Sample records for rat anococcygeus muscle

  1. The response of the cat anococcygeus muscle to nerve or drug stimulation and a comparison with the rat anococcygeus

    PubMed Central

    Gillespie, J.S.; McGrath, J.C.

    1974-01-01

    1 The cat anococcygeus muscle is shown to possess a dual innervation similar to the rat anococcygeus, with a motor adrenergic innervation and an inhibitory innervation whose transmitter is unknown. The pharmacological properties of the cat muscle were investigated and compared with those of the rat muscle. 2 The cat muscle contracts to noradrenaline, 5-hydroxytryptamine, tyramine, amphetamine, guanethidine, cocaine and lysergic acid diethylamide (LSD). The effects of noradrenaline and 5-hydroxytryptamine are blocked by phentolamine and methysergide respectively. 3 The cat anococcygeus is relaxed by acetylcholine, carbachol, isoprenaline, ATP, prostaglandins E1, E2 and F2α and vasopressin, all of which contract the rat muscle. The effects of acetylcholine and carbachol are blocked by atropine and those of isoprenaline by propranolol. 4 Field stimulation produces contraction of the cat anococcygeus, which is blocked by phentolamine and guanethidine but unaffected by hexamethonium, atropine or neostigmine. 5 In the presence of guanethidine (10-5 M), the tone of the muscle is raised and field stimulation produces relaxation of the muscle. These inhibitory responses are unaffected by phentolamine, hexamethonium, atropine or neostigmine. 6 Neostigmine potentiates the effects of acetylcholine, but not of carbachol in relaxing the cat anococcygeus and in contracting the rat anococcygeus, but has no effect on either motor or inhibitory responses to field stimulation. 7 Cold storage for up to eight days had little effect on either the motor response to noradrenaline or the motor or inhibitory response to field stimulation of the cat anococcygeus. Beyond eight days, the response to field stimulation diminishes more rapidly than the response to noradrenaline. PMID:4823462

  2. Effect of diabetes and elevated glucose on nitric oxide-mediated neurotransmission in rat anococcygeus muscle.

    PubMed Central

    Way, K. J.; Reid, J. J.

    1995-01-01

    1. Nitric oxide (NO)-mediated neurotransmission is impaired in anococcygeus muscle from 8-week streptozotocin-induced diabetic rats. This study investigated the effects of insulin treatment, and the duration of diabetes on this impairment. In addition, the effect of in vitro exposure to elevated glucose has been investigated on NO-mediated relaxations, in muscles from untreated rats. 2. Relaxant responses to field stimulation (0.5-5 Hz, 10s train), sodium nitroprusside (SNP; 5 and 10 nM) and NO (1 and 3 microM) were significantly impaired in anococcygeus muscles from 8-week diabetic rats, compared to responses from control rats. Insulin treatment (5 u Lente day-1, s.c.) of diabetic rats prevented the development of this impairment. 3. Consistent with findings in 8-week diabetic rats, relaxation induced by field stimulation, SNP and NO were attenuated in tissues from 2-week and 4-week diabetic rats compared to corresponding control responses, whereas relaxations to papaverine (3 and 10 microM) were not reduced. In contrast, diabetes of 3-days duration did not affect relaxations to field stimulation, SNP or NO. 4. Incubation of anococcygeus muscles from untreated rats in medium containing elevated glucose (44.1 mM) for 6 h, significantly impaired relaxations to field stimulation compared to responses obtained after normal glucose (11.1 mM) incubation. Relaxations to SNP and to NO were not affected by 6 h exposure to elevated glucose. Similarly, incubation in hyperosmolar solutions containing mannose or sucrose for 6 h, impaired relaxations to field stimulation, but not to SNP or NO.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7582450

  3. The effect of hypoxia on neuroeffector transmission in the bovine retractor penis and rat anococcygeus muscles.

    PubMed Central

    Bowman, A.; McGrath, J. C.

    1985-01-01

    The effects of reducing the PO2 of the bathing fluid were studied on non-adrenergic non-cholinergic (NANC) transmission in isolated preparations of the bovine retractor penis muscle, the rat anococcygeus muscle, the guinea-pig taenia caeci and the guinea-pig urinary bladder. Hypoxia rapidly and reversibly impaired NANC transmission in the bovine retractor penis and rat anococcygeus muscles but did not affect transmission in the guinea-pig taenia caeci or bladder, suggesting that different NANC mechanisms are involved. Although neurally-evoked relaxation of the bovine retractor penis was impaired by hypoxia, relaxations produced by vasoactive intestinal peptide, prostaglandin E1, sodium nitroprusside or an inhibitory factor isolated from the bovine retractor penis were unaffected. Since the inhibitory factor is similar to, and may actually be the NANC transmitter, the results suggest that the site of action of hypoxia in impairing transmission is prejunctional at the inhibitory nerve endings. PMID:2994787

  4. Comparison of the redox forms of nitrogen monoxide with the nitrergic transmitter in the rat anococcygeus muscle

    PubMed Central

    Li, Chun Guang; Karagiannis, Joanna; Rand, Michael J

    1999-01-01

    A sustained tone was produced in rat isolated anococcygeus muscles with guanethidine and clonidine and relaxant responses were elicited by electrical stimulation of its nitrergic nerves and by the three redox forms of nitrogen monoxide.The nitroxyl anion (NO−) was donated by dissociation of Angeli's salt; the free radical (NO•) was from an aqueous solution of nitric oxide gas; the nitrosonium cation (NO+) was donated by dissociation of nitrosonium tetrafluoroborate.The concentrations producing approximately 50% relaxations of the anococcygeus muscle were 0.3 μM for Angeli's salt (nitroxyl), 0.5 μM for NO• and 100 μM for nitrosonium tetrafluoroborate. Nitrergic nerve stimulation at 1 Hz for 10 s produced equivalent relaxant responses.The superoxide generator pyrogallol (100 μM) had no effect on responses to nitrergic nerve stimulation or Angeli's salt but significantly reduced responses to NO• and nitrosonium tetrafluoroborate.The NO• scavenger carboxy-PTIO (100 μM) had no effect on responses to nitrergic nerve stimulation or Angeli's salt but significantly reduced responses to NO• and nitrosonium tetrafluoroborate.Hydroxocobalamin (30 μM) had no significant effect on responses to the nitrergic transmitter, enhanced the response to Angeli's salt, and significantly reduced responses to NO• and nitrosonium tetrafluoroborate.The findings suggest that the nitroxyl anion donated by Angeli's salt is a better candidate than NO• to serve as the nitrergic transmitter in the rat anococcygeus muscle, although it still does not behave exactly like the transmitter. PMID:10433488

  5. Inhibitory effects of atropine and hexamethonium on the angiotensin II-induced contractions of rat anococcygeus smooth muscles.

    PubMed

    de Godoy, Márcio Augusto Fressatto; Accorsi-Mendonça, Daniela; de Oliveira, Ana Maria

    2003-02-01

    We have evaluated the interaction between angiotensin II (Ang II) and the cholinergic transmission in anococcygeus smooth muscles isolated from rats treated (sympathectomised group) or not (vehicle group) with reserpine and alpha-methyl-p-tyrosine. For this, we contracted the tissues with Ang II in the presence and absence of atropine and hexamethonium. Ang II induced concentration-dependent contractions, which did not undergo temporal changes in tissues isolated from both groups of rats. In the vehicle group, Ang II induced more potent contractions than in the sympathectomised group. In the sympathectomised rat group, atropine inhibited the contractions induced by Ang II in a concentration-dependent fashion with no decrease in E(max). Additionally, hexamethonium inhibited the contraction induced by Ang II in a concentration-dependent fashion with a decrease in E(max). Association of atropine and hexamethonium produced Ang II-induced curves with rightward shifts from the control curve with a decrease in E(max). Incubation with N(G)-nitro-L-arginine methyl ester (L-NAME) reversed the effects of atropine and hexamethonium association. Conversely, in the vehicle group of rats, atropine and hexamethonium did not produce any significant effect. However, in the presence of yohimbine, atropine shifted the Ang II-induced curves to the right of the control curve with no E(max) decrease. Results suggest that there is a positive interaction between Ang II and cholinergic transmission in the rat anococcygeus smooth muscle mediated by angiotensin receptors located on pre-ganglionic cells.

  6. The effect of palytoxin on neuromuscular junctions in the anococcygeus muscle of the rat.

    PubMed

    Amir, I; Harris, J B; Zar, M A

    1997-06-01

    Palytoxin, a highly toxic natural product isolated from zoanthids of the genus Palythoa, is accumulated by a wide range of fishes and marine invertebrates used as food in the Indo-Pacific. It is responsible for many incidents of human morbidity and mortality. The toxin is a potent smooth muscle spasmogen. The cause of the contraction of smooth muscle is unclear, but recent work strongly suggests that it is primarily initiated by the release of neurotransmitters from the motor innervation of the smooth muscle. We show here that palytoxin caused the swelling of the muscle cells and some internal organelles of the anococcygeus muscle of the rat, but no substantial structural damage to the tissue. Axons and Schwann cells were also swollen but the most dramatic feature was the depletion of synaptic vesicles from putative release sites in the axons. Some axons were physically damaged following exposure to the toxin, but this was relatively uncommon (< 10% of all axons studied). In the majority of axons there was no damage to nerve terminal membranes, but there was damage to mitochondria. The depletion of vesicles involved all types-clear, dense-cored, large and small. Our observations and pharmacological data gathered elsewhere, provide a neuropathological basis for the spasmogenic activity of palytoxin.

  7. The inhibitory effect of somatostatin peptides on the rat anococcygeus muscle in vitro.

    PubMed Central

    Priestley, T.; Woodruff, G. N.

    1988-01-01

    1. Electrically evoked contractions of the rat anococcygeus muscle were inhibited in a concentration-dependent manner by somatostatin-14 (SS14), -28 (SS28) and two synthetic hexapeptide analogues: L-363,301 (Pro-Phe-D-Trp-Lys-Thr-Phe) and L-363,586 (N-Me-Ala-Tyr-D-Trp-Lys-Val-Phe), with pIC50 values of 7.41, 7.38, 7.07 and 8.34, respectively. 2. The inhibitory effects of SS14 were dependent on stimulation frequency and external calcium ion concentration. Calcium behaved as a non-competitive antagonist of SS14, it reduced the maximal inhibitory effect of the peptide and at a concentration of 5.08 mM it significantly affected the pIC50 value. 3. SS14 (3 x 10(-7) M) did not affect the tonic actions of bath-applied noradrenaline in the absence of field stimulation. 4. The effects of SS14 persisted in naloxone (10(-5) M) and were, therefore, not due to an action at opiate receptors. Furthermore, experiments involving the lyophilization of bath contents, showed no evidence to support an indirect mechanism involving the release of an endogenous inhibitory substance. 5. High concentrations (10(-5) M) of SS14 or L-363,301 inhibited the relaxation response evoked by electrical stimulation of guanethidine (3 x 10(-4) M)-treated preparations. 6. These results are consistent with similar actions of SS14 on other smooth muscle preparations and are presumed to reflect a presynaptic inhibition of transmitter release by a direct action on somatostatin receptors. The antagonistic effect of calcium on this response is discussed with reference to a possible role in receptor desensitization. PMID:2900039

  8. Biphasic non-adrenergic, non-cholinergic relaxations of the mouse anococcygeus muscle.

    PubMed Central

    Gibson, A.; Yu, O.

    1983-01-01

    Trains of field stimulation of 60 s duration caused a biphasic relaxation of carbachol (50 microM)-induced tone in the mouse anococcygeus. The optimal pulse frequency and width were 10 Hz and 1 ms respectively. Tetrodotoxin (31, 124, and 310 nM) caused a dose-dependent reduction in the magnitude of both phases. Neither phase was affected by (+/-)-propranolol (1 microM), neostigmine (1 microM), (+)-tubocurarine (100 microM), or apamin (500 nM). Biphasic relaxations were observed in muscles from 6-hydroxydopamine pretreated mice. Haemolysed blood (10, 40, and 100 microliter/ml) reduced the magnitude of the first phase of nerve-induced relaxation to a greater extent than the second. This effect was reversible. Following a prolonged train of inhibitory nerve stimulation (10 Hz; 10 min) the magnitude of the first phase was reduced only slightly, but the second markedly. The possible relationships between the biphasic relaxation to field stimulation and putative non-adrenergic, non-cholinergic transmitters in the mouse anococcygeus are discussed. PMID:6652345

  9. A comparative study of sildenafil, NCX-911 and BAY41-2272 on the anococcygeus muscle of diabetic rats.

    PubMed

    Kalsi, Jasjit S; Ralph, David J; Madge, David J; Kell, Phil D; Cellek, Selim

    2004-12-01

    We compared the effects of a nitric oxide (NO)-releasing sildenafil (NCX-911), NO-independent soluble guanylate cyclase activator (BAY41-2272) and sildenafil on the anococcygeus muscle from streptozotocin-induced 16-weeks diabetic rats. NCX-911, BAY41-2272 and sildenafil reduced the phenylephrine-induced tone in the control group (EC50=1088.8+/-165.0, 151.6+/-9.3 and 827.1+/-167.3 nM, respectively). The potencies of NCX-911 and BAY41-2272 were not altered, but that of sildenafil was significantly reduced in the diabetic group. EC50 values for NCX-911, BAY41-2272 and sildenafil in the diabetic group were 1765.9+/-303.5, 209.7+/-27.3 and 2842.2+/-640.3 nM, respectively (P<0.05 for sildenafil). Nitrergic relaxation responses were significantly decreased in the diabetic group. The remaining nitrergic relaxation responses were potentiated by BAY41-2272 but not by sildenafil or NCX-911. These results confirm that endogenous NO derived from nitrergic nerves is significantly decreased in diabetes, and suggest that NO-releasing PDE5 inhibitors and NO-independent soluble guanylate cyclase activators could be more useful than PDE5 inhibitors in the treatment of ED in long-term diabetes.

  10. Effects of pyrogallol, hydroquinone and duroquinone on responses to nitrergic nerve stimulation and NO in the rat anococcygeus muscle

    PubMed Central

    La, Mylinh; Rand, Michael J

    1999-01-01

    The hypothesis that endogenous superoxide dismutase (SOD) protects the nitrergic transmitter from inactivation by superoxide and that this explains the lack of sensitivity of the transmitter to superoxide generators was tested in the rat isolated anococcygeus muscle.Responses to nitrergic nerve stimulation or to NO were not significantly affected by exogenous SOD or by the Cu/Zn SOD inhibitor diethyldithiocarbamic acid (DETCA).Hydroquinone produced a concentration-dependent reduction of responses to NO with an IC50 of 27 μM, and higher concentrations reduced relaxant responses to nitrergic nerve stimulation with an IC50 of 612 μM. The effects of hydroquinone were only slightly reversed by SOD, so it does not appear to be acting as a superoxide generator.Pyrogallol produced a concentration-dependent reduction in responses to NO with an IC50 value of 39 μM and this effect was reversed by SOD (100–1000 u ml−1). Pyrogallol did not affect responses to nitrergic nerve stimulation. Treatment with DETCA did not alter the differentiating action of pyrogallol.Duroquinone produced a concentration-dependent reduction of relaxations to NO with an IC50 value of 240 μM and 100 μM slightly decreased nitrergic relaxations. After treatment with DETCA, duroquinone produced greater reductions of relaxant responses to NO and to nitrergic stimulation, the IC50 values being 8.5 μM for NO and 40 μM for nitrergic nerve stimulation: these reductions were reversed by SOD.The findings do not support the hypothesis that the presence of Cu/Zn SOD explains the greater susceptibility of NO than the nitrergic transmitter to the superoxide generator pyrogallol, but suggest that it may play a role in the effects of duroquinone. PMID:10051154

  11. Release of the antioxidants ascorbate and urate from a nitrergically-innervated smooth muscle.

    PubMed

    Lilley, E; Gibson, A

    1997-12-01

    1. The main object of the present study was to determine whether ascorbate, an antioxidant which has been shown to protect nitric oxide (NO) from attack by scavenger molecules, might be released from nitrergically-innervated smooth muscle; ascorbate release from the rat anococcygeus was measured by use of h.p.l.c. with electrochemical detection. 2. Incubation of rat anococcygeus muscles in normal physiological salt solution (PSS; 30 min) resulted in release of ascorbate into the bathing medium (7.7 +/- 0.9 nmol g-1 tissue). This release was increased by 96% when muscles were incubated in high K+ (70 mM) PSS. The resting release of ascorbate was unaffected by tetrodotoxin (TTX; 1 microM), omega-conotoxin GVIA (10 nM) or omission of calcium ions from the PSS (with addition of 0.2 mM EGTA), but all three procedures attenuated the increased release observed under depolarizing conditions. Resting release of ascorbate was unaffected by glutamate (100 microM), aspartate (100 microM), gamma-aminobutyric acid (100 microM) or carbachol (50 microM). 3. A second h.p.l.c. peak, which always preceded the ascorbate peak, was identified as urate. Urate release from the anococcygeus, following 30 min incubation in normal PSS, was 64.6 +/- 12.7 nmol g-1 tissue but, unlike ascorbate, urate release was unchanged in high K+ PSS. In functional experiments, urate (100-400 microM) partially protected NO (15 microM)-induced relaxations of the rat anococcygeus from inhibition by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO; 50 microM), but not from inhibition by hydroquinone or duroquinone (both 100 microM). 4. Muscles chemically sympathectomized with 6-hydroxydopamine (6-OHDA, 500 microM; 2 h) still exhibited release of ascorbate (2.5 +/- 0.4 nmol g-1 tissue) and urate (22.2 +/- 2.9 nmol g-1 tissue); in both cases the release was similar to that observed in time-matched control tissues not exposed to 6-OHDA. High K+ PSS produced a TTX-sensitive increase

  12. Structural limits on force production and shortening of smooth muscle.

    PubMed

    Siegman, Marion J; Davidheiser, Sandra; Mooers, Susan U; Butler, Thomas M

    2013-02-01

    This study determined the factors that limit force production and shortening in two smooth muscles having very different relationships between active and passive force as a function of muscle length. The rat anococcygeus muscle develops active force over the range of lengths 0.2-2.0× the optimum length for force production (Lo). Passive tension due to extension of the resting muscle occurs only at lengths exceeding Lo. In contrast, the rabbit taenia coli develops force in the range of lengths 0.4-1.1 Lo, and passive force which is detectable at 0.56 Lo, increases to ~0.45 maximum active force at Lo, and increases sharply with further extension. The anococcygeus muscle can shorten to 0.2 Lo and the taenia coli to 0.4 Lo. Dynamic stiffness and energy usage at short muscle lengths suggest that the limit of shortening in the taenia coli, in contrast to the anococcygeus muscle, is not due to a failure of cross bridge interaction. Phosphorylation of the regulatory myosin light chains in intact muscles decreased to a small extent at short lengths compared to the decrease in force production. The differences in force production and the extent of shortening in the two muscles was maintained even when, following permeabilization, the myosin light chains were irreversibly phosphorylated with ATPγS, indicating that differences in activation played little, if any role. Ultrastructural studies on resting and activated muscles show that the taenia coli, which is rich in connective tissue (unlike the anococcygeus muscle) undergoes marked cellular twisting and contractile filament misalignment at short lengths with compression of the extracellular matrix. As a result, force is not transmitted in the longitudinal axis of the muscle, but is dissipated against an internal load provided by the compressed extracellular matrix. These observations on two very different normal smooth muscles reveal how differences in the relative contribution of active and passive structural elements

  13. Release of [3H-noradrenaline from the motor adrenergic nerves of the anococcygeus muscle by lysergic acid diethylamide, tyramine or nerve stimulation.

    PubMed Central

    McGrath, J C; Olverman, H J

    1978-01-01

    1 A method is described for labelling the neuronal noradrenaline (NA) stores of rat anococcygeus with [3H]-NA and detecting subsequent release of 3H from the superfused tissue by nerve stimulation or drugs. 2 Lysergic acid diethylamide (LSD) or tyramine but not barium chloride or carbachol increased the efflux of 3H although each drug produced an equivalent contractile response. This confirms that LDS has an indirect sympathomimetic action. 3 LSD was found to produce a proportionately smaller reduction of the nerve-induced efflux of 3H than of the accompanying contractile response. 4 The inhibition of nerve-induced contractile responses by LSD was shown to be independent of the neuronal uptake of noradrenaline and any post-junctional inhibition demonstrated to be non-specific. PMID:728688

  14. The effect of coniine on presynaptic nicotinic receptors.

    PubMed

    Erkent, Ulkem; Iskit, Alper B; Onur, Rustu; Ilhan, Mustafa

    2016-01-01

    Toxicity of coniine, an alkaloid of Conium maculatum (poison hemlock), is manifested by characteristic nicotinic clinical signs including excitement, depression, hypermetria, seizures, opisthotonos via postsynaptic nicotinic receptors. There is limited knowledge about the role of presynaptic nicotinic receptors on the pharmacological and toxicological effects of coniine in the literature. The present study was undertaken to evaluate the possible role of presynaptic nicotinic receptors on the pharmacological and toxicological effects of coniine. For this purpose, the rat anococcygeus muscle and guinea-pig atria were used in vitro. Nicotine (100 μM) elicited a biphasic response composed of a relaxation followed by contraction through the activation of nitrergic and noradrenergic nerve terminals in the phenylephrine-contracted rat anococcygeus muscle. Coniine inhibited both the nitrergic and noradrenergic response in the muscle (-logIC(50) = 3.79 ± 0.11 and -logIC(50) = 4.57 ± 0.12 M, respectively). The effect of coniine on nicotinic receptor-mediated noradrenergic transmission was also evaluated in the guinea-pig atrium (-logIC(50) = 4.47 ± 0.12 M) and did not differ from the -logIC(50) value obtained in the rat anococcygeus muscle. This study demonstrated that coniine exerts inhibitory effects on nicotinic receptor-mediated nitrergic and noradrenergic transmitter response.

  15. Composition of Muscle Fiber Types in Rat Rotator Cuff Muscles.

    PubMed

    Rui, Yongjun; Pan, Feng; Mi, Jingyi

    2016-10-01

    The rat is a suitable model to study human rotator cuff pathology owing to the similarities in morphological anatomy structure. However, few studies have reported the composition muscle fiber types of rotator cuff muscles in the rat. In this study, the myosin heavy chain (MyHC) isoforms were stained by immunofluorescence to show the muscle fiber types composition and distribution in rotator cuff muscles of the rat. It was found that rotator cuff muscles in the rat were of mixed fiber type composition. The majority of rotator cuff fibers labeled positively for MyHCII. Moreover, the rat rotator cuff muscles contained hybrid fibers. So, compared with human rotator cuff muscles composed partly of slow-twitch fibers, the majority of fast-twitch fibers in rat rotator cuff muscles should be considered when the rat model study focus on the pathological process of rotator cuff muscles after injury. Gaining greater insight into muscle fiber types in rotator cuff muscles of the rat may contribute to elucidate the mechanism of pathological change in rotator cuff muscles-related diseases. Anat Rec, 299:1397-1401, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Skeletal muscle metabolism in hypokinetic rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.

    1984-01-01

    Muscle growth, protein metabolism, and amino acid metabolism were studied in various groups of rats. Certain groups were adrenaliectomized; some rats were suspended while others (the controls) were weight bearing. Results show that: (1) metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating glucocorticoids; (2) metabolic changes in the soleus muscle due to higher steroid levels are probably potentiated by greater numbers of steroid receptors; and (3) not all metabolic responses of the soleus muscle to unloading are due to the elevated levels of glucocorticoids or the increased sensitivity of this muscle to these hormones.

  17. Evaluation of the rat bladder-derived relaxant factor by coaxial bioassay system.

    PubMed

    Bozkurt, Turgut Emrah; Sahin-Erdemli, Inci

    2004-07-14

    The release of bladder-derived relaxant factor in a coaxial bioassay system and the effects of reactive oxygen species were studied. After precontraction with phenylephrine (10(-6)-3x10(-6)) or 50 mM K+, acetylcholine (10(-8)-10(-3) M) induced relaxation in rat anococcygeus muscle mounted within rat bladder in a tissue bath. This relaxation was not altered by the removal of the urothelium or incubation with tetrodotoxin (10(-6) M). However, bupivacaine (10(-4) M) and lidocaine (3 x 10(-4) M) inhibited this response after raising the pH of the nutrient solution to 7.8, and oxybuprocaine (10(-4) M) exerted inhibitory effect at both physiological pH (7.4) and at pH 7.8. Exposure to electrolysis-generated reactive oxygen species or incubation with hydrogen peroxide and pyrogallol did not alter the acetylcholine response. Present results indicate that the bladder-derived relaxant factor does not behave like endothelium-derived hyperpolarizing factor, but its release may be associated with tetrodotoxin-resistant Na+ channels, which are probably in the neurons of the bladder rather than in the urothelium or detrusor muscle. Furthermore, reactive oxygen species do not interact with this relaxing factor, the exact nature and the physiological importance of which, however, remains to be established.

  18. Mangiferin protects against adverse skeletal muscle changes and enhances muscle oxidative capacity in obese rats

    PubMed Central

    Acevedo, Luz M.; Raya, Ana I.; Martínez-Moreno, Julio M.

    2017-01-01

    Obesity-related skeletal muscle changes include muscle atrophy, slow-to-fast fiber-type transformation, and impaired mitochondrial oxidative capacity. These changes relate with increased risk of insulin resistance. Mangiferin, the major component of the plant Mangifera indica, is a well-known anti-inflammatory, anti-diabetic, and antihyperlipidemic agent. This study tested the hypothesis that mangiferin treatment counteracts obesity-induced fiber atrophy and slow-to-fast fiber transition, and favors an oxidative phenotype in skeletal muscle of obese rats. Obese Zucker rats were fed gelatin pellets with (15 mg/kg BW/day) or without (placebo group) mangiferin for 8 weeks. Lean Zucker rats received the same gelatin pellets without mangiferin and served as non-obese and non-diabetic controls. Lesser diameter, fiber composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of myosin-based fiber-types were assessed in soleus and tibialis cranialis muscles. A multivariate discriminant analysis encompassing all fiber-type features indicated that obese rats treated with mangiferin displayed skeletal muscle phenotypes significantly different compared with both lean and obese control rats. Mangiferin significantly decreased inflammatory cytokines, preserved skeletal muscle mass, fiber cross-sectional size, and fiber-type composition, and enhanced muscle fiber oxidative capacity. These data demonstrate that mangiferin attenuated adverse skeletal muscle changes in obese rats. PMID:28253314

  19. Mangiferin protects against adverse skeletal muscle changes and enhances muscle oxidative capacity in obese rats.

    PubMed

    Acevedo, Luz M; Raya, Ana I; Martínez-Moreno, Julio M; Aguilera-Tejero, Escolástico; Rivero, José-Luis L

    2017-01-01

    Obesity-related skeletal muscle changes include muscle atrophy, slow-to-fast fiber-type transformation, and impaired mitochondrial oxidative capacity. These changes relate with increased risk of insulin resistance. Mangiferin, the major component of the plant Mangifera indica, is a well-known anti-inflammatory, anti-diabetic, and antihyperlipidemic agent. This study tested the hypothesis that mangiferin treatment counteracts obesity-induced fiber atrophy and slow-to-fast fiber transition, and favors an oxidative phenotype in skeletal muscle of obese rats. Obese Zucker rats were fed gelatin pellets with (15 mg/kg BW/day) or without (placebo group) mangiferin for 8 weeks. Lean Zucker rats received the same gelatin pellets without mangiferin and served as non-obese and non-diabetic controls. Lesser diameter, fiber composition, and histochemical succinic dehydrogenase activity (an oxidative marker) of myosin-based fiber-types were assessed in soleus and tibialis cranialis muscles. A multivariate discriminant analysis encompassing all fiber-type features indicated that obese rats treated with mangiferin displayed skeletal muscle phenotypes significantly different compared with both lean and obese control rats. Mangiferin significantly decreased inflammatory cytokines, preserved skeletal muscle mass, fiber cross-sectional size, and fiber-type composition, and enhanced muscle fiber oxidative capacity. These data demonstrate that mangiferin attenuated adverse skeletal muscle changes in obese rats.

  20. Hyperglycemia inhibits recovery from disuse-induced skeletal muscle atrophy in rats.

    PubMed

    Kataoka, H; Nakano, J; Morimoto, Y; Honda, Y; Sakamoto, J; Origuchi, T; Okita, M; Yoshimura, T

    2014-01-01

    The purpose of this study was to evaluate the effects of hyperglycemia on skeletal muscle recovery following disuse-induced muscle atrophy in rats. Wistar rats were grouped as streptozotocin-induced diabetic rats and non-diabetic rats. Both ankle joints of each rat were immobilized to induce atrophy of the gastrocnemius muscles. After two weeks of immobilization and an additional two weeks of recovery, tail blood and gastrocnemius muscles were isolated. Serial cross sections of muscles were stained for myosin ATPase (pH 4.5) and alkaline phosphatase activity. Serum insulin and muscle insulin-like growth factor-1 (IGF-1) levels were also measured. Serum insulin levels were significantly reduced in the diabetic rats compared to the non-diabetic controls. The diameters of type I, IIa, and IIb myofibers and capillary-to-myofiber ratio in the isolated muscle tissue were decreased after immobilization in both treatments. During the recovery period, these parameters were restored in the non-diabetic rats, but not in the diabetic rats. In addition, muscle IGF-1 levels after recovery increased significantly in the non-diabetic rats, but not in the diabetic rats. We conclude that decreased levels of insulin and IGF-1 and impairment of angiogenesis associated with diabetes might be partly responsible for the inhibition of regrowth in diabetic muscle.

  1. Muscle fiber types composition and type identified endplate morphology of forepaw intrinsic muscles in the rat.

    PubMed

    Pan, Feng; Mi, Jing-Yi; Zhang, Yan; Pan, Xiao-Yun; Rui, Yong-Jun

    2016-06-01

    The failure to accept reinnervation is considered to be one of the reasons for the poor motor functional recovery of intrinsic hand muscles (IHMs) after nerve injury. Rat could be a suitable model to be used in simulating motor function recovery of the IHMs after nerve injury as to the similarities in function and anatomy of the muscles between human and rat. However, few studies have reported the muscle fiber types composition and endplate morphologic characteristics of intrinsic forepaw muscles (IFMs) in the rat. In this study, the myosin heavy chain isoforms and acetylcholine receptors were stained by immunofluorescence to show the muscle fiber types composition and endplates on type-identified fibers of the lumbrical muscles (LMs), interosseus muscles (IMs), abductor digiti minimi (AM) and flexor pollicis brevis (FM) in rat forepaw. The majority of IFMs fibers were labeled positively for fast-switch fiber. However, the IMs were composed of only slow-switch fiber. With the exception of the IMs, the other IFMs had a part of hybrid fibers. Two-dimensional morphological characteristics of endplates on I and IIa muscle fiber had no significant differences among the IFMs. The LMs is the most suitable IFMs of rat to stimulate reinnervation of the IHMs after nerve injury. Gaining greater insight into the muscle fiber types composition and endplate morphology in the IFMs of rat may help understand the pathological and functional changes of IFMs in rat model stimulating reinnervation of IHMs after peripheral nerve injury.

  2. Tongue muscle plasticity following hypoglossal nerve stimulation in aged rats

    PubMed Central

    Connor, Nadine P.; Russell, John A.; Jackson, Michelle A.; Kletzien, Heidi; Wang, Hao; Schaser, Allison J.; Leverson, Glen E.; Zealear, David L.

    2012-01-01

    Introduction Age-related decreases in tongue muscle mass and strength have been reported. It may be possible to prevent age-related tongue muscle changes using neuromuscular electrical stimulation (NMES). Our hypothesis was that alterations in muscle contractile properties and myosin heavy chain composition would be found following NMES. Methods Fifty-four young, middle-aged and old Fischer 344/Brown Norway rats were included. Twenty-four rats underwent bilateral electrical stimulation of the hypoglossal nerves for 8 weeks and were compared with control or sham rats. Muscle contractile properties and myosin heavy chain (MHC) in the genioglossus (GG), styloglossus (SG) and hyoglossus (HG) muscles were examined. Results In comparison with unstimulated control rats, we found reduced muscle fatigue, increased contraction and half decay times and increased twitch and tetanic tension. Increased Type I MHC was found, except for GG in old and middle-aged rats. Discussion Transitions in tongue muscle contractile properties and phenotype were found following NMES. PMID:23169566

  3. Comparison of sarcoplasmic reticulum capabilities in toadfish (Opsanus tau) sonic muscle and rat fast twitch muscle.

    PubMed

    Feher, J J; Waybright, T D; Fine, M L

    1998-08-01

    The sonic muscle of the oyster toadfish, Opsanus tau, can produce unfused contractions at 300 Hz. Electron microscopy shows a great abundance of the Sarcoplasmic reticulum (SR) in this muscle, but no functional characterization of the capabilities of the SR has been reported. We measured the oxalate-supported Ca2+ uptake rate and capacities of homogenates of toadfish sonic muscle and rat extensor digitorum longus (EDL) muscle, and estimated the number of pump units by titration with thapsigargin, a high-affinity, specific inhibitor of the SR Ca-ATPase. The Ca2+ uptake rate averaged 70.9 +/- 9.5 mumol min -1 per g tissue for the toad fish sonic muscle, and 73.5 +/- 3.7 mumol min -1 g-1 for rat EDL. The capacity for Ca2+ -oxalate uptake was 161 +/- 20 mumol g -1 and 33 +/- 2 mumol g -1 for toadfish sonic muscle and rat EDL, respectively. Thus, the rates of Ca2+ uptake were similar in the two muscles, but the toadfish sonic muscle had about five times the capacity of the rat EDL. The number of pumps as estimated by thapsigargin titration was 68 +/- 4 nmol of Ca-ATPase per g tissue in the toadfish, and 42 +/- 5 nmol Ca-ATPase per g tissue in the rat EDL. The turnover number, defined as the Ca2+ uptake divided by the number of pumps, was 1065 +/- 150 min -1 for toadfish and 1786 +/- 230 min -1 for rat EDL (p < 0.05) at 37 degrees C. The Ca2+ uptake rate of toadfish sonic muscle at 22 degree C, a typical temperature for calling toadfish, averaged 42 +/- 1% of its rate at 37 degree C. At these operating temperatures, the toadfish SR is likely to be slower than the rat fast-twitch SR, yet the toadfish sonic muscle supports more rapid contractions. One explanation for this is that the voluminous SR provides activator Ca2+ for contraction, but the abundant parvalbumin plays a major role in relaxation.

  4. The influence of rat suspension-hypokinesia on the gastrocnemius muscle

    NASA Technical Reports Server (NTRS)

    Templeton, G. H.; Padalino, M.; Manton, J.; Leconey, T.; Hagler, H.; Glasberg, M.

    1984-01-01

    Hind-limb hypokinesia was induced in rats by the Morey method to characterize the response of the gastrocnemius muscle. A comparison of rats suspended for 2 weeks with weight, sex, and litter-matched control rats indicate no difference in gastrocnemius wet weight, contraction, or one-half relaxation times, but less contractile function as indicated by lowered dP/dt. Myosin ATPase staining identified uniform Type I (slow-twitch) and II (fast-twitch) atrophy in the muscles from 4 of 10 rats suspended for 2 weeks and 1 of 12 rats suspended for 4 weeks; muscles from three other rats of the 4-week group displayed greater Type I atrophy. Other histochemical changes were characteristic of a neuropathy. These data together with recently acquired soleus data (29) indicate the Morey model, like space flight, evokes greater changes in the Type I or slow twitch fibers of the gastrocnemius and soleus muscles.

  5. Alterations in Skeletal Muscle Microcirculation of Head-Down Tilted Rats

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Stepke, Bernhard; Fleming, John T.; Joshua, Irving G.

    1992-01-01

    In this study we assessed the function of microscopic blood vessels in skeletal muscle (cremaster muscle) for alterations which may contribute to the observed elevation of blood pressure associated with head-down tilted whole body suspension (HDT/WBS), a model of weightlessness. Arteriolar baseline diameters, vasoconstrictor responses to norepinephrine (NE) and vasodilation to nitroprusside (NP) were assessed in control rats, rats suspended for 7 or 14 day HDT/WBS rats, and rats allowed to recover for 1 day after 7 days HDT/WBS. Neither baseline diameters nor ability to dilate were influenced by HDT/WBS. Maximum vasoconstriction to norepinephrine was significantly greater in arterioles of hypertensive 14 day HDT/WBS rats. This first study of the intact microvasculature in skeletal muscle indicates that an elevated contractility of arterioles to norepinephrine in suspended rats, and suggests an elevated peripheral resistance in striated muscle may contribute to the increase in blood pressures among animals subjected to HDT/WBS.

  6. The Impact of Muscle Disuse on Muscle Atrophy in Severely Burned Rats

    DTIC Science & Technology

    2010-12-01

    Following muscle collection from the right hindlimb, muscle isometric force of PL and SL was measured simultaneously in the left hindlimb under...37.5°C by manually adjusting the temperature of cir culating water in the rat surgical bed. The isometric force of the PL and SL muscles was then...the physiologic cross sectional area (CSA) of PL and SL was calculated using the following formula: CSA= ( muscle mass) × cos θ ( muscle fiber

  7. Influence of spaceflight on rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Martin, Thomas P.; Edgerton, V. Reggie; Grindeland, Richard E.

    1988-01-01

    The effect of a 7-day spaceflight (aboard NASA's SL-3) on the size and the metabolism of single fibers from several rat muscles was investigated along with the specificity of these responses as related to the muscle type and the size of fibers. It was found that the loss of mass after flight was varied from 36 percent in the soleus to 15 percent in the extensor digitorum longus. Results of histochemical analyses showed that the succinate dehydrogenase (SDH) activity in muscles of flight-exposed rats was maintained at the control levels, whereas the alpha-glycerol phosphate dehydrogenase (GPD) activity was either maintained or increased. The analyses of the metabolic profiles of ATPase, SDH, and GPD indicated that, in some muscles, there was an increase in the poportion of fast oxidative-glycolytic fibers.

  8. Effects of agents that inactivate free radical NO (NO•) on nitroxyl anion-mediated relaxations, and on the detection of NO• released from the nitroxyl anion donor Angeli's salt

    PubMed Central

    Ellis, Anthie; Lu, Hong; Li, Chun Guang; Rand, Michael J

    2001-01-01

    The effects of agents that inactivate free radical nitric oxide (carboxy-PTIO, hydroxocobalamin and pyrogallol) were tested on relaxations produced by the nitroxyl anion (NO−) donor Angeli's salt in rat aortic rings and anococcygeus muscles. The amount of NO• generated from Angeli's salt in the presence of these agents was measured using a NO•-selective electrode sensor. Carboxy-PTIO (100, 300 μM), hydroxocobalamin (30, 100 μM) and pyrogallol (10, 30 μM) significantly reduced relaxations produced by Angeli's salt (0.3 μM) in aortic rings but not in anococcygeus muscles. NO• generated from Angeli's salt (0.1 – 10 μM), as detected by the sensor electrode, was less than 0.5% of the amount of Angeli's salt added. Carboxy-PTIO (100 μM) and hydroxocobalamin (30 μM), but not pyrogallol significantly increased the amount of NO• detected. In the presence of an oxidizing agent copper [II] (as CuSO4 100 μM), the amount of NO• detected from 0.3 μM of Angeli's salt increased from an undetectable level of 142.7±15.7 nM (equivalent to 47.6% of Angeli's salt added). Under these conditions, carboxy-PTIO, hydroxocobalamin and pyrogallol significantly reduced the amount of NO• detected from Angeli's salt as well as the signal generated by an equivalent amount of authentic NO (0.33 μM). The difference in effects of these agents on relaxations to Angeli's salt in the aorta and the anococcygeus muscle may be explained by the ready conversion of NO− to NO• in the aorta through an unidentified mechanism, which makes NO− susceptible to inactivation by these agents. Furthermore, in addition to inactivating NO•, carboxy-PTIO and hydroxocobalamin may themselves oxidize NO− to NO•, albeit slightly. PMID:11588105

  9. Reduction-oxidation state and protein degradation in skeletal muscle of fasted and refed rats

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1986-01-01

    Redox state and protein degradation were measured in isolated muscles of fasted (up to 10 d) and refed (up to 4 d) 7- to 14-wk-old rats. Protein degradation in the extensor digitorum longus muscle, but not in the soleus muscle, was greater in the fasted rats than in weight-matched muscle from fed rats. The NAD couple was more oxidized in incubated and fresh extensor digitorum longus muscles and in some incubated soleus muscles of fasted rats than in weight-matched muscle from fed rats. In the extensor digitorum longus muscle of refed or prolonged fasted rats, protein degradation was slower and the NAD couple was more reduced than in the fed state. Therefore, oxidation of the NAD couple was associated with increased muscle breakdown during fasting, whereas reduction of the NAD couple was associated with muscle conservation and deposition.

  10. Beef extract supplementation increases leg muscle mass and modifies skeletal muscle fiber types in rats.

    PubMed

    Yoshihara, Hiroyuki; Wakamatsu, Jun-Ichiro; Kawabata, Fuminori; Mori, Sunao; Haruno, Atsushi; Hayashi, Toshiya; Sekiguchi, Takeshi; Mizunoya, Wataru; Tatsumi, Ryuichi; Ito, Tatsumi; Ikeuchi, Yoshihide

    2006-06-01

    The objective of this research was to investigate the effects of beef extract on fat metabolism, muscle mass and muscle fiber types in rats. We also investigated the synergetic effect of endurance exercise. Twenty-four male rats weighing about 270 g were assigned to two diets containing 0 or 6% beef extract (BE). Half the rats fed each diet were subjected to compulsory exercise (CE) for 30 min every other day. After 4 weeks feeding, the blood was collected and various organs were dissected. The muscle fiber type of the soleus and extensor digitorum longus (EDL) muscles were evaluated by histochemical and electrophoretical analyses. Rats supplemented with BE showed a decrease in fat content in liver and abdomen and an increase in the activity of carnitine palmitoyl transferase II in liver. BE as well as exercise increased the relative weights of both soleus and EDL. BE alone and BE plus CE did not affect the distribution of muscle fiber types in soleus. BE without exercise decreased in type IIb of EDL from 54% to 44% with compensatory increase in type IIa from 41% to 49% and type I from 5% to 7% compared with the nonsupplemented, nonexercised control group. No synergetic effect on a fast to slow fiber conversion due to the combination of BE and CE was detected. Thus, BE supplement increased muscle mass and slow type fiber in EDL. The effects of BE supplement on muscle characteristics were similar to those of exercise. beef extract, fat metabolism, muscle fiber type, muscle mass, L-carnitine

  11. Evidence for alpha 2-adrenoceptor agonist activity of minoxidil.

    PubMed

    Sharma, N; Mehta, A A; Santani, D D; Goyal, R K

    1997-09-01

    The present investigation was undertaken to study the mechanism of action of minoxidil using various smooth muscle preparations. Minoxidil (4.7 x 10(-6) M to 4.7 x 10(-4) M) produced a concentration-dependent inhibition of field stimulation-evoked responses in rat anococcygeus muscle and vas deferens. The inhibition produced by minoxidil was antagonized by yohimbine (2.5 x 10(-7) M). Minoxidil (1.4 x 10(-5) M to 4.7 x 10(-4) M) also produced a concentration-dependent relaxation in oestrogen-primed potassium chloride-depolarized rat uterus. These responses were blocked not only by yohimbine but also by glibenclamide (2.02 x 10(-8) M). Our results suggest that minoxidil possesses alpha 2-adrenoceptor agonist activity in addition to potassium-channel-opening activity.

  12. Muscle Contractile Properties in Severely Burned Rats

    DTIC Science & Technology

    2010-01-01

    slow - twitch muscles such as sloeus (data not shown). In rats, the TA contains predominantly fast ...Hasselgren PO. The molecular regulation of protein breakdown following burn injury is different in fast - and slow - twitch skeletal muscle . Int J Mol Med 1998;1...burn model, it was reported that only fast muscle fibers are affected and slow muscle fibers were mostly preserved [30–32]. We found similar results

  13. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats

    NASA Technical Reports Server (NTRS)

    Marsh, D. R.; Criswell, D. S.; Carson, J. A.; Booth, F. W.

    1997-01-01

    Myogenic factor mRNA expression was examined during muscle regeneration after bupivacaine injection in Fischer 344/Brown Norway F1 rats aged 3, 18, and 31 mo of age (young, adult, and old, respectively). Mass of the tibialis anterior muscle in the young rats had recovered to control values by 21 days postbupivacaine injection but in adult and old rats remained 40% less than that of contralateral controls at 21 and 28 days of recovery. During muscle regeneration, myogenin mRNA was significantly increased in muscles of young, adult, and old rats 5 days after bupivacaine injection. Subsequently, myogenin mRNA levels in young rat muscle decreased to postinjection control values by day 21 but did not return to control values in 28-day regenerating muscles of adult and old rats. The expression of MyoD mRNA was also increased in muscles at day 5 of regeneration in young, adult, and old rats, decreased to control levels by day 14 in young and adult rats, and remained elevated in the old rats for 28 days. In summary, either a diminished ability to downregulate myogenin and MyoD mRNAs in regenerating muscle occurs in old rat muscles, or the continuing myogenic effort includes elevated expression of these mRNAs.

  14. Prophylactic effects of swimming exercise on autophagy-induced muscle atrophy in diabetic rats

    PubMed Central

    Lee, Youngjeon; Kim, Joo-Heon; Hong, Yunkyung; Lee, Sang-Rae; Chang, Kyu-Tae

    2012-01-01

    Diabetes decreases skeletal muscle mass and induces atrophy. However, the mechanisms by which hyperglycemia and insulin deficiency modify muscle mass are not well defined. In this study, we evaluated the effects of swimming exercise on muscle mass and intracellular protein degradation in diabetic rats, and proposed that autophagy inhibition induced by swimming exercise serves as a hypercatabolic mechanism in the skeletal muscles of diabetic rats, supporting a notion that swimming exercise could efficiently reverse the reduced skeletal muscle mass caused by diabetes. Adult male Sprague-Dawley rats were injected intraperitoneally with streptozotocin (60 mg/kg body weight) to induce diabetes and then submitted to 1 hr per day of forced swimming exercise, 5 days per week for 4 weeks. We conducted an intraperitoneal glucose tolerance test on the animals and measured body weight, skeletal muscle mass, and protein degradation and examined the level of autophagy in the isolated extensor digitorum longus, plantaris, and soleus muscles. Body weight and muscle tissue mass were higher in the exercising diabetic rats than in control diabetic rats that remained sedentary. Compared to control rats, exercising diabetic rats had lower blood glucose levels, increased intracellular contractile protein expression, and decreased autophagic protein expression. We conclude that swimming exercise improves muscle mass in diabetes-induced skeletal muscle atrophy, suggesting the activation of autophagy in diabetes contributes to muscle atrophy through hypercatabolic metabolism and that aerobic exercise, by suppressing autophagy, may modify or reverse skeletal muscle wasting in diabetic patients. PMID:23091517

  15. Effects of microgravity on rat muscle

    NASA Technical Reports Server (NTRS)

    Riley, D. A.

    1990-01-01

    It is well known that humans exposed to long term spaceflight experience undesirable progressive muscle weakness and increased fatigability. This problem has prompted the implementation of inflight exercise programs because most investigators believe that the major cause of diminished muscle performance is a combination of disuse and decreased workload. Inflight exercise has improved muscle health, but deficits have persisted, indicating that either the regimens utilized were suboptimal or there existed additional debilitating factors which were not remedied by exercise. Clarification of this question requires an improved understanding of the cellular and molecular basis of spaceflight-induced muscle deterioration. To this end, multiple investigations have been performed on the muscles from rats orbited 5 to 22 days in Cosmos biosatellites and Spacelab-3 (2,4,5,8,10 to 14,16,18,19,21 to 23,25,27,28). The eight Cosmos 1887 investigations examined the structural and biochemical changes in skeletal and cardiac muscles of rats exposed to microgravity for 12.5 days and returned to terrestrial gravity 2.3 days before tissues were collected. Even though interpretation of these results was complicated by the combination of inflight and postflight induced alterations, the consensus is that there is marked heterogeneity in both degree and type of responses from the whole muscle level down to the molecular level. Collectively, the muscle investigations of Cosmos 1887 clearly illustrate the wide diversity of muscle tissue responses to spaceflight. Judging from the summary report of this mission, heterogeneity of responses is not unique to muscle tissue. Elucidating the mechanism underlying this heterogeneity holds the key to explaining adaptation of the organism to prolonged spaceflight.

  16. Effects of voluntary wheel running on satellite cells in the rat plantaris muscle.

    PubMed

    Kurosaka, Mitsutoshi; Naito, Hisashi; Ogura, Yuji; Kojima, Atsushi; Goto, Katsumasa; Katamoto, Shizuo

    2009-01-01

    This study investigated the effects of voluntary wheel running on satellite cells in the rat plantaris muscle. Seventeen 5-week-old male Wistar rats were assigned to a control (n = 5) or training (n = 12) group. Each rat in the training group ran voluntarily in a running-wheel cage for 8 weeks. After the training period, the animals were anesthetized, and the plantaris muscles were removed, weighed, and analyzed immunohistochemically and biochemically. Although there were no significant differences in muscle weight or fiber area between the groups, the numbers of satellite cells and myonuclei per muscle fiber, percentage of satellite cells, and citrate synthase activity were significantly higher in the training group compared with the control group (p < 0.05). The percentage of satellite cells was also positively correlated with distance run in the training group (r = 0.61, p < 0.05). Voluntary running can induce an increase in the number of satellite cells without changing the mean fiber area in the rat plantaris muscle; this increase in satellite cell content is a function of distance run. Key pointsThere is no study about the effect of voluntary running on satellite cells in the rat plantaris muscle.Voluntary running training causes an increase of citrate synthase activity in the rat plantaris muscle but does not affect muscle weight and mean fiber area in the rat plantaris muscle.Voluntary running can induce an increase in the number of satellite cells without hypertrophy of the rat plantaris muscle.

  17. Muscles involved in naris dilation and nose motion in rat

    PubMed Central

    Deschênes, Martin; Haidarliu, Sebastian; Demers, Maxime; Moore, Jeffrey; Kleinfeld, David; Ahissar, Ehud

    2016-01-01

    In a number of mammals muscle dilator nasi (naris) is known as a muscle that reduces nasal airflow resistance by dilating the nostrils. Here we show that in rats the tendon of this muscle inserts into the aponeurosis above the nasal cartilage. Electrical stimulation of this muscle lifts the nose and deflects it sideway towards the side of stimulation, but does not change the size of the nares. In the head-fixed alert rat, electromyographic activity of muscle dilator nasi is tightly coupled to nose motion, not to opening of the nares. Yet, contraction of muscle dilator nasi occurs during the pre-inspiratory phase of the respiratory cycle, suggesting a role in sniffing and sampling odorants. We also show that opening of the nares results from contraction of pars maxillaris profunda of the muscle nasolabialis profundus. This muscle attaches to the outer wall of the nasal cartilage and to the plate of the mystacial pad. Contraction of this muscle exerts a dual action: it pulls the lateral nasal cartilage outwardly, thus dilating the naris, and it drags the plate of the mystacial pad rostralward, provoking a slight retraction of the whiskers. On the basis of these results, we propose that muscle dilator nasi of the rat be renamed muscle deflector nasi, and that pars maxillaris profunda of the muscle nasolabialis profundus be named muscle dilator nasi. PMID:25257748

  18. Age-related changes in rat intrinsic laryngeal muscles: analysis of muscle fibers, muscle fiber proteins, and subneural apparatuses.

    PubMed

    Nishida, Naoya; Taguchi, Aki; Motoyoshi, Kazumi; Hyodo, Masamitsu; Gyo, Kiyofumi; Desaki, Junzo

    2013-03-01

    We compared age-related changes in the intrinsic laryngeal muscles of aged and young adult rats by determining the number and diameter of muscle fibers, contractile muscle protein (myosin heavy chain isoforms, MHC) composition, and the morphology of the subneural apparatuses. In aged rats, both the numbers and the diameters of muscle fibers decreased in the cricothyroid (CT) muscle. The number of fibers, but not diameter, decreased in the thyroarytenoid (TA) muscle. In the posterior cricoarytenoid (PCA) muscle, neither the number nor the diameter of fibers changed significantly. Aging was associated with a decrease in type IIB and an increase in type IIA MHC isoform levels in CT muscle, but no such changes were observed in the TA or PCA muscles. Morphological examination of primary synaptic clefts of the subneural apparatus revealed that aging resulted in decreased labyrinthine and increased depression types in only the CT muscle. In the aged group, morphologically immature subneural apparatuses were found infrequently in the CT muscle, indicating continued tissue remodeling. We suggest, therefore, that age-related changes in the intrinsic laryngeal muscles primarily involve the CT muscle, whereas the structures of the TA and PCA muscles may better resist aging processes and therefore are less vulnerable to functional impairment. This may reflect differences in their roles; the CT muscle controls the tone of the vocal folds, while the TA and PCA muscles play an essential role in vital activities such as respiration and swallowing.

  19. Passive stiffness of rat skeletal muscle undernourished during fetal development

    PubMed Central

    Toscano, Ana Elisa; Ferraz, Karla Mônica; de Castro, Raul Manhães; Canon, Francis

    2010-01-01

    OBJECTIVES: The aim of the study was to investigate the effect of fetal undernutrition on the passive mechanical properties of skeletal muscle of weaned and young adult rats. INTRODUCTION: A poor nutrition supply during fetal development affects physiological functions of the fetus. From a mechanical point of view, skeletal muscle can be also characterized by its resistance to passive stretch. METHODS: Male Wistar rats were divided into two groups according to their mother's diet during pregnancy: a control group (mothers fed a 17% protein diet) and an isocaloric low‐protein group (mothers fed a 7.8% protein diet). At birth, all mothers received a standardized meal ad libitum. At the age of 25 and 90 days, the soleus muscle and extensor digitorum longus (EDL) muscles were removed in order to test the passive mechanical properties. A first mechanical test consisted of an incremental stepwise extension test using fast velocity stretching (500 mm/s) enabling us to measure, for each extension stepwise, the dynamic stress (σd) and the steady stress (σs). A second test consisted of a slow velocity stretch in order to calculate normalized stiffness and tangent modulus from the stress–strain relationship. RESULTS: The results for the mechanical properties showed an important increase in passive stiffness in both the soleus and EDL muscles in weaned rat. In contrast, no modification was observed in young adult rats. CONCLUSIONS: The increase in passive stiffness in skeletal muscle of weaned rat submitted to intrauterine undernutrition it is most likely due to changes in muscle passive stiffness. PMID:21340228

  20. Muscle Contractile Properties in Severely Burned Rats

    PubMed Central

    Wu, Xiaowu; Wolf, Steven E.; Walters, Thomas J.

    2010-01-01

    Burn induces a sustained catabolic response which causes massive loss of muscle mass after injury. A better understanding of the dynamics of muscle wasting and its impact on muscle function is necessary for the development of effective treatments. Male Sprague-Dawley rats underwent either a 40% total body surface area (TBSA) scald burn or sham burn, and were further assigned to subgroups at four time points after injury (days 3, 7, 14 and 21). In situ isometric contractile properties were measured including twitch tension (Pt), tetanic tension (Po) and fatigue properties. Body weight decreased in burn and sham groups through day 3, however, body weight in the sham groups recovered and increased over time compared to burned groups, which progressively decreased until day 21 after injury. Significant differences in muscle wet weight and protein weight were found between sham and burn. Significant differences in muscle contractile properties were found at day 14 with lower absolute Po as well as specific Po in burned rats compared to sham. After burn, the muscle twitch tension was significantly higher than the sham at day 21. No significant difference in fatigue properties was found between the groups. This study demonstrates dynamics of muscle atrophy and muscle contractile properties after severe burn; this understanding will aid in the development of approaches designed to reduce the rate and extent of burn induced muscle loss and function. PMID:20381255

  1. Functional characteristics of the rat jaw muscles: daily muscle activity and fiber type composition.

    PubMed

    Kawai, Nobuhiko; Sano, Ryota; Korfage, Joannes A M; Nakamura, Saika; Tanaka, Eiji; van Wessel, Tim; Langenbach, Geerling E J; Tanne, Kazuo

    2009-12-01

    Skeletal muscles have a heterogeneous fiber type composition, which reflects their functional demand. The daily muscle use and the percentage of slow-type fibers have been shown to be positively correlated in skeletal muscles of larger animals but for smaller animals there is no information. The examination of this relationship in adult rats was the purpose of this study. We hypothesized a positive relationship between the percentage of fatigue-resistant fibers in each muscle and its total duration of use per day. Fourteen Wistar strain male rats (410-450 g) were used. A radio-telemetric device was implanted to record muscle activity continuously from the superficial masseter, deep masseter, anterior belly of digastric and anterior temporalis muscles. The degree of daily muscle use was quantified by the total duration of muscle activity per day (duty time) exceeding specified levels of the peak activity (2, 5, 20 and 50%). The fiber type composition of the muscles was examined by the myosin heavy chain content of the fibers by means of immunohistochemical staining. At lower activity levels (exceeding 2 and 5% of the peak activity), the duty time of the anterior belly of digastric muscle was significantly (P < 0.01) longer than those of the other muscles. The anterior belly of digastric muscle also contained the highest percentage of slow-type fibers (type I fiber and hybrid fiber co-expressing myosin heavy chain I + IIA) (ca. 11%; P < 0.05). By regression analysis for all four muscles, an inter-muscular comparison showed a positive relationship between the duty time (exceeding 50% of the peak activity) and the percentage of type IIX fibers (P < 0.05), which demonstrate intermediate physiological properties relative to type IIA and IIB fibers. For the jaw muscles of adult male rats, the variations of fiber type composition and muscle use suggest that the muscle containing the largest amounts of slow-type fibers (the anterior belly of digastric muscle) is mainly

  2. Soluble Milk Proteins Improve Muscle Mass Recovery after Immobilization-Induced Muscle Atrophy in Old Rats but Do not Improve Muscle Functional Property Restoration.

    PubMed

    Verney, J; Martin, V; Ratel, S; Chavanelle, V; Bargetto, M; Etienne, M; Chaplais, E; Le Ruyet, P; Bonhomme, C; Combaret, L; Guillet, C; Boisseau, N; Sirvent, P; Dardevet, D

    2017-01-01

    Effect of 3 different dairy protein sources on the recovery of muscle function after limb immobilization in old rats. Longitudinal animal study. Institut National de la Recherche Agronomique (INRA). The study took part in a laboratory setting. Old rats were subjected to unilateral hindlimb immobilization for 8 days and then allowed to recover with 3 different dietary proteins: casein, soluble milk proteins or whey proteins for 49 days. Body weight, muscle mass, muscle fibre size, isometric, isokinetic torque, muscle fatigability and muscle oxidative status were measured before and at the end of the immobilization period and during the recovery period i.e 7, 21, 35 and 49 days post immobilization. In contrast to the casein diet, soluble milk proteins and whey proteins were efficient to favor muscle mass recovery after cast immobilization during aging. By contrast, none of the 3 diary proteins was able to improve muscle strength, power and fatigability showing a discrepancy between the recovery of muscle mass and function. However, the soluble milk proteins allowed a better oxidative capacity in skeletal muscle during the rehabilitation period. Whey proteins and soluble milk proteins improve muscle mass recovery after immobilization-induced muscle atrophy in old rats but do not allow muscle functional property restoration.

  3. Psychological Stress Alters Ultrastructure and Energy Metabolism of Masticatory Muscle in Rats

    PubMed Central

    Chen, Yong-Jin; Huang, Fei; Zhang, Min; Shang, Hai-Yan

    2010-01-01

    To investigate the effects of psychological stress on the masticatory muscles of rats, a communication box was applied to induce the psychological stress (PS) in rats. The successful establishment of psychological stimulation was confirmed by elevated serum levels of adrenocorticotropic hormone (ACTH) and changed behaviors in the elevated plusmaze apparatus. The energy metabolism of the bilateral masseter muscles was tested via chemocolorimetric analysis, whereas muscle ultrastructure was assessed by electron microscopy. In comparison to the control group, the PS group showed evidence of swollen mitochondria with cristae loss and reduced matrix density in the masticatory muscles after three weeks of stimulation; after five weeks of stimulation, severe vacuolar changes to the mitochondria were observed. Increased vascular permeability of the masticatory muscle capillaries was found in the five-week PS rats. In addition, there was decreased activity of Na+-K+ATPase and Ca2+-ATPase and a simultaneous increase in the activity of lactate dehydrogenase and lactic acid in the masticatory muscles of PS rats. Together, these results indicate that psychological stress induces alterations in the ultrastructure and energy metabolism of masticatory muscles in rats. PMID:21052548

  4. Psychological Stress Induces Temporary Masticatory Muscle Mechanical Sensitivity in Rats

    PubMed Central

    Huang, Fei; Zhang, Min; Chen, Yong-Jin; Li, Qiang; Wu, An-Zhen

    2011-01-01

    To explore the relationship between psychological stress and masticatory muscle pain, we created a communication stress animal model to determine whether psychological stress could induce increased mechanical sensitivity in masticatory muscles and to study the changes of mechanical nociceptive thresholds after stress removal. Forty-eight male Sprague-Dawley rats were divided into a control group (CON), a foot-shocked group (FS, including 3 subgroups recorded as FS-1, FS-2, and FS-3), a psychological stress group (PS), and a drug treatment group (DT). PS and DT rats were confined in a communication box for one hour a day to observe the psychological responses of neighboring FS rats.Measurements of the mechanical nociceptive thresholds of the bilateral temporal and masseter muscles showed a stimulus-response relationship between psychological stress and muscle mechanical sensitivity. The DT rats, who received a diazepam injection, showed almost the same mechanical sensitivity of the masticatory muscles to that of the control in response to psychological stress. Fourteen days after the psychological stressor was removed, the mechanical nociceptive thresholds returned to normal. These findings suggest that psychological stress is directly related to masticatory muscle pain. Removal of the stressor could be a useful method for relieving mechanical sensitivity increase induced by psychological stress. PMID:21331360

  5. Capillarization in skeletal muscle of rats with cardiac hypertrophy.

    PubMed

    Degens, Hans; Anderson, Rebecca K; Alway, Stephen E

    2002-02-01

    Exercise intolerance during chronic heart failure (CHF) is localized mainly in skeletal muscle. A decreased capillarization may impair exchange of oxygen between capillaries and muscle tissue and in this way contribute to exercise intolerance. We assessed changes in capillary supply in plantaris and diaphragm muscles of a rat aorta-caval fistula (ACF) preparation, a volume overload model for CHF. An ACF was created under equithesin anesthesia. Plantaris and diaphragm muscles were removed 6 wk postsurgery and examined for myosin heavy chain (MyHC) content and capillary supply. Cardiac hypertrophy was 96% (P < 0.002) after ACF. The Type IIb MyHC content of the plantaris muscles increased (33.9 +/- 3.3 vs 49.8 +/- 3.8%; mean +/- SEM) at the expense of Type IIa MyHC (17.6 +/- 1.8 vs 11.2 +/- 1.7%) in ACF rats (P < 0.05). In the diaphragm, the number of Type I (32.1 +/- 2.3 vs 40.6 +/- 2.7%) and IIb fibers (40.6 +/- 1.9 vs 49.6 +/- 3.6%) increased at the expense of Type IIa fibers (26.8 +/- 2.5 vs 9.4 +/- 0.9%) (P < 0.05). The capillary number per fiber did not change, and this indicated that no capillary loss occurred with ACF. Also, the capillary density was maintained in the diaphragm and plantaris muscles of ACF rats. Furthermore, the coupling between fiber type, size, and metabolic type of surrounding fibers, with the capillary supply to a fiber, was maintained in rats with an ACF. The cardiac hypertrophy induced by volume overload seems adequate to prevent atrophy and changes in the microcirculation of limb and diaphragm muscles.

  6. Effects of insulin and exercise on rat hindlimb muscles after simulated microgravity

    NASA Technical Reports Server (NTRS)

    Stump, Craig S.; Balon, Thomas W.; Tipton, Charles M.

    1992-01-01

    The effect of simulated microgravity on the insulin- and exercise-stimulated glucose uptake and metabolism in the hindlimb muscles of rats was investigated using three groups of rats suspended at 45 head-down tilt (SUS) for 14 days: (1) cage control, (2) exercising (treadmill running) control, and (3) rats subjected to suspension followed by exercise (SUS-E). It was found that the suspension of rats with hindlimbs non-weight bearing led to enhanced muscle responses to insulin and exercise, when these stimuli were applied separately. However, the insulin affect appeared to be impaired after exercise for the SUS-E rats, especially for the soleus muscle.

  7. Kinetics of GLUT4 Trafficking in Rat and Human Skeletal Muscle

    PubMed Central

    Karlsson, Håkan K.R.; Chibalin, Alexander V.; Koistinen, Heikki A.; Yang, Jing; Koumanov, Francoise; Wallberg-Henriksson, Harriet; Zierath, Juleen R.; Holman, Geoffrey D.

    2009-01-01

    OBJECTIVE In skeletal muscle, insulin stimulates glucose transport activity three- to fourfold, and a large part of this stimulation is associated with a net translocation of GLUT4 from an intracellular compartment to the cell surface. We examined the extent to which insulin or the AMP-activated protein kinase activator AICAR can lead to a stimulation of the exocytosis limb of the GLUT4 translocation pathway and thereby account for the net increase in glucose transport activity. RESEARCH DESIGN AND METHODS Using a biotinylated photoaffinity label, we tagged endogenous GLUT4 and studied the kinetics of exocytosis of the tagged protein in rat and human skeletal muscle in response to insulin or AICAR. Isolated epitrochlearis muscles were obtained from male Wistar rats. Vastus lateralis skeletal muscle strips were prepared from open muscle biopsies obtained from six healthy men (age 39 ± 11 years and BMI 25.8 ± 0.8 kg/m2). RESULTS In rat epitrochlearis muscle, insulin exposure leads to a sixfold stimulation of the GLUT4 exocytosis rate (with basal and insulin-stimulated rate constants of 0.010 and 0.067 min−1, respectively). In human vastus lateralis muscle, insulin stimulates GLUT4 translocation by a similar sixfold increase in the exocytosis rate constant (with basal and insulin-stimulated rate constants of 0.011 and 0.075 min−1, respectively). In contrast, AICAR treatment does not markedly increase exocytosis in either rat or human muscle. CONCLUSIONS Insulin stimulation of the GLUT4 exocytosis rate constant is sufficient to account for most of the observed increase in glucose transport activity in rat and human muscle. PMID:19188436

  8. Testosterone and muscle hypertrophy in female rats

    NASA Technical Reports Server (NTRS)

    Kuhn, F. E.; Max, S. R.

    1985-01-01

    The effects of chronic treatment with testosterone propionate (TP) on compensatory muscle hypertropy in female rats are examined. The 48 female rats were placed in one of four test groups: (1) no overload (synergist removal), no TP, (2) overload, no TP, (3) no overload + TP, and (4) overload + TP. The technique used to administer the TP is described. The preparation of the plantaris muscle, the analysis of pyruvate oxidation and the determination of malate and lactate dehydrogenases and the noncollogen protein are explained. The results which reveal the effect of overload and TP on body weight, noncollogen protein concentration, lactate and malate dehydrogenase activities, and pyruvate oxidation are presented and discussed. It is concluded that in terms of body weight, protein content, pyruvate, glycolysis, and oxidative metabolisms chronic TP treatments do not change compensatory muscle hypertropy.

  9. Ureter smooth muscle cell orientation in rat is predominantly longitudinal.

    PubMed

    Spronck, Bart; Merken, Jort J; Reesink, Koen D; Kroon, Wilco; Delhaas, Tammo

    2014-01-01

    In ureter peristalsis, the orientation of the contracting smooth muscle cells is essential, yet current descriptions of orientation and composition of the smooth muscle layer in human as well as in rat ureter are inconsistent. The present study aims to improve quantification of smooth muscle orientation in rat ureters as a basis for mechanistic understanding of peristalsis. A crucial step in our approach is to use two-photon laser scanning microscopy and image analysis providing objective, quantitative data on smooth muscle cell orientation in intact ureters, avoiding the usual sectioning artifacts. In 36 rat ureter segments, originating from a proximal, middle or distal site and from a left or right ureter, we found close to the adventitia a well-defined longitudinal smooth muscle orientation. Towards the lamina propria, the orientation gradually became slightly more disperse, yet the main orientation remained longitudinal. We conclude that smooth muscle cell orientation in rat ureter is predominantly longitudinal, though the orientation gradually becomes more disperse towards the proprial side. These findings do not support identification of separate layers. The observed longitudinal orientation suggests that smooth muscle contraction would rather cause local shortening of the ureter, than cause luminal constriction. However, the net-like connective tissue of the ureter wall may translate local longitudinal shortening into co-local luminal constriction, facilitating peristalsis. Our quantitative, minimally invasive approach is a crucial step towards more mechanistic insight into ureter peristalsis, and may also be used to study smooth muscle cell orientation in other tube-like structures like gut and blood vessels.

  10. Effect of salbutamol on innervated and denervated rat soleus muscle.

    PubMed

    Soić-Vranić, T; Bobinac, D; Bajek, S; Jerković, R; Malnar-Dragojević, D; Nikolić, M

    2005-12-01

    The objective of the present investigation was to perform a 14-day time-course study of treatment with salbutamol, a beta2 adrenoceptor agonist, on rat soleus muscle in order to assess fiber type selectivity in the hypertrophic response and fiber type composition. Male Wistar rats were divided into four groups: control (N = 10), treated with salbutamol (N = 30), denervated (N = 30), and treated with salbutamol after denervation (N = 30). Salbutamol was injected intraperitoneally in the rats of the 2nd and 4th groups at a concentration of 0.3 mg/kg twice a day for 2 weeks. The muscles were denervated using the crush method with pean. The animals were sacrificed 3, 6, 9, 12, and 14 days after treatment. Frozen cross-sections of soleus muscle were stained for myosin ATPase, pH 9.4. Cross-sectional area and percent of muscle fibers were analyzed morphometrically by computerized image analysis. Treatment with salbutamol induced hypertrophy of all fiber types and a higher percentage of type II fibers (21%) in the healthy rat soleus muscle. Denervation caused marked atrophy of all fibers and conversion from type I to type II muscle fibers. Denervated muscles treated with salbutamol showed a significantly larger cross-sectional area of type I muscle fibers, 28.2% compared to the denervated untreated muscle. Moreover, the number of type I fibers was increased. These results indicate that administration of salbutamol is able to induce changes in cross-sectional area and fiber type distribution in the early phase of treatment. Since denervation-induced atrophy and conversion from type I to type II fibers were improved by salbutamol treatment we propose that salbutamol, like other beta2 adrenoceptor agonists, may have a therapeutic potential in improving the condition of skeletal muscle after denervation.

  11. Electrophysiological, histochemical, and hormonal adaptation of rat muscle after prolonged hindlimb suspension

    NASA Astrophysics Data System (ADS)

    Kourtidou-Papadeli, Chrysoula; Kyparos, Antonios; Albani, Maria; Frossinis, Athanasios; Papadelis, Christos L.; Bamidis, Panagiotis; Vivas, Ana; Guiba-Tziampiri, Olympia

    2004-05-01

    The perspective of long-duration flights for future exploration, imply more research in the field of human adaptation. Previous studies in rat muscles hindlimb suspension (HLS), indicated muscle atrophy and a change of fibre composition from slow-to-fast twitch types. However, the contractile responses to long-term unloading is still unclear. Fifteen adult Wistar rats were studied in 45 and 70 days of muscle unweighting and soleus (SOL) muscle as well as extensor digitorum longus (EDL) were prepared for electrophysiological recordings (single, twitch, tetanic contraction and fatigue) and histochemical stainings. The loss of muscle mass observed was greater in the soleus muscle. The analysis of electrophysiological properties of both EDL and SOL showed significant main effects of group, of number of unweighting days and fatigue properties. Single contraction for soleus muscle remained unchanged but there was statistically significant difference for tetanic contraction and fatigue. Fatigue index showed a decrease for the control rats, but increase for the HLS rats. According to the histochemical findings there was a shift from oxidative to glycolytic metabolism during HLS. The data suggested that muscles atrophied, but they presented an adaptation pattern, while their endurance in fatigue was decreased.

  12. [Forskolin inhibits spontaneous contraction of gastric antral smooth muscle in rats].

    PubMed

    Jiang, Jing-Zhi; Sun, Qian; Xu, Dong-Yuan; Zhang, Mo-Han; Piao, Li-Hua; Cai, Ying-Lan; Jin, Zheng

    2013-04-25

    The aim of the present study was to investigate the effects of cyclic adenosine monophosphate (cAMP) on rat gastric antral circular smooth muscle function. Forskolin, a direct activator of adenylyl cyclase (AC), was used to observe the influences of cAMP. Multi-channel physiological recorder was used to record spontaneous contraction activity of gastric antral circular muscle from Wistar rats. And ELISA method was used to detect the change of cAMP production in perfusate. The results showed that forskolin concentration-dependently suppressed the amplitude and frequency of the spontaneous contraction of the gastric antral muscle, and lowered the baseline of contraction movement significantly. Forskolin concentration-dependently increased the production of cAMP in the perfusate, which showed a significant negative correlation with the contraction amplitude of gastric antral ring muscle. The inhibitory effect of forskolin on spontaneous contraction activity of rat gastric antral circular muscle could be blocked by cAMP-dependent protein kinase (PKA) inhibitor H-89. These results suggest forskolin increases cAMP production and then activates PKA pathway, resulting in the inhibition of the spontaneous contraction activity of rat gastric antral circular smooth muscle.

  13. Dexamethasone regulates glutamine synthetase expression in rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Max, Stephen R.; Konagaya, Masaaki; Konagaya, Yoko; Thomas, John W.; Banner, Carl; Vitkovic, Ljubisa

    1986-01-01

    The regulation of glutamine synthetase by glucocorticoids in rat skeletal muscles was studied. Administration of dexamethasone strikingly enhanced glutamine synthetase activity in plantaris and soleus muscles. The dexamethasone-mediated induction of glutamine synthetase activity was blocked to a significant extent by orally administered RU38486, a glucocorticoid antagonist, indicating the involvement of intracellular glucocorticoid receptors in the induction. Northern blot analysis revealed that dexamethasone-mediated enhancement of glutamine synthetase activity involves dramatically increased levels of glutamine synthetase mRNA. The induction of glutamine synthetase was selective in that glutaminase activity of soleus and plantaris muscles was not increased by dexamethasone. Furthermore, dexamethasone treatment resulted in only a small increase in glutamine synthetase activity in the heart. Accordingly, there was only a slight change in glutamine synthetase mRNA level in this tissue. Thus, glucocorticoids regulate glutamine synthetase gene expression in rat muscles at the transcriptional level via interaction with intracellular glutamine production by muscle and to mechanisms underlying glucocorticoid-induced muscle atrophy.

  14. Fatigue and contraction of slow and fast muscles in hypokinetic/hypodynamic rats

    NASA Technical Reports Server (NTRS)

    Fell, R. D.; Gladden, L. B.; Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    The effects of hypokinesia/hypodynamia (H/H) on the fatigability and contractile properties of the rat soleus (S) and gastrocnemius (G) muscles have been investigated experimentally. Whole body suspension for one week was used to induce H/H, and fatigue was brought on by train stimulation for periods of 45 and 16 minutes. Following stimulation, rapid rates of fatigue were observed in the G-muscles of the suspended rats, while minimal fatigue was observed in the S-muscles. The twitch and tetanic contractile properties of the muscles were measured before and after train stimulation. It is found that H/H suspension increased twitch tension in the G-muscles, but did not change any contractile properties in the S-muscles. The peak twitch, train, tetanic tensions and time to peak were unchanged in the S-muscles of the suspended rats. On the basis of the experimental results, it is concluded that 1 wk of muscle atropy induced by H/H significantly increases fatigability in G-muscles, but does not affect the contractile properties of fast-twitch and slow-twitch muscles.

  15. Insulin effect on amino acid uptake by unloaded rat hindlimb muscles

    NASA Technical Reports Server (NTRS)

    Jaspers, S. R.; Tischler, M. E.

    1988-01-01

    The effect of insulin on the uptake of alpha-amino-isobutyric acid (AIB) by unloaded rat hindlimb muscles was investigated using soleus and extensor digitorum longus (EDL) muscles from intact and adrenalectomized (ADX) rats that were tail-casted for six days. It was found that, at insulin levels above 0.00001 units/ml, the in vitro rate of AIB uptake by muscles from intact animals was stimulated more in the weight bearing muscles than in unloaded ones. In ADX animals, this differential response to insulin was abolished.

  16. Increased adipogenic conversion of muscle satellite cells in obese Zucker rats.

    PubMed

    Scarda, A; Franzin, C; Milan, G; Sanna, M; Dal Prà, C; Pagano, C; Boldrin, L; Piccoli, M; Trevellin, E; Granzotto, M; Gamba, P; Federspil, G; De Coppi, P; Vettor, R

    2010-08-01

    Visceral and intermuscular adipose tissue (IMAT) depots account for most obesity-related metabolic and cardiovascular complications. Muscle satellite cells (SCs) are mesenchymal stem cells giving rise to myotubes and also to adipocytes, suggesting their possible contribution to IMAT origin and expansion. We investigated the myogenic differentiation of SCs and the adipogenic potential of both preadipocytes and SCs from genetically obese Zucker rats (fa/fa), focusing on the role of Wnt signaling in these differentiation processes. SCs were isolated by single-fiber technique from flexor digitorum brevis muscle and preadipocytes were extracted from subcutaneous adipose tissue (AT). Morphological features and gene expression profile were evaluated during in vitro myogenesis and adipogenesis. Wingless-type MMTV integration site family member 10b (Wnt10b) expression was quantified by quantitative PCR in skeletal muscle and AT. We did not observe any difference in the proliferation rate and in the myogenic differentiation of SCs from obese and lean rats. However, a decreased insulin-induced glucose uptake was present in myotubes originating from fa/fa rats. Under adipogenic conditions, preadipocytes and SCs of obese animals displayed an enhanced adipogenesis. Wnt10b expression was reduced in obese rats in both muscle and AT. Our data suggest that the increase in different fat depots including IMAT and the reduced muscle insulin sensitivity, the major phenotypical alteration of obese Zucker rats, could be ascribed to an intrinsic defect, either genetically determined or acquired, still present in both muscle and fat precursors. The involvement of Wnt10b as a regulator of both adipogenesis and muscle-to-fat conversion is suggested.

  17. Botulinum neurotoxin effects on masseter muscle fibre in WNIN obese rats-Scanning electron microscope analysis.

    PubMed

    Nemani, Shivaram; Putchha, Uday K; Periketi, Madhusudhanachary; Pothana, Sailaja; Nappanveettil, Giridharan; Nemani, Harishankar

    2016-09-01

    WNIN/Ob obese mutant rats are unique in comparison to similar rodent models of obesity established in the West. The present study is aimed to evaluate the masticatory function and histological changes in masseter muscle fibres treated with botulinum toxin type A (BoNT/A) in WNIN/Ob rats. Twelve WNIN/Ob obese rats and 12 lean rats at 35 days of age were taken and divided into four groups (6 rats in each group): Group-I (WNIN/Ob) and Group-II (lean) rats were injected with BoNT/A (1 unit) into right side of masseter muscle. For control left masseter of both phenotypes was injected with saline. Group-III (WNIN/Ob) and Group-IV (lean) rats were without any treatment. Growth and food intake was monitored daily for 45 days. Rats were euthanized and gross necropsy was carried out to check any abnormalities. Masseter muscles were dissected and mean muscle mass was recorded. Small portion of muscle was stored in 10% formalin for hematoxylin-eosin (H&E) staining and remaining tissue stored in gluteraldehyde for scanning electron microscopy (SEM). There is a significant decrease in the body weights and food intake of BoNT/A treated obese rats. The H&E staining of the masseter muscle in both groups showed normal morphology and orientation. The SEM analysis showed that, fibre size in BoNT/A treated masseter muscle of obese rats increased more than the saline treated side and in control rats. The increase in the muscle fibre size and transition of muscle fibre subtypes may be due to the reduced masticatory function of the masseter muscle. SCANNING 38:396-402, 2016. © 2015 Wiley Periodicals, Inc. © Wiley Periodicals, Inc.

  18. A rat model for muscle regeneration in the soft palate.

    PubMed

    Carvajal Monroy, Paola L; Grefte, Sander; Kuijpers-Jagtman, Anne M; Helmich, Maria P A C; Ulrich, Dietmar J O; Von den Hoff, Johannes W; Wagener, Frank A D T G

    2013-01-01

    Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. Despite successful surgical repositioning of the muscles, optimal function is often not achieved. Scar formation and defective regeneration may hamper the functional recovery of the muscles after cleft palate repair. Therefore, the aim of this study is to investigate the anatomy and histology of the soft palate in rats, and to establish an in vivo model for muscle regeneration after surgical injury. Fourteen adult male Sprague Dawley rats were divided into four groups. Groups 1 (n = 4) and 2 (n = 2) were used to investigate the anatomy and histology of the soft palate, respectively. Group 3 (n = 6) was used for surgical wounding of the soft palate, and group 4 (n = 2) was used as unwounded control group. The wounds (1 mm) were evaluated by (immuno)histochemistry (AZAN staining, Pax7, MyoD, MyoG, MyHC, and ASMA) after 7 days. The present study shows that the anatomy and histology of the soft palate muscles of the rat is largely comparable with that in humans. All wounds showed clinical evidence of healing after 7 days. AZAN staining demonstrated extensive collagen deposition in the wound area, and initial regeneration of muscle fibers and salivary glands. Proliferating and differentiating satellite cells were identified in the wound area by antibody staining. This model is the first, suitable for studying muscle regeneration in the rat soft palate, and allows the development of novel adjuvant strategies to promote muscle regeneration after cleft palate surgery.

  19. Influence of suspension hypokinesia on rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Templeton, G. H.; Padalino, M.; Manton, J.; Glasberg, M.; Silver, C. J.; Silver, P.; Demartino, G.; Leconey, T.; Klug, G.; Hagler, H.

    1984-01-01

    Hindlimb hypokinesia was induced in rats by the Morey method to characterize the response of the soleus muscle. Rats suspended for 1-4 wk exhibited continuous and significant declines in soleus mass, function, and contractile duration. Soleus speeding was in part explained by an alteration in fiber type. The normal incidence of 70-90 percent type I fibers in the soleus muscle was reduced after 4 wk of suspension to 50 percent or less in 9 of 11 rats. A significant decline in type I myosin isozyme content occurred without a change in that of type II. Other observed histochemical changes were characteristic of denervation. Consistent with soleus atrophy, there was a significant increase in lysosomal (acid) protease activity. One week of recovery after a 2-wk suspension was characterized by a return to values not significantly different from control for muscle wet weights, peak contraction force, one-half relaxation time, and type I myosin. Persistent differences from control were observed in maximal rate of tension development, contraction time, and denervation-like changes.

  20. Neonatal Handling Produces Sex Hormone-Dependent Resilience to Stress-Induced Muscle Hyperalgesia in Rats.

    PubMed

    Alvarez, Pedro; Green, Paul G; Levine, Jon D

    2018-06-01

    Neonatal handling (NH) of male rat pups strongly attenuates stress response and stress-induced persistent muscle hyperalgesia in adults. Because female sex is a well established risk factor for stress-induced chronic muscle pain, we explored whether NH provides resilience to stress-induced hyperalgesia in adult female rats. Rat pups underwent NH, or standard (control) care. Muscle mechanical nociceptive threshold was assessed before and after water avoidance (WA) stress, when they were adults. In contrast to male rats, NH produced only a modest protection against WA stress-induced muscle hyperalgesia in female rats. Gonadectomy completely abolished NH-induced resilience in male rats but produced only a small increase in this protective effect in female rats. The administration of the antiestrogen drug fulvestrant, in addition to gonadectomy, did not enhance the protective effect of NH in female rats. Finally, knockdown of the androgen receptor by intrathecal antisense treatment attenuated the protective effect of NH in intact male rats. Together, these data indicate that androgens play a key role in NH-induced resilience to WA stress-induced muscle hyperalgesia. NH induces androgen-dependent resilience to stress-induced muscle pain. Therefore, androgens may contribute to sex differences observed in chronic musculoskeletal pain and its enhancement by stress. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.

  1. Leucine-enriched essential amino acids attenuate inflammation in rat muscle and enhance muscle repair after eccentric contraction.

    PubMed

    Kato, Hiroyuki; Miura, Kyoko; Nakano, Sayako; Suzuki, Katsuya; Bannai, Makoto; Inoue, Yoshiko

    2016-09-01

    Eccentric exercise results in prolonged muscle damage that may lead to muscle dysfunction. Although inflammation is essential to recover from muscle damage, excessive inflammation may also induce secondary damage, and should thus be suppressed. In this study, we investigated the effect of leucine-enriched essential amino acids on muscle inflammation and recovery after eccentric contraction. These amino acids are known to stimulate muscle protein synthesis via mammalian target of rapamycin (mTOR), which, is also considered to alleviate inflammation. Five sets of 10 eccentric contractions were induced by electrical stimulation in the tibialis anterior muscle of male SpragueDawley rats (8-9 weeks old) under anesthesia. Animals received a 1 g/kg dose of a mixture containing 40 % leucine and 60 % other essential amino acids or distilled water once a day throughout the experiment. Muscle dysfunction was assessed based on isometric dorsiflexion torque, while inflammation was evaluated by histochemistry. Gene expression of inflammatory cytokines and myogenic regulatory factors was also measured. We found that leucine-enriched essential amino acids restored full muscle function within 14 days, at which point rats treated with distilled water had not fully recovered. Indeed, muscle function was stronger 3 days after eccentric contraction in rats treated with amino acids than in those treated with distilled water. The amino acid mix also alleviated expression of interleukin-6 and impeded infiltration of inflammatory cells into muscle, but did not suppress expression of myogenic regulatory factors. These results suggest that leucine-enriched amino acids accelerate recovery from muscle damage by preventing excessive inflammation.

  2. Supplementing healthy rats with a high-niacin dose has no effect on muscle fiber distribution and muscle metabolic phenotype.

    PubMed

    Scholz, Kristen; Kynast, Anna Marie; Couturier, Aline; Mooren, Frank-Christoph; Krüger, Karsten; Most, Erika; Eder, Klaus; Ringseis, Robert

    2014-08-01

    It was recently shown that niacin prevents the obesity-induced type I to type II fiber switching in skeletal muscle of obese rats and favors the development of a more oxidative metabolic phenotype and thereby increases whole body utilization of fatty acids. Whether niacin also causes type II to type I fiber switching in skeletal muscle of healthy rats has not been investigated yet. Thus, the present study aimed to investigate whether niacin supplementation influences fiber distribution and metabolic phenotype of different skeletal muscles with a distinct type I-to-type II fiber ratio in healthy rats. Twenty-four male, 10-week-old Sprague-Dawley rats were randomly assigned into two groups of 12 rats each and fed either a control diet with 30 mg supplemented niacin/kg diet (control group) or a high-niacin diet with 780 mg supplemented niacin/kg diet (high-niacin group). After 27 days of treatment, the percentage number of type I fibers in rectus femoris, gastrocnemius, and tibialis anterior muscles was 5-10% greater in the niacin group than in the control group, but did not differ between groups in soleus and vastus intermedius muscles. Transcript levels of genes encoding transcription factors regulating fiber switching, fiber-specific myosin heavy chain isoforms, and proteins involved in fatty acid utilization, oxidative phosphorylation, and angiogenesis did not differ between groups. The results show that niacin has only negligible effects on fiber distribution and its regulation as well as the metabolic phenotype of skeletal muscle in healthy rats.

  3. Skeletal muscle response to spaceflight, whole body suspension, and recovery in rats

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Fell, R. D.; Dombrowski, M. J.

    1990-01-01

    The effects of a 7-day spaceflight (SF), 7- and 14-day-long whole body suspension (WBS), and 7-day-long recovery on the muscle weight and the morphology of the soleus and the extensor digitorum longus (EDL) of rats were investigated. It was found that the effect of 7-day-long SF and WBS were highly comparable for both the soleus and the EDL, although the soleus muscle from SF rats showed greater cross-sectional area reduction than that from WBS rats. With a longer duration of WBS, there was a continued reduction in cross-sectional fast-twitch fiber area. Muscle plasticity, in terms of fiber and capillary responses, showed differences in responses of the two types of muscles, indicating that antigravity posture muscles are highly susceptible to unloading.

  4. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma

    NASA Technical Reports Server (NTRS)

    Baracos, V. E.; DeVivo, C.; Hoyle, D. H.; Goldberg, A. L.

    1995-01-01

    Rats implanted with Yoshida ascites hepatoma (YAH) show a rapid and selective loss of muscle protein due mainly to a marked increase (63-95%) in the rate of protein degradation (compared with rates in muscles of pair-fed controls). To define which proteolytic pathways contribute to this increase, epitrochlearis muscles from YAH-bearing and control rats were incubated under conditions that modify different proteolytic systems. Overall proteolysis in either group of rats was not affected by removal of Ca2+ or by blocking the Ca(2+)-dependent proteolytic system. Inhibition of lysosomal function with methylamine reduced proteolysis (-12%) in muscles from YAH-bearing rats, but not in muscles of pair-fed rats. When ATP production was also inhibited, the remaining accelerated proteolysis in muscles of tumor-bearing rats fell to control levels. Muscles of YAH-bearing rats showed increased levels of ubiquitin-conjugated proteins and a 27-kDa proteasome subunit in Western blot analysis. Levels of mRNA encoding components of proteolytic systems were quantitated using Northern hybridization analysis. Although their total RNA content decreased 20-38%, pale muscles of YAH-bearing rats showed increased levels of ubiquitin mRNA (590-880%) and mRNA for multiple subunits of the proteasome (100-215%). Liver, kidney, heart, and brain showed no weight loss and no change in these mRNA species. Muscles of YAH-bearing rats also showed small increases (30-40%) in mRNA for cathepsins B and D, but not for calpain I or heat shock protein 70. Our findings suggest that accelerated muscle proteolysis and muscle wasting in tumor-bearing rats result primarily from activation of the ATP-dependent pathway involving ubiquitin and the proteasome.

  5. Muscle Fatigue Affects the Interpolated Twitch Technique When Assessed Using Electrically-Induced Contractions in Human and Rat Muscles.

    PubMed

    Neyroud, Daria; Cheng, Arthur J; Bourdillon, Nicolas; Kayser, Bengt; Place, Nicolas; Westerblad, Håkan

    2016-01-01

    The interpolated twitch technique (ITT) is the gold standard to assess voluntary activation and central fatigue. Yet, its validity has been questioned. Here we studied how peripheral fatigue can affect the ITT. Repeated contractions at submaximal frequencies were produced by supramaximal electrical stimulations of the human adductor pollicis muscle in vivo and of isolated rat soleus fiber bundles; an extra stimulation pulse was given during contractions to induce a superimposed twitch. Human muscles fatigued by repeated 30-Hz stimulation trains (3 s on-1 s off) showed an ~80% reduction in the superimposed twitch force accompanied by a severely reduced EMG response (M-wave amplitude), which implies action potential failure. Subsequent experiments combined a less intense stimulation protocol (1.5 s on-3 s off) with ischemia to cause muscle fatigue, but which preserved M-wave amplitude. However, the superimposed twitch force still decreased markedly more than the potentiated twitch force; with ITT this would reflect increased "voluntary activation." In contrast, the superimposed twitch force was relatively spared when a similar protocol was performed in rat soleus bundles. Force relaxation was slowed by >150% in fatigued human muscles, whereas it was unchanged in rat soleus bundles. Accordingly, results similar to those in the human muscle were obtained when relaxation was slowed by cooling the rat soleus muscles. In conclusion, our data demonstrate that muscle fatigue can confound the quantification of central fatigue using the ITT.

  6. A Rat Model for Muscle Regeneration in the Soft Palate

    PubMed Central

    Carvajal Monroy, Paola L.; Grefte, Sander; Kuijpers-Jagtman, Anne M.; Helmich, Maria P. A. C.; Ulrich, Dietmar J. O.; Von den Hoff, Johannes W.; Wagener, Frank A. D. T. G.

    2013-01-01

    Background Children with a cleft in the soft palate have difficulties with speech, swallowing, and sucking. Despite successful surgical repositioning of the muscles, optimal function is often not achieved. Scar formation and defective regeneration may hamper the functional recovery of the muscles after cleft palate repair. Therefore, the aim of this study is to investigate the anatomy and histology of the soft palate in rats, and to establish an in vivo model for muscle regeneration after surgical injury. Methods Fourteen adult male Sprague Dawley rats were divided into four groups. Groups 1 (n = 4) and 2 (n = 2) were used to investigate the anatomy and histology of the soft palate, respectively. Group 3 (n = 6) was used for surgical wounding of the soft palate, and group 4 (n = 2) was used as unwounded control group. The wounds (1 mm) were evaluated by (immuno)histochemistry (AZAN staining, Pax7, MyoD, MyoG, MyHC, and ASMA) after 7 days. Results The present study shows that the anatomy and histology of the soft palate muscles of the rat is largely comparable with that in humans. All wounds showed clinical evidence of healing after 7 days. AZAN staining demonstrated extensive collagen deposition in the wound area, and initial regeneration of muscle fibers and salivary glands. Proliferating and differentiating satellite cells were identified in the wound area by antibody staining. Conclusions This model is the first, suitable for studying muscle regeneration in the rat soft palate, and allows the development of novel adjuvant strategies to promote muscle regeneration after cleft palate surgery. PMID:23554995

  7. [Contractile properties of skeletal muscles of rats after flight on "Kosmos-1887"].

    PubMed

    Oganov, V S; Skuratova, S A; Murashko, L M

    1991-01-01

    Contractile properties of skeletal muscles of rats were investigated using glycerinated muscle preparations that were obtained from Cosmos-1887 animals flown for 13 days (plus 2 days on the ground) and from rats that remained hypokinetic for 13 days on the ground. In the flow rats, the absolute mass of postural muscles remained unchanged while their relative mass increased; this may be attributed to their enhanced hydration which developed during the first 2 days after landing. Strength losses of the postural muscles were less significant than after previous flights. Comparison of the Cosmos-1887 and hypokinesia control data has shown that even 2-day exposure to 1 G after 13-day flight can modify drastically flight-induced changes.

  8. Isoflavin-β modifies muscle oxidative stress and prevents a thyrotoxicosis-induced loss of muscle mass in rats.

    PubMed

    Marinello, Poliana C; Bernardes, Sara S; Guarnier, Flávia A; Da Silva, Thamara N X; Borges, Fernando H; Lopes, Natália M D; Simão, Andréa N C; Armani, André; Cecchini, Rubens; Cecchini, Alessandra L

    2017-11-01

    We sought to verify whether isoflavin-beta (Iso-β), a mixture of isoflavones with antioxidant properties, could prevent thyrotoxicosis-induced loss of muscle mass and the participation of oxidative stress (OS) in the mechanisms of this prevention. Two experimental periods of thyrotoxicosis induction were used in Wistar rats: 3 and 5 days to assess Iso-β effects before and after thyrotoxicosis-induced muscle wasting. After euthanasia, peritoneal fat and gastrocnemius muscle were collected, weighed, and muscle OS was assessed. Iso-β prevented the loss of gastrocnemius mass in thyrotoxic rats through the prevention of muscle OS generation during thyrotoxicosis, increasing muscle total antioxidant capacity and decreasing mitochondrial cytochrome c oxidase activity, lipid peroxidation, and protein carbonyl content. Iso-β decreased oxidative modification of proteins, which is known to exert a major role during proteolysis induction and is present in thyrotoxic myopathy, highlighting the potential action of Iso-β in this complication of the disease. Muscle Nerve 56: 975-981, 2017. © 2016 Wiley Periodicals, Inc.

  9. Rat hindlimb muscle responses to suspension hypokinesia/hypodynamia

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Deavers, D. R.

    1983-01-01

    Hypokinetic/hyupodynamic (H/H) whole body suspension of rats eliminates hindlimb load bearing functions while permitting continued use of the forelimbs. Responses of hindlimb muscles were assessed in terms of absolute and relative weights during 1 and 2 weeks of H/H suspension. Muscle mass loss was in the order soleus greater than gastrocnemius equal to plantaris greater than extensor digitorum longus (EDL). The soleus, a postural antigravity muscle composed mainly of slow twitch fibers, was most sensitive, losing 35 and 45 percent of its weight during the first and second weeks, respectively. The gastrocnemius and plantaris showed losses during the first week but no significant loss during the second wee. The EDL showed little or no weight loss. During post suspension recovery all muscles showed a weight gain. H/H suspended rats failed to grow; following removal from suspension they gained weight linearly, comparable to controls. Products of muscle metabolism including urea, ammonia, and 3-methylhistidine increased in the urine during H/H suspension and were significantly reduced approaching control levels during recovery. This suspension model offers considerable promise for comparison with H/H responses during weightlessness.

  10. Botulinum toxin injection causes hyper-reflexia and increased muscle stiffness of the triceps surae muscle in the rat.

    PubMed

    Pingel, Jessica; Wienecke, Jacob; Lorentzen, Jakob; Nielsen, Jens Bo

    2016-12-01

    Botulinum toxin is used with the intention of diminishing spasticity and reducing the risk of development of contractures. Here, we investigated changes in muscle stiffness caused by reflex activity or elastic muscle properties following botulinum toxin injection in the triceps surae muscle in rats. Forty-four rats received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the noninjected contralateral side in all rats. Acute experiments were performed, 1, 2, 4, and 8 wk following injection. The triceps surae muscle was dissected free, and the Achilles tendon was cut and attached to a muscle puller. The resistance of the muscle to stretches of different amplitudes and velocities was systematically investigated. Reflex-mediated torque was normalized to the maximal muscle force evoked by supramaximal stimulation of the tibial nerve. Botulinum toxin injection caused severe atrophy of the triceps surae muscle at all time points. The force generated by stretch reflex activity was also strongly diminished but not to the same extent as the maximal muscle force at 2 and 4 wk, signifying a relative reflex hyperexcitability. Passive muscle stiffness was unaltered at 1 wk but increased at 2, 4, and 8 wk (P < 0.01). These data demonstrate that botulinum toxin causes a relative increase in reflex stiffness, which is likely caused by compensatory neuroplastic changes. The stiffness of elastic elements in the muscles also increased. The data are not consistent with the ideas that botulinum toxin is an efficient antispastic medication or that it may prevent development of contractures. Copyright © 2016 the American Physiological Society.

  11. Botulinum toxin injection causes hyper-reflexia and increased muscle stiffness of the triceps surae muscle in the rat

    PubMed Central

    Pingel, Jessica; Wienecke, Jacob; Lorentzen, Jakob

    2016-01-01

    Botulinum toxin is used with the intention of diminishing spasticity and reducing the risk of development of contractures. Here, we investigated changes in muscle stiffness caused by reflex activity or elastic muscle properties following botulinum toxin injection in the triceps surae muscle in rats. Forty-four rats received injection of botulinum toxin in the left triceps surae muscle. Control measurements were performed on the noninjected contralateral side in all rats. Acute experiments were performed, 1, 2, 4, and 8 wk following injection. The triceps surae muscle was dissected free, and the Achilles tendon was cut and attached to a muscle puller. The resistance of the muscle to stretches of different amplitudes and velocities was systematically investigated. Reflex-mediated torque was normalized to the maximal muscle force evoked by supramaximal stimulation of the tibial nerve. Botulinum toxin injection caused severe atrophy of the triceps surae muscle at all time points. The force generated by stretch reflex activity was also strongly diminished but not to the same extent as the maximal muscle force at 2 and 4 wk, signifying a relative reflex hyperexcitability. Passive muscle stiffness was unaltered at 1 wk but increased at 2, 4, and 8 wk (P < 0.01). These data demonstrate that botulinum toxin causes a relative increase in reflex stiffness, which is likely caused by compensatory neuroplastic changes. The stiffness of elastic elements in the muscles also increased. The data are not consistent with the ideas that botulinum toxin is an efficient antispastic medication or that it may prevent development of contractures. PMID:27628204

  12. Implication of altered ubiquitin-proteasome system and ER stress in the muscle atrophy of diabetic rats.

    PubMed

    Reddy, S Sreenivasa; Shruthi, Karnam; Prabhakar, Y Konda; Sailaja, Gummadi; Reddy, G Bhanuprakash

    2018-02-01

    Skeletal muscle is adversely affected in type-1 diabetes, and excessively stimulated ubiquitin-proteasome system (UPS) was found to be a leading cause of muscle wasting or atrophy. The role of endoplasmic reticulum (ER) stress in muscle atrophy of type-1 diabetes is not known. Hence, we investigated the role of UPS and ER stress in the muscle atrophy of chronic diabetes rat model. Diabetes was induced with streptozotocin (STZ) in male Sprague-Dawley rats and were sacrificed 2- and 4-months thereafter to collect gastrocnemius muscle. In another experiment, 2-months post-STZ-injection diabetic rats were treated with MG132, a proteasome inhibitor, for the next 2-months and gastrocnemius muscle was collected. The muscle fiber cross-sectional area was diminished in diabetic rats. The expression of UPS components: E1, MURF1, TRIM72, UCHL1, UCHL5, ubiquitinated proteins, and proteasome activity were elevated in the diabetic rats indicating activated UPS. Altered expression of ER-associated degradation (ERAD) components and increased ER stress markers were detected in 4-months diabetic rats. Proteasome inhibition by MG132 alleviated alterations in the UPS and ER stress in diabetic rat muscle. Increased UPS activity and ER stress were implicated in the muscle atrophy of diabetic rats and proteasome inhibition exhibited beneficiary outcome. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Influence of exercise training on the oxidative capacity of rat abdominal muscles

    NASA Technical Reports Server (NTRS)

    Uribe, J. M.; Stump, C. S.; Tipton, C. M.; Fregosi, R. F.

    1992-01-01

    Our purpose was to determine if endurance exercise training would increase the oxidative capacity of the abdominal expiratory muscles of the rat. Accordingly, 9 male rats were subjected to an endurance training protocol (1 h/day, 6 days/week, 9 weeks) and 9 litter-mates served as controls. Citrate synthase (CS) activity was used as an index of oxidative capacity, and was determined in the following muscles: soleus, plantaris, costal diaphragm, crural diaphragm, and in all four abdominal muscles: rectus abdominis, transversus abdominis, external oblique, and internal oblique. Compared to their non-trained litter-mates, the trained rats had higher peak whole body oxygen consumption rates (+ 16%) and CS activities in plantaris (+34%) and soleus (+36%) muscles. Thus, the training program caused substantial systemic and locomotor muscle adaptations. The CS activity of costal diaphragm was 20% greater in the trained animals, but no difference was observed in crural diaphragm. The CS activity in the abdominal muscles was less than one-half of that in locomotor and diaphragm muscles, and there were no significant changes with training except in the rectus abdominis where a 26% increase was observed. The increase in rectus abdominis CS activity may reflect its role in postural support and/or locomotion, as none of the primary expiratory pumping muscles adapted to the training protocol. The relatively low levels of CS activity in the abdominal muscles suggests that they are not recruited frequently at rest, and the lack of an increase with training indicates that these muscles do not contribute significantly to the increased ventilatory activity accompanying exercise in the rat.

  14. Testosterone-induced development of the rat levator ani muscle.

    PubMed

    Tobin, C; Joubert, Y

    1991-07-01

    The perinatal development of the levator ani (LA) muscle in male and female rats was investigated by measuring the total number of muscle units (MU) (i.e., mononucleate cells, clustered or independent myotubes, and muscle fibers) in transverse semithin sections of the entire muscle and the MU cross-sectional area in 22-day-old fetuses (F22), 1-day-old (D1 = day of birth), 3-day-old (D3), and 6-day-old (D6) newborns. Male muscle contained 350 +/- 64 MU on F22, twice that of the female. The number of MU increased markedly in males from F22, but changed little in females; the number of MU in males was 760% that of females on D6. The MU cross-sectional area was greater in males on F22 (120.8 micron(s)2 +/- 7.5) and D1 (155.2 micron(s)2 +/- 64.8) than in females (F22: 89.2 micron(s) +/- 14.2, D1: 64.1 micron(s)2 +/- 19.7) and dropped to about 30 X micron(s)2 in both sexes on D6. Female rats given a single injection of testosterone propionate (TP) before D7 showed a significant increase in the number of fibers, but no increase in cross-sectional area. TP given after D7 had no effect on the fiber number, but increased the average cross-sectional area. The increase in fiber number induced by postnatal TP treatment was a permanent effect, still quantifiable in 15-month-old females. We conclude that the sexual dimorphism of the rat LA muscle is principally due to a dramatic increase in the MU number in male muscles during the perinatal period, rather than to involution of the fibers in female muscles as it is widely accepted. This increase seems to be, at least partly, under the control of testosterone.

  15. Effects of elevated temperature on protein breakdown in muscles from septic rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall-Angeras, M.A.; Angeras, U.H.; Hasselgren, P.O.

    Elevated temperature has been proposed to contribute to accelerated muscle protein degradation during fever and sepsis. The present study examined the effect of increased temperature in vitro on protein turnover in skeletal muscles from septic and control rats. Sepsis was induced by cecal ligation and puncture (CLP); control rats were sham operated. After 16 h, the extensor digitorum longus (EDL) and soleus (SOL) muscles were incubated at 37 or 40 degrees C. Protein synthesis was determined by measuring incorporation of (14C)phenylalanine into protein. Total and myofibrillar protein breakdown was assessed from release of tyrosine and 3-methylhistidine (3-MH), respectively. Total proteinmore » breakdown was increased at 40 degrees C by 15% in EDL and by 29% in SOL from control rats, whereas 3-MH release was not affected. In muscles from septic rats, total and myofibrillar protein breakdown was increased by 22 and 30%, respectively, at 40 degrees C in EDL but was not altered in SOL. Protein synthesis was unaffected by high temperature both in septic and nonseptic muscles. The present results suggest that high temperature is not the primary mechanism of increased muscle protein breakdown in sepsis because the typical response to sepsis, i.e., a predominant increase in myofibrillar protein breakdown, was not induced by elevated temperature in normal muscle. It is possible, however, that increased temperature may potentiate protein breakdown that is already stimulated by sepsis because elevated temperature increased both total and myofibrillar protein breakdown in EDL from septic rats.« less

  16. Sericin and swimming on histomorphometric parameters of denervated plantar muscle in Wistar rats.

    PubMed

    Santana, André Junior; Debastiani, Jean Carlos; Buratti, Pâmela; Peretti, Ana Luiza; Kunz, Regina Inês; Brancalhão, Rose Meire Costa; Ribeiro, Lucinéia de Fátima Chasko; Torrejais, Márcia Miranda; Bertolini, Gladson Ricardo Flor

    2018-01-01

    Objective To analyze the combined effects of the silk protein sericin and swimming exercise on histomorphometry of the plantar muscle in Wistar rats. Methods Forty adult rats were randomly allocated into 5 groups comprising 8 animals each, as follows: Control, Injury, Sericin, Swim, and Swim plus Sericin. Three days after crushing of the sciatic nerve the rats in the Swim and Swim plus Sericin Groups were submitted to swimming exercise for 21 days. Rats were then euthanized and the plantar muscle harvested and processed. Results Cross-sectional area, peripheral nuclei and muscle fiber counts, nucleus/fiber ratio and smallest muscle fiber width did not differ significantly between groups. Morphological analysis revealed hypertrophic fibers in the Swim Group and evident muscle damage in the Swim plus Sericin and Injury Groups. The percentage of intramuscular collagen was apparently maintained in the Swim Group compared to remaining groups. Conclusion Combined treatment with sericin and swimming exercise did not improve muscle properties. However, physical exercise alone was effective in maintaining intramuscular connective tissue and preventing progression of deleterious effects of peripheral nerve injury.

  17. Beta2-adrenoceptor agonist fenoterol enhances functional repair of regenerating rat skeletal muscle after injury.

    PubMed

    Beitzel, Felice; Gregorevic, Paul; Ryall, James G; Plant, David R; Sillence, Martin N; Lynch, Gordon S

    2004-04-01

    Beta(2)-adrenoceptor agonists such as fenoterol are anabolic in skeletal muscle, and because they promote hypertrophy and improve force-producing capacity, they have potential application for enhancing muscle repair after injury. No previous studies have measured the beta(2)-adrenoceptor population in regenerating skeletal muscle or determined whether fenoterol can improve functional recovery in regenerating muscle after myotoxic injury. In the present study, the extensor digitorum longus (EDL) muscle of the right hindlimb of deeply anesthetized rats was injected with bupivacaine hydrochloride, which caused complete degeneration of all muscle fibers. The EDL muscle of the left hindlimb served as the uninjured control. Rats received either fenoterol (1.4 mg x kg(-1) x day(-1)) or an equal volume of saline for 2, 7, 14, or 21 days. Radioligand binding assays identified a approximately 3.5-fold increase in beta(2)-adrenoceptor density in regenerating muscle at 2 days postinjury. Isometric contractile properties of rat EDL muscles were measured in vitro. At 14 and 21 days postinjury, maximum force production (P(o)) of injured muscles from fenoterol-treated rats was 19 and 18% greater than from saline-treated rats, respectively, indicating more rapid restoration of function after injury. The increase in P(o) in fenoterol-treated rats was due to increases in muscle mass, fiber cross-sectional area, and protein content. These findings suggest a physiological role for beta(2)-adrenoceptor-mediated mechanisms in muscle regeneration and show clearly that fenoterol hastens recovery after injury, indicating its potential therapeutic application.

  18. Actions of the crude venom of the Sydney funnel-web spider, Atrax robustus on autonomic neuromuscular transmission

    PubMed Central

    Harris, J.B.; Sutherland, S.; Zar, M.A.

    1981-01-01

    1 The effects on mammalian autonomic neuromuscular transmission of the crude venom of the female Sydney funnel-web spider Atrax robustus, have been investigated. 2 At doses of 10 μg/ml or lower the indirectly elicited twitch-like responses of the rat anococcygeus preparation were inhibited. At doses greater than 10 μg/ml there was an initial reduction in the twitch-like response followed by a sustained contracture of the tissue. 3 The long-lasting contracture caused by the venom was abolished by the application of phentolamine. It was virtually non-existent in muscle preparations isolated from reserpine-treated rats. 4 In the presence of tetrodotoxin the contracture was smaller and less well maintained than in its absence. 5 The venom caused a small reduction in the amplitude of the indirectly elicited twitch-like response of the longitudinal muscle of the guinea-pig ileum, followed by an increase in the tone of the preparation. The increase in tone was maintained for several minutes and was rapidly abolished by the application of atropine. The presence of venom did not affect control responses to either histamine or acetylcholine. 6 Inhibitory transmission in the rat anococcygeus preparation was unaffected by the venom. 7 The neurally-mediated twitch-like responses of both guinea-pig and rat vas deferens were inhibited by the venom at doses below 10 μg/ml. At higher doses the inhibition was accompanied by spontaneous contractions, and at doses in excess of 100 μg/ml the inhibition of twitch-like responses was transient and was followed by a potentiation of the motor response and extensive spontaneous activity. The preparation became quiescent 20 min after the application of venom and the evoked response was abolished after 60 min. 8 The venom had qualitatively similar effects on motor transmission in the human vas deferens as on the rat and guinea-pig preparations. However, the human preparations were 50 to 100 times more sensitive to the effects of the venom

  19. Motor Unit Changes Seen With Skeletal Muscle Sarcopenia in Oldest Old Rats

    PubMed Central

    Kung, Theodore A.; van der Meulen, Jack H.; Urbanchek, Melanie G.; Kuzon, William M.; Faulkner, John A.

    2014-01-01

    Sarcopenia leads to many changes in skeletal muscle that contribute to atrophy, force deficits, and subsequent frailty. The purpose of this study was to characterize motor unit remodeling related to sarcopenia seen in extreme old age. Whole extensor digitorum longus muscle and motor unit contractile properties were measured in 19 adult (11–13 months) and 12 oldest old (36–37 months) Brown-Norway rats. Compared with adults, oldest old rats had significantly fewer motor units per muscle, smaller muscle cross-sectional area, and lower muscle specific force. However, mean motor unit force generation was similar between the two groups due to an increase in innervation ratio by the oldest old rats. These findings suggest that even in extreme old age both fast- and slow-twitch motor units maintain the ability to undergo motor unit remodeling that offsets some effects of sarcopenia. PMID:24077596

  20. Role of afferent input in load-dependent plasticity of rat muscle

    NASA Astrophysics Data System (ADS)

    Kawano, F.; Umemoto, S.; Higo, Y.; Kawabe, N.; Wang, X. D.; Lan, Y. B.; Ohira, Y.

    We have been studying the role of afferent input in the plasticity of skeletal muscles. The present study was performed to investigate the mechanisms responsible for the deafferentation-related inhibition of the compensatory hypertrophy in rat soleus muscle. Adult male Wistar rats were randomly separated into the control, functionally overloaded (FO), and functionally overloaded + deafferentation (FO+DA) group. The tendons of plantaris and gastrocnemius muscles were transected in the FO rats. The dorsal roots of the spinal cord at the L4-5 segmental levels were additionally transected in the FO+DA rats. The sampling of the soleus was performed 2 weeks after the surgery and ambulation recovery. The single muscle fibers were isolated in low-calcium relaxing solution. Further, the myonuclei or argyrophilic nucleolar organizer regions (AgNORs) were stained. Significant increase of the fiber cross-sectional area (CSA) was seen in the FO, but not in the FO+DA, rats. The myonuclear number in fiber was significantly decreased by FO. Addition of DA to FO further promoted the reduction of myonuclear number. The mean nucleus size and DNA content in single nucleus in all groups were identical. Although a single or double AgNORs were seen in ~90% of myonuclei in the control rats, their distributions were 72 and 76% in the FO and FO+DA rats, respectively (p<0.05). More myonuclei containing 3-5 AgNORs were noted in the FO and FO+DA rats. The mean number of the AgNORs per myonucleus was 1.7 in the control, 2.1 in both FO and FO+DA rats (p<0.05). It was suggested that the FO-related increase of the number of AgNORs may be responsible for the induction of compensatory hypertrophy. It was also indicated that intact afferent input plays an essential role in these phenomena.

  1. Effects of prolonged space flight on rat skeletal muscle.

    PubMed

    Nesterov, V P; Zheludkova, Z P; Kuznetsova, L A

    1979-10-01

    The effect of a 20-day space flight on water, Na+, K+, Mg2+, Ca2+ and glycogen contents as well as on activities of glycogen metabolism enzymes--glycogen synthetase and glycogen phosphorylase--of rat skeletal muscles was studied. This data is regarded as an integral test characterizing the state of contractile tissue of the animals at the final stage of flight aboard biosatellites. The measurements indicate that there were no significant changes of cations and glycogen contents nor of the enzymic activities in fast-twitch muscles during the 20-day spaceflight. At the same time dehydration in these muscles was observed, which disappeared on the 25th postflight day. In slow-twitch antigravitational skeletal muscle (m. soleus) there was a decrease of K+ and increase of Na+ in the tissue contents. The changes disappeared at the end of the on-earth readaptation period. From the pattern of these observations, we can conclude that the 20-day space flight leads to some reversible biochemical changes of the rat skeletal muscles. A conclusion can be drawn about necessity of creating, aboard the spaceship, an artificial load on antigravitational skeletal muscles.

  2. The expression of NFATc1 in adult rat skeletal muscle fibres.

    PubMed

    Mutungi, Gabriel

    2008-03-01

    Although numerous studies have recently implicated the calcineurin-nuclear factor of activated T-cells (Cn-NFAT) signalling pathway in the regulation of activity-dependent fibre type switching in adult mammalian skeletal muscles, little is known about the endogenous expression of NFAT proteins in the various fibre types present in these muscles. In this study, the immunolocalization of NFATc1 (also known as NFATc or NFAT2) in the extensor digitorum longus (EDL; a mainly fast-twitch muscle) and the soleus (a predominantly slow-twitch muscle) muscles of adult ( approximately 90-day-old) Wistar rats was investigated. The results show that NFATc1 is expressed only in oxidative fibres (i.e. type I and type IIA fibres) that stain intensely for succinate dehydrogenase activity irrespective of whether they are from the fast- or slow-twitch muscle. Thus, 99 +/- 4% (n = 7 rats) of the muscle fibres in the soleus and 42 +/- 2% (n = 7 rats) of those in the EDL expressed NFATc1. In the soleus muscle fibres, NFATc1 was localized mainly in the fibre nuclei, whereas in the EDL fibres it was localized in both the cytoplasm and the nuclei. However, no difference in its localization was observed between type I and type IIA fibres in both muscles. Western blot experiments showed that the soleus expressed more NFATc1 proteins than the EDL. From these results, we suggest that NFATc1 controls the number and distribution of both type I and type IIA fibres, as well as the oxidative capacity of adult mammalian skeletal muscles.

  3. Early mitochondrial dysfunction in glycolytic muscle, but not oxidative muscle, of the fructose-fed insulin-resistant rat

    PubMed Central

    Warren, Blair E.; Lou, Phing-How; Lucchinetti, Eliana; Zhang, Liyan; Clanachan, Alexander S.; Affolter, Andreas; Hersberger, Martin; Zaugg, Michael

    2014-01-01

    Although evidence that type 2 diabetes mellitus (T2DM) is accompanied by mitochondrial dysfunction in skeletal muscle has been accumulating, a causal link between mitochondrial dysfunction and the pathogenesis of the disease remains unclear. Our study focuses on an early stage of the disease to determine whether mitochondrial dysfunction contributes to the development of T2DM. The fructose-fed (FF) rat was used as an animal model of early T2DM. Mitochondrial respiration and acylcarnitine species were measured in oxidative (soleus) and glycolytic [extensor digitorum longus (EDL)] muscle. Although FF rats displayed characteristic signs of T2DM, including hyperglycemia, hyperinsulinemia, and hypertriglyceridemia, mitochondrial content was preserved in both muscles from FF rats. The EDL muscle had reduced complex I and complex I and II respiration in the presence of pyruvate but not glutamate. The decrease in pyruvate-supported respiration was due to a decrease in pyruvate dehydrogenase activity. Accumulation of C14:1 and C14:2 acylcarnitine species and a decrease in respiration supported by long-chain acylcarnitines but not acetylcarnitine indicated dysfunctional β-oxidation in the EDL muscle. In contrast, the soleus muscle showed preserved mitochondrial respiration, pyruvate dehydrogenase activity, and increased fatty acid oxidation, as evidenced by overall reduced acylcarnitine levels. Aconitase activity, a sensitive index of reactive oxygen species production in mitochondria, was reduced exclusively in EDL muscle, which showed lower levels of the antioxidant enzymes thioredoxin reductase and glutathione peroxidase. Here, we show that the glycolytic EDL muscle is more prone to an imbalance between energy supply and oxidation caused by insulin resistance than the oxidative soleus muscle. PMID:24425766

  4. Changes of contractile responses due to simulated weightlessness in rat soleus muscle

    NASA Astrophysics Data System (ADS)

    Elkhammari, A.; Noireaud, J.; Léoty, C.

    1994-08-01

    Some contractile and electrophysiological properties of muscle fibers isolated from the slow-twitch soleus (SOL) and fast-twitch extensor digitorum longus (EDL) muscles of rats were compared with those measured in SOL muscles from suspended rats. In suspendede SOL (21 days of tail-suspension) membrane potential (Em), intracellular sodium activity (aiNa) and the slope of the relationship between Em and log [K]o were typical of fast-twitch muscles. The relation between the maximal amplitude of K-contractures vs Em was steeper for control SOL than for EDL and suspended SOL muscles. After suspension, in SOL muscles the contractile threshold and the inactivation curves for K-contractures were shifted to more positive Em. Repriming of K-contractures was unaffected by suspencion. The exposure of isolated fibers to perchlorate (ClO4-)-containing (6-40 mM) solutions resulted ina similar concentration-dependent shift to more negative Em of activation curves for EDL and suspended SOL muscles. On exposure to a Na-free TEA solution, SOL from control and suspended rats, in contrast to EDL muscles, generated slow contractile responses. Suspended SOL showed a reduced sensitivity to the contracture-producing effect of caffeine compared to control muscles. These results suggested that the modification observed due to suspension could be encounted by changes in the characteristics of muscle fibers from slow to fast-twitch type.

  5. Morphometric analysis of rat muscle fibers following space flight and hypogravity

    NASA Technical Reports Server (NTRS)

    Chui, L. A.; Castleman, K. R.

    1982-01-01

    The effect of hypogravity on striate muscles, containing both fast twitch glycolytic and slow twitch oxidative fibers, was studied in rats aboard two Cosmos biosatellites. Results of a computer-assisted image analysis of extensor digitorum muscles from five rats, exposed to 18.5 days of hypogravity and processed for the alkaline ATPase reaction, showed a reduction of the mean fiber diameter (41.32 + or - 0.55 microns), compared to synchronous (46.32 + or - 0.55 microns) and vivarium (49 + or - 0.5 microns) controls. A further experiment studied the ratio of fast to slow twitch fibers in 25 rats exposed to 18.5 days of hypogravity and analyzed at four different periods of recovery following the space flight. Using the previous techniques, the gastrocnemius muscle showed a reduction of the total muscle fiber area in square microns and a reduction in the percentage of slow fibers of flight animals compared to the control animals.

  6. Androgen-estrogen synergy in rat levator ani muscle Glucose-6-phosphate dehydrogenase

    NASA Technical Reports Server (NTRS)

    Max, S. R.

    1984-01-01

    The effects of castration and hormone administration on the activity of glucose-6-phosphate dehydrogenase in the rat levator ani muscle were studied. Castration caused a decrease in enzyme activity and in wet weight of the levator ani muscle. Chronic administration of testosterone propionate increased glucose-6-phosphate dehydrogenase activity in the levator ani muscle of castrated rats; the magnitude of the recovery of enzyme activity was related to the length of time of exposure to testosterone propionate after castration as well as to the length of time the animals were castrated. The longer the period of castration before exposure to testosterone propionate, the greater the effect. This result may be related to previously reported castration-mediated increases in androgen receptor binding in muscle. Dihydrotestosterone was less effective than testosterone propionate in enhancing glucose-6-phosphate dehydrogenase activity in the levator ani muscle from castrated rats; estradiol-17-beta alone was ineffective. Combined treatment with estradiol-17-beta and dihydrotestosterone, however, was as effective as testosterone alone. Thus, androgens and estrogens may exert synergistic effects on levator ani muscle.

  7. Electrical Stimulation of Denervated Rat Skeletal Muscle Retards Capillary and Muscle Loss in Early Stages of Disuse Atrophy

    PubMed Central

    Nakagawa, Kouki; Hayao, Keishi; Yotani, Kengo; Ogita, Futoshi; Yamamoto, Noriaki; Onishi, Hideaki

    2017-01-01

    The purpose of the present study is to investigate the effects of low-frequency electrical muscle stimulation (ES) on the decrease in muscle mass, fiber size, capillary supply, and matrix metalloproteinase (MMP) immunoreactivity in the early stages of denervation-induced limb disuse. Direct ES was performed on the tibialis anterior muscle following denervation in seven-week-old male rats. The rats were divided into the following groups: control (CON), denervation (DN), and denervation with direct ES (DN + ES). Direct ES was performed at an intensity of 16 mA and a frequency of 10 Hz for 30 min per day, six days a week, for one week. We performed immunohistochemical staining to determine the expression of dystrophin, CD34, and MMP-2 in transverse sections of TA muscles. The weight, myofiber cross-sectional area (FCSA), and capillary-to-fiber (C/F) ratio of the tibialis anterior (TA) muscle were significantly reduced in the DN group compared to the control and DN + ES groups. The MMP-2 positive area was significantly greater in DN and DN + ES groups compared to the control group. These findings suggest beneficial effects of direct ES in reducing muscle atrophy and capillary regression without increasing MMP-2 immunoreactivity in the early stages of DN-induced muscle disuse in rat hind limbs. PMID:28497057

  8. Transcriptional profiling of rat skeletal muscle hypertrophy under restriction of blood flow.

    PubMed

    Xu, Shouyu; Liu, Xueyun; Chen, Zhenhuang; Li, Gaoquan; Chen, Qin; Zhou, Guoqing; Ma, Ruijie; Yao, Xinmiao; Huang, Xiao

    2016-12-15

    Blood flow restriction (BFR) under low-intensity resistance training (LIRT) can produce similar effects upon muscles to that of high-intensity resistance training (HIRT) while overcoming many of the restrictions to HIRT that occurs in a clinical setting. However, the potential molecular mechanisms of BFR induced muscle hypertrophy remain largely unknown. Here, using a BFR rat model, we aim to better elucidate the mechanisms regulating muscle hypertrophy as induced by BFR and reveal possible clinical therapeutic targets for atrophy cases. We performed genome wide screening with microarray analysis to identify unique differentially expressed genes during rat muscle hypertrophy. We then successfully separated the differentially expressed genes from BRF treated soleus samples by comparing the Affymetrix rat Genome U34 2.0 array with the control. Using qRT-PCR and immunohistochemistry (IHC) we also analyzed other related differentially expressed genes. Results suggested that muscle hypertrophy induced by BFR is essentially regulated by the rate of protein turnover. Specifically, PI3K/AKT and MAPK pathways act as positive regulators in controlling protein synthesis where ubiquitin-proteasome acts as a negative regulator. This represents the first general genome wide level investigation of the gene expression profile in the rat soleus after BFR treatment. This may aid our understanding of the molecular mechanisms regulating and controlling muscle hypertrophy and provide support to the BFR strategies aiming to prevent muscle atrophy in a clinical setting. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Preventive Effects of the Dietary Intake of Medium-chain Triacylglycerols on Immobilization-induced Muscle Atrophy in Rats.

    PubMed

    Nishimura, Shuhei; Inai, Makoto; Takagi, Tetsuo; Nonaka, Yudai; Urashima, Shogo; Honda, Kazumitsu; Aoyama, Toshiaki; Terada, Shin

    2017-08-01

    Previous studies have shown that medium-chain triacylglycerols (MCTs) exert favorable effects on protein metabolism. This study evaluated the effects of the dietary intake of MCTs on rat skeletal muscle mass and total protein content during casting-induced hindlimb immobilization, which causes substantial protein degradation and muscle atrophy. Rats were fed a standard diet containing long-chain triacylglycerols (LCTs) or MCTs for 3 days and then a unilateral hindlimb was immobilized while they received the same diet. After immobilization for 3, 7, and 14 days, muscle mass and total protein content in immobilized soleus muscle in the LCT-fed rats had markedly decreased compared to the contralateral muscle; however, these losses were partially suppressed in MCT-fed rats. Autophagosomal membrane proteins (LC-I and -II), which are biomarkers of autophagy-lysosome activity, did not differ significantly between the LCT- and MCT-fed rats. In contrast, the immobilization-induced increase in muscle-specific E3 ubiquitin ligase MuRF-1 protein expression in immobilized soleus muscle relative to contralateral muscle was completely blocked in the MCT-fed rats and was significantly lower than that observed in the LCT-fed rats. Collectively, these results indicate that the dietary intake of MCTs at least partly alleviates immobilization-induced muscle atrophy by inhibiting the ubiquitin-proteasome pathway.

  10. Hypoxia inducible factor 1 links fast-patterned muscle activity and fast muscle phenotype in rats.

    PubMed

    Lunde, Ida G; Anton, Siobhan L; Bruusgaard, Jo C; Rana, Zaheer A; Ellefsen, Stian; Gundersen, Kristian

    2011-03-15

    Exercise influences muscle phenotype by the specific pattern of action potentials delivered to the muscle, triggering intracellular signalling pathways. PO2 can be reduced by an order of magnitude in working muscle. In humans, carriers of a hyperactive polymorphism of the transcription factor hypoxia inducible factor 1α (HIF-1α) have 50% more fast fibres, and this polymorphism is prevalent among strength athletes. We have investigated the putative role of HIF-1α in mediating activity changes in muscle.When rat muscles were stimulated with short high frequency bursts of action potentials known to induce a fast muscle phenotype, HIF-1α increased by about 80%. In contrast, a pattern consisting of long low frequency trains known to make fast muscles slow reduced the HIF-1α level of the fast extensor digitorum longus (EDL) muscle by 44%. Nuclear protein extracts from normal EDL contained 2.3-fold more HIF-1α and 4-fold more HIF-1β than the slow soleus muscle, while von-Hippel-Lindau protein was 4.8-fold higher in slow muscles. mRNA displayed a reciprocal pattern; thus FIH-1 mRNA was almost 2-fold higher in fast muscle, while the HIF-1α level was half, and consequently protein/mRNA ratio for HIF-1α was more than 4-fold higher in the fast muscle, suggesting that HIF-1α is strongly suppressed post-transcriptionally in slow muscles.When HIF-1α was overexpressed for 14 days after somatic gene transfer in adult rats, a slow-to-fast transformation was observed, encompassing an increase in fibre cross sectional area, oxidative enzyme activity and myosin heavy chain. The latter was shown to be regulated at the mRNA level in C2C12 myotubes.

  11. The effects of Creatine Long-Term Supplementation on Muscle Morphology and Swimming Performance in Rats

    PubMed Central

    Yildiz, Ahmet; Ozdemir, Ercan; Gulturk, Sefa; Erdal, Sena

    2009-01-01

    Creatine (Cr) has been shown to increase the total muscle mass. The purpose of this study was to investigate the effect of Cr supplementation on muscle morphology and swimming performance, using an animal model. Each rat was subjected to exercise 15-minute period daily for the 12 weeks. The rats were randomly divided into four groups: no Cr supplementation (CON), no Cr supplementation and incomplete food intake (lacking lysine and methionine in diet for rats) (INCO), Cr supplementation 1 g·kg-1·day-1 (CREAT-I) and Cr supplementation 2 g·kg-1·day-1 (CREAT-II). Three months later, all groups adult rats exercised in swimming pool chambers. Swimming time was recorded as minute for each rat. Following swimming performance period, the animals were killed by cervical dislocation and the gastrocnemius and diaphragm muscles were dissected. Serial slices of 5-7 μm were allocated paraffin wax and histochemical staining procedure of cross-sections was carried out with heamatoxylin-eosin technics. All groups gained body weight at the end of 12 weeks but there was no statistical difference among them. Swimming time values were statistical difference between CREAT-II and CON group as well as between CREAT-I and CON group (p < 0.05). In the INCO group was determined increased connective tissue cell of the muscle sample. In contrast, in the CREAT-I and CREAT-II group, the basic histological changes were large-scale muscle fibers and hypertrophic muscle cells. These results suggest that long-term creatine supplementation increased the number of muscle fibers and enhanced endurance swimming performance in rats. Key points There is no study about the effects of creatine long-term supplementation on muscle morphology and swimming performance in rats. Long-term creatine supplementation increase muscle hypertrophy (but not body weight) and enhance endurance swimming performance in rats. The quantitative analysis indicated that the number of muscle fibers per defined area increased

  12. A comparative study of charge movement in rat and frog skeletal muscle fibres.

    PubMed

    Hollingworth, S; Marshall, M W

    1981-12-01

    1. The middle of the fibre voltage--clamp technique (Adrian & Marshall, 1977), modified where necessary for electrically short muscle fibres, has been used to measure non-linear charge movements in mammalian fast twitch (rat extensor digitorum longus), mammalian slow twitch (rat soleus) and frog (sartorius) muscles. 2. The maximum amount of charge moved in mammalian fast twitch muscle at 2 degrees C in hypertonic solution, was 3--5 times greater than in slow twitch muscle. The voltage distribution of fast twitch charge was 10--15 mV more positive when compared to slow twitch. 3. In both mammalian muscle types hypertonic Ringer solution negatively shifted the voltage distribution of charge some 6 mV. The steepness of charge moved around mechanical threshold was unaffected by hypertonicity. 4. The amount of charge in frog sartorius fibres at 2 degrees C in hypertonic solution was about half of that in rat fast twitch muscle; the voltage distribution of the frog charge was similar to rat soleus muscle. 5. Warming between 2 and 15 degrees C had no effect on either the amount of steady-state distribution of charge in mammalian or frog muscles. 6. At 2 degrees C, the kinetics of charge movement in fast and slow twitch mammalian muscles were similar and 2--3 times faster than frog muscle at the same temperature. In fast and slow mammalian fibres at 2 degrees C similar times were taken to shift the same fractions of the total amount of charge. The Q10 of charge movement kinetics was between 1.2 and 2.0 in the three muscles studied.

  13. Oxidative stress exaggerates skeletal muscle contraction-evoked reflex sympathoexcitation in rats with hypertension induced by angiotensin II.

    PubMed

    Koba, Satoshi; Watanabe, Ryosuke; Kano, Naoko; Watanabe, Tatsuo

    2013-01-01

    Muscle contraction stimulates thin fiber muscle afferents and evokes reflex sympathoexcitation. In hypertension, this reflex is exaggerated. ANG II, which is elevated in hypertension, has been reported to trigger the production of superoxide and other reactive oxygen species. In the present study, we tested the hypothesis that increased ANG II in hypertension exaggerates skeletal muscle contraction-evoked reflex sympathoexcitation by inducing oxidative stress in the muscle. In rats, subcutaneous infusion of ANG II at 450 ng·kg(-1)·min(-1) for 14 days significantly (P < 0.05) elevated blood pressure compared with sham-operated (sham) rats. Electrically induced 30-s hindlimb muscle contraction in decerebrate rats with hypertension evoked larger renal sympathoexcitatory and pressor responses [+1,173 ± 212 arbitrary units (AU) and +35 ± 5 mmHg, n = 10] compared with sham normotensive rats (+419 ± 103 AU and +13 ± 2 mmHg, n = 11). Tempol, a SOD mimetic, injected intra-arterially into the hindlimb circulation significantly reduced responses in hypertensive rats, whereas this compound had no effect on responses in sham rats. Tiron, another SOD mimetic, also significantly reduced reflex renal sympathetic and pressor responses in a subset of hypertensive rats (n = 10). Generation of muscle superoxide, as evaluated by dihydroethidium staining, was increased in hypertensive rats. RT-PCR and immunoblot experiments showed that mRNA and protein for gp91(phox), a NADPH oxidase subunit, in skeletal muscle tissue were upregulated in hypertensive rats. Taken together, hese results suggest that increased ANG II in hypertension induces oxidative stress in skeletal muscle, thereby exaggerating the muscle reflex.

  14. Effects of Resveratrol on the Recovery of Muscle Mass Following Disuse in the Plantaris Muscle of Aged Rats

    PubMed Central

    Bennett, Brian T.; Mohamed, Junaith S.; Alway, Stephen E.

    2013-01-01

    Aging is associated with poor skeletal muscle regenerative ability following extended periods of hospitalization and other forms of muscular disuse. Resveratrol (3,5,4’-trihydroxystilbene) is a natural phytoalexin which has been shown in skeletal muscle to improve oxidative stress levels in muscles of aged rats. As muscle disuse and reloading after disuse increases oxidative stress, we hypothesized that resveratrol supplementation would improve muscle regeneration after disuse. A total of thirty-six male Fisher 344 × Brown Norway rats (32 mo.) were treated with either a water vehicle or resveratrol via oral gavage. The animals received hindlimb suspension for 14 days. Thereafter, they were either sacrificed or allowed an additional 14 day period of cage ambulation during reloading. A total of six rats from the vehicle and the resveratrol treated groups were used for the hindlimb suspension and recovery protocols. Furthermore, two groups of 6 vehicle treated animals maintained normal ambulation throughout the experiment, and were used as control animals for the hindlimb suspension and reloading groups. The data show that resveratrol supplementation was unable to attenuate the decreases in plantaris muscle wet weight during hindlimb suspension but it improved muscle mass during reloading after hindlimb suspension. Although resveratrol did not prevent fiber atrophy during the period of disuse, it increased the fiber cross sectional area of type IIA and IIB fibers in response to reloading after hindlimb suspension. There was a modest enhancement of myogenic precursor cell proliferation in resveratrol-treated muscles after reloading, but this failed to reach statistical significance. The resveratrol-associated improvement in type II fiber size and muscle mass recovery after disuse may have been due to decreases in the abundance of pro-apoptotic proteins Bax, cleaved caspase 3 and cleaved caspase 9 in reloaded muscles. Resveratrol appears to have modest therapeutic

  15. Na(+)-K (+) pump location and translocation during muscle contraction in rat skeletal muscle.

    PubMed

    Kristensen, Michael; Rasmussen, Martin Krøyer; Juel, Carsten

    2008-08-01

    Muscle contraction may up-regulate the number of Na(+)-K(+) pumps in the plasma membrane by translocation of subunits. Since there is still controversy about where this translocation takes place from and if it takes place at all, the present study used different techniques to characterize the translocation. Electrical stimulation and biotin labeling of rat muscle revealed a 40% and 18% increase in the amounts of the Na(+)-K(+) pump alpha(2) subunit and caveolin-3 (Cav-3), respectively, in the sarcolemma. Exercise induced a 36% and 19% increase in the relative amounts of the alpha(2) subunit and Cav-3, respectively, in an outer-membrane-enriched fraction and a 41% and 17% increase, respectively, in sarcolemma giant vesicles. The Na(+)-K(+) pump activity measured with the 3-O-MFPase assay was increased by 37% in giant vesicles from exercised rats. Immunoprecipitation with Cav-3 antibody showed that 17%, 11% and 14% of the alpha(1) subunits were associated with Cav-3 in soleus, extensor digitorum longus, and mixed muscles, respectively. For the alpha(2), the corresponding values were 17%, 5% and 16%. In conclusion; muscle contraction induces translocation of the alpha subunits, which is suggested to be caused partly by structural changes in caveolae and partly by translocation from an intracellular pool.

  16. Enhanced skeletal muscle insulin sensitivity in year-old rats adapted to hypergravity

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Dolkas, C. B.; Oyama, J.

    1981-01-01

    Rats induced into a hypermetabolic state by exposure to chronic (7 mo) centrifugation at 4.15 g exhibited increased glucose uptake at lower plasma insulin levels than weight-matched control animals following oral glucose administration. In order to determine the insulin sensitivity of specific tissues, the effect of exogenous insulin on glucose uptake by isolated perfused livers and hindlim skeletal muscle from rats adapted to chronic centrifugation for one year was compared with perfused tissue from 2.5 mo-old noncentrifuged control animals of equal body weight. Metabolic glucose clearance by skeletal muscle from hypergravic rats did not prove significantly greater than control muscle when perfused in the absence of insulin (10.6 vs 8.1 microliters/min-g-muscle), but was twice as fast (23.0 vs 9.5) at perfusate insulin levels of 35 micro-U/ml. Conversely, glucose uptake by hypergravic livers was significantly decreased (P is less than 0.001) compared with control livers (10.3 vs 27.8) at perfusate insulin levels of 40 micro-U/ml. Results suggest that skeletal muscle rather than liver is primarily responsible for the enhanced sensitivity to insulin and the increased energy expenditure observed in rats subjected to hypergravity.

  17. Skeletal Muscle Sorbitol Levels in Diabetic Rats with and without Insulin Therapy and Endurance Exercise Training

    PubMed Central

    Sánchez, O. A.; Walseth, T. F.; Snow, L. M.; Serfass, R. C.; Thompson, L. V.

    2009-01-01

    Sorbitol accumulation is postulated to play a role in skeletal muscle dysfunction associated with diabetes. The purpose of this study was to determine the effects of insulin and of endurance exercise on skeletal muscle sorbitol levels in streptozotocin-induced diabetic rats. Rats were assigned to one experimental group (control sedentary, control exercise, diabetic sedentary, diabetic exercise, diabetic sedentary no-insulin). Diabetic rats received daily subcutaneous insulin. The exercise-trained rats ran on a treadmill (1 hour, 5X/wk, for 12 weeks). Skeletal muscle sorbitol levels were the highest in the diabetic sedentary no-insulin group. Diabetic sedentary rats receiving insulin had similar sorbitol levels to control sedentary rats. Endurance exercise did not significantly affect sorbitol levels. These results indicate that insulin treatment lowers sorbitol in skeletal muscle; therefore sorbitol accumulation is probably not related to muscle dysfunction in insulin-treated diabetic individuals. Endurance exercise did not influence intramuscular sorbitol values as strongly as insulin. PMID:20016800

  18. Bone and muscle atrophy with suspension of the rat

    NASA Technical Reports Server (NTRS)

    Leblanc, A.; Marsh, C.; Evans, H.; Johnson, P.; Schneider, V.; Jhingran, S.

    1985-01-01

    In order to identify a suitable model for the study of muscle atrophy due to suspension in space, a modified version of the Morey tail suspension model was used to measure the atrophic responses of rat bone and muscle to 14-30 days of unloading of the hindlimbs. The progress of atrophy was measured by increases in methylene diphosphonate (MDP) uptake. It is found that bone uptake of methylene diphosphonate followed a phasic pattern similar to changes in the bone formation rate of immobilized dogs and cats. Increased MDP uptake after a period of 60 days indicated an accelerated bone metabolism. Maximum muscle atrophy in the suspended rats was distinctly different from immobilization atrophy. On the basis of the experimental results, it is concluded that the tail suspension model is an adequate simulation of bone atrophy due to suspension.

  19. Exercise training increases protein O-GlcNAcylation in rat skeletal muscle.

    PubMed

    Hortemo, Kristin Halvorsen; Lunde, Per Kristian; Anonsen, Jan Haug; Kvaløy, Heidi; Munkvik, Morten; Rehn, Tommy Aune; Sjaastad, Ivar; Lunde, Ida Gjervold; Aronsen, Jan Magnus; Sejersted, Ole M

    2016-09-01

    Protein O-GlcNAcylation has emerged as an important intracellular signaling system with both physiological and pathophysiological functions, but the role of protein O-GlcNAcylation in skeletal muscle remains elusive. In this study, we tested the hypothesis that protein O-GlcNAcylation is a dynamic signaling system in skeletal muscle in exercise and disease. Immunoblotting showed different protein O-GlcNAcylation pattern in the prototypical slow twitch soleus muscle compared to fast twitch EDL from rats, with greater O-GlcNAcylation level in soleus associated with higher expression of the modulating enzymes O-GlcNAc transferase (OGT), O-GlcNAcase (OGA), and glutamine fructose-6-phosphate amidotransferase isoforms 1 and 2 (GFAT1, GFAT2). Six weeks of exercise training by treadmill running, but not an acute exercise bout, increased protein O-GlcNAcylation in rat soleus and EDL There was a striking increase in O-GlcNAcylation of cytoplasmic proteins ~50 kDa in size that judged from mass spectrometry analysis could represent O-GlcNAcylation of one or more key metabolic enzymes. This suggests that cytoplasmic O-GlcNAc signaling is part of the training response. In contrast to exercise training, postinfarction heart failure (HF) in rats and humans did not affect skeletal muscle O-GlcNAcylation level, indicating that aberrant O-GlcNAcylation cannot explain the skeletal muscle dysfunction in HF Human skeletal muscle displayed extensive protein O-GlcNAcylation that by large mirrored the fiber-type-related O-GlcNAcylation pattern in rats, suggesting O-GlcNAcylation as an important signaling system also in human skeletal muscle. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  20. Skeletal Muscle Satellite Cell Activation Following Cutaneous Burn in Rats

    DTIC Science & Technology

    2013-12-01

    satellite cell activation and survival during oxidative stress. J Muscle Res Cell Motil 2011;32(2):99–109. [33] Rathbone CR, Booth FW, Lees SJ. Sirt1 ...Skeletal muscle satellite cell activation following cutaneous burn in rats Xiaowu Wu*, Thomas J. Walters, Christopher R. Rathbone Extremity Trauma...f o Article history: Accepted 15 October 2012 Keywords: Muscle precursor cell Thermal injury Atrophy Skeletal muscle Activation a b s t r a c t

  1. The effect of amino acid infusion on anesthesia-induced hypothermia in muscle atrophy model rats.

    PubMed

    Kanazawa, Masahiro; Ando, Satoko; Tsuda, Michio; Suzuki, Toshiyasu

    2010-01-01

    An infusion of amino acids stimulates heat production in skeletal muscle and then attenuates the anesthesia-induced hypothermia. However, in a clinical setting, some patients have atrophic skeletal muscle caused by various factors. The present study was therefore conducted to investigate the effect of amino acids on the anesthesia-induced hypothermia in the state of muscle atrophy. As the muscle atrophy model, Sprague-Dawley rats were subjected to hindlimb immobilization for 2 wk. Normal rats and atrophy model rats were randomly assigned to one of the two treatment groups: saline or amino acids (n=8 for each group). Test solutions were administered intravenously to the rats under sevoflurane anesthesia for 180 min, and the rectal temperature was measured. Plasma samples were collected for measurement of insulin, blood glucose, and free amino acids. The rectal temperature was significantly higher in the normal-amino acid group than in the muscle atrophy-amino acid group from 75 to 180 min. The plasma insulin level was significantly higher in the rats given amino acids than in the rats given saline in both normal and model groups. In the rats given amino acids, plasma total free amino acid concentration was higher in the model group than in the normal group. These results indicate that skeletal muscle plays an important role in changes in body temperature during anesthesia and the effect of amino acids on anesthesia-induced hypothermia decreases in the muscle atrophy state. In addition, intravenous amino acids administration during anesthesia induces an increase in the plasma insulin level.

  2. Glucose rapidly decreases plasma membrane GLUT4 content in rat skeletal muscle.

    PubMed

    Marette, A; Dimitrakoudis, D; Shi, Q; Rodgers, C D; Klip, A; Vranic, M

    1999-02-01

    We have previously demonstrated that chronic hyperglycemia per se decreases GLUT4 glucose transporter expression and plasma membrane content in mildly streptozotocin- (STZ) diabetic rats (Biochem. J. 284, 341-348, 1992). In the present study, we investigated the effect of an acute rise in glycemia on muscle GLUT4 and GLUT1 protein contents in the plasma membrane, in the absence of insulin elevation. Four experimental groups of rats were analyzed in the postabsorptive state: 1. Control rats. 2. Hyperglycemic STZ-diabetic rats with moderately reduced fasting insulin levels. 3. STZ-diabetic rats made normoglycemic with phlorizin treatment. 4. Phlorizin-treated (normoglycemic) STZ-diabetic rats infused with glucose for 40 min. The uniqueness of the latter model is that glycemia can be rapidly raised without any concomitant increase in plasma insulin levels. Plasma membranes were isolated from hindlimb muscle and GLUT1 and GLUT4 proteins amounts determined by Western blot analysis. As predicted, STZ-diabetes caused a significant decrease in the abundance of GLUT4 in the isolated plasma membranes. Normalization of glycemia for 3 d with phlorizin treatment restored plasma membrane GLUT4 content in muscle of STZ-diabetic rats. A sudden rise in glycemia over a period of 40 min caused the GLUT4 levels in the plasma membrane fraction to decrease to those of nontreated STZ-diabetic rats. In contrast to the GLUT4 transporter, plasma membrane GLUT1 abundance was not changed by the acute glucose challenge. It is concluded that glucose can have regulatory effect by acutely reducing plasma membrane GLUT4 protein contents in rat skeletal muscle. We hypothesize that this glucose-induced downregulation of plasma membrane GLUT4 could represent a protective mechanism against excessive glucose uptake under hyperglycemic conditions accompanied by insulin resistance.

  3. Impact of Chiropractic Manipulation on Bone and Skeletal Muscle of Ovariectomized Rats.

    PubMed

    López-Herradón, A; Fujikawa, R; Gómez-Marín, M; Stedile-Lovatel, J P; Mulero, F; Ardura, J A; Ruiz, P; Muñoz, I; Esbrit, P; Mahíllo-Fernández, I; Ortega-de Mues, A

    2017-11-01

    Evidence suggests that chiropractic manipulation might exert positive effects in osteoporotic patients. The aim of this study was to evaluate the effects of chiropractic manipulation on bone structure and skeletal muscle in rats with bone loss caused by ovariectomy (OVX). The 6-month old Sprague-Dawley rats at 10 weeks following OVX or sham operation (Sh) did not suffer chiropractic manipulation (NM group) or were submitted to true chiropractic manipulation using the chiropractic adjusting instrument Activator V ® three times/week for 6 weeks as follows: Force 1 setting was applied onto the tibial tubercle of the rat right hind limb (TM group), whereas the corresponding left hind limb received a false manipulation (FM group) consisting of ActivatorV ® firing in the air and slightly touching the tibial tubercle. Bone mineral density (BMD) and bone mineral content (BMC) were determined in long bones and L3-L4 vertebrae in all rats. Femora and tibia were analyzed by μCT. Mechano growth factor (MGF) was detected in long bones and soleus, quadriceps and tibial muscles by immunohistochemistry and Western blot. The decrease of BMD and BMC as well as trabecular bone impairment in the long bones of OVX rats vs Sh controls was partially reversed in the TM group versus FM or NM rats. This bone improvement by chiropractic manipulation was associated with an increased MGF expression in the quadriceps and the anterior tibial muscle in OVX rats. These findings support the notion that chiropractic manipulation can ameliorate osteoporotic bone at least partly by targeting skeletal muscle.

  4. Rat supraspinatus muscle atrophy after tendon detachment.

    PubMed

    Barton, Elisabeth R; Gimbel, Jonathan A; Williams, Gerald R; Soslowsky, Louis J

    2005-03-01

    Rotator cuff tears are one of the most common tendon disorders found in the healthy population. Tendon tears not only affect the biomechanical properties of the tendon, but can also lead to debilitation of the muscles attached to the damaged tendons. The changes that occur in the muscle after tendon detachment are not well understood. A rat rotator cuff model was utilized to determine the time course of changes that occur in the supraspinatus muscle after tendon detachment. It was hypothesized that the lack of load on the supraspinatus muscle would cause a significant decrease in muscle mass and a conversion of muscle fiber properties toward those of fast fiber types. Tendons were detached at the insertion on the humerus without repair. Muscle mass, morphology and fiber properties were measured at one, two, four, eight, and 16 weeks after detachment. Tendon detachment resulted in a rapid loss of muscle mass, an increase in the proportion of fast muscle fibers, and an increase in the fibrotic content of the muscle bed, concomitant with the appearance of adhesions of the tendon to surrounding surfaces. At 16 weeks post-detachment, muscle mass and the fiber properties in the deep muscle layers returned to normal levels. However, the fiber shifts observed in the superficial layers persisted throughout the experiment. These results suggest that load returned to the muscle via adhesions to surrounding surfaces, which may be sufficient to reverse changes in muscle mass.

  5. Gated /sup 31/P NMR study of tetanic contraction in rat muscle depleted of phosphocreatine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoubridge, E.A.; Radda, G.K.

    1987-05-01

    Rats were fed a diet containing 1% ..beta..-guanidino-propionic acid (GPA) for 6-12 wk to deplete their muscles of phosphocreatine (PCr). Gated /sup 31/P nuclear magnetic resonance (NMR) spectra were obtained from the gastrocnemius-plantaris muscle at various time points during either a 1- or 3-s isometric tetanic contraction using a surface coil. The energy cost of a 1-s tetanus in unfatigued control rat muscle was 48.4 ..mu..mol ATP x g dry wt/sup -1/ x s/sup -1/ and was largely supplied by PCr; anaerobic glycogenolysis was negligible. In GPA-fed rats PCr was undetectable after 400 ms. This had no effect on initialmore » force generated per gram, which was not significantly different from controls. Developed tension in a 3-s tetanus in GPA-fed rats could be divided into a peak phase (duration 0.8-0.9 s) and a plateau phase (65% peak tension) in which PCr was undetectable and the (ATP) was < 20% of that in control muscle. Energy from glycogenolysis was sufficient to maintain force generation at this submaximal level. Mean net glycogen utilization per 3-s tetanus was 78% greater than in control muscle. However, the observed decrease in intracellular pH was less than that expected from energy budget calculations, suggesting either increased buffering capacity or modulation of ATP hydrolysis in the muscles of GPA-fed rats. The results demonstrate that the transport role of PCr is not essential in contracting muscle in GPA-fed rats. PCr is probably important in this regard in the larger fibers of control muscle. Although fast-twitch muscles depleted of PCr have nearly twice the glycogen reserves of control muscle, glycogenolysis is limited in its capacity to fill the role of PCr as an energy buffer under conditions of maximum ATP turnover.« less

  6. Expression of interleukin-15 and inflammatory cytokines in skeletal muscles of STZ-induced diabetic rats: effect of resistance exercise training.

    PubMed

    Molanouri Shamsi, M; Hassan, Z H; Gharakhanlou, R; Quinn, L S; Azadmanesh, K; Baghersad, L; Isanejad, A; Mahdavi, M

    2014-05-01

    Skeletal muscle atrophy is associated with type-1 diabetes. Skeletal muscle is the source of pro- and anti-inflammatory cytokines that can mediate muscle hypertrophy and atrophy, while resistance exercise can modulate both muscle mass and muscle cytokine expression. This study determined the effects of a 5-week resistance exercise training regimen on the expression of muscle cytokines in healthy and streptozotocin-induced diabetic rats, with special emphasis on interleukin-15 (IL-15), a muscle-derived cytokine proposed to be involved in muscle hypertrophy or responses to stress. Induction of diabetes reduced muscle weight in both the fast flexor hallucis longus (FHL) and slow soleus muscles, while resistance training preserved FHL muscle weight in diabetic rats. IL-15 protein content was increased by training in both FHL and soleus muscles, as well as serum, in normal and diabetic rats. With regard to proinflammatory cytokines, muscle IL-6 levels were increased in diabetic rats, while training decreased muscle IL-6 levels in diabetic rats; training had no effect on FHL muscle IL-6 levels in healthy rats. Also, tumor necrosis factor-alpha (TNF-α) and IL-1β levels were increased by diabetes, but not changed by training. In conclusion, we found that in diabetic rats, resistance training increased muscle and serum IL-15 levels, decreased muscle IL-6 levels, and preserved FHL muscle mass.

  7. Melanocortin 4 Receptor Activation Attenuates Mitochondrial Dysfunction in Skeletal Muscle of Diabetic Rats.

    PubMed

    Zhang, Hao-Hao; Liu, Jiao; Qin, Gui-Jun; Li, Xia-Lian; Du, Pei-Jie; Hao, Xiao; Zhao, Di; Tian, Tian; Wu, Jing; Yun, Meng; Bai, Yan-Hui

    2017-11-01

    A previous study has confirmed that the central melanocortin system was able to mediate skeletal muscle AMP-activated protein kinase (AMPK) activation in mice fed a high-fat diet, while activation of the AMPK signaling pathway significantly induced mitochondrial biogenesis. Our hypothesis was that melanocortin 4 receptor (MC4R) was involved in the development of skeletal muscle injury in diabetic rats. In this study, we treated diabetic rats intracerebroventricularly with MC4R agonist R027-3225 or antagonist SHU9119, respectively. Then, we measured the production of reactive oxygen species (ROS), the levels of malondialdehyde (MDA) and glutathione (GSH), the mitochondrial DNA (mtDNA) content and mitochondrial biogenesis, and the protein levels of p-AMPK, AMPK, peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), sirtuin 1 (SIRT1), and manganese superoxide dismutase (MnSOD) in the skeletal muscle of diabetic rats. The results showed that there was significant skeletal muscle injury in the diabetic rats along with serious oxidative stress and decreased mitochondrial biogenesis. Treatment with R027-3225 reduced oxidative stress and induced mitochondrial biogenesis in skeletal muscle, and also activated the AMPK-SIRT1-PGC-1α signaling pathway. However, diabetic rats injected with MC4R antagonist SHU9119 showed an aggravated oxidative stress and mitochondrial dysfunction in skeletal muscle. In conclusion, our results revealed that MC4R activation was able to attenuate oxidative stress and mitochondrial dysfunction in skeletal muscle induced by diabetes partially through activating the AMPK-SIRT1-PGC-1α signaling pathway. J. Cell. Biochem. 118: 4072-4079, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Astaxanthin intake attenuates muscle atrophy caused by immobilization in rats.

    PubMed

    Shibaguchi, Tsubasa; Yamaguchi, Yusuke; Miyaji, Nobuyuki; Yoshihara, Toshinori; Naito, Hisashi; Goto, Katsumasa; Ohmori, Daijiro; Yoshioka, Toshitada; Sugiura, Takao

    2016-08-01

    Astaxanthin is a carotenoid pigment and has been shown to be an effective inhibitor of oxidative damage. We tested the hypothesis that astaxanthin intake would attenuate immobilization-induced muscle atrophy in rats. Male Wistar rats (14-week old) were fed for 24 days with either astaxanthin or placebo diet. After 14 days of each experimental diet intake, the hindlimb muscles of one leg were immobilized in plantar flexion position using a plaster cast. Following 10 days of immobilization, both the atrophic and the contralateral plantaris muscles were removed and analyzed to determine the level of muscle atrophy along with measurement of the protein levels of CuZn-superoxide dismutase (CuZn-SOD) and selected proteases. Compared with placebo diet animals, the degree of muscle atrophy in response to immobilization was significantly reduced in astaxanthin diet animals. Further, astaxanthin supplementation significantly prevented the immobilization-induced increase in the expression of CuZn-SOD, cathepsin L, calpain, and ubiquitin in the atrophied muscle. These results support the postulate that dietary astaxanthin intake attenuates the rate of disuse muscle atrophy by inhibiting oxidative stress and proteolysis via three major proteolytic pathways. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  9. Cardiac Muscle Studies with Rat Ventricular Strips

    ERIC Educational Resources Information Center

    Whitten, Bert K.; Faleschini, Richard J.

    1977-01-01

    Details undergraduate physiology laboratory experiments that demonstrate mechanical properties of cardiac muscle, using strips from the ventricle of a rat heart. Includes procedures for obtaining length-tension curves, demonstrating the role of calcium in excitation-contraction coupling, and showing effects of several cardiovascular drugs…

  10. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats

    PubMed Central

    Bennett, Brian T.; Wilson, Joseph C.; Sperringer, Justin; Mohamed, Junaith S.; Edens, Neile K.; Pereira, Suzette L.

    2014-01-01

    In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (−24.8% vs. −10.7%, P < 0.05) and tetanic force (−43.7% vs. −25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (−25.2% vs. −16.0%, P < 0.05) and force (−45.7 vs. −34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (−39.9% vs. −23.9%, P < 0.05) and soleus (−37.2% vs. −17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (−45.6% vs. −21.5%, P <0.05) and soleus muscle fiber cross-sectional area (−38.7% vs. −10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is

  11. Green tea extract attenuates muscle loss and improves muscle function during disuse, but fails to improve muscle recovery following unloading in aged rats.

    PubMed

    Alway, Stephen E; Bennett, Brian T; Wilson, Joseph C; Sperringer, Justin; Mohamed, Junaith S; Edens, Neile K; Pereira, Suzette L

    2015-02-01

    In this study we tested the hypothesis that green tea extract (GTE) would improve muscle recovery after reloading following disuse. Aged (32 mo) Fischer 344 Brown Norway rats were randomly assigned to receive either 14 days of hindlimb suspension (HLS) or 14 days of HLS followed by normal ambulatory function for 14 days (recovery). Additional animals served as cage controls. The rats were given GTE (50 mg/kg body wt) or water (vehicle) by gavage 7 days before and throughout the experimental periods. Compared with vehicle treatment, GTE significantly attenuated the loss of hindlimb plantaris muscle mass (-24.8% vs. -10.7%, P < 0.05) and tetanic force (-43.7% vs. -25.9%, P <0.05) during HLS. Although GTE failed to further improve recovery of muscle function or mass compared with vehicle treatment, animals given green tea via gavage maintained the lower losses of muscle mass that were found during HLS (-25.2% vs. -16.0%, P < 0.05) and force (-45.7 vs. -34.4%, P < 0.05) after the reloading periods. In addition, compared with vehicle treatment, GTE attenuated muscle fiber cross-sectional area loss in both plantaris (-39.9% vs. -23.9%, P < 0.05) and soleus (-37.2% vs. -17.6%) muscles after HLS. This green tea-induced difference was not transient but was maintained over the reloading period for plantaris (-45.6% vs. -21.5%, P <0.05) and soleus muscle fiber cross-sectional area (-38.7% vs. -10.9%, P <0.05). GTE increased satellite cell proliferation and differentiation in plantaris and soleus muscles during recovery from HLS compared with vehicle-treated muscles and decreased oxidative stress and abundance of the Bcl-2-associated X protein (Bax), yet this did not further improve muscle recovery in reloaded muscles. These data suggest that muscle recovery following disuse in aging is complex. Although satellite cell proliferation and differentiation are critical for muscle repair to occur, green tea-induced changes in satellite cell number is by itself insufficient to

  12. Effects of hypertonic dextrose on injured rat skeletal muscles.

    PubMed

    Kunduracioglu, Burak; Ulkar, Bulent; Sabuncuoglu, Bizden T; Can, Belgin; Bayrakci, Kenan

    2006-04-01

    Histological examination of proliferative therapy effects on the healing process of muscular injury. We performed this study between March and August 2002 at Ankara University, School of Medicine, Laboratory of Animal Experiments, Ankara, Turkey. We used an experimental animal model by conducting a standardized cut injury of the gastrocnemius muscle in 30 adult male albino rats, which we divided into 2 groups; proliferative therapy group and control group. We evaluated the injured rat muscles by light microscopy on the fifth, eight, and twelfth day of injury. The muscular regeneration process began at day 5 in both the control and proliferative therapy groups. The proliferative therapy group revealed a prominent inflammatory reaction, fibroblast migration, and necrosis with accompanying regeneration and excessive connective tissue formation. We cannot consider proliferative therapy an appropriate treatment modality for muscular injuries, unless there is evidence of normal muscle physiology and biomechanics post traumatically.

  13. Overload-induced skeletal muscle hypertrophy is not impaired in STZ-diabetic rats

    PubMed Central

    Fortes, Marco Aurélio S; Pinheiro, Carlos Hermano J; Guimarães-Ferreira, Lucas; Vitzel, Kaio F; Vasconcelos, Diogo A A; Curi, Rui

    2015-01-01

    The aim of this study was to evaluate the effect of overload-induced hypertrophy on extensor digitorum longus (EDL) and soleus muscles of streptozotocin-induced diabetic rats. The overload-induced hypertrophy and absolute tetanic and twitch forces increases in EDL and soleus muscles were not different between diabetic and control rats. Phospho-Akt and rpS6 contents were increased in EDL muscle after 7 days of overload and returned to the pre-overload values after 30 days. In the soleus muscle, the contents of total and phospho-Akt and total rpS6 were increased in both groups after 7 days. The contents of total Akt in controls and total rpS6 and phospho-Akt in the diabetic rats remained increased after 30 days. mRNA expression after 7 days of overload in the EDL muscle of control and diabetic animals showed an increase in MGF and follistatin and a decrease in myostatin and Axin2. The expression of FAK was increased and of MuRF-1 and atrogin-1 decreased only in the control group, whereas Ankrd2 expression was enhanced only in diabetic rats. In the soleus muscle caused similar changes in both groups: increase in FAK and MGF and decrease in Wnt7a, MuRF-1, atrogin-1, and myostatin. Differences between groups were observed only in the increased expression of follistatin in diabetic animals and decreased Ankrd2 expression in the control group. So, insulin deficiency does not impair the overload-induced hypertrophic response in soleus and EDL muscles. However, different mechanisms seem to be involved in the comparable hypertrophic responses of skeletal muscle in control and diabetic animals. PMID:26197932

  14. [The effect of 18beta-glycyrrhetinic acid on gap junction among cerebral arteriolar smooth muscle cells in Wistar rat and spontaneously hypertensive rat].

    PubMed

    Chen, Xin-Yan; Si, Jun-Qiang; Li, Li; Zhao, Lei; Wei, Li-Li; Jiang, Xue-Wei; Ma, Ke-Tao

    2013-05-01

    This study compared Wistar rat with spontaneously hypertensive rat (SHR) on the electrophysiology and coupling force of the smooth muscle cells in the cerebral arteriolar segments and observe the influence of 18beta-glycyrrhetinic acid(18beta-GA) on the gap junctions between the arterial smooth muscle cells. The outer layer's connective tissue of the cerebral arteriolar segments was removed. Whole-cell patch clamp recordings were used to observe the 18beta-GA's impaction on the arteriolar segment membrane's input capacitance (C(input)), input conductance (G(input)) and input resistance (R(input)) of the smooth muscle cells. (1) The C(input) and G(input) of the SHR arteriolar segment smooth muscle cells was much higher than the Wistar rats, there was significant difference (P < 0.05). (2) 18beta-GA concentration-dependently reduced C(input) and G(input) (or increase R(input)) on smooth muscle cells in arteriolar segment. IC50 of 18beta-GA suppression's G(input) of the Wistar rat and SHR were 1.7 and 2.0 micromol/L respectively, there was not significant difference (P > 0.05). After application of 18beta-GA concentration > or = 100 micrmol/L, the C(input), G(input) and R(input) of the single smooth muscle cells was very close. Gap junctional coupling is enhanced in the SHR cerebral arterial smooth muscle cells. 18beta-GA concentration-dependent inhibits Wistar rat's and SHR cerebral arteriolar gap junctions between arterial smooth muscle cells. The inhibitory potency is similar between the two different rats. When 18beta-GA concentration is > or = 100 micromol/L, it can completely block gap junctions between arteriolar smooth muscle cells.

  15. Effects of aging and calorie restriction on rat skeletal muscle glycogen synthase and glycogen phosphorylase

    PubMed Central

    Montori-Grau, Marta; Minor, Robin; Lerin, Carles; Allard, Joanne; Garcia-Martinez, Celia; de Cabo, Rafael; Gómez-Foix, Anna M.

    2016-01-01

    Calorie restriction’s (CR) effects on age-associated changes in glycogen-metabolizing enzymes were studied in rat soleus (SOL) and tibialis anterior (TA) muscles. Old (24 months) compared to young (6 months) rats maintained ad libitum on a standard diet had reduced glycogen synthase (GS) activity, lower muscle GS protein levels, increased phosphorylation of GS at site 3a with less activation in SOL. Age-associated impairments in GS protein and activation-phosphorylation were also shown in TA. There was an age-associated reduction in glycogen phosphorylase (GP) activity level in SOL, while brain/muscle isoforms (B/M) of GP protein levels were higher. GP activity and protein levels were preserved, but GP was inactivated in TA with age. Glycogen content was unchanged in both muscles. CR did not alter GS or GP activity/protein levels in young rats. CR hindered age-related decreases in GS activity/protein, unrelated to GS mRNA levels, and GS inactivation-phosphorylation; not on GP. In older rats, CR enhanced glycogen accumulation in SOL. Short-term fasting did not recapitulate CR effects in old rats. Thus, the predominant age-associated impairments on skeletal muscle GS and GP activities occur in the oxidative SOL muscle of rats, and CR can attenuate the loss of GS activity/activation and stimulate glycogen accumulation. PMID:19341787

  16. Long-term high-fat-diet feeding induces skeletal muscle mitochondrial biogenesis in rats in a sex-dependent and muscle-type specific manner

    PubMed Central

    2012-01-01

    Background Mitochondrial dysfunction is thought to play a crucial role in the etiology of insulin resistance, in which skeletal muscle is the main tissue contributor. Sex differences in skeletal muscle insulin and antioxidant responses to high-fat-diet (HFD) feeding have been described. The aim of this study was to elucidate whether there is a sex dimorphism in the effects of HFD feeding on skeletal muscle mitochondrial biogenesis and on the adiponectin signaling pathway, as well as the influence of the muscle type (oxidative or glycolytic). Methods Gastrocnemius and soleus muscles of male and female Wistar rats of 2 months of age fed with a high-fat-diet (HFD) or a low fat diet for 26 weeks were used. Mitochondrial biogenesis and oxidative damage markers, oxidative capacity and antioxidant defences were analyzed. Serum insulin sensitivity parameters and the levels of proteins involved in adiponectin signaling pathway were also determined. Results HFD feeding induced mitochondrial biogenesis in both sexes, but to a higher degree in male rats. Although HFD female rats showed greater antioxidant protection and maintained a better insulin sensitivity profile than their male counterparts, both sexes showed an impaired response to adiponectin, which was more evident in gastrocnemius muscle. Conclusions We conclude that HFD rats may induce skeletal muscle mitochondrial biogenesis as an attempt to compensate the deleterious consequences of adiponectin and insulin resistance on oxidative metabolism, and that the effects of HFD feeding are sex-dependent and muscle-type specific. PMID:22353542

  17. Succinylcholine-induced hyperkalemia in the rat following radiation injury to muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cairoli, V.J.; Ivankovich, A.D.; Vucicevic, D.

    1982-02-01

    During anesthetic preparation of a patient who had received routine radiation therapy for sarcoma of the leg, cardiac collapse occurred following succinylcholine (SCh) administration. Experiments were designed to test the hypothesis that radiation injury to muscle might cause increased sensitivity to SCh similar to that reported in patients with muscle trauma, severe burns, and lesions causing muscle denervation. Venous plasma potassium levels and arterial blood gas tensions were measured in rats after they were given SCh (3 mg/kg) at various times following /sup 60/Co irradiation of the hind legs. Nonirradiated rats responded to SCh with a slight but statistically significantmore » increase in plasma K+. Rats subjected to high levels of radiation (10,000 to 20,000 R) and given SCh 4 to 7 days later responded in the same way as the control rats. Plasma K+ levels in rats exposed to a fractionated irradiated dosage (2500 R given twice with a 1-week interval) followed by SCh 1 week later were similar to those in the control group, but when SCh was given 2 weeks later (3 weeks after initial irradiation) there was a marked elevation of plasma K+, from 3.6 to 7.7 meq/L, a statistically significant increase.« less

  18. An evaluation of the reliability of muscle fiber cross-sectional area and fiber number measurements in rat skeletal muscle

    USDA-ARS?s Scientific Manuscript database

    Background: The reliability of estimating muscle fiber cross-sectional area (measure of muscle fiber size) and fiber number from only a subset of fibers in rat hindlimb muscle cross-sections has not been systematically evaluated. This study examined the variability in mean estimates of fiber cross-s...

  19. Role of insulin on exercise-induced GLUT-4 protein expression and glycogen supercompensation in rat skeletal muscle.

    PubMed

    Kuo, Chia-Hua; Hwang, Hyonson; Lee, Man-Cheong; Castle, Arthur L; Ivy, John L

    2004-02-01

    The purpose of this study was to investigate the role of insulin on skeletal muscle GLUT-4 protein expression and glycogen storage after postexercise carbohydrate supplementation. Male Sprague-Dawley rats were randomly assigned to one of six treatment groups: sedentary control (Con), Con with streptozocin (Stz/C), immediately postexercise (Ex0), Ex0 with Stz (Stz/Ex0), 5-h postexercise (Ex5), and Ex5 with Stz (Stz/Ex5). Rats were exercised by swimming (2 bouts of 3 h) and carbohydrate supplemented immediately after each exercise session by glucose intubation (1 ml of a 50% wt/vol). Stz was administered 72-h before exercise, which resulted in hyperglycemia and elimination of the insulin response to the carbohydrate supplement. GLUT-4 protein of Ex0 rats was 30% above Con in fast-twitch (FT) red and 21% above Con in FT white muscle. In Ex5, GLUT-4 protein was 52% above Con in FT red and 47% above Con in FT white muscle. Muscle glycogen in FT red and white muscle was also increased above Con in Ex5 rats. Neither GLUT-4 protein nor muscle glycogen was increased above Con in Stz/Ex0 or Stz/Ex5 rats. GLUT-4 mRNA in FT red muscle of Ex0 rats was 61% above Con but only 33% above Con in Ex5 rats. GLUT-4 mRNA in FT red muscle of Stz/C and Stz/Ex0 rats was similar but significantly elevated in Ex5/Stz rats. These results suggest that insulin is essential for the increase in GLUT-4 protein expression following postexercise carbohydrate supplementation.

  20. Sumoylated α-skeletal muscle actin in the skeletal muscle of adult rats.

    PubMed

    Uda, Munehiro; Kawasaki, Hiroaki; Iizumi, Kyoichi; Shigenaga, Ayako; Baba, Takeshi; Naito, Hisashi; Yoshioka, Toshitada; Yamakura, Fumiyuki

    2015-11-01

    Skeletal muscles are composed of two major muscle fiber types: slow-twitch oxidative fibers and fast-twitch glycolytic fibers. The proteins in these muscle fibers are known to differ in their expression, relative abundance, and post-translational modifications. In this study, we report a previously unreported post-translational modification of α-skeletal muscle actin in the skeletal muscles of adult male F344 rats in vivo. Using two-dimensional electrophoresis (2D-PAGE), we first examined the differences in the protein expression profiles between the soleus and plantaris muscles. We found higher intensity protein spots at approximately 60 kDa and pH 9 on 2D-PAGE for the soleus muscle compared with the plantaris muscle. These spots were identified as α-skeletal muscle actin by liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry and western blot analyses. In addition, we found that the 60 kDa α-skeletal muscle actin is modified by small ubiquitin-like modifier (SUMO) 1, using 2D-PAGE and western blot analyses. Furthermore, we found that α-skeletal muscle actin with larger molecular weight was localized in the nuclear and cytosol of the skeletal muscle, but not in the myofibrillar fraction by the combination of subcellular fractionation and western blot analyses. These results suggest that α-skeletal muscle actin is modified by SUMO-1 in the skeletal muscles, localized in nuclear and cytosolic fractions, and the extent of this modification is much higher in the slow muscles than in the fast muscles. This is the first study to show the presence of SUMOylated actin in animal tissues.

  1. [Amino acid composition of the rat quadriceps femoris muscle after a flight on the Kosmos-936 biosatellite].

    PubMed

    Vlasova, T F; Miroshnikova, E B; Poliakov, V V; Murugova, T P

    1982-01-01

    The amino acid composition of the quadriceps muscle of rats flown onboard the biosatellite Cosmos-936 and exposed to the ground-based synchronous control experiment was studied. The weightless rats showed changes in the amino acid concentration in the quadriceps muscle. The centrifuged flight and synchronous rats displayed an accumulation of free amino acids in the above muscle.

  2. Curcumin attenuates skeletal muscle mitochondrial impairment in COPD rats: PGC-1α/SIRT3 pathway involved.

    PubMed

    Zhang, Ming; Tang, Jingjing; Li, Yali; Xie, Yingying; Shan, Hu; Chen, Mingxia; Zhang, Jie; Yang, Xia; Zhang, Qiuhong; Yang, Xudong

    2017-11-01

    Curcumin has been widely used to treat numerous diseases due to its antioxidant property. The aim of the present study is to investigate the effect of curcumin on skeletal muscle mitochondria in chronic obstructive pulmonary disease (COPD) and its underlying mechanism. The rat model of COPD was established by cigarette smoke exposure combined with intratracheal administration of lipopolysaccharide. Airway inflammation and emphysema were notably ameliorated by the treatment with curcumin. Oral administration of curcumin significantly improved muscle fiber atrophy, myofibril disorganization, interstitial fibrosis and mitochondrial structure damage in the skeletal muscle of COPD rats. Mitochondrial enzyme activities of cytochrome c oxidase, succinate dehydrogenase, Na + /K + -ATPase and Ca 2+ -ATPase in skeletal muscle mitochondria from COPD rats were significantly increased after treatment with curcumin. Moreover, curcumin significantly decreased oxidative stress and inflammation by determining the levels of malondialdehyde, manganese superoxide dismutase, glutathione peroxidase, catalase, IL-6 and TNF-α in skeletal muscle of COPD rats. Furthermore, curcumin significantly increased the mRNA and protein expression of PGC-1α and SIRT3 in the skeletal muscle tissues of COPD rats. These results suggested that curcumin can attenuate skeletal muscle mitochondrial impairment in COPD rats possibly by the up-regulation of PGC-1α/SIRT3 signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Role of afferent input and mechanical load for size regulation of rat soleus muscle

    NASA Astrophysics Data System (ADS)

    Kawano, Fuminori; Matsuka, Yoshikazu; Oke, Yoshihiko; Higo, Yoko; Terada, Masahiro; Umemoto, Shiori; Kawabe, Naoko; Wang, Xiao Dong; Shinoda, Yo; Lan, Yong Bo; Fukuda, Hiroyuki; Ohmi, Shinobu; Ohira, Yoshinobu

    2005-08-01

    Effects of deafferentation on the phosphorylation of ribosomal protein S6 (S6), 27 kDa heat shock protein (HSP27) and extracellular signal-regulated kinase (ERK) 1/2 were studied in rat soleus muscle. Adult male Wistar rats were randomly separated into the pre- and post- experimental control, functionally overloaded (FO), sham-operated, deafferentated (DA), FO+DA, and hindlimb-unloaded (U) groups. The distal tendons of left plantaris and gastrocnemius muscles were transected in the FO rats. The left dorsal roots of the spinal cord at the L4-5 segmental levels were transected in the DA rats. The rats in U were tail-suspended. The sampling of the soleus muscle was performed 2 weeks after the treatments shown above. The cytoplasmic fraction of the soleus muscle homogenate was used for the quantitative analyses of the phosphorylation levels of S6, HSP27, and ERK 1/2. The phosphorylation levels of these proteins were up-regulated by FO. On the contrary, the phosphorylation of all of these proteins was down-regulated by U and DA. Further, the FO-related increase of the protein phosphorylation was inhibited by additional treatment with DA. These results indicated that the afferent feedback plays crucial roles in the intramuscular regulation of the soleus muscle mass.

  4. Effect of seven days of spaceflight on hindlimb muscle protein, RNA and DNA in adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1985-01-01

    Effects of seven days of spaceflight on skeletal muscle (soleus, gastrocnemius, EDL) content of protein, RNA and DNA were determined in adult rats. Whereas total protein contents were reduced in parallel with muscle weights, myofibrillar protein appeared to be more affected. There were no significant changes in absolute DNA contents, but a significant (P less than 0.05) increase in DNA concentration (microgram/milligram) in soleus muscles from flight rats. Absolute RNA contents were significantly (P less than 0.025) decreased in the soleus and gastrocnemius muscles of flight rats, with RNA concentrations reduced 15-30 percent. These results agree with previous ground-based observations on the suspended rat with unloaded hindlimbs and support continued use of this model.

  5. Increase of Myoglobin in Rat Gastrocnemius Muscles with Immobilization-induced Atrophy

    PubMed Central

    Lee, Jeong-Uk; Kim, Ju-Hyun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Jeon, Hye-Joo; Lee, Won-Deok; Noh, Ji-Woong; Lee, Tae-Hyun; Kwak, Taek-Yong; Kim, Bokyung; Kim, Junghwan

    2014-01-01

    [Purpose] Atrophy is a common phenomenon caused by prolonged muscle disuse associated with bed-rest, aging, and immobilization. However, changes in the expression of atrophy-related myoglobin are still poorly understood. In the present study, we examined whether or not myoglobin expression is altered in the gastrocnemius muscles of rats after seven days of cast immobilization. [Methods] We conducted a protein expression and high-resolution differential proteomic analysis using, two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry, and western blotting. [Results] The density and expression of myoglobin increased significantly more in atrophic gastrocnemius muscle strips than they did in the control group. [Conclusion] The results suggest that cast immobilization-induced atrophy may be related to changes in the expression of myoglobin in rat gastrocnemius muscles. PMID:24409033

  6. Synthesis of amino acids in weight bearing and non-weight bearing leg muscles of suspended rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.

    1982-01-01

    The effect of hypokinesia (HYP) for 6 days on the de novo synthesis of glutamine (GLN) and glutamate (GLU), and of alanine was tested in isolated leg muscles of intact, adrenalectomized (ADX) and ADX cortisol-treated rats. The net synthesis of GLN and GLU was lower in soleus muscles of HYP animals of these three groups of rats. The synthesis of alanine was lowered by HYP in ADX animals and apparently raised by HYP in ADX cortisol-treated rats. No HYP effect was seen in the extensor digitorum longus (EDL) muscles of these animals. Although ADX lowered the synthesis of GLN and GLU in soleus muscles of control rats, while cortisol treatment restored this process to near normal, neither ADX nor cortisol treatment produced any effect in the HYP animals. However, effects of ADX and cortisol treatment on synthesis of GLN and GLU in EDL muscles and of alanine in both muscles seemed normal in HYP animals.

  7. beta-adrenergic effects on carbohydrate metabolism in the unweighted rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Kirby, Christopher R.; Tischler, Marc E.

    1990-01-01

    The effect of unweighting on the response of the soleus-muscle carbohydrate metabolism to a beta-adrenergic agonist (isoproterenol) was investigated in rats that were subjected to three days of tail-cast suspension. It was found that isoproterenol promoted glycogen degradation in soleus from suspended rats to a higher degree than in weighted soleus from control rats, and had no effect in unweighted digitorum longus. However, isoproterenol did not have a greater inhibitory effect on the net uptake of tritium-labeled 2-deoxy-glucose by the unweighted soleus and that isoproterenol inhibited hexose phosphorylation less in the unweighted than in the control muscle.

  8. Glucagon-like peptide-1 binding to rat skeletal muscle.

    PubMed

    Delgado, E; Luque, M A; Alcántara, A; Trapote, M A; Clemente, F; Galera, C; Valverde, I; Villanueva-Peñacarrillo, M L

    1995-01-01

    We have found [125I]glucagon-like peptide-1(7-36)-amide-specific binding activity in rat skeletal muscle plasma membranes, with an estimated M(r) of 63,000 by cross-linking and SDS-PAGE. The specific binding was time and membrane protein concentration dependent, and displaceable by unlabeled GLP-1(7-36)-amide with an ID50 of 3 x 10(-9) M of the peptide; GLP-1(1-36)-amide also competed, whereas glucagon and insulin did not. GLP-1(7-36)-amide did not modify the basal adenylate cyclase activity in skeletal muscle plasma membranes. These data, together with our previous finding of a potent glycogenic effect of GLP-1(7-36)-amide in rat soleus muscle, and also in isolated hepatocytes, which was not accompanied by a rise in the cell cyclic AMP content, lead use to believe that the insulin-like effects of this peptide on glucose metabolism in the muscle could be mediated by a type of receptor somehow different to that described for GLP-1 in pancreatic B cells, where GLP-1 action is mediated by the cyclic AMP-adenylate cyclase system.

  9. Lithium Visibility in Rat Brain and Muscle in Vivoby 7Li NMR Imaging

    NASA Astrophysics Data System (ADS)

    Komoroski, Richard A.; Pearce, John M.; Newton, Joseph E. O.

    1998-07-01

    The apparent concentration of lithium (Li)in vivowas determined for several regions in the brain and muscle of rats by7Li NMR imaging at 4.7 T with inclusion of an external standard of known concentration and visibility. The average apparent concentrations were 10.1 mM for muscle, and 4.2-5.3 mM for various brain regions under the dosing conditions used. The results were compared to concentrations determinedin vitroby high-resolution7Li NMR spectroscopy of extracts of brain and muscle tissue from the same rats. The comparison provided estimates of the7Li NMR visibility of the Li cation in each tissue region. Although there was considerable scatter of the calculated visibilities among the five rats studied, the results suggested essentially full visibility (96%) for Li in muscle, and somewhat reduced visibility (74-93%) in the various brain regions.

  10. Epigallocatechin-3-gallate improves plantaris muscle recovery after disuse in aged rats

    PubMed Central

    Alway, Stephen E.; Bennett, Brian T.; Wilson, Joseph C.; Edens, Neile K.; Pereira, Suzette L.

    2014-01-01

    Aging exacerbates muscle loss and slows the recovery of muscle mass and function after disuse. In this study we investigated the potential that epigallocatechin gallate (EGCg), an abundant catechin in green tea, would reduce signaling for apoptosis and promote skeletal muscle recovery in the fast plantaris muscle and the slow soleus muscle after hindlimb unloading (HLS) in senescent animals. Fischer 344 × Brown Norway inbred rats (age 34 mo.) received either EGCg (50 mg/kg body weight), or water daily by gavage. One group of animals received HLS for 14 days and a second group of rats received 14 days of HLS, then the HLS was removed and they recovered from this forced disuse for 2 weeks. Animals that received EGCg over the HLS followed by 14 days of recovery, had a 14% greater plantaris muscle weight (p <0.05) as compared to the animals treated with the vehicle over this same period. Plantaris fiber area was greater after recovery in EGCg (2715.2 ± 113.8 μm2) vs. vehicle treated animals (1953.0 ± 41.9 μm2). In addition, activation of myogenic progenitor cells was improved with EGCg over vehicle treatment (7.5% vs. 6.2%) in the recovery animals. Compared to vehicle treatment, the apoptotic index was lower (0.24% vs. 0.52%), and the abundance of pro-apoptotic proteins Bax (−22%), and FADD (−77%) were lower in EGCg treated plantaris muscles after recovery. While EGCg did not prevent unloading-induced atrophy, it improved muscle recovery after the atrophic stimulus in fast plantaris muscles. However, this effect was muscle specific because EGCg had no major impact in reversing HLS-induced atrophy in the slow soleus muscle of old rats. PMID:24316035

  11. Epigallocatechin-3-gallate improves plantaris muscle recovery after disuse in aged rats.

    PubMed

    Alway, Stephen E; Bennett, Brian T; Wilson, Joseph C; Edens, Neile K; Pereira, Suzette L

    2014-02-01

    Aging exacerbates muscle loss and slows the recovery of muscle mass and function after disuse. In this study we investigated the potential that epigallocatechin-3-gallate (EGCg), an abundant catechin in green tea, would reduce signaling for apoptosis and promote skeletal muscle recovery in the fast plantaris muscle and the slow soleus muscle after hindlimb suspension (HLS) in senescent animals. Fischer 344 × Brown Norway inbred rats (age 34 months) received either EGCg (50 mg/kg body weight), or water daily by gavage. One group of animals received HLS for 14 days and a second group of rats received 14 days of HLS, then the HLS was removed and they recovered from this forced disuse for 2 weeks. Animals that received EGCg over the HLS followed by 14 days of recovery, had a 14% greater plantaris muscle weight (p<0.05) as compared to the animals treated with the vehicle over this same period. Plantaris fiber area was greater after recovery in EGCg (2715.2±113.8 μm(2)) vs. vehicle treated animals (1953.0±41.9 μm(2)). In addition, activation of myogenic progenitor cells was improved with EGCg over vehicle treatment (7.5% vs. 6.2%) in the recovery animals. Compared to vehicle treatment, the apoptotic index was lower (0.24% vs. 0.52%), and the abundance of pro-apoptotic proteins Bax (-22%), and FADD (-77%) was lower in EGCg treated plantaris muscles after recovery. While EGCg did not prevent unloading-induced atrophy, it improved muscle recovery after the atrophic stimulus in fast plantaris muscles. However, this effect was muscle specific because EGCg had no major impact in reversing HLS-induced atrophy in the slow soleus muscle of old rats. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Mechanism linking glycogen concentration and glycogenolytic rate in perfused contracting rat skeletal muscle.

    PubMed Central

    Hespel, P; Richter, E A

    1992-01-01

    The influence of differences in glycogen concentration on glycogen breakdown and on phosphorylase activity was investigated in perfused contracting rat skeletal muscle. The rats were preconditioned by a combination of swimming exercise and diet (carbohydrate-free or carbohydrate-rich) in order to obtain four sub-groups of rats with varying resting muscle glycogen concentrations (range 10-60 mumol/g wet wt.). Pre-contraction muscle glycogen concentration was closely positively correlated with glycogen breakdown over 15 min of intermittent short tetanic contractions (r = 0.75; P less than 0.001; n = 56) at the same tension development and oxygen uptake. Additional studies in supercompensated and glycogen-depleted hindquarters during electrical stimulation for 20 s or 2 min revealed that the difference in glycogenolytic rate was found at the beginning rather than at the end of the contraction period. Phosphorylase alpha activity was approximately twice as high (P less than 0.001) in supercompensated muscles as in glycogen-depleted muscles after 20 s as well as after 2 min of contractions. It is concluded that glycogen concentration is an important determinant of phosphorylase activity in contracting skeletal muscle, and probably via this mechanism a regulator of glycogenolytic rate during muscle contraction. PMID:1622395

  13. Endurance training facilitates myoglobin desaturation during muscle contraction in rat skeletal muscle.

    PubMed

    Takakura, Hisashi; Furuichi, Yasuro; Yamada, Tatsuya; Jue, Thomas; Ojino, Minoru; Hashimoto, Takeshi; Iwase, Satoshi; Hojo, Tatsuya; Izawa, Tetsuya; Masuda, Kazumi

    2015-03-24

    At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mVO2). However, whether the change in PmbO2 during muscle contraction modulates mVO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the VmO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mVO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster VO2 kinetics in endurance-trained muscle.

  14. Endurance training facilitates myoglobin desaturation during muscle contraction in rat skeletal muscle

    PubMed Central

    Takakura, Hisashi; Furuichi, Yasuro; Yamada, Tatsuya; Jue, Thomas; Ojino, Minoru; Hashimoto, Takeshi; Iwase, Satoshi; Hojo, Tatsuya; Izawa, Tetsuya; Masuda, Kazumi

    2015-01-01

    At onset of muscle contraction, myoglobin (Mb) immediately releases its bound O2 to the mitochondria. Accordingly, intracellular O2 tension (PmbO2) markedly declines in order to increase muscle O2 uptake (mO2). However, whether the change in PmbO2 during muscle contraction modulates mO2 and whether the O2 release rate from Mb increases in endurance-trained muscles remain unclear. The purpose of this study was, therefore, to determine the effect of endurance training on O2 saturation of Mb (SmbO2) and PmbO2 kinetics during muscle contraction. Male Wistar rats were subjected to a 4-week swimming training (Tr group; 6 days per week, 30 min × 4 sets per day) with a weight load of 2% body mass. After the training period, deoxygenated Mb kinetics during muscle contraction were measured using near-infrared spectroscopy under hemoglobin-free medium perfusion. In the Tr group, the mO2peak significantly increased by 32%. Although the PmbO2 during muscle contraction did not affect the increased mO2 in endurance-trained muscle, the O2 release rate from Mb increased because of the increased Mb concentration and faster decremental rate in SmbO2 at the maximal twitch tension. These results suggest that the Mb dynamics during muscle contraction are contributing factors to faster O2 kinetics in endurance-trained muscle. PMID:25801957

  15. Beta 2-agonist fenoterol has greater effects on contractile function of rat skeletal muscles than clenbuterol.

    PubMed

    Ryall, James G; Gregorevic, Paul; Plant, David R; Sillence, Martin N; Lynch, Gordon S

    2002-12-01

    Potential treatments for skeletal muscle wasting and weakness ideally possess both anabolic and ergogenic properties. Although the beta(2)-adrenoceptor agonist clenbuterol has well-characterized effects on skeletal muscle, less is known about the therapeutic potential of the related beta(2)-adrenoceptor agonist fenoterol. We administered an equimolar dose of either clenbuterol or fenoterol to rats for 4 wk to compare their effects on skeletal muscle and tested the hypothesis that fenoterol would produce more powerful anabolic and ergogenic effects. Clenbuterol treatment increased fiber cross-sectional area (CSA) by 6% and maximal isometric force (P(o)) by 20% in extensor digitorum longus (EDL) muscles, whereas fiber CSA in soleus muscles decreased by 3% and P(o) was unchanged, compared with untreated controls. In the EDL muscles, fenoterol treatment increased fiber CSA by 20% and increased P(o) by 12% above values achieved after clenbuterol treatment. Soleus muscles of fenoterol-treated rats exhibited a 13% increase in fiber CSA and a 17% increase in P(o) above that of clenbuterol-treated rats. These data indicate that fenoterol has greater effects on the functional properties of rat skeletal muscles than clenbuterol.

  16. Effects of nandrolone on recovery after neurotization of chronically denervated muscle in a rat model.

    PubMed

    Isaacs, Jonathan; Feher, Joseph; Shall, Mary; Vota, Scott; Fox, Michael A; Mallu, Satya; Razavi, Ashkon; Friebe, Ilvy; Shah, Sagar; Spita, Nathalie

    2013-10-01

    Suboptimal recovery following repair of major peripheral nerves has been partially attributed to denervation atrophy. Administration of anabolic steroids in conjunction with neurotization may improve functional recovery of chronically denervated muscle. The purpose of this study was to evaluate the effect of the administration of nandrolone on muscle recovery following prolonged denervation in a rat model. Eight groups of female Sprague-Dawley rats (15 rats per group, 120 in all) were divided into 3- or 6-month denervated hind limb and sham surgery groups and, then, nandrolone treatment groups and sham treatment groups. Evaluation of treatment effects included nerve conduction, force of contraction, comparative morphology, histology (of muscle fibers), protein electrophoresis (for muscle fiber grouping), and immunohistochemical evaluation. Although a positive trend was noted, neither reinnervated nor normal muscle showed a statistically significant increase in peak muscle force following nandrolone treatment. Indirect measures, including muscle mass (weight and diameter), muscle cell size, muscle fiber type, and satellite cell counts, all failed to support significant anabolic effect. There does not seem to be a functional benefit from nandrolone treatment following reinnervation of either mild or moderately atrophic muscle (related to prolonged denervation) in a rodent model.

  17. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    NASA Technical Reports Server (NTRS)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  18. Early changes in muscle atrophy and muscle fiber type conversion after spinal cord transection and peripheral nerve transection in rats.

    PubMed

    Higashino, Kosaku; Matsuura, Tetsuya; Suganuma, Katsuyoshi; Yukata, Kiminori; Nishisho, Toshihiko; Yasui, Natsuo

    2013-05-20

    Spinal cord transection and peripheral nerve transection cause muscle atrophy and muscle fiber type conversion. It is still unknown how spinal cord transection and peripheral nerve transection each affect the differentiation of muscle fiber type conversion mechanism and muscle atrophy. The aim of our study was to evaluate the difference of muscle weight change, muscle fiber type conversion, and Peroxisome proliferator-activated receptor-γ coactivatior-1α (PGC-1α) expression brought about by spinal cord transection and by peripheral nerve transection. Twenty-four Wistar rats underwent surgery, the control rats underwent a laminectomy; the spinal cord injury group underwent a spinal cord transection; the denervation group underwent a sciatic nerve transection. The rats were harvested of the soleus muscle and the TA muscle at 0 week, 1 week and 2 weeks after surgery. Histological examination was assessed using hematoxylin and eosin (H&E) staining and immunofluorescent staing. Western blot was performed with 3 groups. Both sciatic nerve transection and spinal cord transection caused muscle atrophy with the effect being more severe after sciatic nerve transection. Spinal cord transection caused a reduction in the expression of both sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection produced an increase in expression of sMHC protein and PGC-1α protein in the soleus muscle. The results of the expression of PGC-1α were expected in other words muscle atrophy after sciatic nerve transection is less than after spinal cord transection, however muscle atrophy after sciatic nerve transection was more severe than after spinal cord transection. In the conclusion, spinal cord transection diminished the expression of sMHC protein and PGC-1α protein in the soleus muscle. On the other hand, sciatic nerve transection enhanced the expression of sMHC protein and PGC-1α protein in the soleus muscle.

  19. [Morphohistochemical study of skeletal muscles in rats after experimental flight on "Kosmos-1887"].

    PubMed

    Il'ina-Kakueva, E I

    1990-01-01

    Morphometric and histochemical methods were used to examine the soleus, gastrocnemius (medial portion), quadriceps femoris (central portion) and biceps brachii muscles of Wistar SPF rats two days after the 13-day flight on Cosmos-1887. It was found that significant atrophy developed only in the soleus muscle. The space flight did not change the percentage content of slow (type I) and fast (type II) fibers in fast twitch muscles. During two days at 1 g the slow soleus muscle developed substantial circulation disorders, which led to interstitial edema and necrotic changes. The gastrocnemius muscle showed small foci containing necrotic myofibers. Two days after recovery no glycogen aggregates were seen in myofibers, which were previously observed in other rats examined 4--8 hours after flight. An initial stage of muscle readaptation to 1 g occurred, when NAD.H2-dehydrogenase activity was decreased.

  20. Implanted depleted uranium fragments cause soft tissue sarcomas in the muscles of rats.

    PubMed Central

    Hahn, Fletcher F; Guilmette, Raymond A; Hoover, Mark D

    2002-01-01

    In this study, we determined the carcinogenicity of depleted uranium (DU) metal fragments containing 0.75% titanium in muscle tissues of rats. The results have important implications for the medical management of Gulf War veterans who were wounded with DU fragments and who retain fragments in their soft tissues. We compared the tissue reactions in rats to the carcinogenicity of a tantalum metal (Ta), as a negative foreign-body control, and to a colloidal suspension of radioactive thorium dioxide ((232)Th), Thorotrast, as a positive radioactive control. DU was surgically implanted in the thigh muscles of male Wistar rats as four squares (2.5 x 2.5 x 1.5 mm or 5.0 x 5.0 x 1.5 mm) or four pellets (2.0 x 1.0 mm diameter) per rat. Ta was similarly implanted as four squares (5.0 x 5.0 x 1.1 mm) per rat. Thorotrast was injected at two sites in the thigh muscles of each rat. Control rats had only a surgical implantation procedure. Each treatment group included 50 rats. A connective tissue capsule formed around the metal implants, but not around the Thorotrast. Radiographs demonstrated corrosion of the DU implants shortly after implantation. At later times, rarifactions in the radiographic profiles correlated with proliferative tissue responses. After lifetime observation, the incidence of soft tissue sarcomas increased significantly around the 5.0 x 5.0 mm squares of DU and the positive control, Thorotrast. A slightly increased incidence occurred in rats implanted with the 2.5 x 2.5 mm DU squares and with 5.0 x 5.0 mm squares of Ta. No tumors were seen in rats with 2.0 x 1.0 mm diameter DU pellets or in the surgical controls. These results indicate that DU fragments of sufficient size cause localized proliferative reactions and soft tissue sarcomas that can be detected with radiography in the muscles of rats. PMID:11781165

  1. Differences in Age-Related Alterations in Muscle Contraction Properties in Rat Tongue and Hindlimb

    ERIC Educational Resources Information Center

    Connor, Nadine P.; Ota, Fumikazu; Nagai, Hiromi; Russell, John A.; Leverson, Glen

    2008-01-01

    Purpose: Because of differences in muscle architecture and biomechanics, the purpose of this study was to determine whether muscle contractile properties of rat hindlimb and tongue were differentially affected by aging. Method: Deep peroneal and hypoglossal nerves were stimulated in 6 young and 7 old Fischer 344-Brown Norway rats to allow…

  2. [Structural changes in the soleus muscle of rats on the Kosmos-series biosatellites and in hypokinesia].

    PubMed

    Il'ina-Kakueva, E I; Portugalov, V V

    1981-01-01

    Structural changes in the soleus muscle of rats used in flight and synchronous experiments of the Cosmos program and hypokinetic studies have been investigated. It is hypothesized that focal edema and dystrophic changes observed in flight, synchronous and hypokinetic rats can be caused by circulation disorders of different etiology. In flight and synchronous rats they develop two days postflight due to the deconditioning of the muscle tissue and intraorgan vascular system which fail to meet the requirements after transition from 0 g to 1 g. In hypokinetic rats circulation disorders occur on the first experimental day due to mechanical causes (paws are pressed against the cage floor impeding venous outflow) and muscle pump deficiency. In all cases circulation disorders seem to be associated with peculiar features of angioarchitectonics of the soleus muscle.

  3. Interactive effects of growth hormone and exercise on muscle mass in suspended rats

    NASA Technical Reports Server (NTRS)

    Grindeland, Richard E.; Roy, Roland R.; Edgerton, V. Reggie; Grossman, Elena J.; Mukku, Venkat R.; Jiang, Bian; Pierotti, David J.; Rudolph, Ingrid

    1994-01-01

    Measures to attenuate muscle atrophy in rats in response to simulated microgravity (hindlimb suspension (HS)) have been only partially successful. In the present study, hypophysectomized rats were in HS for 7 days, and the effects of recombinant human growth hormone (GH), exercise (Ex), or GH+Ex on the weights, protein concentrations, and fiber cross-sectional areas (CSAs) of hindlimb muscles were determined. The weights of four extensor muscles, i.e., the soleus (Sol), medial (MG) and lateral (LG) gastrocnemius, and plantaris (Plt), and one adductor, i.e., the adductor longus (AL), were decreased by 10-22% after HS. Fiber CSAs were decreased by 34% in the Sol and by 1 17% in the MG after HS. In contrast, two flexors, i.e., the tibialis anterior (TA) and extensor digitorum longus (EDL), did not atrophy. In HS rats, GH treatment alone maintained the weights of the fast extensors (MG, LG, Plt) and flexors (TA, EDL) at or above those of control rats. This effect was not observed in the slow extensor (Sol) or AL. Exercise had no significant effect on the weight of any muscle in HS rats. A combination of GH and Ex treatments yielded a significant increase in the weights of the fast extensors and in the CSA of both fast and slow fibers of the MG and significantly increased Sol weight and CSA of the slow fibers of the Sol. The AL was not responsive to either GH or Ex treatments. Protein concentrations of the Sol and MG were higher only in the Sol of Ex and GH+Ex rats. These results suggest that while GH treatment or intermittent high intensity exercise alone have a minimal effect in maintaining the mass of unloaded muscle, there is a strong interactive effect of these two treatments.

  4. Biomarker evaluation of skeletal muscle toxicity following clofibrate administration in rats.

    PubMed

    Bodié, Karen; Buck, Wayne R; Pieh, Julia; Liguori, Michael J; Popp, Andreas

    2016-05-01

    The use of sensitive biomarkers to monitor skeletal muscle toxicity in preclinical toxicity studies is important for the risk assessment in humans during the development of a novel compound. Skeletal muscle toxicity in Sprague Dawley Rats was induced with clofibrate at different dose levels for 7 days to compare standard clinical pathology assays with novel skeletal muscle and cardiac muscle biomarkers, gene expression and histopathological changes. The standard clinical pathology assays aspartate aminotransferase (AST), alanine aminotransferase (ALT), and creatine kinase (CK) enzyme activity were compared to novel biomarkers fatty acid binding protein 3 (Fabp3), myosin light chain 3 (Myl3), muscular isoform of CK immunoreactivity (three isoforms CKBB, CKMM, CKMB), parvalbumin (Prv), skeletal troponin I (sTnI), cardiac troponin T (cTnT), cardiac troponin I (cTnI), CKMM, and myoglobin (Myo). The biomarker elevations were correlated to histopathological findings detected in several muscles and gene expression changes. Clofibrate predominantly induced skeletal muscle toxicity of type I fibers of low magnitude. Useful biomarkers for skeletal muscle toxicity were AST, Fabp3, Myl3, (CKMB) and sTnI. Measurements of CK enzyme activity by a standard clinical assay were not useful for monitoring clofibrate-induced skeletal muscle toxicity in the rat at the doses used in this study. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  5. Spaceflight effects on adult rat muscle protein, nucleic acids, and amino acids

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Musacchia, X. J.

    1986-01-01

    Exposure to conditions of weightlessness has been associated with decrements in muscle mass and strength. The present studies were undertaken to determine muscle responses at the cellular level. Male Sprague-Dawley rats (360-410 g) were exposed to 7 days of weightlessness during the Spacelab-3 shuttle flight (May 1985). Animals were killed 12 h postflight, and soleus (S), gastrocnemius (G), and extensor digitorum longus (EDL) muscles were excised. Muscle protein, RNA, and DNA were extracted and quantified. Differential muscle atrophy was accompanied by a significant (P less than 0.05) reduction in total protein only in S muscles. There were no significant changes in protein concentration (mg/g) in the muscles examined. In S muscles from flight animals, sarcoplasmic protein accounted for a significantly greater proportion of total protein that in ground controls (37.5 vs. 32.5%). Tissue concentrations (nmol/g) of asparagine-aspartate, glutamine-glutamate, glycine, histidine, and lysine were significantly reduced (from 17 to 63%) in S muscles from flight animals, but only glutamine-glutamate levels were decreased in the G and EDL. Muscle DNA content (microgram) was unchanged in the tissues examined, but S muscle DNA concentration (micrograms/mg) increased 27%. RNA content (micrograms) was significantly (P less than 0.025) reduced in S (-28%) and G(-22%) muscles following spaceflight. These results identify specific alterations in rat skeletal muscle during short term (7-day) exposure to weightlessness and compare favorably with observations previously obtained from ground-based suspension simulations.

  6. Temporal changes in sarcomere lesions of rat adductor longus muscles during hindlimb reloading

    NASA Technical Reports Server (NTRS)

    Krippendorf, B. B.; Riley, D. A.

    1994-01-01

    Focal sarcomere disruptions were previously observed in adductor longus muscles of rats flown approximately two weeks aboard the Cosmos 1887 and 2044 biosatellite flights. These lesions, characterized by breakage and loss of myofilaments and Z-line streaming, resembled damage induced by unaccustomed exercise that includes eccentric contractions in which muscles lengthen as they develop tension. We hypothesized that sarcomere lesions in atrophied muscles of space flow rats were not produced in microgravity by muscle unloading but resulted from muscle reloading upon re-exposure to terrestrial gravity. To test this hypothesis, we examined temporal changes in sarcomere integrity of adductor longus muscles from rats subjected to 12.5 days of hindlimb suspension unloading and subsequent reloading by return to vivarium cages for 0, 6, 12, or 48 hours of normal weightbearing. Our ultrastructural observations suggested that muscle unloading (0 h reloading) induced myofibril misalignment associated with myofiber atrophy. Muscle reloading for 6 hours induced focal sarcomere lesions in which cross striations were abnormally widened. Such lesions were electron lucent due to extensive myofilament loss. Lesions in reloaded muscles showed rapid restructuring. By 12 hours of reloading, lesions were moderately stained foci and by 48 hours darkly stained foci in which the pattern of cross striations was indistinct at the light and electron microscopic levels. These lesions were spanned by Z-line-like electron dense filamentous material. Our findings suggest a new role for Z-line streaming in lesion restructuring: rather than an antecedent to damage, this type of Z-line streaming may be indicative of rapid, early sarcomere repair.

  7. Defects in oxygen supply to skeletal muscle of prediabetic ZDF rats

    PubMed Central

    Goldman, Daniel; Hanson, Madelyn; Stephenson, Alan H.; Milkovich, Stephanie; Benlamri, Amina; Ellsworth, Mary L.; Sprague, Randy S.

    2010-01-01

    In humans, prediabetes is characterized by marked increases in plasma insulin and near normal blood glucose levels as well as microvascular dysfunction of unknown origin. Using the extensor digitorum longus muscle of 7-wk inbred male Zucker diabetic fatty rats fed a high-fat diet as a model of prediabetes, we tested the hypothesis that hyperinsulinemia contributes to impaired O2 delivery in skeletal muscle. Using in vivo video microscopy, we determined that the total O2 supply to capillaries in the extensor digitorum longus muscle of prediabetic rats was reduced to 64% of controls with a lower O2 supply rate per capillary and higher O2 extraction resulting in a decreased O2 saturation at the venous end of the capillary network. These findings suggest a lower average tissue Po2 in prediabetic animals. In addition, we determined that insulin, at concentrations measured in humans and Zucker diabetic fatty rats with prediabetes, inhibited the O2-dependent release of ATP from rat red blood cells (RBCs). This inability to release ATP could contribute to the impaired O2 delivery observed in rats with prediabetes, especially in light of the finding that the endothelium-dependent relaxation of resistance arteries from these animals is not different from controls and is not altered by insulin. Computational modeling confirmed a significant 8.3-mmHg decrease in average tissue Po2 as well as an increase in the heterogeneity of tissue Po2, implicating a failure of a regulatory system for O2 supply. The finding that insulin attenuates the O2-dependent release of ATP from RBCs suggests that this defect in RBC physiology could contribute to a failure in the regulation of O2 supply to meet the demand in skeletal muscle in prediabetes. PMID:20207810

  8. Effects of alkali supplementation and vitamin D insufficiency on rat skeletal muscle.

    PubMed

    Ceglia, Lisa; Rivas, Donato A; Pojednic, Rachele M; Price, Lori Lyn; Harris, Susan S; Smith, Donald; Fielding, Roger A; Dawson-Hughes, Bess

    2013-10-01

    Data on the independent and potential combined effects of acid-base balance and vitamin D status on muscle mass and metabolism are lacking. We investigated whether alkali supplementation with potassium bicarbonate (KHCO3), with or without vitamin D3 (± VD3), alters urinary nitrogen (indicator of muscle proteolysis), muscle fiber cross-sectional area (FCSA), fiber number (FN), and anabolic (IGF-1, Akt, p70s6k) and catabolic (FOXO3a, MURF1, MAFbx) signaling pathways regulating muscle mass. Thirty-six, 20-month-old, Fischer 344/Brown-Norway rats were randomly assigned in a 2 × 2 factorial design to one of two KHCO3-supplemented diets (± VD3) or diets without KHCO3 (± VD3) for 12 weeks. Soleus, extensor digitorum longus (EDL), and plantaris muscles were harvested at 12 weeks. Independent of VD3 group, KHCO3 supplementation resulted in 35 % lower mean urinary nitrogen to creatinine ratio, 10 % higher mean type I FCSA (adjusted to muscle weight), but no statistically different mean type II FCSA (adjusted to muscle weight) or FN compared to no KHCO3. Among VD3-replete rats, phosphorylated-Akt protein expression was twofold higher in the KHCO3 compared to no KHCO3 groups, but this effect was blunted in rats on VD3-deficient diets. Neither intervention significantly affected serum or intramuscular IGF-1 expression, p70s6k or FOXO3a activation, or MURF1 and MAFbx gene expression. These findings provide support for alkali supplementation as a promising intervention to promote preservation of skeletal muscle mass, particularly in the setting of higher vitamin D status. Additional research is needed in defining the muscle biological pathways that are being targeted by alkali and vitamin D supplementation.

  9. Effects of alkali supplementation and vitamin D insufficiency on rat skeletal muscle

    PubMed Central

    Ceglia, Lisa; Rivas, Donato A.; Pojednic, Rachele M.; Price, Lori Lyn; Harris, Susan S.; Smith, Donald; Fielding, Roger A.; Dawson-Hughes, Bess

    2015-01-01

    Data on the independent and potential combined effects of acid–base balance and vitamin D status on muscle mass and metabolism are lacking. We investigated whether alkali supplementation with potassium bicarbonate (KHCO3), with or without vitamin D3 (±VD3), alters urinary nitrogen (indicator of muscle proteolysis), muscle fiber cross-sectional area (FCSA), fiber number (FN), and anabolic (IGF-1, Akt, p70s6k) and catabolic (FOXO3a, MURF1, MAFbx) signaling pathways regulating muscle mass. Thirty-six, 20-month-old, Fischer 344/Brown-Norway rats were randomly assigned in a 2 × 2 factorial design to one of two KHCO3-supplemented diets (±VD3) or diets without KHCO3 (±VD3) for 12 weeks. Soleus, extensor digitorum longus (EDL), and plantaris muscles were harvested at 12 weeks. Independent of VD3 group, KHCO3 supplementation resulted in 35 % lower mean urinary nitrogen to creatinine ratio, 10 % higher mean type I FCSA (adjusted to muscle weight), but no statistically different mean type II FCSA (adjusted to muscle weight) or FN compared to no KHCO3. Among VD3-replete rats, phosphorylated-Akt protein expression was twofold higher in the KHCO3 compared to no KHCO3 groups, but this effect was blunted in rats on VD3-deficient diets. Neither intervention significantly affected serum or intramuscular IGF-1 expression, p70s6k or FOXO3a activation, or MURF1 and MAFbx gene expression. These findings provide support for alkali supplementation as a promising intervention to promote preservation of skeletal muscle mass, particularly in the setting of higher vitamin D status. Additional research is needed in defining the muscle biological pathways that are being targeted by alkali and vitamin D supplementation. PMID:23666769

  10. Conversion of rat muscle fiber types. A time course study.

    PubMed

    Oakley, C R; Gollnick, P D

    1985-01-01

    Rats were used in this study to determine the time course of conversion of muscle fiber types. The right or left gastrocnemius muscle was removed thereby causing an overload on the ipsilateral soleus and plantaris muscles. The contralateral limb served as a control. The type II to type I fiber conversion was followed histochemically in the soleus and plantaris muscles for one to six weeks following surgery. Muscle sections were stained for myofibrillar actomyosin ATPase and NADH tetrazolium reductase. The type I population in the soleus muscle was 99.3% six weeks after synergist removal. The plantaris muscle underwent a two fold increase in the percentage of type I fibers after six weeks. Transitional fibers were prominent in the plantaris muscle and reached their peak at 4% (P less than 0.05) of the total population, four weeks after surgery.

  11. Effect of denervation or unweighting on GLUT-4 protein in rat soleus muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Rodnick, Kenneth J.; Mondon, Carl E.; James, David E.; Holloszy, John O.

    1991-01-01

    The study is intended to test the hypothesis that the decreased capacity for glucose transport in the denervated rat soleus and the increased capacity for glucose transport in the unweighted rat soleus are related to changes in the expression of the regulatable glucose transporter protein in skeletal muscle (GLUT-4). Results obtained indicate that altered GLUT-4 expression may be a major contributor to the changes in insulin-stimulated glucose transport that are observed with denervation and unweighting. It is concluded that muscle activity is an important factor in the regulation of the GLUT-4 expression in skeletal muscle.

  12. Inflammatory cells in rat skeletal muscle are elevated after electrically stimulated contractions.

    PubMed

    McLoughlin, Thomas J; Mylona, Eleni; Hornberger, Troy A; Esser, Karyn A; Pizza, Francis X

    2003-03-01

    We determined the effect of muscle contractions resulting from high-frequency electrical stimulation (HFES) on inflammatory cells in rat tibialis anterior (TA), plantaris (Pln), and soleus (Sol) muscles at 6, 24, and 72 h post-HFES. A minimum of four and a maximum of seven rats were analyzed at each time point. HFES, applied to the sciatic nerve, caused the Sol and Pln to contract concentrically and the TA to contract eccentrically. Neutrophils were higher (P < 0.05) at 6 and 24 h after HFES in the Sol, Pln, and TA muscles relative to control muscles. ED1(+) macrophages in the Pln were elevated at 6 and 24 h after HFES and were also elevated in the Sol and TA after HFES relative to controls. ED2(+) macrophages in the Sol and TA were elevated at 24 and 72 h after HFES, respectively, and were also elevated in the Pln after HFES relative to controls. In contrast to the TA muscles, the Pln and Sol muscles showed no gross histological abnormalities. Collectively, these data indicate that both eccentric and concentric contractions can increase inflammatory cells in muscle, regardless of whether overt histological signs of injury are apparent.

  13. Effects of combined stretching and clenbuterol on disuse atrophy in rat soleus muscle.

    PubMed

    Yamazaki, Toshiaki; Yokogawa, Masami; Tachino, Katsuhiko

    2009-01-01

    Clinically, disuse muscle atrophy is often seen among patients who are severely debilited and are on prolonged bed rest. Common physical therapy interventions are not successful in preventing disuse muscle atrophy early in the medical treatment of critically ill patients. In situations such as this, the use of a β 2-adrenergic agonist such as clenbuterol (Cb) may be of benefit in preventing atrophy. Also, recent studies have suggested that stretching is possible in preventing disuse muscle atrophy and the decline in muscle strength. The objective of this study was to evaluate the effects of Cb medication combined with stretching (ST) on rat soleus muscle (SOL) during the progression of disuse muscle atrophy. Thirty-five male Wistar rats were used in this study. The rats were divided into five groups: control (CON), hindlimb-unweighting (HU) only, HU+ST, HU+Cb medication, and HU+ST+Cb groups. The right SOL in stretching groups was maintained a stretched position for one hour daily by passively dorsiflexing the ankle joint under non-anesthesia. The experimental period was 2 weeks. In the ST group, peak twitch tension per cross-sectional area in soleus muscle was significantly larger than in the Cb group, while there was no significant difference between the CON and ST groups. The conversion of type I to type II fibers that was observed in the Cb group was not recognized in the combined ST and Cb group. Distinct effect of combined stretching and Cb medication was not recognized statistically. The results indicate that Cb affects muscle morphological characteristics while stretching affects contractile properties. These data suggest that a combined ST and Cb intervention considered the type-specificity of muscle fiber may be need more consideration for preventing disuse muscle atrophy and the decline in muscle strength.

  14. Reduction-oxidation state and protein degradation in skeletal muscles of growing rats

    NASA Technical Reports Server (NTRS)

    Fagan, Julie M.; Tischler, Marc E.

    1986-01-01

    The relationship between the NAD redox state and protein degradation during growth was studied in isolated soleus and extensor digitorum longus muscles of 4- to 14-week-old rats. As muscle size increased with age, protein breakdown slowed and the muscles became progressively more reduced as shown by higher ratios of lactate/pyruvate in incubated and fresh-frozen muscle. Correlations were strong between redox state of protein degradation, and muscle mass, and between redox state and protein degradation. This relationship may be important in the slowing of muscle breakdown that occurs with age.

  15. Proteome-wide muscle protein fractional synthesis rates predict muscle mass gain in response to a selective androgen receptor modulator in rats.

    PubMed

    Shankaran, Mahalakshmi; Shearer, Todd W; Stimpson, Stephen A; Turner, Scott M; King, Chelsea; Wong, Po-Yin Anne; Shen, Ying; Turnbull, Philip S; Kramer, Fritz; Clifton, Lisa; Russell, Alan; Hellerstein, Marc K; Evans, William J

    2016-03-15

    Biomarkers of muscle protein synthesis rate could provide early data demonstrating anabolic efficacy for treating muscle-wasting conditions. Androgenic therapies have been shown to increase muscle mass primarily by increasing the rate of muscle protein synthesis. We hypothesized that the synthesis rate of large numbers of individual muscle proteins could serve as early response biomarkers and potentially treatment-specific signaling for predicting the effect of anabolic treatments on muscle mass. Utilizing selective androgen receptor modulator (SARM) treatment in the ovariectomized (OVX) rat, we applied an unbiased, dynamic proteomics approach to measure the fractional synthesis rates (FSR) of 167-201 individual skeletal muscle proteins in triceps, EDL, and soleus. OVX rats treated with a SARM molecule (GSK212A at 0.1, 0.3, or 1 mg/kg) for 10 or 28 days showed significant, dose-related increases in body weight, lean body mass, and individual triceps but not EDL or soleus weights. Thirty-four out of the 94 proteins measured from the triceps of all rats exhibited a significant, dose-related increase in FSR after 10 days of SARM treatment. For several cytoplasmic proteins, including carbonic anhydrase 3, creatine kinase M-type (CK-M), pyruvate kinase, and aldolase-A, a change in 10-day FSR was strongly correlated (r(2) = 0.90-0.99) to the 28-day change in lean body mass and triceps weight gains, suggesting a noninvasive measurement of SARM effects. In summary, FSR of multiple muscle proteins measured by dynamics of moderate- to high-abundance proteins provides early biomarkers of the anabolic response of skeletal muscle to SARM. Copyright © 2016 the American Physiological Society.

  16. Effective therapy of transected quadriceps muscle in rat: Gastric pentadecapeptide BPC 157.

    PubMed

    Staresinic, Mario; Petrovic, Igor; Novinscak, Tomislav; Jukic, Ivana; Pevec, Damira; Suknaic, Slaven; Kokic, Neven; Batelja, Lovorka; Brcic, Luka; Boban-Blagaic, Alenka; Zoric, Zdenka; Ivanovic, Domagoj; Ajduk, Marko; Sebecic, Bozidar; Patrlj, Leonardo; Sosa, Tomislav; Buljat, Gojko; Anic, Tomislav; Seiwerth, Sven; Sikiric, Predrag

    2006-05-01

    We report complete transection of major muscle and the systemic peptide treatment that induces healing of quadriceps muscle promptly and then maintains the healing with functional restoration. Initially, stable gastric pentadecapeptide BPC 157 (GEPPPGKPADDAGLV, M.W. 1419, PL-10, PLD-116, PL 14736 Pliva, Croatia; in trials for inflammatory bowel disease; wound treatment; no toxicity reported; effective alone without carrier) also superiorly accelerates the healing of transected Achilles tendon. Regularly, quadriceps muscle completely transected transversely 1.0 cm proximal to patella presents a definitive defect that cannot be compensated in rat. BPC 157 (10 microg, 10 ng, 10 pg/kg) is given intraperitoneally, once daily; the first application 30 min posttransection, the final 24 h before sacrifice. It consistently improves muscle healing throughout the whole 72-day period. Improved are: (i) biomechanic (load of failure increased); (ii) function (walking recovery and extensor postural thrust/motor function index returned toward normal healthy values); (iii) microscopy/immunochemistry [i.e., mostly muscle fibers connect muscle segments; absent gap; significant desmin positivity for ongoing regeneration of muscle; larger myofibril diameters on both sides, distal and proximal (normal healthy rat-values reached)]; (iv) macroscopic presentation (stumps connected; subsequently, atrophy markedly attenuated; finally, presentation close to normal noninjured muscle, no postsurgery leg contracture). Thus, posttransection healing-consistently improved-may suggest this peptide therapeutic application in muscle disorders. Copyright 2006 Orthopaedic Research Society.

  17. Voluntary resistance running wheel activity pattern and skeletal muscle growth in rats.

    PubMed

    Legerlotz, Kirsten; Elliott, Bradley; Guillemin, Bernard; Smith, Heather K

    2008-06-01

    The aims of this study were to characterize the pattern of voluntary activity of young rats in response to resistance loading on running wheels and to determine the effects of the activity on the growth of six limb skeletal muscles. Male Sprague-Dawley rats (4 weeks old) were housed individually with a resistance running wheel (R-RUN, n = 7) or a conventional free-spinning running wheel (F-RUN, n = 6) or without a wheel, as non-running control animals (CON, n = 6). The torque required to move the wheel in the R-RUN group was progressively increased, and the activity (velocity, distance and duration of each bout) of the two running wheel groups was recorded continuously for 45 days. The R-RUN group performed many more, shorter and faster bouts of running than the F-RUN group, yet the mean daily distance was not different between the F-RUN (1.3 +/- 0.2 km) and R-RUN group (1.4 +/- 0.6 km). Only the R-RUN resulted in a significantly (P < 0.05) enhanced muscle wet mass, relative to the increase in body mass, of the plantaris (23%) and vastus lateralis muscle (17%), and the plantaris muscle fibre cross-sectional area, compared with CON. Both F-RUN and R-RUN led to a significantly greater wet mass relative to increase in body mass and muscle fibre cross-sectional area in the soleus muscle compared with CON. We conclude that the pattern of voluntary activity on a resistance running wheel differs from that on a free-spinning running wheel and provides a suitable model to induce physiological muscle hypertrophy in rats.

  18. Impact of Western and Mediterranean Diets and Vitamin D on Muscle Fibers of Sedentary Rats

    PubMed Central

    Purrello, Francesco

    2018-01-01

    Background: The metabolic syndrome is associated with sarcopenia. Decreased serum levels of Vitamin D (VitD) and insulin-like growth factor (IGF)-1 and their mutual relationship were also reported. We aimed to evaluate whether different dietary profiles, containing or not VitD, may exert different effects on muscle molecular morphology. Methods: Twenty-eight male rats were fed for 10 weeks in order to detect early defects induced by different dietary regimens: regular diet (R); regular diet with vitamin D supplementation (R-DS) and regular diet with vitamin D restriction (R-DR); high-fat butter-based diets (HFB-DS and HFB-DR) with 41% energy from fat; high-fat extra-virgin olive oil-based diets (HFEVO-DS and HFEVO-DR) with 41% energy from fat. IL-1β, insulin-like growth factor (IGF)1, Dickkopf-1 (DKK-1), and VitD-receptor (VDR) expressions were evaluated by immunohistochemistry. Muscle fiber perimeter was measured by histology and morphometric analysis. Results: The muscle fibers of the HEVO-DS rats were hypertrophic, comparable to those of the R-DS rats. An inverse correlation existed between the dietary fat content and the perimeter of the muscle fibers (p < 0.01). In the HFB-DR rats, the muscle fibers appeared hypotrophic with an increase of IL-1β and a dramatic decrease of IGF-1 expression. Conclusions: High-fat western diet could impair muscle metabolism and lay the ground for subsequent muscle damage. VitD associated with a Mediterranean diet showed trophic action on the muscle fibers. PMID:29462978

  19. Genetic Response of Rat Supraspinatus Tendon and Muscle to Exercise

    PubMed Central

    Rooney, Sarah Ilkhanipour; Tobias, John W.; Bhatt, Pankti R.; Kuntz, Andrew F.; Soslowsky, Louis J.

    2015-01-01

    Inflammation is a complex, biologic event that aims to protect and repair tissue. Previous studies suggest that inflammation is critical to induce a healing response following acute injury; however, whether similar inflammatory responses occur as a result of beneficial, non-injurious loading is unknown. The objective of this study was to screen for alterations in a subset of inflammatory and extracellular matrix genes to identify the responses of rat supraspinatus tendon and muscle to a known, non-injurious loading condition. We sought to define how a subset of genes representative of specific inflammation and matrix turnover pathways is altered in supraspinatus tendon and muscle 1) acutely following a single loading bout and 2) chronically following repeated loading bouts. In this study, Sprague-Dawley rats in the acute group ran a single bout of non-injurious exercise on a flat treadmill (10 m/min, 1 hour) and were sacrificed 12 or 24 hours after. Rats in the chronic group ran 5 days/wk for 1 or 8 weeks. A control group maintained normal cage activity. Supraspinatus muscle and tendon were harvested for RNA extractions, and a custom Panomics QuantiGene 2.0 multiplex assay was used to detect 48 target and 3 housekeeping genes. Muscle/tendon and acute/chronic groups had distinct gene expression. Components of the arachidonic acid cascade and matrix metalloproteinases and their inhibitors were altered with acute and chronic exercise. Collagen expression increased. Using a previously validated model of non-injurious exercise, we have shown that supraspinatus tendon and muscle respond to acute and chronic exercise by regulating inflammatory- and matrix turnover-related genes, suggesting that these pathways are involved in the beneficial adaptations to exercise. PMID:26447778

  20. Muscle Carnosine Concentration with the Co-Ingestion of Carbohydrate with β-alanine in Male Rats.

    PubMed

    Naderi, Alireza; Sadeghi, Mehdi; Sarshin, Amir; Imanipour, Vahid; Nazeri, Seyed Ali; Farkhayi, Fatemeh; Willems, Mark E T

    2017-07-04

    Muscle carnosine is an intracellular buffer. The intake of β-alanine, combined with carbohydrate and protein, enhanced carnosine loading in human muscle. The aim of the present study was to examine if muscle carnosine loading was enhanced by β-alanine intake and co-ingestion of glucose in male rats. Thirty-six male rats were divided into three groups and supplemented for four weeks: β-alanine (βA group, 1.8% β-alanine in drinking water), β-alanine and glucose (βAGL group, 1.8% β-alanine and 5% glucose in drinking water), and control (C group, drinking water). During the supplementation period, rats were exercised (20 m·min -1 , 10 min·day -1 , 4 days·week -1 for 4 weeks). Muscle carnosine concentration was quantified in soleus (n = 12) and rectus femoris (n = 6) muscles using high-performance liquid chromatography. In soleus muscle, carnosine concentration was 2.24 ± 1.10, 6.12 ± 1.08, and 6.93 ± 2.56 mmol/kg dw for control, βA, and βAGL, respectively. In rectus femoris, carnosine concentration was 2.26 ± 1.31, 7.90 ± 1.66, and 8.59 ± 2.33 mmol/kg dw for control, βA, and βAGL respectively. In each muscle, βA and βAGL resulted in similar carnosine increases compared to the control. In conclusion, β-alanine intake for four weeks, either alone or with glucose co-ingestion, equally increased muscle carnosine content. It appears that the potential insulin response to fluid glucose intake does not affect muscle carnosine loading in male rats.

  1. Different responses in soleus muscle fibers of Wistar and Wistar Hannover rats to hindlimb unloading

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Kawano, Fuminori; Terada, Masahiro; Matsuoka, Yoshikazu; Shinoda, Yo; Ishihara, Akihiko; Ohira, Yoshinobu

    2005-08-01

    Effects of 16 days of hindlimb suspension on the characteristics of single soleus muscle fibers were compared between male Wistar and Wistar Hannover rats (5 weeks old). The greater effects of unloading were noted in Wistar Hannover rats. The unloading-related reductions of muscle weight and fiber cross-sectional area vs. the pre-suspension levels were greater than Wistar rats. The percent of fibers expressing pure type I myosin heavy chain (MHC) was decreased and that of type I+II MHC fibers was increased, the magnitudes of these changes were greater than Wistar rats. Total number of myonuclei in control situation was greater in Wistar Hannover rats, but the more numbers of myonuclei were decreased following unloading. Responses of myonuclear domain levels were similar. The numbers of both quiescent and mitotic active satellite cells in control situation were greater in Wistar rats. But the magnitude of the unloading- related decrease was identical for Wistar Hannover and Wistar rats. Although the level of heat shock protein 27 (HSP27) expression in Wistar rats was decreased by unloading, de novo appearance of HSP27 was noted in Wistar Hannover rats. It is suggested that greater responses of soleus muscle fibers of Wistar Hannover than Wistar rats may be related to the different expression of protein, although the precise mechanism is still unclear.

  2. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats

    PubMed Central

    Mendias, Christopher L; Lynch, Evan B; Gumucio, Jonathan P; Flood, Michael D; Rittman, Danielle S; Van Pelt, Douglas W; Roche, Stuart M; Davis, Carol S

    2015-01-01

    Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN+/+) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTNΔ/Δ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTNΔ/Δ rats demonstrated 20–33% increases in mass, 35–45% increases in fibre number, 20–57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTNΔ/Δ muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTNΔ/Δ rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling. PMID:25640143

  3. Neuromuscular electrical stimulation improves GLUT-4 and morphological characteristics of skeletal muscle in rats with heart failure.

    PubMed

    de Leon, E B; Bortoluzzi, A; Rucatti, A; Nunes, R B; Saur, L; Rodrigues, M; Oliveira, U; Alves-Wagner, A B; Xavier, L L; Machado, U F; Schaan, B D; Dall'Ago, P

    2011-02-01

    Changes in skeletal muscle morphology and metabolism are associated with limited functional capacity in heart failure, which can be attenuated by neuromuscular electrical stimulation (ES). The purpose of the present study was to analyse the effects of ES upon GLUT-4 protein content, fibre structure and vessel density of the skeletal muscle in a rat model of HF subsequent to myocardial infarction. Forty-four male Wistar rats were assigned to one of four groups: sham (S), sham submitted to ES (S+ES), heart failure (HF) and heart failure submitted to ES (HF+ES). The rats in the ES groups were submitted to ES of the left leg during 20 days (2.5 kHz, once a day, 30 min, duty cycle 50%- 15 s contraction/15 s rest). After this period, the left tibialis anterior muscle was collected from all the rats for analysis. HF+ES rats showed lower values of lung congestion when compared with HF rats (P = 0.0001). Although muscle weight was lower in HF rats than in the S group, thus indicating hypotrophy, 20 days of ES led to their recovery (P < 0.0001). In both groups submitted to ES, there was an increase in muscle vessel density (P < 0.04). Additionally, heart failure determined a 49% reduction in GLUT-4 protein content (P < 0.03), which was recovered by ES (P < 0.01). In heart failure, ES improves morphological changes and raises GLUT-4 content in skeletal muscle. © 2010 The Authors. Acta Physiologica © 2010 Scandinavian Physiological Society.

  4. Properties of single motor units in medial gastrocnemius muscles of adult and old rats.

    PubMed Central

    Kadhiresan, V A; Hassett, C A; Faulkner, J A

    1996-01-01

    1. The purpose of this study was to determine the role of motor unit remodelling in the deficit that develops in the maximum isometric tetanic force (Fo) of whole medial gastrocnemius (MGN) muscles in old compared with adult rats. The Fo values and morphological data were determined for MGN muscles and eighty-two single motor units in muscles of adult (10-12 months) and sixty-two units in those of old (24-26 months) F344 rats. During an unfused tetanus, fast and slow (S) motor units were identified by the presence and absence of sag, respectively. Fast-fatigable (FF) and fast-fatigue-resistant (FR) units were classified by fatigue indices less than or greater than 0.50, respectively. 2. For old rats, whole MGN muscle Fo was 29% less than the value of 11.2 N measured for adult rats. The deficit in whole muscle Fo of old rats resulted from equivalent decreases in the number of motor units, 16% smaller than the adult value of ninety-seven, and in the mean motor unit Fo value, 14% less than the adult value of 117 mN. 3. With ageing, little motor unit remodelling occurred in FR units, whereas the S and FF motor units demonstrated dramatic, but opposing, changes. For S units, the number of units remained constant, but the number of fibres per motor unit increased 3-fold from 57 to 165. In contrast, the number of FF units decreased by 34% and the number of fibres per motor unit of the remaining units decreased to 86% of the adult value of 333. The age-related remodelling of motor units appeared to involve denervation of fast muscle fibres with reinnervation of denervated fibres by axonal sprouting from slow fibres. PMID:8782115

  5. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia.

    PubMed

    Pannérec, Alice; Springer, Margherita; Migliavacca, Eugenia; Ireland, Alex; Piasecki, Mathew; Karaz, Sonia; Jacot, Guillaume; Métairon, Sylviane; Danenberg, Esther; Raymond, Frédéric; Descombes, Patrick; McPhee, Jamie S; Feige, Jerome N

    2016-04-01

    Declining muscle mass and function is one of the main drivers of loss of independence in the elderly. Sarcopenia is associated with numerous cellular and endocrine perturbations, and it remains challenging to identify those changes that play a causal role and could serve as targets for therapeutic intervention. In this study, we uncovered a remarkable differential susceptibility of certain muscles to age-related decline. Aging rats specifically lose muscle mass and function in the hindlimbs, but not in the forelimbs. By performing a comprehensive comparative analysis of these muscles, we demonstrate that regional susceptibility to sarcopenia is dependent on neuromuscular junction fragmentation, loss of motoneuron innervation, and reduced excitability. Remarkably, muscle loss in elderly humans also differs in vastus lateralis and tibialis anterior muscles in direct relation to neuromuscular dysfunction. By comparing gene expression in susceptible and non-susceptible muscles, we identified a specific transcriptomic signature of neuromuscular impairment. Importantly, differential molecular profiling of the associated peripheral nerves revealed fundamental changes in cholesterol biosynthetic pathways. Altogether our results provide compelling evidence that susceptibility to sarcopenia is tightly linked to neuromuscular decline in rats and humans, and identify dysregulation of sterol metabolism in the peripheral nervous system as an early event in this process.

  6. Succinylcholine-induced hyperkalemia in the rat following radiation injury to muscle. [60Co

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cairoli, V.J.; Ivankovich, A.D.; Vucicevic, D.

    1982-02-01

    During anesthetic preparation of a patient who had received routine radiation therapy of sarcoma of the leg, cardiac collapse occurred following succinylcholine (SCh) administration. Experiments were designed to test the hypothesis that radiation injury to muscle might cause increased sensitivity to SCh similar to that reported in patients with muscle trauma, severe burns, and lesions causing muscle denervation. Venous plasma potassium levels and arterial blood gas tensions were measured in rats after they were given SCh (3 mg/kg) at various times following 60Co irradiation of the hind legs. Nonirradiated rats responded to SCh with a slight but statistically significant increasemore » in plasma K+. Rats subjected to high levels of radiation (10,000 to 20,000 R) and given SCh 4 to 7 days later responded in the same way as the control rats. Plasma K+ levels in rats exposed to a fractionated irradiated dosage (25000 R given twice with a 1-week interval) followed by SCh 1 week later were similar to those in the control group, but when SCh was given 2 weeks later (3 weeks after initial irradiation) there was a marked elevation of plasma K+, from 3.6 to 7.7 meq/L, a statistically significant increase.« less

  7. Divergent skeletal muscle respiratory capacities in rats artificially selected for high and low running ability: a role for Nor1?

    PubMed Central

    Stephenson, Erin J.; Stepto, Nigel K.; Koch, Lauren G.; Britton, Steven L.

    2012-01-01

    Inactivity-related diseases are becoming a huge burden on Western society. While there is a major environmental contribution to metabolic health, the intrinsic properties that predispose or protect against particular health traits are harder to define. We used rat models of inborn high running capacity (HCR) and low running capacity (LCR) to determine inherent differences in mitochondrial volume and function, hypothesizing that HCR rats would have greater skeletal muscle respiratory capacity due to an increase in mitochondrial number. Additionally, we sought to determine if there was a link between the expression of the orphan nuclear receptor neuron-derived orphan receptor (Nor)1, a regulator of oxidative metabolism, and inherent skeletal muscle respiratory capacity. LCR rats were 28% heavier (P < 0.0001), and fasting serum insulin concentrations were 62% greater than in HCR rats (P = 0.02). In contrast, HCR rats had better glucose tolerance and reduced adiposity. In the primarily oxidative soleus muscle, maximal respiratory capacity was 21% greater in HCR rats (P = 0.001), for which the relative contribution of fat oxidation was 20% higher than in LCR rats (P = 0.02). This was associated with increased citrate synthase (CS; 33%, P = 0.009) and β-hydroxyacyl-CoA (β-HAD; 33%, P = 0.0003) activities. In the primarily glycolytic extensor digitum longus muscle, CS activity was 29% greater (P = 0.01) and β-HAD activity was 41% (P = 0.0004) greater in HCR rats compared with LCR rats. Mitochondrial DNA copy numbers were also elevated in the extensor digitum longus muscles of HCR rats (35%, P = 0.049) and in soleus muscles (44%, P = 0.16). Additionally, HCR rats had increased protein expression of individual mitochondrial respiratory complexes, CS, and uncoupling protein 3 in both muscle types (all P < 0.05). In both muscles, Nor1 protein was greater in HCR rats compared with LCR rats (P < 0.05). We propose that the differential expression of Nor1 may contribute to the

  8. A novel mode-of-action mediated by the fetal muscle nicotinic acetylcholine receptor resulting in developmental toxicity in rats.

    PubMed

    Rasoulpour, Reza J; Ellis-Hutchings, Robert G; Terry, Claire; Millar, Neil S; Zablotny, Carol L; Gibb, Alasdair; Marshall, Valerie; Collins, Toby; Carney, Edward W; Billington, Richard

    2012-06-01

    Sulfoxaflor (X11422208), a novel agricultural molecule, induced fetal effects (forelimb flexure, hindlimb rotation, and bent clavicle) and neonatal death in rats at high doses (≥ 400 ppm in diet); however, no such effects occurred in rabbit dietary studies despite achieving similar maternal and fetal plasma exposure levels. Mode-of-action (MoA) studies were conducted to test the hypothesis that the effects in rats had a single MoA induced by sulfoxaflor agonism on the fetal rat muscle nicotinic acetylcholine receptor (nAChR). The studies included cross-fostering and critical windows of exposure studies in rats, fetal ((α1)(2)β1γδ) and adult ((α1)(2)β1δε) rat and human muscle nAChR in vitro agonism experiments, and neonatal rat phrenic nerve-hemidiaphragm contracture studies. The weight of evidence from these studies supported a novel MoA where sulfoxaflor is an agonist to the fetal, but not adult, rat muscle nAChR and that prolonged agonism on this receptor in fetal/neonatal rats causes sustained striated muscle contracture resulting in concomitant reduction in muscle responsiveness to physiological nerve stimulation. Fetal effects were inducible with as little as 1 day of exposure at the end of gestation, but were rapidly reversible after birth, consistent with a pharmacological MoA. With respect to human relevance, sulfoxaflor was shown to have no agonism on human fetal or adult muscle nAChRs. Taken together, the data support the hypothesis that the developmental effects of sulfoxaflor in rats are mediated via sustained agonism on the fetal muscle nAChR during late fetal development and are considered not relevant to humans.

  9. The Effects of Phrenic Nerve Degeneration by Axotomy and Crush on the Electrical Activities of Diaphragm Muscles of Rats.

    PubMed

    Alkiş, Mehmet Eşref; Kavak, Servet; Sayır, Fuat; Him, Aydin

    2016-03-01

    The aim of this study was to investigate the effect of axotomy and crush-related degeneration on the electrical activities of diaphragm muscle strips of experimental rats. In the present study, twenty-one male Wistar-albino rats were used and divided into three groups. The animals in the first group were not crushed or axotomized and served as controls. Phrenic nerves of the rats in the second and third groups were crushed or axotomized in the diaphragm muscle. Resting membrane potential (RMP) was decreased significantly in both crush and axotomy of diaphragm muscle strips of experimental rats (p < 0.05). Depolarization time (T DEP) and half-repolarization (1/2 RT) time were significantly prolonged in crush and axotomy rats (p < 0.05). Crushing or axotomizing the phrenic nerves may produce electrical activities in the diaphragm muscle of the rat by depolarization time and half-repolarization time prolonged in crush and axotomy rats.

  10. A mechanical stretch induces contractile activation in unstimulated developing rat skeletal muscle in vitro

    PubMed Central

    Mutungi, Gabriel; Edman, K A P; Ranatunga, K W

    2003-01-01

    The effects of a stretch-release cycle (≈25 % of the resting muscle fibre length, Lo) on both tension and [Ca2+]i in small, unstimulated, intact muscle fibre bundles isolated from adult and neonatal rats were investigated at 20 °C. The results show that the effects of the length change depended on the age of the rats. Thus, the length change produced three effects in the neonatal rat muscle fibre bundles, but only a single effect in the adult ones. In the neonatal fibre bundles, the length change led to an increase in resting muscle tension and to a transient increase in [Ca2+]i. The stretch-release cycle was then followed by a twitch-like tension response. In the adult fibre bundles, only the increase in resting tension was seen and both the transient increase in [Ca2+]i and the stretch-induced twitch-like tension response were absent. The amplitude of the twitch-like tension response was affected by both 2,3-butanedione monoxime and sarcomere length in the same manner as active twitch tension, suggesting that it arose from actively cycling crossbridges. It was also reversibly abolished by 25 mM K+, 1 μM tetrodotoxin and 1.5 mM lidocaine (lignocaine), and was significantly depressed (P < 0.001) by lowering [Ca2+]o. These findings suggest that a rapid stretch in neonatal rats induces a propagated impulse that leads to an increase in [Ca2+]i, and that abolishing the action potential abolishes the stretch-induced twitch-like tension response. In 5- to 7-day-old rats, the twitch-like tension response was ≈50 % of the isometric twitch. It then decreased progressively with age and was virtually absent by the time the rats were 21 days old. Interestingly, this is the same period over which rat muscles differentiate from their neonatal to their adult types. PMID:12813148

  11. Exercise training, glucose transporters, and glucose transport in rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Rodnick, K. J.; Henriksen, E. J.; James, D. E.; Holloszy, J. O.

    1992-01-01

    It was previously found that voluntary wheel running induces an increase in the insulin-sensitive glucose transporter, i.e., the GLUT4 isoform, in rat plantaris muscle (K. J. Rodnick, J. O. Holloszy, C. E. Mondon, and D. E. James. Diabetes 39: 1425-1429, 1990). The present study was undertaken to determine whether 1) the increase in muscle GLUT4 protein is associated with an increase in maximally stimulated glucose transport activity, 2) a conversion of type IIb to type IIa or type I muscle fibers plays a role in the increase in GLUT4 protein, and 3) an increase in the GLUT1 isoform is a component of the adaptation of muscle to endurance exercise. Five weeks of voluntary wheel running that resulted in a 33% increase in citrate synthase activity induced a 50% increase in GLUT4 protein in epitrochlearis muscles of female Sprague-Dawley rats. The rate of 2-deoxy-glucose transport maximally stimulated with insulin or insulin plus contractions was increased approximately 40% (P less than 0.05). There was no change in muscle fiber type composition, evaluated by myosin ATPase staining, in the epitrochlearis. There was also no change in GLUT1 protein concentration. We conclude that an increase in GLUT4, but not of GLUT1 protein, is a component of the adaptive response of muscle to endurance exercise and that the increase in GLUT4 protein is associated with an increased capacity for glucose transport.

  12. Autophagy is altered in skeletal and cardiac muscle of spontaneously hypertensive rats.

    PubMed

    Bloemberg, D; McDonald, E; Dulay, D; Quadrilatero, J

    2014-02-01

    Autophagy is a subcellular degradation mechanism important for muscle maintenance. Hypertension induces well-characterized pathological changes to the heart and is associated with impaired function and increased apoptotic signalling in skeletal muscle. We examined whether essential hypertension affects several autophagy markers in skeletal and cardiac muscle. Immunoblotting and qRT-PCR were used to measure autophagy-related proteins/mRNA in multiple skeletal muscles as well as left ventricle (LV) of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Skeletal muscles of hypertensive rats had decreased (P < 0.01) cross-sectional area of type I fibres (e.g. soleus WKY: 2952.9 ± 64.4 μm(2) vs. SHR: 2579.9 ± 85.8 μm(2)) and a fibre redistribution towards a 'fast' phenotype. Immunoblot analysis revealed that some SHR skeletal muscles displayed a decreased LC3II/I ratio (P < 0.05), but none showed differences in p62 protein. LC3 and LAMP2 mRNA levels were increased approx. 2-3-fold in all skeletal muscles (P < 0.05), while cathepsin activity, cathepsin L mRNA and Atg7 protein were increased 16-17% (P < 0.01), 2-3-fold (P < 0.05) and 29-49% (P < 0.01), respectively, in fast muscles of hypertensive animals. Finally, protein levels of BAG3, a marker of chaperone-assisted selective autophagy, were 18-25% lower (P < 0.05) in SHR skeletal muscles. In the LV of SHR, LC3I and p62 protein were elevated 34% (P < 0.05) and 47% (P < 0.01), respectively. Furthermore, p62 mRNA was 68% higher (P < 0.05), while LAMP2 mRNA was 45% lower (P < 0.05), in SHR cardiac muscle. There was no difference in Beclin1, Atg7, Bnip3 or BAG3 protein in the LV between strains. These results suggest that autophagy is altered in skeletal and cardiac muscle during hypertension. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  13. Low level laser therapy on injured rat muscle

    NASA Astrophysics Data System (ADS)

    Mantineo, M.; Pinheiro, J. P.; Morgado, A. M.

    2013-06-01

    Although studies show the clinical effectiveness of low level laser therapy (LLLT) in facilitating the muscle healing process, scientific evidence is still required to prove the effectiveness of LLLT and to clarify the cellular and molecular mechanisms triggered by irradiation. Here we evaluate the effect of different LLLT doses, using continuous illumination (830 nm), in the treatment of inflammation induced in the gastrocnemius muscle of Wistar rats, through the quantification of cytokines in systemic blood and histological analysis of muscle tissue. We verified that all applied doses produce an effect on reducing the number of inflammatory cells and the concentration of pro-inflammatory TNF-α and IL-1β cytokines. The best results were obtained for 40 mW. The results may suggest a biphasic dose response curve.

  14. Growth hormone, IGF-I, and exercise effects on non-weight-bearing fast muscles of hypophysectomized rats

    NASA Technical Reports Server (NTRS)

    Grossman, E. J.; Grindeland, R. E.; Roy, R. R.; Talmadge, R. J.; Evans, J.; Edgerton, V. R.

    1997-01-01

    The effects of growth hormone (GH) or insulin-like growth factor I (IGF-I) with or without exercise (ladder climbing) in countering the effects of unweighting on fast muscles of hypophysectomized rats during 10 days of hindlimb suspension were determined. Compared with untreated suspended rats, muscle weights were 16-29% larger in GH-treated and 5-15% larger in IGF-I-treated suspended rats. Exercise alone had no effect on muscle weights. Compared with ambulatory control, the medial gastrocnemius weight in suspended, exercised rats was larger after GH treatment and maintained with IGF-I treatment. The combination of GH or IGF-I plus exercise in suspended rats resulted in an increase in size of each predominant fiber type, i.e., types I, I + IIa and IIa + IIx, in the medial gastrocnemius compared with untreated suspended rats. Normal ambulation or exercise during suspension increased the proportion of fibers expressing embryonic myosin heavy chain in hypophysectomized rats. The phenotype of the medial gastrocnemius was minimally affected by GH, IGF-I, and/or exercise. These results show that there is an IGF-I, as well as a GH, and exercise interactive effect in maintaining medial gastrocnemius fiber size in suspended hypophysectomized rats.

  15. Proteomic Changes in Rat Thyroarytenoid Muscle Induced by Botulinum Neurotoxin Injection

    PubMed Central

    Welham, Nathan V.; Marriott, Gerard; Tateya, Ichiro; Bless, Diane M.

    2009-01-01

    Botulinum neurotoxin (BoNT) injection into the thyroarytenoid (TA) muscle is a commonly performed medical intervention for adductor spasmodic dysphonia. The mechanism of action of BoNT at the neuromuscular junction is well understood, however, aside from reports focused on myosin heavy chain isoform abundance, there is a paucity of data addressing the effects of therapeutic BoNT injection on the TA muscle proteome. In this study, 12 adult Sprague Dawley rats underwent unilateral TA muscle BoNT serotype A injection followed by tissue harvest at 72 hrs, 7 days, 14 days, and 56 days post-injection. Three additional rats were reserved as controls. Proteomic analysis was performed using 2D SDS-PAGE followed by MALDI-MS. Vocal fold movement was significantly reduced by 72 hrs, with complete return of function by 56 days. Twenty-five protein spots demonstrated significant protein abundance changes following BoNT injection, and were associated with alterations in energy metabolism, muscle contractile function, cellular stress response, transcription, translation, and cell proliferation. A number of protein abundance changes persisted beyond the return of gross physiologic TA function. These findings represent the first report of BoNT induced changes in any skeletal muscle proteome, and reinforce the utility of applying proteomic tools to the study of system-wide biological processes in normal and perturbed TA muscle function. PMID:18442174

  16. Effects of changes in dietary fatty acids on isolated skeletal muscle functions in rats.

    PubMed

    Ayre, K J; Hulbert, A J

    1996-02-01

    The effects of manipulating dietary levels of essential polyunsaturated fatty acids on the function of isolated skeletal muscles in male Wistar rats were examined. Three isoenergetic diets were used: an essential fatty acid-deficient diet (EFAD), a diet high in essential (n-6) fatty acids [High (n-6)], and a diet enriched with essential (n-3) fatty acids [High (n-3)]. After 9 wk, groups of rats on each test diet were fed a stock diet of laboratory chow for a further 6 wk. Muscle function was examined by using a battery of five tests for soleus (slow twitch) and extensor digitorum longus (EDL; fast twitch). Tests included single muscle twitches, sustained tetanic contractions, posttetanic potentiation, sustained high-frequency stimulation, and intermittent low-frequency stimulation. Results for muscles from the High (n-6) and High (n-3) groups were very similar. However, the EFAD diet resulted in significantly lower muscular tensions and reduced response times compared with the High (n-6) and High (n-3) diets. Peak twitch tension in soleus muscles was 16-21% less in the EFAD group than in the High (n-6) and High (n-3) groups, respectively [analysis of variance (ANOVA), P < 0.01). During high-frequency stimulation, EDL muscles from the EFAD rats fatigued 32% more quickly (ANOVA, P < 0.01)]. Also, twitch contraction and half-relaxation times were significantly 5-7% reduced in the EFAD group (ANOVA, P < 0.01). During intermittent low-frequency stimulation, soleus muscles from the EFAD group generated 25-28% less tension than did the other groups (ANOVA, P < 0.01), but in EDL muscles from the EFAD group, endurance was 20% greater than in the High (n-6) group (ANOVA, P < 0.05). After 6 wk on the stock diet, there were no longer any differences between the dietary groups. Manipulation of dietary fatty acids results in significant, but reversible, effects in muscles of rats fed an EFAD diet.

  17. Resveratrol Protects Purkinje Neurons and Restores Muscle Activity in Rat Model of Cerebellar Ataxia.

    PubMed

    Ghorbani, Zeynab; Farahani, Reza Mastery; Aliaghaei, Abbas; Khodagholi, Fariba; Meftahi, Gholam Houssein; Danyali, Samira; Abdollahifar, Mohammad Amin; Daftari, Mahtab; Boroujeni, Mahdi Eskandarian; Sadeghi, Yousef

    2018-05-01

    Cerebellar ataxia (CA) is regarded as a miscellaneous cluster of brain disorders related to the cerebellum. Resveratrol is a naturally occurring polyphenolic compound. Previous reports suggest that resveratrol confers neuroprotection in various animal models of brain damage. Indeed, we considered it invaluable to investigate whether a treatment with resveratrol has a therapeutic role against CA induced by 3-acetylpyridine (3-AP) in rats. In addition, no investigation has examined neuroprotective effect of resveratrol in rat model of CA. Initially, 3-AP administration generated CA rat models followed by intraperitoneal injection with resveratrol. Then, motor performance and muscle electromyography (EMG) activity were assessed. Moreover, the anti-apoptotic role of resveratrol in CA and its relationship to protection of Purkinje cells were explored. According to what we have found, resveratrol administration improved the muscle activity and movement coordination in 3-AP-lesioned rats. Also under resveratrol treatment, the total number of the Purkinje neurons increased whereas a reduction in apoptotic bodies was observed. In conclusion, post-treatment with resveratrol evidently ameliorated motor performance as well as muscle activity accompanied by a protection of Purkinje cells in ataxic rats.

  18. Sex steroids do not affect muscle weight, oxidative metabolism or cytosolic androgen reception binding of functionally overloaded rat Plantaris muscles

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Rance, N.

    1983-01-01

    The effects of sex steroids on muscle weight and oxidative capacity of rat planaris muscles subjected to functional overload by removal of synergistic muscles were investigated. Ten weeks after bilateral synergist removal, plantaris muscles were significantly hypertrophic compared with unoperated controls. After this period, the ability of the muscles to oxide three substrates of oxidative metabolism was assessed. Experimental procedures are discussed and results are presented herein. Results suggest a lack of beneficial effect of sex hormone status on the process of hypertrophy and on biochemical changes in overloaded muscle. Such findings are not consistent with the idea of synergistic effects of sex steroids and muscle usage.

  19. Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle.

    PubMed

    Terada, Shin; Tabata, Izumi; Higuchi, Mitsuru

    2004-02-01

    We previously reported that high-intensity exercise training significantly increased citrate synthase (CS) activity, a marker of oxidative enzyme, in rat skeletal muscle to a level equaling that attained after low-intensity prolonged exercise training (Terada et al., J Appl Physiol 90: 2019-2024, 2001). Since mitochondrial oxidative enzymes and fatty acid oxidation (FAO) enzymes are often increased simultaneously, we assessed the effect of high-intensity intermittent swimming training on FAO enzyme activity in rat skeletal muscle. Male Sprague-Dawley rats (3 to 4 weeks old) were assigned to a 10-day period of high-intensity intermittent exercise training (HIT), low-intensity prolonged exercise training (LIT), or sedentary control conditions. In the HIT group, the rats repeated fourteen 20 s swimming sessions with a weight equivalent to 14-16% of their body weight. Between the exercise sessions, a 10 s pause was allowed. Rats in the LIT group swam 6 h/day in two 3 h sessions separated by 45 min of rest. CS activity in the triceps muscle of rats in the HIT and LIT groups was significantly higher than that in the control rats by 36 and 39%, respectively. Furthermore, 3-beta hydroxyacyl-CoA dehydrogenase (HAD) activity, an important enzyme in the FAO pathway in skeletal muscle, was higher in the two training groups than in the control rats (HIT: 100%, LIT: 88%). No significant difference in HAD activity was observed between the two training groups. In conclusion, the present investigation demonstrated that high-intensity intermittent swimming training elevated FAO enzyme activity in rat skeletal muscle to a level similar to that attained after 6 h of low-intensity prolonged swimming exercise training.

  20. Substance P relaxes rat bronchial smooth muscle via epithelial prostanoid synthesis.

    PubMed

    Bodelsson, M; Blomquist, S; Caverius, K; Törnebrandt, K

    1999-01-01

    Substance P is present in bronchial nerve fibres. The physiological actions of substance P are mediated via tachykinin NK(1) receptors. Immunochemical studies have demonstrated tachykinin NK(1) receptors in the rat airway epithelium. To elucidate how epithelial tachykinin NK(1) receptors affect smooth muscle response to substance P. Contractile response of isolated rat bronchial trunk with or without epithelium was recorded. In intact segments precontracted by 5-hydroxytryptamine, relaxation was induced by substance P and the nitric oxide donor, sodium nitroprusside. Removal of the epithelium abolished relaxation induced by substance P but did not affect relaxation induced by sodium nitroprusside. The cyclo-oxygenase inhibitor, indomethacin, but not the nitric oxide synthase inhibitor, L-N(G)-monomethylarginine, reduced the relaxation in response to substance P. Epithelial tachykinin NK(1) receptors mediate substance-P-induced relaxation of rat bronchial smooth muscle via release of prostanoids but not nitric oxide.

  1. Atrophy and growth failure of rat hindlimb muscles in tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Jaspers, S. R.; Tischler, M. E.

    1984-01-01

    The primary objective of the present study is related to an evaluation of a modified tail-cast suspension model as a means of identifying metabolic factors which control or are associated with muscle atrophy and growth failure. Two different control conditions (normal and tail-casted weight bearing) were studied to determine the appropriate control for tail-cast suspension. A description is presented of a model which is most useful for studying atrophy of hindlimb muscles under certain conditions. Female Sprague-Dawley rats were employed in the experiments. Attention is given to growth rate and urinary excretion of urea and ammonia in different types of rats, the relationship between body weight and skeletal muscle weight, and the relationship between animal body weight and rates of protein synthesis and protein degradation.

  2. Effects of the beta2 agonist formoterol on atrophy signaling, autophagy, and muscle phenotype in respiratory and limb muscles of rats with cancer-induced cachexia.

    PubMed

    Salazar-Degracia, Anna; Busquets, Sílvia; Argilés, Josep M; Bargalló-Gispert, Núria; López-Soriano, Francisco J; Barreiro, Esther

    2018-06-01

    Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Beta-adrenoceptors attenuate muscle wasting. We hypothesized that specific muscle atrophy signaling pathways and altered metabolism may be attenuated in cancer cachectic animals receiving treatment with the beta 2 agonist formoterol. In diaphragm and gastrocnemius of tumor-bearing rats (intraperitoneal inoculum, 10 8 AH-130 Yoshida ascites hepatoma cells, 7-day study period) with and without treatment with formoterol (0.3 mg/kg body weight/day/7days, subcutaneous), atrophy signaling pathways (NF-κB, MAPK, FoxO), proteolytic markers (ligases, proteasome, ubiquitination), autophagy markers (p62, beclin-1, LC3), myostatin, apoptosis, muscle metabolism markers, and muscle structure features were analyzed (immunoblotting, immunohistochemistry). In diaphragm and gastrocnemius of cancer cachectic rats, fiber sizes were reduced, levels of structural alterations, atrophy signaling pathways, proteasome content, protein ubiquitination, autophagy, and myostatin were increased, while those of regenerative and metabolic markers (myoD, mTOR, AKT, and PGC-1alpha) were decreased. Formoterol treatment attenuated such alterations in both muscles. Muscle wasting in this rat model of cancer-induced cachexia was characterized by induction of significant structural alterations, atrophy signaling pathways, proteasome activity, apoptotic and autophagy markers, and myostatin, along with a significant decline in the expression of muscle regenerative and metabolic markers. Treatment of the cachectic rats with formoterol partly attenuated the structural alterations and atrophy signaling, while improving other molecular perturbations similarly in both respiratory and limb muscles. The results reported in this study have relevant therapeutic implications as they showed beneficial effects of the beta 2 agonist formoterol in the cachectic muscles through several key biological pathways

  3. Metabolic and morphologic properties of single muscle fibers in the rat after spaceflight, Cosmos 1887

    NASA Technical Reports Server (NTRS)

    Miu, B.; Martin, T. P.; Roy, R. R.; Oganov, V.; Ilyina-Kakueva, E.; Marini, J. F.; Leger, J. J.; Bodine-Fowler, S. C.; Edgerton, V. R.

    1990-01-01

    The adaptation of a slow (soleus, Sol) and a fast (medial gastrocnemius, MG) skeletal muscle to spaceflight was studied in five young male rats. The flight period was 12.5 days and the rats were killed approximately 48 h after returning to 1 g. Five other rats that were housed in cages similar to those used by the flight rats were maintained at 1 g for the same period of time to serve as ground-based controls. Fibers were classified as dark or light staining for myosin adenosine triphosphatase (ATPase). On the average, the fibers in the Sol of the flight rats atrophied twice as much as those in the MG. Further, the fibers located in the deep (close to the bone and having the highest percentage of light ATPase and high oxidative fibers in the muscle cross section) region of the MG atrophied more than the fibers located in the superficial (away from the bone and having the lowest percentage of light ATPase and high oxidative fibers in the muscle cross-section) region of the muscle. Based on quantitative histochemical assays of single muscle fibers, succinate dehydrogenase (SDH) activity per unit volume was unchanged in fibers of the Sol and MG. However, in the Sol, but not the MG, the total amount of SDH activity in a 10-microns-thick section of a fiber decreased significantly in response to spaceflight. Based on population distributions, it appears that the alpha-glycerophosphate dehydrogenase (GPD) activities were elevated in the dark ATPase fibers in the Sol, whereas the light fibers in the Sol and both fiber types in the MG did not appear to change. The ratio of GPD to SDH activities increased in the dark (but not light) fibers of the Sol and was unaffected in the MG. Immunohistochemical analyses indicate that approximately 40% of the fibers in the Sol of flight rats expressed a fast myosin heavy chain compared with 22% in control rats. Further, 31% of the fibers in the Sol of flight rats expressed both fast and slow myosin heavy chains compared with 8% in

  4. Pregnancy-induced adaptations in intramuscular extracellular matrix of rat pelvic floor muscles

    PubMed Central

    Alperin, Marianna; Kaddis, Timothy; Pichika, Rajeswari; Esparza, Mary C.; Lieber, Richard L.

    2017-01-01

    BACKGROUND Birth trauma to pelvic floor muscles is a major risk factor for pelvic floor disorders. Intramuscular extracellular matrix determines muscle stiffness, supports contractile component, and shields myofibers from mechanical strain. OBJECTIVE Our goal was to determine whether pregnancy alters extracellular matrix mechanical and biochemical properties in a rat model, which may provide insights into the pathogenesis of pelvic floor muscle birth injury. To examine whether pregnancy effects were unique to pelvic floor muscles, we also studied a hind limb muscle. STUDY DESIGN Passive mechanical properties of coccygeus, iliocaudalis, pubocaudalis, and tibialis anterior were compared among 3-month old Sprague–Dawley virgin, late-pregnant, and postpartum rats. Muscle tangent stiffness was calculated as the slope of the stress–sarcomere length curve between 2.5 and 4.0 μm, obtained from a stress-relaxation protocol at a bundle level. Elastin and collagen isoform concentrations were quantified by the use of enzyme-linked immunosorbent assay. Enzymatic and glycosylated collagen crosslinks were determined by high-performance liquid chromatography. Data were compared by the use of repeated-measures, 2-way analysis of variance with Tukey post-hoc testing. Correlations between mechanical and biochemical parameters were assessed by linear regressions. Significance was set to P < .05. Results are reported as mean ± SEM. RESULTS Pregnancy significantly increased stiffness in coccygeus (P < .05) and pubocaudalis (P < .0001) relative to virgin controls, with no change in iliocaudalis. Postpartum, pelvic floor muscle stiffness did not differ from virgins (P > .3). A substantial increase in collagen V in coccygeus and pubocaudalis was observed in late-pregnant, compared with virgin, animals, (P < .001). Enzymatic crosslinks decreased in coccygeus (P < .0001) and pubocaudalis (P < .02) in pregnancy, whereas glycosylated crosslinks were significantly elevated in late

  5. Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats.

    PubMed

    Gomes-Santos, Igor Lucas; Fernandes, Tiago; Couto, Gisele Kruger; Ferreira-Filho, Julio César Ayres; Salemi, Vera Maria Cury; Fernandes, Fernanda Barrinha; Casarini, Dulce Elena; Brum, Patricia Chakur; Rossoni, Luciana Venturini; de Oliveira, Edilamar Menezes; Negrao, Carlos Eduardo

    2014-01-01

    Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1-7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1-7) is still little understood in CHF. We investigated the effects of exercise training on circulating and skeletal muscle RAS in the ischemic model of CHF. Male Wistar rats underwent left coronary artery ligation or a Sham operation. They were divided into four groups: 1) Sedentary Sham (Sham-S), 2) exercise-trained Sham (Sham-Ex), sedentary CHF (CHF-S), and exercise-trained CHF (CHF-Ex). Angiotensin concentrations and ACE and ACE2 activity in the circulation and skeletal muscle (soleus and plantaris) were quantified. Skeletal muscle ACE and ACE2 protein expression, and AT1, AT2, and Mas receptor gene expression were also evaluated. CHF reduced ACE2 serum activity. Exercise training restored ACE2 and reduced ACE activity in CHF. Exercise training reduced plasma AngII concentration in both Sham and CHF rats and increased the Ang-(1-7)/AngII ratio in CHF rats. CHF and exercise training did not change skeletal muscle ACE and ACE2 activity and protein expression. CHF increased AngII levels in both soleus and plantaris muscle, and exercise training normalized them. Exercise training increased Ang-(1-7) in the plantaris muscle of CHF rats. The AT1 receptor was only increased in the soleus muscle of CHF rats, and exercise training normalized it. Exercise training increased the expression of the Mas receptor in the soleus muscle of both exercise-trained groups, and normalized it in plantaris muscle. Exercise training causes a shift in RAS towards the Ang-(1-7)-Mas axis in skeletal muscle, which can be influenced by skeletal muscle metabolic characteristics. The changes in RAS circulation do not necessarily reflect the changes occurring in the RAS of skeletal

  6. Kir2.1 regulates rat smooth muscle cell proliferation, migration, and post-injury carotid neointimal formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Yong; Tang, Chengchun, E-mail: tangchengchun@medmail.com.cn; Wang, Qingjie

    Phenotype switching of vascular smooth muscle cells (VSMC) from the contractile type to the synthetic type is a hallmark of vascular disorders such as atherosclerosis and restenosis after angioplasty. Inward rectifier K{sup +} channel 2.1 (Kir2.1) has been identified in VSMC. However, whether it plays a functional role in regulating cellular transformation remains obscure. In this study, we evaluated the role of Kir2.1 on VSMC proliferation, migration, phenotype switching, and post-injury carotid neointimal formation. Kir2.1 knockdown significantly suppressed platelet-derived growth factor BB-stimulated rat vascular smooth muscle cells (rat-VSMC) proliferation and migration. Deficiency in Kir2.1 contributed to the restoration of smoothmore » muscle α-actin, smooth muscle 22α, and calponin and to a reduction in osteopontin expression in rat-VSMC. Moreover, the in vivo study showed that rat-VSMC switched to proliferative phenotypes and that knockdown of Kir2.1 significantly inhibited neointimal formation after rat carotid injury. Kir2.1 may be a potential therapeutic target in the treatment of cardiovascular diseases, such as atherosclerosis and restenosis following percutaneous coronary intervention.« less

  7. Comparison of soleus muscles from rats exposed to microgravity for 10 versus 14 days

    NASA Technical Reports Server (NTRS)

    Staron, R. S.; Kraemer, W. J.; Hikida, R. S.; Reed, D. W.; Murray, J. D.; Campos, G. E.; Gordon, S. E.

    1998-01-01

    The effects of two different duration space-flights on the extent of atrophy, fiber type composition, and myosin heavy chain (MHC) content of rat soleus muscles were compared. Adult male Fisher rats (n=12) were aboard flight STS-57 and exposed to 10 days of microgravity and adult ovariectomized female Spraque-Dawley rats (n=12) were aboard flight STS-62 for 14 days. Soleus muscles were bilaterally removed from the flight and control animals and frozen for subsequent analyses. Muscle wet weights, fiber types (I, IC, IIC, and IIA), cross-sectional area, and MHC content were determined. Although a significant difference was found between the soleus wet weights of the two ground-based control groups, they were similar with regard to MHC content (ca 90% MHCI and ca 10% MHCIIa) and fiber type composition. Unloading of the muscles caused slow-to-fast transformations which included a decrease in the percentage of type I fibers and MHCI, an increase in fibers classified as type IC, and the expression of two fast myosin heavy chains not found in the control rat soleus muscles (MHCIId and MHCIIb). Although the amount of atrophy (ca 26%) and the extent of slow-to-fast transformation (decrease in the percentage of MHCI from 90% to 82.5%) in the soleus muscles were similar between the two spaceflights, the percentages of the fast MHCs differed. After 14 days of spaceflight, the percentage of MHCIIa was significantly lower and the percentages of MHCIId and MHCIIb were significantly higher than the corresponding MHC content of the soleus muscles from the 10-day animals. Indeed, MHCIId became the predominant fast MHC after 14 days in space. These data suggest fast-to-faster transformations continued during the longer spaceflight.

  8. Coexistence of twitch potentiation and tetanic force decline in rat hindlimb muscle

    NASA Technical Reports Server (NTRS)

    Rankin, Lucinda L.; Enoka, Roger M.; Volz, Kathryn A.; Stuart, Douglas G.

    1988-01-01

    The effect of whole-muscle fatigue on the isometric twitch was investigated in various hindlimb muscles of anesthetized rats, using an experimental protocol designed to assess the levels of fatigability in motor units. The results of EMG and force measurements revealed the existence of a linear relationship between fatigability and the magnitude of the twitch force following the fatigue test in both soleus and extensor digitorum longus muscles.

  9. Creatine Supplementation Induces Alteration in Cross-Sectional Area in Skeletal Muscle Fibers of Wistar Rats Under Swimming Training

    PubMed Central

    Santos, Fernando Farias Dos; Moura, José A. A.; Curi, Rui; Fernandes, Luiz C.

    2002-01-01

    Creatine has been shown to increase the total muscle mass. In this study, we investigated the effect of oral creatine monohydrate supplementation on cross-sectional area of type I, IIA and IIB fibers of gastrocnemius, extensor digitorum longus - EDL and soleus muscles from male Wistar rats subjected to swimming training for 33 days. Four groups were set up: sedentary with no supplementation (CON), sedentary with creatine supplementation (3.3 mg creatine per g chow) (CR), exercised with no supplementation (EX) and exercised with supplementation (CREX). The rats performed in a special swimming pool and swam five times a week for 1 hour each day, with a extra lead weight corresponding to 15% of their body weight. At the end of 33 days, skeletal muscles of the animals were dissected and the samples got immediately frozen using liquid nitrogen. Muscle samples were allocated to slices of 10 μm by a cryostat at -20°C, which was followed by histochemical analysis in order to identify fiber types of the muscles, and morphometrical analysis to calculate the muscle fiber areas. All groups gained body weight at the end of 33 days but there was no statistical difference among them. The EX and CREX rats had a larger food intake than the sedentary groups (CON and CR), and the CREX group had a larger food intake than CR rats. The cross-sectional area of type I and IIA fibers of the soleus muscle, type IIA and IIB fibers of EDL muscle and type IIA and IIB fibers of the white portion of gastrocnemius muscle were greater in the EX and CREX groups in comparison to sedentary rats. In addition, these fibers were greater in the CREX rats than in the EX group. There was no change in the cross sectional area of type I fibers in EDL muscle among all groups studied. Our results suggest that creatine supplementation enhances the exercise related muscle fiber hypertrophy in rodents. PMID:24701129

  10. Imbalance in SOD/CAT activities in rat skeletal muscles submitted to treadmill training exercise.

    PubMed

    Pinho, Ricardo A; Andrades, Michael E; Oliveira, Marcos R; Pirola, Aline C; Zago, Morgana S; Silveira, Paulo C L; Dal-Pizzol, Felipe; Moreira, José Cláudio F

    2006-10-01

    The association between physical exercise and oxidative damage in the skeletal musculature has been the focus of many studies in literature, but the balance between superoxide dismutase and catalase activities and its relation to oxidative damage is not well established. Thus, the aim of the present study was to investigate the association between regular treadmill physical exercise, oxidative damage and antioxidant defenses in skeletal muscle of rats. Fifteen male Wistar rats (8-12 months) were randomly separated into two groups (trained n=9 and untrained n=6). Trained rats were treadmill-trained for 12 weeks in progressive exercise (velocity, time, and inclination). Training program consisted in a progressive exercise (10 m/min without inclination for 10 min/day). After 1 week the speed, time and inclination were gradually increased until 17 m/min at 10% for 50 min/day. After the training period animals were killed, and gastrocnemius and quadriceps were surgically removed to the determination of biochemical parameters. Lipid peroxidation, protein oxidative damage, catalase, superoxide dismutase and citrate synthase activities, and muscular glycogen content were measured in the isolated muscles. We demonstrated that there is a different modulation of CAT and SOD in skeletal muscle in trained rats when compared to untrained rats (increased SOD/CAT ratio). TBARS levels were significantly decreased and, in contrast, a significant increase in protein carbonylation was observed. These results suggest a non-described adaptation of skeletal muscle against exercise-induced oxidative stress.

  11. Effect of heat shock preconditioning on ROS scavenging activity in rat skeletal muscle after downhill running.

    PubMed

    Shima, Yosuke; Kitaoka, Katsuhiko; Yoshiki, Yumiko; Maruhashi, Yoshinobu; Tsuyama, Takeshi; Tomita, Katsuro

    2008-10-01

    The mechanisms of the protective effect conferred by heat shock preconditioning (HS) are currently unknown. The purpose of this study was to determine the effect of HS on muscle injury after downhill running and to address the mechanism of the effect. Female Wistar rats were assigned to three groups: HS, downhill running (E), and downhill running after heat shock preconditioning (HS + E). The HS and HS + E rats were placed in a heat chamber for 60 min (ambient temperature 42 +/- 1.0 degrees C) 48 h before downhill running. Reactive oxygen species (ROS) scavenging activity was determined by electron spin resonance (ESR), and heat shock protein 72 (HSP72) mRNA expression was measured in rat quadriceps femoris. Leukocyte infiltration and degenerated muscle fibers were determined histopathologically. ROS scavenging activity significantly increased at 3 days after HS (151 +/- 18%) and HSP72 mRNA expression increased immediately after HS (1750 +/- 1914%). No decrease in ROS scavenging activity was observed in the HS + E rats at 2 days after exercise compared with the E rats (102 +/- 9% vs. 79 +/- 5%). Degenerated muscle fibers in HS + E rats were significantly less than in E rats at 2, 3, and 7 days after exercise (0.8 +/- 1.0 vs. 2.8 +/- 1.6, 0.8 +/- 1.0 vs. 1.8 +/- 1.6, 0 vs. 0.3 +/- 0.6, respectively). These data demonstrated that HS can reduce muscle injury after downhill running, and this effect may be mediated by increased ROS scavenging activity. Furthermore, HS may protect the antioxidant defense system in skeletal muscle by enhancing the adaptive HSP72 mRNA response.

  12. Slower skeletal muscle phenotypes are critical for constitutive expression of Hsp70 in overloaded rat plantaris muscle.

    PubMed

    O'Neill, David E T; Aubrey, F Kris; Zeldin, David A; Michel, Robin N; Noble, Earl G

    2006-03-01

    Heat shock protein 72 (Hsp70) is constitutively expressed in rat hindlimb muscles, reportedly in proportion to their content of type I myosin heavy chain. This distribution pattern has been suggested to result from the higher recruitment and activity of such muscles and/or a specific relationship between myosin phenotype and Hsp70 content. To differentiate between these possibilities, the fiber-specific distribution of Hsp70 was examined in male Sprague-Dawley rat plantaris under control conditions, following a fast-to-slow phenotypic shift in response to surgically induced overload (O) and in response to O when the phenotypic shift was prevented by 3,5,3'-triiodo-dl-thyronine administration. Constitutive expression of Hsp70 was restricted to type I and IIa fibers in plantaris from control rats, and this fiber-specific pattern of expression was maintained following O of up to 28 days, although Hsp70 content in the O muscle doubled. When O (for 40 days) of the plantaris was combined with 3,5,3'-triiodo-dl-thyronine administration, despite typical hypertrophy in the overloaded plantaris, prevention of the normal phenotypic transformation also blocked the increased expression of Hsp70 observed in euthyroid controls. Collectively, these data suggest that chronic changes in constitutive expression of Hsp70 with altered contractile activity appear critically dependent on fast-to-slow phenotypic remodeling.

  13. Histomorphometric analysis of the response of rat skeletal muscle to swimming, immobilization and rehabilitation.

    PubMed

    Nascimento, C C F; Padula, N; Milani, J G P O; Shimano, A C; Martinez, E Z; Mattiello-Sverzut, A C

    2008-09-01

    The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 +/- 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trained-immobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase). Data were analyzed statistically by the mixed effects linear model (P < 0.05). Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001). In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001). In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009). We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation.

  14. Aging in Rats Differentially Affects Markers of Transcriptional and Translational Capacity in Soleus and Plantaris Muscle

    PubMed Central

    Mobley, Christopher B.; Mumford, Petey W.; Kephart, Wesley C.; Haun, Cody T.; Holland, Angelia M.; Beck, Darren T.; Martin, Jeffrey S.; Young, Kaelin C.; Anderson, Richard G.; Patel, Romil K.; Langston, Gillis L.; Lowery, Ryan P.; Wilson, Jacob M.; Roberts, Michael D.

    2017-01-01

    Alterations in transcriptional and translational mechanisms occur during skeletal muscle aging and such changes may contribute to age-related atrophy. Herein, we examined markers related to global transcriptional output (i.e., myonuclear number, total mRNA and RNA pol II levels), translational efficiency [i.e., eukaryotic initiation and elongation factor levels and muscle protein synthesis (MPS) levels] and translational capacity (ribosome density) in the slow-twitch soleus and fast-twitch plantaris muscles of male Fischer 344 rats aged 3, 6, 12, 18, and 24 months (n = 9–10 per group). We also examined alterations in markers of proteolysis and oxidative stress in these muscles (i.e., 20S proteasome activity, poly-ubiquinated protein levels and 4-HNE levels). Notable plantaris muscle observations included: (a) fiber cross sectional area (CSA) was 59% (p < 0.05) and 48% (p < 0.05) greater in 12 month vs. 3 month and 24 month rats, respectively, suggesting a peak lifetime value near 12 months and age-related atrophy by 24 months, (b) MPS levels were greatest in 18 month rats (p < 0.05) despite the onset of atrophy, (c) while regulators of ribosome biogenesis [c-Myc and upstream binding factor (UBF) protein levels] generally increased with age, ribosome density linearly decreased from 3 months of age and RNA polymerase (Pol) I protein levels were lowest in 24 month rats, and d) 20S proteasome activity was robustly up-regulated in 6 and 24 month rats (p < 0.05). Notable soleus muscle observations included: (a) fiber CSA was greatest in 6 month rats and was maintained in older age groups, and (b) 20S proteasome activity was modestly but significantly greater in 24 month vs. 3/12/18 month rats (p < 0.05), and (c) total mRNA levels (suggestive of transcriptional output) trended downward in older rats despite non-significant between-group differences in myonuclear number and/or RNA Pol II protein levels. Collectively, these findings suggest that plantaris, not soleus

  15. Daily Electrical Muscle Stimulation Enhances Functional Recovery Following Nerve Transection and Repair in Rats.

    PubMed

    Willand, Michael P; Chiang, Cameron D; Zhang, Jennifer J; Kemp, Stephen W P; Borschel, Gregory H; Gordon, Tessa

    2015-08-01

    Incomplete recovery following surgical reconstruction of damaged peripheral nerves is common. Electrical muscle stimulation (EMS) to improve functional outcomes has not been effective in previous studies. To evaluate the efficacy of a new, clinically translatable EMS paradigm over a 3-month period following nerve transection and immediate repair. Rats were divided into 6 groups based on treatment (EMS or no treatment) and duration (1, 2, or 3 months). A tibial nerve transection injury was immediately repaired with 2 epineurial sutures. The right gastrocnemius muscle in all rats was implanted with intramuscular electrodes. In the EMS group, the muscle was electrically stimulated with 600 contractions per day, 5 days a week. Terminal measurements were made after 1, 2, or 3 months. Rats in the 3-month group were assessed weekly using skilled and overground locomotion tests. Neuromuscular junction reinnervation patterns were also examined. Muscles that received daily EMS had significantly greater numbers of reinnervated motor units with smaller average motor unit sizes. The majority of muscle endplates were reinnervated by a single axon arising from a nerve trunk with significantly fewer numbers of terminal sprouts in the EMS group, the numbers being small. Muscle mass and force were unchanged but EMS improved behavioral outcomes. Our results demonstrated that EMS using a moderate stimulation paradigm immediately following nerve transection and repair enhances electrophysiological and behavioral recovery. © The Author(s) 2014.

  16. Acute resistance exercise reduces increased gene expression in muscle atrophy of ovariectomised arthritic rats.

    PubMed

    Furlanetto, Roberto; de Paula Souza, Aletéia; de Oliveira, Anselmo Alves; Nunes, Paulo Ricardo Prado; Michelin, Márcia Antoniazi; Chica, Javier Emilio Lazo; Murta, Eddie Fernando Candido; Orsatti, Fábio Lera

    2016-12-01

    We studied the effect of resistance exercise (RE) on mRNA levels of atrogin-1, MuRF-1, and myostatin in the gastrocnemius muscle of arthritic rats after loss of ovarian function (LOF). Thirty female Wistar rats (nine weeks old, 195.3 ±17.4 grams) were randomly allocated into five groups: control group (CT-Sham; n = 6); group with rheumatoid arthritis (RA; n = 6); group with rheumatoid arthritis subjected to RE (RAEX; n = 6); ovariectomy group with rheumatoid arthritis (RAOV; n = 6); and an ovariectomy group with rheumatoid arthritis subjected to RE (RAOVEX; n = 6). After 15 days of intra-articular injections with Met-BSA the animals were subjected to RE and six hours after workout were euthanised. The rheumatoid arthritis provoked reduction in the cross-sectional area (CSA) of muscle fibres, but the CSA was lower in the RAOV when compared to the RA groups. Skeletal muscle atrogin-1 mRNA level was increased in arthritic rats (RA and RAOV), but the atrogin-1 level was higher in RAOV group when compared to other arthritic groups. The Muscle MuRF-1 mRNA level was also increased in the RAOV group. The increased atrogin-1 and MuRF-1 mRNA levels were lower in the RAOVEX group than in the RAOV group. The myostatin mRNA level was similar in all groups, except for the RAOVEX group, in which it was lower than the other groups. LOF results in increased loss of skeletal muscle-related ubiquitin ligases (atrogin-1 and MuRF-1). However, the RE reduces the atrogin-1, MuRF-1, and myostatin mRNA levels in muscle of arthritic rats affected by LOF.

  17. Muscle architecture and fibre characteristics of rat gastrocnemius and semimembranosus muscles during isometric contractions.

    PubMed

    Huijing, P A; van Lookeren Campagne, A A; Koper, J F

    1989-01-01

    Rat gastrocnemius medialis (GM) and semimembranosus (SM) muscles have a very different morphology. GM is a very pennate muscle, combining relatively short muscle fibre length with sizable fibre angles and long muscle and aponeurosis lengths. SM is a more parallel-fibred muscle, combining a relatively long fibre length with a small fibre angle and short aponeurosis length. The mechanisms of fibre shortening as well as angle increase are operational in GM as well as SM. However, as a consequence of isometric contraction, changes of fibre length and angle are greater for GM than for SM at any relative muscle length. These differences are particularly notable at short muscle lengths: at 80% of optimum muscle length, fibre length changes of approximately 30% are coupled to fibre angle changes of 15 degrees in GM, while for SM these changes are 4% and 0.6 degrees, respectively. A considerable difference was found for normalized active slack muscle length (GM approximately 80 and SM approximately 45%). This is explained by differences of degree of pennation as well as factors related to differences found for estimated fibre length-force characteristics. Estimated normalized active fibre slack length was considerably smaller for SM than for GM (approximately 40 and 60%, respectively). The most likely explanation of these findings are differences of distribution of optimum fibre lengths, possibly in combination with differences of myofilament lengths and/or fibre length distributions.

  18. Volitional Weight-Lifting in Rats Promotes Adaptation via Performance and Muscle Morphology prior to Gains in Muscle Mass

    PubMed Central

    Rader, Erik P; Miller, G Roger; Chetlin, Robert D; Wirth, Oliver; Baker, Brent A

    2014-01-01

    Investigation of volitional animal models of resistance training has been instrumental in our understanding of adaptive training. However, these studies have lacked reactive force measurements, a precise performance measure, and morphological analysis at a distinct phase of training – when initial strength gains precede muscle hypertrophy. Our aim was to expose rats to one month of training (70 or 700 g load) on a custom-designed weight-lifting apparatus for analysis of reactive forces and muscle morphology prior to muscle hypertrophy. Exclusively following 700 g load training, forces increased by 21% whereas muscle masses remained unaltered. For soleus (SOL) and tibialis anterior (TA) muscles, 700 g load training increased muscle fiber number per unit area by ∼20% and decreased muscle fiber area by ∼20%. Additionally, number of muscle fibers per section increased by 18% for SOL muscles. These results establish that distinct morphological alterations accompany early strength gains in a volitional animal model of load-dependent adaptive resistance training. PMID:25392697

  19. Effects of One Resistance Exercise Session on Vascular Smooth Muscle of Hypertensive Rats

    PubMed Central

    da Silva, Tharciano Luiz Teixeira Braga; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim dos Santos; Carvalho, Vitor Oliveira; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana

    2015-01-01

    Background Hypertension is a public health problem and increases the incidence of cardiovascular diseases. Objective To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Methods Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Results Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. Conclusion One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats. PMID:26107814

  20. Effects of one resistance exercise session on vascular smooth muscle of hypertensive rats.

    PubMed

    Silva, Tharciano Luiz Teixeira Braga da; Mota, Marcelo Mendonça; Fontes, Milene Tavares; Araújo, João Eliakim Dos Santos; Oliveira Carvalho, Vitor; Bonjardim, Leonardo Rigoldi; Santos, Márcio Roberto Viana

    2015-08-01

    Hypertension is a public health problem and increases the incidence of cardiovascular diseases. To evaluate the effects of a resistance exercise session on the contractile and relaxing mechanisms of vascular smooth muscle in mesenteric arteries of NG-nitro L-arginine methyl ester (L-NAME)-induced hypertensive rats. Wistar rats were divided into three groups: control (C), hypertensive (H), and exercised hypertensive (EH). Hypertension was induced by administration of 20 mg/kg of L-NAME for 7 days prior to experimental protocols. The resistance exercise protocol consisted of 10 sets of 10 repetitions and intensity of 40% of one repetition maximum. The reactivity of vascular smooth muscle was evaluated by concentration‑response curves to phenylephrine (PHEN), potassium chloride (KCl) and sodium nitroprusside (SNP). Rats treated with L-NAME showed an increase (p < 0.001) in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) compared to the initial period of induction. No difference in PHEN sensitivity was observed between groups H and EH. Acute resistance exercise reduced (p < 0.001) the contractile response induced by KCl at concentrations of 40 and 60 mM in group EH. Greater (p < 0.01) smooth muscle sensitivity to NPS was observed in group EH as compared to group H. One resistance exercise session reduces the contractile response induced by KCl in addition to increasing the sensitivity of smooth muscle to NO in mesenteric arteries of hypertensive rats.

  1. Dynamic Foot Stimulation Attenuates Soleus Muscle Atrophy Induced by Hindlimb Unloading in Rats

    NASA Technical Reports Server (NTRS)

    Kyparos, Antonios; Feeback, Daniel L.; Layne, Charles S.; Martinez, Daniel A.; Clarke, Mark S. F.

    2004-01-01

    Unloading-induced myofiber atrophy is a phenomenon that occurs in the aging population, bed-ridden patients and astronauts. The objective of this study was to determine whether or not dynamic foot stimulation (DFS) applied to the plantar surface of the rat foot can serve as a countermeasure to the soleus muscle atrophy normally observed in hindlimb unloaded (HU) rats. Thirty mature adult (6-month-old) male Wistar rats were randomly assigned into ambulatory control (AMB), hindlimb unloaded alone (HU), or hindlimb unloaded with the application of DFS (HU+DFS) groups. A dynamic pattern of pressure was applied to the right foot of each HU animal using a specially fabricated boot containing an inflatable air bladder connected to a solenoid air pump controlled by a laptop computer. The anti-atrophic effects of DFS were quantified morphometrically in frozen cross-sections of soleus muscle stained using the metachromatic-ATPase fiber typing technique. Application of DFS during HU significantly counteracted the atrophic response observed in the soleus by preventing approximately 85% of the reduction in Type I myofiber cross-sectional area (CSA) observed during HU. However, DFS did not protect type II fibers of the soleus from HU-induced atrophy or any fiber type in the soleus muscle of the contralateral control leg of the DFS-treated HU animals. These results illustrate that the application of DFS to the rat foot is an effective countermeasure to soleus muscle atrophy induced by HU.

  2. Acute effects of stretching exercise on the soleus muscle of female aged rats.

    PubMed

    Zotz, Talita Gnoato; Capriglione, Luiz Guilherme A; Zotz, Rafael; Noronha, Lucia; Viola De Azevedo, Marina Louise; Fiuza Martins, Hilana Rickli; Silveira Gomes, Anna Raquel

    2016-01-01

    It has been shown that stretching exercises can improve the flexibility and independence of the elderly. However, although these exercises commonly constitute training programs, the morphological adaptations induced by stretching exercises in aged skeletal muscle are still unclear. To assess the acute effects of passive mechanical static stretching on the morphology, sarcomerogenesis and modulation of important components of the extracellular matrix of the soleus muscle of aged female rats. Fifteen old female rats with 26 months were divided into two groups: stretching (n=8, SG) and control (n=7, CG): The stretching protocol consisted of 4 repetitions each of 1 min with 30s interval between sets. Stretching was performed on the left soleus muscle, 3 times a week for 1 week. After three sessions, the rats were anesthetized to remove the left soleus muscle, and then euthanized. The following analyses were carried out: muscle fiber cross-sectional area and serial sarcomere number; immunohistochemistry for the quantification of collagen I, III and TGFβ-1. a decrease in muscle fiber cross-sectional area of the SG was observed when compared to the CG (p=0.0001, Kruskal-Wallis); the percentage of type I collagen was significantly lower in the SG when compared to the CG (p=0.01, Kruskal-Wallis), as well as the percentage of TGFβ-1 (p=0.04, Kruskal-Wallis); collagen III was significantly higher in the SG than in the CG (7.06±6.88% vs 4.92±5.30%, p=0.01, Kruskal-Wallis). Although the acute stretching induced muscle hypotrophy, an antifibrotic action was detected. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. Effects of aging on vasoconstrictor and mechanical properties of rat skeletal muscle arterioles

    NASA Technical Reports Server (NTRS)

    Muller-Delp, Judy; Spier, Scott A.; Ramsey, Michael W.; Lesniewski, Lisa A.; Papadopoulos, Anthony; Humphrey, J. D.; Delp, Michael D.

    2002-01-01

    Exercise capacity and skeletal muscle blood flow during exercise are reduced with advancing age. This reduction in blood flow capacity may be related to increased reactivity of skeletal muscle resistance vessels to vasoconstrictor stimuli. The purpose of this study was to test the hypothesis that aging results in increased vasoconstrictor responses of skeletal muscle resistance arterioles. First-order (1A) arterioles (90-220 microm) from the gastrocnemius and soleus muscles of young (4 mo) and aged (24 mo) Fischer-344 rats were isolated, cannulated, and pressurized via hydrostatic reservoirs. Vasoconstriction in response to increases in norepinephrine (NE; 1 x 10(-9)-1 x 10(-4) M) and KCl (20-100 mM) concentrations and increases in intraluminal pressure (10-130 cmH(2)O) were evaluated in the absence of flow. Responses to NE and KCl were similar in both soleus and gastrocnemius muscle arterioles from young and aged rats. In contrast, active myogenic responses to changes in intraluminal pressure were diminished in soleus and gastrocnemius arterioles from aged rats. To assess whether alterations in the mechanical properties of resistance arterioles underlie altered myogenic responsiveness, passive diameter responses to pressure and mechanical stiffness were evaluated. There was no effect of age on the structural behavior (passive pressure-diameter relationship) or stiffness of arterioles from either the soleus or gastrocnemius muscles. These results suggest that aging does not result in a nonspecific decrease in vasoconstrictor responsiveness of skeletal muscle arterioles. Rather, aging-induced adaptations of vasoreactivity of resistance arterioles appear to be limited to mechanisms that are uniquely involved in the signaling of the myogenic response.

  4. Muscle glucose uptake in the rat after suspension with single hindlimb weight bearing

    NASA Technical Reports Server (NTRS)

    Stump, Craig S.; Woodman, Christopher R.; Fregosi, Ralph F.; Tipton, Charles M.

    1993-01-01

    An examination is conducted of the effect of nonweight-bearing conditions, and the systemic influences of simulated microgravity on rat hindlimb muscles. The results obtained suggest that the increases in hindlimb muscle glucose uptake and extracellular space associated with simulated microgravity persist with hindlimb weightbearing, despite the prevention of muscle atrophy. The mechanism (or mechanisms) responsible for these effects are currently unknown.

  5. Effects provoked by chronic undernourishment on the fibre type composition and contractility of fast muscles in male and female developing rats.

    PubMed

    Pereyra-Venegas, J; Segura-Alegría, B; Guadarrama-Olmos, J C; Mariscal-Tovar, S; Quiróz-González, S; Jiménez-Estrada, I

    2015-10-01

    In this study, we compare the effects of pre- and post-natal food deprivation on the relative proportion of fibre types and contractile responses in the extensor digitorum longus (EDL) muscle of female and male rats at different post-natal ages. EDL muscles from undernourished male (UM) rats showed a higher proportion of Type IIB than IIA fibres and larger normalized twitch responses (with respect to muscle weight) than those of controls (CM). In contrast, EDL muscles from control (CF) and undernourished female rats (UF) showed no significant differences in their fibre type composition and normalized twitch forces at most of the ages analysed. Our data are indicative that the EDL muscles from undernourished males are more susceptible to the effects exerted by low food income than the EDL muscles from female rats. It is proposed that changes in the reactive oxygen species (ROS) concentration and hormonal factors, due to undernutrition, are involved in the alterations observed in the fibre type composition and force production of EDL muscles in undernourished male rats and that estrogens may have an antioxidant protective role on the undernourished EDL muscles in female rats. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  6. (-)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats.

    PubMed

    Copp, Steven W; Inagaki, Tadakatsu; White, Michael J; Hirai, Daniel M; Ferguson, Scott K; Holdsworth, Clark T; Sims, Gabrielle E; Poole, David C; Musch, Timothy I

    2013-01-15

    Consumption of the dietary flavanol (-)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O(2) uptake (Vo(2) peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O(2) pressure (Po(2mv)) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓~5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, Vo(2) peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min(-1)·100 g(-1), P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min(-1)·100 g(-1)·mmHg(-1), P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓~16%) but did not impact resting Po(2mv) or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg(-1)·day(-1)) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats.

  7. [Metabolic processes in rat skeletal muscle after a flight on the Kosmos-936 biosatellite].

    PubMed

    Nosova, E A; Veresotskaia, N A; Kolchina, E V; Kurkina, L M; Belitskaia, R A

    1981-01-01

    The study of skeletal muscles of rats flown on Cosmos-936 demonstrated different metabolic reactions in muscle fibers of different function and type to weightlessness and Earth gravity. The data obtained gave evidence that artificial gravity may considerably prevent metabolic changes in muscles developing in response to specific effects of weightlessness.

  8. Resistance training inhibits the elevation of skeletal muscle derived-BDNF level concomitant with improvement of muscle strength in zucker diabetic rat

    PubMed Central

    Kim, Hee-Jae; So, Byunghun; Son, Jun Seok; Song, Han Sol; Oh, Seung Lyul; Seong, Je Kyung; Lee, Hoyoung; Song, Wook

    2015-01-01

    [Purpose] In the present study, we investigated the effects of 8 weeks of progressive resistance training on the level of skeletal muscle derived BDNF as well as glucose intolerance in Zucker diabetic rats. [Methods] Six week-old male Zucker diabetic fatty (ZDF) and Zucker lean control (ZLC) rats were randomly divided into 3 groups: sedentary ZLC (ZLC-Con), sedentary ZDF (ZDF-Con), and exercised ZDF (ZDF-Ex). Progressive resistance training using a ladder and tail weights was performed for 8 weeks (3 days/week). [Results] After 8 weeks of resistance training, substantial reduction in body weight was observed in ZDF-Ex compared to ZDF-Con. Though the skeletal muscle volume did not change, grip strength grip strength was significantly higher in ZDF-Ex compared to ZDF-Con. In the soleus, the level of BDNF was increased in ZDF-Con, but was significantly decreased (p<0.05) in ZDF-Ex, showing a training effect. Moreover, we found that there was a negative correlation (r=-0.657; p=0.004) between grip strength and BDNF level whereas there was a positive correlation (r=0.612; p=0.008) between plasma glucose level and BDNF level in skeletal muscle. [Conclusion] Based upon our results, we demonstrated that resistance training inhibited the elevation of skeletal muscle derived-BDNF expression concomitant with the improvement of muscle strength in zucker diabetic rats. In addition, muscle-derived BDNF might be a potential mediator for the preventive effect of resistance training on the progress of type 2 diabetes. PMID:27274460

  9. Contractile properties of rat fast-twitch skeletal muscle during reinnervation - Effects of testosterone and castration

    NASA Technical Reports Server (NTRS)

    Yeagle, S. P.; Mayer, R. F.; Max, S. R.

    1983-01-01

    The peroneal nerve of subject rats were crushed 1 cm from the muscle in order to examine the isometric contractile properties of skeletal muscle in the recovery sequency during reinnervation of normal, castrated, and testosterone-treated rats. The particular muscle studied was the extensor digitorum longus, with functional reinnervation first observed 8-9 days after nerve crush. No evidence was found that either castration or testosterone injections altered the process of reinnervation after the nerve crush, with the conclusion being valid at the 0.05 p level. The most reliable index of reinnervation was found to be the twitch:tetanus ratio, a factor of use in future studies of the reinnervation of skeletal muscle.

  10. Response of rat hindlimb muscles to 12 hours recovery from tail-cast suspension

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Henriksen, E. J.; Jacob, S.; Jaspers, S. R.

    1985-01-01

    Previous work has shown a number of biochemical changes which accompany atrophy or reduced muscle growth in hindlimb of tail-casted, suspended rats. These results clearly show that altered muscle growth was due to changes in protein turnover. Accordingly, the rise in soleus tyrosine following unloading reflects the more negative protein balance. Other major changes we found included slower synthesis of glutamine as indicated by lower ratios of glutamine/glutamate and reduced levels of aspartate which coincide with slower aspartate and ammonia metabolism in vitro. In conjunction with the study of SL-3 rats, which were subjected to 12 h of post-flight gravity, a study of the effects of 12 h eight bearing on metabolism of 6-day unloaded hindlimb muscles was carried out.

  11. Immobilization rapidly induces thioredoxin-interacting protein (TXNIP) gene expression together with insulin resistance in rat skeletal muscle.

    PubMed

    Kawamoto, Emi; Tamakoshi, Keigo; Ra, Song-Gyu; Masuda, Hiroyuki; Kawanaka, Kentaro

    2018-05-24

    Acute short-duration of disuse induces the development of insulin resistance for glucose uptake in rodent skeletal muscle. Since thioredoxin-interacting protein (TXNIP) has been implicated in the downregulation of insulin signaling and glucose uptake, we examined the possibility that muscle disuse rapidly induces insulin resistance via increased TXNIP mRNA and protein expression. Male Wistar rats were subjected to unilateral 6-hr hindlimb immobilization by plaster cast. At the end of this period, the soleus muscles from both immobilized and contralateral non-immobilized hindlimbs were excised and examined. The 6-hr immobilization resulted in an increase in TXNIP mRNA and protein expressions together with a decrease in insulin-stimulated 2-deoxyglucose uptake in the rat soleus muscle. Additionally, in the rats sacrificed 6 hr after the plaster cast removal, TXNIP protein expression and insulin-stimulated glucose uptake in the immobilized muscle had both been restored to a normal level. Various interventions (pretreatment with transcription inhibitor actinomycin D or AMPK activator AICAR) also suppressed the increase in TXNIP protein expression in 6-hr-immobilized muscle together with partial prevention of insulin resistance for glucose uptake. These results suggested the possibility that increased TXNIP protein expression in immobilized rat soleus muscles was associated with the rapid induction of insulin resistance for glucose uptake in that tissue.

  12. Respiration-related discharge of hyoglossus muscle motor units in the rat.

    PubMed

    Powell, Gregory L; Rice, Amber; Bennett-Cross, Seres J; Fregosi, Ralph F

    2014-01-01

    Although respiratory muscle motor units have been studied during natural breathing, simultaneous measures of muscle force have never been obtained. Tongue retractor muscles, such as the hyoglossus (HG), play an important role in swallowing, licking, chewing, breathing, and, in humans, speech. The HG is phasically recruited during the inspiratory phase of the respiratory cycle. Moreover, in urethane anesthetized rats the drive to the HG waxes and wanes spontaneously, providing a unique opportunity to study motor unit firing patterns as the muscle is driven naturally by the central pattern generator for breathing. We recorded tongue retraction force, the whole HG muscle EMG and the activity of 38 HG motor units in spontaneously breathing anesthetized rats under low-force and high-force conditions. Activity in all cases was confined to the inspiratory phase of the respiratory cycle. Changes in the EMG were correlated significantly with corresponding changes in force, with the change in EMG able to predict 53-68% of the force variation. Mean and peak motor unit firing rates were greater under high-force conditions, although the magnitude of discharge rate modulation varied widely across the population. Changes in mean and peak firing rates were significantly correlated with the corresponding changes in force, but the correlations were weak (r(2) = 0.27 and 0.25, respectively). These data indicate that, during spontaneous breathing, recruitment of HG motor units plays a critical role in the control of muscle force, with firing rate modulation playing an important but lesser role.

  13. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis.

    PubMed

    Bloemberg, Darin; Quadrilatero, Joe

    2012-01-01

    Skeletal muscle is a heterogeneous tissue comprised of fibers with different morphological, functional, and metabolic properties. Different muscles contain varying proportions of fiber types; therefore, accurate identification is important. A number of histochemical methods are used to determine muscle fiber type; however, these techniques have several disadvantages. Immunofluorescence analysis is a sensitive method that allows for simultaneous evaluation of multiple MHC isoforms on a large number of fibers on a single cross-section, and offers a more precise means of identifying fiber types. In this investigation we characterized pure and hybrid fiber type distribution in 10 rat and 10 mouse skeletal muscles, as well as human vastus lateralis (VL) using multicolor immunofluorescence analysis. In addition, we determined fiber type-specific cross-sectional area (CSA), succinate dehydrogenase (SDH) activity, and α-glycerophosphate dehydrogenase (GPD) activity. Using this procedure we were able to easily identify pure and hybrid fiber populations in rat, mouse, and human muscle. Hybrid fibers were identified in all species and made up a significant portion of the total population in some rat and mouse muscles. For example, rat mixed gastrocnemius (MG) contained 12.2% hybrid fibers whereas mouse white tibialis anterior (WTA) contained 12.1% hybrid fibers. Collectively, we outline a simple and time-efficient method for determining MHC expression in skeletal muscle of multiple species. In addition, we provide a useful resource of the pure and hybrid fiber type distribution, fiber CSA, and relative fiber type-specific SDH and GPD activity in a number of rat and mouse muscles.

  14. Influence of fixed muscle length and contractile properties on atrophy and subsequent recovery in the rat soleus and plantaris muscles.

    PubMed

    Fujita, Naoto; Arakawa, Takamitsu; Matsubara, Takako; Ando, Hiroshi; Miki, Akinori

    2009-01-01

    This study examined muscular atrophy and the recovery process induced by hindlimb unloading and joint immobilization in the rat soleus and plantaris muscles. Rats were divided into control, hindlimb unloading (HU), hindlimb unloading with ankle joint immobilization at the maximum dorsiflexion (HUD), and maximum plantarflexion (HUP) groups. The hindlimb was reloaded after fourteen days of unloading, and muscle atrophy and walking ability were assessed at 0, 3, and 7 days of reloading. A cross sectional area of muscle fibers in the soleus muscle on day 0 of reloading revealed sizes in order from the control, HUD, HUP down to the HU group, indicating that the HU group was the most atrophied among the four groups. These values in the plantaris muscle ranged in order from the control, HU, HUD, to HUP groups, the HUP group being the most atrophied among the four groups. These muscles recovered from atrophy in the same descending order, and the values in the HUD and HUP groups slowly recovered during the reloading periods. The HUD and HUP groups showed a central core lesion and reloading-induced lesions in some type I muscle fibers after the immobilization and reloading, one possible reason for the delayed recovery in these groups. The muscle atrophy in the HU, HUD, and HUP groups remained at day 7 although the walking ability appeared to be normal. Accordingly, further rehabilitation therapy might be necessary even if the functional ability appears to be normal.

  15. [Effects of 100 Hz sinusoidal vibration on H reflex and M wave in rat soleus muscle following immobilization].

    PubMed

    Zhao, Xue-hong; Fan, Xiao-li; Song, Xin-ai; Shi, Lei

    2011-09-01

    To investigate the effects of 100 Hz sinusoidal vibration on H reflex and M wave in rat soleus muscle following immobilization. The immobilization of rat soleus muscle was induced as a disuse muscle model, and 100 Hz sinusoidal vibration was generated by a vibrator and applied to the immobilized soleus muscle, then the changes of H reflex and M wave in muscle were observed after 14 d. Compared to control, after 14 d of immobilization M(max) in soleus muscle decreased (P<0.01), stimulus threshold and S(max) increased (P<0.01); Hmax and H(max)/M(max) decreased (P<0.05, S(max) increased (P<0.05). Compared to immobilized soleus muscle, after 14 d of immobilization with 100 Hz sinusoidal vibration, the M(max) increased(P<0.01), stimulus threshold and S(Mmax) decreased (P<0.05), H(max) (P<0.01) increased and H(max)/M(max) increased (P<0.05). 100 Hz sinusoidal vibration plays a significant antagonist role against the changes in H reflex and M wave in rat soleus muscle following immobilization.

  16. Measurement of Contractile Stress Generated by Cultured Rat Muscle on Silicon Cantilevers for Toxin Detection and Muscle Performance Enhancement

    DTIC Science & Technology

    2010-06-01

    muscle . J Clin Invest 117: 2388–2391. 13. Close R (1964) Dynamic properties of fast and slow skeletal muscles of the rat during development. J Physiol...cultured skeletal muscle [30], which reported average peak twitch stress values of 2.9 kPa (reported as specific peak twitch force in units of kN/m2), but...demonstrates that the myotubes were driven down a path towards a more mature phenotype, in the process developing fast - twitch isoforms of myosin, while

  17. Effect of chronic ethanol ingestion and exercise training on skeletal muscle in rat.

    PubMed

    Vila, L; Ferrando, A; Voces, J; Cabral de Oliveira, C; Prieto, J G; Alvarez, A I

    2001-09-01

    The aim of this study was to investigate the interactive effects of exercise training and chronic ethanol consumption on metabolism, capillarity, and myofibrillar composition in rat limb muscles. Male Wistar rats were treated in separate groups as follows: non exercised-control; ethanol (15%) in animals' drinking water for 12 weeks; exercise training in treadmill and ethanol administration plus exercise for 12 weeks. Ethanol administration decreased capillarity and increased piruvate kinase and lactate dehydrogenase activities in white gastrocnemius; in plantaris muscle, ethanol increased citrate synthase activity and decreased cross-sectional area of type I, IIa, and IIb fibres. Exercise increased capillarity in all four limb muscles and decreased type I fibre area in plantaris. The decreased capillarity effect induced by ethanol in some muscles, was ameliorated when alcohol was combined with exercise. While alcoholic myopathy affects predominantly type IIb fibres, ethanol administration and aerobic exercise in some cases can affect type I and type IIa fibre areas. The exercise can decrease some harmful effects produced by ethanol in the muscle, including the decrease in the fibre area and capillary density.

  18. Effects of space flight on GLUT-4 content in rat plantaris muscle

    NASA Astrophysics Data System (ADS)

    Tabata, I.; Kawanaka, Kentaro; Sekiguchi, Chiharu; Nagaoka, Shunji; Ohira, Yoshinobu

    The effects of 14 days of space flight on the glucose transporter protein (GLUT-4) were studied in the plantaris muscle of growing 9-week-old, male Sprague Dawley rats. The rats were randomly separated into five groups: pre-flight vivarium ground controls (PF-VC) sacrificed approximately 2 h after launch; flight groups sacrificed either approximately 5 h (F-R0) or 9 days (F-R9) after the return from space; and synchronous ground controls (SC-R0 and SC-R9) sacrificed at the same time as the respective flight groups. The flight groups F-R0 and F-R9 were exposed to micro-gravity for 14 days in the Spacelab module located in the cargo bay of the shuttle transport system - 58 of the manned Space Shuttle for the NASA mission named ''Spacelab Life Sciences 2''. Body weight and plantaris weight of SC-R0 and F-R0 were significantly higher than those of PF-VC. Neither body weight nor plantaris muscle weight in either group had changed 9 days after the return from space. As a result, body weight and plantaris muscle weight did not differ between the flight and synchronous control groups at any of the time points investigated. The GLUT-4 content (cpm/µg membrane protein) in the plantaris muscle did not show any significant change in response to 14 days of space flight or 9 days after return. Similarly, citrate synthase activity did not change during the course of the space flight or the recovery period. These results suggest that 14 days of space flight does not affect muscle mass or GLUT-4 content of the fast-twitch plantaris muscle in the rat.

  19. A grape polyphenol extract modulates muscle membrane fatty acid composition and lipid metabolism in high-fat--high-sucrose diet-fed rats.

    PubMed

    Aoun, Manar; Michel, Francoise; Fouret, Gilles; Schlernitzauer, Audrey; Ollendorff, Vincent; Wrutniak-Cabello, Chantal; Cristol, Jean-Paul; Carbonneau, Marie-Annette; Coudray, Charles; Feillet-Coudray, Christine

    2011-08-01

    Accumulation of muscle TAG content and modification of muscle phospholipid fatty acid pattern may have an impact on lipid metabolism, increasing the risk of developing diabetes. Some polyphenols have been reported to modulate lipid metabolism, in particular those issued from red grapes. The present study was designed to determine whether a grape polyphenol extract (PPE) modulates skeletal muscle TAG content and phospholipid fatty acid composition in high-fat-high-sucrose (HFHS) diet-fed rats. Muscle plasmalemmal and mitochondrial fatty acid transporters, GLUT4 and lipid metabolism pathways were also explored. The PPE decreased muscle TAG content in HFHS/PPE diet-fed rats compared with HFHS diet-fed rats and induced higher proportions of n-3 PUFA in phospholipids. The PPE significantly up-regulated GLUT4 mRNA expression. Gene and protein expression of muscle fatty acid transporter cluster of differentiation 36 (CD36) was increased in HFHS diet-fed rats but returned to control values in HFHS/PPE diet-fed rats. Carnitine palmitoyltransferase 1 protein expression was decreased with the PPE. Mitochondrial β-hydroxyacyl CoA dehydrogenase was increased in HFHS diet-fed rats and returned to control values with PPE supplementation. Lipogenesis, mitochondrial biogenesis and mitochondrial activity were not affected by the PPE. In conclusion, the PPE modulated membrane phospholipid fatty acid composition and decreased muscle TAG content in HFHS diet-fed rats. The PPE lowered CD36 gene and protein expression, probably decreasing fatty acid transport and lipid accumulation within skeletal muscle, and increased muscle GLUT4 expression. These effects of the PPE are in favour of a better insulin sensibility.

  20. Branched-chain amino acid-rich diet improves skeletal muscle wasting caused by cigarette smoke in rats.

    PubMed

    Tomoda, Koichi; Kubo, Kaoru; Hino, Kazuo; Kondoh, Yasunori; Nishii, Yasue; Koyama, Noriko; Yamamoto, Yoshifumi; Yoshikawa, Masanori; Kimura, Hiroshi

    2014-04-01

    Cigarette smoke induces skeletal muscle wasting by a mechanism not yet fully elucidated. Branched-chain amino acids (BCAA) in the skeletal muscles are useful energy sources during exercise or systemic stresses. We investigated the relationship between skeletal muscle wasting caused by cigarette smoke and changes in BCAA levels in the plasma and skeletal muscles of rats. Furthermore, the effects of BCAA-rich diet on muscle wasting caused by cigarette smoke were also investigated. Wistar Kyoto (WKY) rats that were fed with a control or a BCAA-rich diet were exposed to cigarette smoke for four weeks. After the exposure, the skeletal muscle weight and BCAA levels in plasma and the skeletal muscles were measured. Cigarette smoke significantly decreased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles, while a BCAA-rich diet increased the skeletal muscle weight and BCAA levels in both plasma and skeletal muscles that had decreased by cigarette smoke exposure. In conclusion, skeletal muscle wasting caused by cigarette smoke was related to the decrease of BCAA levels in the skeletal muscles, while a BCAA-rich diet may improve cases of cigarette smoke-induced skeletal muscle wasting.

  1. Botulinum toxin in masticatory muscles of the adult rat induces bone loss at the condyle and alveolar regions of the mandible associated with a bone proliferation at a muscle enthesis.

    PubMed

    Kün-Darbois, Jean-Daniel; Libouban, Hélène; Chappard, Daniel

    2015-08-01

    In man, botulinum toxin type A (BTX) is injected in masticatory muscles for several indications such as trismus, bruxism, or masseter hypertrophy. Bone changes in the mandible following BTX injections in adult animal have therefore became a subject of interest. The aim of this study was to analyze condylar and alveolar bone changes following BTX unilateral injections in masseter and temporal muscles in adult rats. Mature male rats (n = 15) were randomized into 2 groups: control (CTRL; n = 6) and BTX group (n= 9). Rats of the BTX group received a single injection of BTX into right masseter and temporal muscles. Rats of the CTRL group were similarly injected with saline solution. Rats were sacrificed 4 weeks after injections. Masticatory muscles examination and microcomputed tomography (microCT) were performed. A significant difference of weight was found between the 2 groups at weeks 2, 3 and 4 (p < 0.05). Atrophy of the right masseter and temporal muscles was observed in all BTX rats. MicroCT analysis showed significant bone loss in the right alveolar and condylar areas in BTX rats. Decrease in bone volume reached -20% for right alveolar bone and -35% for right condylar bone. A hypertrophic bone metaplasia at the digastric muscle enthesis was found on every right hemimandible in the BTX group and none in the CTRL group. BTX injection in masticatory muscles leads to a significant and major mandible bone loss. These alterations can represent a risk factor for fractures in human. The occurrence of a hypertrophic bone metaplasia at the Mus Digastricus enthesis may constitute an etiological factor for tori. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Neuromuscular junction formation between human stem-cell-derived motoneurons and rat skeletal muscle in a defined system.

    PubMed

    Guo, Xiufang; Das, Mainak; Rumsey, John; Gonzalez, Mercedes; Stancescu, Maria; Hickman, James

    2010-12-01

    To date, the coculture of motoneurons (MNs) and skeletal muscle in a defined in vitro system has only been described in one study and that was between rat MNs and rat skeletal muscle. No in vitro studies have demonstrated human MN to rat muscle synapse formation, although numerous studies have attempted to implant human stem cells into rat models to determine if they could be of therapeutic use in disease or spinal injury models, although with little evidence of neuromuscular junction (NMJ) formation. In this report, MNs differentiated from human spinal cord stem cells, together with rat skeletal myotubes, were used to build a coculture system to demonstrate that NMJ formation between human MNs and rat skeletal muscles is possible. The culture was characterized by morphology, immunocytochemistry, and electrophysiology, while NMJ formation was demonstrated by immunocytochemistry and videography. This defined system provides a highly controlled reproducible model for studying the formation, regulation, maintenance, and repair of NMJs. The in vitro coculture system developed here will be an important model system to study NMJ development, the physiological and functional mechanism of synaptic transmission, and NMJ- or synapse-related disorders such as amyotrophic lateral sclerosis, as well as for drug screening and therapy design.

  3. Muscarinic Receptor Binding in Rat Bladder Urothelium and Detrusor Muscle by Intravesical Solifenacin.

    PubMed

    Ito, Yoshihiko; Kashiwabara, Michishi; Yoshida, Akira; Hikiyama, Eriko; Onoue, Satomi; Yamada, Shizuo

    2016-01-01

    Solifenacin is an antimuscarinic agent used to treat symptoms of overactive bladder. Pharmacologically significant amounts of solifenacin were excreted in the urine of humans taking a clinical dose of this drug. The aim of this study is to measure muscarinic receptor binding in the bladder urothelium and detrusor muscles of rats following the intravesical instillation of solifenacin. Muscarinic receptors were measured by radioreceptor assay using [N-methyl-(3)H]scopolamine methyl chloride ([(3)H]NMS), a selective radioligand of muscarinic receptors. Solifenacin showed concentration-dependent inhibition of specific [(3)H]NMS binding in the bladder urothelium and detrusor muscle of rats, with no significant difference in Ki values or Hill coefficients between these tissues. Following the intravesical instillation of solifenacin, there was significant muscarinic receptor binding (increase in Kd for specific [(3)H]NMS binding) in the bladder urothelium and detrusor muscle of rats. Similar bladder muscarinic receptor binding was observed by the intravesical instillation of oxybutynin, but not with trospium. In conclusion, the present study has demonstrated that solifenacin binds muscarinic receptors not only in the detrusor muscle but also in the bladder urothelium with high affinity. These bladder muscarinic receptors may be significantly affected by solifenacin excreted in the urine.

  4. Alternate-Day High-Fat Diet Induces an Increase in Mitochondrial Enzyme Activities and Protein Content in Rat Skeletal Muscle.

    PubMed

    Li, Xi; Higashida, Kazuhiko; Kawamura, Takuji; Higuchi, Mitsuru

    2016-04-06

    Long-term high-fat diet increases muscle mitochondrial enzyme activity and endurance performance. However, excessive calorie intake causes intra-abdominal fat accumulation and metabolic syndrome. The purpose of this study was to investigate the effect of an alternating day high-fat diet on muscle mitochondrial enzyme activities, protein content, and intra-abdominal fat mass in rats. Male Wistar rats were given a standard chow diet (CON), high-fat diet (HFD), or alternate-day high-fat diet (ALT) for 4 weeks. Rats in the ALT group were fed a high-fat diet and standard chow every other day for 4 weeks. After the dietary intervention, mitochondrial enzyme activities and protein content in skeletal muscle were measured. Although body weight did not differ among groups, the epididymal fat mass in the HFD group was higher than those of the CON and ALT groups. Citrate synthase and beta-hydroxyacyl CoA dehydrogenase activities in the plantaris muscle of rats in HFD and ALT were significantly higher than that in CON rats, whereas there was no difference between HFD and ALT groups. No significant difference was observed in muscle glycogen concentration or glucose transporter-4 protein content among the three groups. These results suggest that an alternate-day high-fat diet induces increases in mitochondrial enzyme activities and protein content in rat skeletal muscle without intra-abdominal fat accumulation.

  5. Isolation and characterization of a novel gene sfig in rat skeletal muscle up-regulated by spaceflight (STS-90)

    NASA Technical Reports Server (NTRS)

    Kano, Mihoko; Kitano, Takako; Ikemoto, Madoka; Hirasaka, Katsuya; Asanoma, Yuki; Ogawa, Takayuki; Takeda, Shinichi; Nonaka, Ikuya; Adams, Gregory R.; Baldwin, Kenneth M.; hide

    2003-01-01

    We obtained the skeletal muscle of rats exposed to weightless conditions during a 16-day-spaceflight (STS-90). By using a differential display technique, we identified 6 up-regulated and 3 down-regulated genes in the gastrocnemius muscle of the spaceflight rats, as compared to the ground control. The up-regulated genes included those coding Casitas B-lineage lymphoma-b, insulin growth factor binding protein-1, titin and mitochondrial gene 16 S rRNA and two novel genes (function unknown). The down-regulated genes included those encoding RNA polymerase II elongation factor-like protein, NADH dehydrogenase and one novel gene (function unknown). In the present study, we isolated and characterized one of two novel muscle genes that were remarkably up-regulated by spaceflight. The deduced amino acid sequence of the spaceflight-induced gene (sfig) comprises 86 amino acid residues and is well conserved from Drosophila to Homo sapiens. A putative leucine-zipper structure located at the N-terminal region of sfig suggests that this gene may encode a transcription factor. The up-regulated expression of this gene, confirmed by Northern blot analysis, was observed not only in the muscles of spaceflight rats but also in the muscles of tail-suspended rats, especially in the early stage of tail-suspension when gastrocnemius muscle atrophy initiated. The gene was predominantly expressed in the kidney, liver, small intestine and heart. When rat myoblastic L6 cells were grown to 100% confluence in the cell culture system, the expression of sfig was detected regardless of the cell differentiation state. These results suggest that spaceflight has many genetic effects on rat skeletal muscle.

  6. Naked mole-rats maintain healthy skeletal muscle and Complex IV mitochondrial enzyme function into old age

    PubMed Central

    Stoll, Elizabeth A; Karapavlovic, Nevena; Rosa, Hannah; Woodmass, Michael; Rygiel, Karolina; White, Kathryn; Turnbull, Douglass M; Faulkes, Chris G

    2016-01-01

    The naked mole-rat (NMR) Heterocephalus glaber is an exceptionally long-lived rodent, living up to 32 years in captivity. This extended lifespan is accompanied by a phenotype of negligible senescence, a phenomenon of very slow changes in the expected physiological characteristics with age. One of the many consequences of normal aging in mammals is the devastating and progressive loss of skeletal muscle, termed sarcopenia, caused in part by respiratory enzyme dysfunction within the mitochondria of skeletal muscle fibers. Here we report that NMRs avoid sarcopenia for decades. Muscle fiber integrity and mitochondrial ultrastructure are largely maintained in aged animals. While mitochondrial Complex IV expression and activity remains stable, Complex I expression is significantly decreased. We show that aged naked mole-rat skeletal muscle tissue contains some mitochondrial DNA rearrangements, although the common mitochondrial DNA deletions associated with aging in human and other rodent skeletal muscles are not present. Interestingly, NMR skeletal muscle fibers demonstrate a significant increase in mitochondrial DNA copy number. These results have intriguing implications for the role of mitochondria in aging, suggesting Complex IV, but not Complex I, function is maintained in the long-lived naked mole rat, where sarcopenia is avoided and healthy muscle function is maintained for decades. PMID:27997359

  7. Chronic Intake of Sucrose Accelerates Sarcopenia in Older Male Rats through Alterations in Insulin Sensitivity and Muscle Protein Synthesis.

    PubMed

    Gatineau, Eva; Savary-Auzeloux, Isabelle; Migné, Carole; Polakof, Sergio; Dardevet, Dominique; Mosoni, Laurent

    2015-05-01

    Today, high chronic intake of added sugars is frequent, which leads to inflammation, oxidative stress, and insulin resistance. These 3 factors could reduce meal-induced stimulation of muscle protein synthesis and thus aggravate the age-related loss of muscle mass (sarcopenia). Our aims were to determine if added sugars could accelerate sarcopenia and to assess the capacity of antioxidants and anti-inflammatory agents to prevent this. For 5 mo, 16-mo-old male rats were starch fed (13% sucrose and 49% wheat starch diet) or sucrose fed (62% sucrose and 0% wheat starch diet) with or without rutin (5 g/kg diet), vitamin E (4 times), vitamin A (2 times), vitamin D (5 times), selenium (10 times), and zinc (+44%) (R) supplementation. We measured the evolution of body composition and inflammation, plasma insulin-like growth factor 1 (IGF-I) concentration and total antioxidant status, insulin sensitivity (oral-glucose-tolerance test), muscle weight, superoxide dismutase activity, glutathione concentration, and in vivo protein synthesis rates. Sucrose-fed rats lost significantly more lean body mass (-8.1% vs. -5.4%, respectively) and retained more fat mass (+0.2% vs. -33%, respectively) than starch-fed rats. Final muscle mass was 11% higher in starch-fed rats than in sucrose-fed rats. Sucrose had little effect on inflammation, oxidative stress, and plasma IGF-I concentration but reduced the insulin sensitivity index (divided by 2). Meal-induced stimulation of muscle protein synthesis was significantly lower in sucrose-fed rats (+7.3%) than in starch-fed rats (+22%). R supplementation slightly but significantly reduced oxidative stress and increased muscle protein concentration (+4%) but did not restore postprandial stimulation of muscle protein synthesis. High chronic sucrose intake accelerates sarcopenia in older male rats through an alteration of postprandial stimulation of muscle protein synthesis. This effect could be explained by a decrease of insulin sensitivity rather

  8. Acute resistance exercise reduces increased gene expression in muscle atrophy of ovariectomised arthritic rats

    PubMed Central

    Furlanetto, Roberto; de Paula Souza, Aletéia; de Oliveira, Anselmo Alves; Nunes, Paulo Ricardo Prado; Michelin, Márcia Antoniazi; Chica, Javier Emilio Lazo; Murta, Eddie Fernando Candido

    2017-01-01

    Objective We studied the effect of resistance exercise (RE) on mRNA levels of atrogin-1, MuRF-1, and myostatin in the gastrocnemius muscle of arthritic rats after loss of ovarian function (LOF). Material and methods Thirty female Wistar rats (nine weeks old, 195.3 ±17.4 grams) were randomly allocated into five groups: control group (CT-Sham; n = 6); group with rheumatoid arthritis (RA; n = 6); group with rheumatoid arthritis subjected to RE (RAEX; n = 6); ovariectomy group with rheumatoid arthritis (RAOV; n = 6); and an ovariectomy group with rheumatoid arthritis subjected to RE (RAOVEX; n = 6). After 15 days of intra-articular injections with Met-BSA the animals were subjected to RE and six hours after workout were euthanised. Results The rheumatoid arthritis provoked reduction in the cross-sectional area (CSA) of muscle fibres, but the CSA was lower in the RAOV when compared to the RA groups. Skeletal muscle atrogin-1 mRNA level was increased in arthritic rats (RA and RAOV), but the atrogin-1 level was higher in RAOV group when compared to other arthritic groups. The Muscle MuRF-1 mRNA level was also increased in the RAOV group. The increased atrogin-1 and MuRF-1 mRNA levels were lower in the RAOVEX group than in the RAOV group. The myostatin mRNA level was similar in all groups, except for the RAOVEX group, in which it was lower than the other groups. Conclusions LOF results in increased loss of skeletal muscle-related ubiquitin ligases (atrogin-1 and MuRF-1). However, the RE reduces the atrogin-1, MuRF-1, and myostatin mRNA levels in muscle of arthritic rats affected by LOF. PMID:28250722

  9. Dietary nitrate supplementation: impact on skeletal muscle vascular control in exercising rats with chronic heart failure

    PubMed Central

    Ferguson, Scott K.; Holdsworth, Clark T.; Colburn, Trenton D.; Wright, Jennifer L.; Craig, Jesse C.; Fees, Alex; Jones, Andrew M.; Allen, Jason D.; Musch, Timothy I.

    2016-01-01

    Chronic heart failure (CHF) results in central and peripheral derangements that ultimately reduce skeletal muscle O2 delivery and impair exercise tolerance. Dietary nitrate (NO3−) supplementation improves skeletal muscle vascular function and tolerance to exercise. We tested the hypothesis that NO3− supplementation would elevate exercising skeletal muscle blood flow (BF) and vascular conductance (VC) in CHF rats. Myocardial infarction (MI) was induced (coronary artery ligation) in young adult male rats. After 21 days of recovery, rats randomly received 5 days of NO3−-rich beetroot juice (CHF + BR, n = 10) or a placebo (CHF, n = 10). Mean arterial pressure (carotid artery catheter) and skeletal muscle BF (radiolabeled microspheres) were measured during treadmill exercise (20 m/min, 5% grade). CHF-induced dysfunction, as determined by myocardial infarction size (29 ± 3% and 33 ± 4% in CHF and CHF + BR, respectively) and left ventricular end-diastolic pressure (18 ± 2 and 18 ± 2 mmHg in CHF and CHF + BR, respectively), and exercising mean arterial pressure (131 ± 3 and 128 ± 4 mmHg in CHF and CHF + BR, respectively) were not different (P > 0.05) between groups. Total exercising hindlimb skeletal muscle BF (95 ± 5 and 116 ± 9 ml·min−1·100 g−1 in CHF and CHF + BR, respectively) and VC (0.75 ± 0.05 and 0.90 ± 0.05 ml·min−1·100 g−1·mmHg−1 in CHF and CHF + BR, respectively) were 22% and 20% greater in BR-supplemented rats, respectively (P < 0.05). During exercise, BF in 9 and VC in 10 hindlimb muscles and muscle portions were significantly greater in the CHF + BR group. These results provide strong evidence that dietary NO3− supplementation improves skeletal muscle vascular function during exercise in rats with CHF and, thus, support the use of BR as a novel therapeutic modality for the treatment of CHF. PMID:27445296

  10. Dietary nitrate supplementation: impact on skeletal muscle vascular control in exercising rats with chronic heart failure.

    PubMed

    Ferguson, Scott K; Holdsworth, Clark T; Colburn, Trenton D; Wright, Jennifer L; Craig, Jesse C; Fees, Alex; Jones, Andrew M; Allen, Jason D; Musch, Timothy I; Poole, David C

    2016-09-01

    Chronic heart failure (CHF) results in central and peripheral derangements that ultimately reduce skeletal muscle O2 delivery and impair exercise tolerance. Dietary nitrate (NO3 (-)) supplementation improves skeletal muscle vascular function and tolerance to exercise. We tested the hypothesis that NO3 (-) supplementation would elevate exercising skeletal muscle blood flow (BF) and vascular conductance (VC) in CHF rats. Myocardial infarction (MI) was induced (coronary artery ligation) in young adult male rats. After 21 days of recovery, rats randomly received 5 days of NO3 (-)-rich beetroot juice (CHF + BR, n = 10) or a placebo (CHF, n = 10). Mean arterial pressure (carotid artery catheter) and skeletal muscle BF (radiolabeled microspheres) were measured during treadmill exercise (20 m/min, 5% grade). CHF-induced dysfunction, as determined by myocardial infarction size (29 ± 3% and 33 ± 4% in CHF and CHF + BR, respectively) and left ventricular end-diastolic pressure (18 ± 2 and 18 ± 2 mmHg in CHF and CHF + BR, respectively), and exercising mean arterial pressure (131 ± 3 and 128 ± 4 mmHg in CHF and CHF + BR, respectively) were not different (P > 0.05) between groups. Total exercising hindlimb skeletal muscle BF (95 ± 5 and 116 ± 9 ml·min(-1)·100 g(-1) in CHF and CHF + BR, respectively) and VC (0.75 ± 0.05 and 0.90 ± 0.05 ml·min(-1)·100 g(-1)·mmHg(-1) in CHF and CHF + BR, respectively) were 22% and 20% greater in BR-supplemented rats, respectively (P < 0.05). During exercise, BF in 9 and VC in 10 hindlimb muscles and muscle portions were significantly greater in the CHF + BR group. These results provide strong evidence that dietary NO3 (-) supplementation improves skeletal muscle vascular function during exercise in rats with CHF and, thus, support the use of BR as a novel therapeutic modality for the treatment of CHF. Copyright © 2016 the American Physiological Society.

  11. Changes in skeletal muscle biochemistry and histology relative to fiber type in rats with heart failure.

    PubMed

    Delp, M D; Duan, C; Mattson, J P; Musch, T I

    1997-10-01

    One of the primary consequences of left ventricular dysfunction (LVD) after myocardial infarction is a decrement in exercise capacity. Several factors have been hypothesized to account for this decrement, including alterations in skeletal muscle metabolism and aerobic capacity. The purpose of this study was to determine whether LVD-induced alterations in skeletal muscle enzyme activities, fiber composition, and fiber size are 1) generalized in muscles or specific to muscles composed primarily of a given fiber type and 2) related to the severity of the LVD. Female Wistar rats were divided into three groups: sham-operated controls (n = 13) and rats with moderate (n = 10) and severe (n = 7) LVD. LVD was surgically induced by ligating the left main coronary artery and resulted in elevations (P < 0.05) in left ventricular end-diastolic pressure (sham, 5 +/- 1 mmHg; moderate LVD, 11 +/- 1 mmHg; severe LVD, 25 +/- 1 mmHg). Moderate LVD decreased the activities of phosphofructokinase (PFK) and citrate synthase in one muscle composed of type IIB fibers but did not modify fiber composition or size of any muscle studied. However, severe LVD diminished the activity of enzymes involved in terminal and beta-oxidation in muscles composed primarily of type I fibers, type IIA fibers, and type IIB fibers. In addition, severe LVD induced a reduction in the activity of PFK in type IIB muscle, a 10% reduction in the percentage of type IID/X fibers, and a corresponding increase in the portion of type IIB fibers. Atrophy of type I fibers, type IIA fibers, and/or type IIB fibers occurred in soleus and plantaris muscles of rats with severe LVD. These data indicate that rats with severe LVD after myocardial infarction exhibit 1) decrements in mitochondrial enzyme activities independent of muscle fiber composition, 2) a reduction in PFK activity in type IIB muscle, 3) transformation of type IID/X to type IIB fibers, and 4) atrophy of type I, IIA, and IIB fibers.

  12. Changes in skeletal muscle biochemistry and histology relative to fiber type in rats with heart failure

    NASA Technical Reports Server (NTRS)

    Delp, M. D.; Duan, C.; Mattson, J. P.; Musch, T. I.

    1997-01-01

    One of the primary consequences of left ventricular dysfunction (LVD) after myocardial infarction is a decrement in exercise capacity. Several factors have been hypothesized to account for this decrement, including alterations in skeletal muscle metabolism and aerobic capacity. The purpose of this study was to determine whether LVD-induced alterations in skeletal muscle enzyme activities, fiber composition, and fiber size are 1) generalized in muscles or specific to muscles composed primarily of a given fiber type and 2) related to the severity of the LVD. Female Wistar rats were divided into three groups: sham-operated controls (n = 13) and rats with moderate (n = 10) and severe (n = 7) LVD. LVD was surgically induced by ligating the left main coronary artery and resulted in elevations (P < 0.05) in left ventricular end-diastolic pressure (sham, 5 +/- 1 mmHg; moderate LVD, 11 +/- 1 mmHg; severe LVD, 25 +/- 1 mmHg). Moderate LVD decreased the activities of phosphofructokinase (PFK) and citrate synthase in one muscle composed of type IIB fibers but did not modify fiber composition or size of any muscle studied. However, severe LVD diminished the activity of enzymes involved in terminal and beta-oxidation in muscles composed primarily of type I fibers, type IIA fibers, and type IIB fibers. In addition, severe LVD induced a reduction in the activity of PFK in type IIB muscle, a 10% reduction in the percentage of type IID/X fibers, and a corresponding increase in the portion of type IIB fibers. Atrophy of type I fibers, type IIA fibers, and/or type IIB fibers occurred in soleus and plantaris muscles of rats with severe LVD. These data indicate that rats with severe LVD after myocardial infarction exhibit 1) decrements in mitochondrial enzyme activities independent of muscle fiber composition, 2) a reduction in PFK activity in type IIB muscle, 3) transformation of type IID/X to type IIB fibers, and 4) atrophy of type I, IIA, and IIB fibers.

  13. Ginseng administration protects skeletal muscle from oxidative stress induced by acute exercise in rats.

    PubMed

    Voces, J; Cabral de Oliveira, A C; Prieto, J G; Vila, L; Perez, A C; Duarte, I D G; Alvarez, A I

    2004-12-01

    Enzymatic activity was analyzed in the soleus, gastrocnemius (red and white) and plantaris muscles of acutely exercised rats after long-term administration of Panax ginseng extract in order to evaluate the protective role of ginseng against skeletal muscle oxidation. Ginseng extract (3, 10, 100, or 500 mg/kg) was administered orally for three months to male Wistar rats weighing 200 +/- 50 g before exercise and to non-exercised rats (N = 8/group). The results showed a membrane stabilizing capacity of the extract since mitochondrial function measured on the basis of citrate synthase and 3-hydroxyacyl-CoA dehydrogenase activities was reduced, on average, by 20% (P < 0.05) after exercise but the activities remained unchanged in animals treated with a ginseng dose of 100 mg/kg. Glutathione status did not show significant changes after exercise or treatment. Lipid peroxidation, measured on the basis of malondialdehyde levels, was significantly higher in all muscles after exercise, and again was reduced by about 74% (P < 0.05) by the use of ginseng extract. The administration of ginseng extract was able to protect muscle from exercise-induced oxidative stress irrespective of fiber type.

  14. Ultrastructural alterations in skeletal muscle fibers of rats after exercise

    NASA Technical Reports Server (NTRS)

    Akuzawa, M.; Hataya, M.

    1982-01-01

    Ultrastructural alterations in skeletal muscle fibers were electron microscopically studied in rats forced to run on the treadmill until all-out. When they were mild and limited to relatively small areas, the reconstruction of filaments ensued within 10 days without infiltration of cells. When they were severe and extensive, phagocytes infiltrated in the lesions and removed degenerative sacroplasmic debris from muscle fibers. A little later, myoblasts appeared and regeneration was accomplished in 30 days in much the same manner as in myogenesis.

  15. Carnitine supplementation to obese Zucker rats prevents obesity-induced type II to type I muscle fiber transition and favors an oxidative phenotype of skeletal muscle

    PubMed Central

    2013-01-01

    Background In the present study, we tested the hypothesis that carnitine supplementation counteracts obesity-induced muscle fiber transition from type I to type II. Methods 24 obese Zucker rats were randomly divided into two groups of 12 rats each (obese control, obese carnitine) and 12 lean Zucker rats were selected for lean control group. A control diet was given to both control groups and a carnitine supplemented diet (3 g/kg diet) was given to obese carnitine group for 4 wk. Components of the muscle fiber transformation in skeletal muscle were examined. Results The plasma level of carnitine were lower in the obese control group compared to the lean control group and higher in the obese carnitine group than in the other groups (P < 0.05). Plasma concentrations of triglycerides and non-esterified fatty acids were increased in obese animals compared to lean animals and the obese carnitine group had lower level compared to the obese control group (P < 0.05). The obese carnitine group had an increased number of type I muscle fibers and higher mRNA levels of type I fiber-specific myosin heavy chain, regulators of muscle fiber transition and of genes involved in carnitine uptake, fatty acid transport, β-oxidation, angiogenesis, tricarboxylic acid cycle and thermo genesis in M. rectus femoris compared to the other groups (P < 0.05). Conclusion The results demonstrate that carnitine supplementation to obese Zucker a rat counteracts the obesity-induced muscle fiber transition and restores the muscle oxidative metabolic phenotype. Carnitine supplementation is supposed to be beneficial for the treatment of elevated levels of plasma lipids during obesity or diabetes. PMID:23842456

  16. Cytosolic androgen receptor in regenerating rat levator ani muscle.

    PubMed Central

    Max, S R; Mufti, S; Carlson, B M

    1981-01-01

    The development of the cytosolic androgen receptor was studied after degeneration and regeneration of the rat levator ani muscle after a crush lesion. Muscle regeneration appears to recapitulate myogenesis in many respects. It therefore provides a model tissue in sufficiently in large quantity for investigating the ontogenesis of the androgen receptor. The receptor in the cytosol of the normal levator ani muscle has binding characteristics similar to those of the cytosolic receptor in other androgen-sensitive tissues. By day 3 after a crush lesion of the levator ani muscle, androgen binding decreased to 25% of control values. This decrease was followed by a 4-5 fold increase in hormone binding, which attained control values by day 7 after crush. Androgen binding remained stable at the control value up to day 60 after crushing. These results were correlated with the morphological development of the regenerating muscle after crushing. It is concluded that there is little, if any, androgen receptor present in the early myoblastic stages of regeneration; rather, synthesis of the receptor may occur after the fusion of myoblasts and during the differentiation of myotubes into cross-striated muscle fibres. Images PLATE 1 PLATE 2 PMID:6977357

  17. Transcriptome analysis of trigeminal ganglia following masseter muscle inflammation in rats

    PubMed Central

    Park, Jennifer; Asgar, Jamila; Ro, Jin Y.

    2016-01-01

    Background Chronic pain in masticatory muscles is a major medical problem. Although mechanisms underlying persistent pain in masticatory muscles are not fully understood, sensitization of nociceptive primary afferents following muscle inflammation or injury contributes to muscle hyperalgesia. It is well known that craniofacial muscle injury or inflammation induces regulation of multiple genes in trigeminal ganglia, which is associated with muscle hyperalgesia. However, overall transcriptional profiles within trigeminal ganglia following masseter inflammation have not yet been determined. In the present study, we performed RNA sequencing assay in rat trigeminal ganglia to identify transcriptome profiles of genes relevant to hyperalgesia following inflammation of the rat masseter muscle. Results Masseter inflammation differentially regulated >3500 genes in trigeminal ganglia. Predominant biological pathways were predicted to be related with activation of resident non-neuronal cells within trigeminal ganglia or recruitment of immune cells. To focus our analysis on the genes more relevant to nociceptors, we selected genes implicated in pain mechanisms, genes enriched in small- to medium-sized sensory neurons, and genes enriched in TRPV1-lineage nociceptors. Among the 2320 candidate genes, 622 genes showed differential expression following masseter inflammation. When the analysis was limited to these candidate genes, pathways related with G protein-coupled signaling and synaptic plasticity were predicted to be enriched. Inspection of individual gene expression changes confirmed the transcriptional changes of multiple nociceptor genes associated with masseter hyperalgesia (e.g., Trpv1, Trpa1, P2rx3, Tac1, and Bdnf) and also suggested a number of novel probable contributors (e.g., Piezo2, Tmem100, and Hdac9). Conclusion These findings should further advance our understanding of peripheral mechanisms involved in persistent craniofacial muscle pain conditions and provide a

  18. [The effects of hippophae juice on free radical metabolism of rat skeletal muscle and the content of Hb, Ck, T in blood].

    PubMed

    Qiao, Xiu-Fang; Pan, Hong-Ying

    2010-08-01

    To explore the effects of hippophae juice on free radical metabolism of rat skeletal muscle and partial biomarkers in blood. Randomly dividing the 30 SD rats into 3 groups (n = 10): sedentary group, training group and hippophae training group. Measuring related indices of skeletal muscle and blood in rat after 6 week training and hippophae juice supplement. Compared with training group, hippophae training group showed obviously longer exhaustive time, significantly increased antioxidant enzyme in skeletal muscle, remarkably decreased malonaldehyde (MDA) content in skeletal muscle, obviously increased testosterone (T) and hemoglobin (Hb) content in blood, significantly decreased creatine kinase (CK). Hippophae juice can impove the antioxidant ability of rat skeletal muscle, the level of T and Hb in blood, delay fatigue, therefore effectively enhance the aerobic stamina of rat.

  19. ATP-induced changes in rat skeletal muscle contractility.

    PubMed

    Gabdrakhmanov, A I; Khayrullin, A E; Grishin, C H; Ziganshin, A U

    2015-01-01

    considered as typical effects of ATP and other purines on skeletal muscles and could not be extrapolated to all warm-blooded animals. Furthermore the role of ATP and its derivatives in the accumulation of vertebrate muscular effort has not been investigated.It is known that in physiological conditions vertebrates may mobilize only up to a third of the maximum muscle force. Why the two-thirds of muscular strength are not used normally but may be used at stress, remains unknown.It is known that the body's adaptive response to stress is a change in the activity of the endocrine system. The leading role in this is given to catechol amines and glucocorticoids, mobilized in significant quantities in blood under stress.We have found previously that incubation of frog sartorius muscle with hydrocortisone resulted in a decrease of contraction amplitude. However, when hydrocortisone was used in combination with ATP, its inhibitory effect on contractile responses disappeared. It is interesting that hydrocortisone had no effect on the inhibitory effect of adenosine. In the following experiments, assessing the effect of hydrocortisone on rat soleus muscle, it was established that hydrocortisone and purines had similar inhibitory effect. When ATP and hydrocortisone were given together the same oppression occurred. To study the effects of ATP and adenosine on contraction parameters of rat skeletal muscle and assess the impact of the catechol amines on these processes. Contractions of rat soleus muscles were recorded isometrically by mechanical sensor Linton FSG-01 (UK) according to standard procedures. The average of muscle parameters received within 30 seconds (30 responses) was treated as one result. Amplitude and time characteristics of the curve reductions were estimated. During all experiments standard Krebs solution flowed through the bath continuously to which agents were added at necessary concentrations. All experimental animals were maintained and prepared for dissection under

  20. Effects of low level laser in the morphology of the skeletal muscle fiber during compensatory hypertrophy in plantar muscle of rats

    NASA Astrophysics Data System (ADS)

    Terena, Stella Maris Lins; Fernandes, Kristianne Porta Santos; Kalil, Sandra; Alves, Agnelo Neves; Mesquita Ferrari, Raquel Agnelli

    2015-06-01

    The hypertrophy is known as an increase the cross-sectional area of the muscle as a result of a muscular work against an overload, and it is compensatory because the overload is induced by functional elimination of synergistic muscles. The importance of study the compensatory hypertrophy is understand how this process can be influenced by the irradiation with regard to the weight and muscle cross-sectional area, to assist in the rehabilitation process and the effectiveness functional return. The aim was evaluate the effects of low-level laser irradiation on morphological aspects of muscle tissue, comparing the weight and cross-sectional area in rat skeletal muscle. Wistar rats were divided into three groups: control, hypertrophy group without irradiation (right plantar muscle) and hypertrophy group and irradiation (left plantar muscle), both analyzed after 7 and 14 days. The irradiation was performed daily immediately after the surgery. The parameters were: λ = 780nm, beam spot of 0.04 cm2, output power of 40mW, power density of 1W/cm2, energy density of 10J / cm2 and 10s exposure time with a total energy of 3.2 J. The results revealed that low level laser irradiation an increase the weight of the plantaris muscle after 7 and 14 days with a difference of 7.06% and 11.51% respectively. In conclusion, low level laser irradiation has an effect on compensatory hypertrophy to produce increased muscle weight and promoted an increase in cross-sectional area of muscle fibers in the compensatory hypertrophy model after 14 days with parameters cited above.

  1. Formoterol attenuates increased oxidative stress and myosin protein loss in respiratory and limb muscles of cancer cachectic rats

    PubMed Central

    Salazar-Degracia, Anna; Busquets, Sílvia; Argilés, Josep M.; López-Soriano, Francisco J.

    2017-01-01

    Muscle mass loss and wasting are characteristic features of patients with chronic conditions including cancer. Therapeutic options are still scarce. We hypothesized that cachexia-induced muscle oxidative stress may be attenuated in response to treatment with beta2-adrenoceptor-selective agonist formoterol in rats. In diaphragm and gastrocnemius of tumor-bearing rats (108 AH-130 Yoshida ascites hepatoma cells inoculated intraperitoneally) with and without treatment with formoterol (0.3 mg/kg body weight/day for seven days, daily subcutaneous injection), redox balance (protein oxidation and nitration and antioxidants) and muscle proteins (1-dimensional immunoblots), carbonylated proteins (2-dimensional immunoblots), inflammatory cells (immunohistochemistry), and mitochondrial respiratory chain (MRC) complex activities were explored. In the gastrocnemius, but not the diaphragm, of cancer cachectic rats compared to the controls, protein oxidation and nitration levels were increased, several functional and structural proteins were carbonylated, and in both study muscles, myosin content was reduced, inflammatory cell counts were greater, while no significant differences were seen in MRC complex activities (I, II, and IV). Treatment of cachectic rats with formoterol attenuated all the events in both respiratory and limb muscles. In this in vivo model of cancer-cachectic rats, the diaphragm is more resistant to oxidative stress. Formoterol treatment attenuated the rise in oxidative stress in the limb muscles, inflammatory cell infiltration, and the loss of myosin content seen in both study muscles, whereas no effects were observed in the MRC complex activities. These findings have therapeutic implications as they demonstrate beneficial effects of the beta2 agonist through decreased protein oxidation and inflammation in cachectic muscles, especially the gastrocnemius. PMID:29255650

  2. Effect of intermittent glutamine supplementation on skeletal muscle is not long-lasting in very old rats.

    PubMed

    Meynial-Denis, D; Beaufrère, A-M; Mignon, M; Patureau Mirand, P

    2013-01-01

    Muscle is the major site for glutamine synthesis via glutamine synthetase (GS). This enzyme is increased 1.5-2 fold in 25-27-mo rats and may be a consequence of aging-induced stress. This stimulation is similar to the induction observed following a catabolic state such as glucocorticoid treatment (6 to 24 months). Although oral glutamine supply regulates the plasma glutamine level, nothing is known if this supplementation is interrupted before the experiment. Adult (8-mo) and very old (27-mo) female rats were exposed to intermittent glutamine supplementation for 50 % of their age lifetime. Treated rats received glutamine added to their drinking water and control rats water alone but the effect of glutamine supplementation was only studied 15 days after the last supplementation. Glutamine pretreatment discontinued 15 days before the experiment increased plasma glutamine to ~ 0.6 mM, a normal value in very old rats. However, it failed to decrease the up-regulated GS activity in skeletal muscle from very old rats. Our results suggest that long-term treatment with glutamine started before advanced age but discontinued 15 days before rat sacrifice is effective in increasing plasma glutamine to recover basal adult value and in maintaining plasma glutamine in very old rats, but has no long-lasting effect on the GS activity of skeletal muscle with advanced age.

  3. Subglottal pressure, tracheal airflow, and intrinsic laryngeal muscle activity during rat ultrasound vocalization

    PubMed Central

    2011-01-01

    Vocal production requires complex planning and coordination of respiratory, laryngeal, and vocal tract movements, which are incompletely understood in most mammals. Rats produce a variety of whistles in the ultrasonic range that are of communicative relevance and of importance as a model system, but the sources of acoustic variability were mostly unknown. The goal was to identify sources of fundamental frequency variability. Subglottal pressure, tracheal airflow, and electromyographic (EMG) data from two intrinsic laryngeal muscles were measured during 22-kHz and 50-kHz call production in awake, spontaneously behaving adult male rats. During ultrasound vocalization, subglottal pressure ranged between 0.8 and 1.9 kPa. Pressure differences between call types were not significant. The relation between fundamental frequency and subglottal pressure within call types was inconsistent. Experimental manipulations of subglottal pressure had only small effects on fundamental frequency. Tracheal airflow patterns were also inconsistently associated with frequency. Pressure and flow seem to play a small role in regulation of fundamental frequency. Muscle activity, however, is precisely regulated and very sensitive to alterations, presumably because of effects on resonance properties in the vocal tract. EMG activity of cricothyroid and thyroarytenoid muscle was tonic in calls with slow or no fundamental frequency modulations, like 22-kHz and flat 50-kHz calls. Both muscles showed brief high-amplitude, alternating bursts at rates up to 150 Hz during production of frequency-modulated 50-kHz calls. A differentiated and fine regulation of intrinsic laryngeal muscles is critical for normal ultrasound vocalization. Many features of the laryngeal muscle activation pattern during ultrasound vocalization in rats are shared with other mammals. PMID:21832032

  4. Endurance exercise training and high-fat diet differentially affect composition of diacylglycerol molecular species in rat skeletal muscle.

    PubMed

    Kawanishi, Noriaki; Takagi, Kana; Lee, Hyeon-Cheol; Nakano, Daiki; Okuno, Toshiaki; Yokomizo, Takehiko; Machida, Shuichi

    2018-06-01

    Insulin resistance of peripheral muscle is implicated in the etiology of metabolic syndrome in obesity. Although accumulation of glycerolipids, such as triacylglycerol and diacylglycerol (DAG), in muscle contributes to insulin resistance in obese individuals, endurance-trained athletes also have higher glycerolipid levels but normal insulin sensitivity. We hypothesized that the difference in insulin sensitivity of skeletal muscle between athletes and obese individuals stems from changes in fatty acid composition of accumulated lipids. Here, we evaluated the effects of intense endurance exercise and high-fat diet (HFD) on the accumulation and composition of lipid molecular species in rat skeletal muscle using a lipidomic approach. Sprague-Dawley female rats were randomly assigned to three groups and received either normal diet (ND) in sedentary conditions, ND plus endurance exercise training, or HFD in sedentary conditions. Rats were fed ND or HFD between 4 and 12 wk of age. Rats in the exercise group ran on a treadmill for 120 min/day, 5 days/wk, for 8 wk. Soleus muscle lipidomic profiles were obtained using liquid chromatography/tandem mass spectrometry. Total DAG levels, particularly those of palmitoleate-containing species, were increased in muscle by exercise training. However, whereas the total DAG level in the muscle was also increased by HFD, the levels of DAG molecular species containing palmitoleate were decreased by HFD. The concentration of phosphatidylethanolamine molecular species containing palmitoleate was increased by exercise but decreased by HFD. Our results indicate that although DAG accumulation was similar levels in trained and sedentary obese rats, specific changes in molecular species containing palmitoleate were opposite.

  5. Influence of 7 days of hindlimb suspension and intermittent weight support on rat muscle mechanical properties

    NASA Technical Reports Server (NTRS)

    Pierotti, David J.; Roy, Roland R.; Flores, Vinicio; Edgerton, Reggie

    1990-01-01

    The effect of intermittent periods of weight support on a decrease in mass of the soleus (Sol) and medial gastrocnemius (MG) muscles atrophied by hindlimb suspension (HS) was investigated in rats subjected to continuous HS for seven days or an HS plus intermittent (10 min every 6 hrs of slow walking on a treadmill) weight support (HS-WS). After 7 d HS, the Sol weight relative to body weight was 21 and 9 percent lower in Hs and HS-WS, respectively, than in control rats. Maximum tetanic tension/muscle mass ratio was significantly lower in HS than in controls; the HS-WS rats had values similar to controls, whereas the maximum tetanic tension/muscle weight was significantly elevated in HS-WS compared to controls. Contraction times were 25 percent faster in the Sol and unchanged in the MG of HS rats, indicating that a low-force short-duration exercise regime results in a significant functional recovery in the 'slow' Sol, whereas the 'fast' MG is less affected.

  6. Alteration of gene expression profiles in skeletal muscle of rats exposed to microgravity during a spaceflight

    NASA Technical Reports Server (NTRS)

    Taylor, Wayne E.; Bhasin, Shalender; Lalani, Rukhsana; Datta, Anuj; Gonzalez-Cadavid, Nestor F.

    2002-01-01

    To clarify the mechanism of skeletal muscle wasting during spaceflights, we investigated whether intramuscular gene expression profiles are affected, by using DNA microarray methods. Male rats sent on the 17-day NASA STS-90 Neurolab spaceflight were sacrificed 24 hours after return to earth (MG group). Ground control rats were maintained for 17 days in flight-simulated cages (CS group). Spaceflight induced a 19% and 23% loss of tibialis anterior and gastrocnemius muscle mass, respectively, as compared to ground controls. Muscle RNA was analyzed by the Clontech Atlas DNA expression array in four rats, with two MG/ CS pairs for the tibialis anterior, and one pair for the gastrocnemius. Alterations in gene expression were verified for selected genes by reverse-transcription PCR. In both muscles of MG rats, mRNAs for 12 genes were up-regulated by over 2-fold, and 38 were down-regulated compared to controls. There was inhibition of genes for cell proliferation and growth factor cascades, including cell cycle genes and signal transduction proteins, such as p21 Cip1, retinoblastoma (Rb), cyclins G1/S, -E and -D3, MAP kinase 3, MAD3, and ras related protein RAB2. These data indicate that following exposure to microgravity, there is downregulation of genes involved in regulation of muscle satellite cell replication.

  7. Improved sphincter contractility after allogenic muscle-derived progenitor cell injection into the denervated rat urethra.

    PubMed

    Cannon, Tracy W; Lee, Ji Youl; Somogyi, George; Pruchnic, Ryan; Smith, Christopher P; Huard, Johnny; Chancellor, Michael B

    2003-11-01

    To study the physiologic outcome of allogenic transplant of muscle-derived progenitor cells (MDPCs) in the denervated female rat urethra. MDPCs were isolated from muscle biopsies of normal 6-week-old Sprague-Dawley rats and purified using the preplate technique. Sciatic nerve-transected rats were used as a model of stress urinary incontinence. The experimental group was divided into three subgroups: control, denervated plus 20 microL saline injection, and denervated plus allogenic MDPCs (1 to 1.5 x 10(6) cells) injection. Two weeks after injection, urethral muscle strips were prepared and underwent electrical field stimulation. The pharmacologic effects of d-tubocurare, phentolamine, and tetrodotoxin on the urethral strips were assessed by contractions induced by electrical field stimulation. The urethral tissues also underwent immunohistochemical staining for fast myosin heavy chain and CD4-activated lymphocytes. Urethral denervation resulted in a significant decrease of the maximal fast-twitch muscle contraction amplitude to only 8.77% of the normal urethra and partial impairment of smooth muscle contractility. Injection of MDPCs into the denervated sphincter significantly improved the fast-twitch muscle contraction amplitude to 87.02% of normal animals. Immunohistochemistry revealed a large amount of new skeletal muscle fiber formation at the injection site of the urethra with minimal inflammation. CD4 staining showed minimal lymphocyte infiltration around the MDPC injection sites. Urethral denervation resulted in near-total abolishment of the skeletal muscle and partial impairment of smooth muscle contractility. Allogenic MDPCs survived 2 weeks in sciatic nerve-transected urethra with minimal inflammation. This is the first report of the restoration of deficient urethral sphincter function through muscle-derived progenitor cell tissue engineering. MDPC-mediated cellular urethral myoplasty warrants additional investigation as a new method to treat stress urinary

  8. (−)-Epicatechin administration and exercising skeletal muscle vascular control and microvascular oxygenation in healthy rats

    PubMed Central

    Copp, Steven W.; Inagaki, Tadakatsu; White, Michael J.; Hirai, Daniel M.; Ferguson, Scott K.; Holdsworth, Clark T.; Sims, Gabrielle E.; Poole, David C.

    2013-01-01

    Consumption of the dietary flavanol (−)-epicatechin (EPI) is associated with enhanced endothelial function and augmented skeletal muscle capillarity and mitochondrial volume density. The potential for EPI to improve peripheral vascular function and muscle oxygenation during exercise is unknown. We tested the hypothesis that EPI administration in healthy rats would improve treadmill exercise performance secondary to elevated skeletal muscle blood flow and vascular conductance [VC, blood flow/mean arterial pressure (MAP)] and improved skeletal muscle microvascular oxygenation. Rats received water (control, n = 12) or 4 mg/kg EPI (n = 12) via oral gavage daily for 24 days. Exercise endurance capacity and peak O2 uptake (V̇o2 peak) were measured via treadmill runs to exhaustion. MAP (arterial catheter) and blood flow (radiolabeled microspheres) were measured and VC was calculated during submaximal treadmill exercise (25 m/min, 5% grade). Spinotrapezius muscle microvascular O2 pressure (Po2mv) was measured (phosphorescence quenching) during electrically induced twitch (1 Hz) contractions. In conscious rats, EPI administration resulted in lower (↓∼5%) resting (P = 0.03) and exercising (P = 0.04) MAP. There were no differences in exercise endurance capacity, V̇o2 peak, total exercising hindlimb blood flow (control, 154 ± 13; and EPI, 159 ± 8 ml·min−1·100 g−1, P = 0.68), or VC (control, 1.13 ± 0.10; and EPI, 1.24 ± 0.08 ml·min−1·100 g−1·mmHg−1, P = 0.21) between groups. Following anesthesia, EPI resulted in lower MAP (↓∼16%) but did not impact resting Po2mv or any kinetics parameters (P > 0.05 for all) during muscle contractions compared with control. EPI administration (4 mg·kg−1·day−1) improved modestly cardiovascular function (i.e., ↓MAP) with no impact on exercise performance, total exercising skeletal muscle blood flow and VC, or contracting muscle microvascular oxygenation in healthy rats. PMID:23144313

  9. Dietary HMB and β-alanine co-supplementation does not improve in situ muscle function in sedentary, aged male rats.

    PubMed

    Russ, David W; Acksel, Cara; Boyd, Iva M; Maynard, John; McCorkle, Katherine W; Edens, Neile K; Garvey, Sean M

    2015-12-01

    This study evaluated the effects of dietary β-hydroxy-β-methylbutyrate (HMB) combined with β-alanine (β-Ala) in sedentary, aged male rats. It has been suggested that dietary HMB or β-Ala supplementation may mitigate age-related declines in muscle strength and fatigue resistance. A total of 20 aged Sprague-Dawley rats were studied. At age 20 months, 10 rats were administered a control, purified diet and 10 rats were administered a purified diet supplemented with both HMB and β-Ala (HMB+β-Ala) for 8 weeks (approximately equivalent to 3 and 2.4 g per day human dose). We measured medial gastrocnemius (MG) size, force, fatigability, and myosin composition. We also evaluated an array of protein markers related to muscle mitochondria, protein synthesis and breakdown, and autophagy. HMB+β-Ala had no significant effects on body weight, MG mass, force or fatigability, myosin composition, or muscle quality. Compared with control rats, those fed HMB+β-Ala exhibited a reduced (41%, P = 0.039) expression of muscle RING-finger protein 1 (MURF1), a common marker of protein degradation. Muscle from rats fed HMB+β-Ala also exhibited a 45% reduction (P = 0.023) in p70s6K phosphorylation following fatiguing stimulation. These data suggest that HMB+β-Ala at the dose studied may reduce muscle protein breakdown by reducing MURF1 expression, but has minimal effects on muscle function in this model of uncomplicated aging. They do not, however, rule out potential benefits of HMB+β-Ala co-supplementation at other doses or durations of supplementation in combination with exercise or in situations where extreme muscle protein breakdown and loss of mass occur (e.g., bedrest, cachexia, failure-to-thrive).

  10. Resistance exercise attenuates skeletal muscle oxidative stress, systemic pro-inflammatory state, and cachexia in Walker-256 tumor-bearing rats.

    PubMed

    Padilha, Camila Souza; Borges, Fernando Henrique; Costa Mendes da Silva, Lilian Eslaine; Frajacomo, Fernando Tadeu Trevisan; Jordao, Alceu Afonso; Duarte, José Alberto; Cecchini, Rubens; Guarnier, Flávia Alessandra; Deminice, Rafael

    2017-09-01

    The aim of this study was to investigate the effects of resistance exercise training (RET) on oxidative stress, systemic inflammatory markers, and muscle wasting in Walker-256 tumor-bearing rats. Male (Wistar) rats were divided into 4 groups: sedentary controls (n = 9), tumor-bearing (n = 9), exercised (n = 9), and tumor-bearing exercised (n = 10). Exercised and tumor-bearing exercised rats were exposed to resistance exercise of climbing a ladder apparatus with weights tied to their tails for 6 weeks. The physical activity of control and tumor-bearing rats was confined to the space of the cage. After this period, tumor-bearing and tumor-bearing exercised animals were inoculated subcutaneously with Walker-256 tumor cells (11.0 × 10 7 cells in 0.5 mL of phosphate-buffered saline) while control and exercised rats were injected with vehicle. Following inoculation, rats maintained resistance exercise training (exercised and tumor-bearing exercised) or sedentary behavior (control and tumor-bearing) for 12 more days, after which they were euthanized. Results showed muscle wasting in the tumor-bearing group, with body weight loss, increased systemic leukocytes, and inflammatory interleukins as well as muscular oxidative stress and reduced mTOR signaling. In contrast, RET in the tumor-bearing exercised group was able to mitigate the reduced body weight and muscle wasting with the attenuation of muscle oxidative stress and systemic inflammatory markers. RET also prevented loss of muscle strength associated with tumor development. RET, however, did not prevent the muscle proteolysis signaling via FBXO32 gene messenger RNA expression in the tumor-bearing group. In conclusion, RET performed prior tumor implantation prevents cachexia development by attenuating tumor-induced systemic pro-inflammatory condition with muscle oxidative stress and muscle damage.

  11. Longitudinal and transversal displacements between triceps surae muscles during locomotion of the rat.

    PubMed

    Bernabei, Michel; van Dieën, Jaap H; Maas, Huub

    2017-02-15

    The functional consequences of differential muscle activation and contractile behavior between mechanically coupled synergists are still poorly understood. Even though synergistic muscles exert similar mechanical effects at the joint they span, differences in the anatomy, morphology and neural drive may lead to non-uniform contractile conditions. This study aimed to investigate the patterns of activation and contractile behavior of triceps surae muscles, to understand how these contribute to the relative displacement between the one-joint soleus (SO) and two-joint lateral gastrocnemius (LG) muscle bellies and their distal tendons during locomotion in the rat. In seven rats, muscle belly lengths and muscle activation during level and upslope trotting were measured by sonomicrometry crystals and electromyographic electrodes chronically implanted in the SO and LG. Length changes of muscle-tendon units (MTUs) and tendon fascicles were estimated based on joint kinematics and muscle belly lengths. Distances between implanted crystals were further used to assess longitudinal and transversal deformations of the intermuscular volume between the SO and LG. For both slope conditions, we observed differential timing of muscle activation as well as substantial differences in contraction speeds between muscle bellies (maximal relative speed 55.9 mm s -1 ). Muscle lengths and velocities did not differ significantly between level and upslope locomotion, only EMG amplitude of the LG was affected by slope. Relative displacements between SO and LG MTUs were found in both longitudinal and transversal directions, yielding an estimated maximal length change difference of 2.0 mm between their distal tendons. Such relative displacements may have implications for the force exchanged via intermuscular and intertendinous pathways. © 2017. Published by The Company of Biologists Ltd.

  12. Phenotypic modulation of corpus cavernosum smooth muscle cells in a rat model of cavernous neurectomy.

    PubMed

    Yang, Fan; Zhao, Jian F; Shou, Qi Y; Huang, Xiao J; Chen, Gang; Yang, Ke B; Zhang, Shi G; Lv, Bo D; Fu, Hui Y

    2014-01-01

    Patients undergoing radical prostatectomy (RP) are at high risk for erectile dysfunction (ED) due to potential cavernous nerve (CN) damage during surgery. Penile hypoxia after RP is thought to significantly contribute to ED pathogenesis. We previously showed that corpora cavernosum smooth muscle cells (CCSMCs) undergo phenotypic modulation under hypoxic conditions in vitro. Here, we studied such changes in an in vivo post-RP ED model by investigating CCSMCs in bilateral cavernous neurectomy (BCN) rats. Sprague-Dawley rats underwent sham (n = 12) or BCN (n = 12) surgery. After 12 weeks, they were injected with apomorphine to determine erectile function. The penile tissues were harvested and assessed for fibrosis using Masson trichrome staining and for molecular markers of phenotypic modulation using immunohistochemistry and western blotting. CCSMC morphological structure was evaluated by hematoxylin-eosin (H&E) staining and transmission electron microscopy (TEM). Erectile function was significantly lower in BCN rats than in sham rats. BCN increased hypoxia-inducible factor-1α and collagen protein expression in corpora cavernous tissue. H&E staining and TEM showed that CCSMCs in BCN rats underwent hypertrophy and showed rough endoplasmic reticulum formation. The expression of CCSMC phenotypic markers, such as smooth muscle α-actin, smooth muscle myosin heavy chain, and desmin, was markedly lower, whereas vimentin protein expression was significantly higher in BCN rats than in control rats. CCSMCs undergo phenotype modulation in rats with cavernous neurectomy. The results have unveiled physiological transformations that occur at the cellular and molecular levels and have helped characterize CN injury-induced ED.

  13. Leucine Supplementation Improves Skeletal Muscle Regeneration after Cryolesion in Rats

    PubMed Central

    Pereira, Marcelo G.; Baptista, Igor L.; Carlassara, Eduardo O. C.; Moriscot, Anselmo S.; Aoki, Marcelo S.; Miyabara, Elen H.

    2014-01-01

    This study was undertaken in order to provide further insight into the role of leucine supplementation in the skeletal muscle regeneration process, focusing on myofiber size and strength recovery. Young (2-month-old) rats were subjected or not to leucine supplementation (1.35 g/kg per day) started 3 days prior to cryolesion. Then, soleus muscles were cryolesioned and continued receiving leucine supplementation until 1, 3 and 10 days later. Soleus muscles from leucine-supplemented animals displayed an increase in myofiber size and a reduction in collagen type III expression on post-cryolesion day 10. Leucine was also effective in reducing FOXO3a activation and ubiquitinated protein accumulation in muscles at post-cryolesion days 3 and 10. In addition, leucine supplementation minimized the cryolesion-induced decrease in tetanic strength and increase in fatigue in regenerating muscles at post-cryolesion day 10. These beneficial effects of leucine were not accompanied by activation of any elements of the phosphoinositide 3-kinase/Akt/mechanistic target of rapamycin signalling pathway in the regenerating muscles. Our results show that leucine improves myofiber size gain and strength recovery in regenerating soleus muscles through attenuation of protein ubiquitination. In addition, leucine might have therapeutic effects for muscle recovery following injury and in some muscle diseases. PMID:24416379

  14. A DIGE proteomic analysis for high-intensity exercise-trained rat skeletal muscle.

    PubMed

    Yamaguchi, Wataru; Fujimoto, Eri; Higuchi, Mitsuru; Tabata, Izumi

    2010-09-01

    Exercise training induces various adaptations in skeletal muscles. However, the mechanisms remain unclear. In this study, we conducted 2D-DIGE proteomic analysis, which has not yet been used for elucidating adaptations of skeletal muscle after high-intensity exercise training (HIT). For 5 days, rats performed HIT, which consisted of 14 20-s swimming exercise bouts carrying a weight (14% of the body weight), and 10-s pause between bouts. The 2D-DIGE analysis was conducted on epitrochlearis muscles excised 18 h after the final training exercise. Proteomic profiling revealed that out of 800 detected and matched spots, 13 proteins exhibited changed expression by HIT compared with sedentary rats. All proteins were identified by MALDI-TOF/MS. Furthermore, using western immunoblot analyses, significantly changed expressions of NDUFS1 and parvalbumin (PV) were validated in relation to HIT. In conclusion, the proteomic 2D-DIGE analysis following HIT-identified expressions of NDUFS1 and PV, previously unknown to have functions related to exercise-training adaptations.

  15. Acetylcholinesterase activity in soleus muscle intrafusal and extrafusal fibres in tail suspended rats.

    PubMed

    Tang, Bin; Fan, Xiao-li; Wu, Su-di

    2002-10-01

    Objective. To explore the mechanisms involved in muscle atrophy and conversion of the fiber types induced by simulated weightlessness. Method. Weightlessness was simulated by tail suspension of female rats. Intrafusal and extrafusal fibers of soleus muscles in the rat were examined histochemically for their activity of acetylcholinesterase (AChE) and succinic dehydrogenase (SDH) in 7 d, 14 d, 21 d tail-suspended groups and control groups. Result. Staining for succinic dehydrogenase showed that simulated weightlessness caused obvious atrophy and change in fiber type composition in soleus muscle, with decrease of the proportion of type I fiber and increase of type II fiber. Acetylcholinesterase activities of intrafusal and extrafusal fibers were both decreased significantly after 21 d tail suspension. Conclusion. Simulated weightlessness could induce decrease of AChE activity in neuromuscular junctions, which might be linked with decrease in motor neuron activity.

  16. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles.

    PubMed Central

    Tawa, N E; Odessey, R; Goldberg, A L

    1997-01-01

    Several observations have suggested that the enhanced proteolysis and atrophy of skeletal muscle in various pathological states is due primarily to activation of the ubiquitin-proteasome pathway. To test this idea, we investigated whether peptide aldehyde inhibitors of the proteasome, N-acetyl-leucyl-leucyl-norleucinal (LLN), or the more potent CBZ-leucyl-leucyl-leucinal (MG132) suppressed proteolysis in incubated rat skeletal muscles. These agents (e.g., MG132 at 10 microM) inhibited nonlysosomal protein breakdown by up to 50% (P < 0.01), and this effect was rapidly reversed upon removal of the inhibitor. The peptide aldehydes did not alter protein synthesis or amino acid pools, but improved overall protein balance in the muscle. Upon treatment with MG132, ubiquitin-conjugated proteins accumulated in the muscle. The inhibition of muscle proteolysis correlated with efficacy against the proteasome, although these agents could also inhibit calpain-dependent proteolysis induced with Ca2+. These inhibitors had much larger effects on proteolysis in atrophying muscles than in controls. In the denervated soleus undergoing atrophy, the increase in ATP-dependent proteolysis was reduced 70% by MG132 (P < 0.001). Similarly, the rise in muscle proteolysis induced by administering thyroid hormones was reduced 40-70% by the inhibitors. Finally, in rats made septic by cecal puncture, the increase in muscle proteolysis was completely blocked by MG132. Thus, the enhanced proteolysis in many catabolic states (including denervation, hyperthyroidism, and sepsis) is due to a proteasome-dependent pathway, and inhibition of proteasome function may be a useful approach to reduce muscle wasting. PMID:9202072

  17. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles.

    PubMed

    Tawa, N E; Odessey, R; Goldberg, A L

    1997-07-01

    Several observations have suggested that the enhanced proteolysis and atrophy of skeletal muscle in various pathological states is due primarily to activation of the ubiquitin-proteasome pathway. To test this idea, we investigated whether peptide aldehyde inhibitors of the proteasome, N-acetyl-leucyl-leucyl-norleucinal (LLN), or the more potent CBZ-leucyl-leucyl-leucinal (MG132) suppressed proteolysis in incubated rat skeletal muscles. These agents (e.g., MG132 at 10 microM) inhibited nonlysosomal protein breakdown by up to 50% (P < 0.01), and this effect was rapidly reversed upon removal of the inhibitor. The peptide aldehydes did not alter protein synthesis or amino acid pools, but improved overall protein balance in the muscle. Upon treatment with MG132, ubiquitin-conjugated proteins accumulated in the muscle. The inhibition of muscle proteolysis correlated with efficacy against the proteasome, although these agents could also inhibit calpain-dependent proteolysis induced with Ca2+. These inhibitors had much larger effects on proteolysis in atrophying muscles than in controls. In the denervated soleus undergoing atrophy, the increase in ATP-dependent proteolysis was reduced 70% by MG132 (P < 0.001). Similarly, the rise in muscle proteolysis induced by administering thyroid hormones was reduced 40-70% by the inhibitors. Finally, in rats made septic by cecal puncture, the increase in muscle proteolysis was completely blocked by MG132. Thus, the enhanced proteolysis in many catabolic states (including denervation, hyperthyroidism, and sepsis) is due to a proteasome-dependent pathway, and inhibition of proteasome function may be a useful approach to reduce muscle wasting.

  18. Adaptation of rat soleus muscles to 4 wk of intermittent strain

    NASA Technical Reports Server (NTRS)

    Stauber, W. T.; Miller, G. R.; Grimmett, J. G.; Knack, K. K.

    1994-01-01

    The effect of repeated strains on rat soleus muscles was investigated by stretching active muscles 3 times/wk for 4 wk with two different methods of stretching. The adaptation of myofibers and noncontractile tissue was followed by histochemical techniques and computer-assisted image analysis. Muscle hypertrophy was seen in the slow-stretched muscles, which increased in mass by 13% and increased in myofiber cross-sectional area by 30%. In the fast-stretched muscle, mass increased by 10% but myofiber cross-sectional area actually decreased. This decrease in mean fiber area was the result of a population of very small fibers (population A) that coexisted with slightly smaller normal-sized fibers (population B). Fibers in population A did not have the distribution expected from atrophy compared with atrophic fibers from unloaded muscles; they were much smaller. In addition, there was a 44% increase in noncontractile tissue in the fast-stretched muscles. Thus, soleus muscles subjected to repeated strains respond differently to slow and fast stretching. Slow stretching results in typical muscle hypertrophy, whereas fast stretching produces somewhat larger muscles but with a mixture of small and normal-sized myofibers accompanied by a marked proliferation of noncontractile tissue.

  19. Muscle regeneration during hindlimb unloading results in a reduction in muscle size after reloading

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.

    2001-01-01

    The hindlimb-unloading model was used to study the ability of muscle injured in a weightless environment to recover after reloading. Satellite cell mitotic activity and DNA unit size were determined in injured and intact soleus muscles from hindlimb-unloaded and age-matched weight-bearing rats at the conclusion of 28 days of hindlimb unloading, 2 wk after reloading, and 9 wk after reloading. The body weights of hindlimb-unloaded rats were significantly (P < 0.05) less than those of weight-bearing rats at the conclusion of hindlimb unloading, but they were the same (P > 0.05) as those of weight-bearing rats 2 and 9 wk after reloading. The soleus muscle weight, soleus muscle weight-to-body weight ratio, myofiber diameter, number of nuclei per millimeter, and DNA unit size were significantly (P < 0.05) smaller for the injured soleus muscles from hindlimb-unloaded rats than for the soleus muscles from weight-bearing rats at each recovery time. Satellite cell mitotic activity was significantly (P < 0.05) higher in the injured soleus muscles from hindlimb-unloaded rats than from weight-bearing rats 2 wk after reloading, but it was the same (P > 0.05) as in the injured soleus muscles from weight-bearing rats 9 wk after reloading. The injured soleus muscles from hindlimb-unloaded rats failed to achieve weight-bearing muscle size 9 wk after reloading, because incomplete compensation for the decrease in myonuclear accretion and DNA unit size expansion occurred during the unloading period.

  20. Dependence of normal development of skeletal muscle in neonatal rats on load bearing

    NASA Technical Reports Server (NTRS)

    Ohira, Y.; Tanaka, T.; Yoshinaga, T.; Kawano, F.; Nomura, T.; Nonaka, I.; Allen, D. L.; Roy, R. R.; Edgerton, V. R.

    2000-01-01

    Antigravity function plays an important role in determining the morphological and physiological properties of the neuromuscular system. Inhibition of the normal development of the neuromuscular system is induced by hindlimb unloading during the neonatal period in rats. However, the role of gravitational loading on the development of skeletal muscle in rats is not well understood. It could be hypothesized that during the early postnatal period, i.e. when minimal weight-supporting activity occurs, the activity imposed by gravity would be of little consequence in directing the normal development of the skeletal musculature. We have addressed this issue by limiting the amount of postnatal weight-support activity of the hindlimbs of rats during the lactation period. We have focused on the development of three characteristics of the muscle fibers, i.e. size, myonuclear number and myosin heavy chain expression.

  1. Accumulation of ceramide in slow-twitch muscle contributes to the development of insulin resistance in the obese JCR:LA-cp rat.

    PubMed

    Fillmore, Natasha; Keung, Wendy; Kelly, Sandra E; Proctor, Spencer D; Lopaschuk, Gary D; Ussher, John R

    2015-06-01

    What is the central question of this study? The aim was to determine whether the accumulation of ceramide contributes to skeletal muscle insulin resistance in the JCR obese rat. What is the main finding and its importance? Our main new finding is that ceramides accumulate only in slow-twitch skeletal muscle in the JCR obese rat and that reducing ceramide content in this muscle type by inhibition of serine palmitoyl transferase-1 halts the progression of insulin resistance in this rat model predisposed to early development of type 2 diabetes. Our findings highlight the importance of assessing insulin signalling/sensitivity and lipid intermediate accumulation in different muscle fibre types. It has been postulated that insulin resistance results from the accumulation of cytosolic lipid metabolites (i.e. diacylglycerol/ceramide) that impede insulin signalling and impair glucose homeostasis. De novo ceramide synthesis is catalysed by serine palmitoyl transferase-1. Our aim was to determine whether de novo ceramide synthesis plays a role during development of insulin resistance in the JCR:LA-cp obese rat. Ten-week-old JCR:LA-cp obese rats were supplemented with either vehicle or the serine palmitoyl transferase-1 inhibitor l-cycloserine (360 mg l(-1) ) in their drinking water for a 2 week period, and glycaemia was assessed by meal tolerance testing. Treatment of JCR:LA-cp obese rats with l-cycloserine improved their plasma glucose and insulin levels during a meal tolerance test. Examination of muscle lipid metabolites and protein phosphorylation patterns revealed differential signatures in slow-twitch (soleus) versus fast-twitch muscle (gastrocnemius), in that ceramide levels were increased in soleus but not gastrocnemius muscles of JCR:LA-cp obese rats. Likewise, improved glycaemia in l-cycloserine-treated JCR:LA-cp obese rats was associated with enhanced Akt and pyruvate dehydrogenase signalling in soleus but not gastrocnemius muscles, probably as a result of l

  2. Remodeling of the skeletal muscle microcirculation increases resistance to perfusion in obese Zucker rats.

    PubMed

    Frisbee, Jefferson C

    2003-07-01

    Whereas previous studies have demonstrated that the development of syndrome X in obese Zucker rats (OZR) is associated with impaired arteriolar reactivity to vasoactive stimuli, additional results from these studies indicate that the passive diameter of skeletal muscle arterioles is reduced in OZR versus lean Zucker rats (LZR). On the basis of these prior observations, the present study evaluated structural alterations to the skeletal muscle microcirculation as potential contributors to an elevated vascular resistance. Isolated skeletal muscle resistance arterioles exhibited a reduced passive diameter at all levels of intralumenal pressure and a left-shifted stress-strain curve in OZR versus LZR, indicative of structural remodeling of individual arterioles. Histological analyses using Griffonia simplicifolia I lectin-stained sections of skeletal muscle demonstrated reduced microvessel density (rarefaction) in OZR versus LZR, suggesting remodeling of entire microvascular networks. Finally, under maximally dilated conditions, constant flow-perfused skeletal muscle of OZR exhibited significant elevations in perfusion pressure versus LZR, indicative of an increased resistance to perfusion within the microcirculation. These data suggest that developing structural alterations to the skeletal muscle microcirculation in OZR result in elevated vascular resistance, which may, acting in concert with impaired arteriolar reactivity, contribute to blunted active hyperemic responses and compromised performance of in situ skeletal muscle with elevated metabolic demand.

  3. Recruitment and plasticity in diaphragm, intercostal, and abdominal muscles in unanesthetized rats

    PubMed Central

    Navarrete-Opazo, A.

    2014-01-01

    Although rats are a frequent model for studies of plasticity in respiratory motor control, the relative capacity of rat accessory respiratory muscles to express plasticity is not well known, particularly in unanesthetized animals. Here, we characterized external intercostal (T2, T4, T5, T6, T7, T8, T9 EIC) and abdominal muscle (external oblique and rectus abdominis) electromyogram (EMG) activity in unanesthetized rats via radiotelemetry during normoxia (Nx: 21% O2) and following acute intermittent hypoxia (AIH: 10 × 5-min, 10.5% O2; 5-min intervals). Diaphragm and T2–T5 EIC EMG activity, and ventilation were also assessed during maximal chemoreceptor stimulation (MCS: 7% CO2, 10.5% O2) and sustained hypoxia (SH: 10.5% O2). In Nx, T2 EIC exhibits prominent inspiratory activity, whereas T4, T5, T6, and T7 EIC inspiratory activity decreases in a caudal direction. T8 and T9 EIC and abdominal muscles show only tonic or sporadic activity, without consistent respiratory activity. MCS increases diaphragm and T2 EIC EMG amplitude and tidal volume more than SH (0.94 ± 0.10 vs. 0.68 ± 0.05 ml/100 g; P < 0.001). Following AIH, T2 EIC EMG amplitude remained above baseline for more than 60 min post-AIH (i.e., EIC long-term facilitation, LTF), and was greater than diaphragm LTF (41.5 ± 1.3% vs. 19.1 ± 2.0% baseline; P < 0.001). We conclude that 1) diaphragm and rostral T2–T5 EIC muscles exhibit inspiratory activity during Nx; 2) MCS elicits greater ventilatory, diaphragm, and rostral T2–T5 EIC muscle activity vs. SH; and 3) AIH induces greater rostral EIC LTF than diaphragm LTF. PMID:24833779

  4. Hypogravity-induced atrophy of rat soleus and extensor digitorum longus muscles

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ellis, S.; Slocum, G. R.; Satyanarayana, T.; Bain, J. L.; Sedlak, F. R.

    1987-01-01

    Prolonged exposure of humans to hypogravity causes weakening of their skeletal muscles. This problem was studied in rats exposed to hypogravity for 7 days aboard Spacelab 3. Hindlimb muscles were harvested 12-16 hours postflight for histochemical, biochemical, and ultrastructural analyses. The majority of the soleus and extensor digitorum longus fibers exhibited simple cell shrinkage. However, approximately 1% of the fibers in flight soleus muscles appeared necrotic. Flight muscle fibers showed increased glycogen, lower subsarcolemmal staining for mitochondrial enzymes, and fewer subsarcolemmal mitochondria. During atrophy, myofibrils were eroded by multiple focal losses of myofilaments; lysosomal autophagy was not evident. Tripeptidylaminopeptidase and calcium-activated protease activities of flight soleus fibers were significantly increased, implying a role in myofibril breakdown. Simple fiber atrophy appears to account for muscle weakening during spaceflight, but fiber necrosis is also a contributing factor.

  5. Changes in contractile properties and action potentials of motor units in the rat medial gastrocnemius muscle during maturation.

    PubMed

    Dobrzynska, Z; Celichowski, J

    2016-02-01

    The early phase of development of muscles stops following the disappearance of embryonic and neonatal myosin and the elimination of polyneuronal innervation of muscle fibres with the formation of motor units (MUs), but later the muscle mass still considerably increases. It is unknown whether the three types are visible among newly formed MUs soon after the early postnatal period and whether their proportion is similar to that in adult muscle. Moreover, the processes responsible for MU-force regulation by changes in motoneuronal firing rate as well as properties of motor unit action potentials (MUAPs) during maturation are unknown. Three groups of Wistar rats were investigated - 1 month old, 2 months old and the adult, 9 months old. The basic contractile properties and action potentials of MUs in the medial gastrocnemius (MG) muscle were analysed. The three types of MUs were distinguishable in all age groups, but higher proportion of slow MUs was noticed in young rats (29%, 18% and 11% in 1, 2 and 9 months rats, respectively). The fatigue index for fast fatigable MUs in 1 month old rats was about 2 times higher than in 9 months old rats. The twitch time parameters of fast MUs were shortened during the maturation; for these units, the force-frequency curves in young rats were shifted towards lower frequencies, which suggested that fast motoneurons of young animals generate lower firing rates. Higher twitch-to-tetanus ratios noted for the three MU types in young rats suggested the smaller role of rate coding in force regulation processes, and the higher role of MU recruitment in young rats. No significant differences in MUAP parameters between two groups of young and adult animals were observed. Concluding, the maturation process evokes deeper changes in fast MUs than in slow ones.

  6. Treatment with Riluzole Restores Normal Control of Soleus and Extensor Digitorum Longus Muscles during Locomotion in Adult Rats after Sciatic Nerve Crush at Birth

    PubMed Central

    Cabaj, Anna M.; Sławińska, Urszula

    2017-01-01

    The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2–8 and 10–28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15–29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23–33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24–28 vs 8 and 23–26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement. PMID:28095499

  7. Treatment with Riluzole Restores Normal Control of Soleus and Extensor Digitorum Longus Muscles during Locomotion in Adult Rats after Sciatic Nerve Crush at Birth.

    PubMed

    Zmysłowski, Wojciech; Cabaj, Anna M; Sławińska, Urszula

    2017-01-01

    The effects of sciatic nerve crush (SNC) and treatment with Riluzole on muscle activity during unrestrained locomotion were identified in an animal model by analysis of the EMG activity recorded from soleus (Sol) and extensor digitorum longus (EDL) muscles of both hindlimbs; in intact rats (IN) and in groups of rats treated for 14 days with saline (S) or Riluzole (R) after right limb nerve crush at the 1st (1S and 1R) or 2nd (2S and 2R) day after birth. Changes in the locomotor pattern of EMG activity were correlated with the numbers of survived motor units (MUs) identified in investigated muscles. S rats with 2-8 and 10-28 MUs that survived in Sol and EDL muscles respectively showed increases in the duration and duty factor of muscle EMG activity and a loss of correlation between the duty factors of muscle activity, and abnormal flexor-extensor co-activation 3 months after SNC. R rats with 5, 6 (Sol) and 15-29 MUs (EDL) developed almost normal EMG activity of both Sol and control EDL muscles, whereas EDL muscles with SNC showed a lack of recovery. R rats with 8 (Sol) and 23-33 (EDL) MUs developed almost normal EMG activities of all four muscles. A subgroup of S rats with a lack of recovery and R rats with almost complete recovery that had similar number of MUs (8 and 24-28 vs 8 and 23-26), showed that the number of MUs was not the only determinant of treatment effectiveness. The results demonstrated that rats with SNC failed to develop normal muscle activity due to malfunction of neuronal circuits attenuating EDL muscle activity during the stance phase, whereas treatment with Riluzole enabled almost normal EMG activity of Sol and EDL muscles during locomotor movement.

  8. Rigor force responses of permeabilized fibres from fast and slow skeletal muscles of aged rats.

    PubMed

    Plant, D R; Lynch, G S

    2001-09-01

    1. Ageing is generally associated with a decline in skeletal muscle mass and strength and a slowing of muscle contraction, factors that impact upon the quality of life for the elderly. The mechanisms underlying this age-related muscle weakness have not been fully resolved. The purpose of the present study was to determine whether the decrease in muscle force as a consequence of age could be attributed partly to a decrease in the number of cross-bridges participating during contraction. 2. Given that the rigor force is proportional to the approximate total number of interacting sites between the actin and myosin filaments, we tested the null hypothesis that the rigor force of permeabilized muscle fibres from young and old rats would not be different. 3. Permeabilized fibres from the extensor digitorum longus (fast-twitch; EDL) and soleus (predominantly slow-twitch) muscles of young (6 months of age) and old (27 months of age) male F344 rats were activated in Ca2+-buffered solutions to determine force-pCa characteristics (where pCa = -log(10)[Ca2+]) and then in solutions lacking ATP and Ca2+ to determine rigor force levels. 4. The rigor forces for EDL and soleus muscle fibres were not different between young and old rats, indicating that the approximate total number of cross-bridges that can be formed between filaments did not decline with age. We conclude that the age-related decrease in force output is more likely attributed to a decrease in the force per cross-bridge and/or decreases in the efficiency of excitation-contraction coupling.

  9. Calcineurin is not involved in some mitochondrial enzyme adaptations to endurance exercise training in rat skeletal muscle.

    PubMed

    Terada, Shin; Nakagawa, Hisashi; Nakamura, Yoshio; Muraoka, Isao

    2003-09-01

    The purpose of this study was to test the hypothesis that calcineurin, a calcium-dependent protein phosphatase recently implicated in the signaling of skeletal muscle hypertrophy and fiber type conversion, is required to induce some mitochondrial enzyme adaptations to endurance exercise training in skeletal muscle. Three- to four-week-old male Sprague-Dawley rats with an initial body weight ranging from 45 to 55 g were used in this study. The rats were randomly assigned to groups injected with either a specific calcineurin inhibitor, cyclosporin A (CsA), (group CI) or vehicle (group VI). CsA was subcutaneously injected into the rats at a rate of 50 mg.kg(-1) body weight per day for 10 days. The CI and VI groups were further assigned to sedentary (SED) or exercise training (EX) groups. In the EX group, the rats were trained for 10 days (90 min.day(-1), approximately 14-20 m.min(-1), 10% grade). The citrate synthase (CS) activities in the soleus and plantaris muscles of the EX group rats were significantly higher than those of the SED group rats ( p<0.001). Furthermore, 3-beta-hydroxyacyl-CoA dehydrogenase (3-HAD) activities in the soleus and plantaris muscles were significantly higher in the EX group rats than in the SED group rats ( p<0.001). However, there were no significant differences in CS and 3-HAD activities between the VI and CI groups. The interactions between CsA injection and exercise training were not statistically significant in any of the parameters. These results may suggest that calcineurin is not involved in some mitochondrial enzyme adaptations to endurance exercise training.

  10. Regional Differences in Rat Vaginal Smooth Muscle Contractility and Morphology

    PubMed Central

    Skoczylas, Laura C.; Jallah, Zegbeh; Sugino, Yoshio; Stein, Suzan E.; Feola, Andrew; Yoshimura, Naoki

    2013-01-01

    The objective of this study was to define the regional differences in rat vaginal smooth muscle contractility and morphology. We evaluated circumferential segments from the proximal, middle, and distal rat vagina (n = 21) in vitro. Contractile responses to carbachol, phenylephrine, potassium chloride, and electrical field stimulation (EFS) were measured. Immunohistochemical analyses were also performed. The dose–response curves for carbachol- and phenylephrine-dependent contractions were different in the distal (P = .05, P = .04) compared to the proximal/middle regions. Adjusted for region-dependent changes in contractility, the distal vagina generated lower force in response to carbachol and higher force in response to phenylephrine. There was less force with increasing EFS frequency in the distal (P = .03), compared to the proximal/middle regions. Cholinergic versus adrenergic nerves were more frequent in the proximal region (P = .03). In summary, the results indicate that functional and morphological differences in smooth muscle and nerve fibers of the distal versus proximal/middle regions of the vagina exist. PMID:23298869

  11. Microvascular responses to body tilt in cutaneous maximus muscle of conscious rats

    NASA Technical Reports Server (NTRS)

    Puri, Rohit K.; Segal, Steven S.

    1994-01-01

    We investigated microvascular responses to head-up tilt (HUT) and head-down tilt (HDT) in striated muscle of conscious male rats. To observe the microcirculation in the cutaneous maximus muscle, a transparent polycarbonate chamber was implanted aseptically into a skin fold created between the shoulders. Rats were trained to sit quietly during HUT and HDT while positioned on a horizontal microscope that rotated in the sagittal plane. At 4-5 days after surgery, arteriole and venule diameters were recorded using videomicroscopy while the rat experienced 10 min each (in random order) of HUT or HDT at 20 deg or 40 deg separated by 2-h rest periods. HUT had no affect on microvessel diameter; 20 deg HDT had little affect. In response to 40 deg HDT, 'large' arterioles constricted by 18 +/- 2% and 'small' arterioles dilated by 21 +/- 3%; this difference suggested variation in mechanisms controlling arteriolar responses. Venules exhibited a larger fluctuation in diameter during 40 deg HDT compared with other body positions, suggesting that venomotor activity may be induced with sufficient fluid shift or change in central venous pressure. These observations illustrate a viable model for studying microvascular responses to gravitational stress in conscious rats.

  12. Anesthesia with propofol induces insulin resistance systemically in skeletal and cardiac muscles and liver of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuda, Yoshikazu; Fukushima, Yuji; Kaneki, Masao

    Highlights: ► Propofol, as a model anesthetic drug, induced whole body insulin resistance. ► Propofol anesthesia decreased glucose infusion rate to maintain euglycemia. ► Propofol decreased insulin-mediated glucose uptake in skeletal and cardiac muscles. ► Propofol increased hepatic glucose output confirming hepatic insulin resistance. -- Abstract: Hyperglycemia together with hepatic and muscle insulin resistance are common features in critically ill patients, and these changes are associated with enhanced inflammatory response, increased susceptibility to infection, muscle wasting, and worsened prognosis. Tight blood glucose control by intensive insulin treatment may reduce the morbidity and mortality in intensive care units. Although some anestheticsmore » have been shown to cause insulin resistance, it remains unknown how and in which tissues insulin resistance is induced by anesthetics. Moreover, the effects of propofol, a clinically relevant intravenous anesthetic, also used in the intensive care unit for sedation, on insulin sensitivity have not yet been investigated. Euglycemic hyperinsulinemic clamp study was performed in rats anesthetized with propofol and conscious unrestrained rats. To evaluate glucose uptake in tissues and hepatic glucose output [{sup 3}H]glucose and 2-deoxy[{sup 14}C]glucose were infused during the clamp study. Anesthesia with propofol induced a marked whole-body insulin resistance compared with conscious rats, as reflected by significantly decreased glucose infusion rate to maintain euglycemia. Insulin-stimulated tissue glucose uptake was decreased in skeletal muscle and heart, and hepatic glucose output was increased in propofol anesthetized rats. Anesthesia with propofol induces systemic insulin resistance along with decreases in insulin-stimulated glucose uptake in skeletal and heart muscle and attenuation of the insulin-mediated suppression of hepatic glucose output in rats.« less

  13. Ibuprofen Differentially Affects Supraspinatus Muscle and Tendon Adaptations to Exercise in a Rat Model

    PubMed Central

    Rooney, Sarah Ilkhanipour; Baskin, Rachel; Torino, Daniel J.; Vafa, Rameen P.; Khandekar, Pooja S.; Kuntz, Andrew F.; Soslowsky, Louis J.

    2017-01-01

    Background Previous studies have shown that ibuprofen is detrimental to tissue healing following acute injury; however, the effects of ibuprofen when combined with non-injurious exercise are debated. Hypothesis We hypothesized that administration of ibuprofen to rats undergoing a non-injurious treadmill exercise protocol would abolish the beneficial adaptations found with exercise but have no effect on sedentary muscle and tendon properties. Study Design Controlled laboratory study Methods Rats were divided into exercise or cage activity (sedentary) groups and acute (a single bout of exercise followed by 24 hours of rest) and chronic (2 or 8 weeks of repeated exercise) time points. Half of the rats received ibuprofen to investigate the effects of this drug over time when combined with different activity levels (exercise and sedentary). Supraspinatus tendons were used for mechanical testing and histology (organization, cell shape, cellularity), and supraspinatus muscles were used for morphological (fiber CSA, centrally nucleated fibers) and fiber type analysis. Results Chronic intake of ibuprofen did not impair supraspinatus tendon organization or mechanical adaptations (stiffness, modulus, max load, max stress, dynamic modulus, or viscoelastic properties) to exercise. Tendon mechanical properties were not diminished and in some instances increased with ibuprofen. In contrast, total supraspinatus muscle fiber cross-sectional area decreased with ibuprofen at chronic time points, and some fiber type-specific changes were detected. Conclusions Chronic administration of ibuprofen does not impair supraspinatus tendon mechanical properties in a rat model of exercise but does decrease supraspinatus muscle fiber cross-sectional area. Clinically, these findings suggest that ibuprofen does not detrimentally affect regulation of supraspinatus tendon adaptions to exercise but does decrease muscle growth. Individuals should be advised on the risk of decreased muscle hypertrophy

  14. Ibuprofen Differentially Affects Supraspinatus Muscle and Tendon Adaptations to Exercise in a Rat Model.

    PubMed

    Rooney, Sarah Ilkhanipour; Baskin, Rachel; Torino, Daniel J; Vafa, Rameen P; Khandekar, Pooja S; Kuntz, Andrew F; Soslowsky, Louis J

    2016-09-01

    Previous studies have shown that ibuprofen is detrimental to tissue healing after acute injury; however, the effects of ibuprofen when combined with noninjurious exercise are debated. Administration of ibuprofen to rats undergoing a noninjurious treadmill exercise protocol will abolish the beneficial adaptations found with exercise but will have no effect on sedentary muscle and tendon properties. Controlled laboratory study. A total of 167 male Sprague-Dawley rats were divided into exercise or cage activity (sedentary) groups and acute (a single bout of exercise followed by 24 hours of rest) and chronic (2 or 8 weeks of repeated exercise) response times. Half of the rats were administered ibuprofen to investigate the effects of this drug over time when combined with different activity levels (exercise and sedentary). Supraspinatus tendons were used for mechanical testing and histologic assessment (organization, cell shape, cellularity), and supraspinatus muscles were used for morphologic (fiber cross-sectional area, centrally nucleated fibers) and fiber type analysis. Chronic intake of ibuprofen did not impair supraspinatus tendon organization or mechanical adaptations (stiffness, modulus, maximum load, maximum stress, dynamic modulus, or viscoelastic properties) to exercise. Tendon mechanical properties were not diminished and in some instances increased with ibuprofen. In contrast, total supraspinatus muscle fiber cross-sectional area decreased with ibuprofen at chronic response times, and some fiber type-specific changes were detected. Chronic administration of ibuprofen does not impair supraspinatus tendon mechanical properties in a rat model of exercise but does decrease supraspinatus muscle fiber cross-sectional area. This fundamental study adds to the growing literature on the effects of ibuprofen on musculoskeletal tissues and provides a solid foundation on which future work can build. The study findings suggest that ibuprofen does not detrimentally affect

  15. Age effects on rat hindlimb muscle atrophy during suspension unloading

    NASA Technical Reports Server (NTRS)

    Steffen, Joseph M.; Fell, Ronald D.; Geoghegan, Thomas E.; Ringel, Lisa C.; Musacchia, X. J.

    1990-01-01

    The effects of hindlimb unloading on muscle mass and biochemical responses were examined and compared in adult (450-g) and juvenile (200-g) rats after 1, 7, or 14 days of whole-body suspension. Quantitatively and qualitatively the soleus, gastrocnemius, plantaris, and extensor digitorum longus (EDL) muscles of the hindlimb exhibited a differential sensitivity to suspension and weightlessness unloading in both adults and juveniles. The red slow-twitch soleus exhibited the most pronounced atrophy under both conditions, with juvenile responses being greater than adult. In contrast, the fast-twitch EDL hypertrophied during suspension and atrophied during weightlessness, with no significant difference between adults and juveniles. Determination of biochemical parameters (total protein, RNA, and DNA) indicates a less rapid rate of response in adult muscles.

  16. Mu-Opioid Receptors in Ganglia, But Not in Muscle, Mediate Peripheral Analgesia in Rat Muscle Pain.

    PubMed

    Bagues, Ana; Martín, María Isabel; Higuera-Matas, Alejandro; Esteban-Hernández, Jesús; Ambrosio, Emilio; Sánchez-Robles, Eva María

    2018-04-01

    Previous studies have demonstrated the participation of peripheral μ-opioid receptors (MOR) in the antinociceptive effect of systemically administered morphine and loperamide in an orofacial muscle pain model, induced by hypertonic saline, but not in a spinally innervated one, in rats. In this study, we determine whether this peripheral antinociceptive effect is due to the activation of MOR localized in the muscle, ganglia, or both. To determine the local antinociceptive effect of morphine and loperamide, 2 models of acute muscle pain (trigeminal and spinal) were used. Also, to study the MOR expression, protein quantification was performed in the trigeminal and spinal ganglia, and in the muscles. The behavioral results show that the intramuscular injection of morphine and loperamide did not exert an antinociceptive effect in either muscle (morphine: P = .63, loperamide: P = .9). On the other hand, MOR expression was found in the ganglia but not in the muscles. This expression was on average 44% higher (95% confidence interval, 33.3-53.9) in the trigeminal ganglia than in the spinal one. The peripheral antinociceptive effect of systemically administered opioids may be due to the activation of MOR in ganglia. The greater expression of MOR in trigeminal ganglia could explain the higher antinociceptive effect of opioids in orofacial muscle pain than in spinal muscle pain. Therefore, peripheral opioids could represent a promising approach for the treatment of orofacial pain.

  17. Naringin improves zidovudine- and stavudine-induced skeletal muscle complications in rats.

    PubMed

    Adebiyi, O O; Adebiyi, O A; Owira, Pmo

    2016-03-22

    Chronic use of nucleoside reverse transcriptase inhibitors (NRTIs) in managing human immunodeficiency virus (HIV) infection has been associated with several complications. Available management options for these complications have yielded controversial results, thus the need to urgently find newer alternatives. Naringin, a plant-derived flavonoid, has been shown to possess antioxidant and antiapoptotic properties which can be exploited in managing NRTI-induced complications. This study therefore investigated the effects of naringin on some NRTI-induced complications. Forty-nine rats (200-250 g) were divided into seven groups and were orally treated with stavudine (d4T)-only, d4T + naringin, d4T + vitamin E, zidovudine (AZT)-only, AZT + naringin, AZT + vitamin E, and distilled water, respectively. Drugs were administered once daily for 56 days, and oral glucose tolerance tests conducted on day 54 of the experiments and rats were thereafter sacrificed on day 56 by halothane overdose. Plasma samples and the left gastrocnemius muscles were stored at -80°C for further analysis. There was significant glucose intolerance, insulin resistance, oxidative stress, and apoptosis in the skeletal muscles of AZT- or d4T-only-treated rats. Naringin, however, significantly reduced fasting blood glucose and fasting plasma insulin concentrations, mitigated glucose intolerance, and insulin resistance in addition to reducing malondialdehyde and carbonyl protein concentrations when coadministered with either NRTIs. Furthermore, naringin improved antioxidant enzyme activities, reduced skeletal muscle BCL-2-associated X protein expression, and improved B-cell lymphoma-2 protein expression compared to AZT- or d4T-only-treated rats. Naringin ameliorated AZT- and d4T-induced complications and therefore should be further investigated as a possible nutritional supplement in managing HIV infection. © The Author(s) 2016.

  18. Soy β-conglycinin improves glucose uptake in skeletal muscle and ameliorates hepatic insulin resistance in Goto-Kakizaki rats.

    PubMed

    Tachibana, Nobuhiko; Yamashita, Yoko; Nagata, Mayuko; Wanezaki, Satoshi; Ashida, Hitoshi; Horio, Fumihiko; Kohno, Mitsutaka

    2014-02-01

    Although the underlying mechanism is unclear, β-conglycinin (βCG), the major component of soy proteins, regulates blood glucose levels. Here, we hypothesized that consumption of βCG would normalize blood glucose levels by ameliorating insulin resistance and stimulating glucose uptake in skeletal muscles. To test our hypothesis, we investigated the antidiabetic action of βCG in spontaneously diabetic Goto-Kakizaki (GK) rats. Our results revealed that plasma adiponectin levels and adiponectin receptor 1 messenger RNA expression in skeletal muscle were higher in βCG-fed rats than in casein-fed rats. Phosphorylation of adenosine monophosphate-activated protein kinase (AMP kinase) but not phosphatidylinositol-3 kinase was activated in βCG-fed GK rats. Subsequently, βCG increased translocation of glucose transporter 4 to the plasma membrane. Unlike the results in skeletal muscle, the increase in adiponectin receptor 1 did not lead to AMP kinase activation in the liver of βCG-fed rats. The down-regulation of sterol regulatory element-binding factor 1, which is induced by low insulin levels, promoted the increase in hepatic insulin receptor substrate 2 expression. Based on these findings, we concluded that consumption of soy βCG improves glucose uptake in skeletal muscle via AMP kinase activation and ameliorates hepatic insulin resistance and that these actions may help normalize blood glucose levels in GK rats. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Postinjury Exercise and Platelet-Rich Plasma Therapies Improve Skeletal Muscle Healing in Rats But Are Not Synergistic When Combined.

    PubMed

    Contreras-Muñoz, Paola; Torrella, Joan Ramon; Serres, Xavier; Rizo-Roca, David; De la Varga, Meritxell; Viscor, Ginés; Martínez-Ibáñez, Vicente; Peiró, José Luis; Järvinen, Tero A H; Rodas, Gil; Marotta, Mario

    2017-07-01

    Skeletal muscle injuries are the most common sports-related injury and a major concern in sports medicine. The effect of platelet-rich plasma (PRP) injections on muscle healing is still poorly understood, and current data are inconclusive. To evaluate the effects of an ultrasound-guided intramuscular PRP injection, administered 24 hours after injury, and/or posttraumatic daily exercise training for 2 weeks on skeletal muscle healing in a recently established rat model of skeletal muscle injury that highly mimics the muscle trauma seen in human athletes. Controlled laboratory study. A total of 40 rats were assigned to 5 groups. Injured rats (medial gastrocnemius injury) received a single PRP injection (PRP group), daily exercise training (Exer group), or a combination of a single PRP injection and daily exercise training (PRP-Exer group). Untreated and intramuscular saline-injected animals were used as controls. Muscle force was determined 2 weeks after muscle injury, and muscles were harvested and evaluated by means of histological assessment and immunofluorescence microscopy. Both PRP (exhibiting 4.8-fold higher platelet concentration than whole blood) and exercise training improved muscle strength (maximum tetanus force, TetF) in approximately 18%, 20%, and 30% of rats in the PRP, PRP-Exer, and Exer groups, respectively. Specific markers of muscle regeneration (developmental myosin heavy chain, dMHC) and scar formation (collagen I) demonstrated the beneficial effect of the tested therapies in accelerating the muscle healing process in rats. PRP and exercise treatments stimulated the growth of newly formed regenerating muscle fibers (1.5-, 2-, and 2.5-fold increase in myofiber cross-sectional area in PRP, PRP-Exer, and Exer groups, respectively) and reduced scar formation in injured skeletal muscle (20%, 34%, and 41% of reduction in PRP, PRP-Exer, and Exer groups, respectively). Exercise-treated muscles (PRP-Exer and Exer groups) had significantly reduced

  20. Feed artery role in blood flow control to rat hindlimb skeletal muscles.

    PubMed Central

    Williams, D A; Segal, S S

    1993-01-01

    1. Vasomotor tone and reactivity were investigated in feed arteries of the extensor digitorum longus and soleus muscles. Feed arteries are located external to the muscle and give rise to the microcirculation within each muscle. Resting diameter was smaller in feed arteries of the soleus muscle. 2. Feed arteries of both muscles dilated to similar peak values with sodium nitroprusside. 3. Micropressure measurements demonstrated resistance to blood flow in the feed arteries supplying both muscles. Feed arteries supplying soleus muscle demonstrated greater resistance to blood flow compared to feed arteries of extensor digitorum longus muscle. 4. Greater resting tone and larger pressure drop for feed arteries of soleus muscle suggest greater range of flow control compared to feed arteries of extensor digitorum longus muscle. 5. In both muscles, feed artery diameter increased with muscle contraction (functional dilatation) and in response to transient ischaemia (reactive dilatation). The magnitude of these responses varied between muscles. 6. Feed arteries are active sites of blood flow control in extensor digitorum longus and soleus muscles of the rat. These muscles differ in fibre type and recruitment properties. Differences in feed artery reactivity may contribute to differences in blood flow between these muscles observed at rest and during exercise. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8246199

  1. Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Coupling Efficiency in Chicken and Rat Skeleton Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.

    1999-01-01

    Expression of the beta-adrenergic receptor (bAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the bAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the bAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. Thus, in chicken muscle cells an enhanced level of contraction reduced the coupling efficiency of bAR for cyclic AMP production by approximately 55% compared to controls. In contrast, the bAR population in rat muscle cells was increased by approximately 25% by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was also increased by almost two-fold. Thus, in rat muscle cells an enhanced level of contraction increased the coupling efficiency of bAR for cyclic AMP production by approximately 50% compared to controls. The basal levels of intracellular cyclic AMP in both rat muscle cells and chicken muscle cells were not affected by electrical stimulation.

  2. Myotoxic effects of clenbuterol in the rat heart and soleus muscle.

    PubMed

    Burniston, Jatin G; Ng, Yeelan; Clark, William A; Colyer, John; Tan, Lip-Bun; Goldspink, David F

    2002-11-01

    Myocyte-specific necrosis in the heart and soleus muscle of adult male Wistar rats was investigated in response to a single subcutaneous injection of the anabolic beta(2)-adrenergic receptor agonist clenbuterol. Necrosis was immunohistochemically detected by administration of a myosin antibody 1 h before the clenbuterol challenge and quantified by using image analysis. Clenbuterol-induced myocyte necrosis occurred against a background of zero damage in control muscles. In the heart, the clenbuterol-induced necrosis was not uniform, being more abundant in the left subendocardium and peaking 2.4 mm from the apex. After position (2.4 mm from the apex), dose (5 mg clenbuterol/kg), and sampling time (12 h) were optimized, maximum cardiomyocyte necrosis was found to be 1.0 +/- 0.2%. In response to the same parameters (i.e., 5 mg of clenbuterol and sampled at 12 h), skeletal myocyte necrosis was 4.4 +/- 0.8% in the soleus. These data show significant myocyte-specific necrosis in the heart and skeletal muscle of the rat. Such irreversible damage in the heart suggests that clenbuterol may be damaging to long-term health.

  3. A model for hypokinesia: Effects on muscle atrophy in the rat

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Deavers, D. R.; Meininger, G. A.; Davis, T. P.

    1980-01-01

    Hypokinesia in the hindlimbs of rats was induced by suspension; a newly developed harness system was used. The animal was able to use its forelimbs to maneuver, within a 140 deg arc, to obtain food and water and to permit limited grooming of the forequarters. The hindlimbs were nonload bearing for 7 days; following a 7-day period of hypodynamia, selected animals were placed in metabolic cages for 7 days to study recovery from hypokinesia. During the 7-day period of hypokinesia there was evidence of muscle atrophy. Gastrocnemius weight decreased, renal papillary urea content increased, and daily urinary losses of NH3 and 3-methylhistidine increased. During the 7-day recovery period muscle mass and excretion rate of urea, NH3 and 3-methylhistidine returned to control levels. Calcium balance was positive throughout the 7-day period of hypokinesia. Hypertrophy of the adrenals suggested the occurrence of some level of stress despite the apparent behavioral adjustment to the suspension harness. It was concluded that significant muscle atrophy and parallel changes in nitrogen metabolism occur in suspended rats and these changes are readily reversible.

  4. Low-intensity aerobic exercise training: inhibition of skeletal muscle atrophy in high-fat-diet-induced ovariectomized rats.

    PubMed

    Kim, Hye Jin; Lee, Won Jun

    2017-09-30

    Postmenopausal women are highly susceptible to diseases, such as obesity, type 2 diabetes, osteoporosis, or skeletal muscle atrophy and many people recognize the need for regular physical activity. Aerobic exercise training is known to improve the oxidative capacity and insulin sensitivity of skeletal muscles. This study aimed to investigate the role of low-intensity aerobic exercise training on skeletal muscle protein degradation or synthesis in the plantaris muscles of high-fat-fed ovariectomized rats. Ovariectomized female rats were divided into two groups: a high-fat diet-sedentary group (HFD), and a high-fat diet-aerobic exercise group (HFD+EX). The exercise group exercised aerobically on a treadmill 5 days/week for 8 weeks. The rats progressively ran 30 min/day at 15 m/min, up to 40 min/day at 18 m/min, 0% slope, in the last 4 weeks. Although aerobic exercise led to significantly increased AMP-activated protein kinase (AMPK) phosphorylation at Thr172, phosphorylation of the mammalian target of rapamycin (mTOR) substrate Thr389 S6K1 level did not decrease. Additionally, even though Akt activity did not increase at Ser473, the atrogin-1 level significantly decreased in the exercise group compared to the non-exercise group. Immunohistochemical staining revealed that high-fat-induced TSC2 protein expression was eliminated in response to aerobic exercise. These results suggest that aerobic exercise can inhibit skeletal muscle protein degradation, but it cannot increase protein synthesis in the plantaris muscle of high-fat-fed ovariectomized rats. Our findings have implications in understanding skeletal muscle mass maintenance with low intensity aerobic exercise in post-menopausal women. ©2017 The Korean Society for Exercise Nutrition

  5. Gene Expression and Correlation of Pten and Fabp4 in Liver, Muscle, and Adipose Tissues of Type 2 Diabetes Rats.

    PubMed

    Su, Di; Zhang, Chuan-Ling; Gao, Ying-Chun; Liu, Xiao-Ying; Li, Cai-Ping; Huangfu, Jian; Xiao, Rui

    2015-11-22

    The aim of this work was to study the Fabp4 and Pten gene expression and correlation in the liver, muscle, and adipose tissues of type 2 diabetes mellitus (T2DM) rats. Male Wistar rats (8 weeks old) were randomly divided into 2 groups (n=12/group): a control group fed a normal diet for 8 weeks and an experimental group fed a high-fat, high-sugar diet for 8 weeks and that received 25 mg/kg streptozotocin by intraperitoneal injection to induce T2DM. The random blood glucose, fasting blood glucose, and fasting insulin levels were measured. The expression of Pten and Fabp4 in the liver, muscle, and epididymal adipose tissues was estimated by real-time quantitative PCR. Pearson correlation coefficient analysis was used to investigate the expression correlation between Pten and Fabp4 in T2DM rats. The gene expressions of Pten and Fabp4 in the liver, muscle, and adipose tissues of T2DM rats were all significantly higher than those in the control group (P<0.05). Pten was highly expressed in the muscles and Fabp4 was highly expressed in muscle and adipose tissues. Furthermore, expressions of Fabp4 and Pten in the muscle and adipose tissues of T2DM rats were positively correlated (P<0.05), but not in the liver. The increased expression of PTEN and FABP4 in the adipose and muscles of T2DM rats may play an important role in the insulin resistance of T2DM. However, the mechanism by which these 2 genes function in T2DM needs further study.

  6. Acute antioxidant supplementation and skeletal muscle vascular conductance in aged rats: role of exercise and fiber type.

    PubMed

    Hirai, Daniel M; Copp, Steven W; Schwagerl, Peter J; Haub, Mark D; Poole, David C; Musch, Timothy I

    2011-04-01

    Age-related increases in oxidative stress contribute to impaired skeletal muscle vascular control. However, recent evidence indicates that antioxidant treatment with tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl) attenuates flow-mediated vasodilation in isolated arterioles from the highly oxidative soleus muscle of aged rats. Whether antioxidant treatment with tempol evokes similar responses in vivo at rest and during exercise in senescent individuals and whether this effect varies based on muscle fiber type composition are unknown. We tested the hypothesis that redox modulation via acute systemic tempol administration decreases vascular conductance (VC) primarily in oxidative hindlimb locomotor muscles at rest and during submaximal whole body exercise (treadmill running at 20 m/min, 5% grade) in aged rats. Eighteen old (25-26 mo) male Fischer 344 x Brown Norway rats were assigned to either rest (n = 8) or exercise (n = 10) groups. Regional VC was determined via radiolabeled microspheres before and after intra-arterial administration of tempol (302 μmol/kg). Tempol decreased mean arterial pressure significantly by 9% at rest and 16% during exercise. At rest, similar VC in 26 out of 28 individual hindlimb muscles or muscle parts following tempol administration compared with control resulted in unchanged total hindlimb muscle VC (control: 0.18 ± 0.02; tempol: 0.17 ± 0.05 ml·min(-1)·100 g(-1)·mmHg(-1); P > 0.05). During exercise, all individual hindlimb muscles or muscle parts irrespective of fiber type composition exhibited either an increase or no change in VC with tempol (i.e., ↑11 and ↔17 muscles or muscle parts), such that total hindlimb VC increased by 25% (control: 0.93 ± 0.04; tempol: 1.15 ± 0.09 ml·min(-1)·100 g(-1)·mmHg(-1); P ≤ 0.05). These results demonstrate that acute systemic administration of the antioxidant tempol significantly impacts the control of regional vascular tone in vivo presumably via redox modulation and improves

  7. Changes in calmodulin concentration and cyclic 3',5'-nucleotide phosphodiesterase activity in skeletal muscle of hyper- and hypothyroid rats.

    PubMed

    Mano, T; Iwase, K; Yoshimochi, I; Sawai, Y; Oda, N; Nishida, Y; Mokuno, T; Kotake, M; Nakai, A; Hayakawa, N

    1995-08-01

    Hyper- and hypothyroid states occasionally induce skeletal muscle dysfunction i.e. periodic paralysis and thyroid myopathy. The etiology of these diseases remains unclear, but several findings suggest that the catecholamine-beta-receptor-cAMP system or other messenger systems are disturbed in these diseases. In this context, we evaluated changes in the cyclic 3',5'-nucleotide metabolic enzyme, cyclic 3',5'-nucleotide phosphodiesterase (PDE) and calmodulin concentrations in skeletal muscles of hyper- and hypothyroid rats. Activities of cyclic AMP-PDE were low in skeletal muscle both from hyper- and hypothyroid rats, and calmodulin concentration was high in hyperthyroid and low in hypothyroid rats, as compared with normal rats. DE-52 column chromatographic analysis showed that the cGMP hydrolytic activity in peak I and the cAMP hydrolytic activity in peak II were decreased in hypothyroid rats, whereas cAMP hydrolytic activity in peak III was unchanged. The cAMP hydrolytic activity in peak III was decreased in hyperthyroid rats, but the activities in peaks I and II were unchanged. These findings indicate that cAMP and calmodulin may have some role in skeletal muscle function in the hyperthyroid state, and that cAMP and calmodulin-dependent metabolism may be suppressed in the hypothyroid state.

  8. Effects of continuous low-carbohydrate diet after long-term exercise on GLUT-4 protein content in rat skeletal muscle.

    PubMed

    Kubota, M; Koshinaka, K; Kawata, Y; Koike, T; Oshida, Y

    2008-01-01

    Stimulation of AMPK and decreased glycogen levels in skeletal muscle have a deep involvement in enhanced insulin action and GLUT-4 protein content after exercise training. The present study examined the chronic effects of a continuous low-carbohydrate diet after long-term exercise on GLUT-4 protein content, glycogen content, AMPK, and insulin signaling in skeletal muscle. Rats were divided randomly into four groups: normal chow diet sedentary (N-Sed), low carbohydrate diet sedentary (L-Sed), normal chow diet exercise (N-Ex), and low carbohydrate diet exercise (L-Ex) groups. Rats in the exercise groups (N-Ex and L-Ex) were exercised by swimming for 6 hours/day in two 3-hour bouts separated by 45 minutes of rest. The 10-day exercise training resulted in a significant increase in the GLUT-4 protein content (p<0.01). Additionally, the GLUT-4 protein content in L-Ex rats was increased by 29% above that in N-Ex rats (p<0.01). Finally, the glycogen content in skeletal muscle of L-Ex rats was decreased compared with that of N-Ex rats. Taken together, we suggest that the maintenance of glycogen depletion after exercise by continuous low carbohydrate diet results in the increment of the GLUT-4 protein content in skeletal muscle.

  9. Exercise training decreases NADPH oxidase activity and restores skeletal muscle mass in heart failure rats.

    PubMed

    Cunha, Telma F; Bechara, Luiz R G; Bacurau, Aline V N; Jannig, Paulo R; Voltarelli, Vanessa A; Dourado, Paulo M; Vasconcelos, Andrea R; Scavone, Cristóforo; Ferreira, Júlio C B; Brum, Patricia C

    2017-04-01

    We have recently demonstrated that NADPH oxidase hyperactivity, NF-κB activation, and increased p38 phosphorylation lead to atrophy of glycolytic muscle in heart failure (HF). Aerobic exercise training (AET) is an efficient strategy to counteract skeletal muscle atrophy in this syndrome. Therefore, we tested whether AET would regulate muscle redox balance and protein degradation by decreasing NADPH oxidase hyperactivity and reestablishing NF-κB signaling, p38 phosphorylation, and proteasome activity in plantaris muscle of myocardial infarcted-induced HF (MI) rats. Thirty-two male Wistar rats underwent MI or fictitious surgery (SHAM) and were randomly assigned into untrained (UNT) and trained (T; 8 wk of AET on treadmill) groups. AET prevented HF signals and skeletal muscle atrophy in MI-T, which showed an improved exercise tolerance, attenuated cardiac dysfunction and increased plantaris fiber cross-sectional area. To verify the role of inflammation and redox imbalance in triggering protein degradation, circulating TNF-α levels, NADPH oxidase profile, NF-κB signaling, p38 protein levels, and proteasome activity were assessed. MI-T showed a reduced TNF-α levels, NADPH oxidase activity, and Nox2 mRNA expression toward SHAM-UNT levels. The rescue of NADPH oxidase activity induced by AET in MI rats was paralleled by reducing nuclear binding activity of the NF-κB, p38 phosphorylation, atrogin-1, mRNA levels, and 26S chymotrypsin-like proteasome activity. Taken together our data provide evidence for AET improving plantaris redox homeostasis in HF associated with a decreased NADPH oxidase, redox-sensitive proteins activation, and proteasome hyperactivity further preventing atrophy. These data reinforce the role of AET as an efficient therapy for muscle wasting in HF. NEW & NOTEWORTHY This study demonstrates, for the first time, the contribution of aerobic exercise training (AET) in decreasing muscle NADPH oxidase activity associated with reduced reactive oxygen

  10. Dissociation between PGC-1alpha and GLUT-4 expression in skeletal muscle of rats fed a high-fat diet.

    PubMed

    Higashida, Kazuhiko; Higuchi, Mitsuru; Terada, Shin

    2009-12-01

    It has recently been reported that a 4-wk high-fat diet gradually increases skeletal muscle peroxisome proliferator activated receptor (PPAR) gamma coactivator-1alpha (PGC-1alpha) protein content, which has been suggested to regulate GLUT-4 gene transcription. However, it has not been reported that a high-fat diet enhances GLUT-4 mRNA expression and protein content in skeletal muscle, suggesting that an increase in PGC-1alpha protein content is not sufficient to induce muscle GLUT-4 biogenesis in a high-fat fed animal. Therefore, we first evaluated the relationship between PGC-1alpha and GLUT-4 expression in skeletal muscle of rats fed a high-fat diet for 4 wk. The PGC-1alpha protein content in rat epitrochlearis muscle significantly increased by twofold after the 4-wk high-fat diet feeding. However, the high-fat diet had no effect on GLUT-4 protein content and induced a 30% decrease in GLUT-4 mRNA expression in rat skeletal muscle (p<0.05). To clarify the mechanism by which a high-fat diet downregulates GLUT-4 mRNA expression, we next examined the effect of PPARdelta activation, which is known to occur in response to a high-fat diet, on GLUT-4 mRNA expression in L6 myotubes. Incubation with 500 nM GW501516 (PPARdelta activator) for 24 h significantly decreased GLUT-4 mRNA in L6 myotubes. Taken together, these findings suggest that a high-fat diet downregulates GLUT-4 mRNA, possibly through the activation of PPARdelta, despite an increase in PGC-1alpha protein content in rat skeletal muscle, and that a posttranscriptional regulatory mechanism maintains GLUT-4 protein content in skeletal muscle of rats fed a high-fat diet.

  11. A mitochondrial-targeted ubiquinone modulates muscle lipid profile and improves mitochondrial respiration in obesogenic diet-fed rats.

    PubMed

    Coudray, Charles; Fouret, Gilles; Lambert, Karen; Ferreri, Carla; Rieusset, Jennifer; Blachnio-Zabielska, Agnieszka; Lecomte, Jérôme; Ebabe Elle, Raymond; Badia, Eric; Murphy, Michael P; Feillet-Coudray, Christine

    2016-04-14

    The prevalence of the metabolic syndrome components including abdominal obesity, dyslipidaemia and insulin resistance is increasing in both developed and developing countries. It is generally accepted that the development of these features is preceded by, or accompanied with, impaired mitochondrial function. The present study was designed to analyse the effects of a mitochondrial-targeted lipophilic ubiquinone (MitoQ) on muscle lipid profile modulation and mitochondrial function in obesogenic diet-fed rats. For this purpose, twenty-four young male Sprague-Dawley rats were divided into three groups and fed one of the following diets: (1) control, (2) high fat (HF) and (3) HF+MitoQ. After 8 weeks, mitochondrial function markers and lipid metabolism/profile modifications in skeletal muscle were measured. The HF diet was effective at inducing the major features of the metabolic syndrome--namely, obesity, hepatic enlargement and glucose intolerance. MitoQ intake prevented the increase in rat body weight, attenuated the increase in adipose tissue and liver weights and partially reversed glucose intolerance. At the muscle level, the HF diet induced moderate TAG accumulation associated with important modifications in the muscle phospholipid classes and in the fatty acid composition of total muscle lipid. These lipid modifications were accompanied with decrease in mitochondrial respiration. MitoQ intake corrected the lipid alterations and restored mitochondrial respiration. These results indicate that MitoQ protected obesogenic diet-fed rats from some features of the metabolic syndrome through its effects on muscle lipid metabolism and mitochondrial activity. These findings suggest that MitoQ is a promising candidate for future human trials in the metabolic syndrome prevention.

  12. Effect of maternal hypothyroidism during pregnancy on insulin resistance, lipid accumulation and mitochondrial dysfunction in skeletal muscle of fetal rats.

    PubMed

    Xia, Tongjia; Zhang, Xue; Wang, Youmin; Deng, Datong

    2018-05-21

    This study aimed to investigate the effect of maternal hypothyroidism during pregnancy on thyroid function of the fetal rat. Female Sprague-Dawley rats were randomized into two groups. PTU group received propylthiouracil (PTU) in drinking water for 6 weeks (n = 90), normal group received drinking normal water (n = 50). The pregnant rats were obtained and had a cesarean-section to get at gestational age of 8.5 d, 13d and 21 d, following blood samples and skeletal muscle were obtained from fetal rats. Levels of thyroid hormone, insulin, mitochondrial protein and adipokines were detected using ELISA. Western blotting was performed to analyze mitochondria and insulin signal transduction-related protein in fetal rat skeletal muscle. Immunostaining of periodic acid-Schiff (PAS) and Oil Red O was used to observe accumulation of muscle glycogen and lipid in the fetal rat. The results showed that levels of thyroid hormone, insulin, insulin signal transduction-related protein, mitochondrial protein and adipokines increased with the fetus developed, but had no statistical differences in PTU the group compared to the normal group. In conclusion, pregnant rats with hypothyroidism have not an influence on insulin resistance, lipid accumulation and mitochondrial dysfunction in skeletal muscle of fetal rats. ©2018 The Author(s).

  13. TRPV1 channel-mediated bilateral allodynia induced by unilateral masseter muscle inflammation in rats.

    PubMed

    Simonic-Kocijan, Suncana; Zhao, Xuehong; Liu, Wen; Wu, Yuwei; Uhac, Ivone; Wang, KeWei

    2013-12-30

    Pain in masticatory muscles is among the most prominent symptoms of temperomandibular disorders (TMDs) that have diverse and complex etiology. A common complaint of TMD is that unilateral pain of craniofacial muscle can cause a widespread of bilateral pain sensation, although the underlying mechanism remains unknown. To investigate whether unilateral inflammation of masseter muscle can cause a bilateral allodynia, we generated masseter muscle inflammation induced by unilateral injection of complete Freund's adjuvant (CFA) in rats, and measured the bilateral head withdrawal threshold at different time points using a von Frey anesthesiometer. After behavioral assessment, both right and left trigeminal ganglia (TRG) were dissected and examined for histopathology and transient receptor potential vanilloid 1 (TRPV1) mRNA expression using quantitative real-time PCR analysis. A significant increase in TRPV1 mRNA expression occurred in TRG ipsilateral to CFA injected masseter muscle, whereas no significant alteration in TRPV1 occurred in the contralateral TRG. Interestingly, central injection of TRPV1 antagonist 5-iodoresiniferatoxin into the hippocampus significantly attenuated the head withdrawal response of both CFA injected and non-CFA injected contralateral masseter muscle. Our findings show that unilateral inflammation of masseter muscle is capable of inducing bilateral allodynia in rats. Upregulation of TRPV1 at the TRG level is due to nociception caused by inflammation, whereas contralateral nocifensive behavior in masticatory muscle nociception is likely mediated by central TRPV1, pointing to the involvement of altered information processing in higher centers.

  14. Glutamine supplementation stimulates protein-synthetic and inhibits protein-degradative signaling pathways in skeletal muscle of diabetic rats.

    PubMed

    Lambertucci, Adriana C; Lambertucci, Rafael H; Hirabara, Sandro M; Curi, Rui; Moriscot, Anselmo S; Alba-Loureiro, Tatiana C; Guimarães-Ferreira, Lucas; Levada-Pires, Adriana C; Vasconcelos, Diogo A A; Sellitti, Donald F; Pithon-Curi, Tania C

    2012-01-01

    In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes.

  15. Glutamine Supplementation Stimulates Protein-Synthetic and Inhibits Protein-Degradative Signaling Pathways in Skeletal Muscle of Diabetic Rats

    PubMed Central

    Lambertucci, Adriana C.; Lambertucci, Rafael H.; Hirabara, Sandro M.; Curi, Rui; Moriscot, Anselmo S.; Alba-Loureiro, Tatiana C.; Guimarães-Ferreira, Lucas; Levada-Pires, Adriana C.; Vasconcelos, Diogo A. A.; Sellitti, Donald F.; Pithon-Curi, Tania C.

    2012-01-01

    In this study, we investigated the effect of glutamine (Gln) supplementation on the signaling pathways regulating protein synthesis and protein degradation in the skeletal muscle of rats with streptozotocin (STZ)-induced diabetes. The expression levels of key regulatory proteins in the synthetic pathways (Akt, mTOR, GSK3 and 4E-BP1) and the degradation pathways (MuRF-1 and MAFbx) were determined using real-time PCR and Western blotting in four groups of male Wistar rats; 1) control, non-supplemented with glutamine; 2) control, supplemented with glutamine; 3) diabetic, non-supplemented with glutamine; and 4) diabetic, supplemented with glutamine. Diabetes was induced by the intravenous injection of 65 mg/kg bw STZ in citrate buffer (pH 4.2); the non-diabetic controls received only citrate buffer. After 48 hours, diabetes was confirmed in the STZ-treated animals by the determination of blood glucose levels above 200 mg/dL. Starting on that day, a solution of 1 g/kg bw Gln in phosphate buffered saline (PBS) was administered daily via gavage for 15 days to groups 2 and 4. Groups 1 and 3 received only PBS for the same duration. The rats were euthanized, and the soleus muscles were removed and homogenized in extraction buffer for the subsequent measurement of protein and mRNA levels. The results demonstrated a significant decrease in the muscle Gln content in the diabetic rats, and this level increased toward the control value in the diabetic rats receiving Gln. In addition, the diabetic rats exhibited a reduced mRNA expression of regulatory proteins in the protein synthesis pathway and increased expression of those associated with protein degradation. A reduction in the skeletal muscle mass in the diabetic rats was observed and was alleviated partially with Gln supplementation. The data suggest that glutamine supplementation is potentially useful for slowing the progression of muscle atrophy in patients with diabetes. PMID:23239980

  16. Effect of recovery mode following hind-limb suspension on soleus muscle composition in the rat

    NASA Technical Reports Server (NTRS)

    McNulty, A. L.; Otto, A. J.; Kasper, C. E.; Thomas, D. P.

    1992-01-01

    The purpose of this study was to compare the effects of two different recovery modes from hind-limb suspension-induced hypodynamia on whole body and muscle (soleus) growth as well as soleus composition and size changes of different fiber types within this same muscle. Following 28 days of tail-suspension, rats were returned to their cages and sedentarily recovered (HS), or were exercised by running on a treadmill 5 days/wk, at progressively increasing workloads (HR) for one month. Sedentary and running control groups of animals (CS, CR) were also evaluated for comparative purposes. The exercise program, which was identical for CR and HR groups, had no effect on body wt., soleus wt., soleus muscle composition or fiber size in CR rats. Atrophied soleus muscle and reduced soleus wt./body wt. ratio (both 60% of control) had returned to control values by day 7 of recovery in both suspended groups despite the fact that whole body wt. gain was significantly reduced (p less than 0.05) in HR as compared to HS rats. Atrophied soleus Type I fiber mean cross-sectional area in both HR and HS groups demonstrated similar and significant (p less than 0.01) increases during recovery. Increases in Type IIa and IIc fiber area during this same period were significant only in the HR group. While the percentage area of muscle composed of Type I fibers increased in both hypodynamic groups during recovery, the reduction in area percentage of muscle made up of Type IIa fibers was again only significant in the HR group.(ABSTRACT TRUNCATED AT 250 WORDS).

  17. Automated muscle fiber type population analysis with ImageJ of whole rat muscles using rapid myosin heavy chain immunohistochemistry.

    PubMed

    Bergmeister, Konstantin D; Gröger, Marion; Aman, Martin; Willensdorfer, Anna; Manzano-Szalai, Krisztina; Salminger, Stefan; Aszmann, Oskar C

    2016-08-01

    Skeletal muscle consists of different fiber types which adapt to exercise, aging, disease, or trauma. Here we present a protocol for fast staining, automatic acquisition, and quantification of fiber populations with ImageJ. Biceps and lumbrical muscles were harvested from Sprague-Dawley rats. Quadruple immunohistochemical staining was performed on single sections using antibodies against myosin heavy chains and secondary fluorescent antibodies. Slides were scanned automatically with a slide scanner. Manual and automatic analyses were performed and compared statistically. The protocol provided rapid and reliable staining for automated image acquisition. Analyses between manual and automatic data indicated Pearson correlation coefficients for biceps of 0.645-0.841 and 0.564-0.673 for lumbrical muscles. Relative fiber populations were accurate to a degree of ± 4%. This protocol provides a reliable tool for quantification of muscle fiber populations. Using freely available software, it decreases the required time to analyze whole muscle sections. Muscle Nerve 54: 292-299, 2016. © 2016 Wiley Periodicals, Inc.

  18. Scaling of muscle architecture and fiber types in the rat hindlimb.

    PubMed

    Eng, Carolyn M; Smallwood, Laura H; Rainiero, Maria Pia; Lahey, Michele; Ward, Samuel R; Lieber, Richard L

    2008-07-01

    The functional capacity of a muscle is determined by its architecture and metabolic properties. Although extensive analyses of muscle architecture and fiber type have been completed in a large number of muscles in numerous species, there have been few studies that have looked at the interrelationship of these functional parameters among muscles of a single species. Nor have the architectural properties of individual muscles been compared across species to understand scaling. This study examined muscle architecture and fiber type in the rat (Rattus norvegicus) hindlimb to examine each muscle's functional specialization. Discriminant analysis demonstrated that architectural properties are a greater predictor of muscle function (as defined by primary joint action and anti-gravity or non anti-gravity role) than fiber type. Architectural properties were not strictly aligned with fiber type, but when muscles were grouped according to anti-gravity versus non-anti-gravity function there was evidence of functional specialization. Specifically, anti-gravity muscles had a larger percentage of slow fiber type and increased muscle physiological cross-sectional area. Incongruities between a muscle's architecture and fiber type may reflect the variability of functional requirements on single muscles, especially those that cross multiple joints. Additionally, discriminant analysis and scaling of architectural variables in the hindlimb across several mammalian species was used to explore whether any functional patterns could be elucidated within single muscles or across muscle groups. Several muscles deviated from previously described muscle architecture scaling rules and there was large variability within functional groups in how muscles should be scaled with body size. This implies that functional demands placed on muscles across species should be examined on the single muscle level.

  19. Single molecular image of cytosolic free Ca2+ of skeletal muscle cells in rats pre- and post-exercise-induced fatigue

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhang, Heming; Zhao, Yanping; Liu, Zhiming

    2009-08-01

    A growing body of literature indicated the cytosolic free Ca2+ concentration of skeletal muscle cells changes significantly during exercise-induced fatigue. But it is confusing whether cytosolic free Ca2+ concentration increase or decrease. Furthermore, current researches mainly adopt muscle tissue homogenate as experiment material, but the studies based on cellular and subcellular level is seldom. This study is aimed to establish rat skeletal muscle cell model of exercise-induced fatigue, and confirm the change of cytosolic free Ca2+ concentration of skeletal muscle cells in rats preand post- exercise-induced fatigue. In this research, six male Wistar rats were randomly divided into two groups: control group (n=3) and exercise-induced fatigue group (n=3). The former group were allowed to freely move and the latter were forced to loaded swimming to exhaustive. Three days later, all the rats were sacrificed, the muscle tissue from the same site of skeletal muscle were taken out and digested to cells. After primary culture of the two kinds of skeletal muscle cells from tissue, a fluorescent dye-Fluo-3 AM was used to label the cytosolic free Ca2+. The fluorescent of Ca2+ was recorded by confocal laser scanning microscopy. The results indicated that, the Ca2+ fluorescence intensity of cells from the rat of exercise-induced fatigue group was significantly higher than those in control group. In conclusion, cytosolic free Ca2+ concentration of skeletal muscle cells has a close relation with exercise-induced fatigue, and the increase of cytosolic free Ca2+ concentration may be one of the important factors of exercise-induced fatigue.

  20. Insulin alleviates degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system in septic rats.

    PubMed

    Chen, Qiyi; Li, Ning; Zhu, Weiming; Li, Weiqin; Tang, Shaoqiu; Yu, Wenkui; Gao, Tao; Zhang, Juanjuan; Li, Jieshou

    2011-06-03

    Hypercatabolism is common under septic conditions. Skeletal muscle is the main target organ for hypercatabolism, and this phenomenon is a vital factor in the deterioration of recovery in septic patients. In skeletal muscle, activation of the ubiquitin-proteasome system plays an important role in hypercatabolism under septic status. Insulin is a vital anticatabolic hormone and previous evidence suggests that insulin administration inhibits various steps in the ubiquitin-proteasome system. However, whether insulin can alleviate the degradation of skeletal muscle protein by inhibiting the ubiquitin-proteasome system under septic condition is unclear. This paper confirmed that mRNA and protein levels of the ubiquitin-proteasome system were upregulated and molecular markers of skeletal muscle proteolysis (tyrosine and 3-methylhistidine) simultaneously increased in the skeletal muscle of septic rats. Septic rats were infused with insulin at a constant rate of 2.4 mU.kg-1.min-1 for 8 hours. Concentrations of mRNA and proteins of the ubiquitin-proteasome system and molecular markers of skeletal muscle proteolysis were mildly affected. When the insulin infusion dose increased to 4.8 mU.kg-1.min-1, mRNA for ubiquitin, E2-14 KDa, and the C2 subunit were all sharply downregulated. At the same time, the levels of ubiquitinated proteins, E2-14KDa, and the C2 subunit protein were significantly reduced. Tyrosine and 3-methylhistidine decreased significantly. We concluded that the ubiquitin-proteasome system is important skeletal muscle hypercatabolism in septic rats. Infusion of insulin can reverse the detrimental metabolism of skeletal muscle by inhibiting the ubiquitin-proteasome system, and the effect is proportional to the insulin infusion dose.

  1. No effect of NOS inhibition on skeletal muscle glucose uptake during in situ hindlimb contraction in healthy and diabetic Sprague-Dawley rats.

    PubMed

    Hong, Yet Hoi; Betik, Andrew C; Premilovac, Dino; Dwyer, Renee M; Keske, Michelle A; Rattigan, Stephen; McConell, Glenn K

    2015-05-15

    Nitric oxide (NO) has been shown to be involved in skeletal muscle glucose uptake during contraction/exercise, especially in individuals with Type 2 diabetes (T2D). To examine the potential mechanisms, we examined the effect of local NO synthase (NOS) inhibition on muscle glucose uptake and muscle capillary blood flow during contraction in healthy and T2D rats. T2D was induced in Sprague-Dawley rats using a combined high-fat diet (23% fat wt/wt for 4 wk) and low-dose streptozotocin injections (35 mg/kg). Anesthetized animals had one hindlimb stimulated to contract in situ for 30 min (2 Hz, 0.1 ms, 35 V) with the contralateral hindlimb rested. After 10 min, the NOS inhibitor, N(G)-nitro-l-arginine methyl ester (l-NAME; 5 μM) or saline was continuously infused into the femoral artery of the contracting hindlimb until the end of contraction. Surprisingly, there was no increase in skeletal muscle NOS activity during contraction in either group. Local NOS inhibition had no effect on systemic blood pressure or muscle contraction force, but it did cause a significant attenuation of the increase in femoral artery blood flow in control and T2D rats. However, NOS inhibition did not attenuate the increase in muscle capillary recruitment during contraction in these rats. Muscle glucose uptake during contraction was significantly higher in T2D rats compared with controls but, unlike our previous findings in hooded Wistar rats, NOS inhibition had no effect on glucose uptake during contraction. In conclusion, NOS inhibition did not affect muscle glucose uptake during contraction in control or T2D Sprague-Dawley rats, and this may have been because there was no increase in NOS activity during contraction. Copyright © 2015 the American Physiological Society.

  2. Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Ilyina-Kakueva, E. I.; Ellis, S.; Bain, J. L.; Slocum, G. R.; Sedlak, F. R.

    1990-01-01

    Histochemical and ultrastructural analyses were performed postflight on hind limb skeletal muscles of rats orbited for 12.5 days aboard the unmanned Cosmos 1887 biosatellite and returned to Earth 2 days before sacrifice. The antigravity adductor longus (AL), soleus, and plantaris muscles atrophied more than the non-weight-bearing extensor digitorum longus, and slow muscle fibers were more atrophic than fast fibers. Muscle fiber segmental necrosis occurred selectively in the AL and soleus muscles; primarily, macrophages and neutrophils infiltrated and phagocytosed cellular debris. Granule-rich mast cells were diminished in flight AL muscles compared with controls, indicating the mast cell secretion contributed to interstitial tissue edema. Increased ubiquitination of disrupted myofibrils implicated ubiquitin in myofilament degradation. Mitochondrial content and succinic dehydrogenase activity were normal, except for subsarcolemmal decreases. Myofibrillar ATPase activity of flight AL muscle fibers shifted toward the fast type. Absence of capillaries and extravasation of red blood cells indicated failed microcirculation. Muscle fiber regeneration from activated satellite cells was detected. About 17% of the flight AL end plates exhibited total or partial denervation. Thus, skeletal muscle weakness associated with spaceflight can result from muscle fiber atrophy and segmental necrosis, partial motor denervation, and disruption of the microcirculation.

  3. Efficacy of maslinic acid and fenbendazole on muscle larvae of Trichinella zimbabwensis in laboratory rats.

    PubMed

    Mukaratirwa, S; Gcanga, L; Kamau, J

    2016-01-01

    Trichinellosis is a zoonotic disease caused by nematode species of the genus Trichinella. Anthelmintics targeting the intestinal adults and muscle-dwelling larvae of Trichinella spp. have been tested, with limited success. This study was aimed at determining the efficacy of maslinic acid and fenbendazole on muscle larvae of Trichinella zimbabwensis in laboratory rats. Forty-two Sprague-Dawley rats, with an average weight of 270 g and 180 g for males and females respectively, were infected with T. zimbabwensis larvae. Infected rats were randomly assigned to three groups which were subjected to single treatments with each of maslinic acid, fenbendazole and a combination of both on day 25 post-infection (pi), and three groups which were subjected to double treatments with each of these drugs and a combination on days 25 and 32 pi. The untreated control group received a placebo. In single-treatment groups, the efficacy of each treatment, measured by rate of reduction in muscle larvae, was significant (P0.05). We conclude that the efficacy of maslinic acid against larval stages of T. zimbabwensis in rats was comparable to that of fenbendazole, with no side-effects observed, making maslinic acid a promising anthelmintic against larval stages of Trichinella species.

  4. Statins and fenofibrate affect skeletal muscle chloride conductance in rats by differently impairing ClC-1 channel regulation and expression

    PubMed Central

    Pierno, S; Camerino, GM; Cippone, V; Rolland, J-F; Desaphy, J-F; De Luca, A; Liantonio, A; Bianco, G; Kunic, JD; George, AL; Camerino, D Conte

    2009-01-01

    Background and purpose: Statins and fibrates can produce mild to life-threatening skeletal muscle damage. Resting chloride channel conductance (gCl), carried by the ClC-1 channel, is reduced in muscles of rats chronically treated with fluvastatin, atorvastatin or fenofibrate, along with increased resting cytosolic calcium in statin-treated rats. A high gCl, controlled by the Ca2+-dependent protein kinase C (PKC), maintains sarcolemma electrical stability and its reduction alters muscle function. Here, we investigated how statins and fenofibrate impaired gCl. Experimental approach: In rats treated with fluvastatin, atorvastatin or fenofibrate, we examined the involvement of PKC in gCl reduction by the two intracellular microelectrodes technique and ClC-1 mRNA level by quantitative real time-polymerase chain reaction. Direct drug effects were tested by patch clamp analysis on human ClC-1 channels expressed in human embryonic kidney (HEK) 293 cells. Key results: Chelerythrine, a PKC inhibitor, applied in vitro on muscle dissected from atorvastatin-treated rats fully restored gCl, suggesting the involvement of this enzyme in statin action. Chelerythrine partially restored gCl in muscles from fluvastatin-treated rats but not in those from fenofibrate-treated rats, implying additional mechanisms for gCl impairment. Accordingly, a decrease of ClC-1 channel mRNA was found in both fluvastatin-and fenofibrate-treated rat muscles. Fenofibric acid, the in vivo metabolite of fenofibrate, but not fluvastatin, rapidly reduced chloride currents in HEK 293 cells. Conclusions and implications: Our data suggest multiple mechanisms underlie the effect of statins and fenofibrate on ClC-1 channel conductance. While statins promote Ca2+-mediated PKC activation, fenofibrate directly inhibits ClC-1 channels and both fluvastatin and fenofibrate impair expression of mRNA for ClC-1. PMID:19220292

  5. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats.

    PubMed

    Ferguson, Scott K; Hirai, Daniel M; Copp, Steven W; Holdsworth, Clark T; Allen, Jason D; Jones, Andrew M; Musch, Timothy I; Poole, David C

    2013-01-15

    Dietary nitrate (NO(3)(-)) supplementation, via its reduction to nitrite (NO(2)(-)) and subsequent conversion to nitric oxide (NO) and other reactive nitrogen intermediates, reduces blood pressure and the O(2) cost of submaximal exercise in humans. Despite these observations, the effects of dietary NO(3)(-) supplementation on skeletal muscle vascular control during locomotory exercise remain unknown. We tested the hypotheses that dietary NO(3)(-) supplementation via beetroot juice (BR) would reduce mean arterial pressure (MAP) and increase hindlimb muscle blood flow in the exercising rat. Male Sprague-Dawley rats (3-6 months) were administered either NO(3)(-) (via beetroot juice; 1 mmol kg(-1) day(-1), BR n = 8) or untreated (control, n = 11) tap water for 5 days. MAP and hindlimb skeletal muscle blood flow and vascular conductance (radiolabelled microsphere infusions) were measured during submaximal treadmill running (20 m min(-1), 5% grade). BR resulted in significantly lower exercising MAP (control: 137 ± 3, BR: 127 ± 4 mmHg, P < 0.05) and blood [lactate] (control: 2.6 ± 0.3, BR: 1.9 ± 0.2 mm, P < 0.05) compared to control. Total exercising hindlimb skeletal muscle blood flow (control: 108 ± 8, BR: 150 ± 11 ml min(-1) (100 g)(-1), P < 0.05) and vascular conductance (control: 0.78 ± 0.05, BR: 1.16 ± 0.10 ml min(-1) (100 g)(-1) mmHg(-1), P < 0.05) were greater in rats that received BR compared to control. The relative differences in blood flow and vascular conductance for the 28 individual hindlimb muscles and muscle parts correlated positively with their percentage type IIb + d/x muscle fibres (blood flow: r = 0.74, vascular conductance: r = 0.71, P < 0.01 for both). These data support the hypothesis that NO(3)(-) supplementation improves vascular control and elevates skeletal muscle O(2) delivery during exercise predominantly in fast-twitch type II muscles, and provide a potential mechanism by which NO(3)(-) supplementation improves metabolic control.

  6. Changes in nerve conduction and Pi/PCr ratio during denervation-reinnervation of the gastrocsoleus muscles of rats

    NASA Technical Reports Server (NTRS)

    Lai, K. S.; Jaweed, M. M.; Seestead, R.; Herbison, G. J.; Ditunno, J. F. Jr; McCully, K.; Chance, B.

    1992-01-01

    The purpose of this investigation was to study the changes in nerve conduction and phosphate metabolites of the gastrocsoleus muscles of rats during denervation-reinnervation. Sixteen male Sprague-Dawley rats underwent unilateral crush-denervation of the left sciatic nerves at the sciatic notch. Six rats were used for measurement of motor conduction latency and action potential amplitude of the gastrocsoleus muscle by stimulating the sciatic nerve at one, two and eight weeks after nerve crush. The other ten rats were designated for evaluation of the ratio of inorganic phosphorous (Pi) to phosphocreatine (PCr) by a 31P-phosphoenergetic spectrometer at two weeks and eight weeks after nerve crush. None of the sciatic nerves showed conduction to the gastrocsoleus at one or two weeks after nerve crush. At eight weeks postcrush, the motor conduction latency returned to within normal limits, whereas the action potential amplitude was only 55% of the normal. For the eight-week period of study, the Pi/PCr ratio of the normal control muscles ranged between 0.09 +/- 0.02 and 0.11 +/- 0.02 (mean +/- SD). The denervated muscles showed an increase of Pi/PCr ratio by 54% at two weeks postcrush, compared to the respective contralateral control sides. The ratios returned to the normal value by eight weeks postcrush. In summary, these data suggested that the metabolic recovery of the crush-denervated muscle followed the same pattern as the parameters of nerve conduction.

  7. Morphological differences in skeletal muscle atrophy of rats with motor nerve and/or sensory nerve injury★

    PubMed Central

    Zhao, Lei; Lv, Guangming; Jiang, Shengyang; Yan, Zhiqiang; Sun, Junming; Wang, Ling; Jiang, Donglin

    2012-01-01

    Skeletal muscle atrophy occurs after denervation. The present study dissected the rat left ventral root and dorsal root at L4-6 or the sciatic nerve to establish a model of simple motor nerve injury, sensory nerve injury or mixed nerve injury. Results showed that with prolonged denervation time, rats with simple motor nerve injury, sensory nerve injury or mixed nerve injury exhibited abnormal behavior, reduced wet weight of the left gastrocnemius muscle, decreased diameter and cross-sectional area and altered ultrastructure of muscle cells, as well as decreased cross-sectional area and increased gray scale of the gastrocnemius muscle motor end plate. Moreover, at the same time point, the pathological changes were most severe in mixed nerve injury, followed by simple motor nerve injury, and the changes in simple sensory nerve injury were the mildest. These findings indicate that normal skeletal muscle morphology is maintained by intact innervation. Motor nerve injury resulted in larger damage to skeletal muscle and more severe atrophy than sensory nerve injury. Thus, reconstruction of motor nerves should be considered first in the clinical treatment of skeletal muscle atrophy caused by denervation. PMID:25337102

  8. [Energy reactions in the skeletal muscles of rats after short-term space flight on Kosmos-1514].

    PubMed

    Mailian, E S; Chabdarova, R N; Korzun, E I

    1988-01-01

    Ten hours after the 5-day space flight on Cosmos-1514 rats were examined for oxidative phosphorylation in mitochondria isolated from the posterior femoral muscles as well as for Krebs cycle enzymes and glycolysis in the mitochondrial and cytoplasmic fractions of the muscles. The mitochondrial respiration rate in various metabolic states was similar in flight rats and vivarium controls. After flight calculated parameters of energy efficacy of respiration as well as activity of malate dehydrogenase, isocitrate dehydrogenase and total lactate dehydrogenase remained unchanged. Unlike the flight rats, the synchronous controls showed signs of the stress-reaction: uncoupling of oxidative phosphorylation and oxalacetate inhibition of succinate dehydrogenase. Comparison of these findings with those from prolonged space flights indicates that inhibition of oxidative metabolism and glycolysis in mixed muscles which was demonstrated in the 20-day space flight does not develop immediately after launch but occurs within the time interval between mission days 6 and 18.

  9. Toxicokinetics of lambda-cyhalothrin in rats.

    PubMed

    Anadón, A; Martínez, M; Martínez, M A; Díaz, M J; Martínez-Larrañaga, M R

    2006-08-01

    The toxicokinetics of lambda-cyhalothrin after single 20 mg kg(-1) oral and 3 mg kg(-1) intravenous doses were studied in rats. Serial blood samples were obtained after oral and intravenous administration. Liver, brain, spinal cord, sciatic nerve, vas deferens, anococcygeus and myenteric plexus tissue samples were also collected. Plasma, liver, hypothalamus, cerebellum, medulla oblongata, frontal cortex, striatum, hippocampus, midbrain, spinal cord, vas deferens, anococcygeus, myenteric plexus and sciatic nerve concentrations of lambda-cyhalothrin were determined by HPLC. The plasma and tissue concentration-time data for lambda-cyhalothrin were found to fit a two-compartment open model. For lambda-cyhalothrin, the elimination half-life (T1/2beta) and the mean residence time from plasma were 7.55 and 8.55 h after i.v. and 10.27 and 14.43 h after oral administration. The total plasma clearance was not influenced by dose concentration or route and reached a value of 0.060l h(-1)kg(-1). After i.v. administration, the apparent volume of distribution and at steady state were 0.68 and 0.53l kg(-1), suggesting a diffusion of the pyrethroid into tissue. After oral administration, lambda-cyhalothrin was extensively but slowly absorbed (Tmax, 2.69 h). The oral bioavailability was found to be 67.37%. Significant differences in the kinetic parameters between nervous tissues and plasma was observed. The maximum concentrations in hypothalamus (Cmax, 24.12 microg g(-1)) and myenteric plexus (Cmax, 25.12 microg g(-1)) were about 1.5 times higher than in plasma (Cmax, 15.65 microg ml(-1)) and 1.3 times higher than in liver (Cmax, 18.42 microg ml(-1)). Nervous tissue accumulation of lambda-cyhalothrin was also reflected by the area under the concentration curve ratios of tissue/plasma (liver). The T1/2beta for lambda-cyhalothrin was significantly greater for the nerve tissues, including neuromuscular fibres, (range 12-26 and 15-34 h, after i.v. and oral doses) than for plasma (7

  10. [Energy reactions in the skeletal muscles of rats after a flight on the Kosmos-1129 biosatellite].

    PubMed

    Mailian, E S; Buravkova, L B; Kokoreva, L V

    1983-01-01

    The polarographic analysis of biological oxidation in rat skeletal muscles after the 18.5-day flight revealed changes specific for the flight animals: oxidative phosphorylation uncoupling, distinct inertness of energy accumulation 10 hrs after recovery. Tissue respiration inhibition occurred in both flight and synchronous rats suggesting the effect of other than weightlessness factors. In the flight animals the parameters of energy metabolism returned to the prelaunch level within a longer (29 days) time than in the synchronous rats (6 days). Muscles of different function (predominance of fast or slow fibers) showed similar responses of energy metabolism to weightlessness, i. e. inhibition of the intensity and decrease of the energy efficiency of oxidative processes.

  11. Hindlimb suspension reduces muscle regeneration

    NASA Technical Reports Server (NTRS)

    Mozdziak, P. E.; Truong, Q.; Macius, A.; Schultz, E.

    1998-01-01

    Exposure of juvenile skeletal muscle to a weightless environment reduces growth and satellite cell mitotic activity. However, the effect of a weightless environment on the satellite cell population during muscle repair remains unknown. Muscle injury was induced in rat soleus muscles using the myotoxic snake venom, notexin. Rats were placed into hindlimb-suspended or weightbearing groups for 10 days following injury. Cellular proliferation during regeneration was evaluated using 5-bromo-2'-deoxyuridine (BrdU) immunohistochemistry and image analysis. Hindlimb suspension reduced (P < 0.05) regenerated muscle mass, regenerated myofiber diameter, uninjured muscle mass, and uninjured myofiber diameter compared to weightbearing rats. Hindlimb suspension reduced (P < 0.05) BrdU labeling in uninjured soleus muscles compared to weight-bearing muscles. However, hindlimb suspension did not abolish muscle regeneration because myofibers formed in the injured soleus muscles of hindlimb-suspended rats, and BrdU labeling was equivalent (P > 0.10) on myofiber segments isolated from the soleus muscles of hindlimb-suspended and weightbearing rats following injury. Thus, hindlimb suspension (weightlessness) does not suppress satellite cell mitotic activity in regenerating muscles before myofiber formation, but reduces growth of the newly formed myofibers.

  12. Compensatory hypertrophy of the teres minor muscle after large rotator cuff tear model in adult male rat.

    PubMed

    Ichinose, Tsuyoshi; Yamamoto, Atsushi; Kobayashi, Tsutomu; Shitara, Hitoshi; Shimoyama, Daisuke; Iizuka, Haku; Koibuchi, Noriyuki; Takagishi, Kenji

    2016-02-01

    Rotator cuff tear (RCT) is a common musculoskeletal disorder in the elderly. The large RCT is often irreparable due to the retraction and degeneration of the rotator cuff muscle. The integrity of the teres minor (TM) muscle is thought to affect postoperative functional recovery in some surgical treatments. Hypertrophy of the TM is found in some patients with large RCTs; however, the process underlying this hypertrophy is still unclear. The objective of this study was to determine if compensatory hypertrophy of the TM muscle occurs in a large RCT rat model. Twelve Wistar rats underwent transection of the suprascapular nerve and the supraspinatus and infraspinatus tendons in the left shoulder. The rats were euthanized 4 weeks after the surgery, and the cuff muscles were collected and weighed. The cross-sectional area and the involvement of Akt/mammalian target of rapamycin (mTOR) signaling were examined in the remaining TM muscle. The weight and cross-sectional area of the TM muscle was higher in the operated-on side than in the control side. The phosphorylated Akt/Akt protein ratio was not significantly different between these sides. The phosphorylated-mTOR/mTOR protein ratio was significantly higher on the operated-on side. Transection of the suprascapular nerve and the supraspinatus and infraspinatus tendons activates mTOR signaling in the TM muscle, which results in muscle hypertrophy. The Akt-signaling pathway may not be involved in this process. Nevertheless, activation of mTOR signaling in the TM muscle after RCT may be an effective therapeutic target of a large RCT. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  13. Exercise training and return to a well-balanced diet activate the neuregulin 1/ErbB pathway in skeletal muscle of obese rats.

    PubMed

    Ennequin, Gaël; Boisseau, Nathalie; Caillaud, Kevin; Chavanelle, Vivien; Gerbaix, Maude; Metz, Lore; Etienne, Monique; Walrand, Stéphane; Masgrau, Aurélie; Guillet, Christelle; Courteix, Daniel; Niu, Airu; Li, Yi-Ping; Capel, Fréderic; Sirvent, Pascal

    2015-06-15

    Some studies suggest that neuregulin 1 (NRG1) could be involved in the regulation of skeletal muscle energy metabolism in rodents. Here we assessed whether unbalanced diet is associated with alterations of the NRG1 signalling pathway and whether exercise and diet might restore NRG1 signalling in skeletal muscle of obese rats. We show that diet-induced obesity does not impair NRG1 signalling in rat skeletal muscle. We also report that endurance training and a well-balanced diet activate the NRG1 signalling in skeletal muscle of obese rats, possibly via a new mechanism mediated by the protease ADAM17. These results suggest that some beneficial effects of physical activity and diet in obese rats could be partly explained by stimulation of the NRG1 signalling pathway. Some studies suggest that the signalling pathway of neuregulin 1 (NRG1), a protein involved in the regulation of skeletal muscle metabolism, could be altered by nutritional and exercise interventions. We hypothesized that diet-induced obesity could lead to alterations of the NRG1 signalling pathway and that chronic exercise could improve NRG1 signalling in rat skeletal muscle. To test this hypothesis, male Wistar rats received a high fat/high sucrose (HF/HS) diet for 16 weeks. At the end of this period, NRG1 and ErbB expression/activity in skeletal muscle was assessed. The obese rats then continued the HF/HS diet or were switched to a well-balanced diet. Moreover, in both groups, half of the animals also performed low intensity treadmill exercise training. After another 8 weeks, NRG1 and ErbB expression/activity in skeletal muscle were tested again. The 16 week HF/HS diet induced obesity, but did not significantly affect the NRG1/ErbB signalling pathway in rat skeletal muscle. Conversely, after the switch to a well-balanced diet, NRG1 cleavage ratio and ErbB4 amount were increased. Chronic exercise training also promoted NRG1 cleavage, resulting in increased ErbB4 phosphorylation. This result was

  14. Effect of electrical stimulation on beta-adrenergic receptor population and cyclic amp production in chicken and rat skeletal muscle cell cultures

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Strietzel, C. J.

    2000-01-01

    Expression of the beta-adrenergic receptor (betaAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the betaAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the betaAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the betaAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  15. Effect of Electrical Stimulation on Beta-Adrenergic Receptor Population and Cyclic AMP Production in Chicken and Rat Skeletal Muscle Cell Cultures

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Strietzel, Catherine J.

    2000-01-01

    Expression of the beta-adrenergic receptor (PAR) and its coupling to Adenosine 3'5' Cyclic Monophosphate (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the PAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7 d in culture, were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the PAR population was not significantly affected by electrical stimulation; however, the ability, of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the PAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.

  16. Effects of cadmium on the renal and skeletal muscle microcirculation in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Chong.

    1990-01-01

    The effects of cadmium on the arteriolar diameters of the kidney and skeletal muscle were quantified, because of the hypertensive effect of cacmium. The effect of cacmium on the constrictor response of the renal arterioles to angiotensin II (Ang II) were also assessed. In vivo preparations of the rat hydronephrotic kidney and cremaster muscle were used for direct visualization of the microvessels with intravital television microscopy. Hydronephrosis was induced in twenty-seven male Wistar-Kyoto rats (150-180 g) by unilateral ureter ligation. The hydronephrotic kidney, with intact cortical circulation and innervation, was exteriorized in a specially designed bath for microcirculation observation 6-8more » weeks following the ureter ligation. The cremaster muscle experiments were conducted in another thirty-seven male WKY rats (120-180 g). Disparate effects of cadmium were observed in these two microcirculation beds. Topical cadmium (1.35 [mu]M-0.45 mM) increased the diameters of the pre- and postglomerular vessels in the hydronephrotic kidney maximally by 15-26%. Cadmium (0.27 mM) inhibited the Ang II response of the arterioles non-competitively. However, intraperitoneally injected cadmium (2 mg/kg), which significantly increased the mean arterial pressure, did not dilate the arterioles nor alter the Ang II response. On the other hand, cadmium (13.5 [mu]M-0.72 mM) constricted the larger arterioles in the cremaster muscle (60-160 [mu]m) concentration-dependently, but not small arterioles (15-30 [mu]m). In summary, topical cadmium dilates renal arterioles and decreases their reactivity to Ang II, but constricts the larger cremaster arterioles. The disparate effects of cadmium suggest different Ca[sup 2+] utilization mechanisms in different vascular beds. The construction of the cremaster arterioles may contribute to cadmium-induced hypertension by increasing peripheral resistance.« less

  17. Calorie restriction enhances insulin-stimulated glucose uptake and Akt phosphorylation in both fast-twitch and slow-twitch skeletal muscle of 24-month-old rats.

    PubMed

    Sequea, Donel A; Sharma, Naveen; Arias, Edward B; Cartee, Gregory D

    2012-12-01

    Calorie restriction (CR) induces enhanced insulin-stimulated glucose uptake in fast-twitch (type II) muscle from old rats, but the effect of CR on slow-twitch (type I) muscle from old rats is unknown. The purpose of this study was to assess insulin-stimulated glucose uptake and phosphorylation of key insulin signaling proteins in isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from 24-month-old ad libitum fed and CR (consuming 65% of ad libitum, intake) rats. Muscles were incubated with and without 1.2 nM insulin. CR versus ad libitum rats had greater insulin-stimulated glucose uptake and Akt phosphorylation (pAkt) on T308 and S473 for both muscles incubated with insulin. GLUT4 protein abundance and phosphorylation of the insulin receptor (Y1162/1163) and AS160 (T642) were unaltered by CR in both muscles. These results implicate enhanced pAkt as a potential mechanism for the CR-induced increase in insulin-stimulated glucose uptake by the fast-twitch epitrochlearis and slow-twitch soleus of old rats.

  18. Transient gestational and neonatal hypothyroidism-induced specific changes in androgen receptor expression in skeletal and cardiac muscles of adult rat.

    PubMed

    Annapoorna, K; Anbalagan, J; Neelamohan, R; Vengatesh, G; Stanley, J; Amudha, G; Aruldhas, M M

    2013-03-01

    The present study aims to identify the association between androgen status and metabolic activity in skeletal and cardiac muscles of adult rats with transient gestational/neonatal-onset hypothyroidism. Pregnant and lactating rats were made hypothyroid by exposing to 0.05% methimazole in drinking water; gestational exposure was from embryonic day 9-14 (group II) or 21 (group III), lactational exposure was from postnatal day 1-14 (group IV) or 29 (group V). Serum was collected for hormone assay. Androgen receptor status, Glu-4 expression, and enzyme activities were assessed in the skeletal and cardiac muscles. Serum testosterone and estradiol levels decreased in adult rats of groups II and III, whereas testosterone remained normal but estradiol increased in group IV and V, when compared to coeval control. Androgen receptor ligand binding activity increased in both muscle phenotypes with a consistent increase in the expression level of its mRNA and protein expressions except in the forelimb of adult rats with transient hypothyroidism (group II-V). Glut-4 expression remained normal in skeletal and cardiac muscle of experimental rats. Specific activity of hexokinase and lactate dehydrogenase increased in both muscle phenotypes whereas, creatine kinase activity increased in skeletal muscles alone. It is concluded that transient gestational/lactational exposure to methimazole results in hypothyroidism during prepuberal life whereas it increases AR status and glycolytic activity in skeletal and cardiac muscles even at adulthood. Thus, the present study suggests that euthyroid status during prenatal and early postnatal life is essential to have optimal AR status and metabolic activity at adulthood. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Rat Whisker Movement after Facial Nerve Lesion: Evidence for Autonomic Contraction of Skeletal Muscle

    PubMed Central

    Heaton, James T.; Sheu, Shu-Hsien; Hohman, Marc H.; Knox, Christopher J.; Weinberg, Julie S.; Kleiss, Ingrid J.; Hadlock, Tessa A.

    2014-01-01

    Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic denervation was from autonomic, cholinergic axons traveling within the infraorbital branch of the trigeminal nerve (ION). Rats underwent unilateral facial nerve transection with repair (N=7) or resection without repair (N=11). Post-operative whisking amplitude was measured weekly across 10 weeks, and during intraoperative stimulation of the ION and facial nerves at ≥18 weeks. Whisking was also measured after subsequent ION transection (N=6) or pharmacologic blocking of the autonomic ganglia using hexamethonium (N=3), and after snout cooling intended to elicit a vasodilation reflex (N=3). Whisking recovered more quickly and with greater amplitude in rats that underwent facial nerve repair compared to resection (P<0.05), but individual rats overlapped in whisking amplitude across both groups. In the resected rats, non-facial-nerve mediated whisking was elicited by electrical stimulation of the ION, temporarily diminished following hexamethonium injection, abolished by transection of the ION, and rapidly and significantly (P<0.05) increased by snout cooling. Moreover, fibrillation-related whisker movements decreased in all rats during the initial recovery period (indicative of reinnervation), but re-appeared in the resected rats after undergoing ION transection (indicative of motor denervation). Cholinergic, parasympathetic axons traveling within the ION innervate whisker pad vasculature, and immunohistochemistry for vasoactive intestinal peptide revealed these axons branching extensively over whisker pad muscles and contacting neuromuscular junctions after facial nerve resection. This study provides the first behavioral and anatomical evidence of spontaneous autonomic innervation

  20. Rat whisker movement after facial nerve lesion: evidence for autonomic contraction of skeletal muscle.

    PubMed

    Heaton, James T; Sheu, Shu Hsien; Hohman, Marc H; Knox, Christopher J; Weinberg, Julie S; Kleiss, Ingrid J; Hadlock, Tessa A

    2014-04-18

    Vibrissal whisking is often employed to track facial nerve regeneration in rats; however, we have observed similar degrees of whisking recovery after facial nerve transection with or without repair. We hypothesized that the source of non-facial nerve-mediated whisker movement after chronic denervation was from autonomic, cholinergic axons traveling within the infraorbital branch of the trigeminal nerve (ION). Rats underwent unilateral facial nerve transection with repair (N=7) or resection without repair (N=11). Post-operative whisking amplitude was measured weekly across 10weeks, and during intraoperative stimulation of the ION and facial nerves at ⩾18weeks. Whisking was also measured after subsequent ION transection (N=6) or pharmacologic blocking of the autonomic ganglia using hexamethonium (N=3), and after snout cooling intended to elicit a vasodilation reflex (N=3). Whisking recovered more quickly and with greater amplitude in rats that underwent facial nerve repair compared to resection (P<0.05), but individual rats overlapped in whisking amplitude across both groups. In the resected rats, non-facial-nerve-mediated whisking was elicited by electrical stimulation of the ION, temporarily diminished following hexamethonium injection, abolished by transection of the ION, and rapidly and significantly (P<0.05) increased by snout cooling. Moreover, fibrillation-related whisker movements decreased in all rats during the initial recovery period (indicative of reinnervation), but re-appeared in the resected rats after undergoing ION transection (indicative of motor denervation). Cholinergic, parasympathetic axons traveling within the ION innervate whisker pad vasculature, and immunohistochemistry for vasoactive intestinal peptide revealed these axons branching extensively over whisker pad muscles and contacting neuromuscular junctions after facial nerve resection. This study provides the first behavioral and anatomical evidence of spontaneous autonomic innervation

  1. The alterations in adenosine nucleotides and lactic acid in striated muscles of rats during Rigor mortis following death with drowning or cervical dislocation.

    PubMed

    Pençe, Halime Hanim; Pençe, Sadrettin; Kurtul, Naciye; Yilmaz, Necat; Kocoglu, Hasan; Bakan, Ebubekir

    2003-01-01

    In this study, adenosine triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP) and lactic acid in the muscles of masseter, triceps, and quadriceps obtained from right and left sides of Spraque-Dawley rats following death were investigated. The samples were taken immediately and 120 minutes after death occurred. The rats were killed either by cervical dislocation or drowning. ATP concentrations in the muscles of masseter, triceps, and quadriceps were lower in samples obtained 120 minutes after death than in those obtained immediately after death. ADP, AMP, and lactic acid concentrations in these muscles were higher in samples obtained 120 minutes after death than those obtained immediately after death. A positive linear correlation was determined between ATP and ADP concentrations in quadriceps muscles of the rats killed with cervical dislocation and in triceps muscles of the rats killed with drowning. When rats killed with cervical dislocation and with drowning were compared, ADP, AMP, and lactic acid concentrations were lower in the former than in the latter for both times (immediately and 120 minutes after death occurred). In the case of drowning, ATP is consumed faster because of hard exercise or severe physical activity, resulting in a faster rigor mortis. Higher lactic acid levels were determined in muscles of the rats killed with drowning than the other group. In the control and electric shock rats, ATP decreased in different levels in the three different muscle types mentioned above in control group, being much decline in masseter and then in quadriceps. This may be caused by lower mass and less glycogen storage of masseter. No different ATP levels were measured in drowning group with respect to the muscle type possibly because of the severe activity of triceps and quadriceps and because of smaller mass of masseter. One can conclude that the occurrence of rigor mortis is closely related to the mode of death.

  2. Effect of a low-protein diet supplemented with ketoacids on skeletal muscle atrophy and autophagy in rats with type 2 diabetic nephropathy.

    PubMed

    Huang, Juan; Wang, Jialin; Gu, Lijie; Bao, Jinfang; Yin, Jun; Tang, Zhihuan; Wang, Ling; Yuan, Weijie

    2013-01-01

    A low-protein diet supplemented with ketoacids maintains nutritional status in patients with diabetic nephropathy. The activation of autophagy has been shown in the skeletal muscle of diabetic and uremic rats. This study aimed to determine whether a low-protein diet supplemented with ketoacids improves muscle atrophy and decreases the increased autophagy observed in rats with type 2 diabetic nephropathy. In this study, 24-week-old Goto-Kakizaki male rats were randomly divided into groups that received either a normal protein diet (NPD group), a low-protein diet (LPD group) or a low-protein diet supplemented with ketoacids (LPD+KA group) for 24 weeks. Age- and weight-matched Wistar rats served as control animals and received a normal protein diet (control group). We found that protein restriction attenuated proteinuria and decreased blood urea nitrogen and serum creatinine levels. Compared with the NPD and LPD groups, the LPD+KA group showed a delay in body weight loss, an attenuation in soleus muscle mass loss and a decrease of the mean cross-sectional area of soleus muscle fibers. The mRNA and protein expression of autophagy-related genes, such as Beclin-1, LC3B, Bnip3, p62 and Cathepsin L, were increased in the soleus muscle of GK rats fed with NPD compared to Wistar rats. Importantly, LPD resulted in a slight reduction in the expression of autophagy-related genes; however, these differences were not statistically significant. In addition, LPD+KA abolished the upregulation of autophagy-related gene expression. Furthermore, the activation of autophagy in the NPD and LPD groups was confirmed by the appearance of autophagosomes or autolysosomes using electron microscopy, when compared with the Control and LPD+KA groups. Our results showed that LPD+KA abolished the activation of autophagy in skeletal muscle and decreased muscle loss in rats with type 2 diabetic nephropathy.

  3. Capsaicin-sensitive muscle afferents modulate the monosynaptic reflex in response to muscle ischemia and fatigue in the rat.

    PubMed

    Della Torre, G; Brunetti, O; Pettorossi, V E

    2002-01-01

    The role of muscle ischemia and fatigue in modulating the monosynaptic reflex was investigated in decerebrate and spinalized rats. Field potentials and fast motoneuron single units in the lateral gastrocnemious (LG) motor pool were evoked by dorsal root stimulation. Muscle ischemia was induced by occluding the LG vascular supply and muscle fatigue by prolonged tetanic electrical stimulation of the LG motor nerve. Under muscle ischemia the monosynaptic reflex was facilitated since the size of the early and late waves of the field potential and the excitability of the motoneuron units increased. This effect was abolished after L3-L6 dorsal rhizotomy, but it was unaffected after L3-L6 ventral rhizotomy. By contrast, the monosynaptic reflex was inhibited by muscle fatiguing stimulation, and this effect did not fully depend on the integrity of the dorsal root. However, when ischemia was combined with repetitive tetanic muscle stimulation the inhibitory effect of fatigue was significantly enhanced. Both the ischemia and fatigue effects were abolished by capsaicin injected into the LG muscle at a dose that blocked a large number of group III and IV muscle afferents. We concluded that muscle ischemia and fatigue activate different groups of muscle afferents that are both sensitive to capsaicin, but enter the spinal cord through different roots. They are responsible for opposite effects, when given separately: facilitation during ischemia and inhibition during fatigue; however, in combination, ischemia enhances the responsiveness of the afferent fibres to fatigue.

  4. Myoprotective Potential of Creatine Is Greater than Whey Protein after Chemically-Induced Damage in Rat Skeletal Muscle

    PubMed Central

    Cooke, Matthew B.; Stathis, Christos G.; Hayes, Alan

    2018-01-01

    The myoprotective effects of creatine monohydrate (CR) and whey protein (WP) are equivocal, with the use of proxy measures of muscle damage making interpretation of their effectiveness limited. The purpose of the study was to determine the effects of CR and WP supplementation on muscle damage and recovery following controlled, chemically-induced muscle damage. Degeneration of the extensor digitorum longus (EDL) muscle was induced by bupivacaine in rats supplemented with either CR, WP, or standard rat chow (CON). At day 7 and 14 post-myotoxic injury, injured EDL muscles were surgically removed and tested for isometric contractile properties, followed by the contralateral, non-injured EDL muscle. At the completion of testing, muscles were snap-frozen in liquid nitrogen and stored for later analysis. Data were analyzed using analysis of variance. Creatine-supplemented muscles displayed a greater proportion of non-damaged (intact) fibers (p = 0.002) and larger cross-sectional areas of regenerating and non-damaged fibers (p = 0.024) compared to CON muscles at day 7 post-injury. At day 14 post-injury, CR-supplemented muscles generated higher absolute forces concomitant with greater contractile protein levels compared to CON (p = 0.001, p = 0.008) and WP-supplemented muscles (p = 0.003, p = 0.006). Creatine supplementation appears to offer an element of myoprotection which was not observed following whey protein supplementation. PMID:29710855

  5. Changes in the cholinergic system of rat sciatic nerve and skeletal muscle following suspension induced disuse

    NASA Technical Reports Server (NTRS)

    Gupta, R. C.; Misulis, K. E.; Dettbarn, W. D.

    1984-01-01

    Muscle disused induced changes in the cholinergic system of sciatic nerve, slow twitch soleus (SOL) and fast twitch extensor digitorum longus (EDL) muscle were studied in rats. Rats with hindlimbs suspended for 2 to 3 weeks showed marked elevation in the activity of choline acetyltransferase (ChAT) in sciatic nerve (38%), in SOL (108%) and in EDL (67%). Acetylcholinesterase (AChE) activity in SOL increased by 163% without changing the molecular forms pattern of 4S, 10S, 12S, and 16S. No significant changes in activity and molecular forms pattern of AChE were seen in EDL or in AChE activity of sciatic nerve. Nicotinic receptor binding of 3H-acetylcholine was increased in both muscles. When measured after 3 weeks of hindlimb suspension the normal distribution of type 1 fibers in SOL was reduced and a corresponding increase in type IIa and IIb fibers is seen. In EDL no significant change in fiber proportion is observed. Muscle activity, such as loadbearing, appears to have a greater controlling influence on the characteristics of the slow twitch SOL muscle than upon the fast twitch EDL muscle.

  6. Prevention of metabolic alterations caused by suspension hypokinesia in leg muscles of rats

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Jaspers, S. R.; Fagan, J. M.

    1983-01-01

    Rats were subjected to tail-cast suspension hypokinesia for 6 days with one leg immobilized in dorsal flexion by casting. Control animals were also tail-casted. The soleus, gastrocnemius and plantaris muscles of uncasted hypokinetic legs were smaller than control muscles. Dorsal flexion prevented atrophy of these muscles and caused the soleus to hypertrophy. The anterior muscles were unaffected by hypokinesia. The smaller size of the soleus of the uncasted leg relative to the dorsal flexed and weight bearing limbs correlated with slower protein synthesis and faster proteolysis. The capacity of this muscle to synthesize glutamine (gln), which carries nitrogenous waste from muscle was also measured. Although tissue homogenates showed higher activities of gln synthetase, the rate of de novo synthesis was not altered in intact muscle but the tissue ratio of gln/glutamate was decreased. Glutamate and ATP were not limiting for gln synthesis, but availability of ammonia may be a limiting factor for this process in hypokinesia.

  7. Effect of Exercise Training on Skeletal Muscle SIRT1 and PGC-1α Expression Levels in Rats of Different Age

    PubMed Central

    Huang, Chi-Chang; Wang, Ting; Tung, Yu-Tang; Lin, Wan-Teng

    2016-01-01

    The protein deacetylase sirtuin 1 (SIRT1) and activate peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) pathway drives the muscular fiber-type switching, and can directly regulate the biophysiological functions of skeletal muscle. To investigate whether 12-week swimming exercise training modulates the SIRT1/PGC-1α pathway associated proteins expression in rats of different age. Male 3-month-old (3M), 12-month-old (12M) and 18-month-old (18M) Sprague-Dawley rats were used and assigned to sedentary control (C) or 12-week swimming exercise training (E) and divided into six groups: 3MC (n = 8), 12MC (n = 6), 18MC (n = 8), 3ME (n = 8), 12ME (n = 5) and 18ME (n = 6). Body weight, muscle weight, epididymal fat mass and muscle morphology were performed at the end of the experiment. The protein levels of SIRT1, PGC-1α, AMPK and FOXO3a in the gastrocnemius and soleus muscles were examined. The SIRT1, PGC-1α and AMPK levels in the gastrocnemius and soleus muscles were up-regulated in the three exercise training groups than three control groups. The FOXO3a level in the 12ME group significantly increased in the gastrocnemius muscles than 12MC group, but significantly decreased in the soleus muscles. In 3-, 12- and 18-month-old rats with and without exercise, there was a significant main effect of exercise on PGC-1α, AMPK and FOXO3a in the gastrocnemius muscles, and SIRT1, PGC-1α and AMPK in the soleus muscles. Our result suggests that swimming training can regulate the SIRT1/PGC-1α, AMPK and FOXO3a proteins expression of the soleus muscles in aged rats. PMID:27076782

  8. The effects of running exercise on oxidative capacity and PGC-1α mRNA levels in the soleus muscle of rats with metabolic syndrome.

    PubMed

    Nagatomo, Fumiko; Fujino, Hidemi; Kondo, Hiroyo; Kouzaki, Motoki; Gu, Ning; Takeda, Isao; Tsuda, Kinsuke; Ishihara, Akihiko

    2012-03-01

    Skeletal muscles in animals with metabolic syndrome exhibit reduced oxidative capacity. We investigated the effects of running exercise on fiber characteristics, oxidative capacity, and mRNA levels in the soleus muscles of rats with metabolic syndrome [SHR/NDmcr-cp (cp/cp); CP]. We divided 5-week-old CP rats into non-exercise (CP) and exercise (CP-Ex) groups. Wistar-Kyoto rats (WKY) were used as the control group. CP-Ex rats were permitted voluntary exercise on running wheels for 10 weeks. Triglyceride levels were higher and adiponectin levels lower in the CP and CP-Ex groups than in the WKY group. However, triglyceride levels were lower and adiponectin levels higher in the CP-Ex group than in the CP group. The soleus muscles in CP-Ex rats contained only high-oxidative type I fibers, whereas those in WKY and CP rats contained type I, IIA, and IIC fibers. Muscle succinate dehydrogenase (SDH) activity was higher in the CP-Ex group than in the CP group; there was no difference in SDH activity between the WKY and CP-Ex groups. Muscle proliferator-activated receptor γ coactivator-1α (PGC-1α) mRNA levels were higher in the CP-Ex group than in the CP group; there was no difference in PGC-1α mRNA levels between the WKY and CP-Ex groups. In CP-Ex rats, longer running distance was associated with increased muscle SDH activity and PGC-1α mRNA levels. We concluded that running exercise restored decreased muscle oxidative capacity and PGC-1α mRNA levels and improved hypertriglyceridemia in rats with metabolic syndrome.

  9. Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats

    PubMed Central

    Baehr, Leslie M.; West, Daniel W. D.; Marshall, Andrea G.; Marcotte, George R.; Baar, Keith

    2017-01-01

    Disuse is a potent inducer of muscle atrophy, but the molecular mechanisms driving this loss of muscle mass are highly debated. In particular, the extent to which disuse triggers decreases in protein synthesis or increases in protein degradation, and whether these changes are uniform across muscles or influenced by age, is unclear. We aimed to determine the impact of disuse on protein synthesis and protein degradation in lower limb muscles of varied function and fiber type in adult and old rats. Alterations in protein synthesis and degradation were measured in the soleus, medial gastrocnemius, and tibialis anterior (TA) muscles of adult and old rats subjected to hindlimb unloading (HU) for 3, 7, or 14 days. Loss of muscle mass was progressive during the unloading period, but highly variable (−9 to −38%) across muscle types and between ages. Protein synthesis decreased significantly in all muscles, except for the old TA. Atrophy-associated gene expression was only loosely associated with protein degradation as muscle RING finger-1, muscle atrophy F-box (MAFbx), and Forkhead box O1 expression significantly increased in all muscles, but an increase in proteasome activity was only observed in the adult soleus. MAFbx protein levels were significantly higher in the old muscles compared with adult muscles, despite the old having higher expression of microRNA-23a. These results indicate that adult and old muscles respond similarly to HU, and the greatest loss in muscle mass occurs in predominantly slow-twitch extensor muscles due to a concomitant decrease in protein synthesis and increase in protein degradation. NEW & NOTEWORTHY In this study, we showed that age did not intensify the atrophy response to unloading in rats, but rather that the degree of atrophy was highly variable across muscles, indicating that changes in protein synthesis and protein degradation occur in a muscle-specific manner. Our data emphasize the importance of studying muscles of varying fiber

  10. Effect of protons on the mechanical response of rat muscle nociceptive fibers and neurons in vitro.

    PubMed

    Hotta, Norio; Kubo, Asako; Mizumura, Kazue

    2015-03-01

    Strong exercise makes muscle acidic, and painful. The stimulus that activates muscle nociceptors in such instance may be protons. Reportedly, however, not many afferents are excited by protons alone. We, therefore, posited that protons sensitize muscular nociceptors to mechanical stimuli. We examined effects of protons on mechanical sensitivity of muscle nociceptors by single-fiber recording from rat muscle-nerve preparations in vitro and by whole cell patch-clamp recording of mechanically activated (MA) currents from cultured rat dorsal root ganglion neurons. We recorded 38 Aδ- and C-fibers. Their response magnitude was increased by both pH 6.2 and pH 6.8; in addition the mechanical threshold was lowered by pH 6.2. Decrease in the threshold by pH6.2 was also observed in MA currents. Presently observed sensitization by protons could be involved in several types of ischemic muscle pain, and may also be involved in cardiovascular and respiratory controls during exercise. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  11. Abnormal cation transport in uremia. Mechanisms in adipocytes and skeletal muscle from uremic rats.

    PubMed

    Druml, W; Kelly, R A; May, R C; Mitch, W E

    1988-04-01

    The cause of the abnormal active cation transport in erythrocytes of some uremic patients is unknown. In isolated adipocytes and skeletal muscle from chronically uremic chronic renal failure rats, basal sodium pump activity was decreased by 36 and 30%, and intracellular sodium was increased by 90 and 50%, respectively, compared with pair-fed control rats; insulin-stimulated sodium pump activity was preserved in both tissues. Lower basal NaK-ATPase activity in adipocytes was due to a proportionate decline in [3H]ouabain binding, while in muscle, [3H]ouabain binding was not changed, indicating that the NaK-ATPase turnover rate was decreased. Normal muscle, but not normal adipocytes, acquired defective Na pump activity when incubated in uremic sera. Thus, the mechanism for defective active cation transport in CRF is multifactorial and tissue specific. Sodium-dependent amino acid transport in adipocytes closely paralleled diminished Na pump activity (r = 0.91), indicating the importance of this defect to abnormal cellular metabolism in uremia.

  12. Abnormal cation transport in uremia. Mechanisms in adipocytes and skeletal muscle from uremic rats.

    PubMed Central

    Druml, W; Kelly, R A; May, R C; Mitch, W E

    1988-01-01

    The cause of the abnormal active cation transport in erythrocytes of some uremic patients is unknown. In isolated adipocytes and skeletal muscle from chronically uremic chronic renal failure rats, basal sodium pump activity was decreased by 36 and 30%, and intracellular sodium was increased by 90 and 50%, respectively, compared with pair-fed control rats; insulin-stimulated sodium pump activity was preserved in both tissues. Lower basal NaK-ATPase activity in adipocytes was due to a proportionate decline in [3H]ouabain binding, while in muscle, [3H]ouabain binding was not changed, indicating that the NaK-ATPase turnover rate was decreased. Normal muscle, but not normal adipocytes, acquired defective Na pump activity when incubated in uremic sera. Thus, the mechanism for defective active cation transport in CRF is multifactorial and tissue specific. Sodium-dependent amino acid transport in adipocytes closely paralleled diminished Na pump activity (r = 0.91), indicating the importance of this defect to abnormal cellular metabolism in uremia. PMID:2832446

  13. Protein degradation in skeletal muscle during experimental hyperthyroidism in rats and the effect of beta-blocking agents.

    PubMed

    Angerås, U; Hasselgren, P O

    1987-04-01

    beta-Blocking agents are increasingly used in the management of hyperthyroid patients. The effect of this treatment on increased muscle protein breakdown in the hyperthyroid state is not known. In the present study, experimental hyperthyroidism was induced in rats by daily ip injections of T3 (100 micrograms/100 g BW) during a 10-day period. Control animals received corresponding volumes of solvent. In groups of rats the selective beta-1-blocking agent metoprolol or the nonselective beta-blocker propranolol was infused by miniosmotic pumps implanted sc on the backs of the animals. Protein degradation was measured in incubated intact soleus and extensor digitorum longus muscles by determining tyrosine release into the incubation medium. The protein degradation rate in incubated extensor digitorum longus and soleus muscles was increased by 50-60% during T3 treatment. Metoprolol or propranolol did not influence muscle protein breakdown in either T3-treated or control animals. The results suggest that T3-induced increased muscle proteolysis is not mediated by beta-receptors, and muscle weakness and wasting in hyperthyroidism might not be affected by beta-blockers.

  14. Muscle atrophy associated with microgravity in rat: Basic data for countermeasures

    NASA Astrophysics Data System (ADS)

    Falempin, M.; Mounier, Y.

    Morphological, contractile properties and myosin heavy chain (MHC) composition of rat soleus muscles were studied after 2 weeks of unloading (HS) and after 2 weeks of HS associated with selective deafferentation (HS + DEAF) at the level L4 and L5. The same significant reductions in muscle mass and tetanic tension were found after HS and HS + DEAF. However, the transformation of the slow-twitch soleus muscle towards a faster type characterized by a decrease in twitch time parameters and an increase in fast-twitch type MHC isoforms in HS did not appear in HS + DEAF conditions. Our results also showed that a pattern similar to firing rate of motoneurones innervating slow-twitch muscles inhibited the slow to fast fiber changes observed during HS. Nevertheless, neither the loss of mass or force output in the HS muscles were prevented by electrostimulation. Immobilization in a stretched position during HS maintained the muscle wet weight, mechanical and electrophoretical characteristics close to control values. We concluded that the decrease in mechanical strains imposed on the muscle during unloading was the main factor for the development of atrophy, while the kinetic changes might be predominantly modulated by the nervous command. These basic data suggested that some experimental conditions such as electrostimulation or stretching, could participate in countermeasure programmes.

  15. Muscle protein turnover in rats treated with corticosterone (CC) or/and nandrolone decanoate (ND) and fed an adequate or a low-protein diet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santidrian, S.; Cuevillas, F.; Goena, M.

    1986-03-01

    In order to investigate the possible antagonistic effect between glucocorticoids and androgens on muscle protein turnover, the authors have measured the fractional rates of gastrocnemius muscle protein synthesis (k/sub s/) and degradation (k/sub d/) by the constant-intravenous-infusion method using L-//sup 14/C/-tyrosine in rats receiving via s.c. per 100 g b.wt. 10 mg of CC, or 2 mg of ND or CC+ND at the indicated doses, and fed either an 18% or 5% protein diets over a period of 5 days. As an additional index of protein synthesis, RNA activity (g of synthesized protein/day/g RNA) was determined as well. Results showedmore » that as compared to vehicle-injected animals fed the adequate diet, CC-treated rats exhibited a reduction of muscle k/sub d/, while ND-treated rats had an outstanding increase of muscle k/sub s/. However, rats receiving CC+ND showed k/sub s/ and k/sub d/ values similar to those displayed by control animals. Nevertheless, when the steroids were injected to rats fed the low-protein diet, CC has a catabolic effect on muscle protein but by reducing k/sub s/, while the anabolic action of ND is still displayed but by a significant reduction of muscle k/sub d/. CC+ND given to these protein-deficient rats caused an increase in muscle k/sub s/ and a reduction in k/sub d/. These results might indicate that, at least in part, ND antagonizes the catabolic action of high doses of CC on muscle protein metabolism.« less

  16. Effects of hyperthyroidism and hypothyroidism on glutamine metabolism by skeletal muscle of the rat.

    PubMed Central

    Parry-Billings, M; Dimitriadis, G D; Leighton, B; Bond, J; Bevan, S J; Opara, E; Newsholme, E A

    1990-01-01

    1. The effects of hyperthyroidism and hypothyroidism on the concentrations of glutamine and other amino acids in the muscle and plasma and on the rates of glutamine and alanine release from incubated isolated stripped soleus muscle of the rat were investigated. 2. Hyperthyroidism decreased the concentration of glutamine in soleus muscle but was without effect on that in the gastrocnemius muscle or in the plasma. Hyperthyroidism also increased markedly the rate of release of glutamine from the incubated soleus muscle. 3. Hypothyroidism decreased the concentrations of glutamine in the gastrocnemius muscle and plasma but was without effect on that in soleus muscle. Hypothyroidism also decreased markedly the rate of glutamine release from the incubated soleus muscle. 4. Thyroid status was found to have marked effects on the rate of glutamine release by skeletal muscle per se, and may be important in the control of this process in both physiological and pathological conditions. PMID:2268261

  17. Post-injury stretch promotes recovery in a rat model of muscle damage induced by lengthening contractions.

    PubMed

    Mori, Tomohiro; Agata, Nobuhide; Itoh, Yuta; Inoue-Miyazu, Masumi; Mizumura, Kazue; Sokabe, Masahiro; Taguchi, Toru; Kawakami, Keisuke

    2017-06-30

    We investigated the cellular mechanisms and therapeutic effect of post-injury stretch on the recovery process from muscle injury induced by lengthening contractions (LC). One day after LC, a single 15-min bout of muscle stretch was applied at an intensity of 3 mNm. The maximal isometric torque was measured before and at 2-21 days after LC. The myofiber size was analyzed at 21 days after LC. Developmental myosin heavy chain-immunoreactive (dMHC-ir) cells, a marker of regenerating myofibers, were observed in the early recovery stage (2-5 days after LC). We observed that LC-induced injury markedly decreased isometric torque and myofiber size, which recovered faster in rats that underwent stretch than in rats that did not. Regenerating myofiber with dMHC-ir cells was observed earlier in rats that underwent stretch. These results indicate that post-injury stretch may facilitate the regeneration and early formation of new myofibers, thereby promoting structural and functional recovery from LC-induced muscle injury.

  18. The Green Tea Polyphenol Epigallocatechin-3-Gallate (EGCg) Attenuates Skeletal Muscle Atrophy in a Rat Model of Sarcopenia.

    PubMed

    Meador, B M; Mirza, K A; Tian, M; Skelding, M B; Reaves, L A; Edens, N K; Tisdale, M J; Pereira, S L

    2015-01-01

    Sarcopenia-the loss of muscle mass and functionality occurring with age-is a pervasive problem with few effective treatments beyond exercise. We examined the ability of the green tea catechin, epigallocatechin-3-gallate (EGCg), to impact muscle mass and the molecular pathway involved in muscle atrophy in a rat model of sarcopenia. 20-month-old Sprague-Dawley rats were treated for 8 weeks with control diet or control plus 200mg/kg body weight of EGCg diet. EGCg-supplemented animals had significantly greater gastrocnemius muscle mass than the aged controls, and showed a trend for increased muscle fiber cross-sectional areas (CSA) (p=0.06). These changes were associated with significantly lower protein expressions of the intramuscular 19S and 20S proteasome subunits and the MuRF1 and MAFbx ubiquitin ligases in the EGCg-treated animals. Proteasome activity as determined by 'Chymotrypsin-like' enzyme activity was also significantly reduced by EGCg. Muscle mRNA expression of IL-15 and IGF-1 were significantly increased in the EGCg group vs. the aged controls. In comparison to younger adult animals (6 month), the protein expression of 19S, 20S, MuRF1, MAFbx, and myostatin were increased between approximately 4- and 12-fold in the aged controls, but only up to ~2-fold in the aged EGCg animals. EGCg supplementation was able to preserve muscle in sarcopenic rats, partly through attenuating protein degradation via the ubiquitin-proteasome pathway, together with increased expression of anabolic factors.

  19. Acute elevations in salt intake and reduced renal mass hypertension compromise arteriolar dilation in rat cremaster muscle.

    PubMed

    Frisbee, J C; Lombard, J H

    1999-05-01

    Alterations in arteriolar reactivity to dilator agonists were assessed in the skeletal muscle microcirculation of normotensive male Sprague-Dawley rats fed either high- (4% NaCl; HS) or low- (0. 4% NaCl; LS) salt diets and in reduced renal mass hypertensive rats (RRM-HT) on a high-salt diet for 3 days. An in situ cremaster muscle preparation was superfused with physiological salt solution, transilluminated, and viewed via television microscopy. A videomicrometer was used to measure changes in diameter of distal arterioles in response to increasing concentrations of acetylcholine (ACH), iloprost (ILO), cholera toxin (CT), forskolin (FOR), and sodium nitroprusside (SNP). Arteriolar dilation in response to ACH, ILO, and CT was significantly reduced in both HS and RRM-HT rats, while responses to FOR and SNP were decreased in RRM-HT rats only. The maximum dilation of the arterioles (determined during superfusion of the muscle with Ca2+-free solution containing 10(-4) M adenosine) was similar in the normotensive control animals on LS and HS diets, but was reduced in the RRM-HT rats, suggesting that early anatomic remodeling of the vessel wall may be occurring with RRM-HT. We conclude that arteriolar reactivity to endothelium-dependent and -independent vasodilator agonists is impaired as early as 3 days after the development of RRM hypertension or commencement of a high-salt diet in normotensive rats. Structural remodeling of the arteriolar wall, although becoming evident in the hypertensive rats, takes longer to develop than the impaired vasodilator reactivity. Copyright 1999 Academic Press.

  20. Effect of temperature on fatty acid metabolism in skeletal muscle mitochondria of untrained and endurance-trained rats.

    PubMed

    Zoladz, Jerzy A; Koziel, Agnieszka; Broniarek, Izabela; Woyda-Ploszczyca, Andrzej M; Ogrodna, Karolina; Majerczak, Joanna; Celichowski, Jan; Szkutnik, Zbigniew; Jarmuszkiewicz, Wieslawa

    2017-01-01

    We studied the effects of various assay temperatures, representing hypothermia (25°C), normothermia (35°C), and hyperthermia (42°C), on the oxidation of lipid-derived fuels in rat skeletal muscle mitochondria of untrained and endurance-trained rats. Adult 4-month-old male Wistar rats were assigned to a training group (rats trained on a treadmill for 8 weeks) or a sedentary control group. In skeletal muscle mitochondria of both control and trained rats, an increase in the assay temperature from 25°C to 42°C was accompanied by a consistent increase in the oxidation of palmitoylcarnitine and glycerol-3-phosphate. Moreover, endurance training increased mitochondrial capacity to oxidize the lipid-derived fuels at all studied temperatures. The endurance training-induced increase in mitochondrial capacity to oxidize fatty acids was accompanied by an enhancement of mitochondrial biogenesis, as shown by the elevated expression levels of Nrf2, PGC1α, and mitochondrial marker and by the elevated expression levels of mitochondrial proteins involved in fatty acid metabolism, such as fatty acid transporter CD36, carnitine palmitoyltransferase 1A (CPT1A), and acyl-CoA dehydrogenase (ACADS). We conclude that hyperthermia enhances but hypothermia attenuates the rate of the oxidation of fatty acids and glycerol-3-phosphate in rat skeletal muscle mitochondria isolated from both untrained and trained rats. Moreover, our results indicate that endurance training up-regulates mitochondrial biogenesis markers, lipid-sustained oxidative capacity, and CD36 and CPT1A proteins involved in fatty acid transport, possibly via PGC1α and Nrf2 signaling pathways.

  1. Chronic treatment with fluoxetine and sertraline prevents forced swimming test-induced hypercontractility of rat detrusor muscle.

    PubMed

    Bilge, Sirri; Bozkurt, Ayhan; Bas, Duygu B; Aksoz, Elif; Savli, Evren; Ilkaya, Fatih; Kesim, Yuksel

    2008-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibitors represent important targets for the development of new treatments for detrusor overactivity and urinary incontinence. The present study was undertaken to investigate the effects of the forced swimming test (FST) on the contractile response of isolated rat detrusor muscle and to examine the effects of in vivo treatments of fluoxetine and sertraline on altered detrusor muscle contractility. Fluoxetine (20 mg/kg ip) and sertraline (10 mg/kg ip) were administered once a day for 14 days. Rats were exposed to the FST on the 15th day. After the test, detrusor muscles were removed and placed in organ baths, and the contraction responses induced by carbachol, potassium chloride (KCl) and electrical field stimulation (EFS) were recorded. The contractile responses of detrusor muscle strips to carbachol and electrical field stimulation were found to be increased at all carbachol doses and frequencies, respectively. FST also increased the contractile responses to KCl, which is used to test the differences in postreceptor-mediated contractions. The hypercontractile responses of detrusor strips to carbachol, EFS and KCl were abolished by treatment with both fluoxetine and sertraline. These treatments also decreased the immobility duration in the FST consistent with an antidepressant-like effect in this test. The results of this study provide the first evidence that FST increases contractility of the rat detrusor muscle, and this hypercontractility was abolished by chronic treatments of fluoxetine and sertraline at antidepressant doses by decreasing the postreceptor-mediated events.

  2. Impact of dietary nitrate supplementation via beetroot juice on exercising muscle vascular control in rats

    PubMed Central

    Ferguson, Scott K; Hirai, Daniel M; Copp, Steven W; Holdsworth, Clark T; Allen, Jason D; Jones, Andrew M; Musch, Timothy I; Poole, David C

    2013-01-01

    Dietary nitrate (NO3−) supplementation, via its reduction to nitrite (NO2−) and subsequent conversion to nitric oxide (NO) and other reactive nitrogen intermediates, reduces blood pressure and the O2 cost of submaximal exercise in humans. Despite these observations, the effects of dietary NO3− supplementation on skeletal muscle vascular control during locomotory exercise remain unknown. We tested the hypotheses that dietary NO3− supplementation via beetroot juice (BR) would reduce mean arterial pressure (MAP) and increase hindlimb muscle blood flow in the exercising rat. Male Sprague–Dawley rats (3–6 months) were administered either NO3− (via beetroot juice; 1 mmol kg−1 day−1, BR n= 8) or untreated (control, n= 11) tap water for 5 days. MAP and hindlimb skeletal muscle blood flow and vascular conductance (radiolabelled microsphere infusions) were measured during submaximal treadmill running (20 m min−1, 5% grade). BR resulted in significantly lower exercising MAP (control: 137 ± 3, BR: 127 ± 4 mmHg, P < 0.05) and blood [lactate] (control: 2.6 ± 0.3, BR: 1.9 ± 0.2 mm, P < 0.05) compared to control. Total exercising hindlimb skeletal muscle blood flow (control: 108 ± 8, BR: 150 ± 11 ml min−1 (100 g)−1, P < 0.05) and vascular conductance (control: 0.78 ± 0.05, BR: 1.16 ± 0.10 ml min−1 (100 g)−1 mmHg−1, P < 0.05) were greater in rats that received BR compared to control. The relative differences in blood flow and vascular conductance for the 28 individual hindlimb muscles and muscle parts correlated positively with their percentage type IIb + d/x muscle fibres (blood flow: r= 0.74, vascular conductance: r= 0.71, P < 0.01 for both). These data support the hypothesis that NO3− supplementation improves vascular control and elevates skeletal muscle O2 delivery during exercise predominantly in fast-twitch type II muscles, and provide a potential mechanism by which NO3− supplementation improves metabolic control. PMID:23070702

  3. Charge movement in a fast twitch skeletal muscle from rat.

    PubMed

    Simon, B J; Beam, K G

    1983-02-01

    Voltage-dependent charge movement in the rat omohyoid muscle was investigated using the three microelectrode voltage clamp technique. The charge that moved during a depolarization from the holding potential (-90 mV) to the test potential, V, increased with increasing V, saturating around 0 mV. The charge vs. voltage relationship was well fitted by Q = Q(max)/{1 + exp[-(V - V)/k]}, with Q(max) = 28.5 nC/muF, V = -34.2 mV, and k = 8.7 mV. Repolarization of the fiber from the test potential back to the holding potential caused an equal but opposite amount of charge to move. The kinetics of ON charge movement could be well described by a model developed for frog muscle by Horowicz and Schneider (1981b), which suggests that rat and frog charge movements are similar. This model failed to describe the kinetics of OFF charge movement for steps in potential from 0 mV to test potentials of -10 to -90 mV. OFF-charge movement rose to a peak more slowly and decayed more slowly than predicted by the theory.

  4. AMP deaminase histochemical activity and immunofluorescent isozyme localization in rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Thompson, J. L.; Sabina, R. L.; Ogasawara, N.; Riley, D. A.

    1992-01-01

    The cellular distribution of AMP deaminase (AMPda) isozymes was documented for rat soleus and plantaris muscles, utilizing immunofluorescence microscopy and immunoprecipitation methods. AMPda is a ubiquitous enzyme existing as three distinct isozymes, A, B and C, which were initially purified from skeletal muscle, liver (and kidney), and heart, respectively. AMPda-A is primarily concentrated subsarcolemmally and intermyofibrillarly within muscle cells, while isozymes B and C are concentrated within non-myofiber elements of muscle tissue. AMPda-B is principally associated with connective tissues surrounding neural elements and the muscle spindle capsule, and AMPda-C is predominantly associated with circulatory elements, such as arterial and venous walls, capillary endothelium, and red blood cells. These specific localizations, combined with documented differences in kinetic properties, suggest multiple functional roles for the AMPda isozymes or temporal segregation of similar AMPda functions. Linkage of the AMPda substrate with adenosine production pathways at the AMP level and the localization of isozyme-C in vascular tissue suggest a regulatory role in the microcirculation.

  5. Diffusion tensor imaging and T2 mapping in early denervated skeletal muscle in rats.

    PubMed

    Ha, Dong-Ho; Choi, Sunseob; Kang, Eun-Ju; Park, Hwan Tae

    2015-09-01

    To evaluate the temporal changes of diffusion tensor imaging (DTI) indices, T2 values, and visual signal intensity on various fat suppression techniques in the early state of denervated skeletal muscle in a rat model. Institutional Animal Care and Use Committee approval was obtained. Sciatic nerves of eight rats were transected for irreversible neurotmesis model. We examined normal lower leg and denervated muscles at 3 days, 1 week, and 2 weeks on a 3 Tesla MR. fractional anisotropy (FA), mean apparent diffusion coefficient (mADC), and T2 values were measured by using DTI and T2 mapping scan. We subjectively classified the signal intensity change on various fat suppression images into the following three grades: negative, suspicious, and definite change. Wilcoxon-sign rank test and Kruskal-Wallis test were used for the comparison of FA, mADC, T2 values. McNemar's test was used for comparing signal intensity change among fat suppression techniques. FA values of denervated muscles at 3 days (0.35 ± 0.06), 1 week (0.29 ± 0.04), and 2 weeks (0.34 ± 0.05) were significantly (P < 0.05) lower than that in the control group (0.54 ± 0.17). mADC of denervated muscles decreased without statistically significant (P > 0.05) change. T2 values were significantly increased at 1 week (38.11 ± 6.42 ms, P = 0.017) and markedly increased at 2 weeks (46.53 ± 5.17 ms, P = 0.012). The grade of visual signal intensity change on chemical shift selective fat saturation, STIR and IDEAL images were identical in all cases (P = 1.000). FA and T2 values can demonstrate the early temporal changes in denervated rat skeletal muscle. © 2014 Wiley Periodicals, Inc.

  6. Total-body creatine pool size and skeletal muscle mass determination by creatine-(methyl-D3) dilution in rats.

    PubMed

    Stimpson, Stephen A; Turner, Scott M; Clifton, Lisa G; Poole, James C; Mohammed, Hussein A; Shearer, Todd W; Waitt, Greg M; Hagerty, Laura L; Remlinger, Katja S; Hellerstein, Marc K; Evans, William J

    2012-06-01

    There is currently no direct, facile method to determine total-body skeletal muscle mass for the diagnosis and treatment of skeletal muscle wasting conditions such as sarcopenia, cachexia, and disuse. We tested in rats the hypothesis that the enrichment of creatinine-(methyl-d(3)) (D(3)-creatinine) in urine after a defined oral tracer dose of D(3)-creatine can be used to determine creatine pool size and skeletal muscle mass. We determined 1) an oral tracer dose of D(3)-creatine that was completely bioavailable with minimal urinary spillage and sufficient enrichment in the body creatine pool for detection of D(3)-creatine in muscle and D(3)-creatinine in urine, and 2) the time to isotopic steady state. We used cross-sectional studies to compare total creatine pool size determined by the D(3)-creatine dilution method to lean body mass determined by independent methods. The tracer dose of D(3)-creatine (<1 mg/rat) was >99% bioavailable with 0.2-1.2% urinary spillage. Isotopic steady state was achieved within 24-48 h. Creatine pool size calculated from urinary D(3)-creatinine enrichment at 72 h significantly increased with muscle accrual in rat growth, significantly decreased with dexamethasone-induced skeletal muscle atrophy, was correlated with lean body mass (r = 0.9590; P < 0.0001), and corresponded to predicted total muscle mass. Total-body creatine pool size and skeletal muscle mass can thus be accurately and precisely determined by an orally delivered dose of D(3)-creatine followed by the measurement of D(3)-creatinine enrichment in a single urine sample and is promising as a noninvasive tool for the clinical determination of skeletal muscle mass.

  7. Intermittent whole-body vibration attenuates a reduction in the number of the capillaries in unloaded rat skeletal muscle.

    PubMed

    Kaneguchi, Akinori; Ozawa, Junya; Kawamata, Seiichi; Kurose, Tomoyuki; Yamaoka, Kaoru

    2014-09-26

    Whole-body vibration has been suggested for the prevention of muscle mass loss and muscle wasting as an attractive measure for disuse atrophy. This study examined the effects of daily intermittent whole-body vibration and weight bearing during hindlimb suspension on capillary number and muscle atrophy in rat skeletal muscles. Sixty male Wistar rats were randomly divided into four groups: control (CONT), hindlimb suspension (HS), HS + weight bearing (WB), and HS + whole-body vibration (VIB) (n = 15 each). Hindlimb suspension was applied for 2 weeks in HS, HS + WB, and HS + VIB groups. During suspension, rats in HS + VIB group were placed daily on a vibrating whole-body vibration platform for 20 min. In HS + WB group, suspension was interrupted for 20 min/day, allowing weight bearing. Untreated rats were used as controls. Soleus muscle wet weights and muscle fiber cross-sectional areas (CSA) significantly decreased in HS, HS + WB, and HS + VIB groups compared with CONT group. Both muscle weights and CSA were significantly greater in HS + WB and HS + VIB groups compared with HS group. Capillary numbers (represented by capillary-to-muscle fiber ratio) were significantly smaller in all hindlimb suspension-treated groups compared with CONT group. However, a reduction in capillary number by unloading hindlimbs was partially prevented by whole-body vibration. These findings were supported by examining mRNA for angiogenic-related factors. Expression levels of a pro-angiogenic factor, vascular endothelial growth factor-A mRNA, were significantly lower in all hindlimb suspension-treated groups compared with CONT group. There were no differences among hindlimb suspension-treated groups. Expression levels of an anti-angiogenic factor, CD36 (receptor for thrombospondin-1) mRNA, were significantly higher in all hindlimb suspension-treated groups compared with CONT group. Among the hindlimb suspension-treated groups, expression of CD

  8. Local nitric oxide synthase inhibition reduces skeletal muscle glucose uptake but not capillary blood flow during in situ muscle contraction in rats.

    PubMed

    Ross, Renee M; Wadley, Glenn D; Clark, Michael G; Rattigan, Stephen; McConell, Glenn K

    2007-12-01

    We have previously shown in humans that local infusion of a nitric oxide synthase (NOS) inhibitor into the femoral artery attenuates the increase in leg glucose uptake during exercise without influencing total leg blood flow. However, rodent studies examining the effect of NOS inhibition on contraction-stimulated skeletal muscle glucose uptake have yielded contradictory results. This study examined the effect of local infusion of an NOS inhibitor on skeletal muscle glucose uptake (2-deoxyglucose) and capillary blood flow (contrast-enhanced ultrasound) during in situ contractions in rats. Male hooded Wistar rats were anesthetized and one hindleg electrically stimulated to contract (2 Hz, 0.1 ms) for 30 min while the other leg rested. After 10 min, the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) (arterial concentration of 5 micromol/l) or saline was infused into the epigastric artery of the contracting leg. Local NOS inhibition had no effect on blood pressure, heart rate, or muscle contraction force. Contractions increased (P < 0.05) skeletal muscle NOS activity, and this was prevented by L-NAME infusion. NOS inhibition caused a modest significant (P < 0.05) attenuation of the increase in femoral blood flow during contractions, but importantly there was no effect on capillary recruitment. NOS inhibition attenuated (P < 0.05) the increase in contraction-stimulated skeletal muscle glucose uptake by approximately 35%, without affecting AMP-activated protein kinase (AMPK) activation. NOS inhibition attenuated increases in skeletal muscle glucose uptake during contraction without influencing capillary recruitment, suggesting that NO is critical for part of the normal increase in skeletal muscle fiber glucose uptake during contraction.

  9. The comparative effects of aminoglycoside antibiotics and muscle relaxants on electrical field stimulation response in rat bladder smooth muscle.

    PubMed

    Min, Chang Ho; Min, Young Sil; Lee, Sang Joon; Sohn, Uy Dong

    2016-06-01

    It has been reported that several aminoglycoside antibiotics have a potential of prolonging the action of non-depolarizing muscle relaxants by drug interactions acting pre-synaptically to inhibit acetylcholine release, but antibiotics itself also have a strong effect on relaxing the smooth muscle. In this study, four antibiotics of aminoglycosides such as gentamicin, streptomycin, kanamycin and neomycin were compared with skeletal muscle relaxants baclofen, tubocurarine, pancuronium and succinylcholine, and a smooth muscle relaxant, papaverine. The muscle strips isolated from the rat bladder were stimulated with pulse trains of 40 V in amplitude and 10 s in duration, with pulse duration of 1 ms at the frequency of 1-8 Hz, at 1, 2, 4, 6, 8 Hz respectively. To test the effect of four antibiotics on bladder smooth muscle relaxation, each of them was treated cumulatively from 1 μM to 0.1 mM with an interval of 5 min. Among the four antibiotics, gentamicin and neomycin inhibited the EFS response. The skeletal muscle relaxants (baclofen, tubocurarine, pancuronium and succinylcholine) and inhibitory neurotransmitters (GABA and glycine) did not show any significant effect. However, papaverine, had a significant effect in the relaxation of the smooth muscle. It was suggested that the aminoglycoside antibiotics have inhibitory effect on the bladder smooth muscle.

  10. Three days of intermittent stretching after muscle disuse alters the proteins involved in force transmission in muscle fibers in weanling rats

    PubMed Central

    Gianelo, M.C.S.; Polizzelo, J.C.; Chesca, D.; Mattiello-Sverzut, A.C.

    2015-01-01

    The aim of this study was to determine the effects of intermittent passive manual stretching on various proteins involved in force transmission in skeletal muscle. Female Wistar weanling rats were randomly assigned to 5 groups: 2 control groups containing 21- and 30-day-old rats that received neither immobilization nor stretching, and 3 test groups that received 1) passive stretching over 3 days, 2) immobilization for 7 days and then passive stretching over 3 days, or 3) immobilization for 7 days. Maximal plantar flexion in the right hind limb was imposed, and the stretching protocol of 10 repetitions of 30 s stretches was applied. The soleus muscles were harvested and processed for HE and picrosirius staining; immunohistochemical analysis of collagen types I, III, IV, desmin, and vimentin; and immunofluorescence labeling of dystrophin and CD68. The numbers of desmin- and vimentin-positive cells were significantly decreased compared with those in the control following immobilization, regardless of whether stretching was applied (P<0.05). In addition, the semi-quantitative analysis showed that collagen type I was increased and type IV was decreased in the immobilized animals, regardless of whether the stretching protocol was applied. In conclusion, the largest changes in response to stretching were observed in muscles that had been previously immobilized, and the stretching protocol applied here did not mitigate the immobilization-induced muscle changes. Muscle disuse adversely affected several proteins involved in the transmission of forces between the intracellular and extracellular compartments. Thus, the 3-day rehabilitation period tested here did not provide sufficient time for the muscles to recover from the disuse maladaptations in animals undergoing postnatal development. PMID:26648091

  11. Three days of intermittent stretching after muscle disuse alters the proteins involved in force transmission in muscle fibers in weanling rats.

    PubMed

    Gianelo, M C S; Polizzelo, J C; Chesca, D; Mattiello-Sverzut, A C

    2016-02-01

    The aim of this study was to determine the effects of intermittent passive manual stretching on various proteins involved in force transmission in skeletal muscle. Female Wistar weanling rats were randomly assigned to 5 groups: 2 control groups containing 21- and 30-day-old rats that received neither immobilization nor stretching, and 3 test groups that received 1) passive stretching over 3 days, 2) immobilization for 7 days and then passive stretching over 3 days, or 3) immobilization for 7 days. Maximal plantar flexion in the right hind limb was imposed, and the stretching protocol of 10 repetitions of 30 s stretches was applied. The soleus muscles were harvested and processed for HE and picrosirius staining; immunohistochemical analysis of collagen types I, III, IV, desmin, and vimentin; and immunofluorescence labeling of dystrophin and CD68. The numbers of desmin- and vimentin-positive cells were significantly decreased compared with those in the control following immobilization, regardless of whether stretching was applied (P<0.05). In addition, the semi-quantitative analysis showed that collagen type I was increased and type IV was decreased in the immobilized animals, regardless of whether the stretching protocol was applied. In conclusion, the largest changes in response to stretching were observed in muscles that had been previously immobilized, and the stretching protocol applied here did not mitigate the immobilization-induced muscle changes. Muscle disuse adversely affected several proteins involved in the transmission of forces between the intracellular and extracellular compartments. Thus, the 3-day rehabilitation period tested here did not provide sufficient time for the muscles to recover from the disuse maladaptations in animals undergoing postnatal development.

  12. Evaluation of the response of rat skeletal muscle to a model of weightlessness

    NASA Technical Reports Server (NTRS)

    Templeton, G. H.; Padalino, M.; Glasberg, M.; Manton, J.; Silver, P.; Sutko, J.

    1982-01-01

    Suspension of rats in a head-down tilt position such that their hind limbs are non-load bearing has been proposed as a model for weightlessness. Changes observed in metabolism, bone formation (Morey et al., 1979), and muscle catabolism (Mussachia et al., 1980) support the validity of the model. To further document this model, the effects of suspension on the mechanical, biochemical and histochemical characteristics of two hind limb skeletal muscles, the gastrocnemius and the soleus, are investigated.

  13. Effect of a protein-free diet on muscle protein turnover and nitrogen conservation in euthyroid and hyperthyroid rats.

    PubMed Central

    Carter, W J; van der Weijden Benjamin, W S; Faas, F H

    1984-01-01

    Although protein turnover in skeletal muscle is increased in hyperthyroidism and decreased in hypothyroidism, a deficient protein intake tends to increase serum T3 (tri-iodothyronine) while decreasing muscle protein turnover. To determine whether this diet-induced decrease in protein turnover can occur independent of thyroid status, we have examined muscle protein turnover and nitrogen conservation in hyperthyroid rats fed on a protein-free diet. After inducing hyperthyroidism by giving 20 micrograms of T3/100g body wt. daily for 7 days, groups of euthyroid and hyperthyroid animals were divided into subgroups fed on basal and protein-free diets. Muscle protein turnover was measured by N tau-methylhistidine excretion and [14C]tyrosine infusion. Urinary nitrogen output of euthyroid and hyperthyroid animals fed on the protein-free diet was also measured. Although hyperthyroidism increased the baseline rates of muscle protein synthesis and degradation, it did not prevent a decrease in these values in response to protein depletion. Furthermore, hyperthyroid rats showed greatly decreased nitrogen excretion in response to the protein-free diet, although not to values for euthyroid rats. These findings suggest that protein depletion made the experimental animals less responsive to the protein-catabolic effects of T3. PMID:6696742

  14. Investigation of the Comparative Effects of Red and Infrared Laser Therapy on Skeletal Muscle Repair in Diabetic Rats.

    PubMed

    Assis, Lívia; Manis, Camila; Fernandes, Kelly Rossetti; Cabral, Daniel; Magri, Angela; Veronez, Suellen; Renno, Ana Claudia Muniz

    2016-07-01

    The aim of this study was to evaluate the in vivo response of 2 different laser wavelengths (red and infrared) on skeletal muscle repair process in diabetic rats. Forty Wistar rats were randomly divided into 4 experimental groups: basal control-nondiabetic and muscle-injured animals without treatment (BC); diabetic muscle-injured without treatment (DC); diabetic muscle-injured, treated with red laser (DCR) and infrared laser (DCIR). The injured region was irradiated daily for 7 consecutive days, starting immediately after the injury using a red (660 nm) and an infrared (808 nm) laser. The histological results demonstrated in both treated groups (red and infrared wavelengths) a modulation of the inflammatory process and a better tissue organization located in the site of the injury. However, only infrared light significantly reduced the injured area and increased MyoD and myogenin protein expression. Moreover, both red and infrared light increased the expression of the proangiogenic vascular endothelial growth factor and reduced the cyclooxygenase 2 protein expression. These results suggest that low-level laser therapy was efficient in promoting skeletal muscle repair in diabetic rats. However, the effect of infrared wavelength was more pronounced by reducing the area of the injury and modulating the expression proteins related to the repair.

  15. Effects of hypokinesia and hypodynamia upon protein turnover in hindlimb muscles of the rat

    NASA Technical Reports Server (NTRS)

    Loughna, Paul T.; Goldspink, David F.; Goldspink, Geoffrey

    1987-01-01

    Hypokinesia/hypodynamia was induced in the hindlimb muscles of the rat, using a suspension technique. This caused differing degrees of atrophy in different muscles. However, this atrophy was reduced in muscles held in a lenghthened position. The greatest degree of wasting was observed in the unstretched soleus, a slow postural muscle, where both Type 1 and Type 2a fibers atrophied to the same degree. However, wasting of the gastrocnemius muscle was associated with a reduction in the size of the Type 2b fibers. In both slow-postural and fast-phasic hindlimb muscles, atrophy was brought about by a reduction in the rate of protein synthesis in conjunction with an elevation in the rate of protein degradation. When inactive muscles were passively stretched, both protein synthesis and degradation were dramatically elevated. Even periods of stretch of as little as 0.5 h/d were found to significantly decrease atrophy in inactive muscles.

  16. Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats

    NASA Technical Reports Server (NTRS)

    Adams, G. R.; McCue, S. A.

    1998-01-01

    Insulin-like growth factor I (IGF-I) peptide levels have been shown to increase in overloaded skeletal muscles (G. R. Adams and F. Haddad. J. Appl. Physiol. 81: 2509-2516, 1996). In that study, the increase in IGF-I was found to precede measurable increases in muscle protein and was correlated with an increase in muscle DNA content. The present study was undertaken to test the hypothesis that direct IGF-I infusion would result in an increase in muscle DNA as well as in various measurements of muscle size. Either 0.9% saline or nonsystemic doses of IGF-I were infused directly into a non-weight-bearing muscle of rats, the tibialis anterior (TA), via a fenestrated catheter attached to a subcutaneous miniosmotic pump. Saline infusion had no effect on the mass, protein content, or DNA content of TA muscles. Local IGF-I infusion had no effect on body or heart weight. The absolute weight of the infused TA muscles was approximately 9% greater (P < 0.05) than that of the contralateral TA muscles. IGF-I infusion resulted in significant increases in the total protein and DNA content of TA muscles (P < 0.05). As a result of these coordinated changes, the DNA-to-protein ratio of the hypertrophied TA was similar to that of the contralateral muscles. These results suggest that IGF-I may be acting to directly stimulate processes such as protein synthesis and satellite cell proliferation, which result in skeletal muscle hypertrophy.

  17. Isoflavones isolated from red clover (Trifolium pratense) inhibit smooth muscle contraction of the isolated rat prostate gland.

    PubMed

    Brandli, A; Simpson, J S; Ventura, S

    2010-09-01

    This study investigated whether red clover contains any bioactive constituents which may affect contractility of rat prostatic smooth muscle in an attempt to determine whether its medicinal use in the treatment of benign prostatic hyperplasia is supported by pharmacological effects. A commercially available red clover extract was chemically fractionated and various isoflavones (genistein, formononetin and biochanin A) were isolated from these fractions and their effects on contractility were examined on preparations of the isolated rat prostate gland. Contractile effects of the isolated fractions were compared with commercially available isoflavones (genistein, formononetin and biochanin A). Pharmacological tools were used to investigate the mechanism of action modifying smooth muscle contraction. Crude red clover extract (Trinovin) inhibited electrical field stimulation induced contractions of the rat prostate across a range of frequencies with an IC(50) of approximately 68 microg/ml. Contractions of the rat prostate elicited by exogenous administration of acetylcholine, noradrenaline or adenosine 5'-triphosphate (ATP) were also inhibited. Chromatographic separation, and final purification by high performance liquid chromatography (HPLC) permitted the isolation of the isoflavones: daidzein, calycosin, formononetin, prunetin, pratensin, biochanin A and genistein. Genistein, formononetin and biochanin A (100 microM) from either commercial sources or isolated from red clover extract inhibited electrical field stimulation induced contractions of the isolated rat prostate. It is concluded that isoflavones contained in red clover are able to inhibit prostatic smooth muscle contractions in addition to their antiproliferative effects. However, the high concentrations required to observe these smooth muscle relaxant effects mean that a therapeutic benefit from this mechanism is unlikely at doses used clinically. Crown Copyright 2010. Published by Elsevier GmbH. All rights

  18. Pelvic muscles' mechanical response to strains in the absence and presence of pregnancy-induced adaptations in a rat model.

    PubMed

    Catanzarite, Tatiana; Bremner, Shannon; Barlow, Caitlin L; Bou-Malham, Laura; O'Connor, Shawn; Alperin, Marianna

    2018-05-01

    Maternal birth trauma to the pelvic floor muscles is thought to be consequent to mechanical demands placed on these muscles during fetal delivery that exceed muscle physiological limits. The above is consistent with studies of striated limb muscles that identify hyperelongation of sarcomeres, the functional muscle units, as the primary cause of mechanical muscle injury and resultant muscle dysfunction. However, pelvic floor muscles' mechanical response to strains have not been examined at a tissue level. Furthermore, we have previously demonstrated that during pregnancy, rat pelvic floor muscles acquire structural and functional adaptations in preparation for delivery, which likely protect against mechanical muscle injury by attenuating the strain effect. We sought to determine the mechanical impact of parturition-related strains on pelvic floor muscles' microstructure, and test the hypothesis that pregnancy-induced adaptations modulate muscle response to strains associated with vaginal delivery. Three-month-old Sprague-Dawley late-pregnant (N = 20) and nonpregnant (N = 22) rats underwent vaginal distention, replicating fetal crowning, with variable distention volumes. Age-matched uninjured pregnant and nonpregnant rats served as respective controls. After sacrifice, pelvic floor muscles, which include coccygeus, iliocaudalis, and pubocaudalis, were fixed in situ and harvested for fiber and sarcomere length measurements. To ascertain the extent of physiological strains during spontaneous vaginal delivery, analogous measurements were obtained in intrapartum rats (N = 4) sacrificed during fetal delivery. Data were compared with repeated measures and 2-way analysis of variance, followed by pairwise comparisons, with significance set at P < .05. Gross anatomic changes were observed in the pelvic floor muscles following vaginal distention, particularly in the entheseal region of pubocaudalis, which appeared translucent. The above appearance resulted from dramatic

  19. A study of the effect of pregnancy on muscle fibers of the rectus abdominis muscle of the rat.

    PubMed

    Martin, W D

    1979-11-01

    Samples of the rectus abdominis muscle were taken from Sprague-Dawley rats at 0, 3, 6, 6, 12, 15, 18, and 21 days of pregnancy, and at 1, 3, 6, 9, 12, and 15 days of postpartum. Sections were incubated for actomyosin adenosine triphosphatase activity following preincubation at a basic pH. Muscle fibers within a unit area of each sample were identified as to fiber type according to their enzyme activity, and the population of each type counted. The proportion of each fiber type was calculated and the diameter of 24 fibers of each type measured. No changes were noted in the muscle fiber proportions through the course of the experiment. Differential changes in muscle fiber diameters were noted in each of the three muscle fiber types. Slow oxidative fibers underwent an increase in diameter through the last half of pregnancy. The diameter was further increased as stretch of the muscle was released after birth, and did not decrease in the postpartum period. Fast glycolytic fibers decreased in diameter during the last half of pregnancy, but returned to the prepregnancy diameter in the first postpartum day. The diameter of the fast oxidative glycolytic fibers remained unchanged through the course of pregnacy and in the postpartum period.

  20. Gestational Protein Restriction Impairs Glucose Disposal in the Gastrocnemius Muscles of Female Rats

    PubMed Central

    Blesson, Chellakkan S.; Chinnathambi, Vijayakumar; Kumar, Sathish

    2017-01-01

    Gestational low-protein (LP) diet causes hyperglycemia and insulin resistance in adult offspring, but the mechanism is not clearly understood. In this study, we explored the role of insulin signaling in gastrocnemius muscles of gestational LP-exposed female offspring. Pregnant rats were fed a control (20% protein) or an isocaloric LP (6%) diet from gestational day 4 until delivery. Normal diet was given to mothers after delivery and to pups after weaning until necropsy. Offspring were euthanized at 4 months, and gastrocnemius muscles were treated with insulin ex vivo for 30 minutes. Messenger RNA and protein levels of molecules involved in insulin signaling were assessed at 4 months. LP females were smaller at birth but showed rapid catchup growth by 4 weeks. Glucose tolerance test in LP offspring at 3 months showed elevated serum glucose levels (P < 0.01; glycemia Δ area under the curve 342 ± 28 in LP vs 155 ± 23 in controls, mmol/L * 120 minutes) without any change in insulin levels. In gastrocnemius muscles, LP rats showed reduced tyrosine phosphorylation of insulin receptor substrate 1 upon insulin stimulation due to the overexpression of tyrosine phosphatase SHP-2, but serine phosphorylation was unaffected. Furthermore, insulin-induced phosphorylation of Akt, glycogen synthase kinase (GSK)–3α, and GSK-3β was diminished in LP rats, and they displayed an increased basal phosphorylation (inactive form) of glycogen synthase. Our study shows that gestational protein restriction causes peripheral insulin resistance by a series of phosphorylation defects in skeletal muscle in a mechanism involving insulin receptor substrate 1, SHP-2, Akt, GSK-3, and glycogen synthase causing dysfunctional GSK-3 signaling and increased stored glycogen, leading to distorted glucose homeostasis. PMID:28324067

  1. Effect of oxidative stress on Rho kinase II and smooth muscle contraction in rat stomach.

    PubMed

    Al-Shboul, Othman; Mustafa, Ayman

    2015-06-01

    Recent studies have shown that both Rho kinase signaling and oxidative stress are involved in the pathogenesis of a number of human diseases, such as diabetes mellitus, hypertension, and atherosclerosis. However, very little is known about the effect of oxidative stress on the gastrointestinal (GI) smooth muscle Rho kinase pathway. The aim of the current study was to investigate the effect of oxidative stress on Rho kinase II and muscle contraction in rat stomach. The peroxynitrite donor 3-morpholinosydnonimine (SIN-1), hydrogen peroxide (H2O2), and peroxynitrite were used to induce oxidative stress. Rho kinase II expression and ACh-induced activity were measured in control and oxidant-treated cells via specifically designed enzyme-linked immunosorbent assay (ELISA) and activity assay kits, respectively. Single smooth muscle cell contraction was measured via scanning micrometry in the presence or absence of the Rho kinase blocker, Y-27632 dihydrochloride. All oxidant agents significantly increased ACh-induced Rho kinase II activity without affecting its expression level. Most important, oxidative stress induced by all three agents augmented ACh-stimulated muscle cell contraction, which was significantly inhibited by Y-27632. In conclusion, oxidative stress activates Rho kinase II and enhances contraction in rat gastric muscle, suggesting an important role in GI motility disorders associated with oxidative stress.

  2. Partial fast-to-slow conversion of regenerating rat fast-twitch muscle by chronic low-frequency stimulation.

    PubMed

    Pette, Dirk; Sketelj, Janez; Skorjanc, Dejan; Leisner, Elmi; Traub, Irmtrud; Bajrović, Fajko

    2002-01-01

    Chronic low-frequency stimulation (CLFS) of rat fast-twitch muscles induces sequential transitions in myosin heavy chain (MHC) expression from MHCIIb --> MHCIId/x --> MHCIIa. However, the 'final' step of the fast-to-slow transition, i.e., the upregulation of MHCI, has been observed only after extremely long stimulation periods. Assuming that fibre degeneration/regeneration might be involved in the upregulation of slow myosin, we investigated the effects of CLFS on extensor digitorum longus (EDL) muscles regenerating after bupivacaine-induced fibre necrosis. Normal, non-regenerating muscles responded to both 30- and 60-day CLFS with fast MHC isoform transitions (MHCIIb --> MHCIId --> MHCIIa) and only slight increases in MHCI. CLFS of regenerating EDL muscles caused similar transitions among the fast isoforms but, in addition, caused significant increases in MHCI (to approximately 30% relative concentration). Stimulation periods of 30 and 60 days induced similar changes in the regenerating bupivacaine-treated muscles, indicating that the upregulation of slow myosin was restricted to regenerating fibres, but only during an early stage of regeneration. These results suggest that satellite cells and/or regenerating fast rat muscle fibres are capable of switching directly to a slow program under the influence of CLFS and, therefore, appear to be more malleable than adult fibres.

  3. Rho-kinase inhibitors augment the inhibitory effect of propofol on rat bronchial smooth muscle contraction.

    PubMed

    Hanazaki, Motohiko; Yokoyama, Masataka; Morita, Kiyoshi; Kohjitani, Atsushi; Sakai, Hiroyasu; Chiba, Yoshihiko; Misawa, Miwa

    2008-06-01

    Airway smooth muscle contraction is not caused by the increase in intracellular Ca(2+) ([Ca(2+)](i)) alone because agonist stimulation increases tension at the same [Ca(2+)](i) (increase in Ca(2+) sensitivity). The small G protein Rho A and Rho-kinase (ROCK) play important roles in the regulation of Ca(2+) sensitivity. In this study, we investigated the effects of three ROCK inhibitors (fasudil, Y-27632, and H-1152) on rat airway smooth muscle contraction and the effects of ROCK inhibitors on propofol-induced bronchodilatory effects. Ring strips from intrapulmonary bronchus of male Wistar rats were placed in 400-microL organ baths containing Krebs-Henseleit solution. After obtaining stable contraction with 30 microM acetylcholine, (1) propofol (1 microM-1 mM) was cumulatively applied; (2) cumulative doses of Y-27632 (0.01-300 microM), fasudil (0.01-100 microM), or H-1152 (0.01-100 microM) were applied; (3) propofol (1 microM-1 mM), with Y-27632, fasudil or H-1152 (0.03 microM or 0.1 microM), was cumulatively applied. (1) Propofol produced concentration-dependent relaxation of rat bronchial smooth muscle. (2) All ROCK inhibitors produced concentration-dependent relaxation. (3) 0.03 microM Y-27632 and fasudil had no significant effect on the concentration-response curve for propofol, while 0.1 microM of both agents significantly shifted concentration-response curves to the left and decreased EC(50). H-1152 (both 0.03 microM and 0.1 microM) significantly sifted the concentration-response curve for propofol to the left and decreased EC(50). ROCK inhibitors, especially H-1152, can attenuate the contraction of rat airway smooth muscle. The combined use of ROCK inhibitors and propofol causes greater relaxation.

  4. Activation of PPAR-delta in isolated rat skeletal muscle switches fuel preference from glucose to fatty acids.

    PubMed

    Brunmair, B; Staniek, K; Dörig, J; Szöcs, Z; Stadlbauer, K; Marian, V; Gras, F; Anderwald, C; Nohl, H; Waldhäusl, W; Fürnsinn, C

    2006-11-01

    GW501516, an agonist of peroxisome proliferator-activated receptor-delta (PPAR-delta), increases lipid combustion and exerts antidiabetic action in animals, effects which are attributed mainly to direct effects on skeletal muscle. We explored such actions further in isolated rat skeletal muscle. Specimens of rat skeletal muscle were pretreated with GW501516 (0.01-30 mumol/l) for 0.5, 4 or 24 h and rates of fuel metabolism were then measured. In addition, effects on mitochondrial function were determined in isolated rat liver mitochondria. At concentrations between 0.01 and 1 mumol/l, GW501516 dose-dependently increased fatty acid oxidation but reduced glucose utilisation in isolated muscle. Thus after 24 h of preincubation with 1 mumol/l GW501516, palmitate oxidation increased by +46+/-10%, and the following decreased as specified: glucose oxidation -46+/-8%, glycogen synthesis -42+/-6%, lactate release -20+/-2%, glucose transport -15+/-6% (all p<0.05). Reduction of glucose utilisation persisted independently of insulin stimulation or muscle fibre type, but depended on fatty acid availability (the effect on glucose transport in the absence of fatty acids was an increase of 30+/-9%, p<0.01), suggesting a role for the glucose-fatty acid cycle. At higher concentrations, GW501516 uncoupled oxidative phosphorylation by direct action on isolated mitochondria. GW501516-induced activation of PPAR-delta reduces glucose utilisation by skeletal muscle through a switch in mitochondrial substrate preference from carbohydrate to lipid. High concentrations of GW501516 induce mitochondrial uncoupling independently of PPAR-delta.

  5. Metabolite concentrations in skeletal muscle of different aged rats submitted to hypoxia and pharmacological treatment with nicergoline.

    PubMed

    Pastoris, O; Foppa, P; Catapano, M; Dossena, M

    1998-06-01

    The energy metabolism of the gastrocnemius and soleus muscles in young-adult, mature, and senescent rats was evaluated after 72 h of continuous exposure to normobaric hypoxia or normoxia. The effects of treatment with the alpha-adrenergic antagonist nicergoline were also investigated. In the gastrocnemius muscle we evaluated the concentrations of some significative metabolites involved in anaerobic glycolysis and the Krebs' cycle, free amino acids related to the Krebs' cycle, ammonia, some energy mediators, and the energy store creatine phosphate. In the soleus muscle a selection of these was evaluated. In both muscles aging was similarly characterized by a decrease in muscular creatine phosphate concentration, while the energy mediators and the energy charge potential remained unchanged. Singly, some gastrocnemius muscle metabolites showed linear changes in their concentrations with aging, while for the soleus muscle the only linear change regarded glucose-6-phosphate. Continuous normobaric hypoxia induced greater changes at the age of 4 and 24 months than at 12 months. Chronic treatment with nicergoline modified the influence of hypoxic conditions on muscle metabolites concentrations only in some cases, regardless of the age of the animals. Further investigations are necessary before any firm conclusions can be drawn about the pharmacological activity of nicergoline on hypoxia in aged rats.

  6. Influence of chronic food deprivation on structure-function relationship of juvenile rat fast muscles.

    PubMed

    Ruiz-Rosado, Azucena; Cabrera-Fuentes, Héctor A; González-Calixto, Cecilia; González-López, Lorena; Cázares-Raga, Febe E; Segura-Alegría, Bertha; Lochnit, Günter; de la Cruz Hernández-Hernández, Fidel; Preissner, Klaus T; Jiménez-Estrada, Ismael

    2013-12-01

    In the present study, we analyze the influence of chronic undernutrition on protein expression, muscle fiber type composition, and fatigue resistance of the fast extensor digitorum longus (EDL) muscle of male juvenile rats (45 ± 3 days of life; n = 25 and 31 rats for control and undernourished groups, respectively). Using 2D gel electrophoresis and mass spectrometry, we identified in undernourished muscles 12 proteins up-regulated (8 proteins of the electron transport chain and the glycolytic pathway, 2 cross-bridge proteins, chaperone and signaling proteins that are related to the stress response). In contrast, one down-regulated protein related to the fast muscle contractile system and two other proteins with no changes in expression were used as charge controls. By means of COX and alkaline ATPase histochemical techniques and low-frequency fatigue protocols we determined that undernourished muscles showed a larger proportion (15% increase) of Type IIa/IId fibers (oxidative-glycolytic) at the expense of Type IIb (glycolytic) fibers (15.5% decrease) and increased fatigue resistance (55.3%). In addition, all fiber types showed a significant reduction in their cross-sectional area (slow: 64.4%; intermediate: 63.9% and fast: 61.2%). These results indicate that undernourished EDL muscles exhibit an increased expression of energy metabolic and myofibrillar proteins which are associated with the predominance of oxidative and Type IIa/IId fibers and to a higher resistance to fatigue. We propose that such alterations may act as protective and/or adaptive mechanisms that counterbalance the effect of chronic undernourishment.

  7. Islet transplantation under the kidney capsule fully corrects the impaired skeletal muscle glucose transport system of streptozocin diabetic rats.

    PubMed Central

    Napoli, R; Davalli, A M; Hirshman, M F; Weitgasser, R; Weir, G C; Horton, E S

    1996-01-01

    Chronic insulin therapy improves but does not restore impaired insulin-mediated muscle glucose uptake in human diabetes or muscle glucose uptake, transport, and transporter translocation in streptozocin diabetic rats. To determine whether this inability is due to inadequate insulin replacement, we studied fasted streptozocin-induced diabetic Lewis rats either untreated or after islet transplantation under the kidney capsule. Plasma glucose was increased in untreated diabetics and normalized by the islet transplantation (110 +/- 5, 452 +/- 9, and 102 +/- 3 mg/dl in controls, untreated diabetics, and transplanted diabetics, respectively). Plasma membrane and intracellular microsomal membrane vesicles were prepared from hindlimb skeletal muscle of basal and maximally insulin-stimulated rats. Islet transplantation normalized plasma membrane carrier-mediated glucose transport Vmax, plasma membrane glucose transporter content, and insulin-induced transporter translocation. There were no differences in transporter intrinsic activity (Vmax/Ro) among the three groups. Microsomal membrane GLUT4 content was reduced by 30% in untreated diabetic rats and normal in transplanted diabetics, whereas the insulin-induced changes in microsomal membrane GLUT4 content were quantitatively similar in the three groups. There were no differences in plasma membrane GLUT1 among the groups and between basal and insulin stimulated states. Microsomal membrane GLUT1 content was increased 60% in untreated diabetics and normalized by the transplantation. In conclusion, an adequate insulin delivery in the peripheral circulation, obtained by islet transplantation, fully restores the muscle glucose transport system to normal in streptozocin diabetic rats. PMID:8617870

  8. Quantitation and immunocytochemical localization of ubiquitin conjugates within rat red and white skeletal muscles

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L. W.; Haas, Arthur L.; Ellis, Stanley

    1988-01-01

    Solid-phase immunochemical methods were employed to probe the dynamics of ubiquitin pools within selected rat skeletal muscles. The total ubiquitin content of red muscles was greater than that of white muscles, even though the fractional conjugation was similar for both types of muscles. The specificity for conjugated ubiquitin in solid-phase applications, previously demonstrated for an affinity-purified antibody against SDS-denatured ubiquitin, was retained when used as a probe for ubiquitin-protein adducts in tissue sections. Immunohistochemical localization revealed that differences in ubiquitin pools derived from the relative content of red (oxidative) vs white (glycolytic) fibers, with the former exhibiting a higher content of ubiquitin conjugates. Subsequent immunogold labeling demonstrated statistically significant enhanced localization of ubiquitin conjugates to the Z-lines in both red and white muscle fiber types.

  9. Bone structure and quality preserved by active versus passive muscle exercise in 21 days tail-suspended rats

    NASA Astrophysics Data System (ADS)

    Luan, Huiqin; Sun, Lian-wen; Fan, Yu-bo

    2012-07-01

    Humans in Space suffer from microgravity-induced attenuated bone strength that needs to be addressed by on-orbit exercise countermeasures. However, exercise prescriptions so far did not adequately counteract the bone loss of astronauts in spaceflight because even active muscle contractions were converted to passive mode during voluntary bouts. We tested our hypothesis in unloaded rat hind limb following twenty-one days of tail-suspension (TS) combined with exercise using a hind limb stepper device designed by our group. Female Sprague Dawley rats (250g b.wt.) were divided into four groups (n=5, each): TS-only (hind limb unloading), TS plus passive mode exercise (TSP) induced by mechanically-forced passive hind limb lifting, TS plus active mode exercise (TSA) entrained by plantar electrostimulation, and control (CON) group. Standard measures of bone (e.g., mineral density, trabecular microstructure, biomechanics and ash weight) were monitored. Results provided that the attenuated properties of unloaded hind limb bone in TS-rats were more effectively supported by active mode than by passive mode motions. We here propose a modified exercise regimen combined with spontaneous muscle contractions thereby considering the biodynamic demands of both muscle and bone during resistive-load exercise in microgravity. Keywords: rat, BMD, DXA, passive exercise, active exercise, bone loss, tail suspension, spaceflight analogue, exercise countermeasure.

  10. Effects of stretching and disuse on amino acids in muscles of rat hind limbs

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik J.; Satarug, Soisungwan; Tischler, Marc E.

    1989-01-01

    The effects of disuse and passive stretch on the concentrations of amino acids and ammonia in the unloaded soleus muscle was investigated in hindquarter-suspended (for six days by casting one foot in dorsiflexion) tail-casted rats. For a comparison with the condition of unloading, amino acids and ammonia were also measured in shortened extensor digitorum longus in the same casted limb and in denervated leg muscles. The results obtained suggest that passive stretch diminishes some of the characteristic alterations of amino acid concentrations due to unloading. This effect of stretch is considered to be due to the maintenance of muscle tension.

  11. The effects of dietary fish oil on exercising skeletal muscle vascular and metabolic control in chronic heart failure rats.

    PubMed

    Holdsworth, Clark T; Copp, Steven W; Hirai, Daniel M; Ferguson, Scott K; Sims, Gabrielle E; Hageman, Karen S; Stebbins, Charles L; Poole, David C; Musch, Timothy I

    2014-03-01

    Impaired vasomotor control in chronic heart failure (CHF) is due partly to decrements in nitric oxide synthase (NOS) mediated vasodilation. Exercising muscle blood flow (BF) is augmented with polyunsaturated fatty acid (PUFA) supplementation via fish oil (FO) in healthy rats. We hypothesized that FO would augment exercising muscle BF in CHF rats via increased NO-bioavailability. Myocardial infarction (coronary artery ligation) induced CHF in Sprague-Dawley rats which were subsequently randomized to dietary FO (20% docosahexaenoic acid, 30% eicosapentaenoic acid, n = 15) or safflower oil (SO, 5%, n = 10) for 6-8 weeks. Mean arterial pressure (MAP), blood [lactate], and hindlimb muscles BF (radiolabeled microspheres) were determined at rest, during treadmill exercise (20 m·min(-1), 5% incline) and exercise + N(G)-nitro-l-arginine-methyl-ester (l-NAME) (a nonspecific NOS inhibitor). FO did not change left ventricular end-diastolic pressure (SO: 14 ± 2; FO: 11 ± 1 mm Hg, p > 0.05). During exercise, MAP (SO: 128 ± 3; FO: 132 ± 3 mm Hg) and blood [lactate] (SO: 3.8 ± 0.4; FO: 4.6 ± 0.5 mmol·L(-1)) were not different (p > 0.05). Exercising hindlimb muscle BF was lower in FO than SO (SO: 120 ± 11; FO: 93 ± 4 mL·min(-1)·100 g(-1), p < 0.05) but was not differentially affected by l-NAME. Specifically, 17 of 28 individual muscle BF's were lower (p < 0.05) in FO demonstrating that PUFA supplementation with FO in CHF rats does not augment muscle BF during exercise but may lower metabolic cost.

  12. Emodin ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle.

    PubMed

    Cao, Yanni; Chang, Shufang; Dong, Jie; Zhu, Shenyin; Zheng, Xiaoying; Li, Juan; Long, Rui; Zhou, Yuanda; Cui, Jianyu; Zhang, Ye

    2016-06-05

    Emodin, an anthraquinone derivative isolated from root and rhizome of Rheum palmatum, has been reported to have promising anti-diabetic activity. The present study was to explore the possible mechanism of emodin to ameliorate insulin resistance. Insulin resistance was induced by feeding a high fat diet to Sprague-Dawley rats. The blood glucose and lipid profiles in serum were measured by an enzymatic method, and a hyperinsulinaemic-euglycaemic clamp was used to evaluate insulin resistance. L6 cells were cultured and treated with palmitic acid and emodin. The lipid content was assayed in the soleus muscle and L6 cells by Oil Red O staining. Western blot, qRT-PCR, and immunohistochemical staining were used to detect the following in the rat soleus muscle and L6 cells: protein levels, mRNA levels of FATP1, FATP4, transporter fatty acid translocase (FAT/CD36), and plasma membrane-associated fatty acid protein (FABPpm). We found that blood glucose, triglyceride (TG), total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were significantly decreased in the emodin group. Oil Red O staining and the level of TG in skeletal muscle and L6 cells confirmed that lipid deposition decreased after treatment with emodin. Furthermore, the protein levels and mRNA levels of FATP1 in skeletal muscle and in L6 cells of rats were significantly decreased, yet the protein levels and mRNA levels of FATP4, FAT/CD36 and FABPpm did not drop off significantly. The study suggest that emodin ameliorates insulin resistance by reducing FATP1-mediated skeletal muscle lipid accumulation in rats fed a high fat diet. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Slow- and fast-twitch rat hind limb skeletal muscle phenotypes 8 months after spinal cord transection and olfactory ensheathing glia transplantation

    PubMed Central

    Negredo, Pilar; Rivero, José-Luis L; González, Beatriz; Ramón-Cueto, Almudena; Manso, Rafael

    2008-01-01

    Paralysed skeletal muscle of rats with spinal cord injury (SCI) undergoes atrophy and a switch in gene expression pattern which leads to faster, more fatigable phenotypes. Olfactory ensheathing glia (OEG) transplants have been reported to promote axonal regeneration and to restore sensory-motor function in animals with SCI. We hypothesized that OEG transplants could attenuate skeletal muscle phenotypic deterioration and that this effect could underlie the functional recovery observed in behavioural tests. A variety of morphological, metabolic and molecular markers were assessed in soleus (SOL) and extensor digitorum longus (EDL) muscles of spinal cord transected (SCT), OEG-transplanted rats 8 months after the intervention and compared with non-transplanted SCT rats and sham-operated (without SCT) controls (C). A multivariate analysis encompassing all the parameters indicated that OEG-transplanted rats displayed skeletal muscle phenotypes intermediate between non-transplanted and sham-operated controls, but different from both. A high correlation was observed between behaviourally tested sensory-motor functional capacity and expression level of slow- and fast-twitch hind limb skeletal muscle phenotypic markers, particularly the histochemical glycerol-3-phosphate dehydrogenase activity (−0.843, P < 0.0001) and the fraction of variant 2s of the slow regulatory myosin light chain isoform (0.848, P < 0.0001) in SOL. Despite the mean overall effect of OEG transplants in patterning skeletal muscle protein expression towards normal, in 6 out of 9 animals they appeared insufficient to overcome fibre type switching and to support a consistent and generalized long-term maintenance of normal skeletal muscle characteristics. The interplay of OEG and exercise-mediated neurotrophic actions is a plausible mechanism underlying OEG transplantation effects on paralysed skeletal muscle. PMID:18372308

  14. TRPM4 channel: a new player in urinary bladder smooth muscle function in rats

    PubMed Central

    Smith, Amy C.; Parajuli, Shankar P.; Hristov, Kiril L.; Cheng, Qiuping; Soder, Rupal P.; Afeli, Serge A. Y.; Earley, Scott; Xin, Wenkuan; Malysz, John

    2013-01-01

    The TRPM4 channel is a Ca2+-activated, monovalent cation-selective channel of the melastatin transient receptor potential (TRPM) family. The TRPM4 channel is implicated in the regulation of many cellular processes including the immune response, insulin secretion, and pressure-induced vasoconstriction of cerebral arteries. However, the expression and function of the TRPM4 channels in detrusor smooth muscle (DSM) have not yet been explored. Here, we provide the first molecular, electrophysiological, and functional evidence for the presence of TRPM4 channels in rat DSM. We detected the expression of TRPM4 channels at mRNA and protein levels in freshly isolated DSM single cells and DSM tissue using RT-PCR, Western blotting, immunohistochemistry, and immunocytochemistry. 9-Hydroxyphenanthrene (9-phenanthrol), a novel selective inhibitor of TRPM4 channels, was used to examine their role in DSM function. In perforated patch-clamp recordings using freshly isolated rat DSM cells, 9-phenanthrol (30 μM) decreased the spontaneous inward current activity at −70 mV. Real-time DSM live-cell Ca2+ imaging showed that selective inhibition of TRPM4 channels with 9-phenanthrol (30 μM) significantly reduced the intracellular Ca2+ levels. Isometric DSM tension recordings revealed that 9-phenanthrol (0.1–30 μM) significantly inhibited the amplitude, muscle force integral, and frequency of the spontaneous phasic and pharmacologically induced contractions of rat DSM isolated strips. 9-Phenanthrol also decreased the amplitude and muscle force integral of electrical field stimulation-induced contractions. In conclusion, this is the first study to examine the expression and provide evidence for TRPM4 channels as critical regulators of rat DSM excitability and contractility. PMID:23283997

  15. Distinct muscle apoptotic pathways are activated in muscles with different fiber types in a rat model of critical illness myopathy.

    PubMed

    Barnes, Benjamin T; Confides, Amy L; Rich, Mark M; Dupont-Versteegden, Esther E

    2015-06-01

    Critical illness myopathy (CIM) is associated with severe muscle atrophy and fatigue in affected patients. Apoptotic signaling is involved in atrophy and is elevated in muscles from patients with CIM. In this study we investigated underlying mechanisms of apoptosis-related pathways in muscles with different fiber type composition in a rat model of CIM using denervation and glucocorticoid administration (denervation and steroid-induced myopathy, DSIM). Soleus and tibialis anterior (TA) muscles showed severe muscle atrophy (40-60% of control muscle weight) and significant apoptosis in interstitial as well as myofiber nuclei that was similar between the two muscles with DSIM. Caspase-3 and -8 activities, but not caspase-9 and -12, were elevated in TA and not in soleus muscle, while the caspase-independent proteins endonuclease G (EndoG) and apoptosis inducing factor (AIF) were not changed in abundance nor differentially localized in either muscle. Anti-apoptotic proteins HSP70, -27, and apoptosis repressor with a caspase recruitment domain (ARC) were elevated in soleus compared to TA muscle and ARC was significantly decreased with induction of DSIM in soleus. Results indicate that apoptosis is a significant process associated with DSIM in both soleus and TA muscles, and that apoptosis-associated processes are differentially regulated in muscles of different function and fiber type undergoing atrophy due to DSIM. We conclude that interventions combating apoptosis with CIM may need to be directed towards inhibiting caspase-dependent as well as -independent mechanisms to be able to affect muscles of all fiber types.

  16. Botulinum toxin type-A affects mechanics of non-injected antagonistic rat muscles.

    PubMed

    Ateş, Filiz; Yucesoy, Can A

    2018-08-01

    Botulinum toxin type A (BTX-A) effects on the mechanics of non-injected antagonistic muscles are unknown. The aim was to test the following hypotheses in a rat model: BTX-A injected into gastrocnemius medialis (GM) and lateralis (GL) (1) decreases forces of the antagonistic tibialis anterior (TA) and extensor digitorum longus (EDL), (2) reduces length range of force exertion and (3) increases passive forces of the TA, and (4) changes inter-antagonistic and inter-synergistic epimuscular myofascial force transmission (EMFT). Two groups of Wistar rats were tested: BTX (0.1 units of BTX-A were injected to the GM and GL, each) and Control (saline injected). Five-days post, TA, EDL, GM-GL, and soleus distal and EDL proximal isometric forces were measured after TA lengthening. BTX-A exposure caused forces of all muscles to decrease significantly. TA and EDL active force drops (maximally by 37.3%) show inter-compartmental spread. Length range of force exertion of the TA did not change, but its passive force increased significantly (by 25%). The percentages of intramuscular connective tissue content of the TA and EDL was higher (BTX: 20.0 ± 4.9% and 19.3 ± 4.1% vs. control: 13.1 ± 5.4% and 14.5 ± 4.0%, respectively). Calf muscles' forces were not affected by TA length changes for both groups indicating lacking inter-antagonistic EMFT. However, BTX-A altered EDL proximo-distal force differences hence, inter-synergistic EMFT. A major novel finding is that BTX-A affects mechanics of non-injected antagonistic muscles in test conditions involving only limited EMFT. The effects indicating a stiffer muscle with no length range increase contradict some treatment aims, which require clinical testing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. [Relationship between Electrical Conductivity and Decomposition Rate of Rat Postmortem Skeletal Muscle].

    PubMed

    Xia, Z Y; Zhai, X D; Liu, B B; Zheng, Z; Zhao, L L; Mo, Y N

    2017-02-01

    To analyze the relationship among electrical conductivity (EC), total volatile basic nitrogen (TVB-N), which is an index of decomposition rate for meat production, and postmortem interval (PMI). To explore the feasibility of EC as an index of cadaveric skeletal muscle decomposition rate and lay the foundation for PMI estimation. Healthy Sprague-Dawley rats were sacrificed by cervical vertebrae dislocation and kept at 28 ℃. Muscle of rear limbs was removed at different PMI, homogenized in deionized water and then skeletal extraction liquid of mass concentration 0.1 g/mL was prepared. EC and TVB-N of extraction liquid were separately determined. The correlation between EC ( x ₁) and TVB-N ( x ₂) was analyzed, and their regression function was established. The relationship between PMI ( y ) and these two parameters were studied, and their regression functions were separately established. The change trends of EC and TVB-N of skeletal extraction liquid at different PMI were almost the same, and there was a linear positive correlation between them. The regression equation was x ₂=0.14 x ₁-164.91( R ²=0.982). EC and TVB-N of skeletal muscle changed significantly with PMI, and the regression functions were y =19.38 x ₁³-370.68 x ₁²+2 526.03 x ₁-717.06( R ²=0.994), and y =2.56 x ₂³-48.39 x ₂²+330.60 x ₂-255.04( R ²=0.997), respectively. EC and TVB-N of rat postmortem skeletal muscle show similar change trends, which can be used as an index for decomposition rate of cadaveric skeletal muscle and provide a method for further study of late PMI estimation. Copyright© by the Editorial Department of Journal of Forensic Medicine

  18. Myostatin propeptide gene delivery by gene gun ameliorates muscle atrophy in a rat model of botulinum toxin-induced nerve denervation.

    PubMed

    Tsai, Sen-Wei; Tung, Yu-Tang; Chen, Hsiao-Ling; Yang, Shang-Hsun; Liu, Chia-Yi; Lu, Michelle; Pai, Hui-Jing; Lin, Chi-Chen; Chen, Chuan-Mu

    2016-02-01

    Muscle atrophy is a common symptom after nerve denervation. Myostatin propeptide, a precursor of myostatin, has been documented to improve muscle growth. However, the mechanism underlying the muscle atrophy attenuation effects of myostatin propeptide in muscles and the changes in gene expression are not well established. We investigated the possible underlying mechanisms associated with myostatin propeptide gene delivery by gene gun in a rat denervation muscle atrophy model, and evaluated gene expression patterns. In a rat botulinum toxin-induced nerve denervation muscle atrophy model, we evaluated the effects of wild-type (MSPP) and mutant-type (MSPPD75A) of myostatin propeptide gene delivery, and observed changes in gene activation associated with the neuromuscular junction, muscle and nerve. Muscle mass and muscle fiber size was moderately increased in myostatin propeptide treated muscles (p<0.05). And enhancement of the gene expression of the muscle regulatory factors, neurite outgrowth factors (IGF-1, GAP43) and acetylcholine receptors was observed. Our results demonstrate that myostatin propeptide gene delivery, especially the mutant-type of MSPPD75A, attenuates muscle atrophy through myogenic regulatory factors and acetylcholine receptor regulation. Our data concluded that myostatin propeptide gene therapy may be a promising treatment for nerve denervation induced muscle atrophy. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effects of microgravity on myogenic factor expressions during postnatal development of rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Inobe, Manabu; Inobe, Ikuko; Adams, Gregory R.; Baldwin, Kenneth M.; Takeda, Shin'Ichi

    2002-01-01

    To clarify the role of gravity in the postnatal development of skeletal muscle, we exposed neonatal rats at 7 days of age to microgravity. After 16 days of spaceflight, tibialis anterior, plantaris, medial gastrocnemius, and soleus muscles were removed from the hindlimb musculature and examined for the expression of MyoD-family transcription factors such as MyoD, myogenin, and MRF4. For this purpose, we established a unique semiquantitative method, based on RT-PCR, using specific primers tagged with infrared fluorescence. The relative expression of MyoD in the tibialis anterior and plantaris muscles and that of myogenin in the plantaris and soleus muscles were significantly reduced (P < 0.001) in the flight animals. In contrast, MRF4 expression was not changed in any muscle. These results suggest that MyoD and myogenin, but not MRF4, are sensitive to gravity-related stimuli in some skeletal muscles during postnatal development.

  20. Streptozotocin diabetes attenuates the effects of nondepolarizing neuromuscular relaxants on rat muscles.

    PubMed

    Huang, Lina; Chen, Dan; Li, Shitong

    2014-12-01

    The hypothesis of this study was that diabetes-induced desensitization of rat soleus (SOL) and extensor digitorum longus (EDL) to non-depolarizing muscle relaxants (NDMRs) depends on the stage of diabetes and on the kind of NDMRs. We tested the different magnitude of resistance to vecuronium, cisatracurium, and rocuronium at different stages of streptozotocin (STZ)-induced diabetes by the EDL sciatic nerve-muscle preparations, and the SOL sciatic nerve-muscle preparations from rats after 4 and 16 weeks of STZ treatment. The concentration-twitch tension curves were significantly shifted from those of the control group to the right in the diabetic groups. Concentration giving 50% of maximal inhibition (IC50) was larger in the diabetic groups for all the NDMRs. For rocuronium and cisatracurium in both SOL and EDL, IC50 was significantly larger in diabetic 16 weeks group than those in the diabetic 4 weeks group. For SOL/EDL, the IC50 ratios were significantly largest in the diabetic 16 weeks group, second largest in the diabetic 4 weeks group, and smallest for the control group. Diabetes-induced desensitization to NDMRs depended on the stage of diabetes and on the different kind of muscles observed while was independent on different kind of NDMRs. The resistance to NDMRs was stronger in the later stage of diabetes (16 versus 4 weeks after STZ treatment). Additionally, when monitoring in SOL, diabetes attenuated the actions of neuromuscular blockade more intensely than that in EDL. Nonetheless, the hyposensitivity to NDMRs in diabetes was not relevant for the kind of NDMRs.

  1. [Ultrastructure of the blood vessels and muscle fibers in the skeletal muscle of rats flown on the Kosmos-605 and Kosmos-782 biosatellites].

    PubMed

    Savik, Z F; Rokhlenko, K D

    1981-01-01

    Electron microscopy was used to study ultrastructures of the wall of blood vessels and muscle fibers of the red (soleus) and mixed (gastrocnemius) muscles of rats flown on Cosmos-605 for 22.5 days and on Cosmos-782 for 19,5 days and sacrificed 4-6 hours, 48 hours and 25-27 days postflight. It was demonstrated that the orbital flight did not induce significant changes in the ultrastructure of blood vessels of the soleus and gastrocnemius muscles but caused atrophy of muscle fibers and reduction of the number of functioning capillaries. Readaptation of the soleus vascular system to 1 g led to degradation of permeability of capillary and venular walls and development of edema of the perivascular connective tissue. This may be one of the factors responsible for dystrophic changes in muscle fibers.

  2. Changes in rat muscle with compensatory overload occur in a sequential manner.

    PubMed

    Macpherson, P C; Thayer, R E; Rodgers, C; Taylor, A W; Noble, E G

    1999-01-01

    The present study was initiated to determine the time course of changes in the profile of selected skeletal muscle myofibril proteins during compensatory overload. Whole muscle isometric contractile properties were measured to assess the physiological consequences of the overload stimulus. Compensatory overload of plantaris muscle of rats was induced by surgical ablation of the synergistic soleus and gastrocnemius muscles. Myosin light chain (LC) and tropomyosin (TM) compositions of control (CP) and overloaded plantaris (OP) muscles were determined by electrophoresis and myofibrillar ATPase assays were performed to assess changes in contractile protein interactions. Within one week of overload decreases in the alpha:beta TM ratio and myofibrillar ATPase activity were observed. Following 30 days of overload, a transition in type II to type I fibres was associated with an increase in slow myosin LC1. Interestingly, after 77 days of overload, the TM subunit ratio returned to one resembling a fast twitch muscle. It is proposed that the early and transitory changes in the TM subunits of OP, as well as the rapid initial depression in maximum tetanic isometric force and myofibrillar ATPase activity may be explained as a result of muscle fibre degeneration-regeneration. We propose that alterations in protein expression induced by compensatory overload reflect both degenerative-regenerative change and increased neuromuscular activity.

  3. Role of Kv 4.3 in vibration-induced muscle pain in the rat

    PubMed Central

    Conner, Lindsay; Alvarez, Pedro; Bogen, Oliver; Levine, Jon D.

    2015-01-01

    We hypothesized that changes in the expression of Kv4.3 contribute to the mechanical hyperalgesia induced by vibration injury, a rodent model for hand-arm vibration syndrome in humans. Here we show that the exposure of the gastrocnemius muscle to vibration injury induces muscle hyperalgesia that is accompanied by a significant down-regulation of Kv4.3 in affected sensory nerve fibers in dorsal root ganglia (DRG). We additionally demonstrate that the intrathecal administration of antisense oligonucleotides for Kv4.3 mRNA itself induces muscle hyperalgesia in the rat. Our results suggest that attenuation in the expression of Kv4.3 may contribute to neuropathic pain in people affected by hand-arm vibration syndrome. PMID:26721612

  4. In vivo regulation of the beta-myosin heavy chain gene in soleus muscle of suspended and weight-bearing rats

    NASA Technical Reports Server (NTRS)

    Giger, J. M.; Haddad, F.; Qin, A. X.; Baldwin, K. M.

    2000-01-01

    In the weight-bearing hindlimb soleus muscle of the rat, approximately 90% of muscle fibers express the beta-myosin heavy chain (beta-MHC) isoform protein. Hindlimb suspension (HS) causes the MHC isoform population to shift from beta toward the fast MHC isoforms. Our aim was to establish a model to test the hypothesis that this shift in expression is transcriptionally regulated through specific cis elements of the beta-MHC promoter. With the use of a direct gene transfer approach, we determined the activity of different length beta-MHC promoter fragments, linked to a firefly luciferase reporter gene, in soleus muscle of control and HS rats. In weight-bearing rats, the relative luciferase activity of the longest beta-promoter fragment (-3500 bp) was threefold higher than the shorter promoter constructs, which suggests that an enhancer sequence is present in the upstream promoter region. After 1 wk of HS, the reporter activities of the -3500-, -914-, and -408-bp promoter constructs were significantly reduced ( approximately 40%), compared with the control muscles. However, using the -215-bp construct, no differences in promoter activity were observed between HS and control muscles, which indicates that the response to HS in the rodent appears to be regulated within the -408 and -215 bp of the promoter.

  5. Bone Marrow Stromal Cells Generate Muscle Cells and Repair Muscle Degeneration

    NASA Astrophysics Data System (ADS)

    Dezawa, Mari; Ishikawa, Hiroto; Itokazu, Yutaka; Yoshihara, Tomoyuki; Hoshino, Mikio; Takeda, Shin-ichi; Ide, Chizuka; Nabeshima, Yo-ichi

    2005-07-01

    Bone marrow stromal cells (MSCs) have great potential as therapeutic agents. We report a method for inducing skeletal muscle lineage cells from human and rat general adherent MSCs with an efficiency of 89%. Induced cells differentiated into muscle fibers upon transplantation into degenerated muscles of rats and mdx-nude mice. The induced population contained Pax7-positive cells that contributed to subsequent regeneration of muscle upon repetitive damage without additional transplantation of cells. These MSCs represent a more ready supply of myogenic cells than do the rare myogenic stem cells normally found in muscle and bone marrow.

  6. Effect of inactivity and passive stretch on protein turnover in phasic and postural rat muscles

    NASA Technical Reports Server (NTRS)

    Loughna, P.; Goldspink, G.; Goldspink, D. F.

    1986-01-01

    Muscle atrophy in humans can occur during prolonged bed rest, plaster cast immobilization, and space flight. In the present study, the suspension model used by Musacchia et al. (1983) is employed to investigate changes in protein synthesis and degradation in fast-twitch phasic (extensor digitorum longus) and slow-twitch postural (soleus) muscles in the rat, following hypokinesia and hypodynamia. In addition, the use of passive stretch was examined as a means of preventing atrophy. The obtained results suggest that the mechanisms controlling the processes of protein synthesis and protein breakdown during muscle disuse atrophy may be independent of each other. It appears, however, that the muscle atrophy due to hypokinesia and hypodynamia can be temporarily prevented by passively stretching a muscle.

  7. Gestational undernourishment modifies the composition of skeletal muscle transverse tubule membranes and the mechanical properties of muscles in newborn rats.

    PubMed

    Ramírez-Oseguera, Ricardo Tonathiu; Jiménez-Garduño, Aura Matilde; Alvarez, Rocío; Heine, Katharina; Pinzón-Estrada, Enrique; Torres-Saldaña, Ismael; Ortega, Alicia

    2013-01-01

    [corrected] Skeletal muscle (SM) constitutes more than 40% of the body weight in adulthood. Transports dietary glucose mainly through the insulin-dependent glucose transporter (Glut-4) located in the Transverse tubule membrane system (TT). The TT development ends shortly after birth. The TT membrane hosts the proteins involved in excitation-contraction coupling and glucose uptake. Glycaemic regulation through movement is a key function of fully developed skeletal muscle. In this study, we aimed to characterize the effect of gestational undernourishment (GUN) in rats GLUT-4 expression and on the protein/lipid content of the TT membranes. We also examined the effect of GUN on the mechanical properties of muscles as an indication of the metabolic condition of the SM at birth. Isolated TT membrane from SM of GUN rats were used to study lipid/protein content and protein stability by differential scanning calorimetry. The effect of GUN on the SM mechanical properties was determined in isolated Extensor Digitorum Longus (EDL) muscle. We demonstrate that compared to control, GUN in the new-born produces; i) decreases body weight; ii) diminution in SM mass; iii) decreases the formation of TT membranes; iv) expresses TT membrane proteins with higher thermal stability. The TT membrane expression of GLUT-4 in GUN offspring was twice that of controls. The isolated EDL of GUN offspring was 20% stronger as measured by contractile force and more resistant to fatigue relative to controls. These results provide the first evidence of adaptive changes of the SM in new-borns exposed to severe gestational food restriction. The effects of GUN on muscle at birth are the first step toward detrimental SM metabolic function, contributing to the physiopathology of metabolic diseases in adulthood. © 2013 S. Karger AG, Basel

  8. Exercise training and return to a well-balanced diet activate the neuregulin 1/ErbB pathway in skeletal muscle of obese rats

    PubMed Central

    Ennequin, Gaël; Boisseau, Nathalie; Caillaud, Kevin; Chavanelle, Vivien; Gerbaix, Maude; Metz, Lore; Etienne, Monique; Walrand, Stéphane; Masgrau, Aurélie; Guillet, Christelle; Courteix, Daniel; Niu, Airu; Li, Yi-Ping; Capel, Fréderic; Sirvent, Pascal

    2015-01-01

    Some studies suggest that the signalling pathway of neuregulin 1 (NRG1), a protein involved in the regulation of skeletal muscle metabolism, could be altered by nutritional and exercise interventions. We hypothesized that diet-induced obesity could lead to alterations of the NRG1 signalling pathway and that chronic exercise could improve NRG1 signalling in rat skeletal muscle. To test this hypothesis, male Wistar rats received a high fat/high sucrose (HF/HS) diet for 16 weeks. At the end of this period, NRG1 and ErbB expression/activity in skeletal muscle was assessed. The obese rats then continued the HF/HS diet or were switched to a well-balanced diet. Moreover, in both groups, half of the animals also performed low intensity treadmill exercise training. After another 8 weeks, NRG1 and ErbB expression/activity in skeletal muscle were tested again. The 16 week HF/HS diet induced obesity, but did not significantly affect the NRG1/ErbB signalling pathway in rat skeletal muscle. Conversely, after the switch to a well-balanced diet, NRG1 cleavage ratio and ErbB4 amount were increased. Chronic exercise training also promoted NRG1 cleavage, resulting in increased ErbB4 phosphorylation. This result was associated with increased protein expression and phosphorylation ratio of the metalloprotease ADAM17, which is involved in NRG1 shedding. Similarly, in vitro stretch-induced activation of ADAM17 in rat myoblasts induced NRG1 cleavage and ErbB4 activation. These results show that low intensity endurance training and well-balanced diet activate the NRG1-ErbB4 pathway, possibly via the metalloprotease ADAM17, in skeletal muscle of diet-induced obese rats. PMID:25820551

  9. Differential regulation of apoptosis in slow and fast twitch muscles of aged female F344BN rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, Kevin M.; Manne, Nandini D. P. K.; Gadde, Murali K.

    Age-related muscle atrophy is characterized by decreases in muscle mass and is thought be mediated, at least in part, by increases in myocyte apoptosis. Recent data has demonstrated that the degree of muscle loss with aging may differ between males and females while other work has suggested that apoptosis as indicated by DNA fragmentation may be regulated differently in fast- and slow-twitch muscles. Herein, we investigate how aging affects the regulation of muscle apoptosis in the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of young (6-month), aged (26-month), and very aged (30-month) female Fischer 344/NNiaHSD × Brown Norway/BiNiamore » (F344BN) rats. Tissue sections were stained with hydroethidium for ROS and protein extract was subjected to immunoblotting for assessing apoptotic markers. Our data suggest that decreases in muscle mass were associated with increased DNA fragmentation (TUNEL positive) and increases in reactive oxygen species (ROS) as determined by hydroethidium staining in both the EDL and soleus. Similar to our previous work using aged male animals, we observed that the time course and magnitude of changes in Bax, Bcl-2, caspase-3, caspase-9, and cleavage of α-fodrin protein were regulated differently between muscles. As a result, These data suggest that aging in the female F344BN rat is associated with decreases in muscle mass, elevations in ROS level, increased muscle cell DNA fragmentation, and alterations in cell membrane integrity and that apoptotic mechanisms may differ between fiber types.« less

  10. Differential regulation of apoptosis in slow and fast twitch muscles of aged female F344BN rats

    DOE PAGES

    Rice, Kevin M.; Manne, Nandini D. P. K.; Gadde, Murali K.; ...

    2015-03-28

    Age-related muscle atrophy is characterized by decreases in muscle mass and is thought be mediated, at least in part, by increases in myocyte apoptosis. Recent data has demonstrated that the degree of muscle loss with aging may differ between males and females while other work has suggested that apoptosis as indicated by DNA fragmentation may be regulated differently in fast- and slow-twitch muscles. Herein, we investigate how aging affects the regulation of muscle apoptosis in the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of young (6-month), aged (26-month), and very aged (30-month) female Fischer 344/NNiaHSD × Brown Norway/BiNiamore » (F344BN) rats. Tissue sections were stained with hydroethidium for ROS and protein extract was subjected to immunoblotting for assessing apoptotic markers. Our data suggest that decreases in muscle mass were associated with increased DNA fragmentation (TUNEL positive) and increases in reactive oxygen species (ROS) as determined by hydroethidium staining in both the EDL and soleus. Similar to our previous work using aged male animals, we observed that the time course and magnitude of changes in Bax, Bcl-2, caspase-3, caspase-9, and cleavage of α-fodrin protein were regulated differently between muscles. As a result, These data suggest that aging in the female F344BN rat is associated with decreases in muscle mass, elevations in ROS level, increased muscle cell DNA fragmentation, and alterations in cell membrane integrity and that apoptotic mechanisms may differ between fiber types.« less

  11. Skeletal muscle metabolism in hypokinetic rats

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.

    1993-01-01

    This grant focused on the mechanisms of metabolic changes associated with unweighting atrophy and reduced growth of hind limb muscles of juvenile rats. Metabolic studies included a number of different areas. Amino acid metabolic studies placed particular emphasis on glutamine and branched-chain amino acid metabolism. These studies were an outgrowth of understanding stress effects and the role of glucocorticoids in these animals. Investigations on protein metabolism were largely concerned with selective loss of myofibrillar proteins and the role of muscle proteolysis. These investigations lead to finding important differences from denervation and atrophy and to define the roles of cytosolic versus lysosomal proteolysis in these atrophy models. A major outgrowth of these studies was demonstrating an ability to prevent atrophy of the unweighted muscle for at least 24 hours. A large amount of work concentrated on carbohydrate metabolism and its regulation by insulin and catecholamines. Measurements focused on glucose transport, glycogen metabolism, and glucose oxidation. The grant was used to develop an important new in situ approach for studying protein metabolism, glucose transport, and hormonal effects which involves intramuscular injection of various agents for up to 24 hours. Another important consequence of this project was the development and flight of Physiological-Anatomical Rodent Experiment-1 (PARE-1), which was launched aboard Space Shuttle Discovery in September 1991. Detailed descriptions of these studies can be found in the 30 peer-reviewed publications, 15 non-reviewed publications, 4 reviews and 33 abstracts (total 82 publications) which were or are scheduled to be published as a result of this project. A listing of these publications grouped by area (i.e. amino acid metabolism, protein metabolism, carbohydrate metabolism, and space flight studies) are included.

  12. Effects of magnesium sulfate on airway smooth muscle contraction in rats.

    PubMed

    Betul Altinisik, Hatice; Kirdemir, Pakize; Altinisik, Ugur; Gokalp, Osman

    2016-08-01

    Aim To investigate the effect of magnesium sulfate (MgSO4) at different doses on isolated tracheal smooth muscle contraction in rats induced by different mechanisms. Methods Twelve rats' tracheas were placed into organ bath. Consecutively, acetylcholine (10-6,10-5,10-4 M), histamine(10-8,10-5,10-3 M) and KCl (30,60 mM) solutions was administered for contractions. MgSO4 from 10-4 to 10-1 M concentrations were subsequently administered after each constrictive agent and relaxation degrees were recorded. Results In the acetylcholine and KCl groups, dose dependent strong contractions were observed, but not in the histamine group and that group was excluded. Significant relaxation occurred with gradually increasing doses of MgSO4. In the high dose KCl group, a slight increase in contractions after the administration of 10-4 and 10-3 M MgSO4 was recorded. Conclusion We suggest that MgSO4 is effective in relaxing airway smooth muscle contractions caused by different factors; however, it must be considered that low doses of MgSO4 may only lead to a slight increase in contractions. Copyright© by the Medical Assotiation of Zenica-Doboj Canton.

  13. Continuous Aerobic Training in Individualized Intensity Avoids Spontaneous Physical Activity Decline and Improves MCT1 Expression in Oxidative Muscle of Swimming Rats.

    PubMed

    Scariot, Pedro P M; Manchado-Gobatto, Fúlvia de Barros; Torsoni, Adriana S; Dos Reis, Ivan G M; Beck, Wladimir R; Gobatto, Claudio A

    2016-01-01

    Although aerobic training has been shown to affect the lactate transport of skeletal muscle, there is no information concerning the effect of continuous aerobic training on spontaneous physical activity (SPA). Because every movement in daily life (i.e., SPA) is generated by skeletal muscle, we think that it is possible that an improvement of SPA could affect the physiological properties of muscle with regard to lactate transport. The aim of this study was to evaluate the effect of 12 weeks of continuous aerobic training in individualized intensity on SPA of rats and their gene expressions of monocarboxylate transporters (MCT) 1 and 4 in soleus (oxidative) and white gastrocnemius (glycolytic) muscles. We also analyzed the effect of continuous aerobic training on aerobic and anaerobic parameters using the lactate minimum test (LMT). Sixty-day-old rats were randomly divided into three groups: a baseline group in which rats were evaluated prior to initiation of the study; a control group (Co) in which rats were kept without any treatment during 12 weeks; and a chronic exercise group (Tr) in which rats swam for 40 min/day, 5 days/week at 80% of anaerobic threshold during 12 weeks. After the experimental period, SPA of rats was measured using a gravimetric method. Rats had their expression of MCTs determined by RT-PCR analysis. In essence, aerobic training is effective in maintaining SPA, but did not prevent the decline of aerobic capacity and anaerobic performance, leading us to propose that the decline of SPA is not fully attributed to a deterioration of physical properties. Changes in SPA were concomitant with changes in MCT1 expression in the soleus muscle of trained rats, suggestive of an additional adaptive response toward increased lactate clearance. This result is in line with our observation showing a better equilibrium on lactate production-remotion during the continuous exercise (LMT). We propose an approach to combat the decline of SPA of rats in their home

  14. Characterization of muscarinic receptors mediating relaxation and contraction in the rat iris dilator muscle.

    PubMed Central

    Masuda, Y; Yamahara, N S; Tanaka, M; Ryang, S; Kawai, T; Imaizumi, Y; Watanabe, M

    1995-01-01

    1. The characteristics of muscarinic receptors mediating relaxation and/or contraction in the rat iris dilator muscle were examined. 2. Relaxation was induced in a dilator muscle by application of acetylcholine (ACh) at low doses (3 microM or less) and contraction was induced by high doses. Methacholine and carbachol also showed biphasic effects similar to those of ACh; in contrast, bethanechol, arecoline, pilocarpine and McN-A-343 induced mainly relaxation but no substantial contraction. 3. After parasympathetic denervation by ciliary ganglionectomy, the relaxant response to muscarinic agonists disappeared upon nerve stimulation. Application of McN-A-343 and pilocarpine induced only small contractions in denervated dilator muscles, indicating that these are partial agonists for contraction. 4. pA2 values of pirenzepine, methoctramine, AF-DX 116, himbacine, and 4-DAMP for antagonism to pilocarpine-induced relaxation in normal dilator muscles and those for antagonism to ACh-induced contraction in denervated dilator muscles were determined. The pA2 values for antagonism to relaxation of all these antagonists were most similar to those for M3-type muscarinic receptors. 5. Although pA2 values for contraction of these antagonists, except for methoctramine, were very close to those for relaxation, contraction was not significantly antagonized by methoctramine. Contraction might be mediated by M3-like receptors which have a very low affinity for methoctramine. 6. In conclusion, ACh-induced biphasic responses in rat iris dilator muscles were clearly distinguished from each other by specific muscarinic agonists and parasympathetic denervation, whereas muscarinic receptors could not be subclassified according to the pA2 values of 5 specific antagonists only. PMID:7539696

  15. Effects of dexamethasone treatment on insulin-stimulated rates of glycolysis and glycogen synthesis in isolated incubated skeletal muscles of the rat.

    PubMed Central

    Leighton, B; Challiss, R A; Lozeman, F J; Newsholme, E A

    1987-01-01

    1. Rats were treated with dexamethasone for 4 days before measurement of the rates of lactate formation [which is an index of hexose transport; see Challiss, Lozeman, Leighton & Newsholme (1986) Biochem. J. 233, 377-381] and glycogen synthesis in response to various concentrations of insulin in isolated incubated soleus and extensor digitorum longus muscle preparations. 2. The concentration of insulin required to stimulate these processes half-maximally in soleus and extensor digitorum longus muscles isolated from control rats was about 100 muunits/ml. 3. Dexamethasone increases the concentration of insulin required to stimulate glycolysis half-maximally in soleus and extensor digitorum longus preparations to 250 and 300 muunits/ml respectively. The respective insulin concentrations necessary to stimulate glycogen synthesis half-maximally were about 430 and 370 muunits/ml for soleus and extensor digitorum longus muscle preparations isolated from steroid-treated rats. 5. Dexamethasone treatment did not change the amount of insulin bound to soleus muscle. PMID:3318810

  16. Unilateral Nasal Obstruction during Later Growth Periods Affects Craniofacial Muscles in Rats

    PubMed Central

    Uchima Koecklin, Karin H.; Hiranuma, Maya; Kato, Chiho; Funaki, Yukiha; Kataguchi, Taku; Yabushita, Tadachika; Kokai, Satoshi; Ono, Takashi

    2017-01-01

    Nasal obstruction can occur at different life stages. In early stages of life the respiratory system is still under development, maturing during the growth period. Previous studies have shown that nasal obstruction in neonatal rats alters craniofacial function. However, little is known about the effects of nasal obstruction that develops during later growth periods. The aim of this study was to investigate the effects of nasal obstruction during later periods of growth on the functional characteristics of the jaw-opening reflex (JOR) and tongue-protruding muscles. In total, 102 6-day-old male Wistar rats were randomized into either a control or experimental group (both n = 51). In order to determine the appropriate timing of nasal obstruction, the saturation of arterial oxygen (SpO2) was monitored at 8 days, and at 3, 5, 7, 9, and 11 weeks in the control group. Rats in the experimental group underwent unilateral nasal obstruction at the age of 5 weeks. The SpO2 was monitored at 7, 9, and 11 weeks in the experimental group. The electromyographic responses of JOR and the contractile properties of the tongue-protruding muscles were recorded at 7, 9, and 11 weeks. In the control group, SpO2 decreased until 5 weeks of age, and remained relatively stable until 11 weeks of age. The SpO2 was significantly lower in the experimental group than in the control. In the experimental group, JOR changes included a longer latency and smaller peak-to-peak amplitude, while changes in the contractile properties of the tongue-protruding muscles included larger twitch and tetanic forces, and a longer half-decay time. These results suggest that nasal obstruction during later growth periods may affect craniofacial function. PMID:28119621

  17. Expression of developmental myosin and morphological characteristics in adult rat skeletal muscle following exercise-induced injury.

    PubMed

    Smith, H K; Plyley, M J; Rodgers, C D; McKee, N H

    1999-07-01

    The extent and stability of the expression of developmental isoforms of myosin heavy chain (MHCd), and their association with cellular morphology, were determined in adult rat skeletal muscle fibres following injury induced by eccentrically-biased exercise. Adult female Wistar rats [274 (10) g] were either assigned as non-exercised controls or subjected to 30 min of treadmill exercise (grade, -16 degrees; speed, 15 m x min(-1)), and then sacrificed following 1, 2, 4, 7, or 12 days of recovery (n = 5-6 per group). Histologically and immunohistologically stained serial, transverse cryosections of the soleus (S), vastus intermedius (VI), and tibialis anterior (TA) muscles were examined using light microscopy and digital imaging. Fibres staining positively for MHCd (MHCd+) were seldom detected in the TA. In the VI and S, higher proportions of MHCd+ fibres (0.8% and 2.5%, respectively) were observed in rats at 4 and 7 days post-exercise, in comparison to all other groups combined (0.2%, 1.2%; P < or = 0.01). In S, MHCd+ fibres were observed less frequently by 12 days (0.7%) than at 7 days (2.6%) following exercise. The majority (85.1%) of the MHCd+ fibres had morphological characteristics indicative of either damage, degeneration, repair or regeneration. Most of the MHCd+ fibres also expressed adult slow, and/or fast myosin heavy chain. Quantitatively, the MHCd+ fibres were smaller (< 2500 microm2) and more angular than fibres not expressing MHCd. Thus, there was a transient increase in a small, but distinct population of MHCd+ fibres following unaccustomed, functional exercise in adult rat S and VI muscles. The observed close coupling of MHCd expression with morphological changes within muscle fibres suggests that these characteristics have a common, initial exercise-induced injury-related stimulus.

  18. A Standardized Rat Model of Volumetric Muscle Loss Injury for the Development of Tissue Engineering Therapies

    PubMed Central

    Wu, Xiaowu; Corona, Benjamin T.; Chen, Xiaoyu

    2012-01-01

    Abstract Soft tissue injuries involving volumetric muscle loss (VML) are defined as the traumatic or surgical loss of skeletal muscle with resultant functional impairment and represent a challenging clinical problem for both military and civilian medicine. In response, a variety of tissue engineering and regenerative medicine treatments are under preclinical development. A wide variety of animal models are being used, all with critical limitations. The objective of this study was to develop a model of VML that was reproducible and technically uncomplicated to provide a standardized platform for the development of tissue engineering and regenerative medicine solutions to VML repair. A rat model of VML involving excision of ∼20% of the muscle's mass from the superficial portion of the middle third of the tibialis anterior (TA) muscle was developed and was functionally characterized. The contralateral TA muscle served as the uninjured control. Additionally, uninjured age-matched control rats were also tested to determine the effect of VML on the contralateral limb. TA muscles were assessed at 2 and 4 months postinjury. VML muscles weighed 22.7% and 19.5% less than contralateral muscles at 2 and 4 months postinjury, respectively. These differences were accompanied by a reduction in peak isometric tetanic force (Po) of 28.4% and 32.5% at 2 and 4 months. Importantly, Po corrected for differences in body weight and muscle wet weights were similar between contralateral and age-matched control muscles, indicating that VML did not have a significant impact on the contralateral limb. Lastly, repair of the injury with a biological scaffold resulted in rapid vascularization and integration with the wound. The technical simplicity, reliability, and clinical relevance of the VML model developed in this study make it ideal as a standard model for the development of tissue engineering solutions for VML. PMID:23515319

  19. β–Hydroxy β–Methylbutyrate Improves Dexamethasone-Induced Muscle Atrophy by Modulating the Muscle Degradation Pathway in SD Rat

    PubMed Central

    Choi, Yeon Ja; Park, Min Hi; Jang, Eun Ji; Park, Chan Hum; Yoon, Changshin; Kim, Nam Deuk; Kim, Mi Kyung; Chung, Hae Young

    2014-01-01

    Skeletal muscle atrophy results from various conditions including high levels of glucocorticoids, and β–hydroxy β–methylbutyrate (HMB; a metabolite of leucine) is a potent therapeutical supplement used to treat various muscle disorders. Recent studies have demonstrated that HMB inhibits dexamethasone-induced atrophy in cultured myotubes, but its effect on dexamethasone-induced muscle atrophy has not been determined in vivo. In the present study, we investigated the effect of HMB on dexamethasone-induced muscle atrophy in rats. Treatment with dexamethasone weakened grip strengths and increased muscle damage as determined by increased serum creatine kinase levels and by histological analysis. Dexamethasone treatment also reduced both soleus and gastrocnemius muscle masses. However, HMB supplementation significantly prevented reductions in grip strengths, reduced muscle damage, and prevented muscle mass and protein concentration decrease in soleus muscle. Biochemical analysis demonstrated that dexamethasone markedly increased levels of MuRF1 protein, which causes the ubiquitination and degradation of MyHC. Indeed, dexamethasone treatment decreased MyHC protein expression and increased the ubiquitinated-MyHC to MyHC ratio. However, HMB supplementation caused the down-regulations of MuRF1 protein and of ubiquitinated-MyHC. Furthermore, additional experiments provided evidence that HMB supplementation inhibited the nuclear translocation of FOXO1 induced by dexamethasone, and showed increased MyoD expression in the nuclear fractions of soleus muscles. These findings suggest that HMB supplementation attenuates dexamethasone-induced muscle wasting by regulating FOXO1 transcription factor and subsequent MuRF1 expression. Accordingly, our results suggest that HMB supplementation could be used to prevent steroid myopathy. PMID:25032690

  20. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle.

    PubMed

    Terada, S; Yokozeki, T; Kawanaka, K; Ogawa, K; Higuchi, M; Ezaki, O; Tabata, I

    2001-06-01

    This study was performed to assess the effects of short-term, extremely high-intensity intermittent exercise training on the GLUT-4 content of rat skeletal muscle. Three- to four-week-old male Sprague-Dawley rats with an initial body weight ranging from 45 to 55 g were used for this study. These rats were randomly assigned to an 8-day period of high-intensity intermittent exercise training (HIT), relatively high-intensity intermittent prolonged exercise training (RHT), or low-intensity prolonged exercise training (LIT). Age-matched sedentary rats were used as a control. In the HIT group, the rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 2, the next 4, and the last 2 days, respectively. Between exercise bouts, a 10-s pause was allowed. RHT consisted of five 17-min swimming bouts with a 3-min rest between bouts. During the first bout, the rat swam without weight, whereas during the following four bouts, the rat was attached to a weight equivalent to 4 and 5% of its body weight for the first 5 days and the following 3 days, respectively. Rats in the LIT group swam 6 h/day for 8 days in two 3-h bouts separated by 45 min of rest. In the first experiment, the HIT, LIT, and control rats were compared. GLUT-4 content in the epitrochlearis muscle in the HIT and LIT groups after training was significantly higher than that in the control rats by 83 and 91%, respectively. Furthermore, glucose transport activity, stimulated maximally by both insulin (2 mU/ml) (HIT: 48%, LIT: 75%) and contractions (25 10-s tetani) (HIT: 55%, LIT: 69%), was higher in the training groups than in the control rats. However, no significant differences in GLUT-4 content or in maximal glucose transport activity in response to both insulin and contractions were observed between the two training groups. The second experiment demonstrated that GLUT-4 content after HIT did not differ from that after RHT (66% higher in trained rats than

  1. Experiment K-6-11. Actin mRNA and cytochrome c mRNA concentrations in the tricepts brachia muscle of rats

    NASA Technical Reports Server (NTRS)

    Booth, F. W.; Morrison, P. R.; Thomason, D. B.; Oganov, V. S.

    1990-01-01

    It is well known that some skeletal muscles atrophy as a result of weightlessness (Steffen and Musacchia 1986) and as a result of hindlimb suspension (Tischler et al., 1985, Thomason et al., 1987). Because the content of protein is determined by the rates of protein synthesis and degradation, a decrease in protein synthesis rate, or an increase in the protein degradation, or changes in both could produce the atrophy. Indeed, an increased protein degradation (Tischler et al., 1985) and a decreased protein synthesis (Thomason et al., 1988) have been observed in skeletal muscles of suspended hindlimbs of rats. Any decrease in protein synthesis rate could be caused by decreases in mRNA concentrations. Such decreases in the concentration and content of alpha-actin mRNA and cytochrome c mRNA have been noted in skeletal muscles of hindlimb suspended rats (Babij and Booth, 1988). From these findings researchers hypothesized that alpha-actin mRNA and cytochrome c mRNA would decrease in the triceps brachia muscle of Cosmos 1887 rats.

  2. Fast digestive, leucine-rich, soluble milk proteins improve muscle protein anabolism, and mitochondrial function in undernourished old rats.

    PubMed

    Salles, Jérôme; Chanet, Audrey; Berry, Alexandre; Giraudet, Christophe; Patrac, Véronique; Domingues-Faria, Carla; Rocher, Christophe; Guillet, Christelle; Denis, Philippe; Pouyet, Corinne; Bonhomme, Cécile; Le Ruyet, Pascale; Rolland, Yves; Boirie, Yves; Walrand, Stéphane

    2017-11-01

    One strategy to manage malnutrition in older patients is to increase protein and energy intake. Here, we evaluate the influence of protein quality during refeeding on improvement in muscle protein and energy metabolism. Twenty-month-old male rats (n = 40) were fed 50% of their spontaneous intake for 12 weeks to induce malnutrition, then refed ad libitum with a standard diet enriched with casein or soluble milk proteins (22%) for 4 weeks. A 13C-valine was infused to measure muscle protein synthesis and expression of MuRF1, and MAFbx was measured to evaluate muscle proteolysis. mTOR pathway activation and mitochondrial function were assessed in muscle. Malnutrition was associated with a decrease in body weight, fat mass, and lean mass, particularly muscle mass. Malnutrition decreased muscle mTOR pathway activation and protein FSR associated with increased MuRF1 mRNA levels, and decreased mitochondrial function. The refeeding period partially restored fat mass and lean mass. Unlike the casein diet, the soluble milk protein diet improved muscle protein metabolism and mitochondrial function in old malnourished rats. These results suggest that providing better-quality proteins during refeeding may improve efficacy of renutrition in malnourished older patients. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Vitamin D supplementation restores the blunted muscle protein synthesis response in deficient old rats through an impact on ectopic fat deposition.

    PubMed

    Chanet, Audrey; Salles, Jérôme; Guillet, Christelle; Giraudet, Christophe; Berry, Alexandre; Patrac, Véronique; Domingues-Faria, Carla; Tagliaferri, Camille; Bouton, Katia; Bertrand-Michel, Justine; Van Dijk, Miriam; Jourdan, Marion; Luiking, Yvette; Verlaan, Sjors; Pouyet, Corinne; Denis, Philippe; Boirie, Yves; Walrand, Stéphane

    2017-08-01

    We investigated the impact of vitamin D deficiency and repletion on muscle anabolism in old rats. Animals were fed a control (1 IU vitamin D 3 /g, ctrl, n=20) or a vitamin D-depleted diet (VDD; 0 IU, n=30) for 6 months. A subset was thereafter sacrificed in the control (ctrl6) and depleted groups (VDD6). Remaining control animals were kept for 3 additional months on the same diet (ctrl9), while a part of VDD rats continued on a depleted diet (VDD9) and another part was supplemented with vitamin D (5 IU, VDS9). The ctr16 and VDD6 rats and the ctr19, VDD9 and VDS9 rats were 21 and 24 months old, respectively. Vitamin D status, body weight and composition, muscle strength, weight and lipid content were evaluated. Muscle protein synthesis rate (fractional synthesis rate; FSR) and the activation of controlling pathways were measured. VDD reduced plasma 25(OH)-vitamin D, reaching deficiency (<25 nM), while 25(OH)-vitamin D increased to 118 nM in the VDS group (P<.0001). VDD animals gained weight (P<.05) with no corresponding changes in lean mass or muscle strength. Weight gain was associated with an increase in fat mass (+63%, P<.05), intramyocellular lipids (+75%, P<.05) and a trend toward a decreased plantaris weight (-19%, P=.12). Muscle FSR decreased by 40% in the VDD group (P<.001), but was restored by vitamin D supplementation (+70%, P<.0001). Such changes were linked to an over-phosphorylation of eIF2α. In conclusion, vitamin D deficiency in old rats increases adiposity and leads to reduced muscle protein synthesis through activation of eIF2α. These disorders are restored by vitamin D supplementation. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. The effect of temperature on basal tension and thyroarytenoid muscle contraction in an isolated rat glottis model.

    PubMed

    Wang, Hsing-Won; Chu, Yueng-Hsiang; Chao, Pin-Zhir; Lee, Fei-Peng

    2014-10-01

    The pitch of voice is closely related to the vocal fold tension, which is the end result of coordinated movement of the intralaryngeal muscles, and especially the thyroarytenoid muscle. It is known that vocal quality may be affected by surrounding temperature; however, the effect of temperature on vocal fold tension is mostly unknown. Thus, the aim of this study was to evaluate the effect of temperature on isolated rat glottis and thyroarytenoid muscle contraction induced by electrical field stimulation. In vitro isometric tension of the glottis ring from 30 Sprague-Dawley rats was continuously recorded by the tissue bath method. Electrical field stimulation was applied to the glottis ring with two wire electrodes placed parallel to the glottis and connected to a direct-current stimulator. The tension changes of the rat glottis rings that were either untreated or treated with electrical field stimulation were recorded continuously at temperatures from 37 to 7 °C or from 7 to 37 °C. Warming from 7 to 37 °C increased the basal tension of the glottis rings and decreased the electrical field stimulation-induced glottis ring contraction, which was chiefly due to thyroarytenoid muscle contraction. In comparison, cooling from 37 to 7 °C decreased the basal tension and enhanced glottis ring contraction by electrical field stimulation. We concluded that warming increased the basal tension of the glottis in vitro and decreased the amplitude of electrical field stimulation-induced thyroarytenoid muscle contraction. Thus, vocal pitch and the fine tuning of vocal fold tension might be affected by temperature in vivo.

  5. The lumbrical muscle: a novel in situ system to evaluate adult skeletal muscle proteolysis and anticatabolic drugs for therapeutic purposes.

    PubMed

    Bergantin, Leandro Bueno; Figueiredo, Leonardo Bruno; Godinho, Rosely Oliveira

    2011-12-01

    The molecular regulation of skeletal muscle proteolysis and the pharmacological screening of anticatabolic drugs have been addressed by measuring tyrosine release from prepubertal rat skeletal muscles, which are thin enough to allow adequate in vitro diffusion of oxygen and substrates. However, the use of muscle at accelerated prepubertal growth has limited the analysis of adult muscle proteolysis or that associated with aging and neurodegenerative diseases. Here we established the adult rat lumbrical muscle (4/hindpaw; 8/rat) as a new in situ experimental model for dynamic measurement of skeletal muscle proteolysis. By incubating lumbrical muscles attached to their individual metatarsal bones in Tyrode solution, we showed that the muscle proteolysis rate of adult and aged rats (3-4 to 24 mo old) is 45-25% of that in prepubertal animals (1 mo old), which makes questionable the usual extrapolation of proteolysis from prepubertal to adult/senile muscles. While acute mechanical injury or 1- to 7-day denervation increased tyrosine release from adult lumbrical muscle by up to 60%, it was reduced by 20-28% after 2-h incubation with β-adrenoceptor agonists, forskolin or phosphodiesterase inhibitor IBMX. Using inhibitors of 26S-proteasome (MG132), lysosome (methylamine), or calpain (E64/leupeptin) systems, we showed that ubiquitin-proteasome is accountable for 40-50% of total lumbrical proteolysis of adult, middle-aged, and aged rats. In conclusion, the lumbrical model allows the analysis of muscle proteolysis rate from prepubertal to senile rats. By permitting eight simultaneous matched measurements per rat, the new model improves similar protocols performed in paired extensor digitorum longus (EDL) muscles from prepubertal rats, optimizing the pharmacological screening of drugs for anticatabolic purposes.

  6. Age dependence of myosin heavy chain transitions induced by creatine depletion in rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.; Baldwin, Kenneth M.

    1995-01-01

    This study was designed to test the hypothesis that myosin heavy chain (MHC) plasticity resulting from creatine depletion is an age-dependent process. At weaning (age 28 days), rat pups were placed on either standard rat chow (normal diet juvenile group) or the same chow supplemented with 1% wt/wt of the creatine analogue beta-guanidinopropionic acid (creatine depletion juvenile (CDJ) group). Two groups of adult rats (age approximately 8 wk) were placed on the same diet regimens (normal diet adult and creatine depletion adult (CDA) groups). After 40 days (CDJ and normal diet juvenile groups) and 60 days (CDA and normal diet adult groups), animals were killed and several skeletal muscles were removed for analysis of creatine content or MHC ditribution. In the CDJ group, creatine depletion (78%) was accompanied by significant shifts toward expression of slower MHC isoforms in two slow and three fast skeletal muscles. In contrast, creatine depletion in adult animals did not result in similar shifts toward slow MHC isoform expression in either muscle type. The results of this study indicate that there is a differential effect of creatine depletion on MHC tranitions that appears to be age dependent. These results strongly suggest that investigators contemplating experimental designs involving the use of the creatine analogue beta-guanidinopropionic acid should consider the age of the animals to be used.

  7. Smooth muscle myosin isoform expression and LC20 phosphorylation in innate rat airway hyperresponsiveness.

    PubMed

    Gil, Fulvio R; Zitouni, Nedjma B; Azoulay, Eric; Maghni, Karim; Lauzon, Anne-Marie

    2006-11-01

    Four smooth muscle myosin heavy chain (SMMHC) isoforms are generated by alternative mRNA splicing of a single gene. Two of these isoforms differ by the presence [(+)insert] or absence [(-)insert] of a 7-amino acid insert in the motor domain. The rate of actin filament propulsion of the (+)insert SMMHC isoform, as measured in the in vitro motility assay, is twofold greater than that of the (-)insert isoform. We hypothesized that a greater expression of the (+)insert SMMHC isoform and greater regulatory light chain (LC(20)) phosphorylation contribute to airway hyperresponsiveness. We measured airway responsiveness to methacholine in Fischer hyperresponsive and Lewis normoresponsive rats and determined SMMHC isoform mRNA and protein expression, as well as essential light chain (LC(17)) isoforms, h-caldesmon, and alpha-actin protein expression in their tracheae. We also measured tracheal muscle strip contractility in response to methacholine and corresponding LC(20) phosphorylation. We found Fischer rats have more (+)insert mRNA (69.4 +/- 2.0%) (mean +/- SE) than Lewis rats (53.0 +/- 2.4%; P < 0.05) and a 44% greater content of (+)insert isoform relative to total myosin protein. No difference was found for LC(17) isoform, h-caldesmon, and alpha-actin expression. The contractility experiments revealed a greater isometric force for Fischer trachealis segments (4.2 +/- 0.8 mN) than Lewis (1.9 +/- 0.4 mN; P < 0.05) and greater LC(20) phosphorylation level in Fischer (55.1 +/- 6.4) than in Lewis (41.4 +/- 6.1; P < 0.05) rats. These results further support the contention that innate airway hyperresponsiveness is a multifactorial disorder in which increased expression of the fast (+)insert SMMHC isoform and greater activation of LC(20) lead to smooth muscle hypercontractility.

  8. Sodium plus Potassium-Activated, Ouabain-Inhibited AdenosineTriphosphatase from a Fraction of Rat Skeletal Muscle, and Lack of Insulin Effect on It

    PubMed Central

    Rogus, Ellen; Price, Thomas; Zierler, Kenneth L.

    1969-01-01

    An ATPase, activated by Na+ plus K+ in the presence of Mg++ and inhibited by ouabain, has been obtained from rat skeletal muscle. Unlike ATPase's with similar properties obtained from other preparations, this ATPase was found only in the fraction containing fragmented sarcoplasmic reticulum. It is suggested that in rat skeletal muscle this ATPase may reside in sarcoplasmic reticulum and not in sarcolemma. This ATPase differed in its pH optimum and in its cation sensitivity from that of rat brain and from that of human muscle reported by Samaha and Gergely (1965, 1966). Because insulin accelerates Na+ efflux from muscle, efforts were made to determine whether or not this effect of insulin could be attributed to increased Na+ + K+-activated ATPase activity. Insulin, administered either in vivo or in vitro, had no demonstrable effect on the enzyme system, nor did it protect against inhibition by ouabain. PMID:4240329

  9. Glycogen supercompensation in rat soleus muscle during recovery from nonweight bearing

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Kirby, Christopher R.; Tischler, Marc E.

    1989-01-01

    Events leading to the normalization of the glycogen metabolism in the soleus muscle of rat, altered by 72-h three days of hind-limb suspension, were investigated during the 72-h recovery period when the animals were allowed to bear weight on all four limbs. Relative importance of the factors affecting glycogen metabolism in skeletal muscle during the recovery period was also examined. Glycogen concentration was found to decrease within 15 min and up to 2 h of recovery, while muscle glucose 6-phosphate, and the fractional activities of glycogen phosphorylase and glycogen synthase increased. From 2 to 4 h, when the glycogen synthase activity remained elevated and the phosphorylase activity declined, glycogen concentration increased, until it reached maximum values at about 24 h, after which it started to decrease, reaching control values by 72 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that the reloading transiently uncoupled glycogen control of this enzyme.

  10. Catalase-positive microperoxisomes in rat soleus and extensor digitorum longus muscle fiber types

    NASA Technical Reports Server (NTRS)

    Riley, Danny A.; Bain, James L. W.; Ellis, Stanley

    1988-01-01

    The size, distribution, and content of catalase-reactive microperoxisomes were investigated cytochemically in three types of muscle fibers from the soleus and the extensor digitorum longus (EDL) of male rats. Muscle fibers were classified on the basis of the mitochondrial content and distribution, the Z-band widths, and the size and shape of myofibrils as the slow-twitch oxidative (SO), the fast-twitch oxidative glycolytic (FOG), and the fast-twitch glycolytic (FG) fibers. It was found that both the EDL and soleus SO fibers possessed the largest microperoxisomes. A comparison of microperoxisome number per muscle fiber area or the microperoxisome area per fiber area revealed following ranking, starting from the largest number and the area-ratio values: soleus SO, EDL SO, EDL FOG, and EDL FG.

  11. Materials fatigue initiates eccentric contraction-induced injury in rat soleus muscle.

    PubMed Central

    Warren, G L; Hayes, D A; Lowe, D A; Prior, B M; Armstrong, R B

    1993-01-01

    1. The initiation of exercise-induced muscle injury is thought to be the result of high tensile stresses produced in the muscle during eccentric contractions. Materials science theory suggests that high tensile stresses could initiate the injury during the first eccentric contraction (normal stress theory) or after multiple eccentric contractions (materials fatigue). It was the objective of this study to investigate the two possibilities. 2. Rat soleus muscles (n = 66; 11 protocols with 6 muscles per protocol) were isolated, placed in an oxygenated Krebs-Ringer buffer at 37 degrees C, and baseline measurements were made. The muscle then performed an injury protocol which consisted of between zero and ten eccentric contractions (muscle starting length = 0.90 soleus muscle length, L0; length change = 0.25 L0; velocity = 1.5 L0/s; peak force = 180% maximal isometric tetanic tension (P0); time between contractions = 4 min; total duration of the injury protocol = 40 min). At the end of the injury protocol, the muscle was incubated in buffer for 1 h; every 15 min, an isometric twitch and tetanus were performed and lactate dehydrogenase (LDH) release was measured. Total muscle [Ca2+] was measured at the end of the incubation. 3. Change-point regression analysis indicates that at 0 min into the incubation, declines in P0, maximal rate of tension development (+dP/dt), maximal rate of relaxation (-dP/dt), and muscle stiffness (dP/dx) became significantly greater after eight eccentric contractions (p < or = 0.05). No relation was found between the number of eccentric contractions performed and the LDH activity at 0 min into the incubation, although after 60 min of incubation, LDH activity in the buffer was linearly related to eccentric contraction number (p = 0.01). There was no relationship between total muscle [Ca2+] and eccentric contraction number. These findings support the materials fatigue hypothesis of exercise-induced muscle injury. PMID:8229814

  12. Expression of heat shock protein 72 in atrophied rat skeletal muscles

    NASA Technical Reports Server (NTRS)

    Oishi, Y.; Ishihara, A.; Talmadge, R. J.; Ohira, Y.; Taniguchi, K.; Matsumoto, H.; Roy, R. R.; Edgerton, V. R.

    2001-01-01

    Changes in the expression of heat shock protein 72 (HSP72) in response to atrophic-inducing perturbations of muscle involving chronic mechanical unloading and denervation were determined. Adult male Wistar rats were assigned randomly to a sedentary cage control (CON), hind limb unloading (HU, via tail suspension), HU plus tenotomy (HU + TEN), HU plus denervation (HU + DEN), or HU + TEN + DEN group. Tenotomy and DEN involved cutting the Achilles tendon and removing a segment of the sciatic nerve, respectively. After 5 days, HSP72 levels in the soleus of the HU + DEN and HU + TEN + DEN groups were 42 (P < 0.05) and 53% (P < 0.01) less than CON, respectively. Soleus weight decreased in both groups. Heat shock protein 72 levels in the plantaris of the HU + TEN, HU + DEN, and HU + TEN + DEN groups were 31, 25, and 30% lower than CON, respectively (P < 0.05). Plantaris weight decreased in the HU + DEN and HU + TEN + DEN, but not in the HU + TEN group. Hind limb unloading alone had little effect on the HSP72 level in either muscle. Reduced levels of HSP72 were associated with a decreased soleus (r=0.62, P < 0.01) and plantaris (r=0.78, P < 0.001) weight. These results indicate that the levels of HSP72 in both a slow and a fast rat plantarflexor are responsive to a chronic decrease in the levels of loading and/or activation and suggest that the neuromuscular activity level and the presence of innervation of a muscle are important factors that induce HSP72 expression.

  13. Role of glucocorticoids in the response of rat leg muscles to reduced activity

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Tischler, Marc E.

    1986-01-01

    Adrenalectomy did not prevent atrophy of rat soleus muscle during 6 days of tail cast suspension. Cortisol treatment enhanced the atrophy and caused atrophy of the weight-bearing soleus and both extensor digitorum longus (EDL) muscles. Unloading led to increased sarcoplasmic protein concentration in the soleus but cortisol administration increased the myhofibrillar (+stromal) protein concentration in both muscles. Suspension of hindlimbs of adrenalectomized animals led to faster protein degradation, slower sarcoplasmic protein degradation, and faster myofibrillar protein synthesis in the isolated soleus, whereas with cortisol-treated animals, the difference in synthesis of myofibrillar proteins was enhanced and that of sarcoplasmic proteins was abolished. Both soleus and EDL of suspended, cortisol-treated animals showed faster protein degradation. It is unlikely that any elevation in circulating glucocorticoids was solely responsible for atrophy of the soleus in this model, but catabolic amounts of glucocorticoids could alter the response of muscle to unloading.

  14. Tubular system volume changes in twitch fibres from toad and rat skeletal muscle assessed by confocal microscopy

    PubMed Central

    Launikonis, Bradley S; Stephenson, D George

    2002-01-01

    The volume of the extracellular compartment (tubular system) within intact muscle fibres from cane toad and rat was measured under various conditions using confocal microscopy. Under physiological conditions at rest, the fractional volume of the tubular system (t-sysVol) was 1.38 ± 0.09 % (n = 17), 1.41 ± 0.09 % (n = 12) and 0.83 ± 0.07 % (n = 12) of the total fibre volume in the twitch fibres from toad iliofibularis muscle, rat extensor digitorum longus muscle and rat soleus muscle, respectively. In toad muscle fibres, the t-sysVol decreased by 30 % when the tubular system was fully depolarized and decreased by 15 % when membrane cholesterol was depleted from the tubular system with methyl-β-cyclodextrin but did not change as the sarcomere length was changed from 1.93 to 3.30 μm. There was also an increase by 30 % and a decrease by 25 % in t-sysVol when toad fibres were equilibrated in solutions that were 2.5-fold hypertonic and 50 % hypotonic, respectively. When the changes in total fibre volume were taken into consideration, the t-sysVol expressed as a percentage of the isotonic fibre volume did actually decrease as tonicity increased, revealing that the tubular system in intact fibres cannot be compressed below 0.9 % of the isotonic fibre volume. The results can be explained in terms of forces acting at the level of the tubular wall. These observations have important physiological implications showing that the tubular system is a dynamic membrane structure capable of changing its volume in response to the membrane potential, cholesterol depletion and osmotic stress but not when the sarcomere length is changed in resting muscle. PMID:11790823

  15. Motor unit and muscle fiber type grouping after peripheral nerve injury in the rat.

    PubMed

    Gordon, Tessa; de Zepetnek, Joanne E Totosy

    2016-11-01

    Muscle unit (MU) fibers innervated by one motoneuron and corresponding muscle fiber types are normally distributed in a mosaic. We asked whether, 4-8months after common peroneal nerve transection and random surgical alignment of nerve stumps in rat tibialis anterior muscles 1) reinnervated MU muscle and muscle fiber type clumping is invariant and 2) slow and fast motoneurons regenerate their nerve fibers within original endoneurial pathways. MU contractile forces were recorded in vivo, the MUs classified into types according to their contractile speed and fatigability, and one MU subjected to alternate exhaustive stimulation-recovery cycles to deplete glycogen for histochemical MU fiber recognition and enumeration, and muscle fiber typing. MU muscle fibers occupied defined territories whose size increased with MU force and muscle fiber numbers in normal and reinnervated muscles. The reinnervated MU muscle fiber territories were significantly smaller, the fibers clumped within 1-3 groups in 90% of the MUs, and each fiber lying adjacent to another significantly more frequently. Most reinnervated slow muscle fibers were normally located in the deep muscle compartment but substantial numbers were located abnormally in the superficial compartment. Our findings that well reinnervated muscle fibers clump in small muscles contrast with our earlier findings of clumping in large muscles only when reinnervated MU numbers were significantly reduced. We conclude that fiber type clumping is predictive of muscle reinnervation in small but not large muscles. In the latter muscles, clumping is more indicative of sprouting after partial nerve injuries than of muscle reinnervation after complete nerve injuries. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Problems in analysis of data from muscles of rats flow in space

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Henriksen, Erik; Jacob, Stephan; Satarug, Soisungwan; Cook, Paul

    1988-01-01

    Comparison of hind-limb muscles of rats flown on Spacelab-3 or tail-traction-suspended showed that 11-17 h reloading postflight might have altered the results. Soleus atrophied; plantaris, gastrocnemius, and extensor digitorum longus grew slower; and tibialis anteiror grew normally. In both flight and simulated soleus and plantaris, higher tyrosine and greater glutamine/glutamate ratio indicated negative protein balance and increased glutamine production, respectively, relative to controls. Aspartate was lower in these muscles. Reloading generally decreased tyrosine, but increased aspartate and glutamine/glutamate. These data showed that 12 h of reloading after flight is characterized by reversal, to varying extents, of the effects of unloading.

  17. Problems in analysis of data from muscles of rats flown in space

    NASA Technical Reports Server (NTRS)

    Tischler, M. E.; Henriksen, E.; Jacob, S.; Satarug, S.; Cook, P.

    1988-01-01

    Comparison of hindlimb muscles of rats flown on Spacelab-3 or tail-traction-suspended showed that 11-17 h reloading post-flight might have altered the results. Soleus atrophied, plantaris, gastrocnemius and extensor digitorum longus grew slower, and tibialis anterior grew normally. In both flight and simulated soleus and plantaris, higher tyrosine and greater glutamine/glutamate ratio indicated negative protein balance and increased glutamine production, respectively, relative to controls. Aspartate was lower in these muscles. Reloading generally decreased tyrosine, but increased aspartate and glutamine/glutamate. These data showed that at 12 h of reloading after flight is characterized by reversal to varying extents of effects of unloading.

  18. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    NASA Technical Reports Server (NTRS)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  19. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle.

    PubMed

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cássia; Salvini, Tania de Fátima; Durigan, Joao Luiz Quagliotti

    2016-01-04

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48 h post-injury decreased inflammatory processes (mRNA levels of TNF-α, NF-κB, TGF-β and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling.

  20. Response of macrophages in rat skeletal muscle after eccentric exercise.

    PubMed

    Zuo, Qun; Wang, Shu-Chen; Yu, Xin-Kai; Chao, Wei-Wei

    2018-04-01

    Macrophages are known to be important for healing numerous injured tissues depending on their functional phenotypes in response to different stimuli. The objective of this study was to reveal macrophage phenotypic changes involved in exercise-induced skeletal muscle injury and regeneration. Adult male Sprague-Dawley rats experienced one session of downhill running (16° decline, 16 m/min) for 90 min. After exercise the blood and soleus muscles were collected at 0 h, 6 h, 12 h, 1 d, 2 d, 3 d, 1 w and 2 w after exercise, separately. It was showed that CD68 + M1 macrophages mainly infiltrated into muscle necrotic sites at 1-3 d, while CD163 + M2 macrophages were present in muscles from 0 h to 2 weeks after exercise. Using transmission electron microscopy, we observed activated satellite cells 1 d after exercise. Th1-associated transcripts of iNOS and Ccl2 were inhibited post exercise, while COX-2 mRNA was dramatically increased 12 h after running (p < 0.01). M2 phenotype marker Arg-1 increased 12 h and 3 d (p < 0.05, p < 0.01) after exercise, and Clec10a and Mrc2 were up-regulated in muscles 12 h following exercise (p < 0.05, p < 0.05). The data demonstrate the dynamic patterns of macrophage phenotype in skeletal muscle upon eccentric exercise stimuli, and M1 and M2 phenotypes perform different functions during exercise-induced skeletal muscle injury and recovery. Copyright © 2018 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  1. Effects of hypothyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin in the soleus muscle of the rat.

    PubMed Central

    Dimitriadis, G D; Leighton, B; Parry-Billings, M; West, D; Newsholme, E A

    1989-01-01

    1. The effects of hypothyroidism on the sensitivity of glycolysis and glycogen synthesis to insulin were investigated in the isolated, incubated soleus muscle of the rat. 2. Hypothyroidism, which was induced by administration of propylthiouracil to the rats, decreased fasting plasma levels of free fatty acids and increased plasma levels of glucose but did not significantly change plasma levels of insulin. 3. The sensitivity of the rates of glycogen synthesis to insulin was increased at physiological, but decreased at supraphysiological, concentrations of insulin. 4. The rates of glycolysis in the hypothyroid muscles were decreased at all insulin concentrations studied and the EC50 for insulin was increased more than 8-fold; the latter indicates decreased sensitivity of this process to insulin. However, at physiological concentrations of insulin, the rates of glucose phosphorylation in the soleus muscles of hypothyroid rats were not different from controls. This suggests that hypothyroidism affects glucose metabolism in muscle not by affecting glucose transport but by decreasing the rate of glucose 6-phosphate conversion to lactate and increasing the rate of conversion of glucose 6-phosphate to glycogen. 5. The rates of glucose oxidation were decreased in the hypothyroid muscles at all insulin concentrations. PMID:2649073

  2. Androgens enhance in vivo 2-deoxyglucose uptake by rat striated muscle

    NASA Technical Reports Server (NTRS)

    Max, S. R.; Toop, J.

    1983-01-01

    It is shown that testosterone propionate (TP) causes a striking increase in the in vivo uptake of 2-deoxyglucose (2-DG) by the levator ani muscle of immature male rats, which was found to be uniformly distributed over the entire muscle. After a single subcutaneous injection of TP, no enhancement of 2-DG was observed before 3.5 hr, at which time uptake was increased 2-fold; maximum enhancement (4-fold) was attained at 12 hr. At 72 hr, 2-DG uptake remained elevated at twice the control value. It was determined that the effect of TP probably is mediated by specific androgen receptors. In addition, it was found that the effect of TP was blocked by the simultaneous administration of an androgen antagonist, cyproterone acetate. TP also was found to enhance the uptake of 2-DG in the bulbocavernosus (253 percent over control) and extensor digitorum longus muscles (150 percent over control), but not in the biceps brachii or soleus. It is suggested that the increased uptake of glucose may be an important early step in the anabolic response of muscle to androgens.

  3. Lymphatic Muscle Cells in Rat Mesenteric Lymphatic Vessels of Various Ages

    PubMed Central

    Bridenbaugh, Eric A.; Nizamutdinova, Irina Tsoy; Jupiter, Daniel; Nagai, Takashi; Thangaswamy, Sangeetha; Chatterjee, Victor

    2013-01-01

    Abstract Background Recent studies on aging-associated changes in mesenteric lymph flow in situ demonstrated predominance of the severe negative chronotropic effect of aging on the contractility of aged mesenteric lymphatic vessels (MLV). At the same time, contraction amplitude of the aged vessels was only slightly diminished by aging and can be rapidly stimulated within 5–15 minutes. However, the detailed quantitative evaluation of potential aging-associated changes in muscle cells investiture in MLV has never been performed. Methods and Results In this study we, for the first time, performed detailed evaluation of muscle cells investiture in MLV in reference to the position of lymphatic valve in different zones of lymphangion within various age groups (3-mo, 9-mo and 24-mo Fischer-344 rats). Using visual and quantitative analyses of the images of MLV immunohistochemically labeled for actin, we confirmed that the zones located close upstream (pre-valve zones) and above lymphatic valves (valve zones) possess the lowest investiture of lymphatic muscle cells. Most of the high muscle cells investiture zones exist downstream to the lymphatic valve (post-valve zones). The muscle cells investiture of these zones is not affected by aging, while pre-valve and valve zones demonstrate significant aging-associated decrease in muscle cells investiture. Conclusions The low muscle cells investiture zones in lymphatic vessels consist of predominantly longitudinally oriented muscle cells which are positioned in pre-valve and valve zones and connect adjacent lymphangions. These cells may provide important functional impact on the biomechanics of the lymphatic valve gating and electrical coupling between lymphangions, while their aging-associated changes may delimit adaptive reserves of aged lymphatic vessels. PMID:23531183

  4. In vivo Ca2+ buffering capacity and microvascular oxygen pressures following muscle contractions in diabetic rat skeletal muscles: fiber-type specific effects.

    PubMed

    Eshima, Hiroaki; Poole, David C; Kano, Yutaka

    2015-07-15

    In Type 1 diabetes, skeletal muscle resting intracellular Ca(2+) concentration ([Ca(2+)]i) homeostasis is impaired following muscle contractions. It is unclear to what degree this behavior is contingent upon fiber type and muscle oxygenation conditions. We tested the hypotheses that: 1) the rise in resting [Ca(2+)]i evident in diabetic rat slow-twitch (type I) muscle would be exacerbated in fast-twitch (type II) muscle following contraction; and 2) these elevated [Ca(2+)]i levels would relate to derangement of microvascular partial pressure of oxygen (PmvO2 ) rather than sarcoplasmic reticulum dysfunction per se. Adult male Wistar rats were divided randomly into diabetic (DIA: streptozotocin ip) and healthy (CONT) groups. Four weeks later extensor digitorum longus (EDL, predominately type II fibers) and soleus (SOL, predominately type I fibers) muscle contractions were elicited by continuous electrical stimulation (120 s, 100 Hz). Ca(2+) imaging was achieved using fura 2-AM in vivo (i.e., circulation intact). DIA increased fatigability in EDL (P < 0.05) but not SOL. In recovery, SOL [Ca(2+)]i either returned to its resting baseline within 150 s (CONT 1.00 ± 0.02 at 600 s) or was not elevated in recovery at all (DIA 1.03 ± 0.02 at 600 s, P > 0.05). In recovery, EDL CONT [Ca(2+)]i also decreased to values not different from baseline (1.06 ± 0.01, P > 0.05) at 600 s. In marked contrast, EDL DIA [Ca(2+)]i remained elevated for the entire recovery period (i.e., 1.23 ± 0.03 at 600 s, P < 0.05). The inability of [Ca(2+)]i to return to baseline in EDL DIA was not associated with any reduction of SR Ca(2+)-ATPase (SERCA) 1 or SERCA2 protein levels (both increased 30-40%, P < 0.05). However, Pmv(O2) recovery kinetics were markedly slowed in EDL such that mean Pmv(O2) was substantially depressed (CONT 27.9 ± 2.0 vs. DIA 18.4 ± 2.0 Torr, P < 0.05), and this behavior was associated with the elevated [Ca(2+)]i. In contrast, this was not the case for SOL (P > 0.05) in that

  5. Effect of Intermittent Hypoxia and Rimonabant on Glucose Metabolism in Rats: Involvement of Expression of GLUT4 in Skeletal Muscle

    PubMed Central

    Wang, Xiaoya; Yu, Qin; Yue, Hongmei; Zeng, Shuang; Cui, Fenfen

    2015-01-01

    Background Obstructive sleep apnea (OSA) and its main feature, chronic intermittent hypoxia (IH) during sleep, is closely associated with insulin resistance (IR) and diabetes. Rimonabant can regulate glucose metabolism and improve IR. The present study aimed to assess the effect of IH and rimonabant on glucose metabolism and insulin sensitivity, and to explore the possible mechanisms. Material/Methods Thirty-two rats were randomly assigned into 4 groups: Control group, subjected to intermittent air only; IH group, subjected to IH only; IH+NS group, subjected to IH and treated with normal saline; and IH+Rim group, subjected to IH and treated with 10 mg/kg/day of rimonabant. All rats were killed after 28 days of exposure. Then, the blood and skeletal muscle were collected. We measured fasting blood glucose levels, fasting blood insulin levels, and the expression of glucose transporter 4 (GLUT4) in both mRNA and protein levels in skeletal muscle. Results IH can slow weight gain, increase serum insulin level, and reduce insulin sensitivity in rats. The expressions of GLUT4 mRNA, total GLUT4, and plasma membrane protein of GLUT4 (PM GLUT4) in skeletal muscle were decreased. Rimonabant treatment was demonstrated to improve weight gain and insulin sensitivity of the rats induced by IH. Rimonabant significantly upregulated the expression of GLUT4 mRNA, PM GLUT4, and total GLUT4 in skeletal muscle. Conclusions The present study demonstrates that IH can cause IR and reduced expression of GLUT4 in both mRNA and protein levels in skeletal muscle of rats. Rimonabant treatment can improve IH – induced IR, and the upregulation of GLUT4 expression may be involved in this process. PMID:26503060

  6. Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats

    PubMed Central

    Deblon, N; Bourgoin, L; Veyrat-Durebex, C; Peyrou, M; Vinciguerra, M; Caillon, A; Maeder, C; Fournier, M; Montet, X; Rohner-Jeanrenaud, F; Foti, M

    2012-01-01

    BACKGROUND AND PURPOSE mTOR inhibitors are currently used as immunosuppressants in transplanted patients and as promising anti-cancer agents. However, new-onset diabetes is a frequent complication occurring in patients treated with mTOR inhibitors such as rapamycin (Sirolimus). Here, we investigated the mechanisms associated with the diabetogenic effects of chronic Sirolimus administration in rats and in in vitro cell cultures. EXPERIMENTAL APPROACH Sirolimus was administered to rats fed either a standard or high-fat diet for 21 days. Metabolic parameters were measured in vivo and in ex vivo tissues. Insulin sensitivity was assessed by glucose tolerance tests and euglycaemic hyperinsulinaemic clamps. Rapamycin effects on glucose metabolism and insulin signalling were further evaluated in cultured myotubes. KEY RESULTS Sirolimus induced a decrease in food intake and concomitant weight loss. It also induced specific fat mass loss that was independent of changes in food intake. Despite these beneficial effects, Sirolimus-treated rats were glucose intolerant, hyperinsulinaemic and hyperglycaemic, but not hyperlipidaemic. The euglycaemic hyperinsulinaemic clamp measurements showed skeletal muscle is a major site of Sirolimus-induced insulin resistance. At the molecular level, long-term Sirolimus administration attenuated glucose uptake and metabolism in skeletal muscle by preventing full insulin-induced Akt activation and altering the expression and translocation of glucose transporters to the plasma membrane. In rats fed a high-fat diet, these metabolic defects were exacerbated, although Sirolimus-treated animals were protected from diet-induced obesity. CONCLUSIONS AND IMPLICATIONS Taken together, our data demonstrate that the diabetogenic effect of chronic rapamycin administration is due to an impaired insulin action on glucose metabolism in skeletal muscles. PMID:22014210

  7. Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats.

    PubMed

    Deblon, N; Bourgoin, L; Veyrat-Durebex, C; Peyrou, M; Vinciguerra, M; Caillon, A; Maeder, C; Fournier, M; Montet, X; Rohner-Jeanrenaud, F; Foti, M

    2012-04-01

    mTOR inhibitors are currently used as immunosuppressants in transplanted patients and as promising anti-cancer agents. However, new-onset diabetes is a frequent complication occurring in patients treated with mTOR inhibitors such as rapamycin (Sirolimus). Here, we investigated the mechanisms associated with the diabetogenic effects of chronic Sirolimus administration in rats and in in vitro cell cultures. Sirolimus was administered to rats fed either a standard or high-fat diet for 21 days. Metabolic parameters were measured in vivo and in ex vivo tissues. Insulin sensitivity was assessed by glucose tolerance tests and euglycaemic hyperinsulinaemic clamps. Rapamycin effects on glucose metabolism and insulin signalling were further evaluated in cultured myotubes. Sirolimus induced a decrease in food intake and concomitant weight loss. It also induced specific fat mass loss that was independent of changes in food intake. Despite these beneficial effects, Sirolimus-treated rats were glucose intolerant, hyperinsulinaemic and hyperglycaemic, but not hyperlipidaemic. The euglycaemic hyperinsulinaemic clamp measurements showed skeletal muscle is a major site of Sirolimus-induced insulin resistance. At the molecular level, long-term Sirolimus administration attenuated glucose uptake and metabolism in skeletal muscle by preventing full insulin-induced Akt activation and altering the expression and translocation of glucose transporters to the plasma membrane. In rats fed a high-fat diet, these metabolic defects were exacerbated, although Sirolimus-treated animals were protected from diet-induced obesity. Taken together, our data demonstrate that the diabetogenic effect of chronic rapamycin administration is due to an impaired insulin action on glucose metabolism in skeletal muscles. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  8. Effect of β-hydroxy-β-methylbutyrate in masticatory muscles of rats

    PubMed Central

    Daré, Leticia R; Dias, Daniel V; Rosa Junior, Geraldo M; Bueno, Cleuber R S; Buchaim, Rogerio L; Rodrigues, Antonio de C; Andreo, Jesus C

    2015-01-01

    The aim of this research was to examine the influence of β-hydroxy-β-methylbutyrate (HMB) on changes in the profile of muscle fibers, whether these alterations were similar between the elevator and depressor muscles of the jaw, and whether the effects would be similar in male and female animals. Fifty-eight rats aged 60 days (29 animals of each gender) were divided into four groups: the initial control group (ICG) was sacrificed at the beginning of the experiment; the placebo control group (PCG) received saline and was fed ad libitum; the experimental group (EG) received 0.3 g kg−1 of HMB daily for 4 weeks by gavage as well as the same amount of food consumed by the PCG in the previous day; and the experimental ad libitum group (EAG) received the same dose of the supplement along with food ad libitum. Samples included the digastric and masseter muscles for the histoenzymological analysis. Data were subjected to statistical analysis with a significance level of P < 0.05. Use of HMB caused a decrease in the percentage of fast twitch glycolytic (FG) fibers and an increase in fast twitch oxidative glycolytic (FOG) fibers in males in both experimental groups (EG and EAG). However, it produced no increase in the muscle fiber area, in either gender, in the masseter muscle. In the digastric muscle, the HMB did not change the frequency or the area of any muscle fiber types in either gender. Our data suggest that the use of HMB caused small changes in the enzymological profile of fibers of the mastication muscles; the changes were different in the elevator and depressor muscles of the jaw and the results were different depending on gender. PMID:25400135

  9. Extracellular formation and uptake of adenosine during skeletal muscle contraction in the rat: role of adenosine transporters

    PubMed Central

    Lynge, J; Juel, C; Hellsten, Y

    2001-01-01

    The existence of adenosine transporters in plasma membrane giant vesicles from rat skeletal muscles and in primary skeletal muscle cell cultures was investigated. In addition, the contribution of intracellularly or extracellularly formed adenosine to the overall extracellular adenosine concentration during muscle contraction was determined in primary skeletal muscle cell cultures. In plasma membrane giant vesicles, the carrier-mediated adenosine transport demonstrated saturation kinetics with Km= 177 ± 36 μm and Vmax= 1.9 ± 0.2 nmol ml−1 s−1 (0.7 nmol (mg protein)−1 s−1). The existence of an adenosine transporter was further evidenced by the inhibition of the carrier-mediated adenosine transport in the presence of NBMPR (nitrobenzylthioinosine; 72 % inhibition) or dipyridamol (64 % inhibition; P < 0.05). In primary skeletal muscle cells, the rate of extracellular adenosine accumulation was 5-fold greater (P < 0.05) with electrical stimulation than without electrical stimulation. Addition of the adenosine transporter inhibitor NBMPR led to a 57 % larger (P < 0.05) rate of extracellular adenosine accumulation in the electro-stimulated muscle cells compared with control cells, demonstrating that adenosine is taken up by the skeletal muscle cells during contractions. Inhibition of ecto-5′-nucleotidase with AOPCP in electro-stimulated cells resulted in a 70 % lower (P < 0.05) rate of extracellular adenosine accumulation compared with control cells, indicating that adenosine to a large extent is formed in the extracellular space during contraction. The present study provides evidence for the existence of an NBMPR-sensitive adenosine transporter in rat skeletal muscle. Our data furthermore demonstrate that the increase in extracellular adenosine observed during electro-stimulation of skeletal muscle is due to production of adenosine in the extracellular space of skeletal muscle and that adenosine is taken up rather than released by the skeletal muscle cells

  10. Sorbitol increases muscle glucose uptake ex vivo and inhibits intestinal glucose absorption ex vivo and in normal and type 2 diabetic rats.

    PubMed

    Chukwuma, Chika Ifeanyi; Islam, Md Shahidul

    2017-04-01

    Previous studies have suggested that sorbitol, a known polyol sweetener, possesses glycemic control potentials. However, the effect of sorbitol on intestinal glucose absorption and muscle glucose uptake still remains elusive. The present study investigated the effects of sorbitol on intestinal glucose absorption and muscle glucose uptake as possible anti-hyperglycemic or glycemic control potentials using ex vivo and in vivo experimental models. Sorbitol (2.5% to 20%) inhibited glucose absorption in isolated rat jejuna (IC 50 = 14.6% ± 4.6%) and increased glucose uptake in isolated rat psoas muscle with (GU 50 = 3.5% ± 1.6%) or without insulin (GU 50 = 7.0% ± 0.5%) in a concentration-dependent manner. Furthermore, sorbitol significantly delayed gastric emptying, accelerated digesta transit, inhibited intestinal glucose absorption, and reduced blood glucose increase in both normoglycemic and type 2 diabetic rats after 1 h of coingestion with glucose. Data of this study suggest that sorbitol exhibited anti-hyperglycemic potentials, possibly via increasing muscle glucose uptake ex vivo and reducing intestinal glucose absorption in normal and type 2 diabetic rats. Hence, sorbitol may be further investigated as a possible anti-hyperglycemic sweetener.

  11. Morphological changes in hind limb muscles elicited by adjuvant-induced arthritis of the rat knee.

    PubMed

    Ozawa, J; Kurose, T; Kawamata, S; Yamaoka, K

    2010-02-01

    We investigated qualitative and quantitative changes in rat hind limb muscles caused by complete Freund's adjuvant (CFA)-induced knee joint pain. One week after CFA injection, muscle atrophy was induced only on the CFA-injected side. Wet weight of the rectus femoris (RF) and soleus (SOL) muscles were significantly decreased by 20% and 19%, respectively. The reduction in cross-sectional areas by CFA was similar for fast and slow muscle fibers in the RF (10% vs 15%, respectively) and SOL muscles (16% vs 16%, respectively). At the light microscopic level, pathological changes were not found in the RF muscles on both sides, although the infiltration of mononuclear cells and muscle regeneration were found in the SOL muscles on CFA-injected and contralateral control sides. On the other hand, electron microscopy revealed degenerative changes in the RF and SOL muscles on the CFA-injected side. Interestingly, sarcomere hypercontraction, indicating overexercise, was observed to a limited extent in the SOL muscles on the control side. In conclusions, knee joint pain can trigger the rapid development of muscle atrophy with degenerative changes not only in thigh but also calf muscles. This indicates that early interventions to inhibit joint pain or inflammation may prevent muscle atrophy.

  12. "Fast" and "slow" muscle fibres in hindlimb muscles of adult rats regenerate from intrinsically different satellite cells.

    PubMed

    Kalhovde, J M; Jerkovic, R; Sefland, I; Cordonnier, C; Calabria, E; Schiaffino, S; Lømo, T

    2005-02-01

    Myosin heavy chain (MyHC) expression was examined in regenerating fast extensor digitorum longus (EDL) and slow soleus (SOL) muscles of adult rats. Myotoxic bupivacaine was injected into SOL and EDL and the muscles were either denervated or neuromuscularly blocked by tetrodotoxin (TTX) on the sciatic nerve. Three to 10 or 30 days later, denervated SOL or EDL, or innervated but neuromuscularly blocked EDL received a slow 20 Hz stimulus pattern through electrodes implanted on the muscles or along the fibular nerve to EDL below the TTX block. In addition, denervated SOL and EDL received a fast 100 Hz stimulus pattern. Denervated EDL and SOL stimulated with the same slow stimulus pattern expressed different amounts of type 1 MyHC protein (8% versus 35% at 10 days, 13% versus 87% at 30 days). Stimulated denervated and stimulated innervated (TTX blocked) EDL expressed the same amounts of type 1, 2A, 2X and 2B MyHC proteins. Cross-sections treated for in situ hybridization and immunocytochemistry showed expression of type 1 MyHC in all SOL fibres but only in some scattered single or smaller groups of fibres in EDL. The results suggest that muscle fibres regenerate from intrinsically different satellite cells in EDL and SOL and within EDL. However, induction by different extrinsic factors arising in extracellular matrix or from muscle position and usage in the limb has not been excluded. No evidence for nerve-derived trophic influences was obtained.

  13. A fermented soy permeate improves the skeletal muscle glucose level without restoring the glycogen content in streptozotocin-induced diabetic rats.

    PubMed

    Malardé, Ludivine; Vincent, Sophie; Lefeuvre-Orfila, Luz; Efstathiou, Théo; Groussard, Carole; Gratas-Delamarche, Arlette

    2013-02-01

    Exercise is essential into the therapeutic management of diabetic patients, but their level of exercise tolerance is lowered due to alterations of glucose metabolism. As soy isoflavones have been shown to improve glucose metabolism, this study aimed to assess the effects of a dietary supplement containing soy isoflavones and alpha-galactooligosaccharides on muscular glucose, glycogen synthase (GSase), and glycogen content in a type 1 diabetic animal model. The dietary supplement tested was a patented compound, Fermented Soy Permeate (FSP), developed by the French Company Sojasun Technologies. Forty male Wistar rats were randomly assigned to control or diabetic groups (streptozotocin, 45 mg/kg). Each group was then divided into placebo or FSP-supplemented groups. Both groups received by oral gavage, respectively, water or diluted FSP (0.1 g/day), daily for a period of 3 weeks. At the end of the protocol, glycemia was noticed after a 24-h fasting period. Glucose, total GSase, and the glycogen content were determined in the skeletal muscle (gastrocnemius). Diabetic animals showed a higher blood glucose concentration, but a lower glucose and glycogen muscle content than controls. Three weeks of FSP consumption allowed to restore the muscle glucose concentration, but failed to reduce glycemia and to normalize the glycogen content in diabetic rats. Furthermore, the glycogen content was increased in FSP-supplemented controls compared to placebo controls. Our results demonstrated that diabetic rats exhibited a depleted muscle glycogen content (-25%). FSP-supplementation normalized the muscle glucose level without restoring the glycogen content in diabetic rats. However, it succeeded to increase it in the control group (+20%).

  14. Bronchodilatory and B-adrenergic effects of methanolic and aqueous extracts of Althaea root on isolated tracheobronchial smooth rat muscle.

    PubMed

    Alani, Behrang; Zare, Mohammad; Noureddini, Mahdi

    2015-01-01

    The smooth muscle contractions of the tracheobronchial airways are mediated through the balance of adrenergic, cholinergic and peptidergic nervous mechanisms. This research was designed to determine the bronchodilatory and B-adrenergic effects of methanolic and aqueous extracts of root Althaea on the isolated tracheobronchial smooth muscle of the rat. In this experimental study, 116 tracheobronchial sections (5 mm) from 58 healthy male Sprague-Dawley rats were dissected and divided into 23 groups. The effect of methanolic and aqueous extracts of the root Althaea was assayed at different concentrations (0.2, 0.6, 2.6, 6.6, 14.6 μg/ml) and epinephrine (5 μm) in the presence and absence of propranolol (1 μM) under one g tension based on the isometric method. This assay was recorded in an organ bath containing Krebs-Henseleit solution for tracheobronchial smooth muscle contractions using potassium chloride (KCl) (60 mM) induction. Epinephrine (5 μm) alone and root methanolic and aqueous extract concentrations (0.6-14.6 μg/ml) reduced tracheobronchial smooth muscle contractions induced using KCl (60 mM) in a dose dependent manner. Propranolol inhibited the antispasmodic effect of epinephrine on tracheobronchial smooth muscle contractions, but could not reduce the antispasmodic effect of the root extract concentrations. The methanolic and aqueous extracts of Althaea root inhibited the tracheobronchial smooth muscle contractions of rats in a dose dependent manner, but B-adrenergic receptors do not appear to engage in this process. Understanding the mechanism of this process can be useful in the treatment of pulmonary obstructive diseases like asthma.

  15. Branched Chain Amino Acid Oxidation in Cultured Rat Skeletal Muscle Cells

    PubMed Central

    Pardridge, William M.; Casanello-Ertl, Delia; Duducgian-Vartavarian, Luiza

    1980-01-01

    Leucine metabolism in skeletal muscle is linked to protein turnover. Since clofibrate is known both to cause myopathy and to decrease muscle protein content, the present investigations were designed to examine the effects of acute clofibrate treatment on leucine oxidation. Rat skeletal muscle cells in tissue culture were used in these studies because cultivated skeletal muscle cells, like muscle in vivo, have been shown to actively utilize branched chain amino acids and to produce alanine. The conversion of [1-14C]leucine to 14CO2 or to the [1-14C]keto-acid of leucine (α-keto-isocaproate) was linear for at least 2 h of incubation; the production of 14CO2 from [1-14C]leucine was saturable with a Km = 6.3 mM and a maximum oxidation rate (Vmax) = 31 nmol/mg protein per 120 min. Clofibric acid selectively inhibited the oxidation of [1-14C]leucine (Ki = 0.85 mM) and [U-14C]isoleucine, but had no effect on the oxidation of [U-14C]glutamate, -alanine, -lactate, or -palmitate. The inhibition of [1-14C]leucine oxidation by clofibrate was also observed in the rat quarter-diaphragm preparation. Clofibrate primarily inhibited the production of 14CO2 and had relatively little effect on the production of [1-14C]keto-acid of leucine. A physiological concentration—3.0 g/100 ml—of albumin, which actively binds clofibric acid, inhibited but did not abolish the effects of a 2-mM concentration of clofibric acid on leucine oxidation. Clofibrate treatment stimulated the net consumption of pyruvate, and inhibited the net production of alanine. The drug also increased the cytosolic NADH/NAD+ ratio as reflected by an increase in the lactate/pyruvate ratio, in association with a decrease in cell aspartate levels. The changes in pyruvate metabolism and cell redox state induced by the drug were delayed compared with the nearly immediate inhibition of leucine oxidation. These studies suggest that clofibric acid, in concentrations that approximate high therapeutic levels of the drug

  16. Hyperexcitability to electrical stimulation and accelerated muscle fatiguability of taut bands in rats.

    PubMed

    Wang, Yong-Hui; Yin, Ming-Jing; Fan, Zhen-Zhen; Arendt-Nielsen, Lars; Ge, Hong-You; Yue, Shou-Wei

    2014-04-01

    Myofascial trigger points contribute significantly to musculoskeletal pain and motor dysfunction and may be associated with accelerated muscle fatiguability. The aim of this study was to investigate the electrically induced force and fatigue characteristics of muscle taut bands in rats. Muscle taut bands were dissected out and subjected to trains of electrical stimulation. The electrical threshold intensity for muscle contraction and maximum contraction force (MCF), electrical intensity dependent fatigue and electrical frequency dependent fatigue characteristics were assessed in three different sessions (n=10 each) and compared with non-taut bands in the biceps femoris muscle. The threshold intensity for muscle contraction and MCF at the 10th, 15th and 20th intensity dependent fatigue stimuli of taut bands were significantly lower than those of non-taut bands (all p<0.05). The MCF at the 15th and 20th intensity dependent fatigue stimuli of taut bands were significantly lower than those at the 1st and 5th stimuli (all p<0.01). The MCF in the frequency dependent fatigue test was significantly higher and the stimulus frequency that induced MCF was significantly lower for taut bands than for non-taut bands (both p<0.01). The present study demonstrates that the muscle taut band itself was more excitable to electrical stimulation and significantly less fatigue resistant than normal muscle fibres.

  17. Nerve injury affects the capillary supply in rat slow and fast muscles differently.

    PubMed

    Cebasek, Vita; Radochová, Barbora; Ribaric, Samo; Kubínová, Lucie; Erzen, Ida

    2006-02-01

    The goal of this study was to determine the acute effects of permanent denervation on the length density of the capillary network in rat slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles and the effect of short-lasting reinnervation in slow muscle only. Denervation was performed by cutting the sciatic nerve. Both muscles were excised 2 weeks later. Reinnervation was studied 4 weeks after nerve crush in SOL muscle only. Capillaries and muscle fibres were visualised by triple immunofluorescent staining with antibodies against CD31 and laminin and with fluorescein-labelled Griffonia (Bandeira) simplicifolia lectin. A recently developed stereological approach allowing the estimation of the length of capillaries adjacent to each individual fibre (Lcap/Lfib) was employed. Three-dimensional virtual test grids were applied to stacks of optical images captured with a confocal microscope and their intersections with capillaries and muscle fibres were counted. Interrelationships among capillaries and muscle fibres were demonstrated with maximum intensity projection of the acquired stacks of optical images. The course of capillaries in EDL seemed to be parallel to the fibre axes, whereas in SOL, their preferential direction deviated from the fibre axes and formed more cross-connections among neighbouring capillaries. Lcap/Lfib was clearly reduced in denervated SOL but remained unchanged in EDL, although the muscle fibres significantly atrophied in both muscle types. When soleus muscle was reinnervated, capillary length per unit fibre length was completely restored. The physiological background for the different responses of the capillary network in slow and fast muscle is discussed.

  18. Effects of chronic administration of clenbuterol on contractile properties and calcium homeostasis in rat extensor digitorum longus muscle.

    PubMed

    Sirvent, Pascal; Douillard, Aymerick; Galbes, Olivier; Ramonatxo, Christelle; Py, Guillaume; Candau, Robin; Lacampagne, Alain

    2014-01-01

    Clenbuterol, a β2-agonist, induces skeletal muscle hypertrophy and a shift from slow-oxidative to fast-glycolytic muscle fiber type profile. However, the cellular mechanisms of the effects of chronic clenbuterol administration on skeletal muscle are not completely understood. As the intracellular Ca2+ concentration must be finely regulated in many cellular processes, the aim of this study was to investigate the effects of chronic clenbuterol treatment on force, fatigue, intracellular calcium (Ca2+) homeostasis and Ca2+-dependent proteolysis in fast-twitch skeletal muscles (the extensor digitorum longus, EDL, muscle), as they are more sensitive to clenbuterol-induced hypertrophy. Male Wistar rats were chronically treated with 4 mg.kg-1 clenbuterol or saline vehicle (controls) for 21 days. Confocal microscopy was used to evaluate sarcoplasmic reticulum Ca2+ load, Ca2+-transient amplitude and Ca2+ spark properties. EDL muscles from clenbuterol-treated animals displayed hypertrophy, a shift from slow to fast fiber type profile and increased absolute force, while the relative force remained unchanged and resistance to fatigue decreased compared to control muscles from rats treated with saline vehicle. Compared to control animals, clenbuterol treatment decreased Ca2+-transient amplitude, Ca2+ spark amplitude and frequency and the sarcoplasmic reticulum Ca2+ load was markedly reduced. Conversely, calpain activity was increased by clenbuterol chronic treatment. These results indicate that chronic treatment with clenbuterol impairs Ca2+ homeostasis and this could contribute to the remodeling and functional impairment of fast-twitch skeletal muscle.

  19. Maltitol inhibits small intestinal glucose absorption and increases insulin mediated muscle glucose uptake ex vivo but not in normal and type 2 diabetic rats.

    PubMed

    Chukwuma, Chika Ifeanyi; Ibrahim, Mohammed Auwal; Islam, Md Shahidul

    2017-02-01

    This study investigated the effects of maltitol on intestinal glucose absorption and muscle glucose uptake using ex vivo and in vivo experimental models. The ex vivo experiment was conducted in isolated jejunum and psoas muscle from normal rats. The in vivo study investigated the effects of a single bolus dose of maltitol on gastric emptying, intestinal glucose absorption and digesta transit in normal and type 2 diabetic rats. Maltitol inhibited glucose absorption in isolated rat jejunum and increased glucose uptake in isolated rat psoas muscle in the presence of insulin but not in the absence of insulin. In contrast, maltitol did not significantly (p > 0.05) alter small intestinal glucose absorption or blood glucose levels as well as gastric emptying and digesta transit in normal or type 2 diabetic rats. The results suggest that maltitol may not be a suitable dietary supplement for anti-diabetic food and food products to improve glycemic control.

  20. [Effect of extremely low frequency magnetic field on glutathione in rat muscles].

    PubMed

    Ciejka, Elzbieta; Jakubowska, Ewa; Zelechowska, Paulina; Huk-Kolega, Halina; Kowalczyk, Agata; Goraca, Anna

    2014-01-01

    Free radicals (FR) are atoms, molecules or their fragments. Their excess leads to the development of oxidizing stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, and aging of the organism. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic field are the major FR exogenous sources. The low frequency magnetic field is still more commonly applied in the physical therapy. The aim of the presented study was to evaluate the effect of extremely low frequency magnetic field used in the magnetotherapy on the level of total glutathione, oxidized and reduced, and the redox state of the skeletal muscle cells, depending on the duration of exposure to magnetic field. The male rats, weight of 280-300 g, were randomly devided into 3 experimental groups: controls (group I) and treatment groups exposed to extremely low frequency magnetic field (ELF-MF) (group II exposed to 40 Hz, 7 mT for 0.5 h/day for 14 days and group III exposed to 40 Hz, 7 mT for 1 h/day for 14 days). Control rats were kept in a separate room not exposed to extremely low frequency magnetic field. Immediately after the last exposure, part of muscles was taken under pentobarbital anesthesia. Total glutathione, oxidized and reduced, and the redox state in the muscle tissue of animals were determined after exposure to magnetic fields. Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks significantly increased the total glutathione levels in the skeletal muscle compared to the control group (p < 0.001). Exposure to magnetic fields used in the magnetic therapy plays an important role in the development of adaptive mechanisms responsible for maintaining the oxidation-reduction balance in the body and depends on exposure duration.

  1. Dissection of a single rat muscle-tendon complex changes joint moments exerted by neighboring muscles: implications for invasive surgical interventions.

    PubMed

    Maas, Huub; Baan, Guus C; Huijing, Peter A

    2013-01-01

    The aim of this paper is to investigate mechanical functioning of a single skeletal muscle, active within a group of (previously) synergistic muscles. For this purpose, we assessed wrist angle-active moment characteristics exerted by a group of wrist flexion muscles in the rat for three conditions: (i) after resection of the upper arm skin; (ii) after subsequent distal tenotomy of flexor carpi ulnaris muscle (FCU); and (iii) after subsequent freeing of FCU distal tendon and muscle belly from surrounding tissues (MT dissection). Measurements were performed for a control group and for an experimental group after recovery (5 weeks) from tendon transfer of FCU to extensor carpi radialis (ECR) insertion. To assess if FCU tenotomy and MT dissection affects FCU contributions to wrist moments exclusively or also those of neighboring wrist flexion muscles, these data were compared to wrist angle-moment characteristics of selectively activated FCU. FCU tenotomy and MT dissection decreased wrist moments of the control group at all wrist angles tested, including also angles for which no or minimal wrist moments were measured when activating FCU exclusively. For the tendon transfer group, wrist flexion moment increased after FCU tenotomy, but to a greater extent than can be expected based on wrist extension moments exerted by selectively excited transferred FCU. We conclude that dissection of a single muscle in any surgical treatment does not only affect mechanical characteristics of the target muscle, but also those of other muscles within the same compartment. Our results demonstrate also that even after agonistic-to-antagonistic tendon transfer, mechanical interactions with previously synergistic muscles do remain present.

  2. Interaction of vitamin E and exercise training on oxidative stress and antioxidant enzyme activities in rat skeletal muscles.

    PubMed

    Chang, Chen-Kang; Huang, Hui-Yu; Tseng, Hung-Fu; Hsuuw, Yan-Der; Tso, Tim K

    2007-01-01

    It has been shown that free radicals are increased during intensive exercise. We hypothesized that vitamin E (vit E) deficiency, which will increase oxidative stress, would augment the training-induced adaptation of antioxidant enzymes. This study investigated the interaction effect of vit E and exercise training on oxidative stress markers and activities of antioxidant enzymes in red quadriceps and white gastrocnemius of rats in a 2x2 design. Thirty-two male rats were divided into trained vit E-adequate, trained vit E-deficient, untrained vit E-adequate, and untrained vit E-deficient groups. The two trained groups swam 6 h/day, 6 days/week for 8 weeks. The two vit E-deficient groups consumed vit E-free diet for 8 weeks. Vitamin E-training interaction effect was significant on thiobarbituric acid reactive substances (TBARSs), glutathione peroxidase (GPX), and superoxide dismutase (SOD) in both muscles. The trained vit E-deficient group showed the highest TBARS and GPX activity and the lowest SOD activity in both muscles. A significant vit E effect on glutathione reductase and catalase was present in both muscles. Glutathione reductase and catalase activities were significantly lower in the two vit E-adequate groups combined than in the two vit E-deficient groups combined in both muscles. This study shows that vit E status and exercise training have interactive effect on oxidative stress and GPX and SOD activities in rat skeletal muscles. Vitamin E deprivation augmented the exercise-induced elevation in GPX activity while inhibiting exercise-induced SOD activity, possibly through elevated oxidative stress.

  3. A possible role for endogenous glucocorticoids in orchiectomy-induced atrophy of the rat levator ani muscle - Studies with RU 38486, a potent and selective antiglucocorticoid

    NASA Technical Reports Server (NTRS)

    Konagaya, Masaaki; Max, Stephen R.

    1986-01-01

    RU38486, a potent and selective antiglucocorticoid, was employed to study a possible role for endogenous glucocorticoids in atrophy of the levator ani muscle secondary to castration of male rats. RU38486 was shown to block (3H) triamcinolone acetonide binding to cytosol from levator ani muscle. Daily oral administration of RU38486 to castrated rats partially prevented atrophy of the levator ani muscle, as well as a decrease in RNA concentration. In a control group receiving RU38486 alone, the levator ani underwent significant 20 percent hypertrophy. Administration of exogenous dexamethasone also caused pronounced atrophy of the levator ani muscle. This atrophy was prevented, to a significant degree, by simultaneous oral administration of Ru38486. It is concluded that endogenous glucocorticoids, the actions of which are blocked by RU38486, may be involved in regulation of the mass of the levator ani muscle in intact rats.

  4. A possible role for endogenous glucocorticoids in orchiectomy-induced atrophy of the rat levator ani muscle: Studies with RU38486, a potent and selective antiglucocorticoid

    NASA Technical Reports Server (NTRS)

    Konagaya, M.; Max, S. R.

    1985-01-01

    RU38486, a potent and selective antiglucocorticoid, was employed to study a possible role for endogenous glucocorticoids in atrophy of the levator ani muscle secondary to castration of male rats. RU38486 was shown to block (3H) triamcinolone acetonide binding to cytosol from levator ani muscle. Daily oral administration of RU38486 to castrated rats partially prevented atrophy of the levator ani muscle, as well as a decrease in RNA concentration. In a control group receiving RU38486 alone, the levator ani underwent significant (20%) hypertrophy. Administration of exogenous dexamethasone also caused pronounced atrophy of the levator ani muscle. This atrophy was prevented, to a significant degree, by simultaneous oral administration of RU38486. It is concluded that endogenous glucocorticoids, the actions of which are blocked by RU38486, may be involved in regulation of the mass of the levator ani muscle in intact rats.

  5. Ageing influences myonuclear domain size differently in fast and slow skeletal muscle of rats.

    PubMed

    Brooks, Naomi E; Schuenke, M D; Hikida, R S

    2009-09-01

    In multinucleated skeletal muscle, a myonuclear domain is the region of cytoplasm governed by one nucleus, and myofibres are mosaics of overlapping myonuclear domains. Association of ageing and myonuclear domain is important in the understanding of sarcopenia and with prevention or combating age-related muscle declines. This study examined the effects of age, fibre type and muscle on nucleo-cytoplasmic (N/C) relationships as reflecting myonuclear domain size. The N/C was compared in fibre types of soleus and plantaris muscles from young (n = 6) and ageing (n = 8) male Fisher 344 rats. There were no significant differences in fibre type composition or cross-sectional area of the soleus across ages. The old soleus had significantly more myonuclei, resulting in a significantly smaller myonuclear domain size. The plantaris muscle showed a higher percentage of slow fibres in old compared with young fibres. There were no differences in the number of myonuclei or in myonuclear domain size between young and older animals. We found muscle-specific differences in the effects of ageing on myonuclear domain, possibly as a result of reduced efficiency of the myonuclei in the slow muscles.

  6. Fish protein intake induces fast-muscle hypertrophy and reduces liver lipids and serum glucose levels in rats.

    PubMed

    Kawabata, Fuminori; Mizushige, Takafumi; Uozumi, Keisuke; Hayamizu, Kohsuke; Han, Li; Tsuji, Tomoko; Kishida, Taro

    2015-01-01

    In our previous study, fish protein was proven to reduce serum lipids and body fat accumulation by skeletal muscle hypertrophy and enhancing basal energy expenditure in rats. In the present study, we examined the precise effects of fish protein intake on different skeletal muscle fiber types and metabolic gene expression of the muscle. Fish protein increased fast-twitch muscle weight, reduced liver triglycerides and serum glucose levels, compared with the casein diet after 6 or 8 weeks of feeding. Furthermore, fish protein upregulated the gene expressions of a fast-twitch muscle-type marker and a glucose transporter in the muscle. These results suggest that fish protein induces fast-muscle hypertrophy, and the enhancement of basal energy expenditure by muscle hypertrophy and the increase in muscle glucose uptake reduced liver lipids and serum glucose levels. The present results also imply that fish protein intake causes a slow-to-fast shift in muscle fiber type.

  7. Glucose-dependent insulinotropic polypeptide directly induces glucose transport in rat skeletal muscle

    PubMed Central

    Snook, Laelie A.; Nelson, Emery M.; Dyck, David J.; Wright, David C.

    2015-01-01

    Several gastrointestinal proteins have been identified to have insulinotropic effects, including glucose-dependent insulinotropic polypeptide (GIP); however, the direct effects of incretins on skeletal muscle glucose transport remain largely unknown. Therefore, the purpose of the current study was to examine the role of GIP on skeletal muscle glucose transport and insulin signaling in rats. Relative to a glucose challenge, a mixed glucose+lipid oral challenge increased circulating GIP concentrations, skeletal muscle Akt phosphorylation, and improved glucose clearance by ∼35% (P < 0.05). These responses occurred without alterations in serum insulin concentrations. In an incubated soleus muscle preparation, GIP directly stimulated glucose transport and increased GLUT4 accumulation on the plasma membrane in the absence of insulin. Moreover, the ability of GIP to stimulate glucose transport was mitigated by the addition of the PI 3-kinase (PI3K) inhibitor wortmannin, suggesting that signaling through PI3K is required for these responses. We also provide evidence that the combined stimulatory effects of GIP and insulin on soleus muscle glucose transport are additive. However, the specific GIP receptor antagonist (Pro3)GIP did not attenuate GIP-stimulated glucose transport, suggesting that GIP is not signaling through its classical receptor. Together, the current data provide evidence that GIP regulates skeletal muscle glucose transport; however, the exact signaling mechanism(s) remain unknown. PMID:26041107

  8. Evaluation of microRNAs − 208 and 133a/b as differential biomarkers of acute cardiac and skeletal muscle toxicity in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvano, Jacqueline, E-mail: Jacqueline.Calvano@bm

    Conventional circulating biomarkers of cardiac and skeletal muscle (SKM) toxicity lack specificity and/or have a short half-life. MicroRNAs (miRNAs) are currently being assessed as biomarkers of tissue injury based on their long half-life in blood and selective expression in certain tissues. To assess the utility of miRNAs as biomarkers of cardiac and SKM injury, male Sprague–Dawley rats received a single dose of isoproterenol (ISO); metaproterenol (MET); allylamine (AAM); mitoxantrone (MIT); acetaminophen (APAP) or vehicle. Blood and tissues were collected from rats in each group at 4, 24 and 48 h. ISO, MET, and AAM induced cardiac and SKM lesions andmore » APAP induced liver specific lesions. There was no evidence of tissue injury with MIT by histopathology. Serum levels of candidate miRNAs were compared to conventional serum biomarkers of SKM/cardiac toxicity. Increases in heart specific miR-208 only occurred in rats with cardiac lesions alone and were increased for a longer duration than cardiac troponin and FABP3 (cardiac biomarkers). ISO, MET and AAM induced increases in MyL3 and skeletal muscle troponin (sTnl) (SKM biomarkers). MIT induced large increases in sTnl indicative of SKM toxicity, but sTnl levels were also increased in APAP-treated rats that lacked SKM toxicity. Serum levels of miR-133a/b (enriched in cardiac and SKM) increased following ISO, MET, AAM and MIT treatments but were absent in APAP-treated rats. Our results suggest that miR-133a/b are sensitive and specific markers of SKM and cardiac toxicity and that miR-208 used in combination with miR-133a/b can be used to differentiate cardiac from SKM toxicity. - Highlights: • MiR-208 is specifically expressed in rat hearts. • MiR-133a/b are enriched in rat cardiac/skeletal muscle. • MiR-133a/b are sensitive and specific markers of muscle/cardiac toxicity. • MiR-208 can be used to differentiate cardiac toxicity from skeletal muscle toxicity.« less

  9. Prominent expression of phosphodiesterase 5 in striated muscle of the rat urethra and levator ani.

    PubMed

    Lin, Guiting; Huang, Yun-Ching; Wang, Guifang; Lue, Tom F; Lin, Ching-Shwun

    2010-08-01

    We investigated phosphodiesterase 5 distribution and activity in the urethra. Rat tissues were examined for phosphodiesterase 5 and alpha-smooth muscle actin expression. Urethral phosphodiesterase 5 activity was examined by tissue bath in the presence of sildenafil (Pfizer, New York, New York). Anti-alpha-smooth muscle actin antibody (Abcam) stained all known smooth muscles in all tested tissues and revealed a few smooth muscle fibers in the levator ani muscle. Anti-phosphodiesterase 5 antibody (Abcam) stained smooth muscle in the penis and bladder but not striated leg muscle. However, it stained predominantly striated muscle in the urethra and the levator ani muscle. In the urethra the amount of phosphodiesterase 5 in striated muscle was 6 times that in smooth muscle. In urethral striated muscle phosphodiesterase 5 expression was localized to Z-band striations. Smooth and striated muscle intermingling was clearly visible on the inner and outer rims of the circularly arranged striated muscle layer. Relaxation of precontracted urethral tissues by sodium nitroprusside (Sigma-Aldrich) was enhanced by sildenafil, indicating phosphodiesterase 5 activity, which was primarily located in the striated muscle according to phosphodiesterase 5 staining. Despite its presumed smooth muscle specificity phosphodiesterase 5 was predominantly expressed in the striated muscle of the urethra and in the levator ani muscle. Results are consistent with earlier studies in which these striated muscles were developmentally related to smooth muscle. They also suggest that these striated muscles are possibly regulated by phosphodiesterase 5. Copyright (c) 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  10. Differential effect of denervation on free radical scavenging enzymes in slow and fast muscle of rat

    NASA Technical Reports Server (NTRS)

    Asayama, K.; Dettbarn, W. D.; Burr, I. M.

    1985-01-01

    To determine the effect of denervation on the free radical scavenging systems in relation to the mitochondrial oxidative metabolism in the slow twitch soleus and fast twitch extensor digitorum longus (EDL) muscles, the sciatic nerve of the rat was crushed in the mid-thigh region and the muscle tissue levels of 5 enzymes were studied 2 and 5 weeks following crush. Radioimmunoassays were utilized for the selective measurement of cuprozinc (cytosolic) and mangano (mitochondrial) superoxide dismutases. These data represent the first systematic report of free radical scavening systems in slow and fast muscles in response to denervation. Selective modification of cuprozinc and manganosuperoxide dismutases and differential regulation of GSH-peroxidase was demonstrated in slow and fast muscle.

  11. Vasorelaxant effects of aqueous leaf extract of Tridax procumbens on aortic smooth muscle isolated from the rat.

    PubMed

    Salahdeen, Hussein M; Murtala, Babatunde A

    2012-01-01

    Tridax procumbens is commonly used in traditional medicine in southern part of Nigeria for the treatment of hypertension. However, the mechanism of its antihypertensive properties remains unclear. Attempts were made to investigate the properties of direct actions of aqueous extract of the leaves of T. procumbens on mechanical responses of smooth muscles in aortic ring preparations isolated from the rat. Endothelium-intact aortic rings, isolated from the normotensive rats, had been pre-contracted with noradrenaline, and cumulative addition of the aqueous extract (0.15-1.05 mg/mL) to the bathing fluid induced a concentration-dependent relaxation. Aqueous extract of T. procumbens also attenuated the contractile responses to KCl and shifted the concentration-response curve to the right. The contractile responses to serotonin were also attenuated and the concentration-response curve was shifted to the right in the presence of the extract. The results of this study indicated that aqueous leaf extract of T. procumbens possesses vasodilatory effects on the aortic smooth muscles isolated from the rat. Based on these results, a possible mechanism involved in the relaxing actions of the extract on vascular smooth muscle was discussed. The results of this study may provide a scientific basis for the use of this extract to the treatment of hypertension in Nigerian traditional medicine.

  12. Effect of acute and chronic eccentric exercise on FOXO1 mRNA expression as fiber type transition factor in rat skeletal muscles.

    PubMed

    Azad, Milad; Khaledi, Neda; Hedayati, Mehdi

    2016-06-15

    Skeletal muscle is a highly elastic tissue which can respond to various functional demands by altering fiber-type composition. Exercise affects muscle fiber phenotype. One of the transcription factors that induce fiber-type transition is forkhead box O1 (FOXO1). Since eccentric contraction considered an essential part of exercise, so we are interested to see the effects of eccentric exercise (acute/chronic) on FOXO1 as an important factor of fiber-type transition in rat skeletal muscles. Twenty-four Sprague-Dawley rats (190-235g) were divided to 3 groups of 8 rats: 1) chronic eccentric exercise (CEE), 2) acute eccentric exercise (AEE), and 3) control (C). The exercise groups underwent downhill running protocol. CEE was running on treadmill in 3 days of week for 9 weeks, that slope and duration gradually managed from -4° to -16° and 15 to 90 min, respectively. AEE group was running with 16 m/min on -16° slope for 3 consecutive days that included 18 sets of 5 min with rest interval of 2 min in between. Soleus and super vastus lateralis (SVL) muscles mRNA were analyzed by real-time RT-PCR. SVL FOXO1 mRNA levels increased by 3.92-fold in the AEE and decreased 0.56-fold in the CEE group and were not significant in soleus muscle. In soleus muscle, myosin heavy chain (MHC) IIa, IIx, and IIb decreased in the AEE group and MHC IIa and IIx decreased in the CEE group. In SVL muscle, MHC I, IIa, and IIx increased in the AEE group and MHC IIa and IIX increased in the CEE group. In summary, both acute and chronic eccentric exercise could lead to change in FOXO1 mRNA only in fast SVL muscle of rat and so could induce fiber-type transition in both muscles regardless of changes in expression of FOXO1. So, oxidative stress can play important role in change of FOXO1. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. LKB1-AMPK signaling in muscle from obese insulin-resistant Zucker rats and effects of training.

    PubMed

    Sriwijitkamol, Apiradee; Ivy, John L; Christ-Roberts, Christine; DeFronzo, Ralph A; Mandarino, Lawrence J; Musi, Nicolas

    2006-05-01

    AMPK is a key regulator of fat and carbohydrate metabolism. It has been postulated that defects in AMPK signaling could be responsible for some of the metabolic abnormalities of type 2 diabetes. In this study, we examined whether insulin-resistant obese Zucker rats have abnormalities in the AMPK pathway. We compared AMPK and ACC phosphorylation and the protein content of the upstream AMPK kinase LKB1 and the AMPK-regulated transcriptional coactivator PPARgamma coactivator-1 (PGC-1) in gastrocnemius of sedentary obese Zucker rats and sedentary lean Zucker rats. We also examined whether 7 wk of exercise training on a treadmill reversed abnormalities in the AMPK pathway in obese Zucker rats. In the obese rats, AMPK phosphorylation was reduced by 45% compared with lean rats. Protein expression of the AMPK kinase LKB1 was also reduced in the muscle from obese rats by 43%. In obese rats, phosphorylation of ACC and protein expression of PGC-1alpha, two AMPK-regulated proteins, tended to be reduced by 50 (P = 0.07) and 35% (P = 0.1), respectively. There were no differences in AMPKalpha1, -alpha2, -beta1, -beta2, and -gamma3 protein content between lean and obese rats. Training caused a 1.5-fold increase in AMPKalpha1 protein content in the obese rats, although there was no effect of training on AMPK phosphorylation and the other AMPK isoforms. Furthermore, training also significantly increased LKB1 and PGC-1alpha protein content 2.8- and 2.5-fold, respectively, in the obese rats. LKB1 protein strongly correlated with hexokinase II activity (r = 0.75, P = 0.001), citrate synthase activity (r = 0.54, P = 0.02), and PGC-1alpha protein content (r = 0.81, P < 0.001). In summary, obese insulin-resistant rodents have abnormalities in the LKB1-AMPK-PGC-1 pathway in muscle, and these abnormalities can be restored by training.

  14. Exogenous skeletal muscle satellite cells promote the repair of levator palpebrae superioris mechanical damage in rat.

    PubMed

    Ye, Lin; Yao, Yuanyuan; Guo, Hui; Peng, Yun

    2018-05-17

    Blepharoptosis is a drooping of the upper eyelid, usually due to dysfunction of the levator palpebrae superioris (LPS). Recently, skeletal muscle satellite cells (SSCs) have been reported to promote the repair of damaged skeletal muscle. This study aims to investigate the potential contribution of exogenous SSCs to the regeneration of mechanically damaged LPS. Thirty-two rats were randomly divided into four groups, including control group, SSCs-treated group, SSCs-treated injury group and non-treated injury group. After rats in injury groups were artificially lacerated on both the left and right LPS, HBBS (Hank's Balanced Salt Solution) containing SSCs was injected into upper eyelid tissue. After 7 days, the LPS muscle tissues were excised. In addition, skeletal muscle cells (SMCs) and SSCs were cocultured for use as an in vitro model, and the protective effects of SSCs on cultured SMCs were also investigated. Histological staining revealed that exogenous SSCs repaired the damaged muscle fibers and attenuated the fibrosis of LPS, possibly due to the increased level of IGF-1. In contrast, the level of IL-1β, IL-6, TGF-β1 and Smad2/3 (phospho-T8) were significantly reduced in the SSCs-treated group. The in vitro model using coculture of skeletal muscle cells (SMCs) and SSCs also revealed an increased level of IGF-1 and reduced level of inflammatory factors, resulting in a better cell survival rate. This study found that exogenous SSCs can promote the repair of LPS mechanical damage and provides new insight into the development of novel therapeutic approaches for blepharoptosis.

  15. Effects of moderate heart failure and functional overload on rat plantaris muscle

    NASA Technical Reports Server (NTRS)

    Spangenburg, Espen E.; Lees, Simon J.; Otis, Jeff S.; Musch, Timothy I.; Talmadge, Robert J.; Williams, Jay H.

    2002-01-01

    It is thought that changes in sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) of skeletal muscle contribute to alterations in skeletal muscle function during congestive heart failure (CHF). It is well established that exercise training can improve muscle function. However, it is unclear whether similar adaptations will result from exercise training in a CHF patient. Therefore, the purpose of this study was to determine whether skeletal muscle during moderate CHF adapts to increased activity, utilizing the functional overload (FO) model. Significant increases in plantaris mass of the CHF-FO and sham-FO groups compared with the CHF and control (sham) groups were observed. Ca(2+) uptake rates were significantly elevated in the CHF group compared with all other groups. No differences were detected in Ca(2+) uptake rates between the CHF-FO, sham, and sham-FO groups. Increases in Ca(2+) uptake rates in moderate-CHF rats were not due to changes in SERCA isoform proportions; however, FO may have attenuated the CHF-induced increases through alterations in SERCA isoform expression. Therefore, changes in skeletal muscle Ca(2+) handling during moderate CHF may be due to alterations in regulatory mechanisms, which exercise may override, by possibly altering SERCA isoform expression.

  16. Review of primary spaceflight-induced and secondary reloading-induced changes in slow antigravity muscles of rats

    NASA Astrophysics Data System (ADS)

    Riley, D. A.

    We have examined the light and electron microscopic properties of hindlimb muscles of rats flown in space for 1-2 weeks on Cosmos biosatellite flights 1887 and 2044 and Space Shuttle missions Spacelab-3, Spacelab Life Sciences-1 and Spacelab Life Sciences-2. Tissues were obtained both inflight and postflight permitting definition of primary microgravity-induced changes and secondary reentry and gravity reloading-induced alterations. Spaceflight causes atrophy and expression of fast fiber characteristics in slow antigravity muscles. The stresses of reentry and reloading reveal that atrophic muscles show increased susceptibility to interstitial edema and ischemic-anoxic necrosis as well as muscle fiber tearing with disruption of contractile proteins. These results demonstrate that the effects of spaceflight on skeletal muscle are multifaceted, and major changes occur both inflight and following return to Earth's gravity.

  17. Review of primary spaceflight-induced and secondary reloading-induced changes in slow antigravity muscles of rats.

    PubMed

    Riley, D A

    1998-01-01

    We have examined the light and electron microscopic properties of hindlimb muscles of rats flown in space for 1-2 weeks on Cosmos biosatellite flights 1887 and 2044 and Space Shuttle missions Spacelab-3, Spacelab Life Sciences-1 and Spacelab Life Sciences-2. Tissues were obtained both inflight and postflight permitting definition of primary microgravity-induced changes and secondary reentry and gravity reloading-induced alterations. Spaceflight causes atrophy and expression of fast fiber characteristics in slow antigravity muscles. The stresses of reentry and reloading reveal that atrophic muscles show increased susceptibility to interstitial edema and ischemic-anoxic necrosis as well as muscle fiber tearing with disruption of contractile proteins. These results demonstrate that the effects of spaceflight on skeletal muscle are multifaceted, and major changes occur both inflight and following return to Earth's gravity.

  18. Dietary fish oil delays hypoxic skeletal muscle fatigue and enhances caffeine-stimulated contractile recovery in the rat in vivo hindlimb.

    PubMed

    Peoples, Gregory E; McLennan, Peter L

    2017-06-01

    Oxygen efficiency influences skeletal muscle contractile function during physiological hypoxia. Dietary fish oil, providing docosahexaenoic acid (DHA), reduces the oxygen cost of muscle contraction. This study used an autologous perfused rat hindlimb model to examine the effects of a fish oil diet on skeletal muscle fatigue during an acute hypoxic challenge. Male Wistar rats were fed a diet rich in saturated fat (SF), long-chain (LC) n-6 polyunsaturated fatty acids (n-6 PUFA), or LC n-3 PUFA DHA from fish oil (FO) (8 weeks). During anaesthetised and ventilated conditions (normoxia 21% O 2 (SaO 2 -98%) and hypoxia 14% O 2 (SaO 2 -89%)) the hindlimb was perfused at a constant flow and the gastrocnemius-plantaris-soleus muscle bundle was stimulated via sciatic nerve (2 Hz, 6-12V, 0.05 ms) to established fatigue. Caffeine (2.5, 5, 10 mM) was supplied to the contracting muscle bundle via the arterial cannula to assess force recovery. Hypoxia, independent of diet, attenuated maximal twitch tension (normoxia: 82 ± 8; hypoxia: 41 ± 2 g·g -1 tissue w.w.). However, rats fed FO sustained higher peak twitch tension compared with the SF and n-6 PUFA groups (P < 0.05), and the time to decline to 50% of maximum twitch tension was extended (SF: 546 ± 58; n-6 PUFA: 522 ± 58; FO: 792 ± 96 s; P < 0.05). In addition, caffeine-stimulated skeletal muscle contractile recovery was enhanced in the FO-fed animals (SF: 41 ± 3; n-6 PUFA: 40 ± 4; FO: 52 ± 7% recovery; P < 0.05). These results support a physiological role of DHA in skeletal muscle membranes when exposed to low-oxygen stress that is consistent with the attenuation of muscle fatigue under physiologically normoxic conditions.

  19. Morphological and biochemical changes in soleus and extensor digitorum longus muscles of rats orbited in Spacelab 3

    NASA Technical Reports Server (NTRS)

    Riley, D. A.; Slocum, T.; Bain, J. L. W.; Sedlak, F. R.; Elis, S.; Satyanarayana, T.

    1985-01-01

    Muscle atrophy in rats exposed to hypogravity for seven days aboard Spacelab 3 is examined. Hindlimb muscles were harvested 12-16 days postflight, and prepared for enzyme studies and electron microscopy. Simple cell shrinkage was found, with a mean fiber area decrease of 35.8 percent for soleus and 24.9 percent for extensor digitorum longus (EDL) flight muscle fibers, as compared with control muscle fibers. EDL and soleus muscles showed increases in alkaline myofibrillar ATPase, alpha glycerophosphate dehydrogenase, and glycogen, and a decrease in NADH dehydrogenase staining. The 26 percent increase in calcium activated protease suggests that the focal degradation of myofibrils is the key process of myofibril breakdown. The presence in the flight soleus muscles of one percent necrotic fibers is unexplained. The observed shift towards histochemical fast-muscle type properties is consistent with previous findings.

  20. Mechanisms of accelerated proteolysis in rat soleus muscle atrophy induced by unweighting or denervation

    NASA Technical Reports Server (NTRS)

    Tischler, Marc E.; Kirby, Christopher; Rosenberg, Sara; Tome, Margaret; Chase, Peter

    1991-01-01

    A hypothesis proposed by Tischler and coworkers (Henriksen et al., 1986; Tischler et al., 1990) concerning the mechanisms of atrophy induced by unweighting or denervation was tested using rat soleus muscle from animals subjected to hindlimb suspension and denervation of muscles. The procedure included (1) measuring protein degradation in isolated muscles and testing the effects of lysosome inhibitors, (2) analyzing the lysosome permeability and autophagocytosis, (3) testing the effects of altering calcium-dependent proteolysis, and (4) evaluating in vivo the effects of various agents to determine the physiological significance of the hypothesis. The results obtained suggest that there are major differences between the mechanisms of atrophies caused by unweighting and denervation, though slower protein synthesis is an important feature common for both.

  1. The impact of magnesium on isometric twitch parameters and resting membrane potential of the skeletal muscle in diabetic rats.

    PubMed

    Pelit, Aykut; Emre, Mustafa; Dağli, Kenan; Tuli, Abdullah

    2013-04-01

    To present the relationship between oral magnesium supplementation, blood glucose, and changes in isometric twitch parameters, resting membrane potential (RMP), in the gastrocnemius muscle in diabetic rats. Sixty rats were used in this study. The rats were divided into four groups: control (drinking tap water, Group I, n = 15), control with treated with magnesium sulfate (10 g/L) (Group II, n = 15), diabetic (Group III, n = 15), and diabetic with treated with magnesium sulfate (10 g/L) (Group IV, n = 15). In Group II and IV, the level of plasma magnesium was increased comparing to those of the control group (p < 0.05). Isometric twitch tensions were decreased significantly in the Group III, but Group IV isometric twitch tensions were increased significantly. Group IV RMP values were close to the Group I. Hyperglycemia decreases gastrocnemius muscle isometric twitch tension and increases RMP in diabetic rats. Magnesium treatment can prevent these diabetic complications.

  2. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle

    PubMed Central

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cássia; Salvini, Tania de Fátima; Durigan, Joao Luiz Quagliotti

    2016-01-01

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48 h post-injury decreased inflammatory processes (mRNA levels of TNF-α, NF-κB, TGF-β and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling. PMID:26725948

  3. Effect of nitrofen in the final stages of development of the diaphragm muscle in rats.

    PubMed

    Gonçalves, Frances Lilian Lanhellas; Oliveira, Fábio Santana de; Schmidt, Augusto Frederico; Pereira, Luís Antônio Violin Dias; Gallindo, Rodrigo Melo; Figueira, Rebeca Lopes; Sbragia, Lourenço

    2013-01-01

    To evaluate the expression of myosin in muscle fibers of the diaphragm in experimental congenital diaphragmatic hernia (CDH). Fetuses of pregnant rats were divided into four groups: External Control (EC), composed of non-manipulated rats; Nitrofen, composed of pregnant rats that received 100 mg of nitrofen (2,4-dichloro-4'nitrodiphenyl ether) diluted in olive oil on gestational day (GD) 9.5, whose fetuses developed CDH (N+) or not (N-), and Olive Oil Placebo (OO), composed of pregnant rats that received the oil on the same GD. The fetuses were collected on GD 18.5, 19.5, 20.5 and 21.5 (term = 22 days). We obtained body weight (BW) and photographed the diaphragm area (DA), hernia area (HA) and subsequent calculated the HA/DA ratio in N+ group. Samples of Diaphragm muscle were processed for histological staining with H/E and immunohistochemistry (IHQ) for myosin. The fetuses of N- and N+ groups had decreased BW and DA compared to EC and OO groups (p < 0.001). HA was decreased on GD 18.5 compared to 21.5 (p < 0.001) and the HA/DA ratio showed no difference. IHQ showed decreased expression of myosin in nitrofen groups. CDH induced by nitrofen model contributes to the understanding of muscularization in the formation of the diaphragm where the myosin expression is decreased.

  4. Effect of Tongue Exercise on Protrusive Force and Muscle Fiber Area in Aging Rats

    ERIC Educational Resources Information Center

    Connor, Nadine P.; Russell, John A.; Wang, Hao; Jackson, Michelle A.; Mann, Laura; Kluender, Keith

    2009-01-01

    Purpose: Age-related changes in tongue function may contribute to dysphagia in elderly people. The authors' purpose was to investigate whether aged rats that have undergone tongue exercise would manifest increased protrusive tongue forces and increased genioglossus (GG) muscle fiber cross-sectional areas. Method: Forty-eight young adult,…

  5. The muscle contraction mode determines lymphangiogenesis differentially in rat skeletal and cardiac muscles by modifying local lymphatic extracellular matrix microenvironments.

    PubMed

    Greiwe, L; Vinck, M; Suhr, F

    2016-05-01

    Lymphatic vessels are of special importance for tissue homeostasis, and increases of their density may foster tissue regeneration. Exercise could be a relevant tool to increase lymphatic vessel density (LVD); however, a significant lack of knowledge remains to understand lymphangiogenesis in skeletal muscles upon training. Interestingly, training-induced lymphangiogenesis has never been studied in the heart. We studied lymphangiogenesis and LVD upon chronic concentric and chronic eccentric muscle contractions in both rat skeletal (Mm. Edl and Sol) and cardiac muscles. We found that LVD decreased in both skeletal muscles specifically upon eccentric training, while this contraction increased LVD in cardiac tissue. These observations were supported by opposing local remodelling of lymphatic vessel-specific extracellular matrix components in skeletal and cardiac muscles and protein levels of lymphatic markers (Lyve-1, Pdpn, Vegf-C/D). Confocal microscopy further revealed transformations of lymphatic vessels into vessels expressing both blood (Cav-1) and lymphatic (Vegfr-3) markers upon eccentric training specifically in skeletal muscles. In addition and phenotype supportive, we found increased inflammation (NF-κB/p65, Il-1β, Ifn-γ, Tnf-α and MPO(+) cells) in eccentrically stressed skeletal, but decreased levels in cardiac muscles. Our data provide novel mechanistic insights into lymphangiogenic processes in skeletal and cardiac muscles upon chronic muscle contraction modes and demonstrate that both tissues adapt in opposing manners specifically to eccentric training. These data are highly relevant for clinical applications, because eccentric training serves as a sufficient strategy to increase LVD and to decrease inflammation in cardiac tissue, for example in order to reduce tissue abortion in transplantation settings. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  6. Applications of In Vivo Functional Testing of the Rat Tibialis Anterior for Evaluating Tissue Engineered Skeletal Muscle Repair

    PubMed Central

    Mintz, Ellen L.; Passipieri, Juliana A.; Lovell, Daniel Y.; Christ, George J.

    2016-01-01

    Despite the regenerative capacity of skeletal muscle, permanent functional and/or cosmetic deficits (e.g., volumetric muscle loss (VML) resulting from traumatic injury, disease and various congenital, genetic and acquired conditions are quite common. Tissue engineering and regenerative medicine technologies have enormous potential to provide a therapeutic solution. However, utilization of biologically relevant animal models in combination with longitudinal assessments of pertinent functional measures are critical to the development of improved regenerative therapeutics for treatment of VML-like injuries. In that regard, a commercial muscle lever system can be used to measure length, tension, force and velocity parameters in skeletal muscle. We used this system, in conjunction with a high power, bi-phase stimulator, to measure in vivo force production in response to activation of the anterior crural compartment of the rat hindlimb. We have previously used this equipment to assess the functional impact of VML injury on the tibialis anterior (TA) muscle, as well as the extent of functional recovery following treatment of the injured TA muscle with our tissue engineered muscle repair (TEMR) technology. For such studies, the left foot of an anaesthetized rat is securely anchored to a footplate linked to a servomotor, and the common peroneal nerve is stimulated by two percutaneous needle electrodes to elicit muscle contraction and dorsiflexion of the foot. The peroneal nerve stimulation-induced muscle contraction is measured over a range of stimulation frequencies (1-200 Hz), to ensure an eventual plateau in force production that allows for an accurate determination of peak tetanic force. In addition to evaluation of the extent of VML injury as well as the degree of functional recovery following treatment, this methodology can be easily applied to study diverse aspects of muscle physiology and pathophysiology. Such an approach should assist with the more rational

  7. Applications of In Vivo Functional Testing of the Rat Tibialis Anterior for Evaluating Tissue Engineered Skeletal Muscle Repair.

    PubMed

    Mintz, Ellen L; Passipieri, Juliana A; Lovell, Daniel Y; Christ, George J

    2016-10-07

    Despite the regenerative capacity of skeletal muscle, permanent functional and/or cosmetic deficits (e.g., volumetric muscle loss (VML) resulting from traumatic injury, disease and various congenital, genetic and acquired conditions are quite common. Tissue engineering and regenerative medicine technologies have enormous potential to provide a therapeutic solution. However, utilization of biologically relevant animal models in combination with longitudinal assessments of pertinent functional measures are critical to the development of improved regenerative therapeutics for treatment of VML-like injuries. In that regard, a commercial muscle lever system can be used to measure length, tension, force and velocity parameters in skeletal muscle. We used this system, in conjunction with a high power, bi-phase stimulator, to measure in vivo force production in response to activation of the anterior crural compartment of the rat hindlimb. We have previously used this equipment to assess the functional impact of VML injury on the tibialis anterior (TA) muscle, as well as the extent of functional recovery following treatment of the injured TA muscle with our tissue engineered muscle repair (TEMR) technology. For such studies, the left foot of an anaesthetized rat is securely anchored to a footplate linked to a servomotor, and the common peroneal nerve is stimulated by two percutaneous needle electrodes to elicit muscle contraction and dorsiflexion of the foot. The peroneal nerve stimulation-induced muscle contraction is measured over a range of stimulation frequencies (1-200 Hz), to ensure an eventual plateau in force production that allows for an accurate determination of peak tetanic force. In addition to evaluation of the extent of VML injury as well as the degree of functional recovery following treatment, this methodology can be easily applied to study diverse aspects of muscle physiology and pathophysiology. Such an approach should assist with the more rational

  8. Comparison of the efficiency of rat papillary muscles during afterloaded isotonic contractions and contractions with sinusoidal length changes.

    PubMed

    Mellors, L J; Gibbs, C L; Barclay, C J

    2001-05-01

    The results of previous studies suggest that the maximum mechanical efficiency of rat papillary muscles is lower during a contraction protocol involving sinusoidal length changes than during one involving afterloaded isotonic contractions. The aim of this study was to compare directly the efficiency of isolated rat papillary muscle preparations in isotonic and sinusoidal contraction protocols. Experiments were performed in vitro (27 degrees C) using left ventricular papillary muscles from adult rats. Each preparation performed three contraction protocols: (i) low-frequency afterloaded isotonic contractions (10 twitches at 0.2 Hz), (ii) sinusoidal length change contractions with phasic stimulation (40 twitches at 2 Hz) and (iii) high-frequency afterloaded isotonic contractions (40 twitches at 2 Hz). The first two protocols resembled those used in previous studies and the third combined the characteristics of the first two. The parameters for each protocol were adjusted to those that gave maximum efficiency. For the afterloaded isotonic protocols, the afterload was set to 0.3 of the maximum developed force. The sinusoidal length change protocol incorporated a cycle amplitude of +/-5% resting length and a stimulus phase of -10 degrees. Measurements of force output, muscle length change and muscle temperature change were used to calculate the work and heat produced during and after each protocol. Net mechanical efficiency was defined as the proportion of the energy (enthalpy) liberated by the muscle that appeared as work. The efficiency in the low-frequency, isotonic contraction protocol was 21.1+/-1.4% (mean +/- s.e.m., N=6) and that in the sinusoidal protocol was 13.2+/-0.7%, consistent with previous results. This difference was not due to the higher frequency or greater number of twitches because efficiency in the high-frequency, isotonic protocol was 21.5+/-1.0%. Although these results apparently confirm that efficiency is protocol-dependent, additional experiments

  9. Thoracic 9 Spinal Transection-Induced Model of Muscle Spasticity in the Rat: A Systematic Electrophysiological and Histopathological Characterization

    PubMed Central

    Corleto, Jose A.; Bravo-Hernández, Mariana; Kamizato, Kota; Kakinohana, Osamu; Santucci, Camila; Navarro, Michael R.; Platoshyn, Oleksandr; Cizkova, Dasa; Lukacova, Nadezda; Taylor, Julian; Marsala, Martin

    2015-01-01

    The development of spinal hyper-reflexia as part of the spasticity syndrome represents one of the major complications associated with chronic spinal traumatic injury (SCI). The primary mechanism leading to progressive appearance of muscle spasticity is multimodal and may include loss of descending inhibitory tone, alteration of segmental interneuron-mediated inhibition and/or increased reflex activity to sensory input. Here, we characterized a chronic thoracic (Th 9) complete transection model of muscle spasticity in Sprague-Dawley (SD) rats. Isoflurane-anesthetized rats received a Th9 laminectomy and the spinal cord was transected using a scalpel blade. After the transection the presence of muscle spasticity quantified as stretch and cutaneous hyper-reflexia was identified and quantified as time-dependent changes in: i) ankle-rotation-evoked peripheral muscle resistance (PMR) and corresponding electromyography (EMG) activity, ii) Hoffmann reflex, and iii) EMG responses in gastrocnemius muscle after paw tactile stimulation for up to 8 months after injury. To validate the clinical relevance of this model, the treatment potency after systemic treatment with the clinically established anti-spastic agents baclofen (GABAB receptor agonist), tizanidine (α2-adrenergic agonist) and NGX424 (AMPA receptor antagonist) was also tested. During the first 3 months post spinal transection, a progressive increase in ankle rotation-evoked muscle resistance, Hoffmann reflex amplitude and increased EMG responses to peripherally applied tactile stimuli were consistently measured. These changes, indicative of the spasticity syndrome, then remained relatively stable for up to 8 months post injury. Systemic treatment with baclofen, tizanidine and NGX424 led to a significant but transient suppression of spinal hyper-reflexia. These data demonstrate that a chronic Th9 spinal transection model in adult SD rat represents a reliable experimental platform to be used in studying the

  10. Daily muscle stretching enhances blood flow, endothelial function, capillarity, vascular volume and connectivity in aged skeletal muscle.

    PubMed

    Hotta, Kazuki; Behnke, Bradley J; Arjmandi, Bahram; Ghosh, Payal; Chen, Bei; Brooks, Rachael; Maraj, Joshua J; Elam, Marcus L; Maher, Patrick; Kurien, Daniel; Churchill, Alexandra; Sepulveda, Jaime L; Kabolowsky, Max B; Christou, Demetra D; Muller-Delp, Judy M

    2018-05-15

    In aged rats, daily muscle stretching increases blood flow to skeletal muscle during exercise. Daily muscle stretching enhanced endothelium-dependent vasodilatation of skeletal muscle resistance arterioles of aged rats. Angiogenic markers and capillarity increased in response to daily stretching in muscles of aged rats. Muscle stretching performed with a splint could provide a feasible means of improving muscle blood flow and function in elderly patients who cannot perform regular aerobic exercise. Mechanical stretch stimuli alter the morphology and function of cultured endothelial cells; however, little is known about the effects of daily muscle stretching on adaptations of endothelial function and muscle blood flow. The present study aimed to determine the effects of daily muscle stretching on endothelium-dependent vasodilatation and muscle blood flow in aged rats. The lower hindlimb muscles of aged Fischer rats were passively stretched by placing an ankle dorsiflexion splint for 30 min day -1 , 5 days week -1 , for 4 weeks. Blood flow to the stretched limb and the non-stretched contralateral limb was determined at rest and during treadmill exercise. Endothelium-dependent/independent vasodilatation was evaluated in soleus muscle arterioles. Levels of hypoxia-induced factor-1α, vascular endothelial growth factor A and neuronal nitric oxide synthase were determined in soleus muscle fibres. Levels of endothelial nitric oxide synthase and superoxide dismutase were determined in soleus muscle arterioles, and microvascular volume and capillarity were evaluated by microcomputed tomography and lectin staining, respectively. During exercise, blood flow to plantar flexor muscles was significantly higher in the stretched limb. Endothelium-dependent vasodilatation was enhanced in arterioles from the soleus muscle from the stretched limb. Microvascular volume, number of capillaries per muscle fibre, and levels of hypoxia-induced factor-1α, vascular endothelial growth

  11. Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells

    PubMed Central

    Bradley, Karri K; Jaggar, Jonathan H; Bonev, Adrian D; Heppner, Thomas J; Flynn, Elaine RM; Nelson, Mark T; Horowitz, Burton

    1999-01-01

    The molecular nature of the strong inward rectifier K+ channel in vascular smooth muscle was explored by using isolated cell RT-PCR, cDNA cloning and expression techniques.RT-PCR of RNA from single smooth muscle cells of rat cerebral (basilar), coronary and mesenteric arteries revealed transcripts for Kir2.1. Transcripts for Kir2.2 and Kir2.3 were not found.Quantitative PCR analysis revealed significant differences in transcript levels of Kir2.1 between the different vascular preparations (n = 3; P < 0.05). A two-fold difference was detected between Kir2.1 mRNA and β-actin mRNA in coronary arteries when compared with relative levels measured in mesenteric and basilar preparations.Kir2.1 was cloned from rat mesenteric vascular smooth muscle cells and expressed in Xenopus oocytes. Currents were strongly inwardly rectifying and selective for K+.The effect of extracellular Ba2+, Ca2+, Mg2+ and Cs2+ ions on cloned Kir2.1 channels expressed in Xenopus oocytes was examined. Ba2+ and Cs+ block were steeply voltage dependent, whereas block by external Ca2+ and Mg2+ exhibited little voltage dependence. The apparent half-block constants and voltage dependences for Ba2+, Cs+, Ca2+ and Mg2+ were very similar for inward rectifier K+ currents from native cells and cloned Kir2.1 channels expressed in oocytes.Molecular studies demonstrate that Kir2.1 is the only member of the Kir2 channel subfamily present in vascular arterial smooth muscle cells. Expression of cloned Kir2.1 in Xenopus oocytes resulted in inward rectifier K+ currents that strongly resemble those that are observed in native vascular arterial smooth muscle cells. We conclude that Kir2.1 encodes for inward rectifier K+ channels in arterial smooth muscle. PMID:10066894

  12. Body weight-dependent troponin T alternative splicing is evolutionarily conserved from insects to mammals and is partially impaired in skeletal muscle of obese rats.

    PubMed

    Schilder, Rudolf J; Kimball, Scot R; Marden, James H; Jefferson, Leonard S

    2011-05-01

    Do animals know at a physiological level how much they weigh, and, if so, do they make homeostatic adjustments in response to changes in body weight? Skeletal muscle is a likely tissue for such plasticity, as weight-bearing muscles receive mechanical feedback regarding body weight and consume ATP in order to generate forces sufficient to counteract gravity. Using rats, we examined how variation in body weight affected alternative splicing of fast skeletal muscle troponin T (Tnnt3), a component of the thin filament that regulates the actin-myosin interaction during contraction and modulates force output. In response to normal growth and experimental body weight increases, alternative splicing of Tnnt3 in rat gastrocnemius muscle was adjusted in a quantitative fashion. The response depended on weight per se, as externally attached loads had the same effect as an equal change in actual body weight. Examining the association between Tnnt3 alternative splicing and ATP consumption rate, we found that the Tnnt3 splice form profile had a significant association with nocturnal energy expenditure, independently of effects of weight. For a subset of the Tnnt3 splice forms, obese Zucker rats failed to make the same adjustments; that is, they did not show the same relationship between body weight and the relative abundance of five Tnnt3 β splice forms (i.e. Tnnt3 β2-β5 and β8), four of which showed significant effects on nocturnal energy expenditure in Sprague-Dawley rats. Heavier obese Zucker rats displayed certain splice form relative abundances (e.g. Tnnt3 β3) characteristic of much lighter, lean animals, resulting in a mismatch between body weight and muscle molecular composition. Consequently, we suggest that body weight-inappropriate skeletal muscle Tnnt3 expression in obesity is a candidate mechanism for muscle weakness and reduced mobility. Weight-dependent quantitative variation in Tnnt3 alternative splicing appears to be an evolutionarily conserved feature of

  13. Gene expression levels of heat shock proteins in the soleus and plantaris muscles of rats after hindlimb suspension or spaceflight.

    PubMed

    Ishihara, Akihiko; Fujino, Hidemi; Nagatomo, Fumiko; Takeda, Isao; Ohira, Yoshinobu

    2008-12-01

    Gene expression levels of heat shock proteins (HSPs) in the slow-twitch soleus and fast-twitch plantaris muscles of rats were determined after hindlimb suspension or spaceflight. Male rats were hindlimb-suspended for 14 d or exposed to microgravity for 9 d. The mRNA expression levels of HSP27, HSP70, and HSP84 in the hindlimb-suspended and microgravity-exposed groups were compared with those in the controls. The mRNA expression levels of the 3 HSPs in the soleus muscle under normal conditions were higher compared with those in the plantaris muscle. The mRNA expression levels of the 3 HSPs in the soleus muscle were inhibited by hindlimb suspension and spaceflight. The mRNA expression levels of the 3 HSPs in the plantaris muscle did not change after hindlimb suspension. It is suggested that the mRNA expression levels of the 3 HSPs are regulated by the mechanical and neural activity levels, and therefore the decreased mRNA expression levels of HSPs in the slow-twitch muscle following hindlimb suspension and spaceflight are related to a reduction in the mechanical and neural activity levels.

  14. Effect of Intramuscular Protons, Lactate, and ATP on Muscle Hyperalgesia in Rats.

    PubMed

    Gregory, Nicholas S; Whitley, Phillip E; Sluka, Kathleen A

    2015-01-01

    Chronic muscle pain is a significant health problem leading to disability[1]. Muscle fatigue can exacerbate muscle pain. Metabolites, including ATP, lactate, and protons, are released during fatiguing exercise and produce pain in humans. These substances directly activate purinergic (P2X) and acid sensing ion channels (ASICs) on muscle nociceptors, and when combined, produce a greater increase in neuron firing than when given alone. Whether the enhanced effect of combining protons, lactate, and ATP is the sum of individual effects (additive) or more than the sum of individual effects (synergistic) is unknown. Using a rat model of muscle nociceptive behavior, we tested each of these compounds individually over a range of physiologic and supra-physiologic concentrations. Further, we combined all three compounds in a series of dilutions and tested their effect on muscle nociceptive behavior. We also tested a non-hydrolyzable form of ATP (α,β-meATP) alone and in combination with lactate and acidic pH. Surprisingly, we found no dose-dependent effect on muscle nociceptive behavior for protons, lactate, or ATP when given alone. We similarly found no effect after application of each two-metabolite combination. Only pH 4 saline and α,β-meATP produced hyperalgesia when given alone. When all 3 substances were combined, however, ATP (2.4μm), lactate (10mM), and acidic pH (pH 6.0) produced an enhanced effect greater than the sum of the effects of the individual components, i.e. synergism. α,β me ATP (3nmol), on the other hand, showed no enhanced effects when combined with lactate (10mM) or acidic pH (pH 6.0), i.e. additive. These data suggest that combining fatigue metabolites in muscle produces a synergistic effect on muscle nociception.

  15. Effect of Intramuscular Protons, Lactate, and ATP on Muscle Hyperalgesia in Rats

    PubMed Central

    Gregory, Nicholas S.; Whitley, Phillip E.; Sluka, Kathleen A.

    2015-01-01

    Chronic muscle pain is a significant health problem leading to disability[1]. Muscle fatigue can exacerbate muscle pain. Metabolites, including ATP, lactate, and protons, are released during fatiguing exercise and produce pain in humans. These substances directly activate purinergic (P2X) and acid sensing ion channels (ASICs) on muscle nociceptors, and when combined, produce a greater increase in neuron firing than when given alone. Whether the enhanced effect of combining protons, lactate, and ATP is the sum of individual effects (additive) or more than the sum of individual effects (synergistic) is unknown. Using a rat model of muscle nociceptive behavior, we tested each of these compounds individually over a range of physiologic and supra-physiologic concentrations. Further, we combined all three compounds in a series of dilutions and tested their effect on muscle nociceptive behavior. We also tested a non-hydrolyzable form of ATP (α,β-meATP) alone and in combination with lactate and acidic pH. Surprisingly, we found no dose-dependent effect on muscle nociceptive behavior for protons, lactate, or ATP when given alone. We similarly found no effect after application of each two-metabolite combination. Only pH 4 saline and α,β-meATP produced hyperalgesia when given alone. When all 3 substances were combined, however, ATP (2.4μm), lactate (10mM), and acidic pH (pH 6.0) produced an enhanced effect greater than the sum of the effects of the individual components, i.e. synergism. α,β me ATP (3nmol), on the other hand, showed no enhanced effects when combined with lactate (10mM) or acidic pH (pH 6.0), i.e. additive. These data suggest that combining fatigue metabolites in muscle produces a synergistic effect on muscle nociception. PMID:26378796

  16. The effects of inorganic phosphate and arsenate on both passive muscle visco-elasticity and maximum Ca2+ activated tension in chemically skinned rat fast and slow twitch muscle fibres.

    PubMed

    Mutungi, Gabriel

    2003-01-01

    The effects of adding either 25 mM inorganic phosphate (Pi) or its structural analogue arsenate (ASi) on both the maximum Ca2+ activated tension (Po) and passive muscle visco-elasticity (P2 tension) were investigated at 10 degrees C, using segments of single, chemically skinned rat muscle fibres. Whilst the results confirmed some previous findings on the effects of Pi on Po, they also showed that the addition of 25 mM ASi led to a large (approximately 50%) but completely reversible depression of Po in both the fast and slow twitch rat muscle fibres. Moreover, the depression of Po by ASi was greater at low than at high pH values. Examined in the presence of Dextran T-500, the passive tension and sarcomere length responses to a ramp stretch were found to be qualitatively and quantitatively similar to those previously reported in intact rat muscle fibres. Thus, the tension response to a ramp stretch, in the presence and absence of either 25 mM Pi or ASi, consisted of a viscous (P1), a visco-elastic (P2) and an elastic (P3) tension. However, the addition of either 25 mM Pi or ASi led to approximately 15-18% increase in the amplitude of the visco-elastic (P2) tension but had little or no effect on the amplitudes of the other two tension components (viscous, P1 and elastic, P3 tensions). Furthermore, neither compound significantly altered the relaxation rate of the passive muscle visco-elasticity (P2 tension). These results show that Po (arising from cycling cross-bridges) and passive muscle visco-elasticity (P2 tension) are affected differently by both Pi and ASi and suggest that they may not share a common structural basis. The possibility that passive muscle visco-elasticity (P2 tension) arises from the gap-(titin) filament (as suggested previously by Mutungi and Ranatunga, 1996b J Physiol 496: 827-837) and that Pi and ASi increase its amplitude by interacting with the PEVK region of the filament are discussed.

  17. Higher insulin sensitivity in EDL muscle of rats fed a low-protein, high-carbohydrate diet inhibits the caspase-3 and ubiquitin-proteasome proteolytic systems but does not increase protein synthesis.

    PubMed

    Dos Santos, Maísa Pavani; Batistela, Emanuele; Pereira, Mayara Peron; Paula-Gomes, Silvia; Zanon, Neusa Maria; Kettelhut, Isis do Carmo; Karatzaferi, Christina; Andrade, Claudia Marlise Balbinotti; de França, Suélem Aparecida; Baviera, Amanda Martins; Kawashita, Nair Honda

    2016-08-01

    Compared with the extensor digitorum longus (EDL) muscle of control rats (C), the EDL muscle of rats fed a low-protein, high-carbohydrate diet (LPHC) showed a 36% reduction in mass. Muscle mass is determined by the balance between protein synthesis and proteolysis; thus, the aim of this work was to evaluate the components involved in these processes. Compared with the muscle from C rats, the EDL muscle from LPHC diet-fed rats showed a reduction (34%) in the in vitro basal protein synthesis and a 22% reduction in the in vitro basal proteolysis suggesting that the reduction in the mass can be associated with a change in the rate of the two processes. Soon after euthanasia, in the EDL muscles of the rats fed the LPHC diet for 15days, the activity of caspase-3 and that of components of the ubiquitin-proteasome system (atrogin-1 content and chymotrypsin-like activity) were decreased. The phosphorylation of p70(S6K) and 4E-BP1, proteins involved in protein synthesis, was also decreased. We observed an increase in the insulin-stimulated protein content of p-Akt. Thus, the higher insulin sensitivity in the EDL muscle of LPHC rats seemed to contribute to the lower proteolysis in LPHC rats. However, even with the higher insulin sensitivity, the reduction in p-E4-BP1 and p70(S6K) indicates a reduction in protein synthesis, showing that factors other than insulin can have a greater effect on the control of protein synthesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effect of saponin treatment on the sarcoplasmic reticulum of rat, cane toad and crustacean (yabby) skeletal muscle.

    PubMed Central

    Launikonis, B S; Stephenson, D G

    1997-01-01

    1. Mechanically skinned fibres from skeletal muscles of the rat, toad and yabby were used to investigate the effect of saponin treatment on sarcoplasmic reticulum (SR) Ca2+ loading properties. The SR was loaded submaximally under control conditions before and after treatment with saponin and SR Ca2+ was released with caffeine. 2. Treatment with 10 micrograms ml-1 saponin greatly reduced the SR Ca2+ loading ability of skinned fibres from the extensor digitorum longus muscle of the rat with a rate constant of 0.24 min-1. Saponin concentrations up to 150 micrograms ml-1 and increased exposure time up to 30 min did not further reduce the SR Ca2+ loading ability of the SR, which indicates that the inhibitory action of 10-150 micrograms ml-1 saponin is not dose dependent. The effect of saponin was also not dependent on the state of polarization of the transverse-tubular system. 3. Treatment with saponin at concentrations up to 100 micrograms ml-1 for 30 min did not affect the Ca2+ loading ability of SR in skinned skeletal muscle fibres from the twitch portion of the toad iliofibularis muscle but SR Ca2+ loading ability decreased markedly with a time constant of 0.22 min-1 in the presence of 150 micrograms ml-1 saponin. 4. The saponin dependent increase in permeability could be reversed in both rat and toad fibres by short treatment with 6 microM Ruthenium Red, a potent SR Ca2+ channel blocker, suggesting that saponin does affect the SR Ca2+ channel properties in mammalian and anuran skeletal muscle. 5. Treatment of skinned fibres of long sarcomere length (> 6 microns) from the claw muscle of the yabby (a freshwater decapod crustacean) with 10 micrograms ml-1 saponin for 30 min abolished the ability of the SR to load Ca2+, indicating that saponin affects differently the SR from skeletal muscles of mammals, anurans and crustaceans. 6. It is concluded that at relatively low concentrations, saponin causes inhibition of the skeletal SR Ca2+ loading ability in a species

  19. Effect of saponin treatment on the sarcoplasmic reticulum of rat, cane toad and crustacean (yabby) skeletal muscle.

    PubMed

    Launikonis, B S; Stephenson, D G

    1997-10-15

    1. Mechanically skinned fibres from skeletal muscles of the rat, toad and yabby were used to investigate the effect of saponin treatment on sarcoplasmic reticulum (SR) Ca2+ loading properties. The SR was loaded submaximally under control conditions before and after treatment with saponin and SR Ca2+ was released with caffeine. 2. Treatment with 10 micrograms ml-1 saponin greatly reduced the SR Ca2+ loading ability of skinned fibres from the extensor digitorum longus muscle of the rat with a rate constant of 0.24 min-1. Saponin concentrations up to 150 micrograms ml-1 and increased exposure time up to 30 min did not further reduce the SR Ca2+ loading ability of the SR, which indicates that the inhibitory action of 10-150 micrograms ml-1 saponin is not dose dependent. The effect of saponin was also not dependent on the state of polarization of the transverse-tubular system. 3. Treatment with saponin at concentrations up to 100 micrograms ml-1 for 30 min did not affect the Ca2+ loading ability of SR in skinned skeletal muscle fibres from the twitch portion of the toad iliofibularis muscle but SR Ca2+ loading ability decreased markedly with a time constant of 0.22 min-1 in the presence of 150 micrograms ml-1 saponin. 4. The saponin dependent increase in permeability could be reversed in both rat and toad fibres by short treatment with 6 microM Ruthenium Red, a potent SR Ca2+ channel blocker, suggesting that saponin does affect the SR Ca2+ channel properties in mammalian and anuran skeletal muscle. 5. Treatment of skinned fibres of long sarcomere length (> 6 microns) from the claw muscle of the yabby (a freshwater decapod crustacean) with 10 micrograms ml-1 saponin for 30 min abolished the ability of the SR to load Ca2+, indicating that saponin affects differently the SR from skeletal muscles of mammals, anurans and crustaceans. 6. It is concluded that at relatively low concentrations, saponin causes inhibition of the skeletal SR Ca2+ loading ability in a species

  20. Short-term muscle atrophy caused by botulinum toxin-A local injection impairs fracture healing in the rat femur.

    PubMed

    Hao, Yongqiang; Ma, Yongcheng; Wang, Xuepeng; Jin, Fangchun; Ge, Shengfang

    2012-04-01

    Damaged bone is sensitive to mechanical stimulation throughout the remodeling phase of bone healing. Muscle damage and muscular atrophy associated with open fractures and subsequent fixation are not beneficial to maintaining optimum conditions for mechanical stability. The aim of this study was to investigate whether local muscle atrophy and dysfunction affect fracture healing in a rat femur fracture model. We combined the rat model of a short period atrophy of the quadriceps with femur fracture. Forty-four-month-old male Wistar rats were adopted for this study. Two units of botulinum toxin-A (BXTA) were administered locally into the right side of the quadriceps of each rat, while the same dose of saline was injected into the contralateral quadriceps. After BXTA had been fully absorbed by the quadriceps, osteotomy was performed in both femurs with intramedullary fixation. Gross observation and weighing of muscle tissue, X-ray analysis, callus histology, and bone biomechanical testing were performed at different time points up to 8 weeks post-surgery. Local injection of BXTA led to a significant decrease in the volume and weight of the quadriceps compared to the control side. At the eighth week, the left side femurs of the saline-injected quadriceps almost reached bony union, and fibrous calluses were completely calcified into woven bone. However, a gap was still visible in the BXTA-treated side on X-ray images. As showed by bone histology, there were no mature osseous calluses or woven bone on the BXTA-treated side, but a resorption pattern was evident. Biomechanical testing indicated that the femurs of the BXTA-treated side exhibited inferior mechanical properties compared with the control side. The inferior outcome following BXTA injection, compared with saline injection, in terms of callus resistance may be the consequence of unexpected load and mechanical unsteadiness caused by muscle atrophy and dysfunction. Copyright © 2011 Orthopaedic Research Society.

  1. Gastric pentadecapeptide BPC 157 as an effective therapy for muscle crush injury in the rat.

    PubMed

    Novinscak, Tomislav; Brcic, Luka; Staresinic, Mario; Jukic, Ivana; Radic, Bozo; Pevec, Danira; Mise, Sandro; Tomasovic, Sanja; Brcic, Iva; Banic, Tihomir; Jakir, Ana; Buljat, Gojko; Anic, Tomislav; Zoricic, Ivan; Romic, Zeljko; Seiwerth, Sven; Sikiric, Predrag

    2008-01-01

    Stable gastric pentadecapeptide BPC 157 accelerates the healing of a transected Achilles tendon and a transected quadriceps muscle. It may also be of clinical relevance as a systemic and local peptide treatment for crush injury of a major muscle, such as gastrocnemius muscle complex. BPC 157 is effective without a carrier, and it is presently undergoing trials for inflammatory bowel disease, and no toxicity has so far been reported. In crushed rats (force delivered 0.727 Ns/cm2), BPC 157 was applied either intraperitoneally or locally, as a thin cream layer, immediately after injury (sacrifice at 2 h), and once a day for 14 days. BPC 157 improved muscle healing, macroscopically (less hematoma and edema, no post-injury leg contracture), microscopically, functionally, and also based on enzyme activity (creatine kinase, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase). BPC 157, at all investigated intervals, given locally or intraperitoneally, accelerated post-injury muscle healing and also helped to restore the full function.

  2. Effect of myasthenic patient sera on the number and distribution of acetylcholine receptors in muscle and nerve-muscle cultures from rat. Correlations with clinical state.

    PubMed

    Eymard, B; de la Porte, S; Pannier, C; Berrih-Aknin, S; Morel, E; Fardeau, M; Bach, J F; Koenig, J

    1988-08-01

    We studied the functional activities (FA) of sera obtained from 83 myasthenic patients on rat muscle cultures. Using the same sets of cultures, two parameters were evaluated after exposure to sera: residual fraction (RF) of acetylcholine receptors (AChR) coupled to 125I-labelled alpha-bungarotoxin (alpha Bgt) (81 sera) and the number of rhodamine labelled clusters (56 sera). Two types of culture were assayed: muscle alone and nerve-muscle cocultures (12 cases). In all combinations (fluorescence, radiolabelling, muscle alone and nerve-muscle cocultures), we found a significant correlation between FA and antibody (Ab) titre, and no correlation between FA and clinical severity: only sera with a high or intermediate Ab titre were effective, whatever the clinical severity of disease. With active sera, AChR loss was about 50% whereas the disappearance of AChR clusters was quite complete, which suggests AChR redistribution induced by MG sera.

  3. Ganglioside GM3 content in skeletal muscles is increased in type 2 but decreased in type 1 diabetes rat models: Implications of glycosphingolipid metabolism in pathophysiology of diabetes.

    PubMed

    Bozic, Josko; Markotic, Anita; Cikes-Culic, Vedrana; Novak, Anela; Borovac, Josip A; Vucemilovic, Hrvoje; Trgo, Gorana; Ticinovic Kurir, Tina

    2018-02-01

    Ganglioside GM3 is found in the plasma membrane, where its accumulation attenuates insulin receptor signaling. Considering the role of skeletal muscles in insulin-stimulated glucose uptake, the aim of the present study was to determine the expression of GM3 and its precursors in skeletal muscles of rat models of type 1 and type 2 diabetes mellitus (T1DM and T2DM, respectively). Diabetes was induced in male Sprague-Dawley rats by streptozotocin injection (55 mg/kg, i.p., for T1DM induction; 35 mg/kg, i.p., for T2DM induction), followed by feeding of rats with either a normal pellet diet (T1DM) or a high-fat diet (T2DM). Rats were killed 2 weeks after diabetes induction and samples of skeletal muscle were collected. Frozen quadriceps muscle sections were stained with a primary antibody against GM3 (Neu5Ac) and visualized using a secondary antibody coupled with Texas Red. The muscle content of ganglioside GM3 and its precursors was analyzed by high-performance thin-layer chromatography (HPTLC) followed by GM3 immunostaining. Muscle GM3 content was significantly higher in T2DM compared with control rats (P < 0.001). Furthermore, levels of the GM3 precursors ceramide, glucosylceramide, and lactosylceramide were significantly higher in T2DM compared with control rats (P < 0.05), whereas ceramide content was significantly lower in T1DM rats (P < 0.05). The intensity of the GM3 band on HPTLC was significantly higher in T2DM rats (P < 0.001) and significantly lower in T1DM rats (P < 0.05) compared with control. The expression patterns of GM3 ganglioside and its precursors in diabetic rats suggest that the role of glycosphingolipid metabolism may differ between T2DM and T1DM. © 2017 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and John Wiley & Sons Australia, Ltd.

  4. Tail Nerve Electrical Stimulation and Electro-Acupuncture Can Protect Spinal Motor Neurons and Alleviate Muscle Atrophy after Spinal Cord Transection in Rats

    PubMed Central

    Zhang, Yu-Ting; Jin, Hui; Wang, Jun-Hua; Wen, Lan-Yu; Yang, Yang; Ruan, Jing-Wen; Zhang, Shu-Xin; Ling, Eng-Ang

    2017-01-01

    Spinal cord injury (SCI) often results in death of spinal neurons and atrophy of muscles which they govern. Thus, following SCI, reorganizing the lumbar spinal sensorimotor pathways is crucial to alleviate muscle atrophy. Tail nerve electrical stimulation (TANES) has been shown to activate the central pattern generator (CPG) and improve the locomotion recovery of spinal contused rats. Electroacupuncture (EA) is a traditional Chinese medical practice which has been proven to have a neural protective effect. Here, we examined the effects of TANES and EA on lumbar motor neurons and hindlimb muscle in spinal transected rats, respectively. From the third day postsurgery, rats in the TANES group were treated 5 times a week and those in the EA group were treated once every other day. Four weeks later, both TANES and EA showed a significant impact in promoting survival of lumbar motor neurons and expression of choline acetyltransferase (ChAT) and ameliorating atrophy of hindlimb muscle after SCI. Meanwhile, the expression of neurotrophin-3 (NT-3) in the same spinal cord segment was significantly increased. These findings suggest that TANES and EA can augment the expression of NT-3 in the lumbar spinal cord that appears to protect the motor neurons as well as alleviate muscle atrophy. PMID:28744378

  5. Microvascular oxygen partial pressure during hyperbaric oxygen in diabetic rat skeletal muscle.

    PubMed

    Yamakoshi, Kohei; Yagishita, Kazuyoshi; Tsuchimochi, Hirotsugu; Inagaki, Tadakatsu; Shirai, Mikiyasu; Poole, David C; Kano, Yutaka

    2015-12-15

    Hyperbaric oxygen (HBO) is a major therapeutic treatment for ischemic ulcerations that perforate skin and underlying muscle in diabetic patients. These lesions do not heal effectively, in part, because of the hypoxic microvascular O2 partial pressures (PmvO2 ) resulting from diabetes-induced cardiovascular dysfunction, which alters the dynamic balance between O2 delivery (Q̇o2) and utilization (V̇o2) rates. We tested the hypothesis that HBO in diabetic muscle would exacerbate the hyperoxic PmvO2 dynamics due, in part, to a reduction or slowing of the cardiovascular, sympathetic nervous, and respiratory system responses to acute HBO exposure. Adult male Wistar rats were divided randomly into diabetic (DIA: streptozotocin ip) and healthy (control) groups. A small animal hyperbaric chamber was pressurized with oxygen (100% O2) to 3.0 atmospheres absolute (ATA) at 0.2 ATA/min. Phosphorescence quenching techniques were used to measure PmvO2 in tibialis anterior muscle of anesthetized rats during HBO. Lumbar sympathetic nerve activity (LSNA), heart rate (HR), and respiratory rate (RR) were measured electrophysiologically. During the normobaric hyperoxia and HBO, DIA tibialis anterior PmvO2 increased faster (mean response time, CONT 78 ± 8, DIA 55 ± 8 s, P < 0.05) than CONT. Subsequently, PmvO2 remained elevated at similar levels in CONT and DIA muscles until normobaric normoxic recovery where the DIA PmvO2 retained its hyperoxic level longer than CONT. Sympathetic nervous system and cardiac and respiratory responses to HBO were slower in DIA vs. CONT. Specifically the mean response times for RR (CONT: 6 ± 1 s, DIA: 29 ± 4 s, P < 0.05), HR (CONT: 16 ± 1 s, DIA: 45 ± 5 s, P < 0.05), and LSNA (CONT: 140 ± 16 s, DIA: 247 ± 34 s, P < 0.05) were greater following HBO onset in DIA than CONT. HBO treatment increases tibialis anterior muscle PmvO2 more rapidly and for a longer duration in DIA than CONT, but not to a greater level. Whereas respiratory, cardiovascular

  6. Growth of arterioles in chronically stimulated adult rat skeletal muscle.

    PubMed

    Hansen-Smith, F; Egginton, S; Hudlicka, O

    1998-01-01

    The purpose of this study was to test the hypothesis that capillary growth induced by chronic electrical stimulation of skeletal muscle is accompanied by the growth of small arterioles. Lower limb flexor muscles of Sprague-Dawley rats were stimulated by electrodes implanted in the vicinity of the peroneal nerve at 10 Hz for 8 h/d for 2 and 7 days. Cryostat sections from the proximal, middle, and distal regions of the extensor digitorum longus muscle (EDL) were fluorescently immunolabeled with alpha-smooth muscle actin (alpha SMA) and myosin heavy chain (MHC) to identify mature (alpha SMA and MHC-positive) and immature (alpha SMA-positive, MHC-negative) arterioles. The fluorescent derivative of the lectin Griffonia simplicifolia I (GSI) was used to identify all microvessels, including arterioles, capillaries, and venules. The number of vessels positive for GSI or alpha SMA surrounding muscle fibers was similar in all three muscle regions (proximal, middle, distal). The mean values +/- SEM for GSI-positive vessels from all regions were similar in control (4.3 +/- 0.07) and 2-day stimulated (4.7 +/- 0.08) but higher in 7-day stimulated muscles (6.7 +/- 0.1, p < 0.05), thus confirming the previous findings on capillary growth. A similar increase was found in the number of alpha SMA positive vessels < or = 10 microns outer diameter (1.3 +/- 0.09 versus 0.4 +/- 0.03 around muscle fibers in controls). The density of terminal arterioles (< or = 10 microns) was slightly but not significantly higher after 2 days of stimulation (19.5 +/- 4 versus 15.6 +/- 2 profiles/mm2 in control muscles) and significantly higher after 7 days (33 +/- 7). While a similar increase was observed in the density of preterminal arterioles > 10 microns (17 +/- 3 control, 22 +/- 3 at 2 days and 40 +/- 5 at 7 days), the density of MHC-positive vessels muscles stimulated for 7 days was unchanged. Seven-day stimulated muscle also had a fivefold higher density of microvessel profiles < or = 10 microns

  7. Effect of aspirin on the contractility of aortic smooth muscle and the course of blood pressure development in male spontaneously hypertensive rats.

    PubMed

    Rahmani, M A; David, V; Huang, M; DeGray, G

    1998-01-01

    The effects of acetylsalicylic acid (ASA) on aortic smooth muscle contractility were studied in aortic rings of male SHR and WKY rats. The rats were administered two intraperitoneal injections of 10 mg/kg of ASA per week for ten weeks. Blood pressure of each rat was monitored twice weekly prior to the i.p. injections. Twenty four hours after the last injection the aortic smooth muscles were evaluated for generation of active tension in response to KCl, Phenylephrine (PE), Clonidine and Norepinephrine (NE). In another set of experiments calcium conductance was evaluated in the presence or absence of endothelium both in ASA treated and non treated animals. We report that aortic rings from ASA-treated SHR animals were more responsive to contractile agents than rings from non-treated SHR male rats. Also, the Ca2+ conductance in vitro was enhanced appreciably in SHR aortic rings denuded of their monolayer of endothelium in response to ASA treatment. No decrease in systolic blood pressure was observed in response to ASA treatment in SHR male rats. These results suggest that acetylsalicylic acid not only may modulate aortic smooth muscle contractility through the metabolites of arachidonic acid but may repair to a great extent the hypertension associated plasma membrane permeability defect of vascular myocytes.

  8. Bee Pollen Improves Muscle Protein and Energy Metabolism in Malnourished Old Rats through Interfering with the Mtor Signaling Pathway and Mitochondrial Activity

    PubMed Central

    Salles, Jérôme; Cardinault, Nicolas; Patrac, Véronique; Berry, Alexandre; Giraudet, Christophe; Collin, Marie-Laure; Chanet, Audrey; Tagliaferri, Camille; Denis, Philippe; Pouyet, Corinne; Boirie, Yves; Walrand, Stéphane

    2014-01-01

    Although the management of malnutrition is a priority in older people, this population shows a resistance to refeeding. Fresh bee pollen contains nutritional substances of interest for malnourished people. The aim was to evaluate the effect of fresh bee pollen supplementation on refeeding efficiency in old malnourished rats. Male 22-month-old Wistar rats were undernourished by reducing food intake for 12 weeks. The animals were then renourished for three weeks with the same diet supplemented with 0%, 5% or 10% of fresh monofloral bee pollen. Due to changes in both lean mass and fat mass, body weight decreased during malnutrition and increased after refeeding with no between-group differences (p < 0.0001). Rats refed with the fresh bee pollen-enriched diets showed a significant increase in muscle mass compared to restricted rats (p < 0.05). The malnutrition period reduced the muscle protein synthesis rate and mTOR/p70S6kinase/4eBP1 activation, and only the 10%-pollen diet was able to restore these parameters. Mitochondrial activity was depressed with food restriction and was only improved by refeeding with the fresh bee pollen-containing diets. In conclusion, refeeding diets that contain fresh monofloral bee pollen improve muscle mass and metabolism in old, undernourished rats. PMID:25470375

  9. Cloning and tissue distribution of rat hear fatty acid binding protein mRNA: identical forms in heart and skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claffey, K.P.; Herrera, V.L.; Brecher, P.

    1987-12-01

    A fatty acid binding protein (FABP) as been identified and characterized in rat heart, but the function and regulation of this protein are unclear. In this study the cDNA for rat heart FABP was cloned from a lambda gt11 library. Sequencing of the cDNA showed an open reading frame coding for a protein with 133 amino acids and a calculated size of 14,776 daltons. Several differences were found between the sequence determined from the cDNA and that reported previously by protein sequencing techniques. Northern blot analysis using rat heart FABP cDNA as a probe established the presence of an abundantmore » mRNA in rat heart about 0.85 kilobases in length. This mRNA was detected, but was not abundant, in fetal heart tissue. Tissue distribution studies showed a similar mRNA species in red, but not white, skeletal muscle. In general, the mRNA tissue distribution was similar to that of the protein detected by Western immunoblot analysis, suggesting that heart FABP expression may be regulated at the transcriptional level. S1 nuclease mapping studies confirmed that the mRNA hybridized to rat heart FABP cDNA was identical in heart and red skeletal muscle throughout the entire open reading frame. The structural differences between heart FABP and other members of this multigene family may be related to the functional requirements of oxidative muscle for fatty acids as a fuel source.« less

  10. Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet.

    PubMed

    Batistela, Emanuele; Pereira, Mayara Peron; Siqueira, Juliany Torres; Paula-Gomes, Silvia; Zanon, Neusa Maria; Oliveira, Eduardo Brandt; Navegantes, Luiz Carlos Carvalho; Kettelhut, Isis C; Andrade, Claudia Marlise Balbinotti; Kawashita, Nair Honda; Baviera, Amanda Martins

    2014-06-01

    The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin-proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.

  11. Aerobic training and l-arginine supplementation promotes rat heart and hindleg muscles arteriogenesis after myocardial infarction.

    PubMed

    Ranjbar, Kamal; Rahmani-Nia, Farhad; Shahabpour, Elham

    2016-09-01

    Arteriogenesis is a main defense mechanism to prevent heart and local tissues dysfunction in occlusive artery disease. TGF-β and angiostatin have a pivotal role in arteriogenesis. We tested the hypothesis that aerobic training and l-arginine supplementation promotes cardiac and skeletal muscles arteriogenesis after myocardial infarction (MI) parallel to upregulation of TGF-β and downregulation of angiostatin. For this purpose, 4 weeks after LAD occlusion, 50 male Wistar rats were randomly distributed into five groups: (1) sham surgery without MI (sham, n = 10), (2) control-MI (Con-MI, n = 10), (3) l-arginine-MI (La-MI, n = 10), (4) exercise training-MI (Ex-MI, n = 10), and (5) exercise and l-arginine-MI (Ex + La-MI). Exercise training groups running on a treadmill for 10 weeks with moderate intensity. Rats in the l-arginine-treated groups drank water containing 4 % l-arginine. Arteriolar density with different diameters (11-25, 26-50, 51-75, and 76-150 μm), TGF-β, and angiostatin gene expression were measured in cardiac (area at risk) and skeletal (soleus and gastrocnemius) muscles. Smaller arterioles decreased in cardiac after MI. Aerobic training and l-arginine increased the number of cardiac arterioles with 11-25 and 26-50 μm diameters parallel to TGF-β overexpression. In gastrocnemius muscle, the number of arterioles/mm(2) was only increased in the 11 to 25 μm in response to training with and without l-arginine parallel to angiostatin downregulation. Soleus arteriolar density with different size was not different between experimental groups. Results showed that 10 weeks aerobic exercise training and l-arginine supplementation promotes arteriogenesis of heart and gastrocnemius muscles parallel to overexpression of TGF-β and downregulation of angiostatin in MI rats.

  12. Pterostilbene improves glycaemic control in rats fed an obesogenic diet: involvement of skeletal muscle and liver.

    PubMed

    Gómez-Zorita, S; Fernández-Quintela, A; Aguirre, L; Macarulla, M T; Rimando, A M; Portillo, M P

    2015-06-01

    This study aims to determine whether pterostilbene improves glycaemic control in rats showing insulin resistance induced by an obesogenic diet. Rats were divided into 3 groups: the control group and two groups treated with either 15 mg kg(-1) d(-1) (PT15) or 30 mg kg(-1) d(-1) of pterostilbene (PT30). HOMA-IR was decreased in both pterostilbene-treated groups, but this reduction was greater in the PT15 group (-45% and -22% respectively vs. the control group). The improvement of glycaemic control was not due to a delipidating effect of pterostilbene on skeletal muscle. In contrast, GLUT4 protein expression was increased (+58% and +52% vs. the control group), suggesting an improved glucose uptake. The phosphorylated-Akt/total Akt ratio was significantly enhanced in the PT30 group (+25%), and therefore a more efficient translocation of GLUT4 is likely. Additionally, in this group the amount of cardiotrophin-1 was significantly increased (+65%). These data suggest that the effect of pterostilbene on Akt is mediated by this cytokine. In the liver, glucokinase activity was significantly increased only in the PT15 group (+34%), and no changes were observed in glucose-6-phosphatase activity. The beneficial effect of pterostilbene on glycaemic control was more evident with the lower dose, probably because in the PT15 group both the muscle and the liver were contributing to this effect, but in the PT30 group only the skeletal muscle was responsible. In conclusion, pterostilbene improves glycaemic control in rats showing insulin resistance induced by an obesogenic diet. An increase in hepatic glucokinase activity, as well as in skeletal muscle glucose uptake, seems to be involved in the anti-diabetic effect of this phenolic compound.

  13. Role of Kv4.3 in Vibration-Induced Muscle Pain in the Rat.

    PubMed

    Conner, Lindsay B; Alvarez, Pedro; Bogen, Oliver; Levine, Jon D

    2016-04-01

    We hypothesized that changes in the expression of voltage-gated potassium channel (Kv) 4.3 contribute to the mechanical hyperalgesia induced by vibration injury, in a rodent model for hand-arm vibration syndrome in humans. Here we show that the exposure of the gastrocnemius muscle to vibration injury induces muscle hyperalgesia that is accompanied by a significant downregulation of Kv4.3 in affected sensory nerve fibers in dorsal root ganglia. We additionally show that the intrathecal administration of antisense oligonucleotides for Kv4.3 messenger RNA itself induces muscle hyperalgesia in the rat. Our results suggest that attenuation in the expression of Kv4.3 may contribute to neuropathic pain in people affected by hand-arm vibration syndrome. Our findings establish Kv4.3 as a potential molecular target for the treatment of hand-arm vibration syndrome. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  14. Hemodynamic measurements in rat brain and human muscle using diffuse near-infrared absorption and correlation spectroscopies

    NASA Astrophysics Data System (ADS)

    Yu, Guoqiang; Durduran, Turgut; Furuya, D.; Lech, G.; Zhou, Chao; Chance, Britten; Greenberg, J. H.; Yodh, Arjun G.

    2003-07-01

    Measurement of concentration, oxygenation, and flow characteristics of blood cells can reveal information about tissue metabolism and functional heterogeneity. An improved multifunctional hybrid system has been built on the basis of our previous hybrid instrument that combines two near-infrared diffuse optical techniques to simultaneously monitor the changes of blood flow, total hemoglobin concentration (THC) and blood oxygen saturation (StO2). Diffuse correlation spectroscopy (DCS) monitors blood flow (BF) by measuring the optical phase shifts caused by moving blood cells, while diffuse photon density wave spectroscopy (DPDW) measures tissue absorption and scattering. Higher spatial resolution, higher data acquisition rate and higher dynamic range of the improved system allow us to monitor rapid hemodynamic changes in rat brain and human muscles. We have designed two probes with different source-detector pairs and different separations for the two types of experiments. A unique non-contact probe mounted on the back of a camera, which allows continuous measurements without altering the blood flow, was employed to in vivo monitor the metabolic responses in rat brain during KCl induced cortical spreading depression (CSD). A contact probe was used to measure changes of blood flow and oxygenation in human muscle during and after cuff occlusion or exercise, where the non-contact probe is not appropriate for monitoring the moving target. The experimental results indicate that our multifunctional hybrid system is capable of in vivo and non-invasive monitoring of the hemodynamic changes in different tissues (smaller tissues in rat brain, larger tissues in human muscle) under different conditions (static versus moving). The time series images of flow during CSD obtained by our technique revealed spatial and temporal hemodynamic changes in rat brain. Two to three fold longer recovery times of flow and oxygenation after cuff occlusion or exercise from calf flexors in a

  15. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin‐induced cachexia

    PubMed Central

    Conte, Elena; Camerino, Giulia Maria; Mele, Antonietta; De Bellis, Michela; Pierno, Sabata; Rana, Francesco; Fonzino, Adriano; Caloiero, Roberta; Rizzi, Laura; Bresciani, Elena; Ben Haj Salah, Khoubaib; Fehrentz, Jean‐Alain; Martinez, Jean; Giustino, Arcangela; Mariggiò, Maria Addolorata; Coluccia, Mauro; Tricarico, Domenico; Lograno, Marcello Diego; De Luca, Annamaria; Torsello, Antonio; Conte, Diana

    2017-01-01

    Abstract Background Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose‐limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium‐dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS‐R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. Methods By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast‐twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin‐induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. Results Cisplatin‐treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up‐regulation of atrogin1/Murf‐1 genes and a down‐regulation of Pgc1‐a gene, all indexes of muscle atrophy, and by a two‐fold increase in resting intracellular calcium, [Ca2+]i, compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store‐operated calcium entry were ~50% significantly reduced in cisplatin‐treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo

  16. Effects of Nitric Oxide Synthase Inhibition on Fiber-Type Composition, Mitochondrial Biogenesis, and SIRT1 Expression in Rat Skeletal Muscle

    PubMed Central

    Suwa, Masataka; Nakano, Hiroshi; Radak, Zsolt; Kumagai, Shuzo

    2015-01-01

    It was hypothesized that nitric oxide synthases (NOS) regulated SIRT1 expression and lead to a corresponding changes of contractile and metabolic properties in skeletal muscle. The purpose of the present study was to investigate the influence of long-term inhibition of nitric oxide synthases (NOS) on the fiber-type composition, metabolic regulators such as and silent information regulator of transcription 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and components of mitochondrial biogenesis in the soleus and plantaris muscles of rats. Rats were assigned to two groups: control and NOS inhibitor (Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), ingested for 8 weeks in drinking water)-treated groups. The percentage of Type I fibers in the L-NAME group was significantly lower than that in the control group, and the percentage of Type IIA fibers was concomitantly higher in soleus muscle. In plantaris muscle, muscle fiber composition was not altered by L-NAME treatment. L-NAME treatment decreased the cytochrome C protein expression and activity of mitochondrial oxidative enzymes in the plantaris muscle but not in soleus muscle. NOS inhibition reduced the SIRT1 protein expression level in both the soleus and plantaris muscles, whereas it did not affect the PGC-1α protein expression. L-NAME treatment also reduced the glucose transporter 4 protein expression in both muscles. These results suggest that NOS plays a role in maintaining SIRT1 protein expression, muscle fiber composition and components of mitochondrial biogenesis in skeletal muscle. Key points NOS inhibition by L-NAME treatment decreased the SIRT1 protein expression in skeletal muscle. NOS inhibition induced the Type I to Type IIA fiber type transformation in soleus muscle. NOS inhibition reduced the components of mitochondrial biogenesis and glucose metabolism in skeletal muscle. PMID:26336341

  17. Ionic currents and charge movements in organ-cultured rat skeletal muscle.

    PubMed

    Hollingworth, S; Marshall, M W; Robson, E

    1984-12-01

    The middle of the fibre voltage-clamp technique was used to measure ionic currents and non-linear charge movements in intact, organ-cultured (in vitro denervated) mammalian fast-twitch (rat extensor digitorum longus) muscle fibres. Muscle fibres organ cultured for 4 days can be used as electrophysiological and morphological models for muscles in vivo denervated for the same length of time. Sodium currents in organ-cultured muscle fibres are similar to innervated fibres except that in the temperature range 0-20 degrees C (a) in the steady state, the voltage distribution of inactivation in cultured fibres is shifted negatively some 20 mV; (b) at the same temperature and membrane potential, the time constant of inactivation in cultured fibres is about twice that of innervated fibres. Potassium currents in innervated and cultured fibres at 15 degrees C can be fitted with the Hodgkin-Huxley n variable raised to the second power. Despite the large range we would estimate that the maximum value of the steady-state potassium conductance of cultured fibres is about one-half that of innervated fibres. The estimated maximum amount of charge moved in cultured fibre is about one-third that in innervated fibres. Compared to innervated fibres, culturing doubles the kinetics of the decay phase of charge movement. The possibility of a negative shift of the voltage distribution of charge movements in cultured fibres is discussed.

  18. Hyperbaric oxygen in skeletal muscle of rats submitted to total acute left hindlimb ischemia: A research report.

    PubMed

    da Silva, Luis Gustavo Campos; Dalio, Marcelo Bellini; Joviliano, Edwaldo Edner; Feres, Omar; Piccinato, Carlos Eli

    2015-01-01

    Determine the effect of hyperbaric oxygen treatment in skeletal muscle of rats submitted to total acute left hindlimb ischemia. An experimental study was designed using 48 Wistar rats divided into four groups (n = 12): Control; Ischemia (I)--total hindlimb ischemia for 270 minutes; Hyperbaric oxygen treatment during ischemia (HBO2)--total hindlimb ischemia for 270 minutes and hyperbaric oxygen during the first 90 minutes; Pre-treatment with hyperbaric oxygen (PHBO2)--90 minutes of hyperbaric oxygen treatment before total hindlimb ischemia for 270 minutes. Skeletal muscle injury was evaluated by measuring levels of aspartate aminotransferase (AST), lactate dehydrogenase (LDH), total creatine phosphokinase (CPK); muscular malondialdehyde (MDA), muscular glycogen, and serum ischemia-modified albumin (IMA). AST was significantly higher in I, HBO2 and PHBO2 compared with control (P = .001). There was no difference in LDH. CPK was significantly higher in I, HBO2 and PHBO2, compared with control (p = .014). MDA was significantly higher in PHBO2, compared with other groups (p = .042). Glycogen was significantly decreased in I, HBO2 and PHBO2, compared with control (p < .001). Hyperbaric oxygen treatment in acute total hindlimb ischemia exerted no protective effect on muscle injury, regardless of time of application. When applied prior to installation of total ischemia, hyperbaric oxygen treatment aggravated muscle injury.

  19. A Brain-Machine-Muscle Interface for Restoring Hindlimb Locomotion after Complete Spinal Transection in Rats

    PubMed Central

    Alam, Monzurul; Chen, Xi; Zhang, Zicong; Li, Yan; He, Jufang

    2014-01-01

    A brain-machine interface (BMI) is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking) could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics. PMID:25084446

  20. [Hindlimb antigravity muscles' reaction in male and female rats to the deficit of functional loading].

    PubMed

    Il'ina-Kakueva, E I

    2002-01-01

    Histological and histomorphometric comparison of the antigravity muscles of rats of both sexes was performed following 30-d unloading of their hind limbs by head-down suspension. It was shown that growth rate of control males was higher as compared to control females. This is attributed to the synergic effects of somatotropin and testosterone on metabolism and growth of males and only somatotropin in females. Load deprivation of the hind limbs inhibited body mass gain in all animals; however, this inhibition was twice as great in males. Increase of the soleus and gastrocnemius in the control males in this experiment was slightly ahead of the muscle mass gain in the females. The histomorphometric investigation of the cross-section area of myofibers did not reveal differences between males and females either in the control or suspension. No difference was found in percent of various types of fibers in the control males and females. In the soleus of the suspended rats, a part of slow fibers had transformed into fast ones without any sex-related particularities. The conclusion was made that despite the significant difference in the hormonal profile, the reaction of males and females to insufficient weight loading of the antigravity muscles was alike.