Naoki; Kobayashi, Hiroshi

    2018-01-01

    Cases of mucinous ovarian cancer are predominantly resistant to chemotherapies. The present review summarizes current knowledge of the therapeutic potential of targeting the Wingless (WNT) pathway, with particular emphasis on preclinical and clinical studies, for improving the chemoresistance and treatment of mucinous ovarian cancer. A review was conducted of English language literature published between January 2000 and October 2017 that concerned potential signaling pathways associated with the chemoresistance of mucinous ovarian cancer. The literature indicated that aberrant activation of growth factor and WNT signaling pathways is specifically observed in mucinous ovarian cancer. An evolutionarily conserved signaling cascade system including epidermal growth factor/RAS/RAF/mitogen-activated protein kinase kinase/extracellular signal-regulated protein kinase, phosphoinositide 3-kinase/Akt and WNT signaling regulates a variety of cellular functions; their crosstalk mutually enhances signaling activity and induces chemoresistance. Novel antagonists, modulators and inhibitors have been developed for targeting the components of the WNT signaling pathway, namely Frizzled, low-density lipoprotein receptor-related protein 5/6, Dishevelled, casein kinase 1, AXIN, glycogen synthase kinase 3β and β-catenin. Targeted inhibition of WNT signaling represents a rational and promising novel approach to overcome chemoresistance, and several WNT inhibitors are being evaluated in preclinical studies. In conclusion, the WNT receptors and their downstream components may serve as novel therapeutic targets for overcoming chemoresistance in mucinous ovarian cancer. PMID:29564122

  19. Phosphatidylinositol 3-kinase, Cdc42, and Rac1 act downstream of Ras in integrin-dependent neurite outgrowth in N1E-115 neuroblastoma cells.

    PubMed

    Sarner, S; Kozma, R; Ahmed, S; Lim, L

    2000-01-01

    Ras and Rho family GTPases have been ascribed important roles in signalling pathways determining cellular morphology and growth. Here we investigated the roles of the GTPases Ras, Cdc42, Rac1, and Rho and that of phosphatidylinositol 3-kinase (PI 3-kinase) in the pathway leading from serum starvation to neurite outgrowth in N1E-115 neuroblastoma cells. Serum-starved cells grown on a laminin matrix exhibited integrin-dependent neurite outgrowth. Expression of dominant negative mutants of Ras, PI 3-kinase, Cdc42, or Rac1 all blocked this neurite outgrowth, while constitutively activated mutants of Ras, PI 3-kinase, or Cdc42 were each sufficient to promote outgrowth even in the presence of serum. A Ras(H40C;G12V) double mutant which binds preferentially to PI 3-kinase also promoted neurite formation. Activated Ras(G12V)-induced outgrowth required PI 3-kinase activity, but activated PI 3-kinase-induced outgrowth did not require Ras activity. Although activated Rac1 by itself did not induce neurites, neurite outgrowth induced by activated Cdc42(G12V) was Rac1 dependent. Cdc42(G12V)-induced neurites appeared to lose their normal polarization, almost doubling the average number of neurites produced by a single cell. Outgrowth induced by activated Ras or PI 3-kinase required both Cdc42 and Rac1 activity, but Cdc42(G12V)-induced outgrowth did not need Ras or PI 3-kinase activity. Active Rho(G14V) reduced outgrowth promoted by Ras(G12V). Finally, expression of dominant negative Jun N-terminal kinase or extracellular signal-regulated kinase did not inhibit outgrowth, suggesting these pathways are not essential for this process. Our results suggest a hierarchy of signalling where Ras signals through PI 3-kinase to Cdc42 and Rac1 activation (and Rho inactivation), culminating in neurite outgrowth. Thus, in the absence of serum factors, Ras may initiate cell cycle arrest and terminal differentiation in N1E-115 neuroblastoma cells.

  20. Phosphatidylinositol 3-Kinase, Cdc42, and Rac1 Act Downstream of Ras in Integrin-Dependent Neurite Outgrowth in N1E-115 Neuroblastoma Cells

    PubMed Central

    Sarner, Shula; Kozma, Robert; Ahmed, Sohail; Lim, Louis

    2000-01-01

    Ras and Rho family GTPases have been ascribed important roles in signalling pathways determining cellular morphology and growth. Here we investigated the roles of the GTPases Ras, Cdc42, Rac1, and Rho and that of phosphatidylinositol 3-kinase (PI 3-kinase) in the pathway leading from serum starvation to neurite outgrowth in N1E-115 neuroblastoma cells. Serum-starved cells grown on a laminin matrix exhibited integrin-dependent neurite outgrowth. Expression of dominant negative mutants of Ras, PI 3-kinase, Cdc42, or Rac1 all blocked this neurite outgrowth, while constitutively activated mutants of Ras, PI 3-kinase, or Cdc42 were each sufficient to promote outgrowth even in the presence of serum. A RasH40C;G12V double mutant which binds preferentially to PI 3-kinase also promoted neurite formation. Activated RasG12V-induced outgrowth required PI 3-kinase activity, but activated PI 3-kinase-induced outgrowth did not require Ras activity. Although activated Rac1 by itself did not induce neurites, neurite outgrowth induced by activated Cdc42G12V was Rac1 dependent. Cdc42G12V-induced neurites appeared to lose their normal polarization, almost doubling the average number of neurites produced by a single cell. Outgrowth induced by activated Ras or PI 3-kinase required both Cdc42 and Rac1 activity, but Cdc42G12V-induced outgrowth did not need Ras or PI 3-kinase activity. Active RhoG14V reduced outgrowth promoted by RasG12V. Finally, expression of dominant negative Jun N-terminal kinase or extracellular signal-regulated kinase did not inhibit outgrowth, suggesting these pathways are not essential for this process. Our results suggest a hierarchy of signalling where Ras signals through PI 3-kinase to Cdc42 and Rac1 activation (and Rho inactivation), culminating in neurite outgrowth. Thus, in the absence of serum factors, Ras may initiate cell cycle arrest and terminal differentiation in N1E-115 neuroblastoma cells. PMID:10594018

  1. Phospholipase D Signaling Pathways and Phosphatidic Acid as Therapeutic Targets in Cancer

    PubMed Central

    Bruntz, Ronald C.; Lindsley, Craig W.

    2014-01-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein–coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. PMID:25244928

  2. K-ras p21 expression and activity in lung and lung tumors.

    PubMed

    Ramakrishna, G; Sithanandam, G; Cheng, R Y; Fornwald, L W; Smith, G T; Diwan, B A; Anderson, L M

    2000-12-01

    Although K-ras is mutated in many human and mouse lung adenocarcinomas, the function of K-ras p21 in lung is not known. We sought evidence for the prevalent hypothesis that K-ras p21 activates raf, which in turn passes the signal through the extracellular signal regulated kinases (Erks) to stimulate cell division, and that this pathway is upregulated when K-ras is mutated. Results from both mouse lung tumors and immortalized cultured E10 and C10 lung type II cells failed to substantiate this hypothesis. Lung tumors did not have more total K-ras p21 or K-ras p21 GTP than normal lung tissue, nor were high levels of these proteins found in tumors with mutant K-ras. Activated K-ras p21-GTP levels did not correlate with proliferating cell nuclear antigen. Special features of tumors with mutant K-ras included small size of carcinomas compared with carcinomas lacking this mutation, and correlation of proliferating cell nuclear antigen with raf-1. In nontransformed type II cells in culture, both total and activated K-ras p21 increased markedly at confluence but not after serum stimulation, whereas both Erk1/2 and the protein kinase Akt were rapidly activated by the serum treatment. Reverse transcriptase-polymerase chain reaction (RT-PCR) assays of K-ras mRNA indicated an increase in confluent and especially in postconfluent cells. Together the findings indicate that normal K-ras p21 activity is associated with growth arrest of lung type II cells, and that the exact contribution of mutated K-ras p21 to tumor development remains to be discovered.

  3. H-Ras and K-Ras Oncoproteins Induce Different Tumor Spectra When Driven by the Same Regulatory Sequences.

    PubMed

    Drosten, Matthias; Simón-Carrasco, Lucía; Hernández-Porras, Isabel; Lechuga, Carmen G; Blasco, María T; Jacob, Harrys K C; Fabbiano, Salvatore; Potenza, Nicoletta; Bustelo, Xosé R; Guerra, Carmen; Barbacid, Mariano

    2017-02-01

    Genetic studies in mice have provided evidence that H-Ras and K-Ras proteins are bioequivalent. However, human tumors display marked differences in the association of RAS oncogenes with tumor type. Thus, to further assess the bioequivalence of oncogenic H-Ras and K-Ras, we replaced the coding region of the murine K-Ras locus with H-Ras G12V oncogene sequences. Germline expression of H-Ras G12V or K-Ras G12V from the K-Ras locus resulted in embryonic lethality. However, expression of these genes in adult mice led to different tumor phenotypes. Whereas H-Ras G12V elicited papillomas and hematopoietic tumors, K-Ras G12V induced lung tumors and gastric lesions. Pulmonary expression of H-Ras G12V created a senescence-like state caused by excessive MAPK signaling. Likewise, H-Ras G12V but not K-Ras G12V induced senescence in mouse embryonic fibroblasts. Label-free quantitative analysis revealed that minor differences in H-Ras G12V expression levels led to drastically different biological outputs, suggesting that subtle differences in MAPK signaling confer nonequivalent functions that influence tumor spectra induced by RAS oncoproteins. Cancer Res; 77(3); 707-18. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. Mutation-Specific RAS Oncogenicity Explains N-RAS Codon 61 Selection in Melanoma

    PubMed Central

    Burd, Christin E.; Liu, Wenjin; Huynh, Minh V.; Waqas, Meriam A.; Gillahan, James E.; Clark, Kelly S.; Fu, Kailing; Martin, Brit L.; Jeck, William R.; Souroullas, George P.; Darr, David B.; Zedek, Daniel C.; Miley, Michael J.; Baguley, Bruce C.; Campbell, Sharon L.

    2014-01-01

    N-RAS mutation at codon 12, 13 or 61 is associated with transformation; yet, in melanoma, such alterations are nearly exclusive to codon 61. Here, we compared the melanoma susceptibility of an N-RasQ61R knock-in allele to similarly designed K-RasG12D and N-RasG12D alleles. With concomitant p16INK4a inactivation, K-RasG12D or N-RasQ61R expression efficiently promoted melanoma in vivo, whereas N-RasG12D did not. Additionally, N-RasQ61R mutation potently cooperated with Lkb1/Stk11 loss to induce highly metastatic disease. Functional comparisons of N-RasQ61R and N-RasG12D revealed little difference in the ability of these proteins to engage PI3K or RAF. Instead, N-RasQ61R showed enhanced nucleotide binding, decreased intrinsic GTPase activity and increased stability when compared to N-RasG12D. This work identifies a faithful model of human N-RAS mutant melanoma, and suggests that the increased melanomagenecity of N-RasQ61R over N-RasG12D is due to heightened abundance of the active, GTP-bound form rather than differences in the engagement of downstream effector pathways. PMID:25252692

  5. RAS - Screens & Assays

    Cancer.gov

    A primary goal of the RAS Initiative is to develop assays for RAS activity, localization, and signaling and adapt those assays so they can be used for finding new drug candidates. Explore the work leading to highly validated screening protocols.

  6. Phosphoproteomics reveals ALK promote cell progress via RAS/ JNK pathway in neuroblastoma.

    PubMed

    Chen, Kai; Lv, Fan; Xu, Guofeng; Zhang, Min; Wu, Yeming; Wu, Zhixiang

    2016-11-15

    Emerging evidence suggests receptor tyrosine kinase ALK as a promising therapeutic target in neuroblastoma. However, clinical trials reveal that a limited proportion of ALK-positive neuroblastoma patients experience clinical benefits from Crizotinib, a clinically approved specific inhibitor of ALK. The precise molecular mechanisms of aberrant ALK activity in neuroblastoma remain elusive, limiting the clinical application of ALK as a therapeutic target in neuroblastoma. Here, we describe a deep quantitative phosphoproteomic approach in which Crizotinib-treated neuroblastoma cell lines bearing aberrant ALK are used to investigate downstream regulated phosphoproteins. We identified more than 19,500-and quantitatively analyzed approximately 10,000-phosphorylation sites from each cell line, ultimately detecting 450-790 significantly-regulated phosphorylation sites. Multiple layers of bioinformatic analysis of the significantly-regulated phosphoproteins identified RAS/JNK as a downstream signaling pathway of ALK, independent of the ALK variant present. Further experiments demonstrated that ALK/JNK signaling could be inactivated by either ALK- or JNK-specific inhibitors, resulting in cell growth inhibition by induction of cell cycle arrest and cell apoptosis. Our study broadly defines the phosphoproteome in response to ALK inhibition and provides a resource for further clinical investigation of ALK as therapeutic target for the treatment of neuroblastoma.

  7. Ras history

    PubMed Central

    2010-01-01

    Although the roots of Ras sprouted from the rich history of retrovirus research, it was the discovery of mutationally activated RAS genes in human cancer in 1982 that stimulated an intensive research effort to understand Ras protein structure, biochemistry and biology. While the ultimate goal has been developing anti-Ras drugs for cancer treatment, discoveries from Ras have laid the foundation for three broad areas of science. First, they focused studies on the origins of cancer to the molecular level, with the subsequent discovery of genes mutated in cancer that now number in the thousands. Second, elucidation of the biochemical mechanisms by which Ras facilitates signal transduction established many of our fundamental concepts of how a normal cell orchestrates responses to extracellular cues. Third, Ras proteins are also founding members of a large superfamily of small GTPases that regulate all key cellular processes and established the versatile role of small GTP-binding proteins in biology. We highlight some of the key findings of the last 28 years. PMID:21686117

  8. The NM23-H1/H2 homolog NDK-1 is required for full activation of Ras signaling in C. elegans

    PubMed Central

    Masoudi, Neda; Fancsalszky, Luca; Pourkarimi, Ehsan; Vellai, Tibor; Alexa, Anita; Reményi, Attila; Gartner, Anton; Mehta, Anil; Takács-Vellai, Krisztina

    2013-01-01

    The group I members of the Nm23 (non-metastatic) gene family encode nucleoside diphosphate kinases (NDPKs) that have been implicated in the regulation of cell migration, proliferation and differentiation. Despite their developmental and medical significance, the molecular functions of these NDPKs remain ill defined. To minimize confounding effects of functional compensation between closely related Nm23 family members, we studied ndk-1, the sole Caenorhabditis elegans ortholog of group I NDPKs, and focused on its role in Ras/mitogen-activated protein kinase (MAPK)-mediated signaling events during development. ndk-1 inactivation leads to a protruding vulva phenotype and affects vulval cell fate specification through the Ras/MAPK cascade. ndk-1 mutant worms show severe reduction of activated, diphosphorylated MAPK in somatic tissues, indicative of compromised Ras/MAPK signaling. A genetic epistasis analysis using the vulval induction system revealed that NDK-1 acts downstream of LIN-45/Raf, but upstream of MPK-1/MAPK, at the level of the kinase suppressors of ras (KSR-1/2). KSR proteins act as scaffolds facilitating Ras signaling events by tethering signaling components, and we suggest that NDK-1 modulates KSR activity through direct physical interaction. Our study reveals that C. elegans NDK-1/Nm23 influences differentiation by enhancing the level of Ras/MAPK signaling. These results might help to better understand how dysregulated Nm23 in humans contributes to tumorigenesis. PMID:23900546

  9. Inhibition of RAS activation due to a homozygous ezrin variant in patients with profound intellectual disability.

    PubMed

    Riecken, Lars Björn; Tawamie, Hasan; Dornblut, Carsten; Buchert, Rebecca; Ismayel, Amina; Schulz, Alexander; Schumacher, Johannes; Sticht, Heinrich; Pohl, Katja J; Cui, Yan; Reis, André; Morrison, Helen; Abou Jamra, Rami

    2015-02-01

    Gain-of-function alterations in several components and modulators of the Ras-MAPK pathway lead to dysregulation of the pathway and cause a broad spectrum of autosomal dominant developmental disorders, collectively known as RASopathies. These findings demonstrate the importance of tight multilevel Ras regulation to safeguard signaling output and prevent aberrant activity. We have recently identified ezrin as a novel regulatory element required for Ras activation. Homozygosity mapping and exome sequencing have now revealed the first presumably disease-causing variant in the coding gene EZR in two siblings with a profound intellectual disability. Localization and membrane targeting of the altered ezrin protein appeared normal but molecular modeling suggested protein interaction surfaces to be disturbed. Functional analysis revealed that the altered ezrin protein is no longer able to bind Ras and facilitate its activation. Furthermore, expression of the altered ezrin protein in different cell lines resulted in abnormal cellular processes, including reduced proliferation and neuritogenesis, thus revealing a possible mechanism for its phenotype in humans. To our knowledge, this is the first report of an autosomal recessively inherited loss-of-function mutation causing reduced Ras activity and thus extends and complements the pathogenicity spectrum of known Ras-MAPK pathway disturbances. © 2014 WILEY PERIODICALS, INC.

  10. Mutation analysis of the EGFR pathway genes, EGFR, RAS, PIK3CA, BRAF, and AKT1, in salivary gland adenoid cystic carcinoma.

    PubMed

    Saida, Kosuke; Murase, Takayuki; Ito, Mayuko; Fujii, Kana; Takino, Hisashi; Masaki, Ayako; Kawakita, Daisuke; Ijichi, Kei; Tada, Yuichiro; Kusafuka, Kimihide; Iida, Yoshiyuki; Onitsuka, Tetsuro; Yatabe, Yasushi; Hanai, Nobuhiro; Hasegawa, Yasuhisa; Shinomiya, Hitomi; Nibu, Ken-Ichi; Shimozato, Kazuo; Inagaki, Hiroshi

    2018-03-30

    Adenoid cystic carcinoma (AdCC), one of the most common salivary gland carcinomas, usually has a fatal outcome. Epidermal growth factor receptor (EGFR) pathway gene mutations are important in predicting a patient's prognosis and estimating the efficacy of molecular therapy targeting the EGFR pathway. In this study of salivary gland AdCC (SAdCC), we looked for gene mutations in EGFR, RAS family ( KRAS, HRAS, and NRAS ), PIK3CA, BRAF, and AKT1 , using a highly sensitive single-base extension multiplex assay, SNaPshot. Out of 70 cases, EGFR pathway missense mutations were found in 13 (18.6%): RAS mutations in 10 (14.3%), EGFR in one (1.4%), and PIK3CA in 5 (7.1%). None of the cases showed an EGFR deletion by direct sequencing. Concurrent gene mutations were found in three cases (4.3%). EGFR pathway mutations were significantly associated with a shorter disease-free ( p = 0.011) and overall survival ( p = 0.049) and RAS mutations were as well; ( p = 0.010) and ( p = 0.024), respectively. The gene fusion status as determined by a FISH assay had no significant association with mutations of the genes involved in the EGFR pathway. In conclusion, EGFR pathway mutations, especially RAS mutations, may be frequent in SAdCC, and associated with a poor prognosis for the patient.

  11. The potential of targeting Ras proteins in lung cancer.

    PubMed

    McCormick, Frank

    2015-04-01

    The Ras pathway is a major driver in lung adenocarcinoma: over 75% of all cases harbor mutations that activate this pathway. While spectacular clinical successes have been achieved by targeting activated receptor tyrosine kinases in this pathway, little, if any, significant progress has been achieved targeting Ras proteins themselves or cancers driven by oncogenic Ras mutants. New approaches to drug discovery, new insights into Ras function, new ways of attacking undruggable proteins through RNA interference and new ways of harnessing the immune system could change this landscape in the relatively near future.

  12. N-methyl-N'-nitro-N-nitrosoguanidine interferes with the epidermal growth factor receptor-mediated signaling pathway.

    PubMed

    Gao, Zhihua; Yang, Jun; Huang, Yun; Yu, Yingnian

    2005-03-01

    Many environmental factors, such as ultraviolet (UV) and arsenic, can induce the clustering of cell surface receptors, including epidermal growth factor receptor (EGFR). This is accompanied by the phosphorylation of the receptors and the activation of ensuing cellular signal transduction pathways, which are implicated in the various cellular responses caused by the exposure to these factors. In this study, we have shown that N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), an alkylating agent, also induced the clustering of EGFR in human amnion FL cells, which was similar in morphology to that of epidermal growth factor treatment. However, MNNG treatment did not activate Ras, the downstream mediator in EGFR signaling pathway, as compared to EGF treatment. The autophosphorylation of tyrosine residues Y1068 and Y1173 at the intracellular domain of EGFR, which is related to Ras activation under EGF treatment, was also not observed by MNNG exposure. Interestingly, although MNNG did not affect the binding of EGF to EGFR, MNNG can interfere with EGF function. For instance, pre-incubating FL cells with MNNG inhibited the autophosphorylation of EGFR by EGF treatment, as well as the activation of Ras. In addition, the phosphorylation of Y845 on EGFR by EGF, which is mediated through c-Src or related kinases but not autophosphorylation, was also affected by MNNG. Therefore, MNNG may influence the tyrosine kinase activity as well as the phosphorylation of EGFR through its interaction with EGFR.

  13. Hybrids from Farnesylthiosalicylic Acid and Hydroxamic Acid as Dual Ras-Related Signaling and Histone Deacetylase (HDAC) Inhibitors: Design, Synthesis and Biological Evaluation.

    PubMed

    Ling, Yong; Wang, Xuemin; Wang, Chenniu; Xu, Chenjun; Zhang, Wei; Zhang, Yihua; Zhang, Yanan

    2015-06-01

    A novel series of hybrids was designed and synthesized by combining key elements from farnesylthiosalicylic acid (FTS) and hydroxamic acid. Several 3,7,11-trimethyldodeca-2,6,10-trien-1-yl) thio)benzamide derivatives, particularly those with branched and linear aliphatic linkers between the hydroxamic zinc binding group (ZBG) and the benzamide core, not only displayed significant antitumor activities against six human cancer cells but also exhibited histone deacetylase (HDAC) inhibitory effects in vitro. Among them, N-(4-(hydroxyamino)-4-oxobutyl)-2-(((2E,6E)-3,7,11-trimethyldodeca-2,6, 10-trien-1-yl)thio)benzamide (8 d) was the most potent, with IC50 values of 4.9-7.6 μM; these activities are eight- to sixteen-fold more potent than FTS and comparable to that of suberoylanilide hydroxamic acid (SAHA). Derivative 8 d induced cell cycle arrest in the G0/G1 phase, inhibited the acetylation of histone H3 and α-tubulin, and blocked Ras-related signaling pathways in a dose-dependent manner. The improved tumor growth inhibition and cell-cycle arrest in vitro might result from the dual inhibition. These findings suggest dual inhibitors of Ras-related signaling pathway and HDAC hold promise as therapeutic agents for the treatment of cancer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Novel adapter proteins that link the human GM-CSF receptor to the phosphatidylino-sitol 3-kinase and Shc/Grb2/ras signaling pathways.

    PubMed

    Jücker, M; Feldman, R A

    1996-01-01

    We have used a human GM-CSF-dependent hematopoietic cell line that responds to physiological concentrations of hGM-CSF to analyze a set of signaling events that occur in normal myelopoiesis and whose deregulation may lead to leukemogenesis. Stimulation of these cells with hGM-CSF induced the assembly of multimeric complexes that contained known and novel phosphotyrosyl proteins. One of the new proteins was a major phosphotyrosyl substrate of 76-85 kDa (p80) that was directly associated with the p85 subunit of phosphatidylinositol (PI) 3-kinase through the SH2 domains of p85. p80 also associated with the beta subunit of the activated hGM-CSF receptor, and assembly of this complex correlated with activation of PI 3-kinase. A second phosphotyrosyl protein we identified, p140, associated with the Shc and Grb2 adapter proteins by direct binding to a novel phosphotyrosine-interacting domain located at the N-terminus of Shc. and to the SH3 domains of Grb2, respectively. The Shc/p140/Grb2 complex was found to be constitutively activated in acute myeloid leukemia cells, indicating that activation of this pathway may be a necessary step in the development of some leukemias. The p80/p85/PI 3-kinase and the Shc/Grb2/p140 complexes were tightly associated with Src family kinases, which were prime candidates for phosphorylation of Shc, p80, p140 and other phosphotyrosyl substrates present in these complexes. Our studies suggest that p80 and p140 may link the hGM-CSF receptor to the PI 3-kinase and Shc/Grb2/ras signaling pathways, respectively, and that abnormal activation of hGM-CSF-dependent targets may play a role in leukemogenesis.

  15. Ras Signaling Inhibitors Attenuate Disease in Adjuvant-Induced Arthritis via Targeting Pathogenic Antigen-Specific Th17-Type Cells.

    PubMed

    Zayoud, Morad; Marcu-Malina, Victoria; Vax, Einav; Jacob-Hirsch, Jasmine; Elad-Sfadia, Galit; Barshack, Iris; Kloog, Yoel; Goldstein, Itamar

    2017-01-01

    The Ras family of GTPases plays an important role in signaling nodes downstream to T cell receptor and CD28 activation, potentially lowering the threshold for T-cell receptor activation by autoantigens. Somatic mutation in NRAS or KRAS may cause a rare autoimmune disorder coupled with abnormal expansion of lymphocytes. T cells from rheumatoid arthritis (RA) patients show excessive activation of Ras/MEK/ERK pathway. The small molecule farnesylthiosalicylic acid (FTS) interferes with the interaction between Ras GTPases and their prenyl-binding chaperones to inhibit proper plasma membrane localization. In the present study, we tested the therapeutic and immunomodulatory effects of FTS and its derivative 5-fluoro-FTS (F-FTS) in the rat adjuvant-induced arthritis model (AIA). We show that AIA severity was significantly reduced by oral FTS and F-FTS treatment compared to vehicle control treatment. FTS was as effective as the mainstay anti-rheumatic drug methotrexate, and combining the two drugs significantly increased efficacy compared to each drug alone. We also discovered that FTS therapy inhibited both the CFA-driven in vivo induction of Th17 and IL-17/IFN-γ producing "double positive" as well as the upregulation of serum levels of the Th17-associated cytokines IL-17A and IL-22. By gene microarray analysis of effector CD4 + T cells from CFA-immunized rats, re-stimulated in vitro with the mycobacterium tuberculosis heat-shock protein 65 (Bhsp65), we determined that FTS abrogated the Bhsp65-induced transcription of a large list of genes (e.g., Il17a/f, Il22, Ifng, Csf2, Lta, and Il1a). The functional enrichment bioinformatics analysis showed significant overlap with predefined gene sets related to inflammation, immune system processes and autoimmunity. In conclusion, FTS and F-FTS display broad immunomodulatory effects in AIA with inhibition of the Th17-type response to a dominant arthritogenic antigen. Hence, targeting Ras signal-transduction cascade is a potential

  16. The Function of Embryonic Stem Cell-expressed RAS (E-RAS), a Unique RAS Family Member, Correlates with Its Additional Motifs and Its Structural Properties.

    PubMed

    Nakhaei-Rad, Saeideh; Nakhaeizadeh, Hossein; Kordes, Claus; Cirstea, Ion C; Schmick, Malte; Dvorsky, Radovan; Bastiaens, Philippe I H; Häussinger, Dieter; Ahmadian, Mohammad Reza

    2015-06-19

    E-RAS is a member of the RAS family specifically expressed in embryonic stem cells, gastric tumors, and hepatic stellate cells. Unlike classical RAS isoforms (H-, N-, and K-RAS4B), E-RAS has, in addition to striking and remarkable sequence deviations, an extended 38-amino acid-long unique N-terminal region with still unknown functions. We investigated the molecular mechanism of E-RAS regulation and function with respect to its sequence and structural features. We found that N-terminal extension of E-RAS is important for E-RAS signaling activity. E-RAS protein most remarkably revealed a different mode of effector interaction as compared with H-RAS, which correlates with deviations in the effector-binding site of E-RAS. Of all these residues, tryptophan 79 (arginine 41 in H-RAS), in the interswitch region, modulates the effector selectivity of RAS proteins from H-RAS to E-RAS features. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer.

    PubMed

    Bruntz, Ronald C; Lindsley, Craig W; Brown, H Alex

    2014-10-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  18. EGF-like peptide-enhanced cell motility in Dictyostelium functions independently of the cAMP-mediated pathway and requires active Ca2+/calmodulin signaling.

    PubMed

    Huber, Robert; O'Day, Danton H

    2011-04-01

    Current knowledge suggests that cell movement in the eukaryotic slime mold Dictyostelium discoideum is mediated by different signaling pathways involving a number of redundant components. Our previous research has identified a specific motility-enhancing function for epidermal growth factor-like (EGFL) repeats in Dictyostelium, specifically for the EGFL repeats of cyrA, a matricellular, calmodulin (CaM)-binding protein in Dictyostelium. Using mutants of cAMP signaling (carA(-), carC(-), gpaB(-), gpbA(-)), the endogenous calcium (Ca(2+)) release inhibitor TMB-8, the CaM antagonist W-7, and a radial motility bioassay, we show that DdEGFL1, a synthetic peptide whose sequence is obtained from the first EGFL repeat of cyrA, functions independently of the cAMP-mediated signaling pathways to enhance cell motility through a mechanism involving Ca(2+) signaling, CaM, and RasG. We show that DdEGFL1 increases the amounts of polymeric myosin II heavy chain and actin in the cytoskeleton by 24.1±10.7% and 25.9±2.1% respectively and demonstrate a link between Ca(2+)/CaM signaling and cytoskeletal dynamics. Finally, our findings suggest that carA and carC mediate a brake mechanism during chemotaxis since DdEGFL1 enhanced the movement of carA(-)/carC(-) cells by 844±136% compared to only 106±6% for parental DH1 cells. Based on our data, this signaling pathway also appears to involve the G-protein β subunit, RasC, RasGEFA, and protein kinase B. Together, our research provides insight into the functionality of EGFL repeats in Dictyostelium and the signaling pathways regulating cell movement in this model organism. It also identifies several mechanistic components of DdEGFL1-enhanced cell movement, which may ultimately provide a model system for understanding EGFL repeat function in higher organisms. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. A Histidine pH sensor regulates activation of the Ras-specific guanine nucleotide exchange factor RasGRP1.

    PubMed

    Vercoulen, Yvonne; Kondo, Yasushi; Iwig, Jeffrey S; Janssen, Axel B; White, Katharine A; Amini, Mojtaba; Barber, Diane L; Kuriyan, John; Roose, Jeroen P

    2017-09-27

    RasGRPs are guanine nucleotide exchange factors that are specific for Ras or Rap, and are important regulators of cellular signaling. Aberrant expression or mutation of RasGRPs results in disease. An analysis of RasGRP1 SNP variants led to the conclusion that the charge of His 212 in RasGRP1 alters signaling activity and plasma membrane recruitment, indicating that His 212 is a pH sensor that alters the balance between the inactive and active forms of RasGRP1. To understand the structural basis for this effect we compared the structure of autoinhibited RasGRP1, determined previously, to those of active RasGRP4:H-Ras and RasGRP2:Rap1b complexes. The transition from the autoinhibited to the active form of RasGRP1 involves the rearrangement of an inter-domain linker that displaces inhibitory inter-domain interactions. His 212 is located at the fulcrum of these conformational changes, and structural features in its vicinity are consistent with its function as a pH-dependent switch.

  20. SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a

    PubMed Central

    Wisner, Stephanie A; Chen, Xiao; Spiegelman, Nicole A; Linder, Maurine E

    2017-01-01

    Ras proteins play vital roles in numerous biological processes and Ras mutations are found in many human tumors. Understanding how Ras proteins are regulated is important for elucidating cell signaling pathways and identifying new targets for treating human diseases. Here we report that one of the K-Ras splice variants, K-Ras4a, is subject to lysine fatty acylation, a previously under-studied protein post-translational modification. Sirtuin 2 (SIRT2), one of the mammalian nicotinamide adenine dinucleotide (NAD)-dependent lysine deacylases, catalyzes the removal of fatty acylation from K-Ras4a. We further demonstrate that SIRT2-mediated lysine defatty-acylation promotes endomembrane localization of K-Ras4a, enhances its interaction with A-Raf, and thus promotes cellular transformation. Our study identifies lysine fatty acylation as a previously unknown regulatory mechanism for the Ras family of GTPases that is distinct from cysteine fatty acylation. These findings highlight the biological significance of lysine fatty acylation and sirtuin-catalyzed protein lysine defatty-acylation. PMID:29239724

  1. Behavioral methods for the study of the Ras-ERK pathway in memory formation and consolidation: passive avoidance and novel object recognition tests.

    PubMed

    d'Isa, Raffaele; Brambilla, Riccardo; Fasano, Stefania

    2014-01-01

    Memory is a high-level brain function that enables organisms to adapt their behavioral responses to the environment, hence increasing their probability of survival. The Ras-ERK pathway is a key molecular intracellular signalling cascade for memory consolidation. In this chapter we will describe two main one-trial behavioral tests commonly used in the field of memory research in order to assess the role of Ras-ERK signalling in long-term memory: passive avoidance and object recognition. Passive avoidance (PA) is a fear-motivated instrumental learning task, designed by Jarvik and Essman in 1960, in which animals learn to refrain from emitting a behavioral response that has previously been associated with a punishment. We will describe here the detailed protocol and show some examples of how PA can reveal impairments or enhancements in memory consolidation following loss or gain of function genetic manipulations of the Ras-ERK pathway. The phenotypes of global mutants as Ras-GRF1 KO, GENA53, and ERK1 KO mice, as well as of conditional region-specific mutants (striatal K-CREB mice), will be illustrated as examples. Novel object recognition (NOR), developed by Ennaceur and Delacour in 1988, is instead a more recent and highly ecological test, which relies on the natural tendency of rodents to spontaneously approach and explore novel objects, representing hence a useful non-stressful tool for the study of memory in animals without the employment of punishments or starvation/water restriction regimens. Careful indications will be given on how to select the positions for the novel object, in order to counterbalance for individual side preferences among mice during the training. Finally, the methods for calculating two learning indexes will be described. In addition to the classical discrimination index (DI) that measures the ability of an animal to discriminate between two different objects which are presented at the same time, we will describe the formula of a new index

  2. Proceedings from the 2009 Genetic Syndromes of the Ras/MAPK Pathway: From Bedside to Bench and Back

    PubMed Central

    Rauen, Katherine A.; Schoyer, Lisa; McCormick, Frank; Lin, Angela E.; Allanson, Judith E.; Stevenson, David A.; Gripp, Karen W.; Neri, Giovanni; Carey, John C.; Legius, Eric; Tartaglia, Marco; Schubbert, Suzanne; Roberts, Amy E.; Gelb, Bruce D.; Shannon, Kevin; Gutmann, David H.; McMahon, Martin; Guerra, Carmen; Fagin, James A.; Yu, Benjamin; Aoki, Yoko; Neel, Ben G.; Balmain, Allan; Drake, Richard R.; Nolan, Garry P.; Zenker, Martin; Bollag, Gideon; Sebolt-Leopold, Judith; Gibbs, Jackson B.; Silva, Alcino J.; Patton, E. Elizabeth; Viskochil, David H.; Kieran, Mark W.; Korf, Bruce R.; Hagerman, Randi J.; Packer, Roger J.; Melese, Teri

    2012-01-01

    The RASopathies are a group of genetic syndromes caused by germline mutations in genes that encode components of the Ras/mitogen-activated protein kinase (MAPK) pathway. Some of these syndromes are neurofibromatosis type 1, Noonan syndrome, Costello syndrome, cardio-facio-cutaneous syndrome, LEOPARD syndrome and Legius syndrome. Their common underlying pathogenetic mechanism brings about significant overlap in phenotypic features and includes craniofacial dysmorphology, cardiac, cutaneous, musculoskeletal, GI and ocular abnormalities, and a predisposition to cancer. The proceedings from the symposium “Genetic Syndromes of the Ras/MAPK Pathway: From Bedside to Bench and Back” chronicle the timely and typical research symposium which brought together clinicians, basic scientists, physician-scientists, advocate leaders, trainees, students and individuals with Ras syndromes and their families. The goals, to discuss basic science and clinical issues, to set forth a solid framework for future research, to direct translational applications towards therapy and to set forth best practices for individuals with RASopathies was successfully meet with a commitment to begin to move towards clinical trials. PMID:20014119

  3. Quantification of growth factor signaling and pathway cross talk by live-cell imaging.

    PubMed

    Gross, Sean M; Rotwein, Peter

    2017-03-01

    Peptide growth factors stimulate cellular responses through activation of their transmembrane receptors. Multiple intracellular signaling cascades are engaged following growth factor-receptor binding, leading to short- and long-term biological effects. Each receptor-activated signaling pathway does not act in isolation but rather interacts at different levels with other pathways to shape signaling networks that are distinctive for each growth factor. To gain insights into the specifics of growth factor-regulated interactions among different signaling cascades, we developed a HeLa cell line stably expressing fluorescent live-cell imaging reporters that are readouts for two major growth factor-stimulated pathways, Ras-Raf-Mek-ERK and phosphatidylinositol (PI) 3-kinase-Akt. Incubation of cells with epidermal growth factor (EGF) resulted in rapid, robust, and sustained ERK signaling but shorter-term activation of Akt. In contrast, hepatocyte growth factor induced sustained Akt signaling but weak and short-lived ERK activity, and insulin-like growth factor-I stimulated strong long-term Akt responses but negligible ERK signaling. To address potential interactions between signaling pathways, we employed specific small-molecule inhibitors. In cells incubated with EGF or platelet-derived growth factor-AA, Raf activation and the subsequent stimulation of ERK reduced Akt signaling, whereas Mek inhibition, which blocked ERK activation, enhanced Akt and turned transient effects into sustained responses. Our results reveal that individual growth factors initiate signaling cascades that vary markedly in strength and duration and demonstrate in living cells the dramatic effects of cross talk from Raf and Mek to PI 3-kinase and Akt. Our data further indicate how specific growth factors can encode distinct cellular behaviors by promoting complex interactions among signaling pathways. Copyright © 2017 the American Physiological Society.

  4. K-ras mutation promotes ionizing radiation-induced invasion and migration of lung cancer in part via the Cathepsin L/CUX1 pathway.

    PubMed

    Wang, Long; Zhao, Yifan; Xiong, Yajie; Wang, Wenjuan; Fei, Yao; Tan, Caihong; Liang, Zhongqin

    2018-01-15

    /CUX1-mediated EMT signaling pathway. This study will provide cathepsin L as a potential target for tumor therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Epac activation sensitizes rat sensory neurons through activation of Ras.

    PubMed

    Shariati, Behzad; Thompson, Eric L; Nicol, Grant D; Vasko, Michael R

    2016-01-01

    Guanine nucleotide exchange factors directly activated by cAMP (Epacs) have emerged as important signaling molecules mediating persistent hypersensitivity in animal models of inflammation, by augmenting the excitability of sensory neurons. Although Epacs activate numerous downstream signaling cascades, the intracellular signaling which mediates Epac-induced sensitization of capsaicin-sensitive sensory neurons remains unknown. Here, we demonstrate that selective activation of Epacs with 8-CPT-2'-O-Me-cAMP-AM (8CPT-AM) increases the number of action potentials (APs) generated by a ramp of depolarizing current and augments the evoked release of calcitonin gene-related peptide (CGRP) from isolated rat sensory neurons. Internal perfusion of capsaicin-sensitive sensory neurons with GDP-βS, substituted for GTP, blocks the ability of 8CPT-AM to increase AP firing, demonstrating that Epac-induced sensitization is G-protein dependent. Treatment with 8CPT-AM activates the small G-proteins Rap1 and Ras in cultures of sensory neurons. Inhibition of Rap1, by internal perfusion of a Rap1-neutralizing antibody or through a reduction in the expression of the protein using shRNA does not alter the Epac-induced enhancement of AP generation or CGRP release, despite the fact that in most other cell types, Epacs act as Rap-GEFs. In contrast, inhibition of Ras through expression of a dominant negative Ras (DN-Ras) or through internal perfusion of a Ras-neutralizing antibody blocks the increase in AP firing and attenuates the increase in the evoked release of CGRP induced by Epac activation. Thus, in this subpopulation of nociceptive sensory neurons, it is the novel interplay between Epacs and Ras, rather than the canonical Epacs and Rap1 pathway, that is critical for mediating Epac-induced sensitization. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Epac activation sensitizes rat sensory neurons via activation of Ras

    PubMed Central

    Shariati, Behzad; Thompson, Eric L.; Nicol, Grant D.; Vasko, Michael R.

    2015-01-01

    Guanine nucleotide exchange factors directly activated by cAMP (Epacs) have emerged as important signaling molecules mediating persistent hypersensitivity in animal models of inflammation, by augmenting the excitability of sensory neurons. Although Epacs activate numerous downstream signaling cascades, the intracellular signaling which mediates Epac-induced sensitization of capsaicin-sensitive sensory neurons remains unknown. Here, we demonstrate that selective activation of Epacs with 8-CPT-2′-O-Me-cAMP-AM (8CPT-AM) increases the number of action potentials (APs) generated by a ramp of depolarizing current and augments the evoked release of calcitonin gene-related peptide (CGRP) from isolated rat sensory neurons. Internal perfusion of capsaicin-sensitive sensory neurons with GDP-βS, substituted for GTP, blocks the ability of 8CPT-AM to increase AP firing, demonstrating that Epac-induced sensitization is G-protein dependent. Treatment with 8CPT-AM activates the small G-proteins Rap1 and Ras in cultures of sensory neurons. Inhibition of Rap1, by internal perfusion of a Rap1-neutralizing antibody or through a reduction in the expression of the protein using shRNA does not alter the Epac-induced enhancement of AP generation or CGRP release, despite the fact that in most other cell types, Epacs act as Rap-GEFs. In contrast, inhibition of Ras through expression of a dominant negative Ras (DN-Ras) or through internal perfusion of a Ras-neutralizing antibody blocks the increase in AP firing and attenuates the increase in the evoked release of CGRP induced by Epac activation. Thus, in this subpopulation of nociceptive sensory neurons, it is the novel interplay between Epacs and Ras, rather than the canonical Epacs and Rap1 pathway, that is critical for mediating Epac-induced sensitization. PMID:26596174

  7. Trabecular meshwork ECM remodeling in glaucoma: could RAS be a target?

    PubMed

    Agarwal, Puneet; Agarwal, Renu

    2018-06-14

    Disturbances of extracellular matrix (ECM) homeostasis in trabecular meshwork (TM) cause increased aqueous outflow resistance leading to elevated intraocular pressure (IOP) in glaucomatous eyes. Therefore, restoration of ECM homeostasis is a rational approach to prevent disease progression. Since renin-angiotensin system (RAS) inhibition positively alters ECM homeostasis in cardiovascular pathologies involving pressure and volume overload, it is likely that RAS inhibitors reduce IOP primarily by restoring ECM homeostasis. Areas covered: Current evidence showing the presence of RAS components in ocular tissue and its role in regulating aqueous humor dynamics is briefly summarized. The role of RAS in ECM remodeling is discussed both in terms of its effects on ECM synthesis and its breakdown. The mechanisms of ECM remodeling involving interactions of RAS with transforming growth factor-β, Wnt/β-catenin signaling, bone morphogenic proteins, connective tissue growth factor, and matrix metalloproteinases in ocular tissue are discussed. Expert opinion: Current literature strongly indicates a significant role of RAS in ECM remodeling in TM of hypertensive eyes. Hence, IOP-lowering effect of RAS inhibitors may primarily be attributed to restoration of ECM homeostasis in aqueous outflow pathways rather than its vascular effects. However, the mechanistic targets for RAS inhibitors have much wider distribution and consequences, which remain relatively unexplored in TM.

  8. Structure of the Dominant Negative S17N Mutant of Ras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nassar, N.; Singh, K; Garcia-Diaz, M

    2010-01-01

    The use of the dominant negative mutant of Ras has been crucial in elucidating the cellular signaling of Ras in response to the activation of various membrane-bound receptors. Although several point mutants of Ras exhibit a dominant negative effect, the asparagine to serine mutation at position 17 (S17N) remains the most popular and the most effective at inhibiting the activation of endogenous Ras. It is now widely accepted that the dominant negative effect is due to the ability of the mutant to sequester upstream activators and its inability to activate downstream effectors. Here, we present the crystal structure of RasS17Nmore » in the GDP-bound form. In the three molecules that populate the asymmetric unit, the Mg{sup 2+} ion that normally coordinates the {beta}-phosphate is absent because of steric hindrance from the Asn17 side chain. Instead, a Ca{sup 2+} ion is coordinating the {alpha}-phosphate. Also absent from one molecule is electron density for Phe28, a conserved residue that normally stabilizes the nucleotide's guanine base. Except for Phe28, the nucleotide makes conserved interactions with Ras. Combined, the inability of Phe28 to stabilize the guanine base and the absence of a Mg{sup 2+} ion to neutralize the negative charges on the phosphates explain the weaker affinity of GDP for Ras. Our data suggest that the absence of the Mg{sup 2+} should also dramatically affect GTP binding to Ras and the proper positioning of Thr35 necessary for the activation of switch 1 and the binding to downstream effectors, a prerequisite for the triggering of signaling pathways.« less

  9. Studying the Immunomodulatory Effects of Small Molecule Ras-Inhibitors in Animal Models of Rheumatoid Arthritis

    DTIC Science & Technology

    2015-10-01

    Studying the Immunomodulatory Effects of Small Molecule Ras-Inhibitors in Animal Models of Rheumatoid Arthritis 5a. CONTRACT NUMBER 5b. GRANT NUMBER...Importantly, T cells from patients with Rheumatoid Arthritis (RA) display augmented activation of the Ras/Raf/MEK/ERK1/2 signaling pathway, and...analysis. The proposed project is highly relevant to the FY13 PRMRP topic area of Rheumatoid Arthritis (RA). The short-term impact of our research will

  10. Traditional Chinese medicine suppresses left ventricular hypertrophy by targeting extracellular signal-regulated kinases signaling pathway in spontaneously hypertensive rats

    PubMed Central

    Xiong, Xingjiang; Yang, Xiaochen; Duan, Lian; Liu, Wei; Zhang, Yun; Liu, Yongmei; Wang, Pengqian; Li, Shengjie; Li, Xiaoke

    2017-01-01

    Chinese herbal medicine Bu-Shen-Jiang-Ya decoction (BSJYD) is reported to be beneficial for hypertension. Over expression of extracellular signal regulated kinases (ERK) pathway plays an important role in left ventricular hypertrophy (LVH). This study aimed to observe effects of BSJYD on LVH in spontaneously hypertensive rats (SHRs) and explore its possible mechanism on regulation of ERK pathway. Sixty 12-week-old SHRs were randomly allocated into 5 groups: BSJYD high dose group, middle dose group, low dose group, captopril group, and control group. Besides, a control group of Wistar-Kyoto rats was established. All rats were treated for 8 weeks. Systolic blood pressure (SBP), heart rate (HR), pathology, and left ventricular mass index (LVMI) were measured. Western blotting and Real-time PCR were used to assess the expressions of BDNF, Ras, ERK1/2, and c-fox levels. SBP and HR were significantly decreased compared with the control group and LVMI was markedly improved by BSJYD treatment in a dose-dependent manner. BSJYD inhibited the expression of BDNF, Ras, ERK1/2, and c-fox mRNA in LVH. In conclusion, BSJYD suppressed hypertension-induced cardiac hypertrophy by inhibiting the expression of ERK pathway. These changes in gene expression may be a possible mechanism by which BSJYD provides myocardial protection from hypertension. PMID:28225023

  11. The third international meeting on genetic disorders in the RAS/MAPK pathway: towards a therapeutic approach.

    PubMed

    Korf, Bruce; Ahmadian, Reza; Allanson, Judith; Aoki, Yoko; Bakker, Annette; Wright, Emma Burkitt; Denger, Brian; Elgersma, Ype; Gelb, Bruce D; Gripp, Karen W; Kerr, Bronwyn; Kontaridis, Maria; Lazaro, Conxi; Linardic, Corinne; Lozano, Reymundo; MacRae, Calum A; Messiaen, Ludwine; Mulero-Navarro, Sonia; Neel, Benjamin; Plotkin, Scott; Rauen, Katherine A; Roberts, Amy; Silva, Alcino J; Sittampalam, Sitta G; Zhang, Chao; Schoyer, Lisa

    2015-08-01

    "The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Towards a Therapeutic Approach" was held at the Renaissance Orlando at SeaWorld Hotel (August 2-4, 2013). Seventy-one physicians and scientists attended the meeting, and parallel meetings were held by patient advocacy groups (CFC International, Costello Syndrome Family Network, NF Network and Noonan Syndrome Foundation). Parent and patient advocates opened the meeting with a panel discussion to set the stage regarding their hopes and expectations for therapeutic advances. In keeping with the theme on therapeutic development, the sessions followed a progression from description of the phenotype and definition of therapeutic endpoints, to definition of genomic changes, to identification of therapeutic targets in the RAS/MAPK pathway, to preclinical drug development and testing, to clinical trials. These proceedings will review the major points of discussion. © 2015 Wiley Periodicals, Inc.

  12. Adaptation of a RAS pathway activation signature from FF to FFPE tissues in colorectal cancer.

    PubMed

    Omolo, Bernard; Yang, Mingli; Lo, Fang Yin; Schell, Michael J; Austin, Sharon; Howard, Kellie; Madan, Anup; Yeatman, Timothy J

    2016-10-19

    The KRAS gene is mutated in about 40 % of colorectal cancer (CRC) cases, which has been clinically validated as a predictive mutational marker of intrinsic resistance to anti-EGFR inhibitor (EGFRi) therapy. Since nearly 60 % of patients with a wild type KRAS fail to respond to EGFRi combination therapies, there is a need to develop more reliable molecular signatures to better predict response. Here we address the challenge of adapting a gene expression signature predictive of RAS pathway activation, created using fresh frozen (FF) tissues, for use with more widely available formalin fixed paraffin-embedded (FFPE) tissues. In this study, we evaluated the translation of an 18-gene RAS pathway signature score from FF to FFPE in 54 CRC cases, using a head-to-head comparison of five technology platforms. FFPE-based technologies included the Affymetrix GeneChip (Affy), NanoString nCounter™ (NanoS), Illumina whole genome RNASeq (RNA-Acc), Illumina targeted RNASeq (t-RNA), and Illumina stranded Total RNA-rRNA-depletion (rRNA). Using Affy_FF as the "gold" standard, initial analysis of the 18-gene RAS scores on all 54 samples shows varying pairwise Spearman correlations, with (1) Affy_FFPE (r = 0.233, p = 0.090); (2) NanoS_FFPE (r = 0.608, p < 0.0001); (3) RNA-Acc_FFPE (r = 0.175, p = 0.21); (4) t-RNA_FFPE (r = -0.237, p = 0.085); (5) and t-RNA (r = -0.012, p = 0.93). These results suggest that only NanoString has successful FF to FFPE translation. The subsequent removal of identified "problematic" samples (n = 15) and genes (n = 2) further improves the correlations of Affy_FF with three of the five technologies: Affy_FFPE (r = 0.672, p < 0.0001); NanoS_FFPE (r = 0.738, p < 0.0001); and RNA-Acc_FFPE (r = 0.483, p = 0.002). Of the five technology platforms tested, NanoString technology provides a more faithful translation of the RAS pathway gene expression signature from FF to FFPE than the Affymetrix

  13. Reactivation of Mitogen-activated Protein Kinase (MAPK) Pathway by FGF Receptor 3 (FGFR3)/Ras Mediates Resistance to Vemurafenib in Human B-RAF V600E Mutant Melanoma*

    PubMed Central

    Yadav, Vipin; Zhang, Xiaoyi; Liu, Jiangang; Estrem, Shawn; Li, Shuyu; Gong, Xue-Qian; Buchanan, Sean; Henry, James R.; Starling, James J.; Peng, Sheng-Bin

    2012-01-01

    Oncogenic B-RAF V600E mutation is found in 50% of melanomas and drives MEK/ERK pathway and cancer progression. Recently, a selective B-RAF inhibitor, vemurafenib (PLX4032), received clinical approval for treatment of melanoma with B-RAF V600E mutation. However, patients on vemurafenib eventually develop resistance to the drug and demonstrate tumor progression within an average of 7 months. Recent reports indicated that multiple complex and context-dependent mechanisms may confer resistance to B-RAF inhibition. In the study described herein, we generated B-RAF V600E melanoma cell lines of acquired-resistance to vemurafenib, and investigated the underlying mechanism(s) of resistance. Biochemical analysis revealed that MEK/ERK reactivation through Ras is the key resistance mechanism in these cells. Further analysis of total gene expression by microarray confirmed a significant increase of Ras and RTK gene signatures in the vemurafenib-resistant cells. Mechanistically, we found that the enhanced activation of fibroblast growth factor receptor 3 (FGFR3) is linked to Ras and MAPK activation, therefore conferring vemurafenib resistance. Pharmacological or genetic inhibition of the FGFR3/Ras axis restored the sensitivity of vemurafenib-resistant cells to vemurafenib. Additionally, activation of FGFR3 sufficiently reactivated Ras/MAPK signaling and conferred resistance to vemurafenib in the parental B-RAF V600E melanoma cells. Finally, we demonstrated that vemurafenib-resistant cells maintain their addiction to the MAPK pathway, and inhibition of MEK or pan-RAF activities is an effective therapeutic strategy to overcome acquired-resistance to vemurafenib. Together, we describe a novel FGFR3/Ras mediated mechanism for acquired-resistance to B-RAF inhibition. Our results have implications for the development of new therapeutic strategies to improve the outcome of patients with B-RAF V600E melanoma. PMID:22730329

  14. Structural Dynamics in Ras and Related Proteins upon Nucleotide Switching.

    PubMed

    Harrison, Rane A; Lu, Jia; Carrasco, Martin; Hunter, John; Manandhar, Anuj; Gondi, Sudershan; Westover, Kenneth D; Engen, John R

    2016-11-20

    Structural dynamics of Ras proteins contributes to their activity in signal transduction cascades. Directly targeting Ras proteins with small molecules may rely on the movement of a conserved structural motif, switch II. To understand Ras signaling and advance Ras-targeting strategies, experimental methods to measure Ras dynamics are required. Here, we demonstrate the utility of hydrogen-deuterium exchange (HDX) mass spectrometry (MS) to measure Ras dynamics by studying representatives from two branches of the Ras superfamily, Ras and Rho. A comparison of differential deuterium exchange between active (GMPPNP-bound) and inactive (GDP-bound) proteins revealed differences between the families, with the most notable differences occurring in the phosphate-binding loop and switch II. The P-loop exchange signature correlated with switch II dynamics observed in molecular dynamics simulations focused on measuring main-chain movement. HDX provides a means of evaluating Ras protein dynamics, which may be useful for understanding the mechanisms of Ras signaling, including activated signaling of pathologic mutants, and for targeting strategies that rely on protein dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A Model for Direction Sensing in Dictyostelium discoideum: Ras Activity and Symmetry Breaking Driven by a Gβγ-Mediated, Gα2-Ric8 -- Dependent Signal Transduction Network

    PubMed Central

    Cheng, Yougan; Othmer, Hans

    2016-01-01

    Chemotaxis is a dynamic cellular process, comprised of direction sensing, polarization and locomotion, that leads to the directed movement of eukaryotic cells along extracellular gradients. As a primary step in the response of an individual cell to a spatial stimulus, direction sensing has attracted numerous theoretical treatments aimed at explaining experimental observations in a variety of cell types. Here we propose a new model of direction sensing based on experiments using Dictyostelium discoideum (Dicty). The model is built around a reaction-diffusion-translocation system that involves three main component processes: a signal detection step based on G-protein-coupled receptors (GPCR) for cyclic AMP (cAMP), a transduction step based on a heterotrimetic G protein Gα2βγ, and an activation step of a monomeric G-protein Ras. The model can predict the experimentally-observed response of cells treated with latrunculin A, which removes feedback from downstream processes, under a variety of stimulus protocols. We show that Gα2βγ cycling modulated by Ric8, a nonreceptor guanine exchange factor for Gα2 in Dicty, drives multiple phases of Ras activation and leads to direction sensing and signal amplification in cAMP gradients. The model predicts that both Gα2 and Gβγ are essential for direction sensing, in that membrane-localized Gα2*, the activated GTP-bearing form of Gα2, leads to asymmetrical recruitment of RasGEF and Ric8, while globally-diffusing Gβγ mediates their activation. We show that the predicted response at the level of Ras activation encodes sufficient ‘memory’ to eliminate the ‘back-of-the wave’ problem, and the effects of diffusion and cell shape on direction sensing are also investigated. In contrast with existing LEGI models of chemotaxis, the results do not require a disparity between the diffusion coefficients of the Ras activator GEF and the Ras inhibitor GAP. Since the signal pathways we study are highly conserved between Dicty

  16. Magnolol suppresses vascular endothelial growth factor-induced angiogenesis by inhibiting Ras-dependent mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways.

    PubMed

    Kim, Ki Mo; Kim, No Soo; Kim, Jinhee; Park, Jong-Shik; Yi, Jin Mu; Lee, Jun; Bang, Ok-Sun

    2013-01-01

    Magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, has been reported to possess anticancer activity. Recent studies have also demonstrated that magnolol inhibits cell growth and induces the apoptosis of cancer cells. However, the effects of magnolol on vascular endothelial growth factor (VEGF)-induced angiogenesis in endothelial cells have not been studied. In the present study, we have used human umbilical vein endothelial cells (HUVECs) to investigate the antiangiogenic effect and molecular mechanism of magnolol. Magnolol inhibited the VEGF-induced proliferation, chemotactic motility and tube formation of HUVECs in vitro as well as the vessel sprouting of the aorta ex vivo. Furthermore, magnolol inhibited VEGF-induced Ras activation and subsequently suppressed extracellular signal-regulated kinase (ERK), phosphatidylinositol-3-kinase (PI3K)/Akt and p38, but not Src and focal adhesion kinase (FAK). Interestingly, the knockdown of Ras by short interfering RNA produced inhibitory effects that were similar to the effects of magnolol on VEGF-induced angiogenic signaling events, such as ERK and Akt/eNOS activation, and resulted in the inhibition of proliferation, migration, and vessel sprouting in HUVECs. In combination, these results demonstrate that magnolol is an inhibitor of angiogenesis and suggest that this compound could be a potential candidate in the treatment of angiogenesis-related diseases.

  17. Long Glucocorticoid-induced Leucine Zipper (L-GILZ) Protein Interacts with Ras Protein Pathway and Contributes to Spermatogenesis Control*

    PubMed Central

    Bruscoli, Stefano; Velardi, Enrico; Di Sante, Moises; Bereshchenko, Oxana; Venanzi, Alessandra; Coppo, Maddalena; Berno, Valeria; Mameli, Maria Grazia; Colella, Renato; Cavaliere, Antonio; Riccardi, Carlo

    2012-01-01

    Correct function of spermatogonia is critical for the maintenance of spermatogenesis throughout life, but the cellular pathways regulating undifferentiated spermatogonia proliferation, differentiation, and survival are only partially known. We show here that long glucocorticoid-induced leucine zipper (L-GILZ) is highly expressed in spermatogonia and primary spermatocytes and controls spermatogenesis. Gilz deficiency in knock-out (gilz KO) mice leads to a complete loss of germ cell lineage within first cycles of spermatogenesis, resulting in male sterility. Spermatogenesis failure is intrinsic to germ cells and is associated with increased proliferation and aberrant differentiation of undifferentiated spermatogonia and with hyperactivity of Ras signaling pathway as indicated by an increase of ERK and Akt phosphorylation. Spermatogonia differentiation does not proceed beyond the prophase of the first meiotic division due to massive apoptosis associated with accumulation of unrepaired chromosomal damage. These results identify L-GILZ as a novel important factor for undifferentiated spermatogonia function and spermatogenesis. PMID:22110132

  18. Relapsed neuroblastomas show frequent RAS-MAPK pathway mutations | Office of Cancer Genomics

    Cancer.gov

    The majority of patients with neuroblastoma have tumors that initially respond to chemotherapy, but a large proportion will experience therapy-resistant relapses. The molecular basis of this aggressive phenotype is unknown. Whole-genome sequencing of 23 paired diagnostic and relapse neuroblastomas showed clonal evolution from the diagnostic tumor, with a median of 29 somatic mutations unique to the relapse sample. Eighteen of the 23 relapse tumors (78%) showed mutations predicted to activate the RAS-MAPK pathway.

  19. Functional signaling pathway analysis of lung adenocarcinomas identifies novel therapeutic targets for KRAS mutant tumors

    PubMed Central

    Baldelli, Elisa; Bellezza, Guido; Haura, Eric B.; Crinó, Lucio; Cress, W. Douglas; Deng, Jianghong; Ludovini, Vienna; Sidoni, Angelo; Schabath, Matthew B.; Puma, Francesco; Vannucci, Jacopo; Siggillino, Annamaria; Liotta, Lance A.; Petricoin, Emanuel F.; Pierobon, Mariaelena

    2015-01-01

    Little is known about the complex signaling architecture of KRAS and the interconnected RAS-driven protein-protein interactions, especially as it occurs in human clinical specimens. This study explored the activated and interconnected signaling network of KRAS mutant lung adenocarcinomas (AD) to identify novel therapeutic targets. Thirty-four KRAS mutant (MT) and twenty-four KRAS wild-type (WT) frozen biospecimens were obtained from surgically treated lung ADs. Samples were subjected to laser capture microdissection and reverse phase protein microarray analysis to explore the expression/activation levels of 150 signaling proteins along with co-activation concordance mapping. An independent set of 90 non-small cell lung cancers (NSCLC) was used to validate selected findings by immunohistochemistry (IHC). Compared to KRAS WT tumors, the signaling architecture of KRAS MT ADs revealed significant interactions between KRAS downstream substrates, the AKT/mTOR pathway, and a number of Receptor Tyrosine Kinases (RTK). Approximately one-third of the KRAS MT tumors had ERK activation greater than the WT counterpart (p<0.01). Notably 18% of the KRAS MT tumors had elevated activation of the Estrogen Receptor alpha (ER-α) (p=0.02). This finding was verified in an independent population by IHC (p=0.03). KRAS MT lung ADs appear to have a more intricate RAS linked signaling network than WT tumors with linkage to many RTKs and to the AKT-mTOR pathway. Combination therapy targeting different nodes of this network may be necessary to treat this group of patients. In addition, for patients with KRAS MT tumors and activation of the ER-α, anti-estrogen therapy may have important clinical implications. PMID:26468985

  20. The R-Ras/RIN2/Rab5 complex controls endothelial cell adhesion and morphogenesis via active integrin endocytosis and Rac signaling

    PubMed Central

    Sandri, Chiara; Caccavari, Francesca; Valdembri, Donatella; Camillo, Chiara; Veltel, Stefan; Santambrogio, Martina; Lanzetti, Letizia; Bussolino, Federico; Ivaska, Johanna; Serini, Guido

    2012-01-01

    During developmental and tumor angiogenesis, semaphorins regulate blood vessel navigation by signaling through plexin receptors that inhibit the R-Ras subfamily of small GTPases. R-Ras is mainly expressed in vascular cells, where it induces adhesion to the extracellular matrix (ECM) through unknown mechanisms. We identify the Ras and Rab5 interacting protein RIN2 as a key effector that in endothelial cells interacts with and mediates the pro-adhesive and -angiogenic activity of R-Ras. Both R-Ras-GTP and RIN2 localize at nascent ECM adhesion sites associated with lamellipodia. Upon binding, GTP-loaded R-Ras converts RIN2 from a Rab5 guanine nucleotide exchange factor (GEF) to an adaptor that first interacts at high affinity with Rab5-GTP to promote the selective endocytosis of ligand-bound/active β1 integrins and then causes the translocation of R-Ras to early endosomes. Here, the R-Ras/RIN2/Rab5 signaling module activates Rac1-dependent cell adhesion via TIAM1, a Rac GEF that localizes on early endosomes and is stimulated by the interaction with both Ras proteins and the vesicular lipid phosphatidylinositol 3-monophosphate. In conclusion, the ability of R-Ras-GTP to convert RIN2 from a GEF to an adaptor that preferentially binds Rab5-GTP allows the triggering of the endocytosis of ECM-bound/active β1 integrins and the ensuing funneling of R-Ras-GTP toward early endosomes to elicit the pro-adhesive and TIAM1-mediated activation of Rac1. PMID:22825554

  1. [Design of new anti-tumor agents interrupting deregulated signaling pathways induced by tyrosine kinase proteins. Inhibition of protein-protein interaction involving Grb2].

    PubMed

    Vidal, Michel; Liu, Wang Qing; Gril, Brunile; Assayag, Franck; Poupon, Marie-France; Garbay, Christiane

    2004-01-01

    Cellular signaling pathways induced by growth-factor receptors are frequently deregulated in cancer. Anti-tumor agents that inhibit their enzymatic tyrosine kinase activity have been designed and are now used in human chemotherapy. We propose here an alternative way to interrupt over-expressed signaling by inhibiting protein-protein interactions that involve either the over-expressed proteins or proteins located downstream. The adaptor protein Grb2 over-expressed in connection with HER2/ErbB2/neu in Ras signaling pathway was chosen as a target. Peptides with very high affinity for Grb2 were rationally designed from structural data. Their capacity to interrupt the signaling pathway, their anti-proliferative activity as well as their potential anti-tumor properties are described.

  2. Saccharomyces cerevisiae Ras/cAMP pathway controls post-diauxic shift element-dependent transcription through the zinc finger protein Gis1

    PubMed Central

    Pedruzzi, Ivo; Bürckert, Niels; Egger, Pascal; De Virgilio, Claudio

    2000-01-01

    The Saccharomyces cerevisiae protein kinase Rim15 was identified previously as a component of the Ras/cAMP pathway acting immediately downstream of cAMP-dependent protein kinase (cAPK) to control a broad range of adaptations in response to nutrient limitation. Here, we show that the zinc finger protein Gis1 acts as a dosage-dependent suppressor of the rim15Δ defect in nutrient limitation-induced transcriptional derepression of SSA3. Loss of Gis1 results in a defect in transcriptional derepression upon nutrient limitation of various genes that are negatively regulated by the Ras/cAMP pathway (e.g. SSA3, HSP12 and HSP26). Tests of epistasis as well as transcriptional analyses of Gis1-dependent expression indicate that Gis1 acts in this pathway downstream of Rim15 to mediate transcription from the previously identified post-diauxic shift (PDS) element. Accordingly, deletion of GIS1 partially suppresses, and overexpression of GIS1 exacerbates the growth defect of mutant cells that are compromised for cAPK activity. Moreover, PDS element-driven expression, which is negatively regulated by the Ras/cAMP pathway and which is induced upon nutrient limitation, is almost entirely dependent on the presence of Gis1. PMID:10835355

  3. [Enhanced growth inhibition by combined two pathway inhibitors on K-ras mutated non-small cell lung cancer cells].

    PubMed

    Yang, Zhenli; Li, Zhanwen; Feng, Hailiang; Bian, Xiaocui; Liu, Yanyan; Liu, Yuqin

    2014-09-01

    To evaluate the effect of combined targeting of MEK and PI3K signaling pathways on K-ras mutated non-small cell lung cancer cell line A549 cells and the relevant mechanisms. A549 cells were treated with different concentrations of two inhibitors. Growth inhibition was determined by MTT assay. According to the results of MTT test, the cells were divided into four groups: the control group, PI3K inhibitor group (GDC-0941,0.5 and 5.0 µmol/L), combination group I (0.5 µmol/L AZD6244+0.5 µmol/L GDC-0941) and combination group II (5.0 µmol/L AZD6244+5.0 µmol/L GDC-0941). The cell cycle and apoptosis were analyzed by flow cytometry. The expression of proteins related to apoptosis was tested with Western blot. Both GDC-0941 and AZD6244 inhibited the cell proliferation. The combination group II led to a stronger growth inhibition. The combination group I showed an antagonistic effect and combination group II showed an additive or synergistic effect. Compared with the control group, the combination group I led to reduced apoptotic rate [(20.70 ± 0.99)% vs. (18.65 ± 0.92 )%, P > 0.05]; Combination group II exhibited enhanced apoptotic rate [(37.85 ± 3.18)% vs. (52.27 ± 4.36)%, P < 0.01]. In addition, in the combination group II, more A549 cells were arrested in G0/G1 phase and decreased S phase (P < 0.01), due to the reduced expressions of CyclinD1 and Cyclin B1, the increased cleaved PARP and the diminished ratio of Bcl-2/Bax. For single K-ras mutated NSCLC cell line A549 cells, combination of RAS/MEK/ERK and PI3K/AKT/mTOR inhibition showed synergistic effects depending on the drug doses. Double pathways targeted therapy may be beneficial for these patients.

  4. Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence.

    PubMed

    Nissan, Moriah H; Pratilas, Christine A; Jones, Alexis M; Ramirez, Ricardo; Won, Helen; Liu, Cailian; Tiwari, Shakuntala; Kong, Li; Hanrahan, Aphrothiti J; Yao, Zhan; Merghoub, Taha; Ribas, Antoni; Chapman, Paul B; Yaeger, Rona; Taylor, Barry S; Schultz, Nikolaus; Berger, Michael F; Rosen, Neal; Solit, David B

    2014-04-15

    Melanoma is a disease characterized by lesions that activate ERK. Although 70% of cutaneous melanomas harbor activating mutations in the BRAF and NRAS genes, the alterations that drive tumor progression in the remaining 30% are largely undefined. Vemurafenib, a selective inhibitor of RAF kinases, has clinical utility restricted to BRAF-mutant tumors. MEK inhibitors, which have shown clinical activity in NRAS-mutant melanoma, may be effective in other ERK pathway-dependent settings. Here, we investigated a panel of melanoma cell lines wild type for BRAF and NRAS to determine the genetic alteration driving their transformation and their dependence on ERK signaling in order to elucidate a candidate set for MEK inhibitor treatment. A cohort of the BRAF/RAS wild type cell lines with high levels of RAS-GTP had loss of NF1, a RAS GTPase activating protein. In these cell lines, the MEK inhibitor PD0325901 inhibited ERK phosphorylation, but also relieved feedback inhibition of RAS, resulting in induction of pMEK and a rapid rebound in ERK signaling. In contrast, the MEK inhibitor trametinib impaired the adaptive response of cells to ERK inhibition, leading to sustained suppression of ERK signaling and significant antitumor effects. Notably, alterations in NF1 frequently co-occurred with RAS and BRAF alterations in melanoma. In the setting of BRAF(V600E), NF1 loss abrogated negative feedback on RAS activation, resulting in elevated activation of RAS-GTP and resistance to RAF, but not MEK, inhibitors. We conclude that loss of NF1 is common in cutaneous melanoma and is associated with RAS activation, MEK-dependence, and resistance to RAF inhibition. ©2014 AACR.

  5. Electrochemical biosensor based on functional composite nanofibers for detection of K-ras gene via multiple signal amplification strategy.

    PubMed

    Wang, Xiaoying; Shu, Guofang; Gao, Chanchan; Yang, Yu; Xu, Qian; Tang, Meng

    2014-12-01

    An electrochemical biosensor based on functional composite nanofibers for hybridization detection of specific K-ras gene that is highly associated with colorectal cancer via multiple signal amplification strategy has been developed. The carboxylated multiwalled carbon nanotubes (MWCNTs) doped nylon 6 (PA6) composite nanofibers (MWCNTs-PA6) was prepared using electrospinning, which served as the nanosized backbone for thionine (TH) electropolymerization. The functional composite nanofibers [MWCNTs-PA6-PTH, where PTH is poly(thionine)] used as supporting scaffolds for single-stranded DNA1 (ssDNA1) immobilization can dramatically increase the amount of DNA attachment and the hybridization sensitivity. Through the hybridization reaction, a sandwich format of ssDNA1/K-ras gene/gold nanoparticle-labeled ssDNA2 (AuNPs-ssDNA2) was fabricated, and the AuNPs offered excellent electrochemical signal transduction. The signal amplification was further implemented by forming network-like thiocyanuric acid/gold nanoparticles (TA/AuNPs). A significant sensitivity enhancement was obtained; the detection limit was down to 30fM, and the discriminations were up to 54.3 and 51.9% between the K-ras gene and the one-base mismatched sequences including G/C and A/T mismatched bases, respectively. The amenability of this method to the analyses of K-ras gene from the SW480 colorectal cancer cell lysates was demonstrated. The results are basically consistent with those of the K-ras Kit (HRM: high-resolution melt). The method holds promise for the diagnosis and management of cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. T cell leukemia control via Ras-Raf pathway inhibition with peptides.

    PubMed

    Marin, G H; Rebollo, A; Bruzzoni-Giovanelli, H; Schinella, G; Piazzon, I; Duarte, A; Errecalde, J

    2017-01-01

    RAS-RAF-MEK-ERK pathway has been considered a promising target for anticancer therapy. However, tumor cells may develop resistance against such drugs via hyperactivation of N-Ras, which explains why novel therapeut-ic approaches. In this sense, the Institute Curie- Université Pierre et Marie Curie (Paris 6) designed peptides in order to disturb Ras/Raf interaction which showed pro-apoptotic properties. These peptides were patented as WO2015001045 A2 (PCT/EP2014/064243)5. In order to check the anti-tumoral action of WO2015001045 A2 peptides in a very aggressive BALB/c mice spontaneous leukemia called LB, we performed the present study. 50 BALB/c mice inoculated with 106 LB tumor cells were randomly assigned either to control (placebo) or treatment group (that daily received 3 mg of peptide per kg of mice) during 30 days. By day 15 only 24% of the control group was alive vs. 100% of the treatment group. The average survival in treated group was 20,27 days while in control group the mean survival was 15,48 days. Either bone marrow, spleen or axillary nodes demonstrated a higher level of malignant T cell presence compare with treated group (89,78% ; 95,64% & 77,68% versus 72,45%, 80,23% & 63.44% respectively for each organ inspected. Our study demonstrated an improvement in survival curves in mice model affected by spontaneous T lymphoid leukemia when peptides WO2015001045 A2 were used. These peptides might be a valid option to become part of the therapeutic armory for malignant lymphoproliferative diseases control.

  7. Binding of the Ras activator son of sevenless to insulin receptor substrate-1 signaling complexes.

    PubMed

    Baltensperger, K; Kozma, L M; Cherniack, A D; Klarlund, J K; Chawla, A; Banerjee, U; Czech, M P

    1993-06-25

    Signal transmission by insulin involves tyrosine phosphorylation of a major insulin receptor substrate (IRS-1) and exchange of Ras-bound guanosine diphosphate for guanosine triphosphate. Proteins containing Src homology 2 and 3 (SH2 and SH3) domains, such as the p85 regulatory subunit of phosphatidylinositol-3 kinase and growth factor receptor-bound protein 2 (GRB2), bind tyrosine phosphate sites on IRS-1 through their SH2 regions. Such complexes in COS cells were found to contain the heterologously expressed putative guanine nucleotide exchange factor encoded by the Drosophila son of sevenless gene (dSos). Thus, GRB2, p85, or other proteins with SH2-SH3 adapter sequences may link Sos proteins to IRS-1 signaling complexes as part of the mechanism by which insulin activates Ras.

  8. Transcriptome profiling of a Saccharomyces cerevisiae mutant with a constitutively activated Ras/cAMP pathway.

    PubMed

    Jones, D L; Petty, J; Hoyle, D C; Hayes, A; Ragni, E; Popolo, L; Oliver, S G; Stateva, L I

    2003-12-16

    Often changes in gene expression levels have been considered significant only when above/below some arbitrarily chosen threshold. We investigated the effect of applying a purely statistical approach to microarray analysis and demonstrated that small changes in gene expression have biological significance. Whole genome microarray analysis of a pde2Delta mutant, constructed in the Saccharomyces cerevisiae reference strain FY23, revealed altered expression of approximately 11% of protein encoding genes. The mutant, characterized by constitutive activation of the Ras/cAMP pathway, has increased sensitivity to stress, reduced ability to assimilate nonfermentable carbon sources, and some cell wall integrity defects. Applying the Munich Information Centre for Protein Sequences (MIPS) functional categories revealed increased expression of genes related to ribosome biogenesis and downregulation of genes in the cell rescue, defense, cell death and aging category, suggesting a decreased response to stress conditions. A reduced level of gene expression in the unfolded protein response pathway (UPR) was observed. Cell wall genes whose expression was affected by this mutation were also identified. Several of the cAMP-responsive orphan genes, upon further investigation, revealed cell wall functions; others had previously unidentified phenotypes assigned to them. This investigation provides a statistical global transcriptome analysis of the cellular response to constitutive activation of the Ras/cAMP pathway.

  9. [Intracellular signaling mechanisms in thyroid cancer].

    PubMed

    Mondragón-Terán, Paul; López-Hernández, Luz Berenice; Gutiérrez-Salinas, José; Suárez-Cuenca, Juan Antonio; Luna-Ceballos, Rosa Isela; Erazo Valle-Solís, Aura

    2016-01-01

    Thyroid cancer is the most common malignancy of the endocrine system, the papillary variant accounts for 80-90% of all diagnosed cases. In the development of papillary thyroid cancer, BRAF and RAS genes are mainly affected, resulting in a modification of the system of intracellular signaling proteins known as «protein kinase mitogen-activated» (MAPK) which consist of «modules» of internal signaling proteins (Receptor/Ras/Raf/MEK/ERK) from the cell membrane to the nucleus. In thyroid cancer, these signanling proteins regulate diverse cellular processes such as differentiation, growth, development and apoptosis. MAPK play an important role in the pathogenesis of thyroid cancer as they are used as molecular biomarkers for diagnostic, prognostic and as possible therapeutic molecular targets. Mutations in BRAF gene have been correlated with poor response to treatment with traditional chemotherapy and as an indicator of poor prognosis. To review the molecular mechanisms involved in intracellular signaling of BRAF and RAS genes in thyroid cancer. Molecular therapy research is in progress for this type of cancer as new molecules have been developed in order to inhibit any of the components of the signaling pathway (RET/PTC)/Ras/Raf/MEK/ERK; with special emphasis on the (RET/PTC)/Ras/Raf section, which is a major effector of ERK pathway. Copyright © 2016 Academia Mexicana de Cirugía A.C. Publicado por Masson Doyma México S.A. All rights reserved.

  10. K-Ras protein as a drug target.

    PubMed

    McCormick, Frank

    2016-03-01

    K-Ras proteins are major drivers of human cancers, playing a direct causal role in about one million cancer cases/year. In cancers driven by mutant K-Ras, the protein is locked in the active, GTP-bound state constitutively, through a defect in the off-switch mechanism. As such, the mutant protein resembles the normal K-Ras protein from a structural perspective, making therapeutic attack extremely challenging. K-Ras is a member of a large family of related proteins, which share very similar GDP/GTP-binding domains, making specific therapies more difficult. Furthermore, Ras proteins lack pockets to which small molecules can bind with high affinity, with a few interesting exceptions. However, new insights into the structure and function of K-Ras proteins reveal opportunities for intervention that were not appreciated many years ago, when efforts were launched to develop K-Ras therapies. Furthermore, K-Ras undergoes post-translational modification and interactions with cellular signaling proteins that present additional therapeutic opportunities, such as specific binding to calmodulin and regulation of non-canonical Wnt signaling.

  11. Inhibition of Ras for cancer treatment: the search continues

    PubMed Central

    Baines, Antonio T.; Xu, Dapeng; Der, Channing J.

    2012-01-01

    Background The RAS oncogenes (HRAS, NRAS and KRAS) comprise the most frequently mutated class of oncogenes in human cancers (33%), stimulating intensive effort in developing anti-Ras inhibitors for cancer treatment. Discussion Despite intensive effort, to date no effective anti-Ras strategies have successfully made it to the clinic. We present an overview of past and ongoing strategies to inhibit oncogenic Ras in cancer. Conclusions Since approaches to directly target mutant Ras have not been successful, most efforts have focused on indirect approaches to block Ras membrane association or downstream effector signaling. While inhibitors of effector signaling are currently under clinical evaluation, genome-wide unbiased genetic screens have identified novel directions for future anti-Ras drug discovery. PMID:22004085

  12. Supersensitive Ras activation in dendrites and spines revealed by two-photon fluorescence lifetime imaging.

    PubMed

    Yasuda, Ryohei; Harvey, Christopher D; Zhong, Haining; Sobczyk, Aleksander; van Aelst, Linda; Svoboda, Karel

    2006-02-01

    To understand the biochemical signals regulated by neural activity, it is necessary to measure protein-protein interactions and enzymatic activity in neuronal microcompartments such as axons, dendrites and their spines. We combined two-photon excitation laser scanning with fluorescence lifetime imaging to measure fluorescence resonance energy transfer at high resolutions in brain slices. We also developed sensitive fluorescent protein-based sensors for the activation of the small GTPase protein Ras with slow (FRas) and fast (FRas-F) kinetics. Using FRas-F, we found in CA1 hippocampal neurons that trains of back-propagating action potentials rapidly and reversibly activated Ras in dendrites and spines. The relationship between firing rate and Ras activation was highly nonlinear (Hill coefficient approximately 5). This steep dependence was caused by a highly cooperative interaction between calcium ions (Ca(2+)) and Ras activators. The Ras pathway therefore functions as a supersensitive threshold detector for neural activity and Ca(2+) concentration.

  13. K-RasG12D–induced T-cell lymphoblastic lymphoma/leukemias harbor Notch1 mutations and are sensitive to γ-secretase inhibitors

    PubMed Central

    Cornejo, Melanie G.; Scholl, Claudia; Liu, Jianing; Leeman, Dena S.; Haydu, J. Erika; Fröhling, Stefan; Lee, Benjamin H.; Gilliland, D. Gary

    2008-01-01

    To study the impact of oncogenic K-Ras on T-cell leukemia/lymphoma development and progression, we made use of a conditional K-RasG12D murine knockin model, in which oncogenic K-Ras is expressed from its endogenous promoter. Transplantation of whole bone marrow cells that express oncogenic K-Ras into wild-type recipient mice resulted in a highly penetrant, aggressive T-cell leukemia/lymphoma. The lymphoblasts were composed of a CD4/CD8 double-positive population that aberrantly expressed CD44. Thymi of primary donor mice showed reduced cellularity, and immunophenotypic analysis demonstrated a block in differentiation at the double-negative 1 stage. With progression of disease, approximately 50% of mice acquired Notch1 mutations within the PEST domain. Of note, primary lymphoblasts were hypersensitive to γ-secretase inhibitor treatment, which is known to impair Notch signaling. This inhibition was Notch-specific as assessed by down-regulation of Notch1 target genes and intracellular cleaved Notch. We also observed that the oncogenic K-Ras-induced T-cell disease was responsive to rapamycin and inhibitors of the RAS/MAPK pathway. These data indicate that patients with T-cell leukemia with K-Ras mutations may benefit from therapies that target the NOTCH pathway alone or in combination with inhibition of the PI3K/AKT/MTOR and RAS/MAPK pathways. PMID:18663146

  14. Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumorigenesis

    PubMed Central

    Mo, Lan; Zheng, Xiaoyong; Huang, Hong-Ying; Shapiro, Ellen; Lepor, Herbert; Cordon-Cardo, Carlos; Sun, Tung-Tien; Wu, Xue-Ru

    2007-01-01

    Although ras is a potent mitogenic oncogene, its tumorigenicity depends on cellular context and cooperative events. Here we show that low-level expression of a constitutively active Ha-ras in mouse urothelium induces simple urothelial hyperplasia that is resistant to progression to full-fledged bladder tumors even in the absence of Ink4a/Arf. In stark contrast, doubling of the gene dosage of the activated Ha-ras triggered early-onset, rapidly growing, and 100% penetrant tumors throughout the urinary tract. Tumor initiation required superseding a rate-limiting step between simple and nodular hyperplasia, the latter of which is marked by the emergence of mesenchymal components and the coactivation of AKT and STAT pathways as well as PTEN inactivation. These results indicate that overactivation of Ha-ras is both necessary and sufficient to induce bladder tumors along a low-grade, noninvasive papillary pathway, and they shed light on the recent findings that ras activation, via point mutation, overexpression, or intensified signaling from FGF receptor 3, occurs in 70%–90% of these tumors in humans. Our results highlight the critical importance of the dosage/strength of Ha-ras activation in dictating its tumorigenicity — a mechanism of oncogene activation not fully appreciated to date. Finally, our results have clinical implications, as inhibiting ras and/or its downstream effectors, such as AKT and STAT3/5, could provide alternative means to treat low-grade, superficial papillary bladder tumors, the most common tumor in the urinary system. PMID:17256055

  15. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement

    PubMed Central

    Sasaki, Atsuo T.; Chun, Cheryl; Takeda, Kosuke; Firtel, Richard A.

    2004-01-01

    During chemotaxis, receptors and heterotrimeric G-protein subunits are distributed and activated almost uniformly along the cell membrane, whereas PI(3,4,5)P3, the product of phosphatidylinositol 3-kinase (PI3K), accumulates locally at the leading edge. The key intermediate event that creates this strong PI(3,4,5)P3 asymmetry remains unclear. Here, we show that Ras is rapidly and transiently activated in response to chemoattractant stimulation and regulates PI3K activity. Ras activation occurs at the leading edge of chemotaxing cells, and this local activation is independent of the F-actin cytoskeleton, whereas PI3K localization is dependent on F-actin polymerization. Inhibition of Ras results in severe defects in directional movement, indicating that Ras is an upstream component of the cell's compass. These results support a mechanism by which localized Ras activation mediates leading edge formation through activation of basal PI3K present on the plasma membrane and other Ras effectors required for chemotaxis. A feedback loop, mediated through localized F-actin polymerization, recruits cytosolic PI3K to the leading edge to amplify the signal. PMID:15534002

  16. Signaling Pathways Regulating Redox Balance in Cancer Metabolism

    PubMed Central

    De Santis, Maria Chiara; Porporato, Paolo Ettore; Martini, Miriam; Morandi, Andrea

    2018-01-01

    The interplay between rewiring tumor metabolism and oncogenic driver mutations is only beginning to be appreciated. Metabolic deregulation has been described for decades as a bystander effect of genomic aberrations. However, for the biology of malignant cells, metabolic reprogramming is essential to tackle a harsh environment, including nutrient deprivation, reactive oxygen species production, and oxygen withdrawal. Besides the well-investigated glycolytic metabolism, it is emerging that several other metabolic fluxes are relevant for tumorigenesis in supporting redox balance, most notably pentose phosphate pathway, folate, and mitochondrial metabolism. The relationship between metabolic rewiring and mutant genes is still unclear and, therefore, we will discuss how metabolic needs and oncogene mutations influence each other to satisfy cancer cells’ demands. Mutations in oncogenes, i.e., PI3K/AKT/mTOR, RAS pathway, and MYC, and tumor suppressors, i.e., p53 and liver kinase B1, result in metabolic flexibility and may influence response to therapy. Since metabolic rewiring is shaped by oncogenic driver mutations, understanding how specific alterations in signaling pathways affect different metabolic fluxes will be instrumental for the development of novel targeted therapies. In the era of personalized medicine, the combination of driver mutations, metabolite levels, and tissue of origins will pave the way to innovative therapeutic interventions. PMID:29740540

  17. Signaling Pathways Regulating Redox Balance in Cancer Metabolism.

    PubMed

    De Santis, Maria Chiara; Porporato, Paolo Ettore; Martini, Miriam; Morandi, Andrea

    2018-01-01

    The interplay between rewiring tumor metabolism and oncogenic driver mutations is only beginning to be appreciated. Metabolic deregulation has been described for decades as a bystander effect of genomic aberrations. However, for the biology of malignant cells, metabolic reprogramming is essential to tackle a harsh environment, including nutrient deprivation, reactive oxygen species production, and oxygen withdrawal. Besides the well-investigated glycolytic metabolism, it is emerging that several other metabolic fluxes are relevant for tumorigenesis in supporting redox balance, most notably pentose phosphate pathway, folate, and mitochondrial metabolism. The relationship between metabolic rewiring and mutant genes is still unclear and, therefore, we will discuss how metabolic needs and oncogene mutations influence each other to satisfy cancer cells' demands. Mutations in oncogenes, i.e., PI3K/AKT/mTOR, RAS pathway, and MYC, and tumor suppressors, i.e., p53 and liver kinase B1, result in metabolic flexibility and may influence response to therapy. Since metabolic rewiring is shaped by oncogenic driver mutations, understanding how specific alterations in signaling pathways affect different metabolic fluxes will be instrumental for the development of novel targeted therapies. In the era of personalized medicine, the combination of driver mutations, metabolite levels, and tissue of origins will pave the way to innovative therapeutic interventions.

  18. Epidermal growth factor receptor and K-Ras in non-small cell lung cancer-molecular pathways involved and targeted therapies

    PubMed Central

    de Mello, Ramon Andrade; Marques, Dânia Sofia; Medeiros, Rui; Araújo, António MF

    2011-01-01

    Lung cancer is currently the leading cause of cancer death in Western nations. Non-small cell lung cancer (NSCLC) represents 80% of all lung cancers, and adenocarcinoma is the predominant histological type. Despite the intensive research carried out on this field and therapeutic advances, the overall prognosis of these patients remains unsatisfactory, with a 5-year overall survival rate of less than 15%. Nowadays, pharmacogenetics and pharmacogenomics represent the key to successful treatment. Recent studies suggest the existence of two distinct molecular pathways in the carcinogenesis of lung adenocarcinoma: one associated with smoking and activation of the K-Ras oncogene and the other not associated with smoking and activation of the epidermal growth factor receptor (EGFR). The K-ras mutation is mainly responsible for primary resistance to new molecules which inhibit tyrosine kinase EGFR (erlotinib and gefitinib) and most of the EGFR mutations are responsible for increased tumor sensitivity to these drugs. This article aims to conduct a systematic review of the literature regarding the molecular pathways involving the EGFR, K-Ras and EGFR targeted therapies in NSCLC tumor behavior. PMID:22087435

  19. Carcinogenicity assessment of the Hedgehog pathway inhibitor, vismodegib in Tg.rasH2 mice and Sprague-Dawley rats.

    PubMed

    Li, Jinze; Morinello, Eric; Larsen, Thomas; Frost, Denzil; Caro, Ivor; Gould, Stephen; Wong, Lisa; Hendricks, Angela; Dybdal, Noel; Dambach, Donna; Schutten, Melissa

    2018-02-01

    Vismodegib (also known as GDC-0449) is a novel small molecule inhibitor of the Hedgehog (Hh) signaling pathway currently approved for the treatment of metastatic or locally advanced basal cell carcinoma (BCC) in humans. Its tumorigenic potential was assessed in dedicated carcinogenicity studies in rasH2 transgenic (Tg.rasH2) mice and Sprague Dawley (SD) rats. Tumorigenicity potential of vismodegib was identified in rats only and was limited to benign hair follicle tumors, including pilomatricomas and keratoacanthomas at exposures of ≥0.1-fold and ≥0.6-fold, respectively, of the steady-state exposure (AUC 0-24h ) of the recommended human dose. No malignant tumors were identified in either species. Overall, the totality of pharmacology and nonclinical safety data (lack of genotoxicity, in vitro secondary pharmacological binding, and immunoregulatory effects, and limited effects on the endocrine system) suggests that the development of the benign hair follicle tumors may be related to pharmacologically-mediated disruption of hair follicle morphogenesis, although the exact mechanism of tumorigenesis is unclear. Hair follicle tumors have not been reported in vismodegib-treated patients. The relevance of this finding in rats to patients is uncertain. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. K-RAS(V12) Induces Autocrine Production of EGFR Ligands and Mediates Radioresistance Through EGFR-Dependent Akt Signaling and Activation of DNA-PKcs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minjgee, Minjmaa; Toulany, Mahmoud; Kehlbach, Rainer

    2011-12-01

    Purpose: It is known that postirradiation survival of tumor cells presenting mutated K-RAS is mediated through autocrine activation of epidermal growth factor receptor (EGFR). In this study the molecular mechanism of radioresistance of cells overexpressing mutated K-RAS(V12) was investigated. Methods and Materials: Head-and-neck cancer cells (FaDu) presenting wild-type K-RAS were transfected with empty vector or vector expressing mutated K-RAS(V12). The effect of K-RAS(V12) on autocrine production of EGFR ligands, activation of EGFR downstream pathways, DNA damage repair, and postirradiation survival was analyzed. Results: Conditioned medium collected from K-RAS(V12)-transfected cells enhanced activation of the phosphatidylinositol-3-kinase-Akt pathway and increased postirradiation survival ofmore » wild-type K-RAS parental cells when compared with controls. These effects were reversed by amphiregulin (AREG)-neutralizing antibody. In addition, secretion of the EGFR ligands AREG and transforming growth factor {alpha} was significantly increased upon overexpression of K-RAS(V12). Expression of mutated K-RAS(V12) resulted in an increase in radiation-induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) phosphorylation at S2056. This increase was accompanied by increased repair of DNA double-strand breaks. Abrogation of DNA-PKcs phosphorylation by serum depletion or AREG-neutralizing antibody underscored the role of autocrine production of EGFR ligands, namely, AREG, in regulating DNA-PKcs activation in K-RAS mutated cells. Conclusions: These data indicate that radioresistance of K-RAS mutated tumor cells is at least in part due to constitutive production of EGFR ligands, which mediate enhanced repair of DNA double-strand breaks through the EGFR-phosphatidylinositol-3-kinase-Akt cascade.« less

  1. Gain-of-Function Mutations in RIT1 Cause Noonan Syndrome, a RAS/MAPK Pathway Syndrome

    PubMed Central

    Aoki, Yoko; Niihori, Tetsuya; Banjo, Toshihiro; Okamoto, Nobuhiko; Mizuno, Seiji; Kurosawa, Kenji; Ogata, Tsutomu; Takada, Fumio; Yano, Michihiro; Ando, Toru; Hoshika, Tadataka; Barnett, Christopher; Ohashi, Hirofumi; Kawame, Hiroshi; Hasegawa, Tomonobu; Okutani, Takahiro; Nagashima, Tatsuo; Hasegawa, Satoshi; Funayama, Ryo; Nagashima, Takeshi; Nakayama, Keiko; Inoue, Shin-ichi; Watanabe, Yusuke; Ogura, Toshihiko; Matsubara, Yoichi

    2013-01-01

    RAS GTPases mediate a wide variety of cellular functions, including cell proliferation, survival, and differentiation. Recent studies have revealed that germline mutations and mosaicism for classical RAS mutations, including those in HRAS, KRAS, and NRAS, cause a wide spectrum of genetic disorders. These include Noonan syndrome and related disorders (RAS/mitogen-activated protein kinase [RAS/MAPK] pathway syndromes, or RASopathies), nevus sebaceous, and Schimmelpenning syndrome. In the present study, we identified a total of nine missense, nonsynonymous mutations in RIT1, encoding a member of the RAS subfamily, in 17 of 180 individuals (9%) with Noonan syndrome or a related condition but with no detectable mutations in known Noonan-related genes. Clinical manifestations in the RIT1-mutation-positive individuals are consistent with those of Noonan syndrome, which is characterized by distinctive facial features, short stature, and congenital heart defects. Seventy percent of mutation-positive individuals presented with hypertrophic cardiomyopathy; this frequency is high relative to the overall 20% incidence in individuals with Noonan syndrome. Luciferase assays in NIH 3T3 cells showed that five RIT1 alterations identified in children with Noonan syndrome enhanced ELK1 transactivation. The introduction of mRNAs of mutant RIT1 into 1-cell-stage zebrafish embryos was found to result in a significant increase of embryos with craniofacial abnormalities, incomplete looping, a hypoplastic chamber in the heart, and an elongated yolk sac. These results demonstrate that gain-of-function mutations in RIT1 cause Noonan syndrome and show a similar biological effect to mutations in other RASopathy-related genes. PMID:23791108

  2. Mutations and Deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascades Which Alter Therapy Response

    PubMed Central

    McCubrey, James A.; Steelman, Linda S.; Chappell, William H.; Abrams, Stephen L.; Montalto, Giuseppe; Cervello, Melchiorre; Nicoletti, Ferdinando; Fagone, Paolo; Malaponte, Grazia; Mazzarino, Maria C.; Candido, Saverio; Libra, Massimo; Bäsecke, Jörg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Milella, Michele; Tafuri, Agostino; Cocco, Lucio; Evangelisti, Camilla; Chiarini, Francesca; Martelli, Alberto M.

    2012-01-01

    The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Certain components of these pathways, RAS, NF1, BRAF, MEK1, DUSP5, PP2A, PIK3CA, PIK3R1, PIK3R4, PIK3R5, IRS4, AKT, NFKB1, MTOR, PTEN, TSC1, and TSC2 may also be activated/inactivated by mutations or epigenetic silencing. Upstream mutations in one signaling pathway or even in downstream components of the same pathway can alter the sensitivity of the cells to certain small molecule inhibitors. These pathways have profound effects on proliferative, apoptotic and differentiation pathways. Dysregulation of components of these cascades can contribute to: resistance to other pathway inhibitors, chemotherapeutic drug resistance, premature aging as well as other diseases. This review will first describe these pathways and discuss how genetic mutations and epigenetic alterations can result in resistance to various inhibitors. PMID:23006971

  3. Activation of the N-Ras-PI3K-Akt-mTOR Pathway by Hepatitis C Virus: Control of Cell Survival and Viral Replication

    PubMed Central

    Mannová, Petra; Beretta, Laura

    2005-01-01

    The hepatitis C virus (HCV) replication complex is localized within detergent-resistant membranes or lipid rafts. We analyzed the protein contents of detergent-resistant fractions isolated from Huh7 cells expressing a self-replicating full-length HCV-1b genome. Using two-dimensional gel electrophoresis followed by mass spectrometry, we identified N-Ras as one of the proteins in which expression was increased in the detergent-resistant fractions from HCV genomic replicon clones compared to control cells. N-Ras is an activator of the phosphatidylinositol-3-kinase (PI3K)-Akt pathway. We found that the activities of PI3K and Akt, as well as the activity of their downstream target, mTOR, in the HCV-replicating cells were increased. Both PI3K-Akt- and mTOR-dependent pathways have been shown to promote cell survival. In agreement with this, HCV replicon cells were resistant to serum starvation-induced apoptosis. We also characterized the role of this pathway in HCV replication. Reduction of N-Ras expression by transfection of N-Ras small interfering RNA (siRNA) resulted in increased replication of HCV. We observed a similar increase in HCV replication in cells treated with the PI3K inhibitor LY294002 and in cells transfected with mTOR siRNA. Taken together, these data suggest that increased N-Ras levels in subcellular sites of HCV replication and stimulation of the prosurvival PI3K-Akt pathway and mTOR by HCV not only protect cells against apoptosis but also contribute to the maintenance of steady-state levels of HCV replication. These effects may contribute to the establishment of persistent infection by HCV. PMID:15994768

  4. RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK-positive lung cancer.

    PubMed

    Hrustanovic, Gorjan; Olivas, Victor; Pazarentzos, Evangelos; Tulpule, Asmin; Asthana, Saurabh; Blakely, Collin M; Okimoto, Ross A; Lin, Luping; Neel, Dana S; Sabnis, Amit; Flanagan, Jennifer; Chan, Elton; Varella-Garcia, Marileila; Aisner, Dara L; Vaishnavi, Aria; Ou, Sai-Hong I; Collisson, Eric A; Ichihara, Eiki; Mack, Philip C; Lovly, Christine M; Karachaliou, Niki; Rosell, Rafael; Riess, Jonathan W; Doebele, Robert C; Bivona, Trever G

    2015-09-01

    One strategy for combating cancer-drug resistance is to deploy rational polytherapy up front that suppresses the survival and emergence of resistant tumor cells. Here we demonstrate in models of lung adenocarcinoma harboring the oncogenic fusion of ALK and EML4 that the GTPase RAS-mitogen-activated protein kinase (MAPK) pathway, but not other known ALK effectors, is required for tumor-cell survival. EML4-ALK activated RAS-MAPK signaling by engaging all three major RAS isoforms through the HELP domain of EML4. Reactivation of the MAPK pathway via either a gain in the number of copies of the gene encoding wild-type K-RAS (KRAS(WT)) or decreased expression of the MAPK phosphatase DUSP6 promoted resistance to ALK inhibitors in vitro, and each was associated with resistance to ALK inhibitors in individuals with EML4-ALK-positive lung adenocarcinoma. Upfront inhibition of both ALK and the kinase MEK enhanced both the magnitude and duration of the initial response in preclinical models of EML4-ALK lung adenocarcinoma. Our findings identify RAS-MAPK dependence as a hallmark of EML4-ALK lung adenocarcinoma and provide a rationale for the upfront inhibition of both ALK and MEK to forestall resistance and improve patient outcomes.

  5. Very low density lipoprotein receptor regulates dendritic spine formation in a RasGRF1/CaMKII dependent manner

    PubMed Central

    DiBattista, Amanda Marie; Dumanis, Sonya B.; Song, Jung Min; Bu, Guojun; Weeber, Edwin; Rebeck, G. William; Hoe, Hyang-Sook

    2015-01-01

    Very Low Density Lipoprotein Receptor (VLDLR) is an apolipoprotein E receptor involved in synaptic plasticity, learning, and memory. However, it is unknown how VLDLR can regulate synaptic and cognitive function. In the present study, we found that VLDLR is present at the synapse both pre- and post-synaptically. Overexpression of VLDLR significantly increases, while knockdown of VLDLR decreases, dendritic spine number in primary hippocampal cultures. Additionally, knockdown of VLDLR significantly decreases synaptophysin puncta number while differentially regulating cell surface and total levels of glutamate receptor subunits. To identify the mechanism by which VLDLR induces these synaptic effects, we investigated whether VLDLR affects dendritic spine formation through the Ras signaling pathway, which is involved in spinogenesis and neurodegeneration. Interestingly, we found that VLDLR interacts with RasGRF1, a Ras effector, and knockdown of RasGRF1 blocks the effect of VLDLR on spinogenesis. Moreover, we found that VLDLR did not rescue the deficits induced by the absence of Ras signaling proteins CaMKIIα or CaMKIIβ. Taken together, our results suggest that VLDLR requires RasGRF1/CaMKII to alter dendritic spine formation. PMID:25644714

  6. Ras signaling requires dynamic properties of Ets1 for phosphorylation-enhanced binding to coactivator CBP.

    PubMed

    Nelson, Mary L; Kang, Hyun-Seo; Lee, Gregory M; Blaszczak, Adam G; Lau, Desmond K W; McIntosh, Lawrence P; Graves, Barbara J

    2010-06-01

    Ras/MAPK signaling is often aberrantly activated in human cancers. The downstream effectors are transcription factors, including those encoded by the ETS gene family. Using cell-based assays and biophysical measurements, we have determined the mechanism by which Ras/MAPK signaling affects the function of Ets1 via phosphorylation of Thr38 and Ser41. These ERK2 phosphoacceptors lie within the unstructured N-terminal region of Ets1, immediately adjacent to the PNT domain. NMR spectroscopic analyses demonstrated that the PNT domain is a four-helix bundle (H2-H5), resembling the SAM domain, appended with two additional helices (H0-H1). Phosphorylation shifted a conformational equilibrium, displacing the dynamic helix H0 from the core bundle. The affinity of Ets1 for the TAZ1 (or CH1) domain of the coactivator CBP was enhanced 34-fold by phosphorylation, and this binding was sensitive to ionic strength. NMR-monitored titration experiments mapped the interaction surfaces of the TAZ1 domain and Ets1, the latter encompassing both the phosphoacceptors and PNT domain. Charge complementarity of these surfaces indicate that electrostatic forces act in concert with a conformational equilibrium to mediate phosphorylation effects. We conclude that the dynamic helical elements of Ets1, appended to a conserved structural core, constitute a phospho-switch that directs Ras/MAPK signaling to downstream changes in gene expression. This detailed structural and mechanistic information will guide strategies for targeting ETS proteins in human disease.

  7. Lead identification for the K-Ras protein: virtual screening and combinatorial fragment-based approaches

    PubMed Central

    Pathan, Akbar Ali Khan; Panthi, Bhavana; Khan, Zahid; Koppula, Purushotham Reddy; Alanazi, Mohammed Saud; Sachchidanand; Parine, Narasimha Reddy; Chourasia, Mukesh

    2016-01-01

    Objective Kirsten rat sarcoma (K-Ras) protein is a member of Ras family belonging to the small guanosine triphosphatases superfamily. The members of this family share a conserved structure and biochemical properties, acting as binary molecular switches. The guanosine triphosphate-bound active K-Ras interacts with a range of effectors, resulting in the stimulation of downstream signaling pathways regulating cell proliferation, differentiation, and apoptosis. Efforts to target K-Ras have been unsuccessful until now, placing it among high-value molecules against which developing a therapy would have an enormous impact. K-Ras transduces signals when it binds to guanosine triphosphate by directly binding to downstream effector proteins, but in case of guanosine diphosphate-bound conformation, these interactions get disrupted. Methods In the present study, we targeted the nucleotide-binding site in the “on” and “off” state conformations of the K-Ras protein to find out suitable lead compounds. A structure-based virtual screening approach has been used to screen compounds from different databases, followed by a combinatorial fragment-based approach to design the apposite lead for the K-Ras protein. Results Interestingly, the designed compounds exhibit a binding preference for the “off” state over “on” state conformation of K-Ras protein. Moreover, the designed compounds’ interactions are similar to guanosine diphosphate and, thus, could presumably act as a potential lead for K-Ras. The predicted drug-likeness properties of these compounds suggest that these compounds follow the Lipinski’s rule of five and have tolerable absorption, distribution, metabolism, excretion and toxicity values. Conclusion Thus, through the current study, we propose targeting only “off” state conformations as a promising strategy for the design of reversible inhibitors to pharmacologically inhibit distinct conformations of K-Ras protein. PMID:27217775

  8. Lead acetate induces EGFR activation upstream of SFK and PKC{alpha} linkage to the Ras/Raf-1/ERK signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, C.-Y.; Wang, Y.-T.; Tzeng, D.-W.

    2009-03-01

    Lead acetate (Pb), a probable human carcinogen, can activate protein kinase C (PKC) upstream of extracellular signal-regulated kinase 1 and 2 (ERK1/2). Yet, it remains unclear whether Pb activation of PKC {yields} ERK1/2 involves receptor/non-receptor tyrosine kinases and the Ras signaling transducer. Here we demonstrate a novel mechanism elicited by Pb for transmitting ERK1/2 signaling in CL3 human non-small-cell lung adenocarcinoma cells. Pb induction of higher steady-state levels of Ras-GTP was essential for increasing phospho-Raf-1{sup S338} and phospho-ERK1/2. Pre-treatment of the cells with a conventional PKC inhibitor Goe6976 or depleting PKC{alpha} using specific small interfering RNA blocked Pb induction ofmore » Ras-GTP. Pb also activated cellular tyrosine kinases. Specific pharmacological inhibitors, PD153035 for epidermal growth factor receptor (EGFR) and SU6656 for Src family tyrosine kinases (SFK), but not AG1296 for platelet-derived growth factor receptor, could suppress the Pb-induced tyrosine kinases, PKC{alpha}, Ras-GTP, phospho-Raf-1{sup S338} and phospho-ERK1/2. Furthermore, phosphorylation of tyrosines on the EGFR multiple autophosphorylation sites and the conserved SFK autophosphorylation site occurred during exposure of cells to Pb for 1-5 min and 5-30 min, respectively. Intriguingly, Pb activation of EGFR required the intrinsic kinase activity but not dimerization of the receptor. Inhibition of SFK or PKC{alpha} activities did not affect EGFR phosphorylation, while knockdown of EGFR blocked SFK phosphorylation and PKC{alpha} activation following Pb. Together, these results indicate that immediate activation of EGFR in response to Pb is obligatory for activation of SFK and PKC{alpha} and subsequent the Ras-Raf-1-MKK1/2-ERK1/2 signaling cascade.« less

  9. Dragging ras back in the ring.

    PubMed

    Stephen, Andrew G; Esposito, Dominic; Bagni, Rachel K; McCormick, Frank

    2014-03-17

    Ras proteins play a major role in human cancers but have not yielded to therapeutic attack. Ras-driven cancers are among the most difficult to treat and often excluded from therapies. The Ras proteins have been termed "undruggable," based on failures from an era in which understanding of signaling transduction, feedback loops, redundancy, tumor heterogeneity, and Ras' oncogenic role was poor. Structures of Ras oncoproteins bound to their effectors or regulators are unsolved, and it is unknown precisely how Ras proteins activate their downstream targets. These knowledge gaps have impaired development of therapeutic strategies. A better understanding of Ras biology and biochemistry, coupled with new ways of targeting undruggable proteins, is likely to lead to new ways of defeating Ras-driven cancers. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Activation of Ras-ERK Signaling and GSK-3 by Amyloid Precursor Protein and Amyloid Beta Facilitates Neurodegeneration in Alzheimer's Disease.

    PubMed

    Kirouac, Lisa; Rajic, Alexander J; Cribbs, David H; Padmanabhan, Jaya

    2017-01-01

    It is widely accepted that amyloid β (Aβ) generated from amyloid precursor protein (APP) oligomerizes and fibrillizes to form neuritic plaques in Alzheimer's disease (AD), yet little is known about the contribution of APP to intracellular signaling events preceding AD pathogenesis. The data presented here demonstrate that APP expression and neuronal exposure to oligomeric Aβ42 enhance Ras/ERK signaling cascade and glycogen synthase kinase 3 (GSK-3) activation. We find that RNA interference (RNAi)-directed knockdown of APP in B103 rat neuroblastoma cells expressing APP inhibits Ras-ERK signaling and GSK-3 activation, indicating that APP acts upstream of these signal transduction events. Both ERK and GSK-3 are known to induce hyperphosphorylation of tau and APP at Thr668, and our findings suggest that aberrant signaling by APP facilitates these events. Supporting this notion, analysis of human AD brain samples showed increased expression of Ras, activation of GSK-3, and phosphorylation of APP and tau, which correlated with Aβ levels in the AD brains. Furthermore, treatment of primary rat neurons with Aβ recapitulated these events and showed enhanced Ras-ERK signaling, GSK-3 activation, upregulation of cyclin D1, and phosphorylation of APP and tau. The finding that Aβ induces Thr668 phosphorylation on APP, which enhances APP proteolysis and Aβ generation, denotes a vicious feedforward mechanism by which APP and Aβ promote tau hyperphosphorylation and neurodegeneration in AD. Based on these results, we hypothesize that aberrant proliferative signaling by APP plays a fundamental role in AD neurodegeneration and that inhibition of this would impede cell cycle deregulation and neurodegeneration observed in AD.

  11. H-Ras Exerts Opposing Effects on Type I Interferon Responses Depending on Its Activation Status.

    PubMed

    Chen, Guann-An; Lin, Yun-Ru; Chung, Hai-Ting; Hwang, Lih-Hwa

    2017-01-01

    Using shRNA high-throughput screening, we identified H-Ras as a regulator of antiviral activity, whose depletion could enhance Sindbis virus replication. Further analyses indicated that depletion of H-Ras results in a robust increase in vesicular stomatitis virus infection and a decrease in Sendai virus (SeV)-induced retinoic acid-inducible gene-I-like receptor (RLR) signaling. Interestingly, however, ectopic expression of wild-type H-Ras results in a biphasic mode of RLR signaling regulation: while low-level expression of H-Ras enhances SeV-induced RLR signaling, high-level expression of H-Ras significantly inhibits this signaling. The inhibitory effects correlate with the activation status of H-Ras. As a result, oncogenic H-Ras, H-RasV12, strongly inhibits SeV-induced IFN-β promoter activity and type I interferon signaling. Conversely, the positive effects exerted by H-Ras on RLR signaling are independent of its signaling activity, as a constitutively inactive form of H-Ras, H-RasN17, also positively regulates RLR signaling. Mechanistically, we demonstrate that depletion of H-Ras reduces the formation of MAVS-TNF receptor-associated factor 3 signaling complexes. These results reveal that the H-Ras protein plays a role in promoting MAVS signalosome assembly in the mitochondria, whereas oncogenic H-Ras exerts a negative effect on type I IFN responses.

  12. Genetic analysis of Ras genes in epidermal development and tumorigenesis

    PubMed Central

    Drosten, Matthias; Lechuga, Carmen G; Barbacid, Mariano

    2013-01-01

    Proliferation and differentiation of epidermal keratinocytes are tightly controlled to ensure proper development and homeostasis of the epidermis. The Ras family of small GTPases has emerged as a central node in the coordination of cell proliferation in the epidermis. Recent genetic evidence from mouse models has revealed that the intensity of Ras signaling modulates the proliferative capacity of epidermal keratinocytes. Interfering with Ras signaling either by combined elimination of the 3 Ras genes from the basal layer of the epidermis or by overexpression of dominant-negative Ras isoforms caused epidermal thinning due to hypoproliferation of keratinocytes. In contrast, overexpression of oncogenic Ras mutants in different epidermal cell layers led to hyperproliferative phenotypes including the development of papillomas and squamous cell carcinomas. Here, we discuss the value of loss- and gain-of-function studies in mouse models to assess the role of Ras signaling in the control of epidermal proliferation. PMID:24150175

  13. Activation of RAS/ERK alone is insufficient to inhibit RXRα function and deplete retinoic acid in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ai-Guo, E-mail: wangaiguotl@hotmail.com; Song, Ya-Nan; Chen, Jun

    2014-09-26

    Highlights: • The activation of RAS/ERK is insufficient to inhibit RXRα function and deplete RA. • The retinoid metabolism-related genes are down-regulated by ras oncogene. • The atRA has no effect on preventing hepatic tumorigenesis or curing the developed hepatic nodules. - Abstract: Activation of RAS/ERK signaling pathway, depletion of retinoid, and phosphorylation of retinoid X receptor alpha (RXRα) are frequent events found in liver tumors and thought to play important roles in hepatic tumorigenesis. However, the relationships among them still remained to be elucidated. By exploring the transgenic mouse model of hepatic tumorigenesis induced by liver-specific expression of H-ras12Vmore » oncogene, the activation of RAS/ERK, the mRNA expression levels of retinoid metabolism-related genes, the contents of retinoid metabolites, and phosphorylation of RXRα were determined. RAS/ERK signaling pathway was gradually and significantly activated in hepatic tumor adjacent normal liver tissues (P) and hepatic tumor tissues (T) of H-ras12V transgenic mice compared with normal liver tissues (Wt) of wild type mice. On the contrary, the mRNA expression levels of retinoid metabolism-related genes were significantly reduced in P and T compared with Wt. Interestingly, the retinoid metabolites 9-cis-retinoic acid (9cRA) and all-trans-retinoic acid (atRA), the well known ligands for nuclear transcription factor RXR and retinoic acid receptor (RAR), were significantly decreased only in T compared with Wt and P, although the oxidized polar metabolite of atRA, 4-keto-all-trans-retinoic-acid (4-keto-RA) was significantly decreased in both P and T compared with Wt. To our surprise, the functions of RXRα were significantly blocked only in T compared with Wt and P. Namely, the total protein levels of RXRα were significantly reduced and the phosphorylation levels of RXRα were significantly increased only in T compared with Wt and P. Treatment of H-ras12V transgenic mice at 5

  14. Evolutionary Analyses of Entire Genomes Do Not Support the Association of mtDNA Mutations with Ras/MAPK Pathway Syndromes

    PubMed Central

    Cerezo, María; Balboa, Emilia; Heredia, Claudia; Castro-Feijóo, Lidia; Rica, Itxaso; Barreiro, Jesús; Eirís, Jesús; Cabanas, Paloma; Martínez-Soto, Isabel; Fernández-Toral, Joaquín; Castro-Gago, Manuel; Pombo, Manuel; Carracedo, Ángel; Barros, Francisco

    2011-01-01

    Background There are several known autosomal genes responsible for Ras/MAPK pathway syndromes, including Noonan syndrome (NS) and related disorders (such as LEOPARD, neurofibromatosis type 1), although mutations of these genes do not explain all cases. Due to the important role played by the mitochondrion in the energetic metabolism of cardiac muscle, it was recently proposed that variation in the mitochondrial DNA (mtDNA) genome could be a risk factor in the Noonan phenotype and in hypertrophic cardiomyopathy (HCM), which is a common clinical feature in Ras/MAPK pathway syndromes. In order to test these hypotheses, we sequenced entire mtDNA genomes in the largest series of patients suffering from Ras/MAPK pathway syndromes analyzed to date (n = 45), most of them classified as NS patients (n = 42). Methods/Principal Findings The results indicate that the observed mtDNA lineages were mostly of European ancestry, reproducing in a nutshell the expected haplogroup (hg) patterns of a typical Iberian dataset (including hgs H, T, J, and U). Three new branches of the mtDNA phylogeny (H1j1, U5b1e, and L2a5) are described for the first time, but none of these are likely to be related to NS or Ras/MAPK pathway syndromes when observed under an evolutionary perspective. Patterns of variation in tRNA and protein genes, as well as redundant, private and heteroplasmic variants, in the mtDNA genomes of patients were as expected when compared with the patterns inferred from a worldwide mtDNA phylogeny based on more than 8700 entire genomes. Moreover, most of the mtDNA variants found in patients had already been reported in healthy individuals and constitute common polymorphisms in human population groups. Conclusions/Significance As a whole, the observed mtDNA genome variation in the NS patients was difficult to reconcile with previous findings that indicated a pathogenic role of mtDNA variants in NS. PMID:21526175

  15. β1-adrenergic receptors activate two distinct signaling pathways in striatal neurons

    PubMed Central

    Meitzen, John; Luoma, Jessie I.; Stern, Christopher M.; Mermelstein, Paul G.

    2010-01-01

    Monoamine action in the dorsal striatum and nucleus accumbens plays essential roles in striatal physiology. Although research often focuses on dopamine and its receptors, norepinephrine and adrenergic receptors are also crucial in regulating striatal function. While noradrenergic neurotransmission has been identified in the striatum, little is known regarding the signaling pathways activated by β-adrenergic receptors in this brain region. Using cultured striatal neurons, we characterized a novel signaling pathway by which activation of β1-adrenergic receptors leads to the rapid phosphorylation of cAMP Response Element Binding Protein (CREB), a transcription-factor implicated as a molecular switch underlying long-term changes in brain function. Norepinephrine-mediated CREB phosphorylation requires β1-adrenergic receptor stimulation of a receptor tyrosine kinase, ultimately leading to the activation of a Ras/Raf/MEK/MAPK/MSK signaling pathway. Activation of β1-adrenergic receptors also induces CRE-dependent transcription and increased c-fos expression. In addition, stimulation of β1-adrenergic receptors produces cAMP production, but surprisingly, β1-adrenergic receptor activation of adenylyl cyclase was not functionally linked to rapid CREB phosphorylation. These findings demonstrate that activation of β1-adrenergic receptors on striatal neurons can stimulate two distinct signaling pathways. These adrenergic actions can produce long-term changes in gene expression, as well as rapidly modulate cellular physiology. By elucidating the mechanisms by which norepinephrine and β1-adrenergic receptor activation affects striatal physiology, we provide the means to more fully understand the role of monoamines in modulating striatal function, specifically how norepinephrine and β1-adrenergic receptors may affect striatal physiology. PMID:21143600

  16. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome.

    PubMed

    Aoki, Yoko; Niihori, Tetsuya; Banjo, Toshihiro; Okamoto, Nobuhiko; Mizuno, Seiji; Kurosawa, Kenji; Ogata, Tsutomu; Takada, Fumio; Yano, Michihiro; Ando, Toru; Hoshika, Tadataka; Barnett, Christopher; Ohashi, Hirofumi; Kawame, Hiroshi; Hasegawa, Tomonobu; Okutani, Takahiro; Nagashima, Tatsuo; Hasegawa, Satoshi; Funayama, Ryo; Nagashima, Takeshi; Nakayama, Keiko; Inoue, Shin-Ichi; Watanabe, Yusuke; Ogura, Toshihiko; Matsubara, Yoichi

    2013-07-11

    RAS GTPases mediate a wide variety of cellular functions, including cell proliferation, survival, and differentiation. Recent studies have revealed that germline mutations and mosaicism for classical RAS mutations, including those in HRAS, KRAS, and NRAS, cause a wide spectrum of genetic disorders. These include Noonan syndrome and related disorders (RAS/mitogen-activated protein kinase [RAS/MAPK] pathway syndromes, or RASopathies), nevus sebaceous, and Schimmelpenning syndrome. In the present study, we identified a total of nine missense, nonsynonymous mutations in RIT1, encoding a member of the RAS subfamily, in 17 of 180 individuals (9%) with Noonan syndrome or a related condition but with no detectable mutations in known Noonan-related genes. Clinical manifestations in the RIT1-mutation-positive individuals are consistent with those of Noonan syndrome, which is characterized by distinctive facial features, short stature, and congenital heart defects. Seventy percent of mutation-positive individuals presented with hypertrophic cardiomyopathy; this frequency is high relative to the overall 20% incidence in individuals with Noonan syndrome. Luciferase assays in NIH 3T3 cells showed that five RIT1 alterations identified in children with Noonan syndrome enhanced ELK1 transactivation. The introduction of mRNAs of mutant RIT1 into 1-cell-stage zebrafish embryos was found to result in a significant increase of embryos with craniofacial abnormalities, incomplete looping, a hypoplastic chamber in the heart, and an elongated yolk sac. These results demonstrate that gain-of-function mutations in RIT1 cause Noonan syndrome and show a similar biological effect to mutations in other RASopathy-related genes. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Activation of RAS family members confers resistance to ROS1 targeting drugs

    PubMed Central

    Cargnelutti, Marilisa; Corso, Simona; Pergolizzi, Margherita; Mévellec, Laurence; Aisner, Dara L.; Dziadziuszko, Rafal; Varella-Garcia, Marileila; Comoglio, Paolo M.; Doebele, Robert C.; Vialard, Jorge; Giordano, Silvia

    2015-01-01

    The ROS1 tyrosine kinase is activated in lung cancer as a consequence of chromosomal rearrangement. Although high response rates and disease control have been observed in lung cancer patients bearing rearranged ROS1 tumors (ROS1+) treated with the kinase inhibitor crizotinib, many of these patients eventually relapse. To identify mechanisms of resistance to ROS1 inhibitors we generated resistant cells from HCC78 lung cancer cells bearing the SLC34A2-ROS1 rearrangement. We found that activation of the RAS pathway in the HCC78 cell model, due to either KRAS/NRAS mutations or to KRAS amplification, rendered the cells resistant to ROS1 inhibition. These cells were cross-resistant to different ROS1 inhibitors, but sensitive to inhibitors of the RAS signaling pathway. Interestingly, we identified focal KRAS amplification in a biopsy of a tumor from a patient that had become resistant to crizotinib treatment. Altogether our data suggest that the activation of members of the RAS family can confer resistance to ROS1 inhibitors. This has important clinical implications as: (i) RAS genetic alterations in ROS1+ primary tumors are likely negative predictors of efficacy for targeted drugs and (ii) this kind of resistance is unlikely to be overcome by the use of more specific or more potent ROS1 targeting drugs. PMID:25691052

  18. Exploiting the bad eating habits of Ras-driven cancers.

    PubMed

    White, Eileen

    2013-10-01

    Oncogenic Ras promotes glucose fermentation and glutamine use to supply central carbon metabolism, but how and why have only emerged recently. Ras-mediated metabolic reprogramming generates building blocks for growth and promotes antioxidant defense. To fuel metabolic pathways, Ras scavenges extracellular proteins and lipids. To bolster metabolism and mitigate stress, Ras activates cellular self-cannibalization and recycling of proteins and organelles by autophagy. Targeting these distinct features of Ras-driven cancers provides novel approaches to cancer therapy.

  19. Ras-Induced Changes in H3K27me3 Occur after Those in Transcriptional Activity

    PubMed Central

    Hosogane, Masaki; Funayama, Ryo; Nishida, Yuichiro; Nagashima, Takeshi; Nakayama, Keiko

    2013-01-01

    Oncogenic signaling pathways regulate gene expression in part through epigenetic modification of chromatin including DNA methylation and histone modification. Trimethylation of histone H3 at lysine-27 (H3K27), which correlates with transcriptional repression, is regulated by an oncogenic form of the small GTPase Ras. Although accumulation of trimethylated H3K27 (H3K27me3) has been implicated in transcriptional regulation, it remains unclear whether Ras-induced changes in H3K27me3 are a trigger for or a consequence of changes in transcriptional activity. We have now examined the relation between H3K27 trimethylation and transcriptional regulation by Ras. Genome-wide analysis of H3K27me3 distribution and transcription at various times after expression of oncogenic Ras in mouse NIH 3T3 cells identified 115 genes for which H3K27me3 level at the gene body and transcription were both regulated by Ras. Similarly, 196 genes showed Ras-induced changes in transcription and H3K27me3 level in the region around the transcription start site. The Ras-induced changes in transcription occurred before those in H3K27me3 at the genome-wide level, a finding that was validated by analysis of individual genes. Depletion of H3K27me3 either before or after activation of Ras signaling did not affect the transcriptional regulation of these genes. Furthermore, given that H3K27me3 enrichment was dependent on Ras signaling, neither it nor transcriptional repression was maintained after inactivation of such signaling. Unexpectedly, we detected unannotated transcripts derived from intergenic regions at which the H3K27me3 level is regulated by Ras, with the changes in transcript abundance again preceding those in H3K27me3. Our results thus indicate that changes in H3K27me3 level in the gene body or in the region around the transcription start site are not a trigger for, but rather a consequence of, changes in transcriptional activity. PMID:24009517

  20. Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function

    PubMed Central

    Hocker, Harrison J.; Cho, Kwang-Jin; Chen, Chung-Ying K.; Rambahal, Nandini; Sagineedu, Sreenivasa Rao; Shaari, Khozirah; Stanslas, Johnson; Hancock, John F.; Gorfe, Alemayehu A.

    2013-01-01

    Aberrant signaling by oncogenic mutant rat sarcoma (Ras) proteins occurs in ∼15% of all human tumors, yet direct inhibition of Ras by small molecules has remained elusive. Recently, several small-molecule ligands have been discovered that directly bind Ras and inhibit its function by interfering with exchange factor binding. However, it is unclear whether, or how, these ligands could lead to drugs that act against constitutively active oncogenic mutant Ras. Using a dynamics-based pocket identification scheme, ensemble docking, and innovative cell-based assays, here we show that andrographolide (AGP)—a bicyclic diterpenoid lactone isolated from Andrographis paniculata—and its benzylidene derivatives bind to transient pockets on Kirsten-Ras (K-Ras) and inhibit GDP–GTP exchange. As expected for inhibitors of exchange factor binding, AGP derivatives reduced GTP loading of wild-type K-Ras in response to acute EGF stimulation with a concomitant reduction in MAPK activation. Remarkably, however, prolonged treatment with AGP derivatives also reduced GTP loading of, and signal transmission by, oncogenic mutant K-RasG12V. In sum, the combined analysis of our computational and cell biology results show that AGP derivatives directly bind Ras, block GDP–GTP exchange, and inhibit both wild-type and oncogenic K-Ras signaling. Importantly, our findings not only show that nucleotide exchange factors are required for oncogenic Ras signaling but also demonstrate that inhibiting nucleotide exchange is a valid approach to abrogating the function of oncogenic mutant Ras. PMID:23737504

  1. Ras proteins have multiple functions in vegetative cells of Dictyostelium.

    PubMed

    Bolourani, Parvin; Spiegelman, George; Weeks, Gerald

    2010-11-01

    During the aggregation of Dictyostelium cells, signaling through RasG is more important in regulating cyclic AMP (cAMP) chemotaxis, whereas signaling through RasC is more important in regulating the cAMP relay. However, RasC is capable of substituting for RasG for chemotaxis, since rasG⁻ cells are only partially deficient in chemotaxis, whereas rasC⁻/rasG⁻ cells are totally incapable of chemotaxis. In this study we have examined the possible functional overlap between RasG and RasC in vegetative cells by comparing the vegetative cell properties of rasG⁻, rasC⁻, and rasC⁻/rasG⁻ cells. In addition, since RasD, a protein not normally found in vegetative cells, is expressed in vegetative rasG⁻ and rasC⁻/rasG⁻ cells and appears to partially compensate for the absence of RasG, we have also examined the possible functional overlap between RasG and RasD by comparing the properties of rasG⁻ and rasC⁻/rasG⁻ cells with those of the mutant cells expressing higher levels of RasD. The results of these two lines of investigation show that RasD is capable of totally substituting for RasG for cytokinesis and growth in suspension, whereas RasC is without effect. In contrast, for chemotaxis to folate, RasC is capable of partially substituting for RasG, but RasD is totally without effect. Finally, neither RasC nor RasD is able to substitute for the role that RasG plays in regulating actin distribution and random motility. These specificity studies therefore delineate three distinct and none-overlapping functions for RasG in vegetative cells.

  2. Oncogenes on my mind: ERK and MTOR signaling in cognitive diseases.

    PubMed

    Krab, Lianne C; Goorden, Susanna M I; Elgersma, Ype

    2008-10-01

    Defects in rat sarcoma viral oncogene homolog (RAS)-extracellular signal regulated kinase (ERK) and phosphatidylinositol 3-kinase (PI3K)-mammalian target of rapamycin (MTOR) signaling pathways have recently been shown to cause several genetic disorders classified as neuro-cardio-facial-cutaneous (NCFC) and Hamartoma syndromes. Although these pathways are well-known players in cell proliferation and cancer, their role in cognitive function is less appreciated. Here, we focus on the cognitive problems associated with mutations in the RAS-ERK and PI3K-MTOR signaling pathways and on the underlying mechanisms revealed by recent animal studies. Cancer drugs have been shown to reverse the cognitive deficits in mouse models of NCFC and Hamartoma syndromes, raising hopes for clinical trials.

  3. The Role of Notch Signaling Pathway in Breast Cancer Pathogenesis

    DTIC Science & Technology

    2005-07-01

    breast cancer cells, I tested whether ErbB2 overexpression will cooperate with Notch in HMLE cells. While overexpression of activated Notch1 failed to...tyrosine kinase upstream of Ras normally found overexpressed in many breast cancers , also failed to transform HMLE cells. These observations suggested...cooperation between Notch1IC and ErbB2 signaling in transforming HMLE cells. Breast cancers typically do not harbor oncogenic Ras mutations; nevertheless

  4. Downregulation of tropomyosin-1 in squamous cell carcinoma of esophagus, the role of Ras signaling and methylation.

    PubMed

    Zare, Maryam; Jazii, Ferdous Rastgar; Soheili, Zahra-Soheila; Moghanibashi, Mohamad-Mehdi

    2012-10-01

    Tropomyosins (TMs) are a family of cytoskeletal proteins that bind to and stabilize actin microfilaments. Non-muscle cells express multiple isoforms of TMs including three high molecular weight (HMW) isoforms: TM1, TM2, and TM3. While reports have indicated downregulation of TMs in transformed cells and several human cancers, nevertheless, little is known about the underlying mechanism of TMs suppression. In present study the expression of HMW TMs was investigated in squamous cell carcinoma of esophagus (SCCE), relative to primary cell cultures of normal esophagus by western blotting and real-time RT-PCR. Our results showed that TM1, TM2, and TM3 were significantly downregulated in cell line of SCCE. Moreover, mRNA level of TPM1 and TPM2 were markedly decreased by 93% and 96%, in tumor cell line relative to esophagus normal epithelial cells. Therefore, downregulation of TMs could play an important role in tumorigenesis of esophageal cancer. To asses the mechanism of TM downregulation in esophageal cancer, the role of Ras dependent signaling and promoter hypermethylation were investigated. We found that inhibition of two Ras effectory downstream pathways; MEK/ERK and PI3K/Akt leads to significant increased expression of TM1 protein and both TPM1 and TPM2 mRNAs. In addition, methyltransferase inhibition significantly upregulated TM1, suggesting the prominent contribution of promoter hypermethylation in TM1 downregulation in esophageal cancer. These data indicate that downregulation of HMW TMs occurs basically in SCCE and the activation of MEK/ERK and PI3K/Akt pathways as well as the epigenetic mechanism of promoter hypermethylation play important role in TM1 suppression in SCCE. Copyright © 2011 Wiley Periodicals, Inc.

  5. β2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFκB pathway.

    PubMed

    Zhang, Dong; Ma, Qingyong; Wang, Zheng; Zhang, Min; Guo, Kun; Wang, Fengfei; Wu, Erxi

    2011-11-26

    Smoking and stress, pancreatic cancer (PanCa) risk factors, stimulate nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and catecholamines production respectively. NNK and catecholamine bind the β-adrenoceptors and induce PanCa cell proliferation; and we have previously suggested that β-adrenergic antagonists may suppress proliferation and invasion and stimulate apoptosis in PanCa. To clarify the mechanism of apoptosis induced by β2-adrenergic antagonist, we hypothesize that blockage of the β2-adrenoceptor could induce G1/S phase arrest and apoptosis and Ras may be a key player in PanCa cells. The β1 and β2-adrenoceptor proteins were detected on the cell surface of PanCa cells from pancreatic carcinoma specimen samples by immunohistochemistry. The β2-adrenergic antagonist ICI118,551 significantly induced G1/S phase arrest and apoptosis compared with the β1-adrenergic antagonist metoprolol, which was determined by the flow cytometry assay. β2-adrenergic antagonist therapy significantly suppressed the expression of extracellular signal-regulated kinase, Akt, Bcl-2, cyclin D1, and cyclin E and induced the activation of caspase-3, caspase-9 and Bax by Western blotting. Additionally, the β2-adrenergic antagonist reduced the activation of NFκB in vitro cultured PanCa cells. The blockage of β2-adrenoceptor markedly induced PanCa cells to arrest at G1/S phase and consequently resulted in cell death, which is possibly due to that the blockage of β2-adrenoceptor inhibited NFκB, extracellular signal-regulated kinase, and Akt pathways. Therefore, their upstream molecule Ras may be a key factor in the β2-adrenoceptor antagonist induced G1/S phase arrest and apoptosis in PanCa cells. The new pathway discovered in this study may provide an effective therapeutic strategy for PanCa.

  6. FcγR-induced production of superoxide and inflammatory cytokines is differentially regulated by SHIP through its influence on PI3K and/or Ras/Erk pathways

    PubMed Central

    Ganesan, Latha P.; Joshi, Trupti; Fang, Huiqing; Kutala, Vijay Kumar; Roda, Julie; Trotta, Rossana; Lehman, Amy; Kuppusamy, Periannan; Byrd, John C.; Carson, William E.; Caligiuri, Michael A.; Tridandapani, Susheela

    2006-01-01

    Phagocytosis of IgG-coated particles via FcγR is accompanied by the generation of superoxide and inflammatory cytokines, which can cause collateral tissue damage in the absence of regulation. Molecular mechanisms regulating these phagocytosis-associated events are not known. SHIP is an inositol phosphatase that downregulates PI3K-mediated activation events. Here, we have examined the role of SHIP in FcγR-induced production of superoxide and inflammatory cytokines. We report that primary SHIP-deficient bone marrow macrophages produce elevated levels of superoxide upon FcγR clustering. Analysis of the molecular mechanism revealed that SHIP regulates upstream Rac-GTP binding, an obligatory event for superoxide production. Likewise, SHIP-deficient macrophages displayed enhanced IL-1β and IL-6 production in response to FcγR clustering. Interestingly, whereas IL-6 production required activation of both PI3K and Ras/Erk pathways, IL-1β production was dependent only on Ras/Erk activation, suggesting that SHIP may also regulate the Ras/Erk pathway in macrophages. Consistently, SHIP-deficient macrophages displayed enhanced activation of Erk upon FcγR clustering. Inhibition of Ras/Erk or PI3K suppressed the enhanced production of IL-6 in SHIP-deficient macrophages. In contrast, inhibition of Ras/Erk, but not PI3K, suppressed IL-1β production in these cells. Together, these data demonstrate that SHIP regulates phagocytosis-associated events through the inhibition of PI3K and Ras/Erk pathways. PMID:16543474

  7. TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Feifei; Jiang, Yinan; Zheng, Qiping

    Research highlights: {yields} TEC is rapidly tyrosine-phosphorylated and activated by HGF-stimulation in vivo or after partial hepatectomy in mice. {yields} TEC enhances the activity of Elk and serum response element (SRE) in HGF signaling pathway in hepatocyte. {yields} TEC promotes hepatocyte proliferation through the Erk-MAPK pathway. -- Abstract: Background/aims: TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involvedmore » in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. Methods: We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC{sup KM}) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by {sup 3}H-TdR incorporation. Results: TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. Conclusions: TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway.« less

  8. miR-654-5p Targets GRAP to Promote Proliferation, Metastasis, and Chemoresistance of Oral Squamous Cell Carcinoma Through Ras/MAPK Signaling.

    PubMed

    Lu, Meng; Wang, Chengyong; Chen, Weihui; Mao, Chuanqing; Wang, Jin

    2018-04-01

    Oral squamous cell carcinoma (OSCC) is characterized by rapid local migration and invasion. This study was aimed at clarifying the effect of miR-654-5p on progression of OSCC. miR-654-5p promoted proliferation, metastasis, and chemoresistance of OSCC in vitro and in vivo. Consistently, miR-654-5p was upregulated in late-stage OSCC and was correlated with poor prognosis of OSCC patients. Furthermore, miR-654-5p was mechanistically verified to target Grb-2-related adaptor protein (GRAP), accompanied by the activation of Ras/MAPK signaling and the facilitation of epithelial-mesenchymal transition in OSCC cells. GRAP was downregulated in T1-2 stage versus T3-4 stage head and neck squamous cell carcinoma (HNSC) and was negatively correlated with tumor-node-metastases (TNM) stage in HNSC patients based on The Cancer Genome Atlas (TCGA) analysis. In addition, GRAP was positively correlated with good prognosis in HNSC patients. Our findings suggest that the miR-654-5p/GRAP/Ras/Erk signaling pathway in OSCC cells might contribute to the underlying mechanism through which miR-654-5p participates in the regulation of OSCC progression. miR-654-5p, as a potential biomarker for the clinical diagnosis and prognosis of OSCC, may be an effective anticancer target for the treatment of OSCC.

  9. New Challenges in Targeting Signaling Pathways in Acute Lymphoblastic Leukemia by NGS Approaches: An Update.

    PubMed

    Montaño, Adrián; Forero-Castro, Maribel; Marchena-Mendoza, Darnel; Benito, Rocío; Hernández-Rivas, Jesús María

    2018-04-07

    The identification and study of genetic alterations involved in various signaling pathways associated with the pathogenesis of acute lymphoblastic leukemia (ALL) and the application of recent next-generation sequencing (NGS) in the identification of these lesions not only broaden our understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. The present review describes the main deletions, amplifications, sequence mutations, epigenetic lesions, and new structural DNA rearrangements detected by NGS in B-ALL and T-ALL and their clinical importance for therapeutic procedures. We reviewed the molecular basis of pathways including transcriptional regulation, lymphoid differentiation and development, TP53 and the cell cycle, RAS signaling, JAK/STAT, NOTCH, PI3K/AKT/mTOR, Wnt/β-catenin signaling, chromatin structure modifiers, and epigenetic regulators. The implementation of NGS strategies has enabled important mutated genes in each pathway, their associations with the genetic subtypes of ALL, and their outcomes, which will be described further. We also discuss classic and new cryptic DNA rearrangements in ALL identified by mRNA-seq strategies. Novel cooperative abnormalities in ALL could be key prognostic and/or predictive biomarkers for selecting the best frontline treatment and for developing therapies after the first relapse or refractory disease.

  10. RAS-MAPK dependence underlies a rational polytherapy strategy in EML4-ALK–positive lung cancer

    PubMed Central

    Hrustanovic, Gorjan; Olivas, Victor; Pazarentzos, Evangelos; Tulpule, Asmin; Asthana, Saurabh; Blakely, Collin M; Okimoto, Ross A; Lin, Luping; Neel, Dana S; Sabnis, Amit; Flanagan, Jennifer; Chan, Elton; Varella-Garcia, Marileila; Aisner, Dara L; Vaishnavi, Aria; Ou, Sai-Hong I; Collisson, Eric A; Ichihara, Eiki; Mack, Philip C; Lovly, Christine M; Karachaliou, Niki; Rosell, Rafael; Riess, Jonathan W; Doebele, Robert C; Bivona, Trever G

    2016-01-01

    One strategy for combating cancer-drug resistance is to deploy rational polytherapy up front that suppresses the survival and emergence of resistant tumor cells. Here we demonstrate in models of lung adenocarcinoma harboring the oncogenic fusion of ALK and EML4 that the GTPase RAS–mitogen-activated protein kinase (MAPK) pathway, but not other known ALK effectors, is required for tumor-cell survival. EML4-ALK activated RAS-MAPK signaling by engaging all three major RAS isoforms through the HELP domain of EML4. Reactivation of the MAPK pathway via either a gain in the number of copies of the gene encoding wild-type K-RAS (KRASWT) or decreased expression of the MAPK phosphatase DUSP6 promoted resistance to ALK inhibitors in vitro, and each was associated with resistance to ALK inhibitors in individuals with EML4-ALK–positive lung adenocarcinoma. Upfront inhibition of both ALK and the kinase MEK enhanced both the magnitude and duration of the initial response in preclinical models of EML4-ALK lung adenocarcinoma. Our findings identify RAS-MAPK dependence as a hallmark of EML4-ALK lung adenocarcinoma and provide a rationale for the upfront inhibition of both ALK and MEK to forestall resistance and improve patient outcomes. PMID:26301689

  11. The Tumor Suppressor DiRas3 Forms a Complex with H-Ras and C-RAF Proteins and Regulates Localization, Dimerization, and Kinase Activity of C-RAF*

    PubMed Central

    Baljuls, Angela; Beck, Matthias; Oenel, Ayla; Robubi, Armin; Kroschewski, Ruth; Hekman, Mirko; Rudel, Thomas; Rapp, Ulf R.

    2012-01-01

    The maternally imprinted Ras-related tumor suppressor gene DiRas3 is lost or down-regulated in more than 60% of ovarian and breast cancers. The anti-tumorigenic effect of DiRas3 is achieved through several mechanisms, including inhibition of cell proliferation, motility, and invasion, as well as induction of apoptosis and autophagy. Re-expression of DiRas3 in cancer cells interferes with the signaling through Ras/MAPK and PI3K. Despite intensive research, the mode of interference of DiRas3 with the Ras/RAF/MEK/ERK signal transduction is still a matter of speculation. In this study, we show that DiRas3 associates with the H-Ras oncogene and that activation of H-Ras enforces this interaction. Furthermore, while associated with DiRas3, H-Ras is able to bind to its effector protein C-RAF. The resulting multimeric complex consisting of DiRas3, C-RAF, and active H-Ras is more stable than the two protein complexes H-Ras·C-RAF or H-Ras·DiRas3, respectively. The consequence of this complex formation is a DiRas3-mediated recruitment and anchorage of C-RAF to components of the membrane skeleton, suppression of C-RAF/B-RAF heterodimerization, and inhibition of C-RAF kinase activity. PMID:22605333

  12. Possible involvement of MSX-2 homeoprotein in v-ras-induced transformation.

    PubMed

    Takahashi, C; Akiyama, N; Kitayama, H; Takai, S; Noda, M

    1997-04-01

    A truncated MSX-2 homeoprotein was found to induce flat reversion when expressed in v-Ki-ras-transformed NIH3T3 cells. Although the expression of endogenous MSX-2 gene is low in most of the normal adult tissues examined, it is frequently activated in carcinoma-derived cell lines. Likewise, the gene is inactive in untransformed cells but is transcriptionally activated after transformation by v-Ki-ras oncogene, suggesting that the intact MSX-2 may play a positive, rather than suppressive, role in cell transformation. To test this possibility, we isolated a full-length human MSX-2 cDNA and tested its activities in two cell systems: fibroblast and myoblast. In NIH3T3 fibroblasts, although the gene by itself failed to confer a transformed phenotype, antisense MSX-2 cDNA as well as truncated MSX-2 cDNA interfered with the transforming activities of both v-Ki-ras and v-raf oncogene. In C2C12 myoblasts, MSX-2 was found to suppress MyoD gene expression, as do activated ras oncogenes, under certain culture conditions, and truncated MSX-2 cDNA was found to inhibit the activities of both MSX-2 and ras in this system as well. Our findings not only suggest that the truncated version MSX-2 may act as a dominant suppressor of intact MSX-2 but also raise the possibility that MSX-2 gene may be an important downstream target for the Ras signaling pathways.

  13. Evolution and Diversity of the Ras Superfamily of Small GTPases in Prokaryotes

    PubMed Central

    Wuichet, Kristin; Søgaard-Andersen, Lotte

    2015-01-01

    The Ras superfamily of small GTPases are single domain nucleotide-dependent molecular switches that act as highly tuned regulators of complex signal transduction pathways. Originally identified in eukaryotes for their roles in fundamental cellular processes including proliferation, motility, polarity, nuclear transport, and vesicle transport, recent studies have revealed that single domain GTPases also control complex functions such as cell polarity, motility, predation, development and antibiotic resistance in bacteria. Here, we used a computational genomics approach to understand the abundance, diversity, and evolution of small GTPases in prokaryotes. We collected 520 small GTPase sequences present in 17% of 1,611 prokaryotic genomes analyzed that cover diverse lineages. We identified two discrete families of small GTPases in prokaryotes that show evidence of three distinct catalytic mechanisms. The MglA family includes MglA homologs, which are typically associated with the MglB GTPase activating protein, whereas members of the Rup (Ras superfamily GTPase of unknown function in prokaryotes) family are not predicted to interact with MglB homologs. System classification and genome context analyses support the involvement of small GTPases in diverse prokaryotic signal transduction pathways including two component systems, laying the foundation for future experimental characterization of these proteins. Phylogenetic analysis of prokaryotic and eukaryotic GTPases supports that the last universal common ancestor contained ancestral MglA and Rup family members. We propose that the MglA family was lost from the ancestral eukaryote and that the Ras superfamily members in extant eukaryotes are the result of vertical and horizontal gene transfer events of ancestral Rup GTPases. PMID:25480683

  14. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.

    PubMed

    Mazhab-Jafari, Mohammad T; Marshall, Christopher B; Smith, Matthew J; Gasmi-Seabrook, Geneviève M C; Stathopulos, Peter B; Inagaki, Fuyuhiko; Kay, Lewis E; Neel, Benjamin G; Ikura, Mitsuhiko

    2015-05-26

    K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction. Here, we used solution NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid bilayer-anchored K-RAS4B and its interactions with effector protein RAS-binding domains (RBDs). Unexpectedly, we found that the effector-binding region of activated K-RAS4B is occluded by interaction with the membrane in one of the NMR-observable, and thus highly populated, conformational states. Binding of the RAF isoform ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B from the occluded state to RBD-specific effector-bound states. Importantly, we found that two Noonan syndrome-associated mutations, K5N and D153V, which do not affect the GTPase cycle, relieve the occluded orientation by directly altering the electrostatics of two membrane interaction surfaces. Similarly, the most frequent KRAS oncogenic mutation G12D also drives K-RAS4B toward an exposed configuration. Further, the D153V and G12D mutations increase the rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B. We revealed a mechanism of K-RAS4B autoinhibition by membrane sequestration of its effector-binding site, which can be disrupted by disease-associated mutations. Stabilizing the autoinhibitory interactions between K-RAS4B and the membrane could be an attractive target for anticancer drug discovery.

  15. Targeting Bcl-2 stability to sensitize cells harboring oncogenic ras.

    PubMed

    Peng, Bo; Ganapathy, Suthakar; Shen, Ling; Huang, Junchi; Yi, Bo; Zhou, Xiaodong; Dai, Wei; Chen, Changyan

    2015-09-08

    The pro-survival factor Bcl-2 and its family members are critical determinants of the threshold of the susceptibility of cells to apoptosis. Studies are shown that cells harboring an oncogenic ras were extremely sensitive to the inhibition of protein kinase C (PKC) and Bcl-2 could antagonize this apoptotic process. However, it remains unrevealed how Bcl-2 is being regulated in this apoptotic process. In this study, we investigate the role of Bcl-2 stability in sensitizing the cells harboring oncogenic K-ras to apoptosis triggered by PKC inhibitor GO6976. We demonstrated that Bcl-2 in Swiss3T3 cells ectopically expressing or murine lung cancer LKR cells harboring K-ras rapidly underwent ubiquitin-dependent proteasome pathway after the treatment of GO6976, accompanied with induction of apoptosis. In this process, Bcl-2 formed the complex with Keap-1 and Cul3. The mutation of serine-17 and deletion of BH-2 or 4 was required for Bcl-2 ubiquitination and degradation, which elevate the signal threshold for the induction of apoptosis in the cells following PKC inhibition. Thus, Bcl-2 appears an attractive target for the induction of apoptosis by PKC inhibition in cancer cells expressing oncogenic K-ras.

  16. Drugging the undruggable Ras: mission possible?

    PubMed Central

    Cox, Adrienne D.; Fesik, Stephen W.; Kimmelman, Alec C.; Luo, Ji; Der, Channing J.

    2015-01-01

    Despite more than three decades of intensive effort, no effective pharmacologic inhibitors of the Ras oncoproteins have reached the clinic, prompting the widely held perception that Ras proteins are “undruggable”. However, there is renewed hope that this is not the case. In this review, we summarize the progress and promise of five key directions. First, we focus on the prospects of direct inhibitors of Ras. Second, we revisit the issue of whether blocking Ras membrane association is a viable approach. Third, we assess the status of targeting Ras downstream effector signalling, arguably the most favourable current direction. Fourth, we address whether the search for synthetic lethal interactors of mutant RAS still holds promise. Finally, Ras-mediated changes in cell metabolism have recently been described. Can these changes be exploited for new therapeutic directions? We conclude with perspectives on how additional complexities, not yet fully understood, may impact each of these approaches. PMID:25323927

  17. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence*

    PubMed Central

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L.; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  18. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascade Inhibitors: How Mutations Can Result in Therapy Resistance and How to Overcome Resistance

    PubMed Central

    McCubrey, James A.; Steelman, Linda S.; Chappell, William H.; Abrams, Stephen L.; Franklin, Richard A.; Montalto, Giuseppe; Cervello, Melchiorre; Libra, Massimo; Candido, Saverio; Malaponte, Grazia; Mazzarino, Maria C.; Fagone, Paolo; Nicoletti, Ferdinando; Bäsecke, Jörg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Milella, Michele; Tafuri, Agostino; Chiarini, Francesca; Evangelisti, Camilla; Cocco, Lucio; Martelli, Alberto M.

    2012-01-01

    The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Targeting these pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type (WT) RAF in the presence of mutant, activated RAS) and rapamycin can induce Akt activation. Targeting with inhibitors directed at two constituents of the same pathway or two different signaling pathways may be a more effective approach. This review will first evaluate potential uses of Raf, MEK, PI3K, Akt and mTOR inhibitors that have been investigated in pre-clinical and clinical investigations and then discuss how cancers can become insensitive to various inhibitors and potential strategies to overcome this resistance. PMID:23085539

  19. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how mutations can result in therapy resistance and how to overcome resistance.

    PubMed

    McCubrey, James A; Steelman, Linda S; Chappell, William H; Abrams, Stephen L; Franklin, Richard A; Montalto, Giuseppe; Cervello, Melchiorre; Libra, Massimo; Candido, Saverio; Malaponte, Grazia; Mazzarino, Maria C; Fagone, Paolo; Nicoletti, Ferdinando; Bäsecke, Jörg; Mijatovic, Sanja; Maksimovic-Ivanic, Danijela; Milella, Michele; Tafuri, Agostino; Chiarini, Francesca; Evangelisti, Camilla; Cocco, Lucio; Martelli, Alberto M

    2012-10-01

    The Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades are often activated by genetic alterations in upstream signaling molecules such as receptor tyrosine kinases (RTK). Targeting these pathways is often complex and can result in pathway activation depending on the presence of upstream mutations (e.g., Raf inhibitors induce Raf activation in cells with wild type (WT) RAF in the presence of mutant, activated RAS) and rapamycin can induce Akt activation. Targeting with inhibitors directed at two constituents of the same pathway or two different signaling pathways may be a more effective approach. This review will first evaluate potential uses of Raf, MEK, PI3K, Akt and mTOR inhibitors that have been investigated in pre-clinical and clinical investigations and then discuss how cancers can become insensitive to various inhibitors and potential strategies to overcome this resistance.

  20. Electrostatic Interactions Positively Regulate K-Ras Nanocluster Formation and Function▿

    PubMed Central

    Plowman, Sarah J.; Ariotti, Nicholas; Goodall, Andrew; Parton, Robert G.; Hancock, John F.

    2008-01-01

    The organization of Ras proteins into plasma membrane nanoclusters is essential for high-fidelity signal transmission, but whether the nanoscale enviroments of different Ras nanoclusters regulate effector interactions is unknown. We show using high-resolution spatial mapping that Raf-1 is recruited to and retained in K-Ras-GTP nanoclusters. In contrast, Raf-1 recruited to the plasma membrane by H-Ras is not retained in H-Ras-GTP nanoclusters. Similarly, upon epidermal growth factor receptor activation, Raf-1 is preferentially recruited to K-Ras-GTP and not H-Ras-GTP nanoclusters. The formation of K-Ras-GTP nanoclusters is inhibited by phosphorylation of S181 in the C-terminal polybasic domain or enhanced by blocking S181 phosphorylation, with a concomitant reduction or increase in Raf-1 plasma membrane recruitment, respectively. Phosphorylation of S181 does not, however, regulate in vivo interactions with the nanocluster scaffold galectin-3 (Gal3), indicating separate roles for the polybasic domain and Gal3 in driving K-Ras nanocluster formation. Together, these data illustrate that Ras nanocluster composition regulates effector recruitment and highlight the importance of lipid/protein nanoscale environments to the activation of signaling cascades. PMID:18458061

  1. Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation

    PubMed Central

    Deschênes-Simard, Xavier; Gaumont-Leclerc, Marie-France; Bourdeau, Véronique; Lessard, Frédéric; Moiseeva, Olga; Forest, Valérie; Igelmann, Sebastian; Mallette, Frédérick A.; Saba-El-Leil, Marc K.; Meloche, Sylvain; Saad, Fred; Mes-Masson, Anne-Marie; Ferbeyre, Gerardo

    2013-01-01

    Constitutive activation of growth factor signaling pathways paradoxically triggers a cell cycle arrest known as cellular senescence. In primary cells expressing oncogenic ras, this mechanism effectively prevents cell transformation. Surprisingly, attenuation of ERK/MAP kinase signaling by genetic inactivation of Erk2, RNAi-mediated knockdown of ERK1 or ERK2, or MEK inhibitors prevented the activation of the senescence mechanism, allowing oncogenic ras to transform primary cells. Mechanistically, ERK-mediated senescence involved the proteasome-dependent degradation of proteins required for cell cycle progression, mitochondrial functions, cell migration, RNA metabolism, and cell signaling. This senescence-associated protein degradation (SAPD) was observed not only in cells expressing ectopic ras, but also in cells that senesced due to short telomeres. Individual RNAi-mediated inactivation of SAPD targets was sufficient to restore senescence in cells transformed by oncogenic ras or trigger senescence in normal cells. Conversely, the anti-senescence viral oncoproteins E1A, E6, and E7 prevented SAPD. In human prostate neoplasms, high levels of phosphorylated ERK were found in benign lesions, correlating with other senescence markers and low levels of STAT3, one of the SAPD targets. We thus identified a mechanism that links aberrant activation of growth signaling pathways and short telomeres to protein degradation and cellular senescence. PMID:23599344

  2. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence.

    PubMed

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L; Embrey, Kevin J; Golovanov, Alexander P

    2016-01-22

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly (15)N-labeled Ras as well as [(13)C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Signal Transduction in Cancer

    PubMed Central

    Sever, Richard; Brugge, Joan S.

    2015-01-01

    SUMMARY Cancer is driven by genetic and epigenetic alterations that allow cells to overproliferate and escape mechanisms that normally control their survival and migration. Many of these alterations map to signaling pathways that control cell growth and division, cell death, cell fate, and cell motility, and can be placed in the context of distortions of wider signaling networks that fuel cancer progression, such as changes in the tumor microenvironment, angiogenesis, and inflammation. Mutations that convert cellular proto-oncogenes to oncogenes can cause hyperactivation of these signaling pathways, whereas inactivation of tumor suppressors eliminates critical negative regulators of signaling. An examination of the PI3K-Akt and Ras-ERK pathways illustrates how such alterations dysregulate signaling in cancer and produce many of the characteristic features of tumor cells. PMID:25833940

  4. N-ras couples antigen receptor signaling to Eomesodermin and to functional CD8+ T cell memory but not to effector differentiation

    PubMed Central

    Iborra, Salvador; Ramos, Manuel; Arana, David M.; Lázaro, Silvia; Aguilar, Francisco; Santos, Eugenio; López, Daniel

    2013-01-01

    Signals from the TCR that specifically contribute to effector versus memory CD8+ T cell differentiation are poorly understood. Using mice and adoptively transferred T lymphocytes lacking the small GTPase N-ras, we found that N-ras–deficient CD8+ T cells differentiate efficiently into antiviral primary effectors but have a severe defect in generating protective memory cells. This defect was rescued, although only partly, by rapamycin-mediated inhibition of mammalian target of rapamycin (mTOR) in vivo. The memory defect correlated with a marked impairment in vitro and in vivo of the antigen-mediated early induction of T-box transcription factor Eomesodermin (Eomes), whereas T-bet was unaffected. Besides N-ras, early Eomes induction in vitro required phosphoinositide 3-kinase (PI3K)–AKT but not extracellular signal-regulated kinase (ERK) activation, and it was largely insensitive to rapamycin. Consistent with N-ras coupling Eomes to T cell memory, retrovirally enforced expression of Eomes in N-ras–deficient CD8+ T cells effectively rescued their memory differentiation. Thus, our study identifies a critical role for N-ras as a TCR-proximal regulator of Eomes for early determination of the CD8+ T cell memory fate. PMID:23776078

  5. Regulation of Hippo signalling by p38 signalling

    PubMed Central

    Huang, Dashun; Li, Xiaojiao; Sun, Li; Huang, Ping; Ying, Hao; Wang, Hui; Wu, Jiarui; Song, Haiyun

    2016-01-01

    The Hippo signalling pathway has a crucial role in growth control during development, and its dysregulation contributes to tumorigenesis. Recent studies uncover multiple upstream regulatory inputs into Hippo signalling, which affects phosphorylation of the transcriptional coactivator Yki/YAP/TAZ by Wts/Lats. Here we identify the p38 mitogen-activated protein kinase (MAPK) pathway as a new upstream branch of the Hippo pathway. In Drosophila, overexpression of MAPKK gene licorne (lic), or MAPKKK gene Mekk1, promotes Yki activity and induces Hippo target gene expression. Loss-of-function studies show that lic regulates Hippo signalling in ovary follicle cells and in the wing disc. Epistasis analysis indicates that Mekk1 and lic affect Hippo signalling via p38b and wts. We further demonstrate that the Mekk1-Lic-p38b cascade inhibits Hippo signalling by promoting F-actin accumulation and Jub phosphorylation. In addition, p38 signalling modulates actin filaments and Hippo signalling in parallel to small GTPases Ras, Rac1, and Rho1. Lastly, we show that p38 signalling regulates Hippo signalling in mammalian cell lines. The Lic homologue MKK3 promotes nuclear localization of YAP via the actin cytoskeleton. Upregulation or downregulation of the p38 pathway regulates YAP-mediated transcription. Our work thus reveals a conserved crosstalk between the p38 MAPK pathway and the Hippo pathway in growth regulation. PMID:27402810

  6. Prostaglandin E2 blocks menadione-induced apoptosis through the Ras/Raf/Erk signaling pathway in promonocytic leukemia cell lines.

    PubMed

    Yeo, Hyun-Seok; Shehzad, Adeeb; Lee, Young Sup

    2012-04-01

    Altered oxidative stress has long been observed in cancer cells, and this biochemical property of cancer cells represents a specific vulnerability that can be exploited for therapeutic benefit. The major role of an elevated oxidative stress for the efficacy of molecular targeted drugs is under investigation. Menadione is considered an attractive model for the study of oxidative stress, which can induce apoptosis in human leukemia HL-60 cell lines. Prostaglandin E(2) (PGE(2)) via its receptors not only promotes cell survival but also reverses apoptosis and promotes cancer progression. Here, we present evidence for the biological role of PGE(2) as a protective agent of oxidative stress-induced apoptosis in monocytic cells. Pretreatment of HL-60 cells with PGE(2) markedly ameliorated the menadione-induced apoptosis and inhibited the degradation of PARP and lamin B. The EP(2) receptor antagonist AH6809 abrogated the inhibitory effect of PGE(2), suggesting the role of the EP(2)/cAMP system. The PKA inhibitor H89 also reversed apoptosis and decreased the PKA activity that was elevated 10-fold by PGE(2). The treatment of HL-60 cells with NAC or zinc chloride showed a similar protective effect as with PGE(2) on menadione-treated cells. Furthermore, PGE(2) activated the Ras/Raf/MEK pathway, which in turn initiated ERK activation, and ultimately protected menadione-induced apoptosis. These results imply that PGE(2) via cell survival pathways may protect oxidative stress-induced apoptosis in monocytic cells. This study warrants further pre-clinical investigation as well as application towards leukemia clinics.

  7. Prostaglandin E2 Blocks Menadione-Induced Apoptosis through the Ras/Raf/Erk Signaling Pathway in Promonocytic Leukemia Cell Lines

    PubMed Central

    Yeo, Hyun-Seok; Shehzad, Adeeb; Lee, Young Sup

    2012-01-01

    Altered oxidative stress has long been observed in cancer cells, and this biochemical property of cancer cells represents a specific vulnerability that can be exploited for therapeutic benefit. The major role of an elevated oxidative stress for the efficacy of molecular targeted drugs is under investigation. Menadione is considered an attractive model for the study of oxidative stress, which can induce apoptosis in human leukemia HL-60 cell lines. Prostaglandin E2 (PGE2) via its receptors not only promotes cell survival but also reverses apoptosis and promotes cancer progression. Here, we present evidence for the biological role of PGE2 as a protective agent of oxidative stress-induced apoptosis in monocytic cells. Pretreatment of HL-60 cells with PGE2 markedly ameliorated the menadione-induced apoptosis and inhibited the degradation of PARP and lamin B. The EP2 receptor antagonist AH6809 abrogated the inhibitory effect of PGE2, suggesting the role of the EP2/cAMP system. The PKA inhibitor H89 also reversed apoptosis and decreased the PKA activity that was elevated 10-fold by PGE2. The treatment of HL-60 cells with NAC or zinc chloride showed a similar protective effect as with PGE2 on menadione-treated cells. Furthermore, PGE2 activated the Ras/Raf/MEK pathway, which in turn initiated ERK activation, and ultimately protected menadione-induced apoptosis. These results imply that PGE2 via cell survival pathways may protect oxidative stress-induced apoptosis in monocytic cells. This study warrants further pre-clinical investigation as well as application towards leukemia clinics. PMID:22450688

  8. EphA2 Drives the Segregation of Ras-Transformed Epithelial Cells from Normal Neighbors.

    PubMed

    Porazinski, Sean; de Navascués, Joaquín; Yako, Yuta; Hill, William; Jones, Matthew Robert; Maddison, Robert; Fujita, Yasuyuki; Hogan, Catherine

    2016-12-05

    In epithelial tissues, cells expressing oncogenic Ras (hereafter RasV12 cells) are detected by normal neighbors and as a result are often extruded from the tissue [1-6]. RasV12 cells are eliminated apically, suggesting that extrusion may be a tumor-suppressive process. Extrusion depends on E-cadherin-based cell-cell adhesions and signaling to the actin-myosin cytoskeleton [2, 6]. However, the signals underlying detection of the RasV12 cell and triggering extrusion are poorly understood. Here we identify differential EphA2 signaling as the mechanism by which RasV12 cells are detected in epithelial cell sheets. Cell-cell interactions between normal cells and RasV12 cells trigger ephrin-A-EphA2 signaling, which induces a cell repulsion response in RasV12 cells. Concomitantly, RasV12 cell contractility increases in an EphA2-dependent manner. Together, these responses drive the separation of RasV12 cells from normal cells. In the absence of ephrin-A-EphA2 signals, RasV12 cells integrate with normal cells and adopt a pro-invasive morphology. We also show that Drosophila Eph (DEph) is detected in segregating clones of RasV12 cells and is functionally required to drive segregation of RasV12 cells in vivo, suggesting that our in vitro findings are conserved in evolution. We propose that expression of RasV12 in single or small clusters of cells within a healthy epithelium creates ectopic EphA2 boundaries, which drive the segregation and elimination of the transformed cell from the tissue. Thus, deregulation of Eph/ephrin would allow RasV12 cells to go undetected and expand within an epithelium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. New Challenges in Targeting Signaling Pathways in Acute Lymphoblastic Leukemia by NGS Approaches: An Update

    PubMed Central

    Hernández-Rivas, Jesús María

    2018-01-01

    The identification and study of genetic alterations involved in various signaling pathways associated with the pathogenesis of acute lymphoblastic leukemia (ALL) and the application of recent next-generation sequencing (NGS) in the identification of these lesions not only broaden our understanding of the involvement of various genetic alterations in the pathogenesis of the disease but also identify new therapeutic targets for future clinical trials. The present review describes the main deletions, amplifications, sequence mutations, epigenetic lesions, and new structural DNA rearrangements detected by NGS in B-ALL and T-ALL and their clinical importance for therapeutic procedures. We reviewed the molecular basis of pathways including transcriptional regulation, lymphoid differentiation and development, TP53 and the cell cycle, RAS signaling, JAK/STAT, NOTCH, PI3K/AKT/mTOR, Wnt/β-catenin signaling, chromatin structure modifiers, and epigenetic regulators. The implementation of NGS strategies has enabled important mutated genes in each pathway, their associations with the genetic subtypes of ALL, and their outcomes, which will be described further. We also discuss classic and new cryptic DNA rearrangements in ALL identified by mRNA-seq strategies. Novel cooperative abnormalities in ALL could be key prognostic and/or predictive biomarkers for selecting the best frontline treatment and for developing therapies after the first relapse or refractory disease. PMID:29642462

  10. Association between GRB2/Sos and insulin receptor substrate 1 is not sufficient for activation of extracellular signal-regulated kinases by interleukin-4: implications for Ras activation by insulin.

    PubMed

    Pruett, W; Yuan, Y; Rose, E; Batzer, A G; Harada, N; Skolnik, E Y

    1995-03-01

    Insulin receptor substrate 1 (IRS-1) mediates the activation of a variety of signaling pathways by the insulin and insulin-like growth factor 1 receptors by serving as a docking protein for signaling molecules with SH2 domains. We and others have shown that in response to insulin stimulation IRS-1 binds GRB2/Sos and have proposed that this interaction is important in mediating Ras activation by the insulin receptor. Recently, it has been shown that the interleukin (IL)-4 receptor also phosphorylates IRS-1 and an IRS-1-related molecule, 4PS. Unlike insulin, however, IL-4 fails to activate Ras, extracellular signal-regulated kinases (ERKs), or mitogen-activated protein kinases. We have reconstituted the IL-4 receptor into an insulin-responsive L6 myoblast cell line and have shown that IRS-1 is tyrosine phosphorylated to similar degrees in response to insulin and IL-4 stimulation in this cell line. In agreement with previous findings, IL-4 failed to activate the ERKs in this cell line or to stimulate DNA synthesis, whereas the same responses were activated by insulin. Surprisingly, IL-4's failure to activate ERKs was not due to a failure to stimulate the association of tyrosine-phosphorylated IRS-1 with GRB2/Sos; the amounts of GRB2/Sos associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. Moreover, the amounts of phosphatidylinositol 3-kinase activity associated with IRS-1 were similar in insulin- and IL-4-stimulated cells. In contrast to insulin, however, IL-4 failed to induce tyrosine phosphorylation of Shc or association of Shc with GRB2. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Thus, ERK activation correlates with Shc tyrosine phosphorylation and formation of an Shc/GRB2 complex. Previous studies have indicated that activation of ERks in this cell line is dependent upon Ras since a dominant-negative Ras (Asn-17) blocks ERK activation by insulin. Our findings, taken in the context

  11. Activation of multiple signaling pathways causes developmental defects in mice with a Noonan syndrome–associated Sos1 mutation

    PubMed Central

    Chen, Peng-Chieh; Wakimoto, Hiroko; Conner, David; Araki, Toshiyuki; Yuan, Tao; Roberts, Amy; Seidman, Christine E.; Bronson, Roderick; Neel, Benjamin G.; Seidman, Jonathan G.; Kucherlapati, Raju

    2010-01-01

    Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, unique facial features, and congenital heart disease. About 10%–15% of individuals with NS have mutations in son of sevenless 1 (SOS1), which encodes a RAS and RAC guanine nucleotide exchange factor (GEF). To understand the role of SOS1 in the pathogenesis of NS, we generated mice with the NS-associated Sos1E846K gain-of-function mutation. Both heterozygous and homozygous mutant mice showed many NS-associated phenotypes, including growth delay, distinctive facial dysmorphia, hematologic abnormalities, and cardiac defects. We found that the Ras/MAPK pathway as well as Rac and Stat3 were activated in the mutant hearts. These data provide in vivo molecular and cellular evidence that Sos1 is a GEF for Rac under physiological conditions and suggest that Rac and Stat3 activation might contribute to NS phenotypes. Furthermore, prenatal administration of a MEK inhibitor ameliorated the embryonic lethality, cardiac defects, and NS features of the homozygous mutant mice, demonstrating that this signaling pathway might represent a promising therapeutic target for NS. PMID:21041952

  12. Molecular Dynamics Simulations and Dynamic Network Analysis Reveal the Allosteric Unbinding of Monobody to H-Ras Triggered by R135K Mutation.

    PubMed

    Ni, Duan; Song, Kun; Zhang, Jian; Lu, Shaoyong

    2017-10-26

    Ras proteins, as small GTPases, mediate cell proliferation, survival and differentiation. Ras mutations have been associated with a broad spectrum of human cancers and thus targeting Ras represents a potential way forward for cancer therapy. A recently reported monobody NS1 allosterically disrupts the Ras-mediated signaling pathway, but its efficacy is reduced by R135K mutation in H-Ras. However, the detailed mechanism is unresolved. Here, using molecular dynamics (MD) simulations and dynamic network analysis, we explored the molecular mechanism for the unbinding of NS1 to H-Ras and shed light on the underlying allosteric network in H-Ras. MD simulations revealed that the overall structures of the two complexes did not change significantly, but the H-Ras-NS1 interface underwent significant conformational alteration in the mutant Binding free energy analysis showed that NS1 binding was unfavored after R135K mutation, which resulted in the unfavorable binding of NS1. Furthermore, the critical residues on H-Ras responsible for the loss of binding of NS1 were identified. Importantly, the allosteric networks for these important residues were revealed, which yielded a novel insight into the allosteric regulatory mechanism of H-Ras.

  13. Nature of extracellular signal that triggers RhoA/ROCK activation for the basal internal anal sphincter tone in humans

    PubMed Central

    Singh, Jagmohan; Kumar, Sumit; Phillips, Benjamin

    2015-01-01

    The extracellular signal that triggers activation of rho-associated kinase (RhoA/ROCK), the major molecular determinant of basal internal anal sphincter (IAS) smooth muscle tone, is not known. Using human IAS tissues, we identified the presence of the biosynthetic machineries for angiotensin II (ANG II), thromboxane A2 (TXA2), and prostaglandin F2α (PGF2α). These end products of the renin-angiotensin system (RAS) (ANG II) and arachidonic acid (TXA2 and PGF2α) pathways and their effects in human IAS vs. rectal smooth muscle (RSM) were studied. A multipronged approach utilizing immunocytochemistry, Western blot analyses, and force measurements was implemented. Additionally, in a systematic analysis of the effects of respective inhibitors along different steps of biosynthesis and those of antagonists, their end products were evaluated either individually or in combination. To further describe the molecular mechanism for the IAS tone via these pathways, we monitored RhoA/ROCK activation and its signal transduction cascade. Data showed characteristically higher expression of biosynthetic machineries of RAS and AA pathways in the IAS compared with the RSM. Additionally, specific inhibition of the arachidonic acid (AA) pathway caused ∼80% decrease in the IAS tone, whereas that of RAS lead to ∼20% decrease. Signal transduction studies revealed that the end products of both AA and RAS pathways cause increase in the IAS tone via activation of RhoA/ROCK. Both AA and RAS (via the release of their end products TXA2, PGF2α, and ANG II, respectively), provide extracellular signals which activate RhoA/ROCK for the maintenance of the basal tone in human IAS. PMID:25882611

  14. SIAH and EGFR, Two RAS Pathway Biomarkers, are Highly Prognostic in Locally Advanced and Metastatic Breast Cancer.

    PubMed

    van Reesema, Lauren L Siewertsz; Zheleva, Vasilena; Winston, Janet S; Jansen, Rick J; O'Connor, Carolyn F; Isbell, Andrew J; Bian, Minglei; Qin, Rui; Bassett, Patricia T; Hinson, Virginia J; Dorsch, Kimberly A; Kirby, Brad W; Van Sciver, Robert E; Tang-Tan, Angela M; Harden, Elizabeth A; Chang, David Z; Allen, Cynthia A; Perry, Roger R; Hoefer, Richard A; Tang, Amy H

    2016-09-01

    Metastatic breast cancer exhibits diverse and rapidly evolving intra- and inter-tumor heterogeneity. Patients with similar clinical presentations often display distinct tumor responses to standard of care (SOC) therapies. Genome landscape studies indicate that EGFR/HER2/RAS "pathway" activation is highly prevalent in malignant breast cancers. The identification of therapy-responsive and prognostic biomarkers is paramount important to stratify patients and guide therapies in clinical oncology and personalized medicine. In this study, we analyzed matched pairs of tumor specimens collected from 182 patients who received neoadjuvant systemic therapies (NST). Statistical analyses were conducted to determine whether EGFR/HER2/RAS pathway biomarkers and clinicopathological predictors, alone and in combination, are prognostic in breast cancer. SIAH and EGFR outperform ER, PR, HER2 and Ki67 as two logical, sensitive and prognostic biomarkers in metastatic breast cancer. We found that increased SIAH and EGFR expression correlated with advanced pathological stage and aggressive molecular subtypes. Both SIAH expression post-NST and NST-induced changes in EGFR expression in invasive mammary tumors are associated with tumor regression and increased survival, whereas ER, PR, and HER2 were not. These results suggest that SIAH and EGFR are two prognostic biomarkers in breast cancer with lymph node metastases. The discovery of incorporating tumor heterogeneity-independent and growth-sensitive RAS pathway biomarkers, SIAH and EGFR, whose altered expression can be used to estimate therapeutic efficacy, detect emergence of resistant clones, forecast tumor regression, differentiate among partial responders, and predict patient survival in the neoadjuvant setting, has a clear clinical implication in personalizing breast cancer therapy. This work was supported by the Dorothy G. Hoefer Foundation for Breast Cancer Research (A.H. Tang); Center for Innovative Technology (CIT

  15. RAS oncogene-mediated deregulation of the transcriptome: from molecular signature to function.

    PubMed

    Schäfer, Reinhold; Sers, Christine

    2011-01-01

    Transcriptome analysis of cancer cells has developed into a standard procedure to elucidate multiple features of the malignant process and to link gene expression to clinical properties. Gene expression profiling based on microarrays provides essentially correlative information and needs to be transferred to the functional level in order to understand the activity and contribution of individual genes or sets of genes as elements of the gene signature. To date, there exist significant gaps in the functional understanding of gene expression profiles. Moreover, the processes that drive the profound transcriptional alterations that characterize cancer cells remain mainly elusive. We have used pathway-restricted gene expression profiles derived from RAS oncogene-transformed cells and from RAS-expressing cancer cells to identify regulators downstream of the MAPK pathway.We describe the role of epigenetic regulation exemplified by the control of several immune genes in generic cell lines and colorectal cancer cells, particularly the functional interaction between signaling and DNA methylation. Moreover, we assess the role of the architectural transcription factor high mobility AT-hook 2 (HMGA2) as a regulator of the RAS-responsive transcriptome in ovarian epithelial cells. Finally, we describe an integrated approach combining pathway interference in colorectal cancer cells, gene expression profiling and computational analysis of regulatory elements of deregulated target genes. This strategy resulted in the identification of Y-box binding protein 1 (YBX1) as a regulator of MAPK-dependent proliferation and gene expression. The implications for a therapeutic application of HMGA2 gene silencing and the role of YBX1 as a prognostic factor are discussed.

  16. Rho and Ras GTPases in Axon Growth, Guidance, and Branching

    PubMed Central

    Hall, Alan; Lalli, Giovanna

    2010-01-01

    The establishment of precise neuronal cell morphology provides the foundation for all aspects of neurobiology. During development, axons emerge from cell bodies after an initial polarization stage, elongate, and navigate towards target regions guided by a range of environmental cues. The Rho and Ras families of small GTPases have emerged as critical players at all stages of axonogenesis. Their ability to coordinately direct multiple signal transduction pathways with precise spatial control drives many of the activities that underlie this morphogenetic program: the dynamic assembly, disassembly, and reorganization of the actin and microtubule cytoskeletons, the interaction of the growing axon with other cells and extracellular matrix, the delivery of lipids and proteins to the axon through the exocytic machinery, and the internalization of membrane and proteins at the leading edge of the growth cone through endocytosis. This article highlights the contribution of Rho and Ras GTPases to axonogenesis. PMID:20182621

  17. Smad phosphoisoform signaling specificity: the right place at the right time.

    PubMed

    Matsuzaki, Koichi

    2011-11-01

    Transforming growth factor (TGF)-β antagonizes mitogenic Ras signaling during epithelial regeneration, but TGF-β and Ras act synergistically in driving tumor progression. Insights into these apparently contradictory effects have come from recent detailed analyses of the TGF-β signaling process. Here, we summarize the different modes of TGF-β/Ras signaling in normal epithelium and neoplasms and show how perturbation of TGF-β signaling by Ras may contribute to a shift from tumor-suppressive to protumorigenic TGF-β activity during tumor progression. Smad proteins, which convey signals from TGF-β receptors to the nucleus, have intermediate linker regions between conserved Mad homology (MH) 1 and MH2 domains. TGF-β Type I receptor and Ras-associated kinases differentially phosphorylate Smad2 and Smad3 to create C-terminally (C), linker (L) or dually (L/C) phosphorylated (p) isoforms. In epithelial homeostasis, TGF-β-mediated pSmad3C signaling opposes proliferative responses induced by mitogenic signals. During carcinogenesis, activation of cytoplasmic Ras-associated kinases including mitogen-activated protein kinase confers a selective advantage on benign tumors by shifting Smad3 signaling from a tumor-suppressive pSmad3C to an oncogenic pSmad3L pathway, leading to carcinoma in situ. Finally, at the edges of advanced carcinomas invading adjacent tissues, nuclear Ras-associated kinases such as cyclin-dependent kinases, together with cytoplasmic kinases, alter TGF-β signals to more invasive and proliferative pSmad2L/C and pSmad3L/C signaling. Taken together, TGF-β signaling specificity arises from spatiotemporal dynamics of Smad phosphoisoforms. Based on these findings, we have reason to hope that pharmacologic inhibition of linker phosphorylation might suppress progression to human advanced carcinomas by switching from protumorigenic to tumor-suppressive TGF-β signaling.

  18. Pathway Pathology

    PubMed Central

    Rosner, Andrea; Miyoshi, Keiko; Landesman-Bollag, Esther; Xu, Xin; Seldin, David C.; Moser, Amy R.; MacLeod, Carol L.; Shyamala, G.; Gillgrass, Amy E.; Cardiff, Robert D.

    2002-01-01

    To study phenotype-genotype correlations, ErbB/Ras pathway tumors (transgenic for ErbB2, c-Neu, mutants of c-Neu, polyomavirus middle T antigene (PyV-mT), Ras, and bi-transgenic for ErbB2/Neu with ErbB3 and with progesterone receptor) from four different institutions were histopathologically compared with Wnt pathway tumors [transgenes Wnt1, Wnt10b, dominant-negative glycogen synthase kinase 3-β, β-Catenin, and spontaneous mutants of adenomatous polyposis coli gene (Apc)]. ErbB/Ras pathway tumors tend to form solid nodules consisting of poorly differentiated cells with abundant cytoplasm. ErbB/Ras pathway tumors also have scanty stroma and lack myoepithelial or squamous differentiation. In contrast, Wnt pathway tumors exhibit myoepithelial, acinar, or glandular differentiation, and, frequently, combinations of these. Squamous metaplasia is frequent and may include transdifferentiation to epidermal and pilar structures. Most Wnt pathway tumors form caricatures of elongated, branched ductules, and have well-developed stroma, inflammatory infiltrates, and pushing margins. Tumors transgenic for interacting genes such as protein kinase CK2α (casein kinase IIα), and the fibroblast growth factors (Fgf) Int2/Fgf3 or keratinocyte growth factor (Kgf/Fgf7) also have the Wnt pathway phenotype. Because the tumors from the ErbB/Ras and the Wnt pathway are so distinct and can be readily identified using routine hematoxylin and eosin sections, we suggest that pathway pathology is applicable in both basic and clinical cancer research. PMID:12213737

  19. Ras-mediated deregulation of the circadian clock in cancer.

    PubMed

    Relógio, Angela; Thomas, Philippe; Medina-Pérez, Paula; Reischl, Silke; Bervoets, Sander; Gloc, Ewa; Riemer, Pamela; Mang-Fatehi, Shila; Maier, Bert; Schäfer, Reinhold; Leser, Ulf; Herzel, Hanspeter; Kramer, Achim; Sers, Christine

    2014-01-01

    Circadian rhythms are essential to the temporal regulation of molecular processes in living systems and as such to life itself. Deregulation of these rhythms leads to failures in biological processes and eventually to the manifestation of pathological phenotypes including cancer. To address the questions as to what are the elicitors of a disrupted clock in cancer, we applied a systems biology approach to correlate experimental, bioinformatics and modelling data from several cell line models for colorectal and skin cancer. We found strong and weak circadian oscillators within the same type of cancer and identified a set of genes, which allows the discrimination between the two oscillator-types. Among those genes are IFNGR2, PITX2, RFWD2, PPARγ, LOXL2, Rab6 and SPARC, all involved in cancer-related pathways. Using a bioinformatics approach, we extended the core-clock network and present its interconnection to the discriminative set of genes. Interestingly, such gene signatures link the clock to oncogenic pathways like the RAS/MAPK pathway. To investigate the potential impact of the RAS/MAPK pathway - a major driver of colorectal carcinogenesis - on the circadian clock, we used a computational model which predicted that perturbation of BMAL1-mediated transcription can generate the circadian phenotypes similar to those observed in metastatic cell lines. Using an inducible RAS expression system, we show that overexpression of RAS disrupts the circadian clock and leads to an increase of the circadian period while RAS inhibition causes a shortening of period length, as predicted by our mathematical simulations. Together, our data demonstrate that perturbations induced by a single oncogene are sufficient to deregulate the mammalian circadian clock.

  20. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling.

    PubMed

    Daniels, Mark A; Teixeiro, Emma; Gill, Jason; Hausmann, Barbara; Roubaty, Dominique; Holmberg, Kaisa; Werlen, Guy; Holländer, Georg A; Gascoigne, Nicholas R J; Palmer, Ed

    2006-12-07

    A healthy individual can mount an immune response to exogenous pathogens while avoiding an autoimmune attack on normal tissues. The ability to distinguish between self and non-self is called 'immunological tolerance' and, for T lymphocytes, involves the generation of a diverse pool of functional T cells through positive selection and the removal of overtly self-reactive thymocytes by negative selection during T-cell ontogeny. To elucidate how thymocytes arrive at these cell fate decisions, here we have identified ligands that define an extremely narrow gap spanning the threshold that distinguishes positive from negative selection. We show that, at the selection threshold, a small increase in ligand affinity for the T-cell antigen receptor leads to a marked change in the activation and subcellular localization of Ras and mitogen-activated protein kinase (MAPK) signalling intermediates and the induction of negative selection. The ability to compartmentalize signalling molecules differentially in the cell endows the thymocyte with the ability to convert a small change in analogue input (affinity) into a digital output (positive versus negative selection) and provides the basis for establishing central tolerance.

  1. Bacillus subtilis Intramembrane Protease RasP Activity in Escherichia coli and In Vitro.

    PubMed

    Parrell, Daniel; Zhang, Yang; Olenic, Sandra; Kroos, Lee

    2017-10-01

    RasP is a predicted intramembrane metalloprotease of Bacillus subtilis that has been proposed to cleave the stress response anti-sigma factors RsiW and RsiV, the cell division protein FtsL, and remnant signal peptides within their transmembrane segments. To provide evidence for direct effects of RasP on putative substrates, we developed a heterologous coexpression system. Since expression of catalytically inactive RasP E21A inhibited expression of other membrane proteins in Escherichia coli , we added extra transmembrane segments to RasP E21A, which allowed accumulation of most other membrane proteins. A corresponding active version of RasP appeared to promiscuously cleave coexpressed membrane proteins, except those with a large periplasmic domain. However, stable cleavage products were not observed, even in clpP mutant E. coli Fusions of transmembrane segment-containing parts of FtsL and RsiW to E. coli maltose-binding protein (MBP) also resulted in proteins that appeared to be RasP substrates upon coexpression in E. coli , including FtsL with a full-length C-terminal domain (suggesting that prior cleavage by a site 1 protease is unnecessary) and RsiW designed to mimic the PrsW site 1 cleavage product (suggesting that further trimming by extracytoplasmic protease is unnecessary). Purified RasP cleaved His 6 -MBP-RsiW(73-118) in vitro within the RsiW transmembrane segment based on mass spectrometry analysis, demonstrating that RasP is an intramembrane protease. Surprisingly, purified RasP failed to cleave His 6 -MBP-FtsL(23-117). We propose that the lack of α-helix-breaking residues in the FtsL transmembrane segment creates a requirement for the membrane environment and/or an additional protein(s) in order for RasP to cleave FtsL. IMPORTANCE Intramembrane proteases govern important signaling pathways in nearly all organisms. In bacteria, they function in stress responses, cell division, pathogenesis, and other processes. Their membrane-associated substrates are

  2. Anti-cancer peptides from ras-p21 and p53 proteins.

    PubMed

    Pincus, Matthew R; Fenelus, Maly; Sarafraz-Yazdi, Ehsan; Adler, Victor; Bowne, Wilbur; Michl, Josef

    2011-01-01

    We have employed computer-based molecular modeling approaches to design peptides from the ras-p21 and p53 proteins that either induce tumor cell reversion to the untransformed phenotype or induce tumor cell necrosis without affecting normal cells. For rasp21, we have computed and superimposed the average low energy structures for the wild-type protein and oncogenic forms of this protein and found that specific domains change conformation in the oncogenic proteins. We have synthesized peptides corresponding to these and found that ras peptides, 35-47 (PNC-7) and 96-110 (PNC-2), block oncogenic ras-p21-induced oocyte maturation but have no effect on insulin-induced oocyte maturation that requires activation of endogenous wild-type ras-p21. These results show signal transduction pathway differences between oncogenic and activated wild-type ras-p21. Both peptides, attached to a membrane-penetrating peptide (membrane residency peptide or MRP), either induce phenotypic reversion to the untransformed phenotype or tumor cell necrosis of several ras-transformed cell lines, but have no effect on the growth of normal cells. Using other computational methods, we have designed two peptides, PNC-27 and 28, containing HDM-2-protein-binding domain sequences from p53 linked on their C-termini to the MRP that induce pore formation in the membranes of a wide range of cancer cells but not any normal cells tested. This is due to the expression of HDM-2 in the cancer cell membrane that does not occur in normal cells. These peptides eradicate a highly malignant tumor in nude mice with no apparent side effects. Both ras and p53 peptides show promise as anti-tumor agents in humans.

  3. Molecular Dynamics Simulations and Dynamic Network Analysis Reveal the Allosteric Unbinding of Monobody to H-Ras Triggered by R135K Mutation

    PubMed Central

    Song, Kun; Zhang, Jian; Lu, Shaoyong

    2017-01-01

    Ras proteins, as small GTPases, mediate cell proliferation, survival and differentiation. Ras mutations have been associated with a broad spectrum of human cancers and thus targeting Ras represents a potential way forward for cancer therapy. A recently reported monobody NS1 allosterically disrupts the Ras-mediated signaling pathway, but its efficacy is reduced by R135K mutation in H-Ras. However, the detailed mechanism is unresolved. Here, using molecular dynamics (MD) simulations and dynamic network analysis, we explored the molecular mechanism for the unbinding of NS1 to H-Ras and shed light on the underlying allosteric network in H-Ras. MD simulations revealed that the overall structures of the two complexes did not change significantly, but the H-Ras–NS1 interface underwent significant conformational alteration in the mutant Binding free energy analysis showed that NS1 binding was unfavored after R135K mutation, which resulted in the unfavorable binding of NS1. Furthermore, the critical residues on H-Ras responsible for the loss of binding of NS1 were identified. Importantly, the allosteric networks for these important residues were revealed, which yielded a novel insight into the allosteric regulatory mechanism of H-Ras. PMID:29072601

  4. Neurofibromatosis-Noonan syndrome: case report and clinicopathogenic review of the Neurofibromatosis-Noonan syndrome and RAS-MAPK pathway.

    PubMed

    Reig, Irela; Boixeda, Pablo; Fleta, Beatriz; Morenoc, Carmen; Gámez, Lucía; Truchuelo, Mayte

    2011-04-15

    Neurofibromatosis-Noonan syndrome is an entity that combines both features of Noonan syndrome and Neurofibromatosis type 1. This phenotypic overlap can be explained by the involvement of the RAS-MAPK pathway (mitogen-activated protein kinase) in both disorders. We report the case of a 17-year-old boy with Neurofibromatosis 1 with Noonan-like features, who complained of the progressive appearance of blue-gray lesions on his back.

  5. Regulation of Hippo signalling by p38 signalling.

    PubMed

    Huang, Dashun; Li, Xiaojiao; Sun, Li; Huang, Ping; Ying, Hao; Wang, Hui; Wu, Jiarui; Song, Haiyun

    2016-08-01

    The Hippo signalling pathway has a crucial role in growth control during development, and its dysregulation contributes to tumorigenesis. Recent studies uncover multiple upstream regulatory inputs into Hippo signalling, which affects phosphorylation of the transcriptional coactivator Yki/YAP/TAZ by Wts/Lats. Here we identify the p38 mitogen-activated protein kinase (MAPK) pathway as a new upstream branch of the Hippo pathway. In Drosophila, overexpression of MAPKK gene licorne (lic), or MAPKKK gene Mekk1, promotes Yki activity and induces Hippo target gene expression. Loss-of-function studies show that lic regulates Hippo signalling in ovary follicle cells and in the wing disc. Epistasis analysis indicates that Mekk1 and lic affect Hippo signalling via p38b and wts We further demonstrate that the Mekk1-Lic-p38b cascade inhibits Hippo signalling by promoting F-actin accumulation and Jub phosphorylation. In addition, p38 signalling modulates actin filaments and Hippo signalling in parallel to small GTPases Ras, Rac1, and Rho1. Lastly, we show that p38 signalling regulates Hippo signalling in mammalian cell lines. The Lic homologue MKK3 promotes nuclear localization of YAP via the actin cytoskeleton. Upregulation or downregulation of the p38 pathway regulates YAP-mediated transcription. Our work thus reveals a conserved crosstalk between the p38 MAPK pathway and the Hippo pathway in growth regulation. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS.

  6. Modularized TGFbeta-Smad Signaling Pathway

    NASA Technical Reports Server (NTRS)

    Li, Yongfeng; Wang, M.; Carra, C.; Cucinotta, F. A.

    2011-01-01

    The Transforming Growth Factor beta (TGFbeta) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. It can be induced by several factors, including ionizing radiation. It is regulated by Smads in a negative feedback loop through promoting increases in the regulatory Smads in the cell nucleus, and subsequent expression of inhibitory Smad, Smad7 to form a ubiquitin ligase with Smurf targeting active TGF receptors for degradation. In this work, we proposed a mathematical model to study the radiation-induced Smad-regulated TGF signaling pathway. By modularization, we are able to analyze each module (subsystem) and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, along the TGF signaling pathway is discussed by mathematical analysis and numerical simulation.

  7. Expression of chimeric ras protein with OmpF signal peptide in Escherichia coli: localization of OmpF fusion protein in the inner membrane.

    PubMed

    Yamamoto, T; Okawa, N; Endo, T; Kaji, A

    1991-08-01

    The ras gene was fused with the DNA sequence of OmpF signal peptide or with the DNA sequence of OmpF signal peptide plus the amino terminal portion of the OmpF gene. They were placed in plasmids together with the bacteriophage lambda PL promoter. These plasmids were introduced into Escherichia coli strain K-12 and the OmpF signal peptide fusion proteins were expressed. These fusion proteins were identified as 29.0 and 30.0 kDa proteins. However, processed products of these proteins were not found in the extract. The fusion proteins were localized mostly in the cytoplasm and the inner membrane, but none of them was secreted into the periplasmic space. On the other hand, the ras protein alone was found in the cytoplasm and not in the inner membrane. Viable counts of E. coli harbouring these plasmids decreased when these fused proteins were induced. Induction of the ras protein alone did not harm cells. These observations suggest that insertion of the heterologous proteins into the inner membrane may cause the bactericidal effect.

  8. The Role of Dimerization in Raf Signaling | Center for Cancer Research

    Cancer.gov

    One frequently mutated pathway in a variety of cancers and developmental disorders is the Ras-Raf-MEK-ERK cascade. Normally, binding of a growth factor to its receptor switches on Ras, which, in turn, activates one or more of the Raf kinase family members, A-Raf, B-Raf, and C-Raf. Rafs perpetuate the signal by phosphorylating and activating MEK, another kinase that

  9. Cancer stem cell drugs target K-ras signaling in a stemness context

    PubMed Central

    Najumudeen, A K; Jaiswal, A; Lectez, B; Oetken-Lindholm, C; Guzmán, C; Siljamäki, E; Posada, I M D; Lacey, E; Aittokallio, T; Abankwa, D

    2016-01-01

    Cancer stem cells (CSCs) are considered to be responsible for treatment relapse and have therefore become a major target in cancer research. Salinomycin is the most established CSC inhibitor. However, its primary mechanistic target is still unclear, impeding the discovery of compounds with similar anti-CSC activity. Here, we show that salinomycin very specifically interferes with the activity of K-ras4B, but not H-ras, by disrupting its nanoscale membrane organization. We found that caveolae negatively regulate the sensitivity to this drug. On the basis of this novel mechanistic insight, we defined a K-ras-associated and stem cell-derived gene expression signature that predicts the drug response of cancer cells to salinomycin. Consistent with therapy resistance of CSC, 8% of tumor samples in the TCGA-database displayed our signature and were associated with a significantly higher mortality. Using our K-ras-specific screening platform, we identified several new candidate CSC drugs. Two of these, ophiobolin A and conglobatin A, possessed a similar or higher potency than salinomycin. Finally, we established that the most potent compound, ophiobolin A, exerts its K-ras4B-specific activity through inactivation of calmodulin. Our data suggest that specific interference with the K-ras4B/calmodulin interaction selectively inhibits CSC. PMID:26973241

  10. Ras/Mitogen-activated Protein Kinase (MAPK) Signaling Modulates Protein Stability and Cell Surface Expression of Scavenger Receptor SR-BI*

    PubMed Central

    Wood, Peta; Mulay, Vishwaroop; Darabi, Masoud; Chan, Karen Cecilia; Heeren, Joerg; Pol, Albert; Lambert, Gilles; Rye, Kerry-Anne; Enrich, Carlos; Grewal, Thomas

    2011-01-01

    The mitogen-activated protein kinase (MAPK) Erk1/2 has been implicated to modulate the activity of nuclear receptors, including peroxisome proliferator activator receptors (PPARs) and liver X receptor, to alter the ability of cells to export cholesterol. Here, we investigated if the Ras-Raf-Mek-Erk1/2 signaling cascade could affect reverse cholesterol transport via modulation of scavenger receptor class BI (SR-BI) levels. We demonstrate that in Chinese hamster ovary (CHO) and human embryonic kidney (HEK293) cells, Mek1/2 inhibition reduces PPARα-inducible SR-BI protein expression and activity, as judged by reduced efflux onto high density lipoprotein (HDL). Ectopic expression of constitutively active H-Ras and Mek1 increases SR-BI protein levels, which correlates with elevated PPARα Ser-21 phosphorylation and increased cholesterol efflux. In contrast, SR-BI levels are insensitive to Mek1/2 inhibitors in PPARα-depleted cells. Most strikingly, Mek1/2 inhibition promotes SR-BI degradation in SR-BI-overexpressing CHO cells and human HuH7 hepatocytes, which is associated with reduced uptake of radiolabeled and 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyane-labeled HDL. Loss of Mek1/2 kinase activity reduces SR-BI expression in the presence of bafilomycin, an inhibitor of lysosomal degradation, indicating down-regulation of SR-BI via proteasomal pathways. In conclusion, Mek1/2 inhibition enhances the PPARα-dependent degradation of SR-BI in hepatocytes. PMID:21525007

  11. Modularized Smad-regulated TGFβ signaling pathway.

    PubMed

    Li, Yongfeng; Wang, Minli; Carra, Claudio; Cucinotta, Francis A

    2012-12-01

    The transforming Growth Factor β (TGFβ) signaling pathway is a prominent regulatory signaling pathway controlling various important cellular processes. TGFβ signaling can be induced by several factors including ionizing radiation. The pathway is regulated in a negative feedback loop through promoting the nuclear import of the regulatory Smads and a subsequent expression of inhibitory Smad7, that forms ubiquitin ligase with Smurf2, targeting active TGFβ receptors for degradation. In this work, we proposed a mathematical model to study the Smad-regulated TGFβ signaling pathway. By modularization, we are able to analyze mathematically each component subsystem and recover the nonlinear dynamics of the entire network system. Meanwhile the excitability, a common feature observed in the biological systems, in the TGFβ signaling pathway is discussed and supported as well by numerical simulation, indicating the robustness of the model. Published by Elsevier Inc.

  12. Hyperproliferation of PKD1 cystic cells is induced by insulin-like growth factor-1 activation of the Ras/Raf signalling system.

    PubMed

    Parker, E; Newby, L J; Sharpe, C C; Rossetti, S; Streets, A J; Harris, P C; O'Hare, M J; Ong, A C M

    2007-07-01

    Autosomal dominant polycystic kidney disease (ADPKD) largely results from mutations in the PKD1 gene leading to hyperproliferation of renal tubular epithelial cells and consequent cyst formation. Rodent models of PKD suggest that the multifunctional hormone insulin-like growth factor-1 (IGF-1) could play a pathogenic role in renal cyst formation. In order to test this possibility, conditionally immortalized renal epithelial cells were prepared from normal individuals and from ADPKD patients with known germline mutations in PKD1. All patient cell lines had a decreased or absence of polycystin-1 but not polycystin-2. These cells had an increased sensitivity to IGF-1 and to cyclic AMP, which required phosphatidylinositol-3 (PI3)-kinase and the mitogen-activated protein kinase, extracellular signal-regulated protein kinase (ERK) for enhanced growth. Inhibition of Ras or Raf abolished the stimulated cell proliferation. Our results suggest that haploinsufficiency of polycystin-1 lowers the activation threshold of the Ras/Raf signalling system leading to growth factor-induced hyperproliferation. Inhibition of Ras or Raf activity may be a therapeutic option for decreasing tubular cell proliferation in ADPKD.

  13. Involvement of Prolonged Ras Activation in Thrombopoietin-Induced Megakaryocytic Differentiation of a Human Factor-Dependent Hematopoietic Cell Line

    PubMed Central

    Matsumura, Itaru; Nakajima, Koichi; Wakao, Hiroshi; Hattori, Seisuke; Hashimoto, Koji; Sugahara, Hiroyuki; Kato, Takashi; Miyazaki, Hiroshi; Hirano, Toshio; Kanakura, Yuzuru

    1998-01-01

    Thrombopoietin (TPO) is a hematopoietic growth factor that plays fundamental roles is both megakaryopoiesis and thrombopoiesis through binding to its receptor, c-mpl. Although TPO has been shown to activate various types of intracellular signaling molecules, such as the Janus family of protein tyrosine kinases, signal transducers and activators of transcription (STATs), and ras, the precise mechanisms underlying TPO-induced proliferation and differentiation remain unknown. In an effort to clarify the mechanisms of TPO-induced proliferation and differentiation, c-mpl was introduced into F-36P, a human interleukin-3 (IL-3)-dependent erythroleukemia cell line, and the effects of TPO on the c-mpl-transfected F-36P (F-36P-mpl) cells were investigated. F-36P-mpl cells were found to proliferate and differentiate at a high rate into mature megakaryocytes in response to TPO. Dominant-negative (dn) forms of STAT1, STAT3, STAT5, and ras were inducibly expressed in F-36P-mpl cells, and their effects on TPO-induced proliferation and megakaryocytic differentiation were analyzed. Among these dn molecules, both dn ras and dn STAT5 reduced TPO- or IL-3-induced proliferation of F-36P-mpl cells by ∼30%, and only dn ras could inhibit TPO-induced megakaryocytic differentiation. In accord with this result, overexpression of activated ras (H-rasG12V) for 5 days led to megakaryocytic differentiation of F-36P-mpl cells. In a time course analysis on H-rasG12V-induced differentiation, activation of the ras pathway for 24 to 28 h was required and sufficient to induce megakaryocytic differentiation. Consistent with this result, the treatment of F-36P-mpl cells with TPO was able to induce prolonged activation of ras for more than 24 h, whereas IL-3 had only a transient effect. These results suggest that prolonged ras activation may be involved in TPO-induced megakaryocytic differentiation. PMID:9632812

  14. Primary Murine CD4+ T Cells Fail to Acquire the Ability to Produce Effector Cytokines When Active Ras Is Present during Th1/Th2 Differentiation

    PubMed Central

    Janardhan, Sujit V.; Marks, Reinhard; Gajewski, Thomas F.

    2014-01-01

    Constitutive Ras signaling has been shown to augment IL-2 production, reverse anergy, and functionally replace many aspects of CD28 co-stimulation in CD4+ T cells. These data raise the possibility that introduction of active Ras into primary T cells might result in improved functionality in pathologic situations of T cell dysfunction, such as cancer or chronic viral infection. To test the biologic effects of active Ras in primary T cells, CD4+ T cells from Coxsackie-Adenovirus Receptor Transgenic mice were transduced with an adenovirus encoding active Ras. As expected, active Ras augmented IL-2 production in naive CD4+ T cells. However, when cells were cultured for 4 days under conditions to promote effector cell differentiation, active Ras inhibited the ability of CD4+ T cells to acquire a Th1 or Th2 effector cytokine profile. This differentiation defect was not due to deficient STAT4 or STAT6 activation by IL-12 or IL-4, respectively, nor was it associated with deficient induction of T-bet and GATA-3 expression. Impaired effector cytokine production in active Ras-transduced cells was associated with deficient demethylation of the IL-4 gene locus. Our results indicate that, despite augmenting acute activation of naïve T cells, constitutive Ras signaling inhibits the ability of CD4+ T cells to properly differentiate into Th1/Th2 effector cytokine-producing cells, in part by interfering with epigenetic modification of effector gene loci. Alternative strategies to potentiate Ras pathway signaling in T cells in a more regulated fashion should be considered as a therapeutic approach to improve immune responses in vivo. PMID:25397617

  15. High-throughput sequencing of mGluR signaling pathway genes reveals enrichment of rare variants in autism.

    PubMed

    Kelleher, Raymond J; Geigenmüller, Ute; Hovhannisyan, Hayk; Trautman, Edwin; Pinard, Robert; Rathmell, Barbara; Carpenter, Randall; Margulies, David

    2012-01-01

    Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism.

  16. High-Throughput Sequencing of mGluR Signaling Pathway Genes Reveals Enrichment of Rare Variants in Autism

    PubMed Central

    Hovhannisyan, Hayk; Trautman, Edwin; Pinard, Robert; Rathmell, Barbara; Carpenter, Randall; Margulies, David

    2012-01-01

    Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism. PMID:22558107

  17. Phenotypic Screening Identifies Protein Synthesis Inhibitors as H-Ras-Nanocluster-Increasing Tumor Growth Inducers.

    PubMed

    Najumudeen, Arafath K; Posada, Itziar M D; Lectez, Benoit; Zhou, Yong; Landor, Sebastian K-J; Fallarero, Adyary; Vuorela, Pia; Hancock, John; Abankwa, Daniel

    2015-12-15

    Ras isoforms H-, N-, and K-ras are each mutated in specific cancer types at varying frequencies and have different activities in cell fate control. On the plasma membrane, Ras proteins are laterally segregated into isoform-specific nanoscale signaling hubs, termed nanoclusters. As Ras nanoclusters are required for Ras signaling, chemical modulators of nanoclusters represent ideal candidates for the specific modulation of Ras activity in cancer drug development. We therefore conducted a chemical screen with commercial and in-house natural product libraries using a cell-based H-ras-nanoclustering FRET assay. Next to established Ras inhibitors, such as a statin and farnesyl-transferase inhibitor, we surprisingly identified five protein synthesis inhibitors as positive regulators. Using commonly employed cycloheximide as a representative compound, we show that protein synthesis inhibition increased nanoclustering and effector recruitment specifically of active H-ras but not of K-ras. Consistent with these data, cycloheximide treatment activated both Erk and Akt kinases and specifically promoted H-rasG12V-induced, but not K-rasG12V-induced, PC12 cell differentiation. Intriguingly, cycloheximide increased the number of mammospheres, which are enriched for cancer stem cells. Depletion of H-ras in combination with cycloheximide significantly reduced mammosphere formation, suggesting an exquisite synthetic lethality. The potential of cycloheximide to promote tumor cell growth was also reflected in its ability to increase breast cancer cell tumors grown in ovo. These results illustrate the possibility of identifying Ras-isoform-specific modulators using nanocluster-directed screening. They also suggest an unexpected feedback from protein synthesis inhibition to Ras signaling, which might present a vulnerability in certain tumor cell types.

  18. RasGRP1 regulates antigen-induced developmental programming by naive CD8 T cells.

    PubMed

    Priatel, John J; Chen, Xiaoxi; Huang, Yu-Hsuan; Chow, Michael T; Zenewicz, Lauren A; Coughlin, Jason J; Shen, Hao; Stone, James C; Tan, Rusung; Teh, Hung Sia

    2010-01-15

    Ag encounter by naive CD8 T cells initiates a developmental program consisting of cellular proliferation, changes in gene expression, and the formation of effector and memory T cells. The strength and duration of TCR signaling are known to be important parameters regulating the differentiation of naive CD8 T cells, although the molecular signals arbitrating these processes remain poorly defined. The Ras-guanyl nucleotide exchange factor RasGRP1 has been shown to transduce TCR-mediated signals critically required for the maturation of developing thymocytes. To elucidate the role of RasGRP1 in CD8 T cell differentiation, in vitro and in vivo experiments were performed with 2C TCR transgenic CD8 T cells lacking RasGRP1. In this study, we report that RasGRP1 regulates the threshold of T cell activation and Ag-induced expansion, at least in part, through the regulation of IL-2 production. Moreover, RasGRP1(-/-) 2C CD8 T cells exhibit an anergic phenotype in response to cognate Ag stimulation that is partially reversible upon the addition of exogenous IL-2. By contrast, the capacity of IL-2/IL-2R interactions to mediate Ras activation and CD8 T cell expansion and differentiation appears to be largely RasGRP1-independent. Collectively, our results demonstrate that RasGRP1 plays a selective role in T cell signaling, controlling the initiation and duration of CD8 T cell immune responses.

  19. Galectin-1 dimers can scaffold Raf-effectors to increase H-ras nanoclustering

    PubMed Central

    Blaževitš, Olga; Mideksa, Yonatan G.; Šolman, Maja; Ligabue, Alessio; Ariotti, Nicholas; Nakhaeizadeh, Hossein; Fansa, Eyad K.; Papageorgiou, Anastassios C.; Wittinghofer, Alfred; Ahmadian, Mohammad R.; Abankwa, Daniel

    2016-01-01

    Galectin-1 (Gal-1) dimers crosslink carbohydrates on cell surface receptors. Carbohydrate-derived inhibitors have been developed for cancer treatment. Intracellularly, Gal-1 was suggested to interact with the farnesylated C-terminus of Ras thus specifically stabilizing GTP-H-ras nanoscale signalling hubs in the membrane, termed nanoclusters. The latter activity may present an alternative mechanism for how overexpressed Gal-1 stimulates tumourigenesis. Here we revise the current model for the interaction of Gal-1 with H-ras. We show that it indirectly forms a complex with GTP-H-ras via a high-affinity interaction with the Ras binding domain (RBD) of Ras effectors. A computationally generated model of the Gal-1/C-Raf-RBD complex is validated by mutational analysis. Both cellular FRET as well as proximity ligation assay experiments confirm interaction of Gal-1 with Raf proteins in mammalian cells. Consistently, interference with H-rasG12V-effector interactions basically abolishes H-ras nanoclustering. In addition, an intact dimer interface of Gal-1 is required for it to positively regulate H-rasG12V nanoclustering, but negatively K-rasG12V nanoclustering. Our findings suggest stacked dimers of H-ras, Raf and Gal-1 as building blocks of GTP-H-ras-nanocluster at high Gal-1 levels. Based on our results the Gal-1/effector interface represents a potential drug target site in diseases with aberrant Ras signalling. PMID:27087647

  20. The GAP arginine finger movement into the catalytic site of Ras increases the activation entropy

    PubMed Central

    Kötting, Carsten; Kallenbach, Angela; Suveyzdis, Yan; Wittinghofer, Alfred; Gerwert, Klaus

    2008-01-01

    Members of the Ras superfamily of small G proteins play key roles in signal transduction pathways, which they control by GTP hydrolysis. They are regulated by GTPase activating proteins (GAPs). Mutations that prevent hydrolysis cause severe diseases including cancer. A highly conserved “arginine finger” of GAP is a key residue. Here, we monitor the GTPase reaction of the Ras·RasGAP complex at high temporal and spatial resolution by time-resolved FTIR spectroscopy at 260 K. After triggering the reaction, we observe as the first step a movement of the switch-I region of Ras from the nonsignaling “off” to the signaling “on” state with a rate of 3 s−1. The next step is the movement of the “arginine finger” into the active site of Ras with a rate of k2 = 0.8 s−1. Once the arginine points into the binding pocket, cleavage of GTP is fast and the protein-bound Pi intermediate forms. The switch-I reversal to the “off” state, the release of Pi, and the movement of arginine back into an aqueous environment is observed simultaneously with k3 = 0.1 s−1, the rate-limiting step. Arrhenius plots for the partial reactions show that the activation energy for the cleavage reaction is lowered by favorable positive activation entropy. This seems to indicate that protein-bound structured water molecules are pushed by the “arginine finger” movement out of the binding pocket into the bulk water. The proposed mechanism shows how the high activation barrier for phosphoryl transfer can be reduced by splitting into partial reactions separated by a Pi-intermediate. PMID:18434546

  1. Capns1, a new binding partner of RasGAP-SH3 domain in K-Ras(V12) oncogenic cells: modulation of cell survival and migration.

    PubMed

    Pamonsinlapatham, Perayot; Gril, Brunilde; Dufour, Sylvie; Hadj-Slimane, Réda; Gigoux, Véronique; Pethe, Stéphanie; L'hoste, Sébastien; Camonis, Jacques; Garbay, Christiane; Raynaud, Françoise; Vidal, Michel

    2008-11-01

    Ras GTPase-activating protein (RasGAP) is hypothesized to be an effector of oncogenic Ras stimulating numerous downstream cellular signaling cascades involved in survival, proliferation and motility. In this study, we identified calpain small subunit-1 (Capns1) as a new RasGAP-SH3 domain binding partner, using yeast two-hybrid screening. The interaction was confirmed by co-immunoprecipitation assay and was found specific to cells expressing oncogenic K-Ras. We used confocal microscopy to analyze our stably transfected cell model producing mutant Ras (PC3Ras(V12)). Staining for RasGAP-SH3/Capns1 co-localization was two-fold stronger in the protrusions of Ras(V12) cells than in PC3 cells. RasGAP or Capns1 knockdown in PC3Ras(V12) cells induced a two- to three-fold increase in apoptosis. Capns1 gene silencing reduced the speed and increased the persistence of movement in PC3Ras(V12) cells. In contrast, RasGAP knockdown in PC3Ras(V12) cells increased cell migration. Knockdown of both proteins altered the speed and directionality of cell motility. Our findings suggest that RasGAP and Capns1 interaction in oncogenic Ras cells is involved in regulating migration and cell survival.

  2. The Akt signaling pathway

    PubMed Central

    Madhunapantula, SubbaRao V; Mosca, Paul J

    2011-01-01

    Studies using cultured melanoma cells and patient tumor biopsies have demonstrated deregulated PI3 kinase-Akt3 pathway activity in ∼70% of melanomas. Furthermore, targeting Akt3 and downstream PRAS40 has been shown to inhibit melanoma tumor development in mice. Although these preclinical studies and several other reports using small interfering RNAs and pharmacological agents targeting key members of this pathway have been shown to retard melanoma development, analysis of early Phase I and Phase II clinical trials using pharmacological agents to target this pathway demonstrate the need for (1) selection of patients whose tumors have PI3 kinase-Akt pathway deregulation, (2) further optimization of therapeutic agents for increased potency and reduced toxicity, (3) the identification of additional targets in the same pathway or in other signaling cascades that synergistically inhibit the growth and progression of melanoma, and (4) better methods for targeted delivery of pharmaceutical agents inhibiting this pathway. In this review we discuss key potential targets in PI3K-Akt3 signaling, the status of pharmacological agents targeting these proteins, drugs under clinical development, and strategies to improve the efficacy of therapeutic agents targeting this pathway. PMID:22157148

  3. Fungal communication requires the MAK-2 pathway elements STE-20 and RAS-2, the NRC-1 adapter STE-50 and the MAP kinase scaffold HAM-5.

    PubMed

    Dettmann, Anne; Heilig, Yvonne; Valerius, Oliver; Ludwig, Sarah; Seiler, Stephan

    2014-11-01

    Intercellular communication is critical for the survival of unicellular organisms as well as for the development and function of multicellular tissues. Cell-to-cell signaling is also required to develop the interconnected mycelial network characteristic of filamentous fungi and is a prerequisite for symbiotic and pathogenic host colonization achieved by molds. Somatic cell-cell communication and subsequent cell fusion is governed by the MAK-2 mitogen activated protein kinase (MAPK) cascade in the filamentous ascomycete model Neurospora crassa, yet the composition and mode of regulation of the MAK-2 pathway are currently unclear. In order to identify additional components involved in MAK-2 signaling we performed affinity purification experiments coupled to mass spectrometry with strains expressing functional GFP-fusion proteins of the MAPK cascade. This approach identified STE-50 as a regulatory subunit of the Ste11p homolog NRC-1 and HAM-5 as cell-communication-specific scaffold protein of the MAPK cascade. Moreover, we defined a network of proteins consisting of two Ste20-related kinases, the small GTPase RAS-2 and the adenylate cyclase capping protein CAP-1 that function upstream of the MAK-2 pathway and whose signals converge on the NRC-1/STE-50 MAP3K complex and the HAM-5 scaffold. Finally, our data suggest an involvement of the striatin interacting phosphatase and kinase (STRIPAK) complex, the casein kinase 2 heterodimer, the phospholipid flippase modulators YPK-1 and NRC-2 and motor protein-dependent vesicle trafficking in the regulation of MAK-2 pathway activity and function. Taken together, these data will have significant implications for our mechanistic understanding of MAPK signaling and for homotypic cell-cell communication in fungi and higher eukaryotes.

  4. New Insights from Drosophila into the Regulation of EGFR Signaling.

    PubMed

    Harden, Nicholas

    2017-01-01

    Genetic analysis of Egfr signaling in Drosophila has a long-standing track record of making important contributions to our understanding of the Egfr pathway. While the central Ras/MAPK pathway has long been well defined, there is much to learn with regard to its cross talk with other pathways and how it is regulated. A better understanding of the regulation of Egfr signaling is of particular interest with regard to the participation of misregulated Egfr signaling in tumorigenesis. Recent studies in the fly have led to some surprising results, identifying regulators of Egfr acting in unexpected ways.

  5. The canonical Wnt signaling pathway in autism.

    PubMed

    Zhang, Yinghua; Yuan, Xiangshan; Wang, Zhongping; Li, Ruixi

    2014-01-01

    Mounting attention is being focused on the canonical Wnt signaling pathway which has been implicated in the pathogenesis of autism in some our and other recent studies. The canonical Wnt pathway is involved in cell proliferation, differentiation and migration, especially during nervous system development. Given its various functions, dysfunction of the canonical Wnt pathway may exert adverse effects on neurodevelopment and therefore leads to the pathogenesis of autism. Here, we review human and animal studies that implicate the canonical Wnt signal transduction pathway in the pathogenesis of autism. We also describe the crosstalk between the canonical Wnt pathway and the Notch signaling pathway in several types of autism spectrum disorders, including Asperger syndrome and Fragile X. Further research on the crosstalk between the canonical Wnt signaling pathway and other signaling cascades in autism may be an efficient avenue to understand the etiology of autism and ultimately lead to alternative medications for autism-like phenotypes.

  6. Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in metazoans: state of the art after 25 years.

    PubMed

    Engelberg, David; Perlman, Riki; Levitzki, Alexander

    2014-12-01

    In the very first article that appeared in Cellular Signalling, published in its inaugural issue in October 1989, we reviewed signal transduction pathways in Saccharomyces cerevisiae. Although this yeast was already a powerful model organism for the study of cellular processes, it was not yet a valuable instrument for the investigation of signaling cascades. In 1989, therefore, we discussed only two pathways, the Ras/cAMP and the mating (Fus3) signaling cascades. The pivotal findings concerning those pathways undoubtedly contributed to the realization that yeast is a relevant model for understanding signal transduction in higher eukaryotes. Consequently, the last 25 years have witnessed the discovery of many signal transduction pathways in S. cerevisiae, including the high osmotic glycerol (Hog1), Stl2/Mpk1 and Smk1 mitogen-activated protein (MAP) kinase pathways, the TOR, AMPK/Snf1, SPS, PLC1 and Pkr/Gcn2 cascades, and systems that sense and respond to various types of stress. For many cascades, orthologous pathways were identified in mammals following their discovery in yeast. Here we review advances in the understanding of signaling in S. cerevisiae over the last 25 years. When all pathways are analyzed together, some prominent themes emerge. First, wiring of signaling cascades may not be identical in all S. cerevisiae strains, but is probably specific to each genetic background. This situation complicates attempts to decipher and generalize these webs of reactions. Secondly, the Ras/cAMP and the TOR cascades are pivotal pathways that affect all processes of the life of the yeast cell, whereas the yeast MAP kinase pathways are not essential. Yeast cells deficient in all MAP kinases proliferate normally. Another theme is the existence of central molecular hubs, either as single proteins (e.g., Msn2/4, Flo11) or as multisubunit complexes (e.g., TORC1/2), which are controlled by numerous pathways and in turn determine the fate of the cell. It is also apparent that

  7. ROLES OF THE RAF/MEK/ERK PATHWAY IN CELL GROWTH, MALIGNANT TRANSFORMATION AND DRUG RESISTANCE

    PubMed Central

    McCubrey, James A.; Steelman, Linda S.; Chappell, William H.; Abrams, Steven L.; Wong, Ellis WT.; Chang, Fumin; Lehmann, Brian; Terrian, David M.; Milella, Michele; Tafuri, Agostino; Stivala, Franca; Libra, Massimo; Basecke, Jorg; Evangelisti, Camilla; Martelli, Alberto M.; Franklin, Richard A.

    2009-01-01

    Summary Growth factors and mitogens use the Ras/Raf/MEK/ERK signaling cascade to transmit signals from their receptors to regulate gene expression and prevent apoptosis. Some components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf). Mutations also occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. Even in the absence of obvious genetic mutations, this pathway has been reported to be activated in over 50% of acute myelogenous leukemia and acute lymphocytic leukemia and is also frequently activated in other cancer types (e.g., breast and prostate cancers). Importantly, this increased expression is associated with a poor prognosis. The Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of activated Akt to phosphorylate and inactivate different Rafs. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell lineage specific effects. For example, Raf/MEK/ERK is usually associated with proliferation and drug resistance of hematopoietic cells, while activation of the Raf/MEK/ERK cascade is suppressed in some prostate cancer cell lines which have mutations at PTEN and express high levels of activated Akt. Furthermore the Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways also interact with the p53 pathway. Some of these interactions can result in controlling the activity and subcellular localization of Bim, Bak, Bax, Puma and Noxa. Raf/MEK/ERK may promote cell cycle arrest in prostate cells and this may be regulated by p53 as restoration of wild-type p53 in p53 deficient prostate cancer cells results in their enhanced sensitivity to

  8. TRIM67 Protein Negatively Regulates Ras Activity through Degradation of 80K-H and Induces Neuritogenesis*

    PubMed Central

    Yaguchi, Hiroaki; Okumura, Fumihiko; Takahashi, Hidehisa; Kano, Takahiro; Kameda, Hiroyuki; Uchigashima, Motokazu; Tanaka, Shinya; Watanabe, Masahiko; Sasaki, Hidenao; Hatakeyama, Shigetsugu

    2012-01-01

    Tripartite motif (TRIM)-containing proteins, which are defined by the presence of a common domain structure composed of a RING finger, one or two B-box motifs and a coiled-coil motif, are involved in many biological processes including innate immunity, viral infection, carcinogenesis, and development. Here we show that TRIM67, which has a TRIM motif, an FN3 domain and a SPRY domain, is highly expressed in the cerebellum and that TRIM67 interacts with PRG-1 and 80K-H, which is involved in the Ras-mediated signaling pathway. Ectopic expression of TRIM67 results in degradation of endogenous 80K-H and attenuation of cell proliferation and enhances neuritogenesis in the neuroblastoma cell line N1E-115. Furthermore, morphological and biological changes caused by knockdown of 80K-H are similar to those observed by overexpression of TRIM67. These findings suggest that TRIM67 regulates Ras signaling via degradation of 80K-H, leading to neural differentiation including neuritogenesis. PMID:22337885

  9. TRIM67 protein negatively regulates Ras activity through degradation of 80K-H and induces neuritogenesis.

    PubMed

    Yaguchi, Hiroaki; Okumura, Fumihiko; Takahashi, Hidehisa; Kano, Takahiro; Kameda, Hiroyuki; Uchigashima, Motokazu; Tanaka, Shinya; Watanabe, Masahiko; Sasaki, Hidenao; Hatakeyama, Shigetsugu

    2012-04-06

    Tripartite motif (TRIM)-containing proteins, which are defined by the presence of a common domain structure composed of a RING finger, one or two B-box motifs and a coiled-coil motif, are involved in many biological processes including innate immunity, viral infection, carcinogenesis, and development. Here we show that TRIM67, which has a TRIM motif, an FN3 domain and a SPRY domain, is highly expressed in the cerebellum and that TRIM67 interacts with PRG-1 and 80K-H, which is involved in the Ras-mediated signaling pathway. Ectopic expression of TRIM67 results in degradation of endogenous 80K-H and attenuation of cell proliferation and enhances neuritogenesis in the neuroblastoma cell line N1E-115. Furthermore, morphological and biological changes caused by knockdown of 80K-H are similar to those observed by overexpression of TRIM67. These findings suggest that TRIM67 regulates Ras signaling via degradation of 80K-H, leading to neural differentiation including neuritogenesis.

  10. MRAS: A Close but Understudied Member of the RAS Family.

    PubMed

    Young, Lucy C; Rodriguez-Viciana, Pablo

    2018-01-08

    MRAS is the closest relative to the classical RAS oncoproteins and shares most regulatory and effector interactions. However, it also has unique functions, including its ability to function as a phosphatase regulatory subunit when in complex with SHOC2 and protein phosphatase 1 (PP1). This phosphatase complex regulates a crucial step in the activation cycle of RAF kinases and provides a key coordinate input required for efficient ERK pathway activation and transformation by RAS. MRAS mutations rarely occur in cancer but deregulated expression may play a role in tumorigenesis in some settings. Activating mutations in MRAS (as well as SHOC2 and PP1) do occur in the RASopathy Noonan syndrome, underscoring a key role for MRAS within the RAS-ERK pathway. MRAS also has unique roles in cell migration and differentiation and has properties consistent with a key role in the regulation of cell polarity. Further investigations should shed light on what remains a relatively understudied RAS family member. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. Deconstruction of the Ras switching cycle through saturation mutagenesis

    PubMed Central

    Bandaru, Pradeep; Shah, Neel H; Bhattacharyya, Moitrayee; Barton, John P; Kondo, Yasushi; Cofsky, Joshua C; Gee, Christine L; Chakraborty, Arup K; Kortemme, Tanja; Ranganathan, Rama; Kuriyan, John

    2017-01-01

    Ras proteins are highly conserved signaling molecules that exhibit regulated, nucleotide-dependent switching between active and inactive states. The high conservation of Ras requires mechanistic explanation, especially given the general mutational tolerance of proteins. Here, we use deep mutational scanning, biochemical analysis and molecular simulations to understand constraints on Ras sequence. Ras exhibits global sensitivity to mutation when regulated by a GTPase activating protein and a nucleotide exchange factor. Removing the regulators shifts the distribution of mutational effects to be largely neutral, and reveals hotspots of activating mutations in residues that restrain Ras dynamics and promote the inactive state. Evolutionary analysis, combined with structural and mutational data, argue that Ras has co-evolved with its regulators in the vertebrate lineage. Overall, our results show that sequence conservation in Ras depends strongly on the biochemical network in which it operates, providing a framework for understanding the origin of global selection pressures on proteins. DOI: http://dx.doi.org/10.7554/eLife.27810.001 PMID:28686159

  12. RotundRacGAP Functions with Ras during Spermatogenesis and Retinal Differentiation in Drosophila melanogaster

    PubMed Central

    Bergeret, Evelyne; Pignot-Paintrand, Isabelle; Guichard, Annabel; Raymond, Karine; Fauvarque, Marie-Odile; Cazemajor, Michel; Griffin-Shea, Ruth

    2001-01-01

    Our analysis of rotund (rn) null mutations in Drosophila melanogaster revealed that deletion of the rn locus affects both spermatid and retinal differentiation. In the male reproductive system, the absence of RnRacGAP induced small testes, empty seminal vesicles, short testicular cysts, reduced amounts of interspermatid membrane, the absence of individualization complexes, and incomplete mitochondrial condensation. Flagellar growth continued within the short rn null cysts to produce large bulbous terminations of intertwined mature flagella. Organization of the retina was also severely perturbed as evidenced by grossly misshapen ommatidia containing reduced numbers of photoreceptor and pigment cells. These morphological phenotypes were rescued by genomic rnRacGAP transgenes, demonstrating that RnRacGAP function is critical to spermatid and retinal differentiation. The testicular phenotypes were suppressed by heterozygous hypomorphic mutations in the Dras1 and drk genes, indicating cross talk between RacGAP-regulated signaling and that of the Ras pathway. The observed genetic interactions are consistent with a model in which Rac signaling is activated by Ras and negatively regulated by RnRacGAP during spermatid differentiation. RnRacGAP and Ras cross talk also operated during retinal differentiation; however, while the heterozygous hypomorphic drk mutation continued to act as a suppressor of the rn null mutation, the heterozygous hypomorphic Dras1 mutation induced novel retinal phenotypes. PMID:11509670

  13. Cardio‐facio‐cutaneous and Noonan syndromes due to mutations in the RAS/MAPK signalling pathway: genotype–phenotype relationships and overlap with Costello syndrome

    PubMed Central

    Nava, Caroline; Hanna, Nadine; Michot, Caroline; Pereira, Sabrina; Pouvreau, Nathalie; Niihori, Tetsuya; Aoki, Yoko; Matsubara, Yoichi; Arveiler, Benoit; Lacombe, Didier; Pasmant, Eric; Parfait, Béatrice; Baumann, Clarisse; Héron, Delphine; Sigaudy, Sabine; Toutain, Annick; Rio, Marlène; Goldenberg, Alice; Leheup, Bruno; Verloes, Alain; Cavé, Hélène

    2007-01-01

    Cardio‐facio‐cutaneous (CFC) syndrome, Noonan syndrome (NS), and Costello syndrome (CS) are clinically related developmental disorders that have been recently linked to mutations in the RAS/MEK/ERK signalling pathway. This study was a mutation analysis of the KRAS, BRAF, MEK1 and MEK2 genes in a total of 130 patients (40 patients with a clinical diagnosis of CFC, 20 patients without HRAS mutations from the French Costello family support group, and 70 patients with NS without PTPN11 or SOS1 mutations). BRAF mutations were found in 14/40 (35%) patients with CFC and 8/20 (40%) HRAS‐negative patients with CS. KRAS mutations were found in 1/40 (2.5%) patients with CFC, 2/20 (10%) HRAS‐negative patients with CS and 4/70 patients with NS (5.7%). MEK1 mutations were found in 4/40 patients with CFC (10%), 4/20 (20%) HRAS‐negative patients with CS and 3/70 (4.3%) patients with NS, and MEK2 mutations in 4/40 (10%) patients with CFC. Analysis of the major phenotypic features suggests significant clinical overlap between CS and CFC. The phenotype associated with MEK mutations seems less severe, and is compatible with normal mental development. Features considered distinctive for CS were also found to be associated with BRAF or MEK mutations. Because of its particular cancer risk, the term “Costello syndrome” should only be used for patients with proven HRAS mutation. These results confirm that KRAS is a minor contributor to NS and show that MEK is involved in some cases of NS, demonstrating a phenotypic continuum between the clinical entities. Although some associated features appear to be characteristic of a specific gene, no simple rule exists to distinguish NS from CFC easily. PMID:17704260

  14. Activation of Bmp2-Smad1 Signal and Its Regulation by Coordinated Alteration of H3K27 Trimethylation in Ras-Induced Senescence

    PubMed Central

    Kaneda, Atsushi; Fujita, Takanori; Anai, Motonobu; Yamamoto, Shogo; Nagae, Genta; Morikawa, Masato; Tsuji, Shingo; Oshima, Masanobu; Miyazono, Kohei; Aburatani, Hiroyuki

    2011-01-01

    Cellular senescence involves epigenetic alteration, e.g. loss of H3K27me3 in Ink4a-Arf locus. Using mouse embryonic fibroblast (MEF), we here analyzed transcription and epigenetic alteration during Ras-induced senescence on genome-wide scale by chromatin immunoprecipitation (ChIP)-sequencing and microarray. Bmp2 was the most activated secreted factor with H3K4me3 gain and H3K27me3 loss, whereas H3K4me3 loss and de novo formation of H3K27me3 occurred inversely in repression of nine genes, including two BMP-SMAD inhibitors Smad6 and Noggin. DNA methylation alteration unlikely occurred. Ras-activated cells senesced with nuclear accumulation of phosphorylated SMAD1/5/8. Senescence was bypassed in Ras-activated cells when Bmp2/Smad1 signal was blocked by Bmp2 knockdown, Smad6 induction, or Noggin induction. Senescence was induced when recombinant BMP2 protein was added to Bmp2-knocked-down Ras-activated cells. Downstream Bmp2-Smad1 target genes were then analyzed genome-wide by ChIP-sequencing using anti-Smad1 antibody in MEF that was exposed to BMP2. Smad1 target sites were enriched nearby transcription start sites of genes, which significantly correlated to upregulation by BMP2 stimulation. While Smad6 was one of Smad1 target genes to be upregulated by BMP2 exposure, Smad6 repression in Ras-activated cells with increased enrichment of Ezh2 and gain of H3K27me3 suggested epigenetic disruption of negative feedback by Polycomb. Among Smad1 target genes that were upregulated in Ras-activated cells without increased repressive mark, Parvb was found to contribute to growth inhibition as Parvb knockdown lead to escape from senescence. It was revealed through genome-wide analyses in this study that Bmp2-Smad1 signal and its regulation by harmonized epigenomic alteration play an important role in Ras-induced senescence. PMID:22072987

  15. The Canonical Wnt Pathway Drives Macropinocytosis in Cancer.

    PubMed

    Redelman-Sidi, Gil; Binyamin, Anna; Gaeta, Isabella; Palm, Wilhelm; Thompson, Craig B; Romesser, Paul B; Lowe, Scott W; Bagul, Mukta; Doench, John G; Root, David E; Glickman, Michael S

    2018-06-05

    Macropinocytosis has emerged as an important pathway of protein acquisition in cancer cells, particularly in tumors with activated Ras such as pancreatic and colon cancer. Macropinocytosis is also the route of entry of Bacillus Calmette-Guerin (BCG) and other microbial therapies of cancer. Despite this important role in tumor biology and therapy, the full mechanisms by which cancer cells can activate macropinocytosis remain incompletely defined. Using BCG uptake to assay macropinocytosis, we executed a genome-wide shRNA screen for macropinocytosis activators and identified Wnt pathway activation as a strong driver of macropinocytosis. Wnt-driven macropinocytosis was downstream of the beta catenin-dependent canonical Wnt pathway, was Pak1 dependent, and supported albumin-dependent growth in Ras-WT cells. In cells with activated Ras-dependent macropinocytosis, pharmacologic or genetic inhibition of Wnt signaling suppressed macropinocytosis. In a mouse model of Wnt-driven colonic hyperplasia via APC silencing, Wnt-activated macropinocytosis stimulated uptake of luminal microbiota, a process reversed by topical pharmacologic inhibition of macropinocytosis. Our findings indicate that Wnt pathway activation drives macropinocytosis in cancer, and its inhibition could provide a therapeutic vulnerability in Wnt-driven intestinal polyposis and cancers with Wnt activation. Copyright ©2018, American Association for Cancer Research.

  16. Tumorigenesis of K-ras mutation in human endometrial carcinoma via upregulation of estrogen receptor.

    PubMed

    Tu, Zheng; Gui, Liming; Wang, Jianliu; Li, Xiaoping; Sun, Pengming; Wei, Lihui

    2006-05-01

    To investigate the tumorigenesis of mutant [12Asp]-K-ras in endometrial carcinoma and its relationship with ER. We constructed pcDI-[12Asp]K-ras4B by inserting full-length [12Asp]K-ras4B from human endometrial carcinoma Hec-1A cells, into pcDI vector. Cell proliferation of NIH3T3 after transfection with pcDI-[12Asp]K-ras4B was measured by MTT assay. The cell transformation was determined by colony formation and tumor nodule development. [12Asp]-K-ras4B-NIH3T3 cells were transfected with constitutively active pCMV-RafCAAX and dominant-negative pCMV-RafS621A. Cell growth was measured by MTT assay and [3H]thymidine incorporation. After transfected with pcDI-[12Asp]K-ras4B or pCMV-RafS621A, the cells were harvested for Western blot and reporter assay to determine the expression and transcriptional activity of ERalpha and ERbeta, respectively. [12Asp]-K-ras4B enhanced NIH3T3 cells proliferation after 48 h post-transfection (P < 0.05). More colonies were grown 10 days after incubating pcDI-[12Asp]-K-ras4B-NIH3T3 cells (13.48%) than pcDI-NIH3T3 (4.26%) or untreated NIH3T3 (2.33%). The pcDI-[12Asp]-K-ras4B-NIH3T3 cells injected to the nude mice Balb/C developed tumor nodules with poor-differentiated cells after 12 days. An increase of ERalpha and ERbeta was observed in pcDI-[12Asp]-K-ras4B-NIH3T3 cells. RafS621A downregulated ERalpha and ERbeta expression. Estrogen induced the ER transcriptional activity by 5-fold in pcDI-NIH3T3 cells, 13-fold in pcDI-[12Asp]K-ras4B-NIH3T3 and 19-fold in HEC-1A. RafS621A suppressed the ER transcriptional activity. K-ras mutation induces tumorigenesis in endometrium, and this malignant transformation involves Raf signaling pathway and ER.

  17. [Farnesyl transferase inhibitors (anti-Ras). A new class of anticancer agents].

    PubMed

    Levy, R

    Ras genes are frequently activated in human tumours. The role of their product, the P21 proteins, in the transduction of the mitogenic signal makes them attractive targets for an anti-neoplastic therapy. The p21 ras proteins are linked to the plasma membrane and transformed into an active form for signal transmission. Their effect is to mediate the effects of growth factors. Two drug families, the Benzodiazepine peptidomimetics and the CAAX tetrapeptides which inhibit the farnesylation of P21-Ras proteins abolish the transforming properties of mutated P21. These promising drugs could rapidly have clinical applications. They have been shown to be highly active at precise concentrations on ras-transformed cells but at the same concentrations are not toxic for untransformed cells. They do not effect other similar enzyme systems within the cell, underlining their selective capacity. Theoretically anti-ras therapy could only suspend cell transformation although it might be possible that if given long enough, a lethal threshold could be reached.

  18. Acute sensitivity of the oral mucosa to oncogenic K-ras

    PubMed Central

    van der Weyden, Louise; Alcolea, Maria P; Jones, Philip H; Rust, Alistair G; Arends, Mark J; Adams, David J

    2011-01-01

    Mouse models of cancer represent powerful tools for analysing the role of genetic alterations in carcinogenesis. Using a mouse model that allows tamoxifen-inducible somatic activation (by Cre-mediated recombination) of oncogenic K-rasG12D in a wide range of tissues, we observed hyperplasia of squamous epithelium located in moist or frequently abraded mucosa, with the most dramatic effects in the oral mucosa. This epithelium showed a sequence of squamous hyperplasia followed by squamous papilloma with dysplasia, in which some areas progressed to early invasive squamous cell carcinoma, within 14 days of widespread oncogenic K-ras activation. The marked proliferative response of the oral mucosa to K-rasG12D was most evident in the basal layers of the squamous epithelium of the outer lip with hair follicles and wet mucosal surface, with these cells staining positively for pAKT and cyclin D1, showing Ras/AKT pathway activation and increased proliferation with Ki-67 and EdU positivity. The stromal cells also showed gene activation by recombination and immunopositivity for pERK indicating K-Ras/ERK pathway activation, but without Ki-67 positivity or increase in stromal proliferation. The oral neoplasms showed changes in the expression pattern of cytokeratins (CK6 and CK13), similar to those observed in human oral tumours. Sporadic activation of the K-rasG12D allele (due to background spontaneous recombination in occasional cells) resulted in the development of benign oral squamous papillomas only showing a mild degree of dysplasia with no invasion. In summary, we show that oral mucosa is acutely sensitive to oncogenic K-ras, as widespread expression of activated K-ras in the murine oral mucosal squamous epithelium and underlying stroma can drive the oral squamous papilloma–carcinoma sequence. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. PMID:21381032

  19. Endometrial carcinomas with significant mucinous differentiation associated with higher frequency of k-ras mutations: a morphologic and molecular correlation study.

    PubMed

    Xiong, Jinjun; He, Mai; Jackson, Cynthia; Ou, Joyce J; Sung, C James; Breese, Virgina; Steinhoff, Margaret M; Quddus, M Ruhul; Tejada-Berges, Trevor; Lawrence, W Dwayne

    2013-09-01

    K-ras gene product in the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway is critical in the development of certain types of malignancies. K-ras mutation-associated pancreatic and ovarian carcinomas often display mucinous differentiation. Previous studies have shown that k-ras mutation is found in 10% to 30% of endometrial carcinomas. We investigated k-ras mutations in several morphologic subtypes of endometrial carcinomas with particular emphasis on various degrees of mucinous differentiation. Genomic DNA was extracted from formalin-fixed paraffin-embedded (FFPE) tissue sections. Polymerase chain reaction amplification for k-ras codons 12 and 13 were performed, followed by sequencing using capillary electrophoresis. The Fisher exact test is used to compare the prevalent difference of k-ras mutation among the groups. P < 0.05 was considered significant. K-ras mutations were detected in 8 (80%) of 10 mucinous carcinomas, 12 (67%) of 18 endometrioid carcinomas (ECs) with significant mucinous differentiation (ECMD), 4 (25%) of 16 ECs, and 1 (9%) of 11 serous carcinomas. The differences were statistically significant between mucinous carcinomas versus EC (P < 0.01) and ECMD versus EC (P < 0.05). The findings suggest that mucinous carcinoma and endometrioid carcinoma with significant mucinous component are more likely to be associated with k-ras mutation. Potential clinical implications of k-ras mutation lies in the management of recurrent or higher-stage endometrial mucinous tumors, which would not be responsive to treatment protocols containing epidermal growth factor receptor inhibitors.

  20. Ran is a potential therapeutic target for cancer cells with molecular changes associated with activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways

    PubMed Central

    Yuen, Hiu-Fung; Chan, Ka-Kui; Grills, Claire; Murray, James T.; Platt-Higgins, Angela; Eldin, Osama Sharaf; O’Byrne, Ken; Janne, Pasi; Fennell, Dean A.; Johnston, Patrick G.; Rudland, Philip S.; El-Tanani, Mohamed

    2011-01-01

    Purpose Cancer cells have been shown to be more susceptible to Ran knockdown compared to normal cells. We now investigate whether Ran is a potential therapeutic target of cancers with frequently found mutations that lead to higher Ras/MEK/ERK and PI3K/Akt/mTORC1 activities. Experimental Design Apoptosis was measured by flow cytometry (PI and Annexin V staining) and MTT assay in cancer cells grown under different conditions after knockdown of Ran.. The correlations between Ran expression and patient survival were examined in breast and lung cancers. Results Cancer cells with their PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways inhibited are less susceptible to Ran silencing-induced apoptosis. KRas mutated, c-Met amplified and Pten-deleted cancer cells are also more susceptible to Ran silencing-induced apoptosis than their wild-type counterparts and this effect is reduced by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Overexpression of Ran in clinical specimens is significantly associated with poor patient outcome in both breast and lung cancers. This association is dramatically enhanced in cancers with increased c-Met or osteopontin expression, or with oncogenic mutations of KRas or PIK3CA, all of which are mutations that potentially correlate with activation of the PI3K/Akt/mTORC1 and/or Ras/MEK/ERK pathways. Silencing Ran also results in dysregulation of nucleocytoplasmic transport of transcription factors and downregulation of Mcl-1 expression, at the transcriptional level, which are reversed by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Conclusion Ran is a potential therapeutic target for treatment of cancers with mutations/changes of expression in protooncogenes that lead to activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. PMID:22090358

  1. Genetic and pharmacological suppression of oncogenic mutations in RAS genes of yeast and humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schafer, W.R.; Sterne, R.; Thorner, J.

    1989-07-28

    The activity of an oncoprotein and the secretion of a pheromone can be affected by an unusual protein modification. Specifically, posttranslational modification of yeast-a-factor and Ras protein requires an intermediate of the cholesterol biosynthetic pathway. This modification is apparently essential for biological activity. Studies of yeast mutants blocked in sterol biosynthesis demonstrated that the membrane association and biological activation of the yeast Ras2 protein require mevalonate, a precursor of sterols and other isoprenes such as farnesyl pyrophosphate. Furthermore, drugs that inhibit mevalonate biosynthesis blocked the in vivo action of oncogenic derivatives of human Ras protein in the Xenopus oocyte assay.more » The same drugs and mutations also prevented the posttranslational processing and secretion of yeast a-factor, a peptide that is farnesylated. Thus, the mevalonate requirement for Ras activation may indicate that attachment of a mevalonate-derived (isoprenoid) moiety to Ras proteins is necessary for membrane association and biological function. These observations establish a connection between the cholesterol biosynthetic pathway and transformation by the ras oncogene and offer a novel pharmacological approach to investigating, and possibly controlling, ras-mediated malignant transformations. 50 refs., 3 figs., 3 tabs.« less

  2. Normal Human Fibroblasts Are Resistant to RAS-Induced Senescence

    PubMed Central

    Benanti, Jennifer A.; Galloway, Denise A.

    2004-01-01

    Oncogenic stimuli are thought to induce senescence in normal cells in order to protect against transformation and to induce proliferation in cells with altered p53 and/or retinoblastoma (Rb) pathways. In human fibroblasts, RAS initiates senescence through upregulation of the cyclin-dependent kinase inhibitor p16INK4A. We show here that in contrast to cultured fibroblast strains, freshly isolated normal fibroblasts are resistant to RAS-induced senescence and instead show some characteristics of transformation. RAS did not induce growth arrest or expression of senescence-associated β-galactosidase, and Rb remained hyperphosphorylated despite elevated levels of p16. Instead, RAS promoted anchorage-independent growth of normal fibroblasts, although expression of hTert with RAS increased colony formation and allowed normal fibroblasts to bypass contact inhibition. To test the hypothesis that p16 levels determine how cells respond to RAS, we expressed RAS in freshly isolated fibroblasts that expressed very low levels of p16, in hTert-immortalized fibroblasts that had accumulated intermediate levels of p16, and in IMR90 fibroblasts with high levels of p16. RAS induced growth arrest in cells with higher p16 levels, and this effect was reversed by p16 knockdown in the hTert-immortalized fibroblasts. These findings indicate that culture-imposed stress sensitizes cells to RAS-induced arrest, whereas early passage cells do not arrest in response to RAS. PMID:15024073

  3. The Drosophila imd signaling pathway.

    PubMed

    Myllymäki, Henna; Valanne, Susanna; Rämet, Mika

    2014-04-15

    The fruit fly, Drosophila melanogaster, has helped us to understand how innate immunity is activated. In addition to the Toll receptor and the Toll signaling pathway, the Drosophila immune response is regulated by another evolutionarily conserved signaling cascade, the immune deficiency (Imd) pathway, which activates NF-κB. In fact, the Imd pathway controls the expression of most of the antimicrobial peptides in Drosophila; thus, it is indispensable for normal immunity in flies. In this article, we review the current literature on the Drosophila Imd pathway, with special emphasis on its role in the (patho)physiology of different organs. We discuss the systemic response, as well as local responses, in the epithelial and mucosal surfaces and the nervous system.

  4. ERβ induces the differentiation of cultured osteoblasts by both Wnt/β-catenin signaling pathway and estrogen signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Xinhua; Wang, Xiaoyuan; Hu, Xiongke

    Although 17β-estradial (E2) is known to stimulate bone formation, the underlying mechanisms are not fully understood. Recent studies have implicated the Wnt/β-catenin pathway as a major signaling cascade in bone biology. The interactions between Wnt/β-catenin signaling pathway and estrogen signaling pathways have been reported in many tissues. In this study, E2 significantly increased the expression of β-catenin by inducing phosphorylations of GSK3β at serine 9. ERβ siRNAs were transfected into MC3T3-E1 cells and revealed that ERβ involved E2-induced osteoblasts proliferation and differentiation via Wnt/β-catenin signaling. The osteoblast differentiation genes (BGP, ALP and OPN) and proliferation related gene (cyclin D1) expressionmore » were significantly induced by E2-mediated ERβ. Furthermore immunofluorescence and immunoprecipitation analysis demonstrated that E2 induced the accumulation of β-catenin protein in the nucleus which leads to interaction with T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors. Taken together, these findings suggest that E2 promotes osteoblastic proliferation and differentiation by inducing proliferation-related and differentiation-related gene expression via ERβ/GSK-3β-dependent Wnt/β-catenin signaling pathway. Our findings provide novel insights into the mechanisms of action of E2 in osteoblastogenesis. - Highlights: • 17β-estradial (E2) promotes GSK3-β phosphorylation. • E2 activates the Wnt/β-catenin signaling pathway. • The Wnt/β-catenin signaling pathway interacts with estrogen signaling pathways. • E2-mediated ER induced osteoblast differentiation and proliferation related genes expression.« less

  5. Computational modeling of the EGFR network elucidates control mechanisms regulating signal dynamics

    PubMed Central

    2009-01-01

    Background The epidermal growth factor receptor (EGFR) signaling pathway plays a key role in regulation of cellular growth and development. While highly studied, it is still not fully understood how the signal is orchestrated. One of the reasons for the complexity of this pathway is the extensive network of inter-connected components involved in the signaling. In the aim of identifying critical mechanisms controlling signal transduction we have performed extensive analysis of an executable model of the EGFR pathway using the stochastic pi-calculus as a modeling language. Results Our analysis, done through simulation of various perturbations, suggests that the EGFR pathway contains regions of functional redundancy in the upstream parts; in the event of low EGF stimulus or partial system failure, this redundancy helps to maintain functional robustness. Downstream parts, like the parts controlling Ras and ERK, have fewer redundancies, and more than 50% inhibition of specific reactions in those parts greatly attenuates signal response. In addition, we suggest an abstract model that captures the main control mechanisms in the pathway. Simulation of this abstract model suggests that without redundancies in the upstream modules, signal transduction through the entire pathway could be attenuated. In terms of specific control mechanisms, we have identified positive feedback loops whose role is to prolong the active state of key components (e.g., MEK-PP, Ras-GTP), and negative feedback loops that help promote signal adaptation and stabilization. Conclusions The insights gained from simulating this executable model facilitate the formulation of specific hypotheses regarding the control mechanisms of the EGFR signaling, and further substantiate the benefit to construct abstract executable models of large complex biological networks. PMID:20028552

  6. Allosteric modulation of Ras positions Q61 for a direct role in catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buhrman, Greg; Holzapfel, Genevieve; Fetics, Susan

    2010-11-03

    Ras and its effector Raf are key mediators of the Ras/Raf/MEK/ERK signal transduction pathway. Mutants of residue Q61 impair the GTPase activity of Ras and are found prominently in human cancers. Yet the mechanism through which Q61 contributes to catalysis has been elusive. It is thought to position the catalytic water molecule for nucleophilic attack on the {gamma}-phosphate of GTP. However, we previously solved the structure of Ras from crystals with symmetry of the space group R32 in which switch II is disordered and found that the catalytic water molecule is present. Here we present a structure of wild-type Rasmore » with calcium acetate from the crystallization mother liquor bound at a site remote from the active site and likely near the membrane. This results in a shift in helix 3/loop 7 and a network of H-bonding interactions that propagates across the molecule, culminating in the ordering of switch II and placement of Q61 in the active site in a previously unobserved conformation. This structure suggests a direct catalytic role for Q61 where it interacts with a water molecule that bridges one of the {gamma}-phosphate oxygen atoms to the hydroxyl group of Y32 to stabilize the transition state of the hydrolysis reaction. We propose that Raf together with the binding of Ca{sup 2+} and a negatively charged group mimicked in our structure by the acetate molecule induces the ordering of switch I and switch II to complete the active site of Ras.« less

  7. The spread of Ras activity triggered by activation of a single dendritic spine.

    PubMed

    Harvey, Christopher D; Yasuda, Ryohei; Zhong, Haining; Svoboda, Karel

    2008-07-04

    In neurons, individual dendritic spines isolate N-methyl-d-aspartate (NMDA) receptor-mediated calcium ion (Ca2+) accumulations from the dendrite and other spines. However, the extent to which spines compartmentalize signaling events downstream of Ca2+ influx is not known. We combined two-photon fluorescence lifetime imaging with two-photon glutamate uncaging to image the activity of the small guanosine triphosphatase Ras after NMDA receptor activation at individual spines. Induction of long-term potentiation (LTP) triggered robust Ca2+-dependent Ras activation in single spines that decayed in approximately 5 minutes. Ras activity spread over approximately 10 micrometers of dendrite and invaded neighboring spines by diffusion. The spread of Ras-dependent signaling was necessary for the local regulation of the threshold for LTP induction. Thus, Ca2+-dependent synaptic signals can spread to couple multiple synapses on short stretches of dendrite.

  8. C. elegans Vulva Induction: An In Vivo Model to Study Epidermal Growth Factor Receptor Signaling and Trafficking.

    PubMed

    Gauthier, Kimberley; Rocheleau, Christian E

    2017-01-01

    Epidermal growth factor receptor (EGFR)-mediated activation of the canonical Ras/MAPK signaling cascade is responsible for cell proliferation and cell growth. This signaling pathway is frequently overactivated in epithelial cancers; therefore, studying regulation of this pathway is crucial not only for our fundamental understanding of cell biology but also for our ability to treat EGFR-related disease. Genetic model organisms such as Caenorhabditis elegans, a hermaphroditic nematode, played a vital role in identifying components of the EGFR/Ras/MAPK pathway and delineating their order of function, and continues to play a role in identifying novel regulators of the pathway. Polarized activation of LET-23, the C. elegans homolog of EGFR, is responsible for induction of the vulval cell fate; perturbations in this signaling pathway produce either a vulvaless or multivulva phenotype. The translucent cuticle of the nematode facilitates in vivo visualization of the receptor, revealing that localization of LET-23 EGFR is tightly regulated and linked to its function. In this chapter, we review the methods used to harness vulva development as a tool for studying EGFR signaling and trafficking in C. elegans.

  9. Fungal Communication Requires the MAK-2 Pathway Elements STE-20 and RAS-2, the NRC-1 Adapter STE-50 and the MAP Kinase Scaffold HAM-5

    PubMed Central

    Dettmann, Anne; Heilig, Yvonne; Valerius, Oliver; Ludwig, Sarah; Seiler, Stephan

    2014-01-01

    Intercellular communication is critical for the survival of unicellular organisms as well as for the development and function of multicellular tissues. Cell-to-cell signaling is also required to develop the interconnected mycelial network characteristic of filamentous fungi and is a prerequisite for symbiotic and pathogenic host colonization achieved by molds. Somatic cell–cell communication and subsequent cell fusion is governed by the MAK-2 mitogen activated protein kinase (MAPK) cascade in the filamentous ascomycete model Neurospora crassa, yet the composition and mode of regulation of the MAK-2 pathway are currently unclear. In order to identify additional components involved in MAK-2 signaling we performed affinity purification experiments coupled to mass spectrometry with strains expressing functional GFP-fusion proteins of the MAPK cascade. This approach identified STE-50 as a regulatory subunit of the Ste11p homolog NRC-1 and HAM-5 as cell-communication-specific scaffold protein of the MAPK cascade. Moreover, we defined a network of proteins consisting of two Ste20-related kinases, the small GTPase RAS-2 and the adenylate cyclase capping protein CAP-1 that function upstream of the MAK-2 pathway and whose signals converge on the NRC-1/STE-50 MAP3K complex and the HAM-5 scaffold. Finally, our data suggest an involvement of the striatin interacting phosphatase and kinase (STRIPAK) complex, the casein kinase 2 heterodimer, the phospholipid flippase modulators YPK-1 and NRC-2 and motor protein-dependent vesicle trafficking in the regulation of MAK-2 pathway activity and function. Taken together, these data will have significant implications for our mechanistic understanding of MAPK signaling and for homotypic cell–cell communication in fungi and higher eukaryotes. PMID:25411845

  10. Macrophage migration inhibitory factor promotes osteosarcoma growth and lung metastasis through activating the RAS/MAPK pathway.

    PubMed

    Wang, Chen; Zhou, Xing; Li, Wentao; Li, Mingyue; Tu, Tingyue; Ba, Ximing; Wu, Yinyu; Huang, Zhen; Fan, Gentao; Zhou, Guangxin; Wu, Sujia; Zhao, Jianning; Zhang, Junfeng; Chen, Jiangning

    2017-09-10

    Emerging evidence suggests that the tumour microenvironment plays a critical role in osteosarcoma (OS) development. Thus, cytokine immunotherapy could be a novel strategy for OS treatment. In this study, we explored the role of macrophage migration inhibitory factor (MIF), an important cytokine in OS progression, and investigated the anti-tumour effects of targeting MIF in OS. The results showed that MIF significantly increased in the tissue and serum samples of OS patients and was associated with tumour size, pulmonary metastasis and the survival rate of OS patients. We verified a positive correlation between MIF and p-ERK1/2 in OS patients. The in vitro results indicated that MIF could activate the RAS/MAPK pathway in a time- and dose-dependent manner, thereby promoting cell proliferation and migration. Furthermore, shRNA targeting MIF significantly inhibited tumour growth and lung metastasis in a mouse xenograft model and orthotopic model of OS. Additionally, inhibition of MIF significantly enhanced the sensitivity of OS cells to cisplatin and doxorubicin. Our findings suggest that immunotherapy targeting MIF to block the RAS/MAPK kinase cascade may represent a feasible and promising approach for OS treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Temporal dissection of K-ras(G12D) mutant in vitro and in vivo using a regulatable K-ras(G12D) mouse allele.

    PubMed

    Wang, Zuoyun; Feng, Yan; Bardeesy, Nabeel; Bardessy, Nabeel; Wong, Kwok-Kin; Liu, Xin-Yuan; Ji, Hongbin

    2012-01-01

    Animal models which allow the temporal regulation of gene activities are valuable for dissecting gene function in tumorigenesis. Here we have constructed a conditional inducible estrogen receptor-K-ras(G12D) (ER-K-ras(G12D)) knock-in mice allele that allows us to temporally switch on or off the activity of K-ras oncogenic mutant through tamoxifen administration. In vitro studies using mice embryonic fibroblast (MEF) showed that a dose of tamoxifen at 0.05 µM works optimally for activation of ER-K-ras(G12D) independent of the gender status. Furthermore, tamoxifen-inducible activation of K-ras(G12D) promotes cell proliferation, anchor-independent growth, transformation as well as invasion, potentially via activation of downstream MAPK pathway and cell cycle progression. Continuous activation of K-ras(G12D) in vivo by tamoxifen treatment is sufficient to drive the neoplastic transformation of normal lung epithelial cells in mice. Tamoxifen withdrawal after the tumor formation results in apoptosis and tumor regression in mouse lungs. Taken together, these data have convincingly demonstrated that K-ras mutant is essential for neoplastic transformation and this animal model may provide an ideal platform for further detailed characterization of the role of K-ras oncogenic mutant during different stages of lung tumorigenesis.

  12. Synthetic lipopeptide inhibitors of RAS oncoproteins | NCI Technology Transfer Center | TTC

    Cancer.gov

    It is well known that overactive Ras signaling is linked to many forms of cancer, and despite intensive efforts worldwide to develop effective inhibitors of Ras, to date there is no anti-Ras inhibitor in clinical use. Researchers at the NCI’s Cancer and Inflammation Program, in collaboration with scientists at Vanderbilt University and the University of Illinois in Chicago, have identified a number of small peptidomimetic compounds that bind to Ras proteins with nanomolar affinity. NCI’s Cancer and Inflammation Program seeks partners interested in licensing or co-development of synthetic, highly potent cell-permeable inhibitors of Ras that bind to the protein directly.

  13. Discovering causal signaling pathways through gene-expression patterns

    PubMed Central

    Parikh, Jignesh R.; Klinger, Bertram; Xia, Yu; Marto, Jarrod A.; Blüthgen, Nils

    2010-01-01

    High-throughput gene-expression studies result in lists of differentially expressed genes. Most current meta-analyses of these gene lists include searching for significant membership of the translated proteins in various signaling pathways. However, such membership enrichment algorithms do not provide insight into which pathways caused the genes to be differentially expressed in the first place. Here, we present an intuitive approach for discovering upstream signaling pathways responsible for regulating these differentially expressed genes. We identify consistently regulated signature genes specific for signal transduction pathways from a panel of single-pathway perturbation experiments. An algorithm that detects overrepresentation of these signature genes in a gene group of interest is used to infer the signaling pathway responsible for regulation. We expose our novel resource and algorithm through a web server called SPEED: Signaling Pathway Enrichment using Experimental Data sets. SPEED can be freely accessed at http://speed.sys-bio.net/. PMID:20494976

  14. NMR 1H,13C, 15N backbone and 13C side chain resonance assignment of the G12C mutant of human K-Ras bound to GDP.

    PubMed

    Sharma, Alok K; Lee, Seung-Joo; Rigby, Alan C; Townson, Sharon A

    2018-05-02

    K-Ras is a key driver of oncogenesis, accounting for approximately 80% of Ras-driven human cancers. The small GTPase cycles between an inactive, GDP-bound and an active, GTP-bound state, regulated by guanine nucleotide exchange factors and GTPase activating proteins, respectively. Activated K-Ras regulates cell proliferation, differentiation and survival by signaling through several effector pathways, including Raf-MAPK. Oncogenic mutations that impair the GTPase activity of K-Ras result in a hyperactivated state, leading to uncontrolled cellular proliferation and tumorogenesis. A cysteine mutation at glycine 12 is commonly found in K-Ras associated cancers, and has become a recent focus for therapeutic intervention. We report here 1 H N, 15 N, and 13 C resonance assignments for the 19.3 kDa (aa 1-169) human K-Ras protein harboring an oncogenic G12C mutation in the GDP-bound form (K-RAS G12C-GDP ), using heteronuclear, multidimensional NMR spectroscopy. Backbone 1 H- 15 N correlations have been assigned for all non-proline residues, except for the first methionine residue.

  15. Rasfonin, a novel 2-pyrone derivative, induces ras-mutated Panc-1 pancreatic tumor cell death in nude mice.

    PubMed

    Xiao, Z; Li, L; Li, Y; Zhou, W; Cheng, J; Liu, F; Zheng, P; Zhang, Y; Che, Y

    2014-05-22

    Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR-Ras-Raf-MEK-ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [(3)H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras-MAPK activity could be important in its anticancer activity.

  16. Mitochondrial clearance by the STK38 kinase supports oncogenic Ras-induced cell transformation

    PubMed Central

    Bettoun, Audrey; Surdez, Didier; Vallerand, David; Gundogdu, Ramazan; Sharif, Ahmad A.D.; Gomez, Marta; Cascone, Ilaria; Meunier, Brigitte; White, Michael A.; Codogno, Patrice; Parrini, Maria Carla; Camonis, Jacques H.; Hergovich, Alexander

    2016-01-01

    Oncogenic Ras signalling occurs frequently in many human cancers. However, no effective targeted therapies are currently available to treat patients suffering from Ras-driven tumours. Therefore, it is imperative to identify downstream effectors of Ras signalling that potentially represent promising new therapeutic options. Particularly, considering that autophagy inhibition can impair the survival of Ras-transformed cells in tissue culture and mouse models, an understanding of factors regulating the balance between autophagy and apoptosis in Ras-transformed human cells is needed. Here, we report critical roles of the STK38 protein kinase in oncogenic Ras transformation. STK38 knockdown impaired anoikis resistance, anchorage-independent soft agar growth, and in vivo xenograft growth of Ras-transformed human cells. Mechanistically, STK38 supports Ras-driven transformation through promoting detachment-induced autophagy. Even more importantly, upon cell detachment STK38 is required to sustain the removal of damaged mitochondria by mitophagy, a selective autophagic process, to prevent excessive mitochondrial reactive oxygen species production that can negatively affect cancer cell survival. Significantly, knockdown of PINK1 or Parkin, two positive regulators of mitophagy, also impaired anoikis resistance and anchorage-independent growth of Ras-transformed human cells, while knockdown of USP30, a negative regulator of PINK1/Parkin-mediated mitophagy, restored anchorage-independent growth of STK38-depleted Ras-transformed human cells. Therefore, our findings collectively reveal novel molecular players that determine whether Ras-transformed human cells die or survive upon cell detachment, which potentially could be exploited for the development of novel strategies to target Ras-transformed cells. PMID:27283898

  17. PACAP signaling to DREAM: a cAMP-dependent pathway that regulates cortical astrogliogenesis.

    PubMed

    Vallejo, Mario

    2009-04-01

    Astrocytes constitute a very abundant cell type in the mammalian central nervous system and play critical roles in brain function. During development, astrocytes are generated from neural progenitor cells only after these cells have generated neurons. This so called gliogenic switch is tightly regulated by intrinsic factors that inhibit the generation of astrocytes during the neurogenic period. Once neural progenitors acquire gliogenic competence, they differentiate into astrocytes in response to specific extracellular signals. Some of these signals are delivered by neurotrophic cytokines via activation of the gp130-JAK-signal transducer and activator of transcription system, whereas others depend on the activity of pituitary adenylate cyclase-activating polypeptide (PACAP) on specific PAC1 receptors that stimulate the production of cAMP. This results in the activation of the small GTPases Rap1 and Ras, and in the cAMP-dependent entry of extracellular calcium into the cell. Calcium, in turn, stimulates the transcription factor downstream regulatory element antagonist modulator (DREAM), which is bound to specific sites of the promoter of the glial fibrillary acidic protein gene, stimulating its expression during astrocyte differentiation. Lack of DREAM in vivo results in alterations in the number of neurons and astrocytes generated during development. Thus, the PACAP-cAMP-Ca(2+)-DREAM signaling cascade constitutes an important pathway to activate glial-specific gene expression during astrocyte differentiation.

  18. Pharmacological rescue of Ras signaling, GluA1-dependent synaptic plasticity, and learning deficits in a fragile X model.

    PubMed

    Lim, Chae-Seok; Hoang, Elizabeth T; Viar, Kenneth E; Stornetta, Ruth L; Scott, Michael M; Zhu, J Julius

    2014-02-01

    Fragile X syndrome, caused by the loss of Fmr1 gene function, is the most common form of inherited mental retardation, with no effective treatment. Using a tractable animal model, we investigated mechanisms of action of a few FDA-approved psychoactive drugs that modestly benefit the cognitive performance in fragile X patients. Here we report that compounds activating serotonin (5HT) subtype 2B receptors (5HT2B-Rs) or dopamine (DA) subtype 1-like receptors (D1-Rs) and/or those inhibiting 5HT2A-Rs or D2-Rs moderately enhance Ras-PI3K/PKB signaling input, GluA1-dependent synaptic plasticity, and learning in Fmr1 knockout mice. Unexpectedly, combinations of these 5HT and DA compounds at low doses synergistically stimulate Ras-PI3K/PKB signal transduction and GluA1-dependent synaptic plasticity and remarkably restore normal learning in Fmr1 knockout mice without causing anxiety-related side effects. These findings suggest that properly dosed and combined FDA-approved psychoactive drugs may effectively treat the cognitive impairment associated with fragile X syndrome.

  19. K-Ras Populates Conformational States Differently from Its Isoform H-Ras and Oncogenic Mutant K-RasG12D.

    PubMed

    Parker, Jillian A; Volmar, Alicia Y; Pavlopoulos, Spiro; Mattos, Carla

    2018-06-05

    Structures of wild-type K-Ras from crystals obtained in the presence of guanosine triphosphate (GTP) or its analogs have remained elusive. Of the K-Ras mutants, only K-RasG12D and K-RasQ61H are available in the PDB representing the activated form of the GTPase not in complex with other proteins. We present the crystal structure of wild-type K-Ras bound to the GTP analog GppCH 2 p, with K-Ras in the state 1 conformation. Signatures of conformational states obtained by one-dimensional proton NMR confirm that K-Ras has a more substantial population of state 1 in solution than H-Ras, which predominantly favors state 2. The oncogenic mutant K-RasG12D favors state 2, changing the balance of conformational states in favor of interactions with effector proteins. Differences in the population of conformational states between K-Ras and H-Ras, as well as between K-Ras and its mutants, can provide a structural basis for focused targeting of the K-Ras isoform in cancer-specific strategies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Ras-Induced and Extracellular Signal-Regulated Kinase 1 and 2 Phosphorylation-Dependent Isomerization of Protein Tyrosine Phosphatase (PTP)-PEST by PIN1 Promotes FAK Dephosphorylation by PTP-PEST ▿

    PubMed Central

    Zheng, Yanhua; Yang, Weiwei; Xia, Yan; Hawke, David; Liu, David X.; Lu, Zhimin

    2011-01-01

    Protein tyrosine phosphatase (PTP)-PEST is a critical regulator of cell adhesion and migration. However, the mechanism by which PTP-PEST is regulated in response to oncogenic signaling to dephosphorylate its substrates remains unclear. Here, we demonstrate that activated Ras induces extracellular signal-regulated kinase 1 and 2-dependent phosphorylation of PTP-PEST at S571, which recruits PIN1 to bind to PTP-PEST. Isomerization of the phosphorylated PTP-PEST by PIN1 increases the interaction between PTP-PEST and FAK, which leads to the dephosphorylation of FAK Y397 and the promotion of migration, invasion, and metastasis of v-H-Ras-transformed cells. These findings uncover an important mechanism for the regulation of PTP-PEST in activated Ras-induced tumor progression. PMID:21876001

  1. Focal adhesions and Ras are functionally and spatially integrated to mediate IL-1 activation of ERK

    PubMed Central

    Wang, Qin; Downey, Gregory P.; McCulloch, Christopher A.

    2011-01-01

    In connective tissue cells, IL-1-induced ERK activation leading to matrix metalloproteinase (MMP)-3 expression is dependent on cooperative interactions between focal adhesions and the endoplasmic reticulum (ER). As Ras can be activated on the ER, we investigated the role of Ras in IL-1 signaling and focal adhesion formation. We found that constitutively active H-Ras, K-Ras or N-Ras enhanced focal adhesion maturation and β1-integrin activation. IL-1 promoted the accumulation of Ras isoforms in ER and focal adhesion fractions, as shown in cells cotransfected with GFP-tagged Ras isoforms and YFP-ER protein and by analysis of subcellular fractions enriched for ER or focal adhesion proteins. Dominant-negative H-Ras or K-Ras reduced accumulation of H-Ras and K-Ras in focal adhesions induced by IL-1 and also blocked ERK activation and focal adhesion maturation. Ras-GRF was enriched constitutively in focal adhesion fractions and was required for Ras recruitment to focal adhesions. We conclude that Ras activation and IL-1 signaling are interactive processes that regulate the maturation of focal adhesions, which, in turn, is required for ERK activation.—Wang, Q., Downey, G. P., McCulloch, C. A. Focal adhesions and Ras are functionally and spatially integrated to mediate IL-1 activation of ERK. PMID:21719512

  2. Tumor suppressors Sav/Scrib and oncogene Ras regulate stem cell transformation in adult Drosophila Malpighian Tubules

    PubMed Central

    Zeng, Xiankun; Singh, Shree Ram; Hou, David; Hou, Steven X.

    2012-01-01

    An increasing body of evidence suggests that tumors might originate from a few transformed cells that share many properties with normal stem cells. However, it remains unclear how normal stem cells are transformed into cancer stem cells. Here, we demonstrated that mutations causing the loss of tumor suppressor Sav or Scrib or activation of the oncogene Ras transform normal stem cells into cancer stem cells through a multistep process in the adult Drosophila Malpighian Tubules (MTs). In wild-type MTs, each stem cell generates one self-renewing and one differentiating daughter cell. However, in flies with loss-of-function sav or scrib or gain-of-function Ras mutations, both daughter cells grew and behaved like stem cells, leading to the formation of tumors in MTs. Ras functioned downstream of Sav and Scrib in regulating the stem cell transformation. The Ras-transformed stem cells exhibited many of the hallmarks of cancer, such as increased proliferation, reduced cell death, and failure to differentiate. We further demonstrated that several signal transduction pathways (including MEK/MAPK, RhoA, PKA, and TOR) mediate Rasṕ function in the stem cell transformation. Therefore, we have identified a molecular mechanism that regulates stem cell transformation, and this finding may lead to strategies for preventing tumor formation in certain organs. PMID:20432470

  3. Caveolin-1 down-regulation is required for Wnt5a-Frizzled 2 signalling in Ha-RasV12 -induced cell transformation.

    PubMed

    Lin, Hsiu-Kuan; Lin, Hsi-Hui; Chiou, Yu-Wei; Wu, Ching-Lung; Chiu, Wen-Tai; Tang, Ming-Jer

    2018-05-01

    Caveolin-1 (Cav1) is down-regulated during MK4 (MDCK cells harbouring inducible Ha-Ras V12 gene) transformation by Ha-Ras V12 . Cav1 overexpression abrogates the Ha-Ras V12 -driven transformation of MK4 cells; however, the targeted down-regulation of Cav1 is not sufficient to mimic this transformation. Cav1-silenced cells, including MK4/shCav1 cells and MDCK/shCav1 cells, showed an increased cell area and discontinuous junction-related proteins staining. Cellular and mechanical transformations were completed when MDCK/shCav1 cells were treated with medium conditioned by MK4 cells treated with IPTG (MK4+I-CM) but not with medium conditioned by MK4 cells. Nanoparticle tracking analysis showed that Ha-Ras V12 -inducing MK4 cells increased exosome-like microvesicles release compared with their normal counterparts. The cellular and mechanical transformation activities of MK4+I-CM were abolished after heat treatment and exosome depletion and were copied by exosomes derived from MK4+I-CM (MK4+I-EXs). Wnt5a, a downstream product of Ha-Ras V12 , was markedly secreted by MK4+I-CM and MK4+I-EXs. Suppression of Wnt5a expression and secretion using the porcupine inhibitor C59 or Wnt5a siRNA inhibited the Ha-Ras V12 - and MK4+I-CM-induced transformation of MK4 cells and MDCK/shCav1 cells, respectively. Cav1 down-regulation, either by Ha-Ras V12 or targeted shRNA, increased frizzled-2 (Fzd2) protein levels without affecting its mRNA levels, suggesting a novel role of Cav1 in negatively regulating Fzd2 expression. Additionally, silencing Cav1 facilitated the internalization of MK4+I-EXs in MDCK cells. These data suggest that Cav1-dependent repression of Fzd2 and exosome uptake is potentially relevant to its antitransformation activity, which hinders the activation of Ha-Ras V12 -Wnt5a-Stat3 pathway. Altogether, these results suggest that both decreasing Cav1 and increasing exosomal Wnt5a must be implemented during Ha-Ras V12 -driven cell transformation. © 2018 The Authors

  4. EGF stimulates the activation of EGF receptors and the selective activation of major signaling pathways during mitosis.

    PubMed

    Wee, Ping; Shi, Huaiping; Jiang, Jennifer; Wang, Yuluan; Wang, Zhixiang

    2015-03-01

    Mitosis and epidermal growth factor (EGF) receptor (EGFR) are both targets for cancer therapy. The role of EGFR signaling in mitosis has been rarely studied and poorly understood. The limited studies indicate that the activation of EGFR and downstream signaling pathways is mostly inhibited during mitosis. However, we recently showed that EGFR is phosphorylated in response to EGF stimulation in mitosis. Here we studied EGF-induced EGFR activation and the activation of major signaling pathways downstream of EGFR during mitosis. We showed that EGFR was strongly activated by EGF during mitosis as all the five major tyrosine residues including Y992, Y1045, Y1068, Y1086, and Y1173 were phosphorylated to a level similar to that in the interphase. We further showed that the activated EGFR is able to selectively activate some downstream signaling pathways while avoiding others. Activated EGFR is able to activate PI3K and AKT2, but not AKT1, which may be responsible for the observed effects of EGF against nocodazole-induced cell death. Activated EGFR is also able to activate c-Src, c-Cbl and PLC-γ1 during mitosis. However, activated EGFR is unable to activate ERK1/2 and their downstream substrates RSK and Elk-1. While it activated Ras, EGFR failed to fully activate Raf-1 in mitosis due to the lack of phosphorylation at Y341 and the lack of dephosphorylation at pS259. We conclude that contrary to the dogma, EGFR is activated by EGF during mitosis. Moreover, EGFR-mediated cell signaling is regulated differently from the interphase to specifically serve the needs of the cell in mitosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. RSK is a principal effector of the RAS-ERK pathway for eliciting a coordinate, pro-motile/invasive gene program and phenotype in epithelial cells

    PubMed Central

    Doehn, Ulrik; Hauge, Camilla; Frank, Scott R.; Jensen, Claus J.; Duda, Katarzyna; Nielsen, Jakob V.; Cohen, Michael S.; Johansen, Jens V.; Winther, Benny R.; Lund, Leif R.; Winther, Ole; Taunton, Jack; Hansen, Steen H.; Frödin, Morten

    2013-01-01

    SUMMARY The RAS-stimulated RAF-MEK-ERK pathway confers epithelial cells with critical motile and invasive capacities during embryonic development, tissue regeneration and carcinoma progression. Yet many mechanisms by which ERK exerts this control remain elusive. Here, we demonstrate that the ERK-activated kinase RSK is necessary to induce motility and invasive capacities in non-transformed epithelial cells and carcinoma cells. RSK is moreover sufficient to induce certain motile responses. Expression profiling analysis revealed that a primary role of RSK is to induce transcription of potent pro-motile/invasive gene program by FRA1-dependent and independent mechanisms. Strikingly, the program enables RSK to coordinately modulate the extracellular environment, the intracellular motility apparatus, and receptors mediating communication between these compartments to stimulate motility and invasion. These findings uncover a general mechanism whereby the RAS-ERK pathway controls epithelial cell motility by identifying RSK as a key effector, from which emanates multiple highly coordinate transcription-dependent mechanisms for stimulation of motility and invasive properties. PMID:19716794

  6. Reversible Smad-dependent signaling between tumor suppression and oncogenesis.

    PubMed

    Sekimoto, Go; Matsuzaki, Koichi; Yoshida, Katsunori; Mori, Shigeo; Murata, Miki; Seki, Toshihito; Matsui, Hirofumi; Fujisawa, Jun-ichi; Okazaki, Kazuichi

    2007-06-01

    Cancer cells often gain advantage by reducing the tumor-suppressive activity of transforming growth factor-beta (TGF-beta) together with stimulation of its oncogenic activity as in Ras-transformed cells; however, molecular mechanisms remain largely unknown. TGF-beta activates both its type I receptor (TbetaRI) and c-Jun NH2-terminal kinase (JNK), which phosphorylate Smad2 and Smad3 at the COOH-terminal (pSmad2/3C) and linker regions (pSmad2/3L). Here, we report that Ras transformation suppresses TbetaRI-mediated pSmad3C signaling, which involves growth inhibition by down-regulating c-Myc. Instead, hyperactive Ras constitutively stimulates JNK-mediated pSmad2/3L signaling, which fosters tumor invasion by up-regulating plasminogen activator inhibitor-1 and matrix metalloproteinase-1 (MMP-1), MMP-2, and MMP-9. Conversely, selective blockade of linker phosphorylation by a mutant Smad3 lacking JNK-dependent phosphorylation sites results in preserved tumor-suppressive function via pSmad3C in Ras-transformed cells while eliminating pSmad2/3L-mediated invasive capacity. Thus, specific inhibition of the JNK/pSmad2/3L pathway should suppress cancer progression by shifting Smad-dependent signaling from oncogenesis to tumor suppression.

  7. Hedgehog signaling pathway in neuroblastoma differentiation.

    PubMed

    Souzaki, Ryota; Tajiri, Tatsuro; Souzaki, Masae; Kinoshita, Yoshiaki; Tanaka, Sakura; Kohashi, Kenichi; Oda, Yoshinao; Katano, Mitsuo; Taguchi, Tomoaki

    2010-12-01

    The hedgehog (Hh) signaling pathway is activated in some adult cancers. On the other hand, the Hh signaling pathway plays an important role in the development of the neural crest in embryos. The aim of this study is to show the activation of Hh signaling pathway in neuroblastoma (NB), a pediatric malignancy arising from neural crest cells, and to reveal the meaning of the Hh signaling pathway in NB development. This study analyzed the expression of Sonic hedgehog (Shh), GLI1, and Patched 1 (Ptch1), transactivators of Hh signaling pathway, by immunohistochemistry in 82 NB and 10 ganglioneuroblastoma cases. All 92 cases were evaluated for the status of MYCN amplification. Of the 92 cases, 67 (73%) were positive for Shh, 62 cases (67%) were positive for GLI1, and 73 cases (79%) were positive for Ptch1. Only 2 (10%) of the 20 cases with MYCN amplification were positive for Shh and GLI1, and 4 cases (20%) were positive for Ptch1 (MYCN amplification vs no MYCN amplification, P ≦ .01). The percentage of GLI1-positive cells in the cases with INSS stage 1 without MYCN amplification was significantly higher than that with INSS stage 4. Of 72 cases without MYCN amplification, 60 were GLI1-positive. Twelve cases were GLI1-negative, and the prognosis of the GLI1-positive cases was significantly better than that of the GLI1-negative cases (P = .015). Most of NBs without MYCN amplification were positive for Shh, GLI1, and Ptch1. In the cases without MYCN amplification, the high expression of GLI1 was significantly associated with early clinical stage and a good prognosis of the patients. In contrast to adult cancers, the activation of the Hh signaling pathway in NB may be associated with the differentiation of the NB. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Cell Signaling Pathways that Regulate Ag Presentation

    PubMed Central

    Brutkiewicz, Randy R.

    2016-01-01

    Cell signaling pathways regulate much in the life of a cell: from shuttling cargo through intracellular compartments and onto the cell surface, how it should respond to stress, protecting itself from harm (environmental insults or infections), to ultimately, death by apoptosis. These signaling pathways are important for various aspects of the immune response as well. However, not much is known in terms of the participation of cell signaling pathways in Ag presentation--a necessary first step in the activation of innate and adaptive T cells. In this brief review, I will discuss the known signaling molecules (and pathways) that regulate how Ags are presented to T cells and the mechanism(s) if identified. Studies in this area have important implications in vaccine development and new treatment paradigms against infectious diseases, autoimmunity and cancer. PMID:27824592

  9. K-RasV14I recapitulates Noonan syndrome in mice

    PubMed Central

    Hernández-Porras, Isabel; Fabbiano, Salvatore; Schuhmacher, Alberto J.; Aicher, Alexandra; Cañamero, Marta; Cámara, Juan Antonio; Cussó, Lorena; Desco, Manuel; Heeschen, Christopher; Mulero, Francisca; Bustelo, Xosé R.; Guerra, Carmen; Barbacid, Mariano

    2014-01-01

    Noonan syndrome (NS) is an autosomal dominant genetic disorder characterized by short stature, craniofacial dysmorphism, and congenital heart defects. NS also is associated with a risk for developing myeloproliferative disorders (MPD), including juvenile myelomonocytic leukemia (JMML). Mutations responsible for NS occur in at least 11 different loci including KRAS. Here we describe a mouse model for NS induced by K-RasV14I, a recurrent KRAS mutation in NS patients. K-RasV14I–mutant mice displayed multiple NS-associated developmental defects such as growth delay, craniofacial dysmorphia, cardiac defects, and hematologic abnormalities including a severe form of MPD that resembles human JMML. Homozygous animals had perinatal lethality whose penetrance varied with genetic background. Exposure of pregnant mothers to a MEK inhibitor rescued perinatal lethality and prevented craniofacial dysmorphia and cardiac defects. However, Mek inhibition was not sufficient to correct these defects when mice were treated after weaning. Interestingly, Mek inhibition did not correct the neoplastic MPD characteristic of these mutant mice, regardless of the timing at which the mice were treated, thus suggesting that MPD is driven by additional signaling pathways. These genetically engineered K-RasV14I–mutant mice offer an experimental tool for studying the molecular mechanisms underlying the clinical manifestations of NS. Perhaps more importantly, they should be useful as a preclinical model to test new therapies aimed at preventing or ameliorating those deficits associated with this syndrome. PMID:25359213

  10. Clinical implications of hedgehog signaling pathway inhibitors

    PubMed Central

    Liu, Hailan; Gu, Dongsheng; Xie, Jingwu

    2011-01-01

    Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and Christiane Nüsslein-Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation, proliferation, tissue polarity, stem cell maintenance, and Carcinogenesis. The first link of Hh signaling to cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow-up studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hh-mediated Carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for Hh signaling and their clinical implications. PMID:21192841

  11. Treatment of Ras-induced cancers by the F-actin cappers tensin and chaetoglobosin K, in combination with the caspase-1 inhibitor N1445.

    PubMed

    Tikoo, A; Cutler, H; Lo, S H; Chen, L B; Maruta, H

    1999-01-01

    -induced apoptosis is at least in part caused by CK-induced inhibition of the kinase PKB/AKT. However, a specific ICE/caspase-1 inhibitor called N1445 completely abolished the CK-induced apoptosis by reactivating PKB, but without affecting the CK-induced suppression of Ras transformation. Like the F-actin cross-linking drug MKT-077, the F-actin capping drug CK may be useful for the treatment of Ras-associated cancers if it is combined with the ICE inhibitor N1445, which abolishes the side effect of CK. Our observations that two distinct F-actin capping molecules (i.e., tensin and CK) suppress Ras-induced malignant phenotype strongly suggest, if not prove, that capping of actin filaments at the plus-ends alone is sufficient to block one of the Ras signaling pathways essential for its oncogenicity. This notion is compatible with the fact that Ras induces the uncapping of actin filaments at the plus-ends through the Rac/PIP2 pathway.

  12. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis

    PubMed Central

    Bunda, Severa; Burrell, Kelly; Heir, Pardeep; Zeng, Lifan; Alamsahebpour, Amir; Kano, Yoshihito; Raught, Brian; Zhang, Zhong-Yin; Zadeh, Gelareh; Ohh, Michael

    2015-01-01

    Ras is phosphorylated on a conserved tyrosine at position 32 within the switch I region via Src kinase. This phosphorylation inhibits the binding of effector Raf while promoting the engagement of GTPase-activating protein (GAP) and GTP hydrolysis. Here we identify SHP2 as the ubiquitously expressed tyrosine phosphatase that preferentially binds to and dephosphorylates Ras to increase its association with Raf and activate downstream proliferative Ras/ERK/MAPK signalling. In comparison to normal astrocytes, SHP2 activity is elevated in astrocytes isolated from glioblastoma multiforme (GBM)-prone H-Ras(12V) knock-in mice as well as in glioma cell lines and patient-derived GBM specimens exhibiting hyperactive Ras. Pharmacologic inhibition of SHP2 activity attenuates cell proliferation, soft-agar colony formation and orthotopic GBM growth in NOD/SCID mice and decelerates the progression of low-grade astrocytoma to GBM in a spontaneous transgenic glioma mouse model. These results identify SHP2 as a direct activator of Ras and a potential therapeutic target for cancers driven by a previously ‘undruggable' oncogenic or hyperactive Ras. PMID:26617336

  13. One-way membrane trafficking of SOS in receptor-triggered Ras activation.

    PubMed

    Christensen, Sune M; Tu, Hsiung-Lin; Jun, Jesse E; Alvarez, Steven; Triplet, Meredith G; Iwig, Jeffrey S; Yadav, Kamlesh K; Bar-Sagi, Dafna; Roose, Jeroen P; Groves, Jay T

    2016-09-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2-SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted-membrane experiments, these Grb2-independent interactions were sufficient to retain human SOS on the membrane for many minutes, during which a single SOS molecule could processively activate thousands of Ras molecules. These observations raised questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative assays of reconstituted SOS-deficient chicken B-cell signaling systems combined with single-molecule measurements in supported membranes. These studies revealed an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until being actively removed via endocytosis.

  14. One-way membrane trafficking of SOS in receptor-triggered Ras activation

    PubMed Central

    Christensen, Sune M.; Tu, Hsiung-Lin; Jun, Jesse E.; Alvarez, Steven; Triplet, Meredith G.; Iwig, Jeffrey S.; Yadav, Kamlesh K.; Bar-Sagi, Dafna; Roose, Jeroen P.; Groves, Jay T.

    2016-01-01

    SOS is a key activator of the small GTPase Ras. In cells, SOS-Ras signaling is thought to be initiated predominantly by membrane-recruitment of SOS via the adaptor Grb2 and balanced by rapidly reversible Grb2:SOS binding kinetics. However, SOS has multiple protein and lipid interactions that provide linkage to the membrane. In reconstituted membrane experiments, these Grb2-independent interactions are sufficient to retain SOS on the membrane for many minutes, during which a single SOS molecule can processively activate thousands of Ras molecules. These observations raise questions concerning how receptors maintain control of SOS in cells and how membrane-recruited SOS is ultimately released. We addressed these questions in quantitative reconstituted SOS-deficient chicken B cell signaling systems combined with single molecule measurements in supported membranes. These studies reveal an essentially one-way trafficking process in which membrane-recruited SOS remains trapped on the membrane and continuously activates Ras until it is actively removed via endocytosis. PMID:27501536

  15. EphB4 promotes or suppresses Ras/MEK/ERK pathway in a context-dependent manner: Implications for EphB4 as a cancer target.

    PubMed

    Xiao, Zhan; Carrasco, Rosa; Kinneer, Krista; Sabol, Darrin; Jallal, Bahija; Coats, Steve; Tice, David A

    2012-06-01

    EphB4 is a member of the Eph receptor tyrosine kinase family shown to act in neuronal guidance and mediate venal/arterial separation. In contrast to these more established roles, EphB4's function in cancer is much less clear. Here we illustrate both tumor promoting as well as suppressing roles of EphB4, by showing that its activation resulted in inhibition of the Ras/ERK pathway in endothelial cells but activation of the same pathway in MCF-7 breast cancer cells. This was true if EphB4 was stimulated with EphrinB2, its natural ligand, or an agonistic monoclonal antibody for EphB4. Correspondingly, EphB4 activation stimulated MCF7 growth while inhibiting HUVEC cell proliferation. The reason for these dramatic differences is due to functional coupling of EphB4 to different downstream effectors. Reduction of p120 RasGAP in HUVEC cells attenuated the inhibitory effect of EphB4 activation on the ERK pathway, whereas knockdown of PP2A in MCF7 cells attenuated EphB4 activation of the ERK pathway. This represents the first time a functional coupling between Eph receptor and PP2A has been demonstrated leading to activation of an oncogenic pathway. Our study illustrates the caveats and potential challenges of targeting EphB4 for cancer therapy due to the conflicting effects on cancer cell and endothelial cell compartments.

  16. K-RAS GTPase- and B-RAF kinase-mediated T-cell tolerance defects in rheumatoid arthritis.

    PubMed

    Singh, Karnail; Deshpande, Pratima; Li, Guangjin; Yu, Mingcan; Pryshchep, Sergey; Cavanagh, Mary; Weyand, Cornelia M; Goronzy, Jörg J

    2012-06-19

    Autoantibodies to common autoantigens and neoantigens, such as IgG Fc and citrullinated peptides, are immunological hallmarks of rheumatoid arthritis (RA). We examined whether a failure in maintaining tolerance is mediated by defects in T-cell receptor activation threshold settings. RA T cells responded to stimulation with significantly higher ERK phosphorylation (P < 0.001). Gene expression arrays of ERK pathway members suggested a higher expression of KRAS and BRAF, which was confirmed by quantitative PCR (P = 0.003), Western blot, and flow cytometry (P < 0.01). Partial silencing of KRAS and BRAF lowered activation-induced phosphorylated ERK levels (P < 0.01). In individual cells, levels of these signaling molecules correlated with ERK phosphorylation, attesting that their concentrations are functionally important. In confocal studies, B-RAF/K-RAS clustering was increased in RA T cells 2 min after T-cell receptor stimulation (P < 0.001). Overexpression of B-RAF and K-RAS in normal CD4 T cells amplified polyclonal T-cell proliferation and facilitated responses to citrullinated peptides. We propose that increased expression of B-RAF and K-RAS lowers T-cell activation thresholds in RA T cells, enabling responses to autoantigens.

  17. Novel revertants of H-ras oncogene-transformed R6-PKC3 cells.

    PubMed Central

    Krauss, R S; Guadagno, S N; Weinstein, I B

    1992-01-01

    Rat 6 fibroblasts that overproduce protein kinase C beta 1 (R6-PKC3 cells) are hypersensitive to complete transformation by the T24 H-ras oncogene; yet T24 H-ras-transformed R6-PKC3 cells are killed when exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA) (W.-L. W. Hsiao, G. M. Housey, M. D. Johnson, and I. B. Weinstein, Mol. Cell. Biol. 9:2641-2647, 1989). Treatment of an R6-PKC3 subclone that harbors a T24 H-ras gene under the control of an inducible mouse metallothionein I promoter with ZnSO4 and TPA is extremely cytocidal. This procedure was used to isolate rare revertants that are resistant to this toxicity. Two revertant lines, R-1a and ER-1-2, continue to express very high levels of protein kinase C enzyme activity but, unlike the parental cells, do not grow in soft agar. Furthermore, these revertants are resistant to the induction of anchorage-independent growth by the v-src, v-H-ras, v-raf, and, in the case of the R-1a line, v-fos oncogenes. Both revertant lines, however, retain the ability to undergo morphological alterations when either treated with TPA or infected with a v-H-ras virus, thus dissociating anchorage independence from morphological transformation. The revertant phenotype of both R-1a and ER-1-2 cells is dominant over the transformed phenotype in somatic cell hybridizations. Interestingly, the revertant lines no longer induce the metallothionein I-T24 H-ras construct or the endogenous metallothionein I and II genes in response to three distinct agents: ZnSO4, TPA, and dexamethasone. The reduction in activity of metallothionein promoters seen in these revertants may reflect defects in signal transduction pathways that control the expression of genes mediating specific effects of protein kinase C and certain oncogenes in cell transformation. Images PMID:1535685

  18. Molecular mechanisms of the mammalian Hippo signaling pathway.

    PubMed

    Ji, Xin-yan; Zhong, Guoxuan; Zhao, Bin

    2017-07-20

    The Hippo pathway plays an evolutionarily conserved fundamental role in controlling organ size in multicellular organisms. Importantly, evidence from studies of patient samples and mouse models clearly indicates that deregulation of the Hippo signaling pathway plays a crucial role in the initiation and progression of many different types of human cancers. The Hippo signaling pathway is regulated by various stimuli, such as mechanical stress, G-protein coupled receptor signaling, and cellular energy status. When activated, the Hippo kinase cascade phosphorylates and inhibits the transcription co-activator YAP (Yes-associated protein), and its paralog TAZ (transcriptional coactivator with PDZ-binding motif), resulting in their cytoplasmic retention and degradation. When the Hippo signaling pathway is inactive, dephosphorylated YAP/TAZ translocate into the nucleus and activate gene transcription through binding to TEAD (TEA domain) family and other transcription factors. Such changes in gene expression promote cell proliferation and stem cell/progenitor cell self-renewal but inhibit apoptosis, thereby coordinately promote increase in organ size, tissue regeneration, and tumorigenesis. In this review, we summarize the molecular mechanisms of the mammalian Hippo signaling pathway with special emphasis on the Hippo kinase cascade and its upstream signals, the Hippo signaling pathway regulation of YAP and the mechanisms of YAP in regulation of gene transcription.

  19. Identification of cancer initiating cells in K-Ras driven lung adenocarcinoma.

    PubMed

    Mainardi, Sara; Mijimolle, Nieves; Francoz, Sarah; Vicente-Dueñas, Carolina; Sánchez-García, Isidro; Barbacid, Mariano

    2014-01-07

    Ubiquitous expression of a resident K-Ras(G12V) oncogene in adult mice revealed that most tissues are resistant to K-Ras oncogenic signals. Indeed, K-Ras(G12V) expression only induced overt tumors in lungs. To identify these transformation-permissive cells, we induced K-Ras(G12V) expression in a very limited number of adult lung cells (0.2%) and monitored their fate by X-Gal staining, a surrogate marker coexpressed with the K-Ras(G12V) oncoprotein. Four weeks later, 30% of these cells had proliferated to form small clusters. However, only SPC(+) alveolar type II (ATII) cells were able to form hyperplastic lesions, some of which progressed to adenomas and adenocarcinomas. In contrast, induction of K-Ras(G12V) expression in lung cells by intratracheal infection with adenoviral-Cre particles generated hyperplasias in all regions except the proximal airways. Bronchiolar and bronchioalveolar duct junction hyperplasias were primarily made of CC10(+) Clara cells. Some of them progressed to form benign adenomas. However, only alveolar hyperplasias, exclusively made up of SPC(+) ATII cells, progressed to yield malignant adenocarcinomas. Adenoviral infection induced inflammatory infiltrates primarily made of T and B cells. This inflammatory response was essential for the development of K-Ras(G12V)-driven bronchiolar hyperplasias and adenomas, but not for the generation of SPC(+) ATII lesions. Finally, activation of K-Ras(G12V) during embryonic development under the control of a Sca1 promoter yielded CC10(+), but not SPC(+), hyperplasias, and adenomas. These results, taken together, illustrate that different types of lung cells can generate benign lesions in response to K-Ras oncogenic signals. However, in adult mice, only SPC(+) ATII cells were able to yield malignant adenocarcinomas.

  20. Ras oncogenes in oral cancer: the past 20 years.

    PubMed

    Murugan, Avaniyapuram Kannan; Munirajan, Arasambattu Kannan; Tsuchida, Nobuo

    2012-05-01

    Oral squamous cell carcinoma (OSCC) of head and neck is associated with high morbidity and mortality in both Western and Asian countries. Several risk factors for the development of oral cancer are very well established, including tobacco chewing, betel quid, smoking, alcohol drinking and human papilloma virus (HPV) infection. Apart from these risk factors, many genetic factors such as oncogenes, tumor suppressor genes and regulatory genes are identified to involve in oral carcinogenesis with these risk factors dependent and independent manner. Ras is one of the most frequently genetically deregulated oncogene in oral cancer. In this review, we analyze the past 22years of literature on genetic alterations such as mutations and amplifications of the isoforms of the ras oncogene in oral cancer. Further, we addressed the isoform-specific role of the ras in oral carcinogenesis. We also discussed how targeting the Akt and MEK, downstream effectors of the PI3K/Akt and MAPK pathways, respectively, would probably pave the possible molecular therapeutic target for the ras driven tumorigenesis in oral cancer. Analysis of these ras isoforms may critically enlighten specific role of a particular ras isoform in oral carcinogenesis, enhance prognosis and pave the way for isoform-specific molecular targeted therapy in OSCC. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Study Illuminates K-Ras4B Activation, Which May Help Predict Drug Resistance | Poster

    Cancer.gov

    Until recently, researchers studying RAS, a family of proteins involved in transmitting signals within cells, believed that the exchange of guanosine 5’-diphosphate (GDP) by guanosine triphosphate (GTP) was sufficient to activate the protein. Once activated, RAS can cause unintended and overactive signaling in cells, which can lead to cell division and, ultimately, cancer.

  2. Hippo signaling pathway in cardiovascular development and diseases.

    PubMed

    Wang, Yong-yu; Yu, Wei; Zhou, Bin

    2017-07-20

    Cardiovascular diseases have become the leading cause of death in the world. Understanding the development of cardiovascular system and the pathogenesis of cardiovascular diseases will promote the generation of novel preventive and therapeutic strategy. The Hippo pathway is a recently identified signaling cascade that plays a critical role in organ size control, cell proliferation, apoptosis and fate determination of stem cells. Gene knockout and transgenic mouse models have revealed that the Hippo signaling pathway is involved in heart development, cardiomyocyte proliferation, apoptosis, hypertrophy and cardiac regeneration. The Hippo signaling pathway also regulates vascular development, differentiation and various functions of vascular cells. Dysregulation of the Hippo signaling pathway leads to different kinds of cardiovascular diseases, such as myocardial infarction, cardiac hypertrophy, neointima formation and atherosclerosis. In this review, we briefly summarize current research on the roles and regulation mechanisms of the Hippo signaling pathway in cardiovascular development and diseases.

  3. Developmental lineage priming in Dictyostelium by heterogeneous Ras activation.

    PubMed

    Chattwood, Alex; Nagayama, Koki; Bolourani, Parvin; Harkin, Lauren; Kamjoo, Marzieh; Weeks, Gerald; Thompson, Christopher R L

    2013-11-26

    In cell culture, genetically identical cells often exhibit heterogeneous behavior, with only 'lineage primed' cells responding to differentiation inducing signals. It has recently been proposed that such heterogeneity exists during normal embryonic development to allow position independent patterning based on 'salt and pepper' differentiation and sorting out. However, the molecular basis of lineage priming and how it leads to reproducible cell type proportioning are poorly understood. To address this, we employed a novel forward genetic approach in the model organism Dictyostelium discoideum. These studies reveal that the Ras-GTPase regulator gefE is required for normal lineage priming and salt and pepper differentiation. This is because Ras-GTPase activity sets the intrinsic response threshold to lineage specific differentiation signals. Importantly, we show that although gefE expression is uniform, transcription of its target, rasD, is both heterogeneous and dynamic, thus providing a novel mechanism for heterogeneity generation and position-independent differentiation. DOI: http://dx.doi.org/10.7554/eLife.01067.001.

  4. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Ambrosio, Steven M.; Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210; Han, Chunhua

    2011-06-10

    Highlights: {yields} The aliphatic acetogenins [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] (1) and [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate] (2) isolated from avocado fruit inhibit phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). {yields} Aliphatic acetogenin 2, but not 1, prevents EGF-induced activation of EGFR (Tyr1173). {yields} Combination of both aliphatic acetogenins synergistically inhibits c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204) phosphorylation and human oral cancer cell proliferation. {yields} The potential anticancer activity of avocado fruits is due to a combination of specific aliphatic acetogenins targeting two key components of the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. {yields} Providing a double hit on a critical cancer pathway such as EGFR/RAS/RAF/MEK/ERK1/2 by phytochemicals like thosemore » found in avocado fruit could lead to more effective approach toward cancer prevention. -- Abstract: Avocado (Persea americana) fruits are consumed as part of the human diet and extracts have shown growth inhibitory effects in various types of human cancer cells, although the effectiveness of individual components and their underlying mechanism are poorly understood. Using activity-guided fractionation of the flesh of avocado fruits, a chloroform-soluble extract (D003) was identified that exhibited high efficacy towards premalignant and malignant human oral cancer cell lines. From this extract, two aliphatic acetogenins of previously known structure were isolated, compounds 1 [(2S,4S)-2,4-dihydroxyheptadec-16-enyl acetate] and 2 [(2S,4S)-2,4-dihydroxyheptadec-16-ynyl acetate]. In this study, we show for the first time that the growth inhibitory efficacy of this chloroform extract is due to blocking the phosphorylation of EGFR (Tyr1173), c-RAF (Ser338), and ERK1/2 (Thr202/Tyr204) in the EGFR/RAS/RAF/MEK/ERK1/2 cancer pathway. Compounds 1 and 2 both inhibited phosphorylation of c-RAF (Ser338) and ERK1/2 (Thr202/Tyr204). Compound 2, but

  5. The Parkinson’s Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway

    PubMed Central

    Imai, Yuzuru; Kobayashi, Yoshito; Inoshita, Tsuyoshi; Meng, Hongrui; Arano, Taku; Uemura, Kengo; Asano, Takeshi; Yoshimi, Kenji; Zhang, Chang-Liang; Matsumoto, Gen; Ohtsuka, Toshiyuki; Kageyama, Ryoichiro; Kiyonari, Hiroshi; Shioi, Go; Nukina, Nobuyuki; Hattori, Nobutaka; Takahashi, Ryosuke

    2015-01-01

    Leucine-rich repeat kinase 2 (LRRK2) is a key molecule in the pathogenesis of familial and idiopathic Parkinson’s disease (PD). We have identified two novel LRRK2-associated proteins, a HECT-type ubiquitin ligase, HERC2, and an adaptor-like protein with six repeated Neuralized domains, NEURL4. LRRK2 binds to NEURL4 and HERC2 via the LRRK2 Ras of complex proteins (ROC) domain and NEURL4, respectively. HERC2 and NEURL4 link LRRK2 to the cellular vesicle transport pathway and Notch signaling, through which the LRRK2 complex promotes the recycling of the Notch ligand Delta-like 1 (Dll1)/Delta (Dl) through the modulation of endosomal trafficking. This process negatively regulates Notch signaling through cis-inhibition by stabilizing Dll1/Dl, which accelerates neural stem cell differentiation and modulates the function and survival of differentiated dopaminergic neurons. These effects are strengthened by the R1441G ROC domain-mutant of LRRK2. These findings suggest that the alteration of Notch signaling in mature neurons is a component of PD etiology linked to LRRK2. PMID:26355680

  6. Rasfonin, a novel 2-pyrone derivative, induces ras-mutated Panc-1 pancreatic tumor cell death in nude mice

    PubMed Central

    Xiao, Z; Li, L; Li, Y; Zhou, W; Cheng, J; Liu, F; Zheng, P; Zhang, Y; Che, Y

    2014-01-01

    Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR–Ras–Raf–MEK–ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [3H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras–MAPK activity could be important in its anticancer activity. PMID:24853419

  7. The Crosstalk of RAS with the TGF-β Family During Carcinoma Progression and its Implications for Targeted Cancer Therapy

    PubMed Central

    Grusch, M.; Petz, M.; Metzner, T.; Öztürk, D.; Schneller, D.; Mikulits, W.

    2010-01-01

    Both RAS and transforming growth factor (TGF)-β signaling cascades are central in tumorigenesis and show synergisms depending on tumor stage and tissue context. In this review we focus on the interaction of RAS subeffector proteins with signaling components of the TGF-β family including those of TGF-βs, activins and bone morphogenic proteins. Compelling evidence indicates that RAS signaling is essentially involved in the switch from tumor-suppressive to tumor-promoting functions of the TGF-β family leading to enhanced cancer growth and metastatic dissemination of primary tumors. Thus, the interface of these signaling cascades is considered as a promising target for the development of novel cancer therapeutics. The current pharmacological anti-cancer concepts combating the molecular cooperation between RAS and TGF-β family signaling during carcinoma progression are critically discussed. PMID:20718708

  8. Role of the NFκB-signaling pathway in cancer

    PubMed Central

    Zhou, Yujuan; Lin, Jingguan; Wang, Heran; Oyang, Linda; Tian, Yutong; Liu, Lu; Su, Min; Wang, Hui; Cao, Deliang; Liao, Qianjin

    2018-01-01

    Cancer is a group of cells that malignantly grow and proliferate uncontrollably. At present, treatment modes for cancer mainly comprise surgery, chemotherapy, radiotherapy, molecularly targeted therapy, gene therapy, and immunotherapy. However, the curative effects of these treatments have been limited thus far by specific characteristics of tumors. Abnormal activation of signaling pathways is involved in tumor pathogenesis and plays critical roles in growth, progression, and relapse of cancers. Targeted therapies against effectors in oncogenic signaling have improved the outcomes of cancer patients. NFκB is an important signaling pathway involved in pathogenesis and treatment of cancers. Excessive activation of the NFκB-signaling pathway has been documented in various tumor tissues, and studies on this signaling pathway for targeted cancer therapy have become a hot topic. In this review, we update current understanding of the NFκB-signaling pathway in cancer. PMID:29695914

  9. ERK mediated upregulation of death receptor 5 overcomes the lack of p53 functionality in the diaminothiazole DAT1 induced apoptosis in colon cancer models: efficiency of DAT1 in Ras-Raf mutated cells.

    PubMed

    Thamkachy, Reshma; Kumar, Rohith; Rajasekharan, K N; Sengupta, Suparna

    2016-03-08

    p53 is a tumour suppressor protein that plays a key role in many steps of apoptosis, and malfunctioning of this transcription factor leads to tumorigenesis. Prognosis of many tumours also depends upon the p53 status. Most of the clinically used anticancer compounds activate p53 dependent pathway of apoptosis and hence require p53 for their mechanism of action. Further, Ras/Raf/MEK/ERK axis is an important signaling pathway activated in many cancers. Dependence of diaminothiazoles, compounds that have gained importance recently due to their anticancer and anti angiogenic activities, were tested in cancer models with varying p53 or Ras/Raf mutational status. In this study we have used p53 mutated and knock out colon cancer cells and xenograft tumours to study the role of p53 in apoptosis mediated by diaminothiazoles. Colon cancer cell lines with varying mutational status for Ras or Raf were also used. We have also examined the toxicity and in vivo efficacy of a lead diaminothiazole 4-Amino-5-benzoyl-2-(4-methoxy phenylamino)thiazole (DAT1) in colon cancer xenografts. We have found that DAT1 is active in both in vitro and in vivo models with nonfunctional p53. Earlier studies have shown that extrinsic pathway plays major role in DAT1 mediated apoptosis. In this study, we have found that DAT1 is causing p53 independent upregulation of the death receptor 5 by activating the Ras/Raf/MEK/ERK signaling pathway both in wild type and p53 suppressed colon cancer cells. These findings are also confirmed by the in vivo results. Further, DAT1 is more efficient to induce apoptosis in colon cancer cells with mutated Ras or Raf. Minimal toxicity in both acute and subacute studies along with the in vitro and in vivo efficacy of DAT1 in cancers with both wild type and nonfunctional p53 place it as a highly beneficial candidate for cancer chemotherapy. Besides, efficiency in cancer cells with mutations in the Ras oncoprotein or its downstream kinase Raf raise interest in

  10. Specific cancer-associated mutations in the switch III region of Ras increase tumorigenicity by nanocluster augmentation

    PubMed Central

    Šolman, Maja; Ligabue, Alessio; Blaževitš, Olga; Jaiswal, Alok; Zhou, Yong; Liang, Hong; Lectez, Benoit; Kopra, Kari; Guzmán, Camilo; Härmä, Harri; Hancock, John F; Aittokallio, Tero; Abankwa, Daniel

    2015-01-01

    Hotspot mutations of Ras drive cell transformation and tumorigenesis. Less frequent mutations in Ras are poorly characterized for their oncogenic potential. Yet insight into their mechanism of action may point to novel opportunities to target Ras. Here, we show that several cancer-associated mutations in the switch III region moderately increase Ras activity in all isoforms. Mutants are biochemically inconspicuous, while their clustering into nanoscale signaling complexes on the plasma membrane, termed nanocluster, is augmented. Nanoclustering dictates downstream effector recruitment, MAPK-activity, and tumorigenic cell proliferation. Our results describe an unprecedented mechanism of signaling protein activation in cancer. DOI: http://dx.doi.org/10.7554/eLife.08905.001 PMID:26274561

  11. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia

    PubMed Central

    Yoshida, Tadashi; Tabony, A. Michael; Galvez, Sarah; Mitch, William E.; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2013-01-01

    Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5′ AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. PMID:23769949

  12. Systematic analysis of signaling pathways using an integrative environment.

    PubMed

    Visvanathan, Mahesh; Breit, Marc; Pfeifer, Bernhard; Baumgartner, Christian; Modre-Osprian, Robert; Tilg, Bernhard

    2007-01-01

    Understanding the biological processes of signaling pathways as a whole system requires an integrative software environment that has comprehensive capabilities. The environment should include tools for pathway design, visualization, simulation and a knowledge base concerning signaling pathways as one. In this paper we introduce a new integrative environment for the systematic analysis of signaling pathways. This system includes environments for pathway design, visualization, simulation and a knowledge base that combines biological and modeling information concerning signaling pathways that provides the basic understanding of the biological system, its structure and functioning. The system is designed with a client-server architecture. It contains a pathway designing environment and a simulation environment as upper layers with a relational knowledge base as the underlying layer. The TNFa-mediated NF-kB signal trans-duction pathway model was designed and tested using our integrative framework. It was also useful to define the structure of the knowledge base. Sensitivity analysis of this specific pathway was performed providing simulation data. Then the model was extended showing promising initial results. The proposed system offers a holistic view of pathways containing biological and modeling data. It will help us to perform biological interpretation of the simulation results and thus contribute to a better understanding of the biological system for drug identification.

  13. Analysis of Activated Platelet-Derived Growth Factor β Receptor and Ras-MAP Kinase Pathway in Equine Sarcoid Fibroblasts

    PubMed Central

    Altamura, Gennaro; Corteggio, Annunziata; Nasir, Lubna; Yuan, Zheng Qiang; Roperto, Franco; Borzacchiello, Giuseppe

    2013-01-01

    Equine sarcoids are skin tumours of fibroblastic origin affecting equids worldwide. Bovine papillomavirus type-1 (BPV-1) and, less commonly, type-2 are recognized as etiological factors of sarcoids. The transforming activity of BPV is related to the functions of its major oncoprotein E5 which binds to the platelet-derived growth factor β receptor (PDGFβR) causing its phosphorylation and activation. In this study, we demonstrate, by coimmunoprecipitation and immunoblotting, that in equine sarcoid derived cell lines PDGFβR is phosphorylated and binds downstream molecules related to Ras-mitogen-activated protein kinase-ERK pathway thus resulting in Ras activation. Imatinib mesylate is a tyrosine kinase receptors inhibitor which selectively inhibits the activation of PDGFβR in the treatment of several human and animal cancers. Here we show that imatinib inhibits receptor phosphorylation, and cell viability assays demonstrate that this drug decreases sarcoid fibroblasts viability in a dose-dependent manner. This study contributes to a better understanding of the molecular mechanisms involved in the pathology of sarcoids and paves the way to a new therapeutic approach for the treatment of this common equine skin neoplasm. PMID:23936786

  14. Lin28-let7 Modulates Radiosensitivity of Human Cancer Cells With Activation of K-Ras

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Jee-Sun.; Kim, Jae-Jin; Byun, Ju-Yeon

    2010-01-15

    Purpose: To evaluate the potential of targeting Lin28-let7 microRNA regulatory network for overcoming the radioresistance of cancer cells having activated K-Ras signaling. Methods and Materials: A549 lung carcinoma cells and ASPC1 pancreatic cancer cells possessing K-RAS mutation were transfected with pre-let7a microRNA or Lin28 siRNA, respectively. Clonogenic assay, quantitative reverse transcription polymerase chain reaction, and Western analysis were performed. The effects of Lin28 on SQ20B cells having wild-type K-RAS, and a normal fibroblast were also assessed. Results: The overexpression of let-7a decreased expression of K-Ras and radiosensitized A549 cells. Inhibition of Lin28, a repressor of let-7, attenuated K-Ras expression andmore » radiosensitized A549 and ASPC1 cells. Neither SQ20B cells expressing wild-type K-RAS nor HDF, the normal human fibroblasts, were radiosensitized by this approach. Conclusions: The Lin28-let7 regulatory network may be a potentially useful therapeutic target for overcoming the radioresistance of human cancers having activated K-Ras signaling.« less

  15. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling

    PubMed Central

    Shrestha, Yashaswi; Schafer, Eric J.; Boehm, Jesse S.; Thomas, Sapana R.; He, Frank; Du, Jinyan; Wang, Shumei; Barretina, Jordi; Weir, Barbara A.; Zhao, Jean J.; Polyak, Kornelia; Golub, Todd R.; Beroukhim, Rameen; Hahn, William C.

    2011-01-01

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK Mitogen-Activated Protein Kinase (MAPK) pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified PAK1 as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of Merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation. PMID:22105362

  16. PAK1 is a breast cancer oncogene that coordinately activates MAPK and MET signaling.

    PubMed

    Shrestha, Y; Schafer, E J; Boehm, J S; Thomas, S R; He, F; Du, J; Wang, S; Barretina, J; Weir, B A; Zhao, J J; Polyak, K; Golub, T R; Beroukhim, R; Hahn, W C

    2012-07-19

    Activating mutations in the RAS family or BRAF frequently occur in many types of human cancers but are rarely detected in breast tumors. However, activation of the RAS-RAF-MEK-ERK MAPK pathway is commonly observed in human breast cancers, suggesting that other genetic alterations lead to activation of this signaling pathway. To identify breast cancer oncogenes that activate the MAPK pathway, we screened a library of human kinases for their ability to induce anchorage-independent growth in a derivative of immortalized human mammary epithelial cells (HMLE). We identified p21-activated kinase 1 (PAK1) as a kinase that permitted HMLE cells to form anchorage-independent colonies. PAK1 is amplified in several human cancer types, including 30--33% of breast tumor samples and cancer cell lines. The kinase activity of PAK1 is necessary for PAK1-induced transformation. Moreover, we show that PAK1 simultaneously activates MAPK and MET signaling; the latter via inhibition of merlin. Disruption of these activities inhibits PAK1-driven anchorage-independent growth. These observations establish PAK1 amplification as an alternative mechanism for MAPK activation in human breast cancer and credential PAK1 as a breast cancer oncogene that coordinately regulates multiple signaling pathways, the cooperation of which leads to malignant transformation.

  17. The RAS Initiative

    Cancer.gov

    NCI established the RAS Initiative to explore innovative approaches for attacking the proteins encoded by mutant forms of RAS genes and to ultimately create effective, new therapies for RAS-related cancers.

  18. Ras and relatives--job sharing and networking keep an old family together.

    PubMed

    Ehrhardt, Annette; Ehrhardt, Götz R A; Guo, Xuecui; Schrader, John W

    2002-10-01

    Many members of the Ras superfamily of GTPases have been implicated in the regulation of hematopoietic cells, with roles in growth, survival, differentiation, cytokine production, chemotaxis, vesicle-trafficking, and phagocytosis. The well-known p21 Ras proteins H-Ras, N-Ras, K-Ras 4A, and K-Ras 4B are also frequently mutated in human cancer and leukemia. Besides the four p21 Ras proteins, the Ras subfamily of the Ras superfamily includes R-Ras, TC21 (R-Ras2), M-Ras (R-Ras3), Rap1A, Rap1B, Rap2A, Rap2B, RalA, and RalB. They exhibit remarkable overall amino acid identities, especially in the regions interacting with the guanine nucleotide exchange factors that catalyze their activation. In addition, there is considerable sharing of various downstream effectors through which they transmit signals and of GTPase activating proteins that downregulate their activity, resulting in overlap in their regulation and effector function. Relatively little is known about the physiological functions of individual Ras family members, although the presence of well-conserved orthologs in Caenorhabditis elegans suggests that their individual roles are both specific and vital. The structural and functional similarities have meant that commonly used research tools fail to discriminate between the different family members, and functions previously attributed to one family member may be shared with other members of the Ras family. Here we discuss similarities and differences in activation, effector usage, and functions of different members of the Ras subfamily. We also review the possibility that the differential localization of Ras proteins in different parts of the cell membrane may govern their responses to activation of cell surface receptors.

  19. Molecular Pathways: Hippo Signaling, a Critical Tumor Suppressor.

    PubMed

    Sebio, Ana; Lenz, Heinz-Josef

    2015-11-15

    The Salvador-Warts-Hippo pathway controls cell fate and tissue growth. The main function of the Hippo pathway is to prevent YAP and TAZ translocation to the nucleus where they induce the transcription of genes involved in cell proliferation, survival, and stem cell maintenance. Hippo signaling is, thus, a complex tumor suppressor, and its deregulation is a key feature in many cancers. Recent mounting evidence suggests that the overexpression of Hippo components can be useful prognostic biomarkers. Moreover, Hippo signaling appears to be intimately linked to some of the most important signaling pathways involved in cancer development and progression. A better understanding of the Hippo pathway is thus essential to untangle tumor biology and to develop novel anticancer therapies. Here, we comment on the progress made in understanding Hippo signaling and its connections, and also on how new drugs modulating this pathway, such as Verteporfin and C19, are highly promising cancer therapeutics. ©2015 American Association for Cancer Research.

  20. Signaling Pathways in Cardiac Myocyte Apoptosis

    PubMed Central

    Xia, Peng; Liu, Yuening

    2016-01-01

    Cardiovascular diseases, the number 1 cause of death worldwide, are frequently associated with apoptotic death of cardiac myocytes. Since cardiomyocyte apoptosis is a highly regulated process, pharmacological intervention of apoptosis pathways may represent a promising therapeutic strategy for a number of cardiovascular diseases and disorders including myocardial infarction, ischemia/reperfusion injury, chemotherapy cardiotoxicity, and end-stage heart failure. Despite rapid growth of our knowledge in apoptosis signaling pathways, a clinically applicable treatment targeting this cellular process is currently unavailable. To help identify potential innovative directions for future research, it is necessary to have a full understanding of the apoptotic pathways currently known to be functional in cardiac myocytes. Here, we summarize recent progress in the regulation of cardiomyocyte apoptosis by multiple signaling molecules and pathways, with a focus on the involvement of these pathways in the pathogenesis of heart disease. In addition, we provide an update regarding bench to bedside translation of this knowledge and discuss unanswered questions that need further investigation. PMID:28101515

  1. Targeting the Hippo signalling pathway for cancer treatment.

    PubMed

    Nakatani, Keisuke; Maehama, Tomohiko; Nishio, Miki; Goto, Hiroki; Kato, Wakako; Omori, Hirofumi; Miyachi, Yosuke; Togashi, Hideru; Shimono, Yohei; Suzuki, Akira

    2017-03-01

    The Hippo signalling pathway monitors cell-cell contact and external factors that shape tissue structure. In mice, tumourigenesis and developmental abnormalities are common consequences of dysregulated Hippo signalling. Expression of Hippo pathway components is also frequently altered in human tumours and correlates with poor prognosis and reduced patient survival. Thus, the Hippo pathway is an attractive anti-cancer target. Here, we provide an overview of the function and regulation of Hippo signalling components and summarize progress to date on the development of agents able to regulate Hippo signalling for cancer therapy. © The Authors 2016. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  2. Targeting RAS Membrane Association: Back to the Future for Anti-RAS Drug Discovery?

    PubMed Central

    Cox, Adrienne D.; Der, Channing J.; Philips, Mark R.

    2015-01-01

    RAS proteins require membrane association for their biological activity, making this association a logical target for anti-RAS therapeutics. Lipid modification of RAS proteins by a farnesyl isoprenoid is an obligate step in that association, and is an enzymatic process. Accordingly, farnesyltransferase inhibitors (FTIs) were developed as potential anti-RAS drugs. The lack of efficacy of FTIs as anti-cancer drugs was widely seen as indicating that blocking RAS membrane association was a flawed approach to cancer treatment. However, a deeper understanding of RAS modification and trafficking has revealed that this was an erroneous conclusion. In the presence of FTIs, KRAS and NRAS, which are the RAS isoforms most frequently mutated in cancer, become substrates for alternative modification, can still associate with membranes, and can still function. Thus, FTIs failed not because blocking RAS membrane association is an ineffective approach, but because FTIs failed to accomplish that task. Recent findings regarding RAS isoform trafficking and the regulation of RAS subcellular localization have rekindled interest in efforts to target these processes. In particular, improved understanding of the palmitoylation/depalmitoylation cycle that regulates RAS interaction with the plasma membrane, endomembranes and cytosol, and of the potential importance of RAS chaperones, have led to new approaches. Efforts to validate and target other enzymatically regulated post-translational modifications are also ongoing. In this review, we revisit lessons learned, describe the current state of the art, and highlight challenging but promising directions to achieve the goal of disrupting RAS membrane association and subcellular localization for anti-RAS drug development. PMID:25878363

  3. Computational identification of signalling pathways in Plasmodium falciparum.

    PubMed

    Oyelade, Jelili; Ewejobi, Itunu; Brors, Benedikt; Eils, Roland; Adebiyi, Ezekiel

    2011-06-01

    Malaria is one of the world's most common and serious diseases causing death of about 3 million people each year. Its most severe occurrence is caused by the protozoan Plasmodium falciparum. Reports have shown that the resistance of the parasite to existing drugs is increasing. Therefore, there is a huge and urgent need to discover and validate new drug or vaccine targets to enable the development of new treatments for malaria. The ability to discover these drug or vaccine targets can only be enhanced from our deep understanding of the detailed biology of the parasite, for example how cells function and how proteins organize into modules such as metabolic, regulatory and signal transduction pathways. It has been noted that the knowledge of signalling transduction pathways in Plasmodium is fundamental to aid the design of new strategies against malaria. This work uses a linear-time algorithm for finding paths in a network under modified biologically motivated constraints. We predicted several important signalling transduction pathways in Plasmodium falciparum. We have predicted a viable signalling pathway characterized in terms of the genes responsible that may be the PfPKB pathway recently elucidated in Plasmodium falciparum. We obtained from the FIKK family, a signal transduction pathway that ends up on a chloroquine resistance marker protein, which indicates that interference with FIKK proteins might reverse Plasmodium falciparum from resistant to sensitive phenotype. We also proposed a hypothesis that showed the FIKK proteins in this pathway as enabling the resistance parasite to have a mechanism for releasing chloroquine (via an efflux process). Furthermore, we also predicted a signalling pathway that may have been responsible for signalling the start of the invasion process of Red Blood Cell (RBC) by the merozoites. It has been noted that the understanding of this pathway will give insight into the parasite virulence and will facilitate rational vaccine design

  4. Intricacies of hedgehog signaling pathways: A perspective in tumorigenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kar, Swayamsiddha; Deb, Moonmoon; Sengupta, Dipta

    The hedgehog (HH) signaling pathway is a crucial negotiator of developmental proceedings in the embryo governing a diverse array of processes including cell proliferation, differentiation, and tissue patterning. The overall activity of the pathway is significantly curtailed after embryogenesis as well as in adults, yet it retains many of its functional capacities. However, aberration in HH signaling mediates the initiation, proliferation and continued sustenance of malignancy in different tissues to varying degrees through different mechanisms. In this review, we provide an overview of the role of constitutively active aberrant HH signaling pathway in different types of human cancer and themore » underlying molecular and genetic mechanisms that drive tumorigenesis in that particular tissue. An insight into the various modes of anomalous HH signaling in different organs will provide a comprehensive knowledge of the pathway in these tissues and open a window for individually tailored, tissue-specific therapeutic interventions. The synergistic cross talking of HH pathway with many other regulatory molecules and developmentally inclined signaling pathways may offer many avenues for pharmacological advances. Understanding the molecular basis of abnormal HH signaling in cancer will provide an opportunity to inhibit the deregulated pathway in many aggressive and therapeutically challenging cancers where promising options are not available.« less

  5. A mass action model of a Fibroblast Growth Factor signaling pathway and its simplification.

    PubMed

    Gaffney, E A; Heath, J K; Kwiatkowska, M Z

    2008-11-01

    We consider a kinetic law of mass action model for Fibroblast Growth Factor (FGF) signaling, focusing on the induction of the RAS-MAP kinase pathway via GRB2 binding. Our biologically simple model suffers a combinatorial explosion in the number of differential equations required to simulate the system. In addition to numerically solving the full model, we show that it can be accurately simplified. This requires combining matched asymptotics, the quasi-steady state hypothesis, and the fact subsets of the equations decouple asymptotically. Both the full and simplified models reproduce the qualitative dynamics observed experimentally and in previous stochastic models. The simplified model also elucidates both the qualitative features of GRB2 binding and the complex relationship between SHP2 levels, the rate SHP2 induces dephosphorylation and levels of bound GRB2. In addition to providing insight into the important and redundant features of FGF signaling, such work further highlights the usefulness of numerous simplification techniques in the study of mass action models of signal transduction, as also illustrated recently by Borisov and co-workers (Borisov et al. in Biophys. J. 89, 951-966, 2005, Biosystems 83, 152-166, 2006; Kiyatkin et al. in J. Biol. Chem. 281, 19925-19938, 2006). These developments will facilitate the construction of tractable models of FGF signaling, incorporating further biological realism, such as spatial effects or realistic binding stoichiometries, despite a more severe combinatorial explosion associated with the latter.

  6. Regulation of Schistosoma mansoni development and reproduction by the mitogen-activated protein kinase signaling pathway.

    PubMed

    Andrade, Luiza Freire de; Mourão, Marina de Moraes; Geraldo, Juliana Assis; Coelho, Fernanda Sales; Silva, Larissa Lopes; Neves, Renata Heisler; Volpini, Angela; Machado-Silva, José Roberto; Araujo, Neusa; Nacif-Pimenta, Rafael; Caffrey, Conor R; Oliveira, Guilherme

    2014-06-01

    Protein kinases are proven targets for drug development with an increasing number of eukaryotic Protein Kinase (ePK) inhibitors now approved as drugs. Mitogen-activated protein kinase (MAPK) family members connect cell-surface receptors to regulatory targets within cells and influence a number of tissue-specific biological activities such as cell proliferation, differentiation and survival. However, the contributions of members of the MAPK pathway to schistosome development and survival are unclear. We employed RNA interference (RNAi) to elucidate the functional roles of five S. mansoni genes (SmCaMK2, SmJNK, SmERK1, SmERK2 and SmRas) involved in MAPK signaling pathway. Mice were injected with post-infective larvae (schistosomula) subsequent to RNAi and the development of adult worms observed. The data demonstrate that SmJNK participates in parasite maturation and survival of the parasites, whereas SmERK are involved in egg production as infected mice had significantly lower egg burdens with female worms presenting underdeveloped ovaries. Furthermore, it was shown that the c-fos transcription factor was overexpressed in parasites submitted to RNAi of SmERK1, SmJNK and SmCaMK2 indicating its putative involvement in gene regulation in this parasite's MAPK signaling cascade. We conclude that MAPKs proteins play important roles in the parasite in vivo survival, being essential for normal development and successful survival and reproduction of the schistosome parasite. Moreover SmERK and SmJNK are potential targets for drug development.

  7. [Signaling pathways mTOR and AKT in epilepsy].

    PubMed

    Romero-Leguizamon, C R; Ramirez-Latorre, J A; Mora-Munoz, L; Guerrero-Naranjo, A

    2016-07-01

    The signaling pathway AKT/mTOR is a central axis in regulating cellular processes, particularly in neurological diseases. In the case of epilepsy, it has been observed alteration in the pathophysiological process of the same. However, they have not described all the mechanisms of these signaling pathways that could open the opportunity to new research and therapeutic strategies. To review existing partnerships between intracellular signaling pathways AKT and mTOR in the pathophysiology of epilepsy. Epilepsy is a disease with a high epidemiological impact globally, so it is widely investigated regarding the pathophysiological components thereof. In that search they have been involved different intracellular signaling pathways in neurons, as determinants epileptogenic. Advances in this field have even allowed the successful implementation of new therapeutic strategies and to open the way to new research in the field. Improving knowledge about the pathophysiological role of the signaling pathway mTOR/AKT in epilepsy can raise new investigations regarding therapeutic alternatives. The use of mTOR inhibitors, has emerged in recent years as effective in treating this disease entity alternative however is clear the necessity of continue the research for new drug therapies.

  8. The Hippo signaling pathway provides novel anti-cancer drug targets

    PubMed Central

    Bae, June Sung; Kim, Sun Mi; Lee, Ho

    2017-01-01

    The Hippo signaling pathway plays a crucial role in cell proliferation, apoptosis, differentiation, and development. Major effectors of the Hippo signaling pathway include the transcriptional co-activators Yes-associated protein 1 (YAP) and WW domain-containing transcription regulator protein 1 (TAZ). The transcriptional activities of YAP and TAZ are affected by interactions with proteins from many diverse signaling pathways as well as responses to the external environment. High YAP and TAZ activity has been observed in many cancer types, and functional dysregulation of Hippo signaling enhances the oncogenic properties of YAP and TAZ and promotes cancer development. Many biological elements, including mechanical strain on the cell, cell polarity/adhesion molecules, other signaling pathways (e.g., G-protein-coupled receptor, epidermal growth factor receptor, Wnt, Notch, and transforming growth factor β/bone morphogenic protein), and cellular metabolic status, can promote oncogenesis through synergistic association with components of the Hippo signaling pathway. Here, we review the signaling networks that interact with the Hippo signaling pathway and discuss the potential of using drugs that inhibit YAP and TAZ activity for cancer therapy. PMID:28035075

  9. The Hippo signaling pathway provides novel anti-cancer drug targets.

    PubMed

    Bae, June Sung; Kim, Sun Mi; Lee, Ho

    2017-02-28

    The Hippo signaling pathway plays a crucial role in cell proliferation, apoptosis, differentiation, and development. Major effectors of the Hippo signaling pathway include the transcriptional co-activators Yes-associated protein 1 (YAP) and WW domain-containing transcription regulator protein 1 (TAZ). The transcriptional activities of YAP and TAZ are affected by interactions with proteins from many diverse signaling pathways as well as responses to the external environment. High YAP and TAZ activity has been observed in many cancer types, and functional dysregulation of Hippo signaling enhances the oncogenic properties of YAP and TAZ and promotes cancer development. Many biological elements, including mechanical strain on the cell, cell polarity/adhesion molecules, other signaling pathways (e.g., G-protein-coupled receptor, epidermal growth factor receptor, Wnt, Notch, and transforming growth factor β/bone morphogenic protein), and cellular metabolic status, can promote oncogenesis through synergistic association with components of the Hippo signaling pathway. Here, we review the signaling networks that interact with the Hippo signaling pathway and discuss the potential of using drugs that inhibit YAP and TAZ activity for cancer therapy.

  10. RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation

    PubMed Central

    Lim, Chinten James; Spiegelman, George B.; Weeks, Gerald

    2001-01-01

    Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC– cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC– cells stimulated by 2′-deoxy-cAMP, but is produced in response to GTPγS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC– cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC– cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC– cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC– cells, suggesting that AleA may activate RasC. PMID:11500376

  11. RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation.

    PubMed

    Lim, C J; Spiegelman, G B; Weeks, G

    2001-08-15

    Disruption of Dictyostelium rasC, encoding a Ras subfamily protein, generated cells incapable of aggregation. While rasC expression is enriched in a cell type-specific manner during post-aggregative development, the defect in rasC(-) cells is restricted to aggregation and fully corrected by application of exogenous cAMP pulses. cAMP is not produced in rasC(-) cells stimulated by 2'-deoxy-cAMP, but is produced in response to GTPgammaS in cell lysates, indicating that G-protein-coupled cAMP receptor activation of adenylyl cyclase is regulated by RasC. However, cAMP-induced ERK2 phosphorylation is unaffected in rasC(-) cells, indicating that RasC is not an upstream activator of the mitogen-activated protein kinase required for cAMP relay. rasC(-) cells also exhibit reduced chemotaxis to cAMP during early development and delayed response to periodic cAMP stimuli produced by wild-type cells in chimeric mixtures. Furthermore, cAMP-induced Akt/PKB phosphorylation through a phosphatidylinositide 3-kinase (PI3K)-dependent pathway is dramatically reduced in rasC(-) cells, suggesting that G-protein-coupled serpentine receptor activation of PI3K is regulated by RasC. Cells lacking the RasGEF, AleA, exhibit similar defects as rasC(-) cells, suggesting that AleA may activate RasC.

  12. SPRED1, a RAS MAPK pathway inhibitor that causes Legius syndrome, is a tumour suppressor downregulated in paediatric acute myeloblastic leukaemia.

    PubMed

    Pasmant, E; Gilbert-Dussardier, B; Petit, A; de Laval, B; Luscan, A; Gruber, A; Lapillonne, H; Deswarte, C; Goussard, P; Laurendeau, I; Uzan, B; Pflumio, F; Brizard, F; Vabres, P; Naguibvena, I; Fasola, S; Millot, F; Porteu, F; Vidaud, D; Landman-Parker, J; Ballerini, P

    2015-01-29

    Constitutional dominant loss-of-function mutations in the SPRED1 gene cause a rare phenotype referred as neurofibromatosis type 1 (NF1)-like syndrome or Legius syndrome, consisted of multiple café-au-lait macules, axillary freckling, learning disabilities and macrocephaly. SPRED1 is a negative regulator of the RAS MAPK pathway and can interact with neurofibromin, the NF1 gene product. Individuals with NF1 have a higher risk of haematological malignancies. SPRED1 is highly expressed in haematopoietic cells and negatively regulates haematopoiesis. SPRED1 seemed to be a good candidate for leukaemia predisposition or transformation. We performed SPRED1 mutation screening and expression status in 230 paediatric lymphoblastic and acute myeloblastic leukaemias (AMLs). We found a loss-of-function frameshift SPRED1 mutation in a patient with Legius syndrome. In this patient, the leukaemia blasts karyotype showed a SPRED1 loss of heterozygosity, confirming SPRED1 as a tumour suppressor. Our observation confirmed that acute leukaemias are rare complications of the Legius syndrome. Moreover, SPRED1 was significantly decreased at RNA and protein levels in the majority of AMLs at diagnosis compared with normal or paired complete remission bone marrows. SPRED1 decreased expression correlated with genetic features of AML. Our study reveals a new mechanism which contributes to deregulate RAS MAPK pathway in the vast majority of paediatric AMLs.

  13. Upregulating Apoptotic Signaling in Neurofibromatosis

    DTIC Science & Technology

    2009-09-01

    Schwannoma) cells that are NF1 deficient cells were used. Rat pheochromocytoma PC12 cells were selected as a control, in which Ras signaling is normal. The...Down and Detection kit. The baseline level of GTP bound Ras was detected in PC12 cells (rat pheochromocytoma ) in which Ras signaling is intact. In

  14. The Role of Dimerization in Raf Signaling | Center for Cancer Research

    Cancer.gov

    One frequently mutated pathway in a variety of cancers and developmental disorders is the Ras-Raf-MEK-ERK cascade. Normally, binding of a growth factor to its receptor switches on Ras, which, in turn, activates one or more of the Raf kinase family members, A-Raf, B-Raf, and C-Raf. Rafs perpetuate the signal by phosphorylating and activating MEK, another kinase that phosphorylates a third kinase, ERK. ERK then phosphorylates a number of key growth-, survival-, or differentiation-promoting targets. Of the proteins in the cascade, Rafs have the most complex regulatory mechanisms, including the ability to form dimers. Because the role that dimerization plays in Raf function has been unclear, researchers working with Deborah Morrison, Ph.D., Chief of CCR’s Laboratory of Cell and Developmental Signaling, decided to investigate its significance in normal and disease-associated Raf signaling.

  15. Triggering signaling pathways using F-actin self-organization.

    PubMed

    Colin, A; Bonnemay, L; Gayrard, C; Gautier, J; Gueroui, Z

    2016-10-04

    The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity.

  16. Triggering signaling pathways using F-actin self-organization

    PubMed Central

    Colin, A.; Bonnemay, L.; Gayrard, C.; Gautier, J.; Gueroui, Z.

    2016-01-01

    The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity. PMID:27698406

  17. SPV: a JavaScript Signaling Pathway Visualizer.

    PubMed

    Calderone, Alberto; Cesareni, Gianni

    2018-03-24

    The visualization of molecular interactions annotated in web resources is useful to offer to users such information in a clear intuitive layout. These interactions are frequently represented as binary interactions that are laid out in free space where, different entities, cellular compartments and interaction types are hardly distinguishable. SPV (Signaling Pathway Visualizer) is a free open source JavaScript library which offers a series of pre-defined elements, compartments and interaction types meant to facilitate the representation of signaling pathways consisting of causal interactions without neglecting simple protein-protein interaction networks. freely available under Apache version 2 license; Source code: https://github.com/Sinnefa/SPV_Signaling_Pathway_Visualizer_v1.0. Language: JavaScript; Web technology: Scalable Vector Graphics; Libraries: D3.js. sinnefa@gmail.com.

  18. Selective role for RGS12 as a Ras/Raf/MEK scaffold in nerve growth factor-mediated differentiation

    PubMed Central

    Willard, Melinda D; Willard, Francis S; Li, Xiaoyan; Cappell, Steven D; Snider, William D; Siderovski, David P

    2007-01-01

    Regulator of G-protein signaling (RGS) proteins accelerate GTP hydrolysis by heterotrimeric G-protein α subunits and thus inhibit signaling by many G protein-coupled receptors. Several RGS proteins have a multidomain architecture that adds further complexity to their roles in cell signaling in addition to their GTPase-accelerating activity. RGS12 contains a tandem repeat of Ras-binding domains but, to date, the role of this protein in Ras-mediated signal transduction has not been reported. Here, we show that RGS12 associates with the nerve growth factor (NGF) receptor tyrosine kinase TrkA, activated H-Ras, B-Raf, and MEK2 and facilitates their coordinated signaling to prolonged ERK activation. RGS12 is required for NGF-mediated neurite outgrowth of PC12 cells, but not outgrowth stimulated by basic fibroblast growth factor. siRNA-mediated knockdown of RGS12 expression also inhibits NGF-induced axonal growth in dissociated cultures of primary dorsal root ganglia neurons. These data suggest that RGS12 may play a critical, and receptor-selective, role in coordinating Ras-dependent signals that are required for promoting and/or maintaining neuronal differentiation. PMID:17380122

  19. Frequencies and prognostic impact of RAS mutations in MLL-rearranged acute lymphoblastic leukemia in infants

    PubMed Central

    Driessen, Emma M.C.; van Roon, Eddy H.J.; Spijkers-Hagelstein, Jill A.P.; Schneider, Pauline; de Lorenzo, Paola; Valsecchi, Maria Grazia; Pieters, Rob; Stam, Ronald W.

    2013-01-01

    -rearranged infant acute lymphoblastic leukemia is an independent predictor for a poor outcome. Therefore, future risk-stratification based on abnormal RAS-pathway activation and RAS-pathway inhibition could be beneficial in RAS-mutated infant acute lymphoblastic leukemia patients. PMID:23403319

  20. Aldolase positively regulates of the canonical Wnt signaling pathway

    PubMed Central

    2014-01-01

    The Wnt signaling pathway is an evolutionary conserved system, having pivotal roles during animal development. When over-activated, this signaling pathway is involved in cancer initiation and progression. The canonical Wnt pathway regulates the stability of β-catenin primarily by a destruction complex containing a number of different proteins, including Glycogen synthase kinase 3β (GSK-3β) and Axin, that promote proteasomal degradation of β-catenin. As this signaling cascade is modified by various proteins, novel screens aimed at identifying new Wnt signaling regulators were conducted in our laboratory. One of the different genes that were identified as Wnt signaling activators was Aldolase C (ALDOC). Here we report that ALDOC, Aldolase A (ALDOA) and Aldolase B (ALDOB) activate Wnt signaling in a GSK-3β-dependent mechanism, by disrupting the GSK-3β-Axin interaction and targeting Axin to the dishevelled (Dvl)-induced signalosomes that positively regulate the Wnt pathway thus placing the Aldolase proteins as novel Wnt signaling regulators. PMID:24993527

  1. Integration of growth factor signals at the c-fos serum response element.

    PubMed

    Price, M A; Hill, C; Treisman, R

    1996-04-29

    A transcription factor ternary complex composed of serum response factor (SRF) and a second factor, ternary complex factor (TCF), mediates the response of the c-fos Serum Response Element to growth factors and mitogens. In NIH3T3 fibroblasts, TCF binding is required for transcriptional activation by the SRE in response to activation of the Ras-Raf-ERK pathway. We compared the properties of three members of the TCF family, Elk-1, SAP-1 and SAP-2 (ERP/NET). Although all the proteins contain sequences required for ternary complex formation with SRF, only Elk-1 and SAP-1 appear to interact with the c-fos SRE efficiently in vivo. Each TCF contains a C-terminal activation domain capable of transcriptional activation in response to activation of the Ras-Raf-ERK pathway, and this is dependent on the integrity of S/T-P motifs conserved between all the TCF family members. In contrast, activation of the SRE by whole serum and the mitogenic phospholipid LPA requires SRF binding alone. Constitutively activated members of the Rho subfamily of Ras-like GTPases are also capable of inducing activation of the SRE in the absence of TCF; unlike activated Ras itself, these proteins do not activate the TCFs in NIH3T3 cells. At the SRE, SRF- and TCF-linked signalling pathways act synergistically to potentiate transcription.

  2. Genetic Polymorphism in Extracellular Regulators of Wnt Signaling Pathway

    PubMed Central

    Sharma, Ashish Ranjan; Seo, Eun-Min; Nam, Ju-Suk

    2015-01-01

    The Wnt signaling pathway is mediated by a family of secreted glycoproteins through canonical and noncanonical mechanism. The signaling pathways are regulated by various modulators, which are classified into two classes on the basis of their interaction with either Wnt or its receptors. Secreted frizzled-related proteins (sFRPs) are the member of class that binds to Wnt protein and antagonizes Wnt signaling pathway. The other class consists of Dickkopf (DKK) proteins family that binds to Wnt receptor complex. The present review discusses the disease related association of various polymorphisms in Wnt signaling modulators. Furthermore, this review also highlights that some of the sFRPs and DKKs are unable to act as an antagonist for Wnt signaling pathway and thus their function needs to be explored more extensively. PMID:25945348

  3. [Regulation of [12Asp]K-ras4B on transcriptional activity of estrogen receptor in endometrial carcinoma HEC-1A cell lines].

    PubMed

    Gui, Li-ming; Wei, Li-hui; Xu, Ming-xu; Wang, Jian-liu; Zhong, Ying-cheng; Li, Xiao-ping; Tu, Zheng; Sun, Peng-ming; Ma, Da-long

    2004-01-01

    To investigate the effect of mutant-type [(12)Asp]K-ras4B gene on the expression of estrogen receptor (ER) alpha and beta and their transcriptional activity as a transcription factor in endometrial carcinoma HEC-1A cell line. (1) Effect of [(12)Asp]K-ras4B on the expression of ER alpha and beta were determined using Western blot assay. (2) Eukaryotic expression plasmid pGL3-luciferase-ERE containing luciferase report gene and estrogen receptor element (ERE) was constructed, and co-transfected into NIH3T3 and HEC-1A cell lines with pEGFP-N1 to examine the effect of [(12)Asp]K-ras4B on ER transcription that is regulated by estradiol. In addition, they were transfected into pSV5-HER0 (containing full length wide type ERalpha cDNA) and pCMV-rafS621A (inhibiting raf kinase) plasmids to test the effect of [(12)Asp]K-ras4B/raf signal pathway on transcriptional activity of ER proteins. (1) Protein level of ERs expressed in pcDI transfected control cells was low while it was increased for 3.6-fold (97 +/- 25, 349 +/- 67, P < 0.01) and 1.9-fold (128 +/- 37, 349 +/- 30, P < 0.05) in ERalpha and ERbeta, respectively, in pcDI-[(12)Asp]K-ras4B NIH3T3 cells after transfection. (2) In pcDI-[(12)Asp]K-ras4B NIH3T3 cells, the ratios for ERalpha and and ERbeta levels before transfection of rafS621A plasmids to that after the transfection, were 2.4:1 (724 +/- 45, 310 +/- 46, P < 0.05) and 1.8:1 (493 +/- 20, 284 +/- 20, P < 0.01), respectively; In HEC-1A cells, these ratios were 2.1:1 (566 +/- 22, 279 +/- 30, P < 0.01) and 2.4:1 (405 +/- 33, 165 +/- 15, P < 0.01), respectively. (3) In low serum (2%) culture condition, estradiol (E(2)) stimulated luciferase activity with an increase of 13-fold (130 +/- 42, 1681 +/- 242, P < 0.01) in pcDI-[(12)Asp] K-ras4B NIH3T3 cells, 19-fold (141 +/- 39, 2644 +/- 331, P < 0.001) in HEC-1A cells, respectively, when compared with those in the absence of E(2). (4) In pSV5-HER0 transfected pcDI-[(12)Asp] K-ras4B NIH3T3 cells and HEC-1A cells, compared to

  4. Sequence analysis of the Ras-MAPK pathway genes SOS1, EGFR & GRB2 in silver foxes (Vulpes vulpes): candidate genes for hereditary hyperplastic gingivitis.

    PubMed

    Clark, Jo-Anna B J; Tully, Sara J; Dawn Marshall, H

    2014-12-01

    Hereditary hyperplastic gingivitis (HHG) is an autosomal recessive disease that presents with progressive gingival proliferation in farmed silver foxes. Hereditary gingival fibromatosis (HGF) is an analogous condition in humans that is genetically heterogeneous with several known autosomal dominant loci. For one locus the causative mutation is in the Son of sevenless homologue 1 (SOS1) gene. For the remaining loci, the molecular mechanisms are unknown but Ras pathway involvement is suspected. Here we compare sequences for the SOS1 gene, and two adjacent genes in the Ras pathway, growth receptor bound protein 2 (GRB2) and epidermal growth factor receptor (EGFR), between HHG-affected and unaffected foxes. We conclude that the known HGF causative mutation does not cause HHG in foxes, nor do the coding regions or intron-exon boundaries of these three genes contain any candidate mutations for fox gum disease. Patterns of molecular evolution among foxes and other mammals reflect high conservation and strong functional constraints for SOS1 and GRB2 but reveal a lineage-specific pattern of variability in EGFR consistent with mutational rate differences, relaxed functional constraints, and possibly positive selection.

  5. Importance of the REM (Ras exchange) domain for membrane interactions by RasGRP3.

    PubMed

    Czikora, Agnes; Kedei, Noemi; Kalish, Heather; Blumberg, Peter M

    2017-12-01

    RasGRP comprises a family of guanine nucleotide exchange factors, regulating the dissociation of GDP from Ras GTPases to enhance the formation of the active GTP-bound form. RasGRP1 possesses REM (Ras exchange), GEF (catalytic), EF-hand, C1, SuPT (suppressor of PT), and PT (plasma membrane-targeting) domains, among which the C1 domain drives membrane localization in response to diacylglycerol or phorbol ester and the PT domain recognizes phosphoinositides. The homologous family member RasGRP3 shows less plasma membrane localization. The objective of this study was to explore the role of the different domains of RasGRP3 in membrane translocation in response to phorbol esters. The full-length RasGRP3 shows limited translocation to the plasma membrane in response to PMA, even when the basic hydrophobic cluster in the PT domain, reported to be critical for RasGRP1 translocation to endogenous activators, is mutated to resemble that of RasGRP1. Moreover, exchange of the C-termini (SuPT-PT domain) of the two proteins had little effect on their plasma membrane translocation. On the other hand, while the C1 domain of RasGRP3 alone showed partial plasma membrane translocation, truncated RasGRP3 constructs, which contain the PT domain and are missing the REM, showed stronger translocation, indicating that the REM of RasGRP3 was a suppressor of its membrane interaction. The REM of RasGRP1 failed to show comparable suppression of RasGRP3 translocation. The marked differences between RasGRP3 and RasGRP1 in membrane interaction necessarily will contribute to their different behavior in cells and are relevant to the design of selective ligands as potential therapeutic agents. Published by Elsevier B.V.

  6. Molecular mechanisms and signaling pathways of angiotensin II-induced muscle wasting: potential therapeutic targets for cardiac cachexia.

    PubMed

    Yoshida, Tadashi; Tabony, A Michael; Galvez, Sarah; Mitch, William E; Higashi, Yusuke; Sukhanov, Sergiy; Delafontaine, Patrice

    2013-10-01

    Cachexia is a serious complication of many chronic diseases, such as congestive heart failure (CHF) and chronic kidney disease (CKD). Many factors are involved in the development of cachexia, and there is increasing evidence that angiotensin II (Ang II), the main effector molecule of the renin-angiotensin system (RAS), plays an important role in this process. Patients with advanced CHF or CKD often have increased Ang II levels and cachexia, and angiotensin-converting enzyme (ACE) inhibitor treatment improves weight loss. In rodent models, an increase in systemic Ang II leads to weight loss through increased protein breakdown, reduced protein synthesis in skeletal muscle and decreased appetite. Ang II activates the ubiquitin-proteasome system via generation of reactive oxygen species and via inhibition of the insulin-like growth factor-1 signaling pathway. Furthermore, Ang II inhibits 5' AMP-activated protein kinase (AMPK) activity and disrupts normal energy balance. Ang II also increases cytokines and circulating hormones such as tumor necrosis factor-α, interleukin-6, serum amyloid-A, glucocorticoids and myostatin, which regulate muscle protein synthesis and degradation. Ang II acts on hypothalamic neurons to regulate orexigenic/anorexigenic neuropeptides, such as neuropeptide-Y, orexin and corticotropin-releasing hormone, leading to reduced appetite. Also, Ang II may regulate skeletal muscle regenerative processes. Several clinical studies have indicated that blockade of Ang II signaling via ACE inhibitors or Ang II type 1 receptor blockers prevents weight loss and improves muscle strength. Thus the RAS is a promising target for the treatment of muscle atrophy in patients with CHF and CKD. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Wnt and the Wnt signaling pathway in bone development and disease

    PubMed Central

    Wang, Yiping; Li, Yi-Ping; Paulson, Christie; Shao, Jian-Zhong; Zhang, Xiaoling; Wu, Mengrui; Chen, Wei

    2014-01-01

    Wnt signaling affects both bone modeling, which occurs during development, and bone remodeling, which is a lifelong process involving tissue renewal. Wnt signals are especially known to affect the differentiation of osteoblasts. In this review, we summarize recent advances in understanding the mechanisms of Wnt signaling, which is divided into two major branches: the canonical pathway and the noncanonical pathway. The canonical pathway is also called the Wnt/β-catenin pathway. There are two major noncanonical pathways: the Wnt-planar cell polarity pathway (Wnt-PCP pathway) and the Wnt-calcium pathway (Wnt-Ca2+ pathway). This review also discusses how Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists affect both the bone modeling and bone remodeling processes. We also review the role of Wnt ligands, receptors, intracellular effectors, transcription factors, and antagonists in bone as demonstrated in mouse models. Disrupted Wnt signaling is linked to several bone diseases, including osteoporosis, van Buchem disease, and sclerosteosis. Studying the mechanism of Wnt signaling and its interactions with other signaling pathways in bone will provide potential therapeutic targets to treat these bone diseases. PMID:24389191

  8. Therapeutic Potential of Targeting PAK Signaling.

    PubMed

    Senapedis, William; Crochiere, Marsha; Baloglu, Erkan; Landesman, Yosef

    2016-01-01

    The therapeutic potential of targeting p21-Activated Kinases (PAK1 - 6) for the treatment of cancer has recently gained traction in the biotech industry. Many pharmaceutically-viable ATP competitive inhibitors have been through different stages of pre-clinical development with only a single compound evaluated in human trails (PF-3758309). The best studied functional roles of PAK proteins are control of cell adhesion and migration. PAK proteins are known downstream effectors of Ras signaling with PAK expression elevated in cancer (pancreatic, colon, breast, lung and other solid tumors). In addition altered PAK expression is a confirmed driver of this disease, especially in tumors harboring oncogenic Ras. However, there are very few examples of gain-of-function PAK mutations, as a majority of the cancer types have elevated PAK expression due to gene amplification or transcriptional modifications. There is a substantial number of known substrates affected by this aberrant PAK activity. One particular substrate, β-catenin, has garnered interest given its importance in both normal and cancer cell development. These data place PAK proteins between two major signaling pathways in cancer (Ras and β -catenin), making therapeutic targeting of PAKs an intriguing approach for the treatment of a broad array of oncological malignancies.

  9. Phyllanthus Suppresses Prostate Cancer Cell, PC-3, Proliferation and Induces Apoptosis through Multiple Signalling Pathways (MAPKs, PI3K/Akt, NFκB, and Hypoxia).

    PubMed

    Tang, Yin-Quan; Jaganath, Indubala; Manikam, Rishya; Sekaran, Shamala Devi

    2013-01-01

    Phyllanthus is a traditional medicinal plant that has been found to have antihepatitis, antibacterial, and anticancer properties. The present studies were to investigate the in vitro molecular mechanisms of anticancer effects of Phyllanthus (P. amarus, P. niruri, P. urinaria, and P. watsonii) plant extracts in human prostate adenocarcinoma. The cancer ten-pathway reporter array was performed and revealed that the expression of six pathway reporters were significantly decreased (Wnt, NFκB, Myc/Max, hypoxia, MAPK/ERK, and MAPK/JNK) in PC-3 cells after treatment with Phyllanthus extracts. Western blot was conducted and identified several signalling molecules that were affected in the signalling pathways including pan-Ras, c-Raf, RSK, Elk1, c-Jun, JNK1/2, p38 MAPK, c-myc, DSH, β-catenin, Akt, HIF-1α, GSK3β, NFκB p50 and p52, Bcl-2, Bax, and VEGF, in treated PC-3 cells. A proteomics-based approach, 2D gel electrophoresis, was performed, and mass spectrometry (MS/MS) results revealed that there were 72 differentially expressed proteins identified in treated PC-3 cells and were involved in tumour cell adhesion, apoptosis, glycogenesis and glycolysis, metastasis, angiogenesis, and protein synthesis and energy metabolism. Overall, these findings suggest that Phyllanthus can interfere with multiple signalling cascades involved in tumorigenesis and be used as a potential therapeutic candidate for treatment of cancer.

  10. TW-01, a piperazinedione-derived compound, inhibits Ras-mediated cell proliferation and angioplasty-induced vascular restenosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chao-Feng

    Purpose: Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. Methods: Cell proliferation was determined using [{sup 3}H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. Results: TW-01 significantly inhibited cell proliferation. At themore » concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. Conclusion: The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment. - Highlights: • TW-01significantly inhibits vascular smooth muscle cell proliferation. • TW-01 inhibits ERK, Akt and Ras pathway and DNA binding activity of NF-κB. • TW-01 significantly suppresses intimal hyperplasia induced by balloon angioplasty. • TW-01 might be a potential candidate for atherosclerosis treatment.« less

  11. Premetazoan origin of the Hippo signaling pathway

    PubMed Central

    Sebé-Pedrós, Arnau; Zheng, Yonggang; Ruiz-Trillo, Iñaki; Pan, Duojia

    2012-01-01

    Summary Non-aggregative multicellularity requires strict control of cell number. The Hippo signaling pathway coordinates cell proliferation and apoptosis and is a central regulator of organ size in animals. Recent studies have shown the presence of key members of the Hippo pathway in non-bilaterian animals, but failed to identify this pathway outside Metazoa. Through comparative analyses of recently sequenced holozoan genomes, we show that Hippo pathway components, such as the kinases Hippo and Warts, the co-activator Yorkie and the transcription factor Scalloped, were already present in the unicellular ancestors of animals. Remarkably, functional analysis of Hippo components of the amoeboid holozoan Capsaspora owczarzaki, performed in Drosophila, demonstrate that the growth-regulatory activity of the Hippo pathway is conserved in this unicellular lineage. Our findings show that the Hippo pathway evolved well before the origin of Metazoa and highlight the importance of Hippo signaling as a key developmental mechanism pre-dating the origin of Metazoa. PMID:22832104

  12. Sequential inductions of the ZEB1 transcription factor caused by mutation of Rb and then Ras proteins are required for tumor initiation and progression.

    PubMed

    Liu, Yongqing; Sánchez-Tilló, Ester; Lu, Xiaoqin; Huang, Li; Clem, Brian; Telang, Sucheta; Jenson, Alfred B; Cuatrecasas, Miriam; Chesney, Jason; Postigo, Antonio; Dean, Douglas C

    2013-04-19

    Rb1 restricts cell cycle progression, and it imposes cell contact inhibition to suppress tumor outgrowth. It also triggers oncogene-induced senescence to block Ras mutation. Loss of the Rb1 pathway, which is a hallmark of cancer cells, then provides a permissive environment for Ras mutation, and Ras is sufficient for invasive tumor formation in Rb1 family mutant mouse embryo fibroblasts (MEFs). These results demonstrate that sequential mutation of the Rb1 and Ras pathways comprises a tumor initiation axis. Both Rb1 and Ras regulate expression of the transcription factor ZEB1, thereby linking tumor initiation to the subsequent invasion and metastasis, which is induced by ZEB1. ZEB1 acts in a negative feedback loop to block expression of miR-200, which is thought to facilitate tumor invasion and metastasis. However, ZEB1 also represses cyclin-dependent kinase (cdk) inhibitors to control the cell cycle; its mutation in MEFs leads to induction of these inhibitors and premature senescence. Here, we provide evidence for two sequential inductions of ZEB1 during Ras transformation of MEFs. Rb1 constitutively represses cdk inhibitors, and induction of ZEB1 when the Rb1 pathway is lost is required to maintain this repression, allowing for the classic immortalization and loss of cell contact inhibition seen when the Rb1 pathway is lost. In vivo, we show that this induction of ZEB1 is required for Ras-initiated tumor formation. ZEB1 is then further induced by Ras, beyond the level seen with Rb1 mutation, and this Ras superinduction is required to reach a threshold of ZEB1 sufficient for repression of miR-200 and tumor invasion.

  13. Mutational analysis of PI3K/AKT and RAS/RAF pathway activation in malignant salivary gland tumours with a new mutation of PIK3CA.

    PubMed

    Shalmon, B; Drendel, M; Wolf, M; Hirshberg, A; Cohen, Y

    2016-06-01

    The phosphoinositide 3-kinase (PIK3)/v-akt murine thymoma (AKT) oncogene pathway and the RAS/RAF pathway are involved in regulating the signalling of multiple biological processes, including apoptosis, metabolism, cell proliferation, and cell growth. Mutations in the genes within these pathways are frequently found in several tumours. The aim of this study was to investigate the frequency of mutations in the PIK3CA, BRAF, and KRAS genes in cases of malignant salivary gland tumours. Mutational analysis of the PIK3CA, KRAS, and BRAF genes was performed by direct sequencing of material from 21 patients with malignant salivary gland tumours who underwent surgery between 1992 and 2001. No mutations were found in the KRAS exon 2, BRAF exon 15, or PIK3CA exon 9 genes. However, an unpublished mutation of the PIK3CA gene in exon 20 (W1051 stop mutation) was found in one case of adenocarcinoma NOS. The impact of this mutation on the biological behaviour of the tumour has yet to be explored, however the patient with adenocarcinoma NOS harbouring this mutation has survived for over 20 years following surgery despite a high stage at presentation. Further studies with more homogeneous patient cohorts are needed to address whether this mutation reflects a different clinical presentation and may benefit from targeted treatment strategies. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. Frontier of Epilepsy Research - mTOR signaling pathway

    PubMed Central

    2011-01-01

    Studies of epilepsy have mainly focused on the membrane proteins that control neuronal excitability. Recently, attention has been shifting to intracellular proteins and their interactions, signaling cascades and feedback regulation as they relate to epilepsy. The mTOR (mammalian target of rapamycin) signal transduction pathway, especially, has been suggested to play an important role in this regard. These pathways are involved in major physiological processes as well as in numerous pathological conditions. Here, involvement of the mTOR pathway in epilepsy will be reviewed by presenting; an overview of the pathway, a brief description of key signaling molecules, a summary of independent reports and possible implications of abnormalities of those molecules in epilepsy, a discussion of the lack of experimental data, and questions raised for the understanding its epileptogenic mechanism. PMID:21467839

  15. The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer.

    PubMed

    Akino, Kimishige; Toyota, Minoru; Suzuki, Hiromu; Mita, Hiroaki; Sasaki, Yasushi; Ohe-Toyota, Mutsumi; Issa, Jean-Pierre J; Hinoda, Yuji; Imai, Kohzoh; Tokino, Takashi

    2005-07-01

    Activation of Ras signaling is a hallmark of colorectal cancer (CRC), but the roles of negative regulators of Ras are not fully understood. Our aim was to address that question by surveying genetic and epigenetic alterations of Ras-Ras effector genes in CRC cells. The expression and methylation status of 6 RASSF family genes were examined using RT-PCR and bisulfite PCR in CRC cell lines and in primary CRCs and colorectal adenomas. Colony formation assays and flow cytometry were used to assess the tumor suppressor activities of RASSF1 and RASSF2. Immunofluorescence microscopy was used to determine the effect of altered RASSF2 expression on cell morphology. Mutations of K- ras , BRAF, and p53 were identified using single-strand conformation analysis and direct sequencing. Aberrant methylation and histone deacetylation of RASSF2 was associated with the gene's silencing in CRC. The activities of RASSF2, which were distinct from those of RASSF1, included induction of morphologic changes and apoptosis; moreover, its ability to prevent cell transformation suggests that RASSF2 acts as a tumor suppressor in CRC. Primary CRCs that showed K- ras /BRAF mutations also frequently showed RASSF2 methylation, and inactivation of RASSF2 enhanced K- ras -induced oncogenic transformation. RASSF2 methylation was also frequently identified in colorectal adenomas. RASSF2 is a novel tumor suppressor gene that regulates Ras signaling and plays a pivotal role in the early stages of colorectal tumorigenesis.

  16. The merged basins of signal transduction pathways in spatiotemporal cell biology.

    PubMed

    Hou, Yingchun; Hou, Yang; He, Siyu; Ma, Caixia; Sun, Mengyao; He, Huimin; Gao, Ning

    2014-03-01

    Numerous evidences have indicated that a signal system is composed by signal pathways, each pathway is composed by sub-pathways, and the sub-pathway is composed by the original signal terminals initiated with a protein/gene. We infer the terminal signals merged signal transduction system as "signal basin". In this article, we discussed the composition and regulation of signal basins, and the relationship between the signal basin control and triple W of spatiotemporal cell biology. Finally, we evaluated the importance of the systemic regulation to gene expression by signal basins under triple W. We hope our discussion will be the beginning to cause the attention for this area from the scientists of life science. © 2013 Wiley Periodicals, Inc.

  17. Activation of the JNK pathway is essential for transformation by the Met oncogene.

    PubMed

    Rodrigues, G A; Park, M; Schlessinger, J

    1997-05-15

    The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation. To test this hypothesis dominant-negative mutants of Grb2 with deletions of the SH3 domains were introduced into Tpr-Met transformed fibroblasts. Cells overexpressing the mutants were found to be morphologically reverted and exhibited reduced growth in soft agar. Surprisingly, the Grb2 mutants blocked activation of the JNK/SAPK but not MAP kinase activity induced by the Tpr-Met oncoprotein. Additionally, cells expressing dominant-negative Grb2 mutants had reduced PI-3-kinase activity and dominant-negative mutants of Rac1 blocked both Tpr-Met-induced transformation and activation of JNK. These experiments reveal a novel link between Met and the JNK pathway, which is essential for transformation by this oncogene.

  18. RAS Insight

    Cancer.gov

    David Heimbrook, now CEO of the Frederick National Laboratory for Cancer Research, played a major role in a large pharma as it tried to develop an anti-RAS drug. Lessons from that failure inform the RAS Initiative today.

  19. Phloretin induces apoptosis in H-Ras MCF10A human breast tumor cells through the activation of p53 via JNK and p38 mitogen-activated protein kinase signaling.

    PubMed

    Kim, Mi-Sung; Kwon, Jung Yeon; Kang, Nam Joo; Lee, Ki Won; Lee, Hyong Joo

    2009-08-01

    Mutations in Ras play a critical role in the development of human cancers, including breast cancer. We investigated the possible antiproliferative effects of the naturally occurring dihydrochalcone phloretin [2',4',6'-trihydroxy-3-(4-hydroxyphenyl)-propiophenone] on H-Ras-transformed MCF10A human breast epithelial (H-Ras MCF10A) cells. Phloretin suppressed H-Ras MCF10A cell proliferation in a dose-dependent manner and induced nuclear condensation in the cells, indicating that phloretin-induced cell death occurs mainly via the induction of apoptosis. Prominent upregulation of p53 and Bax and cleavage of poly (ADP)-ribose polymerase were also detected in the phloretin-treated cells. Finally, phloretin markedly increased caspase-3 activity as well as JNK and p38 mitogen-activated protein kinase signaling. Our findings suggest that the phloretin-induced apoptosis of breast tumor cells contributes to the chemopreventive potential of phloretin against breast cancer.

  20. AT1 receptor signaling pathways in the cardiovascular system.

    PubMed

    Kawai, Tatsuo; Forrester, Steven J; O'Brien, Shannon; Baggett, Ariele; Rizzo, Victor; Eguchi, Satoru

    2017-11-01

    The importance of the renin angiotensin aldosterone system in cardiovascular physiology and pathophysiology has been well described whereas the detailed molecular mechanisms remain elusive. The angiotensin II type 1 receptor (AT1 receptor) is one of the key players in the renin angiotensin aldosterone system. The AT1 receptor promotes various intracellular signaling pathways resulting in hypertension, endothelial dysfunction, vascular remodeling and end organ damage. Accumulating evidence shows the complex picture of AT1 receptor-mediated signaling; AT1 receptor-mediated heterotrimeric G protein-dependent signaling, transactivation of growth factor receptors, NADPH oxidase and ROS signaling, G protein-independent signaling, including the β-arrestin signals and interaction with several AT1 receptor interacting proteins. In addition, there is functional cross-talk between the AT1 receptor signaling pathway and other signaling pathways. In this review, we will summarize an up to date overview of essential AT1 receptor signaling events and their functional significances in the cardiovascular system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte.

    PubMed

    Kusminski, Christine M; Gallardo-Montejano, Violeta I; Wang, Zhao V; Hegde, Vijay; Bickel, Perry E; Dhurandhar, Nikhil V; Scherer, Philipp E

    2015-10-01

    Type 2 diabetes remains a worldwide epidemic with major pathophysiological changes as a result of chronic insulin resistance. Insulin regulates numerous biochemical pathways related to carbohydrate and lipid metabolism. We have generated a novel mouse model that allows us to constitutively activate, in an inducible fashion, the distal branch of the insulin signaling transduction pathway specifically in adipocytes. Using the adenoviral 36 E4orf1 protein, we chronically stimulate locally the Ras-ERK-MAPK signaling pathway. At the whole body level, this leads to reduced body-weight gain under a high fat diet challenge. Despite overlapping glucose tolerance curves, there is a reduced requirement for insulin action under these conditions. The mice further exhibit reduced circulating adiponectin levels that ultimately lead to impaired lipid clearance, and inflamed and fibrotic white adipose tissues. Nevertheless, they are protected from diet-induced hepatic steatosis. As we observe constitutively elevated p-Akt levels in the adipocytes, even under conditions of low insulin levels, this pinpoints enhanced Ras-ERK-MAPK signaling in transgenic adipocytes as a potential alternative route to bypass proximal insulin signaling events. We conclude that E4orf1 expression in the adipocyte leads to enhanced baseline activation of the distal insulin signaling node, yet impaired insulin receptor stimulation in the presence of insulin, with important implications for the regulation of adiponectin secretion. The resulting systemic phenotype is complex, yet highlights the powerful nature of manipulating selective branches of the insulin signaling network within the adipocyte.

  2. Lipoprotein-biomimetic nanostructure enables efficient targeting delivery of siRNA to Ras-activated glioblastoma cells via macropinocytosis

    NASA Astrophysics Data System (ADS)

    Huang, Jia-Lin; Jiang, Gan; Song, Qing-Xiang; Gu, Xiao; Hu, Meng; Wang, Xiao-Lin; Song, Hua-Hua; Chen, Le-Pei; Lin, Ying-Ying; Jiang, Di; Chen, Jun; Feng, Jun-Feng; Qiu, Yong-Ming; Jiang, Ji-Yao; Jiang, Xin-Guo; Chen, Hong-Zhuan; Gao, Xiao-Ling

    2017-05-01

    Hyperactivated Ras regulates many oncogenic pathways in several malignant human cancers including glioblastoma and it is an attractive target for cancer therapies. Ras activation in cancer cells drives protein internalization via macropinocytosis as a key nutrient-gaining process. By utilizing this unique endocytosis pathway, here we create a biologically inspired nanostructure that can induce cancer cells to `drink drugs' for targeting activating transcription factor-5 (ATF5), an overexpressed anti-apoptotic transcription factor in glioblastoma. Apolipoprotein E3-reconstituted high-density lipoprotein is used to encapsulate the siRNA-loaded calcium phosphate core and facilitate it to penetrate the blood-brain barrier, thus targeting the glioblastoma cells in a macropinocytosis-dependent manner. The nanostructure carrying ATF5 siRNA exerts remarkable RNA-interfering efficiency, increases glioblastoma cell apoptosis and inhibits tumour cell growth both in vitro and in xenograft tumour models. This strategy of targeting the macropinocytosis caused by Ras activation provides a nanoparticle-based approach for precision therapy in glioblastoma and other Ras-activated cancers.

  3. Small Molecules Affect Human Dental Pulp Stem Cell Properties Via Multiple Signaling Pathways

    PubMed Central

    Al-Habib, Mey; Yu, Zongdong

    2013-01-01

    One fundamental issue regarding stem cells for regenerative medicine is the maintenance of stem cell stemness. The purpose of the study was to test whether small molecules can enhance stem cell properties of mesenchymal stem cells (MSCs) derived from human dental pulp (hDPSCs), which have potential for multiple clinical applications. We identified the effects of small molecules (Pluripotin (SC1), 6-bromoindirubin-3-oxime and rapamycin) on the maintenance of hDPSC properties in vitro and the mechanisms involved in exerting the effects. Primary cultures of hDPSCs were exposed to optimal concentrations of these small molecules. Treated hDPSCs were analyzed for their proliferation, the expression levels of pluripotent and MSC markers, differentiation capacities, and intracellular signaling activations. We found that small molecule treatments decreased cell proliferation and increased the expression of STRO-1, NANOG, OCT4, and SOX2, while diminishing cell differentiation into odonto/osteogenic, adipogenic, and neurogenic lineages in vitro. These effects involved Ras-GAP-, ERK1/2-, and mTOR-signaling pathways, which may preserve the cell self-renewal capacity, while suppressing differentiation. We conclude that small molecules appear to enhance the immature state of hDPSCs in culture, which may be used as a strategy for adult stem cell maintenance and extend their capacity for regenerative applications. PMID:23573877

  4. Breast Tumors with Elevated Expression of 1q Candidate Genes Confer Poor Clinical Outcome and Sensitivity to Ras/PI3K Inhibition

    PubMed Central

    Viveka Thangaraj, Soundara; Periasamy, Jayaprakash; Bhaskar Rao, Divya; Barnabas, Georgina D.; Raghavan, Swetha; Ganesan, Kumaresan

    2013-01-01

    Genomic aberrations are common in cancers and the long arm of chromosome 1 is known for its frequent amplifications in breast cancer. However, the key candidate genes of 1q, and their contribution in breast cancer pathogenesis remain unexplored. We have analyzed the gene expression profiles of 1635 breast tumor samples using meta-analysis based approach and identified clinically significant candidates from chromosome 1q. Seven candidate genes including exonuclease 1 (EXO1) are consistently over expressed in breast tumors, specifically in high grade and aggressive breast tumors with poor clinical outcome. We derived a EXO1 co-expression module from the mRNA profiles of breast tumors which comprises 1q candidate genes and their co-expressed genes. By integrative functional genomics investigation, we identified the involvement of EGFR, RAS, PI3K / AKT, MYC, E2F signaling in the regulation of these selected 1q genes in breast tumors and breast cancer cell lines. Expression of EXO1 module was found as indicative of elevated cell proliferation, genomic instability, activated RAS/AKT/MYC/E2F1 signaling pathways and loss of p53 activity in breast tumors. mRNA–drug connectivity analysis indicates inhibition of RAS/PI3K as a possible targeted therapeutic approach for the patients with activated EXO1 module in breast tumors. Thus, we identified seven 1q candidate genes strongly associated with the poor survival of breast cancer patients and identified the possibility of targeting them with EGFR/RAS/PI3K inhibitors. PMID:24147022

  5. Regulation of the Hippo signaling pathway by ubiquitin modification.

    PubMed

    Kim, Youngeun; Jho, Eek-Hoon

    2018-03-01

    The Hippo signaling pathway plays an essential role in adult tissue homeostasis and organ size control. Abnormal regulation of Hippo signaling can be a cause for multiple types of human cancers. Since the awareness of the importance of the Hippo signaling in a wide range of biological fields has been continually grown, it is also understood that a thorough and well-rounded comprehension of the precise dynamics could provide fundamental insights for therapeutic applications. Several components in the Hippo signaling pathway are known to be targeted for proteasomal degradation via ubiquitination by E3 ligases. β-TrCP is a well-known E3 ligase of YAP/TAZ, which leads to the reduction of YAP/TAZ levels. The Hippo signaling pathway can also be inhibited by the E3 ligases (such as ITCH) which target LATS1/2 for degradation. Regulation via ubiquitination involves not only complex network of E3 ligases but also deubiquitinating enzymes (DUBs), which remove ubiquitin from its targets. Interestingly, non-degradative ubiquitin modifications are also known to play important roles in the regulation of Hippo signaling. Although there has been much advanced progress in the investigation of ubiquitin modifications acting as regulators of the Hippo signaling pathway, research done to date still remains inadequate due to the sheer complexity and diversity of the subject. Herein, we review and discuss recent developments that implicate ubiquitin-mediated regulatory mechanisms at multiple steps of the Hippo signaling pathway. [BMB Reports 2018; 51(3): 143-150].

  6. SH2/SH3 signaling proteins.

    PubMed

    Schlessinger, J

    1994-02-01

    SH2 and SH3 domains are small protein modules that mediate protein-protein interactions in signal transduction pathways that are activated by protein tyrosine kinases. SH2 domains bind to short phosphotyrosine-containing sequences in growth factor receptors and other phosphoproteins. SH3 domains bind to target proteins through sequences containing proline and hydrophobic amino acids. SH2 and SH3 domain containing proteins, such as Grb2 and phospholipase C gamma, utilize these modules in order to link receptor and cytoplasmic protein tyrosine kinases to the Ras signaling pathway and to phosphatidylinositol hydrolysis, respectively. The three-dimensional structures of several SH2 and SH3 domains have been determined by NMR and X-ray crystallography, and the molecular basis of their specificity is beginning to be unveiled.

  7. Delineating neurotrophin-3 dependent signaling pathways underlying sympathetic axon growth along intermediate targets.

    PubMed

    Keeler, Austin B; Suo, Dong; Park, Juyeon; Deppmann, Christopher D

    2017-07-01

    Postganglionic sympathetic neurons detect vascular derived neurotrophin 3 (NT3) via the axonally expressed receptor tyrosine kinase, TrkA, to promote chemo-attraction along intermediate targets. Once axons arrive to their final target, a structurally related neurotrophic factor, nerve growth factor (NGF), also acts through TrkA to promote final target innervation. Does TrkA signal differently at these different locales? We previously found that Coronin-1 is upregulated in sympathetic neurons upon exposure to NGF, thereby endowing the NGF-TrkA complex with new signaling capabilities (i.e. calcium signaling), which dampens axon growth and branching. Based on the notion that axons do not express functional levels of Coronin-1 prior to final target innervation, we developed an in vitro model for axon growth and branching along intermediate targets using Coro1a -/- neurons grown in NT3. We found that, similar to NGF-TrkA, NT3-TrkA is capable of inducing MAPK and PI3K in the presence or absence of Coronin-1. However, unlike NGF, NT3 does not induce calcium release from intracellular stores. Using a combination of pharmacology, knockout neurons and in vitro functional assays, we suggest that the NT3-TrkA complex uses Ras/MAPK and/or PI3K-AKT signaling to induce axon growth and inhibit axon branching along intermediate targets. However, in the presence of Coronin-1, these signaling pathways lose their ability to impact NT3 dependent axon growth or branching. This is consistent with a role for Coronin-1 as a molecular switch for axon behavior and suggests that Coronin-1 suppresses NT3 dependent axon behavior. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Endomembrane H-Ras Controls Vascular Endothelial Growth Factor-induced Nitric-oxide Synthase-mediated Endothelial Cell Migration*

    PubMed Central

    Haeussler, Dagmar J.; Pimentel, David R.; Hou, Xiuyun; Burgoyne, Joseph R.; Cohen, Richard A.; Bachschmid, Markus M.

    2013-01-01

    We demonstrate for the first time that endomembrane-delimited H-Ras mediates VEGF-induced activation of endothelial nitric-oxide synthase (eNOS) and migratory response of human endothelial cells. Using thiol labeling strategies and immunofluorescent cell staining, we found that only 31% of total H-Ras is S-palmitoylated, tethering the small GTPase to the plasma membrane but leaving the function of the large majority of endomembrane-localized H-Ras unexplained. Knockdown of H-Ras blocked VEGF-induced PI3K-dependent Akt (Ser-473) and eNOS (Ser-1177) phosphorylation and nitric oxide-dependent cell migration, demonstrating the essential role of H-Ras. Activation of endogenous H-Ras led to recruitment and phosphorylation of eNOS at endomembranes. The loss of migratory response in cells lacking endogenous H-Ras was fully restored by modest overexpression of an endomembrane-delimited H-Ras palmitoylation mutant. These studies define a newly recognized role for endomembrane-localized H-Ras in mediating nitric oxide-dependent proangiogenic signaling. PMID:23548900

  9. The prostaglandin receptor EP2 activates multiple signaling pathways and β-arrestin1 complex formation during mouse skin papilloma development

    PubMed Central

    Chun, Kyung-Soo; Lao, Huei-Chen; Trempus, Carol S.; Okada, Manabu; Langenbach, Robert

    2009-01-01

    Prostaglandin E2 (PGE2) is elevated in many tumor types, but PGE2's contributions to tumor growth are largely unknown. To investigate PGE2's roles, the contributions of one of its receptors, EP2, were studied using the mouse skin initiation/promotion model. Initial studies indicated that protein kinase A (PKA), epidermal growth factor receptor (EGFR) and several effectors—cyclic adenosine 3′,5′-monophosphate response element-binding protein (CREB), H-Ras, Src, protein kinase B (AKT) and extracellular signal-regulated kinase (ERK)1/2—were activated in 12-O-tetradecanoylphorbol-13-acetate (TPA)-promoted papillomas and that PKA and EGFR inhibition (H89 and AG1478, respectively) decreased papilloma formation. EP2's contributions to the activation of these pathways and papilloma development were determined by inhibiting endogenous TPA-induced PGE2 production with indomethacin (Indo) and concomitantly treating with the EP2 agonist, CAY10399 (CAY). CAY treatment restored papilloma formation in TPA/Indo-treated mice and increased cyclic adenosine 3′,5′-monophosphate and PKA activation as measured by p-CREB formation. CAY treatment also increased EGFR and Src activation and their inhibition by AG1478 and PP2 indicated that Src was upstream of EGFR. CAY also increased H-Ras, ERK1/2 and AKT activation, and AG1478 decreased their activation indicating EGFR being upstream. Supporting EP2's contribution, EP2−/− mice exhibited 65% fewer papillomas and reduced Src, EGFR, H-Ras, AKT and ERK1/2 activation. G protein-coupled receptor (GPCR) activation of EGFR has been reported to involve Src's activation via a GPCR–β-arrestin–Src complex. Indeed, immunoprecipitation of β-arrestin1 or p-Src indicated the presence of an EP2–β-arrestin1–p-Src complex in papillomas. The data indicated that EP2 contributed to tumor formation via activation of PKA and EGFR and that EP2 formed a complex with β-arrestin1 and Src that contributed to signaling and/or EP2

  10. The Hippo-YAP signaling pathway and contact inhibition of growth

    PubMed Central

    Gumbiner, Barry M.; Kim, Nam-Gyun

    2014-01-01

    ABSTRACT The Hippo-YAP pathway mediates the control of cell proliferation by contact inhibition as well as other attributes of the physical state of cells in tissues. Several mechanisms sense the spatial and physical organization of cells, and function through distinct upstream modules to stimulate Hippo-YAP signaling: adherens junction or cadherin–catenin complexes, epithelial polarity and tight junction complexes, the FAT-Dachsous morphogen pathway, as well as cell shape, actomyosin or mechanotransduction. Soluble extracellular factors also regulate Hippo pathway signaling, often inhibiting its activity. Indeed, the Hippo pathway mediates a reciprocal relationship between contact inhibition and mitogenic signaling. As a result, cells at the edges of a colony, a wound in a tissue or a tumor are more sensitive to ambient levels of growth factors and more likely to proliferate, migrate or differentiate through a YAP and/or TAZ-dependent process. Thus, the Hippo-YAP pathway senses and responds to the physical organization of cells in tissues and coordinates these physical cues with classic growth-factor-mediated signaling pathways. This Commentary is focused on the biological significance of Hippo-YAP signaling and how upstream regulatory modules of the pathway interact to produce biological outcomes. PMID:24532814

  11. Characterization of a human MSX-2 cDNA and its fragment isolated as a transformation suppressor gene against v-Ki-ras oncogene.

    PubMed

    Takahashi, C; Akiyama, N; Matsuzaki, T; Takai, S; Kitayama, H; Noda, M

    1996-05-16

    A cDNA (termed CT124) encoding a carboxyl-terminal fragment of the human homeobox protein MSX-2 was found to induce flat reversion when expressed in v-Ki-ras-transformed NIH3T3 cells. Although the expression of endogenous MSX-2 gene is low in most of the normal adult tissues examined, it is frequently activated in carcinoma-derived cell lines. Likewise, the gene is inactive in NIH3T3 cells but is transcriptionally activated after transformation by v-Ki-ras oncogene, suggesting that the intact MSX-2 may play a positive, rather than suppressive, role in cell transformation. To test this possibility, we isolated a near full-length human MSX-2 cDNA and tested its activities in two cell systems, i.e. fibroblast and myoblast. In NIH3T3 fibroblasts, although the gene by itself failed to confer a transformed phenotype, antisense MSX-2 cDNA as well as truncated CT124 cDNA interfered with the transforming activities of v-Ki-ras oncogene. In C2C12 myoblasts, MSX-2 was found to suppress MyoD gene expression, as do activated ras oncogenes, under certain culture conditions, and CT124 was found to inhibit the activities of both MSX-2 and ras in this system as well. Our findings not only suggest that CT124 may act as a dominant suppressor of MSX-2 but also raise the possibility that MSX-2 gene may be an important downstream target for the Ras signaling pathways.

  12. RasGRP3 limits Toll-like receptor-triggered inflammatory response in macrophages by activating Rap1 small GTPase.

    PubMed

    Tang, Songqing; Chen, Taoyong; Yu, Zhou; Zhu, Xuhui; Yang, Mingjin; Xie, Bin; Li, Nan; Cao, Xuetao; Wang, Jianli

    2014-08-14

    Host immune cells can detect and destruct invading pathogens via pattern-recognition receptors. Small Rap GTPases act as conserved molecular switches coupling extracellular signals to various cellular responses, but their roles as regulators in Toll-like receptor (TLR) signalling have not been fully elucidated. Here we report that Ras guanine nucleotide-releasing protein 3 (RasGRP3), a guanine nucleotide-exchange factor activating Ras and Rap1, limits production of proinflammatory cytokines (especially IL-6) in macrophages by activating Rap1 on activation by low levels of TLR agonists. We demonstrate that RasGRP3, a dominant member of RasGRPs in macrophages, impairs TLR3/4/9-induced IL-6 production and relieves dextrane sulphate sodium-induced colitis and collagen-induced arthritis. In RasGRP3-deficient RAW264.7 cells obtained by CRISPR-Cas9 genome editing, TLR3/4/9-induced activation of Rap1 was inhibited while ERK1/2 activation was enhanced. Our study suggests that RasGRP3 limits inflammatory response by activating Rap1 on low-intensity pathogen infection, setting a threshold for preventing excessive inflammatory response.

  13. RAS - Target Identification - Informatics

    Cancer.gov

    The RAS Informatics lab group develops tools to track and analyze “big data” from the RAS Initiative, as well as analyzes data from external projects. By integrating internal and external data, this group helps improve understanding of RAS-driven cancers.

  14. Targeting Notch signalling pathway of cancer stem cells.

    PubMed

    Venkatesh, Vandana; Nataraj, Raghu; Thangaraj, Gopenath S; Karthikeyan, Murugesan; Gnanasekaran, Ashok; Kaginelli, Shanmukhappa B; Kuppanna, Gobianand; Kallappa, Chandrashekrappa Gowdru; Basalingappa, Kanthesh M

    2018-01-01

    Cancer stem cells (CSCs) have been defined as cells within tumor that possess the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. CSCs have been increasingly identified in blood cancer, prostate, ovarian, lung, melanoma, pancreatic, colon, brain and many more malignancies. CSCs have slow growth rate and are resistant to chemotherapy and radiotherapy that lead to the failure of traditional current therapy. Eradicating the CSCs and recurrence, is promising aspect for the cure of cancer. The CSCs like any other stem cells activate the signal transduction pathways that involve the development and tissue homeostasis, which include Notch signaling pathway. The new treatment targets these pathway that control stem-cell replication, survival and differentiation that are under development. Notch inhibitors either single or in combination with chemotherapy drugs have been developed to treat cancer and its recurrence. This approach of targeting signaling pathway of CSCs represents a promising future direction for the therapeutic strategy to cure cancer.

  15. A comprehensive pathway map of epidermal growth factor receptor signaling

    PubMed Central

    Oda, Kanae; Matsuoka, Yukiko; Funahashi, Akira; Kitano, Hiroaki

    2005-01-01

    The epidermal growth factor receptor (EGFR) signaling pathway is one of the most important pathways that regulate growth, survival, proliferation, and differentiation in mammalian cells. Reflecting this importance, it is one of the best-investigated signaling systems, both experimentally and computationally, and several computational models have been developed for dynamic analysis. A map of molecular interactions of the EGFR signaling system is a valuable resource for research in this area. In this paper, we present a comprehensive pathway map of EGFR signaling and other related pathways. The map reveals that the overall architecture of the pathway is a bow-tie (or hourglass) structure with several feedback loops. The map is created using CellDesigner software that enables us to graphically represent interactions using a well-defined and consistent graphical notation, and to store it in Systems Biology Markup Language (SBML). PMID:16729045

  16. The TAT-RasGAP317-326 anti-cancer peptide can kill in a caspase-, apoptosis-, and necroptosis-independent manner

    PubMed Central

    Puyal, Julien; Margue, Christiane; Michel, Sébastien; Kreis, Stephanie; Kulms, Dagmar; Barras, David; Nahimana, Aimable; Widmann, Christian

    2016-01-01

    Tumor cell resistance to apoptosis, which is triggered by many anti-tumor therapies, remains a major clinical problem. Therefore, development of more efficient therapies is a priority to improve cancer prognosis. We have previously shown that a cell-permeable peptide derived from the p120 Ras GTPase-activating protein (RasGAP), called TAT-RasGAP317-326, bears anti-malignant activities in vitro and in vivo, such as inhibition of metastatic progression and tumor cell sensitization to cell death induced by various anti-cancer treatments. Recently, we discovered that this RasGAP-derived peptide possesses the ability to directly kill some cancer cells. TAT-RasGAP317-326 can cause cell death in a manner that can be either partially caspase-dependent or fully caspase-independent. Indeed, TAT-RasGAP317-326-induced toxicity was not or only partially prevented when apoptosis was inhibited. Moreover, blocking other forms of cell death, such as necroptosis, parthanatos, pyroptosis and autophagy did not hamper the killing activity of the peptide. The death induced by TAT-RasGAP317-326 can therefore proceed independently from these modes of death. Our finding has potentially interesting clinical relevance because activation of a death pathway that is distinct from apoptosis and necroptosis in tumor cells could lead to the generation of anti-cancer drugs that target pathways not yet considered for cancer treatment. PMID:27602963

  17. Interleukins and their signaling pathways in the Reactome biological pathway database.

    PubMed

    Jupe, Steve; Ray, Keith; Roca, Corina Duenas; Varusai, Thawfeek; Shamovsky, Veronica; Stein, Lincoln; D'Eustachio, Peter; Hermjakob, Henning

    2018-04-01

    much molecular detail as possible and are linked to literature citations that contain supporting experimental details. All newly created events undergo a peer-review process before they are added to the database and made available on the associated Web site. New content is added quarterly. The 63rd release of Reactome in December 2017 contains 10,996 human proteins participating in 11,426 events in 2,179 pathways. In addition, analytic tools allow data set submission for the identification and visualization of pathway enrichment and representation of expression profiles as an overlay on Reactome pathways. Protein-protein and compound-protein interactions from several sources, including custom user data sets, can be added to extend pathways. Pathway diagrams and analytic result displays can be downloaded as editable images, human-readable reports, and files in several standard formats that are suitable for computational reuse. Reactome content is available programmatically through a REpresentational State Transfer (REST)-based content service and as a Neo4J graph database. Signaling pathways for IL-1 to IL-38 are hierarchically classified within the pathway "signaling by interleukins." The classification used is largely derived from Akdis et al. The addition to Reactome of a complete set of the known human interleukins, their receptors, and established signaling pathways linked to annotations of relevant aspects of immune function provides a significant computationally accessible resource of information about this important family. This information can be extended easily as new discoveries become accepted as the consensus in the field. A key aim for the future is to increase coverage of gene expression changes induced by interleukin signaling. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Modeling of cell signaling pathways in macrophages by semantic networks

    PubMed Central

    Hsing, Michael; Bellenson, Joel L; Shankey, Conor; Cherkasov, Artem

    2004-01-01

    Background Substantial amounts of data on cell signaling, metabolic, gene regulatory and other biological pathways have been accumulated in literature and electronic databases. Conventionally, this information is stored in the form of pathway diagrams and can be characterized as highly "compartmental" (i.e. individual pathways are not connected into more general networks). Current approaches for representing pathways are limited in their capacity to model molecular interactions in their spatial and temporal context. Moreover, the critical knowledge of cause-effect relationships among signaling events is not reflected by most conventional approaches for manipulating pathways. Results We have applied a semantic network (SN) approach to develop and implement a model for cell signaling pathways. The semantic model has mapped biological concepts to a set of semantic agents and relationships, and characterized cell signaling events and their participants in the hierarchical and spatial context. In particular, the available information on the behaviors and interactions of the PI3K enzyme family has been integrated into the SN environment and a cell signaling network in human macrophages has been constructed. A SN-application has been developed to manipulate the locations and the states of molecules and to observe their actions under different biological scenarios. The approach allowed qualitative simulation of cell signaling events involving PI3Ks and identified pathways of molecular interactions that led to known cellular responses as well as other potential responses during bacterial invasions in macrophages. Conclusions We concluded from our results that the semantic network is an effective method to model cell signaling pathways. The semantic model allows proper representation and integration of information on biological structures and their interactions at different levels. The reconstruction of the cell signaling network in the macrophage allowed detailed

  19. Wnt pathway in Dupuytren disease: connecting profibrotic signals.

    PubMed

    van Beuge, Marike M; Ten Dam, Evert-Jan P M; Werker, Paul M N; Bank, Ruud A

    2015-12-01

    A role of Wnt signaling in Dupuytren disease, a fibroproliferative disease of the hand and fingers, has not been fully elucidated. We examined a large set of Wnt pathway components and signaling targets and found significant dysregulation of 41 Wnt-related genes in tissue from the Dupuytren nodules compared with patient-matched control tissue. A large proportion of genes coding for Wnt proteins themselves was downregulated. However, both canonical Wnt targets and components of the noncanonical signaling pathway were upregulated. Immunohistochemical analysis revealed that protein expression of Wnt1-inducible secreted protein 1 (WISP1), a known Wnt target, was increased in nodules compared with control tissue, but knockdown of WISP1 using small interfering RNA (siRNA) in the Dupuytren myofibroblasts did not confirm a functional role. The protein expression of noncanonical pathway components Wnt5A and VANGL2 as well as noncanonical coreceptors Ror2 and Ryk was increased in nodules. On the contrary, the strongest downregulated genes in this study were 4 antagonists of Wnt signaling (DKK1, FRZB, SFRP1, and WIF1). Downregulation of these genes in the Dupuytren tissue was mimicked in vitro by treating normal fibroblasts with transforming growth factor β1 (TGF-β1), suggesting cross talk between different profibrotic pathways. Furthermore, siRNA-mediated knockdown of these antagonists in normal fibroblasts led to increased nuclear translocation of Wnt target β-catenin in response to TGF-β1 treatment. In conclusion, we have shown extensive dysregulation of Wnt signaling in affected tissue from Dupuytren disease patients. Components of both the canonical and the noncanonical pathways are upregulated, whereas endogenous antagonists are downregulated, possibly via interaction with other profibrotic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Quantitative Biology of Exercise-Induced Signal Transduction Pathways.

    PubMed

    Liu, Timon Cheng-Yi; Liu, Gang; Hu, Shao-Juan; Zhu, Ling; Yang, Xiang-Bo; Zhang, Quan-Guang

    2017-01-01

    Exercise is essential in regulating energy metabolism. Exercise activates cellular, molecular, and biochemical pathways with regulatory roles in training response adaptation. Among them, endurance/strength training of an individual has been shown to activate its respective signal transduction pathways in skeletal muscle. This was further studied from the viewpoint of quantitative difference (QD). For the mean values, [Formula: see text], of two sets of data, their QD is defined as [Formula: see text] ([Formula: see text]). The function-specific homeostasis (FSH) of a function of a biosystem is a negative-feedback response of the biosystem to maintain the function-specific conditions inside the biosystem so that the function is perfectly performed. A function in/far from its FSH is called a normal/dysfunctional function. A cellular normal function can resist the activation of other signal transduction pathways so that there are normal function-specific signal transduction pathways which full activation maintains the normal function. An acute endurance/strength training may be dysfunctional, but its regular training may be normal. The normal endurance/strength training of an individual may resist the activation of other signal transduction pathways in skeletal muscle so that there may be normal endurance/strength training-specific signal transduction pathways (NEPs/NSPs) in skeletal muscle. The endurance/strength training may activate NSPs/NEPs, but the QD from the control is smaller than 0.80. The simultaneous activation of both NSPs and NEPs may enhance their respective activation, and the QD from the control is larger than 0.80. The low level laser irradiation pretreatment of rats may promote the activation of NSPs in endurance training skeletal muscle. There may be NEPs/NSPs in skeletal muscle trained by normal endurance/strength training.