Science.gov

Sample records for rat forelimb reduces

  1. Controlled-cortical impact reduces volitional forelimb strength in rats.

    PubMed

    Pruitt, David; Hays, Seth; Schmid, Ariel; Choua, Connie; Kim, Lily; Trieu, Jenny; Kilgard, Michael P; Rennaker, Robert L

    2014-09-25

    Traumatic brain injury (TBI) is one of the largest health problems in the United States and affects both cognitive and motor function. Although weakness is common in TBI patients, few studies have demonstrated a reduction in strength in models of brain injury. We have developed a behavioral method to measure volitional forelimb strength and quantify forelimb weakness following traumatic brain injury. In this paper, we report the ability of the isometric pull task to measure both acute and chronic impairments in forelimb motor function following a controlled cortical impact (CCI) in rodents. Following CCI, volitional forelimb strength is reduced by 36% and remains significantly reduced after 6 weeks of post-lesion training. We also show that CCI results in impairment of multiple additional measures of forelimb function for several weeks post-injury. PMID:25091640

  2. A Within-Animal Comparison of Skilled Forelimb Assessments in Rats

    PubMed Central

    Sloan, Andrew M.; Fink, Melyssa K.; Rodriguez, Amber J.; Lovitz, Adam M.; Khodaparast, Navid; Rennaker, Robert L.; Hays, Seth A.

    2015-01-01

    A variety of skilled reaching tasks have been developed to evaluate forelimb function in rodent models. The single pellet skilled reaching task and pasta matrix task have provided valuable insight into recovery of forelimb function in models of neurological injury and disease. Recently, several automated measures have been developed to reduce the cost and time burden of forelimb assessment in rodents. Here, we provide a within-subject comparison of three common forelimb assessments to allow direct evaluation of sensitivity and efficiency across tasks. Rats were trained to perform the single pellet skilled reaching task, the pasta matrix task, and the isometric pull task. Once proficient on all three tasks, rats received an ischemic lesion of motor cortex and striatum to impair use of the trained limb. On the second week post-lesion, all three tasks measured a significant deficit in forelimb function. Performance was well-correlated across tasks. By the sixth week post-lesion, only the isometric pull task measured a significant deficit in forelimb function, suggesting that this task is more sensitive to chronic impairments. The number of training days required to reach asymptotic performance was longer for the isometric pull task, but the total experimenter time required to collect and analyze data was substantially lower. These findings suggest that the isometric pull task represents an efficient, sensitive measure of forelimb function to facilitate preclinical evaluation in models of neurological injury and disease. PMID:26506434

  3. [Motor asymmetry of the forelimbs of the rat].

    PubMed

    Mikliaeva, E I; Kulikov, M A; Ioffe, M E

    1987-01-01

    Preference was studied of one of the forelimbs during performance of different manipulating movements in white rats. High degree of "handedness" was observed in all studied movements. However it was not absolute--no animals performed all movements by one and the same limb. Degree and character of "handedness" were different for different movements, though the number of "righthanded" rats in most tests as a whole exceeded the number of "lefthanded" ones. The "handedness" depends on the individuality of the animal, the character of the motor task, learning and interference of different motor tasks during training. PMID:3590969

  4. Adaptive changes in the motor cortex during and after longterm forelimb immobilization in adult rats

    PubMed Central

    Viaro, Riccardo; Budri, Mirco; Parmiani, Pierantonio; Franchi, Gianfranco

    2014-01-01

    Experimental and clinical studies have attempted to evaluate the changes in cortical activity seen after immobilization-induced longterm sensorimotor restriction, although results remain controversial. We used intracortical microstimulation (ICMS), which provides topographic movement representations of the motor areas in both hemispheres with optimal spatial characterization, combined with behavioural testing to unravel the effects of limb immobilization on movement representations in the rat primary motor cortex (M1). Unilateral forelimb immobilization in rats was achieved by casting the entire limb and leaving the cast in place for 15 or 30days. Changes in M1 were bilateral and specific for the forelimb area, but were stronger in the contralateral-to-cast hemisphere. The threshold current required to evoke forelimb movement increased progressively over the period in cast, whereas the forelimb area size decreased and the non-excitable area size increased. Casting resulted in a redistribution of proximal/distal movement representations: proximal forelimb representation increased, whereas distal representation decreased in size. ICMS after cast removal showed a reversal of changes, which remained partial at 15days. Local application of the GABAA-antagonist bicuculline revealed the impairment of cortical synaptic connectivity in the forelimb area during the period of cast and for up to 15days after cast removal. Six days of rehabilitation using a rotarod performance protocol after cast removal did not advance map size normalization in the contralateral-to-cast M1 and enabled the cortical output towards the distal forelimb only in sites that had maintained their excitability. These results are relevant to our understanding of adult M1 plasticity during and after sensorimotor deprivation, and to new approaches to conditions that require longterm limb immobilization. PMID:24566543

  5. Tissue fluid shift, forelimb loading, and tail tension in tail-suspended rats

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Steskal, J.; Johansson, C.; Tipton, C. M.

    1984-01-01

    The tail suspension model (head-down tilt) simulates hypogravity in terms of musculoskeletal loss in the rat. However, little is known of tissue fluid shifts and body weight distribution in this model. Tissue fluid pressures were measured by wick catheters in 12 Munich-Wistar rats before, during, and after 48 hrs of tail suspension (about 30 deg head-down tilt). Subcutaneous tissue fluid pressure in the neck increased from -2.2 + or - 0.4 (normal horizontal position) to +4.0 + or - 1.5 cm H2O during tail suspension, indicating a cephalic fluid shift and significant edema during head-down tilt. In a separate study, six rats were suspended at 30-70 deg, and forelimb load and tail tension were measured by a balance and force transducer, respectively. Approximately 50 percent of body weight (BW) was loaded on forelimbs at a head-down tilt angle of 30 deg and forelimb load declined linearly to 10 percent BW at 70 deg. Furthermore, tail tension increased from 50 percent BW at 30 deg to 85 percent BW at 70 deg. These results indicate that less than normal loads are applied to forelimbs of rats suspended at angles of less than 30 deg and that the tail bears an increasing proportion of the rat's body weight at head-down tilt angles of less than 30 deg.

  6. Forelimb Kinematics of Rats Using XROMM, with Implications for Small Eutherians and Their Fossil Relatives

    PubMed Central

    Bonnan, Matthew F.; Shulman, Jason; Varadharajan, Radha; Gilbert, Corey; Wilkes, Mary; Horner, Angela; Brainerd, Elizabeth

    2016-01-01

    The earliest eutherian mammals were small-bodied locomotor generalists with a forelimb morphology that strongly resembles that of extant rats. Understanding the kinematics of the humerus, radius, and ulna of extant rats can inform and constrain hypotheses concerning typical posture and mobility in early eutherian forelimbs. The locomotion of Rattus norvegicus has been extensively studied, but the three-dimensional kinematics of the bones themselves remains under-explored. Here, for the first time, we use markerless XROMM (Scientific Rotoscoping) to explore the three-dimensional long bone movements in Rattus norvegicus during a normal, symmetrical gait (walking). Our data show a basic kinematic profile that agrees with previous studies on rats and other small therians: rats maintain a crouched forelimb posture throughout the step cycle, and the ulna is confined to flexion/extension in a parasagittal plane. However, our three-dimensional data illuminate long-axis rotation (LAR) movements for both the humerus and the radius for the first time. Medial LAR of the humerus throughout stance maintains an adducted elbow with a caudally-facing olecranon process, which in turn maintains a cranially-directed manus orientation (pronation). The radius also shows significant LAR correlated with manus pronation and supination. Moreover, we report that elbow flexion and manus orientation are correlated in R. norvegicus: as the elbow angle becomes more acute, manus supination increases. Our data also suggest that manus pronation and orientation in R. norvegicus rely on a divided system of labor between the ulna and radius. Given that the radius follows the flexion and extension trajectory of the ulna, it must rotate at the elbow (on the capitulum) so that during the stance phase its distal end lies medial to ulna, ensuring that the manus remains pronated while the forelimb is supporting the body. We suggest that forelimb posture and kinematics in Juramaia, Eomaia, and other basal eutherians were grossly similar to those of rats, and that humerus and radius LAR may have always played a significant role in forelimb and manus posture in small eutherian mammals. PMID:26933950

  7. Forelimb Kinematics of Rats Using XROMM, with Implications for Small Eutherians and Their Fossil Relatives.

    PubMed

    Bonnan, Matthew F; Shulman, Jason; Varadharajan, Radha; Gilbert, Corey; Wilkes, Mary; Horner, Angela; Brainerd, Elizabeth

    2016-01-01

    The earliest eutherian mammals were small-bodied locomotor generalists with a forelimb morphology that strongly resembles that of extant rats. Understanding the kinematics of the humerus, radius, and ulna of extant rats can inform and constrain hypotheses concerning typical posture and mobility in early eutherian forelimbs. The locomotion of Rattus norvegicus has been extensively studied, but the three-dimensional kinematics of the bones themselves remains under-explored. Here, for the first time, we use markerless XROMM (Scientific Rotoscoping) to explore the three-dimensional long bone movements in Rattus norvegicus during a normal, symmetrical gait (walking). Our data show a basic kinematic profile that agrees with previous studies on rats and other small therians: rats maintain a crouched forelimb posture throughout the step cycle, and the ulna is confined to flexion/extension in a parasagittal plane. However, our three-dimensional data illuminate long-axis rotation (LAR) movements for both the humerus and the radius for the first time. Medial LAR of the humerus throughout stance maintains an adducted elbow with a caudally-facing olecranon process, which in turn maintains a cranially-directed manus orientation (pronation). The radius also shows significant LAR correlated with manus pronation and supination. Moreover, we report that elbow flexion and manus orientation are correlated in R. norvegicus: as the elbow angle becomes more acute, manus supination increases. Our data also suggest that manus pronation and orientation in R. norvegicus rely on a divided system of labor between the ulna and radius. Given that the radius follows the flexion and extension trajectory of the ulna, it must rotate at the elbow (on the capitulum) so that during the stance phase its distal end lies medial to ulna, ensuring that the manus remains pronated while the forelimb is supporting the body. We suggest that forelimb posture and kinematics in Juramaia, Eomaia, and other basal eutherians were grossly similar to those of rats, and that humerus and radius LAR may have always played a significant role in forelimb and manus posture in small eutherian mammals. PMID:26933950

  8. Cervical spinal demyelination with ethidium bromide impairs respiratory (phrenic) activity and forelimb motor behavior in rats

    PubMed Central

    Nichols, Nicole L.; Punzo, Antonio M.; Duncan, Ian D.; Mitchell, Gordon S.; Johnson, Rebecca A.

    2012-01-01

    Although respiratory complications are a major cause of morbidity/mortality in many neural injuries or diseases, little is known concerning mechanisms whereby deficient myelin impairs breathing, or how patients compensate for such changes. Here, we tested the hypothesis that respiratory and forelimb motor function are impaired in a rat model of focal dorsolateral spinal demyelination (ethidium bromide, EB). Ventilation, phrenic nerve activity and horizontal ladder walking were performed 7-14 days post-C2 injection of EB or vehicle (SHAM). EB caused dorsolateral demyelination at C2-C3 followed by signficant spontaneous remyelination at 14 days post-EB. Although ventilation did not differ between groups, ipsilateral integrated phrenic nerve burst amplitude was significantly reduced versus SHAM during chemoreceptor activation at 7 days post-EB but recovered by 14 days. The ratio of ipsi- to contralateral phrenic nerve amplitude correlated with cross-sectional lesion area. This ratio was significantly reduced 7 days post-EB versus SHAM during baseline conditions, and versus SHAM and 14 day groups during chemoreceptor activation. Limb function ipsilateral to EB was impaired 7 days post-EB and partially recovered by 14 days post-EB. EB provides a reversible model of focal, spinal demyelination, and may be a useful model to study mechanisms of functional impairment and recovery via motor plasticity, or the efficacy of new therapeutic interventions to reduce severity or duration of disease. PMID:23159317

  9. Functional and structural organization of the forelimb representation in cuneate nucleus in rat.

    PubMed

    Li, Cheng X; Yang, Qiuhong; Waters, Robert S

    2012-08-15

    We examined the physiological representation of the forelimb in the cuneate nucleus (CN) of forelimb-intact young adult rats (n=38) as the first part in a series of studies aimed at understanding the possible role that CN plays in delayed cortical reorganization that follows forelimb amputation. Metabolic labeling with cytochrome oxidase (CO) and electrophysiological mapping were used to examine the relationship between the structural and functional organization of CN. CN is a cylinder-shaped structure that lies bilaterally in the brainstem and extends nearly 4mm in the rostrocaudal direction. The forelimb is represented along the rostrocaudal extent. CN contains three zones; the rostral and caudal zones receive input largely from deep muscle and joint receptors and a middle zone, in the vicinity of the obex, receives input primarily from cutaneous receptors in the skin. The middle zone is somatotopically organized with the glabrous digits represented centrally, bordered on the medial side by ulnar wrist, ulnar forearm, and posterior upper arm representations; on the lateral side by radial wrist, radial forearm, and anterior upper arm representations; and on dorsal side by the dorsal digits and dorsal hand. The middle zone also contains well-defined CO-filled glomerular structures, called barrelettes, which are located within a homogenously stained field. The barrelettes are associated with the representation of the glabrous digits, with D5 represented most dorsal followed sequentially in a ventral-to-lateral direction by the representation of D4, D3, D2, and D1. The digit representations are topographically organized with the distal digit surface represented laterally with respect to the more medially lying proximal digit surface. The digit and palmar pads are also represented by barrelettes located on the medial side of CN. In contrast, the dorsal digit surfaces are represented dorsally and the dorsal hand is represented directly beneath the cuneate fasciculus, in a region devoid of barrelettes. The representations of the ulnar and radial wrist, forearm, and upper arm also lie within the homogeneously stained field in CN. The forelimb representation is bordered on the medial side by representation of trunk and hindlimb, and on the lateral side by representation of shoulder, ear, and head. While the present findings support and extend previous electrophysiological and anatomical studies of CN in the rat, they also provide a detailed physiological description of the functional organization of CN that is necessary for subsequent understanding of the functional reorganization of CN that may result following forelimb amputation. PMID:22800965

  10. Cortical PKC Inhibition Promotes Axonal Regeneration of the Corticospinal Tract and Forelimb Functional Recovery After Cervical Dorsal Spinal Hemisection in Adult Rats

    PubMed Central

    Wang, Xiaofei; Hu, Jianguo; She, Yun; Smith, George M.; Xu, Xiao-Ming

    2014-01-01

    Our previous study shows that conventional protein kinases C (cPKCs) are key signaling mediators that are activated by extracellular inhibitory molecules. Inhibition of cPKC by intrathecal infusion of a cPKC inhibitor, G6976, into the site of dorsal hemisection (DH) induces regeneration of lesioned dorsal column sensory, but not corticospinal tract (CST), axons. Here, we investigated whether a direct cortical delivery of G6976 into the soma of corticospinal neurons promotes regeneration of CST and the recovery of forelimb function in rats with cervical spinal cord injuries. We report that cortical delivery of G6976 reduced injury-induced activation of conventional PKC? and PKC?1 in CST neurons, promoted regeneration of CST axons through and beyond a cervical DH at C4, formed new synapses on target neurons caudal to the injury, and enhanced forelimb functional recovery in adult rats. When combined with lenti-Chondroitinase ABC treatment, cortical administration of G6976 promoted even greater CST axonal regeneration and recovery of forelimb function. Thus, this study has demonstrated a novel strategy that can promote anatomical regeneration of damaged CST axons and partial recovery of forelimb function. Importantly, such an effect is critically dependent on the efficient blockage of injury-induced PKC activation in the soma of layer V CST neurons. PMID:23810979

  11. Differential Pattern of Interhemispheric Connections Between Homotopic Layer V Regions in the Forelimb Representation in Rat Barrel Field Cortex.

    PubMed

    Decosta-Fortune, Tina M; Li, Cheng X; de Jongh Curry, Amy L; Waters, Robert S

    2015-11-01

    Layer V neurons in forelimb and shoulder representations in rat first somatosensory cortex (SI) project to the contralateral SI. However, few studies have addressed whether projections from specific subregions of the forelimb representation, namely forepaw, wrist, or forearm, terminate at homotopic sites in the contralateral SI. Neuroanatomical retrograde (cholera toxin B subunit [CT-B]) or anterograde (biodextran amine [BDA]) tracers were injected into physiologically identified sites in layer V in specific forelimb and/or shoulder representations in SI to examine the projection to contralateral SI in young adult rats (N?=?17). Injection and target sites were flattened and cut in a tangential plane to relate labeling to the body map or cut along a coronal plane to relate labeling to cortical layers. Results indicate that layer V neurons project to cortical laminae II-VI in contralateral SI, with the densest labeling in layer V followed by layer III. In contrast, layer V neurons send sparse projections to layer IV. Furthermore, layer V neurons in wrist, forearm, and shoulder project to homotopic sites in contralateral layer V, while neurons in the forepaw representation project largely to sites in perigranular and dysgranular cortex adjacent to their homotopic territory. Our results provide evidence for a differential pattern of interhemispheric projections from forelimb and shoulder representations to the opposite SI and a detailed description of areal and laminar projection patterns of layer V neurons in the SI forelimb and shoulder cortices. PMID:26332205

  12. A novel method for assessing proximal and distal forelimb function in the rat: the Irvine, Beatties and Bresnahan (IBB) forelimb scale.

    PubMed

    Irvine, Karen-Amanda; Ferguson, Adam R; Mitchell, Kathleen D; Beattie, Stephanie B; Beattie, Michael S; Bresnahan, Jacqueline C

    2010-01-01

    Several experimental models of cervical spinal cord injury (SCI) have been developed recently to assess the consequences of damage to this level of the spinal cord (Pearse et al., 2005, Gensel et al., 2006, Anderson et al., 2009), as the majority of human SCI occur here (Young, 2010; www.sci-info-pages.com). Behavioral deficits include loss of forelimb function due to damage to the white matter affecting both descending motor and ascending sensory systems, and to the gray matter containing the segmental circuitry for processing sensory input and motor output for the forelimb. Additionally, a key priority for human patients with cervical SCI is restoration of hand/arm function (Anderson, 2004). Thus, outcome measures that assess both proximal and distal forelimb function are needed. Although there are several behavioral assays that are sensitive to different aspects of forelimb recovery in experimental models of cervical SCI (Girgis et al., 2007, Gensel et al., 2006, Ballerman et al., 2001, Metz and Whishaw, 2000, Bertelli and Mira, 1993, Montoya et al., 1991, Whishaw and Pellis, 1990), few techniques provide detailed information on the recovery of fine motor control and digit movement. The current measurement technique, the Irvine, Beatties and Bresnahan forelimb scale (IBB), can detect recovery of both proximal and distal forelimb function including digit movements during a naturally occurring behavior that does not require extensive training or deprivation to enhance motivation. The IBB was generated by observing recovery after a unilateral C6 SCI, and involves video recording of animals eating two differently shaped cereals (spherical and doughnut) of a consistent size. These videos were then used to assess features of forelimb use, such as joint position, object support, digit movement and grasping technique. The IBB, like other forelimb behavioral tasks, shows a consistent pattern of recovery that is sensitive to injury severity. Furthermore, the IBB scale could be used to assess recovery following other types of injury that impact normal forelimb function. PMID:21206464

  13. Encoding of forelimb forces by corticospinal tract activity in the rat

    PubMed Central

    Guo, Yi; Foulds, Richard A.; Adamovich, Sergei V.; Sahin, Mesut

    2014-01-01

    In search of a solution to the long standing problems encountered in traditional brain computer interfaces (BCI), the lateral descending tracts of the spinal cord present an alternative site for taping into the volitional motor signals. Due to the convergence of the cortical outputs into a final common pathway in the descending tracts of the spinal cord, neural interfaces with the spinal cord can potentially acquire signals richer with volitional information in a smaller anatomical region. The main objective of this study was to evaluate the feasibility of extracting motor control signals from the corticospinal tract (CST) of the rat spinal cord. Flexible substrate, multi-electrode arrays (MEA) were implanted in the CST of rats trained for a lever pressing task. This novel use of flexible substrate MEAs allowed recording of CST activity in behaving animals for up to three weeks with the current implantation technique. Time-frequency and principal component analyses (PCA) were applied to the neural signals to reconstruct isometric forelimb forces. Computed regression coefficients were then used to predict isometric forces in additional trials. The correlation between measured and predicted forces in the vertical direction averaged across six animals was 0.67 and R2 value was 0.44. Force regression in the horizontal directions was less successful, possibly due to the small amplitude of forces. Neural signals above and near the high gamma band made the largest contributions to prediction of forces. The results of this study support the feasibility of a spinal cord computer interface (SCCI) for generation of command signals in paralyzed individuals. PMID:24847198

  14. Forelimb amputation-induced reorganization in the ventral posterior lateral nucleus (VPL) provides a substrate for large-scale cortical reorganization in rat forepaw barrel subfield (FBS).

    PubMed

    Li, Cheng X; Chappell, Tyson D; Ramshur, John T; Waters, Robert S

    2014-10-01

    In this study, we examined the role of the ventral posterior lateral nucleus (VPL) as a possible substrate for large-scale cortical reorganization in the forepaw barrel subfield (FBS) of primary somatosensory cortex (SI) that follows forelimb amputation. Previously, we reported that, 6 weeks after forelimb amputation in young adult rats, new input from the shoulder becomes expressed throughout the FBS that quite likely has a subcortical origin. Subsequent examination of the cuneate nucleus (CN) 1 to 30 weeks following forelimb amputation showed that CN played an insignificant role in cortical reorganization and led to the present investigation of VPL. As a first step, we used electrophysiological recordings in forelimb intact adult rats (n=8) to map the body representation in VPL with particular emphasis on the forepaw and shoulder representations and showed that VPL was somatotopically organized. We next used stimulation and recording techniques in forelimb intact rats (n=5) and examined the pattern of projection (a) from the forelimb and shoulder to SI, (b) from the forepaw and shoulder to VPL, and (c) from sites in the forepaw and shoulder representation in VPL to forelimb and shoulder sites in SI. The results showed that the projections were narrowly focused and homotopic. Electrophysiological recordings were then used to map the former forepaw representation in forelimb amputated young adult rats (n=5) at 7 to 24 weeks after amputation. At each time period, new input from the shoulder was observed in the deafferented forepaw region in VPL. To determine whether the new shoulder input in the deafferented forepaw VPL projected to a new shoulder site in the deafferented FBS, we examined the thalamocortical pathway in 2 forelimb-amputated rats. Stimulation of a new shoulder site in deafferented FBS antidromically-activated a cell in the former forepaw territory in VPL; however, similar stimulation from a site in the original shoulder representation, outside the deafferented region, in SI did not activate cells in the former forepaw VPL. These results suggest that the new shoulder input in deafferented FBS is relayed from cells in the former forepaw region in VPL. In the last step, we used anatomical tracing and stimulation and recording techniques in forelimb intact rats (n=9) to examine the cuneothalamic pathway from shoulder and forepaw receptive field zones in CN to determine whether projections from the shoulder zone might provide a possible source of shoulder input to forepaw VPL. Injection of biotinylated dextran amine (BDA) into physiologically identified shoulder responsive sites in CN densely labeled axon terminals in the shoulder representation in VPL, but also gave off small collateral branches into forepaw VPL. In addition, microstimulation delivered to forepaw VPL antidromically-activated cells in shoulder receptive field sites in CN. These results suggest that forepaw VPL also receives input from shoulder receptive sites in CN that are latent or subthreshold in forelimb intact rats. However, we speculate that following amputation these latent shoulder inputs become expressed, possibly as a down-regulation of GABA inhibition from the reticular nucleus (RTN). These results, taken together, suggest that VPL provides a substrate for large-scale cortical reorganization that follows forelimb amputation. PMID:25058605

  15. Preservation of forelimb function by UPF1 gene therapy in a rat model of TDP-43-induced motor paralysis.

    PubMed

    Jackson, K L; Dayton, R D; Orchard, E A; Ju, S; Ringe, D; Petsko, G A; Maquat, L E; Klein, R L

    2015-01-01

    Nonsense-mediated mRNA decay (NMD) is an RNA surveillance mechanism that requires upframeshift protein 1 (UPF1). This study demonstrates that human UPF1 exerts protective effects in a rat paralysis model based on the amyotrophic lateral sclerosis (ALS)-associated protein, TDP-43 (transactive response DNA-binding protein 43?kDa). An adeno-associated virus vector (AAV9) was used to express TDP-43 throughout the spinal cord of rats, inducing reproducible limb paralysis, to recapitulate the paralysis in ALS. We selected UPF1 for therapeutic testing based on a genetic screen in yeast. The expression of human TDP-43 or human UPF1 in the spinal cord was titrated to less than twofold over the respective endogenous level. AAV9 human mycUPF1 clearly improved overall motor scores in rats also expressing TDP-43. The gene therapy effect of mycUPF1 was specific and reproducible compared with groups receiving either empty vector or green fluorescent protein vector controls. The gene therapy maintained forelimb motor function in rats that would otherwise become quadriplegic. This work helps validate UPF1 as a novel therapeutic for ALS and other TDP-43-related diseases and may implicate UPF1 and NMD involvement in the underlying disease mechanisms. PMID:25354681

  16. The regulative potential of the limb region in 11.5-day rat embryos following the amputation of the fore-limb bud.

    PubMed

    Lee, K K

    1992-01-01

    The regulative potential of the fore-limb region following the removal of the limb bud was investigated in 11.5-day rat embryos. Fore-limb buds were amputated from a total of 54 embryos. Five embryos were immediately examined via scanning electron microscopy (SEM) to assess the quality of the operation and the reproducibility of the technique. In all cases, the forelimb bud and adjacent tissues extending down to the celomic cavity at the same level were completely removed. The remaining 49 operated embryos were cultured in vitro and examined at different time intervals. Gross inspection of embryos which had been cultured for 24 h, revealed that 24 out of 37 had developed a pair of limb bud-like protrusions at the operation site. Twelve formed only a single protrusion, while nothing was found in the remaining embryo. These protrusions were examined in greater detail under SEM and light microscopy. SEM observations showed that these protrusions were covered with an intact layer of ectoderm. In embryos with a pair of protrusions, these outgrowths developed opposite somites 7 to 13. The failure of either one of these two outgrowths to form, produced our second type of experimental embryo, those which had just a single protrusion. Histological examination revealed that an apical ectodermal ridge (AER) was discernible on the protrusions of 36% of the embryos. Finally, we have established how these protrusions were constructed from SEM observations of operated embryos cultured for 6 h and 10 h. PMID:1514704

  17. Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats

    PubMed Central

    2012-01-01

    Background A complete spinal cord transection results in loss of all supraspinal motor control below the level of the injury. The neural circuitry in the lumbosacral spinal cord, however, can generate locomotor patterns in the hindlimbs of rats and cats with the aid of motor training, epidural stimulation and/or administration of monoaminergic agonists. We hypothesized that there are patterns of EMG signals from the forelimbs during quadrupedal locomotion that uniquely represent a signal for the intent to step with the hindlimbs. These observations led us to determine whether this type of indirect volitional control of stepping can be achieved after a complete spinal cord injury. The objective of this study was to develop an electronic bridge across the lesion of the spinal cord to facilitate hindlimb stepping after a complete mid-thoracic spinal cord injury in adult rats. Methods We developed an electronic spinal bridge that can detect specific patterns of EMG activity from the forelimb muscles to initiate electrical-enabling motor control (eEmc) of the lumbosacral spinal cord to enable quadrupedal stepping after a complete spinal cord transection in rats. A moving window detection algorithm was implemented in a small microprocessor to detect biceps brachii EMG activity bilaterally that then was used to initiate and terminate epidural stimulation in the lumbosacral spinal cord. We found dominant frequencies of 180220 Hz in the EMG of the forelimb muscles during active periods, whereas these frequencies were between 010 Hz when the muscles were inactive. Results and conclusions Once the algorithm was validated to represent kinematically appropriate quadrupedal stepping, we observed that the algorithm could reliably detect, initiate, and facilitate stepping under different pharmacological conditions and at various treadmill speeds. PMID:22691460

  18. Forelimb Locomotor Assessment Scale (FLAS): Novel Assessment of Forelimb Dysfunction After Cervical Spinal Cord Injury

    PubMed Central

    Anderson, Kim D.; Sharp, Kelli G.; Hofstadter, Maura; Irvine, Karen-Amanda; Murray, Marion; Steward, Oswald

    2009-01-01

    We describe here a novel Forelimb Locomotor Assessment Scale (FLAS) that assesses forelimb use during locomotion in rats injured at the cervical level. A quantitative scale was developed that measures movements of shoulder, elbow, and wrist joints, forepaw position and digit placement, forelimb-hindlimb coordination, compensatory behaviors adopted while walking, and balance. Female Sprague-Dawley rats received graded cervical contusions ranging from 200–230 (“mild”, n=11) and 250–290 kilodynes (“moderate”, n=13) between C5–8. Rats were videotaped post-injury as they walked along an alley to determine deficits and recovery of forelimb function. Recovery of shoulder and elbow joint movement occurred rapidly (within 1–7 days post-injury), whereas recovery of wrist joint movement was slower and more variable. Most rats in all groups displayed persistent deficits in forepaw and digit movement, but developed compensatory behaviors to allow functional forward locomotion within 1–2 weeks post-injury. Recovery of forelimb function as measured by the FLAS reached a plateau by 3 weeks post-injury in all groups. Rats with mild contusions displayed greater locomotor recovery than rats with moderate contusions, but exhibited persistent deficits compared to sham controls. Reliability was tested by having seven raters (3 internal, 4 external) from different laboratories, independently and blindly score videos of all rats. The multivariate correlation between all raters, all animals, and all time-points ranged from r2=0.88–0.96 (p<0.0001), indicating a high inter-rater reliability. Thus, the FLAS is a simple, inexpensive, sensitive, and reliable measure of forelimb function during locomotion following cervical SCI. PMID:19733168

  19. Selective Forelimb Impairment in Rats Expressing a Pathological TDP-43 25?kDa C-terminal Fragment to Mimic Amyotrophic Lateral Sclerosis

    PubMed Central

    Dayton, Robert D; Gitcho, Michael A; Orchard, Elysse A; Wilson, Jon D; Wang, David B; Cain, Cooper D; Johnson, Jeffrey A; Zhang, Yong-Jie; Petrucelli, Leonard; Mathis, J Michael; Klein, Ronald L

    2013-01-01

    Pathological inclusions containing transactive response DNA-binding protein 43?kDa (TDP-43) are common in several neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). TDP-43 normally localizes predominantly to the nucleus, but during disease progression, it mislocalizes to the cytoplasm. We expressed TDP-43 in rats by an adeno-associated virus (AAV9) gene transfer method that transduces neurons throughout the central nervous system (CNS). To mimic the aberrant cytoplasmic TDP-43 found in disease, we expressed a form of TDP-43 with mutations in the nuclear localization signal sequence (TDP-NLS). The TDP-NLS was detected in both the cytoplasm and the nucleus of transduced neurons. Unlike wild-type TDP-43, expression of TDP-NLS did not induce mortality. However, the TDP-NLS induced disease-relevant motor impairments over 24 weeks. We compared the TDP-NLS to a 25?kDa C-terminal proaggregatory fragment of TDP-43 (TDP-25). The clinical phenotype of forelimb impairment was pronounced with the TDP-25 form, supporting a role of this C-terminal fragment in pathogenesis. The results advance previous rodent models by inducing cytoplasmic expression of TDP-43 in the spinal cord, and the non-lethal phenotype enabled long-term study. Approaching a more relevant disease state in an animal model that more closely mimics underlying mechanisms in human disease could unlock our ability to develop therapeutics. PMID:23689600

  20. Cineradiographic (video X-ray) analysis of skilled reaching in a single pellet reaching task provides insight into relative contribution of body, head, oral, and forelimb movement in rats.

    PubMed

    Alaverdashvili, Mariam; Leblond, Hugues; Rossignol, Serge; Whishaw, Ian Q

    2008-10-10

    The forelimb movements (skilled reaching) used by rats to reach for a single food pellet to place into the mouth have been used to model many neurological conditions. They have been described as a sequence of oppositions of head-pellet, paw-pellet and pellet-mouth that can be described as movements of the distal portion of body segments in relation to their fixed proximal joints. Movement scoring is difficult, however, because the location and movement of body segments is estimated through the overlying fur and skin, which is pliable and partially obscures movement. Using moderately high-speed cineradiographic filming from lateral, dorsal, and frontal perspectives, the present study describes how forelimb and skeletal bones move during the skilled reaching act. The analysis indicates that: (i) head movements for orienting to food, enabled by the vertical orientation of the rostral spinal cord, are mainly independent of trunk movement, (ii) skilled reaching consists of a sequence of upper arm and extremity movements each involving a number of concurrent limb segment and joint movements and (iii) food pellets are retrieved from the paw using either the incisors and/or tongue. The findings are discussed in relation to the idea that X-ray cinematography is valuable tool for assisting descriptive analysis and can contribute to understanding general principles of the relations between whole body, head, oral, and upper extremity movement. PMID:18514337

  1. Assessing forelimb function after unilateral cervical spinal cord injury: novel forelimb tasks predict lesion severity and recovery.

    PubMed

    Khaing, Zin Z; Geissler, Sydney A; Jiang, Shan; Milman, Brian D; Aguilar, Sandra V; Schmidt, Christine E; Schallert, Timothy

    2012-02-10

    Cervical spinal cord injury (cSCI) can cause devastating neurological deficits, including impairment or loss of upper limb and hand function. Recently there has been increasing interest in cervical spinal cord injury models because the majority of spinal cord injuries are at cervical levels. Here we examined spontaneous functional recovery of adult rats with either laminectomy or lateral hemisection of the cervical spinal cord at C3-C4. Behavioral tests were carried out, including the forelimb locomotor scale (FLS), a postural instability test (PIT), a pasta-handling test that has been used to assess forepaw digit function and latency to eat, forelimb use during vertical-lateral wall exploration in a cylindrical enclosure, and vibrissae-elicited forelimb placing tests. In addition, a forelimb step-alternation test was developed to assess functional recovery at 12 weeks post-injury. All tests detected cSCI-induced deficits relative to laminectomy. Interestingly, the severity of deficits in the forelimb step-alternation test was associated with more extensive spinal damage, greater impairment, and less recovery in the FLS and other tests. For the pasta-handling test we found that rats with a milder cervical injury (alternators) were more likely to use both forepaws together compared to rats with a more severe injury (non-alternators). In addition, using the PIT, we detected enhanced function of the good limb, suggesting that neural plasticity on the unaffected side of the spinal cord may have occurred to compensate for deficits in the impaired forelimb. These outcome measures should be useful for investigating neural events associated with cSCI, and for developing novel treatment strategies. PMID:22022897

  2. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke.

    PubMed

    Starkey, Michelle Louise; Bleul, Christiane; Zrner, Bjrn; Lindau, Nicolas Thomas; Mueggler, Thomas; Rudin, Markus; Schwab, Martin Ernst

    2012-11-01

    Whereas large injuries to the brain lead to considerable irreversible functional impairments, smaller strokes or traumatic lesions are often associated with good recovery. This recovery occurs spontaneously, and there is ample evidence from preclinical studies to suggest that adjacent undamaged areas (also known as peri-infarct regions) of the cortex 'take over' control of the disrupted functions. In rodents, sprouting of axons and dendrites has been observed in this region following stroke, while reduced inhibition from horizontal or callosal connections, or plastic changes in subcortical connections, could also occur. The exact mechanisms underlying functional recovery after small- to medium-sized strokes remain undetermined but are of utmost importance for understanding the human situation and for designing effective treatments and rehabilitation strategies. In the present study, we selectively destroyed large parts of the forelimb motor and premotor cortex of adult rats with an ischaemic injury. A behavioural test requiring highly skilled, cortically controlled forelimb movements showed that some animals recovered well from this lesion whereas others did not. To investigate the reasons behind these differences, we used anterograde and retrograde tracing techniques and intracortical microstimulation. Retrograde tracing from the cervical spinal cord showed a correlation between the number of cervically projecting corticospinal neurons present in the hindlimb sensory-motor cortex and good behavioural recovery. Anterograde tracing from the hindlimb sensory-motor cortex also showed a positive correlation between the degree of functional recovery and the sprouting of neurons from this region into the cervical spinal cord. Finally, intracortical microstimulation confirmed the positive correlation between rewiring of the hindlimb sensory-motor cortex and the degree of forelimb motor recovery. In conclusion, these experiments suggest that following stroke to the forelimb motor cortex, cells in the hindlimb sensory-motor area reorganize and become functionally connected to the cervical spinal cord. These new connections, probably in collaboration with surviving forelimb neurons and more complex indirect connections via the brainstem, play an important role for the recovery of cortically controlled behaviours like skilled forelimb reaching. PMID:23169918

  3. Therapeutic intraspinal microstimulation improves forelimb function after cervical contusion injury

    NASA Astrophysics Data System (ADS)

    Kasten, M. R.; Sunshine, M. D.; Secrist, E. S.; Horner, P. J.; Moritz, C. T.

    2013-08-01

    Objective. Intraspinal microstimulation (ISMS) is a promising method for activating the spinal cord distal to an injury. The objectives of this study were to examine the ability of chronically implanted stimulating wires within the cervical spinal cord to (1) directly produce forelimb movements, and (2) assess whether ISMS stimulation could improve subsequent volitional control of paretic extremities following injury. Approach. We developed a technique for implanting intraspinal stimulating electrodes within the cervical spinal cord segments C6-T1 of Long-Evans rats. Beginning 4 weeks after a severe cervical contusion injury at C4-C5, animals in the treatment condition received therapeutic ISMS 7 hours/day, 5 days/week for the following 12 weeks. Main results. Over 12 weeks of therapeutic ISMS, stimulus-evoked forelimb movements were relatively stable. We also explored whether therapeutic ISMS promoted recovery of forelimb reaching movements. Animals receiving daily therapeutic ISMS performed significantly better than unstimulated animals during behavioural tests conducted without stimulation. Quantitative video analysis of forelimb movements showed that stimulated animals performed better in the movements reinforced by stimulation, including extending the elbow to advance the forelimb and opening the digits. While threshold current to elicit forelimb movement gradually increased over time, no differences were observed between chronically stimulated and unstimulated electrodes suggesting that no additional tissue damage was produced by the electrical stimulation. Significance. The results indicate that therapeutic intraspinal stimulation delivered via chronic microwire implants within the cervical spinal cord confers benefits extending beyond the period of stimulation, suggesting future strategies for neural devices to promote sustained recovery after injury.

  4. Therapeutic intraspinal microstimulation improves forelimb function after cervical contusion injury

    PubMed Central

    Kasten, M.R.; Sunshine, M.D.; Secrist, E.S.; Horner, P.J.; Moritz, C.T.

    2013-01-01

    Objective Intraspinal microstimulation (ISMS) is a promising method for activating the spinal cord distal to an injury. The objectives of this study were to examine the ability of chronically implanted stimulating wires within the cervical spinal cord to (1) directly produce forelimb movements, and (2) assess whether ISMS stimulation improved subsequent volitional control of paretic extremities following injury. Approach We developed a technique for implanting intraspinal stimulating electrodes within the cervical spinal cord segments C6-T1 of Long-Evans rats. Beginning 4 weeks after a severe cervical contusion injury at C4C5, animals in the treatment condition received therapeutic ISMS 7 hours/day, 5 days/week for the following 12 weeks. Main Results Over 12 weeks of therapeutic ISMS, stimulus-evoked forelimb movements were relatively stable. We also explored whether therapeutic ISMS promotes recovery of forelimb reaching movements. Animals receiving daily therapeutic ISMS performed significantly better than unstimulated animals during behavioral tests conducted without stimulation. Quantitative video analysis of forelimb movements showed that stimulated animals performed better in the movements reinforced by stimulation, including extending the elbow to advance the forelimb and opening the digits. While threshold current to elicit forelimb movement gradually increased over time, no differences were observed between chronically stimulated and unstimulated electrodes suggesting that no additional tissue damage was produced by the electrical stimulation. Significance The results indicate that therapeutic intraspinal stimulation delivered via chronic microwire implants within the cervical spinal cord confers benefits extending beyond the period of stimulation, suggesting future strategies for neural devices to promote sustained recovery after injury. PMID:23715242

  5. Similarities and differences between the subchronic and withdrawal effects of clozapine and olanzapine on forelimb force steadiness.

    PubMed

    Stanford, J A; Fowler, S C

    1997-08-01

    The purpose of this study was to compare the subchronic, low-dose effects of clozapine with those of olanzapine in a learned behavioral task previously shown to distinguish between clozapine and haloperidol with acute and subchronic treatment regimes. Rats were trained to use a single forelimb to press a force-recording operandum and simultaneously to lick water from a dipper that remained available while forelimb force exceeded a modest lower limit. Analysis of the resulting forcetime recordings provided measures of task engagement (time on task-analogous to response rate), lick rhythm, tremor, ballistic (maximum force) and tonic (hold force) forelimb force measures, as well as the durations of the individual responses. In a between-groups dosing design, five separate groups of rats received vehicle, clozapine 1.0 or 5.0 mg/kg, olanzapine 0.5 or 1.0 mg/kg daily for 27 days. A 7-day withdrawal period followed. On days 22 and 26 of antipsychotic drug treatment, all rats additionally received 0.3 mg/kg trihexyphenidyl or 1.0 mg/kg quipazine, respectively. The effects of olanzapine and clozapine were similar in that both drugs reduced time on task, increased response duration, and slowed lick rhythm. The two drugs differed in that clozapine reduced the force and tremor measures but olanzapine did not. Both tolerance and withdrawal effects, as reflected by the tremor measure, were observed for clozapine but not for olanzapine. Trihexyphenidyl further increased the duration of responses already lengthened by clozapine; in contrast, trihexyphenidyl decreased the duration lengthening effect of olanzapine. Taken together, the results indicated that olanzapine did not have the antitremor and hypotonic effects displayed by clozapine, and olanzapine did not induce tolerance and withdrawal phenomena as clozapine did. PMID:9298520

  6. Phylogeny and forelimb disparity in waterbirds.

    PubMed

    Wang, Xia; Clarke, Julia A

    2014-10-01

    Previous work has shown that the relative proportions of wing components (i.e., humerus, ulna, carpometacarpus) in birds are related to function and ecology, but these have rarely been investigated in a phylogenetic context. Waterbirds including "Pelecaniformes," Ciconiiformes, Procellariiformes, Sphenisciformes, and Gaviiformes form a highly supported clade and developed a great diversity of wing forms and foraging ecologies. In this study, forelimb disparity in the waterbird clade was assessed in a phylogenetic context. Phylogenetic signal was assessed via Pagel's lambda, Blomberg's K, and permutation tests. We find that different waterbird clades are clearly separated based on forelimb component proportions, which are significantly correlated with phylogeny but not with flight style. Most of the traditional contents of "Pelecaniformes" (e.g., pelicans, cormorants, and boobies) cluster with Ciconiiformes (herons and storks) and occupy a reduced morphospace. These taxa are closely related phylogenetically but exhibit a wide range of ecologies and flight styles. Procellariiformes (e.g., petrels, albatross, and shearwaters) occupy a wide range of morphospace, characterized primarily by variation in the relative length of carpometacarpus and ulna. Gaviiformes (loons) surprisingly occupy a wing morphospace closest to diving petrels and penguins. Whether this result may reflect wing proportions plesiomorphic for the waterbird clade or a functional signal is unclear. A Bayesian approach detecting significant rate shifts across phylogeny recovered two such shifts. At the base of the two sister clades Sphenisciformes + Procellariiformes, a shift to an increase evolutionary rate of change is inferred for the ulna and carpometacarpus. Thus, changes in wing shape begin prior to the loss of flight in the wing-propelled diving clade. Several shifts to slower rate of change are recovered within stem penguins. PMID:24989899

  7. The organization of the forelimb representation of the C57BL/6 mouse motor cortex as defined by intracortical microstimulation and cytoarchitecture.

    PubMed

    Tennant, Kelly A; Adkins, Deanna L; Donlan, Nicole A; Asay, Aaron L; Thomas, Nagheme; Kleim, Jeffrey A; Jones, Theresa A

    2011-04-01

    The organization of forelimb representation areas of the monkey, cat, and rat motor cortices has been studied in depth, but its characterization in the mouse lags far behind. We used intracortical microstimulation (ICMS) and cytoarchitectonics to characterize the general organization of the C57BL/6 mouse motor cortex, and the forelimb representation in more detail. We found that the forelimb region spans a large area of frontal cortex, bordered primarily by vibrissa, neck, shoulder, and hindlimb representations. It included a large caudal forelimb area, dominated by digit representation, and a small rostral forelimb area, containing elbow and wrist representations. When the entire motor cortex was mapped, the forelimb was found to be the largest movement representation, followed by head and hindlimb representations. The ICMS-defined motor cortex spanned cytoarchitecturally identified lateral agranular cortex (AGl) and also extended into medial agranular cortex. Forelimb and hindlimb representations extended into granular cortex in a region that also had cytoarchitectural characteristics of AGl, consistent with the primary motor-somatosensory overlap zone (OL) characterized in rats. Thus, the mouse motor cortex has homologies with the rat in having 2 forelimb representations and an OL but is distinct in the predominance of digit representations. PMID:20739477

  8. Activity-based therapies to promote forelimb use after a cervical spinal cord injury.

    PubMed

    Dai, Haining; MacArthur, Linda; McAtee, Marietta; Hockenbury, Nicole; Tidwell, J Lille; McHugh, Brian; Mansfield, Kevin; Finn, Tom; Hamers, Frank P T; Bregman, Barbara S

    2009-10-01

    Significant interest exists in strategies for improving forelimb function following spinal cord injury. We investigated the effect of enriched housing combined with skilled training on the recovery of skilled and automatic forelimb function after a cervical spinal cord injury in adult rats. All animals were pretrained in skilled reaching, gridwalk crossing, and overground locomotion. Some received a cervical over-hemisection lesion at C4-5, interrupting the right side of the spinal cord and dorsal columns bilaterally, and were housed in standard housing alone or enriched environments with daily training. A subset of animals received rolipram to promote neuronal plasticity. Animals were tested weekly for 4 weeks to measure reaching, errors on the gridwalk, locomotion, and vertical exploration. Biotinylated dextran amine was injected into the cortex to label the corticospinal tract. Enriched environments/daily training significantly increased the number and success of left reaches compared to standard housing. Animals also made fewer errors on the gridwalk, a measure of coordinated forelimb function. However, there were no significant improvements in forelimb use during vertical exploration or locomotion. Likewise, rolipram did not improve any of the behaviors tested. Both enriched housing and rolipram increased plasticity of the corticospinal tract rostral to the lesion. These studies indicate that skilled training after a cervical spinal cord injury improves recovery of skilled forelimb use (reaching) and coordinated limb function (gridwalk) but does not improve automatic forelimb function (locomotion and vertical exploration). These studies suggest that rehabilitating forelimb function after spinal cord injury will require separate strategies for descending and segmental pathways. PMID:19317604

  9. Ketogenic diet improves forelimb motor function after spinal cord injury in rodents.

    PubMed

    Streijger, Femke; Plunet, Ward T; Lee, Jae H T; Liu, Jie; Lam, Clarrie K; Park, Soeyun; Hilton, Brett J; Fransen, Bas L; Matheson, Keely A J; Assinck, Peggy; Kwon, Brian K; Tetzlaff, Wolfram

    2013-01-01

    High fat, low carbohydrate ketogenic diets (KD) are validated non-pharmacological treatments for some forms of drug-resistant epilepsy. Ketones reduce neuronal excitation and promote neuroprotection. Here, we investigated the efficacy of KD as a treatment for acute cervical spinal cord injury (SCI) in rats. Starting 4 hours following C5 hemi-contusion injury animals were fed either a standard carbohydrate based diet or a KD formulation with lipid to carbohydrate plus protein ratio of 3:1. The forelimb functional recovery was evaluated for 14 weeks, followed by quantitative histopathology. Post-injury 3:1 KD treatment resulted in increased usage and range of motion of the affected forepaw. Furthermore, KD improved pellet retrieval with recovery of wrist and digit movements. Importantly, after returning to a standard diet after 12 weeks of KD treatment, the improved forelimb function remained stable. Histologically, the spinal cords of KD treated animals displayed smaller lesion areas and more grey matter sparing. In addition, KD treatment increased the number of glucose transporter-1 positive blood vessels in the lesion penumbra and monocarboxylate transporter-1 (MCT1) expression. Pharmacological inhibition of MCTs with 4-CIN (α-cyano-4-hydroxycinnamate) prevented the KD-induced neuroprotection after SCI, In conclusion, post-injury KD effectively promotes functional recovery and is neuroprotective after cervical SCI. These beneficial effects require the function of monocarboxylate transporters responsible for ketone uptake and link the observed neuroprotection directly to the function of ketones, which are known to exert neuroprotection by multiple mechanisms. Our data suggest that current clinical nutritional guidelines, which include relatively high carbohydrate contents, should be revisited. PMID:24223849

  10. Ketogenic Diet Improves Forelimb Motor Function after Spinal Cord Injury in Rodents

    PubMed Central

    Streijger, Femke; Plunet, Ward T.; Lee, Jae H. T.; Liu, Jie; Lam, Clarrie K.; Park, Soeyun; Hilton, Brett J.; Fransen, Bas L.; Matheson, Keely A. J.; Assinck, Peggy; Kwon, Brian K.; Tetzlaff, Wolfram

    2013-01-01

    High fat, low carbohydrate ketogenic diets (KD) are validated non-pharmacological treatments for some forms of drug-resistant epilepsy. Ketones reduce neuronal excitation and promote neuroprotection. Here, we investigated the efficacy of KD as a treatment for acute cervical spinal cord injury (SCI) in rats. Starting 4 hours following C5 hemi-contusion injury animals were fed either a standard carbohydrate based diet or a KD formulation with lipid to carbohydrate plus protein ratio of 3:1. The forelimb functional recovery was evaluated for 14 weeks, followed by quantitative histopathology. Post-injury 3:1 KD treatment resulted in increased usage and range of motion of the affected forepaw. Furthermore, KD improved pellet retrieval with recovery of wrist and digit movements. Importantly, after returning to a standard diet after 12 weeks of KD treatment, the improved forelimb function remained stable. Histologically, the spinal cords of KD treated animals displayed smaller lesion areas and more grey matter sparing. In addition, KD treatment increased the number of glucose transporter-1 positive blood vessels in the lesion penumbra and monocarboxylate transporter-1 (MCT1) expression. Pharmacological inhibition of MCTs with 4-CIN (?-cyano-4-hydroxycinnamate) prevented the KD-induced neuroprotection after SCI, In conclusion, post-injury KD effectively promotes functional recovery and is neuroprotective after cervical SCI. These beneficial effects require the function of monocarboxylate transporters responsible for ketone uptake and link the observed neuroprotection directly to the function of ketones, which are known to exert neuroprotection by multiple mechanisms. Our data suggest that current clinical nutritional guidelines, which include relatively high carbohydrate contents, should be revisited. PMID:24223849

  11. Does reorganization in the cuneate nucleus following neonatal forelimb amputation influence development of anomalous circuits within the somatosensory cortex?

    PubMed

    Lane, Richard D; Pluto, Charles P; Kenmuir, Cynthia L; Chiaia, Nicolas L; Mooney, Richard D

    2008-02-01

    Neonatal forelimb amputation in rats produces sprouting of sciatic nerve afferent fibers into the cuneate nucleus (CN) and results in 40% of individual CN neurons expressing both forelimb-stump and hindlimb receptive fields. The forelimb-stump region of primary somatosensory cortex (S-I) of these rats contains neurons in layer IV that express both stump and hindlimb receptive fields. However, the source of the aberrant input is the S-I hindlimb region conveyed to the S-I forelimb-stump region via intracortical projections. Although the reorganization in S-I reflects changes in cortical circuitry, it is possible that these in turn are dependent on the CN reorganization. The present study was designed to directly test whether the sprouting of sciatic afferents into the CN is required for expression of the hindlimb inputs in the S-I forelimb-stump field. To inhibit sprouting, neurotrophin-3 (NT-3) was applied to the cut nerves following amputation. At P60 or older, NT-3-treated rats showed minimal sciatic nerve fibers in the CN. Multiunit electrophysiological recordings in the CN of NT-3-treated, amputated rats revealed 6.3% of sites were both stump/hindlimb responsive, compared with 30.5% in saline-treated amputated animals. Evaluation of the S-I following GABA receptor blockade, revealed that the percentage of hindlimb responsive sites in the stump representation of the NT-3-treated rats (34.2%) was not significantly different from that in saline-treated rats (31.5%). These results indicate that brain stem reorganization in the form of sprouting of sciatic afferents into the CN is not necessary for development of anomalous hindlimb receptive fields within the S-I forelimb/stump region. PMID:18032566

  12. Synergistic effects of self-assembling peptide and neural stem/progenitor cells to promote tissue repair and forelimb functionalrecovery in cervical spinal cord injury.

    PubMed

    Iwasaki, Motoyuki; Wilcox, Jared T; Nishimura, Yusuke; Zweckberger, Klaus; Suzuki, Hidenori; Wang, Jian; Liu, Yang; Karadimas, Spyridon K; Fehlings, Michael G

    2014-03-01

    While neural stem/progenitor cells (NPCs) show promise for traumatic spinal cord injury (SCI), their efficacy in cervical SCI remains to be established. Moreover, their application to SCI is limited by the challenges posed by the lesion including the glial scar and the post-traumatic cavitation. Given this background, we sought to examine the synergistic effect of self-assembling peptide (SAP) molecules, designed to optimize the post-traumatic CNS microenvironment, and NSCs in a clinically-relevant model of contusive/compressive cervical SCI. We injected K2(QL)6K2 (QL6) SAPs into the lesion epicenter 14 days after bilateral clip compression-induced cervical SCI in rats, combined with simultaneous transplantation of neural stem/progenitor cells (NPCs) intraspinally adjacent to the lesion epicenter. The QL6 SAPs reduced the volume of cystic cavitation in the spinal cord lesion. Simultaneously engrafted NPCs preserved motor neurons and attenuated perilesional inflammation. The combination of QL6 and NPCs promoted forelimb neurobehavioral recovery and was associated with significant improvement in forelimb print area and stride length. In summary, we report for the first time histologic and functional benefits in a clinically-relevant model of cervical SCI through the synergistic effects of combined SAP and NPCs. PMID:24406216

  13. The Irvine, Beatties, and Bresnahan (IBB) Forelimb Recovery Scale: An Assessment of Reliability and Validity

    PubMed Central

    Irvine, Karen-Amanda; Ferguson, Adam R.; Mitchell, Kathleen D.; Beattie, Stephanie B.; Lin, Amity; Stuck, Ellen D.; Huie, J. Russell; Nielson, Jessica L.; Talbott, Jason F.; Inoue, Tomoo; Beattie, Michael S.; Bresnahan, Jacqueline C.

    2014-01-01

    The IBB scale is a recently developed forelimb scale for the assessment of fine control of the forelimb and digits after cervical spinal cord injury [SCI; (1)]. The present paper describes the assessment of inter-rater reliability and face, concurrent and construct validity of this scale following SCI. It demonstrates that the IBB is a reliable and valid scale that is sensitive to severity of SCI and to recovery over time. In addition, the IBB correlates with other outcome measures and is highly predictive of biological measures of tissue pathology. Multivariate analysis using principal component analysis (PCA) demonstrates that the IBB is highly predictive of the syndromic outcome after SCI (2), and is among the best predictors of bio-behavioral function, based on strong construct validity. Altogether, the data suggest that the IBB, especially in concert with other measures, is a reliable and valid tool for assessing neurological deficits in fine motor control of the distal forelimb, and represents a powerful addition to multivariate outcome batteries aimed at documenting recovery of function after cervical SCI in rats. PMID:25071704

  14. Reduced neurons in the ileum of proctocolectomized rat models.

    PubMed

    Zhao, Chun-Mei; Myrvold, Helge E; Chen, Duan

    2015-09-01

    Ileal pouch-anal anastomosis (IPAA) is the operation of choice following proctocolectomy for patients who suffer from ulcerative colitis and familial adenomatous polyposis. The aim of this study was to morphologically examine the neurons, endocrine cells and mast cells in the ileum of rats subjected to proctocolectomy followed by three different types of ileoanal anastomosis. Rats were subjected to either sham operation or proctocolectomy followed by ileoanal anastomosis end-to-end, side-to-end or IPAA (J-pouch). In comparison to sham-operated rats, the body weight was reduced in rats that underwent proctocolectomy with end-to-end or side-to-end, but not IPAA procedure. In all three models of ileoanal anastomosis, the ileum displayed crypt hyperplasia with a chronic inflammatory infiltrate located in the interstitium, hyperplasia of goblet cells, but reduced protein gene product 9.5 (PGP 9.5)-immunoreactive neurons in the mucosa as well as submucosa. Numbers of endocrine cells in the mucosa (chromogranin A immunostaining) and mast cells in the mucosa and submucosa (Astra blue staining) were unchanged after proctocolectomy. In conclusion, neurons, but neither endocrine cells nor mast cells, were reduced in the ileum of proctocolectomized rats followed by either of three different types of ileoanal anastomosis. PMID:25432768

  15. Unsaturated Fatty Acids Supplementation Reduces Blood Lead Level in Rats

    PubMed Central

    Skoczyńska, Anna; Wojakowska, Anna; Nowacki, Dorian; Bobak, Łukasz; Turczyn, Barbara; Smyk, Beata; Szuba, Andrzej; Trziszka, Tadeusz

    2015-01-01

    Some dietary factors could inhibit lead toxicity. The aim of this study was to evaluate the effect of dietary compounds rich in unsaturated fatty acids (FA) on blood lead level, lipid metabolism, and vascular reactivity in rats. Serum metallothionein and organs' lead level were evaluated with the aim of assessing the possible mechanism of unsaturated FA impact on blood lead level. For three months, male Wistar rats that were receiving drinking water with (100 ppm Pb) or without lead acetate were supplemented per os daily with virgin olive oil or linseed oil (0.2 mL/kg b.w.) or egg derived lecithin fraction: “super lecithin” (50 g/kg b.w.). Mesenteric artery was stimulated ex vivo by norepinephrine (NE) administered at six different doses. Lecithin supplementation slightly reduced pressor responses of artery to NE. Lead administered to rats attenuated the beneficial effect of unsaturated FA on lipid metabolism and vascular reactivity to adrenergic stimulation. On the other hand, the super lecithin and linseed oil that were characterized by low omega-6 to omega-3 ratio (about 1) reduced the blood lead concentration. This effect was observed in lead poisoned rats (p < 0.0001) and also in rats nonpoisoned with lead (p < 0.05). PMID:26075218

  16. Reduced exposure to microwave radiation by rats: frequency specific effects

    SciTech Connect

    D'Andrea, J.A.; DeWitt, J.R.; Portuguez, L.M.; Gandhi, O.P.

    1988-01-01

    Previous research has shown that SAR hotspots are induced within the laboratory rat and that the resulting thermal hotspots are not entirely dissipated by bloodflow. Two experiments were conducted to determine if hotspot formation in the body and tail of the rat, which is radiation frequency specific, would have behavioral consequences. In the first experiment rats were placed in a plexiglas cage one side of which, when occupied by the rat, commenced microwave radiation exposure; occupancy of the other side terminated exposure. Groups of rats were tested during a baseline period to determine the naturally preferred side of the cage. Subsequent exposure to 360-MHz, 700-MHz or 2450-MHz microwave radiation was made contingent on preferred-side occupancy. A significant reduction in occupancy of the preferred side of the cage, and hence, microwaves subsequently occurred. Reduced exposure to 360-MHz and 2450-MHz microwaves at 1, 2, 6 and 10 W/kg were significantly different from 700-MHz microwaves. In the second experiment semichronic exposures revealed the threshold for reduced exposure of 2450-MHz microwaves to be located between whole-body SAR's of 2.1 and 2.8 W/kg.

  17. Metformin reduces hepatic resistance and portal pressure in cirrhotic rats.

    PubMed

    Tripathi, Dinesh M; Erice, Eva; Lafoz, Erica; Garca-Calder, Hctor; Sarin, Shiv K; Bosch, Jaime; Gracia-Sancho, Jordi; Garca-Pagn, Juan Carlos

    2015-09-01

    Increased hepatic vascular resistance is the primary factor in the development of portal hypertension. Metformin ameliorates vascular cells function in several vascular beds. Our study was aimed at evaluating the effects, and the underlying mechanisms, of metformin on hepatic and systemic hemodynamics in cirrhotic rats and its possible interaction with the effects of propranolol (Prop), the current standard treatment for portal hypertension. CCl4-cirrhotic rats received by gavage metformin 300 mg/kg or its vehicle once a day for 1 wk, before mean arterial pressure (MAP), portal pressure (PP), portal blood flow (PBF), hepatic vascular resistance, and putative molecular/cellular mechanisms were measured. In a subgroup of cirrhotic rats, the hemodynamic response to acute Prop (5 mg/kg iv) was assessed. Effects of metformin Prop on PP and MAP were validated in common bile duct ligated-cirrhotic rats. Metformin-treated CCl4-cirrhotic rats had lower PP and hepatic vascular resistance than vehicle-treated rats, without significant changes in MAP or PBF. Metformin caused a significant reduction in liver fibrosis (Sirius red), hepatic stellate cell activation (?-smooth muscle actin, platelet-derived growth factor receptor ? polypeptide, transforming growth factor-?R1, and Rho kinase), hepatic inflammation (CD68 and CD163), superoxide (dihydroethidium staining), and nitric oxide scavenging (protein nitrotyrosination). Prop, by decreasing PBF, further reduced PP. Similar findings were observed in common bile duct ligated-cirrhotic rats. Metformin administration reduces PP by decreasing the structural and functional components of the elevated hepatic resistance of cirrhosis. This effect is additive to that of Prop. The potential impact of this pharmacological combination, otherwise commonly used in patients with cirrhosis and diabetes, needs clinical evaluation. PMID:26138461

  18. Red maca (Lepidium meyenii) reduced prostate size in rats

    PubMed Central

    Gonzales, Gustavo F; Miranda, Sara; Nieto, Jessica; Fernndez, Gilma; Yucra, Sandra; Rubio, Julio; Yi, Pedro; Gasco, Manuel

    2005-01-01

    Background Epidemiological studies have found that consumption of cruciferous vegetables is associated with a reduced risk of prostate cancer. This effect seems to be due to aromatic glucosinolate content. Glucosinolates are known for have both antiproliferative and proapoptotic actions. Maca is a cruciferous cultivated in the highlands of Peru. The absolute content of glucosinolates in Maca hypocotyls is relatively higher than that reported in other cruciferous crops. Therefore, Maca may have proapoptotic and anti-proliferative effects in the prostate. Methods Male rats treated with or without aqueous extracts of three ecotypes of Maca (Yellow, Black and Red) were analyzed to determine the effect on ventral prostate weight, epithelial height and duct luminal area. Effects on serum testosterone (T) and estradiol (E2) levels were also assessed. Besides, the effect of Red Maca on prostate was analyzed in rats treated with testosterone enanthate (TE). Results Red Maca but neither Yellow nor Black Maca reduced significantly ventral prostate size in rats. Serum T or E2 levels were not affected by any of the ecotypes of Maca assessed. Red Maca also prevented the prostate weight increase induced by TE treatment. Red Maca administered for 42 days reduced ventral prostatic epithelial height. TE increased ventral prostatic epithelial height and duct luminal area. These increases by TE were reduced after treatment with Red Maca for 42 days. Histology pictures in rats treated with Red Maca plus TE were similar to controls. Phytochemical screening showed that aqueous extract of Red Maca has alkaloids, steroids, tannins, saponins, and cardiotonic glycosides. The IR spectra of the three ecotypes of Maca in 3800-650 cm (-1) region had 7 peaks representing 7 functional chemical groups. Highest peak values were observed for Red Maca, intermediate values for Yellow Maca and low values for Black Maca. These functional groups correspond among others to benzyl glucosinolate. Conclusions Red Maca, a cruciferous plant from the highland of Peru, reduced ventral prostate size in normal and TE treated rats. PMID:15661081

  19. Dietary vitamin E reduces labile iron in rat tissues.

    PubMed

    Ibrahim, Wissam; Chow, Ching Kuang

    2005-01-01

    Previous studies have shown that dietary vitamin E reduced generation and/or levels of superoxide. As superoxide has potential to release iron from its transport and storage proteins, and labile or available form of iron is capable of catalyzing the formation of reactive hydroxyl radicals, the effect of dietary vitamin E on labile iron pool was studied in rats. One-month-old Sprague-Dawley male and female rats were fed a basal vitamin E-deficient diet supplemented with 0, 20, 200, or 2,000 IU vitamin E/kg diet for 90 days. The levels of labile iron were measured in the liver, kidney, spleen, heart and skeletal muscle. Additionally, the levels of lipid peroxidation products were measured. The results showed that, except for labile iron in the heart of male rats, dietary vitamin E dose dependently reduced the levels of labile iron and lipid peroxidation products in all tissues of male and female rats. The findings suggest that dietary vitamin E may protect against oxidative tissue damage by reducing the generation and/or level of superoxide, which in turn attenuates the release of iron from its protein complexes. PMID:16292753

  20. New, puzzling insights from comparative myological studies on the old and unsolved forelimb/hindlimb enigma.

    PubMed

    Diogo, Rui; Linde-Medina, Marta; Abdala, Virginia; Ashley-Ross, Miriam A

    2013-02-01

    Most textbooks and research reports state that the structures of the tetrapod forelimbs and hindlimbs are serial homologues. From this view, the main challenge of evolutionary biologists is not to explain the similarity between tetrapod limbs, but instead to explain why and how they have diverged. However, these statements seem to be related to a confusion between the serial homology of the vertebrate pelvic and pectoral appendages as a whole, and the serial homology of the specific soft- and hard-tissue structures of the tetrapod forelimbs and hindlimbs, leading to an even more crucial and puzzling question being overlooked: why are the skeletal and particularly the muscle structures of the forelimb and hindlimb actually so strikingly similar to each other? Herein we provide an updated discussion of these questions and test two main hypotheses: (i) that the similarity of the limb muscles is due to serial homology; and (ii) that tetrapods that use hindlimbs for a largely exclusive function (e.g. bipedalism in humans) exhibit fewer cases of similarity between forelimbs and hindlimbs than do quadrupedal species. Our review shows that of the 23 arm, forearm and hand muscles/muscle groups of salamanders, 18 (78%) have clear 'topological equivalents' in the hindlimb; in lizards, 14/24 (58%); in rats, 14/35 (40%); and in modern humans, 19/37 (51%). These numbers seem to support the idea that there is a plesiomorphic similarity and subsequent evolutionary divergence, but this tendency actually only applies to the three former quadrupedal taxa. Moreover, if one takes into account the total number of 'correspondences', one comes to a surprising and puzzling conclusion: in modern humans the number of forelimb muscles/muscle groups with clear 'equivalents' in the hindlimb (19) is substantially higher than in quadrupedal mammals such as rats (14), lizards (14) and even salamanders (18). These data contradict the hypothesis that divergent functions lead to divergent morphological structures. Furthermore, as we show that at least five of the 19 modern human adult forelimb elements that have a clear hindlimb 'equivalent' derive from embryonic anlages that are very different from the ones giving rise to their adult hindlimb 'equivalents', they also contradict the hypothesis that the similarity in muscle structures between the forelimb and hindlimb of tetrapods such as modern humans are due to their origin as serial homologues. This similarity is instead the result of phylogenetically independent evolutionary changes leading to a parallelism/convergence due to: (i) developmental constraints, i.e. similar molecular mechanisms are involved (particularly in the formation of the neomorphic hand), but this does not necessarily mean that similar anlages are used to form the similar adult structures; (ii) functional constraints, related to similar adaptations; (iii) topological constraints, i.e. limited physical possibilities; and even (iv) phylogenetic constraints, which tend to prevent/decrease the occurrence of new homoplasic similarities, but also help to keep older, ancestral homoplasic resemblances. PMID:22958734

  1. Growth hormone reduces mortality and bacterial translocation in irradiated rats.

    PubMed

    Gmez-de-Segura, I A; Prieto, I; Grande, A G; Garca, P; Guerra, A; Mendez, J; De Miguel, E

    1998-01-01

    Growth hormone stimulates the growth of intestinal mucosa and may reduce the severity of injury caused by radiation. Male Wistar rats underwent abdominal irradiation (12 Gy) and were treated with either human growth hormone (hGH) or saline, and sacrificed at day 4 or 7 post-irradiation. Bacterial translocation, and the ileal mucosal thickness, proliferation, and disaccharidase activity were assessed. Mortality was 65% in irradiated animals, whereas hGH caused a decrement (29%, p < 0.05). Bacterial translocation was also reduced by hGH (p < 0.05). Treating irradiated rats with hGH prevented body weight loss (p < 0.05). Mucosal thickness increased faster in irradiated hGH-treated animals. The proliferative index showed an increment in hGH-treated animals (p < 0.05). Giving hGH to irradiated rats prevented decrease in sucrose activity, and increment in lactase activity. In conclusion, giving hGH to irradiated rats promotes the adaptative process of the intestine and acute radiation-related negative effects, including mortality, bacterial translocation, and weight loss. PMID:9636013

  2. Forelimb kinematics during hopping and landing in toads.

    PubMed

    Cox, S M; Gillis, Gary B

    2015-10-01

    Coordinated landing in a variety of animals involves the re-positioning of limbs prior to impact to safely decelerate the body. However, limb kinematics strategies for landing vary considerably among species. For example, human legs are increasingly flexed before impact as drop height increases, while turkeys increasingly extend their legs before impact with increasing drop height. In anurans, landing typically involves the use of the forelimbs to decelerate the body after impact. Few detailed, quantitative descriptions of anuran forelimb kinematics during jumping exist and it is not known whether they prepare for larger landing forces by changing forelimb kinematics. In this study, we used high-speed video of 51 hops from five cane toads (Bufo marinus) to test the hypothesis that forelimb kinematics change predictably with distance. We measured excursions of the elbow (flexion/extension) and humerus (protraction/retraction and elevation/depression) throughout every hop. The results indicate that elbow and humeral excursions leading up to impact increase significantly with hop length, but do so without any change in the rate of movement. Instead, because the animal is in the air longer during longer hops, near-constant velocity movements lead to the larger excursions. These larger excursions in elbow extension result in animals hitting the ground with more extended forelimbs in longer hops, which in turn allows animals to decelerate over a greater distance. PMID:26254325

  3. A Protein Extract from Chicken Reduces Plasma Homocysteine in Rats

    PubMed Central

    Lysne, Vegard; Bjørndal, Bodil; Vik, Rita; Nordrehaug, Jan Erik; Skorve, Jon; Nygård, Ottar; Berge, Rolf K.

    2015-01-01

    The present study aimed to evaluate effects of a water-soluble protein fraction of chicken (CP), with a low methionine/glycine ratio, on plasma homocysteine and metabolites related to homocysteine metabolism. Male Wistar rats were fed either a control diet with 20% w/w casein as the protein source, or an experimental diet where 6, 14 or 20% w/w of the casein was replaced with the same amount of CP for four weeks. Rats fed CP had reduced plasma total homocysteine level and markedly increased levels of the choline pathway metabolites betaine, dimethylglycine, sarcosine, glycine and serine, as well as the transsulfuration pathway metabolites cystathionine and cysteine. Hepatic mRNA level of enzymes involved in homocysteine remethylation, methionine synthase and betaine-homocysteine S-methyltransferase, were unchanged, whereas cystathionine gamma-lyase of the transsulfuration pathway was increased in the CP treated rats. Plasma concentrations of vitamin B2, folate, cobalamin, and the B-6 catabolite pyridoxic acid were increased in the 20% CP-treated rats. In conclusion, the CP diet was associated with lower plasma homocysteine concentration and higher levels of serine, choline oxidation and transsulfuration metabolites compared to a casein diet. The status of related B-vitamins was also affected by CP. PMID:26053618

  4. Astaxanthin reduces ischemic brain injury in adult rats

    PubMed Central

    Shen, Hui; Kuo, Chi-Chung; Chou, Jenny; Delvolve, Alice; Jackson, Shelley N.; Post, Jeremy; Woods, Amina S.; Hoffer, Barry J.; Wang, Yun; Harvey, Brandon K.

    2009-01-01

    Astaxanthin (ATX) is a dietary carotenoid of crustaceans and fish that contributes to their coloration. Dietary ATX is important for development and survival of salmonids and crustaceans and has been shown to reduce cardiac ischemic injury in rodents. The purpose of this study was to examine whether ATX can protect against ischemic injury in the mammalian brain. Adult rats were injected intracerebroventricularly with ATX or vehicle prior to a 60-min middle cerebral artery occlusion (MCAo). ATX was present in the infarction area at 70-75 min after onset of MCAo. Treatment with ATX, compared to vehicle, increased locomotor activity in stroke rats and reduced cerebral infarction at 2 d after MCAo. To evaluate the protective mechanisms of ATX against stroke, brain tissues were assayed for free radical damage, apoptosis, and excitoxicity. ATX antagonized ischemia-mediated loss of aconitase activity and reduced glutamate release, lipid peroxidation, translocation of cytochrome c, and TUNEL labeling in the ischemic cortex. ATX did not alter physiological parameters, such as body temperature, brain temperature, cerebral blood flow, blood gases, blood pressure, and pH. Collectively, our data suggest that ATX can reduce ischemia-related injury in brain tissue through the inhibition of oxidative stress, reduction of glutamate release, and antiapoptosis. ATX may be clinically useful for patients vulnerable or prone to ischemic events.—Shen, H., Kuo, C.-C., Chou, J., Delvolve, A., Jackson, S. N., Post, J., Woods, A. S., Hoffer, B. J., Wang, Y., Harvey, B. K. Astaxanthin reduces ischemic brain injury in adult rats. PMID:19218497

  5. Internal and external feedback circuits for skilled forelimb movement

    PubMed Central

    Azim, Eiman; Fink, Andrew J.P.; Jessell, Thomas M.

    2015-01-01

    Skilled motor behavior emerges from interactions between efferent neural pathways that induce muscle contraction and feedback systems that report and refine movement. Two broad classes of feedback projections modify motor output, one from the periphery and a second that originates within the central nervous system. The mechanisms through which these pathways influence movement remain poorly understood, however. Here we discuss recent studies that delineate spinal circuitry that binds external and internal feedback pathways to forelimb motor behavior. A spinal presynaptic inhibitory circuit regulates the strength of external feedback, promoting limb stability during goal-directed reaching. A distinct excitatory propriospinal circuit conveys copies of motor commands to the cerebellum, establishing an internal feedback loop that rapidly modulates forelimb motor output. The behavioral consequences of manipulating these two circuits reveal distinct controls on motor performance, and provide an initial insight into feedback strategies that underlie skilled forelimb movement. PMID:25699987

  6. Melatonin reduces hepatic mitochondrial dysfunction in diabetic obese rats.

    PubMed

    Agil, Ahmad; El-Hammadi, Mazen; Jiménez-Aranda, Aroa; Tassi, Mohamed; Abdo, Walied; Fernández-Vázquez, Gumersindo; Reiter, Russel J

    2015-08-01

    Hepatic mitochondrial dysfunction is thought to play a role in the development of liver steatosis and insulin resistance, which are both common characteristics of obesity and type 2 diabetes mellitus (T2DM). It was hypothesized that the antioxidant properties of melatonin could potentially improve the impaired functions of hepatic mitochondria in diabetic obese animals. Male Zucker diabetic fatty (ZDF) rats and lean littermates (ZL) were given either melatonin (10 mg/kg BW/day) orally for 6 wk (M-ZDF and M-ZL) or vehicle as control groups (C-ZDF and C-ZL). Hepatic function was evaluated by measurement of serum alanine transaminase and aspartate transaminase levels, liver histopathology and electron microscopy, and hepatic mitochondrial functions. Several impaired functions of hepatic mitochondria were observed in C-ZDF in comparison with C-ZL rats. Melatonin treatment to ZDF rats decreases serum levels of ALT (P < 0.001), alleviates liver steatosis and vacuolation, and also mitigates diabetic-induced mitochondrial abnormalities, glycogen, and lipid accumulation. Melatonin improves mitochondrial dysfunction in M-ZDF rats by increasing activities of mitochondrial citrate synthase (P < 0.001) and complex IV of electron transfer chain (P < 0.05) and enhances state 3 respiration (P < 0.001), respiratory control index (RCR) (P < 0.01), and phosphorylation coefficient (ADP/O ratio) (P < 0.05). Also melatonin augments ATP production (P < 0.05) and diminishes uncoupling protein 2 levels (P < 0.001). These results demonstrate that chronic oral melatonin reduces liver steatosis and mitochondria dysfunction in ZDF rats. Therefore, it may be beneficial in the treatment of diabesity. PMID:25904243

  7. 2-HYDROXYESTRADIOL ENHANCES BINGE ONSET IN FEMALE RATS AND REDUCES PREFRONTAL CORTICAL DOPAMINE IN MALE RATS

    PubMed Central

    R.K., Babbs; E.L., Unger; R.L.W., Corwin

    2013-01-01

    Women are more likely to suffer from a bingeing-related eating disorder, which is surprising, since estradiol reduces meal size and is associated with reduced binge frequency. This apparent contradiction may involve the estradiol metabolite, 2-hydroxyestradiol. We previously reported that female rats had faster escalations in shortening intake during the development of bingeing than did males, but acute administration of 2-hydroxyestradiol increased the intake of vegetable shortening to a greater extent in male rats once bingeing was established. Here, we report two separate studies that follow up these previous findings. In the first, we hypothesized that chronic exposure to 2-hydroxyestradiol would promote escalation of bingeing during binge development in ovariectomized female rats. In the second, we hypothesized that acute exposure to 2-hydroxyestradiol would enhance dopamine signaling in the prefrontal cortex after bingeing was established in male rats. In study 1, non-food-deprived female rats were separated into 3 groups: ovariectomized (OVX) with chronic 2-hydroxyestradiol supplementation (E), OVX with vehicle supplementation (O), and intact with vehicle (I). Each group was given access to an optional source of dietary fat (shortening) on Mon, Wed, and Fri for four weeks. 2-hydroxyestradiol supplementation prevented OVX-induced weight gain and enhanced escalation of shortening intake over the four-week period (ps < 0.05). Additionally, in week 4, rats in the E group ate significantly more shortening than I controls, less chow than either the O or I group, and had a higher shortening to chow ratio than O or I (ps < 0.05). Study 2 indicated that acute injection of 2-hydroxyestradiol abolished shortening-evoked dopamine efflux in the prefrontal cortex of bingeing male rats (p < 0.05). Together, these studies indicate that 2-hydroxyestradiol can exacerbate bingeing as it develops and can suppress dopamine signaling in the prefrontal cortex once bingeing is established. PMID:23116652

  8. 2-Hydroxyestradiol enhances binge onset in female rats and reduces prefrontal cortical dopamine in male rats.

    PubMed

    Babbs, R K; Unger, E L; Corwin, R L W

    2013-01-01

    Women are more likely to suffer from a bingeing-related eating disorder, which is surprising, since estradiol reduces meal size and is associated with reduced binge frequency. This apparent contradiction may involve the estradiol metabolite, 2-hydroxyestradiol. We previously reported that female rats had faster escalations in shortening intake during the development of bingeing than did males, but acute administration of 2-hydroxyestradiol increased the intake of vegetable shortening to a greater extent in male rats once bingeing was established. Here, we report two separate studies that follow up these previous findings. In the first, we hypothesized that chronic exposure to 2-hydroxyestradiol would promote escalation of bingeing during binge development in ovariectomized female rats. In the second, we hypothesized that acute exposure to 2-hydroxyestradiol would enhance dopamine signaling in the prefrontal cortex after bingeing was established in male rats. In study 1, non-food-deprived female rats were separated into 3 groups: ovariectomized (OVX) with chronic 2-hydroxyestradiol supplementation (E), OVX with vehicle supplementation (O), and intact with vehicle (I). Each group was given access to an optional source of dietary fat (shortening) on Mon, Wed, and Fri for 4 weeks. 2-hydroxyestradiol supplementation prevented OVX-induced weight gain and enhanced escalation of shortening intake over the four-week period (ps<0.05). Additionally, in week 4, rats in the E group ate significantly more shortening than I controls, less chow than either the O or I group, and had a higher shortening to chow ratio than O or I (ps<0.05). Study 2 indicated that acute injection of 2-hydroxyestradiol abolished shortening-evoked dopamine efflux in the prefrontal cortex of bingeing male rats (p<0.05). Together, these studies indicate that 2-hydroxyestradiol can exacerbate bingeing as it develops and can suppress dopamine signaling in the prefrontal cortex once bingeing is established. PMID:23116652

  9. Resveratrol reduces intracellular free calcium concentration in rat ventricular myocytes.

    PubMed

    Liu, Zheng; Zhang, Li-Ping; Ma, Hui-Jie; Wang, Chuan; Li, Ming; Wang, Qing-Shan

    2005-10-25

    Resveratrol (trans-3, 4', 5-trihydroxy stilbene), a phytoalexin found in grape skins and red wine, has been reported to have a wide range of biological and pharmacological properties. It has been speculated that resveratrol may have cardioprotective activity. The objective of our study was to investigate the effects of resveratrol on intracellular calcium concentration ([Ca(2+)](i)) in rat ventricular myocytes. [Ca(2+)](i) was detected by laser scanning confocal microscopy. The results showed that resveratrol (15~60 mumol/L) reduced [Ca(2+)](i) in normal and Ca(2+)-free Tyrode's solution in a concentration-dependent manner. The effects of resveratrol on [Ca(2+)](i) in normal Tyrode's solution was partially inhibited by pretreatment with sodium orthovanadate (Na3VO4, 1.0 mmol/L, P<0.01), an inhibitor of protein tyrosine phosphatase, or L-type Ca(2+) channel agonist Bay K8644 (10 mumol/L, P<0.05), but could not be antagonized by NO synthase inhibitor L-NAME (1.0 mmol/L). Resveratrol also markedly inhibited the ryanodine-induced [Ca(2+)](i) increase in Ca(2+)-free Tyrode's solution (P<0.01). When Ca(2+) waves were produced by increasing extracellular Ca(2+) concentration from 1 to 10 mmol/L, resveratrol (60 mumol/L) could reduce the velocity and duration of propagating waves, and block the propagating waves of elevated [Ca(2+)](i). These results suggest that resveratrol may reduce the [Ca(2+)](i) in isolated rat ventricular myocytes. The inhibition of voltage-dependent Ca(2+) channel and tyrosine kinase, and alleviation of Ca(2+) release from sarcoplasmic reticulum (SR) are possibly involved in the effects of resveratrol on rat ventricular myocytes. These findings could help explain the protective activity of resveratrol against cardiovascular disease. PMID:16220198

  10. Noribogaine reduces nicotine self-administration in rats.

    PubMed

    Chang, Qing; Hanania, Taleen; Mash, Deborah C; Maillet, Emeline L

    2015-06-01

    Noribogaine, a polypharmacological drug with activities at opioid receptors, ionotropic nicotinic receptors, and serotonin reuptake transporters, has been investigated for treatment of substance abuse-related disorders. Smoking cessation has major benefits for both individuals and society, therefore the aim of this study was to evaluate the potential of noribogaine for use as a treatment for nicotine dependence. Adult male Sprague-Dawley rats were trained to self-administer nicotine intravenous. After initial food pellet training, followed by 26 sessions of nicotine self-administration training, the rats were administered noribogaine (12.5, 25 or 50 mg/kg orally), noribogaine vehicle, varenicline or saline using a within-subject design with a Latin square test schedule. Noribogaine dose-dependently decreased nicotine self-administration by up to 64% of saline-treated rats' levels and was equi-effective to 1.7 mg/kg intraperitoneal varenicline. Noribogaine was less efficient at reducing food pellets self-administration than at nicotine self-administration, inhibiting the nondrug reinforcing effects of palatable pellets by 23% at the highest dose. These results suggest that noribogaine dose-dependently attenuates drug-taking behavior for nicotine, attenuates the reinforcing effects of nicotine and is comparable to varenicline power in that regard. The findings from the present study hold promise for a new therapy to aid smoking cessation. PMID:25995321

  11. Intestinal ischemic preconditioning reduces liver ischemia reperfusion injury in rats

    PubMed Central

    XUE, TONG-MIN; TAO, LI-DE; ZHANG, JIE; ZHANG, PEI-JIAN; LIU, XIA; CHEN, GUO-FENG; ZHU, YI-JIA

    2016-01-01

    The aim of the current study was to investigate whether intestinal ischemic preconditioning (IP) reduces damage to the liver during hepatic ischemia reperfusion (IR). Sprague Dawley rats were used to model liver IR injury, and were divided into the sham operation group (SO), IR group and IP group. The results indicated that IR significantly increased Bax, caspase 3 and NF-κBp65 expression levels, with reduced expression of Bcl-2 compared with the IP group. Compared with the IR group, the levels of AST, ALT, MPO, MDA, TNF-α and IL-1 were significantly reduced in the IP group. Immunohistochemistry for Bcl-2 and Bax indicated that Bcl-2 expression in the IP group was significantly increased compared with the IR group. In addition, IP reduced Bax expression compared with the IR group. The average liver injury was worsened in the IR group and improved in the IP group, as indicated by the morphological evaluation of liver tissues. The present study suggested that IP may alleviates apoptosis, reduce the release of pro-inflammatory cytokines, ameloriate reductions in liver function and reduce liver tissue injury. To conclude, IP provided protection against hepatic IR injury. PMID:26821057

  12. SKELETAL MORPHOLOGY OF THE FORELIMB OF MYRMECOPHAGA TRIDACTYLA.

    PubMed

    Sesoko, Natlia Ferreira; Rahal, Sheila Canevese; Bortolini, Zara; de Souza, Lvia Pasini; Vulcano, Luiz Carlos; Monteiro, Frederico Ozanan Barros; Teixeira, Carlos Roberto

    2015-12-01

    Anteater forelimbs are morphologically adapted to obtain food and to provide defense and locomotion. Four species are known, but there are few anatomical studies presenting the morphologic features of each species. The aim of this study was to describe the skeletal morphology of the giant anteater (Myrmecophaga tridactyla) forelimb. Pictures and schematic drawings of six cadavers were created to show the bone morphology. In addition, radiographs and computed tomographs were obtained. The skeletal structure of the forelimb had several notable anatomical features. The scapula had two spines, with apparent differences between infant and adult animals. The humerus had a pectoral ridge, a pectoral tubercle, and a pronounced medial epicondyle that represent the origins of muscles important for fossorial activity. The radius had cranial, lateral, and caudal ridges that became more prominent in older animals, and the distal condyle joint provided enhanced support of the dorsal articulation for the manus. Knowledge of the bone morphology of the forelimb generates a better understanding of giant anteater habits and helps in the diagnosis of skeletal abnormalities and in the routine medical assessment of this species. PMID:26667527

  13. Dopamine partial receptor agonists reduce ethanol intake in the rat.

    PubMed

    Bono, G; Balducci, C; Richelmi, P; Koob, G F; Pulvirenti, L

    1996-02-01

    Dopamine neurotransmission is an important neuropharmacological component of ethanol reinforcement in rodents. A recently characterized class of compounds, dopamine partial receptor agonists, appears to possess a unique pharmacological profile on dopamine neurotransmission. The aim of the present study was to test the effects of systemic administration of terguride and SDZ 208-911 (N-[(8 alpha)-2,6-dimethylergoline-8-yl]-2,2-diethylpropanamide), two prototype dopamine partial receptor agonists, in free-feeding, non-deprived rats trained to drink ethanol (10% w/v) and water in 'free-choice' limited access conditions. Both acute and chronic administration of terguride and SDZ 208-911 significantly reduced ethanol intake while water intake was not significantly affected, thus ruling out possible non-specific effects of these drugs on fluid intake. These results suggest that dopamine partial receptor agonists reduce the reinforcing properties of ethanol in the rat, an effect similar to that previously observed with cocaine. Therefore, the pharmacological profile of dopamine partial receptor agonists and their effects in animal models of dependence provide preclinical support to the hypothesis that these compounds may represent a novel pharmacological strategy for intervention in various forms of drug addiction. PMID:8904074

  14. Immunization of rats reduces nicotine distribution to brain.

    PubMed

    Hieda, Y; Keyler, D E; VanDeVoort, J T; Niedbala, R S; Raphael, D E; Ross, C A; Pentel, P R

    1999-04-01

    The effect of active immunization against nicotine on the initial distribution of nicotine to brain was studied in anesthetized rats. Animals received nicotine 0.03 mg/kg nicotine (equivalent to the nicotine dose absorbed by a human smoking two cigarettes) as a rapid injection in the jugular vein. In control animals, the arterial serum nicotine concentration initially exceeded the venous concentration 4.6-fold, similar to the initial arteriovenous difference produced by cigarette smoking in humans. Animals immunized with the nicotine analog CMUNic maintained this arteriovenous gradient, but with both arterial and venous nicotine concentrations several times higher than in controls. The arterial nicotine concentration was higher in immunized animals even at the first (7.5 s) sampling time. The brain nicotine concentration at 3 min was 36% lower in the immunized animals. The time course of nicotine distribution to brain was studied in a second group of animals. Brain nicotine concentration was reduced in rats immunized with CMUNic over the entire 6-min sampling period immediately following nicotine dosing (mean reduction 38%). A reduction was found at the earliest sampling time (30 s) and was maximal at 1 min (48%). Nicotine protein binding in serum was markedly increased in animals immunized with CMUNic compared to controls (91.2 versus 10.9%), and the unbound nicotine concentration in serum was lower (10.0 versus 13.4 ng/ml). The reduction in brain nicotine concentration correlated with antibody affinity for nicotine, and the percentage of nicotine bound in serum. These data demonstrate that nicotine-specific antibodies produced by active immunization rapidly bind nicotine in arterial blood, reduce the unbound nicotine concentration, and reduce the early distribution of nicotine to brain. Effects were observed using a clinically relevant nicotine dose and route of administration. These data suggest that the use of immunization to modify the behavioral effects of nicotine may be possible. PMID:10326777

  15. The timing and amount of vagus nerve stimulation during rehabilitative training affect post-stroke recovery of forelimb strength

    PubMed Central

    Hays, Seth A.; Khodaparast, Navid; Ruiz, Andrea; Sloan, Andrew M.; Hulsey, Daniel R.; Rennaker, Robert L.; Kilgard, Michael P.

    2014-01-01

    Loss of upper arm strength after stroke is a leading cause of disability. Strategies that can enhance the benefits of rehabilitative training could improve motor function after stroke. Recent studies in a rat model of ischemic stroke demonstrate that vagus nerve stimulation (VNS) paired with rehabilitative training substantially improves recovery of forelimb strength compared to extensive rehabilitative training without VNS. Here we report that the timing and amount of stimulation affect the degree of forelimb strength recovery. Similar amounts of delayed VNS delivered two hours after daily rehabilitative training sessions resulted in significantly less improvement compared to VNS that is paired with identical rehabilitative training. Significantly less recovery also occurred when several-fold more VNS was delivered during rehabilitative training. Both delayed and additional VNS confer moderately improved recovery compared to extensive rehabilitative training without VNS, but fail to enhance recovery to the same degree as VNS that is timed to occur with successful movements. These findings confirm that VNS paired with rehabilitative training holds promise for restoring forelimb strength post-stroke and indicate that both the timing and amount of VNS should be optimized to maximize therapeutic benefits. PMID:24818637

  16. Intranasal IGF-1 Reduced Rat Pup Germinal Matrix Hemorrhage.

    PubMed

    Lekic, Tim; Flores, Jerry; Klebe, Damon; Doycheva, Desislava; Rolland, William B; Tang, Jiping; Zhang, John H

    2016-01-01

    Germinal matrix hemorrhage (GMH) is the most devastating neurological problem of premature infants. Current treatment strategies are ineffective and brain injury is unpreventable. Insulin-like growth factor 1 (IGF-1) is an endogenous protein shown to have multiple neuroprotective properties. We therefore hypothesized that IGF-1 would reduce brain injury after GMH. Neonatal rats (P7 age) received stereotactic collagenase into the right ganglionic eminence. The following groups were studied: (1) sham, (2) GMH?+?vehicle, (3) GMH?+?intranasal IGF-1. Three days later, the animals were evaluated using the righting-reflex (early neurobehavior), Evans blue dye leakage (blood-brain barrier (BBB) permeability), brain water content (edema), and hemoglobin assay (extent of bleeding). Three weeks later, juvenile rats were tested using a water maze (delayed neurobehavior), and then were sacrificed on day 28 for assessment of hydrocephalus (ventricular size). Intranasal IGF-1 treated animals had improved neurological function, and amelioration of BBB permeability, edema, and re-bleeding. IGF-1 may play a part in protective brain signaling following GMH, and our observed protective effect may offer new promise for treatment targeting this vulnerable patient population. PMID:26463950

  17. Noribogaine reduces nicotine self-administration in rats

    PubMed Central

    Chang, Qing; Hanania, Taleen; Mash, Deborah C

    2015-01-01

    Noribogaine, a polypharmacological drug with activities at opioid receptors, ionotropic nicotinic receptors, and serotonin reuptake transporters, has been investigated for treatment of substance abuse-related disorders. Smoking cessation has major benefits for both individuals and society, therefore the aim of this study was to evaluate the potential of noribogaine for use as a treatment for nicotine dependence. Adult male Sprague-Dawley rats were trained to self-administer nicotine intravenous. After initial food pellet training, followed by 26 sessions of nicotine self-administration training, the rats were administered noribogaine (12.5, 25 or 50 mg/kg orally), noribogaine vehicle, varenicline or saline using a within-subject design with a Latin square test schedule. Noribogaine dose-dependently decreased nicotine self-administration by up to 64% of saline-treated rats’ levels and was equi-effective to 1.7 mg/kg intraperitoneal varenicline. Noribogaine was less efficient at reducing food pellets self-administration than at nicotine self-administration, inhibiting the nondrug reinforcing effects of palatable pellets by 23% at the highest dose. These results suggest that noribogaine dose-dependently attenuates drug-taking behavior for nicotine, attenuates the reinforcing effects of nicotine and is comparable to varenicline power in that regard. The findings from the present study hold promise for a new therapy to aid smoking cessation. PMID:25995321

  18. Compensatory load redistribution of horses with induced weight-bearing forelimb lameness trotting on a treadmill.

    PubMed

    Weishaupt, Michael A; Wiestner, Thomas; Hogg, Hermann P; Jordan, Patrick; Auer, Jrg A

    2006-01-01

    The study was performed to obtain a detailed insight into the load and time shifting mechanisms of horses with unilateral weight-bearing forelimb lameness. Reversible lameness was induced in 11 clinically sound horses by applying a solar pressure model. Three degrees of lameness (subtle, mild and moderate) were induced and compared with sound control measurements. Vertical ground reaction force-time histories of all four limbs were recorded simultaneously on an instrumented treadmill. Four compensatory mechanisms could be identified that served to reduce structural stress, i.e. peak vertical force on the affected limb: (1) with increasing lameness, horses reduced the total vertical impulse per stride; (2) the diagonal impulse decreased selectively in the lame diagonal; (3) the impulse was shifted within the lame diagonal to the hindlimb and in the sound diagonal to the forelimb; (4) the rate of loading and the peak forces were reduced by prolonging the stance duration. Except in the diagonal hindlimb, where peak vertical forces increased slightly in the moderate lameness condition, no equivalent compensatory overload situation was observed in the other limbs. Specific force and time information of all four limbs allow the unequivocal identification of the affected limb. PMID:15974567

  19. Exercise reduces angiotensin II responses in rat femoral veins.

    PubMed

    Chies, Agnaldo Bruno; Rossignoli, Patrícia de Souza; Baptista, Rafaela de Fátima Ferreira; de Lábio, Roger William; Payão, Spencer Luiz Marques

    2013-06-01

    The control of blood flow during exercise involves different mechanisms, one of which is the activation of the renin-angiotensin system, which contributes to exercise-induced blood flow redistribution. Moreover, although angiotensin II (Ang II) is considered a potent venoconstrictor agonist, little is known about its effects on the venous bed during exercise. Therefore, the present study aimed to assess the Ang II responses in the femoral vein taken from sedentary and trained rats at rest or subjected to a single bout of exercise immediately before organ bath experiments. Isolated preparations of femoral veins taken from resting-sedentary, exercised-sedentary, resting-trained and exercised-trained animals were studied in an organ bath. In parallel, the mRNA expression of prepro-endothelin-1 (ppET-1), as well as the ETA and ETB receptors, was quantified by real-time PCR in this tissue. The results show that, in the presence of L-NAME, Ang II responses in resting-sedentary animals were higher compared to the other groups. However, this difference disappeared after co-treatment with indomethacin, BQ-123 or BQ-788. Moreover, exercise reduced ppET-1 mRNA expression. These reductions in mRNA expression were more evident in resting-trained animals. In conclusion, either acute or repeated exercise adapts the rat femoral veins, thereby reducing the Ang II responses. This adaptation is masked by the action of locally produced nitric oxide and involves, at least partially, the ETB- mediated release of vasodilator prostanoids. Reductions in endothelin-1 production may also be involved in these exercise-induced modifications of Ang II responses in the femoral vein. PMID:23528515

  20. Exercise training reduces insulin resistance in postmyocardial infarction rats.

    PubMed

    Wang, Youhua; Tian, Zhenjun; Zang, Weijin; Jiang, Hongke; Li, Youyou; Wang, Shengpeng; Chen, Shengfeng

    2015-04-01

    Myocardial infarction (MI) induces cardiac dysfunction and insulin resistance (IR). This study examines the effects of MI-related IR on vasorelaxation and its underlying mechanisms, with a specific focus on the role of exercise in reversing the impaired vasorelaxation. Adult male Sprague-Dawley rats were divided into three groups: Sham, MI, and MI+Exercise. MI+Exercise rats were subjected to 8 weeks of treadmill training. Cardiac contraction, myocardial and arterial structure, vasorelaxation, levels of inflammatory cytokines, expression of eNOS and TNF-α, and activation of PI3K/Akt/eNOS and p38 mitogen-activated protein kinase (p38 MAPK) were determined in aortas. MI significantly impaired endothelial structure and vasodilation (P < 0.05-0.01), as indicated by decreased arterial vasorelaxation to ACh and insulin. MI also attenuated the myocardial contractile response, decreased aortic PI3K/Akt/eNOS expression and phosphorylation by insulin, and increased IL-1β, IL-6, and TNF-α expression and p38 MAPK activity (P < 0.05-0.01). Exercise improved insulin sensitivity in aortas, facilitated myocardial contractile response and arterial vasorelaxation to ACh and insulin, and increased arterial PI3K/Akt/eNOS activity. Moreover, exercise markedly reversed increased p38 MAPK activity and normalized inflammatory cytokines in post-MI arteries. Inhibition of PI3K with LY-294002, and eNOS with L-NAME significantly blocked arterial vasorelaxation and PI3K/Akt/eNOS phosphorylation in response to insulin. In conclusion, these results demonstrate that endothelial dysfunction in response to insulin plays an important role in MI-related IR. The reversal of IR by exercise is most likely associated with normalizing inflammatory cytokines, increasing the activation of PI3K/Akt/eNOS, and reducing the activation of p38 MAPK. PMID:25907785

  1. Electroacupuncture Reduces Hyperalgesia after Injections of Acidic Saline in Rats

    PubMed Central

    Maciel, Leonardo Yung dos Santos; da Cruz, Kamilla Mayara Lucas; de Araujo, Ariane Martins; Silva, Zak Moreira de Andrade; Badauê-Passos, Daniel; Santana-Filho, Valter Joviniano; DeSantana, Josimari Melo

    2014-01-01

    Background. Injections of acidic saline into the gastrocnemius muscle in rats produce a bilateral long-lasting hyperalgesia similar to fibromyalgia in humans. No previous study investigated the effect of electroacupuncture (EA) on this acidic saline model. This study aimed to identify the effects of EA in the hyperalgesia produced by repeated intramuscular injections of acidic saline. Methods. Rats were divided into four groups (n = 6, each group): control, acupuncture, EA 15 Hz, and 100 Hz. Left gastrocnemius muscle was injected with 100 μL of pH 4.0 sterile saline twice five days apart. EA, acupuncture, or control therapy was daily administered (20 min) for 5 consecutive days under anesthesia. Needles were placed in the St36 and Sp6 acupoints. The assessment of secondary mechanical hyperalgesia, thermal hyperalgesia, and motor performance was performed before injections and before and after the treatment performed on each day. The paw withdrawal threshold was tested using the nonparametric Kruskal-Wallis test and differences within the group Wilcoxon Matched Pairs. The latency and motor performance were tested for ANOVA parametric test for independent measures, and for differences in the group, we used t-test for paired samples. Post hoc Tukey test was used for multiple corrections. P values less than 0.05 were considered statistically significant. Results. Indicate that there was a significant reduction of mechanical withdrawal threshold and paw withdrawal latency 24 hours following the second injection. Moreover, mechanical and thermal hyperalgesia were significantly reversed by EA 15, 100 Hz, and acupuncture. Conclusions. The results suggest that EA high and low frequency as well as acupuncture are effective in reducing hyperalgesia in chronic muscle pain model. PMID:24772181

  2. Exercise training reduces insulin resistance in postmyocardial infarction rats

    PubMed Central

    Wang, Youhua; Tian, Zhenjun; Zang, Weijin; Jiang, Hongke; Li, Youyou; Wang, Shengpeng; Chen, Shengfeng

    2015-01-01

    Myocardial infarction (MI) induces cardiac dysfunction and insulin resistance (IR). This study examines the effects of MI-related IR on vasorelaxation and its underlying mechanisms, with a specific focus on the role of exercise in reversing the impaired vasorelaxation. Adult male Sprague–Dawley rats were divided into three groups: Sham, MI, and MI+Exercise. MI+Exercise rats were subjected to 8 weeks of treadmill training. Cardiac contraction, myocardial and arterial structure, vasorelaxation, levels of inflammatory cytokines, expression of eNOS and TNF-α, and activation of PI3K/Akt/eNOS and p38 mitogen-activated protein kinase (p38 MAPK) were determined in aortas. MI significantly impaired endothelial structure and vasodilation (P < 0.05–0.01), as indicated by decreased arterial vasorelaxation to ACh and insulin. MI also attenuated the myocardial contractile response, decreased aortic PI3K/Akt/eNOS expression and phosphorylation by insulin, and increased IL-1β, IL-6, and TNF-α expression and p38 MAPK activity (P < 0.05–0.01). Exercise improved insulin sensitivity in aortas, facilitated myocardial contractile response and arterial vasorelaxation to ACh and insulin, and increased arterial PI3K/Akt/eNOS activity. Moreover, exercise markedly reversed increased p38 MAPK activity and normalized inflammatory cytokines in post-MI arteries. Inhibition of PI3K with LY-294002, and eNOS with L-NAME significantly blocked arterial vasorelaxation and PI3K/Akt/eNOS phosphorylation in response to insulin. In conclusion, these results demonstrate that endothelial dysfunction in response to insulin plays an important role in MI-related IR. The reversal of IR by exercise is most likely associated with normalizing inflammatory cytokines, increasing the activation of PI3K/Akt/eNOS, and reducing the activation of p38 MAPK. PMID:25907785

  3. Raccoon forelimb motorsensory cortex: II. Somatosensory inputs to single neurons.

    PubMed

    Gugino, L D; Rowinski, M J; Stoney, S D

    1990-06-01

    Somatosensory input to 431 neurons in MsI has been studied in unanesthetized, paralyzed raccoons (Procyon lotor). The type of sensory input to neurons in lateral sigmoid gyrus (cytoarchitectonic area 4) and in posterior sigmoid gyrus (areas 4 and 3a) was not significantly different. Of these neurons, 36% were activated by superficial cutaneous stimulation (touch, tap or hair deflection) and 26% by deep stimulation (pressure or joint movement). Mute neurons (not driven by any form of peripheral stimulation tested, or vaguely driven) comprised 38% of the sample. Only 4% of anterior sigmoid gyrus (area 6) neurons responded to superficial or deep stimulation; 96% were mute. The majority of MsI neurons had small (less than or equal to 20 cm2) peripheral receptive fields (PRFs). There was a statistically significant trend for PRF size to decrease along the proximal-distal axis of the forelimb. The area of MsI digit PRFs was significantly larger than the area of SmI digit PRFs. Comparing the data for raccoon MsI with information from the literature for cats and monkeys suggests that the type and amount of somesthetic afferent input to forelimb MsI is related to the behavioral uses to which each animal puts the forelimb. PMID:2372700

  4. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior.

    PubMed

    Scullion, K; Guy, A R; Singleton, A; Spanswick, S C; Hill, M N; Teskey, G C

    2016-04-01

    It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior. PMID:26826333

  5. Xenon preconditioning reduces brain damage from neonatal asphyxia in rats.

    PubMed

    Ma, Daqing; Hossain, Mahmuda; Pettet, Garry K J; Luo, Yan; Lim, Ta; Akimov, Stanislav; Sanders, Robert D; Franks, Nicholas P; Maze, Mervyn

    2006-02-01

    Xenon attenuates on-going neuronal injury in both in vitro and in vivo models of hypoxic-ischaemic injury when administered during and after the insult. In the present study, we sought to investigate whether the neuroprotective efficacy of xenon can be observed when administered before an insult, referred to as 'preconditioning'. In a neuronal-glial cell coculture, preexposure to xenon for 2 h caused a concentration-dependent reduction of lactate dehydrogenase release from cells deprived of oxygen and glucose 24 h later; xenon's preconditioning effect was abolished by cycloheximide, a protein synthesis inhibitor. Preconditioning with xenon decreased propidium iodide staining in a hippocampal slice culture model subjected to oxygen and glucose deprivation. In an in vivo model of neonatal asphyxia involving hypoxic-ischaemic injury to 7-day-old rats, preconditioning with xenon reduced infarction size when assessed 7 days after injury. Furthermore, a sustained improvement in neurologic function was also evident 30 days after injury. Phosphorylated cAMP (cyclic adenosine 3',5'-monophosphate)-response element binding protein (pCREB) was increased by xenon exposure. Also, the prosurvival proteins Bcl-2 and brain-derived neurotrophic factor were upregulated by xenon treatment. These studies provide evidence for xenon's preconditioning effect, which might be caused by a pCREB-regulated synthesis of proteins that promote survival against neuronal injury. PMID:16034370

  6. Yeast hydrolysate reduces body fat of dietary obese rats.

    PubMed

    Kim, K M; Chang, U J; Kang, D H; Kim, J M; Choi, Y M; Suh, H J

    2004-11-01

    The purpose of this study was to assess the antiobesity effect of the yeast hydrolysate (DNF) on the body weight, body fat and plasma lipids levels of high-fat fed rats. The weight gain of the HF (high fat diet) (162.58 +/- 6.68 g) was significantly (p < 0.05) greater than that of DNF-1, DNF-2, (high fat diet with DNF of 0.5 and 1.0 g/kg body weight, respectively) and control groups (143.19 +/- 7.33 g, 139.20 +/- 8.36 g, 130.23 +/- 8.02 g, respectively). The wet weight of the epididymal fat and the perirenal fat pads of the DNF-1, DNF-2 and control groups were reduced significantly (p < 0.05). A significant (p < 0.05) increase of HDL-cholesterol level of the DNF-2 and control groups was observed. However, there was no significant difference between DNF-1 and DNF-2. It was also found that the triacylglycerol (TG) levels decreased significantly (p < 0.05) in the DNF-2 group from that of the HF, but there was no significant (p < 0.05) difference between DNF-1 and DNF-2. PMID:15597316

  7. Unilateral forelimb partial aphalangia in a kitten.

    PubMed

    Macr, Francesco; Lanteri, Giovanni; Rapisarda, Giuseppe; Marino, Fabio

    2012-04-01

    Congenital limb deformities are rarely reported in the cat. The macroscopic and radiographic features of aphalangia are described in a 2-month-old male kitten showing a shortened limb that ended, at the level of the carpus, in a stump without digits. A nail was present at the level of the first phalanx and on the palmar surface only two footpads were present. The radiographs showed an absence of phalanges. The first metacarpal and the proximal and distal phalanges of digit 1 were present. The deformed metacarpal bones were reduced in length; the carpal bones were incompletely ossified. This defect is a rare condition in many animal species. To the author's knowledge, the congenital fore limb deformity described here is the first documented case in a cat. PMID:22412165

  8. Ergonomic task reduction prevents bone osteopenia in a rat model of upper extremity overuse

    PubMed Central

    BARBE, Mary F.; JAIN, Nisha X.; MASSICOTTE, Vicky S.; POPOFF, Steven N.; BARR-GILLESPIE, Ann E.

    2015-01-01

    We evaluated the effectiveness of ergonomic workload reduction of switching rats from a high repetition high force (HRHF) lever pulling task to a reduced force and reach rate task for preventing task-induced osteopenic changes in distal forelimb bones. Distal radius and ulna trabecular structure was examined in young adult rats performing one of three handle-pulling tasks for 12 wk: 1) HRHF, 2) low repetition low force (LRLF); or 3) HRHF for 4 wk and than LRLF thereafter (HRHF-to-LRLF). Results were compared to age-matched controls rats. Distal forelimb bones of 12-wk HRHF rats showed increased trabecular resorption and decreased volume, as control rats. HRHF-to-LRLF rats had similar trabecular bone quality as control rats; and decreased bone resorption (decreased trabecular bone volume and serum CTX1), increased bone formation (increased mineral apposition, bone formation rate, and serum osteocalcin), and decreased osteoclasts and inflammatory cytokines, than HRHF rats. Thus, an ergonomic intervention of HRHF-to-LRLF prevented loss of trabecular bone volume occurring with prolonged performance of a repetitive upper extremity task. These findings support the idea of reduced workload as an effective approach to management of work-related musculoskeletal disorders, and begin to define reach rate and load level boundaries for such interventions. PMID:25739896

  9. Antihyperlipidaemic, antihypertrophic, and reducing effects of zingerone on experimentally induced myocardial infarcted rats.

    PubMed

    Hemalatha, K L; Stanely Mainzen Prince, P

    2015-04-01

    The present study aims to evaluate the antihyperlipidaemic, antihypertrophic, and reducing effects of zingerone on isoproterenol-induced hyperlipidaemia and hypertrophy in rats. Rats were pretreated with zingerone (6 mg/kg body weight) daily for a period of 14 days and then induced myocardial infarction with isoproterenol (100 mg/kg body weight) on days 15 and 16. Isoproterenol increased serum creatine kinase and lactate dehydrogenase activities in the rats. Increased levels/concentrations of serum and heart cholesterol and triglycerides were observed in isoproterenol-induced myocardial infarcted rats. Isoproterenol also altered serum lipoproteins and the activity of liver 3-hydroxy-3-methyl glutaryl-coenzyme-A-reductase in the rats. The in vitro study revealed a very convincing reducing power of zingerone. Pretreatment with zingerone prevented hyperlipidaemia and cardiac hypertrophy, by virtue of its antihyperlipidaemic, antihypertrophic, and reducing properties in isoproterenol-induced myocardial infarcted rats. PMID:25558849

  10. Acupuncture and moxibustion reduces neuronal edema in Alzheimer's disease rats

    PubMed Central

    Zhou, Hua; Sun, Guojie; Kong, Lihong; Du, Yanjun; Shen, Feng; Wang, Shuju; Chen, Bangguo; Zeng, Xiaoling

    2014-01-01

    To examine the possible correlation of aberrant Wnt signaling and pathological changes in Alzheimer's disease, we established a rat model of Alzheimer's disease and measured axin and ?-catenin expression in the hippocampus. Rats were pretreated with moxibustion or electroacupuncture, or both, at Baihui (GV20) and Shenshu (BL23). Axin expression was lower, ?-catenin expression was greater, and neuronal cytoplasmic edema was visibly prevented in the rats that had received the pretreatments. Our results suggest that the mechanism underlying the neuroprotective effect of acupuncture and moxibustion in Alzheimer's disease is associated with axin and ?-catenin expression in the Wnt signal transduction pathway. PMID:25206919

  11. Transcranial magnetic stimulation reduces nociceptive threshold in rats.

    PubMed

    Ambriz-Tututi, Mnica; Snchez-Gonzlez, Violeta; Drucker-Coln, Ren

    2012-05-01

    Transcranial magnetic stimulation (TMS) is a procedure that uses magnetic fields to stimulate or inhibit nerve cells in the brain noninvasively. TMS induces an electromagnetic current in the underlying cortical neurons. Varying frequencies and intensities of TMS increase or decrease excitability in the cortical area directly targeted. It has been suggested that TMS has potential in the treatment of some neurological disorders such as Parkinson's disease, stroke, and depression. Initial case reports and open label trials reported by several groups support the use of TMS in pain treatment. In the present study, we evaluated the effect of TMS on the nociceptive threshold in the rat. The parameters used were a frequency of 60 Hz and an intensity of 2 and 6 mT for 2 hr twice per day. After 5 days of TMS treatment, rats were evaluated for mechanical, chemical, and cold stimulation. We observed a significant reduction in the nociceptive threshold in TMS-treated rats but not in sham-treated rats in all behavioral tests evaluated. When TMS treatment was stopped, a slow recovery to normal mechanic threshold was observed. Interestingly, i.c.v. MK-801 or CNQX administration reverted the TMS-induced pronociception. The results suggest that high-frequency TMS can alter the nociceptive threshold and produce allodynia in the rats; results suggest the involvement of NMDA and AMPA/KA receptors on TMS-induced allodynia in the rat. PMID:22315163

  12. Endotoxin-induced mortality in rats is reduced by nitrones

    SciTech Connect

    Hamburger, S.A.; McCay, P.B. )

    1989-12-01

    The goal of these investigations was to determine if nitrone spin-trapping agents can alter mortality associated with endotoxemia in the rat. Reactive free radicals attack nitrone spin-trapping agents forming relatively reactive, persistent free radical spin adducts. We administered 85 mM (10 ml/kg) of alpha-phenyl N-tert-butyl nitrone (PBN), alpha-4-pyridyl-N-oxide N-tert-butyl nitrone (4-POBN), 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), or vehicle (saline i.p.) 30 min before endotoxin (25 mg/kg i.p.) or vehicle to Sprague-Dawley (SD) or Holtzman virus-free (HVF) rats (n = 10-17/group). All vehicle-treated rats receiving endotoxin were dead by 1 day. At 7 days, 83% of PBN-treated SD, 42% of PBN- or POBN-treated HVF, and 25% of DMPO-treated HVF rats were alive. The difference in survival of PBN-treated animals between strains may reflect the higher susceptibility of HVF rats to endotoxin. The observed reduction in mortality may be related to the well-established capacity of spin-trapping agents to capture reactive free radicals that may be generated in target tissues in response to endotoxin, and that would otherwise react with cell components and produce tissue injury.

  13. Functional anatomy of the cheetah (Acinonyx jubatus) forelimb.

    PubMed

    Hudson, Penny E; Corr, Sandra A; Payne-Davis, Rachel C; Clancy, Sinead N; Lane, Emily; Wilson, Alan M

    2011-04-01

    Despite the cheetah being the fastest living land mammal, we know remarkably little about how it attains such high top speeds (29 m s(-1)). Here we aim to describe and quantify the musculoskeletal anatomy of the cheetah forelimb and compare it to the racing greyhound, an animal of similar mass, but which can only attain a top speed of 17 m s(-1). Measurements were made of muscle mass, fascicle length and moment arms, enabling calculations of muscle volume, physiological cross-sectional area (PCSA), and estimates of joint torques and rotational velocities. Bone lengths, masses and mid-shaft cross-sectional areas were also measured. Several species differences were observed and have been discussed, such as the long fibred serratus ventralis muscle in the cheetah, which we theorise may translate the scapula along the rib cage (as has been observed in domestic cats), thereby increasing the cheetah's effective limb length. The cheetah's proximal limb contained many large PCSA muscles with long moment arms, suggesting that this limb is resisting large ground reaction force joint torques and therefore is not functioning as a simple strut. Its structure may also reflect a need for control and stabilisation during the high-speed manoeuvring in hunting. The large digital flexors and extensors observed in the cheetah forelimb may be used to dig the digits into the ground, aiding with traction when galloping and manoeuvring. PMID:21332715

  14. Computer Simulations Imply Forelimb-Dominated Underwater Flight in Plesiosaurs.

    PubMed

    Liu, Shiqiu; Smith, Adam S; Gu, Yuting; Tan, Jie; Liu, C Karen; Turk, Greg

    2015-12-01

    Plesiosaurians are an extinct group of highly derived Mesozoic marine reptiles with a global distribution that spans 135 million years from the Early Jurassic to the Late Cretaceous. During their long evolutionary history they maintained a unique body plan with two pairs of large wing-like flippers, but their locomotion has been a topic of debate for almost 200 years. Key areas of controversy have concerned the most efficient biologically possible limb stroke, e.g. whether it consisted of rowing, underwater flight, or modified underwater flight, and how the four limbs moved in relation to each other: did they move in or out of phase? Previous studies have investigated plesiosaur swimming using a variety of methods, including skeletal analysis, human swimmers, and robotics. We adopt a novel approach using a digital, three-dimensional, articulated, free-swimming plesiosaur in a simulated fluid. We generated a large number of simulations under various joint degrees of freedom to investigate how the locomotory repertoire changes under different parameters. Within the biologically possible range of limb motion, the simulated plesiosaur swims primarily with its forelimbs using an unmodified underwater flight stroke, essentially the same as turtles and penguins. In contrast, the hindlimbs provide relatively weak thrust in all simulations. We conclude that plesiosaurs were forelimb-dominated swimmers that used their hind limbs mainly for maneuverability and stability. PMID:26683221

  15. Comparative myology of the forelimb of squirrels (Sciuridae).

    PubMed

    Thorington, R W; Darrow, K; Betts, A D

    1997-11-01

    The musculature of the shoulder, arm, and forearm was studied in 19 genera of squirrels, representing the Pteromyinae (flying squirrels) and all 7 tribes of the Sciurinae (tree and ground squirrels). The objective was to locate derived anatomical features of functional or phylogenetic significance and to determine how much morphological variation underlies the diverse locomotor behavior of squirrels, which includes terrestrial and arboreal bounding, climbing, digging, and gliding. The fossil evidence suggests that arboreality is primitive for squirrels, and in fact tree squirrels appear to represent the primitive sciurid morphology. Ground squirrels are less uniform and exhibit a few derived features, including a clavobrachialis muscle not seen in other squirrels. Pygmy tree squirrels, which have evolved independently in three tribes, exhibit convergence of forelimb anatomy, including the loss or reduction of several muscles in the shoulder and forearm. The forelimb anatomy of flying squirrels is the most derived and differs from that of tree squirrels in details of shoulder, arm, and forearm musculature. Some of these muscular differences among squirrels have phylogenetic significance, being shared by closely related genera, but none has significance above the tribal level. Many of the differences suggest a variety of changes in function that are amenable to further study. PMID:9360319

  16. Computer Simulations Imply Forelimb-Dominated Underwater Flight in Plesiosaurs

    PubMed Central

    Liu, Shiqiu; Smith, Adam S.; Gu, Yuting; Tan, Jie; Liu, C. Karen; Turk, Greg

    2015-01-01

    Plesiosaurians are an extinct group of highly derived Mesozoic marine reptiles with a global distribution that spans 135 million years from the Early Jurassic to the Late Cretaceous. During their long evolutionary history they maintained a unique body plan with two pairs of large wing-like flippers, but their locomotion has been a topic of debate for almost 200 years. Key areas of controversy have concerned the most efficient biologically possible limb stroke, e.g. whether it consisted of rowing, underwater flight, or modified underwater flight, and how the four limbs moved in relation to each other: did they move in or out of phase? Previous studies have investigated plesiosaur swimming using a variety of methods, including skeletal analysis, human swimmers, and robotics. We adopt a novel approach using a digital, three-dimensional, articulated, free-swimming plesiosaur in a simulated fluid. We generated a large number of simulations under various joint degrees of freedom to investigate how the locomotory repertoire changes under different parameters. Within the biologically possible range of limb motion, the simulated plesiosaur swims primarily with its forelimbs using an unmodified underwater flight stroke, essentially the same as turtles and penguins. In contrast, the hindlimbs provide relatively weak thrust in all simulations. We conclude that plesiosaurs were forelimb-dominated swimmers that used their hind limbs mainly for maneuverability and stability. PMID:26683221

  17. Memory Retrieval before or after Extinction Reduces Recovery of Fear in Adolescent Rats

    ERIC Educational Resources Information Center

    Baker, Kathryn D.; McNally, Gavan P.; Richardson, Rick

    2013-01-01

    Adolescent rats exhibit impaired extinction retention compared to pre-adolescent and adult rats. A single nonreinforced exposure to the conditioned stimulus (CS; a retrieval trial) given shortly before extinction has been shown in some circumstances to reduce the recovery of fear after extinction in adult animals. This study investigated whether a…

  18. Memory Retrieval before or after Extinction Reduces Recovery of Fear in Adolescent Rats

    ERIC Educational Resources Information Center

    Baker, Kathryn D.; McNally, Gavan P.; Richardson, Rick

    2013-01-01

    Adolescent rats exhibit impaired extinction retention compared to pre-adolescent and adult rats. A single nonreinforced exposure to the conditioned stimulus (CS; a retrieval trial) given shortly before extinction has been shown in some circumstances to reduce the recovery of fear after extinction in adult animals. This study investigated whether a

  19. Forelimbs of "Tyrannosaurus Rex": A Pathetic Vestigial Organ or an Integral Part of a Fearsome Predator?

    ERIC Educational Resources Information Center

    Lee, Scott A.; Thomas, Joshua D.

    2014-01-01

    In this paper, we examine a first-year torque and angular acceleration problem to address a possible use of the forelimbs of "Tyrannosaurus rex." A 1/40th-scale model (see Fig. 1) is brought to the classroom to introduce the students to the quandary: given that the forelimbs of "T. rex" were too short to reach its mouth, what

  20. Gait analysis in a cat with scapular luxation and contralateral forelimb amputation

    PubMed Central

    Kano, Washington Takashi; Rahal, Sheila C; Mesquita, Luciane dos Reis; Agostinho, Felipe Stfan; de Faria, Lus Guilherme

    2013-01-01

    This report describes the use of a pressure-sensitive walkway to evaluate an uncommon case of a cat with dorsal luxation of the left scapula and an amputated right forelimb. The findings suggest that limb amputation induced load redistribution mostly to the contralateral forelimb despite the scapular luxation. PMID:24155423

  1. Forelimbs of "Tyrannosaurus Rex": A Pathetic Vestigial Organ or an Integral Part of a Fearsome Predator?

    ERIC Educational Resources Information Center

    Lee, Scott A.; Thomas, Joshua D.

    2014-01-01

    In this paper, we examine a first-year torque and angular acceleration problem to address a possible use of the forelimbs of "Tyrannosaurus rex." A 1/40th-scale model (see Fig. 1) is brought to the classroom to introduce the students to the quandary: given that the forelimbs of "T. rex" were too short to reach its mouth, what…

  2. Immediate Postsession Feeding Reduces Operant Responding in Rats

    ERIC Educational Resources Information Center

    Smethells, John R.; Fox, Andrew T.; Andrews, Jennifer J.; Reilly, Mark P.

    2012-01-01

    Three experiments investigated the effects of immediate and delayed postsession feeding on progressive-ratio and variable-interval schedule performance in rats. During Experiments 1 and 2, immediate postsession feeding decreased the breakpoint, or largest completed ratio, under progressive-ratio schedules. Experiment 3 was conducted to extend the

  3. Robotic Rehabilitator of the Rodent Upper Extremity: A System and Method for Assessing and Training Forelimb Force Production after Neurological Injury.

    PubMed

    Sharp, Kelli G; Duarte, Jaime E; Gebrekristos, Berkenesh; Perez, Sergi; Steward, Oswald; Reinkensmeyer, David J

    2016-03-01

    Rodent models of spinal cord injury are critical for the development of treatments for upper limb motor impairment in humans, but there are few methods for measuring forelimb strength of rodents, an important outcome measure. We developed a novel robotic device-the Robotic Rehabilitator of the Rodent Upper Extremity (RUE)-that requires rats to voluntarily reach for and pull a bar to retrieve a food reward; the resistance of the bar can be programmed. We used RUE to train forelimb strength of 16 rats three times per week for 23 weeks before and 38 weeks after a mild (100 kdyne) unilateral contusion at the cervical level 5 (C5). We measured maximum force produced when RUE movement was unexpectedly blocked. We compared this blocked pulling force (BPF) to weekly measures of forelimb strength obtained with a previous, well-established method: the grip strength meter (GSM). Before injury, BPF was 2.6 times higher (BPF, 444.6 ± 19.1 g; GSM, 168.4 ± 3.1 g) and 4.9 times more variable (p < 0.001) than pulling force measured with the GSM; the two measurement methods were uncorrelated (R(2) = 0.03; p = 0.84). After injury, there was a significant decrease in BPF of 134.35 g ± 14.71 g (p < 0.001). Together, our findings document BPF as a repeatable measure of forelimb force production, sensitive to a mild spinal cord injury, which comes closer to measuring maximum force than the GSM and thus may provide a useful measure for quantifying the effects of treatment in rodent models of SCI. PMID:26414700

  4. Reduced platelet-mediated and enhanced leukocyte-mediated fibrinolysis in experimentally induced diabetes in rats

    SciTech Connect

    Winocour, P.D.; Colwell, J.A.

    1985-05-01

    Studies of fibrinolytic activity in diabetes mellitus have produced conflicting results. This may be a result of methodologic insensitivity or of variable contributions of the different blood components to whole blood fibrinolysis. To explore these two possibilities, the authors used a sensitive solid-phase radiometric assay to examine the fibrinolytic activity of whole blood, platelet-rich plasma, leukocytes, and platelet- and leukocyte-poor plasma prepared from control rats and rats with streptozocin-induced diabetes at various times after induction of diabetes. Fibrinolytic activity of whole blood from diabetic rats after 7 days was significantly reduced, and remained reduced after longer durations of diabetes up to 28 days. Platelet-rich plasma from diabetic rats had decreased fibrinolytic activity, which followed the same time course of changes as in whole blood. The platelet contribution to whole blood fibrinolysis was further reduced in vivo after 14 days of diabetes by a reduced whole blood platelet count. In contrast, fibrinolytic activity of leukocytes from diabetic rats became enhanced after 7 days of diabetes. After 49 days of diabetes, the whole blood leukocyte count was reduced, and in vivo would offset the enhanced activity. Plasma fibrinolytic activity was small compared with that of whole blood and was unaltered in diabetic rats. The authors conclude that altered platelet function contributes to decreased fibrinolytic activity of whole blood in diabetic rats, and that this may be partially offset by enhanced leukocyte-mediated fibrinolysis.

  5. Sodium Salicylate Reduced Insulin Resistance in the Retina of a Type 2 Diabetic Rat Model

    PubMed Central

    Jiang, Youde; Thakran, Shalini; Bheemreddy, Rajini; Coppess, William; Walker, Robert J.; Steinle, Jena J.

    2015-01-01

    Sodium salicylate has been reported to reduce markers of diabetic retinopathy in a type 1 rat model. Because rates of type 2 diabetes are on the rise, we wanted to determine whether salicylate could improve insulin resistance in a type 2 rat model, as well as improve retinal function. We treated lean and obese BBZDR/Wor type 2 diabetic rats with salicylate in their chow for 2 months. Prior to salicylate treatment, rats underwent an electroretinogram to measure retinal function. After 2 months of treatment, rats underwent an additional electroretinogram prior to sacrifice. In addition to the animal model, we also treated retinal endothelial cells (REC) and rat Müller cells with salicylate and performed the same analyses as done for the rat retinal lysates. To investigate the role of salicylate in insulin signaling, we measured TNFα and caspase 3 levels by ELISA, as well as performed Western blotting for insulin receptor substrate 1, insulin receptor, SOCS3, and pro- and anti-apoptotic markers. Data demonstrated that salicylate significantly improved retinal function, as well as reduced TNFα and SOCS3-induced insulin resistance in all samples. Overall, results suggest that salicylate is effective in reducing insulin resistance in the retina of type 2 diabetic rat models. PMID:25874611

  6. Apc-driven colon carcinogenesis in Pirc rat is strongly reduced by polyethylene glycol.

    PubMed

    Femia, Angelo Pietro; Becherucci, Caterina; Crucitta, Stefania; Caderni, Giovanna

    2015-11-01

    Polyethylene glycol (PEG) is one of the most powerful agents in reducing chemically induced carcinogenesis in rat colon. However, contrasting results in Min mice dampened the enthusiasm on this potentially strong and virtually safe, cancer chemopreventing agent. Pirc (F344/NTac-Apc (am1137) ) rats carrying a germline heterozygous mutation in the Apc gene, spontaneously develop multiple tumours in the colon thus modelling both familial adenomatous polyposis (FAP) and sporadic colorectal cancer (CRC). Given this similarity, we thought that these rats could be appropriate to test the efficacy of PEG 8000 in reducing carcinogenesis. Pirc male rats aged one month were treated with 5% PEG in drinking water for 2 or 6 months. Precancerous lesions were dramatically reduced after 2 months of PEG treatment (Mucin depleted foci (MDF)/colon were 99 ± 17 and 12 ± 8 in Controls and PEG-treated rats, respectively; p < 0.001; mean ± SD). Similarly, colon tumors were significantly reduced after 6 months of treatment (tumors/rat were 8.1 ± 2.3 and 3.6 ± 2.2 in Controls and PEG-treated rats, respectively; p < 0.05; mean ± SD). Colon proliferation, a parameter correlated to cancer risk, was also significantly lower in PEG-treated rats than in Controls, while apoptosis was not significantly affected. In conclusion, PEG markedly reduces colon carcinogenesis in Pirc rats mutated in Apc; we thus suggest that PEG may be used as chemopreventive agent to reduce cancer risk in FAP and CRC patients. PMID:25912754

  7. Peripheral oxytocin administration reduces ethanol consumption in rats.

    PubMed

    MacFadyen, Kaley; Loveless, Rebecca; DeLucca, Brandon; Wardley, Krystal; Deogan, Sumeet; Thomas, Cameron; Peris, Joanna

    2016-01-01

    The neuropeptide oxytocin interacts with mesolimbic dopamine neurons to mediate reward associated with filial behaviors, but also other rewarding behaviors such as eating or taking drugs of abuse. Based on its efficacy to decrease intake of other abused substances, oxytocin administration is implicated as a possible treatment for excessive alcohol consumption. We tested this hypothesis by measuring ethanol intake in male Sprague-Dawley rats injected with oxytocin or saline using two different ethanol self-administration paradigms. First, a dose-response curve was constructed for oxytocin inhibition of fluid intake using a modified drinking-in-the-dark model with three bottles containing .05% saccharine, 10% ethanol in saccharine, and 15% ethanol in saccharine. Doses of oxytocin tested were 0.05, 0.1, 0.3, and 0.5mg/kg (I.P.). Next, rats received 0.3mg/kg oxytocin preceding operant sessions in which they were trained to lever-press for either plain gelatin or ethanol gelatin in order to compare oxytocin inhibition of ethanol intake versus caloric intake. For the three-bottle choice study, rats consumed significantly less ethanol when treated with the three higher doses of oxytocin on the injection day. In the operant study, 0.3mg/kg oxytocin significantly decreased ethanol gel consumption to a greater extent than plain gel consumption, both in terms of the amount of gel eaten and calories consumed. These data affirm oxytocin's efficacy for decreasing ethanol intake in rats, and confirm clinical studies suggesting oxytocin as a potential treatment for alcoholism. PMID:26519603

  8. Forelimb skeletal morphology and flight mode evolution in pelecaniform birds.

    PubMed

    Simons, Erin L R

    2010-01-01

    The total length and mid-shaft diameters of wing elements of 50 species of pelecaniform birds were examined to investigate how forelimb skeletal morphology varies with body size and flight mode within this group. Pelecaniforms were assigned to flight mode categories based on primary habitual behaviors (soar, flap-glide, continuous flap). Allometric and discriminant function analyses were conducted on wing element variables in both historical (using independent contrasts) and ahistorical contexts. Results of this study indicate that when phylogenetic relationships are taken into account, only the length of the ulna scales with positive allometry, whereas all other variables exhibit isometry. These results differ from the ahistorical allometric analysis. Discriminant function analysis (DFA) significantly separated the flight mode groups (Wilk's lambda=0.002, p<0.00001), with only six individuals from two species (out of n=284) misclassified. Results of historical canonical variates analysis supported the ahistorical DFA and identified two carpometacarpal (CMC) variables as important for separating the flight mode groups: dorsoventral CMC diameter and total CMC length. The carpometacarpus is that portion of the forelimb skeleton that serves as the attachment point for the primary flight feathers, and thus, that portion of the airfoil surface that mediates detailed flight control. Its morphology, more than any other element, reflects differences in flight mode in pelecaniforms. Results of this study indicate that, in pelecaniforms, wing bones generally exhibit isometry (with the exception of the ulna) and do possess specific morphologies reflective of the demands associated with different types of aerial locomotor specialization. PMID:20071157

  9. Forelimb myology of the pygmy hippopotamus (Choeropsis liberiensis).

    PubMed

    Fisher, Rebecca E; Scott, Kathleen M; Naples, Virginia L

    2007-06-01

    Based on morphological analyses, hippos have traditionally been classified as Suiformes, along with pigs and peccaries. However, molecular data indicate hippos and cetaceans are sister taxa (see review in Uhen, 2007, this issue). This study analyzes soft tissue characters of the pygmy hippo forelimb to elucidate the functional anatomy and evolutionary relationships of hippos within Artiodactyla. Two specimens from the National Zoological Park in Washington, D.C. were dissected, revealing several adaptations to an aquatic lifestyle. However, these adaptations differ functionally from most aquatic mammals as hippos walk along river or lake bottoms, rather than swim. Several findings highlight a robust mechanism for propelling the trunk forward through the water. For example, mm. pectoralis superficialis and profundus demonstrate broad sites of origin, while the long flexor tendons serve each of the digits, reflecting the fact that all toes are weight-bearing. Pygmy hippos also have eight mm. interossei and a well-developed m. lumbricalis IV. Retention of intrinsic adductors functions to prevent splaying of the toes, an advantageous arrangement in an animal walking on muddy substrates. Published descriptions indicate common hippos share all of these features. Hippo and ruminant forelimbs share several traits; however, hippos are unique among artiodactyls in retaining several primitive muscles (e.g., mm. palmaris longus and flexor digitorum brevis). These findings are consistent with the hypothesis that hippos diverged from other Artiodactyla early in the history of this group. Additional analyses of hindlimb and axial muscles may help determine whether this trajectory was closely allied to that of Cetacea. PMID:17516432

  10. Effect of Amniotic Membrane to Reduce Postlaminectomy Epidural Adhesion on a Rat Model

    PubMed Central

    Choi, Hyu Jin; Kim, Kyoung Beom

    2011-01-01

    Objective Epidural fibrosis and adhesion are the main reasons for post-laminectomy sustained pain and functional disability. In this study, the authors investigate the effect of irradiated freeze-dried human amniotic membrane on reducing epidural adhesion after laminectomy on a rat model. Methods A total of 20 rats were divided into two groups. The group A did not receive human amniotic membrane implantation after laminectomy and group B underwent human amniotic membrane implantation after laminectomy. Gross and microscopic findings were evaluated and compared at postoperative 1, 3 and 8 weeks. Results The amount of scar tissue and tenacity were reduced grossly in group of rats with human amniotic membrane implantation (group B). On a microscopic evaluation, there were less inflammatory cell infiltration and fibroblast proliferation in group B. Conclusion This experimental study shows that implantation of irradiated freeze-dried human amniotic membrane reduce epidural fibrosis and adhesion after spinal laminectomy in a rat model. PMID:21887388

  11. Pixantrone (BBR2778) reduces the severity of experimental autoimmune myasthenia gravis in Lewis rats.

    PubMed

    Ubiali, Federica; Nava, Sara; Nessi, Valeria; Longhi, Renato; Pezzoni, Gabriella; Capobianco, Raffaella; Mantegazza, Renato; Antozzi, Carlo; Baggi, Fulvio

    2008-02-15

    Pixantrone (BBR2778) (PIX) and mitoxantrone share the same mechanism of action because both drugs act as DNA intercalants and inhibitors of topoisomerase II. PIX is an interesting candidate immunosuppressant for the treatment of autoimmune diseases because of its reduced cardiotoxicity compared with mitoxantrone. The clinical response to conventional immunosuppressive treatments is poor in some patients affected by myasthenia gravis (MG), and new but well-tolerated drugs are needed for treatment-resistant MG. PIX was tested in vitro on rat T cell lines specific for the immunodominant peptide 97-116 derived from rat acetylcholine receptor (AChR), and showed strong antiproliferative activity in the nanomolar range. We demonstrate in this study that PIX administration reduced the severity of experimental autoimmune MG in Lewis rats. Biological and immunological analysis confirmed the effect of PIX, compared with vehicle-treated as well as mitoxantrone-treated experimental autoimmune MG rats. Anti-rat AChR Abs were significantly reduced in PIX-treated rats, and AChR content in muscles were found increased. Torpedo AChR-induced T cell proliferation tests were found reduced in both in vitro and ex vivo experiments. The effectiveness and the reduced cardiotoxicity make PIX a promising immunosuppressant agent suitable for clinical investigation in MG, although additional experiments are needed to confirm its safety profile in prolonged treatments. PMID:18250482

  12. Forelimb proportions and kinematics: how are small primates different from other small mammals?

    PubMed

    Schmidt, Manuela

    2008-12-01

    The crouched limb posture of small mammals enables them to react to unexpected irregularities in the support. Small arboreal primates would benefit from these kinematics in their arboreal habitat but it has been demonstrated that primates display certain differences in forelimb kinematics to other mammals. The objective of this paper is to find out whether these changes in forelimb kinematics are related to changes in body size and limb proportions. As primates descended from small ancestors, a comparison between living small primates and other small mammals makes it possible to determine the polarity of character transformations for kinematic and morphometric features proposed to be unique to primates. Walking kinematics of mouse lemurs, brown lemurs, cotton-top tamarins and squirrel monkeys was investigated using cineradiography. Morphometry was conducted on a sample of 110 mammals comprising of primates, marsupials, rodents and carnivores. It has been shown that forelimb kinematics change with increasing body size in such a way that limb protraction increases but retraction decreases. Total forelimb excursion, therefore, is almost independent of body size. Kinematic changes are linked to changes in forelimb proportions towards greater asymmetry between scapula and radius. Due to the spatial restriction inherent in the diagonal footfall sequence of primates, forelimb excursion is influenced by the excursion of the elongated hind limb. Hindlimb geometry, however, is highly conserved, as has been previously shown. The initial changes in forelimb kinematics might, therefore, be explained as solutions to a constraint rather than as adaptations to the particular demands of arboreal locomotion. PMID:19043050

  13. Melatonin reduces formalin-induced nociception and tactile allodynia in diabetic rats.

    PubMed

    Arreola-Espino, Rosaura; Urquiza-Marn, Hctor; Ambriz-Tututi, Mnica; Araiza-Saldaa, Claudia Ivonne; Caram-Salas, Nadia L; Rocha-Gonzlez, Hctor I; Mixcoatl-Zecuatl, Teresa; Granados-Soto, Vinicio

    2007-12-22

    The purpose of this study was to assess the antinociceptive and antiallodynic effect of melatonin as well as its possible mechanism of action in diabetic rats. Streptozotocin (50 mg/kg) injection caused hyperglycemia within 1 week. Formalin-evoked flinching was increased in diabetic rats as compared to non-diabetic rats. Oral administration of melatonin (10-300 mg/kg) dose-dependently reduced flinching behavior in diabetic rats. In addition, K-185 (a melatonin MT(2) receptor antagonist, 0.2-2 mg/kg, s.c.) completely blocked the melatonin-induced antinociception in diabetic rats, whereas that naltrexone (a non-selective opioid receptor antagonist, 1 mg/kg, s.c.) and naltrindole (a selective delta opioid receptor antagonist, 0.5 mg/kg, s.c.), but not 5'-guanidinonaltrindole (a selective kappa opioid receptor antagonist, 1 mg/kg, s.c.), partially reduced the antinociceptive effect of melatonin. Given alone K-185, naltrexone, naltrindole or 5'-guanidinonaltrindole did not modify formalin-induced nociception in diabetic rats. Four to 8 weeks after diabetes induction, tactile allodynia was observed in the streptozotocin-injected rats. On this condition, oral administration of melatonin (75-300 mg/kg) dose-dependently reduced tactile allodynia in diabetic rats. Both antinociceptive and antiallodynic effects were not related to motor changes as melatonin did not modify number of falls in the rotarod test. Results indicate that melatonin is able to reduce formalin-induced nociception and tactile allodynia in streptozotocin-injected rats. In addition, data suggest that melatonin MT(2) and delta opioid receptors may play an important role in these effects. PMID:17920585

  14. Coordination strategies for limb forces during weight-bearing locomotion in normal rats, and in rats spinalized as neonates

    PubMed Central

    Giszter, Simon F; Davies, Michelle R; Graziani, Virginia

    2010-01-01

    Some rats spinally transected as neonates (ST rats) achieve weight-supporting independent locomotion. The mechanisms of coordinated hindlimb weight support in such rats are not well understood. To examine these in such ST rats and normal rats, rats with better than 60% of weight supported steps on a treadmill as adults were trained to cross an instrumented runway. Ground reaction forces, coordination of hindlimb and forelimb forces and the motions of the center of pressure were assessed. Normal rats crossed the runway with a diagonal trot. On average hindlimbs bore about 80% of the vertical load carried by forelimbs, although this varied. Forelimbs and hindlimb acted synergistically to generate decelerative and propulsive rostrocaudal forces, which averaged 15% of body weight with maximums of 50% . Lateral forces were very small (<8% of body weight). Center of pressure progressed in jumps along a straight line with mean lateral deviations <1 cm. ST rats hindlimbs bore about 60% of the vertical load of forelimbs, significantly less compared to intact (p<0.05). ST rats showed similar mean rostrocaudal forces, but with significantly larger maximum fluctuations of up to 80% of body weight (p<0.05). Joint force-plate recordings showed forelimbs and hindlimb rostrocaudal forces in ST rats were opposing and significantly different from intact rats (p<0.05). Lateral forces were ~20% of body weight and significantly larger than in normal rats (p<0.05). Center of pressure zig-zagged, with mean lateral deviations of ~ 2cm and a significantly larger range (p<0.05). The haunches were also observed to roll more than normal rats. The locomotor strategy of injured rats using limbs in opposition was presumably less efficient but their complex gait was statically stable. Because forelimbs and hindlimbs acted in opposition, the trunk was held compressed. Force coordination was likely managed largely by the voluntary control in forelimbs and trunk. PMID:18612631

  15. Reduced neurogenesis in the rat hippocampus following high fructose consumption.

    PubMed

    van der Borght, Karin; Khnke, Rickard; Gransson, Nathanael; Deierborg, Tomas; Brundin, Patrik; Erlanson-Albertsson, Charlotte; Lindqvist, Andreas

    2011-02-25

    In this study, we investigated how prolonged consumption of sugar solution affects hippocampal neurogenesis. We gave rats sucrose or fructose solution for four weeks and observed a 40% reduction in BrdU/NeuN-immunoreactive cells in the hippocampal dentate gyrus. This reduction in hippocampal neurogenesis was accompanied by increased apoptosis in the hippocampus and increased circulating levels of TNF-?. Therefore, we hypothesize that the reduction in hippocampal neurogenesis may be due to the increased apoptosis induced by TNF-?. Our results suggest that chronic ingestion of fructose is detrimental to the survival of newborn hippocampal neurones. The results presented in the present study add to the list of harmful effects associated with prolonged and excessive consumption of sugary beverages and soft drinks. PMID:21115071

  16. 3-Acetylpyridine lesions and four serotonergic behavioral syndromes in the rat.

    PubMed

    Pranzatelli, M R; Gantner, C; Snodgrass, S R

    1987-02-01

    We studied the effect of 3-acetylpyridine (3-AP) lesions on the serotonergic-myoclonic syndromes evoked by quipazine (QP), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), fenfluramine (FF), and p-chloroamphetamine (PCA) in the adult rat. Eleven behaviors were scored from videotapes by an observer blind to drug status. In unlesioned rats, drugs could be differentiated by forelimb and axial myoclonus, pivoting and backing. All drugs significantly suppressed rearing. 3-AP produced a lasting action-enhanced body tremor which differed from axial myoclonus in its vertical direction and rhythmicity. 3-AP lesions modified the effect of drugs on several behaviors, increasing axial (QP, FF, PCA) and forelimb (5-MeO-DMT, FF, PCA) myoclonus and decreasing locomotor score. Prior lesions with 5,7-dihydroxytryptamine did not prevent the effect of 3-AP or any behaviors of the serotonin syndrome, but had a slight effect on the magnitude of forelimb myoclonus, head weaving, and hunching induced by some drugs. Neither lesion abolished or reduced myoclonus. These data suggest that intact 5-HT terminals are not requisite for the tremorogenic and cytotoxic effect of 3-AP. To the extent that chemical lesions with 3-AP are selective for the inferior olive (IO), the role of the IO in myoclonus in several 5-HT rodent myoclonic models appears to be regulatory rather than stimulatory. PMID:3567672

  17. Chronic lithium feeding reduces upregulated brain arachidonic acid metabolism in HIV-1 transgenic rat.

    PubMed

    Ramadan, Epolia; Basselin, Mireille; Chang, Lisa; Chen, Mei; Ma, Kaizong; Rapoport, Stanley I

    2012-09-01

    HIV-1 transgenic (Tg) rats, a model for human HIV-1 associated neurocognitive disorder (HAND), show upregulated markers of brain arachidonic acid (AA) metabolism with neuroinflammation after 7months of age. Since lithium decreases AA metabolism in a rat lipopolysaccharide model of neuroinflammation, and may be useful in HAND, we hypothesized that lithium would dampen upregulated brain AA metabolism in HIV-1 Tg rats. Regional brain AA incorporation coefficients k* and rates J ( in ), markers of AA signaling and metabolism, were measured in 81 brain regions using quantitative autoradiography, after intravenous [1-(14)?C]AA infusion in unanesthetized 10-month-old HIV-1 Tg and age-matched wildtype rats that had been fed a control or LiCl diet for 6weeks. k* and J ( in ) for AA were significantly higher in HIV-1 Tg than wildtype rats fed the control diet. Lithium feeding reduced plasma unesterified AA concentration in both groups and J ( in ) in wildtype rats, and blocked increments in k* (19 of 54 regions) and J ( in ) (77 of 81 regions) in HIV-1 Tg rats. These in vivo neuroimaging data indicate that lithium treatment dampened upregulated brain AA metabolism in HIV-1 Tg rats. Lithium may improve cognitive dysfunction and be neuroprotective in HIV-1 patients with HAND through a comparable effect. PMID:22760927

  18. Electro-acupuncture relieves visceral sensitivity and decreases hypothalamic corticotropin-releasing hormone levels in a rat model of irritable bowel syndrome.

    PubMed

    Wu, Huan-gan; Liu, Hui-rong; Zhang, Zeng-an; Zhou, En-hua; Wang, Xiao-mei; Jiang, Bin; Shi, Zheng; Zhou, Ci-li; Qi, Li; Ma, Xiao-peng

    2009-11-20

    Previous studies into electro-acupuncture (EA) treatment of irritable bowel syndrome (IBS) have principally focused on the peripheral effects of EA in a rat model of IBS. It is not known whether EA exerts central effects in this rat model. We have examined the effects of EA on hypothalamic corticotropin-releasing hormone (CRH) levels in a rat model of IBS provoked by colorectal distension (CRD) and forelimb immobilization. EA was administered once daily to IBS model rats over a period of 7 d; untreated IBS rats and controls were also studied. The behavioral response to distension was rated according to the abdominal withdrawal reflex (AWR) score; hypothalamic CRH levels were measured by radioimmunoassay. We report that EA treatment significantly decreased visceral sensitivity to CRD in this rat model. In treated animals, EA also decreased hypothalamic CRH to control levels. Reduced hypothalamic CRH levels may mediate the beneficial effects of EA in this rat IBS model. PMID:19765402

  19. Berberine Reduces Neurotoxicity Related to Nonalcoholic Steatohepatitis in Rats

    PubMed Central

    Ghareeb, Doaa A.; Khalil, Sofia; Hafez, Hani S.; Bajorath, Jürgen; Ahmed, Hany E. A.; Sarhan, Eman; Elwakeel, Eiman; El-Demellawy, Maha A.

    2015-01-01

    Berberine is a plant alkaloid that has several pharmacological effects such as antioxidant, antilipidemic, and anti-inflammatory effects. Nonalcoholic steatohepatitis (NASH) triggers different aspects of disorders such as impaired endogenous lipid metabolism, hypercholesterolemia, oxidative stress, and neurotoxicity. In this study, we examined the mechanism by which NASH induces neurotoxicity and the protective effect of berberine against both NASH and its associated neurotoxicity. NASH induced rats showed significant impairments in lipid metabolism with increased serum triglycerides, cholesterol, and low-density lipoprotein (LDL). The NASH induced group also demonstrated a significant oxidative stress which is characterized by increased TBARs level and decreased antioxidant capacity such as GSH and SOD levels. Moreover, the NASH induction was associated with inflammation which was demonstrated by increased TNFα and nitric oxide levels. Hyperglycemia and hyperinsulinemia were observed in the NASH induced group. Also, our results showed a significant increase in the expression of the acetylcholine esterase (AChE) and amyloid beta precursor protein (AβPP). These changes were significantly correlated with decreased insulin degrading enzyme (IDE) and beta-amyloid40 (Aβ40) and increased beta-amyloid42 (Aβ42) in the hippocampal region. Daily administration of berberine (50 mg/kg) for three weeks ameliorated oxidative stress, inflammation, hyperlipidemia, hyperglycemia, hyperinsulinemia, and the observed neurotoxicity. PMID:26576191

  20. Berberine Reduces Neurotoxicity Related to Nonalcoholic Steatohepatitis in Rats.

    PubMed

    Ghareeb, Doaa A; Khalil, Sofia; Hafez, Hani S; Bajorath, Jrgen; Ahmed, Hany E A; Sarhan, Eman; Elwakeel, Eiman; El-Demellawy, Maha A

    2015-01-01

    Berberine is a plant alkaloid that has several pharmacological effects such as antioxidant, antilipidemic, and anti-inflammatory effects. Nonalcoholic steatohepatitis (NASH) triggers different aspects of disorders such as impaired endogenous lipid metabolism, hypercholesterolemia, oxidative stress, and neurotoxicity. In this study, we examined the mechanism by which NASH induces neurotoxicity and the protective effect of berberine against both NASH and its associated neurotoxicity. NASH induced rats showed significant impairments in lipid metabolism with increased serum triglycerides, cholesterol, and low-density lipoprotein (LDL). The NASH induced group also demonstrated a significant oxidative stress which is characterized by increased TBARs level and decreased antioxidant capacity such as GSH and SOD levels. Moreover, the NASH induction was associated with inflammation which was demonstrated by increased TNF? and nitric oxide levels. Hyperglycemia and hyperinsulinemia were observed in the NASH induced group. Also, our results showed a significant increase in the expression of the acetylcholine esterase (AChE) and amyloid beta precursor protein (A?PP). These changes were significantly correlated with decreased insulin degrading enzyme (IDE) and beta-amyloid40 (A? 40) and increased beta-amyloid42 (A? 42) in the hippocampal region. Daily administration of berberine (50?mg/kg) for three weeks ameliorated oxidative stress, inflammation, hyperlipidemia, hyperglycemia, hyperinsulinemia, and the observed neurotoxicity. PMID:26576191

  1. Dynamic Motor Compensations with Permanent, Focal Loss of Forelimb Force after Cervical Spinal Cord Injury

    PubMed Central

    López-Dolado, Elisa; Lucas-Osma, Ana M.

    2013-01-01

    Abstract Incomplete cervical lesion is the most common type of human spinal cord injury (SCI) and causes permanent paresis of arm muscles, a phenomenon still incompletely understood in physiopathological and neuroanatomical terms. We performed spinal cord hemisection in adult rats at the caudal part of the segment C6, just rostral to the bulk of triceps brachii motoneurons, and analyzed the forces and kinematics of locomotion up to 4 months postlesion to determine the nature of motor function loss and recovery. A dramatic (50%), immediate and permanent loss of extensor force occurred in the forelimb but not in the hind limb of the injured side, accompanied by elbow and wrist kinematic impairments and early adaptations of whole-body movements that initially compensated the balance but changed continuously over the follow-up period to allow effective locomotion. Overuse of both contralateral legs and ipsilateral hind leg was evidenced since 5 days postlesion. Ipsilateral foreleg deficits resulted mainly from interruption of axons that innervate the spinal cord segments caudal to the lesion, because chronic loss (about 35%) of synapses was detected at C7 while only 14% of triceps braquii motoneurons died, as assessed by synaptophysin immunohistochemistry and retrograde neural tracing, respectively. We also found a large pool of propriospinal neurons projecting from C2–C5 to C7 in normal rats, with topographical features similar to the propriospinal premotoneuronal system of cats and primates. Thus, concurrent axotomy at C6 of brain descending axons and cervical propriospinal axons likely hampered spontaneous recovery of the focal neurological impairments. PMID:23249275

  2. Panax ginseng reduces oxidative stress and restores antioxidant capacity in aged rats.

    PubMed

    Ramesh, Thiyagarajan; Kim, Sung-Won; Hwang, Seock-Yeon; Sohn, Sang-Hyun; Yoo, Sung-Kwang; Kim, Si-Kwan

    2012-09-01

    Nutritional antioxidants interact with cells in an active mode, including retrieving and sparing one another, to diminish oxidative stress. However, the intracellular balance of prooxidants and antioxidants becomes unbalanced, favoring prooxidants during the aging process. One hypothesis is that an aging-associated increase in oxidative stress is the primary cause of aging. Hence, the research hypothesis for this study is that Korean red ginseng reduces oxidative stress in vivo. Therefore, we investigated the efficacy of Korean red ginseng water extract (GWE) in reducing aging-associated oxidative stress by measuring lipid peroxidation and antioxidant levels in older rats compared with young rats. We observed a significant increase in the markers for oxidative damage (eg, lipid peroxidation) and markers for vital organ damage (eg, aspartate aminotransferase, alanine aminotransferase, urea, and creatinine levels) in aged rats. The oxidative damage was accompanied by a significant decrease in enzymatic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione-S-transferase, and nonenzymatic antioxidants such as reduced glutathione, vitamin E, and vitamin C. Aged rats fed a diet supplemented with Korean red ginseng water extract had significantly less oxidative damage, possibly by enhancing the enzymatic and nonenzymatic antioxidants status. Our data suggest that consumption of Korean red ginseng reduces lipid peroxidation and restores antioxidant capacity by suppressing oxidative stress in rats. PMID:23084645

  3. High-fat feeding reduced muscle uncoupling protein 3 expression in rats.

    PubMed

    Corbalán, M S; Margareto, J; Martínez, J A; Marti, A

    1999-06-01

    Uncoupling Protein 3 (UCP3), largely expressed in skeletal muscle, is modulated by cold, thyroid hormones, leptin, fasting-refeeding and exercise training among other factors in a tissue-specific manner. In brown adipose tissue, there is an increase in UCP3 levels after high-fat feeding and beta3-adrenergic agonist treatment. Controversial effects of these agents have been reported in skeletal muscle. The aim of this experimental trial was to evaluate the effect of high-fat feeding and beta3-adrenergic agent treatment on skeletal muscle UCP3 expression levels. Lean rats were fed a cafeteria diet for 30 days and found to have significantly higher fat stores and body weight than control rats at the end of the experimental period. When cafeteria-diet rats were daily i.p. injected with Tertatolol for 30 days; a decrease in total fat mass and body weight was found. Such an effect was not observed in fa/fa rats. Interestingly, gastrocnemius muscle UCP3 mRNA levels were significantly reduced in cafeteria-diet rats when compared to lean animals. Likewise, mitochondrial O2 consumption in gastrocnemius muscle was also significantly decreased (-31%) in cafeteria-diet rats as compared to the control group. It is suggested that the down-regulation of UCP3 gene expression together with the lower O2 consumption observed in high fat fed rats may be linked to lower fatty oxidation, which would promote triglyceride accumulation. PMID:10517262

  4. Xiayuxue decoction reduces renal injury by promoting macrophage apoptosis in hepatic cirrhotic rats.

    PubMed

    Liu, C; Cai, J; Cheng, Z; Dai, X; Tao, L; Zhang, J; Xue, D

    2015-01-01

    Renal pathological changes in cirrhotic rat have not been extensively reported. The aim of this study was to investigate whether Xiayuxue decoction (XYXD) could attenuate renal injury induced by bile duct ligation (BDL), with special focus on the mechanisms promoting renal macrophage apoptosis. The rats were treated with BDL for 5 weeks and administered 0.36 g/kg XYXD intragastrically from day 1 of initiating BDL. Renal tissue was monitored by hematoxylin-eosin and Sirius red staining. Macrophage infiltration and proinflammatory cytokines such as tumor necrosis factor and chemokine ligand 2 were detected by quantitative polymerase chain reaction. Macrophage apoptosis was detected by double immunofluorescence staining. Blood urea nitrogen, creatinine, and glomerulus diameter increased significantly after a 5-week BDL treatment in XYXD (BDL-XYXD) rats. CD68 and pro-inflammatory cytokine mRNA increased in the kidneys of control (BDL-water) rats. Fluorescence microscopy analysis showed that XYXD promoted apoptosis in renal CD68+ macrophages. Collogen1 (Col 1), pro-fibrogenic cytokines, and ?-smooth muscle actin in kidneys of BDL-water rats increased significantly compared to the sham group. XYXD inhibited Col 1 and pro-fibrotic factors in BDL-XYXD rats. Our results demonstrated that XYXD significantly reduced renal injury by, at least in part, promoting macrophage apoptosis in rats with damaged renal histopathology due to BDL-induced cirrhosis. PMID:26400305

  5. Pomegranate seed oil reduces intestinal damage in a rat model of necrotizing enterocolitis

    PubMed Central

    Coursodon-Boyiddle, Christine F.; Snarrenberg, Chelsea L.; Adkins-Rieck, Camille K.; Bassaganya-Riera, Josep; Hontecillas, Raquel; Lawrence, Peter; Brenna, J. Thomas; Jouni, Zeina E.

    2012-01-01

    Pomegranate seed oil (PSO), which is the major source of conjugated linolenic acids such as punicic acid (PuA), exhibits strong anti-inflammatory properties. Necrotizing enterocolitis (NEC) is a devastating disease associated with severe and excessive intestinal inflammation. The aim of this study was to evaluate the effects of orally administered PSO on the development of NEC, intestinal epithelial proliferation, and cytokine regulation in a rat model of NEC. Premature rats were divided into three groups: dam fed (DF), formula-fed rats (FF), or rats fed with formula supplemented with 1.5% of PSO (FF + PSO). All groups were exposed to asphyxia/cold stress to induce NEC. Intestinal injury, epithelial cell proliferation, cytokine production, and trefoil factor 3 (Tff3) production were evaluated in the terminal ileum. Oral administration of PSO (FF+PSO) decreased the incidence of NEC from 61 to 26%. Feeding formula with PSO improved enterocyte proliferation in the site of injury. Increased levels of proinflammatory IL-6, IL-8, IL-12, IL-23, and TNF-? in the ileum of FF rats were normalized in PSO-treated animals. Tff3 production in the FF rats was reduced compared with DF but not further affected by the PSO. In conclusion, administration of PSO protects against NEC in the neonatal rat model. This protective effect is associated with an improvement of intestinal epithelial homeostasis and a strong anti-inflammatory effect of PSO on the developing intestinal mucosa. PMID:22821948

  6. A Three-Dimensional Analysis of Morphological Evolution and Locomotor Performance of the Carnivoran Forelimb

    PubMed Central

    Martín-Serra, Alberto; Figueirido, Borja; Palmqvist, Paul

    2014-01-01

    In this study, three-dimensional landmark-based methods of geometric morphometrics are used for estimating the influence of phylogeny, allometry and locomotor performance on forelimb shape in living and extinct carnivorans (Mammalia, Carnivora). The main objective is to investigate morphological convergences towards similar locomotor strategies in the shape of the major forelimb bones. Results indicate that both size and phylogeny have strong effects on the anatomy of all forelimb bones. In contrast, bone shape does not correlate in the living taxa with maximum running speed or daily movement distance, two proxies closely related to locomotor performance. A phylomorphospace approach showed that shape variation in forelimb bones mainly relates to changes in bone robustness. This indicates the presence of biomechanical constraints resulting from opposite demands for energetic efficiency in locomotion –which would require a slender forelimb– and resistance to stress –which would be satisfied by a robust forelimb–. Thus, we interpret that the need of maintaining a trade-off between both functional demands would limit shape variability in forelimb bones. Given that different situations can lead to one or another morphological solution, depending on the specific ecology of taxa, the evolution of forelimb morphology represents a remarkable “one-to-many mapping” case between anatomy and ecology. PMID:24454891

  7. Forelimbs of Tyrannosaurus Rex: A pathetic vestigial organ or an integral part of a fearsome predator?

    NASA Astrophysics Data System (ADS)

    Lee, Scott A.; Thomas, Joshua D.

    2014-12-01

    In this paper, we examine a first-year torque and angular acceleration problem to address a possible use of the forelimbs of Tyrannosaurus rex. A 1/40th-scale model (see Fig. 1) is brought to the classroom to introduce the students to the quandary: given that the forelimbs of T. rex were too short to reach its mouth, what function did the forelimbs serve? This issue crosses several scientific disciplines including paleontology, ecology, and physics, making it a great starting point for thinking "outside the box." Noted paleontologist Kenneth Carpenter has suggested that the forelimbs of T. rex were an integral part of its predatory behavior. Given the large teeth of T. rex, it is assumed that they killed with their teeth. Lipkin and Carpenter1 have suggested that the forelimbs were used to hold a struggling victim (which had not been dispatched with the first bite) while the final, lethal bite was applied. If that is the case, then the forelimbs must be capable of large angular accelerations α in order to grab the animal attempting to escape. The concepts of the typical first-year physics course are sufficient to test this hypothesis by solving α =τ /I . Naturally, students love solving any problem related to Tyrannosaurus rex!

  8. Ancestry of motor innervation to pectoral fin and forelimb

    PubMed Central

    Ma, Leung-Hang; Gilland, Edwin; Bass, Andrew H.; Baker, Robert

    2010-01-01

    Motor innervation to the tetrapod forelimb and fish pectoral fin is assumed to share a conserved spinal cord origin, despite major structural and functional innovations of the appendage during the vertebrate water-to-land transition. In this paper, we present anatomical and embryological evidence showing that pectoral motoneurons also originate in the hindbrain among ray-finned fish. New and previous data for lobe-finned fish, a group that includes tetrapods, and more basal cartilaginous fish showed pectoral innervation that was consistent with a hindbrain-spinal origin of motoneurons. Together, these findings support a hindbrainspinal phenotype as the ancestral vertebrate condition that originated as a postural adaptation for pectoral control of head orientation. A phylogenetic analysis indicated that Hox gene modules were shared in fish and tetrapod pectoral systems. We propose that evolutionary shifts in Hox gene expression along the body axis provided a transcriptional mechanism allowing eventual decoupling of pectoral motoneurons from the hindbrain much like their target appendage gained independence from the head. PMID:20975699

  9. Brief maternal deprivation of rats reduces hepatic mixed function oxidase activities

    SciTech Connect

    Vesell, E.S. ); Heubel, F.; Netter, K.J. )

    1989-01-01

    Deprivation of pups from mother and sibs for 3 min daily from day 5 today 41 of life reduced activities of 4 hepatic mixed function oxidases (MFO) expressed per mg protein in male rats compared to unhandled control rats. These decreases, though generally small, 22.4% and under, reached statistical significance for the substrates aminopyrine, benzphetamine and ethoxycoumarin. This handling procedure did not consistently affect the inductive response to phenobarbital. Previously ignored as a source of variability in response to xenobiotics, handling appears from these results to merit further investigation as such a factor in uninduced rats. Differences among rats in handling could contribute to large day-to-day variations in their metabolism of xenobiotics.

  10. Swim therapy reduces mechanical allodynia and thermal hyperalgesia induced by chronic constriction nerve injury in rats

    PubMed Central

    Shen, Jun; Fox, Lyle E.; Cheng, Jianguo

    2013-01-01

    Objective Neuropathic pain is common and often difficult to treat because it generally does not respond well to the currently available pain medications or nerve blocks. Recent studies in both humans and animals have suggested that exercise may induce a transient analgesia and reduce acute pain in normal healthy individuals. We examined whether swim therapy could alleviate neuropathic pain in rats. Design Rats were trained to swim over a two week period in warm water. After the rats were trained, neuropathic pain was induced by constricting the right sciatic nerve and regular swimming was resumed. The sensitivity of each hind paw was monitored using the Hargreaves test and von Frey test to evaluate the withdrawal response thresholds to heat and touch. Results The paw ipsilateral to the nerve ligation expressed pain-like behaviors including thermal hyperalgesia and mechanical allodynia. Regular swim therapy sessions significantly reduced the mechanical allodynia and thermal hyperalgesia. Swim therapy had little effect on the withdrawal thresholds for the contralateral paw. In addition, swim therapy alone did not alter the thermal or mechanical thresholds of normal rats. Conclusions The results suggest that regular exercise, including swim therapy, may be an effective treatment for neuropathic pain caused by nerve injuries. This study, showing that swim therapy reduces neuropathic pain behavior in rats, provides a scientific rationale for clinicians to test the efficacy of exercise in the management of neuropathic pain. It may prove to be a safe and cost-effective therapy in a variety of neuropathic pain states. PMID:23438327

  11. Neuronal activity of the prefrontal cortex is reduced in rats selectively bred for deficient sensorimotor gating.

    PubMed

    Alam, Mesbah; Angelov, Svilen; Stemmler, Meike; von Wrangel, Christof; Krauss, Joachim K; Schwabe, Kerstin

    2015-01-01

    Rats selectively bred for deficient prepulse inhibition (PPI), an operant measure of sensorimotor gating in which a weak prepulse stimulus attenuates the response to a subsequent startling stimulus, may be used to study certain pathophysiological mechanisms and therapeutic strategies for neuropsychiatric disorders with abnormalities in information processing, such as schizophrenia and Tourette's syndrome (TS). Little is known about neuronal activity in the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAC), which are involved in the modulation of PPI. Here, we examined neuronal activity in these structures, and also in the entopeduncular nucleus (EPN), since lesions of this region alleviate the PPI deficit. Male rats with breeding-induced high and low expression of PPI (n=7, each) were anesthetized with urethane (1.4 mg/kg). Single-unit activity and local field potentials were recorded in the mPFC, the NAC and in the EPN. In the mPFC discharge rate, measures of irregularity and burst activity were significantly reduced in PPI low compared to PPI high rats (P<0.05), while analysis in the NAC showed approximately inverse behavior. In the EPN no difference between groups was found. Additionally, the oscillatory theta band activity (4-8 Hz) was enhanced and the beta band (13-30 Hz) and gamma band (30-100 Hz) activity was reduced in the NAC in PPI low rats. Reduced neuronal activity in the mPFC and enhanced activity in the NAC of PPI low rats, together with altered oscillatory behavior are clearly associated with reduced PPI. PPI low rats may thus be used to study the pathophysiology and therapeutic strategies for neuropsychiatric disorders accompanied by deficient sensorimotor gating. PMID:25220677

  12. Ethanol exposure during development reduces resident aggression and testosterone in rats

    PubMed Central

    Lugo, Joaquin N.; Marino, Melissa D.; Gass, Justin T.; Wilson, Marlene A.; Kelly, Sandra J.

    2013-01-01

    Ethanol exposure during development has been shown to alter social behaviors in people, but the range of deficits is not clear. Using an animal model of Fetal Alcohol Spectrum Disorders, inter-male aggression and testosterone levels were examined in adult rats. Rats were exposed to ethanol during the entire prenatal period and from postnatal day 2 through 10. Ethanol was administered via intragastric intubation. Two other groups consisted of a nontreated control and an intubated control group that was exposed to the administration procedures but not ethanol. Both offensive and defensive aggression were examined in experimental residents and intruders under three different housing conditions for the resident males: (1) with another male, (2) with a pregnant female, and (3) with a female and litter fathered by the experimental animal. When housed with a female and litter, ethanol-exposed rats displayed reduced offensive aggression compared to control groups under the same condition. Defensive aggression in the non-experimental intruders was reduced in this same condition. There were no differences in duration of non-aggressive social behaviors among the groups in any of the housing conditions. Testosterone levels were reduced in ethanol-exposed rats compared to controls. In summary, ethanol exposure over the combined prenatal and postnatal periods reduces aggressive behavior in a condition where aggressive behavior is normally seen. This reduction may be related to lower testosterone levels. PMID:16336982

  13. Humoral immunity and reduced periodontal bone loss in Eikenella corrodens-monoassociated rats.

    PubMed Central

    Behling, U H; Sallay, C; Sanavi, F; Pham, P H; Nowotny, A

    1981-01-01

    Germfree Sprague-Dawley rats monoassociated with Eikenella corrodens exhibited alveolar bone loss. This progressive bone loss occurred over a period of weeks, during which time the hosts developed an immune response toward the infective microorganism. By means of repeated bacterial vaccination resulting in elevated serum antibody titers, reduced bone loss was observed. PMID:7026446

  14. Cannabidiol reduces host immune response and prevents cognitive impairments in Wistar rats submitted to pneumococcal meningitis.

    PubMed

    Barichello, Tatiana; Ceretta, Renan A; Generoso, Jaqueline S; Moreira, Ana Paula; Simes, Lutiana R; Comim, Clarissa M; Quevedo, Joo; Vilela, Mrcia Carvalho; Zuardi, Antonio Waldo; Crippa, Jos A; Teixeira, Antnio Lucio

    2012-12-15

    Pneumococcal meningitis is a life-threatening disease characterized by an acute infection affecting the pia matter, arachnoid and subarachnoid space. The intense inflammatory response is associated with a significant mortality rate and neurologic sequelae, such as, seizures, sensory-motor deficits and impairment of learning and memory. The aim of this study was to evaluate the effects of acute and extended administration of cannabidiol on pro-inflammatory cytokines and behavioral parameters in adult Wistar rats submitted to pneumococcal meningitis. Male Wistar rats underwent a cisterna magna tap and received either 10?l of sterile saline as a placebo or an equivalent volume of S. pneumoniae suspension. Rats subjected to meningitis were treated by intraperitoneal injection with cannabidiol (2.5, 5, or 10mg/kg once or daily for 9 days after meningitis induction) or a placebo. Six hours after meningitis induction, the rats that received one dose were killed and the hippocampus and frontal cortex were obtained to assess cytokines/chemokine and brain-derived neurotrophic factor levels. On the 10th day, the rats were submitted to the inhibitory avoidance task. After the task, the animals were killed and samples from the hippocampus and frontal cortex were obtained. The extended administration of cannabidiol at different doses reduced the TNF-? level in frontal cortex. Prolonged treatment with canabidiol, 10mg/kg, prevented memory impairment in rats with pneumococcal meningitis. Although descriptive, our results demonstrate that cannabidiol has anti-inflammatory effects in pneumococcal meningitis and prevents cognitive sequel. PMID:23085269

  15. Reduced L-Carnitine Transport in Aortic Endothelial Cells from Spontaneously Hypertensive Rats

    PubMed Central

    Salsoso, Roco; Guzmn-Gutirrez, Enrique; Arroyo, Pablo; Salomn, Carlos; Zambrano, Sonia; Ruiz-Armenta, Mara Victoria; Blanca, Antonio Jess; Pardo, Fabin; Leiva, Andrea; Mate, Alfonso; Sobrevia, Luis; Vzquez, Carmen Mara

    2014-01-01

    Impaired L-carnitine uptake correlates with higher blood pressure in adult men, and L-carnitine restores endothelial function in aortic rings from spontaneously hypertensive rat (SHR). Thus, endothelial dysfunction in hypertension could result from lower L-carnitine transport in this cell type. L-Carnitine transport is mainly mediated by novel organic cation transporters 1 (Octn1, Na+-independent) and 2 (Octn2, Na+-dependent); however, their kinetic properties and potential consequences in hypertension are unknown. We hypothesize that L-carnitine transport kinetic properties will be altered in aortic endothelium from spontaneously hypertensive rats (SHR). L-Carnitine transport was measured at different extracellular pH (pHo 5.58.5) in the absence or presence of sodium in rat aortic endothelial cells (RAECs) from non-hypertensive Wistar-Kyoto (WKY) rats and SHR. Octn1 and Octn2 mRNA relative expression was also determined. Dilation of endothelium-intact or denuded aortic rings in response to calcitonine gene related peptide (CGRP, 0.1100 nmol/L) was measured (myography) in the absence or presence of L-carnitine. Total L-carnitine transport was lower in cells from SHR compared with WKY rats, an effect due to reduced Na+-dependent (Na+dep) compared with Na+-independent (Na+indep) transport components. Saturable L-carnitine transport kinetics show maximal velocity (Vmax), without changes in apparent Km for Na+indep transport in SHR compared with WKY rats. Total and Na+dep component of transport were increased, but Na+indep transport was reduced by extracellular alkalization in WKY rats. However, alkalization reduced total and Na+indep transport in cells from SHR. Octn2 mRNA was higher than Octn-1 mRNA expression in cells from both conditions. Dilation of artery rings in response to CGRP was reduced in vessels from SHR compared with WKY rats. CGRP effect was endothelium-dependent and restored by L-carnitine. All together these results suggest that reduced L-carnitine transport (likely via Na+-dependent Octn2) could limit this compound's potential beneficial effects in RAECs from SHR. PMID:24587332

  16. A Cervical Hemi-Contusion Spinal Cord Injury Model for the Investigation of Novel Therapeutics Targeting Proximal and Distal Forelimb Functional Recovery.

    PubMed

    Mondello, Sarah E; Sunshine, Michael D; Fischedick, Amanda E; Moritz, Chet T; Horner, Philip J

    2015-12-15

    Cervical spinal cord contusion is the most common human spinal cord injury, yet few rodent models replicate the pathophysiological and functional sequela of this injury. Here, we modified an electromechanical injury device and characterized the behavioral and histological changes occurring in response to a lateralized C4 contusion injury in rats. A key feature of the model includes a non-injurious touch phase where the spinal cord surface is dimpled with a consistent starting force. Animals were either left intact as a control, received a non-injury-producing touch on the surface of the cord ("sham"), or received a 0.6?mm or a 0.8?mm displacement injury. Rats were then tested on the forelimb asymmetry use test, CatWalk, and the Irvine, Beatties, and Bresnahan (IBB) cereal manipulation task to assess proximal and distal upper limb function for 12 weeks. Injuries of moderate (0.6?mm) and large (0.8?mm) displacement showed consistent differences in forelimb asymmetry, metrics of the CatWalk, and sub-scores of the IBB. Overall findings indicated long lasting proximal and distal upper limb deficits following 0.8?mm injury but transient proximal with prolonged distal limb deficits following 0.6?mm injury. Significant differences in loss of ipsilateral unmyelinated and myelinated white matter was detected between injury severities. Demyelination was primarily localized to the dorsolateral region of the hemicord and extended further rostral following 0.8?mm injury. These findings establish the C4 hemi-contusion injury as a consistent, graded model for testing novel treatments targeting forelimb functional recovery. PMID:25929319

  17. Heterozygous disruption of renal outer medullary potassium channel in rats is associated with reduced blood pressure.

    PubMed

    Zhou, Xiaoyan; Zhang, Zuo; Shin, Myung Kyun; Horwitz, Sarah Beth; Levorse, John M; Zhu, Lei; Sharif-Rodriguez, Wanda; Streltsov, Denis Y; Dajee, Maya; Hernandez, Melba; Pan, Yi; Urosevic-Price, Olga; Wang, Li; Forrest, Gail; Szeto, Daphne; Zhu, Yonghua; Cui, Yan; Michael, Bindhu; Balogh, Leslie Ann; Welling, Paul A; Wade, James B; Roy, Sophie; Sullivan, Kathleen A

    2013-08-01

    The renal outer medullary potassium channel (ROMK, KCNJ1) mediates potassium recycling and facilitates sodium reabsorption through the Na(+)/K(+)/2Cl(-) cotransporter in the loop of Henle and potassium secretion at the cortical collecting duct. Human genetic studies indicate that ROMK homozygous loss-of-function mutations cause type II Bartter syndrome, featuring polyuria, renal salt wasting, and hypotension; humans heterozygous for ROMK mutations identified in the Framingham Heart Study have reduced blood pressure. ROMK null mice recapitulate many of the features of type II Bartter syndrome. We have generated an ROMK knockout rat model in Dahl salt-sensitive background by using zinc finger nuclease technology and investigated the effects of knocking out ROMK on systemic and renal hemodynamics and kidney histology in the Dahl salt-sensitive rats. The ROMK(-/-) pups recapitulated features identified in the ROMK null mice. The ROMK(+/-) rats, when challenged with a 4% salt diet, exhibited a reduced blood pressure compared with their ROMK(+/+) littermates. More importantly, when challenged with an 8% salt diet, the Dahl salt-sensitive rats with 50% less ROMK expression showed increased protection from salt-induced blood pressure elevation and signs of protection from renal injury. Our findings in ROMK knockout Dahl salt-sensitive rats, together with the previous reports in humans and mice, underscore a critical role of ROMK in blood pressure regulation. PMID:23753405

  18. Comparision of uroprotective activity of reduced glutathione with Mesna in Ifosfamide induced hemorrhagic cystitis in rats

    PubMed Central

    Ali, Syed Amir; Danda, Sandeep Kumar; Basha, Syed Abdul Azeez; Rasheed, Asif; Ahmed, Osman; Ahmed, M. Muqtedar

    2014-01-01

    Background: Ifosfamide (IFO) is widely used DNA-alkylating agents in cancer chemotherapy for management of solid tumors and hematological malignancies. However, hemorrhagic cystitis limits the use of IFO. Objectives: To compare the efficiency of reduced glutathione with 2-Mesna in reducing Ifosfamide (IFO) induced hemorrhagic cystitis (HC) in wistar rats. Materials and Methods: Ifosfamide and 2-Mesna were dissolved in sterile water for injection and administered to wistar rats of albino strains. The rats were randomly assigned to one of the four groups of 6 rats each: Group I: Vehicle control; Group II: 120 mg/kg of IFO alone by intraperitoneal injection (i.p); Group III: 40 mg/kg Mesna i.p., at the same time and at 4 and 8 h after IFO administration; Group IV: 500 mg/kg of glutathione i.p., 30 min prior to IFO as above. The animals were observed for 5 days. On 6th day, rats were sacrificed by dissecting the intrajugular vein. The bladders were macroscopically and histopathologically evaluated. Results: Control animals had normal bladders with assigned scores of 0 for the three parameters of edema, hemorrhage and histopathological changes. All the animals receiving IFO (group II) had evidence of HC as evidenced by alterations of edema and hemorrhages. These alterations were almost abolished (P < 0.001) by the glutathione (group III) or Mesna (group IV) in IFO-treated animals. Conclusion: Glutathione could be as useful as Mesna in the preventive management of IFO-induced HC. PMID:24550594

  19. MRI evidence that glibenclamide reduces acute lesion expansion in a rat model of spinal cord injury

    PubMed Central

    Simard, JM; Popovich, PG; Tsymbalyuk, O; Caridi, J; Gullapalli, RP; Kilbourne, MJ; Gerzanich, V

    2014-01-01

    Study design Experimental, controlled, animal study. Objectives To use non-invasive magnetic resonance imaging (MRI) to corroborate invasive studies showing progressive expansion of a hemorrhagic lesion during the early hours after spinal cord trauma and to assess the effect of glibenclamide, which blocks Sur1-Trpm4 channels implicated in post-traumatic capillary fragmentation, on lesion expansion. Setting Baltimore. Methods Adult female LongEvans rats underwent unilateral impact trauma to the spinal cord at C7, which produced ipsilateral but not contralateral primary hemorrhage. In series 1 (six control rats and six administered glibenclamide), hemorrhagic lesion expansion was characterized using MRI at 1 and 24 h after trauma. In series 2, hemorrhagic lesion size was characterized on coronal tissue sections at 15 min (eight rats) and at 24 h after trauma (eight control rats and eight administered glibenclamide). Results MRI (T2 hypodensity) showed that lesions expanded 2.30.33-fold (P<0.001) during the first 24 h in control rats, but only 1.20.07-fold (P>0.05) in glibenclamide-treated rats. Measuring the areas of hemorrhagic contusion on tissue sections at the epicenter showed that lesions expanded 2.20.12-fold (P<0.001) during the first 24 h in control rats, but only 1.10.05-fold (P>0.05) in glibenclamide-treated rats. Glibenclamide treatment was associated with significantly better neurological function (unilateral BBB scores) at 24 h in both the ipsilateral (median scores, 9 vs 0; P<0.001) and contralateral (median scores, 12 vs 2; P<0.001) hindlimbs. Conclusion MRI is an accurate non-invasive imaging biomarker of lesion expansion and is a sensitive measure of the ability of glibenclamide to reduce lesion expansion. PMID:24042989

  20. Further evidence that a new type of Japanese pickles reduce the blood pressure of spontaneously hypertensive rats.

    PubMed

    Oda, Kohei; Nagai, Takeshi; Ueno, Yoshie; Mori, Yoshiharu

    2015-01-01

    A new type of pickles (nukazuke) that contain GABA and angiotensin converting enzyme-inhibitory peptides and that reduce blood pressure of rats was studied further. Seven kinds of nukazuke forcefully administrated orally for one day reduced temporarily the blood pressure of spontaneously hypertensive rats. In addition, a fermented shougoin daikon administrated freely for 4 weeks did not increase the blood pressure of the rats, but suppressed it throughout the experiment. Taken together with previous data (Oda et al., Biosci. Biotechnol. Biochem., 2014) it was concluded that the nukazuke could reduce the blood pressure of spontaneously hypertensive rats. Thus, the newly developed functional pickles appear to be beneficial for pickles business. PMID:25346224

  1. Three-week neonatal hypoxia reduces blood CGRP and causes persistent pulmonary hypertension in rats.

    PubMed

    Keith, I M; Tjen-A-Looi, S; Kraiczi, H; Ekman, R

    2000-10-01

    To increase understanding of persistent pulmonary hypertension, we examined chronic pulmonary effects of hypoxia at birth and their relationships with immunoreactive levels of the potent vasodilator, calcitonin gene-related peptide (CGRP). Rats were born in 10% hypobaric hypoxia, where they remained for 1-2 days, or in 15% hypoxia, where they remained for 21 days. All were then reared in normoxia for 3 mo followed by reexposure to 10% hypoxia for 7 days (H-->H) or continued normoxia (H-->N); age-matched normoxic rats were hypoxic for the last 7 days (N-->H) or normoxic throughout (N-->N). Results are as follows. Pulmonary arterial pressure (P(PA)) in 10% H-->N rats was normal at the end of the experiment (13 wk), but in rats reexposed to hypoxia (H-->H), pressure rose to 19% above N-->H controls. In 15% H-->N rats, P(PA) remained high, similar to that of N-->H rats, and increased further by 40% on reexposure (H-->H). Medial thickness of small pulmonary arteries in 10% H-->H rats also increased by 40% over N-->H controls and was equally high in 15% H-->N and H-->H rats. In N-->H rats from both experiments, right ventricular hypertrophy index (RVH) was increased after hypoxia at 15-16 wk. Also, in the 15% study, RVH remained elevated in H-->N rats and increased in H-->H rats by 19% above N-->H controls. Blood CGRP was reduced by neonate and adult hypoxia, and hypoxic reexposure (H-->H) further lowered blood CGRP in the 15% but not 10% study. Declining left ventricular blood CGRP correlated highly with logarithmically increasing P(PA) in the 15% study (r = -0.81, P = 0.000). In conclusion, 1) short perinatal exposure to 10% O(2) exacerbated pulmonary hypertension with hypoxia later in life, 2) 15% O(2) at birth and for 21 days caused persistent pulmonary hypertension and exacerbation with reexposure, and 3) P(PA) correlated highly with declining blood CGRP levels in the 15% study. PMID:11009443

  2. NOS inhibition increases bubble formation and reduces survival in sedentary but not exercised rats

    PubMed Central

    Wislff, Ulrik; Richardson, Russell S; Brubakk, Alf O

    2003-01-01

    Previously we have shown that chronic as well as a single bout of exercise 20 h prior to a simulated dive protects rats from severe decompression illness (DCI) and death. However, the mechanism behind this protection is still not known. The present study determines the effect of inhibiting nitric oxide synthase (NOS) on bubble formation in acutely exercised and sedentary rats exposed to hyperbaric pressure. A total of 45 adult female Sprague-Dawley rats (270-320 g) were randomly assigned into exercise or sedentary control groups, with and without NOS inhibition, using l-NAME (0.05 or 1 mg ml?1) (a nonselective NOS inhibitor). Exercising rats ran intervals on a treadmill for 1.5 h, 20 h prior to the simulated dive. Intervals alternated between 8 min at 8590 % of maximal oxygen uptake, and 2 min at 5060 %. Rats were compressed (simulated dive) in a pressure chamber, at a rate of 200 kPa min?1 to a pressure of 700 kPa, and maintained for 45 min breathing air. At the end of the exposure period, rats were decompressed linearly to the surface (100 kPa) at a rate of 50 kPa min?1. Immediately after reaching the surface the animals were anaesthetised and the right ventricle was insonated using ultrasound. The study demonstrated that sedentary rats weighing more than 300 g produced a large amount of bubbles, while those weighing less than 300 g produced few bubbles and most survived the protocol. Prior exercise reduced bubble formation and increased survival in rats weighing more than 300 g, confirming the results from the previous study. During NOS inhibition, the simulated dive induced significantly more bubbles in all sedentary rats weighing less than 300 g. However, this effect could be attenuated by a single bout of exercise 20 h before exposure. The present study demonstrates two previously unreported findings: that administration of l-NAME allows substantial bubble formation and decreased survival in sedentary rats, and that a single bout of exercise protects NOS-inhibited rats from severe bubble formation and death. This is the first report to indicate that biochemical processes are involved in bubble formation, and this information may be important in the search for preventive measures for and treatment of DCI. PMID:12527743

  3. Female rats are relatively more sensitive to reduced lipid versus reduced carbohydrate availability

    PubMed Central

    Sandoval, D A; Ryan, K K; de Kloet, A D; Woods, S C; Seeley, R J

    2012-01-01

    Objectives: Because females have blunted counterregulatory responses to hypoglycemia relative to males, we hypothesized that females would have greater sensitivity to changes in lipid availability. Design and subjects: To assess this, we examined the feeding response to glucoprivation (2-deoxyglucose; 2DG) and lipoprivation (mercaptoacetate; MA) in age-matched male and female Long-Evans rats. Results: Males versus females had significantly greater food intake after 250?mg?kg?1 of 2DG, but there were no sex differences with the 750?mg?kg?1 dose of 2DG. Glucose responses to 250?mg?kg?1 of 2DG were also significantly greater in males versus females. In contrast, females had a significant increase in food intake with all doses of MA versus saline, and had significantly greater food intake compared with males at the lowest and highest doses of MA with a trend towards significance with the intermediate dose. To determine whether estradiol (E2) is the mechanism underlying this sexual dimorphism, ovariectomized females were injected with vehicle or 2??g of E2 every fourth day to mimic the variations in across the estrous cycle. Ovariectomized females significantly increased feeding and glucose after 250?mg?kg?1 of 2DG over intact females and E2 had no effect on these responses. Although the feeding response to 2DG was not different, the glucose response to 2DG was still significantly greater in males versus ovariectomies females. However, ovariectomized females also did not increase food intake after MA, regardless of E2 treatment. Conclusions: These data collectively suggest that males are relatively more sensitive to glucose deprivation and females are relatively more sensitive to lipid deprivation. Further, these data rule out a role for cyclic changes in E2 in these sex differences. PMID:23169552

  4. Comparative study of the forelimbs of the semifossorial prairie dog, Cynomys gunnisoni, and the scansorial fox squirrel, Sciurus niger.

    PubMed

    Stalheim-Smith, A

    1984-04-01

    A comparative study of the forelimbs of the semifossorial prairie dog, Cynomys gunnisoni , and the scansorial tree squirrel, Sciurus niger, was focused on the musculoskeletal design for digging in the former and climbing in the latter. Based on lever arm mechanics, it was expected that the forelimb of the prairie dog would show features appropriate to the production of relatively large forces and that of the fox squirrel to relatively great velocity. Force and lever arm measurements were made of select forelimb muscles at the shoulder, elbow, and wrist joints for a series of angles in both species. Contraction time and fatigue indexes were determined for the same forelimb muscles. Contrary to expectation, in the few cases in which significant (P less than .05) differences were found, the forces, lever arms, and torques (force times its lever arm) were greater in the smaller fox squirrel. The observed variation in the torques produced fits the demands on the forelimb during climbing and digging as estimated from films. Several forelimb muscles of the fox squirrel show significantly higher mean contraction times than do the homologous muscles of the prairie dog. There were no significant differences between the two species in the fatigability of the selected forelimb muscles, although the mean fatigue index was always higher (less fatigable muscle) in the prairie dog. Similarities in the forelimbs of these two sciurids suggest that only minor modifications may have been required of the ancestral forelimb in order for descendent forms to operate successfully as climbers and diggers . PMID:6726818

  5. Deferoxamine reduces intracerebral hemorrhage-induced white matter damage in aged rats.

    PubMed

    Ni, Wei; Okauchi, Masanobu; Hatakeyama, Tetsuhiro; Gu, Yuxiang; Keep, Richard F; Xi, Guohua; Hua, Ya

    2015-10-01

    Iron contributes to c-Jun N-terminal kinases (JNK) activation in young rats and white matter injury in piglets after intracerebral hemorrhage (ICH). In the present study, we examined the effect of deferoxamine on ICH-induced white matter injury and JNK activation and in aged rats. Male Fischer 344 rats (18months old) had either an intracaudate injection of 100?l of autologous blood or a needle insertion (sham). The rats were treated with deferoxamine or vehicle with different regimen (dosage, duration and time window). White matter injury and activation of JNK were examined. We found that a dose of DFX should be at more than 10mg/kg for a therapeutic duration more than 2days with a therapeutic time window of 12h to reduce ICH-induced white matter loss at 2months. ICH-induced white matter injury was associated with JNK activation. The protein levels of phosphorylated-JNK (P-JNK) were upregulated at day-1 after ICH and then gradually decreased. P-JNK immunoreactivity was mostly located in white matter bundles. ICH-induced JNK activation was reduced by DFX treatment. This study demonstrated that DFX can reduce ICH-induced JNK activation and white matter damage. PMID:25749188

  6. Deferoxamine reduces intracerebral hemorrhage-induced white matter damage in aged rats

    PubMed Central

    Ni, Wei; Okauchi, Masanobu; Hatakeyama, Tetsuhiro; Gu, Yuxiang; Keep, Richard F.; Xi, Guohua; Hua, Ya

    2015-01-01

    Iron contributes to c-Jun N-terminal kinases (JNK) activation in young rats and white matter injury in piglets after intracerebral hemorrhage (ICH). In the present study, we examined the effect of deferoxamine on ICH-induced white matter injury and JNK activation and in aged rats. Male Fischer 344 rats (18 months old) had either an intracaudate injection of 100 l of autologous blood or a needle insertion (sham). The rats were treated with deferoxamine or vehicle with different regimen (dosage, duration and time window). White matter injury and activation of JNK were examined. We found that a dose of DFX should at more than 10 mg/kg for a therapeutic duration more than 2 days with a therapeutic time window of 12 hours to reduce ICH-induced white matter loss at 2 months. ICH-induced white matter injury was associated with JNK activation. The protein levels of phosphorylated-JNK (P-JNK) were upregulated at day-1 after ICH and then gradually decreased. P-JNK immunoreactivity was mostly located in white matter bundles. ICH-induced JNK activation was reduced by DFX treatment. This study demonstrated that DFX can reduce ICH-induced JNK activation and white matter damage. PMID:25749188

  7. Efficacy of AdiDetox in reducing the toxicity of fumonisin B1 in rats.

    PubMed

    Denli, Muzaffer; Blandon, Juan C; Salado, Silvia; Guynot, Maria E; Casas, Josefina; Prez, Jose F

    2015-04-01

    The objective of this study is to evaluate the efficacy of a new mycotoxin inactivator (AdiDetox) in reducing the toxic effects of fumonisin B1 (FB1) in the diet of rats. Sixty-four male Sprague-Dawley growing rats (125?g??1?g BW) were assigned to eight dietary treatments for seven days. The experiment had a 2??4 factorial arrangement with two levels of FB1 (0?mg and 15?mg of FB1/kg feed) and four levels of AdiDetox (0?g, 1?g, 2?g and 5?g /kg feed) in the diet. No significant differences were observed in the growth performance among treatments (P?>?0.05), though low levels of sphingosine (So) and sphinganine (Sa) were detected in the liver. However, So and Sa and the Sa/So ratio in kidneys were higher in rats receiving the FB1 diets (P?reduced the toxic effects of FB1, leading to a significant decrease in the Sa content and in the Sa/So ratio in kidneys. In conclusion, the results suggest that AdiDetox can effectively reduce toxicity of FB1 in growing rats. PMID:25660482

  8. Exendin-4 reduces tau hyperphosphorylation in type 2 diabetic rats via increasing brain insulin level.

    PubMed

    Yang, Yan; Ma, Delin; Xu, Weijie; Chen, Fuqiong; Du, Tingting; Yue, Wenzhu; Shao, Shiying; Yuan, Gang

    2016-01-01

    Type 2 diabetes (T2D) is a high risk factor for Alzheimer's disease (AD). Our previous study identified that hyperphosphorylation of tau protein, which is one of the pathophysiologic hallmarks of AD, also occurred in T2D rats' brain; while glucagon-like peptide-1 (GLP-1) mimetics, a type of drug used in T2D, could decrease the phosphorylation of tau, probably via augmenting insulin signaling pathway. The purpose of this study was to further explore the mechanisms that underlie the effect of exendin-4 (ex-4, a GLP-1 receptor agonist) in reducing tau phosphorylation. We found that peripheral ex-4 injection in T2D rats reduced hyperphosphorylation of tau protein in rat hippocampus, probably via increasing hippocampal insulin which activated insulin signaling. Furthermore, we found that ex-4 could neither activate insulin signaling, nor reduce tau phosphorylation in HT22 neuronal cells in the absence of insulin. These results suggested that insulin is required in reduction of tau hyperphosphorylation by ex-4 in brain rats with T2D. PMID:26640240

  9. Poly(adp-ribose) synthetase inhibition reduces bacterial translocation in rats after endotoxin challenge.

    PubMed

    Taner, A S; Cinel, I; Ozer, L; Onde, U; Taner, D; Koksoy, C

    2001-08-01

    We investigated whether 3-aminobenzamide (3-AB), a poly(ADP-ribose) synthetase (PARS) inhibitor, reduces bacterial translocation (BT) after intraperitoneal endotoxin administration. Wistar rats were randomized to receive intraperitoneal saline (control, n = 6); endotoxin (n = 8); 3-AB (n = 6); and 3-AB plus endotoxin (n = 8). Six hours later, to evaluate the endotoxin-related intestinal injury and BT, tissue and blood samples were collected. Administration of intraperitoneal endotoxin caused severe intestinal injury and BT to mesenteric lymph nodes. PARS inhibition with 3-AB completely prevented endotoxin-induced BT. No colony-forming bacteria was isolated from the samples obtained from 3-AB-pretreated animals under endotoxin challenge. Treatment with 3-AB significantly reduced the endotoxin-induced intestinal mucosal injury. The inhibition of PARS by its blocker 3-aminobenzamide during endotoxemia prevents bacterial translocation and intestinal injury in rats. PARS activation may provide a novel therapeutic approach in reducing gut barrier failure seen in endotoxemia. PMID:11508870

  10. Forelimb preferences in human beings and other species: multiple models for testing hypotheses on lateralization.

    PubMed

    Versace, Elisabetta; Vallortigara, Giorgio

    2015-01-01

    Functional preferences in the use of right/left forelimbs are not exclusively present in humans but have been widely documented in a variety of vertebrate and invertebrate species. A matter of debate is whether non-human species exhibit a degree and consistency of functional forelimb asymmetries comparable to human handedness. The comparison is made difficult by the variability in hand use in humans and the few comparable studies conducted on other species. In spite of this, interesting continuities appear in functions such as feeding, object manipulation and communicative gestures. Studies on invertebrates show how widespread forelimb preferences are among animals, and the importance of experience for the development of forelimb asymmetries. Vertebrate species have been extensively investigated to clarify the origins of forelimb functional asymmetries: comparative evidence shows that selective pressures for different functions have likely driven the evolution of human handedness. Evidence of a complex genetic architecture of human handedness is in line with the idea of multiple evolutionary origins of this trait. PMID:25798121

  11. Morphology and function of the forelimb in arboreal frogs: specializations for grasping ability?

    PubMed

    Manzano, Adriana S; Abdala, Virginia; Herrel, Anthony

    2008-09-01

    Frogs are characterized by a unique morphology associated with their saltatory lifestyle. Although variation in the form and function of the pelvic girdle and associated appendicular system related to specialized locomotor modes such as swimming or burrowing has been documented, the forelimbs have typically been viewed as relatively unspecialized. Yet, previous authors have noted versatility in forelimb function among arboreal frogs associated with feeding. Here we study the morphology and function of the forelimb and hand during locomotion in two species of arboreal frogs (Litoria caerulea and Phyllomedusa bicolor). Our data show a complex arrangement of the distal forelimb and hand musculature with some notable differences between species. Analyses of high-speed video and video fluoroscopy recordings show that forelimbs are used in alternating fashion in a diagonal sequence footfall pattern and that the position of the hand is adjusted when walking on substrates of different diameters. Electromyographic recordings show that the flexors of the hand are active during substrate contact, suggesting the use of gripping to generate a stabilizing torque. Measurements of grasping forces in vivo and during stimulation experiments show that both species, are capable of executing a so-called power grip but also indicates marked differences between species, in the magnitude of forces generated. Stimulation experiments showed an increased control of digit flexion in the more specialized of the two species, allowing it to execute a precision grip paralleled only by that seen in primates. PMID:18565111

  12. Morphology and function of the forelimb in arboreal frogs: specializations for grasping ability?

    PubMed Central

    Manzano, Adriana S; Abdala, Virginia; Herrel, Anthony

    2008-01-01

    Frogs are characterized by a unique morphology associated with their saltatory lifestyle. Although variation in the form and function of the pelvic girdle and associated appendicular system related to specialized locomotor modes such as swimming or burrowing has been documented, the forelimbs have typically been viewed as relatively unspecialized. Yet, previous authors have noted versatility in forelimb function among arboreal frogs associated with feeding. Here we study the morphology and function of the forelimb and hand during locomotion in two species of arboreal frogs (Litoria caerulea and Phyllomedusa bicolor). Our data show a complex arrangement of the distal forelimb and hand musculature with some notable differences between species. Analyses of high-speed video and video fluoroscopy recordings show that forelimbs are used in alternating fashion in a diagonal sequence footfall pattern and that the position of the hand is adjusted when walking on substrates of different diameters. Electromyographic recordings show that the flexors of the hand are active during substrate contact, suggesting the use of gripping to generate a stabilizing torque. Measurements of grasping forces in vivo and during stimulation experiments show that both species, are capable of executing a so-called power grip but also indicates marked differences between species, in the magnitude of forces generated. Stimulation experiments showed an increased control of digit flexion in the more specialized of the two species, allowing it to execute a precision grip paralleled only by that seen in primates. PMID:18565111

  13. Forelimb preferences in human beings and other species: multiple models for testing hypotheses on lateralization

    PubMed Central

    Versace, Elisabetta; Vallortigara, Giorgio

    2015-01-01

    Functional preferences in the use of right/left forelimbs are not exclusively present in humans but have been widely documented in a variety of vertebrate and invertebrate species. A matter of debate is whether non-human species exhibit a degree and consistency of functional forelimb asymmetries comparable to human handedness. The comparison is made difficult by the variability in hand use in humans and the few comparable studies conducted on other species. In spite of this, interesting continuities appear in functions such as feeding, object manipulation and communicative gestures. Studies on invertebrates show how widespread forelimb preferences are among animals, and the importance of experience for the development of forelimb asymmetries. Vertebrate species have been extensively investigated to clarify the origins of forelimb functional asymmetries: comparative evidence shows that selective pressures for different functions have likely driven the evolution of human handedness. Evidence of a complex genetic architecture of human handedness is in line with the idea of multiple evolutionary origins of this trait. PMID:25798121

  14. Neuropathy reduces viscero-somatic inhibition via segmental mechanisms in rats.

    PubMed

    Pertovaara, Antti; Kalmari, Jaakko

    2002-06-12

    The effect of an experimental neuropathy on the viscero-somatic inhibition was studied in lightly anesthetized rats. In controls, colo-rectal distension at noxious intensities produced a multisegmental prolongation of the withdrawal response induced by noxious stimulation of the skin. In rats with a spinal nerve-ligation induced neuropathy this viscero-somatic inhibition was significantly reduced within the neuropathic segment (the hindlimb) but not outside of it (the tail). Naloxone, an opioid antagonist, attenuated this viscero-somatic inhibition in controls and it did not restore the inhibition in neuropathic rats. The results indicate that somatic neuropathy produces a segmental attenuation of viscero-somatic inhibition and this attenuation cannot be explained by a nerve injury-induced release of endogenous opioids. The decreased inhibition of somatic signals may contribute to the hypersensitivity observed in neuropathic conditions. PMID:12060806

  15. Melatonin reduces bacterial translocation and apoptosis in trinitrobenzene sulphonic acid-induced colitis of rats

    PubMed Central

    Akcan, Alper; Kucuk, Can; Sozuer, Erdogan; Esel, Duygu; Akyildiz, Hizir; Akgun, Hulya; Muhtaroglu, Sabahattin; Aritas, Yucel

    2008-01-01

    AIM: To investigate the effects of exogenous melatonin on bacterial translocation and apoptosis in a rat ulcerative colitis model. METHODS: Rats were randomly assigned to three groups: groupI: control, group II: experimental colitis, group III: colitis plus melatonin treatment. On d 11 after colitis, plasma tumor necrosis factor-?, portal blood endotoxin levels, colon tissue myeloperoxidase and caspase-3 activity were measured. Bacterial translocation was quantified by blood, lymph node, liver and spleen culture. RESULTS: We observed a significantly reduced incidence of bacterial translocation to the liver, spleen, mesenteric lymph nodes, portal and systemic blood in animals treated with melatonin. Treatment with melatonin significantly decreased the caspase-3 activity in colonic tissues compared to that in trinitrobenzene sulphonic acid- treated rats (16.11 2.46 vs 32.97 3.91, P < 0.01). CONCLUSION: Melatonin has a protective effect on bacterial translocation and apoptosis. PMID:18240350

  16. Green Tea Polyphenols Reduce Body Weight in Rats by Modulating Obesity-Related Genes

    PubMed Central

    Lu, Chuanwen; Zhu, Wenbin; Shen, Chwan-Li; Gao, Weimin

    2012-01-01

    Beneficial effects of green tea polyphenols (GTP) against obesity have been reported, however, the mechanism of this protection is not clear. Therefore, the objective of this study was to identify GTP-targeted genes in obesity using the high-fat-diet-induced obese rat model. A total of three groups (n?=?12/group) of Sprague Dawley (SD) female rats were tested, including the control group (rats fed with low-fat diet), the HF group (rats fed with high-fat diet), and the HF+GTP group (rats fed with high-fat diet and GTP in drinking water). The HF group increased body weight as compared to the control group. Supplementation of GTP in the drinking water in the HF+GTP group reduced body weight as compared to the HF group. RNA from liver samples was extracted for gene expression analysis. A total of eighty-four genes related to obesity were analyzed using PCR array. Compared to the rats in the control group, the rats in the HF group had the expression levels of 12 genes with significant changes, including 3 orexigenic genes (Agrp, Ghrl, and Nr3c1); 7 anorectic genes (Apoa4, Cntf, Ghr, IL-1?, Ins1, Lepr, and Sort); and 2 genes that relate to energy expenditure (Adcyap1r1 and Adrb1). Intriguingly, the HF+GTP group restored the expression levels of these genes in the high-fat-induced obese rats. The protein expression levels of IL-1? and IL-6 in the serum samples from the control, HF, and HF+GTP groups confirmed the results of gene expression. Furthermore, the protein expression levels of superoxide dismutase-1 (SOD1) and catechol-O-methyltransferase (COMT) also showed GTP-regulated protective changes in this obese rat model. Collectively, this study revealed the beneficial effects of GTP on body weight via regulating obesity-related genes, anti-inflammation, anti-oxidant capacity, and estrogen-related actions in high-fat-induced obese rats. PMID:22715380

  17. Aerobic endurance training reduces bubble formation and increases survival in rats exposed to hyperbaric pressure

    PubMed Central

    Wislff, Ulrik; Brubakk, Alf O

    2001-01-01

    The formation of bubbles is the basis for injury to divers after decompression, a condition known as decompression illness. In the present study we investigated the effect of endurance training in the rat on decompression-induced bubble formation. A total of 52 adult female Sprague-Dawley rats (300-370 g) were randomly assigned to one of two experimental groups: training or sedentary control. Trained rats exercised on a treadmill for 1.5 h per day for 1 day, or for 2 or 6 weeks (5 days per week) at exercise intervals that alternated between 8 min at 85-90 % of maximal oxygen uptake (V?O2,max) and 2 min at 50-60 % of V?O2,max. Rats were compressed (simulated dive) in a decompression chamber in pairs, one sedentary and one trained, at a rate of 200 kPa min?1 to a pressure of 700 kPa, and maintained for 45 min breathing air. At the end of the exposure period, rats were decompressed linearly to the surface (100 kPa) at a rate of 50 kPa min?1. Immediately after reaching the surface (100 kPa) the animals were anaesthetized and the right ventricle was insonated using Doppler ultrasound. Intensity-controlled interval training significantly increased V?O2,max by 12 and 60 % after 2 and 6 weeks, respectively. At 6 weeks, left and right ventricular weights were 14 and 17 % higher, respectively, in trained compared to control rats. No effect of training was observed on skeletal muscle weight. Bubble formation was significantly reduced in trained rats after both 2 and 6 weeks. However, the same effect was seen after a single bout of aerobic exercise lasting 1.5 h on the day prior to decompression. All of the rats that exercised for 1.5 h and 2 weeks, and most of those that trained for 6 weeks, survived the protocol, whereas most sedentary rats died within 60 min post-decompression. This study shows that aerobic exercise protects rats from severe decompression and death. This may be a result of less bubbling in the trained animals. The data showed that the increase in aerobic capacity per se was not the main mechanism, but rather an acute effect that was most notable 20 h after a single, or the last, exercise bout, with less effect after 48 h. PMID:11731590

  18. Amelioration of azoxymethane induced-carcinogenesis by reducing oxidative stress in rat colon by natural extracts

    PubMed Central

    2014-01-01

    Background Azoxymethane (AOM) is a potent carcinogenic agent commonly used to induce colon cancer in rats; the cytotoxicity of AOM is considered to mediate oxidative stress. This study investigated the chemopreventive effect of three natural extracts [pomegranate peel extract (PomPE), papaya peel extract (PapPE) and seaweed extract (SE)] against AOM-induced oxidative stress and carcinogenesis in rat colon. Methods Eighty SpragueDawley rats (aged 4weeks) were randomly divided into 8 groups (10 rats/group). Control group was fed a basal diet; AOM-treated group was fed a basal diet and received AOM intraperitonial injections for two weeks at a dose of 15mg/kg bodyweight, whereas the other six groups were received oral supplementation of PomPE, PapPE or SE, in the presence or absence of AOM injection. All animals were continuously fed ad-libitum until aged 16weeks, then all rats were sacrificed and the colon tissues were examined microscopically for pathological changes and aberrant crypt foci (ACF) development, genotoxicity (induced micronuclei (MN) cells enumeration), and glutathione and lipid peroxidation. Results Our results showed that AOM-induced ACF development and pathological changes in the colonic mucosal tissues, increased bone marrow MN cells and oxidative stress (glutathione depletion, lipid peroxidation) in rat colonic cells. The concomitant treatment of AOM with PomPE, PapPE or SE significantly ameliorated the cytotoxic effects of AOM. Conclusions The results of this study provide in-vivo evidence that PomPE, PapPE and SE reduced the AOM-induced colon cancer in rats, through their potent anti-oxidant activities. PMID:24533833

  19. High fiber probiotic fermented mare's milk reduces the toxic effects of mercury in rats

    PubMed Central

    Abdel-Salam, Ahmed M.; Al-Dekheil, Ali; Babkr, Ali; Farahna, Mohammed; Mousa, Hassan M.

    2010-01-01

    Background: Since the advent of the Industrial Revolution in the late 19th century, we have all been unfortunately exposed to an increasingly toxic and polluted world. Among the most dangerous of these pollutants is mercury, which is considered to be the most toxic non-radioactive heavy metal. Fermented foods may help cleanse the body of heavy metals. Fermentation breaks down the nutrients in foods by the action of beneficial microorganisms and creates natural chelators that are available to bind toxins and remove them from the body. Aims: The current study was designed to determine the impact of feeding a high fiber probiotic fermented mare's milk on the biological effects of mercury toxicity in rat model. Methods and Materials: The high fiber fermented mare's milk containing probiotics was prepared and its sensory properties, chemical composition, and antioxidant activity were determined. A rat model of mercury toxicity was used. The effect of feeding the high fiber probiotic fermented mare's milk to rats, along with mercury ingestion, was determined by the analysis of several biochemical markers in serum and histopathological examinations of brain and kidney. Results: The high fiber fermented mare's milk containing probiotics was found to be acceptable by all test panels and volunteers. Mercury ingestion was found to cause biochemical and histopathological alterations in rat serum and tissues. The mercury-treated rats showed a decrease in body weight and an increase in kidney weight. Sera of the mercury treated rats showed alterations in biochemical parameters, and histopathological changes in brain and kidney. However, the rats fed high fiber fermented mare`s milk along with mercury ingestion showed improved histopathology of kidney and brain, and there was restoration of the biochemical parameters in serum to almost normal values. Conclusions: Feeding high fiber fermented mare`s milk may reduce the toxic effects of mercury. PMID:22558569

  20. Diphenyl diselenide supplemented diet reduces depressive-like behavior in hypothyroid female rats.

    PubMed

    Dias, Glaecir Roseni Mundstock; de Almeida, Tielle Moraes; Sudati, Jssie Haigert; Dobrachinski, Fernando; Pavin, Sandra; Soares, Flix Alexandre Antunes; Nogueira, Cristina Wayne; Barbosa, Nilda Berenice Vargas

    2014-01-30

    Hypothyroidism has been associated to psychiatric disorder development and tissue oxidative damage. In this study, we evaluated the effect of diphenyl diselenide supplementation on depressive-like behavior triggered by methimazole exposure in female rats. Additionally, thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS) and non-protein thiol (NP-SH) levels were analyzed in cerebral cortex, hippocampus and striatum structures of rats. Monoamine oxidase (MAO) activity was evaluated in total brain. Firstly, female rats received methimazole (MTZ) 20mg/100ml in the drinking water for 30days and were evaluated in open-field and forced swimming tests (FST). In this set of experiments, the rats exposed to MTZ presented a depressive-like behavior, which was evidenced by a significant increase in the immobility time when compared to control group. Thereafter, MTZ-induced hypothyroid rats received either a standard or a diet containing 5ppm of diphenyl diselenide, and then they were evaluated monthly in open-field and FST tests during 3months. No alteration on the locomotor performance was observed among the groups. The depressive-like behavior of hypothyroid rats was blunted by diphenyl diselenide supplementation during all experimental periods. The levels of thyroid hormones remained low in MTZ exposed groups until the end of experimental period. The MTZ group had an increase in TBARS and ROS levels that were restored by diphenyl diselenide supplementation. NP-SH content of cerebral structures was not modified by MTZ exposure and/or diphenyl diselenide supplementation. Diphenyl diselenide supplementation restored the MAO B activity that was decreased in MTZ group. In summary, our results show that hypothyroidism induced by MTZ methimazole triggers a depressive-like behavior in female rats and that dietary diphenyl diselenide was able to reduce this effect. PMID:24239994

  1. Intermittent hypoxia in rats reduces activation of Ca2+ sparks in mesenteric arteries.

    PubMed

    Jackson-Weaver, Olan; Osmond, Jessica M; Naik, Jay S; Gonzalez Bosc, Laura V; Walker, Benjimen R; Kanagy, Nancy L

    2015-12-01

    Ca(+) sparks are vascular smooth muscle cell (VSMC) Ca(2+)-release events that are mediated by ryanodine receptors (RyR) and promote vasodilation by activating large-conductance Ca(2+)-activated potassium channels and inhibiting myogenic tone. We have previously reported that exposing rats to intermittent hypoxia (IH) to simulate sleep apnea augments myogenic tone in mesenteric arteries through loss of hydrogen sulfide (H2S)-induced dilation. Because we also observed that H2S can increase Ca(2+) spark activity, we hypothesized that loss of H2S after IH exposure reduces Ca(2+) spark activity and that blocking Ca(2+) spark generation reduces H2S-induced dilation. Ca(2+) spark activity was lower in VSMC of arteries from IH compared with sham-exposed rats. Furthermore, depolarizing VSMC by increasing luminal pressure (from 20 to 100 mmHg) or by elevating extracellular [K(+)] increased spark activity in VSMC of arteries from sham rats but had no effect in arteries from IH rats. Inhibiting endogenous H2S production in sham arteries prevented these increases. NaHS or phosphodiesterase inhibition increased spark activity to the same extent in sham and IH arteries. Depolarization-induced increases in Ca(2+) spark activity were due to increased sparks per site, whereas H2S increases in spark activity were due to increased spark sites per cell. Finally, inhibiting Ca(2+) spark activity with ryanodine (10 μM) enhanced myogenic tone in arteries from sham but not IH rats and blocked dilation to exogenous H2S in arteries from both sham and IH rats. Our results suggest that H2S regulates RyR activation and that H2S-induced dilation requires Ca(2+) spark activation. IH exposure decreases endogenous H2S-dependent Ca(2+) spark activation to cause membrane depolarization and enhance myogenic tone in mesenteric arteries. PMID:26408536

  2. Losartan reduces myocardial interstitial fibrosis in diabetic cardiomyopathy rats by inhibiting JAK/STAT signaling pathway

    PubMed Central

    Wang, Lijun; Li, Juan; Li, Dajun

    2015-01-01

    Purpose: This study was designed to investigate the effect of losartan on the myocardial interstitial fibrosis in diabetic cardiomyopathy (DCM) rats. Methods: In this study, a total of 48 male Wister rats (3 groups of 16 animals each) were examined, including the control group, DCM group and losartan-treated (DCM + L) group. Control group was fed with standard diet (14 KJ/g); DCM group and losartan-treated (DCM + L) group were both fed with high glucose and fat diet (20 KJ/g). Diabetes was induced by streptozotocin (STZ) intraperitoneal injuction (IP, 30 mg/kg body weight). Rats of DCM + L group were treated with losartan (30 mg/kg body weight) daily by oral gavage for 16 weeks. Biochemical, hemodynamic, histological and western blotting analyses were performed. Results: Compared with DCM rats, the quantity of p-JAK2 and p-STAT3 in myocardium of rats treated with losartan was lower, the expression of TGF-?1 was down-regulate, the content of collagen in myocardium decreased, LVSP and dp/dt increased, LVEDP decreased, the level of myocardial fibrosis reduced, and heart function improved evidently. Conclusion: Losartan has a protective effect on heart function against myocardial interstitial fibrosis of DCM by inhibiting JAK/STAT signaling pathway and lowering the expression of TGF-?1. PMID:25755735

  3. Ingestion of Lactobacillus strain reduces anxiety and improves cognitive function in the hyperammonemia rat.

    PubMed

    Luo, Jia; Wang, Tao; Liang, Shan; Hu, Xu; Li, Wei; Jin, Feng

    2014-03-01

    Evidence suggests that the hyperammonemia (HA)-induced neuroinflammation and alterations in the serotonin (5-HT) system may contribute to cognitive decline and anxiety disorder during hepatic encephalopathy (HE). Probiotics that maintain immune system homeostasis and regulate the 5-HT system may be potential treatment for HA-mediated neurological disorders in HE. In this study, we tested the efficacy of probiotic Lactobacillus helveticus strain NS8 in preventing cognitive decline and anxiety-like behavior in HA rats. Chronic HA was induced by intraperitoneal injection of ammonium acetate for four weeks in male Sprague-Dawley rats. HA rats were then given Lactobacillus helveticus strain NS8 (10(9) CFU mL(-1)) in drinking water as a daily supplementation. The Morris water maze task assessed cognitive function, and the elevated plus maze test evaluated anxiety-like behavior. Neuroinflammation was assessed by measuring the inflammatory markers: inducible nitric oxide synthase, prostaglandin E2, and interleukin-1 ? in the brain. 5-HT system activity was evaluated by measuring 5-HT and its metabolite, 5-HIAA, and the 5-HT precursor, tryptophan. Probiotic treatment of HA rats significantly reduced the level of inflammatory markers, decreased 5-HT metabolism, restored cognitive function and improved anxiety-like behavior. These results indicate that probiotic L. helveticus strain NS8 is beneficial for the treatment of cognitive decline and anxiety-like behavior in HA rats. PMID:24554471

  4. COX-2-Derived Prostanoids and Oxidative Stress Additionally Reduce Endothelium-Mediated Relaxation in Old Type 2 Diabetic Rats

    PubMed Central

    Vessires, Emilie; Guihot, Anne-Laure; Toutain, Bertrand; Maquigneau, Maud; Fassot, Cline; Loufrani, Laurent; Henrion, Daniel

    2013-01-01

    Endothelial dysfunction in resistance arteries alters end organ perfusion in type 2 diabetes. Superoxides and cyclooxygenase-2 (COX-2) derivatives have been shown separately to alter endothelium-mediated relaxation in aging and diabetes but their role in the alteration of vascular tone in old diabetic subjects is not clear, especially in resistance arteries. Consequently, we investigated the role of superoxide and COX-2-derivatives on endothelium-dependent relaxation in 3 and 12 month-old Zucker diabetic fatty (ZDF) and lean (LZ) rats. Mesenteric resistance arteries were isolated and vascular tone was investigated using wire-myography. Endothelium (acetylcholine)-dependent relaxation was lower in ZDF than in LZ rats (60 versus 84% maximal relaxation in young rats and 41 versus 69% in old rats). Blocking NO production with L-NAME was less efficient in old than in young rats. L-NAME had no effect in old ZDF rats although eNOS expression level in old ZDF rats was similar to that in old LZ rats. Superoxide level and NADPH-oxidase subunits (p67phox and gp91phox) expression level were greater in ZDF than in LZ rats and were further increased by aging in ZDF rats. In young ZDF rats reducing superoxide level with tempol restored acetylcholine-dependent relaxation to the level of LZ rats. In old ZDF rats tempol improved acetylcholine-dependent relaxation without increasing it to the level of LZ rats. COX-2 (immunolabelling and Western-blot) was present in arteries of ZDF rats and absent in LZ rats. In old ZDF rats arterial COX-2 level was higher than in young ZDF rats. COX-2 blockade with NS398 restored in part acetylcholine-dependent relaxation in arteries of old ZDF rats and the combination of tempol and NS398 fully restored relaxation in control (LZ rats) level. Accordingly, superoxide production and COX-2 derivatives together reduced endothelium-dependent relaxation in old ZDF rats whereas superoxides alone attenuated relaxation in young ZDF or old LZ rats. PMID:23874545

  5. Memantine reduces alcohol drinking but not relapse in alcohol-dependent rats.

    PubMed

    Alaux-Cantin, Stphanie; Buttolo, Romain; Houchi, Hakim; Jeanblanc, Jrme; Naassila, Mickal

    2015-09-01

    Alcoholism is a chronic relapsing disorder with consequences on health and that requires more effective treatments. Among alternative therapies, the therapeutic potential of the non-competitive N-methyl-D-aspartate receptor antagonist memantine has been suggested. Despite promising results, its efficiency in the treatment of alcoholism remains controversial. Currently, there is no pre-clinical data regarding its effects on the motivation for ethanol in post-dependent (PD) animals exposed to intermittent ethanol vapor, a validated model of alcoholism. Thus, the objectives of this study were to evaluate the effects of acute injections of memantine (0, 12.5, 25 and 50?mg/kg) on operant ethanol self-administration in non-dependent (ND) and PD rats tested either during acute withdrawal or relapse after protracted abstinence. Our results showed that memantine (25?mg/kg) abolished ethanol self-administration in ND rats and reduced by half the one of PD rats during acute withdrawal. While this effect was observed only 6?hours after treatment in ND rats, it was long lasting in PD rats (at least 30?hours after injection). Furthermore, our results indicated that memantine did not modify the breaking point for ethanol. This suggests that memantine probably act by potentiating the pharmacological effect of ethanol but not by reducing motivation for ethanol. Finally, memantine was also ineffective in reducing relapse after protracted abstinence. Altogether, our pre-clinical results highlighted a potential therapeutic use of memantine that may be used as a replacement therapy drug but not as relapse-preventing drug. PMID:25138717

  6. Exposure to sucrose during periods of withdrawal does not reduce cocaine-seeking behavior in rats

    PubMed Central

    Nicolas, Céline; Lafay-Chebassier, Claire; Solinas, Marcello

    2016-01-01

    Concomitant access to drugs of abuse and alternative rewards such as sucrose has been shown to decrease addiction-related behaviors in animals. Here we investigated whether access to sucrose during abstinence in contexts that are temporally and physically distinct from drug-related contexts could reduce subsequent drug seeking. In addition, we investigated whether a history of cocaine self-administration would alter the rewarding effects of sucrose. Rats self-administered cocaine for ten sessions, while yoked-saline rats received only saline injections, and then we subjected them to a 30-day withdrawal period during which they had access to water and sucrose continuously or intermittently according to a schedule that induces binge-drinking behavior. At the end of the withdrawal period, rats were tested for cocaine seeking behavior during a single 6 h session. We found that exposure to cocaine increased sucrose consumption only when rats had intermittent access to sucrose, but exposure to sucrose did not alter drug seeking regardless of the schedule of access. These results suggest that exposure to cocaine cross-sensitizes to the rewarding effects of sucrose, but exposure to sucrose during abstinence, temporally and physically distinct from drug-related environments, does not to reduce drug seeking. PMID:26997496

  7. Exposure to sucrose during periods of withdrawal does not reduce cocaine-seeking behavior in rats.

    PubMed

    Nicolas, Céline; Lafay-Chebassier, Claire; Solinas, Marcello

    2016-01-01

    Concomitant access to drugs of abuse and alternative rewards such as sucrose has been shown to decrease addiction-related behaviors in animals. Here we investigated whether access to sucrose during abstinence in contexts that are temporally and physically distinct from drug-related contexts could reduce subsequent drug seeking. In addition, we investigated whether a history of cocaine self-administration would alter the rewarding effects of sucrose. Rats self-administered cocaine for ten sessions, while yoked-saline rats received only saline injections, and then we subjected them to a 30-day withdrawal period during which they had access to water and sucrose continuously or intermittently according to a schedule that induces binge-drinking behavior. At the end of the withdrawal period, rats were tested for cocaine seeking behavior during a single 6 h session. We found that exposure to cocaine increased sucrose consumption only when rats had intermittent access to sucrose, but exposure to sucrose did not alter drug seeking regardless of the schedule of access. These results suggest that exposure to cocaine cross-sensitizes to the rewarding effects of sucrose, but exposure to sucrose during abstinence, temporally and physically distinct from drug-related environments, does not to reduce drug seeking. PMID:26997496

  8. Metformin attenuates hyperoxia-induced lung injury in neonatal rats by reducing the inflammatory response.

    PubMed

    Chen, Xueyu; Walther, Frans J; Sengers, Rozemarijn M A; Laghmani, El Houari; Salam, Asma; Folkerts, Gert; Pera, Tonio; Wagenaar, Gerry T M

    2015-08-01

    Because therapeutic options are lacking for bronchopulmonary dysplasia (BPD), there is an urgent medical need to discover novel targets/drugs to treat this neonatal chronic lung disease. Metformin, a drug commonly used to lower blood glucose in type 2 diabetes patients, may be a novel therapeutic option for BPD by reducing pulmonary inflammation and fibrosis and improving vascularization. We investigated the therapeutic potential of daily treatment with 25 and 100 mg/kg metformin, injected subcutaneously in neonatal Wistar rats with severe experimental BPD, induced by continuous exposure to 100% oxygen for 10 days. Parameters investigated included survival, lung and heart histopathology, pulmonary fibrin and collagen deposition, vascular leakage, right ventricular hypertrophy, and differential mRNA expression in the lungs of key genes involved in BPD pathogenesis, including inflammation, coagulation, and alveolar development. After daily metformin treatment rat pups with experimental BPD had reduced mortality, alveolar septum thickness, lung inflammation, and fibrosis, demonstrated by a reduced influx of macrophages and neutrophils and hyperoxia-induced collagen III and fibrin deposition (25 mg/kg), as well as improved vascularization (100 mg/kg) compared with control treatment. However, metformin did not ameliorate alveolar enlargement, small arteriole wall thickening, vascular alveolar leakage, and right ventricular hypertrophy. In conclusion metformin prolongs survival and attenuates pulmonary injury by reducing pulmonary inflammation, coagulation, and fibrosis but does not affect alveolar development or prevent pulmonary arterial hypertension and right ventricular hypertrophy in neonatal rats with severe hyperoxia-induced experimental BPD. PMID:26047641

  9. Acute splenic irradiation reduces brain injury in the rat focal ischemic stroke model.

    PubMed

    Ostrowski, Robert P; Schulte, Reinhard W; Nie, Ying; Ling, Ted; Lee, Timothy; Manaenko, Anatol; Gridley, Daila S; Zhang, John H

    2012-12-01

    Removing the spleen prior to ischemic stroke abrogates immunologic response to brain injury and reduces cerebral infarction. However, the effectiveness of splenectomy for neuroprotection after stroke has not been established. Moreover, the risks of the surgical splenectomy in stroke patients create a major obstacle to removing the spleen's inflammatory response. We hypothesized that acute splenic irradiation will ablate splenic cells and thereby will diminish stroke progression. Male adult Sprague Dawley rats were subjected to 2-hour middle cerebral artery occlusion (MCAO), then CT scanned for spleen localization and irradiated to the lateral splenic region with 8Gy of Cobalt 60 at 3, 4, 6 or 8 hrs after start of cerebral ischemia. Untreated controls underwent the same procedures except that sham irradiation was applied. At 2 or 7 days after ischemia the rats were euthanized, and brains recovered for the assessment of brain injury and the extent of neuroinflammation. Irradiation at 3 hrs reduced spleen weight and lymphocyte blood levels after stroke. Splenic irradiation at 3 and 4 hrs after start of ischemia significantly reduced cerebral infarction volumes measured at 48 hrs and 7 days, respectively. The histological analysis on day 7 revealed reduced counts of microglia, infiltrating T cells, and apoptotic neurons in the rats irradiated at 4 hrs. The noninvasive single-dose procedure of splenic irradiation performed within a time interval of up to 4 hours offers neuroprotection against ischemic stroke possibly by abrogating deployment of splenic cells to the brain. PMID:23956805

  10. 5?-Reduced neurosteroids sex-dependently reverse central prenatal programming of neuroendocrine stress responses in rats.

    PubMed

    Brunton, Paula J; Donadio, Marcio V; Yao, Song T; Greenwood, Mike; Seckl, Jonathan R; Murphy, David; Russell, John A

    2015-01-14

    Maternal social stress during late pregnancy programs hypothalamo-pituitary-adrenal (HPA) axis hyper-responsiveness to stressors, such that adult prenatally stressed (PNS) offspring display exaggerated HPA axis responses to a physical stressor (systemic interleukin-1?; IL-1?) in adulthood, compared with controls. IL-1? acts via a noradrenergic relay from the nucleus tractus solitarii (NTS) to corticotropin releasing hormone neurons in the paraventricular nucleus (PVN). Neurosteroids can reduce HPA axis responses, so allopregnanolone and 3?-androstanediol (3?-diol; 5?-reduced metabolites of progesterone and testosterone, respectively) were given subacutely (over 24 h) to PNS rats to seek reversal of the "programmed" hyper-responsive HPA phenotype. Allopregnanolone attenuated ACTH responses to IL-1? (500 ng/kg, i.v.) in PNS females, but not in PNS males. However, 3?-diol normalized HPA axis responses to IL-1? in PNS males. Impaired testosterone and progesterone metabolism or increased secretion in PNS rats was indicated by greater plasma testosterone and progesterone concentrations in male and female PNS rats, respectively. Deficits in central neurosteroid production were indicated by reduced 5?-reductase mRNA levels in both male and female PNS offspring in the NTS, and in the PVN in males. In PNS females, adenovirus-mediated gene transfer was used to upregulate expression of 5?-reductase and 3?-hydroxysteroid dehydrogenase mRNAs in the NTS, and this normalized hyperactive HPA axis responses to IL-1?. Thus, downregulation of neurosteroid production in the brain may underlie HPA axis hyper-responsiveness in prenatally programmed offspring, and administration of 5?-reduced steroids acutely to PNS rats overrides programming of hyperactive HPA axis responses to immune challenge in a sex-dependent manner. PMID:25589761

  11. Reduced expression of folate transporters in kidney of a rat model of folate oversupplementation.

    PubMed

    Thakur, Shilpa; Thakur, Som Dev; Wani, Nissar Ahmad; Kaur, Jyotdeep

    2014-01-01

    Folic acid is the key one-carbon donor required for de novo nucleotide and methionine synthesis. Its deficiency is associated with megaloblastic anemia, cancer and various complications of pregnancy. However, its supplementation results in reduction of neural tube defects and prevention of several types of cancer. The intake of folic acid from fortified food together with the use of nutritional supplements creates a state of folate oversupplementation. Fortification of foods is occurring worldwide with little knowledge of the potential safety and physiologic consequences of intake of such high doses of folic acid. So, we planned to examine the effects of acute and chronic folate oversupplementation on the physiology of renal folate transport in rats. Male Wistar rats were procured and divided into two groups. Rats in group I were given semisynthetic diets containing 2mg folic acid/kg diet (control) and those in group II were given folate-oversupplemented rat diet, i.e., 20mg folic acid/kg diet (oversupplemented). Six animals from group I and group II received the treatment for 10days (acute treatment) and remaining six for 60days (chronic treatment). In acute folate-oversupplemented rats, 5-[(14)C]-methyltetrahydrofolate uptake was found to be significantly reduced, as compared to chronic folate-oversupplemented and control rats. This reduction in uptake was associated with a significant decrease in the mRNA and protein levels of the folate transporters. Results of the present investigation showed that acute oversupplementation led to a specific and significant down-regulation of renal folate uptake process mediated via transcriptional and translational regulatory mechanism(s). PMID:24306960

  12. BMSCs reduce rat granulosa cell apoptosis induced by cisplatin and perimenopause

    PubMed Central

    2013-01-01

    Background The objective of this study was to evaluate the effect of bone marrow mesenchymal stem cells (BMSCs) on the apoptosis of granulosa cells (GCs) in rats. BMSCs and GCs were isolated from rats. GCs were separated into one of the following three groups: an untreated control group (control), a cisplatin (5mg/L) treatment group (cisplatin), and group co-cultured with BMSCs and treated with cisplatin (BMSC). GC apoptosis was analyzed by annexin V staining and real-time PCR analysis for apoptosis-related genes. The effect of BMSCs was also determined in 9 to 10month-old perimenopausal rats that were separated into the following groups: saline control, BMSC transplantation (12??106 cells), and estrogen treatment (0.158mg/kg/d) groups. A young group consisting of 3 to 4month-old rats that were treated with saline was also evaluated as a control. After 1 and 3months, GC apoptosis was evaluated by TUNEL analysis. Results Cisplatin increased GC apoptosis from 0.59% to 13.04% in the control and cisplatin treatment groups, respectively, which was significantly reduced upon co-culture with BMSCs to 4.84%. Cisplatin treatment increased p21 and bax and decreased c-myc mRNA expression, which was reversed upon co-culture with BMSCs. As compared to young rats, increased apoptosis was observed in the perimenopausal rats (P?

  13. Estradiol selectively reduces central neural activation induced by hypertonic NaCl infusion in ovariectomized rats.

    PubMed

    Jones, Alexis B; Bass, Eryn E; Fan, Liming; Curtis, Kathleen S

    2012-09-10

    We recently reported that the latency to begin drinking water during slow, intravenous infusion of a concentrated NaCl solution was shorter in estradiol-treated ovariectomized rats compared to oil vehicle-treated rats, despite comparably elevated plasma osmolality. To test the hypothesis that the decreased latency to begin drinking is attributable to enhanced detection of increased plasma osmolality by osmoreceptors located in the CNS, the present study used immunocytochemical methods to label fos, a marker of neural activation. Increased plasma osmolality did not activate the subfornical organ (SFO), organum vasculosum of the lamina terminalis (OVLT), or the nucleus of the solitary tract (NTS) in either oil vehicle-treated rats or estradiol-treated rats. In contrast, hyperosmolality increased fos labeling in the area postrema (AP), the paraventricular nucleus of the hypothalamus (PVN) and the rostral ventrolateral medulla (RVLM) in both groups; however, the increase was blunted in estradiol-treated rats. These results suggest that estradiol has selective effects on the sensitivity of a population of osmo-/Na(+)-receptors located in the AP, which, in turn, alters activity in other central areas associated with responses to increased osmolality. In conjunction with previous reports that hyperosmolality increases blood pressure and that elevated blood pressure inhibits drinking, the current findings of reduced activation in AP, PVN, and RVLM-areas involved in sympathetic nerve activity-raise the possibility that estradiol blunts HS-induced blood pressure changes. Thus, estradiol may eliminate or reduce the initial inhibition of water intake that occurs during increased osmolality, and facilitate a more rapid behavioral response, as we observed in our recent study. PMID:22763321

  14. Efficacy of curcumin to reduce hepatic damage induced by alcohol and thermally treated oil in rats.

    PubMed

    El-Deen, Nasr A M N; Eid, Mohamed

    2010-01-01

    The authors investigated the effect of curcumin on markers of oxidative stress and liver damage in rats that chronically ingested alcohol and heated oil. Nine groups of ten Wistar male rats received combinations of curcumin 100 mg/kg body weight daily, ethanol 5 mg/kg, 15% dietary sunflower oil and 15% heated sunflower oil for 12 weeks. Serum and liver tissue were collected. Groups 4-6, which had received compounds causing oxidative stress, showed increased serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total bilirubin, cholesterol, triglycerides, low density lipoprotein, very low density lipoprotein and reduced high density lipoprotein, protein and albumin, compared with the controls. Reductions were observed in glutathione peroxidase and reductase gene expression, superoxide dismutase activity, glutathione peroxidase activity, glutathione reductase activity, reduced glutathione concentration and catalase enzyme activity. Groups 7, 8 and 9 which received curcumin with heated oil, ethanol or both, showed lower elevations in serum and oxidative damage markers compared with the corresponding non-curcumin treated groups. It can be concluded that curcumin reduces markers of liver damage in rats treated with heated sunflower oil or ethanol. PMID:20391370

  15. A Novel Hemp Seed Meal Protein Hydrolysate Reduces Oxidative Stress Factors in Spontaneously Hypertensive Rats

    PubMed Central

    Girgih, Abraham T.; Alashi, Adeola M.; He, Rong; Malomo, Sunday A.; Raj, Pema; Netticadan, Thomas; Aluko, Rotimi E.

    2014-01-01

    This report shows the antioxidant effects of a hemp seed meal protein hydrolysate (HMH) in spontaneously hypertensive rats (SHR). Defatted hemp seed meal was hydrolyzed consecutively with pepsin and pancreatin to yield HMH, which was incorporated into rat feed as a source of antioxidant peptides. Young (8-week old) SHRs were divided into three groups (8 rats/group) and fed diets that contained 0.0%, 0.5% or 1.0% (w/w) HMH for eight weeks; half of the rats were sacrificed for blood collection. After a 4-week washout period, the remaining 20-week old SHRs were fed for an additional four weeks and sacrificed for blood collection. Plasma total antioxidant capacity (TAC) and superoxide dismutase (SOD), catalase (CAT) and total peroxides (TPx) levels were determined. Results showed that plasma TAC, CAT and SOD levels decreased in the older 20-week old SHRs when compared to the young SHRs. The presence of HMH in the diets led to significant (p < 0.05) increases in plasma SOD and CAT levels in both young and adult SHR groups; these increases were accompanied by decreases in TPx levels. The results suggest that HMH contained antioxidant peptides that reduced the rate of lipid peroxidation in SHRs with enhanced antioxidant enzyme levels and total antioxidant capacity. PMID:25493943

  16. Endostatin reduces vascularization, blood flow, and growth in a rat gliosarcoma.

    PubMed Central

    Sorensen, Dag R.; Read, Tracy-Ann; Porwol, Torsten; Olsen, Bjorn Reino; Timpl, Rupert; Sasaki, Takako; Iversen, Per O.; Benestad, Haakon B.; Sim, B. Kim Lee; Bjerkvig, Rolf

    2002-01-01

    Endostatin, the 20-kDa C-terminal fragment of collagen XVIII, has previously been shown to inhibit growth and induce regression of different experimental tumors in rodents. In this study, we show that recombinant murine and human endostatin, produced in 293 EBNA cells and yeast, respectively, inhibit ectotopic as well as orthotopic growing BT4Cn gliosarcomas in BD-IX rats. In rats in which s.c. gliomas were grown for a total of 29 days, systemic treatment with recombinant murine endostatin induced about 50% reduction of intratumoral blood flow and tumor size after only 10 days of therapy. In contrast, the blood flow to irrelevant organs was unaffected by endostatin, indicating its specificity of action. Tumors were not observed to increase in size or regrow after cessation of therapy. Furthermore, endostatin-treated rats with i.c. tumors had significantly longer survival time than did untreated controls. In the treated rats, endostatin therapy resulted in a reduced tumor blood vessel volume and an increased tumor cell density with an increased apoptotic index within a given tumor volume, as verified by flow cytometry and by staining with deoxynucleotidyltransferase-mediated dUTP nick-end labeling. This work verifies the general anti-angiogenic and antitumor effects of endostatin and indicates that the protein may also be considered as a treatment strategy for malignant brain tumors. PMID:11772427

  17. Chronic administration of valproic acid reduces brain NMDA signaling via arachidonic acid in unanesthetized rats

    PubMed Central

    Basselin, Mireille; Chang, Lisa; Chen, Mei; Bell, Jane M.; Rapoport, Stanley I.

    2008-01-01

    Evidence that brain glutamatergic activity is pathologically elevated in bipolar disorder suggests that mood stabilizers are therapeutic in the disease in part by downregulating glutamatergic activity. Such activity can involve the second messenger, arachidonic acid (AA, 20:4n-6). We tested this hypothesis with regard to valproic acid (VPA), when stimulating glutamatergic N-methyl-D-aspartate (NMDA) receptors in rat brain and measuring AA and related responses. An acute subconvulsant dose of NMDA (25 mg/kg i.p.) or saline was administered to unanesthetized rats that had been treated i.p. daily with VPA (200 mg/kg) or vehicle for 30 days. Quantitative autoradiography following intravenous [1-14C]AA infusion was used to image regional brain AA incorporation coefficients k*, markers of AA signaling. In chronic vehicle-pretreated rats, NMDA compared with saline significantly increased k* in 41 of 82 examined brain regions, many of which have high NMDA receptor densities, and also increased brain concentrations of the AA metabolites, prostaglandin E2 (PGE2) and thromboxane B2 (TXB2). VPA pretreatment reduced baseline concentrations of PGE2 and TXB2, and blocked the NMDA induced increases in k* and in eicosanoid concentrations. These results, taken with evidence that carbamazepine and lithium also block k* responses to NMDA in rat brain, suggest that mood stabilizers act in bipolar disorder in part by downregulating glutamatergic signaling involving AA. PMID:18461450

  18. Vardenafil reduces testicular damage following ischemia/reperfusion injury in rats.

    PubMed

    Erol, Bulent; Tokgoz, Husnu; Hanci, Volkan; Bektas, Sibel; Akduman, Bulent; Yencilek, Faruk; Mungan, Gorkem; Mungan, Aydin

    2009-07-01

    We investigated the effect of intraperitoneal vardenafil (1 mg/kg) administration during an ischemic period in a rat model of testicular torsion/detorsion (T/D). Twenty-one adult Wistar rats were equally randomized into a control group, a T/D group and a vardenafil group. The control group was designed to collect basal values for biochemical and histopathological parameters. The T/D group underwent testicular torsion for 1 hour. The vardenafil group received vardenafil (1 mg/kg) intraperitoneally at 30 minutes after torsion. All rats were sacrificed 4 hours after reperfusion to evaluate the tissue levels of malondialdehyde and total antioxidant status. Germ cell apoptosis was evaluated using the apoptosis protease activating factor 1 antibody in all groups. The expressions of endothelial nitric oxide synthase (NOS) and inducible NOS were also assessed in both testes of all rats. The malondialdehyde levels in the T/D group were significantly higher than in the control and vardenafil groups. There were also significant decreases in total antioxidant status in the T/D group compared with the control and vardenafil groups. Vardenafil treatment significantly reduced apoptosis protease activating factor 1, endothelial NOS and inducible NOS levels in the vardenafil group compared with the T/D group. Administration of 1 mg/kg vardenafil during testicular torsion decreased ischemia/reperfusion cellular damage. Our results indicate that the reduction in oxidative stress by vardenafil may play a major role in its cytoprotective effects. PMID:19605329

  19. Palmitoylethanolamide treatment reduces retinal inflammation in streptozotocin-induced diabetic rats.

    PubMed

    Paterniti, Irene; Di Paola, Rosanna; Campolo, Michela; Siracusa, Rosalba; Cordaro, Marika; Bruschetta, Giuseppe; Tremolada, Gemma; Maestroni, Anna; Bandello, Francesco; Esposito, Emanuela; Zerbini, Gianpaolo; Cuzzocrea, Salvatore

    2015-12-15

    Although the pathogenesis of diabetic retinopathy (DR) is still insufficiently understood, new evidences indicate 'retinal inflammation' as an important player in the pathogenesis of the complication. Accordingly, common sets of upregulated inflammatory cytokines are found in serum, vitreous and aqueous samples obtained from subjects with DR, and these cytokines can have multiple interactions to impact the pathogenesis of the disease. Thus, based on previously published data, we investigated the effects of Palmitoylethanolamide (PEA), an endogenous lipid amide that belongs to the N-acyl-ethanolamines family, on DR in streptozotocin (STZ)-induced diabetic rats. PEA (10mg/kg) was administered orally daily starting 3 days after the iv administration of STZ. The rats were killed 15 and 60day later and eyes were enucleated to evaluate, through immunohistochemical analysis, the key inflammatory events involved in the breakdown of blood retinal barrier (BRB). Immunohistochemical analysis confirmed the presence of VEGF, ICAM-1, nitrotyrosine (a marker of peroxynitrite), and tight junctions in the retina of STZ-treated rats. Of interest, the extent of injury was significantly reduced after treatment with PEA. Altogether, this study provides the first evidence that PEA attenuates the degree of inflammation while preserving the blood-retinal barrier in rats with experimental DR. PMID:26607470

  20. Exposure to Mozart music reduces cognitive impairment in pilocarpine-induced status epilepticus rats.

    PubMed

    Xing, Yingshou; Qin, Yi; Jing, Wei; Zhang, Yunxiang; Wang, Yanran; Guo, Daqing; Xia, Yang; Yao, Dezhong

    2016-02-01

    Patients with temporal lobe epilepsy (TLE) often display cognitive deficits. However, current epilepsy therapeutic interventions mainly aim at how to reduce the frequency and degree of epileptic seizures. Recovery of cognitive impairment is not attended enough, resulting in the lack of effective approaches in this respect. In the pilocarpine-induced temporal lobe epilepsy rat model, memory impairment has been classically reported. Here we evaluated spatial cognition changes at different epileptogenesis stages in rats of this model and explored the effects of long-term Mozart music exposure on the recovery of cognitive ability. Our results showed that pilocarpine rats suffered persisting cognitive impairment during epileptogenesis. Interestingly, we found that Mozart music exposure can significantly enhance cognitive ability in epileptic rats, and music intervention may be more effective for improving cognitive function during the early stages after Status epilepticus. These findings strongly suggest that Mozart music may help to promote the recovery of cognitive damage due to seizure activities, which provides a novel intervention strategy to diminish cognitive deficits in TLE patients. PMID:26834859

  1. A novel hemp seed meal protein hydrolysate reduces oxidative stress factors in spontaneously hypertensive rats.

    PubMed

    Girgih, Abraham T; Alashi, Adeola M; He, Rong; Malomo, Sunday A; Raj, Pema; Netticadan, Thomas; Aluko, Rotimi E

    2014-12-01

    This report shows the antioxidant effects of a hemp seed meal protein hydrolysate (HMH) in spontaneously hypertensive rats (SHR). Defatted hemp seed meal was hydrolyzed consecutively with pepsin and pancreatin to yield HMH, which was incorporated into rat feed as a source of antioxidant peptides. Young (8-week old) SHRs were divided into three groups (8 rats/group) and fed diets that contained 0.0%, 0.5% or 1.0% (w/w) HMH for eight weeks; half of the rats were sacrificed for blood collection. After a 4-week washout period, the remaining 20-week old SHRs were fed for an additional four weeks and sacrificed for blood collection. Plasma total antioxidant capacity (TAC) and superoxide dismutase (SOD), catalase (CAT) and total peroxides (TPx) levels were determined. Results showed that plasma TAC, CAT and SOD levels decreased in the older 20-week old SHRs when compared to the young SHRs. The presence of HMH in the diets led to significant (p < 0.05) increases in plasma SOD and CAT levels in both young and adult SHR groups; these increases were accompanied by decreases in TPx levels. The results suggest that HMH contained antioxidant peptides that reduced the rate of lipid peroxidation in SHRs with enhanced antioxidant enzyme levels and total antioxidant capacity. PMID:25493943

  2. [Dietary SkQ1 supplement reduces myocardial ischemia- reperfusion injury in rats in vivo].

    PubMed

    Pisarenko, O I; Serebriakova, L I; Tskitishvili, O V; Studneva, I M

    2009-01-01

    To examine whether nutritional supplementation with SkQ1 can reduce myocardial ischemia-reperfusion injury in vivo, Wistar rats were fed a regular diet supplemented with different doses of SkQ1 for two or three weeks. Control groups of rats were fed the same diet supplemented with NaBr. Anaesthetized rats were subjected to 40-min regional myocardial ischemia and 1-h reperfusion. Myocardial infarct size was measured by 2,3,5-triphenyl tetrazolium chloride (TTC) staining method. SkQ1-fed rats (125 nmol/kg/day for two weeks and 250 nmol/kg/day for two and three weeks) revealed significantly smaller myocardial infarction and less lactate dehydrogenase (LDH) and creatine kinase-MB fraction (CK-MB) activity elevations in plasma at the end of reperfusion compared with the controls. This effect was combined with improvement of energy state of the area at risk at the end of reperfusion, namely, augmentation of adenine nucleotide content, two-fold increase in phosphocreatine, reduction of lactate accumulation and decrease of lactate/pyruvate ratio in myocardial tissue. Therefore, nutritional supplementation with SkQ1 renders the hearts resistant to ischemia-reperfusion injury affecting oxidative metabolism of postischemic cardiomyocytes. PMID:20001981

  3. A magnesium based phosphate binder reduces vascular calcification without affecting bone in chronic renal failure rats.

    PubMed

    Neven, Ellen; De Schutter, Tineke M; Dams, Geert; Gundlach, Kristina; Steppan, Sonja; Bchel, Janine; Passlick-Deetjen, Jutta; D'Haese, Patrick C; Behets, Geert J

    2014-01-01

    The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover. PMID:25229549

  4. A Magnesium Based Phosphate Binder Reduces Vascular Calcification without Affecting Bone in Chronic Renal Failure Rats

    PubMed Central

    Neven, Ellen; De Schutter, Tineke M.; Dams, Geert; Gundlach, Kristina; Steppan, Sonja; Bchel, Janine; Passlick-Deetjen, Jutta; D'Haese, Patrick C.; Behets, Geert J.

    2014-01-01

    The alternative phosphate binder calcium acetate/magnesium carbonate (CaMg) effectively reduces hyperphosphatemia, the most important inducer of vascular calcification, in chronic renal failure (CRF). In this study, the effect of low dose CaMg on vascular calcification and possible effects of CaMg on bone turnover, a persistent clinical controversy, were evaluated in chronic renal failure rats. Adenine-induced CRF rats were treated daily with 185 mg/kg CaMg or vehicle for 5 weeks. The aortic calcium content and area% calcification were measured to evaluate the effect of CaMg. To study the effect of CaMg on bone remodeling, rats underwent 5/6th nephrectomy combined with either a normal phosphorus diet or a high phosphorus diet to differentiate between possible bone effects resulting from either CaMg-induced phosphate deficiency or a direct effect of Mg. Vehicle or CaMg was administered at doses of 185 and 375 mg/kg/day for 8 weeks. Bone histomorphometry was performed. Aortic calcium content was significantly reduced by 185 mg/kg/day CaMg. CaMg ameliorated features of hyperparathyroid bone disease. In CRF rats on a normal phosphorus diet, the highest CaMg dose caused an increase in osteoid area due to phosphate depletion. The high phosphorus diet combined with the highest CaMg dose prevented the phosphate depletion and thus the rise in osteoid area. CaMg had no effect on osteoblast/osteoclast or dynamic bone parameters, and did not alter bone Mg levels. CaMg at doses that reduce vascular calcification did not show any harmful effect on bone turnover. PMID:25229549

  5. 3',4'-Dihydroxyflavonol reduces vascular contraction through Ca? desensitization in permeabilized rat mesenteric artery.

    PubMed

    Kim, Hye Young; Seok, Young Mi; Woodman, Owen L; Williams, Spencer J; Kim, In Kyeom

    2012-02-01

    3',4'-Dihydroxyflavonol (DiOHF) exerts endothelium-independent relaxation in rat aortic rings. In this study, we hypothesized that DiOHF reduces vascular contraction through Ca? desensitization in permeabilized third-order branches of rat mesenteric arteries. The third-order branches of rat mesenteric arteries were permeabilized with ?-escin and subjected to tension measurement. Cumulative addition of phenylephrine (0.3-30 ?M) produced concentration-dependent vascular contraction of endothelium-intact and endothelium-denuded arterial rings, which were inhibited by pretreatment with DiOHF (10, 30, or 100 ?M). In addition, DiOHF dose-dependently decreased vascular contractions induced by 3.0 ?M phenylephrine. ?-Escin-permeabilized third-order branches of mesenteric arteries were contracted with Ca?, NaF, or guanosine-5'-(?-thio)triphosphate (GTP?S) 30 min after pretreatment with DiOHF or vehicle. Pretreatment with DiOHF for 30 min inhibited vascular contraction induced by cumulative additions of Ca? (pCa 9.0-6.0) or NaF (4.0-16.0 mM) in permeabilized arterial rings. Cumulative addition of DiOHF also reduced vascular contraction induced by Ca?-controlled solution of pCa 6.0, 16.0 mM NaF, or 100 ?M GTP?S in permeabilized arterial rings. DiOHF inhibited the increase in vascular tension provoked by calyculin A, even though it did not affect vascular tension already produced by calyculin A. DiOHF accelerated the relaxation induced by rapidly lowering Ca?. DiOHF reduced vascular contraction through Ca? desensitization in permeabilized third-order branches of rat mesenteric arteries. These results suggest that DiOHF may have a therapeutic potential in the treatment of cardiovascular diseases. PMID:21993847

  6. Secondhand Smoke Exposure Reduced the Compensatory Effects of IGF-I Growth Signaling in the Aging Rat Hearts

    PubMed Central

    Wu, Jia-Ping; Hsieh, Dennis Jine-Yuan; Kuo, Wei-Wen; Han, Chien-Kuo; Pai, Peiying; Yeh, Yu-Lan; Lin, Chien-Chung; Padma, V. Vijaya; Day, Cecilia Hsuan; Huang, Chih-Yang

    2015-01-01

    Background: Secondhand smoke (SHS) exposure is associated with increased risk of cardiovascular disease. Aging is a physiological process that involves progressive impairment of normal heart functions due to increased vulnerability to damage. This study examines secondhand smoke exposure in aging rats to determine the age-related death-survival balance. Methods: Rats were placed into a SHS exposure chamber and exposed to smog. Old age male Sprague-Dawley rats were exposed to 10 cigarettes for 30 min, day and night, continuing for one week. After 4 weeks the rats underwent morphological and functional studies. Left ventricular sections were stained with hematoxylin-eosin for histopathological examination. TUNEL detected apoptosis cells and protein expression related death and survival pathway were analyzed using western blot. Results: Death receptor-dependent apoptosis upregulation pathways and the mitochondria apoptosis proteins were apparent in young SHS exposure and old age rats. These biological markers were enhanced in aging SHS-exposed rats. The survival pathway was found to exhibit compensation only in young SHS-exposed rats, but not in the aging rats. Further decrease in the activity of this pathway was observed in aging SHS-exposed rats. TUNEL apoptotic positive cells were increased in young SHS-exposed rats, and in aging rats with or without SHS-exposure. Conclusions: Aging reduces IGF-I compensated signaling with accelerated cardiac apoptotic effects from second-hand smoke. PMID:26392808

  7. Delayed localized hypothermia reduces intracranial pressure following collagenase-induced intracerebral hemorrhage in rat.

    PubMed

    John, Roseleen F; Colbourne, Frederick

    2016-02-15

    Brain injury, such as from intracerebral hemorrhage (ICH), causes edema and raises intracranial pressure (ICP) - a potentially life-threatening complication. Clinical studies suggest that therapeutic hypothermia (TH) reduces edema and ICP after ICH. Similarly, animal studies show that TH can sometimes reduce edema, but whether ICP would be attenuated is not known. Here we tested whether 24-h delayed TH reduces edema and ICP in rats with severe striatal ICH (collagenase model). First, we showed that ICH increased epidural ICP (mean of 18 vs. 6.5mm Hg in controls), measured via telemetry. Second, we confirmed that delayed TH did not affect hematoma size at 7day (~65 vs. ~61L in controls). A cranial cooling device lowered striatal temperature to ~33C from 24 to 72h after ICH. Third, we compared normothermic rats to those with TH that were rewarmed immediately or over 6h. Both TH protocols significantly reduced average and peak ICP by the second treatment day, and benefits persisted after rewarming. However, TH with slow rewarming failed to mitigate edema at 96h (83.2% vs. 83.6% in controls) whereas rapid rewarming worsened edema (85.7%). Finally, we compared normothermic and TH rats without rewarming and found no impact on edema at 72h (~81%). In summary, it appears that 24-h delayed local TH lowers ICP by a mechanism other than edema. Rapid rewarming worsens edema after local cooling, but this did not markedly impact ICP. Thus, TH should reduce ICP in patients with severe ICH, but not necessarily through mitigating edema. PMID:26723566

  8. Aged Male Rats Regenerate Cortical Bone with Reduced Osteocyte Density and Reduced Secretion of Nitric Oxide After Mechanical Stimulation

    PubMed Central

    Tayim, Riyad J.; McElderry, John-David; Morris, Michael D.; Goldstein, Steven A.

    2016-01-01

    Mechanical loading is integral to the repair of bone damage. Osteocytes are mechanosensors in bone and participate in signaling through gap junction channels, which are primarily comprised of connexin 43 (Cx43). Nitric oxide (NO) and prostaglandin E2 (PGE2) have anabolic and catabolic effects on bone, and the secretion of these molecules occurs after mechanical stimulation. The effect of age on the repair of bone tissue after damage and on the ability of regenerated bone to transduce mechanical stimulation into a cellular response is unexplored. The goal of this study was to examine (1) osteocytes and their mineralized matrix within regenerated bone from aged and mature animals and (2) the ability of regenerated bone explants from aged and mature animals to transduce cyclic mechanical loading into a cellular response through NO and PGE2 secretion. Bilateral cortical defects were created in the diaphysis of aged (21-month-old) or mature (6-month-old) male rats, and new bone tissue was allowed to grow into a custom implant of controlled geometry. Mineralization and mineral-to-matrix ratio were significantly higher in regenerated bone from aged animals, while lacunar and osteocyte density and phosphorylated (pCx43) and total Cx43 protein were significantly lower, relative to mature animals. Regenerated bone from mature rats had increased pCx43 protein and PGE2 secretion with loading and greater NO secretion relative to aged animals. Reduced osteocyte density and Cx43 in regenerated bone in aged animals could limit the establishment of gap junctions as well as NO and PGE2 secretion after loading, thereby altering bone formation and resorption in vivo. PMID:24370615

  9. Aged male rats regenerate cortical bone with reduced osteocyte density and reduced secretion of nitric oxide after mechanical stimulation.

    PubMed

    Joiner, Danese M; Tayim, Riyad J; McElderry, John-David; Morris, Michael D; Goldstein, Steven A

    2014-05-01

    Mechanical loading is integral to the repair of bone damage. Osteocytes are mechanosensors in bone and participate in signaling through gap junction channels, which are primarily comprised of connexin 43 (Cx43). Nitric oxide (NO) and prostaglandin E2 (PGE2) have anabolic and catabolic effects on bone, and the secretion of these molecules occurs after mechanical stimulation. The effect of age on the repair of bone tissue after damage and on the ability of regenerated bone to transduce mechanical stimulation into a cellular response is unexplored. The goal of this study was to examine (1) osteocytes and their mineralized matrix within regenerated bone from aged and mature animals and (2) the ability of regenerated bone explants from aged and mature animals to transduce cyclic mechanical loading into a cellular response through NO and PGE2 secretion. Bilateral cortical defects were created in the diaphysis of aged (21-month-old) or mature (6-month-old) male rats, and new bone tissue was allowed to grow into a custom implant of controlled geometry. Mineralization and mineral-to-matrix ratio were significantly higher in regenerated bone from aged animals, while lacunar and osteocyte density and phosphorylated (pCx43) and total Cx43 protein were significantly lower, relative to mature animals. Regenerated bone from mature rats had increased pCx43 protein and PGE2 secretion with loading and greater NO secretion relative to aged animals. Reduced osteocyte density and Cx43 in regenerated bone in aged animals could limit the establishment of gap junctions as well as NO and PGE2 secretion after loading, thereby altering bone formation and resorption in vivo. PMID:24370615

  10. Botulinum toxin in gastric submucosa reduces stimulated HCl production in rats

    PubMed Central

    Runfola, Matteo; Rossi, Simone; Panunzi, Simona; Spada, Pier Luigi; Gui, Daniele

    2003-01-01

    Background Botulinum toxin blocks acetylcholine release from nerve endings and acts as a long term, reversible inhibitor of muscle contraction as well as of salivary, sweat gland, adrenal and prostatic secretions. The aim of the present study is to investigate whether gastric submucosal injection of botulinum toxin type A reduces stimulated gastric production of HCl. Methods Sixty-four rats were randomized in two groups and laparotomized. One group was treated with botulinum toxin-A 10 U by multiple submucosal gastric injections, while the second group was injected with saline. Two weeks later, acid secretion was stimulated by pyloric ligation and acid output was measured. Body weight, food and water intake were also recorded daily. Results HCl production after pyloric ligation was found to be significantly lower in botulinum toxin-treated rats (657 90.25 micromol HCl vs. 1247 152. P = 0.0017). Botulinum toxin-treated rats also showed significantly lower food intake and weight gain. Conclusions Botulinum toxin type A reduces stimulated gastric acidity. This is likely due either to inhibition of the cholinergic stimulation of gastric parietal cells, or to an action on the myenteric nervous plexuses. Reduction of growth and food intake may reflect both impaired digestion and decreased gastric motility. PMID:12964945

  11. Estrogen Replacement Reduces Oxidative Stress in the Rostral Ventrolateral Medulla of Ovariectomized Rats.

    PubMed

    Hao, Fan; Gu, Ying; Tan, Xing; Deng, Yu; Wu, Zhao-Tang; Xu, Ming-Juan; Wang, Wei-Zhong

    2016-01-01

    Cardiovascular disease prevalence rises rapidly after menopause, which is believed to be derived from the loss of estrogen. It is reported that sympathetic tone is increased in postmenopause. The high level of oxidative stress in the rostral ventrolateral medulla (RVLM) contributes to increased sympathetic outflow. The focus of this study was to determine if estrogen replacement reduces oxidative stress in the RVLM and sympathetic outflow in the ovariectomized (OVX) rats. The data of this study showed that OVX rat increased oxidative stress in the RVLM and sympathetic tone; estrogen replacement improved cardiovascular functions but also reduced the level of oxidative stress in the RVLM. These findings suggest that estrogen replacement decreases blood pressure and sympathoexcitation in the OVX rats, which may be associated with suppression in oxidative stress in the RVLM through downregulation of protein expression of NADPHase (NOX4) and upregulation of protein expression of SOD1. The data from this study is beneficial for our understanding of the mechanism of estrogen exerting cardiovascular protective effects on postmenopause. PMID:26640612

  12. Valproic Acid Pretreatment Reduces Brain Edema in a Rat Model of Surgical Brain Injury.

    PubMed

    Huang, Lei; Woo, Wendy; Sherchan, Prativa; Khatibi, Nikan H; Krafft, Paul; Rolland, William; Applegate, Richard L; Martin, Robert D; Zhang, John

    2016-01-01

    Surgically induced brain injury (SBI) results in brain edema and neurological decline. Valproic acid (VA) has been shown to be neuroprotective in several experimental brain diseases. In this study, we investigated the pretreatment effect of VA in a rat model of SBI. A total of 57 male Sprague-Dawley rats were use in four groups: sham, SBI?+?vehicle, SBI?+?low dose (100 mg/kg) VA, and SBI?+?high dose (300 mg/kg) VA. SBI was induced by partially resecting right frontal lobes. Shams underwent identical surgical procedures without brain resection. VA or vehicle was administered subcutaneously 30 min prior to SBI. At 24 and 72 h post SBI, neurobehavior and brain water content were assessed as well as matrix metalloproteinases (MMPs) activities. There was significantly higher brain water content within the right frontal lobe in SBI rats than in shams. Without neurobehavioral improvements, the low-dose but not high-dose VA significantly reduced brain edema at 24 h post SBI. The protection tends to persist to 72 h post SBI. At 24 h post SBI, low-dose VA did not significantly reduce the elevated MMP-9 activity associated with SBI. In conclusion, VA pretreatment attenuated brain edema at 24 h after SBI but lacked MMP inhibition. The single dose VA was not associated with neurobehavioral benefits. PMID:26463966

  13. Potential of lithium to reduce aluminium-induced cytotoxic effects in rat brain.

    PubMed

    Bhalla, Punita; Singla, Neha; Dhawan, D K

    2010-04-01

    The present study was aimed to explore the potential of an antidepressant drug lithium (Li) in reducing aluminium (Al) induced neurotoxicity. To carry out the investigations, Al was administered orally (100 mg AlCl(3)/Kg b wt/day) whereas, Li was administered through diet (1.1 g Li(2)CO(3)/Kg diet, daily) for a total duration of 2 months. Al treatment resulted in a significant increase in the activity of enzyme nitric oxide synthase and the levels of L-citrulline which, however, were decreased appreciably following lithium supplementation. Al treatment also revealed an increase in DNA fragmentation as evidenced by an increase in number of comets. Interestingly, Li supplementation to Al treated rats reduced the damage inflicted on DNA by Al. Ultrastructural studies revealed an increase in chromatin condensation with discontinuity in nuclear membrane in both the cerebrum and cerebellum of Al treated rats which showed improvement following Li supplementation. Alterations in the structure of synapse and mitochondrial swelling were also seen. The present study shows the potential of Li in containing the damage inflicted by Al on rat brain. PMID:19936942

  14. Estrogen Replacement Reduces Oxidative Stress in the Rostral Ventrolateral Medulla of Ovariectomized Rats

    PubMed Central

    Hao, Fan; Gu, Ying; Tan, Xing; Deng, Yu; Wu, Zhao-Tang; Xu, Ming-Juan; Wang, Wei-Zhong

    2016-01-01

    Cardiovascular disease prevalence rises rapidly after menopause, which is believed to be derived from the loss of estrogen. It is reported that sympathetic tone is increased in postmenopause. The high level of oxidative stress in the rostral ventrolateral medulla (RVLM) contributes to increased sympathetic outflow. The focus of this study was to determine if estrogen replacement reduces oxidative stress in the RVLM and sympathetic outflow in the ovariectomized (OVX) rats. The data of this study showed that OVX rat increased oxidative stress in the RVLM and sympathetic tone; estrogen replacement improved cardiovascular functions but also reduced the level of oxidative stress in the RVLM. These findings suggest that estrogen replacement decreases blood pressure and sympathoexcitation in the OVX rats, which may be associated with suppression in oxidative stress in the RVLM through downregulation of protein expression of NADPHase (NOX4) and upregulation of protein expression of SOD1. The data from this study is beneficial for our understanding of the mechanism of estrogen exerting cardiovascular protective effects on postmenopause. PMID:26640612

  15. Evidence of reduced oral bioavailability of paracetamol in rats following multiple ingestion of grapefruit juice.

    PubMed

    Qinna, Nidal A; Ismail, Obbei A; Alhussainy, Tawfiq M; Idkaidek, Nasir M; Arafat, Tawfiq A

    2016-04-01

    The aim of the current investigation was to assess the ability GFJ to modulate the pharmacokinetic profile of paracetamol following single or repeated administrations of GFJ in Sprague-Dawley rats. Diclofenac and carbamazepine were both used as positive controls. Rats received single GFJ or single distilled water doses or pretreated with three doses of GFJ prior to test drug administration. Blood samples were collected, processed and analyzed using validated HPLC methods, and pharmacokinetic data were constructed for each group. Increase in the bioavailability of both diclofenac and carbamazepine following multiple GFJ ingestion was revealed. Conversely, the bioavailability of paracetamol was significantly reduced following multiple GFJ administration. The percentage of reduction in the C max and AUC of paracetamol were calculated as 31 and 51 %, respectively, compared to none-GFJ-treated control (P < 0.05). The T max was not essentially changed. In conclusion, frequent administration of GFJ was confirmed to modulate the pharmacokinetics of paracetamol in rats by reducing its bioavailability. Meanwhile, it may be advisable not to ingest large amounts of GFJ along with paracetamol to avoid a possible potential loss of the efficacy. PMID:25547640

  16. Exenatide reduces TNF-? expression and improves hippocampal neuron numbers and memory in streptozotocin treated rats.

    PubMed

    Solmaz, Volkan; ?nar, Bilge Piri; Yi?ittrk, Grkan; avu?o?lu, Trker; Ta?k?ran, Dilek; Erba?, Oytun

    2015-10-15

    Recent studies suggest a possible link between type 2 diabetes and Alzheimer's disease (AD). Glucogan-like peptide 1 (GLP-1) facilitates insulin release from pancreas under hyperglycemic conditions. In addition to its metabolic effects, GLP-1 and its long-lasting analogs, including exenatide can stimulate neurogenesis and improve cognition in rodent AD model. The aim of the present study was to investigate the effects of exenatide on hippocampal cellularity, cognitive performance and inflammation response in a rat model of AD. Fourteen rats were used to create AD model using intracerebroventricular (ICV) streptozotocin (STZ) infusion while 7 rats were administered 0.9% NaCl only (sham-operated group). Following stereotaxic surgery, STZ received rats were randomly distributed into two groups, and treated with either saline or exenatide 20 gr/kg/day through intraperitoneally for two weeks. Then, cognitive performance (passive avoidance learning), brain tumor necrosis factor alpha (TNF-?) levels, choline acetyltransferase (ChAT) activity and hippocampal neuronal count were determined. While the brain TNF-? levels were significantly high in the saline-treated STZ group, exenatide treatment suppressed the increase in TNF-? levels. Saline-treated STZ group showed reduced ChAT activity compared to sham group. However, exenatide significantly preserved brain ChAT activity. The cognitive performance was also impaired in saline group while exenatide improved memory in rats. Moreover, exenatide treatment significantly prevented the decrease in hippocampal neurons. Overall, the results of the present study clearly indicated exenatide might have beneficial effects on impaired cognitive performance and hippocampal neuronal viability in AD by suppressing the inflammation response and increasing cholinergic activity. PMID:26386291

  17. Melatonin reduces acute lung inflammation, edema, and hemorrhage in heatstroke rats

    PubMed Central

    Wu, Wen-shiann; Chou, Ming-ting; Chao, Chien-ming; Chang, Chen-kuei; Lin, Mao-tsun; Chang, Ching-ping

    2012-01-01

    Aim: To assess the therapeutic effect of melatonin on heat-induced acute lung inflammation and injury in rats. Methods: Heatstroke was induced by exposing anesthetized rats to heat stress (36 C, 100 min). Rats were treated with vehicle or melatonin (0.2, 1, 5 mg/kg) by intravenous administration 100 min after the initiatioin of heatstroke and were allowed to recover at room temperature (26 C). The acute lung injury was quantified by morphological examination and by determination of the volume of pleural exudates, the number of polymorphonuclear (PMN) cells, and the myeloperoxidase (MPO) activity. The concentrations of tumor necrosis factor, interleukin (IL)-1?, IL-6, and IL-10 in bronchoalveolar fluid (BALF) were measured by ELISA. Nitric oxide (NO) level was determined by Griess method. The levels of glutamate and lactate-to-pyruvate ratio were analyzed by CMA600 microdialysis analyzer. The concentrations of hydroxyl radicals were measured by a procedure based on the hydroxylation of sodium salicylates leading to the production of 2,3-dihydroxybenzoic acid (DHBA). Results: Melatonin (1 and 5 mg/kg) significantly (i) prolonged the survival time of heartstroke rats (117 and 186 min vs 59 min); (ii) attenuated heatstroke-induced hyperthermia and hypotension; (iii) attenuated acute lung injury, including edema, neutrophil infiltration, and hemorrhage scores; (iv) down-regulated exudate volume, BALF PMN cell number, and MPO activity; (v) decreased the BALF levels of lung inflammation response cytokines like TNF-alpha, interleukin (IL)-1?, and IL-6 but further increased the level of an anti-inflammatory cytokine IL-10; (vi) reduced BALF levels of glutamate, lactate-to-pyruvate ratio, NO, 2,3-DHBA, and lactate dehydrogenase. Conclusion: Melatonin may improve the outcome of heatstroke in rats by attenuating acute lung inflammation and injury. PMID:22609835

  18. Canavanine activates imidazoline I-2 receptors to reduce hyperglycemia in type 1-like diabetic rats.

    PubMed

    Chang, Chin-Hong; Chao, Pin-Chun; Niu, Ho-Shan; Huang, Gin-Chi; Chen, Li-Jen; Cheng, Juei-Tang

    2015-10-01

    Canavanine is a guanidinium derivative that has the basic structure of a ligand for the imidazoline receptor (I-R). Furthermore, canavanine is found in an herb that has been shown to improve diabetic disorders. Thus, the present study was designed to investigate the anti-hyperglycemic action of canavanine in rats with streptozotocin (STZ)-induced type 1-like diabetes. Canavanine decreased hyperglycemia in the STZ-induced diabetic rats, and this action was blocked by the antagonist specific to imidazoline I-2 receptors (I-2R), BU224, in a dose-dependent manner. Additionally, canavanine increased the plasma ?-endorphin level, as measured using enzyme-linked immunosorbent assay (ELISA), and this increase was also blocked by BU224 in the same manner. Moreover, amiloride at a dose sufficient to block I-2AR attenuated the actions of canavanine, including the increased ?-endorphin level and the antihyperglycemic effect. Otherwise, canavanine increased the radioactive glucose uptake into skeletal muscles isolated from the diabetic rats. Furthermore, canavanine increased the phosphorylation of AMPK measured using Western blot analysis in these isolated skeletal muscles in a dose-dependent manner. Additionally, the insulin sensitivity of the diabetic rats was markedly increased by canavanine, and this action was also blocked by BU224. Overall, canavanine is capable of activating imidazoline I-2R; I-2AR is linked to an increase in the plasma level of ?-endorphin, and I-2BR is related to effects on the glucose uptake by skeletal muscle that reduces hyperglycemia in type 1-like diabetic rats. Therefore, canavanine can be developed as effective agent to treat the diabetic disorders in the future. PMID:26362499

  19. Helichrysum and Grapefruit Extracts Boost Weight Loss in Overweight Rats Reducing Inflammation.

    PubMed

    de la Garza, Ana Laura; Etxeberria, Usune; Haslberger, Alexander; Aumueller, Eva; Martnez, J Alfredo; Milagro, Fermn I

    2015-08-01

    Obesity is characterized by an increased production of inflammatory markers. High levels of circulating free fatty acids and chronic inflammation lead to increased oxidative stress, contributing to the development of insulin resistance (IR). Recent studies have focused on the potential use of flavonoids for obesity management due to their antioxidant and anti-inflammatory properties. This study was designed to investigate the antioxidant and anti-inflammatory effects of helichrysum and grapefruit extracts in overweight insulin-resistant rats. Thirty-eight male Wistar rats were randomly distributed in two groups: control group (n=8) and high-fat sucrose (HFS) group (n=30). After 22 days of ad libitum water and food access, the rats fed HFS diet changed to standard diet and were reassigned into three groups (n=10 each group): nonsupplemented, helichrysum extract (2?g/kg bw), and grapefruit extract (1?g/kg bw) administered for 5 weeks. Rats supplemented with both extracts gained less body weight during the 5-week period of treatment, showed lower serum insulin levels and liver TBARS levels. Leptin/adiponectin ratio, as an indicator of IR, was lower in both extract-administered groups. These results were accompanied by a reduction in TNF? gene expression in epididymal adipose tissue and intestinal mucosa, and TLR2 expression in intestinal mucosa. Helichrysum and grapefruit extracts might be used as complement hypocaloric diets in weight loss treatment. Both extracts helped to reduce weight gain, hyperinsulinemia, and IR, improved inflammation markers, and decreased the HFS diet-induced oxidative stress in insulin-resistant rats. PMID:25599391

  20. Nitric Oxide Overproduction Reduces Insulin Secretion from Isolated Islets in Fetal Hypothyroid Rats.

    PubMed

    Rouintan, Z; Farrokhfall, K; Karbalaei, N; Ghasemi, A

    2016-02-01

    Thyroid hormones have developmental effects during fetal life. Fetal hypothyroidism leads to glucose intolerance and reduced insulin secretion capacity. Activity of nitric oxide synthases follows a heterogeneous pattern in hypothyroidism. Overactivity of constitutive nitric oxide synthase (NOS), inhibits glucose-stimulated insulin release. The aim of this study was to examine if reduction in insulin secretion in fetal hypothyroidism is due to overproduction of nitric oxide. Pregnant Wistar rats were divided into 2 groups; the experimental group consumed water containing 0.02% of 6-propyl-2-thiouracil till delivery, while the control group consumed tap water. After delivery serum thyroid hormones were measured. Intravenous glucose tolerance test was performed in 6-month old offspring (n=8). After 3 weeks recovery, pancreatic islets were isolated and insulin secretion, inducible and constitutive nitric oxide synthase activity were measured (n=4). Compared to controls, during intravenous glucose tolerance test, fetal hypothyroid rats had high plasma glucose concentration (p=0.003) and low plasma insulin levels (p=0.012) at 5-20?min and their insulin secretion from isolated islets at basal glucose concentration and in the presence of l-arginine was lower. The nitric oxide synthase inhibitor, NG-nitro-l-arginine methyl ester significantly improved insulin secretion in fetal hypothyroid rats at basal glucose concentration and in the presence of l-arginine. The results showed higher NOS activities in fetal hypothyroid rats (constitutive 17.601.09 vs. 47.344.44 and inducible 4.090.96 vs. 19.971.14?pmol/min/mg proteins, p=0.002). In conclusion, NO overproduction through NOS participates in decreased insulin secretion in fetal hypothyroid rats. PMID:26348018

  1. Environments predicting intermittent shortening access reduce operant performance but not home cage binge size in rats

    PubMed Central

    Wojnicki, F.H.E.; Babbs, R.K.; Corwin, R.L.W

    2013-01-01

    When non-food-deprived rats are given brief access to vegetable shortening (a semi-solid fat used in baked products) on an intermittent basis (Monday, Wednesday, Friday), they consume significantly more and emit more operant responses for shortening than a separate group of rats given brief access to shortening every day. Since both groups are traditionally housed in the same room, it is possible that the environmental cues associated with placing shortening in the cages (e.g., investigator in room, cages opening and closing, etc.) provide predictable cues to the daily group, but unpredictable cues to the intermittent group. The present study examined the effects of providing predictable environmental cues to an isolated intermittent group in order to examine the independent contributions of intermittency and predictability on intake and operant performance. Two groups of rats were housed in the same room, with one group provided 30-min intermittent (INT) access and the second group provided 30-min daily access (D) to shortening. A third group (ISO) of rats was housed in a room by themselves in which all environmental cues associated with intermittent shortening availability were highly predictable. After five weeks of home cage shortening access, all rats were then exposed to several different operant schedules of reinforcement. The INT and ISO groups consumed significantly more shortening in the home cage than the D group. In contrast, the INT group earned significantly more reinforcers than both the ISO and D groups under all but one of the reinforcement schedules, while ISO and D did not differ. These data indicate that intermittent access will generate binge-type eating in the home cage independent of cue predictability. However, predictable cues in the home cage reduce operant responding independent of intermittent access. PMID:23535243

  2. Spontaneously hypertensive rats display reduced microglial activation in response to ischemic stroke and lipopolysaccharide

    PubMed Central

    2012-01-01

    Background For successful translation to clinical stroke studies, the Stroke Therapy Academic Industry Round Table criteria have been proposed. Two important criteria are testing of therapeutic interventions in conscious animals and the presence of a co-morbidity factor. We chose to work with hypertensive rats since hypertension is an important modifiable risk factor for stroke and influences the clinical outcome. We aimed to compare the susceptibility to ischemia in hypertensive rats with those in normotensive controls in a rat model for induction of ischemic stroke in conscious animals. Methods The vasoconstrictor endothelin-1 was stereotactically applied in the vicinity of the middle cerebral artery of control Wistar Kyoto rats (WKYRs) and Spontaneously Hypertensive rats (SHRs) to induce a transient decrease in striatal blood flow, which was measured by the Laser Doppler technique. Infarct size was assessed histologically by Cresyl Violet staining. Sensory-motor functions were measured at several time points using the Neurological Deficit Score. Activation of microglia and astrocytes in the striatum and cortex was investigated by immunohistochemistry using antibodies against CD68/Iba-1 and glial fibrillary acidic protein. Results and conclusions The SHRs showed significantly larger infarct volumes and more pronounced sensory-motor deficits, compared to the WKYRs at 24?h after the insult. However, both differences disappeared between 24 and 72?h. In SHRs, microglia were less susceptible to activation by lipopolysaccharide and there was a reduced microglial activation after induction of ischemic stroke. These quantitative and qualitative differences may be relevant for studying the efficacy of new treatments for stroke in accordance to the Stroke Therapy Academic Industry Round Table criteria. PMID:22647642

  3. Effectiveness of topical anesthetics on reducing tactile sensitivity in the paws of newborn rats.

    PubMed

    Strain, Misty M; Vineyard, Mary Ann; Roberto, Megan E; Brumley, Michele R

    2014-01-01

    The aim of this study was to evaluate the effectiveness of three local, topical anesthetics on touch response thresholds of the paws of 1-day-old rats. Touch response thresholds were measured using Semmes Weinstein monofilaments after treatment of the paws with EMLA (2.5% lidocaine and 2.5% prilocaine), alcaine (.5% proparacaine), triocaine (20% benzocaine, 6% lidocaine, and 4% tetracaine), or petroleum jelly (treatment control). Touch thresholds significantly increased after treatment with EMLA 18% of the time, and there was no evidence of a systemic effect. Touch thresholds were not significantly altered after treatment with alcaine, triocaine, or petroleum jelly. Therefore, EMLA appears to be a slightly effective topical anesthetic for reducing tactile sensitivity in newborn rats. PMID:23254968

  4. Ranolazine reduces remodeling of the right ventricle and provoked arrhythmias in rats with pulmonary hypertension.

    PubMed

    Liles, John T; Hoyer, Kirsten; Oliver, Jason; Chi, Liguo; Dhalla, Arvinder K; Belardinelli, Luiz

    2015-06-01

    Pulmonary arterial hypertension (PAH) is a progressive disease that often results in right ventricular (RV) failure and death. During disease progression, structural and electrical remodeling of the right ventricle impairs pump function, creates proarrhythmic substrates, and triggers for arrhythmias. Notably, RV failure and lethal arrhythmias are major contributors to cardiac death in patients with PAH that are not directly addressed by currently available therapies. Ranolazine (RAN) is an antianginal, anti-ischemic drug that has cardioprotective effects in experimental and clinical settings of left-sided heart dysfunction. RAN also has antiarrhythmic effects due to inhibition of the late sodium current in cardiomyocytes. We therefore hypothesized that RAN could reduce the maladaptive structural and electrical remodeling of the right ventricle and could prevent triggered ventricular arrhythmias in the monocrotaline rat model of PAH. Indeed, in both in vivo and ex vivo experimental settings, chronic RAN treatment reduced electrical heterogeneity (right ventricular-left ventricular action potential duration dispersion), shortened heart-rate corrected QT intervals in the right ventricle, and normalized RV dysfunction. Chronic RAN treatment also dose-dependently reduced ventricular hypertrophy, reduced circulating levels of B-type natriuretic peptide, and decreased the expression of fibrotic markers. In addition, the acute administration of RAN prevented isoproterenol-induced ventricular tachycardia/ventricular fibrillation and subsequent cardiovascular death in rats with established PAH. These results support the notion that RAN can improve the electrical and functional properties of the right ventricle, highlighting its potential benefits in the setting of RV impairment. PMID:25770134

  5. Reduced limbic metabolism and fronto-cortical volume in rats vulnerable to alcohol addiction

    PubMed Central

    Gozzi, Alessandro; Agosta, Federica; Massi, Maurizio; Ciccocioppo, Roberto; Bifone, Angelo

    2014-01-01

    Alcohol abuse is associated with long-term reductions in fronto-cortical volume and limbic metabolism. However, an unanswered question in alcohol research is whether these alterations are the sole consequence of chronic alcohol use, or contain heritable contributions reflecting biological propensity toward ethanol addiction. Animal models of genetic predisposition to alcohol dependence can be used to investigate the role of inborn brain abnormalities in the aetiology of alcoholism. Here we used magnetic resonance imaging (MRI) in e Marchigian Sardinian (msP) alcohol-preferring rats to assess the presence of inherited structural or functional brain alterations. Alcohol-nave msP (N=22) and control rats (N=26) were subjected to basal cerebral blood volume (bCBV) mapping followed by voxel-based morphometry (VBM) of gray matter and tract-based spatial statistics mapping of white matter fractional anisotropy. msP rats exhibited significantly reduced bCBV, an established marker of resting brain function, in focal cortico-limbic and thalamic areas, together with reduced gray matter volume in the thalamus, ventral tegmental area, insular and cingulate cortex. No statistically significant differences in fractional anisotropy were observed between groups. These findings highlight the presence of inborn gray matter and metabolic abnormalities in alcohol-nave msP rats, the localization and sign of which are remarkably similar to those mapped in abstinent alcoholics and subjects at high risk for alcohol dependence. Collectively, these results point for a significant role of heritable neurofunctional brain alterations in biological propensity toward ethanol addiction, and support the translational use of advanced imaging methods to describe the circuital determinants of vulnerability to drug addiction. PMID:23261637

  6. Topographical organization of projections to cat motor cortex from nucleus interpositus anterior and forelimb skin.

    PubMed

    Jrntell, H; Ekerot, C F

    1999-01-15

    1. The activation of the motor cortex from focal electrical stimulation of sites in the forelimb area of cerebellar nucleus interpositus anterior (NIA) was investigated in barbiturate-anaesthetized cats. Using a microelectrode, nuclear sites were identified by the cutaneous climbing fibre receptive fields of their afferent Purkinje cells. These cutaneous receptive fields can be identified by positive field potentials reflecting inhibition from Purkinje cells activated on natural stimulation of the skin. Thereafter, the sites were microstimulated and the evoked responses were systematically recorded over the cortical surface with a ball-tipped electrode. The topographical organization in the motor cortex of responses evoked by electrical stimulation of the forelimb skin was also analysed. 2. Generally, sites in the forelimb area of NIA projected to the lateral part of the anterior sigmoid gyrus (ASG). Sites in the hindlimb area of NIA also projected to lateral ASG and in addition to a more medial region. Sites in the face area of NIA, however, projected mainly to the middle part of the posterior sigmoid gyrus (PSG). 3. For sites in the forelimb area of NIA, the topographical organization and strength of the projections varied specifically with the cutaneous climbing fibre receptive field of the site. The largest cortical responses were evoked from sites with receptive fields on the distal or ventral skin of the forelimb. 4. Microelectrode recordings in the depth of the motor cortex revealed that responses evoked by cerebellar nuclear stimulation were due to an excitatory process in layer III. 5. Short latency surface responses evoked from the forelimb skin were found in the caudolateral part of the motor cortex. At gradually longer latencies, responses appeared in sequentially more rostromedial parts of the motor cortex. Since the responses displayed several temporal peaks that appeared in specific cortical regions for different areas of the forelimb skin, several somatotopic maps were seen. 6. The cerebellar and cutaneous projections activated mainly different cortical regions and had topographical organizations that apparently were constant between animals. Their patterns of activation may constitute a frame of reference for investigations of the functional organization of the motor cortex. PMID:9852335

  7. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression.

    PubMed

    Siebelt, M; Waarsing, J H; Groen, H C; Mller, C; Koelewijn, S J; de Blois, E; Verhaar, J A N; de Jong, M; Weinans, H

    2014-09-01

    Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo ?CT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced ?CT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity exercised a positive effect in healthy control joints, which increased cartilage sGAG content. More research on this topic might lead to novel insights as to improve cartilage quality. PMID:24933343

  8. Silymarin ameliorates fructose induced insulin resistance syndrome by reducing de novo hepatic lipogenesis in the rat.

    PubMed

    Prakash, Prem; Singh, Vishal; Jain, Manish; Rana, Minakshi; Khanna, Vivek; Barthwal, Manoj Kumar; Dikshit, Madhu

    2014-03-15

    High dietary fructose causes insulin resistance syndrome (IRS), primarily due to simultaneous induction of genes involved in glucose, lipid and mitochondrial oxidative metabolism. The present study evaluates effect of a hepatoprotective agent, silymarin (SYM) on fructose-induced metabolic abnormalities in the rat and also assessed the associated thrombotic complications. Wistar rats were kept on high fructose (HFr) diet throughout the 12-week study duration (9 weeks of HFr feeding and subsequently 3 weeks of HFr plus SYM oral administration [once daily]). SYM treatment significantly reduced the HFr diet-induced increase expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1?/?, peroxisome proliferator-activated receptor (PPAR)-?, forkhead box protein O1 (FOXO1), sterol regulatory element binding protein (SREBP)-1c, liver X receptor (LXR)-?, fatty acid synthase (FAS) and PPAR? genes in rat liver. SYM also reduced HFr diet mediated increase in plasma triglycerides (TG), non-esterified fatty acids (NEFA), uric acid, malondialdehyde (MDA), total nitrite and pro-inflammatory cytokines (C-reactive protein [CRP], interleukin-6 [IL-6], interferon-gamma [IFN-?] and tumor necrosis factor [TNF]) levels. Moreover, SYM ameliorated HFr diet induced reduction in glucose utilization and endothelial dysfunction. Additionally, SYM significantly reduced platelet activation (adhesion and aggregation), prolonged ferric chloride-induced blood vessel occlusion time and protected against exacerbated myocardial ischemia reperfusion (MI-RP) injury. SYM treatment prevented HFr induced mRNA expression of hepatic PGC-1?/? and also its target transcription factors which was accompanied with recovery in insulin sensitivity and reduced propensity towards thrombotic complications and aggravated MI-RP injury. PMID:24486395

  9. Inhaled Lactonase Reduces Pseudomonas aeruginosa Quorum Sensing and Mortality in Rat Pneumonia

    PubMed Central

    Lafleur, John; Lepidi, Hubert; Papazian, Laurent; Rolain, Jean-Marc; Raoult, Didier; Elias, Mikael; Silby, Mark W.; Bzdrenga, Janek; Bregeon, Fabienne; Chabriere, Eric

    2014-01-01

    Rationale The effectiveness of antibiotic molecules in treating Pseudomonas aeruginosa pneumonia is reduced as a result of the dissemination of bacterial resistance. The existence of bacterial communication systems, such as quorum sensing, has provided new opportunities of treatment. Lactonases efficiently quench acyl-homoserine lactone-based bacterial quorum sensing, implicating these enzymes as potential new anti-Pseudomonas drugs that might be evaluated in pneumonia. Objectives The aim of the present study was to evaluate the ability of a lactonase called SsoPox-I to reduce the mortality of a rat P. aeruginosa pneumonia. Methods To assess SsoPox-I-mediated quorum quenching, we first measured the activity of the virulence gene lasB, the synthesis of pyocianin, the proteolytic activity of a bacterial suspension and the formation of biofilm of a PAO1 strain grown in the presence of lactonase. In an acute lethal model of P. aeruginosa pneumonia in rats, we evaluated the effects of an early or deferred intra-tracheal treatment with SsoPox-I on the mortality, lung bacterial count and lung damage. Measurements and Primary Results SsoPox-I decreased PAO1 lasB virulence gene activity, pyocianin synthesis, proteolytic activity and biofilm formation. The early use of SsoPox-I reduced the mortality of rats with acute pneumonia from 75% to 20%. Histological lung damage was significantly reduced but the lung bacterial count was not modified by the treatment. A delayed treatment was associated with a non-significant reduction of mortality. Conclusion These results demonstrate the protective effects of lactonase SsoPox-I in P. aeruginosa pneumonia and open the way for a future therapeutic use. PMID:25350373

  10. Infusions of muscimol into the lateral septum do not reduce rats' defensive behaviors toward a cat odor stimulus.

    PubMed

    Chee, San-San A; Patel, Ronak; Menard, Janet L

    2015-01-01

    The lateral septum (LS) is implicated in behavioral defense. We tested whether bilateral infusions of the GABAA receptor agonist muscimol into the LS suppress rats' defensive responses to cat odor. Rats received intra-LS infusions of either saline or muscimol (40 ng/rat) and were exposed to either a piece of a cat collar that had been previously worn by a cat or to a control (cat odor free) collar. Rats exposed to the cat odor collar displayed more head-out postures, while intra-LS application of muscimol reduced the number of head-out postures. However, this reduction was also present in rats exposed to a control (cat odor free) collar. This latter finding suggests that despite its involvement in other defensive behaviors (e.g., open arm avoidance in the elevated plus maze), the LS does not selectively regulate rats' receptor defensive responding to the olfactory cues present in our cat odor stimulus. PMID:25445366

  11. The lateral reticular nucleus; integration of descending and ascending systems regulating voluntary forelimb movements

    PubMed Central

    Alstermark, Bror; Ekerot, Carl-Fredrik

    2015-01-01

    Cerebellar control of movements is dependent on mossy fiber input conveying information about sensory and premotor activity in the spinal cord. While much is known about spino-cerebellar systems, which provide the cerebellum with detailed sensory information, much less is known about systems conveying motor information. Individual motoneurones do not have projections to spino-cerebellar neurons. Instead, the fastest route is from last order spinal interneurons. In order to identify the networks that convey ascending premotor information from last order interneurons, we have focused on the lateral reticular nucleus (LRN), which provides the major mossy fiber input to cerebellum from spinal interneuronal systems. Three spinal ascending systems to the LRN have been investigated: the C3-C4 propriospinal neurones (PNs), the ipsilateral forelimb tract (iFT) and the bilateral ventral flexor reflex tract (bVFRT). Voluntary forelimb movements involve reaching and grasping together with necessary postural adjustments and each of these three interneuronal systems likely contribute to specific aspects of forelimb motor control. It has been demonstrated that the command for reaching can be mediated via C3-C4 PNs, while the command for grasping is conveyed via segmental interneurons in the forelimb segments. Our results reveal convergence of ascending projections from all three interneuronal systems in the LRN, producing distinct combinations of excitation and inhibition. We have also identified a separate descending control of LRN neurons exerted via a subgroup of cortico-reticular neurones. The LRN projections to the deep cerebellar nuclei exert a direct excitatory effect on descending motor pathways via the reticulospinal, vestibulospinal, and other supraspinal tracts, and might play a key role in cerebellar motor control. Our results support the hypothesis that the LRN provides the cerebellum with highly integrated information, enabling cerebellar control of complex forelimb movements. PMID:26300768

  12. Radiographs Reveal Exceptional Forelimb Strength in the Sabertooth Cat, Smilodon fatalis

    PubMed Central

    Meachen-Samuels, Julie A.; Van Valkenburgh, Blaire

    2010-01-01

    Background The sabertooth cat, Smilodon fatalis, was an enigmatic predator without a true living analog. Their elongate canine teeth were more vulnerable to fracture than those of modern felids, making it imperative for them to immobilize prey with their forelimbs when making a kill. As a result, their need for heavily muscled forelimbs likely exceeded that of modern felids and thus should be reflected in their skeletons. Previous studies on forelimb bones of S. fatalis found them to be relatively robust but did not quantify their ability to withstand loading. Methodology/Principal Findings Using radiographs of the sabertooth cat, Smilodon fatalis, 28 extant felid species, and the larger, extinct American lion Panthera atrox, we measured cross-sectional properties of the humerus and femur to provide the first estimates of limb bone strength in bending and torsion. We found that the humeri of Smilodon were reinforced by cortical thickening to a greater degree than those observed in any living felid, or the much larger P. atrox. The femur of Smilodon also was thickened but not beyond the normal variation found in any other felid measured. Conclusions/Significance Based on the cross-sectional properties of its humerus, we interpret that Smilodon was a powerful predator that differed from extant felids in its greater ability to subdue prey using the forelimbs. This enhanced forelimb strength was part of an adaptive complex driven by the need to minimize the struggles of prey in order to protect the elongate canines from fracture and position the bite for a quick kill. PMID:20625398

  13. From fish to modern humans comparative anatomy, homologies and evolution of the pectoral and forelimb musculature

    PubMed Central

    Diogo, R; Abdala, V; Aziz, M A; Lonergan, N; Wood, B A

    2009-01-01

    In a recent study Diogo & Abdala [(2007) JMorphol268, 504517] reported the results of the first part of a research project on the comparative anatomy, homologies and evolution of the pectoral muscles of osteichthyans (bony fish and tetrapods). That report mainly focused on actinopterygian fish but also compared these fish with certain non-mammalian sarcopterygians. This study, which reports the second part of the research project, focuses mainly on sarcopterygians and particularly on how the pectoral and forelimb muscles have evolved during the transitions from sarcopterygian fish and non-mammalian tetrapods to monotreme and therian mammals and humans. The data obtained by our own dissections of all the pectoral and forelimb muscles of representative members of groups as diverse as sarcopterygian fish, amphibians, reptiles, monotremes and therian mammals such as rodents, tree-shrews, colugos and primates, including humans, are compared with the information available in the literature. Our observations and comparisons clearly stress that, with regard to the number of pectoral and forelimb muscles, the most striking transition within sarcopterygian evolutionary history was that leading to the origin of tetrapods. Whereas extant sarcopterygian fish have an abductor and adductor of the fin and a largely undifferentiated hypaxial and epaxial musculature, extant salamanders such as Ambystoma have more than 40 pectoral and forelimb muscles. There is no clear increase in the number of pectoral and forelimb muscles within the evolutionary transition that led to the origin of mammals and surely not to that leading to the origin of primates and humans. PMID:19438764

  14. Cyclosporin A reduces expression of adhesion molecules in the kidney of rats with chronic serum sickness

    PubMed Central

    Rincón, J; Parra, G; Quiroz, Y; Benatuil, L; Rodríguez-Iturbe, B

    2000-01-01

    Treatment with cyclosporin A (CsA) improves proteinuria and reduces renal cellular infiltration in chronic serum sickness (CSS). We examined if these effects were associated with a reduced renal expression of CD54 and its ligands, interferon-gamma (IFN-γ), tumour necrosis factor-alpha (TNF-α) and MHC class II molecules. We studied two groups of rats in which CSS was induced by daily injections of ovalbumin (OVA): a group treated with CsA (OVA.CsA group, n = 11) and a group that received no treatment (OVA.CSS group, n = 11). An additional group of five rats (control group) received only phosphate buffer. Immunostaining techniques were used to follow CSS and to study the expression of CD54, CD18, CD11b/c, IFN-γ, TNF-α and MHC class molecules. Proteinuria (mg/24 h) was reduced from 248·2 ± 73·1 (OVA.CCS group) to 14·5 ± 13·1 with CsA treatment (P < 0·0001). The renal expression of CD54 and its ligands (CD18 and CD11b/c) was reduced by 50% to 75%. Correspondingly, there was a 60% to 85% reduction in the number of infiltrating leucocytes. The number of cells expressing TNF-α, IFN-γ and MHC II molecules was also reduced. CsA reduces expression of CD54 and its ligands. This effect is associated with a reduction of cellular infiltration, IFN-γ, TNF-α-producing cells and with MHC II expression in the kidney. These findings suggest that expression of adhesion molecules plays a critical role in CSS and underline the importance of cellular immunity in this experimental model. PMID:10931158

  15. Vagus nerve stimulation reduces body weight and fat mass in rats.

    PubMed

    Banni, Sebastiano; Carta, Gianfranca; Murru, Elisabetta; Cordeddu, Lina; Giordano, Elena; Marrosu, Francesco; Puligheddu, Monica; Floris, Gabriele; Asuni, Gino Paolo; Cappai, Angela Letizia; Deriu, Silvia; Follesa, Paolo

    2012-01-01

    Among the manifold effects of vagus nerve stimulation (VNS) delivered as an add-on treatment to patients with drug-resistant epilepsy, a moderate loss of body weight has been observed in some individuals. We have now investigated this effect in rats. Exposure of rats to VNS for 4 weeks reduced feed conversion efficiency as well as body weight gain (by ?25%) and the amount of mesenteric adipose tissue (by ?45%) in comparison with those in sham-operated control animals. A pair-fed experiment showed that both lower dietary intake and increase energy expenditure independently contributed to the reduction of body weight and mesenteric adipose tissue. Moreover, VNS increased the level of non-esterified fatty acids in plasma and mesenteric adipose tissue by ?50 and 80%, respectively, without affecting that in the liver. In addition, VNS reduced the amounts of endocannabinoids and increased N-palmitoylethanolamide, an endogenous ligand of the transcription factor PPAR? (peroxisome proliferator-activated receptor ?) in mesenteric adipose tissue but not in the hypothalamus. These effects were accompanied by increased expression of the gene for brain-derived neurotrophic factor (BDNF) in the hypothalamus and up-regulation of the abundance of PPAR? in the liver. Our results suggest that the reduction in body fat induced by VNS in rats may result from the action of both central and peripheral mediators. The reduced feed conversion efficiency associated with VNS may be mediated by hypothalamic BDNF, down-regulation of endocannabinoid tone in mesenteric adipose tissue and a PPAR?-dependent increase in fatty acid oxidation in the liver, which in concerted action may account for the anorexic effect and increased energy expenditure. PMID:23028630

  16. Tetrahydrocannabinolic acid reduces nausea-induced conditioned gaping in rats and vomiting in Suncus murinus

    PubMed Central

    Rock, E M; Kopstick, R L; Limebeer, C L; Parker, L A

    2013-01-01

    BACKGROUND AND PURPOSE We evaluated the anti-emetic and anti-nausea properties of the acid precursor of ?9-tetrahydrocannabinol (THC), tetrahydrocannabinolic acid (THCA), and determined its mechanism of action in these animal models. EXPERIMENTAL APPROACH We investigated the effect of THCA on lithium chloride- (LiCl) induced conditioned gaping (nausea-induced behaviour) to a flavour, and context (a model of anticipatory nausea) in rats, and on LiCl-induced vomiting in Suncus murinus. Furthermore, we investigated THCA's ability to induce hypothermia and suppress locomotion [rodent tasks to assess cannabinoid1 (CB1) receptor agonist-like activity], and measured plasma and brain THCA and THC levels. We also determined whether THCA's effect could be blocked by pretreatment with SR141716 (SR, a CB1 receptor antagonist). KEY RESULTS In rats, THCA (0.05 and/or 0.5 mgkg?1) suppressed LiCl-induced conditioned gaping to a flavour and context; the latter effect blocked by the CB1 receptor antagonist, SR, but not by the 5-hydroxytryptamine-1A receptor antagonist, WAY100635. In S. murinus, THCA (0.05 and 0.5 mgkg?1) reduced LiCl-induced vomiting, an effect that was reversed with SR. A comparatively low dose of THC (0.05 mgkg?1) did not suppress conditioned gaping to a LiCl-paired flavour or context. THCA did not induce hypothermia or reduce locomotion, indicating non-CB1 agonist-like effects. THCA, but not THC was detected in plasma samples. CONCLUSIONS AND IMPLICATIONS THCA potently reduced conditioned gaping in rats and vomiting in S. murinus, effects that were blocked by SR. These data suggest that THCA may be a more potent alternative to THC in the treatment of nausea and vomiting. PMID:23889598

  17. Evidence for reduced cancellous bone mass in the spontaneously hypertensive rat

    NASA Technical Reports Server (NTRS)

    Wang, T. M.; Hsu, J. F.; Jee, W. S.; Matthews, J. L.

    1993-01-01

    The histomorphometric changes in the proximal tibial metaphysis and epiphyseal growth plate and midtibial shaft of 26-week-old spontaneously hypertensive rats (SHR) compared with those of the corresponding normotensive Wistar-Kyoto (WKY) rats were studied. A decrease in body weight, growth plate thickness, and longitudinal growth rate of the proximal tibial epiphysis, trabecular bone volume, trabecular thickness and number, the number of osteoblasts and osteoprogenitor cells per millimeter square surface of the proximal tibial metaphysis, periosteal and endocortical apposition rate and bone formation rate of the tibial diaphysis were observed in the SHR. Additionally, systolic blood pressure, the number of osteoclasts per millimeter square surface and average number of nuclei per osteoclast of the proximal tibial metaphysis were significantly increased. Thus, osteoclastic activity is dominant over osteoblastic and chondroblastic activity in the SHR that results in a cancellous bone deficit in the skeleton. It will require additional work to ascertain the underlying cause for this condition as several factors in the SHR with a potential for causing this change are present, including elevated parathyroid hormone (PTH), depressed 1,25-(OH)2D3, low calcium absorption, reduced body weight (reduced loading) elevated blood pressure and possibly other direct cell differences in the mutant strain. At present elevated PTH and adaptation to underloading from reduced weight are postulated to be a likely cause, but additional studies are required to test this interpretation.

  18. BPC-15 reduces trinitrobenzene sulfonic acid-induced colonic damage in rats.

    PubMed

    Veljaca, M; Lesch, C A; Pllana, R; Sanchez, B; Chan, K; Guglietta, A

    1995-01-01

    The effect of BPC-15 (Booly Protection Compound-15) was evaluated in a rat model of colonic injury. A single intracolonic administration of trinitrobenzene sulfonic acid (TNBS) dissolved in ethanol induces severe colonic damage, which is characterized by areas of necrosis surrounded by areas of acute inflammation. The damage is associated with high myeloperoxidase (MPO) activity, mainly as a reflection of neutrophilic infiltration into the damaged tissue. In this study, 1 hr before a single intracolonic administration of 50 mg/kg of TNBS in 50% ethanol, the animals were treated with one of the following doses of BPC-15: 0.0001, 0.001, 0.01, 0.1, 1 or 10 nmol/kg administered i.p. or with a dose of 10 nmol/kg administered intracolonically. The animals were sacrificed 3 days later and the extent of colonic necrosis and hyperemia was measured with an image analyzer. The i.p. administration of BPC-15 significantly reduced the extent of TNBS-induced colonic damage in a dose-dependent manner. This was associated with a statistically significant and dose-dependent reduction in colonic tissue MPO activity. At the dose tested (10 nmol/kg), intracolonic administration of BPC-15 did not significantly reduce either the extent of the colonic damage or the increase in MPO activity induced by TNBS. In conclusion, this study showed that i.p. administration of BPC-15 reduced TNBS-induced colonic damage in rats. PMID:7815358

  19. The edible brown seaweed Ecklonia cava reduces hypersensitivity in postoperative and neuropathic pain models in rats.

    PubMed

    Kim, Jae Goo; Lim, Dong Wook; Cho, Suengmok; Han, Daeseok; Kim, Yun Tai

    2014-01-01

    The current study was designed to investigate whether edible brown seaweed Ecklonia cava extracts exhibits analgesic effects in plantar incision and spared nerve injury (SNI) rats. To evaluate pain-related behavior, we performed the mechanical withdrawal threshold (MWT) and thermal hypersensitivity tests measured by von Frey filaments and a hot/cold plate analgesia meter. Pain-related behavior was also determined through analysis of ultrasonic vocalization. The results of experiments showed MWT values of the group that was treated with E. cava extracts by 300 mg/kg significantly increased; on the contrary, number of ultrasonic distress vocalization of the treated group was reduced at 6 h and 24 h after plantar incision operation (62.8%, p < 0.05). Moreover, E. cava 300 mg/kg treated group increased the paw withdrawal latency in hot-and cold-plate tests in the plantar incision rats. After 15 days of continuous treatment with E. cava extracts at 300 mg/kg, the treated group showed significantly alleviated SNI-induced hypersensitivity response by MWT compared with the control group. In conclusion, these results suggest that E. cava extracts have potential analgesic effects in the case of postoperative pain and neuropathic pain in rats. PMID:24918539

  20. Expression cloning of a rat hepatic reduced glutathione transporter with canalicular characteristics.

    PubMed Central

    Yi, J R; Lu, S; Fernandez-Checa, J; Kaplowitz, N

    1994-01-01

    Using the Xenopus oocyte expression system, we have previously identified an approximately 4-kb fraction of mRNA from rat liver that expresses sulfobromophthalein-glutathione (BSP-GSH)-insensitive reduced glutathione (GSH) transport (Fernandez-Checa, J., J. R. Yi, C. Garcia-Ruiz, Z. Knezic, S. Tahara, and N. Kaplowitz. 1993. J. Biol. Chem. 268:2324-2328). Starting with a cDNA library constructed from this fraction, we have now isolated a single clone that expresses GSH transporter activity. The cDNA for the rat canalicular GSH transporter (RcGshT) is 4.05 kb with an open reading frame of 2,505 nucleotides encoding for a polypeptide of 835 amino acids (95,785 daltons). No identifiable homologies were found in searching various databases. An approximately 96-kD protein is generated in in vitro translation of cRNA for RcGshT. Northern blot analysis reveals a single 4-kb transcript in liver, kidney, intestine, lung, and brain. The abundance of mRNA for RcGshT in rat liver increased 3, 6, and 12 h after a single dose of phenobarbital. Insensitivity to BSP-GSH and induction by phenobarbital, unique characteristics of canalicular GSH secretion, suggest that RcGshT encodes for the canalicular GSH transporter. Images PMID:8163683

  1. Electrolyzed-reduced water inhibits acute ethanol-induced hangovers in Sprague-Dawley rats.

    PubMed

    Park, Seung-Kyu; Qi, Xu-Feng; Song, Soon-Bong; Kim, Dong-Heui; Teng, Yung-Chien; Yoon, Yang-Suk; Kim, Kwang-Yong; Li, Jian-Hong; Jin, Dan; Lee, Kyu-Jae

    2009-10-01

    Ethanol consumption disturbs the balance between the pro- and anti-oxidant systems of the organism, leading to oxidative stress. Electrolyzed-reduced water (ERW) is widely used by people in East Asia for drinking purposes because of its therapeutic properties including scavenging effect of reactive oxygen species. This study was performed to investigate the effect of ERW on acute ethanol-induced hangovers in Sprague-Dawley rats. Alcohol concentration in serum of ERW-treated rats showed significant difference at 1 h, 3 h and 5 h respectively as compared with the rats treated with distilled water. Both alcohol dehydrogenase type 1 and acetaldehyde dehydrogenase related with oxidation of alcohol were significantly increased in liver tissue while the level of aspartate aminotransferase and alanine aminotransferase in serum was markedly decreased 24 h after pre-oral administration of ERW. Moreover, oral administration of ERW significantly activated non-ezymatic (glutathione) and enzymatic (glutathione peroxidase, glutathione-S-transferase, Cu/Zn-superoxide dismutase and catalase) antioxidants in liver tissues compared with the control group. These results suggest that drinking ERW has an effect of alcohol detoxification by antioxidant mechanism and has potentiality for relief of ethanol-induced hangover symptoms. PMID:19887722

  2. Extended exposure to environmental cues, but not to sucrose, reduces sucrose cue reactivity in rats.

    PubMed

    Harkness, John H; Wells, Jason; Webb, Sierra; Grimm, Jeffrey W

    2016-03-01

    In the present study, we examined the effects of extinction of sucrose-predictive contextual cues and/or sucrose satiation on the expression of sucrose cue reactivity in a rat model of relapse. Context extinction was imposed by housing rats in their home cage or in the operant conditioning chamber for 17 h prior to testing. For sucrose satiation, rats were allowed unlimited access to water or sucrose for 17 h prior to testing. Cue reactivity was assessed after either one (Day 1) or 30 (Day 30) days of forced abstinence from sucrose self-administration. An abstinence-dependent increase in sucrose cue reactivity was observed in all conditions ("incubation of craving"). Context extinction dramatically reduced lever responding on both Day 1 and Day 30. Sucrose satiation had no significant effect on cue reactivity in any condition. These results demonstrate that the context in which self-administration occurs maintains a powerful influence over cue reactivity, even after extended forced abstinence. In contrast, the primary reinforcer has little control over cue reactivity. These findings highlight the important role of conditioned contextual cues in driving relapse behavior. PMID:26169836

  3. Effect of Alocasia indica Tuber Extract on Reducing Hepatotoxicity and Liver Apoptosis in Alcohol Intoxicated Rats

    PubMed Central

    Bhattacharya, Koushik; Mukherjee, Soumya

    2014-01-01

    The possible protective role of ethanolic extract of A. indica tuber (EEAIT) in hepatotoxicity and apoptosis of liver caused by alcohol in rats was investigated. Treatment of rats with alcohol (3?g ethanol per kg body weight per day for 15 days intraperitoneally) produced marked elevation of liver biomarkers such as serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), ?-glutamyl transpeptidase (?-GT), and total bilirubin levels which were reduced by EEAIT in a dose-dependent manner. Furthermore, EEAIT improved antioxidant status (MDA, NO, and GSH) and preserved hepatic cell architecture. Simultaneous supplementation with EEAIT significantly restored hepatic catalase (CAT) and superoxide dismutase (SOD) activity levels towards normal. The studies with biochemical markers were strongly supported by the histopathological evaluation of the liver tissue. EEAIT also attenuated apoptosis and necrosis features of liver cell found in immunohistochemical evaluation. HPLC analysis of the extract showed the presence of three major peaks of which peak 2 (RT: 33.33?min) contains the highest area (%) and UV spectrum analysis identified it as flavonoids. It is therefore suggested that EEAIT can provide a definite protective effect against chronic hepatic injury caused by alcohol in rats, which may mainly be associated with its antioxidative effect. PMID:24977149

  4. A1 Noradrenergic Neurons Lesions Reduce Natriuresis and Hypertensive Responses to Hypernatremia in Rats

    PubMed Central

    da Silva, Elaine Fernanda; Freiria-Oliveira, André Henrique; Custódio, Carlos Henrique Xavier; Ghedini, Paulo César; Bataus, Luiz Artur Mendes; Colombari, Eduardo; de Castro, Carlos Henrique; Colugnati, Diego Basile; Rosa, Daniel Alves; Cravo, Sergio L. D.; Pedrino, Gustavo Rodrigues

    2013-01-01

    Noradrenergic neurons in the caudal ventrolateral medulla (CVLM; A1 group) contribute to cardiovascular regulation. The present study assessed whether specific lesions in the A1 group altered the cardiovascular responses that were evoked by hypertonic saline (HS) infusion in non-anesthetized rats. Male Wistar rats (280–340 g) received nanoinjections of antidopamine-β-hydroxylase-saporin (A1 lesion, 0.105 ng.nL−1) or free saporin (sham, 0.021 ng.nL−1) into their CVLMs. Two weeks later, the rats were anesthetized (2% halothane in O2) and their femoral artery and vein were catheterized and led to exit subcutaneously between the scapulae. On the following day, the animals were submitted to HS infusion (3 M NaCl, 1.8 ml • kg−1, b.wt., for longer than 1 min). In the sham-group (n = 8), HS induced a sustained pressor response (ΔMAP: 35±3.6 and 11±1.8 mmHg, for 10 and 90 min after HS infusion, respectively; P<0.05 vs. baseline). Ten min after HS infusion, the pressor responses of the anti-DβH-saporin-treated rats (n = 11)were significantly smaller(ΔMAP: 18±1.4 mmHg; P<0.05 vs. baseline and vs. sham group), and at 90 min, their blood pressures reached baseline values (2±1.6 mmHg). Compared to the sham group, the natriuresis that was induced by HS was reduced in the lesioned group 60 min after the challenge (196±5.5 mM vs. 262±7.6 mM, respectively; P<0.05). In addition, A1-lesioned rats excreted only 47% of their sodium 90 min after HS infusion, while sham animals excreted 80% of their sodium. Immunohistochemical analysis confirmed a substantial destruction of the A1 cell group in the CVLM of rats that had been nanoinjected withanti-DβH-saporin. These results suggest that medullary noradrenergic A1 neurons are involved in the excitatory neural pathway that regulates hypertensive and natriuretic responses to acute changes in the composition of body fluid. PMID:24039883

  5. Comparative study of the tissue distribution of NADH and NADPH-dependent chloral hydrate reducing enzymes in the rat

    SciTech Connect

    Ogino, Keiki; Hobara, Tatsuya; Kobayashi, Haruo; Iwamoto, Susumu )

    1990-03-01

    Chloral hydrate (CH), an intermediate metabolite of trichloroethylene, is reduced to trichloroethanol (TCE) by alcohol dehydrogenase and aldehyde reductase. Alcohol dehydrogenase requires reduced nicotinamide adenine dinucleotide (NADH), and aldehyde reductase requires reduced nicotinamide adenine dinucleotide phosphate (NADPH). No reports have appeared concerning comparative studies of the tissue distribution of CH-reducing enzymes. In this report, NADH and NADPH-dependent CH-reducing activities were investigated in various organs of the rat.

  6. Complete forelimb myology of the basal theropod dinosaur Tawa hallae based on a novel robust muscle reconstruction method.

    PubMed

    Burch, Sara H

    2014-09-01

    The forelimbs of nonavian theropod dinosaurs have been the subject of considerable study and speculation due to their varied morphology and role in the evolution of flight. Although many studies on the functional morphology of a limb require an understanding of its musculature, comparatively little is known about the forelimb myology of theropods and other bipedal dinosaurs. Previous phylogenetically based myological reconstructions have been limited to the shoulder, restricting their utility in analyses of whole-limb function. The antebrachial and manual musculature in particular have remained largely unstudied due to uncertain muscular homologies in archosaurs. Through analysis of the musculature of extant taxa in a robust statistical framework, this study presents new hypotheses of homology for the distal limb musculature of archosaurs and provides the first complete reconstruction of dinosaurian forelimb musculature, including the antebrachial and intrinsic manual muscles. Data on the forelimb myology of a broad sample of extant birds, crocodylians, lizards, and turtles were analyzed using maximum likelihood ancestral state reconstruction and examined together with the osteology of the early theropod Tawa hallae from the Late Triassic of New Mexico to formulate a complete plesiomorphic myology for the theropod forelimb. Comparisons with previous reconstructions show that the shoulder musculature of basal theropods is more similar to that of basal ornithischians and sauropodomorphs than to that of dromaeosaurids. Greater development of the supracoracoideus and deltoideus musculature in theropods over other bipedal dinosaurs correlates with stronger movements of the forelimb at the shoulder and an emphasis on apprehension of relatively large prey. This emphasis is further supported by the morphology of the antebrachium and the intrinsic manual musculature, which exhibit a high degree of excursion and a robust morphology well-suited for powerful digital flexion. The forelimb myology of Tawa established here helps infer the ancestral conformation of the forelimb musculature and the osteological correlates of major muscle groups in early theropods. These data are critical for investigations addressing questions relating to the evolution of specialized forelimb function across Theropoda. PMID:25040486

  7. The CCKB antagonist CI988 reduces food intake in fasted rats via a dopamine mediated pathway.

    PubMed

    Frommelt, Lisa; Lembke, Vanessa; Hofmann, Tobias; Goebel-Stengel, Miriam; Mnnikes, Hubert; Wiedenmann, Bertram; Klapp, Burghard F; Stengel, Andreas; Kobelt, Peter

    2013-01-01

    Studies have shown a reduction of food intake following peripheral and brain injection of CCK. However, it remains to be established whether endogenous central CCK is involved in the regulation of food intake. We investigated the role of central CCK in the regulation of food intake by pharmacological manipulation of the CCK(B) (CCK(2)) receptor system. Intracerebroventricularly (ICV) cannulated male Sprague Dawley rats were fasted for 24h and received an ICV injection of the CCK(B) receptor antagonist CI988 at a dose of 10 nmol or 49 nmol or vehicle. Another group received two consecutive ICV injections consisting of the corticotropin-releasing factor (CRF) receptor-1 (CRF(1)) antagonist, CP376395 (3 nmol) or the CRF(2) receptor antagonist, K41498 (2 nmol) alone, or followed by CI988 (49 nmol). Lastly, another group of rats received an intraperitoneal (IP) injection of the dopamine antagonist, flupentixol (~197 and ~493nmol/kg) alone, or followed by CI988 (49 nmol, ICV). Cumulative food intake was assessed for 11h. Vehicle injected rats showed a robust feeding response. CI988 at 49 nmol reduced food intake by 30% starting at 2h post injection. CP376395 and K41498 had no effect on food intake. Flupentixol injected IP at a dose of 197 and 493 nmol/kg alone did not modulate food intake whereas the higher dose blocked the CI988-induced reduction of feeding. During the dark phase, CI988 had no effect on food intake in unfasted rats. In summary, CCK(B) signaling is involved in the regulation of food intake after a fast likely by downstream dopamine signaling. PMID:23200724

  8. Brown Norway Chromosome 1 Congenic Reduces Symptoms of Renal Disease in Fatty Zucker Rats

    PubMed Central

    Warden, Craig H.; Slupsky, Carolyn; Griffey, Stephen M.; Bettaieb, Ahmed; Min, Esther; Le, Anh; Fisler, Janis S.; Hansen, Susan; Haj, Fawaz; Stern, Judith S.

    2014-01-01

    We previously reported that a congenic rat with Brown Norway (BN) alleles on chromosome 1 reduces renal disease of 15-week old fatty Zucker rats (ZUC). Development of renal disease in fatty BN congenic and fatty ZUC rats from 9 through 28 weeks is now examined. Analysis of urine metabolites by 1H nuclear magnetic resonance (NMR) spectroscopy revealed a significantly increased urinary loss of glucose, myo-inositol, urea, creatine, and valine in ZUC. Food intake was lower in the BN congenic rats at weeks 924, but they weighed significantly more at 28 weeks compared with the ZUC group. Fasting glucose was significantly higher in ZUC than congenic and adiponectin levels were significantly lower in ZUC, but there was no significant genotype effect on Insulin levels. Glucose tolerance tests exhibited no significant differences between ZUC and congenic when values were normalized to basal glucose levels. Quantitative PCR on livers revealed evidence for higher gluconeogenesis in congenics than ZUC at 9 weeks. Plasma urea nitrogen and creatinine were more than 2-fold higher in 28-week ZUC. Twelve urine protein markers of glomerular, proximal and distal tubule disease were assayed at three ages. Several proteins that indicate glomerular and proximal tubular disease increased with age in both congenic and ZUC. Epidermal growth factor (EGF) level, a marker whose levels decrease with distal tubule disease, was significantly higher in congenics. Quantitative histology of 28 week old animals revealed the most significant genotype effect was for tubular dilation and intratubular protein. The congenic donor region is protective of kidney disease, and effects on Type 2 diabetes are likely limited to fasting glucose and adiponectin. The loss of urea together with a small increase of food intake in ZUC support the hypothesis that nitrogen balance is altered in ZUC from an early age. PMID:24498189

  9. Fermented soy permeate reduces cytokine level and oxidative stress in streptozotocin-induced diabetic rats.

    PubMed

    Malardé, Ludivine; Groussard, Carole; Lefeuvre-Orfila, Luz; Vincent, Sophie; Efstathiou, Théo; Gratas-Delamarche, Arlette

    2015-01-01

    Oxidative stress and inflammation are involved in the development of type 1 diabetes and its complications. Because two compounds found in soy, that is, isoflavones and alpha-galactooligosaccharides, have been shown to exert antioxidant and anti-inflammatory effects, this study aimed to assess the effects of a dietary supplement containing these two active compounds, the fermented soy permeate (FSP). We hypothesized that FSP would be able to reduce in vivo oxidative stress and inflammation in streptozotocin (STZ)-induced type 1 diabetic rats. Thirty male Wistar rats were divided into the control placebo, diabetic placebo, and diabetic FSP-supplemented groups. They received daily, by oral gavage, water (placebo groups) or diluted FSP (0.1 g/day; FSP-supplemented group). After 3 weeks, glycemic regulation (glycemia and fructosamine level); the plasma level of carboxymethyllysine (CML), a marker of systemic oxidative stress in diabetes; and the plasma levels of inflammatory markers (CRP, IL-1β, IL-6, and uric acid) were evaluated. Markers of oxidative damage (isoprostanes and GSH/GSSG), antioxidant enzymatic activity (SOD and GPX), and Mn-SOD content were determined in skeletal muscle (gastrocnemius). Diabetic placebo rats exhibited higher CML levels, lower SOD and GPX activities, and decreased Mn-SOD contents. FSP supplementation in diabetic animals normalized the CML and antioxidant enzymatic activity levels and tended to increase Mn-SOD expression. The markers of inflammation whose levels were increased in the diabetic placebo group were markedly decreased by FSP (IL-1β: -75%, IL-6: -46%, and uric acid: -17%), except for CRP. Our results demonstrate that FSP exhibited antioxidant and anti-inflammatory properties in vivo in STZ-induced diabetic rats. PMID:25314273

  10. Resistance Exercise Restores Endothelial Function and Reduces Blood Pressure in Type 1 Diabetic Rats

    PubMed Central

    Mota, Marcelo Mendona; da Silva, Tharciano Luiz Teixeira Braga; Fontes, Milene Tavares; Barreto, Andr Sales; Arajo, Joo Eliakim dos Santos; de Oliveira, Antnio Cesar Cabral; Wichi, Rogrio Brando; Santos, Mrcio Roberto Viana

    2014-01-01

    Background Resistance exercise effects on cardiovascular parameters are not consistent. Objectives The effects of resistance exercise on changes in blood glucose, blood pressure and vascular reactivity were evaluated in diabetic rats. Methods Wistar rats were divided into three groups: control group (n = 8); sedentary diabetic (n = 8); and trained diabetic (n = 8). Resistance exercise was carried out in a squat device for rats and consisted of three sets of ten repetitions with an intensity of 50%, three times per week, for eight weeks. Changes in vascular reactivity were evaluated in superior mesenteric artery rings. Results A significant reduction in the maximum response of acetylcholine-induced relaxation was observed in the sedentary diabetic group (78.1 2%) and an increase in the trained diabetic group (95 3%) without changing potency. In the presence of NG-nitro-L-arginine methyl ester, the acetylcholine-induced relaxation was significantly reduced in the control and trained diabetic groups, but not in the sedentary diabetic group. Furthermore, a significant increase (p < 0.05) in mean arterial blood pressure was observed in the sedentary diabetic group (104.9 5 to 126.7 5 mmHg) as compared to that in the control group. However, the trained diabetic group showed a significant decrease (p < 0.05) in the mean arterial blood pressure levels (126.7 5 to 105.1 4 mmHg) as compared to the sedentary diabetic group. Conclusions Resistance exercise could restore endothelial function and prevent an increase in arterial blood pressure in type 1 diabetic rats. PMID:25120082

  11. D-Serine and D-Cycloserine Reduce Compulsive Alcohol Intake in Rats.

    PubMed

    Seif, Taban; Simms, Jeffrey A; Lei, Kelly; Wegner, Scott; Bonci, Antonello; Messing, Robert O; Hopf, F Woodward

    2015-09-01

    There is considerable interest in NMDAR modulators to enhance memory and treat neuropsychiatric disorders such as addiction, depression, and schizophrenia. D-serine and D-cycloserine, the NMDAR activators at the glycine site, are of particular interest because they have been used in humans without serious adverse effects. Interestingly, D-serine also inhibits some NMDARs active at hyperpolarized potentials (HA-NMDARs), and we previously found that HA-NMDARs within the nucleus accumbens core (NAcore) are critical for promoting compulsion-like alcohol drinking, where rats consume alcohol despite pairing with an aversive stimulus such as quinine, a paradigm considered to model compulsive aspects of human alcohol use disorders (AUDs). Here, we examined the impact of D-serine and D-cycloserine on this aversion-resistant alcohol intake (that persists despite adulteration with quinine) and consumption of quinine-free alcohol. Systemic D-serine reduced aversion-resistant alcohol drinking, without altering consumption of quinine-free alcohol or saccharin with or without quinine. Importantly, D-serine within the NAcore but not the dorsolateral striatum also selectively reduced aversion-resistant alcohol drinking. In addition, D-serine inhibited EPSCs evoked at -70?mV in vitro by optogenetic stimulation of mPFC-NAcore terminals in alcohol-drinking rats, similar to reported effects of the NMDAR blocker AP5. Further, D-serine preexposure occluded AP5 inhibition of mPFC-evoked EPSCs, suggesting that D-serine reduced EPSCs by inhibiting HA-NMDARs. Systemic D-cycloserine also selectively reduced intake of quinine-adulterated alcohol, and D-cycloserine inhibited NAcore HA-NMDARs in vitro. Our results indicate that HA-NMDAR modulators can reduce aversion-resistant alcohol drinking, and support testing of D-serine and D-cycloserine as immediately accessible, FDA-approved drugs to treat AUDs. PMID:25801502

  12. Swimming reduces the severity of physical and psychological dependence and voluntary morphine consumption in morphine dependent rats.

    PubMed

    Fadaei, Atefeh; Gorji, Hossein Miladi; Hosseini, Shahrokh Makvand

    2015-01-15

    Previous studies have indicated that voluntary exercise decreases the severity of the anxiogenic-like behaviors in both morphine-dependent and withdrawn rats. This study examined the effects of regular swimming exercise during the development of dependency and spontaneous morphine withdrawal on the anxiety-depression profile and voluntary morphine consumption in morphine dependent rats. The rats were chronically treated with bi-daily doses (10 mg/kg, at 12h intervals) of morphine over a period of 14 days. The exercising rats were allowed to swim (45 min/d, five days per a week, for 14 or 21 days) during the development of morphine dependence and withdrawal. Then, rats were tested for the severity of morphine dependence, the elevated plus-maze (EPM), sucrose preference test (SPT) and voluntary morphine consumption using a two-bottle choice paradigm in animal models of craving. The results showed that withdrawal signs were decreased in swimmer morphine dependent rats than sedentary rats (P<0.05). Also, the swimmer morphine-dependent and withdrawn rats exhibited an increase in EPM open arm time and entries (P<0.05), higher levels of sucrose preference (P<0.001) than sedentary rats. Voluntary consumption of oral morphine was less in the swimmer morphine-withdrawn rats than the sedentary groups during four periods of the intake of drug (P<0.01). We conclude that regular swimming exercise reduces the severity of morphine dependence and voluntary morphine consumption with reducing anxiety and depression in morphine-dependent and withdrawn rats. Thus, swimming exercise may be a potential method to ameliorate some of the deleterious behavioral consequences of morphine dependence. PMID:25498794

  13. A Peptide to Reduce Pulmonary Edema in a Rat Model of Lung Transplantation

    PubMed Central

    Finsterwalder, Richard; Friedl, Heinz P.; Rauscher, Sabine; Gröger, Marion; Kocher, Alfred; Wagner, Christine; Wagner, Stephan N.; Fischer, Gottfried; Schultz, Marcus J.; Wiedemann, Dominik; Petzelbauer, Peter

    2015-01-01

    Background Despite significant advances in organ preservation, surgical techniques and perioperative care, primary graft dysfunction is a serious medical problem in transplantation medicine in general and a specific problem in patients undergoing lung transplantation. As a result, patients develop lung edema, causing reduced tissue oxygenation capacity, reduced lung compliance and increased requirements for mechanical ventilatory support. Yet, there is no effective strategy available to protect the grafted organ from stress reactions induced by ischemia/reperfusion and by the surgical procedure itself. Methods We assessed the effect of a cingulin-derived peptide, XIB13 or a random peptide in an established rat model of allogeneic lung transplantation. Donor lungs and recipients received therapeutic peptide at the time of transplantation and outcome was analyzed 100min and 28 days post grafting. Results XIB13 improved blood oxygenation and reduced vascular leak 100min post grafting. Even after 28 days, lung edema was significantly reduced by XIB13 and lungs had reduced fibrotic or necrotic zones. Moreover, the induction of an allogeneic T cell response was delayed indicating a reduced antigen exchange between the donor and the host. Conclusions In summary, we provide a new tool to strengthen endothelial barrier function thereby improving outcomes in lung transplantation. PMID:26536466

  14. Soyo-san reduces depressive-like behavior and proinflammatory cytokines in ovariectomized female rats

    PubMed Central

    2014-01-01

    Background Soyo-san is a traditional oriental medicinal formula, a mixture of 9 crude drugs, and it has been clinically used for treating mild depressive disorders. The role of pro- and anti-inflammatory cytokines in psychiatric disorders has been the focus of great research attention in recent years. In the present study, we detected the antidepressant effect of soyo-san in the ovariectomized and repeated stressed female rats. Methods This study was designed to evaluate the antidepressant-like effect of soyo-san on the forced swimming test (FST). The rats were randomly divided into the following groups: the nonoperated and nonstressed group (non-op), the nonoperated and stressed group (non-op?+?ST), the ovariectomized and stress group (OVX) and sham operated and stressed group (sham), the ovariectomized and stressed group (OVX?+?ST), the ovariectomized, stressed and soyo-san 100mg/kg treated group (SOY100) and the ovariectomized, stressed and soyo-san 400mg/kg treated group (SOY400). The rats were exposed to immobilization stress (IMO) for 14day (2h/14day), and soyo-san (100mg/kg and 400mg/kg) was administrated during the same time. In the same animals, the levels of corticosterone and interleukin-1-beta (IL-1?) were examined in the serum. Also, the change of IL-1? expression in brain regions was examined after behavior test. Results In the FST, the lower dose (100mg/kg) of extract was effective in reducing immobility, along with an increase in swimming time. The serum levels of corticosterone and IL-1? in the SOY groups were significantly lower than those in the control group. In the brain, the expression of IL-1? positive neurons in the control group were significantly increased in the paraventricular nucleus (PVN) and hippocampus compared to the non-op. However, soyo-san groups significantly reduced the IL-1?-ir neurons in the PVN and hippocampal regions compared to the control. Conclusion The present results demonstrated that soyo-san effectively reduced behavioral and patho-physiological depression-like responses. Trial registration: Our results suggest that soyo-san may be useful for immune regulator in repeated stress-induced ovariectomized female rats. PMID:24444307

  15. Oral N-acetylcysteine reduces bleomycin-induced lung damage and mucin Muc5ac expression in rats.

    PubMed

    Mata, M; Ruíz, A; Cerdá, M; Martinez-Losa, M; Cortijo, J; Santangelo, F; Serrano-Mollar, A; Llombart-Bosch, A; Morcillo, E J

    2003-12-01

    Oxidative stress is involved in the pathogenesis of pulmonary fibrosis, therefore antioxidants may be of therapeutic value. Clinical work indicates that N-acetylcysteine (NAC) may be beneficial in this disease. The activity of this antioxidant was examined on bleomycin-induced lung damage, mucus secretory cells hyperplasia and mucin Muc5ac gene expression in rats. NAC (3 mmol x kg(-1) x day(-1)) or saline was given orally to Sprague-Dawley rats for 1 week prior to a single intratracheal instillation of bleomycin (2.5 U x kg(-1)) and for 14 days postinstillation. NAC decreased collagen deposition in bleomycin-exposed rats (hydroxyproline content was 4,257+/-323 and 3,200+/-192 microg x lung(-1) in vehicle- and NAC-treated rats, respectively) and lessened the fibrotic area assessed by morphometric analysis. The bleomycin-induced increases in lung tumour necrosis factor-alpha and myeloperoxidase activity were reduced by NAC treatment. The numbers of mucus secretory cells in airway epithelium, and the Muc5ac messenger ribonucleic acid and protein expression, were markedly augmented in rats exposed to bleomycin. These changes were significantly reduced in NAC-treated rats. These results indicate that bleomycin increases the number of airway secretory cells and their mucin production, and that oral N-acetylcysteine improved pulmonary lesions and reduced the mucus hypersecretion in the bleomycin rat model. PMID:14680076

  16. Sexual interactions with unfamiliar females reduce hippocampal neurogenesis among adult male rats.

    PubMed

    Spritzer, M D; Curtis, M G; DeLoach, J P; Maher, J; Shulman, L M

    2016-03-24

    Recent experiments have shown that sexual interactions prior to cell proliferation cause an increase in neurogenesis in adult male rats. Because adult neurogenesis is critical for some forms of memory, we hypothesized that sexually induced changes in neurogenesis may be involved in mate recognition. Sexually naive adult male rats were either exposed repeatedly to the same sexual partner (familiar group) or to a series of novel sexual partners (unfamiliar group), while control males never engaged in sexual interactions. Ovariectomized female rats were induced into estrus every four days. Males were given two injections of 5-bromo-2'-deoxyuridine (BrdU) (200mg/kg) to label proliferating cells, and the first sexual interactions occurred three days later. Males in the familiar and unfamiliar groups engaged in four, 30-min sexual interactions at four-day intervals, and brain tissue was collected the day after the last sexual interaction. Immunohistochemistry followed by microscopy was used to quantify BrdU-labeled cells. Sexual interactions with unfamiliar females caused a significant reduction in neurogenesis in the dentate gyrus compared to males that interacted with familiar females and compared to the control group. The familiar group showed no difference in neurogenesis compared to the control group. Males in the familiar group engaged in significantly more sexual behavior (ejaculations and intromissions) than did males in the unfamiliar group, suggesting that level of sexual activity may influence neurogenesis levels. In a second experiment, we tested whether this effect was unique to sexual interactions by replicating the entire procedure using anestrus females. We found that interactions with unfamiliar anestrus females reduced neurogenesis relative to the other groups, but this effect was not statistically significant. In combination, these results indicate that interactions with unfamiliar females reduce adult neurogenesis and the effect is stronger for sexual interactions than for social interactions. PMID:26794592

  17. Resveratrol restored Nrf2 function, reduced renal inflammation, and mitigated hypertension in spontaneously hypertensive rats.

    PubMed

    Javkhedkar, Apurva A; Quiroz, Yasmir; Rodriguez-Iturbe, Bernardo; Vaziri, Nosratola D; Lokhandwala, Mustafa F; Banday, Anees A

    2015-05-15

    Compelling evidence supports the role of oxidative stress and renal interstitial inflammation in the pathogenesis of hypertension. Resveratrol is a polyphenolic stilbene, which can lower oxidative stress by activating the transcription factor nuclear factor-E2-related factor-2 (Nrf2), the master regulator of numerous genes encoding antioxidant and phase II-detoxifying enzymes and molecules. Given the role of oxidative stress and inflammation in the pathogenesis of hypertension, we conducted this study to test the hypothesis that long-term administration of resveratrol will attenuate renal inflammation and oxidative stress and, hence, progression of hypertension in the young spontaneously hypertensive rats (SHR). SHR and control [Wistar-Kyoto (WKY)] rats were treated for 9 wk with resveratrol or vehicle in their drinking water. Vehicle-treated SHR exhibited renal inflammatory injury and oxidative stress, as evidenced by glomerulosclerosis, tubulointerstitial injury, infiltration of inflammatory cells, and increased levels of renal 8-isoprostane and protein carbonylation. This was associated with reduced antioxidant capacity and downregulations of Nrf2 and phase II antioxidant enzyme glutathione-S-transferase (GST). Resveratrol treatment mitigated renal inflammation and injury, reduced oxidative stress, normalized antioxidant capacity, restored Nrf2 and GST activity, and attenuated the progression of hypertension in SHR. However, resveratrol had no effect on these parameters in WKY rats. In conclusion, development and progression of hypertension in the SHR are associated with inflammation, oxidative stress, and impaired Nrf2-GST activity in the kidney. Long-term administration of resveratrol restores Nrf2 expression, ameliorates inflammation, and attenuates development of hypertension in SHR. Clinical studies are needed to explore efficacy of resveratrol in human hypertension. PMID:25761698

  18. Candesartan reduces the hemorrhage associated with delayed tissue plasminogen activator treatment in rat embolic stroke

    PubMed Central

    Ishrat, Tauheed; Pillai, Bindu; Ergul, Adviye; Hafez, Sherif; Fagan, Susan C

    2013-01-01

    We have previously reported that angiotensin receptor blockade reduces reperfusion hemorrhage in a suture occlusion model of stroke, despite increasing matrix metalloproteinase (MMP-9) activity. We hypothesized that candesartan will also decrease hemorrhage associated with delayed (6h) tissue plasminogen activator (tPA) administration after embolic stroke, widening the therapeutic time window of tPA. Adult male Wistar rats were subjected to embolic middle cerebral artery occlusion (eMCAO) and treated with either candesartan (1mg/kg) alone early at 3h, delayed tPA (10mg/kg) alone at 6h, the combination of candesartan and tPA, or vehicle control. Rats were sacrificed at 24 and 48h post-eMCAO and brains perfused for evaluation of neurological deficits, cerebral hemorrhage in terms of hemoglobin content (Hb), occurrence rate of hemorrhage, infarct size, tissue MMP activity and protein expression. The combination therapy of candesartan and tPA after eMCAO reduced the brain hemorrhage, and improved neurological outcome compared with rats treated with tPA alone. Further, candesartan in combination with tPA increased activity of MMP-9 but decreased MMP-3, nuclear factor kappa-B (NF-?B) and tumor necrosis factor-? (TNF-?) expression and enhanced activation of endothelial nitric oxide synthase (eNOS). An activation of MMP-9 alone is insufficient to cause increased hemorrhage in embolic stroke. Combination therapy with acute candesartan plus tPA may be beneficial in ameliorating tPA-induced hemorrhage after embolic stroke. PMID:24194350

  19. Alcohol binge drinking during adolescence or dependence during adulthood reduces prefrontal myelin in male rats.

    PubMed

    Vargas, Wanette M; Bengston, Lynn; Gilpin, Nicholas W; Whitcomb, Brian W; Richardson, Heather N

    2014-10-29

    Teen binge drinking is associated with low frontal white matter integrity and increased risk of alcoholism in adulthood. This neuropathology may result from alcohol exposure or reflect a pre-existing condition in people prone to addiction. Here we used rodent models with documented clinical relevance to adolescent binge drinking and alcoholism in humans to test whether alcohol damages myelinated axons of the prefrontal cortex. In Experiment 1, outbred male Wistar rats self-administered sweetened alcohol or sweetened water intermittently for 2 weeks during early adolescence. In adulthood, drinking behavior was tested under nondependent conditions or after dependence induced by 1 month of alcohol vapor intoxication/withdrawal cycles, and prefrontal myelin was examined 1 month into abstinence. Adolescent binge drinking or adult dependence induction reduced the size of the anterior branches of the corpus callosum, i.e., forceps minor (CCFM), and this neuropathology correlated with higher relapse-like drinking in adulthood. Degraded myelin basic protein in the gray matter medial to the CCFM of binge rats indicated myelin was damaged on axons in the mPFC. In follow-up studies we found that binge drinking reduced myelin density in the mPFC in adolescent rats (Experiment 2) and heavier drinking predicted worse performance on the T-maze working memory task in adulthood (Experiment 3). These findings establish a causal role of voluntary alcohol on myelin and give insight into specific prefrontal axons that are both sensitive to alcohol and could contribute to the behavioral and cognitive impairments associated with early onset drinking and alcoholism. PMID:25355229

  20. Alcohol Binge Drinking during Adolescence or Dependence during Adulthood Reduces Prefrontal Myelin in Male Rats

    PubMed Central

    Vargas, Wanette M.; Bengston, Lynn; Gilpin, Nicholas W.; Whitcomb, Brian W.

    2014-01-01

    Teen binge drinking is associated with low frontal white matter integrity and increased risk of alcoholism in adulthood. This neuropathology may result from alcohol exposure or reflect a pre-existing condition in people prone to addiction. Here we used rodent models with documented clinical relevance to adolescent binge drinking and alcoholism in humans to test whether alcohol damages myelinated axons of the prefrontal cortex. In Experiment 1, outbred male Wistar rats self-administered sweetened alcohol or sweetened water intermittently for 2 weeks during early adolescence. In adulthood, drinking behavior was tested under nondependent conditions or after dependence induced by 1 month of alcohol vapor intoxication/withdrawal cycles, and prefrontal myelin was examined 1 month into abstinence. Adolescent binge drinking or adult dependence induction reduced the size of the anterior branches of the corpus callosum, i.e., forceps minor (CCFM), and this neuropathology correlated with higher relapse-like drinking in adulthood. Degraded myelin basic protein in the gray matter medial to the CCFM of binge rats indicated myelin was damaged on axons in the mPFC. In follow-up studies we found that binge drinking reduced myelin density in the mPFC in adolescent rats (Experiment 2) and heavier drinking predicted worse performance on the T-maze working memory task in adulthood (Experiment 3). These findings establish a causal role of voluntary alcohol on myelin and give insight into specific prefrontal axons that are both sensitive to alcohol and could contribute to the behavioral and cognitive impairments associated with early onset drinking and alcoholism. PMID:25355229

  1. Yellow pea fiber improves glycemia and reduces Clostridium leptum in diet-induced obese rats.

    PubMed

    Eslinger, Amanda J; Eller, Lindsay K; Reimer, Raylene A

    2014-08-01

    Numerous studies have demonstrated the impact of functional fibers on gut microbiota and metabolic health, but some less well-studied fibers and/or fractions of foods known to be high in fiber still warrant examination. The aim of this study was to assess the effect of yellow pea-derived fractions varying in fiber and protein content on metabolic parameters and gut microbiota in diet-induced obese rats. We hypothesized that the yellow pea fiber (PF) fraction would improve glycemia and alter gut microbiota. Rats were randomized to 1 of 5 isoenergetic dietary treatments for 6 weeks: (1) control; (2) oligofructose (OFS); (3) yellow PF; (4) yellow pea flour (PFL); or (5) yellow pea starch (PS). Glycemia, plasma gut hormones, body composition, hepatic triglyceride content, gut microbiota, and messenger RNA expression of genes related to hepatic fat metabolism were examined. Pea flour attenuated weight gain compared with control, PF, and PS (P < .05). Pea flour, PS, and OFS had significantly lower final percent body fat compared with control. Oligofructose but not the pea fraction diets reduced food intake compared with control (P < .05). Pea fiber resulted in lower fasting glucose and glucose area under the curve compared with control. Changes in gut microbiota were fraction specific and included a decrease in Firmicutes (percent) for OFS, PF, and PFL compared with control (P < .05). The Firmicutes/Bacteroidetes ratio was reduced with OFS, PF, and PFL when compared with PS (P < .05). Taken together, this work suggests that yellow pea-derived fractions are able to distinctly modulate metabolic parameters and gut microbiota in obese rats. PMID:25156790

  2. Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury

    PubMed Central

    Babaee, Abdolreza; Eftekhar-Vaghefi, Seyed Hassan; Asadi-shekaari, Majid; Shahrokhi, Nader; Soltani, Samereh Dehghani; Malekpour-Afshar, Reza; Basiri, Mohsen

    2015-01-01

    Objective(s): Melatonin is known as an anti-inflammatory agent, and it has been proven to exert neuroprotection through inhibition of cell death (apoptosis) in several models of brain injury. Secondary injury following the primary traumatic brain injury (TBI) results in glial cells activation, especially astrocytes. In fact, astrocyte activation causes the production of pro-inflammatory cytokines that may lead to secondary injury. Since most TBI research studies have focused on injured neurons and paid little attention to glial cells, the aim of current study was to investigate the effects of melatonin against astrocytes activation (astrogliosis), as well as inhibition of apoptosis in brain tissue of male rats after TBI. Materials and Methods: The animals were randomly allocated into five groups: sham group, TBI+ vehicle group (1% ethanol in saline) and TBI+ melatonin groups (5 mg/kg, 10 mg/kg and 20 mg/kg). All rats were intubated and then exposed to diffuse TBI, except for the sham group. Immunohistochemical methods were conducted using glial fibrillary acidic protein (GFAP) marker and TUNEL assay to evaluate astrocyte reactivity and cell death, respectively. Results: The results showed that based on the number of GFAP positive astrocytes in brain cortex, astrogliosis was reduced significantly (P<0.05) in melatonin- treated groups (no dose dependent) compared to the vehicle group. Furthermore, based on TUNEL results, melatonin treatment considerably reduced the number of apoptotic cells (P<0.05). Conclusion: In total, the present findings suggest that melatonin treatment following TBI diminishes astrocyte reactivity and neuronal cells apoptosis in brain cortex in the rat model. PMID:26523219

  3. Forelimb preferences in quadrupedal marsupials and their implications for laterality evolution in mammals

    PubMed Central

    2013-01-01

    Background Acquisition of upright posture in evolution has been argued to facilitate manual laterality in primates. Owing to the high variety of postural habits marsupials can serve as a suitable model to test whether the species-typical body posture shapes forelimb preferences in non-primates or this phenomenon emerged only in the course of primate evolution. In the present study we aimed to explore manual laterality in marsupial quadrupeds and compare them with the results in the previously studied bipedal species. Forelimb preferences were assessed in captive grey short-tailed opossum (Monodelphis domestica) and sugar glider (Petaurus breviceps) in four different types of unimanual behaviour per species, which was not artificially evoked. We examined the possible effects of sex, age and task, because these factors have been reported to affect motor laterality in placental mammals. Results In both species the direction of forelimb preferences was strongly sex-related. Male grey short-tailed opossums showed right-forelimb preference in most of the observed unimanual behaviours, while male sugar gliders displayed only a slight, not significant rightward tendency. In contrast, females in both species exhibited consistent group-level preference of the left forelimb. We failed to reveal significant differences in manual preferences between tasks of potentially differing complexity: reaching a stable food item and catching live insects, as well as between the body support and food manipulation. No influence of subjects’ age on limb preferences was found. Conclusions The direction of sex-related differences in the manual preferences found in quadrupedal marsupials seems to be not typical for placental mammals. We suggest that the alternative way of interhemispheric connection in absence of corpus callosum may result in a fundamentally distinct mechanism of sex effect on limb preferences in marsupials compared to placentals. Our data confirm the idea that non-primate mammals differ from primates in sensitivity to task complexity. Comparison of marsupial species studied to date indicate that the vertical body orientation and the bipedalism favor the expression of individual– and population–level forelimb preferences in marsupials much like it does in primates. Our findings give the first evidence for the effect of species-typical posture on the manual laterality in non-primate mammals. PMID:23497116

  4. Reduced glomerular angiotensin II receptor density in diabetes mellitus in the rat: time course and mechanism

    SciTech Connect

    Wilkes, B.M.

    1987-04-01

    Glomerular angiotensin II receptors are reduced in number in early diabetes mellitus, which may contribute to hyperfiltration and glomerular injury. The time course and role of the renin-angiotensin-aldosterone system in the pathogenesis of the receptor abnormality were studied in male Sprague-Dawley rats made diabetic with streptozotocin (65 mg, iv). Glomerular angiotensin II receptors were measured by Scatchard analysis; insulin, renin activity, angiotensin II, and aldosterone were measured by RIA. Diabetes mellitus was documented at 24 h by a rise in plasma glucose (vehicle-injected control, 133 +/- 4; diabetic, 482 +/- 22 mg/dl and a fall in plasma insulin (control, 53.1 +/- 5.7; diabetic, 35.6 +/- 4.0 microIU/ml. At 24 h glomerular angiotensin II receptor density was decreased by 26.5% in diabetic rats (control, 75.5 +/- 9.6 X 10(6); diabetic, 55.5 +/- 8.3 X 10(6) receptors/glomerulus. Receptor occupancy could not explain the defect, because there was reduced binding in diabetic glomeruli after pretreatment with 3 M MgCl/sub 2/, a maneuver that caused dissociation of previously bound hormone. There was a progressive return of the receptor density toward normal over the 60 days following induction of diabetes, with diabetic glomeruli measuring 22.7%, 14.8%, and 3.7% fewer receptors than age-matched controls at 11 days, 1 month, and 2 months, respectively.

  5. Red yeast rice repairs kidney damage and reduces inflammatory transcription factors in rat models of hyperlipidemia

    PubMed Central

    DING, MEI; SI, DAOYUAN; ZHANG, WENQI; FENG, ZHAOHUI; HE, MIN; YANG, PING

    2014-01-01

    Xuezhikang (XZK), an extract of red yeast rice, has been widely used for the management of hyperlipidemia and coronary heart disease (CHD); however, the effects of XZK treatment on kidney injury have not yet been fully identified. The aim of the current study was to evaluate the effects of XZK on the kidneys and investigate the related mechanisms in a rat model of hyperlipidemia. Thus, the effect on inflammatory transcription factors and kidney damage was investigated with in vitro and in vivo experiments on hyperlipidemic rats following XZK treatment. The results revealed that the plasma levels of total cholesterol (TC), triglycerides (TG) and low-density lipoprotein-cholesterol (LDL-C) were significantly decreased, while the levels of high-density lipoprotein-cholesterol (HDL-C) were significantly upregulated in the XZK treatment group, as compared with those in the hyperlipidemia group (P<0.05). In addition, the results demonstrated that XZK was able to repair the kidney damage caused by hyperlipidemia. Furthermore, the expression levels of the inflammatory transcription factors, tumor necrosis factor-α and interleukin-6, were shown to be reduced in the XZK group when compared with the hyperlipidemia group. In summary, XZK reduces kidney injury, downregulates the levels of TG, TC and LDL-C, as well as the expression levels of inflammatory transcription factors, and upregulates HDL-C. These results further the understanding of the molecular pathogenic mechanisms underlying hyperlipidemia and aid the development of XZK as an effective therapeutic agent for hyperlipidemia. PMID:25371725

  6. Red yeast rice repairs kidney damage and reduces inflammatory transcription factors in rat models of hyperlipidemia.

    PubMed

    Ding, Mei; Si, Daoyuan; Zhang, Wenqi; Feng, Zhaohui; He, Min; Yang, Ping

    2014-12-01

    Xuezhikang (XZK), an extract of red yeast rice, has been widely used for the management of hyperlipidemia and coronary heart disease (CHD); however, the effects of XZK treatment on kidney injury have not yet been fully identified. The aim of the current study was to evaluate the effects of XZK on the kidneys and investigate the related mechanisms in a rat model of hyperlipidemia. Thus, the effect on inflammatory transcription factors and kidney damage was investigated with in vitro and in vivo experiments on hyperlipidemic rats following XZK treatment. The results revealed that the plasma levels of total cholesterol (TC), triglycerides (TG) and low-density lipoprotein-cholesterol (LDL-C) were significantly decreased, while the levels of high-density lipoprotein-cholesterol (HDL-C) were significantly upregulated in the XZK treatment group, as compared with those in the hyperlipidemia group (P<0.05). In addition, the results demonstrated that XZK was able to repair the kidney damage caused by hyperlipidemia. Furthermore, the expression levels of the inflammatory transcription factors, tumor necrosis factor-α and interleukin-6, were shown to be reduced in the XZK group when compared with the hyperlipidemia group. In summary, XZK reduces kidney injury, downregulates the levels of TG, TC and LDL-C, as well as the expression levels of inflammatory transcription factors, and upregulates HDL-C. These results further the understanding of the molecular pathogenic mechanisms underlying hyperlipidemia and aid the development of XZK as an effective therapeutic agent for hyperlipidemia. PMID:25371725

  7. Effect of acute food deprivation on lactational infertility in rats is reduced by leptin administration.

    PubMed

    Woodside, B; Abizaid, A; Jafferali, S

    1998-06-01

    The goals of these experiments were to determine whether lactational anestrus would be prolonged by a 48-h fast at days 13 and 14 postpartum (pp) and, if so, to determine whether this effect could be reversed by treatment with the Ob protein leptin. We found that food deprivation on days 13 and 14 pp prolonged lactational infertility by 7 days and that the nutritional experience of both the dam and her litter contributed to this effect. Leptin administration (2.5 mg . kg-1 . day-1) during food deprivation was sufficient to reduce the length of lactational infertility compared with vehicle-treated food-deprived rats (P < 0.05). Similar leptin treatment in ad libitum-fed animals reduced food intake (P < 0.05) and litter growth (P < 0.05) but had no statistically significant effect on maternal weight gain or length of lactational infertility. Food-deprived lactating animals had lower circulating leptin levels than ad libitum-fed lactating animals on day 15 pp (P < 0.05), as determined by RIA. Levels in nonlactating rats were higher than in either lactating group (P < 0.05). PMID:9608020

  8. Allopurinol reduces severity of delayed neurologic sequelae in experimental carbon monoxide toxicity in rats.

    PubMed

    Dong, Guangtao; Ren, Ming; Wang, Xiujie; Jiang, Hongquan; Yin, Xiang; Wang, Shuyu; Wang, Xudong; Feng, Honglin

    2015-05-01

    Approximately half of those who survive severe carbon monoxide (CO) poisoning develop delayed neurologic sequelae. Growing evidence supports the crucial role of free radicals in delayed brain injury associated with CO toxicity. Xanthine oxidase (XO) has been reported to play a pivotal role in the generation of reactive oxygen species (ROS) in CO poisoning. A recent report indicates that allopurinol both attenuated oxidative stress and possessed anti-inflammatory properties in an animal model of acute liver failure. In this study, we aimed to explore the potential of allopurinol to reduce the severity of delayed neurologic sequelae. The rats were first exposed to 1000 ppm CO for 40 min and then to 3000 ppm CO for another 20 min. Following CO poisoning, the rats were injected with allopurinol (50 mg/kg, i.p.) six times. Results showed that allopurinol significantly reduced neuronal death and suppressed expression of pro-inflammatory factors, including tumor necrosis factor-?, intercellular adhesion molecule-1, ionized calcium-binding adapter molecule 1, and degraded myelin basic protein. Furthermore, behavioral studies revealed an improved performance in the Morris water maze test. Our findings indicated that allopurinol may have protective effects against delayed neurologic sequelae caused by CO toxicity. PMID:25845300

  9. Uridine-5'-triphosphate (UTP) reduces infarct size and improves rat heart function after myocardial infarct.

    PubMed

    Yitzhaki, Smadar; Shainberg, Asher; Cheporko, Yelena; Vidne, Bernardo A; Sagie, Alex; Jacobson, Kenneth A; Hochhauser, Edith

    2006-10-16

    We have previously found that uridine 5'-triphosphate (UTP) significantly reduced cardiomyocyte death induced by hypoxia via activating P2Y(2) receptors. To explore the effect of UTP following myocardial infarction (MI) in vivo we studied four groups: sham with or without LAD ligation, injected with UTP (0.44microg/kg i.v.) 30min before MI, and UTP injection (4.4microg/kg i.v.) 24h prior to MI. Left ventricular end diastolic area (LVEDA), end systolic area (LVESA) fractional shortening (FS), and changes in posterior wall (PW) thickness were performed by echocardiography before and 24h after MI. In addition, we measured different biochemical markers of damage and infarct size using Evans blue and TTC staining. The increase in LVEDA and LVESA of the treated animals was significantly smaller when compared to the MI rats (p<0.01). Concomitantly, FS was higher in groups pretreated with UTP 30min or 24h (56+/-14.3 and 36.7+/-8.2%, p<0.01, respectively). Ratio of infarct size to area at risk was smaller in the UTP pretreated hearts than MI rats (22.9+/-6.6, 23.1+/-9.1%, versus 45.4+/-7.6%, respectively, p<0.001). Troponin T and ATP measurements, demonstrated reduced myocardial damage. Using Rhod-2-AM loaded cardiomyocytes, we found that UTP reduced mitochondrial calcium levels following hypoxia. In conclusion, early or late UTP preconditioning is effective, demonstrating reduced infarct size and superior myocardial function. The resulting cardioprotection following UTP treatment post ischemia demonstrates a reduction in mitochondrial calcium overload, which can explain the beneficial effect of UTP. PMID:16939682

  10. Clopidogrel reduces the inflammatory response of lung in a rat model of decompression sickness.

    PubMed

    Bao, Xiao-Chen; Chen, Hong; Fang, Yi-Qun; Yuan, Heng-Rong; You, Pu; Ma, Jun; Wang, Fang-Fang

    2015-06-01

    Inflammation and platelet activation are critical phenomena in the setting of decompression sickness. Clopidogrel (Clo) inhibits platelet activation and may also reduce inflammation. The goal of this study was to investigate if Clo had a protective role in decompression sickness (DCS) through anti-inflammation way. Male Sprague-Dawley rats (n=111) were assigned to three groups: control+vehicle group, DCS+vehicle, DCS+Clo group. The experimental group received 50 mg/kg of Clo or vehicle for 3 days, then compressed to 1,600 kPa (150 msw) in 28 s, maintained at 150 msw for 242 s and decompressed to surface at 3m/s. In a control experiment, rats were also treated with vehicle for 3 days and maintained at atmospheric pressure for an equivalent period of time. Clinical assessment took place over a period of 30 min after surfacing. At the end, blood samples were collected for blood cells counts and cytokine detection. The pathology and the wet/dry ratio of lung tissues, immunohistochemical detection of lung tissue CD41 expression, the numbers of P-selectin positive platelets and platelet-leukocyte conjugates in blood were tested. We found that Clo significantly reduced the DCS mortality risk (mortality rate: 11/45 with Clo vs. 28/46 in the untreated group, P<0.01). Clo reduced the lung injury, the wet/dry ratio of lung, the accumulation of platelet and leukocyte in lung, the fall in platelet count, the WBC count, the numbers of activated platelets and platelet-leukocyte complexes in peripheral blood. It was concluded that Clo can play a protective role in decompression sickness through reducing post-decompression platelet activation and inflammatory process. PMID:25784626

  11. Dextromethorphan interactions with histaminergic and serotonergic treatments to reduce nicotine self-administration in rats.

    PubMed

    Briggs, Scott A; Hall, Brandon J; Wells, Corinne; Slade, Susan; Jaskowski, Paul; Morrison, Margaret; Rezvani, Amir H; Rose, Jed E; Levin, Edward D

    2016-03-01

    Combining effective treatments with diverse mechanisms of action for smoking cessation may provide better therapy by targeting multiple points of control in the neural circuits underlying addiction. Previous research in a rat model has shown that dextromethorphan, which has α3β4 nicotinic and NMDA glutamatergic antagonist actions, significantly decreases nicotine self-administration. We have found in the rat model that the H1 histamine antagonist pyrilamine and the serotonin 5HT2C agonist lorcaserin also significantly reduce nicotine self-administration. The current studies were conducted to determine the interactive effects of dextromethorphan with pyrilamine and lorcaserin on nicotine self-administration in rats. Young adult female rats were fitted with jugular IV catheters and trained to self-administer a nicotine infusion dose of 0.03-mg/kg/infusion. In an initial dose-effect function study of dextromethorphan, we found a monotonic decrease in nicotine self-administration over a dose range of 1 to 30-mg/kg with the lowest effective dose of 3-mg/kg. Then, with two separate cohorts of rats, dextromethorphan (0, 3.3, and 10-mg/kg) interactions with pyrilamine (0, 4.43, and 13.3-mg/kg) were investigated as well as interactions with lorcaserin (0, 0.3125 and 0.625-mg/kg). In the pyrilamine-dextromethorphan interaction study, an acute dose of pyrilamine (13.3-mg/kg) as well as an acute dose of dextromethorphan caused a significant decrease in nicotine self-administration. There were mutually augmenting effects of these two drugs. The combination of dextromethorphan (10-mg/kg) and pyrilamine (13.3-mg/kg) significantly lowered nicotine self-administration relative to either 10-mg/kg of dextromethorphan alone (p<0.05) or 13.3-mg/kg of pyrilamine alone (p<0.0005). In the lorcaserin-dextromethorphan study, an acute dose of lorcaserin (0.312-mg/kg) as well as an acute dose of dextromethorphan (10-mg/kg) caused a significant decrease in nicotine self-administration replicating previous findings. Augmenting interactions were observed with dextromethorphan and pyrilamine as well as lorcaserin. These findings suggest that combination therapy may be more effective smoking cessation treatments than monotherapy. PMID:26704812

  12. Eribis peptide 94 reduces infarct size in rat hearts via activation of centrally located ? opioid receptors.

    PubMed

    Gross, Garrett J; Hsu, Anna; Nithipatikom, Kasem; Bobrova, Irina; Bissessar, Erik

    2012-02-01

    Eribis peptide 94 (EP 94) is a novel enkephalin derivative that binds with high potency to ? and ? opioid receptors with less affinity for the ? opioid receptor. This compound has recently been shown to produce an acute reduction in myocardial infarct size in the anesthetized pig and rat partially via an endothelial nitric oxide synthase and KATP channel-dependent mechanism. EP 94 also was found to produce a chronic reduction in infarct size 24 hours postdrug administration via the upregulation of inducible nitric oxide synthase in rats. Despite these findings, no data have emerged in which the opioid receptor subtype responsible for cardioprotection has been identified and the site of action, heart, other peripheral organs, or the central nervous system, has not been addressed. In the current study, EP 94, was administered in 2 divided doses (0.5 ?g/kg, intravenously) at 5 and 10 minutes into the ischemic period, and the opioid antagonists were administered 10 minutes before the onset of the 30-minute ischemic period. The selective antagonists used were the ? receptor antagonist CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2), the ? receptor antagonists naltrindole and BNTX (7-benzylidenenaltrexone), and the ? receptor antagonist nor-BNI (norbinaltorphimine). Surprisingly, only CTOP completely blocked the cardioprotective effect of EP 94, whereas naltrindole, BNTX, and nor-BNI had modest but nonsignificant effects. Because there is controversial evidence suggesting that ? receptors may be absent in the adult rat myocardium, it was hypothesized that the protective effect of EP 94 may be mediated by an action outside the heart, perhaps in the central nervous system. To test this hypothesis, rats were pretreated with the nonselective opioid antagonist, naloxone hydrochloride, which penetrates the blood-brain barrier or naloxone methiodide, the quaternary salt of naloxone hydrochloride, which does not penetrate the blood-brain barrier before EP 94 administration. In support of a central nervous system site of action for EP 94, naloxone hydrochloride completely blocked its cardioprotective effect, whereas naloxone methiodide had no effect. These results suggest that EP 94 reduces infarct size (expressed as a percent of the area at risk) in the rat primarily via activation of central ? opioid receptors. PMID:22130105

  13. 4-Aminopyridine reduces chorda tympani nerve taste responses to potassium and alkali salts in rat.

    PubMed

    Kim, M; Mistretta, C M

    1993-05-28

    To study the potential role of potassium channels in the taste response to potassium salts, we applied 4-aminopyridine (4-AP) to the anterior rat tongue and recorded chorda tympani nerve taste responses to chemical stimuli. 4-aminopyridine is a pharmacological blocker that reduces potassium conductance through potassium channels in nerve and muscle. Summated neural responses to stimuli dissolved in water and in 4-AP were compared. Chemical stimuli included concentration ranges of KCl, KBr, KH2PO4, CsCl, RbCl, NH4Cl, NaCl and sucrose. The blocker reduced chorda tympani responses to KCl and other potassium salts, from 0.025 to 0.25 M. Responses to ammonium, rubidium and cesium salts also were reduced, in order of effectiveness that would be predicted from known ion selectivity properties of potassium channels. Responses to NaCl and sucrose were not reduced. Other channel blockers, including tetraethylammonium chloride (TEA), BaCl2 and quinidine, did not reduce the response to KCl. These are the first detailed reports of effects of potassium channel blockers on the peripheral, neural taste response. The results are consistent with a role for potassium channels in apical taste bud cell membranes in transduction for potassium salts. PMID:8330218

  14. Antioxidants that protect mitochondria reduce interleukin-6 and oxidative stress, improve mitochondrial function, and reduce biochemical markers of organ dysfunction in a rat model of acute sepsis

    PubMed Central

    Lowes, D. A.; Webster, N. R.; Murphy, M. P.; Galley, H. F.

    2013-01-01

    Background Sepsis-induced organ failure is the major cause of death in critical care units, and is characterized by a massive dysregulated inflammatory response and oxidative stress. We investigated the effects of treatment with antioxidants that protect mitochondria (MitoQ, MitoE, or melatonin) in a rat model of lipopolysaccharide (LPS) plus peptidoglycan (PepG)-induced acute sepsis, characterized by inflammation, mitochondrial dysfunction and early organ damage. Methods Anaesthetized and ventilated rats received an i.v. bolus of LPS and PepG followed by an i.v. infusion of MitoQ, MitoE, melatonin, or saline for 5 h. Organs and blood were then removed for determination of mitochondrial and organ function, oxidative stress, and key cytokines. Results MitoQ, MitoE, or melatonin had broadly similar protective effects with improved mitochondrial respiration (P<0.002), reduced oxidative stress (P<0.02), and decreased interleukin-6 levels (P=0.0001). Compared with control rats, antioxidant-treated rats had lower levels of biochemical markers of organ dysfunction, including plasma alanine amino-transferase activity (P=0.02) and creatinine concentrations (P<0.0001). Conclusions Antioxidants that act preferentially in mitochondria reduce mitochondrial damage and organ dysfunction and decrease inflammatory responses in a rat model of acute sepsis. PMID:23381720

  15. Conduction velocity in proximal and distal portions of forelimb axons in the baboon

    PubMed Central

    Clough, J. F. M.; Kernell, D.; Phillips, C. G.

    1968-01-01

    1. Peripheral nerves of the baboon's forelimb were stimulated at different sites, and the latencies of antidromic action potentials were measured in intracellular records from forelimb motoneurones. 2. The conduction velocity of single motor axons was slower in the brachial plexus than in the nerves of the arm and forearm. This proximal slowing of conduction velocity was more marked for rapidly conducting axons than for the more slowly conducting ones. 3. Gross recordings from dorsal and ventral roots showed that the conduction velocity was slower in the brachial plexus than in the arm for fast afferent as well as efferent nerve fibres. 4. The proximal slowing of conduction velocity was shown to be due neither to errors of measurement nor to proximo-distal differences of temperature. PMID:16992311

  16. Post-stroke protection from maladaptive effects of learning with the non-paretic forelimb by bimanual home cage experience in C57BL/6 mice

    PubMed Central

    Kerr, Abigail L.; Wolke, Malerie L.; Bell, Jared A.; Jones, Theresa A.

    2013-01-01

    Behavioral experience, in the form of skilled limb use, has been found to impact the structure and function of the central nervous system, affecting post-stroke behavioral outcome in both adaptive and maladaptive ways. Learning to rely on the less-affected, or non-paretic, body side is common following stroke in both humans and rodent models. In rats, it has been observed that skilled learning with the non-paretic forelimb following ischemic insult leads to impaired or delayed functional recovery of the paretic limb. Here we used a mouse model of focal motor cortical ischemic injury to examine the effects of non-paretic limb training following unilateral stroke. In addition, we exposed some mice to increased bimanual experience in the home cage following stroke to investigate the impact of coordinated dexterous limb use on the non-paretic limb training effect. Our results confirmed that skilled learning with the non-paretic limb impaired functional recovery following stroke in C56BL/6 mice, as it does in rats. Further, this effect was avoided when the skill learning of the non-paretic limb was coupled with increased dexterous use of both forelimbs in the home cage. These findings further establish the mouse as an appropriate model in which to study the neural mechanisms of recovery following stroke and extend previous findings to suggest that the dexterous coordinated use of the paretic and non-paretic limb can promote functional outcome following injury. Keywords: experience-dependent plasticity, learned nonuse, motor cortex, motor rehabilitation, stroke PMID:23756140

  17. Pyruvate administered to newborn rats with insulin-induced hypoglycemic brain injury reduces neuronal death and cognitive impairment.

    PubMed

    Zhou, Dong; Qian, Jing; Chang, Hong; Xi, Bo; Sun, Ruo-peng

    2012-01-01

    Based on previous studies, we had made a try to administer sodium pyruvate to newborn Wistar rats suffering repetitive and profound hypoglycemia, which can induce brain injury. Fluoro-Jade B was used to marked degenerative neurons 1 day after the third hypoglycemic insult, and Morris water navigation task was performed to assess cognitive function when the rats were 6 weeks old. We found that administration of sodium pyruvate to those rats whose hypoglycemia was terminated by dextrose can reduce neurodegeneration induced by hypoglycemia and improve the cognitive function. Supplementing sodium pyruvate with glucose to terminate severe neonatal hypoglycemia is an effective intervention. PMID:21603897

  18. Taurine Supplementation Reduces Blood Pressure and Prevents Endothelial Dysfunction and Oxidative Stress in Post-Weaning Protein-Restricted Rats

    PubMed Central

    Maia, Aline R.; Batista, Thiago M.; Victorio, Jamaira A.; Clerici, Stefano P.; Delbin, Maria A.; Carneiro, Everardo M.; Davel, Ana P.

    2014-01-01

    Introduction Taurine is a sulfur-containing amino acid that exerts protective effects on vascular function and structure in several models of cardiovascular diseases through its antioxidant and anti-inflammatory properties. Early protein malnutrition reprograms the cardiovascular system and is linked to hypertension in adulthood. This study assessed the effects of taurine supplementation in vascular alterations induced by protein restriction in post-weaning rats. Methods and Results Weaned male Wistar rats were fed normal- (12%, NP) or low-protein (6%, LP) diets for 90 days. Half of the NP and LP rats concomitantly received 2.5% taurine supplementation in the drinking water (NPT and LPT, respectively). LP rats showed elevated systolic, diastolic and mean arterial blood pressure versus NP rats; taurine supplementation partially prevented this increase. There was a reduced relaxation response to acetylcholine in isolated thoracic aortic rings from the LP group that was reversed by superoxide dismutase (SOD) or apocynin incubation. Protein expression of p47phox NADPH oxidase subunit was enhanced, whereas extracellular (EC)-SOD and endothelial nitric oxide synthase phosphorylation at Ser 1177 (p-eNOS) were reduced in aortas from LP rats. Furthermore, ROS production was enhanced while acetylcholine-induced NO release was reduced in aortas from the LP group. Taurine supplementation improved the relaxation response to acetylcholine and eNOS-derived NO production, increased EC-SOD and p-eNOS protein expression, as well as reduced ROS generation and p47phox expression in the aortas from LPT rats. LP rats showed an increased aortic wall/lumen ratio and taurine prevented this remodeling through a reduction in wall media thickness. Conclusion Our data indicate a protective role of taurine supplementation on the high blood pressure, endothelial dysfunction and vascular remodeling induced by post-weaning protein restriction. The beneficial vascular effect of taurine was associated with restoration of vascular redox homeostasis and improvement of NO bioavailability. PMID:25170895

  19. Melatonin reduces bacterial translocation by preventing damage to the intestinal mucosa in an experimental severe acute pancreatitis rat model.

    PubMed

    Sun, Xuecheng; Shao, Yingying; Jin, Yin; Huai, Jiaping; Zhou, Qiong; Huang, Zhiming; Wu, Jiansheng

    2013-12-01

    Recent studies have demonstrated that melatonin significantly decreased all studied acute pancreatitis-associated inflammatory parameters, in addition to reducing apoptosis and necrosis associated with pancreatic injury. However, the effect of melatonin on gut barrier dysfunction and bacterial translocation has not been fully elucidated. This study aimed to investigate the protective effects of melatonin on intestinal integrity in a rat model of severe acute pancreatitis (SAP) to evaluate whether melatonin prevented intestine barrier dysfunction and reduced bacterial translocation. Forty male Sprague Dawley (SD) rats were randomly divided into three groups, with 8 rats in the sham operation (SO) group, 18 rats in the SAP group and 14 SAP rats in the melatonin treatment (MT) group. SAP was induced by retrograde injection of 4% taurocholate into the biliopancreatic duct. Melatonin was administered 30 min prior to taurocholate injection in the melatonin-treated rats. All rats were sacrificed 24 h subsequent to pancreatitis induction. Real-time fluorescence quantitative polymerase chain reaction was used to detect and quantify Escherichia coli (E. coli) O157 in postcava blood. The microvilli structure was also analyzed with transmission electron microscopy. The level of E. coli DNA in the MT group was significantly lower than in rats in the SAP group. No E. coli DNA was detected in the control group. Villus height and crypt depth in the ileum were significantly higher in the MT and control groups compared to the SAP group, and were significantly higher in the MT group than in the SAP group. These results suggested that melatonin prevented gut barrier dysfunction and reduced bacterial translocation, resulting in reduced pancreatic-associated infections and decreased early mortality rates. PMID:24255660

  20. Linseed Dietary Fibers Reduce Apparent Digestibility of Energy and Fat and Weight Gain in Growing Rats

    PubMed Central

    Kristensen, Mette; Bach Knudsen, Knud Erik; Jrgensen, Henry; Oomah, David; Bgel, Susanne; Toubro, Sren; Tetens, Inge; Astrup, Arne

    2013-01-01

    Dietary fibers (DF) may affect energy balance, an effect often ascribed to the viscous nature of some water soluble DF, which affect luminal viscosity and thus multiple physiological processes. We have tested the hypothesis that viscous linseed DF reduce apparent nutrient digestibility, and limit weight gain, in a randomized feeding trial where 60 male, growing, Wistar rats, with an initial weight of ~200 g, were fed different diets (n = 10 per group): low DF control (C), 5% DF from cellulose (5-CEL), CEL + 5% DF from whole (5-WL) or ground linseed (5-GL), CEL + 5% DF from linseed DF extract (5-LDF), and CEL + 10% DF from linseed DF extract (10-LDF). Diets were provided ad libitum for 21 days. Feed intake and faecal output were measured during days 1721. Faecal fat excretion increased with increasing DF content and was highest in the 10-LDF group. Apparent fat digestibility was highest with the C diet (94.9% 0.8%) and lowest (74.3% 0.6%) with the 10-LDF diet, and decreased in a non-linear manner with increasing DF (p < 0.001). Apparent fat digestibility also decreased with increased accessibility of DF (5-WL vs. 5-GL) and when the proportion of viscous DF increased (5-GL vs. 5-LDF). The 10-LDF resulted in a lower final body weight (258 6.2 g) compared to C (282 5.9 g), 5-CEL (281 5.9 g), and 5-WL (285 5.9 g) (p < 0.05). The 10-LDF diet reduced body fat compared to 5-CEL (p < 0.01). In conclusion, DF extracted from linseed reduced apparent energy and fat digestibility and resulted in restriction of body weight gain in growing rats. PMID:23966109

  1. Cervical intraspinal microstimulation evokes robust forelimb movements before and after injury

    NASA Astrophysics Data System (ADS)

    Sunshine, Michael D.; Cho, Frances S.; Lockwood, Danielle R.; Fechko, Amber S.; Kasten, Michael R.; Moritz, Chet T.

    2013-06-01

    Objective. Intraspinal microstimulation (ISMS) is a promising method for reanimating paralyzed limbs following neurological injury. ISMS within the cervical and lumbar spinal cord is capable of evoking a variety of highly-functional movements prior to injury, but the ability of ISMS to evoke forelimb movements after cervical spinal cord injury is unknown. Here we examine the forelimb movements and muscles activated by cervical ISMS both before and after contusion injury. Approach. We documented the forelimb muscles activated and movements evoked via systematic stimulation of the rodent cervical spinal cord both before injury and three, six and nine weeks following a moderate C4/C5 lateralized contusion injury. Animals were anesthetized with isoflurane to permit construction of somatotopic maps of evoked movements and quantify evoked muscle synergies between cervical segments C3 and T1. Main results. When ISMS was delivered to the cervical spinal cord, a variety of responses were observed at 68% of locations tested, with a spatial distribution that generally corresponded to the location of motor neuron pools. Stimulus currents required to achieve movement and the number of sites where movements could be evoked were unchanged by spinal cord injury. A transient shift toward extension-dominated movements and restricted muscle synergies were observed at three and six weeks following injury, respectively. By nine weeks after injury, however, ISMS-evoked patterns were similar to spinally-intact animals. Significance. The results demonstrate the potential for cervical ISMS to reanimate hand and arm function following spinal cord injury. Robust forelimb movements can be evoked both before and during the chronic stages of recovery from a clinically relevant and sustained cervical contusion injury.

  2. Cineradiographic study of forelimb movements during quadrupedal walking in the brown lemur (Eulemur fulvus, Primates: Lemuridae).

    PubMed

    Schmidt, M; Fischer, M S

    2000-02-01

    Movements of forelimb joints and segments during walking in the brown lemur (Eulemur fulvus) were analyzed using cineradiography (150 frames/sec). Metric gait parameters, forelimb kinematics, and intralimb coordination are described. Calculation of contribution of segment displacements to stance propulsion shows that scapular retroversion in a fulcrum near the vertebral border causes more than 60% of propulsion. The contribution by the shoulder joint is 30%, elbow joint 5%, and wrist joint 1%. Correlation analysis was applied to reveal the interdependency between metric and kinematic parameters. Only the effective angular movement of the elbow joint during stance is speed-dependent. Movements of all other forelimb joints and segments are independent of speed and influence, mainly, linear gait parameters (stride length, stance length). Perhaps the most important result is the hitherto unknown and unexpected degree of scapular mobility. Scapular movements consist of ante-/retroversion, adduction/abduction, and scapular rotation about the longitudinal axis. Inside rotation of the scapula (60 degrees -70 degrees ), together with flexion in the shoulder joint, mediates abduction of the humerus, which is not achieved in the shoulder joint, and is therefore strikingly different from humeral abduction in man. Movements of the shoulder joint are restricted to flexion and extension. At touch down, the shoulder joint of the brown lemur is more extended compared to that of other small mammals. The relatively long humerus and forearm, characteristic for primates, are thus effectively converted into stride length. Observed asymmetries in metric and kinematic behavior of the left and right forelimb are caused by an unequal lateral bending of the spinal column. PMID:10640950

  3. Elevated Testosterone Reduces Uterine Blood Flow, Spiral Artery Elongation, and Placental Oxygenation in Pregnant Rats.

    PubMed

    Gopalakrishnan, Kathirvel; Mishra, Jay S; Chinnathambi, Vijayakumar; Vincent, Kathleen L; Patrikeev, Igor; Motamedi, Massoud; Saade, George R; Hankins, Gary D; Sathishkumar, Kunju

    2016-03-01

    Elevated maternal testosterone levels are shown to cause fetal growth restriction, eventually culminating in sex-specific adult-onset hypertension that is more pronounced in males than in females. In this study, we tested whether uteroplacental and fetoplacental disturbances underlie fetal growth restriction and if these changes vary in male and female placentas. Pregnant Sprague-Dawley rats were injected with vehicle (n=16) or testosterone propionate (0.5 mg/kg per day from gestation day 15-19; n=16). On gestation day 20, we quantified uterine artery blood flow using microultrasound, visualized placental arterial network using x-ray microcomputed tomography, determined fetoplacental hypoxia using pimonidazole and hypoxia-inducible factor-1?, and used Affymetrix array to determine changes in placental expression of genes involved in vascular development. Plasma testosterone levels increased 2-fold in testosterone-injected rats. Placental and fetal weights were lower in rats with elevated testosterone. Uterine artery blood flow was lower, and resistance index was higher in the testosterone group. Radial and spiral artery diameter and length, the number of fetoplacental arterial branches, and umbilical artery diameter were reduced in the testosterone group. In addition, markers of hypoxia in the placentas and fetuses were elevated in the testosterone group. The magnitude of changes in placental vasculature and hypoxia was greater in males than in females and was associated with sex-specific alteration of unique sets of genes involved in angiogenesis and blood vessel morphogenesis. The results demonstrate that elevated testosterone during gestation induces a decrease in uterine arterial blood flow and fetal sex-related uteroplacental vascular changes, which may set the stage for subsequent sex differences in adult-onset diseases. PMID:26781277

  4. Indomethacin administered early in the postnatal period results in reduced glomerular number in the adult rat.

    PubMed

    Kent, A L; Koina, M E; Gubhaju, L; Cullen-McEwen, L A; Bertram, J F; Lynnhtun, J; Shadbolt, B; Falk, M C; Dahlstrom, J E

    2014-11-15

    Indomethacin and ibuprofen are administered to close a patent ductus arteriosus (PDA) during active glomerulogenesis. Light and electron microscopic glomerular changes with no change in glomerular number were seen following indomethacin and ibuprofen treatment during glomerulogenesis at 14 days after birth in a neonatal rat model. This present study aimed to determine whether longstanding renal structural changes are present at 30 days and 6 mo (equivalent to human adulthood). Rat pups were administered indomethacin or ibuprofen antenatally on days 18-20 (0.5 mgkg(-1)dose(-1) indomethacin; 10 mgkg(-1)dose(-1) ibuprofen) or postnatally intraperitoneally from day 1 to 3 or day 1 to 5 (0.2 mgkg(-1)dose(-1) indomethacin; 10 mgkg(-1)dose(-1) ibuprofen). Control groups received no treatment or normal saline intraperitoneally. Pups were killed at 30 days of age and 6 mo of age. Tissue blocks from right kidneys were prepared for light and electron microscopic examination, while total glomerular number was determined in left kidneys using unbiased stereology. Eight pups were included in each group from 14 maternal rats. At 30 days and 6 mo, there were persistent electron microscopy abnormalities of the glomerular basement membrane in those receiving postnatal indomethacin and ibuprofen. There were no significant light microscopy findings at 30 days or 6 mo. At 6 mo, there were significantly fewer glomeruli in those receiving postnatal indomethacin but not ibuprofen (P = 0.003). In conclusion, indomethacin administered during glomerulogenesis appears to reduce the number of glomeruli in adulthood. Alternative options for closing a PDA should be considered including ibuprofen as well as emerging therapies such as paracetamol. PMID:25186294

  5. Preconditioning somatothermal stimulation on Qimen (LR14) reduces hepatic ischemia/reperfusion injury in rats

    PubMed Central

    2014-01-01

    Background In human beings or animals, ischemia/reperfusion (I/R) injury of the liver may occur in many clinical conditions, such as circulating shock, liver transplantation and surgery and several other pathological conditions. I/R injury has a complex pathophysiology resulting from a number of contributing factors. Therefore, it is difficult to achieve effective treatment or protection by individually targeting the mediators. This study aimed at studying the effects of local somatothermal stimulation preconditioning on the right Qimen (LR14) on hepatic I/R injury in rats. Methods Eighteen male Sprague-Dawley rats were randomly divided into three groups. The rats were preconditioned with thermal tolerance study, which included one dose of local somatothermal stimulation (LSTS) on right Qimen (LR14) at an interval of 12h, followed by hepatic ischemia for 60min and then reperfusion for 60min. Serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) have been used to assess the liver functions, and liver tissues were taken for the measurements such as malondialdehyde (MDA), glutathione (GSH), catalase (CAT), superoxidase dismutase (SOD), and myeloperoxidase (MPO). Results The results show that the plasma ALT and AST activities were higher in the I/R group than in the control group. In addition, the plasma ALT and AST activities decreased in the groups that received LSTS. The hepatic SOD levels reduced significantly by I/R injury. Moreover, the hepatic MPO activity significantly increased by I/R injury while it decreased in the groups given LSTS. Conclusions Our findings show that LSTS provides a protective effects on the liver from the I/R injury. Therefore, LSTS might offer an easy and inexpensive intervention for patients who have suffered from I/R of the liver especially in the process of hepatotomy and hepatic transplantation. PMID:24417801

  6. Dietary fish oil reduces progression of chronic inflammatory lesions in a rat model of granulomatous colitis.

    PubMed

    Vilaseca, J; Salas, A; Guarner, F; Rodrguez, R; Martnez, M; Malagelada, J R

    1990-05-01

    Eicosanoids are modulators of defensive and inflammatory processes in the gut mucosa, and may be involved in the pathogenesis of chronic inflammatory lesions of the bowel. As omega-3 fatty acids compete with the omega-6 as precursors of eicosanoid synthesis, we compared the effects of dietary supplementation with either sunflower (source of omega-6) or cod liver (source of omega-3) oil on the development of chronic granulomatous lesions in the rat colon. After four weeks on the supplemented diets, plasma omega-6 fatty acid content was significantly higher in the sunflower group, while omega-3 fatty acids predominated in the cod liver group. Inflammatory colitis was then induced by intracolonic administration of trinitrobenzene sulphonic acid. Luminal eicosanoid release, as measured by radioimmunoassay of intracolonic dialysis fluid, increased significantly after the challenge in both groups. Generation of prostaglandin E2 (PGE2) and leucotriene B4 (LTB4) peaked by day 3 and thereafter declined; thromboxane B2 (TXB2), instead, continued to increase from day 3 to 20 in sunflower fed rats, whereas this change was blunted in cod liver animals. The rats were killed 20, 30, or 50 days after the induction of colitis, and the colonic lesions were scored macroscopically (adhesions to surrounding tissues, strictures, ulcerations, and wall thickness) and histologically (ulceration, inflammation, depth of the lesions, and fibrosis). In cod liver animals, the damage score was markedly reduced by day 30, and inflammation and ulceration were almost absent by day 50. In conclusion, a fish oil diet prevents the increase in thromboxane in the chronic state of inflammation and shortens the course of the colonic disease by diminishing both the severity of the lesions and their progression to chronicity. PMID:2161781

  7. Glycyrrhizinate reduces portal hypertension in isolated perfused rat livers with chronic hepatitis

    PubMed Central

    Zhao, Xin; Deng, Bo; Xu, Xue-Yan; Yang, Shi-Jun; Zhang, Tao; Song, Yi-Jun; Liu, Xiao-Ting; Wang, Yue-Qi; Cai, Da-Yong

    2013-01-01

    AIM: To investigate the effects of diammonium glycyrrhizinate (Gly) on portal hypertension (PHT) in isolated portal perfused rat liver (IPPRL) with carbon tetrachloride (CCl4)-induced chronic hepatitis. METHODS: PHT model was replicated with CCl4 in rats for 84 d. Model was identified by measuring the ascetic amounts, hepatic function, portal pressure in vivo, splenic index, and pathological alterations. Inducible nitric oxide synthase (iNOS) in liver was assessed by immunohistochemistry. IPPRLs were performed at d0, d28, d56, and d84. After phenylephrine-induced constriction, Gly was geometrically used to reduce PHT. Gly action was expressed as median effective concentration (EC50) and area under the curve (AUC). Underlying mechanism was exploited by linear correlation between AUC values of Gly and existed iNOS in portal triads. RESULTS: PHT model was confirmed with ascites, splenomegaly, serum biomarkers of hepatic injury, and elevated portal pressure. Pathological findings had shown normal hepatic structure at d0, degenerations at d28, fibrosis at d56, cirrhosis at d84 in PHT rats. Pseudo lobule ratios decreased and collagen ratios increased progressively along with PHT development. Gly does dose-dependently reduce PHT in IPPRLs with CCl4-induced chronic hepatitis. Gly potencies were increased gradually along with PHT development, characterized with its EC50 at 2.80 10-10, 3.03 10-11, 3.77 10-11 and 4.6510-11 mol/L at d0, d28, d56 and d84, respectively. Existed iNOS was located at hepatocyte at d0, stellate cells at d28, stellate cells and macrophages at d56, and macrophages in portal triads at d84. Macrophages infiltrated more into portal triads and expressed more iNOS along with PHT development. AUC values of Gly were positively correlated with existed iNOS levels in portal triads. CONCLUSION: Gly reduces indirectly PHT in IPPRL with CCl4-induced chronic hepatitis. The underlying mechanisms may relate to rescue NO bioavailability from macrophage-derived peroxynitrite in portal triads. PMID:24106408

  8. Elbow joint adductor moment arm as an indicator of forelimb posture in extinct quadrupedal tetrapods

    PubMed Central

    Fujiwara, Shin-ichi; Hutchinson, John R.

    2012-01-01

    Forelimb posture has been a controversial aspect of reconstructing locomotor behaviour in extinct quadrupedal tetrapods. This is partly owing to the qualitative and subjective nature of typical methods, which focus on bony articulations that are often ambiguous and unvalidated postural indicators. Here we outline a new, quantitatively based forelimb posture index that is applicable to a majority of extant tetrapods. By determining the degree of elbow joint adduction/abduction mobility in several tetrapods, the carpal flexor muscles were determined to also play a role as elbow adductors. Such adduction may play a major role during the stance phase in sprawling postures. This role is different from those of upright/sagittal and sloth-like creeping postures, which, respectively, depend more on elbow extensors and flexors. Our measurements of elbow muscle moment arms in 318 extant tetrapod skeletons (Lissamphibia, Synapsida and Reptilia: 33 major clades and 263 genera) revealed that sprawling, sagittal and creeping tetrapods, respectively, emphasize elbow adductor, extensor and flexor muscles. Furthermore, scansorial and non-scansorial taxa, respectively, emphasize flexors and extensors. Thus, forelimb postures of extinct tetrapods can be qualitatively classified based on our quantitative index. Using this method, we find that Triceratops (Ceratopsidae), Anhanguera (Pterosauria) and desmostylian mammals are categorized as upright/sagittally locomoting taxa. PMID:22357261

  9. The forelimb in walking horses: 1. Kinematics and ground reaction forces.

    PubMed

    Hodson, E; Clayton, H M; Lanovaz, J L

    2000-07-01

    Video (60 Hz) and force (2000 Hz) data were collected from 5 sound horses during walking. Forelimb data were analysed for 8 strides (4 left, 4 right) per horse to determine sagittal plane kinematics and ground reaction forces (GRFs). The results suggested that brachial rotation was responsible for protraction and retraction of the limb as a whole, while rotations of the scapula and antebrachium elevated the distal limb during breakover and early swing then lowered it in preparation for ground contact. The coffin joint was flexed maximally at the time of peak longitudinal braking force, which occurred during breakover of the contralateral forelimb. The metacarpus was vertical at 28% stride. This was considerably earlier than the change from a braking to a propulsive longitudinal force (34% stride), which coincided with maximal extension of the fetlock joint. The longitudinal propulsive force peaked just after contact of the contralateral forelimb. During the swing phase the joints distal to the shoulder showed a single flexion cycle that peaked at 76% stride at the carpus, 81% stride at the fetlock and 84% stride at the elbow and coffin joints. The coffin and shoulder joints began to extend in the terminal swing phase and continued to extend through ground contact and early stance. The results provide normative data that will be applied in detecting changes in kinematics and ground reaction forces that are associated with specific lamenesses. PMID:10952376

  10. Elbow joint adductor moment arm as an indicator of forelimb posture in extinct quadrupedal tetrapods.

    PubMed

    Fujiwara, Shin-ichi; Hutchinson, John R

    2012-07-01

    Forelimb posture has been a controversial aspect of reconstructing locomotor behaviour in extinct quadrupedal tetrapods. This is partly owing to the qualitative and subjective nature of typical methods, which focus on bony articulations that are often ambiguous and unvalidated postural indicators. Here we outline a new, quantitatively based forelimb posture index that is applicable to a majority of extant tetrapods. By determining the degree of elbow joint adduction/abduction mobility in several tetrapods, the carpal flexor muscles were determined to also play a role as elbow adductors. Such adduction may play a major role during the stance phase in sprawling postures. This role is different from those of upright/sagittal and sloth-like creeping postures, which, respectively, depend more on elbow extensors and flexors. Our measurements of elbow muscle moment arms in 318 extant tetrapod skeletons (Lissamphibia, Synapsida and Reptilia: 33 major clades and 263 genera) revealed that sprawling, sagittal and creeping tetrapods, respectively, emphasize elbow adductor, extensor and flexor muscles. Furthermore, scansorial and non-scansorial taxa, respectively, emphasize flexors and extensors. Thus, forelimb postures of extinct tetrapods can be qualitatively classified based on our quantitative index. Using this method, we find that Triceratops (Ceratopsidae), Anhanguera (Pterosauria) and desmostylian mammals are categorized as upright/sagittally locomoting taxa. PMID:22357261

  11. Selenium supplementation reduced oxidative stress in diethylnitrosamine-induced hepatocellular carcinoma in rats.

    PubMed

    Mohamed, Jamaludin; Wei, Wong Lik; Husin, Nazratun Nafizah Akhtar; Alwahaibi, Nasar Y; Budin, Siti Balkis

    2011-12-01

    Selenium in the form of sodium selenite (SSE) is an essential micronutrient which known to possess antioxidant and anticancer properties. This study emphasizes the role of selenium on oxidative stress in experimental rats with N-diethylnitrosamine (DEN) initiated and 2-acetylaminofluorene (2-AAF) promoted multistage hepatocellular carcinogenesis (HCC). Rats were divided randomly into six groups: negative control, positive control (DEN+2-AAF), preventive group (pre-SEE 4 weeks+DEN), preventive control (respective control for preventive group), therapeutic group (DEN+post-SSE 12 weeks) and therapeutic control (respective control for therapeutic group). SSE (4 mg L(-1)) was given to animals before initiation and during promotion phase of HCC. The levels of total protein (TP), conjugated diens (CD), malondialdehyde (MDA), fluorescent pigment (FP), antioxidant activity (AOA) and DNA damage were measured. Supplementation of SSE before the initiation phase of carcinogenicity significantly increased TP and AOA level (p < 0.05) while it decreased the levels of CD, MDA, DNA damage and FP (p < 0.05). Supplementation of SSE during the promotion phase of carcinogenicity significantly decreased the DNA damage and FP level (p < 0.05) and there were negative correlation between the level of AOA and with the level of FP and CD. Thus, supplementation of SSE reduced the adverse changes which occur in liver cancer. However, the chemoprevention effect of SSE was more pronounced when it was supplemented before initiation phase of cancer when compared to promotion phase. PMID:22590839

  12. Intrathecal lithium reduces neuropathic pain responses in a rat model of peripheral neuropathy.

    PubMed

    Shimizu, T; Shibata, M; Wakisaka, S; Inoue, T; Mashimo, T; Yoshiya, I

    2000-03-01

    We tested the ability of lithium (Li(+)) to block heat hyperalgesia, cold allodynia, mechanical allodynia and mechanical hyperalgesia in rats experimentally subjected to painful peripheral neuropathy. Chronic constrictive injury (CCI) to the sciatic nerve induced persistent hyperalgesia and allodynia. Intrathecal injection of Li(+) (2.5-40 micromol) into the region of lumbar enlargement dose-dependently reduced heat hyperalgesia, cold allodynia and mechanical allodynia for 2-6 h after injection, but had no effect on mechanical hyperalgesia. Li(+) had no significant effect on responses from control and sham-operated animals. Intrathecal injection of myo-inositol (2.5 mg) significantly reversed both the anti-hyperalgesic and anti-allodynic effect of Li(+). These findings suggest that intrathecal Li(+) suppresses neuropathic pain response in CCI rats through the intracellular phosphatidylinositol (PI) second messenger system in spinal cord neurons. Lithium (Li(+)) has already found widespread clinical application; these results suggest that its therapeutic utility may be extended to include treatment of neuropathic pain syndromes resulting from peripheral nerve injury. PMID:10692603

  13. SDF-1? in Glycan Nanoparticles Exhibits Full Activity and Reduces Pulmonary Hypertension in Rats

    PubMed Central

    Yin, Tao; Bader, Andrew R.; Hou, Tim K.; Maron, Bradley A.; Kao, Derrick D.; Qian, Ray; Kohane, Daniel S.; Handy, Diane E.; Loscalzo, Joseph; Zhang, Ying-Yi

    2013-01-01

    In order to establish a homing signal in the lung to recruit circulating stem cells for tissue repair, we formulated a nanoparticle, SDF-1? NP, by complexing SDF-1? with dextran sulfate and chitosan. The data show that SDF-1? was barely released from the nanoparticles over an extended period of time in vitro (3% in 7 days at 37C); however, incorporated SDF-1? exhibited full chemotactic activity and receptor activation compared to its free form. The nanoparticles were not endocytosed after incubation with Jurkat cells. When aerosolized into the lungs of rats, SDF-1? NP displayed a greater retention time compared to free SDF-1? (64% vs. 2% remaining at 16 hr). In a rat model of monocrotaline-induced lung injury, SDF-1? NP, but not free form SDF-1?, was found to reduce pulmonary hypertension. These data suggest that the nanoparticle formulation protected SDF-1? from rapid clearance in the lung and sustained its biological function in vivo. PMID:24059347

  14. Farnesoid X receptor agonist CDCA reduces blood pressure and regulates vascular tone in spontaneously hypertensive rats.

    PubMed

    Li, Chenyu; Li, Jing; Weng, Xu; Lan, Xiaofang; Chi, Xiangbo

    2015-07-01

    The Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily, which plays an essential role in lipid homeostasis and glucose metabolism. However, whether or not FXR can prevent rise in blood pressure remains unknown. Here, we investigate the possibility of using chenodeoxycholic acid (CDCA), a natural ligand of FXR, to attenuate elevated blood pressure in spontaneously hypertensive rats (SHR). SHR and Wistar-Kyoto rats (WKY) were treated with CDCA (30mg/kg) for 8weeks. Compared with vehicle control, CDCA attenuated rise in blood pressure in SHR. In addition, CDCA improved vasorelaxation and diminished the contractile response to endothelin-1 (ET-1) in mesenteric arteries from SHR. CDCA also stimulated endothelial nitric oxide synthase (eNOS) expression, repressed ET-1 levels, and inhibited NF-?B activities in mesenteric arteries of the SHR. Overall, we showed that CDCA treatment reduces systolic blood pressure, improves vascular relaxation, and inhibits vasoconstriction activity in SHR. The repressed ET-1 level, the raised eNOS expression, and the ameliorated inflammation in mesenteric arteries could be responsible for the vasorelaxant and hypotensive effect of CDCA. These findings support a potential role for FXR as a regulator in vascular activities and in the development of treatment for hypertension. PMID:26188398

  15. Ventral tegmental lesions reduce overconsumption of normally preferred taste fluid in rats.

    PubMed

    Shimura, Tsuyoshi; Kamada, Yoko; Yamamoto, Takashi

    2002-08-21

    Previous studies have suggested that the brain regions along the taste pathway and its anatomical interfacing with the brain reward system are concerned with palatability-induced consumption. To clarify whether the ventral tegmental area (VTA) is involved in the behavioral expression induced by taste pleasantness, we examined the effects of lesions to the VTA on the consumption of taste stimuli in rats. (1) Bilateral extensive electrolytic lesions to the VTA selectively reduced the consumption of a normally preferred taste fluid (0.1 M sucrose) compared to that of sham-operated animals during a 24-h two-bottle choice test. The consumption of other fluids, including non-preferred taste fluids (HCl and quinine hydrochloride) was not different between the lesioned and sham animals. (2) The injection of midazolam (3 mg/kg), a benzodiazepine agonist, or morphine (2 mg/kg) significantly increased the consumption of 0.1 M sucrose fluids in the sham animals. The same injections, however, failed to increase intake of the 0.1 M sucrose in rats with 6-hydroxydopamine lesions of the VTA. Neither midazolam nor morphine modified the intake of non-preferred quinine (0.0003 M) solution in both the lesioned and sham animals. These results suggest that dopaminergic mediation in the VTA is required to enhance the consumption of normally preferred fluids exclusively. PMID:12191798

  16. Prenatal ethanol exposure reduces the effects of excitatory amino acids in the rat hippocampus

    SciTech Connect

    Noble, E.P.; Ritchie, T. )

    1989-01-01

    Chronic alcohol ingestion during pregnancy can lead to the Fetal Alcohol Syndrome (FAS), a disorder marked by learning disabilities. A rat model of FAS was used by introducing pregnant Sprague-Dawley rats to a liquid diet containing 35% ethanol-derived calories (E), while a second group was pair-fed an isocaloric liquid diet without ethanol (P). A third group of pregnant dams received ad libitum lab chow (C). At parturition, pups from the E and P groups were cross fostered by C mothers and all groups received lab chow. During adulthood, male offspring were sacrificed and hippocampal and prefrontal cortical slices were prelabeled with (3H)inositol. Phosphoinositide (PI) hydrolysis was determined by measuring the accumulation of (3H)inositol phosphates in the presence of LiCl in response to activation of various excitatory amino acid (EAA) receptors. In hippocampal slices, ibotenate- and quisqualate-induced PI hydrolysis was reduced in E compared to P and C animals. Moreover, the inhibitory effect of N-methyl-D-aspartate (NMDA) on carbachol-induced PI hydrolysis, evident in P and C animals, was completely abolished in the hippocampus of E animals. In contrast, in the prefrontal cerebral cortex, this inhibitory effect of NMDA prevailed even in the E animals. The evidence suggests that prenatal ethanol exposure alters the activity of EAA receptors in the hippocampal generation of 2nd messengers.

  17. Nerve growth factor reduces apoptotic cell death in rat facial motor neurons after facial nerve injury

    PubMed Central

    Hui, Lian; Yuan, Jing; Ren, Zhong; Jiang, Xuejun

    2015-01-01

    Objectives: To assess the effects of nerve growth factor (NGF) on motor neurons after induction of a facial nerve lesion, and to compare the effects of different routes of NGF injection on motor neuron survival. Methods: This study was carried out in the Department of Otolaryngology Head & Neck Surgery, China Medical University, Liaoning, China from October 2012 to March 2013. Male Wistar rats (n = 65) were randomly assigned into 4 groups: A) healthy controls; B) facial nerve lesion model + normal saline injection; C) facial nerve lesion model + NGF injection through the stylomastoid foramen; D) facial nerve lesion model + intraperitoneal injection of NGF. Apoptotic cell death was detected using the terminal deoxynucleotidyl transferase dUTP nick end-labeling assay. Expression of caspase-3 and p53 up-regulated modulator of apoptosis (PUMA) was determined by immunohistochemistry. Results: Injection of NGF significantly reduced cell apoptosis, and also greatly decreased caspase-3 and PUMA expression in injured motor neurons. Group C exhibited better efficacy for preventing cellular apoptosis and decreasing caspase-3 and PUMA expression compared with group D (p<0.05). Conclusion: Our findings suggest that injections of NGF may prevent apoptosis of motor neurons by decreasing caspase-3 and PUMA expression after facial nerve injury in rats. The NGF injected through the stylomastoid foramen demonstrated better protective efficacy than when injected intraperitoneally. PMID:25630785

  18. Sodium salicylate reduces the level of GABAB receptors in the rat's inferior colliculus.

    PubMed

    Butt, S; Ashraf, F; Porter, L A; Zhang, H

    2016-03-01

    Previous studies have indicated that sodium salicylate (SS) can cause hearing abnormalities through affecting the central auditory system. In order to understand central effects of the drug, we examined how a single intraperitoneal injection of the drug changed the level of subunits of the type-B ?-aminobutyric acid receptor (GABAB receptor) in the rat's inferior colliculus (IC). Immunohistochemical and western blotting experiments were conducted three hours following a drug injection, as previous studies indicated that a tinnitus-like behavior could be reliably induced in rats within this time period. Results revealed that both subunits of the receptor, GABABR1 and GABABR2, reduced their level over the entire area of the IC. Such a reduction was observed in both cell body and neuropil regions. In contrast, no changes were observed in other brain structures such as the cerebellum. Thus, a coincidence existed between a structure-specific reduction in the level of GABAB receptor subunits in the IC and the presence of a tinnitus-like behavior. This coincidence likely suggests that a reduction in the level of GABAB receptor subunits was involved in the generation of a tinnitus-like behavior and/or used by the nervous system to restore normal hearing following application of SS. PMID:26705739

  19. Exposure to Perfluorooctane Sulfonate In Utero Reduces Testosterone Production in Rat Fetal Leydig Cells

    PubMed Central

    Zhao, Binghai; Li, Li; Liu, Jieting; Li, Hongzhi; Zhang, Chunlei; Han, Pengfei; Zhang, Yufei; Yuan, Xiaohuan; Ge, Ren Shan; Chu, Yanhui

    2014-01-01

    Background Perfluorooctane sulfonate (PFOS) is a synthetic material that has been widely used in industrial applications for decades. Exposure to PFOS has been associated with decreased adult testosterone level, and Leydig cell impairment during the time of adulthood. However, little is known about PFOS effects in utero on fetal Leydig cells (FLC). Methods and Results The present study investigated effects of PFOS on FLC function. Pregnant Sprague Dawley female rats received vehicle (0.05% Tween20) or PFOS (5, 20 mg/kg) by oral gavage from gestational day (GD) 11–19. At GD20, testosterone (T) production, FLC numbers and ultrastructure, testicular gene and protein expression levels were examined. The results indicate that exposures to PFOS have affected FLC function as evidenced by decreased T production, impaired FLC, reduced FLC number, and decreased steroidogenic capacity and cholesterol level in utero. Conclusion The present study shows that PFOS is an endocrine disruptor of male reproductive system as it causes reduction of T production and impairment of rat fetal Leydig cells. PMID:24454680

  20. Calcium montmorillonite clay reduces urinary biomarkers of fumonisin B1 exposure in rats and humans

    PubMed Central

    Robinson, A.; Johnson, N.M.; Strey, A.; Taylor, J.F.; Marroquin-Cardona, A.; Mitchell, N.J.; Afriyie-Gyawu, E.; Ankrah, N.A.; Williams, J.H.; Wang, J.S.; Jolly, P.E.; Nachman, R.J.; Phillips, T.D.

    2012-01-01

    Fumonisin B1 (FB1) is often a co-contaminant with aflatoxin (AF) in grains and may enhance AFs carcinogenicity by acting as a cancer promoter. Calcium montmorillonite (i.e. NovaSil, NS) is a possible dietary intervention to help decrease chronic aflatoxin exposure where populations are at risk. Previous studies show that an oral dose of NS clay was able to reduce AF exposure in a Ghanaian population. In vitro analyses from our laboratory indicated that FB1 (like aflatoxin) could also be sorbed onto the surfaces of NS. Hence, our objectives were to evaluate the efficacy of NS clay to reduce urinary FB1 in a rodent model and then in a human population highly exposed to AF. In the rodent model, male Fisher rats were randomly assigned to either, FB1 control, FB1 + 2% NS or absolute control group. FB1 alone or with clay was given as a single dose by gavage. For the human trial, participants received NS (1.5 or 3 g day?1) or placebo (1.5 g day?1) for 3 months. Urines from weeks 8 and 10 were collected from the study participants for analysis. In rats, NS significantly reduced urinary FB1 biomarker by 20% in 24 h and 50% after 48 h compared to controls. In the humans, 56% of the urine samples analyzed (n = 186) had detectable levels of FB1. Median urinary FB1 levels were significantly (p < 0.05) decreased by > 90% in the high dose NS group (3 g day?1) compared to the placebo. This work indicates that our study participants in Ghana were exposed to FB1 (in addition to AFs) from the diet. Moreover, earlier studies have shown conclusively that NS reduces the bioavailability of AF and the findings from this study suggest that NS clay also reduces the bioavailability FB1. This is important since AF is a proven dietary risk factor for hepatocellular carcinoma (HCC) in humans and FB1 is suspected to be a dietary risk factor for HCC and esophageal cancer in humans. PMID:22324939

  1. Calcium montmorillonite clay reduces urinary biomarkers of fumonisin B? exposure in rats and humans.

    PubMed

    Robinson, A; Johnson, N M; Strey, A; Taylor, J F; Marroquin-Cardona, A; Mitchell, N J; Afriyie-Gyawu, E; Ankrah, N A; Williams, J H; Wang, J S; Jolly, P E; Nachman, R J; Phillips, T D

    2012-01-01

    Fumonisin B? (FB?) is often a co-contaminant with aflatoxin (AF) in grains and may enhance AF's carcinogenicity by acting as a cancer promoter. Calcium montmorillonite (i.e. NovaSil, NS) is a possible dietary intervention to help decrease chronic aflatoxin exposure where populations are at risk. Previous studies show that an oral dose of NS clay was able to reduce AF exposure in a Ghanaian population. In vitro analyses from our laboratory indicated that FB? (like aflatoxin) could also be sorbed onto the surfaces of NS. Hence, our objectives were to evaluate the efficacy of NS clay to reduce urinary FB? in a rodent model and then in a human population highly exposed to AF. In the rodent model, male Fisher rats were randomly assigned to either FB? control, FB??+?2% NS or absolute control group. FB? alone or with clay was given as a single dose by gavage. For the human trial, participants received NS (1.5 or 3?g?day?) or placebo (1.5?g?day?) for 3 months. Urines from weeks 8 and 10 were collected from the study participants for analysis. In rats, NS significantly reduced urinary FB? biomarker by 20% in 24?h and 50% after 48?h compared to controls. In the humans, 56% of the urine samples analysed (n?=?186) had detectable levels of FB?. Median urinary FB? levels were significantly (p?90% in the high dose NS group (3?g?day?) compared to the placebo. This work indicates that our study participants in Ghana were exposed to FB? (in addition to AFs) from the diet. Moreover, earlier studies have shown conclusively that NS reduces the bioavailability of AF and the findings from this study suggest that NS clay also reduces the bioavailability FB?. This is important since AF is a proven dietary risk factor for hepatocellular carcinoma (HCC) in humans and FB? is suspected to be a dietary risk factor for HCC and oesophageal cancer in humans. PMID:22324939

  2. Reduced brown adipose tissue thermogenesis during environmental interactions in transgenic rats with ataxin-3-mediated ablation of hypothalamic orexin neurons.

    PubMed

    Mohammed, Mazher; Ootsuka, Youichirou; Yanagisawa, Masashi; Blessing, William

    2014-10-15

    Thermogenesis in brown adipose tissue (BAT) contributes to substantial increases in body temperature evoked by threatening or emotional stimuli. BAT thermogenesis also contributes to increases in body temperature that occur during active phases of the basic rest-activity cycle (BRAC), as part of normal daily life. Hypothalamic orexin-synthesizing neurons influence many physiological and behavioral variables, including BAT and body temperature. In conscious unrestrained animals maintained for 3 days in a quiet environment (24-26C) with ad libitum food and water, we compared temperatures in transgenic rats with ablation of orexin neurons induced by expression of ataxin-3 (Orx_Ab) with wild-type (WT) rats. Both baseline BAT temperature and baseline body temperature, measured at the onset of BRAC episodes, were similar in Orx_Ab and WT rats. The time interval between BRAC episodes was also similar in the two groups. However, the initial slopes and amplitudes of BRAC-related increases in BAT and body temperature were reduced in Orx_Ab rats. Similarly, the initial slopes and amplitudes of the increases in BAT temperatures induced by sudden exposure to an intruder rat (freely moving or confined to a small cage) or by sudden exposure to live cockroaches were reduced in resident Orx_Ab rats. Constriction of the tail artery induced by salient alerting stimuli was also reduced in Orx_Ab rats. Our results suggest that orexin-synthesizing neurons contribute to the intensity with which rats interact with the external environment, both when the interaction is "spontaneous" and when the interaction is provoked by threatening or salient environmental events. PMID:25324552

  3. Chronic treatment with epigallocatechin gallate reduces motor hyperactivity and affects in vitro tested intestinal motility of spontaneously hypertensive rats

    PubMed Central

    Potenza, Maria Assunta; Montagnani, Monica; Nacci, Carmela; De Salvia, Maria Antonietta

    2016-01-01

    Background Green tea catechins seem to contribute toward reducing body weight and fat. Objective We aimed to investigate whether chronic administration of (–)-epigallocatechin-3-gallate (EGCG), the most abundant catechin of green tea, reduces weight gain in spontaneously hypertensive rats (SHR), an animal model of metabolic syndrome, by increasing motor activity and/or by altering gastrointestinal motility. Design Nine-week-old SHR were randomly assigned to two groups and treated by gavage for 3 weeks with vehicle dimethyl sulfoxide or EGCG (200 mg/kg/day). Age-matched Wistar-Kyoto (WKY) control rats were treated with vehicle alone. The effect of chronic administration of EGCG was evaluated on open-field motor activity and on ex vivo colonic and duodenal motility. Moreover, in vitro acute effect of 20-min incubation with EGCG (100 µM) or vehicle was evaluated in colonic and duodenal specimens from untreated WKY rats and SHR. Results Vehicle-treated SHR were normoglycemic and hyperinsulinemic, and showed a reduction of plasma adiponectin when compared to vehicle-treated WKY rats. In addition, consistent with fasting glucose and insulin values, vehicle-treated SHR were more insulin resistant than age-matched vehicle-treated WKY rats. Chronic treatment for 3 weeks with EGCG improved insulin sensitivity, raised plasma adiponectin levels, and reduced food intake and weight gain in SHR. Vehicle-treated SHR showed increased open-field motor activity (both crossings and rearings) when tested after each week of treatment. The overall hyperactivity of vehicle-treated SHR was significantly reduced to the levels of vehicle-treated WKY rats after 2 and 3 weeks of EGCG treatment. Colonic and duodenal preparations obtained from SHR chronically treated in vivo with EGCG showed reduced responses to carbachol (0.05–5 µM) and increased inhibitory response to electrical field stimulation (EFS, 1–10 Hz, 13 V, 1 msec, 10-sec train duration), respectively. In vitro acute EGCG incubation (100 µM, 20 min) of colonic and duodenum strips obtained from untreated SHR and WKY rats showed a reduced contractile colonic response to a fixed dose of carbachol (1.5 µM) only in SHR with respect to its own vehicle, whereas the inhibitory duodenal response to a fixed EFS frequency (5 Hz) was significantly reduced in both WKY rats and SHR groups with respect to their own vehicle. Conclusions These data suggest that EGCG affects body weight gain in rats and this effect seems to be due to the altered intestinal motility and not to increased motor activity. PMID:26899572

  4. Ebselen Alters Mitochondrial Physiology and Reduces Viability of Rat Hippocampal Astrocytes

    PubMed Central

    Santofimia-Castao, Patricia; Salido, Gins M.

    2013-01-01

    The seleno-organic compound and radical scavenger ebselen (2-phenyl-1,2-benzisoselenazol-3(2H)-one) have been extensively employed as an anti-inflammatory and neuroprotective compound. However, its glutathione peroxidase activity at the expense of cellular thiols groups could underlie certain deleterious actions of the compound on cell physiology. In this study, we have analyzed the effect of ebselen on rat hippocampal astrocytes in culture. Cellular viability, the intracellular free-Ca2+ concentration ([Ca2+]c), the mitochondrial free-Ca2+ concentration ([Ca2+]m), and mitochondrial membrane potential (?m) were analyzed. The caspase-3 activity was also assayed. Our results show that cell viability was reduced by treatment of cells with ebselen, depending on the concentration employed. In the presence of ebselen, we observed an initial transient increase in [Ca2+]c that was then followed by a progressive increase to an elevated plateau. We also observed a transient increase in [Ca2+]m in the presence of ebselen that returned toward a value over the prestimulation level. The compound induced depolarization of ?m and altered the permeability of the mitochondrial membrane. Additionally, a disruption of the mitochondrial network was observed. Finally, we did not detect changes in caspase-3 activation in response to ebselen treatment. Collectively, these data support the likelihood of ebselen, depending on the concentration employed, reduces viability of rat hippocampal astrocytes via its action on the mitochondrial activity. These may be early effects that do not involve caspase-3 activation. We conclude that, depending on the concentration used, ebselen might exert deleterious actions on astrocyte physiology that could compromise cell function. PMID:23496767

  5. Dehydration-Induced Anorexia Reduces Astrocyte Density in the Rat Corpus Callosum

    PubMed Central

    Reyes-Haro, Daniel; Labrada-Moncada, Francisco Emmanuel; Miledi, Ricardo; Martnez-Torres, Atalfo

    2015-01-01

    Anorexia nervosa is an eating disorder associated with severe weight loss as a consequence of voluntary food intake avoidance. Animal models such as dehydration-induced anorexia (DIA) mimic core features of the disorder, including voluntary reduction in food intake, which compromises the supply of energy to the brain. Glial cells, the major population of nerve cells in the central nervous system, play a crucial role in supplying energy to the neurons. The corpus callosum (CC) is the largest white matter tract in mammals, and more than 99% of the cell somata correspond to glial cells in rodents. Whether glial cell density is altered in anorexia is unknown. Thus, the aim of this study was to estimate glial cell density in the three main regions of the CC (genu, body, and splenium) in a murine model of DIA. The astrocyte density was significantly reduced (~34%) for the DIA group in the body of the CC, whereas in the genu and the splenium no significant changes were observed. DIA and forced food restriction (FFR) also reduced the ratio of astrocytes to glial cells by 57.5% and 22%, respectively, in the body of CC. Thus, we conclude that DIA reduces astrocyte density only in the body of the rat CC. PMID:26090235

  6. Potent NK1 antagonism by SR-140333 reduces rat colonic secretory response to immunocyte activation.

    PubMed

    Moriarty, D; Selve, N; Baird, A W; Goldhill, J

    2001-04-01

    The potent neurokinin receptor 1 (NK1) antagonist SR-140333 has previously been shown to reduce castor oil-induced secretion in animal models. The importance of tachykinins in neuroimmune control of secretion and the effect of SR-140333 on key points in this pathway were elucidated in the present study to determine the type of intestinal dysfunction best targeted by this antagonist. Rat colonic secretion and substance P (SP) release were determined in vitro with the use of Ussing chamber and enzyme immunoassay techniques. NK1 receptors played a secretory role as receptor agonists stimulated secretion and SR-140333 antagonized the response to SP response (pK(b) = 9.2). Sensory fiber stimulation released SP and evoked a large secretion that was reduced by 69% in the presence of SR-140333 (10 nM). Likewise, mastocytes also released SP. The subsequent secretory response was reduced by 43% in the presence of SR-140333 (50 nM). SP was also released from granulocytes; however, this did not cause secretion. Functional NK3 receptors were present in the colon as senktide stimulated secretion, an effect that was increased during stress. We conclude that NK3 receptors may play a role in stress-related disorders, whereas NK1 receptors are more important in mast cell/afferent-mediated secretion. PMID:11245602

  7. A3 Adenosine Receptor Agonist Reduces Brain Ischemic Injury and Inhibits Inflammatory Cell Migration in Rats

    PubMed Central

    Choi, In-Young; Lee, Jae-Chul; Ju, Chung; Hwang, Sunyoung; Cho, Geum-Sil; Lee, Hyuk Woo; Choi, Won Jun; Jeong, Lak Shin; Kim, Won-Ki

    2011-01-01

    A3 adenosine receptor (A3AR) is recognized as a novel therapeutic target for ischemic injury; however, the mechanism underlying anti-ischemic protection by the A3AR agonist remains unclear. Here, we report that 2-chloro-N6-(3-iodobenzyl)-5?-N-methylcarbamoyl-4?-thioadenosine (LJ529), a selective A3AR agonist, reduces inflammatory responses that may contribute to ischemic cerebral injury. Postischemic treatment with LJ529 markedly reduced cerebral ischemic injury caused by 1.5-hour middle cerebral artery occlusion, followed by 24-hour reperfusion in rats. This effect was abolished by the simultaneous administration of the A3AR antagonist MRS1523, but not the A2AAR antagonist SCH58261. LJ529 prevented the infiltration/migration of microglia and monocytes occurring after middle cerebral artery occlusion and reperfusion, and also after injection of lipopolysaccharides into the corpus callosum. The reduced migration of microglia by LJ529 could be related with direct inhibition of chemotaxis and down-regulation of spatiotemporal expression of Rho GTPases (including Rac, Cdc42, and Rho), rather than by biologically relevant inhibition of inflammatory cytokine/chemokine release (eg, IL-1?, TNF-?, and MCP-1) or by direct inhibition of excitotoxicity/oxidative stress (not affected by LJ529). The present findings indicate that postischemic activation of A3AR and the resultant reduction of inflammatory response should provide a promising therapeutic strategy for the treatment of ischemic stroke. PMID:21854743

  8. Oxytocin in the nucleus accumbens core reduces reinstatement of methamphetamine-seeking behaviour in rats.

    PubMed

    Baracz, Sarah J; Everett, Nicholas A; McGregor, Iain S; Cornish, Jennifer L

    2016-03-01

    The psychostimulant methamphetamine (METH) is an addictive illicit drug. Systemic administration of the neuropeptide oxytocin modulates METH-related reward and METH-seeking behaviour. Recent findings demonstrated a reduction in METH-induced reward by oxytocin administration into the nucleus accumbens (NAc) core. It is not known, however, if oxytocin acts in this region to reduce relapse to METH-seeking behaviour. Using the drug reinstatement paradigm in rats experienced at METH self-administration, we aimed to determine whether oxytocin pre-treatment within the NAc core would reduce relapse to METH use and if this could be reversed by the co-administration of the oxytocin receptor (OTR) antagonist desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT. Male Sprague-Dawley rats underwent surgery to implant an intravenous jugular vein catheter and bilateral microinjection cannulae in the NAc core. Rats were then trained to self-administer intravenous METH (0.1 mg/kg/infusion) by lever press during 2-hour fixed ratio 1 scheduled sessions for 20 days. Following extinction of lever press activity, the effect of microinjecting saline, oxytocin (0.5 pmol, 1.5 pmol, 4.5 pmol) or co-administration of oxytocin (1.5 pmol) and desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT (1 nmol, 3 nmol) in the NAc core (500 nl/side) was examined on METH-primed (1 mg/kg, i.p.) reinstatement of drug-seeking behaviour. Our results showed oxytocin directly administered into the NAc core decreased METH-primed reinstatement in a dose-dependent manner. Co-administration of the selective OTR antagonist did not specifically reverse the inhibitory effects of oxytocin on METH priming, suggesting mediation by receptors other than the OTR. These findings highlight an important modulatory effect of oxytocin in the NAc core on relapse to METH seeking. PMID:25399704

  9. Oral Administration of Interferon Tau Enhances Oxidation of Energy Substrates and Reduces Adiposity in Zucker Diabetic Fatty Rats

    PubMed Central

    Tekwe, Carmen D.; Lei, Jian; Yao, Kang; Rezaei, Reza; Li, Xilong; Dahanayaka, Sudath; Carroll, Raymond J.; Meininger, Cynthia J.; Bazer, Fuller W.; Wu, Guoyao

    2013-01-01

    Male Zucker diabetic fatty (ZDF) rats were used to study effects of oral administration of interferon tau (IFNT) in reducing obesity. Eighteen ZDF rats (28 days of age) were assigned randomly to receive 0, 4 or 8 μg IFNT/kg body weight (BW) per day (n=6/group) for 8 weeks. Water consumption was measured every two days. Food intake and BW were recorded weekly. Energy expenditure in 4-, 6-, 8-, and 10-week-old rats was determined using indirect calorimetry. Starting at 7 weeks of age, urinary glucose and ketone bodies were tested daily. Rates of glucose and oleate oxidation in liver, brown adipose tissue, and abdominal adipose tissue, leucine catabolism in skeletal muscle, and lipolysis in white and brown adipose tissues were greater for rats treated with 8 μg IFNT/kg BW/day in comparison with control rats. Treatment with 8 μg IFNT/kg BW/day increased heat production, reduced BW gain and adiposity, ameliorated fatty liver syndrome, delayed the onset of diabetes, and decreased concentrations of glucose, free fatty acids, triacylglycerol, cholesterol, and branched-chain amino acids in plasma, compared to control rats. Oral administration of 8 μg IFNT/kg BW/day ameliorated oxidative stress in skeletal muscle, liver and adipose tissue, as indicated by decreased ratios of oxidized glutathione to reduced glutathione and increased concentrations of the antioxidant tetrahydrobiopterin. These results indicate that IFNT stimulates oxidation of energy substrates and reduces obesity in ZDF rats and may have broad important implications for preventing and treating obesity-related diseases in mammals. PMID:23804503

  10. Reduced impact of emotion on choice behavior in presymptomatic BACHD rats, a transgenic rodent model for Huntington Disease.

    PubMed

    Adjeroud, Najia; Yagüe, Sara; Yu-Taeger, Libo; Bozon, Bruno; Leblanc-Veyrac, Pascale; Riess, Olaf; Allain, Philippe; Nguyen, Huu Phuc; Doyère, Valérie; El Massioui, Nicole

    2015-11-01

    Executive dysfunction and psychiatric symptoms are hallmarks of Huntington disease (HD), a neurodegenerative disorder genetically characterized by expanded CAG repeats in the HTT gene. Using the BACHD rat model of HD (97 CAG-CAA repeats), the present research seeks to characterize the progressive emergence of decision-making impairments in a rat version of the Iowa Gambling Task (RGT) and the impact of emotional modulation, whether positive or negative, on choice behavior. The choice efficiency shown both by WT rats (independent of their age) and the youngest BACHD rats (2 and 8months old) evidenced that they are able to integrate outcomes of past decisions to determine expected reward values for each option. However, 18months old BACHD rats made fewer choices during the RGT session and were less efficient in choosing advantageous options than younger animals. Presenting either chocolate pellets or electrical footshocks half-way through a second RGT session reduced exploratory activity (inefficient nose-poking) and choices with a weaker effect on BACHD animals than on WT. Choice efficiency was left intact in transgenic rats. Our results bring new knowledge on executive impairments and impact of emotional state on decision-making at different stages of the disease, increasing the face-validity of the BACHD rat model. PMID:26463506

  11. Efficacy of hand-broadcast application of baits containing 0.005% diphacinone in reducing rat populations in Hawaiian forests

    USGS Publications Warehouse

    Foote, David; Lindsey, Gerald D.; Perry, Charlotte F.; Spurr, Eric

    2013-01-01

    Introduced black rats (Rattus rattus), Polynesian rats (R. exulans/i>), and Norway rats (R. norvegicus) impact insular bird, plant, and invertebrate populations worldwide. We investigated the efficacy of hand-broadcast application of Ramik® Green containing 0.005% diphacinone for rodent control in paired 4-ha treatment and non-treatment plots in both wet and mesic forest in Hawaiʽi. Radio telemetry of black rats, the predominant species, indicated 100% mortality in both treatment plots within about one week of bait application. Live trapping and non-toxic census bait block monitoring two to four weeks after each of 12 repeat bait applications in the wet forest, and three repeat bait applications in the mesic forest, indicated rat abundance was reduced on average by 84–88%. However, reinvasion could have occurred within this time. Rat populations in the treatment plots usually recovered to pre-poison levels within two to five months. House mice (Mus musculus), Indian mongooses (Herpestes auropunctatus), and feral cats (Felis catus) also ate bait or other animals that had eaten bait. This study demonstrates the efficacy of ground-based broadcast toxicant baits for the control of rats in Hawaiian montane wet forests.

  12. Neurofilaments of aged rats: the strengthened interneurofilament interaction and the reduced amount of NF-M.

    PubMed

    Uchida, A; Yorifuji, H; Lee, V M; Kishimoto, T; Hisanaga, S

    1999-10-15

    Amyotrophic lateral sclerosis is an age-related neurological disease, characterized by neurofilament (NF) accumulation in primary axons followed by degeneration of motor neurons. To elucidate age-related factors that might lead to pathological NF accumulation, NFs were compared between young and aged rats. Electron microscopic examination of sciatic nerve axons revealed that NFs were more than twice as densely packed in aged rat axons (542 +/- 180 NFs/mm2) as in young adult rat axons (211 +/- 73 NFs/mm2). The NFs isolated from aged rats also appeared to be more aggregated than those from young rats. Phosphorylation at the head or tail domains was studied as a possible candidate affecting NF organization. Western blotting with phosphorylation-dependent antibodies showed higher phosphorylation of NF-H in the tail domains of aged rat spinal cord NFs, but dephosphorylation did not diminish the differences in aggregation between aged and young rat NFs. On the other hand, when NFs were phosphorylated by A-kinase on their head domains, the extent of phosphorylation in NF-M of aged rat NFs was only one-third of young rat NFs. We found that aged rat NFs contained only 60% of the NF-M of young rat NFs in molar ratio compared to NF-L. These results raise a possibility that the decreased amount of NF-M induces the aggregates of isolated NFs and the higher packing density of NF in aged rat axons. PMID:10502290

  13. Ketogenic diet prevents seizure and reduces myoclonic jerks in rats with cardiac arrest-induced cerebral hypoxia.

    PubMed

    Tai, Kwok-Keung; Truong, Daniel D

    2007-09-20

    Although the mechanism underlying the anti-epileptic effects of a ketogenic diet (KD) is not known, KD is reported to be an effective treatment for intractable epilepsy, in particular among children. Here, we evaluated whether a KD can reduce posthypoxic seizure and myoclonic jerks in a rat model of cardiac arrest-induced cerebral hypoxia. In this study, rats were divided into two groups: one group received a normal diet while the other group was fed a KD for 25 days before being subjected to cardiac arrest-induced cerebral hypoxia. We found that rats fed a normal diet developed seizures and severe myoclonic jerks in response to auditory stimuli after the hypoxic insults, whereas the rats on the KD did not develop seizure and showed much less severe myoclonic jerks in response to auditory stimuli. The results suggested that the KD has beneficial effects against posthypoxic seizure and myoclonus. PMID:17825488

  14. Vagus nerve stimulation delivered during motor rehabilitation improves recovery in a rat model of stroke.

    PubMed

    Khodaparast, Navid; Hays, Seth A; Sloan, Andrew M; Fayyaz, Tabbassum; Hulsey, Daniel R; Rennaker, Robert L; Kilgard, Michael P

    2014-09-01

    Neural plasticity is widely believed to support functional recovery following brain damage. Vagus nerve stimulation paired with different forelimb movements causes long-lasting map plasticity in rat primary motor cortex that is specific to the paired movement. We tested the hypothesis that repeatedly pairing vagus nerve stimulation with upper forelimb movements would improve recovery of motor function in a rat model of stroke. Rats were separated into 3 groups: vagus nerve stimulation during rehabilitation (rehab), vagus nerve stimulation after rehab, and rehab alone. Animals underwent 4 training stages: shaping (motor skill learning), prelesion training, postlesion training, and therapeutic training. Rats were given a unilateral ischemic lesion within motor cortex and implanted with a left vagus nerve cuff. Animals were allowed 1 week of recovery before postlesion baseline training. During the therapeutic training stage, rats received vagus nerve stimulation paired with each successful trial. All 17 trained rats demonstrated significant contralateral forelimb impairment when performing a bradykinesia assessment task. Forelimb function was recovered completely to prelesion levels when vagus nerve stimulation was delivered during rehab training. Alternatively, intensive rehab training alone (without stimulation) failed to restore function to prelesion levels. Delivering the same amount of stimulation after rehab training did not yield improvements compared with rehab alone. These results demonstrate that vagus nerve stimulation repeatedly paired with successful forelimb movements can improve recovery after motor cortex ischemia and may be a viable option for stroke rehabilitation. PMID:24553102

  15. Neuroprotection provided by dietary restriction in rats is further enhanced by reducing glucocortocoids.

    PubMed

    Qiu, Guang; Spangler, Edward L; Wan, Ruiqian; Miller, Marshall; Mattson, Mark P; So, Kwok-Fai; de Cabo, Rafael; Zou, Sige; Ingram, Donald K

    2012-10-01

    Glucocorticoids (GC)--corticosterone (CORT) in rodents and cortisol in primates--are stress-induced hormones secreted by adrenal glands that interact with the hypothalamic pituitary axis. High levels of cortisol in humans are observed in neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD), as well as in diabetes, post-traumatic stress syndrome, and major depression. Experimental models of diabetes in rats and mice have demonstrated that reduction of CORT reduces learning and memory deficits and attenuates loss of neuronal viability and plasticity. In contrast to the negative associations of elevated GC levels, CORT is moderately elevated in dietary restriction (DR) paradigms which are associated with many healthy anti-aging effects including neuroprotection. We demonstrate here in rats that ablating CORT by adrenalectomy (ADX) with replenishment to relatively low levels (30% below that of controls) prior to the onset of a DR regimen (ADX-DR) followed by central administration of the neurotoxin, kainic acid (KA), significantly attenuates learning deficits in a 14-unit T-maze task. The performance of the ADX-DR KA group did not differ from a control group (CON) that did not receive KA and was fed ad libitum (AL). By contrast, the sham-operated DR (SHAM-DR KA) group, SHAM-AL KA group, and ADX-AL KA group demonstrated poorer learning behavior in this task compared to the CON group. Stereological analysis revealed equivalent DR-induced neuroprotection in the SH-DR KA and ADX-DR KA groups, as measured by cell loss in the CA2/CA3 region of the hippocampus, while substantial cell loss was observed in SH-AL and ADX-AL rats. A separate set of experiments was conducted with similar dietary and surgical treatment conditions but without KA administration to examine markers of neurotrophic activity, brain-derived neurotrophic factor (BDNF), transcriptions factors (pCREB), and chaperone proteins (HSP-70). Under these conditions, we noted elevations in both BDNF and pCREB in ADX DR rats compared to the other groups; whereas, HSP-70, was equivalently elevated in ADX-DR and SH-DR groups and was higher than observed in both SH-AL and ADX-AL groups. These results support findings that DR protects hippocampal neurons against KA-induced cellular insult. However, this neuroprotective effect was further enhanced in rats with a lower-than control level of CORT resulting from ADX and maintained by exogenous CORT supplementation. Our results then suggest that DR-induced physiological elevation of GC may have negative functional consequences to DR-induced beneficial effects. These negative effects, however, can be compensated by other DR-produced cellular and molecular protective mechanisms. PMID:22226488

  16. Reduced pain and inflammation in juvenile and adult rats fed a ketogenic diet.

    PubMed

    Ruskin, David N; Kawamura, Masahito; Masino, Susan A

    2009-01-01

    The ketogenic diet is a high-fat, low-carbohydrate regimen that forces ketone-based rather than glucose-based cellular metabolism. Clinically, maintenance on a ketogenic diet has been proven effective in treating pediatric epilepsy and type II diabetes, and recent basic research provides evidence that ketogenic strategies offer promise in reducing brain injury. Cellular mechanisms hypothesized to be mobilized by ketone metabolism and underlying the success of ketogenic diet therapy, such as reduced reactive oxygen species and increased central adenosine, suggest that the ketolytic metabolism induced by the diet could reduce pain and inflammation. To test the effects of a ketone-based metabolism on pain and inflammation directly, we fed juvenile and adult rats a control diet (standard rodent chow) or ketogenic diet (79% fat) ad libitum for 3-4 weeks. We then quantified hindpaw thermal nociception as a pain measure and complete Freund's adjuvant-induced local hindpaw swelling and plasma extravasation (fluid movement from the vasculature) as inflammation measures. Independent of age, maintenance on a ketogenic diet reduced the peripheral inflammatory response significantly as measured by paw swelling and plasma extravasation. The ketogenic diet also induced significant thermal hypoalgesia independent of age, shown by increased hindpaw withdrawal latency in the hotplate nociception test. Anti-inflammatory and hypoalgesic diet effects were generally more robust in juveniles. The ketogenic diet elevated plasma ketones similarly in both age groups, but caused slowed body growth only in juveniles. These data suggest that applying a ketogenic diet or exploiting cellular mechanisms associated with ketone-based metabolism offers new therapeutic opportunities for controlling pain and peripheral inflammation, and that such a metabolic strategy may offer significant benefits for children and adults. PMID:20041135

  17. Dietary docosahexaenoic acid supplementation reduces SERCA Ca2+ transport efficiency in rat skeletal muscle.

    PubMed

    Fajardo, Val Andrew; Bombardier, Eric; Irvine, Thomas; Metherel, Adam H; Stark, Ken D; Duhamel, Todd; Rush, James W E; Green, Howard J; Tupling, A Russell

    2015-04-01

    Docosahexaenoic acid (DHA) can reduce the efficiency and increase the energy consumption of Na(+)/K(+)-ATPase pump and mitochondrial electron transport chain by promoting Na(+) and H(+) membrane permeability, respectively. In skeletal muscle, the sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) pumps are major contributors to resting metabolic rate. Whether DHA can affect SERCA efficiency remains unknown. Here, we examined the hypothesis that dietary supplementation with DHA would reduce Ca(2+) transport efficiency of the SERCA pumps in skeletal muscle. Total lipids were extracted from enriched sarcoplasmic reticulum (SR) membranes that were isolated from red vastus lateralis skeletal muscles of rats that were either fed a standard chow diet supplemented with soybean oil or supplemented with DHA for 8 weeks. The fatty acid composition of total SR membrane lipids and the major phospholipid species were determined using electrospray ionization mass spectrometry (ESI-MS). After 8 weeks of DHA supplementation, total SR DHA content was significantly elevated (control, 4.1 1.0% vs. DHA, 9.9 1.7%; weight percent of total fatty acids) while total arachidonic acid was reduced (control, 13.5 0.4% vs. DHA-fed, 9.4 0.2). Similar changes in these fatty acids were observed in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol, altogether indicating successful incorporation of DHA into the SR membranes post-diet. As hypothesized, DHA supplementation reduced SERCA Ca(2+) transport efficiency (control, 0.018 0.0002 vs. DHA-fed, 0.014 0.0009) possibly through enhanced SR Ca(2+) permeability (ionophore ratio: control, 2.8 0.2 vs. DHA-fed, 2.2 0.3). Collectively, our results suggest that DHA may promote skeletal muscle-based metabolism and thermogenesis through its influence on SERCA. PMID:25772907

  18. β-Hydroxybutyrate supports synaptic vesicle cycling but reduces endocytosis and exocytosis in rat brain synaptosomes.

    PubMed

    Hrynevich, Sviatlana V; Waseem, Tatyana V; Hébert, Audrey; Pellerin, Luc; Fedorovich, Sergei V

    2016-02-01

    The ketogenic diet is used as a prophylactic treatment for different types of brain diseases, such as epilepsy or Alzheimer's disease. In such a diet, carbohydrates are replaced by fats in everyday food, resulting in an elevation of blood-borne ketone bodies levels. Despite clinical applications of this treatment, the molecular mechanisms by which the ketogenic diet exerts its beneficial effects are still uncertain. In this study, we investigated the effect of replacing glucose by the ketone body β-hydroxybutyrate as the main energy substrate on synaptic vesicle recycling in rat brain synaptosomes. First, we observed that exposing presynaptic terminals to nonglycolytic energy substrates instead of glucose did not alter the plasma membrane potential. Next, we found that synaptosomes were able to maintain the synaptic vesicle cycle monitored with the fluorescent dye acridine orange when glucose was replaced by β-hydroxybutyrate. However, in presence of β-hydroxybutyrate, synaptic vesicle recycling was modified with reduced endocytosis. Replacing glucose by pyruvate also led to a reduced endocytosis. Addition of β-hydroxybutyrate to glucose-containing incubation medium was without effect. Reduced endocytosis in presence of β-hydroxybutyrate as sole energy substrate was confirmed using the fluorescent dye FM2-10. Also we found that replacement of glucose by ketone bodies leads to inhibition of exocytosis, monitored by FM2-10. However this reduction was smaller than the effect on endocytosis under the same conditions. Using both acridine orange in synaptosomes and the genetically encoded sensor synaptopHluorin in cortical neurons, we observed that replacing glucose by β-hydroxybutyrate did not modify the pH gradient of synaptic vesicles. In conclusion, the nonglycolytic energy substrates β-hydroxybutyrate and pyruvate are able to support synaptic vesicle recycling. However, they both reduce endocytosis. Reduction of both endocytosis and exocytosis together with misbalance between endocytosis and exocytosis could be involved in the anticonvulsant activity of the ketogenic diet. PMID:26748385

  19. Agmatine induces gastric protection against ischemic injury by reducing vascular permeability in rats

    PubMed Central

    Masri, Abeer A Al; Eter, Eman El

    2012-01-01

    AIM: To investigate the effect of administration of agmatine (AGM) on gastric protection against ischemia reperfusion (I/R) injury. METHODS: Three groups of rats (6/group); sham, gastric I/R injury, and gastric I/R + AGM (100 mg/kg, i.p. given 15 min prior to gastric ischemia) were recruited. Gastric injury was conducted by ligating celiac artery for 30 min and reperfusion for another 30 min. Gastric tissues were histologically studied and immunostained with angiopoietin 1 (Ang-1) and Ang-2. Vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1) were measured in gastric tissue homogenate. To assess whether AKt/phosphatidyl inositol-3-kinase (PI3K) mediated the effect of AGM, an additional group was pretreated with Wortmannin (WM) (inhibitor of Akt/PI3K, 15 ?g/kg, i.p.), prior to ischemic injury and AGM treatment, and examined histologically and immunostained. Another set of experiments was run to study vascular permeability of the stomach using Evans blue dye. RESULTS: AGM markedly reduced Evans blue dye extravasation (3.58 0.975 ?g/stomach vs 1.175 0.374 ?g/stomach, P < 0.05), VEGF (36.87 2.71 pg/100 mg protein vs 48.4 6.53 pg/100 mg protein, P < 0.05) and MCP-1 tissue level (29.5 7 pg/100 mg protein vs 41.17 10.4 pg/100 mg protein, P < 0.01). It preserved gastric histology and reduced congestion. Ang-1 and Ang-2 immunostaining were reduced in stomach sections of AGM-treated animals. The administration of WM abolished the protective effects of AGM and extensive hemorrhage and ulcerations were seen. CONCLUSION: AGM protects the stomach against I/R injury by reducing vascular permeability and inflammation. This protection is possibly mediated by Akt/PI3K. PMID:22611311

  20. Neonatal low-protein diet reduces the masticatory efficiency in rats.

    PubMed

    Ferraz-Pereira, Kelli N; da Silva Arago, Raquel; Verdier, Dorly; Toscano, Ana E; Lacerda, Diego C; Manhes-de-Castro, Raul; Kolta, Arlette

    2015-11-14

    Little is known about the effects of undernutrition on the specific muscles and neuronal circuits involved in mastication. The aim of this study was to document the effects of neonatal low-protein diet on masticatory efficiency. Newborn rats whose mothers were fed 17% (nourished (N), n 60) or 8% (undernourished (U), n 56) protein were compared. Their weight was monitored and their masticatory jaw movements were video-recorded. Whole-cell patch-clamp recordings were performed in brainstem slice preparations to investigate the intrinsic membrane properties and N-methyl-d-aspartate-induced bursting characteristics of the rhythmogenic neurons (N, n 43; U, n 39) within the trigeminal main sensory nucleus (NVsnpr). Morphometric analysis (N, n 4; U, n 5) were conducted on masseteric muscles serial cross-sections. Our results showed that undernourished animals had lower numbers of masticatory sequences (P=0049) and cycles (P=0045) and slower chewing frequencies (P=0004) (N, n 32; U, n 28). Undernutrition reduced body weight but had little effect on many basic NVsnpr neuronal electrophysiological parameters. It did, however, affect sag potentials (P<0001) and rebound firing (P=0005) that influence firing pattern. Undernutrition delayed the appearance of bursting and reduced the propensity to burst (P=0002), as well as the bursting frequency (P=0032). Undernourished animals showed increased and reduced proportions of fibre type IIA (P<00001) and IIB (P<00001), respectively. In addition, their fibre areas (IIA, P<0001; IIB, P<0001) and perimeters (IIA, P<0001; IIB, P<0001) were smaller. The changes observed at the behavioural, neuronal and muscular levels suggest that undernutrition reduces chewing efficiency by slowing, weakening and delaying maturation of the masticatory muscles and the associated neuronal circuitry. PMID:26337745

  1. Cytoprotective effects of albumin, nitrosated or reduced, in cultured rat pulmonary vascular cells

    PubMed Central

    Li, Hui-Hua; Xu, Jing; Wasserloos, Karla J.; Li, Jin; Tyurina, Yulia Y.; Kagan, Valerian E.; Wang, Xiaorong; Chen, Alex F.; Liu, Zhao-Qian; Stoyanovsky, Detcho; Pitt, Bruce R.

    2011-01-01

    S-nitrosoalbumin (SNO-Alb) has been shown to be an efficacious cytoprotective molecule in acute lung injury, as well as ischemia-reperfusion injury in heart and skeletal muscle. Nonetheless, limited information is available on the cellular mechanism of such protection. Accordingly, we investigated the protective effects of SNO-Alb [ and its denitrosated congener, reduced albumin (SH-Alb) ] on tert-butyl hydroperoxide (tBH)-mediated cytotoxicity in cultured rat pulmonary microvascular endothelial cells (RPMEC), as well as hydrogen sulfide (H2S)-mediated cytotoxicity in rat pulmonary artery smooth muscle cells (RPASMC). We noted that tBH caused a concentration-dependent necrosis in RPMEC, and pretreatment of RPMEC with SNO-Alb dose-dependently decreased the sensitivity of these cells to tBH. A component of SNO-Alb cytoprotection was sensitive to NG-nitro-l-arginine methyl ester and was associated with activation of endothelial nitric oxide synthase (eNOS), phenomena that could be reproduced with pretreatment with SH-Alb. Exogenous H2S caused concentration-dependent apoptosis in RPASMC due to activation of ERK1/2 and p38, as well as downregulation of Bcl-2. Pretreatment with SNO-Alb reduced H2S-mediated apoptosis in a concentration-dependent manner that was associated with SNO-Alb-mediated inhibition of activation of ERK1/2 and p38. Pretreatment with SNO-Alb reduced toxicity of 1 mM sodium hydrosulfide in an NG-nitro-l-arginine methyl ester-sensitive fashion in RPASMC that expressed gp60 and neuronal NOS and was capable of transporting fluorescently labeled SH-Alb. Therefore, SNO-Alb is cytoprotective against models of oxidant-induced necrosis (tBH) and inhibitors of cellular respiration and apoptosis (H2S) in both pulmonary endothelium and smooth muscle, respectively, and a component of such protection can be attributed to a SH-Alb-mediated activation of constitutive NOS. PMID:21239532

  2. Aerosolised surfactant generated by a novel noninvasive apparatus reduced acute lung injury in rats

    PubMed Central

    Sun, Yu; Yang, Rui; Zhong, Ji-gen; Fang, Feng; Jiang, Jin-jin; Liu, Ming-yao; Lu, Jian

    2009-01-01

    Introduction Exogenous surfactant has been explored as a potential therapy for acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In the present study, a nebuliser driven by oxygen lines found in the hospital was developed to deliver aerosolised porcine pulmonary surfactant (PPS). We hypothesised that aerosolised surfactant inhaled through spontaneous breathing may effectively reduce severe lung injury. Methods Rats were intravenously injected with oleic acid (OA) to induce ALI and 30 minutes later they were divided into five groups: model (injury only), PPS aerosol (PPS-aer), saline aerosol (saline-aer), PPS instillation (PPS-inst), and saline instillation (Saline-Inst). Blood gases, lung histology, and protein and TNF-α concentrations in the bronchoalveolar lavage fluid (BALF) were examined. Results The PPS aerosol particles were less than 2.0 μm in size as determined by a laser aerosol particle counter. Treatment of animals with a PPS aerosol significantly increased the phospholipid content in the BALF, improved lung function, reduced pulmonary oedema, decreased total protein and TNF-α concentrations in BALF, ameliorated lung injury and improved animal survival. These therapeutic effects are similar to those seen in the PPS-inst group. Conclusions This new method of PPS aerosolisation combines the therapeutic effects of a surfactant with partial oxygen inhalation under spontaneous breathing. It is an effective, simple and safe method of administering an exogenous surfactant. PMID:19257907

  3. Procyanidins in Theobroma cacao Reduce Plasma Cholesterol Levels in High Cholesterol-Fed Rats.

    PubMed

    Osakabe, Naomi; Yamagishi, Megumi

    2009-09-01

    We evaluated the effect of cacao procyanidins (CP) on plasma lipid levels in high cholesterol-fed rats. Animals were divided into 4 groups, and each group was fed on either a normal diet, high cholesterol diet (HCD) containing 1% cholesterol (HCD without CP), HCD with 0.5% (HCD with 0.5% CP) or 1.0% CP (HCD with 1.0% CP) for 4 weeks. Plasma cholesterol level was significantly higher in the HCD without CP group than the normal diet group (p<0.01). Supplementation of CP significantly decreased plasma cholesterol (p<0.01) to levels similar to those of the normal diet group. The liver cholesterol and triglyceride levels in all HCD groups were significantly higher (p<0.01), but 1.0% CP feeding significantly reduced this increase. Fecal excretion of neutral sterol and triglyceride was significantly increased in all HCD groups (p<0.01), and the excreted amounts tended to be higher in the HCD with CP groups. The procyanidins dose-dependently reduced micellar solubility of cholesterol and this activity increased with increasing molecular weight. These results suggest that one of the mechanisms of CP to lower plasma cholesterol is inhibition of intestinal absorption of cholesterol. PMID:19794919

  4. Optical imaging reveals reduced seizure spread and propagation velocities in aged rat brain in vitro.

    PubMed

    Holtkamp, M; Buchheim, K; Siegmund, H; Meierkord, H

    2003-01-01

    Old age is the most common time for patients to develop epileptic seizures, and due to their frequent unusual clinical presentation the diagnosis of epilepsy is often delayed in the elderly. It is as yet unknown if pronounced alterations in the plastic properties of aging nervous tissue contribute to these phenomena. We employed a non-lesional in vitro epilepsy model to study seizure susceptibility, spread pattern, and propagation velocities in combined hippocampal-entorhinal cortex slices of aged rats and controls using electrophysiological methods and imaging of intrinsic optical signals. In aged animals we saw a less extensive spread of seizure-like events into areas adjacent to the region of onset of activity and a decreased spread velocity in various anatomical regions. In addition, both the activity-dependent shrinkage of the extracellular space (ECS)-volume and the extracellular K(+) concentration were significantly reduced compared to controls. The results of this study are consistent with the clinical observation that epileptic seizures in the elderly have a reduced tendency to spread. In addition, our data suggest that in the absence of structural lesions seizure susceptibility in the aging brain is not increased. PMID:12498969

  5. Vitamin B6 deficiency can reduce fuel storage and utilization in physically trained rats.

    PubMed

    Choi, E-Y; Cho, Y-O

    2008-03-01

    This study investigated the effect of vitamin B6 deficiency on the utilization and recuperation of stored fuel in physically trained rats. 48 rats were given either vitamin B6-deficient (B6-) diet or control (B6) diet for 4 weeks and were trained on treadmill for 30 minutes daily. All animals were then subdivided into 3 groups: before-exercise (BE); during-exercise (DE); after-exercise (AE). The DE group was exercised on treadmill for 1 hour just before being sacrificed. Animals in the AE group were allowed to take a rest for 2 hours after being exercised like the DE group. Glucose and free fatty acids were compared in plasma. Glycogen and triglyceride were compared in liver and skeletal muscle. Protein levels were compared in plasma, liver, and skeletal muscle. Compared with the B6+ group, plasma glucose levels of the B6- group were significantly lower before and after exercise. Muscle glycogen levels of the B6- group were significantly lower than those of the B6+ group regardless of exercise. The liver glycogen level of the B6- group was also significantly lower than that of B6+ group during and after exercise. Before exercise, plasma free fatty acid levels were not significantly different between the B6+ and B6- groups, and plasma free fatty acid levels of the B6- group were significantly lower during and after exercise. The muscle triglyceride level of the B6- group was significantly lower than that of the B6+ group before exercise, and there were no differences between B6+ and B6- groups during and after exercise. Liver triglyceride levels were not significantly different between B6+ and B6- groups. Plasma protein levels of the B6- group were lower than those of B6+ before and after exercise. Muscle protein levels of the B6- group were not significantly different from those of the B6 group. Liver protein levels of the B6- group were significantly lower than that of the B6+ group after exercise. Liver protein levels of both B6+ and B6- groups were not significantly changed, regardless of exercise. Thus, it is suggested that vitamin B6 deficiency may reduce fuel storage and utilization with exercise in physically trained rats. PMID:18791974

  6. Activity-based anorexia is associated with reduced hippocampal cell proliferation in adolescent female rats.

    PubMed

    Barbarich-Marsteller, Nicole C; Fornal, Casimir A; Takase, Luiz F; Bocarsly, Miriam E; Arner, Candice; Walsh, B Timothy; Hoebel, Bartley G; Jacobs, Barry L

    2013-01-01

    Activity-based anorexia (ABA) is an animal model of anorexia nervosa that mimics core features of the clinical psychiatric disorder, including severe food restriction, weight loss, and hyperactivity. The ABA model is currently being used to study starvation-induced changes in the brain. Here, we examined hippocampal cell proliferation in animals with ABA (or the appropriate control conditions). Adolescent female Sprague-Dawley rats were assigned to 4 groups: control (24h/day food access), food-restricted (1h/day food access), exercise (24h/day food and wheel access), and ABA (1h/day food access, 24h/day wheel access). After 3 days of ABA, 5-bromo-2'-deoxyuridine (BrdU; 200mg/kg, i.p.) was injected and the rats were perfused 2h later. Brains were removed and subsequently processed for BrdU and Ki67 immunohistochemistry. The acute induction of ABA reduced cell proliferation in the dentate gyrus. This effect was significant in the hilus region of the dentate gyrus, but not in the subgranular zone, where adult neurogenesis occurs. Marked decreases in cell proliferation were also observed in the surrounding dorsal hippocampus and in the corpus callosum. These results indicate a primary effect on gliogenesis rather than neurogenesis following 3 days of ABA. For each brain region studied (except SGZ), there was a strong positive correlation between the level of cell proliferation and body weight/food intake. Future studies should examine whether these changes are maintained following long-term weight restoration and whether alterations in neurogenesis occur following longer exposures to ABA. PMID:22981561

  7. Fructose-rich diet leads to reduced aerobic capacity and to liver injury in rats

    PubMed Central

    2012-01-01

    The main purpose of this research was to investigate the alterations in the aerobic capacity and appearance of metabolic alterations in Wistar rats fed on fructose-rich diet. We separated twenty-eight rats into two groups according to diet: a control group (C) (balanced diet) and a fructose-rich diet group (F). The animals were fed these diets for 60 d (d 120 to 180). We performed insulin, glucose as well as a minimum lactate test, at d 120 and 180. At the end of the experiment, sixteen animals were euthanized, and the following main variables were analysed: aerobic capacity, the serum aspartate aminotransferase (AST) to alanine aminotransferase (ALT) ratio, serum and liver triglyceride concentrations, serum and liver thiobarbituric acid reactive substance (TBARS) concentrations, serum and liver catalase and superoxide dismutase (SOD) activity and haematoxylin-eosin histology (HE) in hepatocytes. The remaining twelve animals were submitted to an analysis of their hepatic lipogenic rate. The animals fed a fructose-rich diet exhibited a reduction in aerobic capacity, glucose tolerance and insulin sensitivity and increased concentrations of triglycerides and TBARS in the liver. Catalase and SOD activities were reduced in the livers of the fructose-fed animals. In addition, the serum AST/ALT ratio was higher than that of the C group, which indicates hepatic damage, and the damage was confirmed by histology. In conclusion, the fructose-rich diet caused significant liver damage and a reduction in insulin sensitivity in the animals, which could lead to deleterious metabolic effects. PMID:22713601

  8. The addition of whole soy flour to cafeteria diet reduces metabolic risk markers in wistar rats

    PubMed Central

    2013-01-01

    Background Soybean is termed a functional food because it contains bioactive compounds. However, its effects are not well known under unbalanced diet conditions. This work is aimed at evaluating the effect of adding whole soy flour to a cafeteria diet on intestinal histomorphometry, metabolic risk and toxicity markers in rats. Methods In this study, 30 male adult Wistar rats were used, distributed among three groups (n?=?10): AIN-93M diet, cafeteria diet (CAF) and cafeteria diet with soy flour (CAFS), for 56days. The following parameters were measured: food intake; weight gain; serum concentrations of triglycerides, total cholesterol, HDL-c, glycated hemoglobin (HbA1c), aspartate (AST) and alanine (ALT) aminotransferases and Thiobarbituric Acid Reactive Substances (TBARS); humidity and lipid fecal content; weight and fat of the liver. The villous height, the crypt depth and the thickness of the duodenal and ileal circular and longitudinal muscle layers of the animals were also measured. Results There was a significant reduction in the food intake in the CAF group. The CAFS showed lower serum concentrations of triglycerides and serum TBARS and a lower percentage of hepatic fat, with a corresponding increase in thickness of the intestinal muscle layers. In the CAF group, an increase in the HbA1c, ALT, lipid excretion, liver TBARS and crypt depth, was observed associated with lower HDL-c and villous height. The addition of soy did not promote any change in these parameters. Conclusions The inclusion of whole soy flour in a high-fat diet may be helpful in reducing some markers of metabolic risk; however, more studies are required to clarify its effects on unbalanced diets. PMID:24119309

  9. Long-term exercise treatment reduces oxidative stress in the hippocampus of aging rats.

    PubMed

    Marosi, K; Bori, Z; Hart, N; Srga, L; Koltai, E; Radk, Z; Nyakas, C

    2012-12-13

    Exercise can exert beneficial effects on cognitive functions of older subjects and it can also play an important role in the prevention of neurodegenerative diseases. At the same time it is perceivable that limited information is available on the nature of molecular pathways supporting the antioxidant effects of exercise in the brain. In this study 12-month old, middle-aged female Wistar rats were subjected to daily moderate intensity exercise on a rodent treadmill for a period of 15weeks which covered the early aging period unmasking already some aging-related molecular disturbances. The levels of reactive oxygen species (ROS), the amount of protein carbonyls, the levels of antioxidant intracellular enzymes superoxide dismutases (SOD-1, SOD-2) and glutathione peroxidase (GPx) were determined in the hippocampus. In addition, to identify the molecular pathways that may be involved in ROS metabolism and mitochondrial biogenesis, the activation of 5'-AMP-activated protein kinase (AMPK), the protein level of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1?), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (mtTFA) were measured. Our results revealed a lower level of ROS associated with a reduced amount of protein carbonyls in the hippocampus of physically trained rats compared to sedentary controls. Furthermore, exercise induced an up-regulation of SOD-1 and GPx enzymes, p-AMPK and PGC-1?, that can be related to an improved redox balance in the hippocampus. These results suggest that long-term physical exercise can comprises antioxidant properties and by this way protect neurons against oxidative stress at the early stage of aging. PMID:22982624

  10. DENTAL MINERALIZATION AND SALIVARY ACTIVITY ARE REDUCED IN OFFSPRING OF SPONTANEOUSLY HYPERTENSIVE RATS (SHR)

    PubMed Central

    Elias, Gracieli Prado; dos Santos, Otoniel Antonio Macedo; Sassaki, Kikue Takebayashi; Delbem, Alberto Carlos Botazzo; Antoniali, Cristina

    2006-01-01

    Several pathologies have been diagnosed in children of hypertensive mothers; however, some studies that evaluated the alterations in their oral health are not conclusive. This study analyzed the salivary gland activity and dental mineralization of offsprings of spontaneously hypertensive rats (SHR). Thirty-day-old SHR males and Wistar rats were studied. The salivary flow was evaluated by injection of pilocarpine, the protein concentration and salivary amylase activity, by the Lowry method and kinetic method at 405 nm, respectively. Enamel and dentin mineralization of the mandibular incisors was quantified with aid of the microhardness meter. The results were analyzed by the ANOVA or Student's t test (p<0.05). It was noticed that the salivary flow rate (0.026 mL/min/100 g 0.002) and salivary protein concentration (2.26 mg/mL 0.14) of SHR offspring were reduced compared to Wistar normotensive offspring (0.036 mL/min/100 g 0.003 and 2.91 mg/mL 0.27, respectively), yet there was no alteration in amylase activity (SHR: 242.4 U/mL 36.9; Wistar: 163.8 U/mL 14.1). Microhardness was lower both in enamel (255.8 KHN 2.6) and dentin (59.9 KHN 0.8) for the SHR teeth compared to the Wistar teeth (enamel: 328.7 KHN 3.3 and dentin: 67.1 KHN 1.0). These results suggest that the SHR offspring are more susceptible to development of pathologies impairing oral health, once they presented lesser flow and salivary protein concentration and lower dental mineralization. PMID:19089272

  11. Maize and resistant starch enriched breads reduce postprandial glycemic responses in rats.

    PubMed

    Brites, Carla M; Trigo, Maria J; Carrapiço, Belmira; Alviña, Marcela; Bessa, Rui J

    2011-04-01

    White wheat bread is a poor source of dietary fiber, typically containing less than 2%. A demand exists for the development of breads with starch that is slowly digestible or partially resistant to the digestive process. The utilization of maize flour and resistant starch is expected to reduce the release and absorption of glucose and, hence, lower the glycemic index of bread. This study was undertaken to investigate the hypothesis that a diet of maize bread, as produced and consumed in Portugal, would have beneficial metabolic effects on rats compared to white wheat bread. We also hypothesized that the effect of resistant starch on glycemic response could be altered by the use of different formulations and breadmaking processes for wheat and maize breads. Resistant starch (RS) was incorporated into formulations of breads at 20% of the inclusion rate of wheat and maize flours. Assays were conducted with male Wistar rats (n = 36), divided into four groups and fed either wheat bread, RS-wheat bread, maize bread, and RS-maize bread to evaluate feed intake, body weight gain, fecal pH, and postprandial blood glucose response (glycemic response). Blood triglycerides, total cholesterol concentrations, and liver weights were also determined. The maize bread group presented higher body weight gain and cholesterol level, lower fecal pH, and postprandial blood glucose response than the wheat bread group. The RS-wheat bread group showed significant reductions in feed intake, fecal pH, postprandial blood glucose response, and total cholesterol. The RS-maize group displayed significant reductions of body weight gain, fecal pH, and total cholesterol levels; however, for the glycemic response, only a reduction in fasting level was observed. These results suggest that maize bread has a lower glycemic index than wheat bread, and the magnitude of the effect of RS on glycemic response depends of type of bread. PMID:21530804

  12. Reduced ribosomal protein s6 phosphorylation after progressive resistance exercise in growing adolescent rats.

    PubMed

    Hellyer, Nathan J; Nokleby, Jessica J; Thicke, Bethany M; Zhan, Wen-Zhi; Sieck, Gary C; Mantilla, Carlos B

    2012-06-01

    The purpose of this study was to investigate moderate intensity progressive resistance exercise (PRE) in growing adolescent rats and its effect on muscle hypertrophy (defined as an increase in fiber cross-sectional area [CSA]). We hypothesized that in adolescent animals moderate intensity PRE would increase (a) fiber CSA; (b) myosin heavy chain (MyHC) content; and (c) expression and phosphorylation of cell signaling molecules involved in translational regulation, compared with that in age-matched sedentary (SED) controls. In the PRE group, 3-week-old male rats were trained to climb a vertical ladder as a mode of PRE training such that by 10 weeks all animals in the PRE group had progressed to carry an additional 80% of their body weight per climb. In agreement with our hypotheses, we observed that 10 weeks of moderate PRE in adolescent animals was sufficient to increase the CSA of muscle fibers and increase MyHC content. The average muscle fiber CSA increased by >10%, and the total MyHC content increased by 35% (p < 0.05) in the PRE group compared with that in the SED animals. Concurrently, we investigated sustained changes in the expression and phosphorylation of key signaling molecules that are previously identified regulators of hypertrophy in adult animal models. Contrary to our hypotheses, expression and phosphorylation of the translational regulators mammalian target of rapamycin and Akt were not increased in the PRE group. In addition, we observed that the ratio of phosphorylated-to-unphosphorylated ribosomal protein S6 (rpS6) was reduced over sixfold in PRE animals (p < 0.05) and that total rpS6 protein levels were unchanged between PRE and SED animals (p > 0.05). We conclude that moderate intensity PRE is sufficient to induce muscle hypertrophy in adolescent animals, whereas the signaling mechanisms associated with muscle hypertrophy may differ between growing adolescents and adults. PMID:22614147

  13. The incentive amplifying effects of nicotine are reduced by selective and non-selective dopamine antagonists in rats.

    PubMed

    Palmatier, Matthew I; Kellicut, Marissa R; Brianna Sheppard, A; Brown, Russell W; Robinson, Donita L

    2014-11-01

    Nicotine is a psychomotor stimulant with 'reinforcement enhancing' effects--the actions of nicotine in the brain increase responding for non-nicotine rewards. We hypothesized that this latter effect of nicotine depends on increased incentive properties of anticipatory cues; consistent with this hypothesis, multiple laboratories have reported that nicotine increases sign tracking, i.e. approach to a conditioned stimulus (CS), in Pavlovian conditioned-approach tasks. Incentive motivation and sign tracking are mediated by mesolimbic dopamine (DA) transmission and nicotine facilitates mesolimbic DA release. Therefore, we hypothesized that the incentive-promoting effects of nicotine would be impaired by DA antagonists. To test this hypothesis, separate groups of rats were injected with nicotine (0.4mg/kg base) or saline prior to Pavlovian conditioning sessions in which a CS (30s illumination of a light or presentation of a lever) was immediately followed by a sweet reward delivered in an adjacent location. Both saline and nicotine pretreated rats exhibited similar levels of conditioned approach to the reward location (goal tracking), but nicotine pretreatment significantly increased approach to the CS (sign tracking), regardless of type (lever or light). The DAD1 antagonist SCH-23390 and the DAD2/3 antagonist eticlopride reduced conditioned approach in all rats, but specifically reduced goal tracking in the saline pretreated rats and sign tracking in the nicotine pretreated rats. The non-selective DA antagonist flupenthixol reduced sign-tracking in nicotine rats at all doses tested; however, only the highest dose of flupenthixol reduced goal tracking in both nicotine and saline groups. The reductions in conditioned approach behavior, especially those by SCH-23390, were dissociated from simple motor suppressant effects of the antagonists. These experiments are the first to investigate the effects of dopaminergic drugs on the facilitation of sign-tracking engendered by nicotine and they implicate dopaminergic systems both in conditioned approach as well as the incentive-promoting effects of nicotine. PMID:25230311

  14. The mineralocorticoid receptor antagonist eplerenone reduces renal interstitial fibrosis after long-term cyclosporine treatment in rat: antagonizing cyclosporine nephrotoxicity

    PubMed Central

    2013-01-01

    Background Chronic cyclosporine-(CsA)-mediated loss of kidney function is a major clinical problem in organ transplantation. We hypothesized that the mineralocorticoid receptor antagonist eplerenone (EPL) prevents chronic CsA-induced renal interstitial volume increase, tubule loss, and functional impairment in a rat model. Methods SpragueDawley rats received CsA alone (15 mg/kg/d p.o.), CsA and EPL (approximately 100 mg/kg/day p.o.) or vehicle (control) for 12 weeks. At 11 weeks, chronic indwelling arterial and venous catheters were implanted for continuous measurements of arterial blood pressure (BP) and GFR (inulin clearance) in conscious, freely moving animals. Plasma was sampled for analysis and kidney tissue was fixed for quantitative stereological analyses. Results Compared to controls, CsA-treatment reduced relative tubular volume (0.730.03 vs. 0.850.01, p<0.05) and increased relative interstitial volume (0.0800.004 vs. 0.0450.003, p<0.05); EPL attenuated these changes (0.820.02, p<0.05, and 0.0600.006, p<0.05, respectively). CsA-treated rats had more sclerotic glomeruli and a higher degree of vascular depositions in arterioles; both were significantly reduced in CsA+EPL-treated animals. CsA increased BP and reduced body weight gain and GFR. In CsA+EPL rats, weight gain, GFR and BP at rest (daytime) were normalized; however, BP during activity (night) remained elevated. Plasma sodium and potassium concentrations, kidney-to-body weight ratios and CsA whole blood concentration were similar in CsA and CsA+EPL rats. Conclusions It is concluded that in the chronic cyclosporine rat nephropathy model, EPL reduces renal tissue injury, hypofiltration, hypertension, and growth impairment. MR antagonists should be tested for their renoprotective potential in patients treated with calcineurin inhibitors. PMID:23425330

  15. The incentive amplifying effects of nicotine are reduced by selective and non-selective dopamine antagonists in rats

    PubMed Central

    Palmatier, Matthew I.; Kellicut, Marissa R.; Sheppard, A. Brianna; Brown, Russell W.; Robinson, Donita L.

    2015-01-01

    Nicotine is a psychomotor stimulant with reinforcement enhancing effects the actions of nicotine in the brain increase responding for non-nicotine rewards. We hypothesized that this latter effect of nicotine depends on increased incentive properties of anticipatory cues; consistent with this hypothesis, multiple laboratories have reported that nicotine increases sign tracking, i.e. approach to a conditioned stimulus (CS), in Pavlovian conditioned-approach tasks. Incentive motivation and sign tracking are mediated by mesolimbic dopamine (DA) transmission and nicotine facilitates mesolimbic DA release. Therefore, we hypothesized that the incentive-promoting effects of nicotine would be impaired by DA antagonists. To test this hypothesis, separate groups of rats were injected with nicotine (0.4 mg/kg base) or saline prior to Pavlovian conditioning sessions in which a CS (30 s illumination of a light or presentation of a lever) was immediately followed by a sweet reward delivered in an adjacent location. Both saline and nicotine pretreated rats exhibited similar levels of conditioned approach to the reward location (goal tracking), but nicotine pretreatment significantly increased approach to the CS (sign tracking), regardless of type (lever or light). The DAD1 antagonist SCH-23390 and the DAD2/3 antagonist eticlopride reduced conditioned approach in all rats, but specifically reduced goal tracking in the saline pretreated rats and sign tracking in the nicotine pretreated rats. The non-selective DA antagonist flupenthixol reduced sign-tracking in nicotine rats at all doses tested; however, only the highest dose of flupenthixol reduced goal tracking in both nicotine and saline groups. The reductions in conditioned approach behavior, especially those by SCH-23390, were dissociated from simple motor suppressant effects of the antagonists. These experiments are the first to investigate the effects of dopaminergic drugs on the facilitation of sign-tracking engendered by nicotine and they implicate dopaminergic systems both in conditioned approach as well as the incentive-promoting effects of nicotine. PMID:25230311

  16. Blimp1 regulates development of the posterior forelimb, caudal pharyngeal arches, heart and sensory vibrissae in mice.

    PubMed

    Robertson, Elizabeth J; Charatsi, Iphigenie; Joyner, Clive J; Koonce, Chad H; Morgan, Marc; Islam, Ayesha; Paterson, Carol; Lejsek, Emily; Arnold, Sebastian J; Kallies, Axel; Nutt, Stephen L; Bikoff, Elizabeth K

    2007-12-01

    The zinc-finger transcriptional repressor Blimp1 (Prdm1) controls gene expression patterns during differentiation of B lymphocytes and regulates epigenetic changes required for specification of primordial germ cells. Blimp1 is dynamically expressed at diverse tissue sites in the developing mouse embryo, but its functional role remains unknown because Blimp1 mutant embryos arrest at E10.5 due to placental insufficiency. To explore Blimp1 activities at later stages in the embryo proper, here we used a conditional inactivation strategy. A Blimp1-Cre transgenic strain was also exploited to generate a fate map of Blimp1-expressing cells. Blimp1 plays essential roles in multipotent progenitor cell populations in the posterior forelimb, caudal pharyngeal arches, secondary heart field and sensory vibrissae and maintains key signalling centres at these diverse tissues sites. Interestingly, embryos carrying a hypomorphic Blimp1gfp reporter allele survive to late gestation and exhibit similar, but less severe developmental abnormalities, whereas transheterozygous Blimp1(gfp/-) embryos with further reduced expression levels, display exacerbated defects. Collectively, the present experiments demonstrate that Blimp1 requirements in diverse cell types are exquisitely dose dependent. PMID:18039967

  17. PHTHALATE ESTER-INDUCED GUBERNACULAR LESIONS ARE ASSOCIATED WITH REDUCED INSL-3 GENE EXPRESSION IN THE FETAL RAT TESTIS

    EPA Science Inventory

    Phthalate ester-induced gubernacular ligament lesions are associated with reduced Insl3 gene expression in the fetal rat testis during sexual differentiation.
    VS Wilson, C Lambright, J Furr, J Ostby, C Wood, G Held, LE Gray Jr.
    U.S. EPA, ORD, NHEERL, Reproductive Toxicology...

  18. Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in brain of HIV-1 transgenic rats

    PubMed Central

    2012-01-01

    Correction to Rao J S, Kim H W, Kellom M, Greenstein D, Chen M, Kraft A D, Harry G J, Rapoport S I, Basselin M. Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in brain of HIV-1 transgenic rats. Journal of Neuroinflammation 8:101.

  19. Evidence that Memantine Reduces Chronic Tinnitus Caused by Acoustic Trauma in Rats

    PubMed Central

    Zheng, Yiwen; McNamara, Emily; Stiles, Lucy; Darlington, Cynthia L.; Smith, Paul F.

    2012-01-01

    Subjective tinnitus is a chronic neurological disorder in which phantom sounds are perceived. Increasing evidence suggests that tinnitus is caused by neuronal hyperactivity in auditory brain regions, either due to a decrease in synaptic inhibition or an increase in synaptic excitation. One drug investigated for the treatment of tinnitus has been the uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, memantine, although the evidence relating to it has been unconvincing to date. We re-investigated the effects of memantine on the behavioral manifestations of tinnitus induced by acoustic trauma (a 16-kHz, 110-dB pure tone presented unilaterally for 1?h) in rats. We used a conditioned lick suppression model in which lick suppression was associated with the perception of high frequency sound resembling tinnitus and a suppression ratio (SR) was calculated by comparing the number of licks in the 15-s period preceding the stimulus presentation (A) and the 15-s period during the stimulus presentation (B), i.e., SR?=?B/(A?+?B). Acoustic trauma resulted in a significant increase in the auditory brainstem-evoked response (ABR) threshold in the affected ear (P???0.0001) and a decrease in the SR compared to sham controls in response to 32?kHz tones in five out of eight acoustic trauma-exposed animals. A 5-mg/kg dose of memantine significantly reduced the proportion of these animals which exhibited tinnitus-like behavior (2/5 compared to 5/5; P???0.006), suggesting that the drug reduced tinnitus. These results suggest that memantine may reduce tinnitus caused by acoustic trauma. PMID:23015804

  20. Exercise training enhances rat pancreatic islets anaplerotic enzymes content despite reduced insulin secretion.

    PubMed

    Zoppi, Claudio C; Calegari, Vivian C; Silveira, Leonardo R; Carneiro, Everardo M; Boschero, Antonio C

    2011-09-01

    Endurance exercise has been shown to reduce pancreatic islets glucose-stimulated insulin secretion (GSIS). Anaplerotic/cataplerotic pathways are directly related to GSIS signaling. However, the effect of endurance training upon pancreatic islets anaplerotic enzymes is still unknown. In this sense, we tested the hypothesis that endurance exercise decreases GSIS by reducing anaplerotic/cataplerotic enzymes content. Male Wistar rats were randomly assigned to one of the four experimental groups as follows: control sedentary group (CTL), trained 1 day per week (TRE1), trained 3 days per week (TRE3) and trained 5 days per week (TRE5x) and submitted to an 8 weeks endurance-training protocol. After the training protocol, pancreatic islets were isolated and incubated with basal (2.8 mM) and stimulating (16.7 mM) glucose concentrations for GSIS measurement by radioimmunoassay. In addition, pyruvate carboxylase (PYC), pyruvate dehydrogenase (PDH), pyruvate dehydrogenase kinase 4 (PDK4), ATP-citrate lyase (ACL) and glutamate dehydrogenase (GDH) content were quantified by western blotting. Our data showed that 8 weeks of chronic endurance exercise reduced GSIS by 50% in a dose-response manner according to weekly exercise frequency. PYC showed significant twofold increase in TRE3. PYC enhancement was even higher in TRE5 (p < 0.0001). PDH and PDK4 reached significant 25 and 50% enhancement, respectively compared with CTL. ACL and GDH also reported significant 50 and 75% increase, respectively. The absence of exercise-induced correlations among GSIS and anaplerotic/cataplerotic enzymes suggests that exercise may control insulin release by activating other signaling pathways. The observed anaplerotic and cataplerotic enzymes enhancement might be related to ?-cell surviving rather than insulin secretion. PMID:21287194

  1. Sodium salicylate reduces inhibitory postsynaptic currents in neurons of rat auditory cortex.

    PubMed

    Wang, Hai-Tao; Luo, Bin; Zhou, Ke-Qing; Xu, Tian-Le; Chen, Lin

    2006-05-01

    Sodium salicylate (SS) is a medicine for anti-inflammation and for chronic pain relief with a side effect of tinnitus. To understand the cellular mechanisms of tinnitus induced by SS in the central auditory system, we examined effects of SS on evoked and miniature inhibitory postsynaptic currents (eIPSCs and mIPSCs) recorded from layer II/III pyramidal neurons of rat auditory cortex in a brain slice preparation with whole-cell patch-clamp techniques. Both eIPSCs and mIPSCs recorded from the auditory cortex could be completely blocked by bicuculline, a selective GABA(A) receptor antagonist. SS did not change the input resistance of neurons but was found to reversibly depress eIPSCs in a concentration-dependent manner. SS reduced eIPSCs to 82.3% of the control level at 0.5 mM (n=7) and to 60.9% at 1.4 mM (n=12). In addition, SS at 1.4 mM significantly reduced the amplitude of mIPSCs from 24.12+/-1.44 pA to 19.92+/-1.31 pA and reduced the frequency of mIPSCs from 1.34+/-0.23 Hz to 0.89+/-0.13 Hz (n=6). Our results demonstrate that SS attenuates inhibitory postsynaptic currents in the auditory cortex, suggesting that the alteration of inhibitory neural circuits may be one of the cellular mechanisms for tinnitus induced by SS in the central auditory region. PMID:16632286

  2. Angiotensin Converting Enzyme Inhibition Reduces Cardiovascular Responses to Acute Stress in Myocardially Infarcted and Chronically Stressed Rats

    PubMed Central

    Cudnoch-Jedrzejewska, A.; Czarzasta, K.; Puchalska, L.; Dobruch, J.; Borowik, O.; Pachucki, J.; Szczepanska-Sadowska, E.

    2014-01-01

    Previous studies showed that chronically stressed and myocardially infarcted rats respond with exaggerated cardiovascular responses to acute stress. The present experiments were designed to elucidate whether this effect can be abolished by treatment with the angiotensin converting enzyme (ACE) inhibitor captopril. Sprague Dawley rats were subjected either to sham surgery (Groups 1 and 2) or to myocardial infarction (Groups 3 and 4). The rats of Groups 2 and 4 were also exposed to mild chronic stressing. Four weeks after the operation, mean arterial blood pressure (MABP) and heart rate (HR) were measured under resting conditions and after application of acute stress. The cardiovascular responses to the acute stress were determined again 24 h after administration of captopril orally. Captopril significantly reduced resting MABP in each group. Before administration of captopril, the maximum increases in MABP evoked by the acute stressor in all (infarcted and sham-operated) chronically stressed rats and also in the infarcted nonchronically stressed rats were significantly greater than in the sham-operated rats not exposed to chronic stressing. These differences were abolished by captopril. The results suggest that ACE may improve tolerance of acute stress in heart failure and during chronic stressing. PMID:25045668

  3. Solulin reduces infarct volume and regulates gene-expression in transient middle cerebral artery occlusion in rats

    PubMed Central

    2011-01-01

    Background Thrombolysis after acute ischemic stroke has only proven to be beneficial in a subset of patients. The soluble recombinant analogue of human thrombomodulin, Solulin, was studied in an in vivo rat model of acute ischemic stroke. Methods Male SD rats were subjected to 2 hrs of transient middle cerebral artery occlusion (tMCAO). Rats treated with Solulin intravenously shortly before reperfusion were compared to rats receiving normal saline i.v. with respect to infarct volumes, neurological deficits and mortality. Gene expression of IL-6, IL-1?, TNF-?, MMP-9, CD11B and GFAP were semiquantitatively analyzed by rtPCR of the penumbra. Results 24 hrs after reperfusion, rats were neurologically tested, euthanized and infarct volumes determined. Solulin significantly reduced mean total (p = 0.001), cortical (p = 0.002), and basal ganglia (p = 0.036) infarct volumes. Hippocampal infarct volumes (p = 0.191) were not significantly affected. Solulin significantly downregulated the expression of IL-1? (79%; p < 0.001), TNF-? (59%; p = 0.001), IL-6 (47%; p = 0.04), and CD11B (49%; p = 0.001) in the infarcted cortex compared to controls. Conclusions Solulin reduced mean total, cortical and basal ganglia infarct volumes and regulated a subset of cytokines and proteases after tMCAO suggesting the potency of this compound for therapeutic interventions. PMID:22082476

  4. Phenobarbital reduces blood glucose and gluconeogenesis through down-regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression in rats.

    PubMed

    Oda, Hiroaki; Okuda, Yuji; Yoshida, Yukiko; Kimura, Noriko; Kakinuma, Atsushi

    2015-10-23

    The regulatory mechanism of phosphoenolpyruvate carboykinase (GTP) (EC 4.1.1.32) (PEPCK) gene expression and gluconeogenesis by phenobarbital (PB), which is known to induce drug-metabolizing enzymes, was investigated. Higher level of PEPCK mRNA was observed in spherical rat primary hepatocytes on EHS-gel than monolayer hepatocytes on TIC (type I collagen). We found that PB directly suppressed PEPCK gene expression in spherical hepatocytes on EHS-gel, but not in those on TIC. PB strongly suppressed cAMP-dependent induction of PEPCK gene expression. Tyrosine aminotransferase (TAT), another gluconeogenic enzyme, was induced by cAMP, but not suppressed by PB. Chronic administration of PB reduced hepatic PEPCK mRNA in streptozotocin-induced diabetic and nondiabetic rats, and PB reduced blood glucose level in diabetic rats. Increased TAT mRNA in diabetic rats was not suppressed by PB. These results indicated that PB-dependent reduction is specific to PEPCK. From pyrvate challenge test, PB suppressed the increased gluconeogenesis in diabetic rats. PEPCK gene promoter activity was suppressed by PB in HepG2 cells. In conclusion, we found that spherical hepatocytes cultured on EHS-gel are capable to respond to PB to suppress PEPCK gene expression. Moreover, our results indicate that hypoglycemic action of PB result from transcriptional repression of PEPCK gene and subsequent suppression of gluconeogenesis. PMID:26348778

  5. Pentadecapeptide BPC 157 reduces bleeding time and thrombocytopenia after amputation in rats treated with heparin, warfarin or aspirin.

    PubMed

    Stupnisek, Mirjana; Franjic, Sandra; Drmic, Domagoj; Hrelec, Masa; Kolenc, Danijela; Radic, Bozo; Bojic, Davor; Vcev, Aleksandar; Seiwerth, Sven; Sikiric, Predrag

    2012-05-01

    Recently, in rat abdominal aorta terminoterminal-anastomosis the stable gastric pentadecapeptide BPC 157 prevents obstructive thrombus formation and rapidly destroys already formed obstructive thrombus. Also, BPC 157 wound healing may signify the clot as conductive matrix or "scaffold" to speed up wound healing process, and decrease bleeding. Here, in rats, BPC 157 (10 ?g/kg, 10 ng/kg) improved always reduced bleeding time and amount of bleeding after (tail) amputation only, heparin (250 mg/kg, 25mg/kg, 10mg/kg i.v.), warfarin (1.5mg/kg i.g. once daily for 3 consecutive days), aspirin (0.1g/kg i.g. (once daily/3 consecutive days) or 1.0 g/kg i.p. once), and amputation associated with those agents application. BPC 157 counteracting regimens (i.v., i.p., i.g. (immediately after any challenge)) correspondingly follow the route of bleeding-agents application. All heparin-, warfarin-, and aspirin-rats and normal-rats that received BPC 157 exhibited lesser fall in platelets count. BPC 157 attenuated over-increased APTT-, TT-values in 10mg/kg heparin-rats, but did not influence heparin activity (anti-Xa test). Indicatively, unless counteracted in BPC 157 rats, excessive bleeding-acute thrombocytopenia (<20% of initial values in heparin-rats) approaches substantial fall in platelets count known in type II HIT. Also, BPC 157 markedly prolongs the survival time (heparin-rats, 25mg/kg, right foot amputation). PMID:21840572

  6. Novel model for end-neuroma formation in the amputated rabbit forelimb

    PubMed Central

    2010-01-01

    Background The forelimb amputee poses many reconstructive challenges in the clinical setting, and there is a paucity of established surgical models for study. To further elucidate the pathogenic process in amputation neuroma formation, we created a reproducible, well-tolerated rabbit forelimb amputation model. Methods Upon approval from the Institutional Animal Care and Use Committee, 5 New Zealand White rabbits underwent left forelimb amputation. During this initial surgery, the median, radial and ulnar nerves were transected 1.6-2.5 (mean 2.0) cm distal to the brachial plexus, transposed onto the anterior chest wall and preserved at length. Six weeks subsequent to the amputation, the distal 5 mm of each neuroma was excised, and the remaining stump underwent histomorphometric analysis. Results The nerve cross sectional areas increased by factors of 1.99, 3.17, and 2.59 in the median (p = 0.077), radial (p < 0.0001) and the ulnar (p = 0.0026) nerves, respectively. At the axonal level, the number and cross-sectional area of myelinated fibers demonstrated an inverse relationship whereby the number of myelinated fibers in the median, radial and ulnar nerves increased by factors of 5.13 (p = 0.0043), 5.25 (p = 0.0056) and 5.59 (p = 0.0027), and the cross-sectional areas of these myelinated fibers decreased by factors of 4.62 (p < 0.001), 3.51 (p < 0.01), and 4.29 (p = 0.0259), respectively. Conclusion Given that the surgical model appears well-tolerated by the rabbits and that patterns of morphologic change are consistent and reproducible, we are encouraged to further investigate the utility of this model in the pathogenesis of neuroma formation. PMID:20298580

  7. The forelimb of Tyrannosaurus rex: a pathetic vestigial organ or an integral part of a fearsome predator?

    NASA Astrophysics Data System (ADS)

    Lee, Scott A.; Thomas, Joshua

    2014-03-01

    The function of the forelimb of Tyrannosaurus rex remains a controversial topic since it was too short to transfer food directly to the mouth. Since Tyrannosaurus rex was bipedal, the forelimb was not involved in locomotion. Suggestions for its possible use include providing an initial push for a laying animal to stand or to hold position during mating. We report numerical calculations performed to determine the moment of inertia of the forearm and the torques generated by the muscles of the arm, based on three-dimensional representations of the forelimb. Our results imply that the forelimb was capable of very high angular accelerations, on the order of 130 radians/s2. This corresponds to a tangential acceleration of the manus on the order of 90 m/s2 or about 9g, indicating that the manus could be moved extremely quickly to control a struggling prey animal immediately before the death blow was delivered by the teeth of Tyrannosaurus rex. Rather than a pathetic vestigial organ, these calculations suggest that the forelimbs were an integral part of the predation tactics of Tyrannosaurus rex.

  8. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans.

    PubMed

    Fabre, Anne-Claire; Cornette, Raphael; Goswami, Anjali; Peigné, Stéphane

    2015-06-01

    Convergence in morphology can result from evolutionary adaptations in species living in environments with similar selective pressures. Here, we investigate whether the shape of the forelimb long bones has converged in environments imposing similar functional constraints, using musteloid carnivores as a model. The limbs of quadrupeds are subjected to many factors that may influence their shape. They need to support body mass without collapsing or breaking, yet at the same time resist the stresses and strains induced by locomotion. This likely imposes strong constraints on their morphology. Our geometric morphometric analyses show that locomotion, body mass and phylogeny all influence the shape of the forelimb. Furthermore, we find a remarkable convergence between: (i) aquatic and semi-fossorial species, both displaying a robust forelimb, with a shape that improves stability and load transfer in response to the physical resistance imposed by the locomotor environment; and (ii) aquatic and arboreal/semi-arboreal species, with both groups displaying a broad capitulum. This augments the degree of pronation/supination, an important feature for climbing as well as grasping and manipulation ability, behaviors common to aquatic and arboreal species. In summary, our results highlight how musteloids with different locomotor ecologies show differences in the anatomy of their forelimb bones. Yet, functional demands for limb movement through dense media also result in convergence in forelimb long-bone shape between diverse groups, for example, otters and badgers. PMID:25994128

  9. Distinct Functional Modules for Discrete and Rhythmic Forelimb Movements in the Mouse Motor Cortex.

    PubMed

    Hira, Riichiro; Terada, Shin-Ichiro; Kondo, Masashi; Matsuzaki, Masanori

    2015-09-30

    Movements of animals are composed of two fundamental dynamics: discrete and rhythmic movements. Although the movements with distinct dynamics are thought to be differently processed in the CNS, it is unclear how they are represented in the cerebral cortex. Here, we investigated the cortical representation of movement dynamics by developing prolonged transcranial optogenetic stimulation (pTOS) using awake, channelrhodopsin-2 transgenic mice. We found two domains that induced discrete forelimb movements in the forward and backward directions, and these sandwiched a domain that generated rhythmic forelimb movements. The forward discrete movement had an intrinsic velocity profile and the rhythmic movement had an intrinsic oscillation frequency. Each of the forward discrete and rhythmic domains possessed intracortical synaptic connections within its own domain, independently projected to the spinal cord, and weakened the neuronal activity and movement induction of the other domain. pTOS-induced movements were also classified as ethologically relevant movements. Forepaw-to-mouth movement was mapped in a part of the forward discrete domain, while locomotion-like movement was in a part of the rhythmic domain. Interestingly, photostimulation of the rhythmic domain resulted in a nonrhythmic, continuous lever-pull movement when a lever was present. The motor cortex possesses functional modules for distinct movement dynamics, and these can adapt to environmental constraints for purposeful movements. Significance statement: Animal behavior has discrete and rhythmic components, such as reaching and locomotion. It is unclear how these movements with distinct dynamics are represented in the cerebral cortex. We investigated the dynamics of movements induced by long-duration transcranial photostimulation on the dorsal cortex of awake channelrhodopsin-2 transgenic mice. We found two domains causing forward and backward discrete forelimb movements and a domain for rhythmic forelimb movements. A domain for forward discrete movement and a domain for rhythmic movement mutually weakened neuronal activity and movement size. The photostimulation of the rhythmic domain also induced nonrhythmic, lever-pull movement, when the lever was present. Thus, the motor cortex has functional modules with distinct dynamics, and each module retains flexibility for adaptation to different environments. PMID:26424880

  10. Forelimb muscle architecture and myosin isoform composition in the groundhog (Marmota monax).

    PubMed

    Rupert, Joseph E; Rose, Jacob A; Organ, Jason M; Butcher, Michael T

    2015-01-15

    Scratch-digging mammals are commonly described as having large, powerful forelimb muscles for applying high force to excavate earth, yet studies quantifying the architectural properties of the musculature are largely unavailable. To further test hypotheses about traits that represent specializations for scratch-digging, we quantified muscle architectural properties and myosin expression in the forelimb of the groundhog (Marmota monax), a digger that constructs semi-complex burrows. Architectural properties measured were muscle moment arm, muscle mass (MM), belly length (ML), fascicle length (l(F)), pennation angle and physiological cross-sectional area (PCSA), and these metrics were used to estimate maximum isometric force, joint torque and power. Myosin heavy chain (MHC) isoform composition was determined in selected forelimb muscles by SDS-PAGE and densitometry analysis. Groundhogs have large limb retractors and elbow extensors that are capable of applying moderately high torque at the shoulder and elbow joints, respectively. Most of these muscles (e.g. latissimus dorsi and pectoralis superficialis) have high l(F)/ML ratios, indicating substantial shortening ability and moderate power. The unipennate triceps brachii long head has the largest PCSA and is capable of the highest joint torque at both the shoulder and elbow joints. The carpal and digital flexors show greater pennation and shorter fascicle lengths than the limb retractors and elbow extensors, resulting in higher PCSA/MM ratios and force production capacity. Moreover, the digital flexors have the capacity for both appreciable fascicle shortening and force production, indicating high muscle work potential. Overall, the forelimb musculature of the groundhog is capable of relatively low sustained force and power, and these properties are consistent with the findings of a predominant expression of the MHC-2A isoform. Aside from the apparent modifications to the digital flexors, the collective muscle properties observed are consistent with its behavioral classification as a less-specialized burrower and these may be more representative of traits common to numerous rodents with burrowing habits or mammals with some fossorial ability. PMID:25452499

  11. Photoacoustic detection of functional responses in the motor cortex of awake behaving monkey during forelimb movement

    NASA Astrophysics Data System (ADS)

    Jo, Janggun; Zhang, Hongyu; Cheney, Paul D.; Yang, Xinmai

    2012-11-01

    Photoacoustic (PA) imaging was applied to detect the neuronal activity in the motor cortex of an awake, behaving monkey during forelimb movement. An adult macaque monkey was trained to perform a reach-to-grasp task while PA images were acquired through a 30-mm diameter implanted cranial chamber. Increased PA signal amplitude results from an increase in regional blood volume and is interpreted as increased neuronal activity. Additionally, depth-resolved PA signals enabled the study of functional responses in deep cortical areas. The results demonstrate the feasibility of utilizing PA imaging for studies of functional activation of cerebral cortex in awake monkeys performing behavioral tasks.

  12. Reduced-calorie avocado paste attenuates metabolic factors associated with a hypercholesterolemic-high fructose diet in rats.

    PubMed

    Pahua-Ramos, María Elena; Garduño-Siciliano, Leticia; Dorantes-Alvarez, Lidia; Chamorro-Cevallos, German; Herrera-Martínez, Julieta; Osorio-Esquivel, Obed; Ortiz-Moreno, Alicia

    2014-03-01

    The objective of this study was to evaluate the effect of reduced-calorie avocado paste on lipid serum profile, insulin sensitivity, and hepatic steatosis in rats fed a hypercholesterolemic-high fructose diet. Thirty five male Wistar rats were randomly separated in five groups: Control group (ground commercial diet); hypercholesterolemic diet plus 60% fructose solution (HHF group); hypercholesterolemic diet plus 60% fructose solution supplemented with avocado pulp (HHF+A group); hypercholesterolemic diet plus 60% fructose solution supplemented with reduced-calorie avocado paste (HHF+P group); and hypercholesterolemic diet plus 60% fructose solution supplemented with a reduced-calorie avocado paste plus fiber (HHF+FP group). The A, P, and FP were supplemented at 2 g/kg/d. The study was carried out for seven weeks. Rats belonging to the HHF group exhibited significantly (P ≤ 0.05) higher total cholesterol, triglycerides, and insulin levels in serum as well as lower insulin sensitivity than the control group. Supplementation with reduced-calorie avocado paste showed a significant (P ≤ 0.05) decrease in total cholesterol (43.1%), low-density lipoprotein (45.4%), and triglycerides (32.8%) in plasma as well as elevated insulin sensitivity compared to the HHF group. Additionally, the liver enzymes alanine aminotransferase and aspartate aminotransferase decreased significantly in the HHF-P group (39.8 and 35.1%, respectively). These results are likely due to biocompounds present in the reduced-calorie avocado paste, such as polyphenols, carotenoids, chlorophylls, and dietary fibre, which are capable of reducing oxidative stress. Therefore, reduced-calorie avocado paste attenuates the effects of a hypercholesterolemic-high fructose diet in rats. PMID:24249159

  13. KGF-2 targets alveolar epithelia and capillary endothelia to reduce high altitude pulmonary oedema in rats

    PubMed Central

    She, Jun; Goolaerts, Arnaud; Shen, Jun; Bi, Jing; Tong, Lin; Gao, Lei; Song, Yuanlin; Bai, Chunxue

    2012-01-01

    High altitude pulmonary oedema (HAPE) severely affects non-acclimatized individuals and is characterized by alveolar flooding with protein- rich oedema as a consequence of blood-gas barrier disruption. Limited choice for prophylactic treatment warrants effective therapy against HAPE. Keratinocyte growth factor-2 (KGF-2) has shown efficiency in preventing alveolar epithelial cell DNA damages in vitro. In the current study, the effects of KGF-2 intratracheal instillation on mortality, lung liquid balance and lung histology were evaluated in our previously developed rat model of HAPE. We found that pre-treatment with KGF-2 (5 mg/kg) significantly decreased mortality, improved oxygenation and reduced lung wet-to-dry weight ratio by preventing alveolar-capillary barrier disruption demonstrated by histological examination and increasing alveolar fluid clearance up to 150%. In addition, KGF-2 significantly inhibited decrease of transendothelial permeability after exposure to hypoxia, accompanied by a 10-fold increase of Akt activity and inhibited apoptosis in human pulmonary microvascular endothelial cells, demonstrating attenuated endothelial apoptosis might contribute to reduction of endothelial permeability. These results showed the efficacy of KGF-2 on inhibition of endothelial cell apoptosis, preservation of alveolar-capillary barrier integrity and promotion of pulmonary oedema absorption in HAPE. Thus, KGF-2 may represent a potential drug candidate for the prevention of HAPE. PMID:22568566

  14. Hsp104 antagonizes ?-synuclein aggregation and reduces dopaminergic degeneration in a rat model of Parkinson disease

    PubMed Central

    Lo Bianco, Christophe; Shorter, James; Rgulier, Etienne; Lashuel, Hilal; Iwatsubo, Takeshi; Lindquist, Susan; Aebischer, Patrick

    2008-01-01

    Parkinson disease (PD) is characterized by dopaminergic neurodegeneration and intracellular inclusions of ?-synuclein amyloid fibers, which are stable and difficult to dissolve. Whether inclusions are neuroprotective or pathological remains controversial, because prefibrillar oligomers may be more toxic than amyloid inclusions. Thus, whether therapies should target inclusions, preamyloid oligomers, or both is a critically important issue. In yeast, the protein-remodeling factor Hsp104 cooperates with Hsp70 and Hsp40 to dissolve and reactivate aggregated proteins. Metazoans, however, have no Hsp104 ortholog. Here we introduced Hsp104 into a rat PD model. Remarkably, Hsp104 reduced formation of phosphorylated ?-synuclein inclusions and prevented nigrostriatal dopaminergic neurodegeneration induced by PD-linked ?-synuclein (A30P). An in vitro assay employing pure proteins revealed that Hsp104 prevented fibrillization of ?-synuclein and PD-linked variants (A30P, A53T, E46K). Hsp104 coupled ATP hydrolysis to the disassembly of preamyloid oligomers and amyloid fibers composed of ?-synuclein. Furthermore, the mammalian Hsp70 and Hsp40 chaperones, Hsc70 and Hdj2, enhanced ?-synuclein fiber disassembly by Hsp104. Hsp104 likely protects dopaminergic neurons by antagonizing toxic ?-synuclein assemblies and might have therapeutic potential for PD and other neurodegenerative amyloidoses. PMID:18704197

  15. Lycium barbarum polysaccharides reduce intestinal ischemia/reperfusion injuries in rats.

    PubMed

    Yang, Xuekang; Bai, Hua; Cai, Weixia; Li, Jun; Zhou, Qin; Wang, Yunchuan; Han, Juntao; Zhu, Xiongxiang; Dong, Maolong; Hu, Dahai

    2013-08-25

    Inflammation and oxidative stress exert important roles in intestinal ischemia-reperfusion injury (IRI). Lycium barbarum polysaccharides (LBPs) have shown effective antioxidative and immunomodulatory functions in different models. The purpose of the present study was to assess the effects and potential mechanisms of LBPs in intestinal IRI. Several free radical-generating and lipid peroxidation models were used to assess the antioxidant activities of LBPs in vitro. A common IRI model was used to induce intestinal injury by clamping and unclamping the superior mesenteric artery in rats. Changes in the malondialdehyde (MDA), tumor necrosis factor (TNF)-?, activated nuclear factor (NF)-?B, intracellular adhesion molecule (ICAM)-1, E-selectin, and related antioxidant enzyme levels, polymorphonuclear neutrophil (PMN) accumulation, intestinal permeability, and intestinal histology were examined. We found that LBPs exhibited marked inhibitory action against free radicals and lipid peroxidation in vitro. LBPs increased the levels of antioxidant enzymes and reduced intestinal oxidative injury in animal models of intestinal IRI. In addition, LBPs inhibited PMN accumulation and ICAM-1 expression and ameliorated changes in the TNF-? level, NF-?B activation, intestinal permeability, and histology. Our results indicate that LBPs treatment may protect against IRI-induced intestinal damage, possibly by inhibiting IRI-induced oxidative stress and inflammation. PMID:23743330

  16. DNA double strand break repair in brain: reduced NHEJ activity in aging rat neurons.

    PubMed

    Vyjayanti, V N; Rao, Kalluri Subba

    2006-01-23

    Linearised pUC 19 DNA with cohesive, blunt and non-matching ends, generated by prior treatment with different restriction enzymes was presented as substrate to measure the NHEJ activity to repair DNA double strand breaks in extracts prepared from isolated neurons from neonatal, young adult and old rat cerebral cortex. Highest end joining activity was noticed with the substrates having cohesive 3' overhang (PstI) or 5' overhang (EcoRI) ends and this activity is significantly reduced with age. However, blunt and non-matching ends were very poorly repaired at all ages. Further, the end joining activity in neurons is not faithful and sequence changes occur during the repair process. Also, the end joining activity in old neuronal extracts, but not in young extracts, was found to decline very rapidly with time of cold storage. These findings, the first of their kind, thus demonstrate that neuronal cells have the capacity to repair DNA double strand breaks through error prone NHEJ mode and that the cohesive end joining activity decreases with age of the animal. PMID:16226837

  17. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle.

    PubMed

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cssia; Salvini, Tania de Ftima; Durigan, Joao Luiz Quagliotti

    2016-01-01

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48?h post-injury decreased inflammatory processes (mRNA levels of TNF-?, NF-?B, TGF-? and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling. PMID:26725948

  18. Nicotinamide and 1-methylnicotinamide reduce homocysteine neurotoxicity in primary cultures of rat cerebellar granule cells.

    PubMed

    Slomka, Marta; Zieminska, Elzbieta; Lazarewicz, Jerzy

    2008-01-01

    Nicotinamide is an important cofactor in many metabolic pathways and a known neuroprotective substance, while its methylated product, 1-methylnicotinamide, is a suspected neurotoxin. Homocysteine is a risk factor in Alzheimer's disease and neurodegeneration, causing inhibition of methylation processes and inducing excitotoxicity. In this study, using primary cultures of rat cerebellar granule cells and propidium iodide staining, we investigated the neurotoxicity of nicotinamide and 1-methylnicotinamide, and their neuroprotective potential in acute and sub-acute homocysteine neurotoxicity. Our results demonstrated that nicotinamide and 1-methylnicotinamide applied for 24 h to cultures at concentrations of up to 25 mM had no effect on neuronal viability. Moreover, nicotinamide at concentrations of 5-20 mM and 1-methylnicotinamide at 1-10 mM applied to cells 24 h before, and for 24 h after an acute 30 min application of 25 mM D,L homocysteine, reduced neuronal damage. 1-Methylnicotinamide at concentrations of 250 and 500 muM showed neuroprotective activity during a sub-acute 24-h exposure to 2.5 mM D,L-homocysteine, while 5 and 25 mM nicotinamide also evoked neuroprotection. These findings do not support suggestions that 1-methylnicotinamide may act as an endogenous neurotoxic agent; rather, they indicate the neuroprotective ability of nicotinamide and 1-methylnicotinamide in homocysteine neurotoxicity. The exact mechanisms of this neuroprotection are unclear and require further investigation. PMID:18389009

  19. Preconditioning reduces hypoxia-evoked alterations in glutamatergic Ca2+ signaling in rat cortex.

    PubMed

    Semenov, Dmitry G; Samoilov, Mikhail O; Lazarewicz, Jerzy W

    2008-01-01

    The aims of this study were (1) to characterize calcium signaling in rat cortex induced by repeated in vitro application of the glutamatergic agonists L-glutamate, NMDA, AMPA and DHPG, (2) to analyze the influence of transient severe hypobaric hypoxia (180 Torr) administered in vivo on calcium responses to stimulation of glutamate receptors by their agonists, and (3) to evaluate the effects of preconditioning with intermittent mild hypobaric hypoxia (360 Torr) 24 h before the severe hypoxia, on these Ca2+ responses. Intracellular Ca2+ dynamics was studied using the fluorescent probes fura-2 and chlortetracycline to monitor free and bound calcium (Cai and Cab) respectively. In control cortical slices, application of L-glutamate, NMDA and AMPA induced concomitant increases in Cai and Cab, reflecting Ca2+ influx and its intracellular accumulation in neurons. DHPG, an agonist of group I mGlu receptors induced a decrease in Cab accompanied by a rise in Cai levels, indicating Ca2+ mobilization. In cortical slices collected 24 h after severe hypoxia, the responses of Cab to glutamate administration were increased, DHPG-induced shifts were reversed, the increase in Cab after the first application of AMPA was reduced, while after the second, Cab rises were potentiated, and the increases in Cab evoked by NMDA application were slightly suppressed. The alterations of responses in Cab to the selective agonists were completely prevented by preconditioning with mild hypoxia. Our results suggest that protection of normal glutamatergic calcium signaling contributes to tolerance to hypoxia induced by preconditioning. PMID:18511953

  20. Cryotherapy Reduces Inflammatory Response Without Altering Muscle Regeneration Process and Extracellular Matrix Remodeling of Rat Muscle

    PubMed Central

    Vieira Ramos, Gracielle; Pinheiro, Clara Maria; Messa, Sabrina Peviani; Delfino, Gabriel Borges; Marqueti, Rita de Cássia; Salvini, Tania de Fátima; Durigan, Joao Luiz Quagliotti

    2016-01-01

    The application of cryotherapy is widely used in sports medicine today. Cooling could minimize secondary hypoxic injury through the reduction of cellular metabolism and injury area. Conflicting results have also suggested cryotherapy could delay and impair the regeneration process. There are no definitive findings about the effects of cryotherapy on the process of muscle regeneration. The aim of the present study was to evaluate the effects of a clinical-like cryotherapy on inflammation, regeneration and extracellular matrix (ECM) remodeling on the Tibialis anterior (TA) muscle of rats 3, 7 and 14 days post-injury. It was observed that the intermittent application of cryotherapy (three 30-minute sessions, every 2 h) in the first 48 h post-injury decreased inflammatory processes (mRNA levels of TNF-α, NF-κB, TGF-β and MMP-9 and macrophage percentage). Cryotherapy did not alter regeneration markers such as injury area, desmin and Myod expression. Despite regulating Collagen I and III and their growth factors, cryotherapy did not alter collagen deposition. In summary, clinical-like cryotherapy reduces the inflammatory process through the decrease of macrophage infiltration and the accumulation of the inflammatory key markers without influencing muscle injury area and ECM remodeling. PMID:26725948

  1. Induction of ferroxidase enzymatic activity by copper reduces MPP+-evoked neurotoxicity in rats.

    PubMed

    Rubio-Osornio, Moiss; Montes, Sergio; Heras-Romero, Yessica; Guevara, Jorge; Rubio, Carmen; Aguilera, Penlope; Rivera-Mancia, Susana; Floriano-Snchez, Esa; Monroy-Noyola, Antonio; Ros, Camilo

    2013-03-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by decreased dopamine, intracellular inclusions (Lewy bodies) and brain iron deposits. PD has also been related with reduced ferroxidase activity, diminished antioxidant defenses and lipid peroxidation. Striatal injection of 1-methyl-4-phenylpyridinium (MPP(+)) into rodents reproduces the major biochemical characteristics of PD, including oxidative stress. Copper (Cu) plays an important role as prosthetic group of several proteins involved in iron metabolism and antioxidant responses, such as ceruloplasmin (Cp). In the present study, intraperitoneal CuSO4 injection (10?mol/kg) produced an insignificant increase of Cu content in striatum and midbrain (17.5% and 7%, respectively). After 10 and 11h, Cu induced 6- and 4-fold increase Cp mRNA in midbrain and striatum, respectively. Cu-supplement also produced a time-dependent increase ferroxidase activity in striatal tissue, reaching a maximum 16h after Cu treatment in midbrain; while, ferrous iron content diminished 18% in striatum and 8% in midbrain. In regard the PD model, we found that MPP(+) (10?g/8?L, intrastriatal), induced a significant (P<0.05) reduction of striatal ferroxidase activity; this effect was reverted by Cu pre-treatment 16h before MPP(+). Likewise, Cu-supplement prevented lipid fluorescent products formation in striatum, evaluated (P<0.01) 6h after MPP(+). In the long term, apomorphine-evoked circling behavior was evaluated 6 days after MPP(+) injury; Cu pre-treatment significantly reduced (P<0.05) the apomorphine-induced ipsilateral turns in MPP(+)-lesioned rats. These results suggest that Cu-induced expression of Cp could be an interesting scope against the deleterious effects of iron deposits in PD. PMID:23298529

  2. Pharmacological kynurenine 3-monooxygenase enzyme inhibition significantly reduces neuropathic pain in a rat model.

    PubMed

    Rojewska, Ewelina; Piotrowska, Anna; Makuch, Wioletta; Przewlocka, Barbara; Mika, Joanna

    2016-03-01

    Recent studies have highlighted the involvement of the kynurenine pathway in the pathology of neurodegenerative diseases, but the role of this system in neuropathic pain requires further extensive research. Therefore, the aim of our study was to examine the role of kynurenine 3-monooxygenase (Kmo), an enzyme that is important in this pathway, in a rat model of neuropathy after chronic constriction injury (CCI) to the sciatic nerve. For the first time, we demonstrated that the injury-induced increase in the Kmo mRNA levels in the spinal cord and the dorsal root ganglia (DRG) was reduced by chronic administration of the microglial inhibitor minocycline and that this effect paralleled a decrease in the intensity of neuropathy. Further, minocycline administration alleviated the lipopolysaccharide (LPS)-induced upregulation of Kmo mRNA expression in microglial cell cultures. Moreover, we demonstrated that not only indirect inhibition of Kmo using minocycline but also direct inhibition using Kmo inhibitors (Ro61-6048 and JM6) decreased neuropathic pain intensity on the third and the seventh days after CCI. Chronic Ro61-6048 administration diminished the protein levels of IBA-1, IL-6, IL-1beta and NOS2 in the spinal cord and/or the DRG. Both Kmo inhibitors potentiated the analgesic properties of morphine. In summary, our data suggest that in neuropathic pain model, inhibiting Kmo function significantly reduces pain symptoms and enhances the effectiveness of morphine. The results of our studies show that the kynurenine pathway is an important mediator of neuropathic pain pathology and indicate that Kmo represents a novel pharmacological target for the treatment of neuropathy. PMID:26524415

  3. Acute alcohol administration improves skilled reaching success in intact but not 6-OHDA dopamine depleted rats: a subsystems analysis of the motoric and anxiolytic effects of alcohol.

    PubMed

    Metz, Gerlinde A; Gonzalez, Claudia L R; Piecharka, Dionne M; Whishaw, Ian Q

    2003-06-16

    Low doses of alcohol impair movement and reduce anxiety. Most assessments of movement under ethyl alcohol (alcohol) in the rat have been tests of whole body movements, however. There has been no examination of the effects of alcohol on skilled limb movements, such as reaching for food with a forelimb. This was the purpose of the present study. Rats were trained to reach through a slot of a box with a forelimb in order to obtain a food pellet located on an external shelf. Once asymptotic performance was achieved, rats were given alcohol (20 ml of 8, 12 or 20% (v/v) solution) in separate tests to establish a relationship between alcohol ingestion and skilled reaching performance. Acute treatment with all doses of alcohol impaired postural support, but doses of 8 and 12% alcohol improved skilled reaching success. Qualitative analysis of the movements used for reaching at doses of 8 and 12% indicated that some limb components of the reaching movement were also impaired, perhaps secondarily due to impaired posture. In contrast, the reaching success of rats with unilateral dopamine depletion, induced with the neurotoxin 6-hydroxydopamine (6-OHDA) in the nigrostriatal bundle, was impaired by the same dose of alcohol that improved reaching success in control rats. The finding of improved success in reaching associated with reduced postural support in normal rats suggests a differential action of alcohol on movement subsystems underlying posture relative to skilled movement that depends upon an intact dopaminergic system. The results are also discussed with respect to the relationship of subsystems of movement and anxiety. PMID:12798278

  4. Treatment with the ghrelin-O-acyltransferase (GOAT) inhibitor GO-CoA-Tat reduces food intake by reducing meal frequency in rats.

    PubMed

    Teuffel, P; Wang, L; Prinz, P; Goebel-Stengel, M; Scharner, S; Kobelt, P; Hofmann, T; Rose, M; Klapp, B F; Reeve, J R; Stengel, A

    2015-08-01

    The ghrelin acylating enzyme ghrelin-O-acyltransferase (GOAT) was recently identified and implicated in several biological functions. However, the effects on food intake warrant further investigation. While several genetic GOAT mouse models showed normal food intake, acute blockade using a GOAT inhibitor resulted in reduced food intake. The underlying food intake microstructure remains to be established. In the present study we used an automated feeding monitoring system to assess food intake and the food intake microstructure. First, we validated the basal food intake and feeding behavior in rats using the automated monitoring system. Afterwards, we assessed the food intake microstructure following intraperitoneal injection of the GOAT inhibitor, GO-CoA-Tat (32, 96 and 288 ?g/kg) in freely fed male Sprague-Dawley rats. Rats showed a rapid habituation to the automated food intake monitoring system and food intake levels were similar compared to manual monitoring (P = 0.43). Rats housed under these conditions showed a physiological behavioral satiety sequence. Injection of the GOAT inhibitor resulted in a dose-dependent reduction of food intake with a maximum effect observed after 96 mg/kg (-27%, P = 0.03) compared to vehicle. This effect was delayed in onset as the first meal was not altered and lasted for a period of 2 h. Analysis of the food intake microstructure showed that the anorexigenic effect was due to a reduction of meal frequency (-15%, P = 0.04), whereas meal size (P = 0.29) was not altered compared to vehicle. In summary, pharmacological blockade of GOAT reduces dark phase food intake by an increase of satiety while satiation is not affected. PMID:26348074

  5. Fluoxetine, Desipramine, and the Dual Antidepressant Milnacipran Reduce Alcohol Self-Administration and/or Relapse in Dependent Rats

    PubMed Central

    O'Brien, Emmanuelle Simon; Legastelois, Rmi; Houchi, Hakim; Vilpoux, Catherine; Alaux-Cantin, Stphanie; Pierrefiche, Olivier; Andr, Etienne; Naassila, Mickal

    2011-01-01

    A few clinical studies have shown that dual antidepressants (serotonergic (5-HT) and noradrenergic (NE) transporter inhibitors, SNRIs) may be effective in alcoholism treatment. We studied the effect of the dual antidepressant milnacipran on ethanol operant self-administration in acutely withdrawn ethanol-dependent and in -non-dependent Wistar rats, and used fluoxetine and desipramine to dissect both 5-HT and NE components, respectively, in the effect of milnacipran. Milnacipran was also tested for relapse after protracted abstinence and on ethanol-induced (1.0?g/kg) conditioned place preference in control rats and ethanol-induced locomotor sensitization in DBA/2J female mice. Milnacipran dose dependently (540?mg/kg) attenuated the increased ethanol self-administration observed during early withdrawal and was more potent in preventing reinstatement in dependent rats after protracted abstinence as compared with non-dependent rats. Desipramine and fluoxetine (10?mg/kg) blocked ethanol self-administration during early withdrawal, and recovery was delayed in dependent animals, indicating a potent effect. Ethanol self-administration was also reduced 1 day after treatment with desipramine and fluoxetine but not with milnacipran. Finally, milnacipran prevented ethanol-induced place preference in ethanol-naive rats and reduced the magnitude of ethanol-induced sensitization associated with a delayed induction in mice. Desipramine (20?mg/kg) countered sensitization development and reduced its expression at 1 week after treatment; fluoxetine (10?mg/kg) reduced sensitization expression. Thus, 5-HT and NE transmissions during sensitization expression may mediate the effect of milnacipran on sensitization induction. These results support that SNRIs may have a potential use in alcoholism treatment. PMID:21430652

  6. Stimulus preexposure reduces generalization of conditioned taste aversions between alcohol and non-alcohol flavors in infant rats.

    PubMed

    Chotro, M Gabriela; Alonso, Gumersinda

    2003-02-01

    Results of 3 experiments showed that infant rats (age 13-17 days) generalize conditioned taste aversions between alcohol and non-alcohol tastes such as a mixture of sucrose and quinine, apple cider vinegar, or coffee. Nonreinforced preexposure to those tastes reduced generalized aversions between them. Generalization between alcohol and sucrose-quinine was reduced not only after preexposure to both tastes, but also when only the nonconditioned taste was preexposed, whereas with alcohol and vinegar, both tastes had to be preexposed to obtain that effect. In no case was generalization reduced when only the to-be-conditioned taste was preexposed. Previous experience with alcohol alone, as well as with similar gustatory stimuli, may enhance subjects' ability to differentiate them during infantile stages in rats. PMID:12619914

  7. Inhibition of NO biosynthesis, but not elevated blood pressure, reduces angiogenesis in rat models of secondary hypertension.

    PubMed

    Kiefer, Fabrice N; Misteli, Heidi; Kalak, Nabil; Tschudin, Karin; Fingerle, Jrgen; Van der Kooij, Maaike; Stumm, Michael; Sumanovski, Lazar T; Sieber, Cornel C; Battegay, Edouard J

    2002-01-01

    Arterial hypertension (AH) is characterized by reduced nitric oxide (NO) biosynthesis, vasoconstriction, and reduced microvascular density. In this study we asked whether AH also reduces the number of microvessels by impairing angiogenesis. AH was induced in Dahl salt-sensitive rats (DSS) with a salt diet and in Wistar-Kyoto rats by inhibiting NO formation with Nomega-nitro-L-arginine (NNA). Three weeks after induction of AH, two wound chambers containing collagen I (Vitrogen) were sutured into the mesenteric cavity of each animal. After additional 14 days, wound chamber neovascularization and the extent of vascularized connective tissue ingrowth were quantified. In NNA-induced AH, the number of newly formed vessels and the ingrowth of vascularized connective tissue into the wound chamber decreased as compared to controls. However, the number of newly formed vessels and the ingrowth of vascularized connective tissue did not change with increasing blood pressure in salt-fed DSS rats as compared to those fed a normal diet. Inhibition of NO biosynthesis, but not necessarily elevating blood pressure, reduces angiogenesis. Microvascular rarefaction in AH may be partially due to reduced angiogenesis because of impaired NO biosynthesis. PMID:12035872

  8. Noopept reduces the postischemic functional and metabolic disorders in the brain of rats with different sensitivity to hypoxia.

    PubMed

    Zarubina, I V; Shabanov, P D

    2009-03-01

    Chronic cerebral ischemia was induced by ligation of both common carotid arteries in Wistar rats, divided by sensitivity to hypoxia into highly sensitive and low-sensitive. Noopept (peptide preparation), injected (0.5 mg/kg) during 7 days after occlusion of the carotid arteries, reduced the neurological disorders in rats with high and low sensitivity to hypoxia and improved their survival during the postischemic period. Noopept normalized behavior disordered by cerebral ischemia (according to the open field and elevated plus maze tests), prevented accumulation of LPO products and inhibition of antioxidant systems in the brain of rats with high and low sensitivity to hypoxia. Hence, noopept exhibited a neuroprotective effect in cerebral ischemia. PMID:19529857

  9. Programmed administration of parathyroid hormone increases bone formation and reduces bone loss in hindlimb-unloaded ovariectomized rats

    NASA Technical Reports Server (NTRS)

    Turner, R. T.; Evans, G. L.; Cavolina, J. M.; Halloran, B.; Morey-Holton, E.

    1998-01-01

    Gonadal insufficiency and reduced mechanical usage are two important risk factors for osteoporosis. The beneficial effects of PTH therapy to reverse the estrogen deficiency-induced bone loss in the laboratory rat are well known, but the influence of mechanical usage in this response has not been established. In this study, the effects of programed administration of PTH on cancellous bone volume and turnover at the proximal tibial metaphysis were determined in hindlimb-unloaded, ovariectomized (OVX), 3-month-old Sprague-Dawley rats. PTH was administered to weight-bearing and hindlimb-unloaded OVX rats with osmotic pumps programed to deliver 20 microg human PTH (approximately 80 microg/kg x day) during a daily 1-h infusion for 7 days. Compared with sham-operated rats, OVX increased longitudinal and radial bone growth, increased indexes of cancellous bone turnover, and resulted in net resorption of cancellous bone. Hindlimb unloading of OVX rats decreased longitudinal and radial bone growth, decreased osteoblast number, increased osteoclast number, and resulted in a further decrease in cancellous bone volume compared with those in weight-bearing OVX rats. Programed administration of PTH had no effect on either radial or longitudinal bone growth in weight-bearing and hindlimb-unloaded OVX rats. PTH treatment had dramatic effects on selected cancellous bone measurements; PTH maintained cancellous bone volume in OVX weight-bearing rats and greatly reduced cancellous bone loss in OVX hindlimb-unloaded rats. In the latter animals, PTH treatment prevented the hindlimb unloading-induced reduction in trabecular thickness, but the hormone was ineffective in preventing either the increase in osteoclast number or the loss of trabecular plates. Importantly, PTH treatment increased the retention of a baseline flurochrome label, osteoblast number, and bone formation in the proximal tibial metaphysis regardless of the level of mechanical usage. These findings demonstrate that programed administration of PTH is effective in increasing osteoblast number and bone formation and has beneficial effects on bone volume in the absence of weight-bearing and gonadal hormones. We conclude that the actions of PTH on cancellous bone are independent of the level of mechanical usage.

  10. Losartan activates sirtuin 1 in rat reduced-size orthotopic liver transplantation

    PubMed Central

    Pantazi, Eirini; Bejaoui, Mohamed; Zaouali, Mohamed Amine; Folch-Puy, Emma; Pinto Rolo, Anabela; Panisello, Arnau; Palmeira, Carlos Marques; Roselló-Catafau, Joan

    2015-01-01

    AIM: To investigate a possible association between losartan and sirtuin 1 (SIRT1) in reduced-size orthotopic liver transplantation (ROLT) in rats. METHODS: Livers of male Sprague-Dawley rats (200-250 g) were preserved in University of Wisconsin preservation solution for 1 h at 4 °C prior to ROLT. In an additional group, an antagonist of angiotensin II type 1 receptor (AT1R), losartan, was orally administered (5 mg/kg) 24 h and 1 h before the surgical procedure to both the donors and the recipients. Transaminase (as an indicator of liver injury), SIRT1 activity, and nicotinamide adenine dinucleotide (NAD+, a co-factor necessary for SIRT1 activity) levels were determined by biochemical methods. Protein expression of SIRT1, acetylated FoxO1 (ac-FoxO1), NAMPT (the precursor of NAD+), heat shock proteins (HSP70, HO-1) expression, endoplasmic reticulum stress (GRP78, IRE1α, p-eIF2) and apoptosis (caspase 12 and caspase 3) parameters were determined by Western blot. Possible alterations in protein expression of mitogen activated protein kinases (MAPK), such as p-p38 and p-ERK, were also evaluated. Furthermore, the SIRT3 protein expression and mRNA levels were examined. RESULTS: The present study demonstrated that losartan administration led to diminished liver injury when compared to ROLT group, as evidenced by the significant decreases in alanine aminotransferase (358.3 ± 133.44 vs 206 ± 33.61, P < 0.05) and aspartate aminotransferase levels (893.57 ± 397.69 vs 500.85 ± 118.07, P < 0.05). The lessened hepatic injury in case of losartan was associated with enhanced SIRT1 protein expression and activity (5.27 ± 0.32 vs 6.08 ± 0.30, P < 0.05). This was concomitant with increased levels of NAD+ (0.87 ± 0.22 vs 1.195 ± 0.144, P < 0.05) the co-factor necessary for SIRT1 activity, as well as with decreases in ac-FoxO1 expression. Losartan treatment also provoked significant attenuation of endoplasmic reticulum stress parameters (GRP78, IRE1α, p-eIF2) which was consistent with reduced levels of both caspase 12 and caspase 3. Furthermore, losartan administration stimulated HSP70 protein expression and attenuated HO-1 expression. However, no changes were observed in protein or mRNA expression of SIRT3. Finally, the protein expression pattern of p-ERK and p-p38 were not altered upon losartan administration. CONCLUSION: The present study reports that losartan induces SIRT1 expression and activity, and that it reduces hepatic injury in a ROLT model. PMID:26185373

  11. Dietary resistant starch dose-dependently reduces adiposity in obesity-prone and obesity-resistant male rats

    PubMed Central

    2012-01-01

    Background Animal studies show that diets containing resistant starch (RS) at levels not achievable in the human diet result in lower body weight and/or adiposity in rodents. We aimed to determine whether RS dose-dependently reduces adiposity in obesity-prone (OP) and obesity-resistant (OR) rats. Methods Male Sprague–Dawley rats (n=120) were fed a moderate-fat, high-energy diet for 4 wk. Rats that gained the most weight (40%) were classified as obesity-prone (OP) and obesity-resistant (OR) rats were the 40% that gained the least weight. OP and OR rats were randomly allocated to one of six groups (n=8 for each phenotype). One group was killed for baseline measurements, the other five groups were allocated to AIN-93 based diets that contained 0, 4, 8, 12 and 16% RS (as high amylose maize starch) for 4 wk. These diets were matched for total carbohydrate content. At 0, 4 and 7 wk from the start of the study insulin sensitivity was calculated by homeostasis model assessment of insulin resistance (HOMA-IR) and adiposity was determined by dual-energy X-ray absorptiometry (DXA). At 8 wk, rats were euthanized and fat pad weights, intestinal digesta short chain fatty acid (SCFA) pools and plasma gut hormone levels were determined. Results Obesity prone rats gained less weight with 4, 12 and 16% RS compared to 0% RS, but the effect in OR animals was significant only at 16% RS. Irrespective of phenotype, diets containing ≥8% RS reduced adiposity compared to 0% RS. Energy intake decreased by 9.8 kJ/d for every 4% increase in RS. All diets containing RS increased total SCFA pools in the caecum and lowered plasma GIP concentrations compared to the 0% RS, whereas plasma GLP-1 and PYY were increased when the diet contained at least 8% RS. Insulin sensitivity was not affected by RS. Conclusion RS in amounts that could be potentially consumed by humans were effective in reducing adiposity and weight gain in OP and OR rats, due in part to a reduction in energy intake, and changes in gut hormones and large bowel carbohydrate fermentation. PMID:23098187

  12. Pristanic acid provokes lipid, protein, and DNA oxidative damage and reduces the antioxidant defenses in cerebellum of young rats.

    PubMed

    Busanello, Estela Natacha Brandt; Lobato, Vannessa Gonalves Araujo; Zanatta, ngela; Borges, Clarissa Gnther; Tonin, Anelise Miotti; Viegas, Carolina Maso; Manfredini, Vanusa; Ribeiro, Csar Augusto Joo; Vargas, Carmen Regla; de Souza, Diogo Onofre Gomes; Wajner, Moacir

    2014-12-01

    Zellweger syndrome (ZS) and some peroxisomal diseases are severe inherited disorders mainly characterized by neurological symptoms and cerebellum abnormalities, whose pathogenesis is poorly understood. Biochemically, these diseases are mainly characterized by accumulation of pristanic acid (Prist) and other fatty acids in the brain and other tissues. In this work, we evaluated the in vitro influence of Prist on redox homeostasis by measuring lipid, protein, and DNA damage, as well as the antioxidant defenses and the activities of aconitase and ?-ketoglutarate dehydrogenase in cerebellum of 30-day-old rats. The effect of Prist on DNA damage was also evaluated in blood of these animals. Some parameters were also evaluated in cerebellum from neonatal rats and in cerebellum neuronal cultures. Prist significantly increased malondialdehyde (MDA) levels and carbonyl formation and reduced sulfhydryl content and glutathione (GSH) concentrations in cerebellum of young rats. It also caused DNA strand damage in cerebellum and induced a high micronuclei frequency in blood. On the other hand, this fatty acid significantly reduced ?-ketoglutarate dehydrogenase and aconitase activities in rat cerebellum. We also verified that Prist-induced increase of MDA levels was totally prevented by melatonin and attenuated by ?-tocopherol but not by the nitric oxide synthase inhibitor N(?)-nitro-L-arginine methyl ester, indicating the involvement of reactive oxygen species in this effect. Cerebellum from neonate rats also showed marked alterations of redox homeostasis, including an increase of MDA levels and a decrease of sulfhydryl content and GSH concentrations elicited by Prist. Finally, Prist provoked an increase of dichlorofluorescein (DCFH) oxidation in cerebellum-cultivated neurons. Our present data indicate that Prist compromises redox homeostasis in rat cerebellum and blood and inhibits critical enzymes of the citric acid cycle that are susceptible to free radical attack. The present findings may contribute to clarify the pathogenesis of the cerebellar alterations observed in patients affected by ZS and some peroxisomal disorders in which Prist is accumulated. PMID:25172216

  13. Planar Covariation of Hindlimb and Forelimb Elevation Angles during Terrestrial and Aquatic Locomotion of Dogs

    PubMed Central

    Catavitello, Giovanna; Ivanenko, Yuri P.; Lacquaniti, Francesco

    2015-01-01

    The rich repertoire of locomotor behaviors in quadrupedal animals requires flexible inter-limb and inter-segmental coordination. Here we studied the kinematic coordination of different gaits (walk, trot, gallop, and swim) of six dogs (Canis lupus familiaris) and, in particular, the planar covariation of limb segment elevation angles. The results showed significant variations in the relative duration of rearward limb movement, amplitude of angular motion, and inter-limb coordination, with gait patterns ranging from a lateral sequence of footfalls during walking to a diagonal sequence in swimming. Despite these differences, the planar law of inter-segmental coordination was maintained across different gaits in both forelimbs and hindlimbs. Notably, phase relationships and orientation of the covariation plane were highly limb specific, consistent with the functional differences in their neural control. Factor analysis of published muscle activity data also demonstrated differences in the characteristic timing of basic activation patterns of the forelimbs and hindlimbs. Overall, the results demonstrate that the planar covariation of inter-segmental coordination has emerged for both fore- and hindlimbs and all gaits, although in a limb-specific manner. PMID:26218076

  14. Three-dimensional skeletal kinematics of the shoulder girdle and forelimb in walking Alligator.

    PubMed

    Baier, David B; Gatesy, Stephen M

    2013-11-01

    Crocodylians occupy a key phylogenetic position for investigations of archosaur locomotor evolution. Compared to the well-studied hindlimb, relatively little is known about the skeletal movements and mechanics of the forelimb. In this study, we employed manual markerless XROMM (X-ray Reconstruction Of Moving Morphology) to measure detailed 3-D kinematics of the shoulder girdle and forelimb bones of American alligators (Alligator mississippiensis) walking on a treadmill. Digital models of the interclavicle, scapulocoracoid, humerus, radius and ulna were created using a 3-D laser scanner. Models were articulated and aligned to simultaneously recorded frames of fluoroscopic and standard light video to reconstruct and measure joint motion. Joint coordinate systems were established for the coracosternal, glenohumeral and elbow joints. Our analysis revealed that the limb joints only account for about half of fore/aft limb excursion; the remaining excursion results from shoulder girdle movements and lateral bending of the vertebral column. Considerable motion of each scapulocoracoid relative to the vertebral column is consistent with coracosternal mobility. The hemisellar design of the glenohumeral joint permits some additional translation, or sliding in the fore-aft plane, but this movement does not have much of an effect on the distal excursion of the bone. PMID:24102540

  15. Comparison of the muscle mechanics of the forelimb of three climbers.

    PubMed

    Stalheim-Smith, A

    1989-10-01

    The climbing behavior, muscle mechanics, and functional properties of selected forelimb muscles were examined to ascertain how three distantly related mammals may be adapted for climbing. To determine if features of the fox squirrel (Stalheim-Smith: J. Morphol. 180:55-68, '84) are general or unique features for a climber, two distantly related climbers, the raccoon (Procyon lotor) and the opossum (Didelphis virginiana), were studied. Muscle mechanics varied: the elbow flexors of the fox squirrel produced significantly more torque per unit mass than did the corresponding muscles of the opossum except at 80 degrees, but not more than the corresponding muscles of the raccoon. On the other hand, there were no statistically significant differences in torque per unit mass among the elbow extensors of the three climbers. Both elbow flexors and elbow extensor had faster contraction times and were more fatigable in the fox squirrel than in the opossum or in the raccoon. The data suggest that the musculoskeletal characteristics of the forelimbs of climbers vary according to behavioral, and possibly phylogenetic, differences. PMID:2810372

  16. Three-dimensional skeletal kinematics of the shoulder girdle and forelimb in walking Alligator

    PubMed Central

    Baier, David B; Gatesy, Stephen M

    2013-01-01

    Crocodylians occupy a key phylogenetic position for investigations of archosaur locomotor evolution. Compared to the well-studied hindlimb, relatively little is known about the skeletal movements and mechanics of the forelimb. In this study, we employed manual markerless XROMM (X-ray Reconstruction Of Moving Morphology) to measure detailed 3-D kinematics of the shoulder girdle and forelimb bones of American alligators (Alligator mississippiensis) walking on a treadmill. Digital models of the interclavicle, scapulocoracoid, humerus, radius and ulna were created using a 3-D laser scanner. Models were articulated and aligned to simultaneously recorded frames of fluoroscopic and standard light video to reconstruct and measure joint motion. Joint coordinate systems were established for the coracosternal, glenohumeral and elbow joints. Our analysis revealed that the limb joints only account for about half of fore/aft limb excursion; the remaining excursion results from shoulder girdle movements and lateral bending of the vertebral column. Considerable motion of each scapulocoracoid relative to the vertebral column is consistent with coracosternal mobility. The hemisellar design of the glenohumeral joint permits some additional translation, or sliding in the fore-aft plane, but this movement does not have much of an effect on the distal excursion of the bone. PMID:24102540

  17. (-) Epicatechin prevents alterations in lysosomal glycohydrolases, cathepsins and reduces myocardial infarct size in isoproterenol-induced myocardial infarcted rats.

    PubMed

    Prince, Ponnian Stanely Mainzen

    2013-04-15

    The preventive effects of (-) epicatechin on oxidative stress, cardiac mitochondrial damage, altered membrane bound adenosine triphosphatases and minerals were reported previously in isoproterenol-induced myocardial infarction model. Leakage of lysosomal glycohydrolases and cathepsins play an important role in the pathology of myocardial infarction. This study was aimed to evaluate the preventive effects of (-) epicatechin on alterations in lysosomal glycohydrolases, cathepsins and myocardial infarct size in isoproterenol-induced myocardial infarcted rats. Male albino Wistar rats were pretreated with (-) epicatechin (20mg/kg body weight) daily for a period of 21 days. After the pretreatment period, isoproterenol (100mg/kg body weight) was injected subcutaneously into the rats at an interval of 24h for two days to induce myocardial infarction. The levels of serum cardiac troponin-I and the activities of serum and heart lysosomal enzymes (?-glucuronidase, ?-N-acetyl glucosaminidase, ?-galactosidase, cathepsin-B and cathepsin-D) were increased significantly (P<0.05) and the activities of ?-glucuronidase and cathepsin-D in the heart lysosomal fractions were significantly (P<0.05) decreased in isoproterenol-induced myocardial infarcted rats. The in vitro study revealed the potent antioxidant action of (-) epicatechin. Pretreatment with (-) epicatechin daily for a period of 21 days prevented the leakage of cardiac marker, lysosomal glycohydrolases, cathepsins, and reduced infarct size, thereby protecting the lysosomal membranes in isoproterenol-induced myocardial infarcted rats, by virtue of its membrane stabilizing property. PMID:23454557

  18. Supplementation of rats with a lutein mixture preserved with vitamin E reduces tissue phylloquinone and menaquinone-4.

    PubMed

    Mitchell, G V; Cook, K K; Jenkins, M Y; Grundel, E

    2001-01-01

    The modulation of tissue concentrations of vitamin K by a lutein supplement preserved with natural vitamin E was studied in Fischer 344 rats. Vitamin K is necessary for blood coagulation and may be essential for tissue and bone health. Weanling male rats were fed the AIN-93G diet (control) or modified AIN-93G diets containing 0.3, 0.6, 1.2, 2.4 and 4.8 g supplement/100 g diet for 8 weeks. The supplement contained 5% lutein, 0.22% zeaxanthin and 2.2% natural vitamin E as a preservative. Concentrations of trans-phylloquinone in the plasma (nmol/mmol triglycerides) and heart were significantly reduced (P < or = 0.05) in rats fed the supplement. The reductions in trans-phylloquinone in the heart ranged from approximately 20 to 60% of the control. Concentrations of phylloquinone in the liver were significantly lower in the rats fed the supplement at levels > or = 1.2 g/100 g diet than in the control rats. Ratios of cis/trans phylloquinone in liver and heart increased and concentrations of menaquinone-4 in heart decreased as the dietary level of the lutein supplement increased. The results suggest that the lutein supplement affected the absorption, tissue uptake and/or turnover rate of vitamin K. The presence of other components in the supplement confounded the interpretation of the biological effects of lutein alone on vitamin K metabolism. PMID:11276919

  19. Ursodeoxycholic acid pretreatment reduces oral bioavailability of the multiple drug resistance-associated protein 2 substrate baicalin in rats.

    PubMed

    Wu, Tao; Li, Xi-Ping; Xu, Yan-Jiao; Du, Guang; Liu, Dong

    2013-11-01

    Baicalin is a major bioactive component of Scutellaria baicalensis and a substrate of multiple drug resistance-associated protein 2. Expression of multiple drug resistance-associated protein 2 is regulated by NF-E2-related factor 2. The aim of this study was to explore whether ursodeoxycholic acid, an NF-E2-related factor 2 activator, could influence the oral bioavailability of baicalin. A single dose of baicalin (200?mg/kg) was given orally to rats pretreated with ursodeoxycholic acid (75?mg/kg and 150?mg/kg, per day, intragastrically) or normal saline (per day, intragastrically) for six consecutive days. The plasma concentration of baicalin was measured with the HPLC method. The result indicated that the oral bioavailability of baicalin was significantly and dose-dependently reduced in rats pretreated with ursodeoxycholic acid. Compared with control rats, the mean area under concentration-time curve of baicalin was reduced from 13.25??0.24?mg/L h to 7.62??0.15?mg/L h and 4.97??0.21?mg/L h, and the C(max) value was decreased from 1.31??0.03?mg/L to 0.62??0.05?mg/L and 0.36??0.04?mg/L in rats pretreated with ursodeoxycholic acid at doses of 75?mg/kg and 150?mg/kg, respectively, for six consecutive days. Hence, ursodeoxycholic acid treatment reduced the oral bioavailability of baicalin in rats, probably due to the enhanced efflux of baicalin from the intestine and liver by multiple drug resistance-associated protein 2. PMID:24135887

  20. Reduced connectivity and inter-hemispheric symmetry of the sensory system in a rat model of vulnerability to developing depression.

    PubMed

    Ben-Shimol, E; Gass, N; Vollmayr, B; Sartorius, A; Goelman, G

    2015-12-01

    Defining the markers corresponding to a high risk of developing depression in humans would have major clinical significance; however, few studies have been conducted since they are not only complex but also require homogeneous groups. This study compared congenital learned helpless (cLH) rats, selectively bred for high stress sensitivity and learned helplessness (LH) behavior, to congenital non-learned helpless (cNLH) rats that were bred for resistance to uncontrollable stress. Nave cLH rats show some depression-like behavior but full LH behavior need additional stress, making this model ideal for studying vulnerability to depression. Resting-state functional connectivity obtained from seed correlation analysis was calculated for multiple regions that were selected by anatomy AND by a data-driven approach, independently. Significance was determined by t-statistic AND by permutation analysis, independently. A significant reduction in functional connectivity was observed by both analyses in the cLH rats in the sensory, motor, cingulate, infralimbic, accumbens and the raphe nucleus. These reductions corresponded primarily to reduced inter-hemispheric connectivity. The main reduction however was in the sensory system. It is argued that reduced connectivity and inter-hemispheric connectivity of the sensory system reflects an internal convergence state which may precede other depressive symptomatology and therefore could be used as markers for vulnerability to the development of depression. PMID:26431623

  1. N-Acetylcysteine and deferoxamine reduce pulmonary oxidative stress and inflammation in rats after coal dust exposure

    SciTech Connect

    Pinho, R.A.; Silveira, P.C.L.; Silva, L.A.; Streck, E.L.; Dal-Pizzol, F.; Moreira, J.C.F.

    2005-11-01

    Coal dust inhalation induces oxidative damage and inflammatory infiltration on lung parenchyma. Thus, the aim of this study was to determine whether N-acetylcysteine (NAC) administered alone or in combination with deferoxamine (DFX), significantly reduced the inflammatory infiltration and oxidative damage in the lungs of rats exposed to coal dust. Forty-two male Wistar rats (200-250 g) were exposed to the coal dust (3 mg/0.5 mL saline, 3 days/week, for 3 weeks) by intratracheal instillation. The animals were randomly divided into three groups: saline 0.9% (n = 8), supplemented with NAC (20 mg/kg of body weight/day, intraperitoneal injection (i.p.)) (n = 8), and supplemented with NAC (20 mg/kg of body weight/day, i.p.) plus DFX (20 mg/kg of body weight/week) (n = 8). Control animals received only saline solution (0.5 mL). Lactate dehydrogenase activity and total cell number were determined in the bronchoalveolar lavage fluid. We determined lipid peroxidation and oxidative protein damage parameters and catalase and superoxide dismutase activities in the lungs of animals. Intratracheal instillation of coal dust in the lungs of rats led to an inflammatory response and induced significant oxidative damage. The administration of NAC alone or in association with DFX reduced the inflammatory response and the oxidative stress parameters in rats exposed to coal dust.

  2. Prolactin anterior pituitary expression and circulating levels are reduced in obese and diabetic rats: role of TGF-? and TNF-?.

    PubMed

    Lemini, Mara; Ruiz-Herrera, Xarubet; Ledesma-Colunga, Mara G; Daz-Lezama, Nundehui; De Los Ros, Ericka A; Lpez-Barrera, Fernando; Mndez, Isabel; Martnez de la Escalera, Gonzalo; Macotela, Yazmn; Clapp, Carmen

    2015-05-01

    The levels of the hormone prolactin (PRL) are reduced in the circulation of patients with Type 2 diabetes and in obese children, and lower systemic PRL levels correlate with an increased prevalence of diabetes and a higher risk of metabolic syndrome. The secretion of anterior pituitary (AP) PRL in metabolic diseases may be influenced by the interplay between transforming growth factor ? (TGF-?) and tumor necrosis factor ? (TNF-?), which inhibit and can stimulate AP PRL synthesis, respectively, and are known contributors to insulin resistance and metabolic complications. Here, we show that TGF-? and TNF-? antagonize the effect of each other on the expression and release of PRL by the GH4C1 lactotrope cell line. The levels of AP mRNA and circulating PRL decrease in high-fat diet-induced obese rats in parallel with increased and reduced AP levels of TGF-? and TNF-? mRNA, respectively. Likewise, AP expression and circulating levels of PRL are reduced in streptozotocin-induced diabetic rats and are associated with higher AP expression and protein levels of TGF-? and TNF-?. The opposing effects of the two cytokines on cultured AP cells, together with their altered expression in the AP of obese and diabetic rats suggest they are linked to the reduced PRL production and secretion characteristics of metabolic diseases. PMID:25715833

  3. Ranolazine, a partial fatty acid oxidation inhibitor, reduces myocardial infarct size and cardiac troponin T release in the rat.

    PubMed

    Zacharowski, K; Blackburn, B; Thiemermann, C

    2001-04-20

    Ranolazine reduces cellular acetyl-CoA content via inhibition of fatty acid beta-oxidation and activates pyruvate dehydrogenase. This metabolic switch increases ATP production per mole of oxygen consumed, reduces the rise in lactic acid and acidosis, and maintains myocardial function under conditions of reduced myocardial oxygen delivery. It is still unclear whether ranolazine causes a reduction of (i) infarct size and (ii) cardiac troponin T release, in a male Wistar rat model of left anterior descending coronary artery occlusion (25 min) and reperfusion (2 h). Rats were subjected to saline infusion (n=12) or ranolazine (bolus injection: 10 mg/kg plus infusion: 9.6 mg/kg/h, n=12), 30 min prior to left anterior descending coronary artery occlusion-reperfusion, respectively. Ranolazine caused a significant reduction in myocardial infarct size of approximately 33% compared to saline control (P<0.05). In addition, infusion of ranolazine significantly attenuated the release of cardiac troponin T into the plasma from 65+/-14 (controls) to 12+/-2 ng/ml. This study demonstrates for the first time that ranolazine significantly reduces (i) infarct size and (ii) cardiac troponin T release in rats subjected to left anterior descending coronary artery occlusion-reperfusion. PMID:11334871

  4. Milk-soluble formula increases food intake and reduces Il6 expression in elderly rat hypothalami.

    PubMed

    Ould Hamouda, Hassina; Delplanque, Bernadette; Benomar, Yacir; Crpin, Delphine; Riffault, Laure; LeRuyet, Pascale; Bonhomme, Ccile; Taouis, Mohammed

    2015-07-01

    Malnutrition in the elderly is accompanied by several metabolic dysfunctions, especially alterations in energy homeostasis regulation and a loss of insulin responsiveness. Nutritional recommendations aim to enrich food with high protein and energy supplements, and protein composition and lipid quality have been widely studied. Despite the numerous studies that have examined attempts to overcome malnutrition in the elderly through such nutritional supplementation, it is still necessary to study the effects of a combination of protein, lipids, and vitamin D (VitD). This can be done in animal models of elderly malnutrition. In the present study, we investigated the effects of several diet formulae on insulin responsiveness, inflammation, and the hypothalamic expression of key genes that are involved in energy homeostasis control. To mimic elderly malnutrition in humans, elderly Wistar rats were food restricted (R, -50%) for 12 weeks and then refed for 4 weeks with one of four different isocaloric diets: a control diet; a diet where milk soluble protein (MSP) replaced casein; a blend of milk fat, rapeseed, and DHA (MRD); or a full formula (FF) diet that combined MSP and a blend of MRD (FF). All of the refeeding diets contained VitD. We concluded that: (i) food restriction led to the upregulation of insulin receptor in liver and adipose tissue accompanied by increased Tnf? in the hypothalamus; (ii) in all of the refed groups, refeeding led to similar body weight gain during the refeeding period; and (iii) refeeding with MSP and MRD diets induced higher food intake on the fourth week of refeeding, and this increase was associated with reduced hypothalamic interleukin 6 expression. PMID:25994005

  5. Polychlorinated biphenyls and methylmercury act synergistically to reduce rat brain dopamine content in vitro.

    PubMed Central

    Bemis, J C; Seegal, R F

    1999-01-01

    Consumption of contaminated Great Lakes fish by pregnant women is associated with decreased birth weight and deficits in cognitive function in their infants and children. These fish contain many known and suspected anthropogenic neurotoxicants, making it difficult to determine which contaminant(s) are responsible for the observed deficits. We have undertaken a series of experiments to determine the relevant toxicants by comparing the neurotoxic effects of two of these contaminants--polychlorinated biphenyls (PCBs) and methylmercury (MeHg)--both of which are recognized neurotoxicants. Striatal punches obtained from adult rat brain were exposed to PCBs only, MeHg only, or the two in combination, and tissue and media concentrations of dopamine (DA) and its metabolites were determined by high performance liquid chromatography. Exposure to PCBs only reduced tissue DA and elevated media DA in a dose-dependent fashion. Exposure to MeHg only did not significantly affect either measure. However, when striatal punches were simultaneously exposed to PCBs and MeHg, there were significantly greater decreases in tissue DA concentrations and elevations in media DA than those caused by PCBs only, in the absence of changes in media lactate dehydrogenase concentrations. Elevations in both tissue and media 3, 4-dihydroxyphenylacetic acid concentrations were also observed. We suggest that the significant interactions between these two toxicants may be due to a common site of action (i.e., toxicant-induced increases in intracellular calcium and changes in second messenger systems) that influences DA function. The synergism between these contaminants suggests that future revisions of fish-consumption guidelines should consider contaminant interactions. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:10544155

  6. Melatonin reduces excitotoxic blood-brain barrier breakdown in neonatal rats.

    PubMed

    Moretti, R; Zanin, A; Pansiot, J; Spiri, D; Manganozzi, L; Kratzer, I; Favero, G; Vasiljevic, A; Rinaldi, V E; Pic, I; Massano, D; D'Agostino, I; Baburamani, A; La Rocca, M A; Rodella, L F; Rezzani, R; Ek, J; Strazielle, N; Ghersi-Egea, J-F; Gressens, P; Titomanlio, L

    2015-12-17

    The blood-brain barrier (BBB) is a complex structure that protects the central nervous system from peripheral insults. Understanding the molecular basis of BBB function and dysfunction holds significant potential for future strategies to prevent and treat neurological damage. The aim of our study was (1) to investigate BBB alterations following excitotoxicity and (2) to test the protective properties of melatonin. Ibotenate, a glutamate analog, was injected intracerebrally in postnatal day 5 (P5) rat pups to mimic excitotoxic injury. Animals were than randomly divided into two groups, one receiving intraperitoneal (i.p.) melatonin injections (5mg/kg), and the other phosphate buffer saline (PBS) injections. Pups were sacrificed 2, 4 and 18h after ibotenate injection. We determined lesion size at 5days by histology, the location and organization of tight junction (TJ) proteins by immunohistochemical studies, and BBB leakage by dextran extravasation. Expression levels of BBB genes (TJs, efflux transporters and detoxification enzymes) were determined in the cortex and choroid plexus by quantitative PCR. Dextran extravasation was seen 2h after the insult, suggesting a rapid BBB breakdown that was resolved by 4h. Extravasation was significantly reduced in melatonin-treated pups. Gene expression and immunohistochemical assays showed dynamic BBB modifications during the first 4h, partially prevented by melatonin. Lesion-size measurements confirmed white matter neuroprotection by melatonin. Our study is the first to evaluate BBB structure and function at a very early time point following excitotoxicity in neonates. Melatonin neuroprotects by preventing TJ modifications and BBB disruption at this early phase, before its previously demonstrated anti-inflammatory, antioxidant and axonal regrowth-promoting effects. PMID:26542996

  7. Glucose-6-phosphate reduces calcium accumulation in rat brain endoplasmic reticulum

    PubMed Central

    Cole, Jeffrey T.; Kean, William S.; Pollard, Harvey B.; Verma, Ajay; Watson, William D.

    2012-01-01

    Brain cells expend large amounts of energy sequestering calcium (Ca2+), while loss of Ca2+ compartmentalization leads to cell damage or death. Upon cell entry, glucose is converted to glucose-6-phosphate (G6P), a parent substrate to several metabolic major pathways, including glycolysis. In several tissues, G6P alters the ability of the endoplasmic reticulum (ER) to sequester Ca2+. This led to the hypothesis that G6P regulates Ca2+ accumulation by acting as an endogenous ligand for sarco-endoplasmic reticulum calcium ATPase (SERCA). Whole brain ER microsomes were pooled from adult male Sprague-Dawley rats. Using radio-isotopic assays, 45Ca2+ accumulation was quantified following incubation with increasing amounts of G6P, in the presence or absence of thapsigargin, a potent SERCA inhibitor. To qualitatively assess SERCA activity, the simultaneous release of inorganic phosphate (Pi) coupled with Ca2+ accumulation was quantified. Addition of G6P significantly and decreased Ca2+ accumulation in a dose-dependent fashion (110 mM). The reduction in Ca2+ accumulation was not significantly different that seen with addition of thapsigargin. Addition of glucose-1-phosphate or fructose-6-phosphate, or other glucose metabolic pathway intermediates, had no effect on Ca2+ accumulation. Further, the release of Pi was markedly decreased, indicating G6P-mediated SERCA inhibition as the responsible mechanism for reduced Ca2+ uptake. Simultaneous addition of thapsigargin and G6P did decrease inorganic phosphate in comparison to either treatment alone, which suggests that the two treatments have different mechanisms of action. Therefore, G6P may be a novel, endogenous regulator of SERCA activity. Additionally, pathological conditions observed during disease states that disrupt glucose homeostasis, may be attributable to Ca2+ dystasis caused by altered G6P regulation of SERCA activity. PMID:22529775

  8. Fenugreek seeds reduce aluminum toxicity associated with renal failure in rats.

    PubMed

    Belad-Nouira, Yosra; Bakhta, Hayfa; Haouas, Zohra; Flehi-Slim, Imen; Ben Cheikh, Hassen

    2013-12-01

    Despite the reports on safety concerns regarding the relationship between aluminum salts and neurological and bone disease, many countries continue to use aluminum as phosphate binders among patients with renal failure. In search for a diet supplement that could reduce aluminum toxicity related to renal failure, we carried out this prospective animal study in which the fenugreek seeds were assessed for their effects on rats nephrotoxicity induced by aluminum chloride (AlCl3). Oral AlCl3 administration during 5 months (500 mg/kg bw i.g for one month then 1600 ppm via drinking water) led to plasma biochemical changes, an inhibition of alkaline phosphatase (ALP), a decrease of total antioxidant status (TAS), and an induction of lipid peroxidation (LPO) in the blood and brain, in addition to kidney atrophy and morphological alterations at the level of Bowman's capsule, the glomerulus and different sorts of tubules, reminiscent of some known kidney disease. The treatment with the whole fenugreek seed powder (FSP) (5% in the diet) during the last 2 months showed its effectiveness in restoring normal plasma values of urea, creatinine, ALP and glucose, as well as re-increasing the TAS, inhibiting LPO and alleviating histopathological changes in the injured kidneys. This study highlights the induced nephrotoxicicity, as well as the related toxicity in the brain and bone, by chronic oral ingestion of the aluminum salts. However, the maintenance of a diet supplemented with fenugreek seeds could offer protection for the kidney, bone and brain, at the same time. PMID:24353832

  9. Hepatic AQP9 expression in male rats is reduced in response to PPARα agonist treatment.

    PubMed

    Lebeck, Janne; Cheema, Muhammad Umar; Skowronski, Mariusz T; Nielsen, Søren; Praetorius, Jeppe

    2015-02-01

    The peroxisome proliferator receptor α (PPARα) is a key regulator of the hepatic response to fasting with effects on both lipid and carbohydrate metabolism. A role in hepatic glycerol metabolism has also been found; however, the results are somewhat contradictive. Aquaporin 9 (AQP9) is a pore-forming transmembrane protein that facilitates hepatic uptake of glycerol. Its expression is inversely regulated by insulin in male rodents, with increased expression during fasting. Previous results indicate that PPARα plays a crucial role in the induction of AQP9 mRNA during fasting. In the present study, we use PPARα agonists to explore the effect of PPARα activation on hepatic AQP9 expression and on the abundance of enzymes involved in glycerol metabolism using both in vivo and in vitro systems. In male rats with free access to food, treatment with the PPARα agonist WY 14643 (3 mg·kg(-1)·day(-1)) caused a 50% reduction in hepatic AQP9 abundance with the effect being restricted to AQP9 expressed in periportal hepatocytes. The pharmacological activation of PPARα had no effect on the abundance of GlyK, whereas it caused an increased expression of hepatic GPD1, GPAT1, and L-FABP protein. In WIF-B9 and HepG2 hepatocytes, both WY 14643 and another PPARα agonist GW 7647 reduced the abundance of AQP9 protein. In conclusion, pharmacological PPARα activation results in a marked reduction in the abundance of AQP9 in periportal hepatocytes. Together with the effect on the enzymatic apparatus for glycerol metabolism, our results suggest that PPARα activation in the fed state directs glycerol into glycerolipid synthesis rather than into de novo synthesis of glucose. PMID:25477377

  10. Enzymatically synthesized glycogen reduces lipid accumulation in diet-induced obese rats.

    PubMed

    Furuyashiki, Takashi; Ogawa, Rui; Nakayama, Yoko; Honda, Kazuhisa; Kamisoyama, Hiroshi; Takata, Hiroki; Yasuda, Michiko; Kuriki, Takashi; Ashida, Hitoshi

    2013-09-01

    Based on a recent study indicating that enzymatically synthesized glycogen (ESG) possesses a dietary, fiber-like action, we hypothesized that ESG can reduce the risk of obesity. In this study, the antiobesity effects of ESG were investigated in a model of diet-induced obesity. Male Sprague-Dawley rats were divided into 4 groups and fed a normal or high-fat diet, with or without 20% ESG, for 4 weeks. Body weight, food intake, lipid deposition in the white adipose tissues and liver, fecal lipid excretion, and plasma lipid profiles were measured. At week 3, the body fat mass was measured using an x-ray computed tomography system, which showed that ESG significantly suppressed the high-fat diet-induced lipid accumulation. Similar results were observed in the weight of the adipose tissue after the experiment. Moreover, ESG significantly suppressed the lipid accumulation in the liver but increased fecal lipid excretion. The plasma concentrations of triacylglycerol and nonesterified fatty acid were lowered after a high-fat diet, whereas the total bile acid concentration was increased by ESG. However, the hepatic messenger RNA (mRNA) levels of enzymes related to lipid metabolism were not affected by ESG. Conversely, the mRNA levels of long-chain acyl-CoA dehydrogenase and medium-chain acyl-CoA dehydrogenase were up-regulated by ESG in the muscle. These results suggest that the combined effects of increased fecal lipid excretion, increased mRNA levels of enzymes that oxidize fatty acids in the muscle, and increased total bile acid concentration in the plasma mediate the inhibitory effect of ESG on lipid accumulation. PMID:24034574

  11. Fenugreek seeds reduce aluminum toxicity associated with renal failure in rats

    PubMed Central

    Bakhta, Hayfa; Haouas, Zohra; Flehi-Slim, Imen; Ben Cheikh, Hassen

    2013-01-01

    Despite the reports on safety concerns regarding the relationship between aluminum salts and neurological and bone disease, many countries continue to use aluminum as phosphate binders among patients with renal failure. In search for a diet supplement that could reduce aluminum toxicity related to renal failure, we carried out this prospective animal study in which the fenugreek seeds were assessed for their effects on rats nephrotoxicity induced by aluminum chloride (AlCl3). Oral AlCl3 administration during 5 months (500 mg/kg bw i.g for one month then 1600 ppm via drinking water) led to plasma biochemical changes, an inhibition of alkaline phosphatase (ALP), a decrease of total antioxidant status (TAS), and an induction of lipid peroxidation (LPO) in the blood and brain, in addition to kidney atrophy and morphological alterations at the level of Bowman's capsule, the glomerulus and different sorts of tubules, reminiscent of some known kidney disease. The treatment with the whole fenugreek seed powder (FSP) (5% in the diet) during the last 2 months showed its effectiveness in restoring normal plasma values of urea, creatinine, ALP and glucose, as well as re-increasing the TAS, inhibiting LPO and alleviating histopathological changes in the injured kidneys. This study highlights the induced nephrotoxicicity, as well as the related toxicity in the brain and bone, by chronic oral ingestion of the aluminum salts. However, the maintenance of a diet supplemented with fenugreek seeds could offer protection for the kidney, bone and brain, at the same time. PMID:24353832

  12. Prenatal ethanol exposure reduces phosphoinositide hydrolysis stimulated by quisqualate in rat cerebellar granule cell cultures.

    PubMed

    Rhodes, P G; Cai, Z; Zhu, N

    1994-09-01

    Prenatal ethanol exposure-induced alteration in poly-phosphoinositide (PPI) hydrolysis stimulated by excitatory amino acids (EAA) was studied in rat cerebellar granule cells previously labeled with [3H]myoinositol. The prenatal exposure to ethanol was achieved via maternal consumption of a Sustacal (chocolate flavored) liquid diet containing either 5% ethanol (w/v, 35% of calories) or isocaloric sucrose (pair-fed) substituted for ethanol from gestation d 11 until the day of parturition. The ionotropic glutamate receptor agonists, N-methyl-D-aspartate, kainate or (+/-)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) (100 microM each) induced a two- to four-fold increase in PPI hydrolysis over the basal level, regardless of the liquid dietary treatment. Stimulation with quisqualate (QA), an agonist activating both metabotropic and ionotropic glutamate receptors, resulted in a much stronger and dose-dependent response in PPI hydrolysis and exposure in utero to ethanol significantly reduced this response. Tetrodotoxin, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), or (+/-)-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP) had no effect on QA-stimulated PPI hydrolysis nor on the suppression of this hydrolysis by ethanol. Exposure in utero to ethanol did not affect PPI hydrolysis stimulated by a selective metabotropic glutamate receptor agonist, trans-(+/-)-l-amino-1,3-cyclopentanedicarboxylic acid (t-ACPD). Although the PPI hydrolysis stimulated by t-ACPD could be blocked by (RS)-alpha-methyl-4-carboxyphenylglycine (MCPG), an antagonist of the metabotropic glutamate receptor, MCPG was incapable of affecting QA-induced PPI hydrolysis and the suppressive effects of prenatal ethanol exposure on this hydrolysis. Taken together, the data suggest that the long-lasting suppressive effects of prenatal ethanol exposure on QA-stimulated PPI hydrolysis in cerebellar granule cell cultures is through a metabotropic QA receptor pathway that may be different from the one activated by t-ACPD. PMID:7893331

  13. All-Trans Retinoic Acid Reduces Joint Adhesion Formation: An Experimental Study in Rats

    PubMed Central

    Wang, Yuguang; Zhang, Chao; Cheng, Huan; Douglas, Patricia; Wang, Zhiqiang; Lu, Yun

    2015-01-01

    Background Intra-articular adhesion is a common complication in post-surgical knees. The formation of post-surgical joint adhesion could lead to serious conditions. All-trans retinoic acid (ATRA) is a physiological metabolite of vitamin A that has a wide range of biological activities. The aim of the study was to verify the effects of (ATRA) in preventing adhesions in the post-operative rat knee. Material/Methods Eighty healthy adult male Wistar rats underwent femoral condyle-exposing surgery. After surgery, cotton pads soaked with the vehicle or various concentrations of ATRA (0.1%, 0.05%, 0.025%) were applied to the surgery site for 5 min. The post-surgical knee joints were fixed with micro-Kirschner wires in a flexed position for 4 weeks. The rats were killed 4 weeks after surgery. The effect of ATRA on the prevention of intra-articular adhesion was evaluated using histological analyses, hydroxyproline content, visual score, and inflammatory factor activity evaluation. Results No obvious postoperative complications or signs of infection in the rats were observed. None of the rats died before the scheduled time. The rats in the 0.1% ATRA group showed better outcomes, as suggested by the visual scores, hydroxyproline contents, and inflammatory factors expressional levels, than the other 2 groups. The local application of 0.1% ATRA was able to suppress adhesions, collagen expression, and inflammatory activity in the post-surgical rat knees. Conclusions In the rat knee surgery model, the application of intra-articular ATRA was able to decrease intra-articular scar adhesion formation, collagen expression, and inflammatory activities. ATRA was found to work in a dose-dependent manner, with 0.1% being possible optimal concentration. PMID:26044570

  14. Direct gene delivery of human tissue kallikrein reduces blood pressure in spontaneously hypertensive rats.

    PubMed Central

    Wang, C; Chao, L; Chao, J

    1995-01-01

    Hypertension is a multigene and multifactorial disorder affecting approximately 25% of the population. To demonstrate potential therapeutic effects of human tissue kallikrein in hypertension, spontaneously hypertensive rats were subjected to somatic gene therapy. Two human tissue kallikrein DNA constructs, one under the promoter control of the metallothionein metal response element and the other under the control of the Rous sarcoma virus 3'-LTR, were generated. We delivered naked DNA constructs into spontaneously hypertensive rats via intravenous injection. The expression of human tissue kallikrein in rats was identified in the heart, lung, and kidney by reverse transcription polymerase chain reaction followed by Southern blot analysis and an ELISA specific for human tissue kallikrein. A single injection of both human kallikrein plasmid DNA constructs caused a sustained reduction of blood pressure which began 1 wk after injection and continued for 6 wk. A maximal effect of blood pressure reduction of 46 mmHg in rats was observed 2-3 wk after injection with kallikrein DNA as compared to rats with vector DNA (n = 6, P < 0.05). The hypotensive effect caused by somatic gene delivery of human tissue kallikrein in hypertensive rats is reversed by subcutaneous injection of aprotinin, a potent tissue kallikrein inhibitor. No antibodies to either human tissue kallikrein or kallikrein DNA were detected in rat sera after injection of the human kallikrein gene. These results show that direct gene delivery of human tissue kallikrein causes a sustained reduction in systolic blood pressure in genetically hypertensive rats and indicate that the feasibility of kallikrein gene therapy for treating human hypertension should be studied. Images PMID:7535795

  15. Yacon diet (Smallanthus sonchifolius, Asteraceae) improves hepatic insulin resistance via reducing Trb3 expression in Zucker fa/fa rats

    PubMed Central

    Satoh, H; Audrey Nguyen, M T; Kudoh, A; Watanabe, T

    2013-01-01

    Objective: Yacon is a perennial plant forming a clump of >20 big, edible underground tubers. Yacon, which originates from South America, has become increasingly popular in the Japanese diet for tubers have a lower caloric value and a high fiber content. Recent studies have suggested that yacon feeding ameliorates diabetes as indicated by reduced blood glucose. Methods: We fed male Zucker fa/fa rats for 5 weeks with isocaloric normal chow diet containing from 6.5% control aroid or 6.5% yacon. Insulin sensitivity was evaluated by euglycemic-hyperinsulinemic clamp study. Results: Body weight was comparable between yacon- and aroid-fed rats. In the basal state, yacon feeding had an effect to lower fasting glucose levels from 184.1±4.1 to 167.8±2.7 mg dl−1 (P<0.01), as well as basal hepatic glucose output (HGO) from 9.9±0.4 to 7.4 ± 0.2 mg kg−1 per min (P<0.01). During the clamp studies, the glucose infusion rate required to maintain euglycemia was increased by 12.3% in yacon-fed rat. The insulin suppression of HGO was also increased in yacon-fed rats compared with control rats (85.3±2.4% vs 77.0±3.0% P<0.05), whereas the glucose disposal rate was not different between the two groups. Consistent with the clamp data, the insulin-stimulated phosphorylation of Akt was significantly enhanced in liver but not in skeletal muscle. Furthermore, tribbles 3 (Trb3) expression, which is a negative regulator of Akt activity, was markedly reduced in the liver of yacon-fed rats compared with control rats. Conclusion: These results indicate that the effect of yacon feeding to reduce blood glucose is likely due to its beneficial effects on hepatic insulin sensitivity in the insulin resistant state. PMID:23712282

  16. 2,3-dimercaptopropane-1-sodium sulfonate for reducing retention of ingested /sup 203/Hg in suckling rats

    SciTech Connect

    Kostial, K.; Kargacin, B.; Landeka, M.

    1988-08-01

    The purpose of this work was to determine the efficiency of treatment with 2,3-dimercaptopropane-1-sodium sulfonate (DMPS) for reducing retention of ingested mercuric chloride in suckling rats. The authors wanted to estimate whether the previously mentioned efficacy of oral chelation therapy is related to DTPA only or also applies to other chelating agents. This might be important for establishing treatment for ingested metals and radionuclides in the youngest age group.

  17. Dapagliflozin reduces the amplitude of shortening and Ca(2+) transient in ventricular myocytes from streptozotocin-induced diabetic rats.

    PubMed

    Hamouda, N N; Sydorenko, V; Qureshi, M A; Alkaabi, J M; Oz, M; Howarth, F C

    2015-02-01

    In the management of type 2 diabetes mellitus, Dapagliflozin (DAPA) is a newly introduced selective sodium-glucose co-transporter 2 inhibitor which promotes renal glucose excretion. Little is known about the effects of DAPA on the electromechanical function of the heart. This study investigated the effects of DAPA on ventricular myocyte shortening and intracellular Ca(2+) transport in streptozotocin (STZ)-induced diabetic rats. Shortening, Ca(2+) transients, myofilament sensitivity to Ca(2+) and sarcoplasmic reticulum Ca(2+), and intracellular Ca(2+) current were measured in isolated rats ventricular myocytes by video edge detection, fluorescence photometry, and whole-cell patch-clamp techniques. Diabetes was characterized in STZ-treated rats by a fourfold increase in blood glucose (440 25 mg/dl, n = 21) compared to Controls (98 2 mg/dl, n = 19). DAPA reduced the amplitude of shortening in Control (76.68 2.28 %, n = 37) and STZ (76.58 1.89 %, n = 42) ventricular myocytes, and reduced the amplitude of the Ca(2+) transients in Control and STZ ventricular myocytes with greater effects in STZ (71.45 5.35 %, n = 16) myocytes compared to Controls (92.01 2.72 %, n = 17). Myofilament sensitivity to Ca(2+) and sarcoplasmic reticulum Ca(2+) were not significantly altered by DAPA in either STZ or Control myocytes. L-type Ca(2+) current was reduced in STZ myocytes compared to Controls and was further reduced by DAPA. In conclusion, alterations in the mechanism(s) of Ca(2+) transport may partly underlie the negative inotropic effects of DAPA in ventricular myocytes from STZ-treated and Control rats. PMID:25351341

  18. 5α-Reduced Neurosteroids Sex-Dependently Reverse Central Prenatal Programming of Neuroendocrine Stress Responses in Rats

    PubMed Central

    Donadio, Marcio V.; Yao, Song T.; Greenwood, Mike; Seckl, Jonathan R.; Murphy, David; Russell, John A.

    2015-01-01

    Maternal social stress during late pregnancy programs hypothalamo-pituitary-adrenal (HPA) axis hyper-responsiveness to stressors, such that adult prenatally stressed (PNS) offspring display exaggerated HPA axis responses to a physical stressor (systemic interleukin-1β; IL-1β) in adulthood, compared with controls. IL-1β acts via a noradrenergic relay from the nucleus tractus solitarii (NTS) to corticotropin releasing hormone neurons in the paraventricular nucleus (PVN). Neurosteroids can reduce HPA axis responses, so allopregnanolone and 3β-androstanediol (3β-diol; 5α-reduced metabolites of progesterone and testosterone, respectively) were given subacutely (over 24 h) to PNS rats to seek reversal of the “programmed” hyper-responsive HPA phenotype. Allopregnanolone attenuated ACTH responses to IL-1β (500 ng/kg, i.v.) in PNS females, but not in PNS males. However, 3β-diol normalized HPA axis responses to IL-1β in PNS males. Impaired testosterone and progesterone metabolism or increased secretion in PNS rats was indicated by greater plasma testosterone and progesterone concentrations in male and female PNS rats, respectively. Deficits in central neurosteroid production were indicated by reduced 5α-reductase mRNA levels in both male and female PNS offspring in the NTS, and in the PVN in males. In PNS females, adenovirus-mediated gene transfer was used to upregulate expression of 5α-reductase and 3α-hydroxysteroid dehydrogenase mRNAs in the NTS, and this normalized hyperactive HPA axis responses to IL-1β. Thus, downregulation of neurosteroid production in the brain may underlie HPA axis hyper-responsiveness in prenatally programmed offspring, and administration of 5α-reduced steroids acutely to PNS rats overrides programming of hyperactive HPA axis responses to immune challenge in a sex-dependent manner. PMID:25589761

  19. Concurrent repletion of iron and zinc reduces intestinal oxidative damage in iron- and zinc-deficient rats

    PubMed Central

    Bodiga, Sreedhar; Krishnapillai, Madhavan Nair

    2007-01-01

    AIM: To understand the interactions between iron and zinc during absorption in iron- and zinc-deficient rats, and their consequences on intestinal oxidant-antioxidant balance. METHODS: Twenty-four weanling Wistar-Kyoto rats fed an iron- and zinc-deficient diet (< 6.5 mg Fe and 4.0 mg Zn/kg diet) for 4 wk were randomly divided into three groups (n = 8, each) and orally gavaged with 4 mg iron, 3.3 mg zinc, or 4 mg iron + 3.3 mg zinc for 2 wk. At the last day of repletion, 3 h before the animals were sacrificed, they received either 37 mBq of 55Fe or 65Zn, to study their localization in the intestine, using microautoradiography. Hemoglobin, iron and zinc content in plasma and liver were measured as indicators of iron and zinc status. Duodenal sections were used for immunochemical staining of ferritin and metallothionein. Duodenal homogenates (mitochondrial and cytosolic fractions), were used to assess aconitase activity, oxidative stress, functional integrity and the response of antioxidant enzymes. RESULTS: Concurrent repletion of iron- and zinc-deficient rats showed reduced localization of these minerals compared to rats that were teated with iron or zinc alone; these data provide evidence for antagonistic interactions. This resulted in reduced formation of lipid and protein oxidation products and better functional integrity of the intestinal mucosa. Further, combined repletion lowered iron-associated aconitase activity and ferritin expression, but significantly elevated metallothionein and glutathione levels in the intestinal mucosa. The mechanism of interactions during combined supplementation and its subsequent effects appeared to be due to through modulation of cytosolic aconitase, which in turn influenced the labile iron pool and metallothionein levels, and hence reduced intestinal oxidative damage. CONCLUSION: Concurrent administration of iron and zinc corrects iron and zinc deficiency, and also reduces the intestinal oxidative damage associated with iron supplementation. PMID:17963296

  20. Lactobacillus plantarum NDC 75017 alleviates the learning and memory ability in aging rats by reducing mitochondrial dysfunction

    PubMed Central

    PENG, XINYAN; MENG, JIONG; CHI, TAO; LIU, PENG; MAN, CHAOXIN; LIU, SHAOMIN; GUO, YING; JIANG, YUJUN

    2014-01-01

    The aim of the present study was to investigate the protective effect of Lactobacillus plantarum NDC 75017 on D-galactose (D-gal)-induced mitochondrial dysfunction in the rat cerebral cortex. Fifty rats were randomly divided into five groups (n=10 in each group). The rats in the aging model group were subcutaneously injected with 100 mg/kg D-gal and those in the protective groups were additionally orally administered L. plantarum NDC 75017 at doses of 1108, 1109 or 11010 CFU/100 mg body weight/day, respectively. The control rats were administrated an equal volume of the vehicle. Following continuous treatment for seven weeks, the learning and memory abilities and mitochondrial ultrastructure, function and adenosine triphosphate (ATP) levels were examined. The results showed that the learning and memory abilities and mitochondrial levels of ATP were significantly decreased in the D-gal-induced aging model group compared with those in the control group (P<0.01). In addition, marked changes in the mitochondrial functions and ultrastructure were observed between the groups. Seven weeks of L. plantarum NDC 75017 and D-gal coadministration significantly improved the learning and memory abilities of the rats compared with the D-gal-induced aging model group. Furthermore, the combination regime significantly improved the mitochondrial ultrastructure and functions, including the mitochondrial respiratory chain, mitochondrial membrane potential and mitochondrial permeability transition. The results revealed that the L. plantarum NDC 75017 was able to alleviate learning and memory injuries in aging rats by reducing the mitochondrial dysfunction induced by D-gal. PMID:25371742

  1. Adenoviral-mediated transfer of the human endothelial nitric oxide synthase gene reduces acute hypoxic pulmonary vasoconstriction in rats.

    PubMed Central

    Janssens, S P; Bloch, K D; Nong, Z; Gerard, R D; Zoldhelyi, P; Collen, D

    1996-01-01

    Nitric oxide (NO), a vasodilator involved in the regulation of pulmonary vascular tone, is synthesized by a family of enzymes, nitric oxide synthases (NOS). To investigate whether adenoviral-mediated overexpression of constitutive endothelial NOS (ceNOS) would attenuate hypoxic pulmonary vasoconstriction, we aerosolized 3 X 10(9) plaque forming units of a recombinant adenovirus containing the ceNOS gene (AdCMVceNOS) into rat lungs. Four days after infection, transgene expression was confirmed using immunoblot techniques. Diffuse ceNOS immunostaining was detected in alveoli and medium-sized and small pulmonary vessels of AdCMVceNOS-transduced lungs. AdCMVceNOS-transduction was associated with an 86% increase in [3H]arginine to [3H]citrulline conversion and a rise in pulmonary cGMP levels from 7 +/- 1 to 59 +/- 9 pmol/mg protein in lungs from AdCMVceNOS versus control rats, (P < 0.05). During acute hypoxia (FIO2 = 0.10) for 25 min, mean pulmonary artery pressure (PAP) increased significantly from 17 +/- 1 to 27 +/- 1 mmHg in rats aerosolized with saline (n = 4) and from 18 +/- 1 to 28 +/- 1 mmHg in rats given an adenoviral vector expressing a nuclear-targeted beta-galactosidase gene (AdCMV beta gal, n = 8). In contrast, in AdCMVceNOS-transduced rats (n = 8) the hypoxia-induced increase in PAP was significantly attenuated (18 +/- 1 to 23 +/- 2 mmHg). Systemic blood pressure was not affected by aerosol gene transfer. Thus, adenoviral-mediated ceNOS gene transfer to rat lungs increases ceNOS expression and activity, and reduces acute hypoxic pulmonary vasoconstriction. Aerosolized recombinant adenovirus overexpressing vasodilatory proteins can act as a selective pulmonary vasodilator and may hold promise as a future therapeutic strategy for pulmonary hypertension. PMID:8755640

  2. Biliary and duodenal drainage for reducing the radiotoxic risk of antineoplastic 131I-hypericin in rat models.

    PubMed

    Li, Yue; Jiang, Cuihua; Jiang, Xiao; Sun, Ziping; Cona, Marlein Miranda; Liu, Wei; Zhang, Jian; Ni, Yicheng

    2015-12-01

    Necrosis targeting radiopharmaceutical (131)I-hypericin ((131)I-Hyp) has been studied for the therapy of solid malignancies. However, serious side effects may be caused by its unwanted radioactivity after being metabolized by the liver and excreted via bile in the digestive tract. Thus the aim of this study was to investigate two kinds of bile draining for reducing them. Thirty-eight normal rats were intravenously injected with (131)I-Hyp, 24 of which were subjected to the common bile duct (CBD) drainage for gamma counting of collected bile and tissues during 1-6, 7-12, 13-18, and 19-24 h (n = 6 each group), 12 of which were divided into two groups (n = 6 each group) for comparison of the drainage efficiency between CBD catheterization and duodenum intubation by collecting their bile at the first 4 h. Afterwards the 12 rats together with the last two rats which were not drained were scanned via single-photon emission computerized tomography/computed tomography (SPECT/CT) to check the differences. The images showed that almost no intestinal radioactivity can be found in those 12 drained rats while discernible radioactivity in the two undrained rats. The results also indicated that the most of the radioactivity was excreted from the bile within the first 12 h, accounting to 92% within 24 h. The radioactive metabolites in the small and large intestines peaked at 12 h and 18 h, respectively. No differences were found in those two ways of drainages. Thus bile drainage is highly recommended for the patients who were treated by (131)I-Hyp if human being and rats have a similar excretion pattern. This strategy can be clinically achieved by using a nasobiliary or nasoduodenal drainage catheter. PMID:25956680

  3. Lactobacillus plantarum NDC 75017 alleviates the learning and memory ability in aging rats by reducing mitochondrial dysfunction.

    PubMed

    Peng, Xinyan; Meng, Jiong; Chi, Tao; Liu, Peng; Man, Chaoxin; Liu, Shaomin; Guo, Ying; Jiang, Yujun

    2014-12-01

    The aim of the present study was to investigate the protective effect of Lactobacillus plantarum NDC 75017 on D-galactose (D-gal)-induced mitochondrial dysfunction in the rat cerebral cortex. Fifty rats were randomly divided into five groups (n=10 in each group). The rats in the aging model group were subcutaneously injected with 100 mg/kg D-gal and those in the protective groups were additionally orally administered L. plantarum NDC 75017 at doses of 110(8), 110(9) or 110(10) CFU/100 mg body weight/day, respectively. The control rats were administrated an equal volume of the vehicle. Following continuous treatment for seven weeks, the learning and memory abilities and mitochondrial ultrastructure, function and adenosine triphosphate (ATP) levels were examined. The results showed that the learning and memory abilities and mitochondrial levels of ATP were significantly decreased in the D-gal-induced aging model group compared with those in the control group (P<0.01). In addition, marked changes in the mitochondrial functions and ultrastructure were observed between the groups. Seven weeks of L. plantarum NDC 75017 and D-gal coadministration significantly improved the learning and memory abilities of the rats compared with the D-gal-induced aging model group. Furthermore, the combination regime significantly improved the mitochondrial ultrastructure and functions, including the mitochondrial respiratory chain, mitochondrial membrane potential and mitochondrial permeability transition. The results revealed that the L. plantarum NDC 75017 was able to alleviate learning and memory injuries in aging rats by reducing the mitochondrial dysfunction induced by D-gal. PMID:25371742

  4. S-nitrosoglutathione reduces tau hyper-phosphorylation and provides neuroprotection in rat model of chronic cerebral hypoperfusion.

    PubMed

    Won, Je-Seong; Annamalai, Balasubramaniam; Choi, Seungho; Singh, Inderjit; Singh, Avtar K

    2015-10-22

    We have previously reported that treatment of rats subjected to permanent bilateral common carotid artery occlusion (pBCCAO), a model of chronic cerebral hypoperfusion (CCH), with S-nitrosoglutathione (GSNO), an endogenous nitric oxide carrier, improved cognitive functions and decreased amyloid-? accumulation in the brains. Since CCH has been implicated in tau hyperphosphorylation induced neurodegeneration, we investigated the role of GSNO in regulation of tau hyperphosphorylation in rat pBCCAO model. The rats subjected to pBCCAO had a significant increase in tau hyperphosphorylation with increased neuronal loss in hippocampal/cortical areas. GSNO treatment attenuated not only the tau hyperphosphorylation, but also the neurodegeneration in pBCCAO rat brains. The pBCCAO rat brains also showed increased activities of GSK-3? and Cdk5 (major tau kinases) and GSNO treatment significantly attenuated their activities. GSNO attenuated the increased calpain activities and calpain-mediated cleavage of p35 leading to production of p25 and aberrant Cdk5 activation. In in vitro studies using purified calpain protein, GSNO treatment inhibited calpain activities while 3-morpholinosydnonimine (a donor of peroxynitrite) treatment increased its activities, suggesting the opposing role of GSNO vs. peroxynitrite in regulation of calpain activities. In pBCCAO rat brains, GSNO treatment attenuated the expression of inducible nitric oxide synthase (iNOS) expression and also reduced the brain levels of nitro-tyrosine formation, thereby indicating the protective role of GSNO in iNOS/nitrosative-stress mediated calpain/tau pathologies under CCH conditions. Taken together with our previous report, these data support the therapeutic potential of GSNO, a biological NO carrier, as a neuro- and cognitive-protective agent under conditions of CCH. PMID:26271717

  5. Ceftriaxone Treatment after Traumatic Brain Injury Restores Expression of the Glutamate Transporter, GLT-1, Reduces Regional Gliosis, and Reduces Post-Traumatic Seizures in the Rat

    PubMed Central

    Goodrich, Grant S.; Kabakov, Anatoli Y.; Hameed, Mustafa Q.; Dhamne, Sameer C.; Rosenberg, Paul A.

    2013-01-01

    Abstract Excessive extracellular glutamate after traumatic brain injury (TBI) contributes to excitotoxic cell death and likely to post-traumatic epilepsy. Glutamate transport is the only known mechanism of extracellular glutamate clearance, and glutamate transporter 1 (GLT-1) is the major glutamate transporter of the mammalian brain. We tested, by immunoblot, in the rat lateral fluid percussion injury TBI model whether GLT-1 expression is depressed in the cortex after TBI, and whether GLT-1 expression after TBI is restored after treatment with ceftriaxone, a well-tolerated ?-lactam antibiotic previously shown to enhance GLT-1 expression in noninjured animals. We then tested whether treatment with ceftriaxone mitigates the associated regional astrogliosis, as reflected by glial fibrillary acid protein (GFAP) expression, and also whether ceftriaxone treatment mitigates the severity of post-traumatic epilepsy. We found that 7 days after TBI, GLT-1 expression in the ipsilesional cortex was reduced by 29% (n=7/group; p<0.01), relative to the contralesional cortex. However, the loss of GLT-1 expression was reversed by treatment with ceftriaxone (200?mg/kg, daily, intraperitoneally). We found that ceftriaxone treatment also decreased the level of regional GFAP expression by 43% in the lesioned cortex, relative to control treatment with saline (n=7 per group; p<0.05), and, 12 weeks after injury, reduced cumulative post-traumatic seizure duration (n=6 rats in the ceftriaxone treatment group and n=5 rats in the saline control group; p<0.001). We cautiously conclude that our data suggest a potential role for ceftriaxone in treatment of epileptogenic TBI. PMID:23510201

  6. Carnosine Reduces Oxidative Stress and Reverses Attenuation of Righting and Postural Reflexes in Rats with Thioacetamide-Induced Liver Failure.

    PubMed

    Milewski, Krzysztof; Hilgier, Wojciech; Fręśko, Inez; Polowy, Rafał; Podsiadłowska, Anna; Zołocińska, Ewa; Grymanowska, Aneta W; Filipkowski, Robert K; Albrecht, Jan; Zielińska, Magdalena

    2016-02-01

    Cerebral oxidative stress (OS) contributes to the pathogenesis of hepatic encephalopathy (HE). Existing evidence suggests that systemic administration of L-histidine (His) attenuates OS in brain of HE animal models, but the underlying mechanism is complex and not sufficiently understood. Here we tested the hypothesis that dipeptide carnosine (β-alanyl-L-histidine, Car) may be neuroprotective in thioacetamide (TAA)-induced liver failure in rats and that, being His metabolite, may mediate the well documented anti-OS activity of His. Amino acids [His or Car (100 mg/kg)] were administrated 2 h before TAA (i.p., 300 mg/kg 3× in 24 h intervals) injection into Sprague-Dawley rats. The animals were thus tested for: (i) brain prefrontal cortex and blood contents of Car and His, (ii) amount of reactive oxygen species (ROS), total antioxidant capacity (TAC), GSSG/GSH ratio and thioredoxin reductase (TRx) activity, and (iii) behavioral changes (several models were used, i.e. tests for reflexes, open field, grip test, Rotarod). Brain level of Car was reduced in TAA rats, and His administration significantly elevated Car levels in control and TAA rats. Car partly attenuated TAA-induced ROS production and reduced GSH/GSSG ratio, whereas the increase of TRx activity in TAA brain was not significantly modulated by Car. Further, Car improved TAA-affected behavioral functions in rats, as was shown by the tests of righting and postural reflexes. Collectively, the results support the hypothesis that (i) Car may be added to the list of neuroprotective compounds of therapeutic potential on HE and that (ii) Car mediates at least a portion of the OS-attenuating activity of His in the setting of TAA-induced liver failure. PMID:26801175

  7. Intravenous Treatment With Coenzyme Q10 Improves Neurological Outcome and Reduces Infarct Volume After Transient Focal Brain Ischemia in Rats.

    PubMed

    Belousova, Margarita; Tokareva, Olga G; Gorodetskaya, Evgeniya; Kalenikova, Elena I; Medvedev, Oleg S

    2016-02-01

    Coenzyme Q10 (CoQ10) crosses the blood-brain barrier when administered intravenously and accumulates in the brain. In this study, we investigated whether CoQ10 protects against ischemia-reperfusion injury by measuring neurological function and brain infarct volumes in a rat model of transient focal cerebral ischemia. In male Wistar rats, we performed transient middle cerebral artery occlusion (tMCAO) for 60 minutes, followed by reperfusion for 24 hours or 7 days. Forty-five minutes after the onset of occlusion (or 15 minutes before reperfusion), rats received a single intravenous injection of solubilized CoQ10 (30 mgmLkg) or saline (2 mL/kg). Sensory and motor function scores and body weights were obtained before the rats were killed by decapitation, and brain infarct volumes were calculated using tetrazolium chloride staining. CoQ10 brain levels were measured by high-performance liquid chromatography with electrochemical detection. CoQ10 significantly improved neurological behavior and reduced weight loss up to 7 days after tMCAO (P < 0.05). Furthermore, CoQ10 reduced cerebral infarct volumes by 67% at 24 hours after tMCAO and 35% at 7 days (P < 0.05). Cerebral ischemia resulted in a significant reduction in endogenous CoQ10 in both hemispheres (P < 0.05). However, intravenous injection of solubilized CoQ10 resulted in its increase in both hemispheres at 24 hours and in the contralateral hemisphere at 7 days (P < 0.05). Our results demonstrate that CoQ10 is a robust neuroprotective agent against ischemia-reperfusion brain injury in rats, improving both functional and morphological indices of brain damage. PMID:26371950

  8. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    SciTech Connect

    Tsujiuchi, Toshifumi . E-mail: ttujiuch@life.kindai.ac.jp; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-10-27

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells.

  9. Chronic ibuprofen administration reduces neuropathic pain but does not exert neuroprotection after spinal cord injury in adult rats.

    PubMed

    Redondo-Castro, Elena; Navarro, Xavier

    2014-02-01

    Ibuprofen is commonly used as an anti-inflammatory analgesic drug, although it is not amongst the first-line treatments for neuropathic pain. Its main effects are mediated by non-specific inhibition of COX enzymes, but it also exerts some COX-independent effects, such as the inhibition of RhoA signaling and the modulation of glial activity. These effects have boosted the use of ibuprofen as a tool to promote axonal regeneration and to increase functional recovery after neural injuries, although with controversial results showing positive and negative outcomes of ibuprofen treatment in several experimental models. We have evaluated the effects of ibuprofen administered at 60 mg/kg twice a day to rats subjected to a mild spinal cord contusion. Our results indicate that ibuprofen ameliorates mechanical hyperalgesia in rats by reducing central hyperexcitability, but failed to produce improvements in the recovery of locomotion. Despite an early effect on reducing microglial reactivity, the ibuprofen treatment did not provide histological evidence of neuroprotection; indeed the volume of cord tissue spared rostral to the lesion was decreased in ibuprofen treated rats. In summary, the early modulation of neuroinflammation produced by the administration of ibuprofen seems to eventually lead to a worse resolution of detrimental events occurring in the secondary injury phase, but also to reduce the development of neuropathic pain. PMID:24246280

  10. Microencapsulated Bifidobacterium longum subsp. infantis ATCC 15697 Favorably Modulates Gut Microbiota and Reduces Circulating Endotoxins in F344 Rats

    PubMed Central

    Saha, Shyamali; Prakash, Satya

    2014-01-01

    The gut microbiota is a bacterial bioreactor whose composition is an asset for human health. However, circulating gut microbiota derived endotoxins cause metabolic endotoxemia, promoting metabolic and liver diseases. This study investigates the potential of orally delivered microencapsulated Bifidobacterium infantis ATCC 15697 to modulate the gut microbiota and reduce endotoxemia in F344 rats. The rats were gavaged daily with saline or microencapsulated B. infantis ATCC 15697. Following 38 days of supplementation, the treated rats showed a significant (P < 0.05) increase in fecal Bifidobacteria (4.34 ± 0.46 versus 2.45 ± 0.25% of total) and B. infantis (0.28 ± 0.21 versus 0.52 ± 0.12 % of total) and a significant (P < 0.05) decrease in fecal Enterobacteriaceae (0.80 ± 0.45 versus 2.83 ± 0.63% of total) compared to the saline control. In addition, supplementation with the probiotic formulation reduced fecal (10.52 ± 0.18 versus 11.29 ± 0.16 EU/mg; P = 0.01) and serum (0.33 ± 0.015 versus 0.30 ± 0.015 EU/mL; P = 0.25) endotoxins. Thus, microencapsulated B. infantis ATCC 15697 modulates the gut microbiota and reduces colonic and serum endotoxins. Future preclinical studies should investigate the potential of the novel probiotic formulation in metabolic and liver diseases. PMID:24967382

  11. β-Glucans (Saccharomyces cereviseae) Reduce Glucose Levels and Attenuate Alveolar Bone Loss in Diabetic Rats with Periodontal Disease

    PubMed Central

    2015-01-01

    The objective of this study was to assess the effects of oral ingestion of β-glucans isolated from Saccharomyces cereviseae on the metabolic profile, expression of gingival inflammatory markers and amount of alveolar bone loss in diabetic rats with periodontal disease. Diabetes mellitus was induced in 48 Wistar rats by intraperitoneal injection of streptozotocin (80 mg/kg). After confirming the diabetes diagnosis, the animals were treated with β-glucans (by gavage) for 28 days. On the 14th day of this period, periodontal disease was induced using a ligature protocol. β-glucans reduced the amount of alveolar bone loss in animals with periodontal disease in both the diabetic and non-diabetic groups (p < 0.05). β-glucans reduced blood glucose, cholesterol and triacylglycerol levels in diabetic animals, both with and without periodontal disease (p < 0.05). Furthermore, treatment with β-glucans reduced the expression of cyclooxygenase-2 and receptor activator of nuclear factor kappa-B ligand and increased osteoprotegerin expression in animals with diabetes and periodontal disease (p < 0.05). It was concluded that treatment with β-glucans has beneficial metabolic and periodontal effects in diabetic rats with periodontal disease. PMID:26291983

  12. Renal proximal tubules from old Fischer 344 rats grow into epithelial cells in cultures and exhibit increased oxidative stress and reduced D1 receptor function.

    PubMed

    Asghar, Mohammad; Chillar, Annirudha; Lokhandwala, Mustafa F

    2008-11-01

    Earlier we reported defects in D1 receptor function in renal proximal tubules (RPTs) of aged Fischer 344 (F344) and obese Zucker rats. However, the defects in the receptor function in RPTs of obese Zucker rats do not pass onto primary cultures of RPTs from these animals. Here, we determined whether the defects in D1 receptor function in RPTs of aged F344 rats pass onto the primary cultures. RPTs from aged (24-mo) and adult (6-mo) F344 rats were grown into primary cultures. The microscopic studies showed that cells in cultures from adult and old rats were healthy as determined by the shape and size of the cells and nuclei. D1 receptor agonist SKF-38393 produced inhibition of (86)Rb (rubidium) uptake, index of Na-K-ATPase activity, in cells from adult rats, but this was reduced in old rats. Also, SKF-38393 increased the [(35)S]GTPgammaS binding, index of receptor activation, in the membranes of cells from adult rats but to a lesser extent from old rats. Furthermore, there was a downward trend in the levels of D1 receptor numbers and in the receptor proteins in old rats. Interestingly, gp(91phox) subunit of NADPH oxidase and cellular protein carbonyl levels (oxidative stress marker) were higher in cultures from old rats. These results show that RPTs from adult and old F344 rats grow into epithelial cells in cultures. Furthermore, cells in cultures from old rats are at a higher level of oxidative stress, which may be contributing to the reduced D1 receptor function in the cells from old compared with adult rats. PMID:18799649

  13. Trans-canal laser irradiation reduces tinnitus perception of salicylate treated rat.

    PubMed

    Park, Young Min; Na, Woo Sung; Park, Il Yong; Suh, Myung-Whan; Rhee, Chung-Ku; Chung, Phil-Sang; Jung, Jae Yun

    2013-06-01

    The aim of this study was to find out the effect of low-level laser therapy (LLLT) on salicylate-induced tinnitus in the rat model. Fourteen Sprague-Dawley rats (8 weeks; 240-280 gm) were divided into 2 groups (study group, control group). Rats of both groups were treated with 400 mg/kg/day of sodium salicylate for 8 consecutive days. Tinnitus was monitored using GPIAS (Gap Prepulse Inhibition of Acoustic Startle) 2 h after first salicylate treatment, and every 24 h during 9 days of treatment. Rats in laser group were irradiated to each ear with wavelength of 830 nm diode laser (165 mW/cm(2)) for 30 min daily for 8 days. During salicylate treatment, rats of study group irradiated with low level laser showed significantly higher GPIAS values throughout the experiment. Therapeutic effect of LLLT is demonstrated in animal tinnitus model by means of GPIAS. Further experimental studies are needed to find possible mechanisms and better methods to improve LLLT efficacy. PMID:23583341

  14. Diabetes in Old Male Offspring of Rat Dams Fed a Reduced Protein Diet

    PubMed Central

    Dorling, Matthew W.; Pawlak, Dorota B.; Ozanne, Susan E.; Hales, C. Nicholas

    2001-01-01

    Restricted fetal growth is associated with increased risk for the future development of Type 2 diabetes in humans. The study aim was to assess the glucose tolerance of old (seventeen months) male rats, which were growth restricted in early life due to maternal protein restriction during gestation and lactation. Rat mothers were fed diets containing either 20% or 8% protein and all offspring weaned onto a standard rat diet. In old-age fasting plasma glucose concentrations were significantly higher in the low protein offspring: 8.4 (1.3)mmol/l v. 5.3 (1.3)mmol/l (p = 0.005), Areas under the curves were increased by 67% for glucose (p = 0.01) and 81% for insulin (p = 0.01) in these rats in intravenous glucose tolerance tests, suggesting (a degree of) insulin resistance. These results show that early growth retardation due to maternal protein restriction leads to the development of diabetes in old male rat offspring. The diabetes is predominantly associated with insulin resistance. PMID:12369717

  15. Reduced expression of nogo-a leads to motivational deficits in rats.

    PubMed

    Enkel, Thomas; Berger, Stefan M; Schönig, Kai; Tews, Björn; Bartsch, Dusan

    2014-01-01

    Nogo-A is an important neurite growth-regulatory protein in the adult and developing nervous system. Mice lacking Nogo-A, or rats with neuronal Nogo-A deficiency, exhibit behavioral abnormalities such as impaired short-term memory, decreased pre-pulse inhibition, and behavioral inflexibility. In the current study, we extended the behavioral profile of the Nogo-A deficient rat line with respect to reward sensitivity and motivation, and determined the concentrations of the monoamines dopamine and serotonin in the prefrontal cortex (PFC), dorsal striatum (dSTR), and nucleus accumbens (NAcc). Using a limited access consumption task, we found similar intake of a sweet condensed milk solution following ad libitum or restricted feeding in wild-type and Nogo-A deficient rats, indicating normal reward sensitivity and translation of hunger into feeding behavior. When tested for motivation in a spontaneous progressive ratio task, Nogo-A deficient rats exhibited lower break points and tended to have lower "highest completed ratios." Further, under extinction conditions responding ceased substantially earlier in these rats. Finally, in the PFC we found increased tissue levels of serotonin, while dopamine was unaltered. Dopamine and serotonin levels were also unaltered in the dSTR and the NAcc. In summary, these results suggest a role for Nogo-A regulated processes in motivated behavior and related neurochemistry. The behavioral pattern observed resembles aspects of the negative symptomatology of schizophrenia. PMID:24478657

  16. Diacylglycerol acyltransferase-1 inhibition enhances intestinal fatty acid oxidation and reduces energy intake in rats[S

    PubMed Central

    Schober, Gudrun; Arnold, Myrtha; Birtles, Susan; Buckett, Linda K.; Pacheco-Lpez, Gustavo; Turnbull, Andrew V.; Langhans, Wolfgang; Mansouri, Abdelhak

    2013-01-01

    Acyl CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final step in triacylglycerol (TAG) synthesis and is highly expressed in the small intestine. Because DGAT-1 knockout mice are resistant to diet-induced obesity, we investigated the acute effects of intragastric (IG) infusion of a small molecule diacylglycerol acyltransferase-1 inhibitor (DGAT-1i) on eating, circulating fat metabolites, indirect calorimetry, and hepatic and intestinal expression of key fat catabolism enzymes in male rats adapted to an 8 h feeding-16 h deprivation schedule. Also, the DGAT-1i effect on fatty acid oxidation (FAO) was investigated in enterocyte cell culture models. IG DGAT-1i infusions reduced energy intake compared with vehicle in high-fat diet (HFD)-fed rats, but scarcely in chow-fed rats. IG DGAT-1i also blunted the postprandial increase in serum TAG and increased ?-hydroxybutyrate levels only in HFD-fed rats, in which it lowered the respiratory quotient and increased intestinal, but not hepatic, protein levels of Complex III of the mitochondrial respiratory chain and of mitochondrial hydroxymethylglutaryl-CoA synthase. Finally, the DGAT-1i enhanced FAO in CaCo2 (EC50 = 0.3494) and HuTu80 (EC50 = 0.00762) cells. Thus, pharmacological DGAT-1 inhibition leads to an increase in intestinal FAO and ketogenesis when dietary fat is available. This may contribute to the observed eating-inhibitory effect. PMID:23449193

  17. Reduced expression of SK3 and IK1 channel proteins in the cavernous tissue of diabetic rats

    PubMed Central

    Zhu, Jin-Hai; Jia, Rui-Peng; Xu, Lu-Wei; Wu, Jian-Ping; Wang, Zi-Zheng; Wang, Shu-Kui; Bo, Cheng-Jia

    2010-01-01

    The small (SK3) and intermediate (IK1) conductance calcium-activated potassium channels could have key roles in the endothelium-dependent hyperpolarization factor pathway, which is believed to contribute to normal penile erection function. We aimed to investigate the expression of SK3 and IK1 in diabetic rodents. The experimental diabetes model was induced in 8-week-old male SpragueDawley rats (250300 g) by a single administration of streptozotocin. Both the diabetes mellitus group (DM group, n = 20) and the control group (NDM group, n = 10) were injected with a low dose of apomorphine to allow for the measurement and comparison of the corresponding penile erections. The mRNA and protein expression levels of SK3 and IK1 were measured by reverse transcription polymerase chain reaction and western blot, respectively. Erectile function was significantly decreased in the DM group compared with control group (P < 0.05). The mRNA and protein expression levels of SK3 and IK1 were reduced in the cavernous tissue of diabetic rats compared with the control group (P < 0.05). Diabetes inhibits mRNA and protein expression of both SK3 and IK1 in the cavernous tissue of diabetic rats. This could play a key role in the development of erectile dysfunction in diabetic rats. PMID:20364152

  18. Adrenalectomy reduces neuropeptide Yinduced insulin release and NPY receptor expression in the rat ventromedial hypothalamus

    PubMed Central

    Wisialowski, Todd; Parker, Rachel; Preston, Elaine; Sainsbury, Amanda; Kraegen, Edward; Herzog, Herbert; Cooney, Gregory

    2000-01-01

    Chronic central administration of neuropeptide Y (NPY) causes hyperphagia, hyperinsulinemia, and obesity, a response that is prevented by prior adrenalectomy (ADX) in rats. The basis of NPYs effect and how the acute responses to this peptide are affected by ADX remain unknown. This study investigates the role of glucocorticoids in acute NPY-stimulated food intake, acute NPY-induced insulin release, and hypothalamic NPY-receptor mRNA expression levels. NPY-induced food intake was similar in ADX and control rats after acute intracerebroventricular injection of NPY. Injection of NPY caused a significant increase in plasma insulin in control rats, but this effect was completely absent in ADX rats in which basal plasma insulin levels were also lower than controls. In addition, ADX significantly reduced the number of neurons expressing NPY receptor Y1 and Y5 mRNAs in the ventromedial hypothalamus (VMH), without affecting Y1- or Y5-mRNA expression in the paraventricular hypothalamus or the arcuate nucleus. These data indicate that glucocorticoids are necessary for acute NPY-mediated insulin release and suggest that the mechanisms involve glucocorticoid regulation of Y1 and Y5 receptors specifically within the VMH nucleus. PMID:10792000

  19. Green tea decoction improves glucose tolerance and reduces weight gain of rats fed normal and high-fat diet.

    PubMed

    Snoussi, Chahira; Ducroc, Robert; Hamdaoui, Mohamed Hdi; Dhaouadi, Karima; Abaidi, Houda; Cluzeaud, Francoise; Nazaret, Corinne; Le Gall, Maude; Bado, Andr

    2014-05-01

    Green tea containing polyphenols exerts antidiabetic and antiobesity effects, but the mechanisms involved are not fully understood. In this study, we first analyzed and compared polyphenol compounds [epigallocatechin gallate (EGCG), epigallocatechin (EGC)] in decoction of green tea leaves versus usual green tea extracts. Second, the effects of acute (30 min) or chronic (6 weeks) oral administration of green tea decoction (GTD) on intestinal glucose absorption were studied in vitro in Ussing chamber, ex vivo using isolated jejunal loops and in vivo through glucose tolerance tests. Finally, we explore in rat model fed normal or high-fat diet the effects of GTD on body weight, blood parameters and on the relative expression of glucose transporters SGLT-1, GLUT2 and GLUT4. GTD cooked for 15 min contained the highest amounts of phenolic compounds. In fasted rats, acute administration of GTD inhibited SGLT-1 activity, increased GLUT2 activity and improved glucose tolerance. Similarly to GTD, acute administration of synthetic phenolic compounds (2/3 EGCG+1/3 EGC) inhibited SGLT-1 activity. Chronic administration of GTD in rat fed high-fat diet reduced body weight gain, circulating triglycerides and cholesterol and improved glucose tolerance. GTD-treated rats for 6 weeks display significantly reduced SGLT-1 and increased GLUT2 mRNA levels in the jejunum mucosa. Moreover, adipose tissue GLUT4 mRNA levels were increased. These results indicate that GTD, a traditional beverage rich in EGCG and EGC reduces intestinal SGLT-1/GLUT2 ratio, a hallmark of regulation of glucose absorption in enterocyte, and enhances adipose GLUT4 providing new insights in its possible role in the control of glucose homeostasis. PMID:24656388

  20. Yoghurts containing probiotics reduce disruption of the small intestinal barrier in methotrexate-treated rats.

    PubMed

    Southcott, E; Tooley, K L; Howarth, G S; Davidson, G P; Butler, R N

    2008-07-01

    Small intestinal permeability was employed to assess the efficacy of commercially available yoghurts containing probiotics in a rat model of methotrexate (MTX)-induced mucositis. Male Sprague-Dawley rats were allocated to four groups (n = 8): MTX + water, MTX + cow's milk yoghurt (CY; fermented with Lactobacillus johnsonii), MTX + sheep's milk yoghurt (SY; containing Lactobacillus bulgaricus and Streptococcus thermophilus), and saline. Treatment gavage occurred twice daily for 7 days pre-MTX and 5 days post-MTX. Intestinal permeability was assessed on days -7, -1, 2, and 5 of the trial. Intestinal sections were collected at sacrifice for histological and biochemical analyses. Histology revealed that rats receiving CY and SY did not have a significantly damaged duodenum compared to controls. However, an improved small intestinal barrier function was evident, determined by a decreased lactulose/mannitol ratio. Probiotics containing SY and CY may be useful in preventing disruption to intestinal barrier function in MTX-induced mucositis. PMID:18427990

  1. Despite increased plasma concentration, inflammation reduces potency of calcium channel antagonists due to lower binding to the rat heart

    PubMed Central

    Sattari, Saeed; Dryden, William F; Eliot, Lise A; Jamali, Fakhreddin

    2003-01-01

    Rheumatoid arthritis reduces verapamil oral clearance thereby increases plasma concentration of the drug. This coincides with reduced drug effects through an unknown mechanism. The effect of interferon-induced acute inflammation on the pharmacokinetics and electrocardiogram of verapamil (20 mg kg?1, p.o.) and nifedipine (0.1 mg kg?1, i.v.) was studied in SpragueDawley rats. The effect of both acute and chronic inflammation on radioligand binding to cardiac L-type calcium channels was also investigated. Acute inflammation resulted in increased plasma concentration of verapamil but had no effect on that of nifedipine. Verapamil binding to plasma proteins was unaffected. As has been reported for humans, the increased verapamil concentration coincided with a reduction in the degree to which PR interval is prolonged by the drug. The effect of nifedipine on PR interval was also reduced by inflammation. Maximum binding of 3H-nitrendipine to cardiac cell membrane was significantly reduced from 63.22.5 fmol mg?1 protein in controls to 46.42.0 in acute inflammation and from 66.82.2 fmol mg?1 protein in controls to 42.22.0 in chronic inflammation. Incubation of the normal cardiac cell membranes with 100 and 1000 pg ml?1 of rat tissue necrosis factor-? did not influence the binding indices to the calcium channels. Our data suggest that the reduced calcium channel responsiveness is because of altered binding to channels. PMID:12839868

  2. Induction of postaxial forelimb ectrodactyly with anticonvulsant agents in A/J mice.

    PubMed

    Collins, M D; Fradkin, R; Scott, W J

    1990-01-01

    Exposure of A/J mice on day 9.5 of gestation to the derivatives of three acidic anticonvulsant agents, namely dimethadione, sodium valproate, and sodium diphenylhydantoin, each induced postaxial forelimb ectrodactyly predominantly of the right side. This specific malformation has previously been associated with the administration of acetazolamide to rodents; however, several agents can induce this same defect including other carbonic anhydrase inhibitors, carbon dioxide, cadmium, ethanol, ammonium chloride, and 13-cis retinoic acid. The relative potency of the three agents indicates no direct relationship to the pKa of the acid. Other than ectrodactyly, each of the anticonvulsant agents induced a compound-specific spectrum of malformations despite the uniform administration time. This finding suggests that these agents are capable of acting via different mechanisms or by the differential spatial and temporal dynamics of a common mechanism. PMID:2106175

  3. A study on the regenerative potential of partially excised mouse embryonic fore-limb bud.

    PubMed

    Lee, K K; Chan, W Y

    1991-01-01

    The ability of day E10 mouse fore-limb bud to regulate following the removal of a portion of limb tissue was investigated. A longitudinal strip of tissue, two to three somites in width and extending from the base of the limb bud to its distal tip, was excised. The embryos were then maintained in a roller culture system for periods of 6 h, 12 h or 24 h post-operatively prior to fixation and subsequent examination. The embryos were examined with scanning electron microscopy (SEM) and light microscopy. SEM revealed that about two thirds of the operated limbs grossly restored their overall morphology. The sequence of morphological changes involved in the restoration process is described. The ability of the restored limb bud to develop an apical ectodermal ridge (AER) is shown in histological sections. PMID:1952102

  4. Chinese green tea consumption reduces oxidative stress, inflammation and tissues damage in smoke exposed rats

    PubMed Central

    Al-Awaida, Wajdy; Akash, Muhanad; Aburubaiha, Zaid; Talib, Wamidh H.; Shehadeh, Hayel

    2014-01-01

    Objective(s): One cause of cigarette smoking is oxidative stress that may alter the cellular antioxidant defense system, induce apoptosis in lung tissue, inflammation and damage in liver, lung, and kidney. It has been shown that Chinese green tea (CGT) (Lung Chen Tea) has higher antioxidant property than black tea. In this paper, we will explore the preventive effect of CGT on cigarette smoke-induced oxidative damage, apoptosis and tissues inflammation in albino rat model. Materials and Methods: Albino rats were randomly divided into four groups, i.e. sham air (SA), cigarette smoke (CS), CGT 2% plus SA or plus CS. The exposure to smoking was carried out as a single daily dose (1 cigarette/rat) for a period of 90 days using an electronically controlled smoking machine. Sham control albino rats were exposed to air instead of cigarette smoke. Tissues were collected 24 hr after last CS exposure for histology and all enzyme assays. Apoptosis was evidenced by the fragmentation of DNA using TUNEL assay. Results: Long-term administration of cigarette smoke altered the cellular antioxidant defense system, induced apoptosis in lung tissue, inflammation and damage in liver, lung, and kidney. All these pathophysiological and biochemical events were significantly improved when the cigarette smoke-exposed albino rats were given CGT infusion as a drink instead of water. Conclusion: Exposure of albino rat model to cigarette smoke caused oxidative stress, altered the cellular antioxidant defense system, induced apoptosis in lung tissue, inflammation and tissues damage, which could be prevented by supplementation of CGT. PMID:25729541

  5. Vitamin E supplementation does not prevent ethanol-reduced hepatic retinoic acid levels in rats

    PubMed Central

    Chung, Jayong; Veeramachaneni, Sudipta; Liu, Chun; Mernitz, Heather; Russell, Robert M.; Wang, Xiang-Dong

    2009-01-01

    Chronic, excessive ethanol intake can increase retinoic acid (RA) catabolism by inducing cytochrome P450 2E1 (CYP2E1). Vitamin E (VE) is an antioxidant implicated in CYP2E1 inhibition. In the current study, we hypothesized that VE supplementation inhibits CYP2E1 and decreases RA catabolism, thereby preventing ethanol-induced hepatocyte hyperproliferation. For 1 month, four groups of Sprague-Dawley rats were fed a Lieber-DeCarli liquid ethanol (36% of the total calories) diet as follows: either ethanol alone (Alc group) or ethanol in combination with 0.1 mg/kg body wt of all-trans RA (Alc+RA group), 2 mg/kg body wt of VE (Alc+VE group), or both together (Alc+RA+VE group). Control rats were pair-fed a liquid diet with an isocaloric amount of maltodextrin instead of ethanol. The ethanol-fed groups had three-fold higher hepatic CYP2E1 levels, 50% lower hepatic RA levels, and significantly increased hepatocyte proliferation when compared with the controls. The ethanol-fed rats given VE had more than four-fold higher hepatic VE concentrations than did ethanol-fed rats without VE, but this did not prevent ethanol induction of CYP2E1, lower hepatic retinoid levels, or hepatocellular hyperproliferation. Further, VE supplementation could not prevent RA catabolism in liver microsomal fractions of the ethanol-fed rats in vitro. These results show that VE supplementation can neither inhibit ethanol-induced changes in RA catabolism nor prevent ethanol-induced hepatocyte hyperproliferation in the rat liver. PMID:19854382

  6. Population Coding of Forelimb Joint Kinematics by Peripheral Afferents in Monkeys

    PubMed Central

    Umeda, Tatsuya; Seki, Kazuhiko; Sato, Masa-aki; Nishimura, Yukio; Kawato, Mitsuo; Isa, Tadashi

    2012-01-01

    Various peripheral receptors provide information concerning position and movement to the central nervous system to achieve complex and dexterous movements of forelimbs in primates. The response properties of single afferent receptors to movements at a single joint have been examined in detail, but the population coding of peripheral afferents remains poorly defined. In this study, we obtained multichannel recordings from dorsal root ganglion (DRG) neurons in cervical segments of monkeys. We applied the sparse linear regression (SLiR) algorithm to the recordings, which selects useful input signals to reconstruct movement kinematics. Multichannel recordings of peripheral afferents were performed by inserting multi-electrode arrays into the DRGs of lower cervical segments in two anesthetized monkeys. A total of 112 and 92 units were responsive to the passive joint movements or the skin stimulation with a painting brush in Monkey 1 and Monkey 2, respectively. Using the SLiR algorithm, we reconstructed the temporal changes of joint angle, angular velocity, and acceleration at the elbow, wrist, and finger joints from temporal firing patterns of the DRG neurons. By automatically selecting a subset of recorded units, the SLiR achieved superior generalization performance compared with a regularized linear regression algorithm. The SLiR selected not only putative muscle units that were responsive to only the passive movements, but also a number of putative cutaneous units responsive to the skin stimulation. These results suggested that an ensemble of peripheral primary afferents that contains both putative muscle and cutaneous units encode forelimb joint kinematics of non-human primates. PMID:23112841

  7. Comparative molecular pathology of cadmium- and all-trans-retinoic acid-induced postaxial forelimb ectrodactyly

    SciTech Connect

    Liao Xiaoyan; Lee, Grace S.; Shimizu, Hirohito; Collins, Michael D.

    2007-11-15

    Cadmium chloride (CdCl{sub 2}) and all-trans-retinoic acid (RA) induce postaxial forelimb ectrodactyly in C57BL/6N mice when administered during early limb development, and co-administration yields a synergistic response suggesting a common final pathway to the defect. In the current study, forelimb buds from embryos given high maternal teratogenic doses of CdCl{sub 2} or RA, or the combination of both agents at low doses were collected at various time points after treatment on GD 9.5 and examined for cellular apoptosis, proliferation, and patterning genes. Some cellular perturbations detected in the developing limb bud were similar for both teratogens, whereas other alterations were unique to each agent. For example, at 12 and 18 h, CdCl{sub 2} treatment increased apoptotic cells in the mesenchyme underneath the apical ectodermal ridge (AER), whereas RA caused apoptosis in the AER and proximal mesenchyme. Further, the combined low-dose treatment increased cell death synergistically in all three regions. CdCl{sub 2} and the low-dose combined treatment inhibited mesenchymal proliferation at 12 h, which was associated with induction of p21{sup cip1} and inhibition of phospho-c-Jun. In contrast, RA did not inhibit mesenchymal proliferation and did not induce p21{sup cip1} expression or change c-Jun phosphorylation. All three treatment groups showed a delay in the patterning of distal chondrogenesis centers as indicated by Sox9 expression. There was also common inhibition in the expression of AER markers, Fgf8 and Fgf4, and the mesenchymal marker Msx1 involved in the maintenance of epithelial-mesenchymal interactions. Collectively, a model is hypothesized where limb patterning can be perturbed by insults to both ectoderm and mesoderm.

  8. Effective intracortical microstimulation parameters applied to primary motor cortex for evoking forelimb movements to stable spatial end points

    PubMed Central

    Van Acker, Gustaf M.; Amundsen, Sommer L.; Messamore, William G.; Zhang, Hongyu Y.; Luchies, Carl W.; Kovac, Anthony

    2013-01-01

    High-frequency, long-duration intracortical microstimulation (HFLD-ICMS) applied to motor cortex is recognized as a useful and informative method for corticomotor mapping by evoking natural-appearing movements of the limb to consistent stable end-point positions. An important feature of these movements is that stimulation of a specific site in motor cortex evokes movement to the same spatial end point regardless of the starting position of the limb. The goal of this study was to delineate effective stimulus parameters for evoking forelimb movements to stable spatial end points from HFLD-ICMS applied to primary motor cortex (M1) in awake monkeys. We investigated stimulation of M1 as combinations of frequency (30400 Hz), amplitude (30200 ?A), and duration (0.52 s) while concurrently recording electromyographic (EMG) activity from 24 forelimb muscles and movement kinematics with a motion capture system. Our results suggest a range of parameters (80140 Hz, 80140 ?A, and 1,000-ms train duration) that are effective and safe for evoking forelimb translocation with subsequent stabilization at a spatial end point. The mean time for stimulation to elicit successful movement of the forelimb to a stable spatial end point was 475.8 170.9 ms. Median successful frequency and amplitude were 110 Hz and 110 ?A, respectively. Attenuated parameters resulted in inconsistent, truncated, or undetectable movements, while intensified parameters yielded no change to movement end points and increased potential for large-scale physiological spread and adverse focal motor effects. Establishing cortical stimulation parameters yielding consistent forelimb movements to stable spatial end points forms the basis for a systematic and comprehensive mapping of M1 in terms of evoked movements and associated muscle synergies. Additionally, the results increase our understanding of how the central nervous system may encode movement. PMID:23741044

  9. HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats

    PubMed Central

    Zhang, Bin; West, Eric J.; Van, Ken C.; Gurkoff, Gene G.; Zhou, Jia; Zhang, Xiu-Mei; Kozikowski, Alan P.; Lyeth, Bruce G.

    2008-01-01

    Traumatic brain injury (TBI) produces a rapid and robust inflammatory response in the brain characterized in part by activation of microglia. A novel histone deacetylase (HDAC) inhibitor, 4-dimethylamino-N-[5-(2-mercaptoacetylamino)pentyl]benzamide (DMA-PB), was administered (0, 0.25, 2.5, 25 mg/kg) systemically immediately after lateral fluid percussion TBI in rats. Hippocampal CA2/3 tissue was processed for acetyl-histone H3 immunolocalization, OX-42 immunolocalization (for microglia), and Fluoro-Jade B histofluorescence (for degenerating neurons) at 24 h after injury. Vehicle-treated TBI rats exhibited a significant reduction in acetyl-histone H3 immunostaining in the ipsilateral CA2/3 hippocampus compared to the sham TBI group (p<0.05). The reduction in acetyl-histone H3 immunostaining was attenuated by each of the DMA-PB dosage treatment groups. Vehicle-treated TBI rats exhibited a high density of phagocytic microglia in the ipsilateral CA2/3 hippocampus compared to sham TBI in which none were observed. All doses of DMA-PB significantly reduced the density of phagocytic microglia (p<0.05). There was a trend for DMA-PB to reduce the number of degenerating neurons in the ipsilateral CA2/3 hippocampus (p = 0.076). We conclude that the HDAC inhibitor DMA-PB is a potential novel therapeutic for inhibiting neuroinflammation associated with TBI. PMID:18582446

  10. Effects of thiol antioxidant on reduced nicotinamide adenine dinucleotide phosphate oxidase in hypertensive Dahl salt-sensitive rats.

    PubMed

    Zhang, Ling; Fujii, Shigemoto; Igarashi, Junsuke; Kosaka, Hiroaki

    2004-12-01

    Recent studies implicate of reactive oxygen species (ROS) in hypertension; however, whether reactive oxygen species promote hypertensive derangements is not fully clear. We thus investigated the effects of an antioxidant, N-acetyl-L-cysteine, on hypertensive Dahl salt-sensitive rats. High-salt intake for 4 weeks markedly elevated systolic arterial pressure, urinary excretion of protein, 8-isoprostane, and H(2)O(2), and the enzyme activity of reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase along with the elevated expression of its subunits gp91phox and p47phox at the levels of mRNA and protein. Supplement with N-acetyl-L-cysteine reduced the increase in systolic arterial pressure and counteracted the elevation of urinary excretion of protein, 8-isoprostane, and H(2)O(2), and the increases in NADPH oxidase activity/expression in high-salt-loaded Dahl salt-sensitive rats. N-acetyl-L-cysteine supplement ameliorated plasma and urinary levels of thromboxane B(2) (an end metabolite of thromboxane A(2)), associated with improvement of both the abnormal contraction and the impaired nitric oxide-dependent relaxation in renal arteries. These results revealed that oxidative stress mediates hypertensive changes in Dahl salt-sensitive rats, because thiol antioxidant N-acetyl-L-cysteine attenuated the augmentation of local ROS production by diminishing the elevation of NADPH oxidase expression and ameliorated renal/vascular hypertensive changes. PMID:15528040

  11. Maternal milk reduces severity of necrotizing enterocolitis and increases intestinal IL-10 in a neonatal rat model.

    PubMed

    Dvorak, Bohuslav; Halpern, Melissa D; Holubec, Hana; Dvorakova, Katerina; Dominguez, Jessica A; Williams, Catherine S; Meza, Yolanda G; Kozakova, Hana; McCuskey, Robert S

    2003-03-01

    Necrotizing enterocolitis (NEC) is a devastating intestinal disease of premature infants. Maternal milk has been suggested to be partially protective against NEC; however, the mechanisms of this protection are not defined. The aim of this study was to examine the effect(s) of artificial feeding of rat milk (RM)-versus cow milk-based rat milk substitute (RMS) on the development of NEC in a neonatal rat model and elucidate the role of inflammatory cytokines in NEC pathogenesis. Newborn rats were artificially fed with either collected RM or RMS. Experimental NEC was induced by exposure to asphyxia and cold stress and evaluated by histologic scoring of damage in ileum. Intestinal cytokine mRNA expression was determined by real-time PCR. Cytokine histologic localization was performed by confocal microscopy. Similar to human NEC, artificial feeding of RM reduces the incidence and severity of NEC injury in neonatal rats. Freezing and thawing of collected RM did not eliminate the protective effect of maternal milk. Ileal IL-10 expression was significantly increased in the RM group compared with RMS. Increased IL-10 peptide production was detected in the RM group with signal localized predominantly in the cytoplasm of villus epithelial cells. These results suggest that the protective effect of maternal milk is associated with increased production of anti-inflammatory IL-10 in the site of injury. Better understanding of the mechanisms underlying these protective effects could be beneficial either in the prevention of NEC or in the development of future therapeutic strategies to cure NEC. PMID:12595590

  12. Airway-specific recruitment of T cells is reduced in a CD26-deficient F344 rat substrain

    PubMed Central

    Schade, J; Schmiedl, A; Kehlen, A; Veres, T Z; Stephan, M; Pabst, R; von Hrsten, S

    2009-01-01

    Asthma is a chronic inflammatory disease affecting the airways. Increased levels of T cells are found in the lungs after the induction of an allergic-like inflammation in rats, and flow cytometry studies have shown that these levels are reduced in CD26-deficient rats. However, the precise anatomical sites where these newly recruited T cells appear primarily are unknown. Therefore, we quantified the distribution of T cells in lung parenchyma as well as in large, medium and small airways using immunohistochemical stainings combined with morphometric analyses. The number of T cells increased after the induction of an allergic-like inflammation. However, the differences between CD26-deficient and wild-type rats were not attributable to different cell numbers in the lung parenchyma, but the medium- and large-sized bronchi revealed significantly fewer T cells in CD26-deficient rats. These sites of T cell recruitment were screened further using immunohistochemistry and quantitative real-time polymerase chain reaction with regard to two hypotheses: (i) involvement of the nervous system or (ii) expression of chemokines with properties of a T cell attractor. No topographical association was found between nerves and T cells, but a differential transcription of chemokines was revealed in bronchi and parenchyma. Thus, the site-specific recruitment of T cells appears to be a process mediated by chemokines rather than nerveT cell interactions. In conclusion, this is the first report showing a differential site-specific recruitment of T cells to the bronchi in a CD26-deficient rat substrain during an asthma-like inflammation. PMID:19737240

  13. Early handling reduces vulnerability of rats to activity-based anorexia.

    PubMed

    Carrera, O; Gutirrez, E; Boakes, R A

    2006-11-01

    Resistance to restricted feeding with and without wheel access was tested in rats handled (H) for 20 days since birth. Weight loss produced by 1.5-hr restricted food access was less in H than in non-handled (NH) males when tested aged 41 days. At this age combining food restriction with access to a running wheel (a procedure commonly known as activity-based anorexia, ABA) produced very rapid weight loss and no effect of handling was detected. When 75-day females were tested in the same way, under the ABA procedure H rats took longer than NH controls to reach the removal criterion. Simply restricting food access in these females produced variable weight loss, without detection of any handling effect. No differences in food intake or running were detected between H and NH rats in either males or females. In conclusion, handling seems to have a direct effect on rats' later response to either food deprivation alone or to an ABA procedure. PMID:17016834

  14. Insulin binding to brain capillaries is reduced in genetically obese, hyperinsulinemic Zucker rats

    SciTech Connect

    Schwartz, M.W.; Figlewicz, D.F.; Kahn, S.E.; Baskin, D.G.; Greenwood, M.R.; Porte, D. Jr. )

    1990-05-01

    In order to study the role of plasma insulin in regulating the binding of insulin to the endothelium of the blood-brain barrier (BBB), insulin binding to a purified preparation of brain capillaries was measured in both genetically obese Zucker rats and lean Zucker controls. We found a reduction of 65% in brain capillary insulin binding site number in the obese compared to lean rats with no change in receptor affinity. Furthermore, specific insulin binding to brain capillaries was negatively correlated (p less than 0.05) to the plasma insulin level, suggesting a role for plasma insulin in regulating insulin binding. A similar relationship was observed between insulin receptor number in liver membranes and the plasma insulin level. We conclude that obese, hyperinsulinemic Zucker rats exhibit a reduction in the number of BBB insulin receptors, which parallels the reduction seen in other peripheral tissues. Since insulin receptors have been hypothesized to participate in the transport of insulin across the BBB, the reduction observed in the obese rats may account for the decrease in cerebrospinal fluid insulin uptake previously demonstrated in these animals.

  15. Chronic exercise training versus acute endurance exercise in reducing neurotoxicity in rats exposed to lead acetate?

    PubMed Central

    Shahandeh, Mohammad; Roshan, Valiollah Dabidi; Hosseinzadeh, Somayeh; Mahjoub, Soleiman; Sarkisian, Vaginak

    2013-01-01

    After intraperitoneal injection of 20 mg/kg lead acetate, rats received 8 weeks of treadmill exercise (1522 m/min, 2564 minutes) and/or treadmill exercise at 1.6 km/h until exhaustion. The markers related to neurotoxicity were measured by enzyme-linked immunosorbent assay method. 8 weeks of treadmill exercise significantly increased brain-derived neurotrophic factor level in the hippocampus (P = 0.04) and plasma level of total antioxidant capacity of rats exposed to lead acetate (P < 0.001), and significantly decreased plasma level of malondialdehyde (P < 0.001). Acute exercise only decreased the hippocampal malondialdehyde level (P = 0.09) and increased brain-derived neurotrophic factor level in the hippocampus (P = 0.66). Acute exercise also enhanced the total antioxidant capacity in rats exposed to lead acetate, insignificantly (P = 0.99). These findings suggest that chronic treadmill exercise can significantly decrease neurotoxicity and alleviate oxidative stress in rats exposed to lead acetate. However, acute endurance exercise was not associated with these beneficial effects. PMID:25206718

  16. Inhaled vasopressin increases sociability and reduces body temperature and heart rate in rats.

    PubMed

    Ramos, Linnet; Hicks, Callum; Caminer, Alex; McGregor, Iain S

    2014-08-01

    The neuropeptides vasopressin (AVP) and oxytocin (OT) have therapeutic potential across a range of psychiatric disorders. However, there is uncertainty about the effectiveness of the intranasal route of administration that is often used to deliver these neuropeptides. Recent preclinical studies, typically involving anesthetized or restrained animals, have assessed intranasal AVP or OT effects, and have obtained somewhat inconsistent results. Here we obtained intranasal administration of AVP in rats by nebulizing the peptide (1ml of 5 or 10mg/ml solution) into a small enclosed chamber over a 2min period in which well-habituated, unanesthetized, unrestrained, rats were placed. Rats were immediately removed from the chamber and tested in the social interaction test, or assessed for changes in heart rate and body temperature using biotelemetry. Results showed that rats exposed to nebulized AVP (5 or 10mg/ml) showed increased social proximity (adjacent lying) and decreased anogenital sniffing in the social interaction test. Biotelemetry showed substantial and long lasting (>1h) hypothermic and bradycardic effects of nebulized AVP. These behavioral and physiological effects of nebulized AVP mimic those observed in recent studies with peripherally injected AVP. Plasma AVP concentrations were substantially increased 10min after nebulized AVP, producing levels above those seen with a behaviorally effective injected dose of AVP (0.005mg/kg intraperitoneal). This study thus provides a novel and effective method for neuropeptide administration to rodents. PMID:24882157

  17. Immuno-Modulator Metallo-Peptide Reduces Inflammatory State in Obese Zucker Fa/Fa Rats

    PubMed Central

    Gmez-Sols, Antonieta; Reyes-Esparza, Jorge; Garca-Vzquez, Francisco; lvarez-Ayala, Elizabeth; Rodrguez-Fragoso, Lourdes

    2014-01-01

    Metabolic syndrome is a prothrombotic and proinflammatory chronic state. In obesity, the adipose tissue secretes various adipokines that take part in a variety of physiological and pathophysiological processes, including immunity and inflammation. Previous studies using a liver damage model treated with the immune-modulator metallo-peptide (IMMP) showed lessening in the degree of inflammation. Therefore, this study was set up to evaluate the anti-inflammatory effect of IMMP in obese Zucker fa/fa rats. We used Zucker-Lepr fa/fa and Zucker-Lean in this protocol. The groups received IMMP 50 ng/kg by i.p., three times per week for 8 weeks. Blood samples were collected by cardiac puncture and the serum was preserved at -80C until analysis; the liver was excised and preserved in formaldehyde 4%. Analyses were performed to determine cytokine, insulin, glucose, triglyceride and cholesterol levels in serum, and histological analysis was also performed. IMMP treatment of obese rats resulted in decreased levels of proinflammatory cytokines (leptin, lL-6, IL-1betha, INF-gamma) and a chemokine (MCP-1), and increased levels of anti-inflammatory adipokine (adiponectin). In addition, treatment decreased the damage and hepatic steatosis generated in the tissue of obese rats. The IMMP exerted an anti-inflammatory effect in obese rats and therefore may be an effective and safe therapeutic alternative in the treatment of metabolic syndrome. PMID:25324698

  18. IPRODIONE DELAYS MALE RAT PUBERTAL DEVELOPMENT, REDUCING SERUM TESTOSTERONE AND EX VIVO TESTOSTERONE PRODUCTION

    EPA Science Inventory

    Iprodione (IPRO) is a dichlorophenyl dicarboximide fungicide similar to the androgen receptor (AR) antagonist vinclozolin. The current studies were designed to determine if IPRO would delay male rat pubertal development like vinclozolin and to identify the mechanism(s) of action...

  19. Cerium Dioxide Nanoparticle Exposure Improves Microvascular Dysfunction and Reduces Oxidative Stress in Spontaneously Hypertensive Rats

    PubMed Central

    Minarchick, Valerie C.; Stapleton, Phoebe A.; Sabolsky, Edward M.; Nurkiewicz, Timothy R.

    2015-01-01

    The elevated production of reactive oxygen species (ROS) in the vascular wall is associated with cardiovascular diseases such as hypertension. This increase in oxidative stress contributes to various mechanisms of vascular dysfunction, such as decreased nitric oxide bioavailability. Therefore, anti-oxidants are being researched to decrease the high levels of ROS, which could improve the microvascular dysfunction associated with various cardiovascular diseases. From a therapeutic perspective, cerium dioxide nanoparticles (CeO2 NP) hold great anti-oxidant potential, but their in vivo activity is unclear. Due to this potential anti-oxidant action, we hypothesize that injected CeO2 NP would decrease microvascular dysfunction and oxidative stress associated with hypertension. In order to simulate a therapeutic application, spontaneously hypertensive (SH) and Wistar-Kyoto (WKY) rats were intravenously injected with either saline or CeO2 NP (100 μg suspended in saline). Twenty-four hours post-exposure mesenteric arteriolar reactivity was assessed via intravital microscopy. Endothelium-dependent and –independent function was assessed via acetylcholine and sodium nitroprusside. Microvascular oxidative stress was analyzed using fluorescent staining in isolated mesenteric arterioles. Finally, systemic inflammation was examined using a multiplex analysis and venular leukocyte flux was counted. Endothelium-dependent dilation was significantly decreased in the SH rats (29.68 ± 3.28%, maximal response) and this microvascular dysfunction was significantly improved following CeO2 NP exposure (43.76 ± 4.33%, maximal response). There was also an increase in oxidative stress in the SH rats, which was abolished following CeO2 NP treatment. These results provided evidence that CeO2 NP act as an anti-oxidant in vivo. There were also changes in the inflammatory profile in the WKY and SH rats. In WKY rats, IL-10 and TNF-α were increased following CeO2 NP treatment. Finally, leukocyte flux was increased in the SH rats (34 ± 4 vs. 17 ± 3 cells/min in the normotensive controls), but this activation was decreased following exposure (15 ± 2 vs. 34 ± 4 cells/min). These results indicated that CeO2 NP may alter the inflammatory response in both SH and WKY rats. Taken together, these results provide evidence that CeO2 NP act as an anti-oxidant in vivo and may improve microvascular reactivity in a model of hypertension. PMID:26635625

  20. Ethanol reduces evoked dopamine release and slows clearance in the rat medial prefrontal cortex

    PubMed Central

    Shnitko, Tatiana A.; Kennerly, Laura C.; Spear, Linda P.; Robinson, Donita L.

    2014-01-01

    Background Ethanol intoxication affects cognitive performance, contributing to attentional deficits and poor decision making, which may occur via actions in the medial prefrontal cortex (mPFC). mPFC function is modulated by the catecholamines dopamine and norepinephrine. In this study, we examine the acute effects of ethanol on electrically-evoked dopamine release and clearance in the mPFC of anaesthetized rats nave to alcohol or chronically exposed to alcohol during adolescence. Methods Dopamine release and clearance was evoked by electrical stimulation of the VTA and measured in the mPFC of anaesthetized rats with fast-scan cyclic voltammetry. In Experiments 1 and 2, effects of a high dose of ethanol (4g/kg, i.p.) on dopamine neurotransmission in the mPFC of ethanol-nave rats and rats given ethanol exposure during adolescence were investigated. Effects of cumulative dosing of ethanol (0.54g/kg) on the dopamine release and clearance were investigated in Experiment 3. Experiment 4 studied effects of ethanol locally applied to the ventral tegmental area (VTA) on the dopamine neurotransmission in the mPFC of ethanol-nave rats. Results A high dose of ethanol decreased evoked dopamine release within 10 min of administration in ethanol-nave rats. When tested via cumulative dosing from 0.54g/kg, both 2 and 4g/kg ethanol inhibited evoked dopamine release in the mPFC of ethanol-nave rats, while 4g/kg ethanol also slowed dopamine clearance. A similar effect on electrically-evoked dopamine release in the mPFC was observed after infusion of ethanol into the VTA. Interestingly, intermittent ethanol exposure during adolescence had no effect on observed changes in mPFC dopamine release and clearance induced by acute ethanol administration. Conclusions Taken together, these data describe ethanol-induced reductions in the dynamics of VTA-evoked mPFC dopamine release and clearance, with the VTA contributing to the attenuation of evoked mPFC dopamine release induced by ethanol. PMID:25581652

  1. Apomorphine and 7-OH DPAT reduce ethanol intake of P and HAD rats.

    PubMed

    Russell, R N; McBride, W J; Lumeng, L; Li, T K; Murphy, J M

    1996-01-01

    Adult male rats of the alcohol-preferring (P) line (N = 10) and high alcohol drinking (HAD) line (N = 12) were used to study the effects of IP administration of 0.125-0.50 mg/kg 7-OH DPAT (a putative D agonist) and 0.25-1.0 mg/kg apomorphine (a dopamine agonist with 50-fold higher affinities for the D1 and D2 receptors than for the D3 receptor) on the concurrent intakes of 10% (v/v) ethanol and 0.0125% (g/v) saccharin during a daily 4-h scheduled access period. Control intakes by the P rats for the 4-h period were 17.9 +/- 0.5 and 7.2 +/- 0.4 ml for the ethanol and saccharin solutions, respectively. For the HAD line, ethanol consumption was 18.7 +/- 0.2 ml and saccharin intake was 8.7 +/- 1.6 ml for the 4-h period. In terms of grams ethanol/kg body wt, the 4-h intakes were 2.2 +/- 0.2 for the P line and 3.0 +/- 0.3 for the HAD rats. Both P and HAD rats consumed approximately 40% of their total ethanol intake in the first 15 min of access while consuming only about 15% of their total saccharin intake during this 15-min period. The putative D3 agonist 7-OH DPAT produced a decrease in ethanol intake in the first h to 45-55% of control levels for the P rat (p < 0.01) and to 25-70% of control values in the HAD line (p < 0.001). Apomorphine caused a dose-dependent decrease in ethanol intake in the first hour to 15-70% of control values in the P rat (p < 0.001) and to 25-60% of control levels in the HAD line (p < 0.001). Saccharin and 4-h food intakes for both lines were not altered by either 7-OH DPAT or apomorphine. Overall, these results suggest that D2 and D3 dopamine receptors may play a role in mediating alcohol drinking behavior of the selectively bred HAD and P lines of rats. PMID:8888949

  2. Salt Appetite Is Reduced by a Single Experience of Drinking Hypertonic Saline in the Adult Rat

    PubMed Central

    Greenwood, Michael P.; Greenwood, Mingkwan; Paton, Julian F. R.; Murphy, David

    2014-01-01

    Salt appetite, the primordial instinct to favorably ingest salty substances, represents a vital evolutionary important drive to successfully maintain body fluid and electrolyte homeostasis. This innate instinct was shown here in Sprague-Dawley rats by increased ingestion of isotonic saline (IS) over water in fluid intake tests. However, this appetitive stimulus was fundamentally transformed into a powerfully aversive one by increasing the salt content of drinking fluid from IS to hypertonic saline (2% w/v NaCl, HS) in intake tests. Rats ingested HS similar to IS when given no choice in one-bottle tests and previous studies have indicated that this may modify salt appetite. We thus investigated if a single 24 h experience of ingesting IS or HS, dehydration (DH) or 4% high salt food (HSD) altered salt preference. Here we show that 24 h of ingesting IS and HS solutions, but not DH or HSD, robustly transformed salt appetite in rats when tested 7 days and 35 days later. Using two-bottle tests rats previously exposed to IS preferred neither IS or water, whereas rats exposed to HS showed aversion to IS. Responses to sweet solutions (1% sucrose) were not different in two-bottle tests with water, suggesting that salt was the primary aversive taste pathway recruited in this model. Inducing thirst by subcutaneous administration of angiotensin II did not overcome this salt aversion. We hypothesised that this behavior results from altered gene expression in brain structures important in thirst and salt appetite. Thus we also report here lasting changes in mRNAs for markers of neuronal activity, peptide hormones and neuronal plasticity in supraoptic and paraventricular nuclei of the hypothalamus following rehydration after both DH and HS. These results indicate that a single experience of drinking HS is a memorable one, with long-term changes in gene expression accompanying this aversion to salty solutions. PMID:25111786

  3. Rats undernourished in utero have altered Ca2+ signaling and reduced fertility in adulthood.

    PubMed

    Muzi-Filho, Humberto; Souza, Alessandro M; Bezerra, Camila G P; Boldrini, Leonardo C; Takiya, Christina M; Oliveira, Felipe L; Nesi, Renata T; Valena, Samuel S; Silva, Ananssa M S; Zapata-Sudo, Gisele; Sudo, Roberto T; Einicker-Lamas, Marcelo; Vieyra, Adalberto; Lara, Lucienne S; Cunha, Valeria M N

    2015-10-01

    Epidemiological and animal studies have shown that placental undernutrition impairs reproduction in adult offspring, but the underlying molecular mechanisms within the male genital tract remain unknown. Due to its special physiological characteristics in transport and the modulation of the environment to which its luminal content is exposed, we hypothesized that the vas deferens would be a highly sensitive target. The goals were to investigate whether intrauterine malnutrition affects molecular mechanisms related to Ca(2+)- and oxidative stress-modulated processes and causes structural alterations in the adult rat vas deferens that could attenuate fecundity and fertility. Male adult rats malnourished in utero had increased vas deferens weight associated with thickening of the muscular coat, a decrease in the total and haploid germ cells, a marked increase in the immature cells, and a decline in the numbers of pregnant females and total offspring per male rat. The exvivo response of vas deferens from malnourished rats demonstrated an accentuated decrease in the contractile response to phenylephrine. The vas deferens had a marked decrease in Ca(2+) transport due to the uncoupling of Ca(2+)-stimulated ATP hydrolysis and ATP-driven Ca(2+) flux, and the downregulation of both sarco-endoplasmic reticulum Ca(2+)-ATPase 2 and the coupling factor 12-kDa FK506-binding protein. An increase in protein carbonylation (a marker of oxidative damage) and an imbalance between protein kinases C and A were observed as a legacy of undernutrition in early life. These results provide the structural and molecular basis to explain at least in part how maternal undernutrition affects fecundity and fertility in adult male rats. PMID:26508737

  4. Rats undernourished in utero have altered Ca2+ signaling and reduced fertility in adulthood

    PubMed Central

    Muzi-Filho, Humberto; Souza, Alessandro M; Bezerra, Camila G P; Boldrini, Leonardo C; Takiya, Christina M; Oliveira, Felipe L; Nesi, Renata T; Valença, Samuel S; Silva, Ananssa M S; Zapata-Sudo, Gisele; Sudo, Roberto T; Einicker-Lamas, Marcelo; Vieyra, Adalberto; Lara, Lucienne S; Cunha, Valeria M N

    2015-01-01

    Epidemiological and animal studies have shown that placental undernutrition impairs reproduction in adult offspring, but the underlying molecular mechanisms within the male genital tract remain unknown. Due to its special physiological characteristics in transport and the modulation of the environment to which its luminal content is exposed, we hypothesized that the vas deferens would be a highly sensitive target. The goals were to investigate whether intrauterine malnutrition affects molecular mechanisms related to Ca2+- and oxidative stress-modulated processes and causes structural alterations in the adult rat vas deferens that could attenuate fecundity and fertility. Male adult rats malnourished in utero had increased vas deferens weight associated with thickening of the muscular coat, a decrease in the total and haploid germ cells, a marked increase in the immature cells, and a decline in the numbers of pregnant females and total offspring per male rat. The ex vivo response of vas deferens from malnourished rats demonstrated an accentuated decrease in the contractile response to phenylephrine. The vas deferens had a marked decrease in Ca2+ transport due to the uncoupling of Ca2+-stimulated ATP hydrolysis and ATP-driven Ca2+ flux, and the downregulation of both sarco-endoplasmic reticulum Ca2+-ATPase 2 and the coupling factor 12-kDa FK506-binding protein. An increase in protein carbonylation (a marker of oxidative damage) and an imbalance between protein kinases C and A were observed as a legacy of undernutrition in early life. These results provide the structural and molecular basis to explain at least in part how maternal undernutrition affects fecundity and fertility in adult male rats. PMID:26508737

  5. Tempol Treatment Reduces Anxiety-Like Behaviors Induced by Multiple Anxiogenic Drugs in Rats

    PubMed Central

    Patki, Gaurav; Salvi, Ankita; Liu, Hesong; Atrooz, Fatin; Alkadhi, Isam; Kelly, Matthew; Salim, Samina

    2015-01-01

    We have published that pharmacological induction of oxidative stress (OS) causes anxiety-like behavior in rats. Using animal models, we also have established that psychological stress induces OS and leads to anxiety-like behaviors. All evidence points towards the causal role of OS in anxiety-like behaviors. To fully ascertain the role of OS in anxiety-like behaviors, it is reasonable to test whether the pro-anxiety effects of anxiogenic drugs caffeine or N-methyl-beta-carboline-3-carboxamide (FG-7142) can be mitigated using agents that minimize OS. In this study, osmotic pumps were either filled with antioxidant tempol or saline. The pumps were attached to the catheter leading to the brain cannula and inserted into the subcutaneous pocket in the back pocket of the rat. Continuous i.c.v. infusion of saline or tempol in the lateral ventricle of the brain (4.3mmol/day) was maintained for 1 week. Rats were intraperitoneally injected either with saline or an anxiogenic drug one at a time. Two hours later all groups were subjected to behavioral assessments. Anxiety-like behavior tests (open-field, light-dark and elevated plus maze) suggested that tempol prevented anxiogenic drug-induced anxiety-like behavior in rats. Furthermore, anxiogenic drug-induced increase in stress examined via plasma corticosterone and increased oxidative stress levels assessed via plasma 8-isoprostane were prevented with tempol treatment. Protein carbonylation assay also suggested preventive effect of tempol in the prefrontal cortex brain region of rats. Antioxidant protein expression and pro-inflammatory cytokine levels indicate compromised antioxidant defense as well as an imbalance of inflammatory response. PMID:25793256

  6. Salt appetite is reduced by a single experience of drinking hypertonic saline in the adult rat.

    PubMed

    Greenwood, Michael P; Greenwood, Mingkwan; Paton, Julian F R; Murphy, David

    2014-01-01

    Salt appetite, the primordial instinct to favorably ingest salty substances, represents a vital evolutionary important drive to successfully maintain body fluid and electrolyte homeostasis. This innate instinct was shown here in Sprague-Dawley rats by increased ingestion of isotonic saline (IS) over water in fluid intake tests. However, this appetitive stimulus was fundamentally transformed into a powerfully aversive one by increasing the salt content of drinking fluid from IS to hypertonic saline (2% w/v NaCl, HS) in intake tests. Rats ingested HS similar to IS when given no choice in one-bottle tests and previous studies have indicated that this may modify salt appetite. We thus investigated if a single 24 h experience of ingesting IS or HS, dehydration (DH) or 4% high salt food (HSD) altered salt preference. Here we show that 24 h of ingesting IS and HS solutions, but not DH or HSD, robustly transformed salt appetite in rats when tested 7 days and 35 days later. Using two-bottle tests rats previously exposed to IS preferred neither IS or water, whereas rats exposed to HS showed aversion to IS. Responses to sweet solutions (1% sucrose) were not different in two-bottle tests with water, suggesting that salt was the primary aversive taste pathway recruited in this model. Inducing thirst by subcutaneous administration of angiotensin II did not overcome this salt aversion. We hypothesised that this behavior results from altered gene expression in brain structures important in thirst and salt appetite. Thus we also report here lasting changes in mRNAs for markers of neuronal activity, peptide hormones and neuronal plasticity in supraoptic and paraventricular nuclei of the hypothalamus following rehydration after both DH and HS. These results indicate that a single experience of drinking HS is a memorable one, with long-term changes in gene expression accompanying this aversion to salty solutions. PMID:25111786

  7. Diuresis and reduced urinary osmolality in rats produced by small-molecule UT-A-selective urea transport inhibitors

    PubMed Central

    Esteva-Font, Cristina; Cil, Onur; Phuan, Puay-Wah; Su, Tao; Lee, Sujin; Anderson, Marc O.; Verkman, A. S.

    2014-01-01

    Urea transport (UT) proteins of the UT-A class are expressed in epithelial cells in kidney tubules, where they are required for the formation of a concentrated urine by countercurrent multiplication. Here, using a recently developed high-throughput assay to identify UT-A inhibitors, a screen of 50,000 synthetic small molecules identified UT-A inhibitors of aryl-thiazole, γ-sultambenzosulfonamide, aminocarbonitrile butene, and 4-isoxazolamide chemical classes. Structure-activity analysis identified compounds that inhibited UT-A selectively by a noncompetitive mechanism with IC50 down to ∼1 μM. Molecular modeling identified putative inhibitor binding sites on rat UT-A. To test compound efficacy in rats, formulations and administration procedures were established to give therapeutic inhibitor concentrations in blood and urine. We found that intravenous administration of an indole thiazole or a γ-sultambenzosulfonamide at 20 mg/kg increased urine output by 3–5-fold and reduced urine osmolality by ∼2-fold compared to vehicle control rats, even under conditions of maximum antidiuresis produced by 1-deamino-8-d-arginine vasopressin (DDAVP). The diuresis was reversible and showed urea > salt excretion. The results provide proof of concept for the diuretic action of UT-A-selective inhibitors. UT-A inhibitors are first in their class salt-sparing diuretics with potential clinical indications in volume-overload edemas and high-vasopressin-associated hyponatremias.—Esteva-Font, C., Cil, O., Phuan, P.-W., Su, T., Lee, S., Anderson, M. O., Verkman, A. S. Diuresis and reduced urinary osmolality in rats produced by small-molecule UT-A-selective urea transport inhibitors. PMID:24843071

  8. Blooming reduces the antioxidant capacity of dark chocolate in rats without lowering its capacity to improve lipid profiles.

    PubMed

    Shadwell, Naomi; Villalobos, Fatima; Kern, Mark; Hong, Mee Young

    2013-05-01

    Dark chocolate contains high levels of antioxidants which are linked to a reduced risk of cardiovascular disease. Chocolate blooming occurs after exposure to high temperatures. Although bloomed chocolate is safe for human consumption, it is not known whether or not the biological function of bloomed chocolate is affected. We hypothesized that bloomed chocolate would reduce the antioxidant potential and lipid-lowering properties of chocolate through altered expression of related genes. Thirty Sprague-Dawley rats were divided into 3 groups and fed either the control (CON), regular dark chocolate (RDC), or bloomed dark chocolate (BDC) diet. After 3 weeks, serum lipid levels and antioxidant capacity were measured. Hepatic expression of key genes was determined by real time polymerase chain reaction (PCR). Sensory characteristics of bloomed versus regular chocolate were assessed in 28 semi-trained panelists. Rats fed RDC exhibited greater serum antioxidant capacities compared to the CON (P < .05). Antioxidant levels of BDC were not different from RDC or CON. Both RDC and BDC lowered TG compared to CON (P < .05). The rats fed RDC had higher high-density lipoprotein levels compared to the CON (P < .05). In rats given RDC, fatty acid synthase gene expression was down-regulated and low-density lipoprotein receptor transcription was up-regulated (P < .05). Sensory panelists preferred the appearance and surface smoothness of the regular chocolate compared to bloomed chocolate (P < .001). Although blooming blunted the robust antioxidant response produced by regular dark chocolate, these results suggest that bloomed dark chocolate yields similarly beneficial effects on most blood lipid parameters or biomarkers. However, regular dark chocolate may be more beneficial for the improvement of antioxidant status and modulation of gene expression involved in lipid metabolism and promoted greater sensory ratings. PMID:23684443

  9. The chemopreventive potential of Curcuma purpurascens rhizome in reducing azoxymethane-induced aberrant crypt foci in rats

    PubMed Central

    Rouhollahi, Elham; Moghadamtousi, Soheil Zorofchian; Al-Henhena, Nawal; Kunasegaran, Thubasni; Hasanpourghadi, Mohadeseh; Looi, Chung Yeng; Abd Malek, Sri Nurestri; Awang, Khalijah; Abdulla, Mahmood Ameen; Mohamed, Zahurin

    2015-01-01

    Curcuma purpurascens BI. rhizome, a member of the Zingiberaceae family, is a popular spice in Indonesia that is traditionally used in assorted remedies. Dichloromethane extract of C. purpurascens BI. rhizome (DECPR) has previously been shown to have an apoptosis-inducing effect on colon cancer cells. In the present study, we examined the potential of DECPR to prevent colon cancer development in rats treated with azoxymethane (AOM) (15 mg/kg) by determining the percentage inhibition in incidence of aberrant crypt foci (ACF). Starting from the day immediately after AOM treatment, three groups of rats were orally administered once a day for 2 months either 10% Tween 20 (5 mL/kg, cancer control), DECPR (250 mg/kg, low dose), or DECPR (500 mg/kg, high dose). Meanwhile, the control group was intraperitoneally injected with 5-fluorouracil (35 mg/kg) for 5 consecutive days. After euthanizing the rats, the number of ACF was enumerated in colon tissues. Bax, Bcl-2, and proliferating cell nuclear antigen (PCNA) protein expressions were examined using immunohistochemical and Western blot analyses. Antioxidant enzymatic activity was measured in colon tissue homogenates and associated with malondialdehyde level. The percentage inhibition of ACF was 56.04% and 68.68% in the low- and high-dose DECPR-treated groups, respectively. The ACF inhibition in the treatment control group was 74.17%. Results revealed that DECPR exposure at both doses significantly decreased AOM-induced ACF formation, which was accompanied by reduced expression of PCNA. Upregulation of Bax and downregulation of Bcl-2 suggested the involvement of apoptosis in the chemopreventive effect of DECPR. In addition, the oxidative stress resulting from AOM treatment was significantly attenuated after administration of DECPR, which was shown by the elevated antioxidant enzymatic activity and reduced malondialdehyde level. Taken together, the present data clearly indicate that DECPR significantly inhibits ACF formation in AOM-treated rats and may offer protection against colon cancer development. PMID:26251570

  10. Reduced serine racemase expression in aging rat cerebellum is associated with oxidative DNA stress and hypermethylation in the promoter.

    PubMed

    Zhang, He; Kuang, Xiu-Li; Chang, Yuhua; Lu, Jinfang; Jiang, Haiyan; Wu, Shengzhou

    2015-12-10

    Regulation of serine racemase (SR) occurs at transcriptional and translational levels; post-translational modification, cytosolic distribution as well as allosteric effect regulate SR activity. In this study, we report a new route of SR regulation, i.e. oxidative stress and hypermethylation of the srr (gene of SR) promoter correlate with its reduced transcription in aging rat cerebella. We first showed that the mRNA and protein level of srr were decreased in the homogenates of rat cerebellum at age 12 months compared with the counterparts from age 20 days. The reduction of SR protein level in aging cerebella was evidenced by decreased immunostaining observed in the cell body of granule cells or Purkinje cells. Staining for 8-hydroxy-2'-deoxyguanosine (8-OHdG), a marker for oxidative stress to DNA, was much stronger in granule cell or Purkinje cell nuclei from rat cerebella at 12 months compared with staining at 20 days. We further detected srr promoter hypermethylation at 12 months compared with that at 20 days by use of bisulfite sequencing PCR, coinciding with elevated protein levels of DNA methyltransferase 1 (DNMT1) in homogenates of aging cerebella. In vitro, we demonstrated that chronic treatment with the oxidant, menadione (VK3), reduced srr mRNA levels, which was reversed by the DNA demethylating agent 5-Aza-dC-2'-deoxycytidine (5-Aza-dC) in primary cerebellar granule cell cultures. Together, the in vivo and ex vivo results suggest that oxidative DNA stress and srr promoter hypermethylation are associated with reduced srr gene transcription and corresponding reduced protein expression in aging cerebella. PMID:26505919

  11. [In vitro effects of triiodothyronine on the reduced osteogenic potential of adipose tissue derived mesenchymal stem cells from of ovariectomized rats and with osteoporosis].

    TOXLINE Toxicology Bibliographic Information

    Boeloni JN; Ocarino NM; Goes AM; Serakides R

    2013-03-01

    OBJECTIVE: To examine if triiodothyronine (T3) increases osteogenic differentiation adipose tissue derived stem cells (ASCs) from ovariectomized adult rats with osteoporosis compared with young rats and adult rats without osteoporosis.MATERIALS AND METHODS: The ASCs were cultured in osteogenic medium and distributed into seven groups: 1) ASCs of young rats without osteoporosis; 2) ASCs of adult rats without osteoporosis; 3) ASCs of adult rats with osteoporosis and 4, 5, 6 and 7) ASCs of adult rats with osteoporosis treated with T3 (0.01 nM, 1 nM, 100 nM and 1,000 nM). We analyzed alkaline phosphatase activity, dimethylthiazol (MTT) conversion, percentage of mineralized nodules, cellularity and quantification of gene transcripts for collagen I, osteocalcin, osteopontin and Bmp-2.RESULTS: Regardless of the dose, T3 reduced the MTT conversion, alkaline phosphatase activity, percentage of cells and the expression of collagen I in at least one of the doses and periods studied (p < 0.05). But, the treatment with T3 does not modify the number of mineralized nodules and the expression of osteopontin and Bmp-2 in culture of ASCs from adult rats with osteoporosis (p > 0.05).CONCLUSION: T3 has a negative effect on some factors involved in osteogenic differentiation of ASCs from adult rats with osteoporosis, without; however, reduce the formation of mineralized nodules and the expression of bone proteins.

  12. FT011, a Novel Cardiorenal Protective Drug, Reduces Inflammation, Gliosis and Vascular Injury in Rats with Diabetic Retinopathy

    PubMed Central

    Deliyanti, Devy; Zhang, Yuan; Khong, Fay; Berka, David R.; Stapleton, David I.; Kelly, Darren J.; Wilkinson-Berka, Jennifer L.

    2015-01-01

    Diabetic retinopathy features inflammation as well as injury to glial cells and the microvasculature, which are influenced by hypertension and overactivity of the renin-angiotensin system. FT011 is an anti-inflammatory and anti-fibrotic agent that has been reported to attenuate organ damage in diabetic rats with cardiomyopathy and nephropathy. However, the potential therapeutic utility of FT011 for diabetic retinopathy has not been evaluated. We hypothesized that FT011 would attenuate retinopathy in diabetic Ren-2 rats, which exhibit hypertension due to an overactive extra-renal renin-angiotensin system. Diabetic rats were studied for 8 and 32 weeks and received intravitreal injections of FT011 (50 μM) or vehicle (0.9% NaCl). Comparisons were to age-matched controls. In the 8-week study, retinal inflammation was examined by quantitating vascular leukocyte adherence, microglial/macrophage density and the expression of inflammatory mediators. Macroglial Müller cells, which exhibit a pro-inflammatory and pro-angiogenic phenotype in diabetes, were evaluated in the 8-week study as well as in culture following exposure to hyperglycaemia and FT011 (10, 30, 100 μM) for 72 hours. In the 32-week study, severe retinal vasculopathy was examined by quantitating acellular capillaries and extracellular matrix proteins. In diabetic rats, FT011 reduced retinal leukostasis, microglial density and mRNA levels of intercellular adhesion molecule-1 (ICAM-1). In Müller cells, FT011 reduced diabetes-induced gliosis and vascular endothelial growth factor (VEGF) immunolabeling and the hyperglycaemic-induced increase in ICAM-1, monocyte chemoattractant protein-1, CCL20, cytokine-induced neutrophil chemoattractant-1, VEGF and IL-6. Late intervention with FT011 reduced acellular capillaries and the elevated mRNA levels of collagen IV and fibronectin in diabetic rats. In conclusion, the protective effects of FT011 in cardiorenal disease extend to key elements of diabetic retinopathy and highlight its potential as a treatment approach. PMID:26222724

  13. Motor strategies used by rats spinalized at birth to maintain stance in response to imposed perturbations

    PubMed Central

    Giszter, Simon F; Davies, Michelle R; Graziani, Virginia

    2010-01-01

    Some rats spinalized P1/P2 achieve autonomous weight supported locomotion and quiet stance as adults. We used force platforms and robot applied perturbations to test such spinalized rats (n=6) which exhibited both weight supporting locomotion and stance, and also normal rats (n=8). Ground reaction forces in individual limbs, and the animals center of pressure were examined. In normal rats, both forelimbs and hindlimbs participated actively to control horizontal components of ground reaction forces. Rostral perturbations increased forelimb ground reaction forces, and caudal perturbations increased hindlimb ground reaction forces. Operate rats carried 60% body weight on the forelimbs and had a more rostral center of pressure placement. Normal rats pattern was to carry significantly more weight on the hindlimbs in quiet stance (~60%). Operate rats strategy of compensation for perturbations was entirely in forelimbs; as a result, the hind-limbs were largely isolated from the perturbation. Stiffness magnitude of the whole body was measured: its magnitude was hourglass shaped, with the principal axis oriented rostrocaudally. Operate rats were significantly less stiff; only 60-75% of normal rats stiffness. The injured rats adopt a stance strategy that isolates the hindlimbs from perturbation and may thus prevent hindlimb loadings. Such loadings could initiate reflex stepping, which we observed. This might activate lumbar pattern generators used in their locomotion. Adult spinalized rats never achieve independent hindlimb weight supported stance. The stance strategy of the P1 spinalized rats differed strongly from the behavior of intact rats and may be difficult for rats spinalized as adults to master. PMID:17287444

  14. Partial hindlimb occlusion reduced the susceptibility to sustained ventricular tachycardia in conscious rats.

    PubMed

    Lujan, Heidi L; DiCarlo, Stephen E

    2009-09-01

    Remote conditioning induced by ischemia in distant organs protects the heart from ischemia/reperfusion injury; however, its effect on ischemia-induced ventricular arrhythmias is unknown. Therefore, we tested the hypothesis that partial hindlimb occlusion during coronary artery occlusion increases the ventricular arrhythmia threshold (VAT) induced by coronary artery occlusion. Rats (n = 7) were instrumented with a radio-telemetry device for recording arterial pressure, electrocardiogram (ECG), and body temperature. A Doppler ultrasonic flow probe and vascular occluder were placed around the terminal aorta. Finally, a snare was placed around the left main coronary artery. The VAT was determined without and, on an alternate day, during partial hindlimb occlusion (remote conditioning) in conscious rats. Without remote conditioning, the VAT was 4.56 + 0.15 minutes. Importantly, remote conditioning significantly increased the VAT (6.29 + 0.49 minutes), suggesting that ischemia in a distant organ may delay the development of ischemia-induced ventricular arrhythmias. PMID:19721132

  15. Manganese porphyrin reduces retinal injury induced by ocular hypertension in rats.

    PubMed

    Dogan, Serdar; Unal, Mustafa; Ozturk, Nihal; Yargicoglu, Piraye; Cort, Aysegul; Spasojevic, Ivan; Batinic-Haberle, Ines; Aslan, Mutay

    2011-10-01

    This study aimed to clarify the possible therapeutic benefit of preferential nitric oxide synthase (NOS) inhibition and catalytic antioxidant Mn (III) meso-tetrakis (N-n-hexylpyridinium-2-yl) porphyrin (MnTnHex-2-PyP(5+)) treatment in a rat model of elevated intraocular pressure (EIOP). Rats were randomly divided into different experimental groups which received either intraperitoneal MnTnHex-2-PyP(5+) (0.1mg/kg/day), intragastric NOS inhibitor (S-methylthiourea: SMT; 5mg/kg/day) or both agents for a period of 6 weeks. Ocular hypertension was induced by unilaterally cauterizing three episcleral vessels and the unoperated eye served as control. Neuroprotective effects of given treatments were determined via electrophysiological measurements of visual evoked potentials (VEP) while retina and vitreous levels of MnTnHex-2-PyP(5+) were measured via LC-MS/MS. Latencies of all VEP components (P(1),N(1), P(2), N(2), P(3)) were significantly prolonged (p<0.05) in EIOP and returned to control levels following all three treatment protocols. Ocular hypertension significantly increased retinal protein nitration (p<0.001) which returned to baseline levels in all treated groups. NOS-2 expression and nitrate/nitrite levels were significantly greater in non-treated rats with EIOP. Retinal TUNEL staining showed apoptosis in all ocular hypertensive rats. The presented data confirm the role of oxidative injury in EIOP and highlight the protective effect of MnTnHex-2-PyP(5+) treatment and NOS inhibition in ocular hypertension. PMID:21669199

  16. A monoclonal antibody against kininogen reduces inflammation in the HLA-B27 transgenic rat.

    PubMed

    Keith, James C; Sainz, Irma M; Isordia-Salas, Irma; Pixley, Robin A; Leathurby, Yelena; Albert, Leo M; Colman, Robert W

    2005-01-01

    The human leukocyte antigen B27 (HLA-B27) transgenic rat is a model of human inflammatory bowel disease, rheumatoid arthritis and psoriasis. Studies of chronic inflammation in other rat models have demonstrated activation of the kallikrein-kinin system as well as modulation by a plasma kallikrein inhibitor initiated before the onset of clinicopathologic changes or a deficiency in high-molecular-mass kininogen. Here we study the effects of monoclonal antibody C11C1, an antibody against high-molecular-mass kininogen that inhibits the binding of high-molecular-mass kininogen to leukocytes and endothelial cells in the HLA-B27 rat, which was administered after the onset of the inflammatory changes. Thrice-weekly intraperitoneal injections of monoclonal antibody C11C1 or isotype IgG1 were given to male 23-week-old rats for 16 days. Stool character as a measure of intestinal inflammation, and the rear limbs for clinical signs of arthritis (tarsal joint swelling and erythema) were scored daily. The animals were killed and the histology sections were assigned a numerical score for colonic inflammation, synovitis, and cartilage damage. Administration of monoclonal C11C1 rapidly decreased the clinical scores of pre-existing inflammatory bowel disease (P < 0.005) and arthritis (P < 0.001). Histological analyses confirmed significant reductions in colonic lesions (P = 0.004) and synovitis (P = 0.009). Decreased concentrations of plasma prekallikrein and high-molecular-mass kininogen were found, providing evidence of activation of the kallikrein-kinin system. The levels of these biomarkers were reversed by monoclonal antibody C11C1, which may have therapeutic potential in human inflammatory bowel disease and arthritis. PMID:15987478

  17. A monoclonal antibody against kininogen reduces inflammation in the HLA-B27 transgenic rat

    PubMed Central

    Keith, James C; Sainz, Irma M; Isordia-Salas, Irma; Pixley, Robin A; Leathurby, Yelena; Albert, Leo M; Colman, Robert W

    2005-01-01

    The human leukocyte antigen B27 (HLA-B27) transgenic rat is a model of human inflammatory bowel disease, rheumatoid arthritis and psoriasis. Studies of chronic inflammation in other rat models have demonstrated activation of the kallikreinkinin system as well as modulation by a plasma kallikrein inhibitor initiated before the onset of clinicopathologic changes or a deficiency in high-molecular-mass kininogen. Here we study the effects of monoclonal antibody C11C1, an antibody against high-molecular-mass kininogen that inhibits the binding of high-molecular-mass kininogen to leukocytes and endothelial cells in the HLA-B27 rat, which was administered after the onset of the inflammatory changes. Thrice-weekly intraperitoneal injections of monoclonal antibody C11C1 or isotype IgG1 were given to male 23-week-old rats for 16 days. Stool character as a measure of intestinal inflammation, and the rear limbs for clinical signs of arthritis (tarsal joint swelling and erythema) were scored daily. The animals were killed and the histology sections were assigned a numerical score for colonic inflammation, synovitis, and cartilage damage. Administration of monoclonal C11C1 rapidly decreased the clinical scores of pre-existing inflammatory bowel disease (P < 0.005) and arthritis (P < 0.001). Histological analyses confirmed significant reductions in colonic lesions (P = 0.004) and synovitis (P = 0.009). Decreased concentrations of plasma prekallikrein and high-molecular-mass kininogen were found, providing evidence of activation of the kallikreinkinin system. The levels of these biomarkers were reversed by monoclonal antibody C11C1, which may have therapeutic potential in human inflammatory bowel disease and arthritis. PMID:15987478

  18. Crizotinib reduces the rate of dark adaptation in the rat retina independent of ALK inhibition.

    PubMed

    Liu, Chang-Ning; Mathialagan, Nagappan; Lappin, Patrick; Fortner, Jay; Somps, Chris; Seitis, Gary; Johnson, Theodore R; Hu, Wenyue; Matsumoto, Diane

    2015-01-01

    Crizotinib (Xalkori) is a tyrosine kinase inhibitor of both anaplastic lymphoma kinase (ALK) and mesenchymal-epithelial transition factor (c-Met). Though not predicted from standard nonclinical toxicological evaluation, visual disturbance became a frequently observed adverse event in humans. To understand the possible mechanism of this vision effect, an in vivo electroretinogram (ERG) study was conducted to assess retinal functional changes following oral administration of crizotinib. Immunohistochemical (IHC) staining of ALK and c-Met in the neural retinas of human, non-human primate, dog, rat, and mouse was used to aid in the animal model selection. ALK IHC staining was identified predominantly in the ganglion cell and inner nuclear layers of most species evaluated, in the inner plexiform layer in human and rodent, and in the nerve fiber layer in human and rat only. There was no apparent staining of any layer of the neural retina for c-Met in any of the species evaluated. ERG measurements identified a significant reduction in b-wave amplitude during the initial phase of dark adaptation in the crizotinib-treated rats. ERGs were also taken following oral administration of PF-06463922 (an ALK-selective inhibitor), for an understanding of potential kinase involvement. ERG effects were not observed in PF-06463922-treated animals when comparable exposures in the vitreous humor were achieved. Collectively, our results suggest that the ERG b-wave amplitude decreases during dark adaption following crizotinib administration may be related to signaling changes within the retina in rats, likely independent of ALK inhibition. PMID:25326243

  19. Bax inhibiting peptide reduces apoptosis in neonatal rat hypoxic-ischemic brain damage

    PubMed Central

    Sun, Meng-Ya; Cui, Kai-Jie; Yu, Mao-Min; Zhang, Hui; Peng, Xiang-Li; Jiang, Hong

    2015-01-01

    Neonatal hypoxic ischemic encephalopathy (HIE) has been reported to induce apoptosis in neonates. We, therefore, analyzed the ability of Bax-inhibiting peptide (BIP) to provide neuroprotective effects during hypoxic-ischemic brain damage (HIBD). Seven-day-old wistar rat pups (n = 198) were randomly divided into a sham-operated group (Group S, n = 18), saline group (Group C, n = 90) and BIP group (Group B, n = 90). Pathological changes in the cerebral tissues of rat pups were analyzed using hematoxylin and eosin stain, TUNEL and Western blot. The expression of cytochrome c and caspase-3 was determined using western blot technique. Rat pups demonstrated neurobehavioral alteration in Groups C and B. TUNEL-positive cells in the left hippocampus were significantly increased in Group C and Group B after HIBD (P < 0.01) when compared with Group S. There was a marked reduction in TUNEL positive cells in subgroups B1 through B4 when compared with the respective subgroups C1 through C5. Compared with Group S, the expression of caspase-3 and cytochrome c was significantly increased in Groups C and B (P < 0.01). The difference in expression of caspase-3 and cytochrome c between subgroups B1 through B4 and C1 through C4 was significant (P < 0.01). In conclusions, the neuro-protective effect of BIP was due to a reduction of nerve cell apoptosis in our neonatal HIE rat model. We propose that BIP has potential as a neuro-protective drug in neonatal HIE cases. PMID:26823794

  20. Reduced spleen natural killer cell activity in virally challenged iron-deficient rat pups

    SciTech Connect

    Lockwood, J.F.; Sherman, A.R.

    1986-03-01

    Neonatal iron deficiency has been shown to alter several aspects of immunity in rats. This study determined the effects of iron deficiency on cytotoxicity of virally-induced natural killer cells (NK) in spleen. Rats (n = 8-12/grp) were fed 6 (severe deficiency, SID), 10 (moderate deficiency, MID), or 250 (adequate iron status, AIS) ppm iron d 1 pregnancy through d 21 lactation. Litters were adjusted to 7 on d 2. On d 17 pups were challenged intraperitoneally with 5 x 10/sup 5/ plaque forming units of vaccinia virus. Spleens were collected 4 d later and cell suspensions prepared and pooled within each litter. After isolation of mononuclear cells on a Ficoll-Hypaque gradient, macrophages were removed, and the resulting lymphocytes were incubated with Cr/sup 51/ labelled Yac-1 target cells at effector:target ratios (E:T) of 10:1 and 50:1. Cytotoxicity of NK cells were measured after 4 and 16 hrs by the Cr/sup 51/ release assay. In SID and MID groups body weights, spleen weights, and hemoglobin levels were significantly lower than in AIS pups (p < 0.001). Spleen NK cell cytotoxicity was significantly impaired in SID and MID pups. Depending on the E:T and incubation time, SID and MID cells had activities 30-50% of AIS cells (p < 0.001). Both severe and moderate iron deficiency markedly impair the cytotoxic activity of spleen natural killer cells in suckling rats.

  1. Low G preconditioning reduces liver injury induced by high +Gz exposure in rats

    PubMed Central

    Shi, Bin; Feng, Zhi-Qiang; Li, Wen-Bing; Zhang, Hong-Yi

    2015-01-01

    AIM: To investigate the effect of repeated lower +Gz exposure on liver injury induced by high +Gz exposure in rats. METHODS: Sixty male Wister rats were randomly divided into a blank control group, a low G preconditioning group (LG) (exposed to +4 Gz/5 min per day for 3 d before +10 Gz/5 min exposure), and a +10 Gz/5 min group (10G) (n = 20 in each group). Blood specimens and liver tissue were harvested at 0 h and 6 h after +10 Gz/5 min exposure. Liver function was analyzed by measuring serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, and liver injury was further assessed by histopathological observation. Malondialdehyde (MDA), superoxide dismutase (SOD) and Na+-K+-ATPase were determined in hepatic tissue. RESULTS: The group LG had lower ALT, AST, and MDA values at 0 h after exposure than those in group 10G. SOD values and Na+-K+-ATPase activity in the LG group were higher than in group 10G 0 h post-exposure. Hepatocyte injury was significantly less in group LG than in group 10G on histopathological evaluation. CONCLUSION: It is suggested that repeated low +Gz exposure shows a protective effect on liver injury induced by high +Gz exposure in rats. PMID:26074692

  2. Dietary supplementation of the pyridoindole antioxidant stobadine reduces vascular impairment in streptozotocin-diabetic rats.

    PubMed

    Sotnikova, R; Stefek, M; Okruhlicova, L; Navarova, J; Bauer, V; Gajdosik, A; Gajdosikova, A

    2001-04-01

    We studied the influence of hyperglycemia lasting 1, 4, 6 and 8 months on the reactivity and ultrastructure of the aorta in Wistar rats. Moreover, the effect of the pyridoindole antioxidant stobadine ((-)-cis-2,8-dimethyl-2,3,4,4a,5,9b-hexahydro-1H-pyrido[4,3-b]indole) on the changes induced by the 8-month hyperglycemia were studied. Hyperglycemia was induced by streptozotocin (STZ, 55 mg/kg i.v.). In the functional study, responses to KCl, acetylcholine (ACh), noradrenaline (NA) and hydrogen peroxide were evaluated under isometric conditions. The first changes in aortic reactivity started after 1 month of hyperglycemia and were exhibited by significantly increased NA-induced contractions. Relaxant responses to acetylcholine were decreased, although not significantly. Prolongation of hyperglycemia to 4, 6 and 8 months did not cause any additional significant changes in responsiveness to NA. Decreased ACh-induced relaxation and increased contractile responses to H2O2 were observed in month 4. The functional responses were not substantially deteriorated by prolongation of hyperglycemia to 6 and 8 months. Ultrastructural examination of the diabetic aorta showed disturbances in normal tissue organization. An 8-month supplementation of stobadine in diabetic rats resulted in the protection of aortic function as well as its ultrastructure. These results suggest that abnormalities occurring in the aorta of diabetic rats might result from the damaging effects of oxygen free radicals. PMID:11523310

  3. Camphor Tree Seed Kernel Oil Reduces Body Fat Deposition and Improves Blood Lipids in Rats.

    PubMed

    Fu, Jing; Wang, Baogui; Gong, Deming; Zeng, Cheng; Jiang, Yihao; Zeng, Zheling

    2015-08-01

    The total and positional fatty acid composition in camphor tree (Cinnamomum camphora) seed kernel oil (CKO) were analyzed, and for the first time, the effect of CKO on body fat deposition and blood lipids in rats was studied. The major fatty acids in CKO were determined to be decanoic acid (C10:0, 51.49%) and dodecanoic acid (C12:0, 40.08%), and uniformly distributed at Sn-1, 3, and Sn-2 positions in triglyceride (TG). Rats were randomly divided into control, CKO, lard, and soybean oil groups. At the end of the experiment, levels of blood lipids and the fats of abdomen in the rats were measured. The main organ were weighted and used for the histological examination. The results showed that body weight and fat deposition in CKO group were significantly lower than the lard and soybean groups. Moderate consumption of CKO was found to improve the levels of blood TG and low density lipoprotein cholesterol. PMID:26130050

  4. Slimmer or fertile? Pharmacological mechanisms involved in reduced sperm quality and fertility in rats exposed to the anorexigen sibutramine.

    PubMed

    Borges, Cibele S; Missassi, Gabriela; Pacini, Enio S A; Kiguti, Luiz Ricardo A; Sanabria, Marciana; Silva, Raquel F; Banzato, Thais P; Perobelli, Juliana E; Pupo, Andr S; Kempinas, Wilma G

    2013-01-01

    Sperm acquire motility and fertility capacity during epididymal transit, under the control of androgens and sympathetic innervations. It is already known that the acceleration of epididymal sperm transit time can lead to lower sperm quality. In a previous work we showed that rats exposed to the anorexigen sibutramine, a non-selective serotonin-norepinephrine reuptake inhibitor, presented faster sperm transit time, lower epididymal sperm reserves and potentiation of the tension of epididymal duct to norepinephrine exposed acutely in vitro to sibut