Science.gov

Sample records for rat hippocampus increases

  1. Increasing TNF levels solely in the rat hippocampus produces persistent pain-like symptoms.

    PubMed

    Martuscello, Regina T; Spengler, Robert N; Bonoiu, Adela C; Davidson, Bruce A; Helinski, Jadwiga; Ding, Hong; Mahajan, Supriya; Kumar, Rajiv; Bergey, Earl J; Knight, Paul R; Prasad, Paras N; Ignatowski, Tracey A

    2012-09-01

    The manifestation of chronic, neuropathic pain includes elevated levels of the cytokine tumor necrosis factor-alpha (TNF). Previously, we have shown that the hippocampus, an area of the brain most notable for its role in learning and memory formation, plays a fundamental role in pain sensation. Using an animal model of peripheral neuropathic pain, we have demonstrated that intracerebroventricular infusion of a TNF antibody adjacent to the hippocampus completely alleviated pain. Furthermore, intracerebroventricular infusion of rTNF adjacent to the hippocampus induced pain behavior in naïve animals similar to that expressed during a model of neuropathic pain. These data support our premise that enhanced production of hippocampal-TNF is integral in pain sensation. In the present study, TNF gene expression was induced exclusively in the hippocampus, eliciting increased local bioactive TNF levels, and animals were assessed for pain behaviors. Male Sprague-Dawley rats received stereotaxic injection of gold nanorod (GNR)-complexed cDNA (control or TNF) plasmids (nanoplasmidexes), and pain responses (i.e., thermal hyperalgesia and mechanical allodynia) were measured. Animals receiving hippocampal microinjection of TNF nanoplasmidexes developed thermal hyperalgesia bilaterally. Sensitivity to mechanical stimulation also developed bilaterally in the rat hind paws. In support of these behavioral findings, immunoreactive staining for TNF, bioactive levels of TNF, and levels of TNF mRNA per polymerase chain reaction analysis were assessed in several brain regions and found to be increased only in the hippocampus. These findings indicate that the specific elevation of TNF in the hippocampus is not a consequence of pain, but in fact induces these behaviors/symptoms. PMID:22770843

  2. Increased extracellular levels of glutamate in the hippocampus of chronically epileptic rats.

    PubMed

    Soukupova, M; Binaschi, A; Falcicchia, C; Palma, E; Roncon, P; Zucchini, S; Simonato, M

    2015-08-20

    An increase in the release of excitatory amino acids has consistently been observed in the hippocampus during seizures, both in humans and animals. However, very little or nothing is known about the extracellular levels of glutamate and aspartate during epileptogenesis and in the interictal chronic period of established epilepsy. The aim of this study was to systematically evaluate the relationship between seizure activity and changes in hippocampal glutamate and aspartate extracellular levels under basal and high K(+)-evoked conditions, at various time-points in the natural history of experimental temporal lobe epilepsy, using in vivo microdialysis. Hippocampal extracellular glutamate and aspartate levels were evaluated: 24h after pilocarpine-induced status epilepticus (SE); during the latency period preceding spontaneous seizures; immediately after the first spontaneous seizure; in the chronic (epileptic) period. We found that (i) basal (spontaneous) glutamate outflow is increased in the interictal phases of the chronic period, whereas basal aspartate outflow remains stable for the entire course of the disease; (ii) high K(+) perfusion increased glutamate and aspartate outflow in both control and pilocarpine-treated animals, and the overflow of glutamate was clearly increased in the chronic group. Our data suggest that the glutamatergic signaling is preserved and even potentiated in the hippocampus of epileptic rats, and thus may favor the occurrence of spontaneous recurrent seizures. Together with an impairment of GABA signaling (Soukupova et al., 2014), these data suggest that a shift toward excitation occurs in the excitation/inhibition balance in the chronic epileptic state. PMID:26073699

  3. Lamotrigine increases the number of BrdU-labeled cells in the rat hippocampus.

    PubMed

    Kondziella, Daniel; Strandberg, Joakim; Lindquist, Catarina; Asztely, Fredrik

    2011-01-26

    Antidepressant medication and electroconvulsive therapy stabilize mood symptoms and increase hippocampal neurogenesis. We examined whether lamotrigine, suggested to give rise to mood-stabilizing and antidepressant effects in addition to its antiepileptic properties, also increases the number of newborn cells in rat hippocampus. Rats (on day P21) received lamotrigine, valproate, or saline intraperitoneally once daily for 7 days. All animals received four intraperitoneal injections of bromodeoxyuridine (BrdU) on day P28 and were sacrificed the next day. Quantification of BrdU-labeled cells in the granule cell layer of the dentate gyrus showed an increased number of newborn cells in rats receiving lamotrigine (42.6 ± 3.5 cells/slice) compared with valproate (31.6 ± 2.8) and controls (32.2 ± 3.1; P<0.05). The increased number of BrdU-labeled cells suggests increased neurogenesis, possibly explaining the mood-stabilizing and antidepressant effects of lamotrigine. PMID:21150803

  4. Glucocorticoids increase excitotoxic injury and inflammation in the hippocampus of adult male rats

    PubMed Central

    Sorrells, Shawn F.; Munhoz, Carolina D.; Manley, Nathan C.; Yen, Sandra; Sapolsky, Robert M.

    2014-01-01

    Background/Aims Stress exacerbates neuron loss in many CNS injuries via the actions of adrenal glucocorticoid (GC) hormones. For some injuries, this GC-endangerment of neurons is accompanied by greater immune cell activation in the CNS, a surprising outcome given the potent immunosuppressive properties of GCs. Methods To determine whether the effects of GCs on inflammation contribute to neuron death or result from it, we tested whether non-steroidal anti-inflammatory drugs could protect neurons from GCs during kainic acid excitotoxicity in adrenalectomized male rats. We next measured GC effects on (i) chemokine production (CCL2, CINC-1), (ii) signals that suppress immune activation (CX3CL1, CD22, CD200, and TGF-b), and (iii) NF-kB activity. Results Concurrent treatment with minocycline but not indomethacin prevented GC-endangerment. GCs did not substantially affect CCL2, CINC-1, or baseline NF-kB activity, but they did suppress CX3CL1, CX3CR1, and CD22 expression in the hippocampus, factors that normally restrain inflammatory responses. Conclusions These findings demonstrate that cellular inflammation is not necessarily suppressed by GCs in the injured hippocampus; instead, GCs may worsen hippocampal neuron death, at least in part, by increasing the neurotoxicity of CNS inflammation. PMID:25228100

  5. Neonatal binge alcohol exposure increases microglial activation in the developing rat hippocampus.

    PubMed

    Boschen, K E; Ruggiero, M J; Klintsova, A Y

    2016-06-01

    Aberrant activation of the developing immune system can have long-term negative consequences on cognition and behavior. Teratogens, such as alcohol, activate microglia, the brain's resident immune cells, which could contribute to the lifelong deficits in learning and memory observed in humans with Fetal Alcohol Spectrum Disorders (FASD) and in rodent models of FASD. The current study investigates the microglial response of the brain 24h following neonatal alcohol exposure (postnatal days (PDs) 4-9, 5.25g/kg/day). On PD10, microglial cell counts and area of cell territory were assessed using unbiased stereology in the hippocampal subfields CA1, CA3 and dentate gyrus (DG), and hippocampal expression of pro- and anti-inflammatory genes was analyzed. A significant decrease in microglial cell counts in CA1 and DG was found in alcohol-exposed and sham-intubated (SI) animals compared to undisturbed suckle controls (SCs), suggesting overlapping effects of alcohol exposure and intubation alone on the neuroimmune response. Cell territory was decreased in alcohol-exposed animals in CA1, CA3, and DG compared to controls, suggesting the microglia have shifted to a more activated state following alcohol treatment. Furthermore, both alcohol-exposed and SI animals had increased levels of pro-inflammatory cytokines IL-1β, TNF-α, CD11b, and CCL4; in addition, CCL4 was significantly increased in alcohol-exposed animals compared to SI as well. Alcohol-exposed animals also showed increased levels of anti-inflammatory cytokine TGF-β compared to both SI and SCs. In summary, the number and activation of microglia in the neonatal hippocampus are both affected in a rat model of FASD, along with increased gene expression of pro- and anti-inflammatory cytokines. This study shows that alcohol exposure during development induces a neuroimmune response, potentially contributing to long-term alcohol-related changes to cognition, behavior and immune function. PMID:26996510

  6. Increased Extracellular Concentrations of Norepinephrine in Cortex and Hippocampus Following Vagus Nerve Stimulation in the Rat.

    PubMed Central

    Roosevelt, Rodney W.; Smith, Douglas C.; Clough, Richard W.; Jensen, Robert A.; Browning, Ronald A.

    2006-01-01

    The vagus nerve is an important source of afferent information about visceral states and it provides input to the locus coeruleus (LC), the major source of norepinephrine (NE) in the brain. It has been suggested that the effects of electrical stimulation of the vagus nerve on learning and memory, mood, seizure suppression, and recovery of function following brain damage are mediated, in part, by the release of brain NE. The hypothesis that left vagus nerve stimulation (VNS) at the cervical level results in increased extracellular NE concentrations in the cortex and hippocampus was tested at four stimulus intensities 0.0, 0.25, 0.5, and 1.0 mA. Stimulation at 0.0 and 0.25 mA had no effect on NE concentrations, while the 0.5 mA stimulation increased NE concentrations significantly in the hippocampus (23%), but not the cortex. However, 1.0 mA stimulation significantly increased NE concentrations in both the cortex (39%) and hippocampus (28%) bilaterally. The increases in NE were transient and confined to the stimulation periods. VNS did not alter NE concentrations in either structure during the inter-stimulation baseline periods. No differences were observed between NE levels in the initial baseline and the post-stimulation baselines. These findings support the hypothesis that VNS increases extracellular NE concentrations in both the hippocampus and cortex. PMID:16962076

  7. Early life stress increases stress vulnerability through BDNF gene epigenetic changes in the rat hippocampus.

    PubMed

    Seo, Mi Kyoung; Ly, Nguyen Ngoc; Lee, Chan Hong; Cho, Hye Yeon; Choi, Cheol Min; Nhu, Le Hoa; Lee, Jung Goo; Lee, Bong Ju; Kim, Gyung-Mee; Yoon, Bong June; Park, Sung Woo; Kim, Young Hoon

    2016-06-01

    Early life stress (ELS) exerts long-lasting epigenetic influences on the brain and makes an individual susceptible to later depression. It is poorly understood whether ELS and subsequent adult chronic stress modulate epigenetic mechanisms. We examined the epigenetic mechanisms of the BDNF gene in the hippocampus, which may underlie stress vulnerability to postnatal maternal separation (MS) and adult restraint stress (RS). Rat pups were separated from their dams (3 h/day from P1-P21). When the pups reached adulthood (8 weeks old), we introduced RS (2 h/day for 3 weeks) followed by escitalopram treatment. We showed that both the MS and RS groups expressed reduced levels of total and exon IV BDNF mRNA. Furthermore, RS potentiated MS-induced decreases in these expression levels. Similarly, both the MS and RS groups showed decreased levels of acetylated histone H3 and H4 at BDNF promoter IV, and RS exacerbated MS-induced decreases of H3 and H4 acetylation. Both the MS and RS groups had increased MeCP2 levels at BDNF promoter IV, as well as increased HDAC5 mRNA, and the combination of MS and RS exerted a greater effect on these parameters than did RS alone. In the forced swimming test, the immobility time of the MS + RS group was significantly higher than that of the RS group. Additionally, chronic escitalopram treatment recovered these alterations. Our results suggest that postnatal MS and subsequent adult RS modulate epigenetic changes in the BDNF gene, and that these changes may be related to behavioral phenotype. These epigenetic mechanisms are involved in escitalopram action. PMID:26877199

  8. Hydroxysafflor yellow A increases BDNF and NMDARs in the hippocampus in a vascular dementia rat model.

    PubMed

    Xing, Mengya; Sun, Qingna; Wang, Yiyi; Cheng, Yan; Zhang, Nan

    2016-07-01

    Hydroxysafflor yellow A (HSYA) is a drug that exerts angiogenesis regulatory and neuroprotective effects and has become an effective therapy for brain and heart ischemic disorders. There is no definite evidence supporting a therapeutic effect of HSYA in vascular dementia (VaD). We used HSYA in a rat model of chronic cerebral ischemia to determine its potential therapeutic effects in VaD. The Morris water maze (MWM) was used to evaluate spatial cognitive function, and long-term potentiation (LTP) was tested as a marker of synaptic plasticity. The expression levels of brain-derived neurotrophic factor (BDNF) and two subunits of N-methyl-d-aspartate receptor (NMDAR; GluN2A and GluN2B) in the hippocampus were measured via western blotting. The MWM results showed that the experimental VaD group had longer escape latencies than the sham group, whereas the HSYA group had a decreased escape latency compared with the VaD group (P<0.05). The LTP at CA3-CA1 synapses in the hippocampus was also enhanced in the HSYA compared with the VaD group (P<0.05). The western blotting results revealed lower hippocampal BDNF and GluN2B expression in the VaD group compared with the sham group and significantly higher hippocampal expression in the HSYA group compared with the VaD group. No significant change in GluN2A expression was detected. The results indicate that HSYA may enhance the endogenous expression of BDNF and GluN2B, which are associated with the synaptic plasticity of the hippocampus, and may improve spatial learning and memory abilities in a rat model of VaD. PMID:27086971

  9. Adult onset-hypothyroidism increases response latency and long-term potentiation (LTP) in rat hippocampus

    EPA Science Inventory

    Thyroid hormones (TH) influence central nervous system (CNS) function during both development and in adulthood. The hippocampus is critical for some types of learning and memory and is particularly sensitive to thyroid hormone deficiency. Hypothyroidism in adulthood has been ass...

  10. The rat brain hippocampus proteome.

    PubMed

    Fountoulakis, Michael; Tsangaris, George T; Maris, Antony; Lubec, Gert

    2005-05-01

    The hippocampus is crucial in memory storage and retrieval and plays an important role in stress response. In humans, the CA1 area of hippocampus is one of the first brain areas to display pathology in Alzheimer's disease. A comprehensive analysis of the hippocampus proteome has not been accomplished yet. We applied proteomics technologies to construct a two-dimensional database for rat brain hippocampus proteins. Hippocampus samples from eight months old animals were analyzed by two-dimensional electrophoresis and the proteins were identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. The database comprises 148 different gene products, which are in the majority enzymes, structural proteins and heat shock proteins. It also includes 39 neuron specific gene products. The database may be useful in animal model studies of neurological disorders. PMID:15797529

  11. Chronic neonatal nicotine exposure increases excitation in the young adult rat hippocampus in a sex-dependent manner.

    PubMed

    Damborsky, Joanne C; Griffith, William H; Winzer-Serhan, Ursula H

    2012-01-01

    Smoking during pregnancy exposes the fetus to nicotine, resulting in nicotine-stimulated neurotransmitter release. Recent evidence suggests that the hippocampus develops differently in males and females with delayed maturation in males. We show that chronic nicotine exposure during the first postnatal week has sex-specific long-term effects. Neonatal rat pups were chronically treated with nicotine (6mg/kg/day) (CNN) from postnatal day 1 to 7 or milk only (Controls), and hippocampal slices were prepared from Control- and CNN-treated young adults. Field excitatory postsynaptic potentials (fEPSPs) or population spikes (PSs) were recorded from the CA1 hippocampus following CA1 s. radiatum stimulation. Input/Output curves constructed from fEPSP data indicated that CNN-males, but not females, had significantly increased excitatory responses compared to Controls (p<0.05, n=10 Con, n=11 CNN). Long-term potentiation (LTP) was not significantly changed by CNN. In the presence of bicuculline, which blocks inhibitory GABA(A) receptors, an epileptiform burst consisting of a series of PSs was evoked. The amplitude of the first PS was significantly larger in CNN-males and females compared to Controls (males: p<0.01, n=8 Con, n=8 CNN; females: p<0.05, n=9 Con, n=7 CNN). Only CNN-males also had significantly larger second PSs (p<0.05, n=8 con, n=8 CNN). Epileptiform activity evoked by zero Mg(2+) incubation did not differ in amplitude or duration of bursts in CNN-males or females compared to Controls. These data indicate that neonatal nicotine exposure has long lasting effects and results in increased excitation within the CA1 hippocampus in adulthood, with males showing increased sensitivity to nicotine's effects. PMID:22119395

  12. Maternal and early life arsenite exposure impairs neurodevelopment and increases the expression of PSA-NCAM in hippocampus of rat offspring.

    PubMed

    Luo, Jiaohua; Qiu, Zhiqun; Chen, Ji'an; Zhang, Liang; Liu, Wenyi; Tan, Yao; Shu, Weiqun

    2013-09-15

    Although epidemiological investigations indicate that chronic arsenic exposure can induce developmental neurotoxicity in children, the molecular mechanisms are still poorly understood. Neural cell adhesion molecules (NCAMs) play critical roles during the development of nervous system. Polysialylation of NCAM (PSA-NCAM) is a critical functional feature of NCAM-mediated cell interactions and functions. The present study aimed at investigating the effects of maternal and early life arsenite exposure on NCAM and PSA-NCAM in rat offspring. To this end, mother rats were divided into three groups and exposed to 0, 2.72 and 13.6mg/L sodium arsenite, respectively, during gestation and lactation. After weaning, rat offspring drank the same solution as their mothers. Neural reflex parameters, arsenic level of hippocampus, ultra-structural changes of hippocampus, the expression of NCAM, PSA-NCAM and two polysialyltransferases (STX and PST) in rat offspring were assessed. Arsenite exposure significantly prolonged the time of completing reflex response of surface righting, negative geotaxis and cliff avoidance of rat offspring in 13.6mg/L As-exposed group. Neurons and capillaries presented pathological changes and the expression of NCAM, PSA-NCAM, STX and PST were up-regulated in hippocampus of rat offspring exposed to arsenite. These results indicated that maternal arsenite exposure increases the expression of PSA-NCAM, NCAM and polysialyltransferases in hippocampus of rat offspring on postnatal day (PND) 21 and PND120, which might contribute to the impaired neurodevelopment following arsenite exposure. PMID:23811142

  13. Chronic neonatal nicotine exposure increases mRNA expression of neurotrophic factors in the postnatal rat hippocampus.

    PubMed

    Son, Jong-Hyun; Winzer-Serhan, Ursula H

    2009-06-30

    Nicotine, the psychoactive ingredient in tobacco, can be neuroprotective but the mechanism is unknown. In the adult hippocampus, chronic nicotine can increase expression of growth factors which could contribute to nicotine's neuroprotective effects. During development, nicotine could also increase expression of neurotrophic factors. Therefore, we determined whether chronic neonatal nicotine (CNN) exposure increased mRNA expression levels of brain-derived neurotrophic factor (BDNF), nerve-growth factor (NGF), neurotrophin-3 (NT-3), fibroblast growth factor-2 (FGF-2), and insulin-like growth factor-1 (IGF-1). Nicotine (6 mg/kg/day in milk formula) or milk formula (controls) were delivered in three daily doses via oral gastric intubation to rat pups from postnatal day (P)1 to P8, and then sacrificed. Brains were processed for in situ hybridization using specific (35)S-labeled cRNA probes. At P8, CNN had a significant stimulant treatment effect on the expression of BDNF, FGF-2, NT-3 and IGF-1 [p<0.01], but not NGF. Specifically, BDNF mRNA expression, detected in CA1, CA3 stratum (s.) pyramidal and granule cell layer of the dentate gyrus (DG), was increased by 27.4%, 23.26% and 27.3%, respectively. FGF-2 mRNA expression, detected in neurons and astrocytes in CA1 s. radiatum, CA2 and CA3 s. pyramidale, and molecular layer of the DG, was increased by 34.0%, 8.9%, 31.0% and 23.1%, respectively. NT-3 mRNA expression in CA2 s. pyramidale was increased by 80.0%, and CNN increased the number of IGF-1-expressing cells in CA1 (18.0%), CA3 (20.9%) and DG (17.7%). Thus, nicotine exposure during early postnatal development differentially up-regulated expression of neurotrophic factor mRNAs in the hippocampus, which could increase neurotrophic tone and alter developmental processes. PMID:19410565

  14. Zaprinast impairs spatial memory by increasing PDE5 expression in the rat hippocampus.

    PubMed

    Giorgi, Mauro; Pompili, Assunta; Cardarelli, Silvia; Castelli, Valentina; Biagioni, Stefano; Sancesario, Giuseppe; Gasbarri, Antonella

    2015-02-01

    In this work, we report the effect of post-training intraperitoneal administration of zaprinast on rat memory retention in the Morris water maze task that revealed a significant memory impairment at the intermediate dose of 10mg/kg. Zaprinast is capable of inhibiting both striatal and hippocampal PDE activity but to a different extent which is probably due to the different PDE isoforms expressed in these areas. To assess the possible involvement of cyclic nucleotides in rat memory impairment, we compared the effects obtained 30 min after the zaprinast injection with respect to 24h after injection by measuring both cyclic nucleotide levels and PDE activity. As expected, 30 min after the zaprinast administration, we observed an increase of cyclic nucleotides, which returned to a basal level within 24h, with the exception of the hippocampal cGMP which was significantly decreased at the dose of 10mg/kg of zaprinast. This increase in the hippocampal region is the result of a cGMP-specific PDE5 induction, confirmed by sildenafil inhibition, in agreement with literature data that demonstrate transcriptional regulation of PDE5 by cAMP/cGMP intracellular levels. Our results highlight the possible rebound effect of PDE inhibitors. PMID:25281278

  15. Increased expression of endocytosis-Related proteins in rat hippocampus following 10-day electroconvulsive seizure treatment.

    PubMed

    Enomoto, Shingo; Shimizu, Kunio; Nibuya, Masashi; Toda, Hiroyuki; Yoshino, Aihide; Suzuki, Eiji; Kondo, Takashi; Fukuda, Hiroshi

    2016-06-15

    Although electroconvulsive therapy (ECT) is clinically used for severe depression and drug-resistant Parkinson's disease, its exact biological background and mechanism have not yet been fully elucidated. Two potential explanations have been presented so far to explain the increased neuroplastic and resilient profiles of multiple ECT administrations. One is the alteration of central neurotransmitter receptor densities and the other is the expressional upregulation of brain derived neurotrophic factor in various brain regions with enhanced hippocampal neurogenesis and mossy fiber sprouting. In the present report, western blot analyses revealed significantly upregulated expression of various endocytosis-related proteins following 10-day electroconvulsive seizure (ECS) treatment in rat hippocampal homogenates and hippocampal lipid raft fractions extracted using an ultracentrifugation procedure. Upregulated proteins included endocytosis-related scaffolding proteins (caveolin-1, flotillin-1, and heavy and light chains of clathrin) and small GTPases (Rab5, Rab7, Rab11, and Rab4) specifically expressed on various types of endosomes. Two scaffolding proteins, caveolin-1 and flotillin-1, were also increased in the lipid raft fraction. Together with our previous finding of increased autophagy-related proteins in the hippocampal region, the present results suggest membrane trafficking machinery is enhanced following 10-day ECS treatment. We consider that the membrane trafficking machinery that transports functional proteins in the neuronal cells and from or into the synaptic membranes is one of the new candidates supporting the cellular and behavioral neuroplastic profiles of ECS treatments in animal experiments and ECT administrations in clinical settings. PMID:27177725

  16. Adolescent exposure to cocaine increases anxiety-like behavior and induces morphologic and neurochemical changes in the hippocampus of adult rats.

    PubMed

    Zhu, W; Mao, Z; Zhu, C; Li, M; Cao, C; Guan, Y; Yuan, J; Xie, G; Guan, X

    2016-01-28

    Repeated exposure to cocaine during adolescence may affect both physical and psychological conditions in the brain, and increase the risk of psychiatric disorders and addiction behaviors in adulthood. Adolescence represents a critical development period for the hippocampus. Moreover, different regions of the hippocampus are involved in different functions. Dorsal hippocampus (dHP) has been implicated in learning and memory, whereas ventral hippocampus (vHP) plays an important role in emotional processing. In this study, the rats that were exposed to cocaine during adolescence (postnatal days, P28-P42) showed higher anxiety-like behavior in the elevated plus maze test in adulthood (P80), but displayed normal spatial learning and memory in the Morris water maze test. Furthermore, repeated exposure to cocaine during adolescence lead to alterations in morphology of pyramidal neurons, activities of astrocytes, and levels of proteins that involved in synaptic transmission, apoptosis, inflammation and addiction in both dHP and vHP of adult rats. These findings suggest that repeated exposure to cocaine during adolescence in rats may elicit morphologic and neurochemical changes in the hippocampus when the animals reach adulthood. These changes may contribute to the increased susceptibility for psychiatric disorders and addiction seen in adults. PMID:26621120

  17. MDMA increases glutamate release and reduces parvalbumin-positive GABAergic cells in the dorsal hippocampus of the rat: role of cyclooxygenase

    PubMed Central

    Anneken, John H.; Cunningham, Jacobi I.; Collins, Stuart A.; Yamamoto, Bryan K.; Gudelsky, Gary A.

    2012-01-01

    3,4-Methylenedioxymethamphetamine (MDMA; Ecstasy) is a popular drug of abuse with well-documented acute effects on serotonergic, dopaminergic, and cholinergic transmitter systems, as well as evidence of long-term disruption of serotoninergic systems in the rat brain. Recently, it was demonstrated that MDMA evokes a delayed and sustained increase in glutamate release in the hippocampus. The purpose of the present study was to determine the role of inflammatory mediators in the MDMA-induced increase in glutamate release, as well as the contribution of inflammatory pathways in the persistent neurochemical toxicity associated with repeated MDMA treatment. Treatment with the non-selective cyclooxygenase (COX) inhibitor ketoprofen and the COX-2 selective inhibitor nimesulide attenuated the increase in extracellular glutamate in the hippocampus evoked by repeated MDMA exposure (10 mg/kg, i.p., every 2 h); no attenuation was observed in rats treated with the COX-1 selective inhibitor piroxicam. Reverse dialysis of a major product of COX activity, prostaglandin E2, also resulted in a significant increase in extracellular glutamate in the hippocampus. Repeated exposure to MDMA diminished the number of parvalbumin-positive GABA interneurons in the dentate gyrus of the hippocampus, an effect that was attenuated by ketoprofen treatment. However, COX inhibition with ketoprofen did not prevent the long-term depletion of 5-HT in the hippocampus evoked by MDMA treatment. These data are supportive of the view that cyclooxygenase activity contributes to the mechanism underlying both the increased release of glutamate and decreased number of GABA interneurons in the rat hippocampus produced by repeated MDMA exposure. PMID:23179355

  18. Prenatal choline deficiency increases choline transporter expression in the septum and hippocampus during postnatal development and in adulthood in rats.

    PubMed

    Mellott, Tiffany J; Kowall, Neil W; Lopez-Coviella, Ignacio; Blusztajn, Jan Krzysztof

    2007-06-01

    Supplementation of maternal diet with the essential nutrient, choline, during the second half of pregnancy in rats causes long-lasting improvements in spatial memory in the offspring and protects them from the memory decline characteristic of old age. In contrast, prenatal choline deficiency is associated with poor performance in certain cognitive tasks. The mechanism by which choline influences learning and memory remains unclear; however, it may involve changes to the hippocampal cholinergic system. Previously, we showed that the hippocampi of prenatally [embryonic days (E) 11-17] choline-deficient animals have increased synthesis of acetylcholine (ACh) from choline transported by the high-affinity choline transporter (CHT) and reduced ACh content relative to the control and to the E11-17 choline-supplemented rats. In the current study, we found that, during postnatal period [postnatal days (P) 18-480], prenatal choline deficiency increased the expression of CHT mRNA in the septum and CHT mRNA and protein levels in the hippocampus and altered the pattern of CHT immunoreactivity in the dentate gyrus. CHT immunoreactivity was more prominent in the inner molecular layer in prenatally choline-deficient rats compared to controls and prenatally choline-supplemented animals. In addition, in all groups, we observed a population of hilar interneurons that were CHT-immunoreactive. These neurons are the likely source of the hippocampal CHT mRNA as their number correlated with the levels of this mRNA. The abundance of hippocampal CHT mRNA rose between P1 and P24 and then declined reaching 60% of the P1 value by P90. These data show that prenatal availability of choline alters its own metabolism (i.e., CHT expression). While the upregulated CHT expression during the period of prenatal choline deficiency may be considered as a compensatory mechanism that could enhance ACh synthesis when choline supply is low, the persistent upregulation of CHT expression subsequent to the

  19. 3'-5' cyclic-guanosine monophosphate increase in rat brain hippocampus after gamma-hydroxybutyrate administration. Prevention by valproate and naloxone

    SciTech Connect

    Vayer, P.; Gobaille, S.; Mandel, P.; Maitre, M.

    1987-08-03

    An increase (123%) of cyclic GMP (cGMP) was observed in the hippocampus of the rat killed by microwave irradiation 45 min after administration of 500 mg/kg el-hydroxybutyrate (GHB) IP. This increase is time and dose dependent. No modification in cyclic nucleotide content was observed in striatum and in cerebellum. As the role of GHB has been implicated in neurotransmission, the fact that this compound increases cyclic GMP accumulation in hippocampus in vivo may represent a mechanism by which the actions of GHB are mediated at the cellular level. Valproate (400 mg/kg) or naloxone (10 mg/kg) pretreatment completely abolish the cGMP increase due to GHB. A GABAergic and/or opiate phenomenon may be involved in the mechanism of GHB induced increase of cGMP. 34 references, 4 figures.

  20. Antidepressant dose of taurine increases mRNA expression of GABAA receptor α2 subunit and BDNF in the hippocampus of diabetic rats.

    PubMed

    Caletti, Greice; Almeida, Felipe Borges; Agnes, Grasiela; Nin, Maurício Schüler; Barros, Helena Maria Tannhauser; Gomez, Rosane

    2015-04-15

    Diabetes mellitus is a metabolic disorder associated with higher risk for depression. Diabetic rats present depressive-like behaviors and taurine, one of the most abundant free amino acids in the brain, reverses this depressive behaviors. Because taurine is a GABAA agonist modulator, we hypothesize that its antidepressant effect results from the interaction on this system by changing α2 GABAA receptor subunit expression, beside changes on BDNF mRNA, and memory in diabetic rats. Streptozotocin-diabetic and non-diabetic Wistar rats were daily injected with 100mg/kg of taurine or saline, intraperitoneally, for 30 days. At the end of the experiment, rats were exposed to the novel object recognition memory. Later they were euthanized, the brains were weighed, and the hippocampus was dissected for α2 GABAA subunit and BDNF mRNA expression. Real-time quantitative PCR (qPCR) showed that diabetic rats presented lower α2 GABAA subunit and BDNF mRNA expression than non-diabetic rats and taurine increased both parameters in these sick rats. Taurine also reversed the lower brain weight and improved the short-term memory in diabetic rats. Thus, the taurine antidepressant effect may be explained by interference with the GABA system, in line to its neuroprotective effect showed here by preventing brain weight loss and improving memory in diabetic rats. PMID:25612506

  1. The role of 5-HT₁A receptors in fish oil-mediated increased BDNF expression in the rat hippocampus and cortex: a possible antidepressant mechanism.

    PubMed

    Vines, Aparecida; Delattre, Ana Marcia; Lima, Marcelo M S; Rodrigues, Laís Soares; Suchecki, Deborah; Machado, Ricardo B; Tufik, Sergio; Pereira, Sofia I R; Zanata, Sílvio M; Ferraz, Anete Curte

    2012-01-01

    Epidemiological and dietary studies show that nutritional deficit of omega-3 polyunsaturated fatty acids (ω-3 PUFA) is directly related to the prevalence and severity of depression. Supplementation with docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) during critical periods of development (pregnancy and lactation) is essential for cortical maturation, synaptogenesis and myelination, and may also mitigate the risk for cognitive deficits and psychopathologies in young adults. The present study was performed to evaluate the involvement of serotonin (5-HT) receptors, particularly of 5-HT(1A), and hippocampal brain-derived neurotrophic factor (BDNF) expression in the antidepressant effect of ω-3 PUFA supplementation. In Experiment 1, the antidepressant effects of fish oil were assessed by the modified forced swim test in adult rats. The data indicated a robust antidepressant effect produced by this supplementation and that treatment of the rats with WAY 100135 reversed this effect. In Experiment 2, cortical and hippocampal contents of BDNF, 5-HT, dopamine (DA) and its metabolites, 5-hydroxyindoleacetic acid (5-HIAA), and 3,4-dihydroxyphenylacetic acid (DOPAC), were determined in animals subjected to the same protocol. Increased BDNF expression in the cortex and hippocampus of both age groups was detected. In 90 day-old rats, 5-HT content in the hippocampus was increased, whereas 5-HIAA formation was diminished in the fish oil group. We suggest the occurrence of a reciprocal involvement of 5-HT(1A) receptors activation and the hippocampal BDNF-increased expression mediated by fish oil supplementation. These data corroborate and expand the notion that supplementation with ω-3 PUFA produces antidepressant effects mediated by an increase in serotonergic neurotransmission, particularly in the hippocampus. This article is part of a Special Issue entitled 'Anxiety and Depression'. PMID:21740919

  2. IUGR increases chromatin-remodeling factor Brg1 expression and binding to GR exon 1.7 promoter in newborn male rat hippocampus.

    PubMed

    Ke, Xingrao; McKnight, Robert A; Gracey Maniar, Lia E; Sun, Ying; Callaway, Christopher W; Majnik, Amber; Lane, Robert H; Cohen, Susan S

    2015-07-15

    Intrauterine growth restriction (IUGR) increases the risk for neurodevelopment delay and neuroendocrine reprogramming in both humans and rats. Neuroendocrine reprogramming involves the glucocorticoid receptor (GR) gene that is epigenetically regulated in the hippocampus. Using a well-characterized rodent model, we have previously shown that IUGR increases GR exon 1.7 mRNA variant and total GR expressions in male rat pup hippocampus. Epigenetic regulation of GR transcription may involve chromatin remodeling of the GR gene. A key chromatin remodeler is Brahma-related gene-1(Brg1), a member of the ATP-dependent SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex. Brg1 regulates gene expression by affecting nucleosome repositioning and recruiting transcriptional components to target promoters. We hypothesized that IUGR would increase hippocampal Brg1 expression and binding to GR exon 1.7 promoter, as well as alter nucleosome positioning over GR promoters in newborn male pups. Further, we hypothesized that IUGR would lead to accumulation of specificity protein 1 (Sp1) and RNA pol II at GR exon 1.7 promoter. Indeed, we found that IUGR increased Brg1 expression and binding to GR exon 1.7 promoter. We also found that increased Brg1 binding to GR exon 1.7 promoter was associated with accumulation of Sp1 and RNA pol II carboxy terminal domain pSer-5 (a marker of active transcription). Furthermore, the transcription start site of GR exon 1.7 was located within a nucleosome-depleted region. We speculate that changes in hippocampal Brg1 expression mediate GR expression and subsequently trigger neuroendocrine reprogramming in male IUGR rats. PMID:25972460

  3. Prenatal valproate treatment produces autistic-like behavior and increases metabotropic glutamate receptor 1A-immunoreactivity in the hippocampus of juvenile rats.

    PubMed

    Peralta, Francisco; Fuentealba, Constanza; Fiedler, Jenny; Aliaga, Esteban

    2016-09-01

    Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by deficits in social communication and social interaction, and repetitive and stereotypical patterns of behavior. Previously, a common physiopathological pathway, involving the control of synaptic protein synthesis, was proposed as a convergence point in ASD. In particular, a role for local mRNA translation activated by class I metabotropic glutamate receptor type 5 (mGluR5) was suggested in genetic syndromes with autistic signs and in the prenatal exposition to the valproate model of autism. However, the role of the other members of class I metabotropic glutamate receptors, including mGluR1, has been poorly studied. The present study analyzed the immunoreactivity for mGluR1a in the hippocampus of rats prenatally treated with valproate. Pregnant dams (embryonic day 12.5) were injected with valproate (450 mg/kg) and subsequently, the behavior and mGluR1a were evaluated at postnatal day 30. Experimental rats exhibited social deficit, repetitive conduct and anxious behaviors compared with that of the control animals. Additionally, the present study observed an increased level of mGluR1a-immunoreactivity in the hilus of dentate gyrus and in the CA1 alveus region of the hippocampus. These results suggested an over‑functioning of mGluR1a signaling in the hippocampus, induced in the valproate model of autism, which may serve a role in cognitive and behavioral signs of ASD. PMID:27430241

  4. Increased DNA double-strand break was associated with downregulation of repair and upregulation of apoptotic factors in rat hippocampus after alcohol exposure.

    PubMed

    Suman, Shubhankar; Kumar, Santosh; N'Gouemo, Prosper; Datta, Kamal

    2016-08-01

    Binge drinking is known to cause damage in critical areas of the brain, including the hippocampus, which is important for relational memory and is reported to be sensitive to alcohol toxicity. However, the roles of DNA double-strand break (DSB) and its repair pathways, homologous recombination (HR), and non-homologous end joining (NHEJ) in alcohol-induced hippocampal injury remain to be elucidated. The purpose of this first study was to assess alcohol-induced DNA DSB and the mechanism by which alcohol affects DSB repair pathways in rat hippocampus. Male Sprague-Dawley rats (8-10 weeks old) were put on a 4-day binge ethanol treatment regimen. Control animals were maintained under similar conditions but were given the vehicle without ethanol. All animals were humanely euthanized 24 h after the last dose of ethanol administration and the hippocampi were dissected for immunoblot and immunohistochemistry analysis. Ethanol exposure caused increased 4-hydroxynonenal (4-HNE) staining as well as elevated γH2AX and 53BP1 foci in hippocampal cells. Immunoblot analysis showed decreased Mre11, Rad51, Rad50, and Ku86 as well as increased Bax and p21 in samples from ethanol-treated rats. Additionally, we also observed increased activated caspase3 staining in hippocampal cells 24 h after ethanol withdrawal. Taken together, our data demonstrated that ethanol concurrently induced DNA DSB, downregulated DSB repair pathway proteins, and increased apoptotic factors in hippocampal cells. We believe these findings will provide the impetus for further research on DNA DSB and its repair pathways in relation to alcohol toxicity in brain. PMID:27565756

  5. Adolescence fluoxetine increases serotonergic activity in the raphe-hippocampus axis and improves depression-like behaviors in female rats that experienced neonatal maternal separation.

    PubMed

    Yoo, Sang Bae; Kim, Bom-Taeck; Kim, Jin Young; Ryu, Vitaly; Kang, Dong-Won; Lee, Jong-Ho; Jahng, Jeong Won

    2013-06-01

    This study was conducted to examine if fluoxetine, a selective 5-hydroxytryptamine (5-HT) reuptake inhibitor, would reverse adverse behavioral effects of neonatal maternal separation in female rats. Sprague-Dawley pups were separated from dam daily for 3h during postnatal day (PND) 1-14 (maternal separation; MS) or left undisturbed (non-handled; NH). Female NH and MS pups received intraperitoneal injection of fluoxetine (10mg/kg) or vehicle daily from PND 35 until the end of the whole experimental period. Rats were either subjected to behavioral tests during PND 44-54, or sacrificed for neurochemical analyses during PND 43-45. Daily food intake and weight gain of both NH and MS pups were suppressed by fluoxetine, with greater effects in MS pups. MS experience increased immobility and decrease swimming in forced swim test. Swimming was increased, although immobility was not significantly decreased, in MS females by adolescence fluoxetine. However, adolescence fluoxetine increased immobility during forced swim test and decreased time spent in open arms during elevated plus maze test in NH females. Fluoxetine normalized MS-induced decrease of the raphe 5-HT levels and increased 5-HT metabolism in the hippocampus in MS females, and increased the hypothalamic 5-HT both in NH and MS. Fluoxetine decreased the raphe 5-HT and increased the plasma corticosterone in NH females. Results suggest that decreased 5-HTergic activity in the raphe nucleus is implicated in the pathophysiology of depression-like behaviors, and increased 5-HTergic activities in the raphe-hippocampus axis may be a part of anti-depressant efficacy of fluoxetine, in MS females. Also, an extra-hypothalamic 5-HTergic activity may contribute to the increased anorectic efficacy of fluoxetine in MS females. Additionally, decreased 5-HT in the raphe and elevated plasma corticosterone may be related with fluoxetine-induced depression- and/or anxiety-like behaviors in NH females. PMID:23010142

  6. Single eight-hour shift of light-dark cycle increases brain-derived neurotrophic factor protein levels in the rat hippocampus.

    PubMed

    Sei, Hiroyoshi; Fujihara, Hiroaki; Ueta, Yoichi; Morita, Kyoji; Kitahama, Kunio; Morita, Yusuke

    2003-05-23

    We previously reported that an eight hour phase advance in the light-dark (LD) cycle increases sleep in rats. Brain-derived neurotrophic factor (BDNF) is suggested to be one of the sleep and circadian regulating factors. We have therefore observed the responses of BDNF protein in the hippocampus, cerebellum and brainstem under conditions of LD change. BDNF protein was quantitatively measured using an ELISA kit. Under an 8-h LD phase advance, the levels of hippocampal BDNF were significantly increased on the day of the phase change, while the levels in the cerebellum and brainstem remained constant. Plasma corticosterone levels were not largely affected. Thus, a single LD shift acutely affects hippocampal BDNF metabolism with no large stress response. PMID:12726886

  7. Clitoria ternatea root extract enhances acetylcholine content in rat hippocampus.

    PubMed

    Rai, K S; Murthy, K D; Karanth, K S; Nalini, K; Rao, M S; Srinivasan, K K

    2002-12-01

    Treatment with 100 mg/kg of Clitoria ternatea aqueous root extract (CTR), for 30 days in neonatal and young adult age groups of rat, significantly increased acetylcholine (ACh) content in their hippocampi as compared to age matched controls. Increase in ACh content in their hippocampus may be the neurochemical basis for their improved learning and memory. PMID:12490229

  8. Neonatal prebiotic (BGOS) supplementation increases the levels of synaptophysin, GluN2A-subunits and BDNF proteins in the adult rat hippocampus.

    PubMed

    Williams, Sarah; Chen, Li; Savignac, Helene M; Tzortzis, George; Anthony, Daniel C; Burnet, Philip W J

    2016-03-01

    Compelling data suggest that perturbations in microbial colonization of the gut in early-life, influences neurodevelopment and adult brain function. If this is the case, then ensuring the growth of beneficial bacteria at an early age will lead to optimal brain development and maturation. We have tested whether feeding neonatal rats daily (from post-natal days 3-21) with a galacto-oligosaccharide prebiotic (Bimuno®, BGOS) or a control solution, alters the levels of hippocampal N-Methyl-D-Aspartate receptor (NMDAR) subunits (GluN1, GluN2A, GluN2B), synaptic proteins (synaptophysin, MAP2, and GAP43) and brain-derived-neurotrophic factor (BDNF), at post-natal days 22 and 56. The administration of BGOS significantly elevated GluN2A subunits, synaptophysin and BDNF in the hippocampus of 22 day old rats. The effect was also observed on day 56 (26 days after the feeding ceased). The levels of all other proteins (GluN1, GluN2B, MAP2, GAP43) remained unaltered. Increased GluN2A, synaptophysin, BDNF, but not MAP2, may suggest that neonatal BGOS feeding alters neurotransmission rather than synaptic architecture. Although the functional consequences of our findings require further investigation, the current study confirms that the manipulation of gut bacteria in early-life, has central effects that persist until at least young adulthood. PMID:26682524

  9. Centrophenoxine activates acetylcholinesterase activity in hippocampus of aged rats.

    PubMed

    Sharma, D; Singh, R

    1995-05-01

    Age-related changes in the acetylcholinesterase activity were measured in the hippocampus, brain stem and cerebellum of rats (aged 4, 8, 16 and 24 months). The age-dependent decrease in the enzyme activity first appeared in the hippocampus; the brain stem was affected later while the cerebellum remained unaffected. Centrophenoxine, usually considered as an ageing reversal drug and also regarded as a neuroenergeticum in human therapy, increased the acetylcholinesterase activity in the hippocampus of aged rats, the activity was also elevated in the brain stem but no in the cerebellum. The acetylcholinesterase-stimulating influence of the drug is likely to be implicated in the pharmacological reversal of the age related decline of the cholinergic system. This effect of the drug may also mediate its effects on cognitive and neuronal synaptic functions. PMID:7558197

  10. SYSTEMIC ADMINISTRATION OF KAINIC ACID INCREASES GABA LEVELS IN PERFUSATE FROM THE HIPPOCAMPUS OF RATS IN VIVO

    EPA Science Inventory

    The ventral hippocampi of male, Fischer-344 rats were implanted with microdialysis probes and the effects of systemically administered kainic acid (KA) (8 mg/kg, s.c.) on the in vivo release of amino acids were measured for four hours after administration. n order to measure GABA...

  11. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups

    PubMed Central

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-01-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat pups in the music-applied groups were exposed to the 65-dB comfortable classic music for 1 hr once a day, starting postnatal day 15 and continued until postnatal day 28. In the present results, short-term memory was deteriorated by autism induction. The numbers of 5-bromo-2′-deoxyridine (BrdU)-positive, Ki-67-positive, and doublecortin (DCX)-positive cells in the hippocampal dentate gyrus were decreased by autism induction. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions in the hippocampus were also suppressed in the autistic rat pups. Music application alleviated short-term memory deficits with enhancing the numbers of BrdU-positive, Ki-67-positive, and DCX-positive cells in the autistic rat pups. Music application also enhanced BDNF and TrkB expressions in the autistic rat pups. The present study show that application of music enhanced hippocampal cell proliferation and alleviated short-term memory impairment through stimulating BDNF-TrkB signaling in the autistic rat pups. Music can be suggested as the therapeutic strategy to overcome the autism-induced memory deficits. PMID:27419108

  12. Music application alleviates short-term memory impairments through increasing cell proliferation in the hippocampus of valproic acid-induced autistic rat pups.

    PubMed

    Lee, Sung-Min; Kim, Bo-Kyun; Kim, Tae-Woon; Ji, Eun-Sang; Choi, Hyun-Hee

    2016-06-01

    Autism is a neurodevelopmental disorder and this disorder shows impairment in reciprocal social interactions, deficits in communication, and restrictive and repetitive patterns of behaviors and interests. The effect of music on short-term memory in the view of cell proliferation in the hippocampus was evaluated using valproic acid-induced autistic rat pups. Animal model of autism was made by subcutaneous injection of 400-mg/kg valproic acid into the rat pups on the postnatal day 14. The rat pups in the music-applied groups were exposed to the 65-dB comfortable classic music for 1 hr once a day, starting postnatal day 15 and continued until postnatal day 28. In the present results, short-term memory was deteriorated by autism induction. The numbers of 5-bromo-2'-deoxyridine (BrdU)-positive, Ki-67-positive, and doublecortin (DCX)-positive cells in the hippocampal dentate gyrus were decreased by autism induction. Brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expressions in the hippocampus were also suppressed in the autistic rat pups. Music application alleviated short-term memory deficits with enhancing the numbers of BrdU-positive, Ki-67-positive, and DCX-positive cells in the autistic rat pups. Music application also enhanced BDNF and TrkB expressions in the autistic rat pups. The present study show that application of music enhanced hippocampal cell proliferation and alleviated short-term memory impairment through stimulating BDNF-TrkB signaling in the autistic rat pups. Music can be suggested as the therapeutic strategy to overcome the autism-induced memory deficits. PMID:27419108

  13. Dopamine Transporter Blockade Increases LTP in the CA1 Region of the Rat Hippocampus via Activation of the D3 Dopamine Receptor

    ERIC Educational Resources Information Center

    Swant, Jarod; Wagner, John J.

    2006-01-01

    Dopamine has been demonstrated to be involved in the modulation of long-term potentiation (LTP) in the CA1 region of the hippocampus. As monoamine transporter blockade will increase the actions of endogenous monoamine neurotransmitters, the effect of a dopamine transporter (DAT) antagonist on LTP was assessed using field excitatory postsynaptic…

  14. TIME-DEPENDENT NEUROBIOLOGICAL EFFECTS OF COLCHICINE ADMINISTERED DIRECTLY INTO THE HIPPOCAMPUS OF RATS (JOURNAL VERSION)

    EPA Science Inventory

    Rats were given bilateral injections of colchicine into the dorsal and ventral hippocampus. Behavioral, neurochemical and histopathological measurements were taken up to 12 weeks after surgery. Colchicine produced a consistent increase in spontaneous motor activity, enhanced acou...

  15. Changes in acetylcholine content, release and muscarinic receptors in rat hippocampus under cold stress

    SciTech Connect

    Fatranska, M.; Budai, D.; Gulya, K; Kvetnansky, R.

    1989-01-01

    The aim was to study the mechanism of the previously established decrease in acetylcholine (ACh) concentration in the rat hippocampus under cold stress. Male rats were exposed for 14 days to cold (5/degree/C) or kept (controls) at room temperature (24/degree/C). Acetylcholine content, release and muscarinic receptor binding were investigated in the hippocampus. Cold exposure resulted in a decrease of ACh concentration in the dorsal hippocampus. Moreover, the potassium-evoked release of ACh from hippocampal slices was increased and an increase of maximal binding capacity of (/sup 3/H)(-) quinuclidinyl benzilate in the dorsal hippocampus of cold exposed animals was also observed. Thus the decrease of hippocampal ACh concentration under cold exposure is probably due to its increased release. On balance then, our results demonstrate that cold stress in the rat induces significant activation of the hippocampal cholinergic system.

  16. Vitex Agnus Castus Extract Improves Learning and Memory and Increases the Transcription of Estrogen Receptor α in Hippocampus of Ovariectomized Rats

    PubMed Central

    Allahtavakoli, Mohammad; Honari, Najmeh; Pourabolli, Iran; Kazemi Arababadi, Mohammad; Ghafarian, Hossein; Roohbakhsh, Ali; Esmaeili Nadimi, Ali; Shamsizadeh, Ali

    2015-01-01

    Introduction: Lower level of estrogen hormone is considered as an important factor for loss of learning and memory in postmenopausal women. Although estrogen replacement therapy is used for compensation, but long-term usage of estrogen is associated with a higher risk of hormone-dependent cancers. Phytoestrogens, due to fewer side effects, have been proposed to prevent menopause-related cognitive decline. Methods: 24 female Wistar rats weighing 180–220 g were used in this study. The animals were ovariectomized and randomly divided into four groups including, control and two groups which received 8 and 80 mg/kg Vitex agnus castus (VAC) ethanolic extract orally. The last groups were treated with 40 μg/kg of estradiol valerat. Step-through passive avoidance (STPA) test was used for the evaluation of learning and memory. The hippocampal estrogen receptor α (ERα) expression was measured using Real-Time PCR. Results: The results demonstrated that VAC extract or estradiol had better performance on step-through passive avoidance test than control group (all P<0.05). Moreover, administration of either estradiol or VAC extract increased the hippocampal mRNA level of ERα and prevented the decrease in uterine weight of ovariectomized rats. Discussion: Based on our data, VAC extract improves learning and memory in ovariectomized rats. The positive effect of VAC extract on learning and memory is possibly associated with an increase in ERα gene expression in the hippocampal formation. PMID:26904176

  17. Vinpocetine prevent ischemic cell damage in rat hippocampus

    SciTech Connect

    Sauer, D.; Rischke, R.; Beck, T.; Roeberg, C.; Mennel, H.D.; Bielenberg, G.W.; Krieglstein, J.

    1988-01-01

    The effects of vinpocetine on hippocampal cell damage and local cerebral blood flow (LCBF) were measured in a rat model of forebrain ischemia. Duration of ischemia was 10 min. LCBF was determined after 2 min of recirculation using the /sup 14/C-iodoantipyrine technique. Hippocampal cell loss was quantified histologically 7 days post-ischemia. Intraperitoneal application of vinpocetine 15 min prior to ischemia significantly reduced neuronal cell loss in hippocampal CA 1 sector from 60% to 28%. The drug led to a marked increase in blood flow in cortical areas, whereas LCBF remained unchanged in hippocampus and all other structures measured. It is suggested that the protective effect of vinpocetine does not depend on increased postischemic blood flow.

  18. rhEPO affects apoptosis in hippocampus of aging rats by upregulating SIRT1

    PubMed Central

    Wu, Haiqin; Wang, Huqing; Zhang, Wenting; Wei, Xuanhui; Zhao, Jiaxin; Yan, Pu; Liu, Chao

    2015-01-01

    The aim of this study was to elucidate the signaling pathway involved in the anti-aging effect of erythropoietin (EPO) and to clarify whether recombinant human EPO (rhEPO) affects apoptosis in the aging rat hippocampus by upregulating Sirtuin 1 (SIRT1). In this study, a rat model of aging was established using D-galactose. Behavioral changes were monitored by the Morris water maze test. Using immunohistochemistry, we studied the expression of SIRT1, B-cell lymphoma/leukemia-2 gene (Bcl-2), and Bcl-2 associated X protein (Bax) expression, and apoptotic cells in the hippocampus of a rat model of aging in which rhEPO was intraperitoneally injected. The escape latency in rats from the EPO group shortened significantly; however, the number of platform passes increased significantly from that in the D-gal group (P < 0.05). Compared to the D-gal group, in the EPO group, the number of SIRT1 and Bcl-2-positive cells increased (P < 0.05), but the number of Bax-positive cells and apoptotic cells decreased in the hippocampus of aging rats (P < 0.05). These results suggest that rhEPO regulates apoptosis-related genes and affects apoptosis in the hippocampus of aging rats by upregulating SIRT. This may be one of the important pathways underlying the anti-aging property of EPO. PMID:26261574

  19. NMR-based metabonomic in hippocampus, nucleus accumbens and prefrontal cortex of methamphetamine-sensitized rats.

    PubMed

    Bu, Qian; Lv, Lei; Yan, Guangyan; Deng, Pengchi; Wang, Yanli; Zhou, Jiaqing; Yang, Yanzhu; Li, Yan; Cen, Xiaobo

    2013-05-01

    (1)H NMR spectroscopy was applied to investigate the changes of cerebral metabolites in brain hippocampus, nucleus accumbens (NAC) and prefrontal cortex (PFC) of the rats subjected to subcutaneous twice-daily injections of 2.5mg/kg methamphetamine (MAP) for 7 days. The results indicated that MAP exposure induced significant behavioral sensitization and altered cerebral metabolites in rats. The neurotransmitters glutamate, glutamine and GABA significantly decreased in hippocampus, NAC and PFC. Specifically, increased succinic acid semialdehyde, a metabolism product of GABA, was observed in hippocampus. Additionally, decreased serotonin was observed in both NAC and PFC, whereas decreased dopamine was only observed in NAC after repeated MAP treatment. Glutathione obviously decreased in above brain regions, whereas acetylcysteine declined in hippocampus and NAC, and taurine declined in NAC and PFC. Homocysteic acid was elevated in hippocampus and NAC by repeated MAP administration. Membrane ingredients like phosphocholine elevated in response to MAP administration in NAC and PFC. N-Acetyl-aspartate, a marker of neuronal viability, decreased in the three regions; however, myo-inositol, a glial cell marker, increased in hippocampus and PFC. Tricarboxylic acid cycle intermediate products, such as α-ketoglutarate, succinate, citrate and the methionine significantly decreased in above three brain regions after MAP administration; however, ADP decreased in hippocampus. These results indicate that repeated MAP treatment causes neurotransmitters disturbance, imbalance between oxidative stress and antioxidants, and gliosis in hippocampus, NAC and PFC. Profound metabolic changes detected across brain regions provide the first evidence of metabonomic changes in MAP-induced sensitized rats. PMID:23462569

  20. Neuroprotective effect of pretreatment with ganoderma lucidum in cerebral ischemia/reperfusion injury in rat hippocampus

    PubMed Central

    Zhang, Wangxin; Zhang, Quiling; Deng, Wen; Li, Yalu; Xing, Guoqing; Shi, Xinjun; Du, Yifeng

    2014-01-01

    Ganoderma lucidum is a traditional Chinese medicine, which has been shown to have both anti-oxidative and anti-inflammatory effects, and noticeably decreases both the infarct area and neuronal apoptosis of the ischemic cortex. This study aimed to investigate the protective effects and mechanisms of pretreatment with ganoderma lucidum (by intragastric administration) in cerebral ischemia/reperfusion injury in rats. Our results showed that pretreatment with ganoderma lucidum for 3 and 7 days reduced neuronal loss in the hippocampus, diminished the content of malondialdehyde in the hippocampus and serum, decreased the levels of tumor necrosis factor-α and interleukin-8 in the hippocampus, and increased the activity of superoxide dismutase in the hippocampus and serum. These results suggest that pretreatment with ganoderma lucidum was protective against cerebral ischemia/reperfusion injury through its anti-oxidative and anti-inflammatory actions. PMID:25317156

  1. Impairment of synaptic development in the hippocampus of diabetic Goto-Kakizaki rats.

    PubMed

    Matsunaga, Yuki; Negishi, Takayuki; Hatakeyama, Akinori; Kawagoe, Yuta; Sawano, Erika; Tashiro, Tomoko

    2016-10-01

    Insulin receptor signaling has been shown to regulate essential aspects of CNS function such as synaptic plasticity and neuronal survival. To elucidate its roles during CNS development in vivo, we examined the synaptic and cognitive development of the spontaneously diabetic Goto-Kakizaki (GK) rats in the present study. GK rats are non-obese models of type 2 diabetes established by selective inbreeding of Wistar rats based on impaired glucose tolerance. Though they start exhibiting only moderate hyperglycemia without changes in plasma insulin levels from 3 weeks postnatally, behavioral alterations in the open-field as well as significant impairments in memory retention compared with Wistar rats were observed at 10 weeks and were worsened at 20 weeks. Alterations in insulin receptor signaling and signs of insulin resistance were detected in the GK rat hippocampus at 3 weeks, as early as in other insulin-responsive peripheral tissues. Significant reduction of an excitatory postsynaptic scaffold protein, PSD95, was found at 5w and later in the hippocampus of GK rats due to the absence of a two-fold developmental increase of this protein observed in Wistar control rats between 3 and 20w. In the GK rat hippocampus, NR2A which is a NMDA receptor subunit selectively anchored to PSD95 was also reduced. In contrast, both NR2B and its anchoring protein, SAP102, showed similar developmental profiles in Wistar and GK rats with expression peaks at 2 and 3w. The results suggest that early alterations in insulin receptor signaling in the GK rat hippocampus may affect cognitive performance by suppressing synaptic maturation. PMID:27444810

  2. Iontophoretic studies on rat hippocampus with some novel GABA antagonists.

    PubMed

    Dalkara, T; Saederup, E; Squires, R F; Krnjevic, K

    1986-08-01

    Twelve substances which appear to be GABA antagonists, judging by their ability to reverse the inhibitory effect of GABA on 35S-TBPS binding to rat brain membranes, were tested iontophoretically on population spikes in the rat hippocampus. Eight of them, including seven which completely reversed the inhibitory action of GABA on 35S-TBPS binding, caused a marked enhancement of population spikes, with slow onset and long duration and they antagonized the inhibition of population spikes by GABA. These effects were similar to those produced by bicuculline. Electrophysiologically, the most potent of the "complete reversers" were bathophenanthroline disulfonate and brucine. In vitro, amoxapine and brucine most effectively reversed the inhibitory action of GABA on 35S-TBPS binding. Of the five substances which only partly reversed the inhibitory effect of GABA on 35S-TBPS binding, four depressed the population spikes and potentiated the inhibitory action of GABA. The fifth "partial reverser", pipazethate, potently increased the population spikes, like the "complete reversers". Although other interpretations are possible the results are consistent with the existence of several GABA-A receptor types in brain, only some of which are blocked by certain partial reversers. PMID:2874465

  3. Changes in cytochrome P450 side chain cleavage expression in the rat hippocampus after kainate injury.

    PubMed

    Chia, Wan-Jie; Jenner, Andrew M; Farooqui, Akhlaq A; Ong, Wei-Yi

    2008-03-01

    Our previous study showed an increase in total cholesterol level of the hippocampus after kainate-induced injury, but whether this is further metabolized to neurosteroids is not known. The first step in neurosteroid biosynthesis is the conversion of cholesterol to pregnenolone by the enzyme cytochrome P450 side chain cleavage (P450scc). This study was carried out to elucidate the expression of this enzyme in the kainate-lesioned rat hippocampus. A net decrease in P450scc protein was detected in hippocampal homogenates by Western blots at 2 weeks post-kainate injection (time of peak cholesterol concentration after kainate injury). Immunohistochemistry showed decreased labeling of the enzyme in neurons, but increased expression in a small number of astrocytes. The level of pregnenolone was also analyzed using a newly developed gas chromatography-mass spectrometry (GC-MS) method, optimized for the rat hippocampus. A non-significant tendency to a decrease in pregnenolone level was detected 2 weeks post-lesion. This is in contrast to a large increase in oxysterols in the lesioned hippocampus at this time (He et al. 2006). Together, they indicate that increased cholesterol in the kainate lesioned hippocampus is mostly metabolized to oxysterols, and not neurosteroids. PMID:18040670

  4. NAAG peptidase inhibitor increases dialysate NAAG and reduces glutamate, aspartate and GABA levels in the dorsal hippocampus following fluid percussion injury in the rat.

    PubMed

    Zhong, Chunlong; Zhao, Xueren; Van, Ken C; Bzdega, Tomasz; Smyth, Aoife; Zhou, Jia; Kozikowski, Alan P; Jiang, Jiyao; O'Connor, William T; Berman, Robert F; Neale, Joseph H; Lyeth, Bruce G

    2006-05-01

    Traumatic brain injury (TBI) produces a rapid and excessive elevation in extracellular glutamate that induces excitotoxic brain cell death. The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) is reported to suppress neurotransmitter release through selective activation of presynaptic group II metabotropic glutamate receptors. Therefore, strategies to elevate levels of NAAG following brain injury could reduce excessive glutamate release associated with TBI. We hypothesized that the NAAG peptidase inhibitor, ZJ-43 would elevate extracellular NAAG levels and reduce extracellular levels of amino acid neurotransmitters following TBI by a group II metabotropic glutamate receptor (mGluR)-mediated mechanism. Dialysate levels of NAAG, glutamate, aspartate and GABA from the dorsal hippocampus were elevated after TBI as measured by in vivo microdialysis. Dialysate levels of NAAG were higher and remained elevated in the ZJ-43 treated group (50 mg/kg, i.p.) compared with control. ZJ-43 treatment also reduced the rise of dialysate glutamate, aspartate, and GABA levels. Co-administration of the group II mGluR antagonist, LY341495 (1 mg/kg, i.p.) partially blocked the effects of ZJ-43 on dialysate glutamate and GABA, suggesting that NAAG effects are mediated through mGluR activation. The results are consistent with the hypothesis that inhibition of NAAG peptidase may reduce excitotoxic events associated with TBI. PMID:16606367

  5. Combined administration of levetiracetam and valproic acid attenuates age-related hyperactivity of CA3 place cells, reduces place field area, and increases spatial information content in aged rat hippocampus.

    PubMed

    Robitsek, Jonathan; Ratner, Marcia H; Stewart, Tara; Eichenbaum, Howard; Farb, David H

    2015-12-01

    Learning and memory deficits associated with age-related mild cognitive impairment have long been attributed to impaired processing within the hippocampus. Hyperactivity within the hippocampal CA3 region that is associated with aging is mediated in part by a loss of functional inhibitory interneurons and thought to underlie impaired performance in spatial memory tasks, including the abnormal tendency in aged animals to pattern complete spatial representations. Here, we asked whether the spatial firing patterns of simultaneously recorded CA3 and CA1 neurons in young and aged rats could be manipulated pharmacologically to selectively reduce CA3 hyperactivity and thus, according to hypothesis, the associated abnormality in spatial representations. We used chronically implanted high-density tetrodes to record the spatial firing properties of CA3 and CA1 units during animal exploration for food in familiar and novel environments. Aged CA3 place cells have higher firing rates, larger place fields, less spatial information content, and respond less to a change from a familiar to a novel environment than young CA3 cells. We also find that the combination of levetiracetam (LEV) + valproic acid (VPA), previously shown to act as a cognitive enhancer in tests of spatial memory, attenuate CA3 place cell firing rates, reduce place field area, and increase spatial information content in aged but not young adult rats. This is consistent with drug enhancing the specificity of neuronal firing with respect to spatial location. Contrary to expectation, however, LEV + VPA reduces place cell discrimination between novel and familiar environments, i.e., spatial correlations increase, independent of age even though drug enhances performance in cognitive tasks. The results demonstrate that spatial information content, or the number of bits of information encoded per action potential, may be the key correlate for enhancement of spatial memory by LEV + VPA. PMID:25941121

  6. Vascular changes in rat hippocampus following a high saturated fat and cholesterol diet

    PubMed Central

    Freeman, Linnea R; Granholm, Ann-Charlotte E

    2012-01-01

    The long-term effects of a diet rich in saturated fat and cholesterol on the hippocampus were evaluated in this study. It has previously been shown that this type of diet is detrimental to health, particularly affecting peripheral organs such as the heart and liver. However, effects on the brain have not been fully evaluated. This study focused on the hippocampus, a brain region instrumental for learning and memory and vulnerable to ischemic damage. Reduced blood–brain barrier (BBB) integrity and increased microgliosis were observed in the hippocampus of rats fed a high-saturated-fat and cholesterol (HFHC) diet for 6 months. Interestingly, an increase in hippocampal protein levels of occludin, a tight junction protein, was found in HFHC-treated rats as well. Further investigation revealed decreased expression of the occludin protein in blood vessels and increased expression in the dentate gyrus hilar neurons and mossy fibers of the hippocampal cornus ammonis 3 in HFHC-treated rats. Our results show alterations in BBB integrity and expression of tight junction proteins after long-term exposure to HFHC diet in rats. These findings may suggest a biologic mechanism for previously observed behavioral deficits occurring in rats fed this diet. PMID:22108721

  7. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats

    PubMed Central

    AHN, JI HYEON; CHEN, BAI HUI; SHIN, BICH-NA; LEE, TAE-KYEONG; CHO, JEONG HWI; KIM, IN HYE; PARK, JOON HA; LEE, JAE-CHUL; TAE, HYUN-JIN; LEE, CHOONG-HYUN; WON, MOO-HO; LEE, YUN LYUL; CHOI, SOO YOUNG; HONG, SEONGKWEON

    2016-01-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN-immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  8. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats.

    PubMed

    Ahn, Ji Hyeon; Chen, Bai Hui; Shin, Bich-Na; Lee, Tae-Kyeong; Cho, Jeong Hwi; Kim, In Hye; Park, Joon Ha; Lee, Jae-Chul; Tae, Hyun-Jin; Lee, Choong-Hyun; Won, Moo-Ho; Lee, Yun Lyul; Choi, Soo Young; Hong, Seongkweon

    2016-07-01

    Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN‑immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging. PMID:27221506

  9. Glutamine synthetase activity and glutamate uptake in hippocampus and frontal cortex in portal hypertensive rats

    PubMed Central

    Acosta, Gabriela Beatriz; Fernández, María Alejandra; Roselló, Diego Martín; Tomaro, María Luján; Balestrasse, Karina; Lemberg, Abraham

    2009-01-01

    AIM: To study glutamine synthetase (GS) activity and glutamate uptake in the hippocampus and frontal cortex (FC) from rats with prehepatic portal vein hypertension. METHODS: Male Wistar rats were divided into sham-operated group and a portal hypertension (PH) group with a regulated stricture of the portal vein. Animals were sacrificed by decapitation 14 d after portal vein stricture. GS activity was determined in the hippocampus and FC. Specific uptake of radiolabeled L-glutamate was studied using synaptosome-enriched fractions that were freshly prepared from both brain areas. RESULTS: We observed that the activity of GS increased in the hippocampus of PH rats, as compared to control animals, and decreased in the FC. A significant decrease in glutamate uptake was found in both brain areas, and was more marked in the hippocampus. The decrease in glutamate uptake might have been caused by a deficient transport function, significantly and persistent increase in this excitatory neurotransmitter activity. CONCLUSION: The presence of moderate ammonia blood levels may add to the toxicity of excitotoxic glutamate in the brain, which causes alterations in brain function. Portal vein stricture that causes portal hypertension modifies the normal function in some brain regions. PMID:19533812

  10. Acute administration of l-tyrosine alters energetic metabolism of hippocampus and striatum of infant rats.

    PubMed

    Ramos, Andrea C; Ferreira, Gabriela K; Carvalho-Silva, Milena; Furlanetto, Camila B; Gonçalves, Cinara L; Ferreira, Gustavo C; Schuck, Patrícia F; Streck, Emilio L

    2013-08-01

    Tyrosinemia type II is an inborn error of metabolism caused by mutations in the gene that encodes tyrosine aminotransferase, which leads to increased blood tyrosine levels. Considering that tyrosine levels are highly elevated in fluids of patients with tyrosinemia type II, and that previous studies demonstrated significant alterations in brain energy metabolism of young rats caused by l-tyrosine, the present study aimed to evaluate the effect of acute administration of l-tyrosine on the activities of citrate synthase, malate dehydrogenase, succinate dehydrogenase, and mitochondrial respiratory chain complexes I, II, II-III, and IV in posterior cortex, hippocampus, and striatum of infant rats. Wistar rats (10 days old) were killed 1h after a single intraperitoneal injection of tyrosine (500 mg/kg) or saline. The activities of energy metabolism enzymes were evaluated in brain of rats. Our results demonstrated that acute administration of l-tyrosine inhibited the activity of citrate synthase activity in striatum and increased the activities of malate dehydrogenase and succinate dehydrogenase in hippocampus. On the other hand, these enzymes were not affected in posterior cortex. The activities of complex I and complex II were inhibited by acute administration of l-tyrosine in striatum. On the other hand, the acute administration of l-tyrosine increased the activity of activity of complex II-III in hippocampus. Complex IV was not affected by acute administration of l-tyrosine in infant rats. Our results indicate an alteration in the energy metabolism in hippocampus and striatum of infant rats after acute administration of l-tyrosine. If the same effects occur in the brain of the patients, it is possible that energy metabolism impairment may be contribute to possible damage in memory and cognitive processes in patients with tyrosinemia type II. PMID:23602810

  11. Electroconvulsive seizure induces thrombospondin-1 in the adult rat hippocampus.

    PubMed

    Okada-Tsuchioka, Mami; Segawa, Masahiro; Kajitani, Naoto; Hisaoka-Nakashima, Kazue; Shibasaki, Chiyo; Morinobu, Shigeru; Takebayashi, Minoru

    2014-01-01

    Synaptic dysfunction has recently gained attention for its involvement in mood disorders. Electroconvulsive therapy (ECT) possibly plays a role in synaptic repair. However, the underlying mechanisms remain uncertain. Thrombospondin-1 (TSP-1), a member of the TSP family, is reported to be secreted by astrocytes and to regulate synaptogenesis. We investigated the effects of electroconvulsive seizure (ECS) on the expression of TSPs in the adult rat hippocampus. Single and repeated ECS significantly increased TSP-1 mRNA expression after 2h and returned to sham levels at 24h. Conversely, the TSP-2 and -4 mRNA levels did not change. Only repeated ECS induced TSP-1 proteins. ECS also induced glial fibrillary acidic protein (GFAP) expression. The GFAP expression occurred later than the TSP-1 mRNA expression following single ECS; however, it occurred earlier and was more persistent following repeated ECS. ECS had no effect on the α2δ-1 or neuroligin-1 expressions, both of which are TSP-1 receptors. Furthermore, chronic treatment with antidepressants did not induce the expression of TSP-1 or GFAP. These findings suggest that repeated ECS, but not chronic treatment with antidepressants, induces TSP-1 expression partially via the activation of astrocytes. Therefore, TSP-1 is possibly involved in the synaptogenic effects of ECS. PMID:24121060

  12. The effect of silver nanoparticles on apoptosis and dark neuron production in rat hippocampus

    PubMed Central

    Bagheri-abassi, Farzaneh; Alavi, Hassan; Mohammadipour, Abbas; Motejaded, Fatemeh; Ebrahimzadeh-bideskan, Alireza

    2015-01-01

    Objective(s): Silver nanoparticles (Ag-NPs) are used widely in bedding, water purification, tooth paste and toys. These nanoparticles can enter into the body and move into the hippocampus. The aim of this study was to investigate the neurotoxicity of silver nanoparticles in the adult rat hippocampus. Materials and Methods: 12 male Wistar rats were randomly divided into two experimental and control groups (6 rats in each group). Animals in the experimental group received Ag-NPs (30 mg/kg) orally (gavage) for 28 consecutive days. Control group in the same period was treated with distilled water via gavage. At the end of experiment, animals were deeply anesthetized, sacrificed, and their brains were collected from each group. Finally the brain sections were stained using toluidine blue and TUNEL. Then to compare the groups, dark neurons (DNs) and apoptotic neurons were counted by morphometric method. Results: Results showed that the numbers of DNs and apoptotic cells in the CA1, CA2, CA3, and dentate gyrus (DG) of hippocampus significantly increased in the Ag-NPs group in comparison to the control group (P<0.05). Conclusion: Exposure to Ag-NPs can induce dark neuron and apoptotic cells in the hippocampus. PMID:26351553

  13. Proteomic Analysis of Rat Hippocampus under Simulated Microgravity

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Li, Yujuan; Zhang, Yongqian; Liu, Yahui; Deng, Yulin

    It has been found that microgravity may lead to impairments in cognitive functions performed by CNS. However, the exact mechanism of effects of microgravity on the learning and memory function in animal nervous system is not elucidated yet. Brain function is mainly mediated by membrane proteins and their dysfunction causes degeneration of the learning and memory. To induce simulated microgravity, the rat tail suspension model was established. Comparative O (18) labeling quantitative proteomic strategy was applied to detect the differentially expressed proteins in rat brain hippocampus. The proteins in membrane fraction from rat hippocampus were digested by trypsin and then the peptides were separated by off-gel for the first dimension with 24 wells device encompassing the pH range of 3 - 10. An off-gel fraction was subjected into LC-ESI-QTOF in triplicate. Preliminary results showed that nearly 77% of the peptides identified were specific to one fraction. 676 proteins were identified among which 108 proteins were found differentially expressed under simulated microgravity. Using the KOBAS server, many enriched pathways, such as metabolic pathway, synaptic vesicle cycle, endocytosis, calcium signaling pathway, and SNAREs pathway were identified. Furthermore, it has been found that neurotransmitter released by Ca (2+) -triggered synaptic vesicles fusion may play key role in neural function. Rab 3A might inhibit the membrane fusion and neurotransmitter release. The protein alteration of the synaptic vesicle cycle may further explain the effects of microgravity on learning and memory function in rats. Key words: Microgravity; proteomics; synaptic vesicle; O (18) ({}) -labeling

  14. Dendritic morphology of neurons in medial prefrontal cortex, hippocampus, and nucleus accumbens in adult SH rats.

    PubMed

    Sánchez, Fremioth; Gómez-Villalobos, María de Jesús; Juarez, Ismael; Quevedo, Lucía; Flores, Gonzalo

    2011-03-01

    We have studied, in spontaneously hypertensive (SH) rats at different ages (2, 4, and 8 months old), the dendritic morphological changes of the pyramidal neurons of the medial prefrontal cortex (mPFC) and hippocampus and medium spiny neurons of the nucleus accumbens (NAcc) induced by the chronic effect of high-blood pressure. As control animals, we used Wistar-Kioto (WK) rats. Blood pressure was measured every 2 months to confirm the increase in arterial blood pressure. Spontaneous locomotor activity was assessed, and then brains were removed to study the dendritic morphology by the Golgi-Cox stain method followed by Sholl analysis. SH animals at 4 and 8 months of age showed decreased spine density in pyramidal neurons from the mPFC and in medium spiny cells from the NAcc. At 8 months of age as well the pyramidal neurons from the hippocampus exhibited a reduction in the number of dendritic spines. An increase in locomotion in a novel environment at all ages in the SH rats was observed. Our results indicate that high-blood pressure alters the neuronal dendrite morphology of the mPFC, hippocampus, and NAcc. The increased locomotion behavior supports the idea that dopaminergic transmission is altered in the SH rats. This could enhance our understanding of the consequences of chronic high-blood pressure on brain structure, which may implicate cognitive impairment in hypertensive patients. PMID:20665725

  15. Memory modulates journey-dependent coding in the rat hippocampus

    PubMed Central

    Ferbinteanu, J.; Shirvalkar, P.; Shapiro, M. L.

    2011-01-01

    Neurons in the rat hippocampus signal current location by firing in restricted areas called place fields. During goal-directed tasks in mazes, place fields can also encode past and future positions through journey-dependent activity, which could guide hippocampus-dependent behavior and underlie other temporally extended memories, such as autobiographical recollections. The relevance of journey-dependent activity for hippocampal-dependent memory, however, is not well understood. To further investigate the relationship between hippocampal journey-dependent activity and memory we compared neural firing in rats performing two mnemonically distinct but behaviorally identical tasks in the plus maze: a hippocampus-dependent spatial navigation task, and a hippocampus-independent cue response task. While place, prospective, and retrospective coding reflected temporally extended behavioral episodes in both tasks, memory strategy altered coding differently before and after the choice point. Before the choice point, when discriminative selection of memory strategy was critical, a switch between the tasks elicited a change in a field’s coding category, so that a field that signaled current location in one task coded pending journeys in the other task. After the choice point, however, when memory strategy became irrelevant, the fields preserved coding categories across tasks, so that the same field consistently signaled either current location or the recent journeys. Additionally, on the start arm firing rates were affected at comparable levels by task and journey, while on the goal arm firing rates predominantly encoded journey. The data demonstrate a direct link between journey-dependent coding and memory, and suggest that episodes are encoded by both population and firing rate coding. PMID:21697365

  16. Vortioxetine disinhibits pyramidal cell function and enhances synaptic plasticity in the rat hippocampus

    PubMed Central

    Zhang, Hong; Leiser, Steven C; Xiao, Yixin; Lu, Dunguo; Yang, Charles R; Plath, Niels; Sanchez, Connie

    2014-01-01

    Vortioxetine, a novel antidepressant with multimodal action, is a serotonin (5-HT)3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist and a 5-HT transporter (SERT) inhibitor. Vortioxetine has been shown to improve cognitive performance in several preclinical rat models and in patients with major depressive disorder. Here we investigated the mechanistic basis for these effects by studying the effect of vortioxetine on synaptic transmission, long-term potentiation (LTP), a cellular correlate of learning and memory, and theta oscillations in the rat hippocampus and frontal cortex. Vortioxetine was found to prevent the 5-HT-induced increase in inhibitory post-synaptic potentials recorded from CA1 pyramidal cells, most likely by 5-HT3 receptor antagonism. Vortioxetine also enhanced LTP in the CA1 region of the hippocampus. Finally, vortioxetine increased fronto-cortical theta power during active wake in whole animal electroencephalographic recordings. In comparison, the selective SERT inhibitor escitalopram showed no effect on any of these measures. Taken together, our results indicate that vortioxetine can increase pyramidal cell output, which leads to enhanced synaptic plasticity in the hippocampus. Given the central role of the hippocampus in cognition, these findings may provide a cellular correlate to the observed preclinical and clinical cognition-enhancing effects of vortioxetine. PMID:25122043

  17. Vortioxetine disinhibits pyramidal cell function and enhances synaptic plasticity in the rat hippocampus.

    PubMed

    Dale, Elena; Zhang, Hong; Leiser, Steven C; Xiao, Yixin; Lu, Dunguo; Yang, Charles R; Plath, Niels; Sanchez, Connie

    2014-10-01

    Vortioxetine, a novel antidepressant with multimodal action, is a serotonin (5-HT)3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist and a 5-HT transporter (SERT) inhibitor. Vortioxetine has been shown to improve cognitive performance in several preclinical rat models and in patients with major depressive disorder. Here we investigated the mechanistic basis for these effects by studying the effect of vortioxetine on synaptic transmission, long-term potentiation (LTP), a cellular correlate of learning and memory, and theta oscillations in the rat hippocampus and frontal cortex. Vortioxetine was found to prevent the 5-HT-induced increase in inhibitory post-synaptic potentials recorded from CA1 pyramidal cells, most likely by 5-HT3 receptor antagonism. Vortioxetine also enhanced LTP in the CA1 region of the hippocampus. Finally, vortioxetine increased fronto-cortical theta power during active wake in whole animal electroencephalographic recordings. In comparison, the selective SERT inhibitor escitalopram showed no effect on any of these measures. Taken together, our results indicate that vortioxetine can increase pyramidal cell output, which leads to enhanced synaptic plasticity in the hippocampus. Given the central role of the hippocampus in cognition, these findings may provide a cellular correlate to the observed preclinical and clinical cognition-enhancing effects of vortioxetine. PMID:25122043

  18. Mild cardiopulmonary arrest promotes synaptic dysfunction in rat hippocampus.

    PubMed

    Dave, Kunjan R; Raval, Ami P; Prado, Ricardo; Katz, Laurence M; Sick, Thomas J; Ginsberg, Myron D; Busto, Raul; Pérez-Pinzón, Miguel A

    2004-10-22

    Cardiac arrest (CA) patients exhibit learning and memory disabilities. These deficits suggest that synaptic dysfunction may underlie such disabilities. The hypothesis of the present study was that synaptic dysfunction occurs following CA and that this precedes cell death. To test this hypothesis, we used histopathological and electrophysiological markers in the hippocampus of rats subjected to CA. Evoked potentials (EP) were determined in the CA1 region of hippocampal slices harvested from animals subjected to CA or sham-operated rats by stimulating the Schaffer collaterals and recording in the CA1 pyramidal region. EP amplitudes were significantly attenuated by approximately 60% in hippocampal slices harvested from animals subjected to CA. Hippocampal slices harvested from sham rats exhibited normal long-term potentiation (LTP). In contrast, hippocampal slices harvested 24 h after CA exhibited no LTP response, even when no histopathological abnormalities were observed. These data suggest that synaptic dysfunction occurs before and without overt histopathology. We suggest that the synaptic dysfunction precedes and may be an early marker for delayed neuronal cell death in the hippocampus after CA. PMID:15451369

  19. Cognitive impairment and morphological changes in the dorsal hippocampus of very old female rats.

    PubMed

    Morel, G R; Andersen, T; Pardo, J; Zuccolilli, G O; Cambiaggi, V L; Hereñú, C B; Goya, R G

    2015-09-10

    The hippocampus, a medial temporal lobe structure necessary for the formation of spatial memory, is particularly affected by both normal and pathologic aging. In previous studies, we observed a significant age-related increase in dopaminergic neuron loss in the hypothalamus and the substantia nigra of female rats, which becomes more conspicuous at extreme ages. Here, we extend our studies by assessing spatial memory in 4-6 month-old (young), 26-month-old (old) and 29-32-month-old (senile) Sprague-Dawley female rats as well as the age-related histopathological changes in their dorsal hippocampus. Age changes in spatial memory performance were assessed with a modified version of the Barnes maze test. We employed two probe trials (PTs), one and five days after training, respectively, in order to evaluate learning ability as well as short-term and longer-term spatial memory retention. A set of relevant hippocampal cell markers was also quantitated in the animals by means of an unbiased stereological approach. The results revealed that old rats perform better than senile rats in acquisition trials and young rats perform better than both aging groups. However, during short-term PT both aging groups showed a preserved spatial memory while in longer-term PT, spatial memory showed deterioration in both aged groups. Morphological analysis showed a marked decrease (94-97%) in doublecortin neuron number in the dentate gyrus in both aged groups and a reduction in glial fibrillary acidic protein-positive cell number in the stratum radiatum of aging rats. Astroglial process length and branching complexity decreased in aged rats. We conclude that while target-seeking activity and learning ability decrease in aged females, spatial memory only declines in the longer-term tests. The reduction in neuroblast number and astroglial arborescence complexity in the dorsal hippocampus are likely to play a role in the cognitive deficits of aging rats. PMID:26141841

  20. Influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats.

    PubMed

    Kim, Hong; Lee, Myoung-Hwa; Chang, Hyun-Kyung; Lee, Taeck-Hyun; Lee, Hee-Hyuk; Shin, Min-Chul; Shin, Mal-Soon; Won, Ran; Shin, Hye-Sook; Kim, Chang-Ju

    2006-03-01

    During the prenatal period, the development of individual is influenced by the environmental factors. In the present study, the influence of prenatal noise and music on the spatial memory and neurogenesis in the hippocampus of developing rats was investigated. The exposure to the noise during pregnancy caused growth retardation, decreased neurogenesis in the hippocampus, and impaired spatial learning ability in pups. The exposure to music during pregnancy, on the other hand, caused increased neurogenesis in the hippocampus and enhanced spatial learning ability in pups. The present study has shown the importance of the prenatal environmental conditions for the cognition and brain development. PMID:16181757

  1. Exercise training increases size of hippocampus and improves memory.

    PubMed

    Erickson, Kirk I; Voss, Michelle W; Prakash, Ruchika Shaurya; Basak, Chandramallika; Szabo, Amanda; Chaddock, Laura; Kim, Jennifer S; Heo, Susie; Alves, Heloisa; White, Siobhan M; Wojcicki, Thomas R; Mailey, Emily; Vieira, Victoria J; Martin, Stephen A; Pence, Brandt D; Woods, Jeffrey A; McAuley, Edward; Kramer, Arthur F

    2011-02-15

    The hippocampus shrinks in late adulthood, leading to impaired memory and increased risk for dementia. Hippocampal and medial temporal lobe volumes are larger in higher-fit adults, and physical activity training increases hippocampal perfusion, but the extent to which aerobic exercise training can modify hippocampal volume in late adulthood remains unknown. Here we show, in a randomized controlled trial with 120 older adults, that aerobic exercise training increases the size of the anterior hippocampus, leading to improvements in spatial memory. Exercise training increased hippocampal volume by 2%, effectively reversing age-related loss in volume by 1 to 2 y. We also demonstrate that increased hippocampal volume is associated with greater serum levels of BDNF, a mediator of neurogenesis in the dentate gyrus. Hippocampal volume declined in the control group, but higher preintervention fitness partially attenuated the decline, suggesting that fitness protects against volume loss. Caudate nucleus and thalamus volumes were unaffected by the intervention. These theoretically important findings indicate that aerobic exercise training is effective at reversing hippocampal volume loss in late adulthood, which is accompanied by improved memory function. PMID:21282661

  2. Diazoxide enhances excitotoxicity-induced neurogenesis and attenuates neurodegeneration in the rat non-neurogenic hippocampus.

    PubMed

    Martínez-Moreno, M; Batlle, M; Ortega, F J; Gimeno-Bayón, J; Andrade, C; Mahy, N; Rodríguez, M J

    2016-10-01

    Diazoxide, a well-known mitochondrial KATP channel opener with neuroprotective effects, has been proposed for the effective and safe treatment of neuroinflammation. To test whether diazoxide affects the neurogenesis associated with excitotoxicity in brain injury, we induced lesions by injecting excitotoxic N-methyl-d-aspartate (NMDA) into the rat hippocampus and analyzed the effects of a daily oral administration of diazoxide on the induced lesion. Specific glial and neuronal staining showed that NMDA elicited a strong glial reaction associated with progressive neuronal loss in the whole hippocampal formation. Doublecortin immunohistochemistry and bromo-deoxyuridine (BrdU)-NeuN double immunohistochemistry revealed that NMDA also induced cell proliferation and neurogenesis in the lesioned non-neurogenic hippocampus. Furthermore, glial fibrillary acidic protein (GFAP)-positive cells in the injured hippocampus expressed transcription factor Sp8 indicating that the excitotoxic lesion elicited the migration of progenitors from the subventricular zone and/or the reprograming of reactive astrocytes. Diazoxide treatment attenuated the NMDA-induced hippocampal injury in rats, as demonstrated by decreases in the size of the lesion, neuronal loss and microglial reaction. Diazoxide also increased the number of BrdU/NeuN double-stained cells and elevated the number of Sp8-positive cells in the lesioned hippocampus. These results indicate a role for KATP channel activation in regulating excitotoxicity-induced neurogenesis in brain injury. PMID:27471195

  3. Antidepressants modulate glycine action in rat hippocampus.

    PubMed

    Chang, Hyun-Kyung; Kim, Khae Hawn; Kang, Ki-Woon; Kang, Yoo-Jin; Kim, Tae-Wook; Park, Hun-Kyung; Kim, Sung-Eun; Kim, Chang-Ju

    2015-12-01

    Antidepressants are drugs that relieve symptoms of depressive disorders. Fluoxetine, tianeptine, and milnacipran are different types of antidepressants, and they have widely been used for relieving of depression symptoms. In the present study, the effects of fluoxetine, tianeptine, and milnacipran on the glycine-induced ion current by nystatin-perforated patch clamp and on the amplitude of field potential in the hippocampal CA1 region by multichannel extracellular recording, MED64, system, were studied. In the present results, fluoxetine, tianeptine, and milnacipran reduced glycine-induced ion current in the hippocampal CA1 neurons in nystatin-perforated patch clamp method. These drugs enhanced the amplitude of the field potential in the hippocampal CA1 region in MED64 system. These results suggest that antidepressants may increase neuronal activity by enhancing field potential through inhibition on glycine-induced ion current. PMID:26730381

  4. Antidepressants modulate glycine action in rat hippocampus

    PubMed Central

    Chang, Hyun-Kyung; Kim, Khae Hawn; Kang, Ki-Woon; Kang, Yoo-Jin; Kim, Tae-Wook; Park, Hun-Kyung; Kim, Sung-Eun; Kim, Chang-Ju

    2015-01-01

    Antidepressants are drugs that relieve symptoms of depressive disorders. Fluoxetine, tianeptine, and milnacipran are different types of antidepressants, and they have widely been used for relieving of depression symptoms. In the present study, the effects of fluoxetine, tianeptine, and milnacipran on the glycine-induced ion current by nystatin-perforated patch clamp and on the amplitude of field potential in the hippocampal CA1 region by multichannel extracellular recording, MED64, system, were studied. In the present results, fluoxetine, tianeptine, and milnacipran reduced glycine-induced ion current in the hippocampal CA1 neurons in nystatin-perforated patch clamp method. These drugs enhanced the amplitude of the field potential in the hippocampal CA1 region in MED64 system. These results suggest that antidepressants may increase neuronal activity by enhancing field potential through inhibition on glycine-induced ion current. PMID:26730381

  5. Effects of Methyl Mercury Chloride on Rat Hippocampus Structure.

    PubMed

    Wu, Jingwei; Cheng, Guangyuan; Lu, Zhiyan; Wang, Mingyue; Tian, Jianying; Bi, Yongyi

    2016-05-01

    The objective of this study is to investigate the impacts of Methyl Mercury Chloride (MMC) on cognitive functions and ultrastructural changes of hippocampus in Sprague Dawley (SD) rats. Thirty healthy 20-day-old male SD rats weighing 30-40 g were randomly divided into three groups to receive daily injections. Two different dose levels were used: 4 mg/kg as high dose (H-MMC) and 2 mg/kg as low dose (L-MMC).The control group received 4 mg/kg saline solution (N-NaCl). After daily subcutaneous injection for 50 days, 6-day Morris water maze tests were used to assess the learning and memory functions of the rats. After a 5-day continuous training, spatial probe tests were conducted of times and paths crossing to the target quadrant on the 6th day. After the rats were euthanized, their hippocampus sections were stained with hematoxylin and eosin and analyzed under bothoptical microscope and electron microscope. The time H-MMC group spent in finding platform was significantly longer as compared toN-NaCl group on day 2 to day 5 and L-MMC group on day 4 to day 5. The number of crossing times of H-MMC group to the target quadrant was 0.63 ± 0.74, which is much lower than C-NaCl group (3.13 ± 1.56) with P value <0.05. No statistically significant difference in crossing times was found between L-MMC and C-NaCl groups. For H-MMC group, decreasing number of neurons and disorganized nerve cells were examined under light microscope. Swelling and dissolution of Golgi complex were examined under electron microscope, along with endoplasmic reticulum expansion and cytoplasmic edema. Mild cytoplasmic edema was found in L-MMC group. MMC can cause cognitive impairment in terms of learning and memory in SD rats. Additionally, it can also cause changes in the ultrastructure of neurons and morphological changes in the hippocampus, causing significant damage. PMID:26358766

  6. Modulation of cholecystokinin concentrations in the rat hippocampus by chelation of heavy metals

    SciTech Connect

    Stengaard-Pedersen, K.; Larsson, L.I.; Fredens, K.; Rehfeld, J.F.

    1984-09-01

    Previously, we have reported that enkephalins, cholecystokinin, and heavy metals show roughly parallel distributional patterns in the hippocampus. A substantial body of evidence indicates that cholecystokinin-octapeptide (CCK-8) and enkephalins act as neurotransmitters. A CCK-8 degrading enzyme was recently detected in brain synaptosomes. Its activity depended on free thiol groups and the presence of a heavy metal. Since the heavy metal-containing neuropil is closely related to CCK-immunoreactive nerve terminals, we have investigated the effect of metal chelation on CCK components in the rat hippocampus. In vivo treatment of rats with a single dose of the chelating agent diethyldithiocarbamate caused a reversible chelation of heavy metals in the hippocampus. This effect was paralleled by a 3-fold increase in hippocampal content of CCK-8 and a smaller increase in the intermediate forms of CCK (CCK-58, CCK-39, CCK-33). Diethyldithiocarbamate also decreased the spontaneous motility and aggressiveness of the rats. These data show reversible changes of neuronal CCK processing by a drug, and hence they provide additional evidence that CCK is involved in the regulation of neuronal activities. 59 references, 3 figures.

  7. Noopept stimulates the expression of NGF and BDNF in rat hippocampus.

    PubMed

    Ostrovskaya, R U; Gudasheva, T A; Zaplina, A P; Vahitova, Ju V; Salimgareeva, M H; Jamidanov, R S; Seredenin, S B

    2008-09-01

    We studied the effect of original dipeptide preparation Noopept (N-phenylacetyl-L-prolylglycine ethyl ester, GVS-111) with nootropic and neuroprotective properties on the expression of mRNA for neurotropic factors NGF and BDNF in rat hippocampus. Expression of NGF and BDNF mRNA in the cerebral cortex and hippocampus was studied by Northern blot analysis. Taking into account the fact that pharmacological activity of Noopept is realized after both acute and chronic treatment, we studied the effect of single and long-term treatment (28 days) with this drug. Expression of the studied neurotropic factors in the cerebral cortex was below the control after single administration of Noopept, while chronic administration caused a slight increase in BDNF expression. In the hippocampus, expression of mRNA for both neurotrophins increased after acute administration of Noopept. Chronic treatment with Noopept was not followed by the development of tolerance, but even potentiated the neurotrophic effect. These changes probably play a role in neuronal restoration. We showed that the nootropic drug increases expression of neurotrophic factors in the hippocampus. Our results are consistent with the hypothesis that neurotrophin synthesis in the hippocampus determines cognitive function, particularly in consolidation and delayed memory retrieval. Published data show that neurotrophic factor deficiency in the hippocampus is observed not only in advanced Alzheimer's disease, but also at the stage of mild cognitive impairment (pre-disease state). In light of this our findings suggest that Noopept holds much promise to prevent the development of Alzheimer's disease in patients with mild cognitive impairment. Moreover, therapeutic effectiveness of Noopept should be evaluated at the initial stage of Alzheimer's disease. PMID:19240853

  8. Proteomic identification of carbonylated proteins in F344 rat hippocampus after 1-bromopropane exposure

    SciTech Connect

    Huang, Zhenlie; Ichihara, Sahoko; Oikawa, Shinji; Chang, Jie; Zhang, Lingyi; Subramanian, Kaviarasan; Mohideen, Sahabudeen Sheik; Ichihara, Gaku

    2012-08-15

    1-Bromopropane (1-BP) is neurotoxic in both experimental animals and humans. Previous proteomic analysis of rat hippocampus implicated alteration of protein expression in oxidative stress, suggesting that oxidative stress plays a role in 1-BP-induced neurotoxicity. To understand this role at the protein level, we exposed male F344 rats to 1-BP at 0, 400, or 1000 ppm for 8 h/day for 1 week or 4 weeks by inhalation and quantitated changes in hippocampal protein carbonyl using a protein carbonyl assay, two-dimensional gel electrophoresis (2-DE), immunoblotting, and matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF-TOF/MS). Hippocampal reactive oxygen species and protein carbonyl were significantly increased, demonstrating 1-BP-associated induction of oxidative stress and protein damage. MALDI-TOF-TOF/MS identified 10 individual proteins with increased carbonyl modification (p < 0.05; fold-change ≥ 1.5). The identified proteins were involved in diverse biological processes including glycolysis, ATP production, tyrosine catabolism, GTP binding, guanine degradation, and neuronal metabolism of dopamine. Hippocampal triosephosphate isomerase (TPI) activity was significantly reduced and negatively correlated with TPI carbonylation (p < 0.001; r = 0.83). Advanced glycation end-product (AGE) levels were significantly elevated both in the hippocampus and plasma, and hippocampal AGEs correlated negatively with TPI activity (p < 0.001; r = 0.71). In conclusion, 1-BP-induced neurotoxicity in the rat hippocampus seems to involve oxidative damage of cellular proteins, decreased TPI activity, and elevated AGEs. -- Highlights: ► 1-BP increases hippocampal ROS levels and hippocampal and plasma protein carbonyls. ► 1-BP increases TPI carbonylation and decreases TPI activity in the hippocampus. ► 1-BP increases hippocampal and plasma AGE levels.

  9. Formaldehyde impairs learning and memory involving the disturbance of hydrogen sulfide generation in the hippocampus of rats.

    PubMed

    Tang, Xiao-Qing; Zhuang, Yuan-Yuan; Zhang, Ping; Fang, Heng-Rong; Zhou, Cheng-Fang; Gu, Hong-Feng; Zhang, Hui; Wang, Chun-Yan

    2013-01-01

    Formaldehyde (FA), a well-known indoor and outdoor pollutant, has been implicated as the responsible agent in the development of neurocognitive disorders. Hydrogen sulfide (H(2)S), the third gasotransimitter, is an endogenous neuromodulator, which facilitates the induction of hippocampal long-term potentiation, involving the functions of learning and memory. In the present study, we analyzed the effects of intracerebroventricular injection of FA on the formation of learning and memory and the generation of endogenous H(2)S in the hippocampus of rats. We found that the intracerebroventricular injection of FA in rats impairs the function of learning and memory in the Morris water maze and novel object recognition test and increases the formation of apoptosis and lipid peroxidation in the hippocampus. We also showed that FA exposure inhibits the expression of cystathionine β-synthase, the major enzyme responsible for endogenous H(2)S generation in hippocampus and decreases the production of endogenous H(2)S in hippocampus in rats. These results suggested that FA-disturbed generation of endogenous H(2)S in hippocampus leads to the oxidative stress-mediated neuron damage, ultimately impairing the function of learning and memory. Our findings imply that the disturbance of endogenous H(2)S generation in hippocampus is a potential contributing mechanism underling FA-caused learning and memory impairment. PMID:23108488

  10. Effect of Acute and Chronic Electroconvulsive Shock on 5-Hydroxytrypamine 6 Receptor Immunoreactivity in Rat Hippocampus

    PubMed Central

    Kim, Hyun Jung; Kang, Seungwoo; Kim, Hyun Ju; Choi, Sun-Hye; Shin, Seungkeun; Lee, Hyung Ha

    2014-01-01

    Electroconvulsive shock (ECS) induces not only an antidepressant effect but also adverse effects such as amnesia. One potential mechanism underlying both the antidepressant and amnesia effect of ECS may involve the regulation of serotonin (5-hydroxytryptamine) 6 (5-HT6) receptor, but less is known about the effects of acute ECS on the changes in 5-HT6 receptor expression in the hippocampus. In addition, as regulation of 5-HT receptor expression is influenced by the number of ECS treatment and by interval between ECS treatment and sacrifice, it is probable that magnitude and time-dependent changes in 5-HT6 receptor expression could be influenced by repeated ECS exposure. To explore this possibility, we observed and compared the changes of 5-HT6 receptor immunoreactivity (5-HT6 IR) in rat hippocampus at 1, 8, 24, or 72 h after the treatment with either a single ECS (acute ECS) or daily ECS for 10 days (chronic ECS). We found that acute ECS increased 5-HT6 IR in the CA1, CA3, and granule cell layer of hippocampus, reaching peak levels at 8 h and returning to basal levels 72 h later. The magnitude and time-dependent changes in 5-HT6 IR observed after acute ECS were not affected by chronic ECS. These results demonstrate that both acute and chronic ECS transiently increase the 5-HT6 IR in rat hippocampus, and suggest that the magnitude and time-dependent changes in 5-HT6 IR in the hippocampus appear not to be influenced by repeated ECS treatment. PMID:25258570

  11. Effect of taurine on the concentrations of glutamate, GABA, glutamine and alanine in the rat striatum and hippocampus.

    PubMed

    Molchanova, Svetlana M; Oja, Simos S; Saransaari, Pirjo

    2007-01-01

    Taurine, a non-protein amino acid, acts as an osmoregulator and inhibitory neuromodulator in the brain. Here we studied the effects of intraperitoneal injections of taurine on the concentrations of glutamate and GABA, and their precursors, glutamine and alanine, in the rat striatum and hippocampus. Injections of 0.25, 0.5 and 1 g/kg taurine led to a gradual increase in taurine tissue concentrations in both hippocampus and striatum. Glutamate and GABA also increased in the hippocampus, but not in the striatum. Glutamine increased and alanine decreased markedly in both brain structures. The results corroborate the neuromodulatory role of taurine in the brain. Taurine administration results in an imbalance in inhibitory and excitatory neurotransmission in the glutamatergic (hippocampus) and GABAergic (striatum) brain structures, affecting more markedly the neurotransmitter precursors. PMID:18605241

  12. Mild exercise increases dihydrotestosterone in hippocampus providing evidence for androgenic mediation of neurogenesis.

    PubMed

    Okamoto, Masahiro; Hojo, Yasushi; Inoue, Koshiro; Matsui, Takashi; Kawato, Suguru; McEwen, Bruce S; Soya, Hideaki

    2012-08-01

    Mild exercise activates hippocampal neurons through the glutamatergic pathway and also promotes adult hippocampal neurogenesis (AHN). We hypothesized that such exercise could enhance local androgen synthesis and cause AHN because hippocampal steroid synthesis is facilitated by activated neurons via N-methyl-D-aspartate receptors. Here we addressed this question using a mild-intense treadmill running model that has been shown to be a potent AHN stimulator. A mass-spectrometric analysis demonstrated that hippocampal dihydrotestosterone increased significantly, whereas testosterone levels did not increase significantly after 2 wk of treadmill running in both orchidectomized (ORX) and sham castrated (Sham) male rats. Furthermore, analysis of mRNA expression for the two isoforms of 5α-reductases (srd5a1, srd5a2) and for androgen receptor (AR) revealed that both increased in the hippocampus after exercise, even in ORX rats. All rats were injected twice with 5'-bromo-2'deoxyuridine (50 mg/kg body weight, i.p.) on the day before training. Mild exercise significantly increased AHN in both ORX and Sham rats. Moreover, the increase of doublecortin or 5'-bromo-2'deoxyuridine/NeuN-positive cells in ORX rats was blocked by s.c. flutamide, an AR antagonist. It was also found that application of an estrogen receptor antagonist, tamoxifen, did not suppress exercise-induced AHN. These results support the hypothesis that, in male animals, mild exercise enhances hippocampal synthesis of dihydrotestosterone and increases AHN via androgenenic mediation. PMID:22807478

  13. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus

    PubMed Central

    Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2016-01-01

    Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (−23%) and dentate gyrus (−48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression. PMID:27579183

  14. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus.

    PubMed

    Reyes-Haro, Daniel; Labrada-Moncada, Francisco Emmanuel; Varman, Durairaj Ragu; Krüger, Janina; Morales, Teresa; Miledi, Ricardo; Martínez-Torres, Ataúlfo

    2016-01-01

    Anorexia nervosa is an eating disorder observed primarily in young women. The neurobiology of the disorder is unknown but recently magnetic resonance imaging showed a volume reduction of the hippocampus in anorexic patients. Dehydration-induced anorexia (DIA) is a murine model that mimics core features of this disorder, including severe weight loss due to voluntary reduction in food intake. The energy supply to the brain is mediated by astrocytes, but whether their density is compromised by anorexia is unknown. Thus, the aim of this study was to estimate GFAP+ cell density in the main regions of the hippocampus (CA1, CA2, CA3, and dentate gyrus) in the DIA model. Our results showed that GFAP+ cell density was significantly reduced (~20%) in all regions of the hippocampus, except in CA1. Interestingly, DIA significantly reduced the GFAP+ cells/nuclei ratio in CA2 (-23%) and dentate gyrus (-48%). The reduction of GFAP+ cell density was in agreement with a lower expression of GFAP protein. Additionally, anorexia increased the expression of the intermediate filaments vimentin and nestin. Accordingly, anorexia increased the number of reactive astrocytes in CA2 and dentate gyrus more than twofold. We conclude that anorexia reduces the hippocampal GFAP+ cell density and increases vimentin and nestin expression. PMID:27579183

  15. Up-regulation of GABA transporters and GABA(A) receptor α1 subunit in tremor rat hippocampus.

    PubMed

    Mao, Xiaoyuan; Guo, Feng; Yu, Junling; Min, Dongyu; Wang, Zhanyou; Xie, Ni; Chen, Tianbao; Shaw, Chris; Cai, Jiqun

    2010-12-17

    The loss of GABAergic neurotransmission has been closely linked with epileptogenesis. The modulation of the synaptic activity occurs both via the removal of GABA from the synaptic cleft and by GABA transporters (GATs) and by modulation of GABA receptors. The tremor rat (TRM; tm/tm) is the parent strain of the spontaneously epileptic rat (SER; zi/zi, tm/tm), which exhibits absence-like seizure after 8 weeks of age. However, there are no reports that can elucidate the effects of GATs and GABA(A) receptors (GABARs) on TRMs. The present study was conducted to detect GATs and GABAR α1 subunit in TRMs hippocampus at mRNA and protein levels. In this study, total synaptosomal GABA content was significantly decreased in TRMs hippocampus compared with control Wistar rats by high performance liquid chromatography (HPLC); mRNA and protein expressions of GAT-1, GAT-3 and GABAR α1 subunit were all significantly increased in TRMs hippocampus by real time PCR and Western blot, respectively; GAT-1 and GABAR α1 subunit proteins were localized widely in TRMs and control rats hippocampus including CA1, CA3 and dentate gyrus (DG) regions whereas only a wide distribution of GAT-3 was observed in CA1 region by immunohistochemistry. These data demonstrate that excessive expressions of GAT-1 as well as GAT-3 and GABAR α1 subunit in TRMs hippocampus may provide the potential therapeutic targets for genetic epilepsy. PMID:20851161

  16. Donor/recipient enhancement of memory in rat hippocampus

    PubMed Central

    Deadwyler, Sam A.; Berger, Theodore W.; Sweatt, Andrew J.; Song, Dong; Chan, Rosa H. M.; Opris, Ioan; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Hampson, Robert E.

    2013-01-01

    The critical role of the mammalian hippocampus in the formation, translation and retrieval of memory has been documented over many decades. There are many theories of how the hippocampus operates to encode events and a precise mechanism was recently identified in rats performing a short-term memory task which demonstrated that successful information encoding was promoted via specific patterns of activity generated within ensembles of hippocampal neurons. In the study presented here, these “representations” were extracted via a customized non-linear multi-input multi-output (MIMO) mathematical model which allowed prediction of successful performance on specific trials within the testing session. A unique feature of this characterization was demonstrated when successful information encoding patterns were derived online from well-trained “donor” animals during difficult long-delay trials and delivered via online electrical stimulation to synchronously tested naïve “recipient” animals never before exposed to the delay feature of the task. By transferring such model-derived trained (donor) animal hippocampal firing patterns via stimulation to coupled naïve recipient animals, their task performance was facilitated in a direct “donor-recipient” manner. This provides the basis for utilizing extracted appropriate neural information from one brain to induce, recover, or enhance memory related processing in the brain of another subject. PMID:24421759

  17. Influence of chronic amphetamine treatment and acute withdrawal on serotonin synthesis and clearance mechanisms in the rat ventral hippocampus.

    PubMed

    Barr, Jeffrey L; Scholl, Jamie L; Solanki, Rajeshwari R; Watt, Michael J; Lowry, Christopher A; Renner, Kenneth J; Forster, Gina L

    2013-02-01

    Amphetamine withdrawal in both humans and rats is associated with increased anxiety states, which are thought to contribute to drug relapse. Serotonin in the ventral hippocampus mediates affective behaviors, and reduced serotonin levels in this region are observed in rat models of high anxiety, including during withdrawal from chronic amphetamine. This goal of this study was to understand the mechanisms by which reduced ventral hippocampus serotonergic neurotransmission occurs during amphetamine withdrawal. Serotonin synthesis (assessed by accumulation of serotonin precursor as a measure of the capacity of in vivo tryptophan hydroxylase activity), expression of serotonergic transporters, and in vivo serotonergic clearance using in vivo microdialysis were assessed in the ventral hippocampus in adult male Sprague Dawley rats at 24 h withdrawal from chronic amphetamine. Overall, results showed that diminished extracellular serotonin at 24 h withdrawal from chronic amphetamine was not accompanied by a change in capacity for serotonin synthesis (in vivo tryptophan hydroxylase activity), or serotonin transporter expression or function in the ventral hippocampus, but instead was associated with increased expression and function of organic cation transporters (low-affinity, high-capacity serotonin transporters). These findings suggest that 24 h withdrawal from chronic amphetamine reduces the availability of extracellular serotonin in the ventral hippocampus by increasing organic cation transporter-mediated serotonin clearance, which may represent a future pharmacological target for reversing anxiety states during drug withdrawal. PMID:23157166

  18. Spatially Distributed Local Fields in the Hippocampus Encode Rat Position

    PubMed Central

    Agarwal, Gautam; Stevenson, Ian H.; Berényi, Antal; Mizuseki, Kenji; Buzsáki, György; Sommer, Friedrich T.

    2016-01-01

    Although neuronal spikes can be readily detected from extracellular recordings, synaptic and subthreshold activity remains undifferentiated within the local field potential (LFP). In the hippocampus, neurons discharge selectively when the rat is at certain locations, while LFPs at single anatomical sites exhibit no such place-tuning. Nonetheless, because the representation of position is sparse and distributed, we hypothesized that spatial information can be recovered from multiple-site LFP recordings. Using high-density sampling of LFP and computational methods, we show that the spatiotemporal structure of the theta rhythm can encode position as robustly as neuronal spiking populations. Because our approach exploits the rhythmicity and sparse structure of neural activity, features found in many brain regions, it is useful as a general tool for discovering distributed LFP codes. PMID:24812401

  19. Functional Relationships between the Hippocampus and Dorsomedial Striatum in Learning a Visual Scene-Based Memory Task in Rats

    PubMed Central

    Delcasso, Sébastien; Huh, Namjung; Byeon, Jung Seop; Lee, Jihyun; Jung, Min Whan

    2014-01-01

    The hippocampus is important for contextual behavior, and the striatum plays key roles in decision making. When studying the functional relationships with the hippocampus, prior studies have focused mostly on the dorsolateral striatum (DLS), emphasizing the antagonistic relationships between the hippocampus and DLS in spatial versus response learning. By contrast, the functional relationships between the dorsomedial striatum (DMS) and hippocampus are relatively unknown. The current study reports that lesions to both the hippocampus and DMS profoundly impaired performance of rats in a visual scene-based memory task in which the animals were required to make a choice response by using visual scenes displayed in the background. Analysis of simultaneous recordings of local field potentials revealed that the gamma oscillatory power was higher in the DMS, but not in CA1, when the rat performed the task using familiar scenes than novel ones. In addition, the CA1-DMS networks increased coherence at γ, but not at θ, rhythm as the rat mastered the task. At the single-unit level, the neuronal populations in CA1 and DMS showed differential firing patterns when responses were made using familiar visual scenes than novel ones. Such learning-dependent firing patterns were observed earlier in the DMS than in CA1 before the rat made choice responses. The present findings suggest that both the hippocampus and DMS process memory representations for visual scenes in parallel with different time courses and that flexible choice action using background visual scenes requires coordinated operations of the hippocampus and DMS at γ frequencies. PMID:25411483

  20. Functional relationships between the hippocampus and dorsomedial striatum in learning a visual scene-based memory task in rats.

    PubMed

    Delcasso, Sébastien; Huh, Namjung; Byeon, Jung Seop; Lee, Jihyun; Jung, Min Whan; Lee, Inah

    2014-11-19

    The hippocampus is important for contextual behavior, and the striatum plays key roles in decision making. When studying the functional relationships with the hippocampus, prior studies have focused mostly on the dorsolateral striatum (DLS), emphasizing the antagonistic relationships between the hippocampus and DLS in spatial versus response learning. By contrast, the functional relationships between the dorsomedial striatum (DMS) and hippocampus are relatively unknown. The current study reports that lesions to both the hippocampus and DMS profoundly impaired performance of rats in a visual scene-based memory task in which the animals were required to make a choice response by using visual scenes displayed in the background. Analysis of simultaneous recordings of local field potentials revealed that the gamma oscillatory power was higher in the DMS, but not in CA1, when the rat performed the task using familiar scenes than novel ones. In addition, the CA1-DMS networks increased coherence at γ, but not at θ, rhythm as the rat mastered the task. At the single-unit level, the neuronal populations in CA1 and DMS showed differential firing patterns when responses were made using familiar visual scenes than novel ones. Such learning-dependent firing patterns were observed earlier in the DMS than in CA1 before the rat made choice responses. The present findings suggest that both the hippocampus and DMS process memory representations for visual scenes in parallel with different time courses and that flexible choice action using background visual scenes requires coordinated operations of the hippocampus and DMS at γ frequencies. PMID:25411483

  1. Chronic administration of resveratrol prevents morphological changes in prefrontal cortex and hippocampus of aged rats.

    PubMed

    Monserrat Hernández-Hernández, Elizabeth; Serrano-García, Carolina; Antonio Vázquez-Roque, Rubén; Díaz, Alfonso; Monroy, Elibeth; Rodríguez-Moreno, Antonio; Florán, Benjamin; Flores, Gonzalo

    2016-05-01

    Resveratrol may induce its neuroprotective effects by reducing oxidative damage and chronic inflammation apart from improving vascular function and activating longevity genes, it also has the ability to promote the activity of neurotrophic factors. Morphological changes in dendrites of the pyramidal neurons of the prefrontal cortex (PFC) and hippocampus have been reported in the brain of aging humans, or in humans with neurodegenerative diseases such as Alzheimer's disease. These changes are reflected particularly in the decrement of both the dendritic tree and spine density. Here we evaluated the effect of resveratrol on the dendrites of pyramidal neurons of the PFC (Layers 3 and 5), CA1- and CA3-dorsal hippocampus (DH) as well as CA1-ventral hippocampus, dentate gyrus (DG), and medium spiny neurons of the nucleus accumbens of aged rats. 18-month-old rats were administered resveratrol (20 mg/kg, orally) daily for 60 days. Dendritic morphology was studied by the Golgi-Cox stain procedure, followed by Sholl analysis on 20-month-old rats. In all resveratrol-treated rats, a significant increase in dendritic length and spine density in pyramidal neurons of the PFC, CA1, and CA3 of DH was observed. Interestingly, the enhancement in dendritic length was close to the soma in pyramidal neurons of the PFC, whereas in neurons of the DH and DG, the increase in dendritic length was further from the soma. Our results suggest that resveratrol induces modifications of dendritic morphology in the PFC, DH, and DG. These changes may explain the therapeutic effect of resveratrol in aging and in Alzheimer's disease. PMID:26789275

  2. Electrophysiological and neurochemical changes in the rat hippocampus after in vitro and in vivo treatments with cocaine

    SciTech Connect

    Yasuda, R.P.

    1986-01-01

    The in vitro and in vivo effects of cocaine in the noradrenergic pathway in the rat hippocampus were examined. Although the blockade of (/sup 3/H)-norepinephrine-uptake by cocaine has been well-characterized in both the central and peripheral nervous systems, investigations characterizing the electrophysiological effects of cocaine in the central nervous system have been limited. The first part of this thesis examines the relationship between the ability of cocaine to potentiate the electrophysiological response to norepinephrine (NE) and the ability of cocaine to block noradrenergic high affinity uptake in rat hippocampal slices. The second part of this thesis examines the effects of the repeated administration of cocaine on noradrenergic pre- and postsynaptic function and receptors of the rat hippocampus. These studies demonstrate that after repeated administration of cocaine (10 mg/kg/day) for 8 and 14 days there is a 50% decrease in NE high affinity uptake in the rat hippocampus. This was accompanied by a 40% increase in a binding site for NE uptake inhibitors at 14 days. In contrast to these effects, there was no effect on ..beta..-adrenergic receptor number or the isoproterenol induced electrophysiological responsiveness in the rat hippocampus. The conclusion of these studies is that the repeated administration of cocaine has a greater effect on presynaptic targets in the noradrenergic system than on postsynaptic neurons.

  3. Hypobaric Hypoxia Imbalances Mitochondrial Dynamics in Rat Brain Hippocampus

    PubMed Central

    Jain, Khushbu; Prasad, Dipti; Singh, Shashi Bala; Kohli, Ekta

    2015-01-01

    Brain is predominantly susceptible to oxidative stress and mitochondrial dysfunction during hypobaric hypoxia, and therefore undergoes neurodegeneration due to energy crisis. Evidences illustrate a high degree of association for mitochondrial fusion/fission imbalance and mitochondrial dysfunction. Mitochondrial fusion/fission is a recently reported dynamic mechanism which frequently occurs among cellular mitochondrial network. Hence, the study investigated the temporal alteration and involvement of abnormal mitochondrial dynamics (fusion/fission) along with disturbed mitochondrial functionality during chronic exposure to hypobaric hypoxia (HH). The Sprague-Dawley rats were exposed to simulated high altitude equivalent to 25000 ft for 3, 7, 14, 21, and 28 days. Mitochondrial morphology, distribution within neurons, enzyme activity of respiratory complexes, Δψm, ADP: ATP, and expression of fission/fusion key proteins were determined. Results demonstrated HH induced alteration in mitochondrial morphology by damaged, small mitochondria observed in neurons with disturbance of mitochondrial functionality and reduced mitochondrial density in neuronal processes manifested by excessive mitochondrial fragmentation (fission) and decreased mitochondrial fusion as compared to unexposed rat brain hippocampus. The study suggested that imbalance in mitochondrial dynamics is one of the noteworthy mechanisms occurring in hippocampal neurons during HH insult. PMID:26236504

  4. The rat's resistance to superstition: role of the hippocampus.

    PubMed

    Devenport, L D; Holloway, F A

    1980-08-01

    Superstitious operant behavior, in all possible respects similar to that described for pigeons, was found to characterize the behavior of male rats with bilateral hippocampal lesions (hippocampals). Robust superfluous activitiess accompanied noncontingent (random time) and shifts from contingent (random interval) to noncontingent pellet delivery. These activities were minimized but not eliminated by an operant contingency. In contrast, sham-operate performance was distinguished by a stripping away of superfluities in all contingency conditions. Although a variety of responses were emitted superstitiously, the topography of behavior in hippocampal rats was not different from that of sham operates. Unlike sham operates, which varied their behavior spontaneously and in response to experimental changes, hippocampals did not cease their repetitive, high frequency sequences until reinforcers were withheld. As the detection of a free operant contingency seems to depend upon response-cued discrimination learning, and in view of the hippocampal failure to generate these cues, a link between superstitious response output and response rigidity is hypothesized. It is proposed that the hippocampus permits the control of behavior by contingency and that without the structure, operant behavior is guided by simple response-reinforcer contiguity. PMID:7190980

  5. Behavior in the forced swim test and neurochemical changes in the hippocampus in young rats after 2-week zinc deprivation.

    PubMed

    Tamano, Haruna; Kan, Fumika; Kawamura, Mika; Oku, Naoto; Takeda, Atsushi

    2009-12-01

    Abnormal behavior in zinc deficiency and its cause are poorly understood. In the present paper, behavior in the forced swim test and neurochemical changes in the brain associated with its behavior were studied focused on abnormal corticosterone secretion in zinc deficiency. The effect of chronic corticosterone treatment was also studied. Immobility time in the forced swim test was increased in young rats fed a zinc-deficient diet for 2 weeks, as well as corticosterone (40mg/kg/dayx14 days)-treated control rats. The basal Ca(2+) levels in the hippocampus, which were determined by fluo-4FF, AM, were increased in both brain slices from zinc-deficient and corticosterone-treated rats. Serum glucose level was decreased in zinc deficiency and hippocampal glucose metabolism, which is determined by [(14)C]2-deoxyglucose uptake, was elevated. Hippocampal ATP level was not decreased, whereas, the concentrations of glutamate, GABA and glutamine in the hippocampus, unlike the whole brain, were decreased in zinc deficiency. However, the decrease in these amino acids was restored by adrenalectomy prior to zinc deficiency. These results suggest that glucose is insufficient for the synthesis of amino acids in the hippocampus of zinc-deficient rats. It is likely that the neurochemical and metabolic changes in the hippocampus, which may be associated with abnormal corticosterone secretion, is the base of abnormal behavior associated with neuropsychological symptoms in zinc deficiency. PMID:19463882

  6. Properties of carbachol-induced oscillatory activity in rat hippocampus.

    PubMed

    Williams, J H; Kauer, J A

    1997-11-01

    Properties of carbachol-induced oscillatory activity in rat hippocampus. J. Neurophysiol. 78: 2631-2640, 1997. The recent resurgence of interest in carbachol oscillations as an in vitro model of theta rhythm in the hippocampus prompted us to evaluate the circuit mechanisms involved. In extracellular recordings, a regularly spaced bursting pattern of field potentials was observed in both CA3 and CA1 subfields in the presence of carbachol. Removal of the CA3 region abolished oscillatory activity observed in CA1, suggesting that the oscillatory generator is located in CA3. An alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX), blocked carbachol oscillations, indicating that AMPA receptor-mediated synaptic currents are necessary for the population oscillation. Moreover, the spread of oscillatory activity into CA1 required intact N-methyl--aspartate receptors. These data are more consistent with epileptiform bursting than with theta rhythm described in vivo. In the presence of carbachol, individual CA3 pyramidal cells exhibited a slow, rhythmic intrinsic oscillation that was not blocked by DNQX and that was enhanced by membrane hyperpolarization. We hypothesize that this slower oscillation is the fundamental oscillator that participates in triggering the population oscillation by exciting multiple synaptically connected CA3 neurons. gamma-aminobutyric acid-A (GABAA) receptors are not necessary for carbachol to elicit synchronous CA3 field events but are essential to the bursting pattern observed. Neither GABAB nor metabotropic glutamate receptors appear to be necessary for carbachol oscillations. However, both nicotinic and M1 and M3 muscarinic cholinergic receptors contribute to the generation of this activity. These results establish the local circuit elements and neurotransmitter receptors that contribute to carbachol-induced oscillations and indicate that carbachol-induced oscillations are

  7. Eag1, Eag2, and SK3 potassium channel expression in the rat hippocampus after global transient brain ischemia.

    PubMed

    de Oliveira, R M Weffort; Martin, S; de Oliveira, C Lino; Milani, H; Schiavon, A P; Joca, S; Pardo, L A; Stühmer, W; Del Bel, E A

    2012-03-01

    Transient global brain ischemia causes delayed neuronal death in the hippocampus that has been associated with impairments in hippocampus-dependent brain function, such as mood, learning, and memory. We investigated the expression of voltage-dependent Kcnh1 and Kcnh5, ether à go-go-related Eag1 and Eag2 (K(V) 10.1 and K(V) 10.2), and small-conductance calcium-activated SK3 (K(Ca) 2.3, Kcnn3) K(+) channels in the hippocampus in rats after transient global brain ischemia. We tested whether the expression of these channels is associated with behavioral changes by evaluating the animals in the elevated plus maze and step-down inhibitory avoidance task. Seven or tweny-eight days after transient global brain ischemia, one group of rats had the hippocampus bilaterally dissected, and mRNA levels were determined. Seven days after transient global brain ischemia, the rats exhibited a decrease in anxiety-like behavior and memory impairments. An increase in anxiety levels was detected 28 days after ischemia. Eag2 mRNA downregulation was observed in the hippocampus 7 days after transient global brain ischemia, whereas Eag1 and SK3 mRNA expression remained unaltered. This is the first experimental evidence that transient global brain ischemia temporarily alters Eag2. The number of intact-appearing pyramidal neurons was substantially decreased in CA1 and statistically measurable in CA2, CA3, and CA4 hippocampal subfields compared with sham control animals 7 or 28 days after ischemia. mRNA expression in the rat hippocampus. The present results provide further information for the characterization of the physiological role of Eag2 channels in the central nervous system. PMID:22006722

  8. Lithium Treatment Prevents Apoptosis in Neonatal Rat Hippocampus Resulting from Sevoflurane Exposure.

    PubMed

    Zhou, Xue; da Li, Wen-; Yuan, Bao-Long; Niu, Li-Jun; Yang, Xiao-Yu; Zhou, Zhi-Bin; Chen, Xiao-Hui; Feng, Xia

    2016-08-01

    We aimed to observe the therapeutic effects of lithium on inhalational anesthetic sevoflurane-induced apoptosis in immature brain hippocampus. From postnatal day 5 (P5) to P28, male Sprague-Dawley pups were intraperitoneally injected with lithium chloride or 0.9 % sodium chloride. On P7 after the injection, pups were exposed to 2.3 % sevoflurane or air for 6 h. Brain tissues were harvested 12 h and 3 weeks after exposure. Cleaved caspase-3, nNOS protein, GSK-3β,p-GSK-3β were assessed by Western blot, and histopathological changes were assessed using Nissl stain and TUNEL stain. From P28, we used the eight-arm radial maze test and step-through test to evaluate the influence of sevoflurane exposure on the learning and memory of juvenile rats. The results showed that neonatal sevoflurane exposure induced caspase-3 activation and histopathological changes in hippocampus can be attenuated by lithium chloride. Sevoflurane increased GSK-3β activity while pretreatment of lithium decreased GSK-3β activity. Moreover, sevoflurane showed possibly slight but temporal influence on the spatial learning and the memory of juvenile rats, and chronic use of lithium chloride might have the therapeutic effect. Our current study suggests that lithium attenuates sevoflurane induced neonatal hippocampual damage by GSK-3β pathway and might improve learning and memory deficits in rats after neonatal exposure. PMID:27068032

  9. Mild exercise increases dihydrotestosterone in hippocampus providing evidence for androgenic mediation of neurogenesis

    PubMed Central

    Okamoto, Masahiro; Hojo, Yasushi; Inoue, Koshiro; Matsui, Takashi; Kawato, Suguru; McEwen, Bruce S.; Soya, Hideaki

    2012-01-01

    Mild exercise activates hippocampal neurons through the glutamatergic pathway and also promotes adult hippocampal neurogenesis (AHN). We hypothesized that such exercise could enhance local androgen synthesis and cause AHN because hippocampal steroid synthesis is facilitated by activated neurons via N-methyl-D-aspartate receptors. Here we addressed this question using a mild-intense treadmill running model that has been shown to be a potent AHN stimulator. A mass-spectrometric analysis demonstrated that hippocampal dihydrotestosterone increased significantly, whereas testosterone levels did not increase significantly after 2 wk of treadmill running in both orchidectomized (ORX) and sham castrated (Sham) male rats. Furthermore, analysis of mRNA expression for the two isoforms of 5α-reductases (srd5a1, srd5a2) and for androgen receptor (AR) revealed that both increased in the hippocampus after exercise, even in ORX rats. All rats were injected twice with 5′-bromo-2′deoxyuridine (50 mg/kg body weight, i.p.) on the day before training. Mild exercise significantly increased AHN in both ORX and Sham rats. Moreover, the increase of doublecortin or 5′-bromo-2′deoxyuridine/NeuN-positive cells in ORX rats was blocked by s.c. flutamide, an AR antagonist. It was also found that application of an estrogen receptor antagonist, tamoxifen, did not suppress exercise-induced AHN. These results support the hypothesis that, in male animals, mild exercise enhances hippocampal synthesis of dihydrotestosterone and increases AHN via androgenenic mediation. PMID:22807478

  10. Endogenous opioid peptides as neurotransmitters in the rat hippocampus

    SciTech Connect

    Neumaier, J.F.

    1989-01-01

    The role of endogenous opioid peptides as neurotransmitters in the rat hippocampus was investigated by using extracellular recording and radioligand binding techniques in the hippocampal slice preparation. Synaptic conductances from endogenously released opioid peptides have been difficult to detect. This problem was approach by designing a novel assay of opioid peptide release, in which release was detected by measuring binding competition between endogenous opioids and added radioligand. Membrane depolarization displaced ({sup 3}H)-diprenorphine binding in a transient, calcium-dependent, and peptidase-sensitive manner. Autoradiographic localization of the sites of ({sup 3}H)-diprenorphine binding displacement showed that significant opioid peptide release and receptor occupancy occurred in each major subregion of the hippocampal slices. This assay method can not be used to define optimal electrical stimulation conditions for releasing endogenous opioids. The binding displacement method was extended to the study of the sigma receptor. Depolarization of hippocampal slices was found to reduce the binding of the sigma-selective radioligand ({sup 3}H)-ditolylguanidine in a transient and calcium-dependent manner with no apparent direct effects on sigma receptor affinity.

  11. Basal dendritic length is reduced in the rat hippocampus following bilateral vestibular deafferentation.

    PubMed

    Balabhadrapatruni, Sangeeta; Zheng, Yiwen; Napper, Ruth; Smith, Paul F

    2016-05-01

    Some previous studies in humans have shown that bilateral loss of vestibular function is associated with a significant bilateral atrophy of the hippocampus, which correlated with the patients' spatial memory deficits. By contrast, studies in rats have failed to detect any changes in hippocampal volume following bilateral vestibular loss. Therefore, in this study we investigated whether bilateral vestibular deafferentation (BVD) might result in more subtle morphological changes in the rat hippocampus, involving alterations in dendritic intersections, using Golgi staining and Sholl analysis. We found that at 1month following BVD, there was a significant decrease in basal (P⩽0.0001) but not apical dendritic intersections in the CA1 region of the hippocampus compared to sham-operated animals and anaesthetic controls. However, dendritic branching was not significantly affected. These results suggest that the rat hippocampus does undergo subtle morphological changes following bilateral vestibular loss, and that they may be in the form of alterations in dendritic structure. PMID:26976094

  12. Effects of chronic stress and corticosterone on sialidase activity in the rat hippocampus.

    PubMed

    Wielgat, Przemyslaw; Walesiuk, Anna; Braszko, Jan J

    2011-09-23

    Sialidases are acid exoglycosidases that catalyse the removal of sialic acid from non-reducing end of sialoglucoconjugated substrates. Synaptic plasticity depends on sialylation state of proteins and lipids mediated by sialic acid-metabolizing enzymes. Since chronic stress causes both, hippocampal atrophy and impairment of learning, it is reasonable to investigate whether sialidase is implicated in these processes. In this study, we tested effects of chronic stress (immobilization, 2h daily, 21 days) or chronic corticosterone administration (5 mg/kg, sc, daily) on sialidase activity and sialylated NCAMs expression in rat hippocampus. The results showed that chronic stress affects hippocampus-depended spatial learning in the Barnes maze. Both, stress (p > 0.05) and corticosterone (p < 0.001), increased latencies to enter the escape tunnel of the maze in comparison to control animals. Similar but not significant differences between control and other experimental groups were observed in the numbers of errors. Chronic stress (p > 0.05) and corticosterone (p < 0.05) decreased sialidase activity in the brain homogenates and synaptosomes (p < 0.05, both). In the stressed animals, these changes were related to significantly higher expression of polysialic acid. These results indicate that changes in sialidase activity caused by stress and chronic corticosterone administration reflect disturbances of polysialylated glycoconjugates known to be related to synaptic plasticity in hippocampus. PMID:21501633

  13. Peripheral Levels of AGEs and Astrocyte Alterations in the Hippocampus of STZ-Diabetic Rats.

    PubMed

    Nardin, Patrícia; Zanotto, Caroline; Hansen, Fernanda; Batassini, Cristiane; Gasparin, Manuela Sangalli; Sesterheim, Patrícia; Gonçalves, Carlos-Alberto

    2016-08-01

    Diabetic patients and streptozotocin (STZ)-induced diabetes mellitus (DM) models exhibit signals of brain dysfunction, evidenced by neuronal damage and memory impairment. Astrocytes surrounding capillaries and synapses modulate many brain activities that are connected to neuronal function, such as nutrient flux and glutamatergic neurotransmission. As such, cognitive changes observed in diabetic patients and experimental models could be related to astroglial alterations. Herein, we investigate specific astrocyte changes in the rat hippocampus in a model of DM induced by STZ, particularly looking at glial fibrillary acidic protein (GFAP), S100B protein and glutamate uptake, as well as the content of advanced glycated end products (AGEs) in serum and cerebrospinal fluid (CSF), as a consequence of elevated hyperglycemia and the content of receptor for AGEs in the hippocampus. We found clear peripheral alterations, including hyperglycemia, low levels of proinsulin C-peptide, elevated levels of AGEs in serum and CSF, as well as an increase in RAGE in hippocampal tissue. We found specific astroglial abnormalities in this brain region, such as reduced S100B content, reduced glutamate uptake and increased S100B secretion, which were not accompanied by changes in GFAP. We also observed an increase in the glucose transporter, GLUT-1. All these changes may result from RAGE-induced inflammation; these astroglial alterations together with the reduced content of GluN1, a subunit of the NMDA receptor, in the hippocampus may be associated with the impairment of glutamatergic communication in diabetic rats. These findings contribute to understanding the cognitive deficits in diabetic patients and experimental models. PMID:27084774

  14. Differential expression of synaptic proteins after chronic restraint stress in rat prefrontal cortex and hippocampus.

    PubMed

    Müller, Heidi Kaastrup; Wegener, Gregers; Popoli, Maurizio; Elfving, Betina

    2011-04-18

    Prolonged stress has been associated with altered synaptic plasticity but little is known about the molecular components and mechanisms involved in the stress response. In this study, we examined the effect of chronic restraint stress (CRS) on the expression of genes associated with synaptic vesicle exocytosis in rat prefrontal cortex and hippocampus. Rats were stressed daily using a 21day restraint stress paradigm, with durations of half an hour or 6h. RNA and protein were extracted from the same tissue sample and used for real-time quantitative polymerase chain reaction (real-time qPCR) and immunoblotting, respectively. Focusing on the SNARE complex, we investigated the expression of the SNARE core components syntaxin 1A, SNAP-25, and VAMP2 at both transcriptional and protein levels. In addition, the expression of 10 SNARE regulatory proteins was investigated at the transcriptional level. Overall, the prefrontal cortex was more sensitive to CRS compared to the hippocampus. In prefrontal cortex, CRS induced increased mRNA levels of VAMP2, VAMP1, syntaxin 1A, snapin, synaptotagmins I and III, and synapsins I and II, whereas SNAP-25 was down-regulated after CRS. Immunoblotting demonstrated equivalent changes in protein levels of VAMP2, syntaxin 1A, and SNAP-25. In hippocampus, we found increased mRNA levels of VAMP2 and SNAP-29 and a decrease in VAMP1 levels. Immunoblotting revealed decreased VAMP2 protein levels despite increased mRNA levels. Changes in the expression of synaptic proteins may accompany or contribute to the morphological, functional, and behavioral changes observed in experimental models of stress and may have relevance to the pathophysiology of stress-related disorders. PMID:21354112

  15. The Effects of L-arginine on the Hippocampus of Male Rat Fetuses under Maternal Stress

    PubMed Central

    Mahmoudi, Reza; Enant, Elham; Delaviz, Hamdollah; Rad, Parastou; Roozbehi, Amrollah; Jafari Barmak, Mehrzad; Azizi, Arsalan

    2016-01-01

    Introduction: Prenatal stress has deleterious effects on the development of the brain and is associated with behavioral and psychosocial problems in childhood and adulthood. This study aimed to determine the protective effect of L-arginine on fetal brain under maternal stress. Methods: Twenty pregnant Wistar rats (weighting 200–230 g) were randomly divided into 4 groups (n=5 for each group). The first nonstress and stress groups received 2 mL of normal saline and the other nonstress and stress two groups received L-arginine (200 mg/kg, IP) from their 5th to 20th days of pregnancy. The pregnant rats were killed on 20th day and the brain fetuses removed and prefrontal cortical thickness, total neurons in the prefrontal cortex and in the areas of CA1, CA2, and CA3 of the hippocampus were measured and counted. Nitrite levels in the brain were measured as an indicator for nitric oxide (NO) level. Results: There was a significant decrease of mean number of pyramidal cells in the CA1 in prenatal stress group compared to nonstress and nonstress plus arginine groups. The NO level in brain tissue increased significantly in the stress plus arginine (3.8±0.4 nmol/mg) and in nonstress rats (2.9±0.3 nmol/mg) compared to the stress group (1.8±0.1 nmol/mg). Prefrontal cortical thickness decreased significantly in stress rats (1.2±0.09 mm) compared to the nonstress plus arginine (1.7±0.15 mm) and nonstress (1.6±0.13 mm) groups. Discussion: Results indicated that prenatal stress could lead to neurodegeneration of hippocampus and prefrontal cortex of rat fetuses. L-arginine as a precursor of NO synthesis had neuroprotective effect during prenatal stress and could be used an effective treatment for stress. PMID:27303594

  16. Effects on high cholesterol-fed to liver, retina, hippocampus, and Harderian gland in Goto-Kakizaki rat

    PubMed Central

    Kengkoom, Kanchana; Klinkhamhom, Aekkarin; Sirimontaporn, Aunchalee; Singha, Ornuma; Ketjareon, Taweesak; Panavechkijkul, Yaowaluk; Seriwatanachai, Dutmanee; Ukong, Suluck; Ampawong, Sumate

    2013-01-01

    To understand the relationship among cholesterolemia, hyperglycemic stage in non obese type 2 diabetes mellitus, and histological perturbations on liver, retina, hippocampus, and Harderian gland, we maintained rat on a diet high in cholesterol for fourteen weeks, then analyzed blood lipid profiles, blood glucose, hepatic enzymes, and microscopic lesion of those tissues. We observed that high cholesterol-treated rat elevated in cholesterol and low density lipoprotein with not correlated to hyperglycemia. Histopathological changing in Goto-Kakizaki rat on liver (microvesicular steatosis) and Harderain gland (tubular lesions) were related to hyperglycemic effect rather than cholesterolemic effect. These may be related to hypoinsulinemic characteristic of this diabetic model. However increasing pyknotic nuclei on hippocampus and reducing of retinal ganglionic cell were related to the high level of cholesterol loaded with synergized effect due to diabetic stage. PMID:23573310

  17. Presynaptic kainate receptor facilitation of glutamate release involves protein kinase A in the rat hippocampus

    PubMed Central

    Rodríguez-Moreno, Antonio; Sihra, Talvinder S

    2004-01-01

    We have explored the mechanisms involved in the facilitation of glutamate release mediated by the activation of kainate receptors in the rat hippocampus using isolated nerve terminal (synaptosome) and slice preparations. In hippocampal nerve terminals, kainate (KA) produced an increase of glutamate release at concentrations of agonist ranging from 10 to 1000 μm. In hippocampal slices, KA at low nanomolar concentrations (20–50 nm) also produced an increase of evoked excitatory postsynaptic currents (eEPSCs) at mossy fibre–CA3 synapses. In both, synaptosomes and slices, the effect of KA was antagonized by CNQX, and persisted after pretreatment with a cocktail of antagonists for other receptors whose activation could potentially have produced facilitation of release. These data indicate that the facilitation of glutamate release observed is mediated by the activation of presynaptic glutamate receptors of the kainate type. Mechanistically, the observed effects of KA appear to be the same in synaptosomal and slice preparations. Thus, the effect of KA on glutamate release and mossy fibre–CA3 synaptic transmission was occluded by the stimulation of adenylyl cyclase by forskolin and suppressed by the inhibition of protein kinase A by H-89 or Rp-Br-cAMP. We conclude that kainate receptors present at presynaptic terminals in the rat hippocampus mediate the facilitation of glutamate release through a mechanism involving the activation of an adenylyl cyclase–second messenger cAMP–protein kinase A signalling cascade. PMID:15107475

  18. Greater Glucocorticoid Receptor Activation in Hippocampus of Aged Rats Sensitizes Microglia

    PubMed Central

    Barrientos, Ruth M.; Thompson, Vanessa M.; Kitt, Meagan M.; Amat, Jose; Hale, Matthew W.; Frank, Matthew G.; Crysdale, Nicole Y.; Stamper, Christopher E.; Hennessey, Patrick A.; Watkins, Linda R.; Spencer, Robert L.; Lowry, Christopher A.; Maier, Steven F.

    2014-01-01

    Healthy aging individuals are more likely to suffer profound memory impairments following an immune challenge than are younger adults. These challenges produce a brain inflammatory response that is exaggerated with age. Sensitized microglia found in the normal aging brain are responsible for this amplified response, which in turn interferes with processes involved in memory formation. Here, we examine factors that may lead aging to sensitize microglia. Aged rats exhibited higher CORT levels in the hippocampus, but not in plasma, throughout the daytime (diurnal inactive phase). These elevated hippocampal CORT levels were associated with increased hippocampal 11β-HSD1 protein expression, the enzyme that catalyzes glucocorticoid formation, and greater hippocampal glucocorticoid receptor (GR) activation. Intracisternal administration of mifepristone, a GR antagonist, effectively reduced immune-activated proinflammatory responses, specifically from hippocampal microglia, and prevented E. coli-induced memory impairments in aged rats. Voluntary exercise as a therapeutic intervention significantly reduced total hippocampal GR expression. These data strongly suggest that increased GR activation in the aged hippocampus plays a critical role in sensitizing microglia. PMID:25559333

  19. The longitudinal study of rat hippocampus influenced by stress: early adverse experience enhances hippocampal vulnerability and working memory deficit in adult rats.

    PubMed

    Jin, Fengkui; Li, Lei; Shi, Mei; Li, Zhenzi; Zhou, Jinghua; Chen, Li

    2013-06-01

    Epidemiologic studies indicate that early adverse experience is related to learning disabilities in adults, but the neurobiological mechanisms have not yet been identified. We used longitudinal animal experiments to test the hypothesis that early life stress enhances hippocampal vulnerability and working memory deficit in adult rats. The expression of Synaptophysin (SYN) and apoptosis (Apo) in hippocampal CA3 and dentate gyrus (DG) regions were examined to evaluate the effects of environmental factors on the hippocampus. The working memory errors via radial 8-arm maze were studied to evaluate the long-term effect of early stress on rats' spatial learning ability. Our results indicated that chronic restraint stress in early life and forced cold water swimming stress in adulthood reduced SYN expression and increased Apo levels in rat hippocampus, but the hippocampal damage tended to recover when rats returned to a non-stress environment. In addition, when the rats were exposed to forced cold water swimming stress during adulthood, SYN expression (CA3 and DG regions) and Apo levels (CA3 region) in rat hippocampus showed statistical difference between early restraint stress group and non-early restraint stress group (rats exposed to stress in adulthood only). One month after the two groups of rats returned to non-stress environment, this difference of SYN expression (CA3 and DG regions) and working memory deficit between the two groups was still statistically significant. Our study findings suggested that early adverse experience enhances hippocampal vulnerability and working memory deficit in adult rats, and reduces structural plasticity of hippocampus. PMID:23500055

  20. FORMAMIDINE PESTICIDES ENHANCE SUSCEPTIBILITY TO KINDLED SEIZURES IN AMYGDALA AND HIPPOCAMPUS OF THE RAT (JOURNAL VERSION)

    EPA Science Inventory

    Electrical kindling of the amygdala and hippocampus was used to evaluate the effects of two formamidines, chlordimeform (CDF) and amitraz (AMZ), upon seizure susceptibility in the rat. Male Long-Evans rats were implanted with electrodes in the amygdala or dorsal dentate gyrus, an...

  1. Evidence that the rat hippocampus has contrasting roles in object recognition memory and object recency memory.

    PubMed

    Albasser, Mathieu M; Amin, Eman; Lin, Tzu-Ching E; Iordanova, Mihaela D; Aggleton, John P

    2012-10-01

    Adult rats with extensive, bilateral neurotoxic lesions of the hippocampus showed normal forgetting curves for object recognition memory, yet were impaired on closely related tests of object recency memory. The present findings point to specific mechanisms for temporal order information (recency) that are dependent on the hippocampus and do not involve object recognition memory. The object recognition tests measured rats exploring simultaneously presented objects, one novel and the other familiar. Task difficulty was varied by altering the retention delays after presentation of the familiar object, so creating a forgetting curve. Hippocampal lesions had no apparent effect, despite using an apparatus (bow-tie maze) where it was possible to give lists of objects that might be expected to increase stimulus interference. In contrast, the same hippocampal lesions impaired the normal preference for an older (less recent) familiar object over a more recent, familiar object. A correlation was found between the loss of septal hippocampal tissue and this impairment in recency memory. The dissociation in the present study between recognition memory (spared) and recency memory (impaired) was unusually compelling, because it was possible to test the same objects for both forms of memory within the same session and within the same apparatus. The object recency deficit is of additional interest as it provides an example of a nonspatial memory deficit following hippocampal damage. PMID:23025831

  2. Chronaxie Measurements in Patterned Neuronal Cultures from Rat Hippocampus

    PubMed Central

    Rotem, Assaf; Moses, Elisha; Neef, Andreas

    2015-01-01

    Excitation of neurons by an externally induced electric field is a long standing question that has recently attracted attention due to its relevance in novel clinical intervention systems for the brain. Here we use patterned quasi one-dimensional neuronal cultures from rat hippocampus, exploiting the alignment of axons along the linear patterned culture to separate the contribution of dendrites to the excitation of the neuron from that of axons. Network disconnection by channel blockers, along with rotation of the electric field direction, allows the derivation of strength-duration (SD) curves that characterize the statistical ensemble of a population of cells. SD curves with the electric field aligned either parallel or perpendicular to the axons yield the chronaxie and rheobase of axons and dendrites respectively, and these differ considerably. Dendritic chronaxie is measured to be about 1 ms, while that of axons is on the order of 0.1 ms. Axons are thus more excitable at short time scales, but at longer time scales dendrites are more easily excited. We complement these studies with experiments on fully connected cultures. An explanation for the chronaxie of dendrites is found in the numerical simulations of passive, realistically structured dendritic trees under external stimulation. The much shorter chronaxie of axons is not captured in the passive model and may be related to active processes. The lower rheobase of dendrites at longer durations can improve brain stimulation protocols, since in the brain dendrites are less specifically oriented than axonal bundles, and the requirement for precise directional stimulation may be circumvented by using longer duration fields. PMID:26186201

  3. Cognition Enhancing and Neuromodulatory Propensity of Bacopa monniera Extract Against Scopolamine Induced Cognitive Impairments in Rat Hippocampus.

    PubMed

    Pandareesh, M D; Anand, T; Khanum, Farhath

    2016-05-01

    Cognition-enhancing activity of Bacopa monniera extract (BME) was evaluated against scopolamine-induced amnesic rats by novel object recognition test (NOR), elevated plus maze (EPM) and Morris water maze (MWM) tests. Scopolamine (2 mg/kg body wt, i.p.) was used to induce amnesia in rats. Piracetam (200 mg/kg body wt, i.p.) was used as positive control. BME at three different dosages (i.e., 10, 20 and 40 mg/kg body wt.) improved the impairment induced by scopolamine by increasing the discrimination index of NOR and by decreasing the transfer latency of EPM and escape latency of MWM tests. Our results further elucidate that BME administration has normalized the neurotransmitters (acetylcholine, glutamate, 5-hydroxytryptamine, dopamine, 3,4 dihydroxyphenylacetic acid, norepinephrine) levels that were altered by scopolamine administration in hippocampus of rat brain. BME administration also ameliorated scopolamine effect by down-regulating AChE and up-regulating BDNF, muscarinic M1 receptor and CREB expression in brain hippocampus confirms the potent neuroprotective role and these results are in corroboration with the earlier in vitro studies. BME administration showed significant protection against scopolamine-induced toxicity by restoring the levels of antioxidant and lipid peroxidation. These results indicate that, cognition-enhancing and neuromodulatory propensity of BME is through modulating the expression of AChE, BDNF, MUS-1, CREB and also by altering the levels of neurotransmitters in hippocampus of rat brain. PMID:26677075

  4. Neuroprotective effects of Withania coagulans root extract on CA1 hippocampus following cerebral ischemia in rats

    PubMed Central

    Sarbishegi, Maryam; Heidari, Zahra; Mahmoudzadeh- Sagheb, Hamidreza; Valizadeh, Moharram; Doostkami, Mahboobeh

    2016-01-01

    Objective: Oxygen free radicals may be implicated in the pathogenesis of ischemia reperfusion damage. The beneficial effects of antioxidant nutrients, as well as complex plant extracts, on cerebral ischemia-reperfusion injuries are well known. This study was conducted to determine the effects of the hydro-alcoholic root extract of Withania coagulans on CA1 hippocampus oxidative damages following global cerebral ischemia/reperfusion in rat. Materials and Methods: Male Wistar rats were randomly divided in five groups: control, sham operated, Ischemia/ Reperfiusion (IR), and Withania Coagulans Extract (WCE) 500 and 1000mg/kg + I/R groups. Ischemia was induced by ligation of bilateral common carotid arteries for 30 min after 30 days of WCE administration. Three days after, the animals were sacrificed, their brains were fixed for histological analysis (NISSL and TUNEL staining) and some samples were prepared for measurement of malondialdehyde (MDA) level and superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activity in hippocampus. Results: WCE showed neuroprotective activity by significant decrease in MDA level and increase in the SOD, CAT and GPx activity in pretreated groups as compared to I/R groups (p<0.001). The number of intact neurons was increased while the number of TUNEL positive neurons in CA1 hippocampal region in pretreated groups were decreased as compared to I/R group (p<0.001). Conclusion: WCE showed potent neuroprotective activity against oxidative stress-induced injuries caused by global cerebral ischemia/ reperfusion in rats probably by radical scavenging and antioxidant activities. PMID:27516980

  5. Polygalasaponin F induces long-term potentiation in adult rat hippocampus via NMDA receptor activation

    PubMed Central

    Sun, Feng; Sun, Jian-dong; Han, Ning; Li, Chuang-jun; Yuan, Yu-he; Zhang, Dong-ming; Chen, Nai-hong

    2012-01-01

    Aim: To investigate the effect and underlying mechanisms of polygalasaponin F (PGSF), a triterpenoid saponin isolated from Polygala japonica, on long-term potentiation (LTP) in hippocampus dentate gyrus (DG) of anesthetized rats. Methods: Population spike (PS) of hippocampal DG was recorded in anesthetized male Wistar rats. PGSF, the NMDAR inhibitor MK801 and the CaMKII inhibitor KN93 were intracerebroventricularly administered. Western blotting analysis was used to examine the phosphorylation expressions of NMDA receptor subunit 2B (NR2B), Ca2+/calmodulin-dependent kinase II (CaMKII), extracellular signal-regulated kinase (ERK), and cAMP response element-binding protein (CREB). Results: Intracerebroventricular administration of PGSF (1 and 10 μmol/L) produced long-lasting increase of PS amplitude in hippocampal DG in a dose-dependent manner. Pre-injection of MK801 (100 μmol/L) or KN93 (100 μmol/L) completely blocked PGSF-induced LTP. Furthermore, the phosphorylation of NR2B, CaMKII, ERK, and CREB in hippocampus was significantly increased 5–60 min after LTP induction. The up-regulation of p-CaMKII expression could be completely abolished by pre-injection of MK801. The up-regulation of p-ERK and p-CREB expressions could be partially blocked by pre-injection of KN93. Conclusion: PGSF could induce LTP in hippocampal DG in anesthetized rats via NMDAR activation mediated by CaMKII, ERK and CREB signaling pathway. PMID:22286914

  6. Coherence between Rat Sensorimotor System and Hippocampus Is Enhanced during Tactile Discrimination.

    PubMed

    Grion, Natalia; Akrami, Athena; Zuo, Yangfang; Stella, Federico; Diamond, Mathew E

    2016-02-01

    Rhythms with time scales of multiple cycles per second permeate the mammalian brain, yet neuroscientists are not certain of their functional roles. One leading idea is that coherent oscillation between two brain regions facilitates the exchange of information between them. In rats, the hippocampus and the vibrissal sensorimotor system both are characterized by rhythmic oscillation in the theta range, 5-12 Hz. Previous work has been divided as to whether the two rhythms are independent or coherent. To resolve this question, we acquired three measures from rats--whisker motion, hippocampal local field potential (LFP), and barrel cortex unit firing--during a whisker-mediated texture discrimination task and during control conditions (not engaged in a whisker-mediated memory task). Compared to control conditions, the theta band of hippocampal LFP showed a marked increase in power as the rats approached and then palpated the texture. Phase synchronization between whisking and hippocampal LFP increased by almost 50% during approach and texture palpation. In addition, a greater proportion of barrel cortex neurons showed firing that was phase-locked to hippocampal theta while rats were engaged in the discrimination task. Consistent with a behavioral consequence of phase synchronization, the rats identified the texture more rapidly and with lower error likelihood on trials in which there was an increase in theta-whisking coherence at the moment of texture palpation. These results suggest that coherence between the whisking rhythm, barrel cortex firing, and hippocampal LFP is augmented selectively during epochs in which the rat collects sensory information and that such coherence enhances the efficiency of integration of stimulus information into memory and decision-making centers. PMID:26890254

  7. In vivo and in vitro studies on the regulation of cholinergic neurotransmission in striatum, hippocampus and cortex of aged rats.

    PubMed

    Consolo, S; Wang, J X; Fiorentini, F; Vezzani, A; Ladinsky, H

    1986-05-28

    Young (3 months) and senescent (23 months) rats were challenged with oxotremorine both in vivo, to determine its effects on acetylcholine content in hemispheric regions, and in vitro, to assess its action on K+-evoked release of ACh from brain synaptosomes. The drug failed to inhibit KCl-induced [3H]ACh release from the P2 fraction of striatal and hippocampal homogenates of the senescent animals, whereas it was less efficient in increasing striatal ACh content. In contrast, oxotremorine was still able to stimulate an increase in ACh in the hippocampus and cerebral cortex of the aged rats to the same extent as it did in the young ones. The [3H]ACh output from striatal synaptosomes was lower in old rats with respect to young ones at low KCl depolarizing concentrations but was equal in the two groups at a high depolarizing concentration. In the hippocampus of the senescent rats, the release was significantly lower at each concentration of KCl used, resulting in a parallel downward-shift in the concentration-release plot. We also measured cholinergic muscarinic receptor binding in rat hemispheric regions using the radioligand [3H]dexetimide, a classical non-selective muscarinic receptor antagonist. It was found, in conformity with some of the literature, that receptor binding was decreased by about 32% in striatum of aged female rats as compared to younger rats. Changes were not observed in cortex and hippocampus. Analysis of the binding data indicated that the observed decrease in specific ligand binding was due to a decrease in the number of binding sites without a change in affinity. The results favor, once again, the cholinergic hypothesis for geriatric dysfunction.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3013365

  8. The representation of space and the hippocampus in rats, robots and humans.

    PubMed

    Burgess, N; Donnett, J G; O'Keefe, J

    1998-01-01

    Experimental evidence suggests that the hippocampus represents locations within an allocentric representation of space. The environmental inputs that underlie the rat's representation of its own location within an environment (in the firing of place cells) are the distances to walls, and different walls are identified by their allocentric direction from the rat. We propose that the locations of goals in an environment is stored downstream of the place cells, in the subiculum. In addition to firing rate coding, place cells may use phase coding relative to the theta rhythm of the EEG. In some circumstances path integration may be used, in addition to environmental information, as an input to the hippocampal system. A detailed computational model of the hippocampus successfully guides the navigation of a mobile robot. The model's behaviour is compared to electrophysiological and behavioural data in rats, and implications for the role of the hippocampus in primates are explored. PMID:9755509

  9. Variations of ATP and its metabolites in the hippocampus of rats subjected to pilocarpine-induced temporal lobe epilepsy.

    PubMed

    Doná, Flávia; Conceição, Isaltino Marcelo; Ulrich, Henning; Ribeiro, Eliane Beraldi; Freitas, Thalma Ariani; Nencioni, Ana Leonor Abrahao; da Silva Fernandes, Maria José

    2016-06-01

    Although purinergic receptor activity has lately been associated with epilepsy, little is known about the exact role of purines in epileptogenesis. We have used a rat model of temporal lobe epilepsy induced by pilocarpine to study the dynamics of purine metabolism in the hippocampus during different times of status epilepticus (SE) and the chronic phase. Concentrations of adenosine 5'-triphosphate (ATP), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine in normal and epileptic rat hippocampus were determined by microdialysis in combination with high-performance liquid chromatography (HPLC). Extracellular ATP concentrations did not vary along 4 h of SE onset. However, AMP concentration was elevated during the second hour, whereas ADP and adenosine concentrations augmented during the third and fourth hour following SE. During chronic phase, extracellular ATP, ADP, AMP, and adenosine concentrations decreased, although these levels again increased significantly during spontaneous seizures. These results suggest that the increased turnover of ATP during the acute period is a compensatory mechanism able to reduce the excitatory role of ATP. Increased adenosine levels following 4 h of SE may contribute to block seizures. On the other hand, the reduction of purine levels in the hippocampus of chronic epileptic rats may result from metabolic changes and be part of the mechanisms involved in the onset of spontaneous seizures. This work provides further insights into purinergic signaling during establishment and chronic phase of epilepsy. PMID:26939579

  10. Basic properties of somatosensory-evoked responses in the dorsal hippocampus of the rat.

    PubMed

    Bellistri, Elisa; Aguilar, Juan; Brotons-Mas, Jorge R; Foffani, Guglielmo; de la Prida, Liset Menendez

    2013-05-15

    The hippocampus is a pivotal structure for episodic memory function. This ability relies on the possibility of integrating different features of sensory stimuli with the spatio-temporal context in which they occur. While recent studies now suggest that somatosensory information is already processed by the hippocampus, the basic mechanisms still remain unexplored. Here, we used electrical stimulation of the paws, the whisker pad or the medial lemniscus to probe the somatosensory pathway to the hippocampus in the anaesthetized rat, and multisite electrodes, in combination with tetrode and intracellular recordings, to look at the properties of somatosensory hippocampal responses. We found that peripheral and lemniscal stimulation elicited small local field potential responses in the dorsal hippocampus about 35-40 ms post-stimulus. Current source density analysis established the local nature of these responses, revealing associated synaptic sinks that were consistently confined to the molecular layer (ML) of the dentate gyrus (DG), with less regular activation of the CA1 stratum lacunosum moleculare (SLM). A delayed (40-45 ms), potentially active, current source that outlasted the SLM sink was present in about 50% cases around the CA1 pyramidal cell layer. Somatosensory stimulation resulted in multi-unit firing increases in the majority of DG responses (79%), whereas multi-unit firing suppression was observed in the majority of CA1 responses (62%). Tetrode and intracellular recordings of individual cells confirmed different firing modulation in the DG and the CA1 region, and verified the active nature of both the early ML sink and delayed somatic CA1 source. Hippocampal responses to somatosensory stimuli were dependent on fluctuations in the strength and composition of synaptic inputs due to changes of the ongoing local (hippocampal) and distant (cortical) state. We conclude that somatosensory signals reach the hippocampus mainly from layer II entorhinal cortex to

  11. Proteomic analysis of the dorsal and ventral hippocampus of rats maintained on a high fat and refined sugar diet.

    PubMed

    Francis, Heather M; Mirzaei, Mehdi; Pardey, Margery C; Haynes, Paul A; Cornish, Jennifer L

    2013-10-01

    The typical Western diet, rich in high saturated fat and refined sugar (HFS), has been shown to increase cognitive decline with aging and Alzheimer's disease, and to affect cognitive functions that are dependent on the hippocampus, including memory processes and reversal learning. To investigate neurophysiological changes underlying these impairments, we employed a proteomic approach to identify differentially expressed proteins in the rat dorsal and ventral hippocampus following maintenance on an HFS diet. Rats maintained on the HFS diet for 8 weeks were impaired on a novel object recognition task that assesses memory and on a Morris Water Maze task assessing reversal learning. Quantitative label-free shotgun proteomic analysis was conducted on biological triplicates for each group. For the dorsal hippocampus, 59 proteins were upregulated and 36 downregulated in the HFS group compared to controls. Pathway ana-lysis revealed changes to proteins involved in molecular transport and cellular and molecular signaling, and changes to signaling pathways including calcium signaling, citrate cycle, and oxidative phosphorylation. For the ventral hippocampus, 25 proteins were upregulated and 27 downregulated in HFS fed rats. Differentially expressed proteins were involved in cell-to-cell signaling and interaction, and cellular and molecular function. Changes to signaling pathways included protein ubiquitination, ubiquinone biosynthesis, oxidative phosphorylation, and mitochondrial dysfunction. This is the first shotgun proteomics study to examine protein changes in the hippocampus following long-term consumption of a HFS diet, identifying changes to a large number of proteins including those involved in synaptic plasticity and energy metabolism. All MS data have been deposited in the ProteomeXchange with identifier PXD000028. PMID:23963966

  12. Involvement of pregnane xenobiotic receptor in mating-induced allopregnanolone formation in the midbrain and hippocampus and brain-derived neurotrophic factor in the hippocampus among female rats

    PubMed Central

    Frye, C.A.; Koonce, C.J.; Walf, A.A.

    2014-01-01

    Rationale Given that the pregnane neurosteroid, 5α-pregnan-3α-ol-20-one (3α,5α-THP), is increased following behavioral challenges (e.g. mating), and that there is behavioral-induced biosynthesis of 3α,5α-THP in midbrain and mesocorticolimbic structures, 3α,5α-THP likely has a role in homeostasis and motivated, reproduction and reproduction-related behaviors (e.g. affect, affiliation). The role of pregnane xenobiotic receptor (PXR), involved in cholesterol metabolism, for these effects is of continued interest. Objectives We hypothesized that there would be differences in brain levels of 3α,5α-THP following varied behavioral experiences, an effect abrogated by knockdown of PXR in the midbrain. Methods Proestrous rats were infused with PXR antisense oligonucleotides (AS-ODNs) or vehicle to the VTA before different behavioral manipulations and assessments. Endpoints were expression levels of PXR in the midbrain, 3α,5α-THP and ovarian steroids (estradiol, progesterone, dihydroprogesterone) in the midbrain, striatum, hippocampus, hypothalamus, prefrontal cortex and plasma. Results Across experiments, knocking down PXR reduced PXR expression and 3α,5α-THP levels in the midbrain and hippocampus. There were differences in terms of the behavioral manipulations, such that paced mating had the most robust effects to increase 3α,5α-THP levels and reduce open field exploration and social interaction. An additional question that was addressed is whether brain derived neurotrophic factor (BDNF) is a downstream factor for regulating effects of behavioral-induced 3α,5α-THP biosynthesis. Rats infused with PXR AS-ODNs had lower levels of BDNF in the hippocampus. Conclusion Thus, PXR may be a regulator of mating-induced 3α,5α-THP formation and behavioral changes and neural plasticity, such as BDNF. PMID:24781516

  13. Medium-intensity acute exhaustive exercise induces neural cell apoptosis in the rat hippocampus.

    PubMed

    Li, Shanni; Liu, Jin; Yan, Hengmei

    2013-01-15

    The present study assessed the influence of medium-intensity (treadmill at a speed of 19.3 m/min until exhaustion) and high-intensity (treadmill at a speed of 26.8 m/min until exhaustion) acute exhaustive exercise on rat hippocampal neural cell apoptosis. TUNEL staining showed significantly increased neural cell apoptosis in the hippocampal CA1 region of rats after medium- and high-intensity acute exhaustive exercise, particularly the medium-intensity acute exhaustive exercise, when compared with the control. Immunohistochemistry showed significantly increased expression of the antiapoptotic protein Bcl-2 and the proapoptotic protein Bax in the hippocampal CA1 region of rats after medium- and high-intensity acute exhaustive exercise. Additionally, the ratio of Bax to Bcl-2 increased in both exercise groups. In particular, the medium-intensity acute exhaustive exercise group had significantly higher Bax and Bcl-2 protein expression and a higher Bax/Bcl-2 ratio. These findings indicate that acute exhaustive exercise of different intensities can induce neural cell apoptosis in the hippocampus, and that medium-intensity acute exhaustive exercise results in greater damage when compared with high-intensity exercise. PMID:25206482

  14. Acetylcholine release in the hippocampus during the operant conditioned reflex and the footshock stimulus in rats.

    PubMed

    Dong, Yu; Mao, Jianjun; Shangguan, Dihua; Zhao, Rui; Liu, Guoquan

    2004-10-14

    The activity of the septo-hippocampal cholinergic pathway was investigated by measuring changes in the extracellular acetylcholine (ACh) levels in the hippocampus, by means of microdialysis, during the operant conditioned reflex and the repeated footshock stimulus. Microdialysis samplings were conducted in a Skinner box where lights were delivered as conditioned stimuli (CS) paired with footshocks as unconditioned stimuli (US). Two groups of rats were used. Extracellular ACh and choline (Ch) in samples collected at 6min intervals were assessed by high-performance liquid chromatography with electrochemical detection. The elevation of hippocampus ACh was observed in the two experimental groups. The increase in ACh during aversive stimulus (footshock) was significantly larger and was probably related to the number of footshocks. There might be moderate increase in the hippocampal ACh release during the retrieval of information. The concentration of choline showed no significant fluctuation in the two groups during the whole process. This experiment explored in more detail hippocampal cholinergic activity in relation to the two different procedures. PMID:15450680

  15. Immunohistochemical study on the distribution of TRPC channels in the rat hippocampus.

    PubMed

    Chung, Yoon Hee; Sun Ahn, Hyang; Kim, Daejin; Hoon Shin, Dong; Su Kim, Sung; Yong Kim, Kyung; Bok Lee, Won; Ik Cha, Choong

    2006-04-26

    In the present study, we performed immunohistochemistry using antibodies directed against TRPCs to study the localizations of these channels in rat hippocampus. The pyramidal cell bodies of CA1-3 areas and the granule cell bodies of the dentate gyrus were immunoreactive for TRPC1, TRPC3, TRPC4 and TRPC5. On the other hand, TRPC6 exhibited the cloud-like neuropil staining only in the molecular layer of the dentate gyrus. As a whole, the present study has clearly shown the localization of TRPCs in rat hippocampus and may provide useful data for the future investigations on the structural and functional properties of TRPCs. PMID:16580647

  16. Noninvasive Focused Ultrasound Stimulation Can Modulate Phase-Amplitude Coupling between Neuronal Oscillations in the Rat Hippocampus

    PubMed Central

    Yuan, Yi; Yan, Jiaqing; Ma, Zhitao; Li, Xiaoli

    2016-01-01

    Noninvasive focused ultrasound stimulation (FUS) can be used to modulate neural activity with high spatial resolution. Phase-amplitude coupling (PAC) between neuronal oscillations is tightly associated with cognitive processes, including learning, attention, and memory. In this study, we investigated the effect of FUS on PAC between neuronal oscillations and established the relationship between the PAC index and ultrasonic intensity. The rat hippocampus was stimulated using focused ultrasound at different spatial-average pulse-average ultrasonic intensities (3.9, 9.6, and 19.2 W/cm2). The local field potentials (LFPs) in the rat hippocampus were recorded before and after FUS. Then, we analyzed PAC between neuronal oscillations using a PAC calculation algorithm. Our results showed that FUS significantly modulated PAC between the theta (4–8 Hz) and gamma (30–80 Hz) bands and between the alpha (9–13 Hz) and ripple (81–200 Hz) bands in the rat hippocampus, and PAC increased with incremental increases in ultrasonic intensity. PMID:27499733

  17. Alteration of Behavioral Changes and Hippocampus Galanin Expression in Chronic Unpredictable Mild Stress-Induced Depression Rats and Effect of Electroacupuncture Treatment

    PubMed Central

    Mo, Yuping; Yao, Haijiang; Song, Hongtao; Wang, Xin; Chen, Wanshun; Abulizi, Jiawula; Xu, Anping; Tang, Yinshan; Han, Xiangbo; Li, Zhigang

    2014-01-01

    To explore new noninvasive treatment options for depression, this study investigated the effects of electric acupuncture (EA) for depression rat models. Depression in rats was induced by unpredictable chronic mild stress (UCMS) combined with isolation for 21 days. Eighteen male Sprague-Dawley rats were randomly assigned into three groups: control, model, and EA groups. Rats were treated by EA once daily for 21 days. The results showed that body weight and sucrose consumption were significantly increased in EA group than in the model group. The crossing numbers and rearing numbers in the open field test significantly decreased in the model group but not in the EA group. And EA treatments upregulated levels of hippocampus galanin (Gal) in UCMS rats back to relative normal levels. The present study suggested that EA had antidepressant effects on UCMS model rats. The potential antidepressant effect may be related to upregulating Gal expression in hippocampus. PMID:25530777

  18. Modulation of ( sup 3 H)-glutamate binding by serotonin in the rat hippocampus: An autoradiographic study

    SciTech Connect

    Mennini, T.; Miari, A. )

    1991-01-01

    Serotonin (5-HT) added in vitro increased ({sup 3}H)-glutamate specific binding in the rat hippocampus, reaching statistical significance in layers rich in N-Methyl-D-Aspartate sensitive glutamate receptors. This effect was explained by a significant increase in the apparent affinity of ({sup 3}H)-glutamate when 5-HT is added in vitro. Two days after lesion of serotonergic afferents to the hippocampus with 5,7- Dihydroxytryptamine ({sup 3}H)-glutamate binding was significantly decreased in the CA3 region and stratum lacunosum moleculare of the hippocampus, this reduction being reversed by in vitro addition of 10 {mu}M 5-HT. The decrease observed is due to a significant reduction of quisqualate-insensitive (radiatum CA3) and kainate receptors (strata oriens, radiatum, pyramidal of CA3). Five days after lesion ({sup 3}H)-glutamate binding increased significantly in the CA3 region of the hippocampus but was not different from sham animals in the other hippocampal layers. Two weeks after lesion ({sup 3}H)-glutamate binding to quisqualate-insensitive receptors was increased in all the hippocampal layers, while kainate and quisqualate-sensitive receptors were not affected. These data are consistent with the possibility that 5-HT is a direct positive modulator of glutamate receptor subtypes.

  19. Systemic Hypoxia and the Depression of Synaptic Transmission in Rat Hippocampus after Carotid Artery Occlusion

    PubMed Central

    Fowler, J C; Gervitz, L M; Hamilton, M E; Walker, J A

    2003-01-01

    The relationship between step reductions in inspired oxygen and the amplitude of evoked field excitatory postsynaptic potentials (fEPSPs) recorded from hippocampal CA1 neurons was examined in anaesthetized rats with a unilateral common carotid artery occlusion. The amplitudes of fEPSPs recorded from the hippocampus ipsilateral to the occlusion were significantly more depressed with hypoxia than were the fEPSPs recorded from the contralateral hippocampus. The adenosine A1-selective antagonist, 8-cyclopentyl-1,3-dimethylxanthine (8-CPT), blunted the hypoxic depression of the fEPSP. Tissue partial pressure of oxygen (Ptiss,O2) was measured in the ipsilateral and contralateral hippocampus using glass Clark-style microelectrodes. Ptiss,O2 fell to similar levels as a function of inspired oxygen in the ipsilateral and contralateral hippocampus, and in the ipsilateral hippocampus after administration of 8-CPT. Hippocampal blood flow (HBF) was measured using laser Doppler flowmetry. A decline in HBF was associated with systemic hypoxia in both hippocampi. HBF, as a function of inspired oxygen, fell significantly more in the ipsilateral than in the contralateral hippocampus. We conclude that endogenous adenosine acting at the neuronal A1 receptor plays a major role in the depression of synaptic transmission during hypoxic ischaemia. The greater susceptibility of the fEPSP in the ipsilateral hippocampus to systemic hypoxia cannot be explained entirely by differences in Ptiss,O2 or HBF between the two hemispheres. PMID:12807994

  20. Coherence between Rat Sensorimotor System and Hippocampus Is Enhanced during Tactile Discrimination

    PubMed Central

    Zuo, Yangfang; Stella, Federico; Diamond, Mathew E.

    2016-01-01

    Rhythms with time scales of multiple cycles per second permeate the mammalian brain, yet neuroscientists are not certain of their functional roles. One leading idea is that coherent oscillation between two brain regions facilitates the exchange of information between them. In rats, the hippocampus and the vibrissal sensorimotor system both are characterized by rhythmic oscillation in the theta range, 5–12 Hz. Previous work has been divided as to whether the two rhythms are independent or coherent. To resolve this question, we acquired three measures from rats—whisker motion, hippocampal local field potential (LFP), and barrel cortex unit firing—during a whisker-mediated texture discrimination task and during control conditions (not engaged in a whisker-mediated memory task). Compared to control conditions, the theta band of hippocampal LFP showed a marked increase in power as the rats approached and then palpated the texture. Phase synchronization between whisking and hippocampal LFP increased by almost 50% during approach and texture palpation. In addition, a greater proportion of barrel cortex neurons showed firing that was phase-locked to hippocampal theta while rats were engaged in the discrimination task. Consistent with a behavioral consequence of phase synchronization, the rats identified the texture more rapidly and with lower error likelihood on trials in which there was an increase in theta-whisking coherence at the moment of texture palpation. These results suggest that coherence between the whisking rhythm, barrel cortex firing, and hippocampal LFP is augmented selectively during epochs in which the rat collects sensory information and that such coherence enhances the efficiency of integration of stimulus information into memory and decision-making centers. PMID:26890254

  1. Postnatal treadmill exercise alleviates short-term memory impairment by enhancing cell proliferation and suppressing apoptosis in the hippocampus of rat pups born to diabetic rats

    PubMed Central

    Kim, Young Hoon; Sung, Yun-Hee; Lee, Hee-Hyuk; Ko, Il-Gyu; Kim, Sung-Eun; Shin, Mal-Soon; Kim, Bo-Kyun

    2014-01-01

    During pregnancy, diabetes mellitus exerts detrimental effects on the development of the fetus, especially the central nervous system. In the current study, we evaluated the effects of postnatal treadmill exercise on short-term memory in relation with cell proliferation and apoptosis in the hippocampus of rat pups born to streptozotocin (STZ)-induced diabetic maternal rats. Adult female rats were mated with male rats for 24 h. Two weeks after mating, the pregnant female rats were divided into two groups: control group and STZ injection group. The pregnant rats in the STZ injection group were administered 40 mg/kg of STZ intraperitoneally. After birth, the rat pups were divided into the following four groups: control group, control with postnatal exercise group, maternal STZ-injection group, and maternal STZ-injection with postnatal exercise group. The rat pups in the postnatal exercise groups were made to run on a treadmill for 30 min once a day, 5 times per week for 2 weeks beginning 4 weeks after birth. The rat pups born to diabetic rats were shown to have short-term memory impairment with suppressed cell proliferation and increased apoptosis in the hippocampal dentate gyrus. Postnatal treadmill exercise alleviated short-term memory impairment by increased cell proliferation and suppressed apoptosis in the rat pups born to diabetic rats. These findings indicate that postnatal treadmill exercise may be used as a valuable strategy to ameliorate neurodevelopmental problems in children born to diabetics. PMID:25210695

  2. Maternal caffeine exposure alters neuromotor development and hippocampus acetylcholinesterase activity in rat offspring.

    PubMed

    Souza, Ana Claudia; Souza, Andressa; Medeiros, Liciane Fernandes; De Oliveira, Carla; Scarabelot, Vanessa Leal; Da Silva, Rosane Souza; Bogo, Mauricio Reis; Capiotti, Katiucia Marques; Kist, Luiza Wilges; Bonan, Carla D; Caumo, Wolnei; Torres, Iraci L S

    2015-01-21

    The objective of this study was to evaluate the effects of maternal caffeine intake on the neuromotor development of rat offspring and on acetylcholine degradation and acetylcholinesterase (AChE) expression in the hippocampus of 14-day-old infant rats. Rat dams were treated with caffeine (0.3g/L) throughout gestation and lactation until the pups were 14 days old. The pups were divided into three groups: (1) control, (2) caffeine, and (3) washout caffeine. The washout group received a caffeine solution until the seventh postnatal day (P7). Righting reflex (RR) and negative geotaxis (NG) were assessed to evaluate postural parameters as an index of neuromotor reflexes. An open-field (OF) test was conducted to assess locomotor and exploratory activities as well as anxiety-like behaviors. Caffeine treatment increased both RR and NG latency times. In the OF test, the caffeine group had fewer outer crossings and reduced locomotion compared to control, while the washout group showed increased inner crossings in relation to the other groups and fewer rearings only in comparison to the control group. We found decreased AChE activity in the caffeine group compared to the other groups, with no alteration in AChE transcriptional regulation. Chronic maternal exposure to caffeine promotes important alterations in neuromotor development. These results highlight the ability of maternal caffeine intake to interfere with cholinergic neurotransmission during brain development. PMID:25451122

  3. Aberrant NMDA-dependent LTD after perinatal ethanol exposure in young adult rat hippocampus.

    PubMed

    Kervern, Myriam; Silvestre de Ferron, Benoît; Alaux-Cantin, Stéphanie; Fedorenko, Olena; Antol, Johann; Naassila, Mickael; Pierrefiche, Olivier

    2015-08-01

    Irreversible cognitive deficits induced by ethanol exposure during fetal life have been ascribed to a lower NMDA-dependent synaptic long-term potentiation (LTP) in the hippocampus. Whether NMDA-dependent long-term depression (LTD) may also play a critical role in those deficits remains unknown. Here, we show that in vitro LTD induced with paired-pulse low frequency stimulation is enhanced in CA1 hippocampus field of young adult rats exposed to ethanol during brain development. Furthermore, single pulse low frequency stimulation, ineffective at this age (LFS600), induced LTD after ethanol exposure accompanied with a stronger response than controls during LFS600, thus revealing an aberrant form of activity-dependent plasticity at this age. Blocking NMDA receptor or GluN2B containing NMDA receptor prevented both the stronger response during LFS600 and LTD whereas Zinc, an antagonist of GluN2A containing NMDA receptor, was ineffective on both responses. In addition, LFS600-induced LTD was revealed in controls only with a reduced-Mg(2+) medium. In whole dissected hippocampus CA1 field, perinatal ethanol exposure increased GluN2B subunit expression in the synaptic compartment whereas GluN2A was unaltered. Using pharmacological tools, we suggest that LFS600 LTD was of synaptic origin. Altogether, we describe a new mechanism by which ethanol exposure during fetal life induces a long-term alteration of synaptic plasticity involving NMDA receptors, leading to an aberrant LTD. We suggest this effect of ethanol may reflect a delayed maturation of the synapse and that aberrant LTD may also participates to long-lasting cognitive deficits in fetal alcohol spectrum disorder. PMID:25581546

  4. Tetrahydro-beta-carboline micro-injected into the hippocampus induces an anxiety-like state in the rat.

    PubMed

    Huttunen, P; Myers, R D

    1986-06-01

    Guide cannulae for bilateral micro-injection were implanted stereotaxically in the rat to rest just dorsal to the hippocampus. Following recovery, 1,2,3,4-tetrahydro-beta-carboline (THBC) hydrochloride in a concentration of 10 or 50 ng was infused bilaterally into the animal's hippocampus in a volume of 3.0 microliter. In the control condition, the artificial cerebrospinal fluid (CSF) vehicle was micro-injected into the hippocampus and a sham injection was made prior to the CSF or THBC infusion. The behavioral response of the rat was examined subsequently in an open-field chamber, in terms of the number of grid squares crossed, duration of grooming time and instances of freezing-immobilization during the test interval of 7.5 min. Other behaviors recorded included the appearance of tail rigidity and the number of fecal boluses excreted. The intra-hippocampal infusion of the 10 ng dose of beta-carboline reduced the motor activity of the rat whereas the higher dose of THBC increased the duration of the freezing-immobilization. THBC failed to alter significantly the grooming activity of rats or their rate of defecation. Following repeated micro-injections of 50 ng of THBC, the duration of freezing-immobilization gradually decreased, but the response itself remained essentially intact. These results suggest that the well-known anxiogenic action of certain of the beta-carboline class of aldehyde adducts may be mediated in part by neurons in the hippocampus, or the constituent pathways of this limbic system structure, or both. PMID:3016763

  5. Correlation between oxytocin neuronal sensitivity and oxytocin receptor binding: An electrophysiological and autoradiographical study comparing rat and guinea pig hippocampus

    SciTech Connect

    Raggenbass, M.; Tribollet, E.; Dubois-Dauphin, M.; Dreifuss, J.J. )

    1989-01-01

    In transverse hippocampal slices from rat and guinea pig brains, the authors obtained unitary extracellular recordings from nonpyramidal neurones located in or near the stratum pyramidale in the CA1 field and in the transition region between the CA1 and the subiculum. In rats, these neurones responded to oxytocin at 50-1,000 nM by a reversible increase in firing rate. The oxytocin-induced excitation was suppressed by a synthetic structural analogue that acts as a potent, selective antioxytocic on peripheral receptors. Nonpyramidal neurones were also excited by carbachol at 0.5-10 {mu}M. The effect of this compound was postsynaptic and was blocked by the muscarinic antagonist atropine. In guinea pigs, by contrast, nonpyramidal neurones were unaffected by oxytocin, although they were excited by carbachol. Light microscopic autoradiography, carried out using a radioiodinated selective antioxytocic as a ligand, revealed labeling in the subiculum and in the CA1 area of the hippocampus of rats, whereas no oxytocin-binding sites were detected in the hippocampus of guinea pigs. The results indicate (i) that a hippocampal action of oxytocin is species-dependent and (ii) that a positive correlation exists between neuronal responsiveness to oxytocin and the presence in the hippocampus of high-affinity binding sites for this peptide.

  6. Moderate exercise training and chronic caloric restriction modulate redox status in rat hippocampus.

    PubMed

    Santin, Katiane; da Rocha, Ricardo Fagundes; Cechetti, Fernanda; Quincozes-Santos, André; de Souza, Daniela Fraga; Nardin, Patrícia; Rodrigues, Letícia; Leite, Marina Concli; Moreira, José Cláudio Fonseca; Salbego, Christianne Gazzana; Gonçalves, Carlos Alberto

    2011-11-01

    Physical activity has been related to antioxidant adaptations, which is associated with health benefits, including those to the nervous system. Additionally, available data suggest exercise and a caloric restriction regimen may reduce both the incidence and severity of neurological disorders. Therefore, our aim was to compare hippocampal redox status and glial parameters among sedentary, trained, caloric-restricted sedentary and caloric-restricted trained rats. Forty male adult rats were divided into 4 groups: ad libitum-fed sedentary (AS), ad libitum-fed exercise training (AE), calorie-restricted sedentary (RS) and calorie-restricted exercise training (RE). The caloric restriction (decrease of 30% in food intake) and exercise training (moderate in a treadmill) were carried out for 3 months. Thereafter hippocampus was surgically removed, and then redox and glial parameters were assessed. Increases in reduced glutathione (GSH) levels and total antioxidant reactivity (TAR) were observed in AE, RS and RE. The nitrite/nitrate levels decreased only in RE. We found a decrease in carbonyl content in AE, RS and RE, while no modifications were detected in thiobarbituric acid reactive substances (TBARS). Total reactive antioxidant potential (TRAP), superoxide dismutase (SOD) activity, S100B and glial fibrilary acid protein (GFAP) content did not change, but caloric restriction was able to increase glutamine synthetase (GS) activity in RS and glutamate uptake in RS and RE. Exercise training, caloric restriction and both combined can decrease oxidative damage in the hippocampus, possibly involving modulation of astroglial function, and could be used as a strategy for the prevention of neurodegenerative diseases. PMID:21974860

  7. Bisphenol-A rapidly enhanced passive avoidance memory and phosphorylation of NMDA receptor subunits in hippocampus of young rats

    SciTech Connect

    Xu Xiaohong Li Tao; Luo Qingqing; Hong Xing; Xie Lingdan; Tian Dong

    2011-09-01

    Bisphenol-A (BPA), an endocrine disruptor, is found to influence development of brain and behaviors in rodents. The previous study indicated that perinatal exposure to BPA impaired learning-memory and inhibited N-methyl-D-aspartate receptor (NMDAR) subunits expressions in hippocampus during the postnatal development in rats; and in cultured hippocampal neurons, BPA rapidly promotes dynamic changes in dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDAR subunit NR2B. In the present study, we examined the rapid effect of BPA on passive avoidance memory and NMDAR in the developing hippocampus of Sprague-Dawley rats at the age of postnatal day 18. The results showed that BPA or estradiol benzoate (EB) rapidly extended the latency to step down from the platform 1 h after footshock and increased the phosphorylation levels of NR1, NR2B, and mitogen-activated extracellular signal-regulated kinase (ERK) in hippocampus within 1 h. While 24 h after BPA or EB treatment, the improved memory and the increased phosphorylation levels of NR1, NR2B, ERK disappeared. Furthermore, pre-treatment with an estrogen receptors (ERs) antagonist, ICI182,780, or an ERK-activating kinase inhibitor, U0126, significantly attenuated EB- or BPA-induced phosphorylations of NR1, NR2B, and ERK within 1 h. These data suggest that BPA rapidly enhanced short-term passive avoidance memory in the developing rats. A non-genomic effect via ERs may mediate the modulation of the phosphorylation of NMDAR subunits NR1 and NR2B through ERK signaling pathway. - Highlights: > BPA rapidly extended the latency to step down from platform 1 h after footshock. > BPA rapidly increased pNR1, pNR2B, and pERK in hippocampus within 1 h. > ERs antagonist or MEK inhibitor attenuated BPA-induced pNR1, pNR2B, and pERK.

  8. Increased dentate neurogenesis after grafting of glial restricted progenitors or neural stem cells in the aging hippocampus.

    PubMed

    Hattiangady, Bharathi; Shuai, Bing; Cai, Jingli; Coksaygan, Turhan; Rao, Mahendra S; Shetty, Ashok K

    2007-08-01

    Neurogenesis in the dentate gyrus (DG) declines severely by middle age, potentially because of age-related changes in the DG microenvironment. We hypothesize that providing fresh glial restricted progenitors (GRPs) or neural stem cells (NSCs) to the aging hippocampus via grafting enriches the DG microenvironment and thereby stimulates the production of new granule cells from endogenous NSCs. The GRPs isolated from the spinal cords of embryonic day 13.5 transgenic F344 rats expressing human alkaline phosphatase gene and NSCs isolated from embryonic day 9 caudal neural tubes of Sox-2:EGFP transgenic mice were expanded in vitro and grafted into the hippocampi of middle-aged (12 months old) F344 rats. Both types of grafts survived well, and grafted NSCs in addition migrated to all layers of the hippocampus. Phenotypic characterization revealed that both GRPs and NSCs differentiated predominantly into astrocytes and oligodendrocytic progenitors. Neuronal differentiation of graft-derived cells was mostly absent except in the dentate subgranular zone (SGZ), where some of the migrated NSCs but not GRPs differentiated into neurons. Analyses of the numbers of newly born neurons in the DG using 5'-bromodeoxyuridine and/or doublecortin assays, however, demonstrated considerably increased dentate neurogenesis in animals receiving grafts of GRPs or NSCs in comparison with both naïve controls and animals receiving sham-grafting surgery. Thus, both GRPs and NSCs survive well, differentiate predominantly into glia, and stimulate the endogenous NSCs in the SGZ to produce more new dentate granule cells following grafting into the aging hippocampus. Grafting of GRPs or NSCs therefore provides an attractive approach for improving neurogenesis in the aging hippocampus. Disclosure of potential conflicts of interest is found at the end of this article. PMID:17510219

  9. Hippocampus, Perirhinal Cortex, and Complex Visual Discriminations in Rats and Humans

    ERIC Educational Resources Information Center

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.; Squire, Larry R.; Clark, Robert E.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with…

  10. Neuroprotective effects of lactation against kainic acid treatment in the dorsal hippocampus of the rat.

    PubMed

    Vanoye-Carlo, América; Morales, Teresa; Ramos, Eugenia; Mendoza-Rodríguez, Adriana; Cerbón, Marco

    2008-01-01

    Marked hippocampal changes in response to excitatory amino acid agonists occur during pregnancy (e.g. decreased frequency in spontaneous recurrent seizures in rats with KA lesions of the hippocampus) and lactation (e.g. reduced c-Fos expression in response to N-methyl-d,l-aspartic acid but not to kainic acid). In this study, the possibility that lactation protects against the excitotoxic damage induced by KA in hippocampal areas was explored. We compared cell damage induced 24 h after a single systemic administration of KA (5 or 7.5 mg/kg bw) in regions CA1, CA3, and CA4 of the dorsal hippocampus of rats in the final week of lactation to that in diestrus phase. To determine cellular damage in a rostro-caudal segment of the dorsal hippocampus, we used NISSL and Fluorojade staining, immunohistochemistry for active caspase-3 and TUNEL, and we observed that the KA treatment provoked a significant loss of neurons in diestrus rats, principally in the pyramidal cells of CA1 region. In contrast, in lactating rats, pyramidal neurons from CA1, CA3, and CA4 in the dorsal hippocampus were significantly protected against KA-induced neuronal damage, indicating that lactation may be a natural model of neuroprotection. PMID:17963758

  11. Evidence for Ligand-Independent Activation of Hippocampal Estrogen Receptor-α by IGF-1 in Hippocampus of Ovariectomized Rats.

    PubMed

    Grissom, Elin M; Daniel, Jill M

    2016-08-01

    In the absence of ovarian estrogens, increased levels of estrogen receptor (ER)α in the hippocampus are associated with improvements in cognition. In vitro evidence indicates that under conditions of low estrogen, growth factors, including Insulin-Like Growth Factor 1 (IGF-1), can activate ERα and regulate ERα-mediated transcription through mechanisms that likely involve modification of phosphorylation sites on the receptor. The goal of the current work was to investigate a role for IGF-1 in ligand-independent activation of ERα in the hippocampus of female rats. Ovariectomized rats received a single intracerebroventricular infusion of IGF-1 and hippocampi were collected 1 or 24 hours later. After 1 h, IGF-1 increased hippocampal levels of phosphorylated ERα at serine 118 (S118) as revealed by Western blotting. Coimmunoprecipitation revealed that at 1 hour after infusion, IGF-1 increased association between ERα and steroid receptor coactivator 1, a histone acetyltransferase that increases transcriptional activity of phosphorylated ERα. IGF-1 infusion increased levels of the ERα-regulated proteins ERα, choline acetyltransferase, and brain-derived neurotrophic factor in the hippocampus 24 hours after infusion. Results indicate that IGF-1 activates ERα in ligand-independent manner in the hippocampus via phosphorylation at S118 resulting in increased association of ERα with steroid receptor coactivator 1 and elevation of ER-regulated proteins. To our knowledge, these data are the first in vivo evidence of ligand-independent actions of ERα and provide a mechanism by which ERα can impact memory in the absence of ovarian estrogens. PMID:27254005

  12. Postnatal Isoflurane Exposure Induces Cognitive Impairment and Abnormal Histone Acetylation of Glutamatergic Systems in the Hippocampus of Adolescent Rats.

    PubMed

    Liang, Bing; Fang, Jie

    2016-09-01

    Isoflurane can elicit cognitive impairment. However, the pathogenesis in the brain remains inconclusive. The present study investigated the mechanism of glutamate neurotoxicity in adolescent male rats that underwent postnatal isoflurane exposure and the role of sodium butyrate (NaB) in cognitive impairment induced by isoflurane exposure. Seven-day-old rats were exposed to 1.7 % isoflurane for 35 min every day for four consecutive days, and then glutamate neurotoxicity was examined in the hippocampus. Morris water maze analysis showed cognitive impairments in isoflurane-exposed rats. High-performance liquid chromatography found higher hippocampal glutamate concentrations following in vitro and in vivo isoflurane exposure. The percentage of early apoptotic hippocampal neurons was markedly increased after isoflurane exposure. Decreased acetylation and increased HDAC2 activity were observed in the hippocampus of isoflurane-exposed rats and hippocampal neurons. Furthermore, postnatal isoflurane exposure decreased histone acetylation of hippocampal neurons in the promoter regions of GLT-1 and mGLuR1/5, but not mGLuR2/3. Treatment with NaB not only restored the histone acetylation of the GLT-1 and mGLuR1/5 promoter regions and glutamate excitatory neurotoxicity in hippocampal neurons, but also improved cognitive impairment in vivo. Moreover, NaB may be a potential therapeutic drug for cognitive impairment caused by isoflurane exposure. These results suggest that postnatal isoflurane exposure contributes to cognitive impairment via decreasing histone acetylation of glutamatergic systems in the hippocampus of adolescent rats. PMID:27307148

  13. Maternal Dietary Loads of Alpha-Tocopherol Increase Synapse Density and Glial Synaptic Coverage in the Hippocampus of Adult Offspring

    PubMed Central

    Salucci, S.; Ambrogini, P.; Lattanzi, D.; Betti, M.; Gobbi, P.; Galati, C.; Galli, F.; Cuppini, R.; Minelli, A.

    2014-01-01

    An increased intake of the antioxidant α-Tocopherol (vitamin E) is recommended in complicated pregnancies, to prevent free radical damage to mother and fetus. However, the anti-PKC and antimitotic activity of α-Tocopherol raises concerns about its potential effects on brain development. Recently, we found that maternal dietary loads of α-Tocopherol through pregnancy and lactation cause developmental deficit in hippocampal synaptic plasticity in rat offspring. The defect persisted into adulthood, with behavioral alterations in hippocampus-dependent learning. Here, using the same rat model of maternal supplementation, ultrastructural morphometric studies were carried out to provide mechanistic interpretation to such a functional impairment in adult offspring by the occurrence of long-term changes in density and morphological features of hippocampal synapses. Higher density of axo-spinous synapses was found in CA1 stratum radiatum of α-Tocopherol-exposed rats compared to controls, pointing to a reduced synapse pruning. No morphometric changes were found in synaptic ultrastructural features, i.e., perimeter of axon terminals, length of synaptic specializations, extension of bouton-spine contact. Gliasynapse anatomical relationship was also affected. Heavier astrocytic coverage of synapses was observed in Tocopherol-treated offspring, notably surrounding axon terminals; moreover, the percentage of synapses contacted by astrocytic endfeet at bouton-spine interface (tripartite synapses) was increased. These findings indicate that gestational and neonatal exposure to supranutritional Tocopherol intake can result in anatomical changes of offspring hippocampus that last through adulthood. These include a surplus of axo-spinous synapses and an aberrant gliasynapse relationship, which may represent the morphological signature of previously described alterations in synaptic plasticity and hippocampus-dependent learning. PMID:24998923

  14. Changes in aminoacidergic and monoaminergic neurotransmission in the hippocampus and amygdala of rats after ayahuasca ingestion

    PubMed Central

    de Castro-Neto, Eduardo Ferreira; da Cunha, Rafael Henrique; da Silveira, Dartiu Xavier; Yonamine, Mauricio; Gouveia, Telma Luciana Furtado; Cavalheiro, Esper Abrão; Amado, Débora; Naffah-Mazzacoratti, Maria da Graça

    2013-01-01

    AIM: To evaluate changes in neurotransmission induced by a psychoactive beverage ayahuasca in the hippocampus and amygdala of naive rats. METHODS: The level of monoamines, their main metabolites and amino acid neurotransmitters concentrations were quantified using high performance liquid chromatography (HPLC). Four groups of rats were employed: saline-treated and rats receiving 250, 500 and 800 mg/kg of ayahuasca infusion (gavage). Animals were killed 40 min after drug ingestion and the structures stored at -80 °C until HPLC assay. The data from all groups were compared using Analysis of variance and Scheffé as post test and P < 0.05 was accepted as significant. RESULTS: The results showed decreased concentrations of glycine (GLY) (0.13 ± 0.03 vs 0.29 ± 0.07, P < 0.001) and γ-aminobutyric acid (GABA) (1.07 ± 0.14 vs 1.73 ± 0.25, P < 0.001) in the amygdala of rats that received 500 of ayahuasca. Animals that ingested 800 mg/kg of ayahuasca also showed a reduction of GLY level (0.11 ± 0.01 vs 0.29 ± 0.07, P < 0.001) and GABA (0.98 ± 0.06 vs 1.73 ± 0.25, P < 0.001). In the hippocampus, increased GABA levels were found in rats that received all ayahuasca doses: 250 mg/kg (1.29 ± 0.19 vs 0.84 ± 0.21, P < 0.05); 500 mg/kg (2.23 ± 038 vs 084 ± 0.21, P < 0.05) and 800 mg/kg (1.98 ± 0.92 vs 0.84 ± 0.21, P < 0.05). In addition, an increased utilization rate of all monoamines was found in the amygdala after ayahuasca administration in doses: 250 mg/kg (noradrenaline: 0.16 ± 0.02 vs 0.36 ± 0.06, P < 0.01; dopamine: 0.39 ± 0.012 vs 2.39 ± 0.84, P < 0.001; serotonin: 1.02 ± 0.22 vs 4.04 ± 0.91, P < 0.001), 500 mg/kg (noradrenaline: 0.08 ± 0.02 vs 0.36 ± 0.06, P < 0.001; dopamine: 0.33 ± 0.19 vs 2.39 ± 0.84, P < 0.001; serotonin: 0.59 ± 0.08 vs 4.04 ± 0.91, P < 0.001) and 800 mg/kg (noradrenaline: 0.16 ± 0.04 vs 0.36 ± 0.06, P < 0.001; dopamine: 0.84 ± 0.65 vs 2.39 ± 0.84, P < 0.05; serotonin: 0.36 ± 0.02 vs 4.04 ± 0.91, P < 0.001). CONCLUSION

  15. A kinetic study of the in vivo incorporation of /sup 65/Zn into the rat hippocampus

    SciTech Connect

    Sato, S.M.; Frazier, J.M.; Goldberg, A.M.

    1984-06-01

    Previous autoradiographical studies utilizing /sup 65/Zn demonstrated an apparent concentration of /sup 65/Zn in the mossy fiber boutons of the hippocampus. To examine the speciation of the /sup 65/Zn pool found in this neuronal pathway, we investigated the in vivo incorporation of systemic /sup 65/Zn into rat hippocampus compared with other brain regions. We were especially interested in kinetically assessing the zinc associated with three previously identified cytosolic zinc-binding species found in the hippocampus. The hypothesis that two of these cytosolic zinc-binding species, a metallothionein-like protein and a putative zinc-glutathione complex, may be responsible for the sequestration of zinc in the hippocampus was tested. It was confirmed that the t 1/2 of hippocampal zinc is longer than other brain regions that were studied. Furthermore, we observed that /sup 65/Zn is incorporated into three cytosolic zinc-binding species in the hippocampus as resolved using Ultrogel AcA 34 gel permeation chromatography. One of these species, the putative zinc-glutathione complex, accumulates zinc more slowly than the other species. The data suggest that the putative zinc-glutathione complex may represent an important /sup 65/Zn pool in the hippocampus. This finding is in accordance with out hypothesis that a zinc-binding species, specifically, the putative zinc-glutathione complex, may be responsible for the sequestration of zinc in the hippocampal mossy boutons.

  16. Neuroprotective effects of silymarin on ischemia-induced delayed neuronal cell death in rat hippocampus.

    PubMed

    Hirayama, Koki; Oshima, Hideki; Yamashita, Akiko; Sakatani, Kaoru; Yoshino, Atsuo; Katayama, Yoichi

    2016-09-01

    We examined the effects of silymarin, which was extracted from Silybum marianum, on delayed neuronal cell death in the rat hippocampus. Rats were divided into four groups: sham-operated rats (sham group), rats which underwent ischemic surgery (control group), rats which were treated with silymarin before and after ischemic surgery (pre group), and rats which were treated with silymarin after ischemic surgery only (post group). We performed the ischemic surgery by occluding the bilateral carotid arteries for 20min and sacrificed the rats one week after the surgery. Silymarin was administered orally at 200mg/kg body weight. Smaller numbers of delayed cell deaths were noted in the rat CA1 region of the pre- and post-groups, and no significant difference was observed between these groups. There were few apoptotic cell deaths in all groups. Compared to the control group, significantly fewer cell deaths by autophagy were found in the pre- and post-group. We concluded that silymarin exerts a preservation effect on delayed neuronal cell death in the rat hippocampus and this effect has nothing to do with the timing of administering of silymarin. PMID:27312091

  17. Effect of agomelatine on adult hippocampus apoptosis and neurogenesis using the stress model of rats.

    PubMed

    Yucel, Atakan; Yucel, Nermin; Ozkanlar, Seckin; Polat, Elif; Kara, Adem; Ozcan, Halil; Gulec, Mustafa

    2016-04-01

    Agomelatine (AG) is an agonist of melatonin receptors and an antagonist of the 5-HT2C-receptor subtype. The chronobiotic properties of AG are of significant interest due to the disorganization of internal rhythms, which might play a role in the pathophysiology of depression. The present study was designed to assess the effects of the antidepressant-like activity of AG, a new antidepressant drug, on adult neurogenesis and apoptosis using stress-exposed rat brains. Over the period of 1 week, the rats were exposed to light stress twice a day for 1h. After a period of 1 week, the rats were given AG treatment at a dose of either 10mg/kg or 40mg/kg for 15 days. The animals were then scarified, and the obtained tissue sections were stained with immuno-histochemical anti-BrdU, Caspase-3, and Bcl-2 antibodies. Serum brain-derived neurotrophic factor (BDNF) concentrations were measured biochemically using a BDNF Elisa kit. Biochemical BDNF analysis revealed a high concentration of BDNF in the serum of the stress-exposed group, but the concentrations of BDNF were much lower those of the AG-treated groups. Immuno-histochemical analysis revealed that AG treatment decreased the BrdU-positive and Bcl-2-positive cell densities and increased the Caspase-3-positive cell density in the hippocampus of stress-induced rats as compared to those of the stress group. The results of the study demonstrated that AG treatment ameliorated the hippocampal apoptotic cells and increased hippocampal neurogenesis. These results also strengthen the possible relationship between depression and adult neurogenesis, which must be studied further. PMID:26970810

  18. Gene Expression Profile of the Hippocampus of Rats Subjected to Chronic Immobilization Stress

    PubMed Central

    Li, Xiao-Hong; Chen, Jia-Xu; Yue, Guang-Xin; Liu, Yue-Yun; Zhao, Xin; Guo, Xiao-Ling; Liu, Qun; Jiang, You-Ming; Bai, Ming-Hua

    2013-01-01

    Objective This study systematically investigated the effect of chronic stress on the hippocampus and its damage mechanism at the whole genome level. Methods The rat whole genome expression chips (Illumina) were used to detect gene expression differences in the hippocampus of rats subjected to chronic immobilization stress (daily immobilization stress for 3 h, for 7 or 21 days). The hippocampus gene expression profile was studied through gene ontology and signal pathway analyses using bioinformatics. A differentially expressed transcription regulation network was also established. Real-time quantitative polymerase chain reaction (RT-PCR) was used to verify the microarray results and determine expression of the Gabra1, Fadd, Crhr2, and Cdk6 genes in the hippocampal tissues. Results Compared to the control group, 602 differentially expressed genes were detected in the hippocampus of rats subjected to stress for 7 days, while 566 differentially expressed genes were expressed in the animals experiencing stress for 21 days. The stress significantly inhibited the primary immune system functions of the hippocampus in animals subjected to stress for both 7 and 21 days. Immobilization activated the extracellular matrix receptor interaction pathway after 7 day exposure to stress and the cytokine-cytokine receptor interaction pathway. The enhanced collagen synthesis capacity of the hippocampal tissue was the core molecular event of the stress regulation network in the 7-day group, while the inhibition of hippocampal cell growth was the core molecular event in the 21-day group. For the Gabra1, Fadd, Crhr2, and Cdk6 genes, RT-PCR results were nearly in line with gene chip assay results. Conclusion During the 7-day and 21-day stress processes, the combined action of polygenic, multilevel, and multi-signal pathways leads to the disorder of the immunologic functions of the hippocampus, hippocampal apoptosis, and proliferation disequilibrium. PMID:23544040

  19. Corticosterone differentially regulates the bilateral response of astrocyte mRNAs in the hippocampus to entorhinal cortex lesions in male rats.

    PubMed

    Laping, N J; Nichols, N R; Day, J R; Finch, C E

    1991-07-01

    This study examined the effect of adrenalectomy (ADX) and corticosterone (CORT) replacement on the levels of two astrocyte mRNAs during responses to unilateral entorhinal cortex lesions (ECL) to identify molecular mechanisms involved in glucocorticoid modulation of astrocyte activation following deafferentation. Both glial fibrillary acidic protein (GFAP) and sulfated glycoprotein-2 (SGP-2) mRNA were increased in the ipsilateral hippocampus 4 days following unilateral ECL. In unlesioned ADX rats CORT replacement decreased both messages in the hippocampus. CORT replacement suppressed the ECL-induced increase of GFAP mRNA in the contralateral, but not ipsilateral hippocampus of ADX rats. In contrast, CORT decreased SGP-2 mRNA both ipsi- and contralaterally. It is clear that several regulatory mechanisms are responsible for maintaining a physiological balance of astrocyte activity in the adult brain, and that changes in circuit integrity and the endocrine milieu can alter this balance. PMID:1717807

  20. Activation of 5-HT2 receptors enhances the release of acetylcholine in the prefrontal cortex and hippocampus of the rat.

    PubMed

    Nair, Sunila G; Gudelsky, Gary A

    2004-09-15

    The role of 5-HT2 receptors in the regulation of acetylcholine (ACh) release was examined in the medial prefrontal cortex and dorsal hippocampus using in vivo microdialysis. The 5-HT(2A/2C) agonist +/-1-(2,5-dimethoxy-4-iodophenyl) -2- aminopropane hydrochloride (DOI) (1 and 2 mg/kg, i.p.) significantly increased the extracellular concentration of ACh in both brain regions, and this response was attenuated in rats treated with the 5-HT(2A/2B/2C) antagonist LY-53,857 (3 mg/kg, i.p.). Treatment with LY-53,857 alone did not significantly alter ACh release in either brain region The 5-HT(2C) agonist 6-chloro-2-(1-piperazinyl)-pyrazine) (MK-212) (5 mg/kg, i.p.) significantly enhanced the release of ACh in both the prefrontal cortex and hippocampus, whereas the 5-HT2 agonist mescaline (10 mg/kg, i.p.) produced a 2-fold increase in ACh release only in the prefrontal cortex. Intracortical, but not intrahippocampal, infusion of DOI (100 microM) significantly enhanced the release of ACh, and intracortical infusion of LY-53,857 (100 microM) significantly attenuated this response. These results suggest that the release of ACh in the prefrontal cortex and hippocampus is influenced by 5-HT2 receptor mechanisms. The increase in release of ACh induced by DOI in the prefrontal cortex, but not in the hippocampus, appears to be due to 5-HT2 receptor mechanisms localized within this brain region. Furthermore, it appears that the prefrontal cortex is more sensitive than the dorsal hippocampus to the stimulatory effect of 5-HT2 agonists on ACh release. PMID:15266551

  1. Status epilepticus triggers early mitochondrial fusion in the rat hippocampus in a lithium-pilocarpine model.

    PubMed

    Córdova-Dávalos, Laura; Carrera-Calvo, Dulce; Solís-Navarrete, Jael; Mercado-Gómez, Octavio Fabián; Arriaga-Ávila, Virginia; Agredano-Moreno, Lourdes Teresa; Jiménez-García, Luis Felipe; Guevara-Guzmán, Rosalinda

    2016-07-01

    Many reports investigating the hippocampus have demonstrated an increase in neuronal damage, cellular loss, oxidative stress and mitochondrial DNA damage during status epilepticus (SE); however, information regarding alterations in mitochondrial fission and fusion events in SE is lacking. The aim of the present study was to examine the possible imbalance between mitochondrial fission and fusion in the hippocampus of male rats after acute seizure mediated by SE. In this study, we used ninety animals were randomly divided into control and SE groups and subjected to the lithium-pilocarpine model of epilepsy. Hippocampi were obtained at 3, 24 and 72h after SE, and the cytoplasmic and mitochondrial fractions of the cells were used to analyze changes in the Drp1 and Fis1 fission proteins and the Mfn1 and Opa1 fusion proteins by western blot analysis. Moreover, changes in the expression of fission and fusion mRNA transcripts were evaluated by real-time PCR. Mitochondrial morphology was also analyzed using standard transmission electron microscopy. Our data showed that the fission-related mRNA Drp1 was down-regulated rapidly after SE, while Fis1 did not show any significant changes in expression. Moreover, the mitochondrial fusion-associated proteins Mfn1 and Opa1 exhibited an increase in expression at 72h after SE. Electron microphotography revealed several morphological changes, such as swollen mitochondria and damage of the inner mitochondrial membrane, at 24h; at 72h elongation of some mitochondrial was also observed. Our results suggest that after the initiation of SE, the main regulator of the fission mRNA Drp1 is down-regulated, which in turn regulates mitochondrial fission and leads to an increase in the Mfn1 and Opa1 proteins to induce mitochondrial fusion, suggesting an imbalance of the fission and fusion processes. PMID:27045873

  2. PEGylated Carbon Nanotubes Impair Retrieval of Contextual Fear Memory and Alter Oxidative Stress Parameters in the Rat Hippocampus

    PubMed Central

    Dal Bosco, Lidiane; Weber, Gisele E. B.; Parfitt, Gustavo M.; Paese, Karina; Gonçalves, Carla O. F.; Serodre, Tiago M.; Furtado, Clascídia A.; Santos, Adelina P.; Monserrat, José M.; Barros, Daniela M.

    2015-01-01

    Carbon nanotubes (CNT) are promising materials for biomedical applications, especially in the field of neuroscience; therefore, it is essential to evaluate the neurotoxicity of these nanomaterials. The present work assessed the effects of single-walled CNT functionalized with polyethylene glycol (SWCNT-PEG) on the consolidation and retrieval of contextual fear memory in rats and on oxidative stress parameters in the hippocampus. SWCNT-PEG were dispersed in water at concentrations of 0.5, 1.0, and 2.1 mg/mL and infused into the rat hippocampus. The infusion was completed immediately after training and 30 min before testing of a contextual fear conditioning task, resulting in exposure times of 24 h and 30 min, respectively. The results showed that a short exposure to SWCNT-PEG impaired fear memory retrieval and caused lipid peroxidation in the hippocampus. This response was transient and overcome by the mobilization of antioxidant defenses at 24 h. These effects occurred at low and intermediate but not high concentration of SWCNT-PEG, suggesting that the observed biological response may be related to the concentration-dependent increase in particle size in SWCNT-PEG dispersions. PMID:25738149

  3. DNA methylation in the developing hippocampus and amygdala of anxiety-prone versus risk-taking rats

    PubMed Central

    Simmons, Rebecca K.; Howard, Jasmine L.; Simpson, Danielle N.; Akil, Huda; Clinton, Sarah M.

    2013-01-01

    All organisms exhibit a wide range of emotional behavior and interact with the environment in different ways. Some individuals may be more quiet and shy whereas others are more outgoing and adventurous. These temperamental and personality differences can predispose individuals to certain psychopathologies which may be influenced by genetic vulnerability and/or early life experiences. Rodent models can be used to recapitulate emotional reactivity differences, and these models can, in turn, be used to examine potential neurobiological underpinnings of these traits. The present study utilizes two strains of rats that were selectively-bred for differences in novelty-seeking. High Novelty-Responding (bHR) rats are very active in response to novelty, exhibit exaggerated risk-taking, aggression, impulsivity, and show increased behavioral response to cocaine. Low Novelty-Responding (bLR) rats show increased anxiety, depressive behavior, and vulnerability to chronic stress. One way in which the bHR versus bLR behavioral phenotypes may differ is through epigenetic modification of DNA. DNA can be modified through processes such as acetylation or methylation to either enhance or subdue gene expression. This study examines putative differences in methylation levels in the hippocampus and amygdala of developing bHR-bLR rats. Previous research observed widespread gene expression differences in the bLR developing hippocampus and the current study aims to begin to examine potential epigenetic factors that may contribute to those gene differences. The amygdala was chosen because it is involved in emotional processes, in part through its connections with the hippocampus. Therefore, the present study used in situ hybridization to assess the expression of DNA methyltransferase-1 (DNMT1) mRNA in the hippocampus, amygdala, and several other brain areas of bHR and bLR pups at three developmental time points: postnatal day (P)7, 14, and 21. We focused on the first three postnatal weeks, in

  4. Increased stathmin expression strengthens fear conditioning in epileptic rats.

    PubMed

    Zhang, Linna; Feng, Danni; Tao, Hong; DE, Xiangyan; Chang, Qing; Hu, Qikuan

    2015-01-01

    Patients with temporal lobe epilepsy have inexplicable fear attack as the aura. However, the underlying neural mechanisms of seizure-modulated fear are not clarified. Recent studies identified stathmin as one of the key controlling molecules in learning and innate fear. Stathmin binds to tubulin, inhibits microtubule assembly and promotes microtubule catastrophes. Therefore, stathmin is predicted to play a crucial role in the association of epilepsy seizures with fear conditioning. Firstly, a pilocarpine model of epilepsy in rats was established, and subsequently the fear condition training was performed. The epileptic rats with fear conditioning (epilepsy + fear) had a much longer freezing time compared to each single stimulus. The increased freezing levels revealed a significantly strengthened effect of the epileptic seizures on the learned fear of the tone-shock contextual. Subsequently, the stathmin expression was compared in the hippocampus, the amygdale, the insular cortex and the temporal lobe. The significant change of stathmin expression occurred in the insular and the hippocampus, but not in the amygdale. Stathmin expression and dendritic microtubule stability were compared between fear and epilepsy in rats. Epilepsy was found to strengthen the fear conditioning with increased expression of stathmin and a decrease in microtubule stability. Fear conditioning slightly increased the expression of stathmin, whereas epilepsy with fear conditioning increased it significantly in the hippocampus, insular cortex and hypothalamus. The phosphorylated stathmin slightly increased in the epilepsy with fear conditioning. The increased expression of stathmin was contrary to the decrease of the stathmin microtubule-associated protein (MAP2) and α-tubulin in the epileptic rats with fear conditioning in all three areas of the brain. The most significant change of the ratio of MAP2 and α-tubulin/stathmin occurred in the insular cortex and hippocampus. In conclusion

  5. Alteration in Inflammation-related miR-146a Expression in NF-KB Signaling Pathway in Diabetic Rat Hippocampus

    PubMed Central

    Habibi, Fatemeh; Ghadiri Soufi, Farhad; Ghiasi, Rafighe; Khamaneh, Amir Mahdi; Alipour, Mohammad Reza

    2016-01-01

    Purpose: The purpose of the present study is to evaluate the expression of miR-146a gene, its adaptor genes (TRAF6, NF-KB, and IRAK1), and possible changes in the cellular signaling pathway in diabetic hippocampus tissue. Methods: Male Sprague–Dawley rats are randomly selected and divided into control and diabetic (n=6) groups. Diabetes induced by the single-dose injection of nicotinamide [110 mg/kg, (i.p.)], 15 min before streptozotocin (50 mg/kg; i.p.) in 12-h fasted rats. The rats are kept at the laboratory for two months. After anaesthetization, hippocampus of the rats was removed in order to measure the expression of miR-146a, NFK-B, IRAK1, and TRAF6 genes using real-time PCR and activity of NF-KB as well as amount of apoptosis rate using ELISA. Results: The results indicated a reduction in expression of miR-146a and an increase in expression of IRAK1, NF-KB, and TRAF6 genes in the hippocampus of diabetic rats compared to control. Also it reveals an increase in the activity of NF-KB and apoptosis rate in the hippocampus of diabetic rats. Conclusion: Our results report the probability that reduction of miR-146a expression in the negative feedback loop between miR-146a and NF-KB increases NF-kB expression and thus intensifies inflammation and apoptosis in hippocampus. PMID:27123424

  6. SO(2) inhalation induces protein oxidation, DNA-protein crosslinks and apoptosis in rat hippocampus.

    PubMed

    Sang, Nan; Hou, Li; Yun, Yang; Li, Guangke

    2009-03-01

    Previous studies provide evidence for the possible neurotoxicity of SO(2), but little information is available about its mechanisms. In the present study, SO(2) inhalation-induced effects on the protein oxidation, DNA-protein crosslinks and apoptosis in rat hippocampus were studied, by exposing Wistar rats to SO(2) at 14, 28 and 56mg/m(3). The results indicate that the protein carbonyl content, an indicator of protein oxidation, and DNA-protein crosslink coefficient were significantly augmented with concentration-dependent properties. In addition, SO(2) inhalation at all concentrations tested caused the increases of caspase-3 activity and number of TUNEL positive staining neuron and the statistical difference was observed after 28 and 56mg/m(3) exposure, suggesting the occurrence of apoptosis. The results imply that attacking protein, nucleic acids and lipids by free radicals, generated via SO(2) derivatives in vivo, is one of the main mechanisms for SO(2)-induced injuries in central neuronal system. PMID:18722661

  7. Reduction in Aβ-induced cell death in the hippocampus of 17β-estradiol-treated female rats is associated with an increase in IGF-I signaling and somatostatinergic tone.

    PubMed

    Perianes-Cachero, Aránzazu; Canelles, Sandra; Aguado-Llera, David; Frago, Laura M; Toledo-Lobo, María Val; Carrera, Iván; Cacabelos, Ramón; Chowen, Julie A; Argente, Jesús; Arilla-Ferreiro, Eduardo; Barrios, Vicente

    2015-12-01

    Several studies indicate that 17β-estradiol (E2) protects against amyloid β-peptide (Aβ)-induced cell death and activates factors associated with learning and memory, a function involving the hippocampal somatostatinergic system. As alterations in somatostatin have been demonstrated in Alzheimer's disease, we examined whether E2 prevents changes in the hippocampal somatostatinergic system induced by Aβ25-35 and cell death, as well as the possible involvement of leptin and insulin-like growth factor (IGF)-I signaling. We also measured the levels of Aβ proteases neprilysin and insulin-degrading-enzyme. Co-administration of E2 with Aβ25-35 reduced both its levels and cell death, in addition to preventing the Aβ-induced depletion of some somatostatinergic parameters. Activation of leptin and IGF-I pathways increased after E2 co-administration, and this correlated with changes in the somatostatinergic system. Changes in some components of this system were inversely related with Aβ levels and cell death. Moreover, neprilysin levels were increased only in Aβ plus E2-treated rats and E2 prevented the Aβ-induced insulin-degrading-enzyme reduction. Our results suggest that the E2-induced reduction in cell death is related to lower Aβ levels, probably because of IGF-I and somatostatin modulation of Aβ proteases. We asked how 17β-estradiol (E2) protects against β-amyloid (Aβ)-induced cell death. E2 co-administration prevents Aβ-produced depletion of hippocampal somatostatin (SRIF) by an IGF-I-mediated mechanism, being related this protective effect with an increase in Aβ proteases. Our results suggest that the E2-induced reduction in cell death is related to lower Aβ levels, probably because of SRIF modulation of Aβ proteases. CREB, cAMP response element-binding protein; IGF-I, insulin-like growth factor-I; STAT3, signal transducer and activator of transcription-3. PMID:26442993

  8. Enriched environment induces beneficial effects on memory deficits and microglial activation in the hippocampus of type 1 diabetic rats.

    PubMed

    Piazza, Francele Valente; Segabinazi, Ethiane; Centenaro, Lígia Aline; do Nascimento, Patrícia Severo; Achaval, Matilde; Marcuzzo, Simone

    2014-03-01

    Type 1 diabetes mellitus (T1DM) has been associated with long-term complications in the central nervous system, causing brain cellular dysfunctions and cognitive deficits. On the other hand, enriched environment (EE) induces experience-dependent plasticity, especially in the hippocampus, improving the performance of animals in learning and memory tasks. Thus, our objective was to investigate the influence of the EE on memory deficits, locomotion, corticosterone levels, synaptophysin (SYP) protein immunoreactivity, cell survival and microglial activation in the dentate gyrus (DG) of T1DM rat hippocampus. Male Wistar rats (21-day-old) were exposed to EE or maintained in standard housing (controls, C) for 3 months. At adulthood, the C and EE animals were randomly divided and diabetes was induced in half of them. All the animals received 4 doses of BrdU, 24 h apart. Hippocampus-dependent spatial memory, general locomotion and serum corticosterone levels were evaluated at the end of the experiment. The animals were transcardially perfused 30 days post-BrdU administration. Our results showed that EE was able to prevent/delay the development of memory deficits caused by diabetes in rats, however it did not revert the motor impairment observed in the diabetic group. SYP immunoreactivity was increased in the enriched healthy group. The EE decreased the serum corticosterone levels in diabetic adult rats and attenuated the injurious microglial activation, though without altering the decrease of the survival cell. Thus, EE was shown to help to ameliorate cognitive comorbidities associated with T1DM, possibly by reducing hyperactivity in the hypothalamic-pituitary-adrenal axis and microglial activation in diabetic animals. PMID:24318482

  9. Rapid eye movement sleep deprivation selectively impairs recall of fear extinction in hippocampus-independent tasks in rats.

    PubMed

    Fu, J; Li, P; Ouyang, X; Gu, C; Song, Z; Gao, J; Han, L; Feng, S; Tian, S; Hu, B

    2007-02-23

    Previous studies have shown that rapid eye movement (REM) sleep deprivation (RSD) exerts a detrimental effect on some memory tasks. However, whether post-learning RSD impairs memory for fear extinction, an important model of inhibitory learning, remains to be elucidated. The present study examined the effects of post-extinction RSD from 0 to 6 h and 6 to 12 h on recall of fear extinction tested 24 h after extinction training. We found that RSD from 0 to 6 h significantly increased freezing when recall of extinction of cued fear was tested in the context in which rats received extinction training whereas RSD from 6 to 12 h had no effect (experiments 1 and 2, two hippocampus-independent memory tasks). RSD at either time point had no effect on freezing when recall of extinction of cued fear was tested in the context different from that in which extinction training occurred (experiment 3, a hippocampus-dependent memory task). Additionally, we observed no effect of RSD at either time point on freezing during recall test for extinction of contextual fear (experiment 4, a hippocampus-dependent memory task). These results suggest that the effects of post-extinction RSD on memory for fear extinction are complex. RSD impairs recall of fear extinction in hippocampus-independent tasks, but does not affect recall of fear extinction in hippocampus-dependent tasks. Our findings extend previous research on the effects of RSD on learning and memory and support the notion that REM sleep is involved in memory process of certain tasks. PMID:17157993

  10. Role of hippocampus in polymodal-cue guided tasks in rats.

    PubMed

    Miniaci, Maria Concetta; Lippiello, Pellegrino; Monda, Marcellino; Scotto, Pietro

    2016-09-01

    To examine how signals from different sensory modalities are integrated to generate an appropriate goal-oriented behavior, we trained rats in an eight-arm radial maze to visit a cue arm provided with intramaze cues from different sensory modalities, i.e. visual, tactile and auditory, in order to obtain a reward. When the same rats were then examined on test trials in which the cue arm contained one of the stimuli that the animals were trained with (i.e. light, sound or rough sheet), they showed a significant impairment with respect to the performance on the polymodal-cue task. The contribution of the dorsal hippocampus to the acquisition and retention of polymodal-cue guided task was also examined. We found that rats with dorsal hippocampal lesions before training showed a significant deficit in the acquisition of polymodal-cue oriented task that improved with overtraining. The selective lesion of the dorsal hippocampus after training disrupted memory retention, but the animals' performance improved following retraining of the polymodal task. All hippocampal lesioned rats displayed an impaired performance on the unimodal test. These findings suggest that the dorsal hippocampus contributes to the processing of multimodal sensory information for the associative memory formation and consolidation. PMID:27342815

  11. Functional emergence of the hippocampus in context fear learning in infant rats

    PubMed Central

    Raineki, Charlis; Holman, Parker J.; Debiec, Jacek; Bugg, Melissa; Beasley, Allyson; Sullivan, Regina M.

    2009-01-01

    The hippocampus is a part of the limbic system and is important for the formation of associative memories, such as acquiring information about the context (e.g. the place where an experience occurred) during emotional learning (e.g. fear conditioning). Here, we assess whether the hippocampus is responsible for pups’ newly emerging context learning. In all experiments, postnatal day (PN) 21 and PN24 rat pups received 10 pairings of odor-0.5mA shock or control unpaired odor-shock, odor only and shock only. Some pups were used for context, cue or odor avoidance tests, while the remaining pups were used for c-Fos immunohistochemistry to assess hippocampal activity during acquisition. Our results show that cue and odor avoidance learning were similar at both ages, while contextual fear learning and learning-associated hippocampal (CA1, CA3 and dentate gyrus) activity (c-Fos) only occurred in PN24 paired pups. To assess a causal relationship between the hippocampus and context conditioning, we infused muscimol into the hippocampus, which blocked acquisition of context fear learning in the PN24 pups. Muscimol or vehicle infusions did not affect cue learning or aversion to the odor at PN21 or PN24. The results suggest that the newly emerging contextual learning exhibited by PN24 pups is supported by the hippocampus. PMID:19739248

  12. Chronic nicotine exposure inhibits estrogen-mediated synaptic functions in hippocampus of female rats.

    PubMed

    Raval, Ami P; Sick, Justin T; Gonzalez, Gabriel J; Defazio, R Anthony; Dong, Chuanhui; Sick, Thomas J

    2012-05-23

    Nicotine, the addictive agent in cigarettes, reduces circulating estradiol-17β (E₂) and inhibits E₂-mediated intracellular signaling in hippocampus of female rats. In hippocampus, E₂-signaling regulates synaptic plasticity by phosphorylation of the N-methyl-D-aspartic acid receptor subunit NR2B and cyclic-AMP response element binding protein (pCREB). Therefore, we hypothesized that chronic nicotine exposure induces synaptic dysfunction in hippocampus of female rats. Female rats were exposed to nicotine or saline for 16 days followed by electrophysiological analysis of hippocampus. Briefly, population measurements of excitatory post-synaptic field potentials (fEPSPs) were recorded from stratum radiatum of the CA1 hippocampal slice subfield. A strict software-controlled protocol was used which recorded 30 min of baseline data (stimulation rate of 1/min), a paired-pulse stimulation sequence followed by tetanic stimulation, and 1h of post-tetanus recording. EPSP amplitude and the initial EPSP slope were measured off-line. We then investigated by Western blot analysis the effects of nicotine on hippocampal estrogen receptor-beta (ER-β), NR2B and pCREB. The results demonstrated significantly decreased post-tetanic potentiation and paired-pulse facilitation at the 40, and 80 ms interval in nicotine-exposed rats compared to the saline group. Western blot analysis revealed that nicotine decreased protein levels of ER-β, NR2B, and pCREB. We also confirmed the role of E₂ in regulating NR2B and pCREB phosphorylation by performing Western blots in hippocapmal tissue obtained from E₂-treated ovariectomized rats. In conclusion, chronic nicotine exposure attenuates short-term synaptic plasticity, and the observed synaptic defects might be a consequence of loss of estradiol-17β-signaling. However, determining the exact molecular mechanisms of chronic nicotine exposure on synaptic plasticity specific to the female brain require further investigation. PMID:22521583

  13. Localization of glucocorticoid receptor messenger ribonucleic acid in hippocampus of rat brain using in situ hybridization.

    PubMed

    Yang, G; Matocha, M F; Rapoport, S I

    1988-08-01

    An in situ hybridization procedure was applied to quantify glucocorticoid receptor (GR) mRNAs in the hippocampus of rat brain. Hybridization was carried out using a radiolabeled antisense probe complementary to the rat liver GR gene. The specificity of the method was validated by showing: 1) a high cellular grain density in sections hybridized with an antisense but not a sense probe; 2) agreement between the experimental and theoretical temperature at which 50% of the hybrids melted, and 3) a high signal distribution of GR mRNA in the hippocampus, a region of brain known to preferentially concentrate steroid hormones. Within the hippocampus, however, subregional differences in hybridization densities were observed. Quantitative autoradiography indicated that the average neuronal silver grain number was highest in the pyramidal cell layers of CA2 and CA4 and lowest in those of CA1 and CA3. Also, there was a significant difference in the average grain number between all of the cell fields except for that between CA2 and CA4. These results show that contiguous but neuroanatomically distinct cell fields of the hippocampus express different levels of GR transcripts, and indicate that differential regulation of GR expression occurs in subpopulations of hippocampal neurons. PMID:3211154

  14. The effects of 30 mT electromagnetic fields on hippocampus cells of rats

    PubMed Central

    Teimori, Farzaneh; Khaki, Amir A.; Rajabzadeh, Asghar; Roshangar, Leila

    2016-01-01

    Background: Despite the use of electromagnetic waves in the treatment of some acute and chronic diseases, application of these waves in everyday life has created several problems for humans, especially the nerve system. In this study, the effects of 30mT electromagnetic fields (EMFs) on the hippocampus is investigated. Methods: Twenty-four 5-month Wistar rats weighing 150–200 g were divided into two groups. The experimental group rats were under the influence of an EMF at an intensity of 3 mT for approximately 4 hours a day (from 8 AM to 12 PM) during 10 weeks. After the hippocampus was removed, thin slides were prepared for transmission electron microscope (TEM) to study the ultrastructural tissue. Cell death detection POD kits were used to determine the apoptosis rate. Results: The results of the TEM showed that, in the hippocampus of the experimental group, in comparison to the control group, there was a substantial shift; even intracellular organelles such as the mitochondria were morphologically abnormal and uncertain. The number of apoptotic cells in the exposed group compared to the control group showed significant changes. Conclusions: Similar to numerous studies that have reported the effects of EMFs on nerves system, it was also confirmed in this lecture. Hence, the hippocampus which is important in regulating emotions, behavior, motivation, and memory functions, may be impaired by the negative impacts of EMFs. PMID:27453795

  15. Luteolin protects the hippocampus against neuron impairments induced by kainic acid in rats.

    PubMed

    Lin, Tzu Yu; Lu, Cheng Wei; Wang, Su Jane

    2016-07-01

    Glutamatergic excitotoxicity is crucial in the pathogenesis of numerous brain disorders. Luteolin, a flavonoid compound, inhibits glutamate release, however, its ability to affect glutamate-induced brain injury is unknown. Therefore, this study evaluated the protective effect of luteolin against brain damage induced by kainic acid (KA), a glutamate analog. Rats were treated with luteolin (10 or 50mg/kg, intraperitoneally) 30min before an intraperitoneal injection of KA (15mg/kg). Luteolin treatment reduced the KA-induced seizure score and elevations of glutamate levels in the hippocampus. A histopathological analysis showed that luteolin attenuated KA-induced neuronal death and microglial activation in the hippocampus. An immunoblotting analysis showed that luteolin restored the KA-induced reduction in Akt phosphorylation in the hippocampus. Furthermore, a Morris water maze test revealed that luteolin effectively prevented KA-induced learning and memory impairments. The results suggest that luteolin protected rat brains from KA-induced excitotoxic damage by reducing glutamate levels, mitigating inflammation, and enhancing Akt activation in the hippocampus. Therefore, luteolin may be beneficial for preventing or treating brain disorders associated with excitotoxic neuronal damage. PMID:27185356

  16. Localization of glucocorticoid receptor messenger ribonucleic acid in hippocampus of rat brain using in situ hybridization

    SciTech Connect

    Yang, G.; Matocha, M.F.; Rapoport, S.I.

    1988-08-01

    An in situ hybridization procedure was applied to quantify glucocorticoid receptor (GR) mRNAs in the hippocampus of rat brain. Hybridization was carried out using a radiolabeled antisense probe complementary to the rat liver GR gene. The specificity of the method was validated by showing: 1) a high cellular grain density in sections hybridized with an antisense but not a sense probe; 2) agreement between the experimental and theoretical temperature at which 50% of the hybrids melted, and 3) a high signal distribution of GR mRNA in the hippocampus, a region of brain known to preferentially concentrate steroid hormones. Within the hippocampus, however, subregional differences in hybridization densities were observed. Quantitative autoradiography indicated that the average neuronal silver grain number was highest in the pyramidal cell layers of CA2 and CA4 and lowest in those of CA1 and CA3. Also, there was a significant difference in the average grain number between all of the cell fields except for that between CA2 and CA4. These results show that contiguous but neuroanatomically distinct cell fields of the hippocampus express different levels of GR transcripts, and indicate that differential regulation of GR expression occurs in subpopulations of hippocampal neurons.

  17. Altered gene expression profiles in the hippocampus and prefrontal cortex of type 2 diabetic rats

    PubMed Central

    2012-01-01

    Background There has been an increasing body of epidemiologic and biochemical evidence implying the role of cerebral insulin resistance in Alzheimer-type dementia. For a better understanding of the insulin effect on the central nervous system, we performed microarray-based global gene expression profiling in the hippocampus, striatum and prefrontal cortex of streptozotocin-induced and spontaneously diabetic Goto-Kakizaki rats as model animals for type 1 and type 2 diabetes, respectively. Results Following pathway analysis and validation of gene lists by real-time polymerase chain reaction, 30 genes from the hippocampus, such as the inhibitory neuropeptide galanin, synuclein gamma and uncoupling protein 2, and 22 genes from the prefrontal cortex, e.g. galanin receptor 2, protein kinase C gamma and epsilon, ABCA1 (ATP-Binding Cassette A1), CD47 (Cluster of Differentiation 47) and the RET (Rearranged During Transfection) protooncogene, were found to exhibit altered expression levels in type 2 diabetic model animals in comparison to non-diabetic control animals. These gene lists proved to be partly overlapping and encompassed genes related to neurotransmission, lipid metabolism, neuronal development, insulin secretion, oxidative damage and DNA repair. On the other hand, no significant alterations were found in the transcriptomes of the corpus striatum in the same animals. Changes in the cerebral gene expression profiles seemed to be specific for the type 2 diabetic model, as no such alterations were found in streptozotocin-treated animals. Conclusions According to our knowledge this is the first characterization of the whole-genome expression changes of specific brain regions in a diabetic model. Our findings shed light on the complex role of insulin signaling in fine-tuning brain functions, and provide further experimental evidence in support of the recently elaborated theory of type 3 diabetes. PMID:22369239

  18. Antidepressants increase neural progenitor cells in the human hippocampus

    PubMed Central

    Boldrini, Maura; Underwood, Mark D.; Hen, René; Rosoklija, Gorazd B.; Dwork, Andrew J.; Mann, J. John; Arango, Victoria

    2009-01-01

    Selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs) increase neurogenesis in the dentate gyrus (DG) of rodents and nonhuman primates. We determined whether SSRIs or TCAs increase neural progenitor (NPCs) and dividing cells in the human DG in major depressive disorder (MDD). Whole frozen hippocampi from untreated subjects with MDD (N = 5), antidepressant-treated MDD (MDDT, N = 7), and controls (C, N = 7) were fixed, sectioned and immunostained for NPCs and dividing cell markers (nestin and Ki-67 respectively), NeuN and GFAP, in single and double labeling. NPC and dividing cell numbers in the DG were estimated by stereology. Clinical data were obtained by psychological autopsy and toxicological and neuropathological examination performed in all subjects. NPCs decreased with age (p = 0.034). Females had more NPCs than males (p = 0.023). Correcting for age and sex, MDDT receiving SSRIs had more NPCs than untreated MDD (p ≤ 0.001) and controls (p ≤ 0.001), NPCs were not different in SSRIs- and TCAs-treated MDDT (p = 0.169). Dividing cell number, unaffected by age or sex, was greater in MDDT receiving TCAs than in untreated MDD (p ≤ 0.001), SSRI-treated MDD (p = 0.001) and controls (p ≤ 0.001). The NPCs and dividing cells increase in MDDT was localized to the rostral DG. MDDT had a larger DG volume compared with untreated MDD or controls (p = 0.009). Antidepressants increase neural progenitor cell number in the anterior human dentate gyrus. Whether this finding is critical or necessary for the antidepressants effect remains to be determined. PMID:19606083

  19. Alteration of neurotrophins in the hippocampus and cerebral cortex of young rats exposed to chlorpyrifos and methyl parathion.

    PubMed

    Betancourt, Angela M; Filipov, Nikolay M; Carr, Russell L

    2007-12-01

    Exposure to either chlorpyrifos (CPS) or methyl parathion (MPS) results in the inhibition of acetylcholinesterase and leads to altered neuronal activity which normally regulates critical genes such as the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). The effects of postnatal exposure to CPS and MPS on the expression of messenger RNA (mRNA) and protein levels for NGF and BDNF were investigated in the frontal cerebral cortex (cortex) and hippocampus of rats. Oral administration of CPS (4.0 or 6.0 mg/kg), MPS (0.6 or 0.9 mg/kg), or the safflower oil vehicle was performed daily from postnatal day 10 (PND10) through PND20. Exposure induced significant effects on growth and cholinesterase activity. Increased NGF protein levels were observed in the hippocampus but not the cortex on PND20 with some reduction occurring on PND28 in both regions. These changes did not correlate with the changes in NGF mRNA. BDNF mRNA was increased in both regions on PND20 and PND28, whereas BDNF protein levels were increased on PND20. On PND12, c-fos mRNA, a marker of neuronal activation, was increased in both regions. Total BDNF protein was increased in the hippocampus but decreased in the cortex. No changes in NGF protein were observed. These results indicate that repeated developmental OP exposure during the postnatal period alters NGF and BDNF in the cortex and the hippocampus and the patterns of these alterations differ between regions. PMID:17893397

  20. Effect of noninvasive focused ultrasound stimulation on gamma oscillations in rat hippocampus.

    PubMed

    Yuan, Yi; Yan, Jiaqing; Ma, Zhitao; Li, Xiaoli

    2016-05-01

    In recent years, noninvasive focused ultrasound stimulation (FUS), with the advantage of high spatial resolution and high penetration depth, has developed rapidly for modulating neuron activities in the brain. Gamma oscillations serve to synchronize neurons and play important roles in cortical information processing and cognitive function. However, how FUS modulates gamma oscillations in the rat hippocampus is not well understood. In this work, we characterized the interactions between the gamma amplitude and phases of the delta, theta, and alpha bands during FUS. Our results show that FUS can significantly modulate the extent of phase-locked gamma amplitude and phase-amplitude coupling of brain oscillations. In summary, FUS can modulate gamma oscillations in the rat hippocampus, indicating its potential as a powerful noninvasive method to interfere with brain rhythms for diagnostic and therapeutic purposes. PMID:27007778

  1. Autoradiographic comparison of neuronal and glial protein metabolism in rat hippocampus after food-motivated or footshock-motivated conditioning.

    PubMed

    Glushcenko, T S; Pevzner, L Z; Klenikova, V A

    1979-11-01

    Quantitative autoradiography has shown that initial food-motivated conditioning results in an increase in 3H-phenylalanine incorporation into cytoplasmic proteins of rat hippocampal neurons. After 3 daily conditioning trials, the incorporation returned to an active control (pseudoconditioning) level while after 6 daily trials, the incorporation was decreased. No changes were revealed in the cells of hippocampal perineuronal glia. Four hours after a footshock-motivated passive avoidance trial, incorporation of 3H-phenylalanine was increased both in the neurons and in their perineuronal glia of rat hippocampus. By the time of a consolidation of this conditioning, such increase still remained perineuronal glia. An importance of the emotional background is outlined for a participation of glial cells in learning-induced metabolic changes in the nervous system. PMID:531081

  2. [Activation of autophagy pathway in hippocampus and deterioration of learning and memory ability by intermittent hypoxia in rats after cerebral ischemia].

    PubMed

    Guo, Xiangfei; Zhao, Yaning; Li, Jianmin; Liu, Wenqian; Chen, Changxiang

    2016-09-01

    Objective To investigate the effects of different duration of intermittent hypoxia on the autophagy pathway in the hippocampus and the learning and memory ability after cerebral ischemia in rats. Methods 100 male Wistar rats were randomly divided into sham operation (SO) group, ischemia/reperfusion (I/R) group, intermittent hypoxia for 7 days combined with ischemia/reperfusion (IH7-I/R) group, intermittent hypoxia for 14 days combined with ischemia/reperfusion (IH14-I/R) group, intermittent hypoxia for 21 days combined with ischemia/reperfusion (IH21-I/R) group, n =20 in each group. The rats in IH7-I/R group, IH14-I/R group and IH21-I/R group were respectively subjected to intermittent hypoxia for 7, 14 and 21 days prior to I/R modeling by improved Pulsinelli four-vessel occlusion (4-VO). The morphological changes of nerve cells in the hippocampus of rat brain were detected by HE staining; the levels of mammalian target of rapamycin (mTOR) and beclin 1 mRNA in the hippocampus were determined by quantitative real-time PCR; the distribution of mTOR and beclin 1 in the hippocampus was observed by immunohistochemistry; the learning and memory ability of rats was assessed by the Morris water maze test. Results Compared with the SO group, the never cell morphology was damaged, the number of survival neurons in the hippocampus was reduced, the expressions of mTOR and beclin 1 in the hippocampus were strengthened, and the learning and memory ability declined in the I/R group. Compared with the I/R group, the never cell morphology was damaged seriously, the number of survival neurons in the hippocampus decreased, the expressions of mTOR and beclin 1 in the hippocampus increased, and the learning and memory ability dropped in the intermittent hypoxia groups. What's more, the above changes were dependent on the duration of intermittent hypoxia. Conclusion Intermittent hypoxia aggravates the dysfunction of learning and memory after cerebral ischemia and the damages increase

  3. Brain-Derived Estrogen Exerts Anti-inflammatory and Neuroprotective Actions in the Rat Hippocampus

    PubMed Central

    Zhang, Quan-Guang; Wang, Ruimin; Tang, Hui; Dong, Yan; Chan, Alice; Sareddy, Gangadhara Reddy; Vadlamudi, Ratna K.; Brann, Darrell W.

    2014-01-01

    17β-estradiol (E2) has been implicated to play a critical role in neuroprotection, synaptic plasticity, and cognitive function. Classically, the role of gonadal-derived E2 in these events is well established, but the role of brain-derived E2 is less clear. To address this issue, we investigated the expression, localization, and modulation of aromatase and local E2 levels in the hippocampus following global cerebral ischemia (GCI) in adult ovariectomized rats. Immunohistochemistry (IHC) revealed that the hippocampal regions CA1, CA3 and dentate gyrus (DG) exhibited high levels of immunoreactive aromatase staining, with aromatase being co-localized primarily in neurons in non-ischemic animals. Following GCI, aromatase became highly expressed in GFAP-positive astrocytes in the hippocampal CA1 region at 2–3 days post GCI reperfusion. An ELISA for E2 and IHC for E2 confirmed the GCI-induced elevation of local E2 in the CA1 region and that the increase in local E2 occurred in astrocytes. Furthermore, central administration of aromatase antisense (AS) oligonucleotides, but not missense (MS) oligonucleotides, blocked the increase in aromatase and local E2 in astrocytes after GCI, and resulted in a significant increase in GCI-induced hippocampal CA1 region neuronal cell death and neuroinflammation. As a whole, these results suggest that brain-derived E2 exerts important neuroprotective and anti-inflammatory actions in the hippocampal CA1 region following GCI. PMID:24508637

  4. Opposite effects of acute ethanol exposure on GAP-43 and BDNF expression in the hippocampus versus the cerebellum of juvenile rats

    PubMed Central

    Kulkarny, V.V.; Wiest, N. E; Marquez, C.P.; Nixon, S. C.; Valenzuela, C.F.; Perrone-Bizzozero, N.I.

    2011-01-01

    The adolescent brain is particularly vulnerable to the effects of alcohol, with intoxications at this developmental age often producing long-lasting effects. The present study addresses the effects of a single acute ethanol exposure on GAP-43 and BDNF gene expression in neurons in the cerebellum and hippocampus of adolescent rats. Male postnatal day 23 (P23) Sprague-Dawley rats were exposed to ethanol vapors for two hours and after a recovery period of two hours, the cerebellum and hippocampus were harvested and samples were taken for blood alcohol concentration (BAC) determinations. We found that this exposure resulted in a mean BAC of 174 mg/dl, which resembles levels in human adolescents after binge drinking. Analyses of total RNA and protein by qRT-PCR and western blotting, respectively, revealed that this single ethanol exposure significantly decreased the levels of GAP-43 mRNA and protein in the cerebellum but increased the levels of mRNA and protein in the hippocampus. BDNF mRNA and protein levels were also increased in the hippocampus but not in the cerebellum of these animals. In situ hybridizations revealed that GAP-43 and BDNF mRNA levels were primarily increased by alcohol exposure in hippocampal dentate granule cells and CA3 neurons. Overall, the reported alterations in the expression of the plasticity-associated genes GAP-43 and BDNF in juvenile rats are consistent with the known deleterious effects of binge drinking on motor coordination and cognitive function. PMID:21367572

  5. Single-Prolonged Stress Induces Endoplasmic Reticulum - Dependent Apoptosis in the Hippocampus in a Rat Model of Post-Traumatic Stress Disorder

    PubMed Central

    Han, Fang; Yan, Shengnan; Shi, YuXiu

    2013-01-01

    Background Our previous research indicated that apoptosis induced atrophy in the hippocampus of post-traumatic stress disorder (PTSD) rats. Endoplasmic reticulum (ER) stress-induced apoptosis has been implicated in the development of several disorder diseases. The aim of this study was to investigate whether endoplasmic reticulum-related pathway is involved in single-prolonged stress (SPS) induces apoptosis in the hippocampus of PTSD rats by examining the expression levels of three important indicators in the ER-related apoptotic pathway: Glucose-regulated protein (GRP) 78, caspase-12 and Ca2+/CaM/CaMkinaseIIα (CaMkIIα). Methods Wistar rats were sacrificed at 1, 4 and 7 days after SPS. SPS is a reliable animal model of PTSD. The apoptotic cells in the hippocampus were assessed by TUNEL method and transmission electron microscopy (TEM). Free intracellular Ca2+ concentration was measured. GRP78 expression was examined by immunohistochemistry, western blotting and RT-PCR. mRNA of caspase-12 and CaM/CaMkIIα were determined by RT-PCR. Results Our results showed that apoptotic cells were increased in the SPS rats. TEM analysis revealed characteristic morphological changes of apoptosis in these cells. We observed that GRP78 was significantly up-regulated during early PTSD, and then recovered at 7 days after SPS. By RT-PCR, we observed that the change in caspase-12 expression level was similar to that in GRP78. Moreover, the free intracellular Ca2+ concentration was significantly higher at 1 day after SPS and decreased in 7 days. CaM expression increased significantly, while CaMKIIα expression decreased significantly in the hippocampus at 1 day after SPS. Conclusion SPS induced change in the expression levels of GRP78, caspase-12 and Ca2+/CaM/CaMkIIα in the hippocampus of PTSD rats indicated that the endoplasmic reticulum pathway may be involved in PTSD-induced apoptosis. PMID:23894451

  6. Vortioxetine promotes early changes in dendritic morphology compared to fluoxetine in rat hippocampus.

    PubMed

    Chen, Fenghua; du Jardin, Kristian Gaarn; Waller, Jessica A; Sanchez, Connie; Nyengaard, Jens R; Wegener, Gregers

    2016-02-01

    Preclinical studies reveal that the multimodal antidepressant vortioxetine enhances long-term potentiation and dendritic branching compared to a selective serotonin reuptake inhibitor (SSRI). In the present study, we investigated vortioxetine׳s effects on spines and dendritic morphology in rat hippocampus at two time points compared to the SSRI, fluoxetine. Rats were dosed for 1 and 4 weeks with vortioxetine and fluoxetine at doses relevant for antidepressant activity. Dendritic morphology of pyramidal neurons (i.e., dendritic length, dendritic branch, spine number and density, and Sholl analysis) was examined in Golgi-stained sections from hippocampal CA1. After 1 week of treatment, vortioxetine significantly increased spine number (apical and basal dendrites), spine density (only basal), dendritic length (only apical), and dendritic branch number (apical and basal), whereas fluoxetine had no effect. After 4 weeks of treatment, vortioxetine significantly increased all measures of dendritic spine morphology as did fluoxetine except for spine density of basal dendrites. The number of intersections in the apical and basal dendrites was also significantly increased for both treatments after 4 weeks compared to control. In addition, 4 weeks of vortioxetine treatment, but not fluoxetine, promoted a decrease in spine neck length. In conclusion, 1-week vortioxetine treatment induced changes in spine number and density and dendritic morphology, whereas an equivalent dose of fluoxetine had no effects. Decreased spine neck length following 4-week vortioxetine treatment suggests a transition to mature spine morphology. This implies that vortioxetine׳s effects on spine and dendritic morphology are mediated by mechanisms that go beyond serotonin reuptake inhibition. PMID:26711685

  7. Biopersistence of PEGylated Carbon Nanotubes Promotes a Delayed Antioxidant Response after Infusion into the Rat Hippocampus

    PubMed Central

    Dal Bosco, Lidiane; Weber, Gisele E.; Parfitt, Gustavo M.; Cordeiro, Arthur P.; Sahoo, Sangram K.; Fantini, Cristiano; Klosterhoff, Marta C.; Romano, Luis Alberto; Furtado, Clascídia A.; Santos, Adelina P.; Monserrat, José M.; Barros, Daniela M.

    2015-01-01

    Carbon nanotubes are promising nanomaterials for the diagnosis and treatment of brain disorders. However, the ability of these nanomaterials to cross cell membranes and interact with neural cells brings the need for the assessment of their potential adverse effects on the nervous system. This study aimed to investigate the biopersistence of single-walled carbon nanotubes functionalized with polyethylene glycol (SWCNT-PEG) directly infused into the rat hippocampus. Contextual fear conditioning, Y-maze and open field tasks were performed to evaluate the effects of SWCNT-PEG on memory and locomotor activity. The effects of SWCNT-PEG on oxidative stress and morphology of the hippocampus were assessed 1 and 7 days after infusion of the dispersions at 0.5, 1.0 and 2.1 mg/mL. Raman analysis of the hippocampal homogenates indicates the biopersistence of SWCNT-PEG in the hippocampus 7 days post-injection. The infusion of the dispersions had no effect on the acquisition or persistence of the contextual fear memory; likewise, the spatial recognition memory and locomotor activity were not affected by SWCNT-PEG. Histological examination revealed no remarkable morphological alterations after nanomaterial exposure. One day after the infusion, SWCNT-PEG dispersions at 0.5 and 1.0 mg/mL were able to decrease total antioxidant capacity without modifying the levels of reactive oxygen species or lipid hydroperoxides in the hippocampus. Moreover, SWCNT-PEG dispersions at all concentrations induced antioxidant defenses and reduced reactive oxygen species production in the hippocampus at 7 days post-injection. In this work, we found a time-dependent change in antioxidant defenses after the exposure to SWCNT-PEG. We hypothesized that the persistence of the nanomaterial in the tissue can induce an antioxidant response that might have provided resistance to an initial insult. Such antioxidant delayed response may constitute an adaptive response to the biopersistence of SWCNT-PEG in the

  8. Alterations of p75 neurotrophin receptor and Myelin transcription factor 1 in the hippocampus of perinatal phencyclidine treated rats.

    PubMed

    Andrews, Jessica L; Newell, Kelly A; Matosin, Natalie; Huang, Xu-Feng; Fernandez-Enright, Francesca

    2015-12-01

    Postnatal administration of phencyclidine (PCP) in rodents causes major disturbances to neurological processes resulting in severe modifications to normal behavioral traits into adulthood. It is routinely used to model psychiatric disorders such as schizophrenia, producing many of the dysfunctional processes in the brain that are present in this devastating disorder, including elevated levels of apoptosis during neurodevelopment and disruptions to myelin and plasticity processes. Lingo-1 (or Leucine-rich repeat and immunoglobulin domain-containing protein) is responsible for negatively regulating neurite outgrowth and the myelination of axons. Recent findings using a postmortem human brain cohort showed that Lingo-1 signaling partners in the Nogo receptor (NgR)/p75/TNF receptor orphan Y (TROY) signaling complex, and downstream signaling partners With No Lysine (K) (WNK1) and Myelin transcription factor 1 (Myt1), play a significant part in schizophrenia pathophysiology. Here we have examined the implication of Lingo-1 and its signaling partners in a neurodevelopmental model of schizophrenia using PCP to determine if these pathways are altered in the hippocampus throughout different stages of neurodevelopment. Male Sprague-Dawley rats were injected subcutaneously with PCP (10mg/kg) or saline solution on postnatal days (PN) 7, 9, and 11. Rats (n=6/group) were sacrificed at PN12, 5weeks, or 14weeks. Relative expression levels of Lingo-1 signaling proteins were examined in the hippocampus of the treated rats. p75 and Myt1 were decreased (0.001≤p≤0.011) in the PCP treated rats at PN12. There were no significant changes in any of the tested proteins at 5weeks (p>0.05). At 14weeks, p75, TROY, and Myt1 were increased in the PCP treated rats (0.014≤p≤0.022). This is the first report of an alteration in Lingo-1 signaling proteins in the rat hippocampus, both directly after PCP treatment in early development and in adulthood. Based on our results, we propose that

  9. Differential effects of benzodiazepines on phospholipid methylation in hippocampus and cerebellum of rats

    SciTech Connect

    Tacconi, M.T.; Salmona, M.

    1988-01-01

    To elucidate the relationship between the occupancy of BDZ binding sites and phospholipid methylation in brain, the authors examined phosphatidylethanolamine-N-methyltransferase (PEMT) activity in synaptosomes of rat hippocampi and cerebella in the presence of BDZ ligands with different modes of action. We found that Ro 5-4864, a specific ligand for peripheral type receptors, increased PL methylation in hippocampal and cerebellar synaptosomes. This effect was directly related to receptor occupancy, since the specific antagonist PK11195 inhibited the rise in PEMT activity induced by Ro 5-4864. Clonazepam, on the other hand, tended to reduce PL production in cerebellum and hippocampus except for hiccocampal (/sup 3/H)-phosphatidyl-N-monomethylethanolamine which was elevated by 40 to 70% at doses ranging from 10/sup -9/ to 10/sup -6/M. When equimolar concentrations of the antagonist Ro 15-1788 were given in association the clonazepam-induced phosphatidyl-N-monomethylethanolamine increase was reduced by 70%. These data support the involvement of structural and functional membrane alterations in the action of BDZ. 20 references, 2 figures, 2 tables.

  10. Genetic predisposition and early life experience interact to determine glutamate transporter (GLT1) and solute carrier family 12 member 5 (KCC2) levels in rat hippocampus.

    PubMed

    Sterley, Toni-Lee; Howells, Fleur M; Dimatelis, Jacqueline J; Russell, Vivienne A

    2016-02-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most common child psychiatric disorders. While it is typically treated with medications that target dopamine and norepinephrine transmission, there is increasing evidence that other neurotransmitter systems, such as glutamate and GABA, may be involved. The aetiology of ADHD is unknown; however, there is evidence that early life stress may contribute to the development of the disorder. In the present study we used proteomic analysis (iTRAQ) followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and Western blot analysis to investigate hippocampal protein profiles of three rat strains: an animal model of ADHD, spontaneously hypertensive rats (SHR), their control Wistar-Kyoto rats (WKY), and Sprague-Dawley rats (SD). We additionally investigated how these protein profiles are affected by maternal separation, a model of early life stress. Our findings show that solute carrier family 12 member 5 (KCC2) is increased in SHR hippocampus. The glutamate transporter GLT1 splice variant, GLT1b, was increased (proteomic analysis) while total GLT1 (comprised mostly of GLT1a splice variant) was reduced (Western blot analysis) in SHR hippocampus, compared to WKY and SD--a pattern that is consistent with elevated extracellular glutamate levels. Maternal separation increased total GLT1 in hippocampi of SHR, WKY, and SD, and reduced GLT1b in SHR hippocampus. Together these findings provide evidence for disturbed glutamatergic and GABAergic transmission in SHR hippocampus, maternal separation effects on glutamate uptake in hippocampi of all three strains, as well a unique effect of maternal separation on GLT1b levels in SHR hippocampus. These data suggest significant involvement of glutamatergic and GABAergic transmission in the neuropathophysiology of ADHD, and implicates changes in glutamatergic transmission as a result of early life stress. PMID:26464063

  11. Blueberry polyphenols attenuate kainic acid-induced decrements in cognition and alter inflammatory gene expression in rat hippocampus

    PubMed Central

    Shukitt-Hale, Barbara; Lau, Francis C.; Carey, Amanda N.; Galli, Rachel L.; Spangler, Edward L.; Ingram, Donald K.; Joseph, James A.

    2016-01-01

    Cognitive impairment in age-related neurodegenerative diseases such as Alzheimer's disease may be partly due to long-term exposure and increased susceptibility to inflammatory insults. In the current study, we investigated whether polyphenols in blueberries can reduce the deleterious effects of inflammation induced by central administration of kainic acid by altering the expression of genes associated with inflammation. To this end, 4-month-old male Fischer-344 (F344) rats were fed a control, 0.015% piroxicam (an NSAID) or 2% blueberry diet for 8 weeks before either Ringer's buffer or kainic acid was bilaterally micro-infused into the hippocampus. Two weeks later, following behavioral evaluation, the rats were killed and total RNA from the hippocampus was extracted and used in real-time quantitative RT-PCR (qRT-PCR) to analyze the expression of inflammation-related genes. Kainic acid had deleterious effects on cognitive behavior as kainic acid-injected rats on the control diet exhibited increased latencies to find a hidden platform in the Morris water maze compared to Ringer's buffer-injected rats and utilized non-spatial strategies during probe trials. The blueberry diet, and to a lesser degree the piroxicam diet, was able to improve cognitive performance. Immunohistochemical analyses of OX-6 expression revealed that kainic acid produced an inflammatory response by increasing the OX-6 positive areas in the hippocampus of kainic acid-injected rats. Kainic acid up-regulated the expression of the inflammatory cytokines IL-1β and TNF-α, the neurotrophic factor IGF-1, and the transcription factor NF-κB. Blueberry and piroxicam supplementations were found to attenuate the kainic acid-induced increase in the expression of IL-1β, TNF-α, and NF-κB, while only blueberry was able to augment the increased IGF-1 expression. These results indicate that blueberry polyphenols attenuate learning impairments following neurotoxic insult and exert anti-inflammatory actions

  12. The spiking component of oscillatory extracellular potentials in the rat hippocampus

    PubMed Central

    Schomburg, Erik W.; Anastassiou, Costas A.; Buzsáki, György; Koch, Christof

    2012-01-01

    When monitoring neural activity using intracranial electrical recordings, researchers typically consider the signals to have two primary components: fast action potentials (AP) from neurons near the electrode, and the slower local field potential (LFP), thought to be dominated by postsynaptic currents integrated over a larger volume of tissue. In general, a decrease in signal power with increasing frequency is observed for most brain rhythms. 100–200 Hz oscillations in the rat hippocampus, including ‘fast gamma’ or ‘epsilon’ oscillations and sharp wave-ripples (SPW-R), are one exception, showing an increase in power with frequency within this band. We have employed detailed biophysical modeling to investigate the composition of extracellular potentials during fast oscillations in rat CA1. We find that postsynaptic currents exhibit a decreasing ability to generate large amplitude oscillatory signals at high frequencies, whereas phase-modulated spiking shows the opposite trend. Our estimates indicate that APs and postsynaptic currents contribute similar proportions of the power contained in 140–200 Hz ripples, and the two combined generate a signal that closely resembles in vivo SPW-Rs. Much of the AP-generated signal originates from neurons further than 100 μm from the recording site, consistent with ripples appearing similarly strong regardless of whether or not they contain recognizable APs. Additionally, substantial power can be generated in the 90–150 Hz epsilon band by the APs from rhythmically firing pyramidal neurons. Thus, high frequency LFPs may generally contain signatures of local cell assembly activation. PMID:22915121

  13. Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in Rat's Hippocampus during Morphine Withdrawal

    PubMed Central

    Ahmadi, Shamseddin; Amiri, Shahin; Rafieenia, Fatemeh; Rostamzadeh, Jalal

    2013-01-01

    Introduction Calcium/calmodulin-dependent protein kinase II (CaMKII) which is highly expressed in the hippocampus is known to play a pivotal role in reward-related memories and morphine dependence. Methods In the present study, repeated morphine injections once daily for 7 days was done to induce morphine tolerance in male Wistar rats, after which gene expression profile of α-isoform of CaMKII (CaMKIIα) in the hippocampus was evaluated upon discontinuation of morphine injection over 21 days of morphine withdrawal. Control groups received saline for 7 consecutive days. For gene expression study, rats’ brains were removed and the hippocampus was dissected in separate groups on days 1, 3, 7, 14, and 21 since discontinuation of of morphine injection. A semi-quantitative RT-PCR method was used to evaluate the gene expression profile. Results Tolerance to morphine was verified by a significant decrease in morphine analgesia in a hotplate test on day 8 (one day after the final repeated morphine injections). Results showed that gene expression of CaMKIIα at mRNA level on day 1, 3, 7, 14 and 21 of morphine withdrawal was significantly altered as compared to the saline control group. Post hoc Tukey's test revealed a significantly enhanced CaMKIIα gene expression on day 14. Discussion It can be concluded that CaMKIIα gene expression during repeated injections of morphine is increased and this increase continues up to 14 days of withdrawal then settles at a new set point. Therefore, the strong morphine reward-related memory in morphine abstinent animals may, at least partly be attributed to, the up-regulation of CaMKIIα in the hippocampus over 14 days of morphine withdrawal. PMID:25337341

  14. APOE2 Is Associated with Spatial Navigational Strategies and Increased Gray Matter in the Hippocampus.

    PubMed

    Konishi, Kyoko; Bhat, Venkat; Banner, Harrison; Poirier, Judes; Joober, Ridha; Bohbot, Véronique D

    2016-01-01

    The Apolipoprotein E (APOE) gene has a strong association with Alzheimer's disease (AD). The ε4 allele is a well-documented genetic risk factor of AD. In contrast, the ε2 allele of the APOE gene is known to be protective against AD. Much of the focus on the APOE gene has been on the ε4 allele in both young and older adults and few studies have looked into the cognitive and brain structure correlates of the ε2 allele, especially in young adults. In the current study, we investigated the relationship between APOE genotype, navigation behavior, and hippocampal gray matter in healthy young adults. One-hundred and twenty-four healthy young adults were genotyped and tested on the 4on8 virtual maze, a task that allows for the assessment of navigation strategy. The task assesses the spontaneous use of either a hippocampus-dependent spatial strategy or a caudate nucleus-dependent response strategy. Of the 124 participants, 37 underwent structural magnetic resonance imaging (MRI). We found that ε2 carriers use a hippocampus-dependent spatial strategy to a greater extent than ε3 homozygous individuals and ε4 carriers. We also found that APOE ε2 allele carriers have more gray matter in the hippocampus compared to ε3 homozygous individuals and ε4 carriers. Our findings suggest that the protective effects of the ε2 allele may, in part, be expressed through increased hippocampus gray matter and increased use of hippocampus-dependent spatial strategies. The current article demonstrates the relationship between brain structure, navigation behavior, and APOE genotypes in healthy young adults. PMID:27468260

  15. APOE2 Is Associated with Spatial Navigational Strategies and Increased Gray Matter in the Hippocampus

    PubMed Central

    Konishi, Kyoko; Bhat, Venkat; Banner, Harrison; Poirier, Judes; Joober, Ridha; Bohbot, Véronique D.

    2016-01-01

    The Apolipoprotein E (APOE) gene has a strong association with Alzheimer’s disease (AD). The ε4 allele is a well-documented genetic risk factor of AD. In contrast, the ε2 allele of the APOE gene is known to be protective against AD. Much of the focus on the APOE gene has been on the ε4 allele in both young and older adults and few studies have looked into the cognitive and brain structure correlates of the ε2 allele, especially in young adults. In the current study, we investigated the relationship between APOE genotype, navigation behavior, and hippocampal gray matter in healthy young adults. One-hundred and twenty-four healthy young adults were genotyped and tested on the 4on8 virtual maze, a task that allows for the assessment of navigation strategy. The task assesses the spontaneous use of either a hippocampus-dependent spatial strategy or a caudate nucleus-dependent response strategy. Of the 124 participants, 37 underwent structural magnetic resonance imaging (MRI). We found that ε2 carriers use a hippocampus-dependent spatial strategy to a greater extent than ε3 homozygous individuals and ε4 carriers. We also found that APOE ε2 allele carriers have more gray matter in the hippocampus compared to ε3 homozygous individuals and ε4 carriers. Our findings suggest that the protective effects of the ε2 allele may, in part, be expressed through increased hippocampus gray matter and increased use of hippocampus-dependent spatial strategies. The current article demonstrates the relationship between brain structure, navigation behavior, and APOE genotypes in healthy young adults. PMID:27468260

  16. Role of hippocampus mitogen-activated protein kinase phosphatase-1 mRNA expression and DNA methylation in the depression of the rats with chronic unpredicted stress.

    PubMed

    Wang, Chang-Hong; Zhang, Xiao-Li; Li, Yan; Wang, Guo-Dong; Wang, Xin-Kai; Dong, Jiao; Ning, Qiu-Fen

    2015-05-01

    Stressful life events especially the chronic unpredictable stress are the obvious precipitating factors of depression. The biological information transduction in cells plays an important role in the molecular biology mechanism of depression. Mitogen-activated protein kinase phosphatase-1 (MKP-1) regulates the cell physiological activity and involves in the adjustment of neural plasticity, function, and survival. This experiment tried to explore the possible effects of MKP-1 in hippocampus on depression of rats by determining the expression of MKP-1 mRNA and DNA methylation in MKP-1 gene promoter. The animal model was established by chronic unpredictable stress, and evaluated by open-field test and weight changes. All the rats were divided into the sham stimulation, the physiological saline, and the fluoxetine (1.25, 2.50, and 5.00 mg/kg) groups randomly. The expression of MKP-1 mRNA in the hippocampus was measured by RT-PCR and the methylation of MKP-1 promoter DNA was detected by COBRA. The chronic unpredicted stress (1) increased the animal movement scores in open-field test, and fluoxetine could prevent this increasement; (2) increased the body weight, and fluoxetine could not prevent this increasement; and (3) increased MKP-1 mRNA expression in the hippocampus, and fluoxetine could prevent it. However, fluoxetine did not influence the DNA methylation of MKP-1 gene promoter in the hippocampus during the chronic unpredicted stress. MKP-1 in the hippocampus might be involved in the etiology of depression, and DNA methylation of MKP-1 gene promoter in the hippocampus did not related with the depression. PMID:25410305

  17. Gender differences in spatial learning, synaptic activity, and long-term potentiation in the hippocampus in rats: molecular mechanisms.

    PubMed

    Monfort, Pilar; Gomez-Gimenez, Belen; Llansola, Marta; Felipo, Vicente

    2015-08-19

    In tests of spatial ability, males outperform females both in rats and in humans. The mechanism underlying this gender differential learning ability and memory in spatial tasks remains unknown. Long-term potentiation (LTP) in the hippocampus is considered the basis for spatial learning and memory. The aims of this work were (a) to assess spatial learning and memory in male and female rats in the radial and Morris mazes; (b) to assess whether basal synaptic activity and LTP in the hippocampus are different in male and female rats; and (c) to identify the molecular mechanisms responsible for the gender differences in LTP. We analyzed in young male and female rats (a) performance in spatial tasks in the radial and Morris water mazes; (b) basal synaptic activity in hippocampal slices; and (c) LTP and some mechanisms modulating its magnitude. The results reported allow us to conclude that female rats show larger AMPA receptor-mediate synaptic responses under basal conditions, likely due to enhanced phosphorylation of GluR2 in Ser880 and increased amounts of GluR2-containing AMPA receptors in postsynaptic densities. In contrast, the magnitude of tetanus-induced LTP was lower in females than in males. This is due to reduced activation of soluble guanylate cyclase and the formation of cGMP, leading to lower activation of cGMP-dependent protein kinase and phosphorylation of GluR1 in Ser845, which results in lower insertion of AMPA receptors in the synaptic membrane and a lower magnitude of LTP. These mechanisms may contribute to the reduced performance of females in the radial and Morris water mazes. PMID:26098845

  18. GABAergic Interneurons are Required for Generation of Slow CA1 Oscillation in Rat Hippocampus.

    PubMed

    Xu, Yuan; Wang, Lidan; Liu, Yu-Zhang; Yang, Yan; Xue, Xiaolin; Wang, Zhiru

    2016-08-01

    Neuronal oscillations are fundamental to hippocampal function. It has been shown that GABAergic interneurons make an important contribution to hippocampal oscillations, but the underlying mechanism is not well understood. Here, using whole-cell recording in the complete hippocampal formation isolated from rats at postnatal days 14-18, we showed that GABAA receptor-mediated activity enhanced the generation of slow CA1 oscillations. In vitro, slow oscillations (0.5-1.5 Hz) were generated in CA1 neurons, and they consisted primarily of excitatory rather than inhibitory membrane-potential changes. These oscillations were greatly reduced by blocking GABAA receptor-mediated activity with bicuculline and were enhanced by increasing such activity with midazolam, suggesting that interneurons are required for oscillation generation. Consistently, CA1 fast-spiking interneurons were found to generate action potentials usually preceding those in CA1 pyramidal cells. These findings indicate a GABAA receptor-based mechanism for the generation of the slow CA1 oscillation in the hippocampus. PMID:27439706

  19. Different effects of prenatal stress on ERK2/CREB/Bcl-2 expression in the hippocampus and the prefrontal cortex of adult offspring rats.

    PubMed

    Zhu, Zeen; Sun, Hongli; Gong, Xiaojie; Li, Hui

    2016-05-25

    It has become increasingly evident that prenatal stress and its psychological and physiological concomitants are associated with the pathophysiology of mood disorders. However, the mechanisms underlying the prenatal stress-induced offspring's anxiety disorders remain unknown. We recently reported that prenatal stress enhanced anxiety-like behavior in adult offspring rat, and involved N-methyl-D-aspartate receptor subunits, including NR1 and NR2A. In the present research, using the same prenatal stress model, we measured the ERK2/CREB/Bcl-2 mRNA levels by real-time PCR. Our findings indicated that prenatal stress decreased ERK2 and CREB mRNA levels in the hippocampus and the prefrontal cortex and Bcl-2 mRNA levels in the hippocampus of offspring rat. The results showed that the abnormal ERK2, CREB, and Bcl-2 mRNA levels may be involved in the anxiety-like behavior of adult rats with prenatal stress. PMID:27096215

  20. Overactivation of NR2B-containing NMDA receptors through entorhinal-hippocampal connection initiates accumulation of hyperphosphorylated tau in rat hippocampus after transient middle cerebral artery occlusion.

    PubMed

    Xu, Cheng-Shi; Liu, An-Chun; Chen, Juan; Pan, Zhi-Yong; Wan, Qi; Li, Zhi-Qiang; Wang, Ze-Fen

    2015-08-01

    Middle cerebral artery occlusion (MCAO) induces secondary damages in the hippocampus that is remote from primary ischemic regions. Tau hyperphosphorylation is an important risk for neurodegenerative diseases. Increased tau phosphorylation has been identified in ischemic cortex, but little is known regarding the changes in the hippocampus. We showed that unilateral transient MCAO induced accumulation of hyperphosphorylated tau and concurrent dephosphorylation of glycogen synthase kinase-3β at Ser 9 in the ipsilateral hippocampus. These MCAO-induced changes were not reproduced when glutamatergic inputs from the entorhinal cortex to the hippocampus were transected; however, the changes were mimicked by intrahippocampal N-methyl-d-aspartate (NMDA) administration. Inhibition of NMDA receptor (NMDAR) subunit NR2B, but not NR2A activity in the hippocampus attenuated the accumulation of hyperphosphorylated tau and spatial cognitive impairment in MCAO rats. Together, our data suggest that overactivation of NR2B-containing NMDARs through entorhinal-hippocampal connection plays an important role in the accumulation of hyperphosphorylated tau in the hippocampus following MCAO. Glycogen synthase kinase-3β is an important protein kinase involved in NMDARs-mediated tau hyperphosphorylation. This study indicates that early inhibition of NR2B-containing NMDARs may represent a potential strategy to prevent or delay the occurrence of post-stroke dementia. Middle cerebral artery occlusion induces secondary damage in the hippocampus that is remote from primary ischemic regions. We propose that excessive activation of NR2B-containing NMDA receptors through entorhinal-hippocampal connection initiated the accumulation of hyperphosphorylated tau in the hippocampus, which subsequently induced cognitive deficit. This study provides new insights into the prospects of NR2B inhibition in stoke therapy. PMID:25903928

  1. Propofol Mitigates Learning and Memory Impairment After Electroconvulsive Shock in Depressed Rats by Inhibiting Autophagy in the Hippocampus.

    PubMed

    Li, Ping; Hao, Xue-Chao; Luo, Jie; Lv, Feng; Wei, Ke; Min, Su

    2016-01-01

    BACKGROUND The present study explored the effects of propofol on hippocampal autophagy and synaptophysin in depression-model rats undergoing electroconvulsive shock (ECS). MATERIAL AND METHODS The rat depression model was established by exposing Sprague-Dawley rats to stress for 28 consecutive days. Forty rats were assigned randomly into the depression group (group D; no treatment), the ECS group (group E), the propofol group (group P), and the propofol + ECS group (group PE). Open field tests and sucrose preference tests were applied to evaluate the depression behavior; and Morris water maze tests were used to assess the learning and memory function of the rats. Western blotting was used to detect the expression of Beclin-1 and LC3-II/I; and ELISA was applied to assess the expression of synaptophysin. RESULTS Rats in group E and group PE scored higher in the open field and sucrose preference tests compared with those in group D. Furthermore, rats in group E also had a longer escape latency, a shorter space exploration time, and increased expression of Beclin-1, LC3-II/I, and synaptophysin. Compared with group E, rats in group PE possessed a shorter escape latency, a longer space exploration time, reduced expression of Beclin-1, LC3-II/I, and synaptophysin. CONCLUSIONS Propofol could inhibit excessive ECS-induced autophagy and synaptophysin overexpression in the hippocampus, thus protecting the learning and memory functions in depressed rats after ECS. The inhibitory effects of propofol on the overexpression of synaptophysin may result from its inhibitory effects on the excessive induction of autophagy. PMID:27203836

  2. Propofol Mitigates Learning and Memory Impairment After Electroconvulsive Shock in Depressed Rats by Inhibiting Autophagy in the Hippocampus

    PubMed Central

    Li, Ping; Hao, Xue-chao; Luo, Jie; Lv, Feng; Wei, Ke; Min, Su

    2016-01-01

    Background The present study explored the effects of propofol on hippocampal autophagy and synaptophysin in depression-model rats undergoing electroconvulsive shock (ECS). Material/Methods The rat depression model was established by exposing Sprague-Dawley rats to stress for 28 consecutive days. Forty rats were assigned randomly into the depression group (group D; no treatment), the ECS group (group E), the propofol group (group P), and the propofol + ECS group (group PE). Open field tests and sucrose preference tests were applied to evaluate the depression behavior; and Morris water maze tests were used to assess the learning and memory function of the rats. Western blotting was used to detect the expression of Beclin-1 and LC3-II/I; and ELISA was applied to assess the expression of synaptophysin. Results Rats in group E and group PE scored higher in the open field and sucrose preference tests compared with those in group D. Furthermore, rats in group E also had a longer escape latency, a shorter space exploration time, and increased expression of Beclin-1, LC3-II/I, and synaptophysin. Compared with group E, rats in group PE possessed a shorter escape latency, a longer space exploration time, reduced expression of Beclin-1, LC3-II/I, and synaptophysin. Conclusions Propofol could inhibit excessive ECS-induced autophagy and synaptophysin overexpression in the hippocampus, thus protecting the learning and memory functions in depressed rats after ECS. The inhibitory effects of propofol on the overexpression of synaptophysin may result from its inhibitory effects on the excessive induction of autophagy. PMID:27203836

  3. Energy substrates protect hippocampus against endogenous glutamate-mediated neurodegeneration in awake rats.

    PubMed

    Netzahualcoyotzi, Citlalli; Tapia, Ricardo

    2014-07-01

    Excitotoxicity due to excessive glutamatergic neurotransmission is a well-studied phenomenon that has been related to the mechanisms of neuronal death occurring in some disorders of the CNS. We have previously shown that the intrahippocampal perfusion by microdialysis of 4-aminopyridine (4-AP) in rats stimulates endogenous glutamate release from nerve endings and this results in excitotoxic effects such as immediate seizures and delayed neuronal death, due to the overactivation of N-methyl-D-aspartate (NMDA) receptors. To study whether mitochondrial energy dysfunction and oxidative stress could be involved in this 4-AP-induced excitotoxicity, we evaluated in awake rats the protective effect of several energy substrates and antioxidant compounds, using microdialysis, electroencephalographic (EEG) recording and histological analysis. The 4-AP-induced behavioral and EEG seizures, which progressed to status epilepticus in about 30 min, were prevented by the NMDA receptor antagonist MK-801, whereas acetoacetate, DL- and L-β-hydroxybutyrate did not protect against seizures but increased the latency to the onset of status epilepticus; pyruvate, α-ketoglutarate and glutathione ethyl ester did not show any protective effect. 4-AP also produced nearly complete loss of pyramidal neurons in CA1 and CA3 regions of the ipsilateral hippocampus 24 h after the experiment. MK-801 totally prevented this neuronal death and the energy substrates tested protected by about 50%, whereas the antioxidants showed only a weak protection. We conclude that ketone bodies possess weak anticonvulsant effects and that energy metabolism impairment plays a more important role than oxidative stress in the delayed hippocampal neurodegeneration resulting from the excitotoxic action of 4-AP mediated by endogenous glutamate. PMID:24789366

  4. Developmental Exposure to Perchlorate Alters Synaptic Transmission in Hippocampus of the Adult Rat

    PubMed Central

    Gilbert, Mary E.; Sui, Li

    2008-01-01

    Background Perchlorate is an environmental contaminant that blocks iodine uptake into the thyroid gland and reduces thyroid hormones. This action of perchlorate raises significant concern over its effects on brain development. Objectives The purpose of this study was to evaluate neurologic function in rats after developmental exposure to perchlorate. Methods Pregnant rats were exposed to 0, 30, 300, or 1,000 ppm perchlorate in drinking water from gestational day 6 until weaning. Adult male offspring were evaluated on a series of behavioral tasks and neurophysiologic measures of synaptic function in the hippocampus. Results At the highest perchlorate dose, triiodothyronine (T3) and thyroxine (T4) were reduced in pups on postnatal day 21. T4 in dams was reduced relative to controls by 16%, 28%, and 60% in the 30-, 300-, and 1,000-ppm dose groups, respectively. Reductions in T4 were associated with increases in thyroid-stimulating hormone in the high-dose group. No changes were seen in serum T3. Perchlorate did not impair motor activity, spatial learning, or fear conditioning. However, significant reductions in baseline synaptic transmission were observed in hippocampal field potentials at all dose levels. Reductions in inhibitory function were evident at 300 and 1,000 ppm, and augmentations in long-term potentiation were observed in the population spike measure at the highest dose. Conclusions Dose-dependent deficits in hippocampal synaptic function were detectable with relatively minor perturbations of the thyroid axis, indicative of an irreversible impairment in synaptic transmission in response to developmental exposure to perchlorate. PMID:18560531

  5. Sleep deprivation reduces proliferation of cells in the dentate gyrus of the hippocampus in rats

    PubMed Central

    guzmán-marín, Ruben; Suntsova, Natalia; Stewart, Darya R; Gong, Hui; Szymusiak, Ronald; McGinty, Dennis

    2003-01-01

    The dentate gyrus (DG) of the adult hippocampus gives rise to progenitor cells, which have the potential to differentiate into neurons. To date it is not known whether sleep or sleep loss has any effect on proliferation of cells in the DG. Male rats were implanted for polysomnographic recording, and divided into treadmill sleep-deprived (SD), treadmill control (TC) and cage control (CC) groups. SD and TC rats were kept for 96 h on a treadmill that moved either for 3 s on/12 s off (SD group) or for 15 min on/60 min off (TC group) to equate total movement but permit sustained rest periods in TC animals. To label proliferating cells the thymidine analogue 5-bromo-2′-deoxyuridine (BrdU) was injected after the first 48 h of the experimental procedure in all groups (50 mg kg−1, i.p.). The percentage of time awake per day was 93.2 % in the SD group vs. 59.6 % in the TC group and 49.9 % in the CC group (P < 0.001). Stereological analysis showed that the number of BrdU-positive cells in the DG of the dorsal hippocampus was reduced by 54 % in the SD group in comparison with the TC and by 68 % in comparison with the CC group. These results suggest that sleep deprivation reduces proliferation of cells in the DG of the dorsal hippocampus. PMID:12679377

  6. Glucose injections into the dorsal hippocampus or dorsolateral striatum of rats prior to T-maze training: Modulation of learning rates and strategy selection

    PubMed Central

    Canal, Clinton E.; Stutz, Sonja J.; Gold, Paul E.

    2005-01-01

    The present experiments examined the effects of injecting glucose into the dorsal hippocampus or dorsolateral striatum on learning rates and on strategy selection in rats trained on a T-maze that can be solved by using either a hippocampus-sensitive place or striatum-sensitive response strategy. Percentage strategy selection on a probe trial (Pcrit) administered after rats achieved criterion (nine of 10 correct choices) varied by group. All groups predominately exhibited a response strategy on a probe trial administered after overtraining, i.e., after 90 trials. In experiment 1, rats that received intrahippocampal glucose injections showed enhanced acquisition of the T-maze and showed increased use of response solutions at Pcrit compared with that of unimplanted and artificial cerebral spinal fluid (aCSF)-treated groups. These findings suggest that glucose enhanced hippocampal functions to accelerate the rate of learning and the early adoption of a response strategy. In experiment 2, rats that received intrastriatal glucose injections exhibited place solutions early in training and reached criterion more slowly than did aCSF controls, with learning rates comparable to those of unoperated and operated-uninjected controls. Relative to unoperated, operated-uninjected and glucose-injected rats, rats that received intrastriatal aCSF injections showed enhanced acquisition of the T-maze and increased use of response solutions at Pcrit. The unexpected enhanced acquisition seen after striatal aCSF injections suggests at least two possible interpretations: (1) aCSF impaired striatal function, thereby releasing competition with the hippocampus and ceding control over learning to the hippocampus during early training trials; and (2) aCSF enhanced striatal functioning to facilitate striatal-sensitive learning. With either interpretation, the results indicate that intrastriatal glucose injections compensated for the aCSF-induced effect. Finally, enhanced acquisition regardless

  7. Serotonin₆ receptors in the dorsal hippocampus regulate depressive-like behaviors in unilateral 6-hydroxydopamine-lesioned Parkinson's rats.

    PubMed

    Liu, Kun-Cheng; Li, Jun-Yi; Tan, Hui-Hui; Du, Cheng-Xue; Xie, Wen; Zhang, Yu-Ming; Ma, Wei-Lin; Zhang, Li

    2015-08-01

    Preclinical studies indicate both activation and blockade of serotonin6 (5-HT6) receptors may produce antidepressant-like effects. Depression is a common symptom in Parkinson's disease (PD); however, its pathophysiology is unclear. Here we examined whether 5-HT6 receptors in the dorsal hippocampus (DH) involve in the regulation of PD-associated depression. Unilateral 6-hydroxydopamine lesions of the medial forebrain bundle in rats induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. In sham-operated rats, intra-DH injection of 5HT6 receptor agonist WAY208466 or antagonist SB258585 increased sucrose consumption and decreased immobility time, indicating the induction of antidepressant effects. In the lesioned rats, WAY208466 also produced antidepressant effects, whereas SB258585 decreased sucrose consumption and increased immobility time, indicating the induction of depressive-like behaviors. Neurochemical results showed that WAY208466 did not change dopamine (DA) levels in the medial prefrontal cortex (mPFC), DH and habenula, and noradrenaline (NA) levels in the DH and habenula in sham-operated rats, and SB258585 increased DA and NA levels in these structures. Further, WAY208466 increased DA levels in the mPFC, DH and habenula, and NA level in the habenula in the lesioned rats, and SB258585 decreased DA levels in the mPFC and habenula. Additionally, the lesion did not change the density of neuronal glutamate transporter EAAC1/5-HT6 receptor co-expressing neurons in the DH. Compared to sham-operated rats, these findings suggest that the effects of 5-HT6 receptors in PD-associated depression may be mediated through different neurochemical mechanisms, and the DH is an important site involved in these effects. PMID:25863121

  8. Dopamine receptor dysregulation in hippocampus of aged rats underlies chronic pulsatile L-Dopa treatment induced cognitive and emotional alterations.

    PubMed

    Hernández, Vito S; Luquín, Sonia; Jáuregui-Huerta, Fernando; Corona-Morales, Aleph A; Medina, Mauricio P; Ruíz-Velasco, Silvia; Zhang, Limei

    2014-07-01

    L-Dopa is the major symptomatic therapy for Parkinson's disease, which commonly occurs in elderly patients. However, the effects of chronic use on mood and cognition in old subjects remain elusive. In order to compare the effects of a chronic pulsatile L-Dopa treatment on emotional and cognitive functions in young (3 months) and old (18 months) intact rats, an L-Dopa/carbidopa treatment was administered every 12 h over 4 weeks. Rats were assessed for behavioural despair (repeated forced swimming test, RFST), anhedonia (sucrose preference test, SPT) and spatial learning (Morris water maze, MWM) in the late phase of treatment (T). Neuronal expression of Fos in the hippocampus at the early and late phases of T, as well as after MWM was studied. The density and ratio of dopamine D5r, D3r and D2r receptors were also evaluated in the hippocampus using immunohistochemistry and confocal microscopy. Young rats showed similar patterns during behavioural tests, whereas aged treated rats showed increased immobility counts in RFST, diminished sucrose liquid intake in SPT, and spatial learning impairment during MWM. Fos expression was significantly blunted in the aged treated group after MWM. The density of D5r, D3r and D2r was increased in both aged groups. The treatment reduced the ratio of D5r/D3r and D5r/D2r in both groups. Moreover, aged treated subjects had significant lower values of D5r/D3r and higher values of D5r/D2r when compared with young treated subjects. These results indicate that chronic L-Dopa treatment in itself could trigger emotional and cognitive dysfunctions in elderly subjects through dopamine receptor dysregulation. PMID:24291463

  9. Adult neurogenesis and its anatomical context in the hippocampus of three mole-rat species

    PubMed Central

    Amrein, Irmgard; Becker, Anton S.; Engler, Stefanie; Huang, Shih-hui; Müller, Julian; Slomianka, Lutz; Oosthuizen, Maria K.

    2014-01-01

    African mole-rats (family Bathyergidae) are small to medium sized, long-lived, and strictly subterranean rodents that became valuable animal models as a result of their longevity and diversity in social organization. The formation and integration of new hippocampal neurons in adult mammals (adult hippocampal neurogenesis, AHN) correlates negatively with age and positively with habitat complexity. Here we present quantitative data on AHN in wild-derived mole-rats of 1 year and older, and briefly describe its anatomical context including markers of neuronal function (calbindin and parvalbumin). Solitary Cape mole-rats (Georychus capensis), social highveld mole-rats (Cryptomys hottentotus pretoriae), and eusocial naked mole-rats (Heterocephalus glaber) were assessed. Compared to other rodents, the hippocampal formation in mole-rats is small, but shows a distinct cytoarchitecture in the dentate gyrus and CA1. Distributions of the calcium-binding proteins differ from those seen in rodents; e.g., calbindin in CA3 of naked mole-rats distributes similar to the pattern seen in early primate development, and calbindin staining extends into the stratum lacunosum-moleculare of Cape mole-rats. Proliferating cells and young neurons are found in low numbers in the hippocampus of all three mole-rat species. Resident granule cell numbers are low as well. Proliferating cells expressed as a percentage of resident granule cells are in the range of other rodents, while the percentage of young neurons is lower than that observed in surface dwelling rodents. Between mole-rat species, we observed no difference in the percentage of proliferating cells. The percentages of young neurons are high in social highveld and naked mole-rats, and low in solitary Cape mole-rats. The findings support that proliferation is regulated independently of average life expectancy and habitat. Instead, neuronal differentiation reflects species-specific demands, which appear lower in subterranean rodents. PMID

  10. Novel adenosine receptors in rat hippocampus identification and characterization

    SciTech Connect

    Chin, J.H.; Mashman, W.E.; DeLorenzo, R.J.

    1985-05-06

    2-chloro(/sup 3/H)adenosine, a stable analog of adenosine, was used to investigate the presence of adenosine receptors in rat hippocampal membranes that may mediate the depressant effects of adenosine on synaptic transmission in this tissue. Equilibrium binding studies reveal the presence of a previously undescribed class of receptors with a K/sub D/ of 4.7 ..mu..M and a Bmax of 130 pmol/mg of protein. Binding is sensitive to alkylxanthines and to a number of adenosine-related compounds. The pharmacological properties of this binding site are distinct from those of the A1 and A2 adenosine receptors associated with adenylate cyclase. The results suggest that this adenosine binding site is a novel central purinergic receptor through which adenosine may regulate hippocampal excitability. 50 references, 2 figures, 1 table.

  11. Neurochemical effects of buspirone in rat hippocampus: evidence for selective activation of 5HT neurons.

    PubMed

    Mennini, T; Gobbi, M; Ponzio, F; Garattini, S

    1986-01-01

    The effect of buspirone on neurotransmitter systems in rat hippocampus has been evaluated in vitro and in vivo. In vitro buspirone does not affect the specific binding of 3H-flunitrazepam, 3H-GABA, 3H-dexetimide, but displaces 3H-5HT binding with nanomolar affinity. Oral administration of buspirone does not modify the hippocampal concentrations of GABA, acetylcholine, choline and of 3H-flunitrazepam specifically bound in vivo, but results in a dose-dependent reduction of 5HIAA and noradrenaline concentrations. While the effect on noradrenaline is also obtained in striatum of buspirone-treated animals, the effect on 5HIAA shows a regional specificity. The in vitro and in vivo data suggest that buspirone specifically activates 5HT neurons in hippocampus, and are compared with those obtained with diazepam. PMID:2421657

  12. Beneficial effects of hyperbaric oxygen on edema in rat hippocampus following traumatic brain injury.

    PubMed

    Liu, Su; Liu, Ying; Deng, Shukun; Guo, Aisong; Wang, Xiubing; Shen, Guangyu

    2015-12-01

    Hyperbaric oxygen (HBO) therapy helps alleviate secondary injury following brain trauma [traumatic brain injury (TBI)], although the mechanisms remain unclear. In this study, we assessed recovery of post-TBI spatial learning and memory in rats using the Morris water maze (MWM) and measured changes in apparent diffusion coefficient in the hippocampus by diffusion-weighted imaging (DWI) to evaluate possible therapeutic effects of HBO on TBI-associated brain edema. DWIs were obtained 8, 24, 48 h, 7 days, and 14 days post-TBI. Daily HBO therapy significantly improved post-TBI MWM performance and reduced edema in the ipsilateral hippocampus, suggesting that the therapeutic efficacy of HBO is mediated, at least in part, by a reduction in brain edema. PMID:26267487

  13. Hippocampus and Retrograde Amnesia in the Rat Model: A Modest Proposal for the Situation of Systems Consolidation

    ERIC Educational Resources Information Center

    Sutherland, Robert J.; Sparks, Fraser T.; Lehmann, Hugo

    2010-01-01

    The properties of retrograde amnesia after damage to the hippocampus have been explicated with some success using a rat model of human medial temporal lobe amnesia. We review the results of this experimental work with rats focusing on several areas of consensus in this growing literature. We evaluate the theoretically significant hypothesis that…

  14. Proteome Analysis of Rat Hippocampus Following Morphine-induced Amnesia and State-dependent Learning

    PubMed Central

    Jafarinejad-Farsangi, Saeideh; Farazmand, Ali; Rezayof, Ameneh; Darbandi, Niloufar

    2015-01-01

    Morphine’s effects on learning and memory processes are well known to depend on synaptic plasticity in the hippocampus. Whereas the role of the hippocampus in morphine-induced amnesia and state-dependent learning is established, the biochemical and molecular mechanisms underlying these processes are poorly understood. The present study intended to investigate whether administration of morphine can change the expression level of rat hippocampal proteins during learning of a passive avoidance task. A step-through type passive avoidance task was used for the assessment of memory retention. To identify the complex pattern of protein expression induced by morphine, we compared rat hippocampal proteome either in morphine-induced amnesia or in state-dependent learning by two-dimensional gel electerophoresis and combined mass spectrometry (MS and MS/MS). Post-training administration of morphine decreased step-through latency. Pre-test administration of morphine induced state-dependent retrieval of the memory acquired under post-training morphine influence. In the hippocampus, a total of 18 proteins were identified whose MASCOT (Modular Approach to Software Construction Operation and Test) scores were inside 95% confidence level. Of these, five hippocampal proteins altered in morphine-induced amnesia and ten proteins were found to change in the hippocampus of animals that had received post-training and pre-test morphine. These proteins show known functions in cytoskeletal architecture, cell metabolism, neurotransmitter secretion and neuroprotection. The findings indicate that the effect of morphine on memory formation in passive avoidance learning has a morphological correlate on the hippocampal proteome level. In addition, our proteomicscreensuggests that morphine induces memory impairment and state-dependent learning through modulating neuronal plasticity. PMID:25901168

  15. Prohormone convertase 2 activity is increased in the hippocampus of Wfs1 knockout mice

    PubMed Central

    Tein, Karin; Kasvandik, Sergo; Kõks, Sulev; Vasar, Eero; Terasmaa, Anton

    2015-01-01

    Background: Mutations in WFS1 gene cause Wolfram syndrome, which is a rare autosomal recessive disorder, characterized by diabetes insipidus, diabetes mellitus, optic nerve atrophy, and deafness. The WFS1 gene product wolframin is located in the endoplasmic reticulum. Mice lacking this gene exhibit disturbances in the processing and secretion of peptides, such as vasopressin and insulin. In the brain, high levels of the wolframin protein have been observed in the hippocampus, amygdala, and limbic structures. The aim of this study was to investigate the effect of Wfs1 knockout (KO) on peptide processing in mouse hippocampus. A peptidomic approach was used to characterize individual peptides in the hippocampus of wild-type and Wfs1 KO mice. Results: We identified 126 peptides in hippocampal extracts and the levels of 10 peptides differed between Wfs1 KO and wild-type mice at P < 0.05. The peptide with the largest alteration was little-LEN, which level was 25 times higher in the hippocampus of Wfs1 KO mice compared to wild-type mice. Processing (cleavage) of little-LEN from the Pcsk1n gene product proSAAS involves prohormone convertase 2 (PC2). Thus, PC2 activity was measured in extracts prepared from the hippocampus of Wfs1 KO mice. The activity of PC2 in Wfs1 mutant mice was significantly higher (149.9 ± 2.3%, p < 0.0001, n = 8) than in wild-type mice (100.0 ± 7.0%, n = 8). However, Western blot analysis showed that protein levels of 7B2, proPC2 and PC2 were same in both groups, and so were gene expression levels. Conclusion: Processing of proSAAS is altered in the hippocampus of Wfs1-KO mice, which is caused by increased activity of PC2. Increased activity of PC2 in Wfs1 KO mice is not caused by alteration in the levels of PC2 protein. Our results suggest a functional link between Wfs1 and PC2. Thus, the detailed molecular mechanism of the role of Wfs1 in the regulation of PC2 activity needs further investigation. PMID:26379490

  16. Virtual water maze learning in human increases functional connectivity between posterior hippocampus and dorsal caudate.

    PubMed

    Woolley, Daniel G; Mantini, Dante; Coxon, James P; D'Hooge, Rudi; Swinnen, Stephan P; Wenderoth, Nicole

    2015-04-01

    Recent work has demonstrated that functional connectivity between remote brain regions can be modulated by task learning or the performance of an already well-learned task. Here, we investigated the extent to which initial learning and stable performance of a spatial navigation task modulates functional connectivity between subregions of hippocampus and striatum. Subjects actively navigated through a virtual water maze environment and used visual cues to learn the position of a fixed spatial location. Resting-state functional magnetic resonance imaging scans were collected before and after virtual water maze navigation in two scan sessions conducted 1 week apart, with a behavior-only training session in between. There was a large significant reduction in the time taken to intercept the target location during scan session 1 and a small significant reduction during the behavior-only training session. No further reduction was observed during scan session 2. This indicates that scan session 1 represented initial learning and scan session 2 represented stable performance. We observed an increase in functional connectivity between left posterior hippocampus and left dorsal caudate that was specific to scan session 1. Importantly, the magnitude of the increase in functional connectivity was correlated with offline gains in task performance. Our findings suggest cooperative interaction occurs between posterior hippocampus and dorsal caudate during awake rest following the initial phase of spatial navigation learning. Furthermore, we speculate that the increase in functional connectivity observed during awake rest after initial learning might reflect consolidation-related processing. PMID:25418860

  17. Robotic and neuronal simulation of the hippocampus and rat navigation.

    PubMed

    Burgess, N; Donnett, J G; Jeffery, K J; O'Keefe, J

    1997-10-29

    The properties of hippocampal place cells are reviewed, with particular attention to the nature of the internal and external signals that support their firing. A neuronal simulation of the firing of place cells in open-field environments of varying shape is presented. This simulation is coupled with an existing model of how place-cell firing can be used to drive navigation, and is tested by implementation as a miniature mobile robot. The sensors on the robot provide visual, odometric and short-range proximity data, which are combined to estimate the distance of the walls of the enclosure from the robot and the robot's current heading direction. These inputs drive the hippocampal simulation, in which the robot's location is represented as the firing of place cells. If a goal location is encountered, learning occurs in connections from the concurrently active place cells to a set of 'goal cells', which guide subsequent navigation, allowing the robot to return to an unmarked location. The system shows good agreement with actual place-cell firing, and makes predictions regarding the firing of cells in the subiculum, the effect of blocking long-term synaptic changes, and the locus of search of rats after deformation of their environment. PMID:9368942

  18. Neonatal ventral hippocampus lesion changes nuclear restricted protein/brain (NRP/B) expression in hippocampus, cortex and striatum in developmental periods of rats.

    PubMed

    Tian, Y; Yang, J; Lei, Y; Zhang, Z; Dai, Z; Chen, X; Lui, F; Zhang, J; Ling, S

    2016-04-01

    Schizophrenia is conceptualized as a neurodevelopmental disorder in which developmental alterations in immature brain systems are not clear. Rats with neonatal ventral hippocampal lesions (NVHL) can exhibit schizophrenia-like behaviors, and these rats have been widely used to study the developmental mechanisms of schizophrenia. The nuclear restricted protein/brain (NRP/B) is a nuclear matrix protein that is critical for the normal development of the neuronal system. This study assessed the effect of NVHL induced by the administration of ibotenic acid on the protein expression of NRP/B in the hippocampus, cortex and striatum in pre- and post-pubertal rats. The expressions of NeuN in various developmental periods were assessed accordingly. Sprague-Dawley rat pups were administered ibotenic acid at postnatal day (PD) 7. Western blotting and an immunofluorescence staining analysis showed that the expression of NRP/B was significantly decreased in the hippocampus, cortex and striatum of the NVHL rats at PD14, 28 and 42. The expressions of NeuN were decreased accordingly. In vitro experiment showed the NRP/B knockdown can decrease the Tuj1 expression in cultured cortical neurons. The data suggest that NVHL induces a change in NRP/B expression that affects neurons in the developmental period. PMID:26812035

  19. Fibrinogen α-chain-derived peptide is upregulated in hippocampus of rats exposed to acute morphine injection and spontaneous alternation testing

    PubMed Central

    Maki, Agatha E; Morris, Kenneth A; Catherman, Kasia; Chen, Xian; Hatcher, Nathan G; Gold, Paul E; Sweedler, Jonathan V

    2014-01-01

    Fibrinogen is a secreted glycoprotein that is synthesized in the liver, although recent in situ hybridization data support its expression in the brain. It is involved in blood clotting and is released in the brain upon injury. Here, we report changes in the extracellular levels of fibrinogen α-chain-derived peptides in the brain after injections of saline and morphine. More specifically, in order to assess hippocampus-related working memory, an approach pairing in vivo microdialysis with mass spectrometry was used to characterize extracellular peptide release from the hippocampus of rats in response to saline or morphine injection coupled with a spontaneous alternation task. Two fibrinopeptide A-related peptides derived from the fibrinogen α-chain – fibrinopeptide A (ADTGTTSEFIEAGGDIR) and a fibrinopeptide A-derived peptide (DTGTTSEFIEAGGDIR) – were shown to be consistently elevated in the hippocampal microdialysate. Fibrinopeptide A was significantly upregulated in rats exposed to morphine and spontaneous alternation testing compared with rats exposed to saline and spontaneous alternation testing (P < 0.001), morphine alone (P < 0.01), or saline alone (P < 0.01), respectively. The increase in fibrinopeptide A in rats subjected to morphine and a memory task suggests that a complex interaction between fibrinogen and morphine takes place in the hippocampus. PMID:24855564

  20. Tiliacora triandra, an Anti-Intoxication Plant, Improves Memory Impairment, Neurodegeneration, Cholinergic Function, and Oxidative Stress in Hippocampus of Ethanol Dependence Rats

    PubMed Central

    Phunchago, Nattaporn; Wattanathorn, Jintanaporn; Chaisiwamongkol, Kowit

    2015-01-01

    Oxidative stress plays an important role in brain dysfunctions induced by alcohol. Since less therapeutic agent against cognitive deficit and brain damage induced by chronic alcohol consumption is less available, we aimed to assess the effect of Tiliacora triandra extract, a plant possessing antioxidant activity, on memory impairment, neuron density, cholinergic function, and oxidative stress in hippocampus of alcoholic rats. Male Wistar rats were induced ethanol dependence condition by semivoluntary intake of alcohol for 15 weeks. Alcoholic rats were orally given T. triandra at doses of 100, 200, and 400 mg·kg−1BW for 14 days. Memory assessment was performed every 7 days while neuron density, activities of AChE, SOD, CAT, and GSH-Px and, MDA level in hippocampus were assessed at the end of study. Interestingly, the extract mitigated the increased escape latency, AChE and MDA level. The extract also mitigated the decreased retention time, SOD, CAT, and GSH-Px activities, and neurons density in hippocampus induced by alcohol. These data suggested that the extract improved memory deficit in alcoholic rats partly via the decreased oxidative stress and the suppression of AChE. Therefore, T. triandra is the potential reagent for treating brain dysfunction induced by alcohol. However, further researches are necessary to understand the detail mechanism and possible active ingredient. PMID:26180599

  1. Anti-acetylcholinesterase and Antioxidant Activities of Inhaled Juniper Oil on Amyloid Beta (1-42)-Induced Oxidative Stress in the Rat Hippocampus.

    PubMed

    Cioanca, Oana; Hancianu, Monica; Mihasan, Marius; Hritcu, Lucian

    2015-05-01

    Juniper volatile oil is extracted from Juniperus communis L., of the Cupressaceae family, also known as common juniper. Also, in aromatherapy the juniper volatile oil is used against anxiety, nervous tension and stress-related conditions. In the present study, we identified the effects of the juniper volatile oil on amyloid beta (1-42)-induced oxidative stress in the rat hippocampus. Rats received a single intracerebroventricular injection of amyloid beta (1-42) (400 pmol/rat) and then were exposed to juniper volatile oil (200 μl, either 1 or 3 %) for controlled 60 min period, daily, for 21 continuous days. Also, the antioxidant activity in the hippocampus was assessed using superoxide dismutase, glutathione peroxidase and catalase specific activities, the total content of the reduced glutathione, protein carbonyl and malondialdehyde levels. Additionally, the acetylcholinesterase activity in the hippocampus was assessed. The amyloid beta (1-42)-treated rats exhibited the following: increase of the acetylcholinesterase, superoxide dismutase and catalase specific activities, decrease of glutathione peroxidase specific activity and the total content of the reduced glutathione along with an elevation of malondialdehyde and protein carbonyl levels. Inhalation of the juniper volatile oil significantly decreases the acetylcholinesterase activity and exhibited antioxidant potential. These findings suggest that the juniper volatile oil may be a potential candidate for the development of therapeutic agents to manage oxidative stress associated with Alzheimer's disease through decreasing the activity of acetylcholinesterase and anti-oxidative mechanism. PMID:25743585

  2. Memory for frequency in rats: role of the hippocampus and medial prefrontal cortex.

    PubMed

    Kesner, R P

    1990-05-01

    On a radial arm maze rats were tested for frequency memory of specific spatial locations, a task that presumably involves the coding of temporal information. On any trial during the study phase rats were allowed to visit three different spatial locations only once and one spatial location twice. During the test phase the rats were given a choice between a spatial location that had been visited once and spatial location that had been visited twice. The rats were reinforced for selecting the twice-visited spatial location. The number of spatial locations between a repetition (lag) was varied from one to three. After extensive training rats displayed memory for frequency only for a lag of three spatial locations, i.e., they displayed a repetition lag effect. Animals then received control, medial prefrontal cortex, or hippocampal lesions. Upon subsequent retests control rats continued to display frequency memory, but animals with medial prefrontal cortex or hippocampal lesions displayed a marked impairment. These data support the idea that both the hippocampus and medial prefrontal cortex code temporal order information. PMID:2350324

  3. Lentiviral-mediated delivery of Bcl-2 or GDNF protects against excitotoxicity in the rat hippocampus.

    PubMed

    Wong, Liang-Fong; Ralph, G Scott; Walmsley, Lucy E; Bienemann, Alison S; Parham, Stephen; Kingsman, Susan M; Uney, James B; Mazarakis, Nicholas D

    2005-01-01

    Nutrient deprivation during ischemia leads to severe insult to neurons causing widespread excitotoxic damage in specific brain regions such as the hippocampus. One possible strategy for preventing neurodegeneration is to express therapeutic proteins in the brain to protect against excitotoxicity. We investigated the utility of equine infectious anemia virus (EIAV)-based vectors as genetic tools for delivery of therapeutic proteins in an in vivo excitotoxicity model. The efficacy of these vectors at preventing cellular loss in target brain areas following excitotoxic insult was also assessed. EIAV vectors generated to overexpress the human antiapoptotic Bcl-2 or growth factor glial-derived neurotrophic factor (GDNF) genes protected against glutamate-induced toxicity in cultured hippocampal neurons. In an in vivo excitotoxicity model, adult Wistar rats received a unilateral dose of the glutamate receptor agonist N-methyl-D-aspartate to the hippocampus that induced a large lesion in the CA1 region. Neuronal loss could not be protected by prior transduction of a control vector expressing beta-galactosidase. In contrast, EIAV-mediated expression of Bcl-2 and GDNF significantly reduced lesion size thus protecting the hippocampus from excitotoxic damage. These results demonstrate that EIAV vectors can be effectively used to deliver putative neuroprotective genes to target brain areas and prevent cellular loss in the event of a neurological insult. Therefore these lentiviral vectors provide potential therapeutic tools for use in cases of acute neurotrauma such as cerebral ischemia. PMID:15585409

  4. Effects of lesions to the dorsal and ventral hippocampus on defensive behaviors in rats.

    PubMed

    Pentkowski, Nathan S; Blanchard, D Caroline; Lever, Colin; Litvin, Yoav; Blanchard, Robert J

    2006-04-01

    This study investigated the role of the hippocampus in both unconditioned and conditioned defensive behaviors by examining the effects of pretraining ibotenic acid lesions to the dorsal and ventral hippocampus in male Long-Evans hooded rats exposed to three types of threat stimuli: cat-odor, a live cat and footshock. Defensive behaviors were assessed during exposure to cat-odor and a live cat, and immediately following the presentation of footshock. Conditioned defensive behaviors were also assessed in each context 24 h after initial threat exposure. During both unconditioned and conditioned trials, dorsal hippocampal lesions failed to significantly alter any behavioral measure in each test of defense. In contrast, ventral hippocampal lesions significantly reduced unconditioned defensive behaviors during exposure to cat-odor without producing any observable effects during cat exposure. Furthermore, ventral lesions significantly attenuated conditioned defensive behaviors following the administration of footshock and during re-exposure to each context. These results suggest a specific role for the ventral, not dorsal, hippocampus in modulating anxiety-like behaviors in certain animal models of defense. PMID:16630065

  5. Neuroprotective effects of various doses of topiramate against methylphenidate induced oxidative stress and inflammation in rat isolated hippocampus.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh; Shabab, Behnaz

    2016-03-01

    Methylphenidate (MPH) abuse causes neurodegeneration. The neuroprotective effects of topiramate (TPM) have been reported but its putative mechanism remains unclear. The current study evaluates the role of various doses of TPM on protection of rat hippocampal cells from MPH-induced oxidative stress and inflammation in vivo. Seventy adult male rats were divided into six groups. Group 1 received normal saline (0.7 mL/rat) and group 2 was injected with MPH (10 mg/kg) for 21 days. Groups 3, 4, 5, 6 and 7 concurrently were treated by MPH (10 mg/kg) and TPM (10, 30, 50, 70 and 100 mg/kg, intraperitoneally (i.p.)), respectively for 21 days. After drug administration, the open field test (OFT) was used to investigate motor activity. Oxidative, antioxidant and inflammatory factors were measured in isolated hippocampus. Also, the brain-derived neurotrophic factor (BDNF) level was measured by reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting. Cresyl violet staining of Dentate Gyrus (DG) and CA1 cell layers of the hippocampus were also performed. MPH significantly disturbs motor activity in OFT and TPM (70 and 100 mg/kg) decreased this disturbance. Also MPH significantly increased lipid peroxidation, mitochondrial reduced state of glutathione (GSH) level, interleukin (IL)-1β and tumour necrosis factor (TNF)-α and BDNF level in isolated hippocampal cells. Also superoxide dismutase, glutathione peroxidase and glutathione reductase activity significantly decreased. Various doses of TPM attenuated these effects and significantly decreased MPH-induced oxidative damage, inflammation and hippocampal cell loss and increased BDNF level. This study suggests that TPM has the potential to be used as a neuroprotective agent against oxidative stress and neuroinflammation induced by frequent use of MPH. PMID:26718459

  6. Trimethyltin Modulates Reelin Expression and Endogenous Neurogenesis in the Hippocampus of Developing Rats.

    PubMed

    Toesca, Amelia; Geloso, Maria Concetta; Mongiovì, Adriana Maria; Furno, Alfredo; Schiattarella, Arcangelo; Michetti, Fabrizio; Corvino, Valentina

    2016-07-01

    Reelin is an extracellular matrix glycoprotein involved in the modulation of synaptic plasticity and essential for the proper radial migration of cortical neurons during development and for the integration and positioning of dentate granular cell progenitors; its expression is down-regulated as brain maturation is completed. Trimethyltin (TMT) is a potent neurotoxicant which causes selective neuronal death mainly localised in the CA1-CA3/hilus hippocampal regions. In the present study we analysed the expression of reelin and the modulation of endogenous neurogenesis in the postnatal rat hippocampus during TMT-induced neurodegeneration (TMT 6 mg/kg). Our results show that TMT administration induces changes in the physiological postnatal decrease of reelin expression in the hippocampus of developing rats. In particular, quantitative analysis of reelin-positive cells evidenced, in TMT-treated animals, a persistent reelin expression in the stratum lacunosum moleculare of Cornu Ammonis and in the molecular layer of Dentate Gyrus. In addition, a significant decrease in the number of bromodeoxyuridine (BrdU)-labeled newly-generated cells was also detectable in the subgranular zone of P21 TMT-treated rats compared with P21 control animals; no differences between P28 TMT-treated rats and age-matched control group were observed. In addition the neuronal commitment of BrdU-positive cells appeared reduced in P21 TMT-treated rats compared with P28 TMT-treated animals. Thus TMT treatment, administrated during development, induces an early reduction of endogenous neurogenesis and influences the hippocampal pattern of reelin expression in a temporally and regionally specific manner, altering the physiological decrease of this protein. PMID:26915108

  7. High sucrose consumption induces memory impairment in rats associated with electrophysiological modifications but not with metabolic changes in the hippocampus.

    PubMed

    Lemos, C; Rial, D; Gonçalves, F Q; Pires, J; Silva, H B; Matheus, F C; da Silva, A C; Marques, J M; Rodrigues, R J; Jarak, I; Prediger, R D; Reis, F; Carvalho, R A; Pereira, F C; Cunha, R A

    2016-02-19

    High sugar consumption is a risk factor for metabolic disturbances leading to memory impairment. Thus, rats subject to high sucrose intake (HSu) develop a metabolic syndrome and display memory deficits. We now investigated if these HSu-induced memory deficits were associated with metabolic and electrophysiological alterations in the hippocampus. Male Wistar rats were submitted for 9 weeks to a sucrose-rich diet (35% sucrose solution) and subsequently to a battery of behavioral tests; after sacrifice, their hippocampi were collected for ex vivo high-resolution magic angle spinning (HRMAS) metabolic characterization and electrophysiological extracellular recordings in slices. HSu rats displayed a decreased memory performance (object displacement and novel object recognition tasks) and helpless behavior (forced swimming test), without altered locomotion (open field). HRMAS analysis indicated a similar hippocampal metabolic profile of HSu and control rats. HSu rats also displayed no change of synaptic transmission and plasticity (long-term potentiation) in hippocampal Schaffer fibers-CA1 pyramid synapses, but had decreased amplitude of long-term depression in the temporoammonic (TA) pathway. Furthermore, HSu rats had an increased density of inhibitory adenosine A1 receptors (A1R), that translated into a greater potency of A1R in Schaffer fiber synapses, but not in the TA pathway, whereas the endogenous activation of A1R in HSu rats was preserved in the TA pathway but abolished in Schaffer fiber synapses. These results suggest that HSu triggers a hippocampal-dependent memory impairment that is not associated with altered hippocampal metabolism but is probably related to modified synaptic plasticity in hippocampal TA synapses. PMID:26704636

  8. Decreased proliferation in the adult rat hippocampus after exposure to the Morris water maze and its reversal by fluoxetine.

    PubMed

    Námestková, Katerina; Simonová, Zuzana; Syková, Eva

    2005-08-30

    Granular cell proliferation in the adult hippocampus decreases during aging and after chronic stress, while it can be increased by physical activity or treatment with the antidepressant fluoxetine. We investigated whether the physical and cognitive stimulation accompanied by stress in the commonly used Morris water maze affects the rate of proliferation and whether the induced changes can be influenced by antidepressant treatment with fluoxetine. Proliferating cells in the dentate gyrus were labeled by three injections of BrdU during the 24h preceding sacrifice. Early differentiation to neuronal progeny was studied by immunohistochemical staining for doublecortin (DCX), a microtubule binding protein expressed in newborn neurons. Acquisition learning in the water maze for 15 days caused a significant decrease in granular cell proliferation in the granular cell layer of the hippocampus. The decrease in the number of BrdU- and DCX-positive cells was reversed to control levels by the use of fluoxetine during the water maze training. Fluoxetine treatment alone increased the number of BrdU-positive cells, but did not increase the number of DCX-positive cells. We conclude that the exposure of adult male rats to water maze acquisition trials is a stressful experience that significantly suppresses the production of new granular cells and that this stressful effect can be blocked by the concomitant administration of the antidepressant fluoxetine. PMID:15941600

  9. Evaluation of Bax and Bcl-2 Proteins Expression in the Rat Hippocampus due to Childhood Febrile Seizure

    PubMed Central

    SAEEDI BORUJENI, Mohammad Javad; HAMI, Javad; HAGHIR, Hossein; RASTIN, Maryam; SAZEGAR, Ghasem

    2016-01-01

    Objective Simple Febrile Seizure (SFS) is the most common seizure disorder in childhood, and is frequently described as inoffensive disorder. Nevertheless, there is evidence suggesting the association between neonatal febrile seizures and hippocampal abnormalities in adulthood. This study was conducted at evaluating the hippocampal expression of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins following SFS induction in rat neonates. Materials & Methods Febrile seizure was modeled by hyperthermia-induced seizure in 22-dayold male rats by a hot water bath. The animals were divided into two groups based on the presence or absence of seizure behaviors: Hyperthermia without seizure (n=10) and hyperthermia with seizure (n=10). To control the effects of environmental stress a sham-control group was also added (n=10). The rats’ hippocampi were dissected 2 or 15 days after hyperthermia. The expression of Bax and Bcl-2 proteins were measured using Western Blotting technique. Results The hippocampal expression of Bcl-2 protein was significantly lower in the hyperthermia with seizure animals than that of the sham-control and hyperthermia without seizure groups. The expression of pro-apoptotic Bax protein also significantly increased in the hippocampus of hyperthermia with seizure group rats compared to the sham-control and hyperthermia without seizure animals. Conclusion The simple febrile seizure markedly disturbed the hippocampal expression of both Bcl2 and Bax proteins, resulting in apoptosis promotion in hippocampi of juvenile rats, which were measurable for at least 15 days. PMID:27057189

  10. Expression profile of 30,000 genes in rat hippocampus using SAGE.

    PubMed

    Datson, N A; van der Perk, J; de Kloet, E R; Vreugdenhil, E

    2001-01-01

    Using the serial analysis of gene expression (SAGE) method, we generated a gene expression profile of the rat hippocampus. A total of 76,790 SAGE tags was analyzed, allowing identification of 28,748 different tag species, each representing a unique mRNA transcript. The tags were divided into different abundancy classes, ranging from tags that were detected over 500 times to tags encountered only once in the 76,790 tags analyzed. The mRNA species detected more than 50 times represented 0.3% of the total number of unique tags while accounting for 22% of the total hippocampal mRNA mass. The majority of tags were encountered 5 times or less. The genes expressed at the highest levels were of mitochondrial origin, consistent with a high requirement for energy in neuronal tissue. At a lower level of expression, several neuron-specific transcripts were encountered, encoding various neurotransmitter receptors, transporters, and enzymes involved in neurotransmitter synthesis and turnover, ion channels and pumps, and synaptic components. Comparison of relative expression levels demonstrated that glutamate receptors are the most frequent neurotransmitter receptors expressed in the hippocampus, consistent with the important role of glutamatergic neurotransmission in the hippocampus, while GABA receptors were present at approximately 10-fold lower levels. Several kinases were present including CaMKII, which was expressed at high levels, consistent with its being the most abundant protein in the spines of hippocampal pyramidal cells. This is the first extensive inventory of gene expression in the hippocampus and serves as a reference for future studies aimed at elucidating hippocampal transcriptional responses under various conditions. PMID:11530848

  11. Loss of long-term potentiation in the hippocampus after experimental subarachnoid hemorrhage in rats.

    PubMed

    Tariq, A; Ai, J; Chen, G; Sabri, M; Jeon, H; Shang, X; Macdonald, R L

    2010-01-20

    Survivors of aneurysmal subarachnoid hemorrhage (SAH) often suffer from cognitive impairment such as memory loss. However, the underlying mechanisms of these impairments are not known. Long-term potentiation (LTP) of synapses in the hippocampus is generally regarded as a molecular substrate of memory. The purpose of this study was to examine the effect of SAH on LTP in the hippocampal Schaffer collateral (CA3-CA1) pathway in a rat model of SAH. We found SAH caused significant vasospasm of the middle cerebral artery (MCA) compared to saline injected or sham controls (P<0.001). Basic neurotransmission quantified as excitatory post synaptic and spike response from animals with SAH were significantly decreased as compared to naive controls (P<0.05). However, sham operated and saline injected controls showed similar amplitude as naive controls. This suggests that reduction in basic neurotransmission is due to blood in the subarachnoid space. Similarly, analysis of LTP demonstrated that naive, sham and saline controls have a 92+/-16%, 69+/-27% and 71+/-14% increase over the baseline in the average spike amplitude following high frequency stimulation (HFS), respectively. This indicates the presence of LTP (P<0.05). In contrast, the spike amplitude in animals of SAH returned to baseline level within 60 min post HFS indicating the absence of LTP. We conclude that SAH caused vasospasm of the MCA that was associated with disrupted basic neurotransmission and plasticity at CA3-CA1 synapses. These changes might be accountable for the memory loss in humans with SAH. PMID:19854243

  12. Sprouty2 in the Dorsal Hippocampus Regulates Neurogenesis and Stress Responsiveness in Rats

    PubMed Central

    Dow, Antonia L.; Lin, Tiffany V.; Chartoff, Elena H.; Potter, David; McPhie, Donna L.; Van’t Veer, Ashlee V.; Knoll, Allison T.; Lee, Kristen N.; Neve, Rachael L.; Patel, Tarun B.; Ongur, Dost; Cohen, Bruce M.; Carlezon, William A.

    2015-01-01

    Both the development and relief of stress-related psychiatric conditions such as major depression (MD) and post-traumatic stress disorder (PTSD) have been linked to neuroplastic changes in the brain. One such change involves the birth of new neurons (neurogenesis), which occurs throughout adulthood within discrete areas of the mammalian brain, including the dorsal hippocampus (HIP). Stress can trigger MD and PTSD in humans, and there is considerable evidence that it can decrease HIP neurogenesis in laboratory animals. In contrast, antidepressant treatments increase HIP neurogenesis, and their efficacy is eliminated by ablation of this process. These findings have led to the working hypothesis that HIP neurogenesis serves as a biomarker of neuroplasticity and stress resistance. Here we report that local alterations in the expression of Sprouty2 (SPRY2), an intracellular inhibitor of growth factor function, produces profound effects on both HIP neurogenesis and behaviors that reflect sensitivity to stressors. Viral vector-mediated disruption of endogenous Sprouty2 function (via a dominant negative construct) within the dorsal HIP of adult rats stimulates neurogenesis and produces signs of stress resilience including enhanced extinction of conditioned fear. Conversely, viral vector-mediated elevation of SPRY2 expression intensifies the behavioral consequences of stress. Studies of these manipulations in HIP primary cultures indicate that SPRY2 negatively regulates fibroblast growth factor-2 (FGF2), which has been previously shown to produce antidepressant- and anxiolytic-like effects via actions in the HIP. Our findings strengthen the relationship between HIP plasticity and stress responsiveness, and identify a specific intracellular pathway that could be targeted to study and treat stress-related disorders. PMID:25822989

  13. Acetylcholinesterase Inhibitors Reduce Neuroinflammation and -Degeneration in the Cortex and Hippocampus of a Surgery Stress Rat Model

    PubMed Central

    Sifringer, Marco; Tegethoff, Annalena; Paeschke, Nadine; Kostova, Mariya; Feldheiser, Aarne; Spies, Claudia D.

    2013-01-01

    Exogenous stress like tissue damage and pathogen invasion during surgical trauma could lead to a peripheral inflammatory response and induce neuroinflammation, which can result in postoperative cognitive dysfunction (POCD). The cholinergic anti-inflammatory pathway is a neurohumoral mechanism that plays a prominent role by suppressing the inflammatory response. Treatments with acetylcholinesterase inhibitors enhance cholinergic transmission and may therefore act as a potential approach to prevent neuroinflammation. In the presence or absence of acetylcholinesterase inhibitors, adult Wistar rats underwent surgery alone or were additionally treated with lipopolysaccharide (LPS). Physostigmine, which can overcome the blood-brain barrier or neostigmine acting only peripheral, served as acetylcholinesterase inhibitors. The expression of pro- and anti-inflammatory cytokines in the cortex, hippocampus, spleen and plasma was measured after 1 h, 24 h, 3 d and 7 d using Real-Time PCR, western blot analysis or cytometric bead array (CBA). Fluoro-Jade B staining of brain slices was employed to elucidate neurodegeneration. The activity of acetylcholinesterase was estimated using a spectrofluorometric method. Surgery accompanied by LPS-treatment led to increased IL-1beta gene and protein upregulation in the cortex and hippocampus but was significantly reduced by physostigmine and neostigmine. Furthermore, surgery in combination with LPS-treatment caused increased protein expression of IL-1, TNF-alpha and IL-10 in the spleen and plasma. Physostigmine and neostigmine significantly decreased the protein expression of IL-1 and TNF-alpha. Neuronal degeneration and the activity of acetylcholinesterase were elevated after surgery with LPS-treatment and reduced by physostigmine and neostigmine. Along with LPS-treatment, acetylcholinesterase inhibitors reduce the pro-inflammatory response as well as neurodegeneration after surgery in the cortex and hippocampus. This combination may

  14. Metabolic profile of the hippocampus of Zucker Diabetic Fatty rats assessed by in vivo 1H magnetic resonance spectroscopy.

    PubMed

    van der Graaf, Marinette; Janssen, Susan W J; van Asten, Jack J A; Hermus, Ad R M M; Sweep, C G J; Pikkemaat, Jeroen A; Martens, Gerard J M; Heerschap, Arend

    2004-10-01

    Localized in vivo 1H magnetic resonance spectroscopy (MRS) was used to investigate metabolite levels in the brain of adult Zucker Diabetic Fatty (ZDF) rats, an animal model for type 2 diabetes mellitus. This study focussed on the hippocampus, assumed to be one of the main brain areas affected by this disease. Together with an almost 5-fold increase in blood glucose concentration measured by glucose oxidation, significant increases were found in the hippocampal concentrations of glucose (4.93 vs 1.66 mM p < 0.001), myo-inositol (6.52 vs 4.30 mM; p < 0.05), and total creatine (12.71 vs 10.50 mM; p < 0.05) in ZDF rats (n = 5) compared with littermates (n = 5). Although no obvious alterations were detected in the hippocampal levels of other metabolites, including NAA + NAAG and choline-containing compounds in the ZDF rats, the increase in Glc and Ins levels is in line with elevated brain tissue contents of these metabolites in patients with diabetes mellitus. PMID:15386626

  15. Estradiol and GPER Activation Differentially Affect Cell Proliferation but Not GPER Expression in the Hippocampus of Adult Female Rats

    PubMed Central

    Duarte-Guterman, Paula; Lieblich, Stephanie E.; Chow, Carmen; Galea, Liisa A. M.

    2015-01-01

    Estradiol increases cell proliferation in the dentate gyrus of the female rodent but it is not known whether the G protein-coupled estrogen receptor (GPER), a membrane receptor, is involved in this process, nor whether there are regional differences in estradiol’s effects on cell proliferation. Thus, we investigated whether estradiol exerts its effects on cell proliferation in the dorsal and ventral dentate gyrus through GPER, using the GPER agonist, G1, and antagonist, G15. Ovariectomized adult female rats received a single injection of either: 17β-estradiol (10 μg), G1 (0.1, 5, 10 μg), G15 (40 μg), G15 and estradiol, or vehicle (oil, DMSO, or oil+DMSO). After 30 min, animals received an injection of bromodeoxyuridine (BrdU) and were perfused 24 h later. Acute treatment with estradiol increased, while the GPER agonist G1 (5 μg) decreased, the number of BrdU+ cells in the dentate gyrus relative to controls. The GPER antagonist, G15 increased the number of BrdU+ cells relative to control in the dorsal region and decreased the number of BrdU+ cells in the ventral region. However, G15 treatment in conjunction with estradiol partially eliminated the estradiol-induced increase in cell proliferation in the dorsal dentate gyrus. Furthermore, G1 decreased the expression of GPER in the dentate gyrus but not the CA1 and CA3 regions of the hippocampus. In summary, we found that activation of GPER decreased cell proliferation and GPER expression in the dentate gyrus of young female rats, presenting a potential and novel estrogen-independent role for this receptor in the adult hippocampus. PMID:26075609

  16. The effect of lead exposure on expression of SIRT1 in the rat hippocampus.

    PubMed

    Feng, Chang; Gu, Junwang; Zhou, Fankun; Li, Jiaoyang; Zhu, Gaochun; Guan, Linfu; Liu, Haizhen; Du, Guihua; Feng, Jiangao; Liu, Dong; Zhang, Shuyun; Fan, Guangqin

    2016-06-01

    Based on how the silent information regulator 2 homolog 1 (SIRT1) regulates the cyclic AMP response element binding protein (CREB), which is the molecular switch of long-term memory that maintains cognitive function, it is postulated that the impact of lead (Pb) on SIRT1 is one of the mechanisms leading to Pb-induced cognitive and learning deficits. Hence, the purpose of this study was to investigate the effect of Pb exposure on the expression of SIRT1, and the reversion effect of resveratrol, which is an activator of SIRT1. We examined the effects of maternal rat ingestion of Pb in drinking water during gestation and lactation on the expression of SIRT1 and CREB in the hippocampus of their offspring at postnatal week 3 (PNW3) and 52 (PNW52), and then reexamined these effects in offspring after intragastric administration of resveratrol for 4 weeks. Pb exposure decreased SIRT1 and CREB phosphorylation in a dose-dependent manner in the rat hippocampus at both PNW3 and 52, and resveratrol reversed those losses. These results indicated that SIRT1 might be a novel target to prevent Pb neurotoxicity. PMID:27131751

  17. Long-term mild exercise training enhances hippocampus-dependent memory in rats.

    PubMed

    Inoue, K; Hanaoka, Y; Nishijima, T; Okamoto, M; Chang, H; Saito, T; Soya, H

    2015-04-01

    Although exercise training improves hippocampus-related cognition, the optimum exercise intensity is still disputed. Based on the lactate threshold (LT, approximately 20 m/min on treadmill) of rats, we have shown that 2 weeks of training with stress-free mild exercise (ME, LT), comprising exercise stress, promotes adult hippocampal neurogenesis (Okamoto et al., PNAS, 2012), a potential substrate for memory improvement. These results led us to postulate that long-term ME, but not IE, training leads to improved hippocampal function as assessed with a Morris water maze (MWM) task. To test this hypothesis, we investigated the changes in physiological stress levels and MWM task performance in rats assigned to 6 weeks of sedentary control (CONT), ME-training or IE-training conditions. Results showed that, compared to the other conditions, only IE causes general adaptive syndrome (GAS), including adrenal hypertrophy, thymic atrophy and hypercorticosteronemia. In the MWM, ME led to enhanced memory, but not learning, compared with CONT, while IE produced no change in either capacity, probably due to GAS. These findings support the hypothesis that 6 weeks of continuous ME training leads to enhanced hippocampus-related memory, which may have implications for both healthy adults and subjects with low physical capacity. PMID:25429548

  18. Temporal scaling characteristics of diffusion as a new MRI contrast: Findings in rat hippocampus

    PubMed Central

    Özarslan, Evren; Shepherd, Timothy M.; Koay, Cheng Guan; Blackband, Stephen J.; Basser, Peter J.

    2012-01-01

    Features of the diffusion-time dependence of the diffusion-weighted magnetic resonance imaging (MRI) signal provide a new contrast that could be altered by numerous biological processes and pathologies in tissue at microscopic length scales. An anomalous diffusion model, based on the theory of Brownian motion in fractal and disordered media, is used to characterize the temporal scaling (TS) characteristics of diffusion-related quantities, such as moments of the displacement and zero-displacement probabilities, in excised rat hippocampus specimens. To reduce the effect of noise in magnitude-valued MRI data, a novel numerical procedure was employed to yield accurate estimation of these quantities even when the signal falls below the noise floor. The power-law dependencies characterize the TS behavior in all regions of the rat hippocampus, providing unique information about its microscopic architecture. The relationship between the TS characteristics and diffusion anisotropy is investigated by examining the anisotropy of TS, and conversely, the TS of anisotropy. The findings suggest the robustness of the technique as well as the reproducibility of estimates. TS characteristics of the diffusion-weighted signals could be used as a new and useful marker of tissue microstructure. PMID:22306798

  19. Conserved epigenetic sensitivity to early life experience in the rat and human hippocampus.

    PubMed

    Suderman, Matthew; McGowan, Patrick O; Sasaki, Aya; Huang, Tony C T; Hallett, Michael T; Meaney, Michael J; Turecki, Gustavo; Szyf, Moshe

    2012-10-16

    Early life experience is associated with long-term effects on behavior and epigenetic programming of the NR3C1 (GLUCOCORTICOID RECEPTOR) gene in the hippocampus of both rats and humans. However, it is unlikely that such effects completely capture the evolutionarily conserved epigenetic mechanisms of early adaptation to environment. Here we present DNA methylation profiles spanning 6.5 million base pairs centered at the NR3C1 gene in the hippocampus of humans who experienced abuse as children and nonabused controls. We compare these profiles to corresponding DNA methylation profiles in rats that received differential levels of maternal care. The profiles of both species reveal hundreds of DNA methylation differences associated with early life experience distributed across the entire region in nonrandom patterns. For instance, methylation differences tend to cluster by genomic location, forming clusters covering as many as 1 million bases. Even more surprisingly, these differences seem to specifically target regulatory regions such as gene promoters, particularly those of the protocadherin α, β, and γ gene families. Beyond these high-level similarities, more detailed analyses reveal methylation differences likely stemming from the significant biological and environmental differences between species. These results provide support for an analogous cross-species epigenetic regulatory response at the level of the genomic region to early life experience. PMID:23045659

  20. Mapping parahippocampal systems for recognition and recency memory in the absence of the rat hippocampus

    PubMed Central

    Kinnavane, L; Amin, E; Horne, M; Aggleton, J P

    2014-01-01

    The present study examined immediate-early gene expression in the perirhinal cortex of rats with hippocampal lesions. The goal was to test those models of recognition memory which assume that the perirhinal cortex can function independently of the hippocampus. The c-fos gene was targeted, as its expression in the perirhinal cortex is strongly associated with recognition memory. Four groups of rats were examined. Rats with hippocampal lesions and their surgical controls were given either a recognition memory task (novel vs. familiar objects) or a relative recency task (objects with differing degrees of familiarity). Perirhinal Fos expression in the hippocampal-lesioned groups correlated with both recognition and recency performance. The hippocampal lesions, however, had no apparent effect on overall levels of perirhinal or entorhinal cortex c-fos expression in response to novel objects, with only restricted effects being seen in the recency condition. Network analyses showed that whereas the patterns of parahippocampal interactions were differentially affected by novel or familiar objects, these correlated networks were not altered by hippocampal lesions. Additional analyses in control rats revealed two modes of correlated medial temporal activation. Novel stimuli recruited the pathway from the lateral entorhinal cortex (cortical layer II or III) to hippocampal field CA3, and thence to CA1. Familiar stimuli recruited the direct pathway from the lateral entorhinal cortex (principally layer III) to CA1. The present findings not only reveal the independence from the hippocampus of some perirhinal systems associated with recognition memory, but also show how novel stimuli engage hippocampal subfields in qualitatively different ways from familiar stimuli. PMID:25264133

  1. Differential expression of postsynaptic NMDA and AMPA receptor subunits in the hippocampus and prefrontal cortex of the flinders sensitive line rat model of depression.

    PubMed

    Treccani, Giulia; Gaarn du Jardin, Kristian; Wegener, Gregers; Müller, Heidi Kaastrup

    2016-11-01

    Glutamatergic abnormalities have recently been implicated in the pathophysiology of depression, and the ionotropic glutamate receptors in particular have been suggested as possible underlying molecular determinants. The Flinders Sensitive Line (FSL) rats constitute a validated model of depression with dysfunctional regulation of glutamate transmission relatively to their control strain Flinders Resistant Line (FRL). To gain insight into how signaling through glutamate receptors may be altered in the FSL rats, we investigated the expression and phosphorylation of AMPA and NMDA receptor subunits in an enriched postsynaptic fraction of the hippocampus and prefrontal cortex. Compared to the hippocampal postsynaptic fractions of FRL rats, FSL rats exhibited decreased and increased levels of the NMDA receptor subunits GluN2A and GluN2B, respectively, causing a lower ratio of GluN2A/GluN2B. The GluA2/GluA3 AMPA receptor subunit ratio was significantly decreased while the expression of the individual GluA1, GluA2, and GluA3 subunits were unaltered including phosphorylation levels of GluA1 at S831 and S845. There were no changes in the prefrontal cortex. These results support altered expression of postsynaptic glutamate receptors in the hippocampus of FSL rats, which may contribute to the depressive-like phenotype of these rats. PMID:27262028

  2. Maternal restraint stress delays maturation of cation-chloride cotransporters and GABAA receptor subunits in the hippocampus of rat pups at puberty.

    PubMed

    Veerawatananan, Bovorn; Surakul, Pornprom; Chutabhakdikul, Nuanchan

    2016-06-01

    The GABAergic synapse undergoes structural and functional maturation during early brain development. Maternal stress alters GABAergic synapses in the pup's brain that are associated with the pathophysiology of neuropsychiatric disorders in adults; however, the mechanism for this is still unclear. In this study, we examined the effects of maternal restraint stress on the development of Cation-Chloride Cotransporters (CCCs) and the GABAA receptor α1 and α5 subunits in the hippocampus of rat pups at different postnatal ages. Our results demonstrate that maternal restraint stress induces a transient but significant increase in the level of NKCC1 (Sodium-Potassium Chloride Cotransporter 1) only at P14, followed by a brief, yet significant increase in the level of KCC2 (Potassium-Chloride Cotransporter 2) at P21, which then decreases from P28 until P40. Thus, maternal stress alters NKCC1 and KCC2 ratio in the hippocampus of rat pups, especially during P14 to P28. Maternal restraint stress also caused biphasic changes in the level of GABAA receptor subunits in the pup's hippocampus. GABAA receptor α1 subunit gradually increased at P14 then decreased thereafter. On the contrary, GABAA receptor α5 subunit showed a transient decrease followed by a long-term increase from P21 until P40. Altogether, our study suggested that the maternal restraint stress might delay maturation of the GABAergic system by altering the expression of NKCC1, KCC2 and GABAA receptor α1 and α5 subunits in the hippocampus of rat pups. These changes demonstrate the dysregulation of inhibitory neurotransmission during early life, which may underlie the pathogenesis of psychiatric diseases at adolescence. PMID:26844244

  3. Maternal restraint stress delays maturation of cation-chloride cotransporters and GABAA receptor subunits in the hippocampus of rat pups at puberty

    PubMed Central

    Veerawatananan, Bovorn; Surakul, Pornprom; Chutabhakdikul, Nuanchan

    2015-01-01

    The GABAergic synapse undergoes structural and functional maturation during early brain development. Maternal stress alters GABAergic synapses in the pup's brain that are associated with the pathophysiology of neuropsychiatric disorders in adults; however, the mechanism for this is still unclear. In this study, we examined the effects of maternal restraint stress on the development of Cation-Chloride Cotransporters (CCCs) and the GABAA receptor α1 and α5 subunits in the hippocampus of rat pups at different postnatal ages. Our results demonstrate that maternal restraint stress induces a transient but significant increase in the level of NKCC1 (Sodium–Potassium Chloride Cotransporter 1) only at P14, followed by a brief, yet significant increase in the level of KCC2 (Potassium-Chloride Cotransporter 2) at P21, which then decreases from P28 until P40. Thus, maternal stress alters NKCC1 and KCC2 ratio in the hippocampus of rat pups, especially during P14 to P28. Maternal restraint stress also caused biphasic changes in the level of GABAA receptor subunits in the pup's hippocampus. GABAA receptor α1 subunit gradually increased at P14 then decreased thereafter. On the contrary, GABAA receptor α5 subunit showed a transient decrease followed by a long-term increase from P21 until P40. Altogether, our study suggested that the maternal restraint stress might delay maturation of the GABAergic system by altering the expression of NKCC1, KCC2 and GABAA receptor α1 and α5 subunits in the hippocampus of rat pups. These changes demonstrate the dysregulation of inhibitory neurotransmission during early life, which may underlie the pathogenesis of psychiatric diseases at adolescence. PMID:26844244

  4. Gender differences and lateralization in the distribution pattern of insulin-like growth factor-1 receptor in developing rat hippocampus: an immunohistochemical study.

    PubMed

    Hami, Javad; Kheradmand, Hamed; Haghir, Hossein

    2014-03-01

    Numerous investigators have provided data supporting essential roles for insulin-like growth factor-I (IGF-I) in development of the brain. The aim of this study was to immunohistochemically determine the distinct regional distribution pattern of IGF-1 receptor (IGF-IR) expression in various portions of newborn rat hippocampus on postnatal days 0 (P0), 7 (P7), and 14 (P14), with comparison between male/female and right/left hippocampi. We found an overall significant increase in distribution of IGF-IR-positive (IGF-IR+) cells in CA1 from P0 until P14. Although, no marked changes in distribution of IGF-IR+ cells in areas CA2 and CA3 were observed; IGF-IR+ cells in DG decreased until P14. The smallest number of immunoreactive cells was present in CA2 and the highest number in DG at P0. Moreover, in CA1, CA3, and DG, the number of IGF-IR+ cells was markedly higher in both sides of the hippocampus in females. Our data also showed a higher mean number of IGF-IR+ cells in the left hippocampus of female at P7. By contrast, male pups showed a significantly higher number of IGF-IR+ cells in the DG of the right hippocampus. At P14, the mean number of immunoreactive cells in CA1, CA3, and DG areas found to be significantly increased in left side of hippocampus of males, compared to females. These results indicate the existence of a differential distribution pattern of IGF-IR between left-right and male-female hippocampi. Together with other mechanisms, these differences may underlie sexual dimorphism and left-right asymmetry in the hippocampus. PMID:24287499

  5. Hippocampal Synaptic Expansion Induced by Spatial Experience in Rats Correlates with Improved Information Processing in the Hippocampus

    PubMed Central

    Carasatorre, Mariana; Ochoa-Alvarez, Adrian; Velázquez-Campos, Giovanna; Lozano-Flores, Carlos; Díaz-Cintra, Sofía Y.; Ramírez-Amaya, Víctor

    2015-01-01

    Spatial water maze (WM) overtraining induces hippocampal mossy fiber (MF) expansion, and it has been suggested that spatial pattern separation depends on the MF pathway. We hypothesized that WM experience inducing MF expansion in rats would improve spatial pattern separation in the hippocampal network. We first tested this by using the the delayed non-matching to place task (DNMP), in animals that had been previously trained on the water maze (WM) and found that these animals, as well as animals treated as swim controls (SC), performed better than home cage control animals the DNMP task. The “catFISH” imaging method provided neurophysiological evidence that hippocampal pattern separation improved in animals treated as SC, and this improvement was even clearer in animals that experienced the WM training. Moreover, these behavioral treatments also enhance network reliability and improve partial pattern separation in CA1 and pattern completion in CA3. By measuring the area occupied by synaptophysin staining in both the stratum oriens and the stratun lucidum of the distal CA3, we found evidence of structural synaptic plasticity that likely includes MF expansion. Finally, the measures of hippocampal network coding obtained with catFISH correlate significantly with the increased density of synaptophysin staining, strongly suggesting that structural synaptic plasticity in the hippocampus induced by the WM and SC experience is related to the improvement of spatial information processing in the hippocampus. PMID:26244549

  6. Prenatal Stress Induces Long-Term Effects in Cell Turnover in the Hippocampus-Hypothalamus-Pituitary Axis in Adult Male Rats

    PubMed Central

    Baquedano, Eva; García-Cáceres, Cristina; Diz-Chaves, Yolanda; Lagunas, Natalia; Calmarza-Font, Isabel; Azcoitia, Iñigo; Garcia-Segura, Luis M.; Argente, Jesús; Chowen, Julie A.; Frago, Laura M.

    2011-01-01

    Subchronic gestational stress leads to permanent modifications in the hippocampus-hypothalamus-pituitary-adrenal axis of offspring probably due to the increase in circulating glucocorticoids known to affect prenatal programming. The aim of this study was to investigate whether cell turnover is affected in the hippocampus-hypothalamus-pituitary axis by subchronic prenatal stress and the intracellular mechanisms involved. Restraint stress was performed in pregnant rats during the last week of gestation (45 minutes; 3 times/day). Only male offspring were used for this study and were sacrificed at 6 months of age. In prenatally stressed adults a decrease in markers of cell death and proliferation was observed in the hippocampus, hypothalamus and pituitary. This was associated with an increase in insulin-like growth factor-I mRNA levels, phosphorylation of CREB and calpastatin levels and inhibition of calpain -2 and caspase -8 activation. Levels of the anti-apoptotic protein Bcl-2 were increased and levels of the pro-apoptotic factor p53 were reduced. In conclusion, prenatal restraint stress induces a long-term decrease in cell turnover in the hippocampus-hypothalamus-pituitary axis that might be at least partly mediated by an autocrine-paracrine IGF-I effect. These changes could condition the response of this axis to future physiological and pathophysiological situations. PMID:22096592

  7. Chronic stress shifts the GABA reversal potential in the hippocampus and increases seizure susceptibility.

    PubMed

    MacKenzie, Georgina; Maguire, Jamie

    2015-01-01

    The most commonly reported precipitating factor for seizures is stress. However, the underlying mechanisms whereby stress triggers seizures are not yet fully understood. Here we demonstrate a potential mechanism underlying changes in neuronal excitability in the hippocampus following chronic stress, involving a shift in the reversal potential for GABA (EGABA) associated with a dephosphorylation of the potassium chloride co-transporter, KCC2. Mice subjected to chronic restraint stress (30min/day for 14 consecutive days) exhibit an increase in serum corticosterone levels which is associated with increased susceptibility to seizures induced with kainic acid (20mg/kg). Following chronic stress, but not acute stress, we observe a dephosphorylation of KCC2 residue S940, which regulates KCC2 cell surface expression and function, in the hippocampus. To determine the impact of alterations in KCC2 expression following chronic stress, we performed gramicidin perforated patch recordings to measure changes in EGABA and neuronal excitability of principal hippocampal neurons. We observe a depolarizing shift in EGABA in hippocampal CA1 pyramidal neurons after chronic stress. In addition, there is an increase in the intrinsic excitability of CA1 pyramidal neurons, evident by a shift in the input-output curve which could be reversed with the NKCC1 inhibitor, bumetanide. These data uncover a potential mechanism involving chronic stress-induced plasticity in chloride homeostasis which may contribute to stress-induced seizure susceptibility. PMID:25524838

  8. Chronic stress shifts the GABA reversal potential in the hippocampus and increases seizure susceptibility

    PubMed Central

    MacKenzie, Georgina; Maguire, Jamie

    2014-01-01

    The most commonly reported precipitating factor for seizures is stress. However, the underlying mechanisms whereby stress triggers seizures are not yet fully understood. Here we demonstrate a potential mechanism underlying changes in neuronal excitability in the hippocampus following chronic stress, involving a shift in the reversal potential for GABA (EGABA) associated with a dephosphorylation of the potassium chloride co-transporter, KCC2. Mice subjected to chronic restraint stress (30 mins/day for 14 consecutive days) exhibit an increase in serum corticosterone levels which is associated with increased susceptibility to seizures induced with kainic acid (20 mg/kg). Following chronic stress, but not acute stress, we observe a dephosphorylation of KCC2 residue S940, which regulates KCC2 cell surface expression and function, in the hippocampus. To determine the impact of alterations in KCC2 expression following chronic stress, we performed gramicidin perforated patch recordings to measure changes in EGABA and neuronal excitability of principal hippocampal neurons. We observe a depolarizing shift in EGABA in hippocampal CA1 pyramidal neurons after chronic stress. In addition, there is an increase in the intrinsic excitability of CA1 pyramidal neurons, evident by a shift in the input-output curve which could be reversed with the NKCC1 inhibitor, bumetanide. These data uncover a potential mechanism involving chronic stress-induced plasticity in chloride homeostasis which may contribute to stress-induced seizure susceptibility. PMID:25524838

  9. L-tyrosine administration increases acetylcholinesterase activity in rats.

    PubMed

    Ferreira, Gabriela K; Carvalho-Silva, Milena; Gonçalves, Cinara L; Vieira, Júlia S; Scaini, Giselli; Ghedim, Fernando V; Deroza, Pedro F; Zugno, Alexandra I; Pereira, Talita C B; Oliveira, Giovanna M T; Kist, Luiza W; Bogo, Maurício R; Schuck, Patrícia F; Ferreira, Gustavo C; Streck, Emilio L

    2012-12-01

    Tyrosinemia is a rare genetic disease caused by mutations on genes that codify enzymes responsible for tyrosine metabolism. Considering that tyrosinemics patients usually present symptoms associated with central nervous system alterations that ranges from slight decreases in intelligence to severe mental retardation, we decided to investigate whether acute and chronic administration of L-tyrosine in rats would affect acetylcholinesterase mRNA expression and enzymatic activity during their development. In our acute protocol, Wistar rats (10 and 30 days old) were killed one hour after a single intraperitoneal L-tyrosine injection (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old) and rats were killed 12 h after last injection. Acetylcholinesterase activity was measured by Ellman's method and acetylcholinesterase expression was carried out by a semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) assay. We observed that acute (10 and 30 days old rats) and chronic L-tyrosine administration increased acetylcholinesterase activity in serum and all tested brain areas (hippocampus, striatum and cerebral cortex) when compared to control group. Moreover, there was a significant decrease in mRNA levels of acetylcholinesterase in hippocampus was observed after acute protocol (10 and 30 days old rats) and in striatum after chronic protocol. In case these alterations also occur in the brain of the patients, our results may explain, at least in part, the neurological sequelae associated with high plasma concentrations of tyrosine seen in patients affected by tyrosinemia type II. PMID:23046746

  10. Differential Local Connectivity and Neuroinflammation Profiles in the Medial Prefrontal Cortex and Hippocampus in the Valproic Acid Rat Model of Autism.

    PubMed

    Codagnone, Martín Gabriel; Podestá, María Fernanda; Uccelli, Nonthué Alejandra; Reinés, Analía

    2015-01-01

    Autism spectrum disorders (ASD) are a group of developmental disabilities characterized by impaired social interaction, communication deficit and repetitive and stereotyped behaviors. Neuroinflammation and synaptic alterations in several brain areas have been suggested to contribute to the physiopathology of ASD. Although the limbic system plays an important role in the functions found impaired in ASD, reports on these areas are scarce and results controversial. In the present study we searched in the medial prefrontal cortex (mPFC) and hippocampus of rats exposed to the valproic acid (VPA) model of ASD for early structural and molecular changes, coincident in time with the behavioral alterations. After confirming delayed growth and maturation in VPA rats, we were able to detect decreased exploratory activity and social interaction at an early time point (postnatal day 35). In mPFC, although typical cortical column organization was preserved in VPA animals, we found that interneuronal space was wider than in controls. Hippocampal CA3 (cornu ammonis 3) pyramidal layer and the granular layer of the dentate gyrus both showed a disorganized spatial arrangement in VPA animals. Neuronal alterations were accompanied with increased tomato lectin and glial fibrillary acidic protein (GFAP) immunostainings both in the mPFC and hippocampus. In the latter region, the increased GFAP immunoreactivity was CA3 specific. At the synaptic level, while mPFC from VPA animals showed increased synaptophysin (SYN) immunostaining, a SYN deficit was found in all hippocampal subfields. Additionally, both the mPFC and the hippocampus of VPA rats showed increased neuronal cell adhesion molecule (NCAM) immunostaining together with decreased levels of its polysialylated form (PSA-NCAM). Interestingly, these changes were more robust in the CA3 hippocampal subfield. Our results indicate that exploratory and social deficits correlate with region-dependent neuronal disorganization and reactive

  11. Impaired mitochondrial respiration and protein nitration in the rat hippocampus after acute inhalation of combustion smoke.

    PubMed

    Lee, Heung M; Reed, Jason; Greeley, George H; Englander, Ella W

    2009-03-01

    Survivors of massive inhalation of combustion smoke endure critical injuries, including lasting neurological complications. We have previously reported that acute inhalation of combustion smoke disrupts the nitric oxide homeostasis in the rat brain. In this study, we extend our findings and report that a 30-minute exposure of awake rats to ambient wood combustion smoke induces protein nitration in the rat hippocampus and that mitochondrial proteins are a sensitive nitration target in this setting. Mitochondria are central to energy metabolism and cellular signaling and are critical to proper cell function. Here, analyses of the mitochondrial proteome showed elevated protein nitration in the course of a 24-hour recovery following exposure to smoke. Mass spectrometry identification of several significantly nitrated mitochondrial proteins revealed diverse functions and involvement in central aspects of mitochondrial physiology. The nitrated proteins include the ubiquitous mitochondrial creatine kinase, F1-ATP synthase alpha subunit, dihydrolipoamide dehydrogenase (E3), succinate dehydrogenase Fp subunit, and voltage-dependent anion channel (VDAC1) protein. Furthermore, acute exposure to combustion smoke significantly compromised the respiratory capacity of hippocampal mitochondria. Importantly, elevated protein nitration and reduced mitochondrial respiration in the hippocampus persisted beyond the time required for restoration of normal oxygen and carboxyhemoglobin blood levels after the cessation of exposure to smoke. Thus, the time frame for intensification of the various smoke-induced effects differs between blood and brain tissues. Taken together, our findings suggest that nitration of essential mitochondrial proteins may contribute to the reduction in mitochondrial respiratory capacity and underlie, in part, the brain pathophysiology after acute inhalation of combustion smoke. PMID:19133281

  12. Impaired mitochondrial respiration and protein nitration in the rat hippocampus after acute inhalation of combustion smoke

    SciTech Connect

    Lee, Heung M.; Reed, Jason; Greeley, George H.; Englander, Ella W.

    2009-03-01

    Survivors of massive inhalation of combustion smoke endure critical injuries, including lasting neurological complications. We have previously reported that acute inhalation of combustion smoke disrupts the nitric oxide homeostasis in the rat brain. In this study, we extend our findings and report that a 30-minute exposure of awake rats to ambient wood combustion smoke induces protein nitration in the rat hippocampus and that mitochondrial proteins are a sensitive nitration target in this setting. Mitochondria are central to energy metabolism and cellular signaling and are critical to proper cell function. Here, analyses of the mitochondrial proteome showed elevated protein nitration in the course of a 24-hour recovery following exposure to smoke. Mass spectrometry identification of several significantly nitrated mitochondrial proteins revealed diverse functions and involvement in central aspects of mitochondrial physiology. The nitrated proteins include the ubiquitous mitochondrial creatine kinase, F1-ATP synthase {alpha} subunit, dihydrolipoamide dehydrogenase (E3), succinate dehydrogenase Fp subunit, and voltage-dependent anion channel (VDAC1) protein. Furthermore, acute exposure to combustion smoke significantly compromised the respiratory capacity of hippocampal mitochondria. Importantly, elevated protein nitration and reduced mitochondrial respiration in the hippocampus persisted beyond the time required for restoration of normal oxygen and carboxyhemoglobin blood levels after the cessation of exposure to smoke. Thus, the time frame for intensification of the various smoke-induced effects differs between blood and brain tissues. Taken together, our findings suggest that nitration of essential mitochondrial proteins may contribute to the reduction in mitochondrial respiratory capacity and underlie, in part, the brain pathophysiology after acute inhalation of combustion smoke.

  13. Adenosine A1 Receptor-Mediated Endocytosis of AMPA Receptors Contributes to Impairments in Long-Term Potentiation (LTP) in the Middle-Aged Rat Hippocampus.

    PubMed

    Chen, Zhicheng; Stockwell, Jocelyn; Cayabyab, Francisco S

    2016-05-01

    Aging causes multiple changes in the mammalian brain, including changes in synaptic signaling. Previous reports have shown increased extracellular adenosine in the aging brain, and we recently reported that activation of adenosine A1 receptors (A1Rs) induces AMPA receptor (AMPAR) internalization in rat hippocampus. This study investigated whether aging-related changes in the rat hippocampus include altered surface expression of adenosine A1 and A2A receptors, and whether these changes correspond to changes in AMPAR surface expression and altered synaptic plasticity. We found reduced A1R surface expression in middle-aged rat hippocampus, and also reduced GluA1 and GluA2 AMPAR subunit surface expression. Using a chemically-induced LTP (cLTP) experimental protocol, we recorded fEPSPs in young (1 month old) and middle-aged (7-12 month old) rat hippocampal slices. There were significant impairments in cLTP in middle-aged slices, suggesting impaired synaptic plasticity. Since we previously showed that the A1R agonist N(6)-cyclopentyladenosine (CPA) reduced both A1Rs and GluA2/GluA1 AMPARs, we hypothesized that the observed impaired synaptic plasticity in middle-aged brains is regulated by A1R-mediated AMPAR internalization by clathrin-mediated endocytosis. Following cLTP, we found a significant increase in GluA1 and GluA2 surface expression in young rats, which was blunted in middle-aged brains or in young brains pretreated with CPA. Blocking A1Rs with 8-cyclopentyl-1,3-dipropylxanthine or AMPAR endocytosis with either Tat-GluA2-3Y peptide or dynasore (dynamin inhibitor) similarly enhanced AMPAR surface expression following cLTP. These data suggest that age-dependent alteration in adenosine receptor expression contributes to increased AMPAR endocytosis and impaired synaptic plasticity in aged brains. PMID:26700433

  14. Subchronic phencyclidine treatment in adult mice increases GABAergic transmission and LTP threshold in the hippocampus.

    PubMed

    Nomura, Toshihiro; Oyamada, Yoshihiro; Fernandes, Herman B; Remmers, Christine L; Xu, Jian; Meltzer, Herbert Y; Contractor, Anis

    2016-01-01

    Repeated administration of non-competitive N-methyl-d-aspartate (NMDA) receptor antagonists such as phencyclidine (PCP) to rodents causes long-lasting deficits in cognition and memory, and has effects on behaviors that have been suggested to be models of the cognitive impairment associated with schizophrenia (CIAS). Despite this being a widely studied animal model, little is known about the long lasting changes in synapses and circuits that underlie the altered behaviors. Here we examined synaptic transmission ex-vivo in the hippocampus of mice after a subchronic PCP (scPCP) administration regime. We found that after at least one week of drug free washout period when mice have impaired cognitive function, the threshold for long-term potentiation (LTP) of CA1 excitatory synapses was elevated. This elevated LTP threshold was directly related to increased inhibitory input to CA1 pyramidal cells through increased activity of GABAergic neurons. These results suggest repeated PCP administration causes a long-lasting metaplastic change in the inhibitory circuits in the hippocampus that results in impaired LTP, and could contribute to the deficits in hippocampal-dependent memory in PCP-treated mice. Changes in GABA signaling have been described in patients with schizophrenia, therefore our results support using scPCP as a model of CIAS. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'. PMID:25937215

  15. Chronic activation of CB2 cannabinoid receptors in the hippocampus increases excitatory synaptic transmission

    PubMed Central

    Kim, Jimok; Li, Yong

    2015-01-01

    The roles of CB1 cannabinoid receptors in regulating neuronal activity have been extensively characterized. Although early studies show that CB1 receptors are present in the nervous system and CB2 cannabinoid receptors are in the immune system, recent evidence indicates that CB2 receptors are also expressed in the brain. Activation or blockade of CB2 receptors in vivo induces neuropsychiatric effects, but the cellular mechanisms of CB2 receptor function are unclear. The aim of this study is to determine how activation of CB2 receptors present in the hippocampus regulates synaptic function. Here, we show that when organotypic cultures of rodent hippocampal slices were treated with a CB2 receptor agonist (JWH133 or GP1a) for 7–10 days, quantal glutamate release became more frequent and spine density was increased via extracellular signal-regulated kinases. Chronic intraperitoneal injection of JWH133 into mice also increased excitatory synaptic transmission. These effects were blocked by a CB2 receptor antagonist (SR144528) or absent from hippocampal slices of CB2 receptor knock-out mice. This study reveals a novel cellular function of CB2 cannabinoid receptors in the hippocampus and provides insights into how cannabinoid receptor subtypes diversify the roles of cannabinoids in the brain. PMID:25504573

  16. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats

    PubMed Central

    Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar

    2015-01-01

    We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578

  17. Effects of Ethanol on the Expression Level of Various BDNF mRNA Isoforms and Their Encoded Protein in the Hippocampus of Adult and Embryonic Rats.

    PubMed

    Shojaei, Shahla; Ghavami, Saeid; Panjehshahin, Mohammad Reza; Owji, Ali Akbar

    2015-01-01

    We aimed to compare the effects of oral ethanol (Eth) alone or combined with the phytoestrogen resveratrol (Rsv) on the expression of various brain-derived neurotrophic factor (BDNF) transcripts and the encoded protein pro-BDNF in the hippocampus of pregnant and embryonic rats. A low (0.25 g/kg body weight (BW)/day) dose of Eth produced an increase in the expression of BDNF exons I, III and IV and a decrease in that of the exon IX in embryos, but failed to affect BDNF transcript and pro-BDNF protein expression in adults. However, co-administration of Eth 0.25 g/kg·BW/day and Rsv led to increased expression of BDNF exons I, III and IV and to a small but significant increase in the level of pro-BDNF protein in maternal rats. A high (2.5 g/kg·BW/day) dose of Eth increased the expression of BDNF exons III and IV in embryos, but it decreased the expression of exon IX containing BDNF mRNAs in the maternal rats. While the high dose of Eth alone reduced the level of pro-BDNF in adults, it failed to change the levels of pro-BDNF in embryos. Eth differentially affects the expression pattern of BDNF transcripts and levels of pro-BDNF in the hippocampus of both adult and embryonic rats. PMID:26703578

  18. Adult-onset focal expression of mutated human tau in the hippocampus impairs spatial working memory of rats

    PubMed Central

    Mustroph, M.L.; King, M.A.; Klein, R.L.; Ramirez, J.J.

    2012-01-01

    Tauopathy in the hippocampus is one of the earliest cardinal features of Alzheimer’s disease (AD), a condition characterized by progressive memory impairments. In fact, density of tau neurofibrillary tangles (NFTs) in the hippocampus strongly correlates with severity of cognitive impairments in AD. In the present study, we employed a somatic cell gene transfer technique to create a rodent model of tauopathy by injecting a recombinant adeno-associated viral vector with a mutated human tau gene (P301L) into the hippocampus of adult rats. The P301L mutation is causal for frontotemporal dementia with parkinsonism-17 (FTDP-17), but it has been used for studying memory effects characteristic of AD in transgenic mice. To ascertain if P301L-induced mnemonic deficits are persistent, animals were tested for 6 months. It was hypothesized that adult-onset, spatially restricted tau expression in the hippocampus would produce progressive spatial working memory deficits on a learned alternation task. Rats injected with the tau vector exhibited persistent impairments on the hippocampal-dependent task beginning at about 6 weeks post-transduction compared to rats injected with a green fluorescent protein vector. Histological analysis of brains for expression of human tau revealed hyperphosphorylated human tau and NFTs in the hippocampus in experimental animals only. Thus, adult-onset, vector-induced tauopathy spatially restricted to the hippocampus progressively impaired spatial working memory in rats. We conclude that the model faithfully reproduces histological and behavioral findings characteristic of dementing tauopathies. The rapid onset of sustained memory impairment establishes a preclinical model particularly suited to the development of potential tauopathy therapeutics. PMID:22561128

  19. Higher density of serotonin-1A receptors in the hippocampus and cerebral cortex of alcohol-preferring P rats

    SciTech Connect

    Wong, D.T.; Threlkeld, P.G. ); Lumeng, L.; Li, Ting-Kai )

    1990-01-01

    Saturable ({sup 3}H)-80HDPAT binding to 5HT-1A receptors in membranes prepared from hippocampus and frontal cerebral cortex of alcohol-preferring (P) rats and of alcohol-nonpreferring (NP) rats has been compared. The B{sub max} values or densities of recognition sites for 5HT-1A receptors in both brain areas of the P rats are 38 and 44 percent lower in the P rats than in the NP rats. The corresponding K{sub D} values are 38 and 44 percent lower in the P rats than in the NP rats, indicating higher affinities of the recognition sites for the 5HT-1A receptors in hippocampus and cerebral cortex of the P rats. These findings indicate either an enrichment of 5HT-1A receptor density during selective breeding for alcohol preference or an upregulation of 5HT-1A receptors of 5HT found in these brain areas of P rats as compared with the NP rats.

  20. Changes in gene expression in the rat hippocampus following exposure to 56 fe particles and protection by berry diets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposing young rats to particles of high energy and charge (HZE particles), such as 56Fe, enhances indices of oxidative stress and inflammation and disrupts behavior, including spatial learning and memory. In the present study, we examined whether gene expression in the hippocampus, an area of the b...

  1. Effects of developmental exposure to a Commercial PBDE mixture (DE-71) on protein networks in the rat Cerebellum and Hippocampus

    EPA Science Inventory

    Title (20 words): Effects of developmental exposure to a Commercial PBDE mixture (DE-71) on protein networks in the rat Cerebellum and Hippocampus. Introduction (120 words): Polybrominated diphenyl ethers (PBDE5) possess neurotoxic effects similar to those of PCBs. The cellular a...

  2. Activation of glycine receptors modulates spontaneous epileptiform activity in the immature rat hippocampus

    PubMed Central

    Chen, Rongqing; Okabe, Akihito; Sun, Haiyan; Sharopov, Salim; Hanganu-Opatz, Ileana L; Kolbaev, Sergei N; Fukuda, Atsuo; Luhmann, Heiko J; Kilb, Werner

    2014-01-01

    While the expression of glycine receptors in the immature hippocampus has been shown, no information about the role of glycine receptors in controlling the excitability in the immature CNS is available. Therefore, we examined the effect of glycinergic agonists and antagonists in the CA3 region of an intact corticohippocampal preparation of the immature (postnatal days 4–7) rat using field potential recordings. Bath application of 100 μm taurine or 10 μm glycine enhanced the occurrence of recurrent epileptiform activity induced by 20 μm 4-aminopyridine in low Mg2+ solution. This proconvulsive effect was prevented by 3 μm strychnine or after incubation with the loop diuretic bumetanide (10 μm), suggesting that it required glycine receptors and an active NKCC1-dependent Cl− accumulation. Application of higher doses of taurine (≥1 mm) or glycine (100 μm) attenuated recurrent epileptiform discharges. The anticonvulsive effect of taurine was also observed in the presence of the GABAA receptor antagonist gabazine and was attenuated by strychnine, suggesting that it was partially mediated by glycine receptors. Bath application of the glycinergic antagonist strychnine (0.3 μm) induced epileptiform discharges. We conclude from these results that in the immature hippocampus, activation of glycine receptors can mediate both pro- and anticonvulsive effects, but that a persistent activation of glycine receptors is required to suppress epileptiform activity. In summary, our study elucidated the important role of glycine receptors in the control of neuronal excitability in the immature hippocampus. PMID:24665103

  3. Traumatic Brain Injury Dysregulates MicroRNAs to Modulate Cell Signaling in Rat Hippocampus

    PubMed Central

    Liu, Zilong; Chen, Xiaorui; Zhao, Lili; Qu, Guoqiang; Li, Qingjie

    2014-01-01

    Traumatic brain injury (TBI) is a common cause for cognitive and communication problems, but the molecular and cellular mechanisms are not well understood. Epigenetic modifications, such as microRNA (miRNA) dysregulation, may underlie altered gene expression in the brain, especially hippocampus that plays a major role in spatial learning and memory and is vulnerable to TBI. To advance our understanding of miRNA in pathophysiological processes of TBI, we carried out a time-course microarray analysis of microRNA expression profile in rat ipsilateral hippocampus and examined histological changes, apoptosis and synapse ultrastructure of hippocampus post moderate TBI. We found that 10 out of 156 reliably detected miRNAs were significantly and consistently altered from one hour to seven days after injury. Bioinformatic and gene ontology analyses revealed 107 putative target genes, as well as several biological processes that might be initiated by those dysregulated miRNAs. Among those differentially expressed microRNAs, miR-144, miR-153 and miR-340-5p were confirmed to be elevated at all five time points after TBI by quantitative RT-PCR. Western blots showed three of the predicated target proteins, calcium/calmodulin-dependent serine protein kinase (CASK), nuclear factor erythroid 2-related factor 2 (NRF2) and alpha-synuclein (SNCA), were concurrently down- regulated, suggesting that miR-144, miR-153 and miR-340-5p may play important roles collaboratively in the pathogenesis of TBI-induced cognitive and memory impairments. These microRNAs might serve as potential targets for progress assessment and intervention against TBI to mitigate secondary damage to the brain. PMID:25089700

  4. Quantified distribution of the noradrenaline innervation in the hippocampus of adult rat

    SciTech Connect

    Oleskevich, S.; Descarries, L.; Lacaille, J.C. )

    1989-11-01

    A recently developed radioautographic technique, based on the uptake labeling of monoamine terminals in vitro, was used to quantify the noradrenaline (NA) innervation in adult rat hippocampus. After incubation of brain slices with 1 microM 3H-NA, the NA varicosities were visualized as small aggregates of silver grains, in light microscope radioautographs prepared at 3 equidistant horizontal levels across the ventral 2/3 of the hippocampus. Using a computer-assisted image analyzer, counts were obtained from the subiculum (SUB), 3 sectors of Ammon's horn (CA1, CA3-a, CA3-b) and 3 sectors of the dentate gyrus (DG-medial blade, crest, and lateral blade), every lamina being sampled in each region. After a double correction for duration of radioautographic exposure and section thickness, and following measurement of varicosity diameter in electron microscope radioautographs, it was possible to express these results in number of terminals per volumetric unit of tissue. It was thus found that the overall density of hippocampal NA innervation averages 2.1 million varicosities/mm3 of tissue, a value almost twice as high as that in cerebral cortex. This innervation is 20% denser ventrally than dorsally and is heterogeneous both in terms of regional and laminar distribution. SUB and DG are more strongly innervated than Ammon's horn, wherein CA1 has the lowest overall density. In SUB and CA1, there is a clear predilection of NA varicosities for the stratum moleculare. In CA3, there is a narrow band of even stronger innervation in the stratum radiatum, near the apical border of the stratum pyramidale, contrasting with a 3 times lower density in this cell layer and the stratum oriens. In DG, the NA innervation is again the weakest in the cell body layer and exhibits an almost 3-fold greater density in the polymorph layer, the highest of all hippocampus.

  5. Acute and chronic administration of the branched-chain amino acids decreases nerve growth factor in rat hippocampus.

    PubMed

    Scaini, Giselli; Mello-Santos, Lis Mairá; Furlanetto, Camila B; Jeremias, Isabela C; Mina, Francielle; Schuck, Patrícia F; Ferreira, Gustavo C; Kist, Luiza W; Pereira, Talita C B; Bogo, Maurício R; Streck, Emilio L

    2013-12-01

    Maple syrup urine disease (MSUD) is a neurometabolic disorder caused by deficiency of the activity of the mitochondrial enzyme complex branched-chain α-keto acid dehydrogenase leading to accumulation of the branched-chain amino acids (BCAA) and their corresponding branched-chain α-keto acids. In this study, we examined the effects of acute and chronic administration of BCAA on protein levels and mRNA expression of nerve growth factor (NGF) considering that patients with MSUD present neurological dysfunction and cognitive impairment. Considering previous observations, it is suggested that oxidative stress may be involved in the pathophysiology of the neurological dysfunction of MSUD. We also investigated the influence of antioxidant treatment (N-acetylcysteine and deferoxamine) in order to verify the influence of oxidative stress in the modulation of NGF levels. Our results demonstrated decreased protein levels of NGF in the hippocampus after acute and chronic administration of BCAA. In addition, we showed a significant decrease in the expression of ngf in the hippocampus only following acute administration in 10-day-old rats. Interestingly, antioxidant treatment was able to prevent the decrease in NGF levels by increasing ngf expression. In conclusion, the results suggest that BCAA is involved in the regulation of NGF in the developing rat. Thus, it is possible that alteration of neurotrophin levels during brain maturation could be of pivotal importance in the impairment of cognition provoked by BCAA. Moreover, the decrease in NGF levels was prevented by antioxidant treatment, reinforcing that the hypothesis of oxidative stress can be an important pathophysiological mechanism underlying the brain damage observed in MSUD. PMID:23559405

  6. Regional and sex-related differences in modulating effects of female sex steroids on ecto-5'-nucleotidase expression in the rat cerebral cortex and hippocampus.

    PubMed

    Mitrović, Nataša; Guševac, Ivana; Drakulić, Dunja; Stanojlović, Miloš; Zlatković, Jelena; Sévigny, Jean; Horvat, Anica; Nedeljković, Nadežda; Grković, Ivana

    2016-09-01

    Ecto-5'-nucleotidase (eN), a membrane rate-limiting enzyme of the purine catabolic pathway, catalyzes the conversion of AMP to adenosine involved in the regulation of many brain physiological and pathological processes. Since gender fundamentally determines hormonal milieu in the body and brain, it is reasonable to assume that sex differences in the activity of various signaling systems, including adenosine, may be generated by gonadal steroids. Thus, we examined expression of eN as a component of adenosine signaling system in the basal state in cerebral cortex and hippocampus of male and female rats at gene, protein and functional level, as well as in the state of gonadal hormone deprivation, induced by ovariectomy (OVX), whereas impact of steroid hormones was explored after repeated administration of 17α-estradiol, 17β-estradiol and progesterone for seven consecutive days. Results showed regional and sex-related differences in basal eN activity level, with the highest AMP hydrolysis observed in the hippocampus of male rats. Furthermore, ovarian steroids do not contribute to basal gene eN expression or the activity in cortical and hippocampal region of female rats. However, protein eN expression was increased in OVX rats in both investigated region. Investigated exogenous steroids had no influence on eN expression in male brain, while in OVX females alterations in eN activity were induced. The observed effects in female rats were different between examined regions e.g. in cortex, applied treatments predominantly decreased whereas in hippocampus increased eN activity. Based on the presented results, eN exerts regional and sex-related response in basal state as well as after treatment with female gonadal hormones, however the exact mechanisms of sex steroids actions on eN remain unclear and should be fully explored. PMID:27296672

  7. Chronic ethanol exposure during adolescence through early adulthood in female rats induces emotional and memory deficits associated with morphological and molecular alterations in hippocampus.

    PubMed

    Oliveira, Ana Ca; Pereira, Maria Cs; Santana, Luana N da Silva; Fernandes, Rafael M; Teixeira, Francisco B; Oliveira, Gedeão B; Fernandes, Luanna Mp; Fontes-Júnior, Enéas A; Prediger, Rui D; Crespo-López, Maria E; Gomes-Leal, Walace; Lima, Rafael R; Maia, Cristiane do Socorro Ferraz

    2015-06-01

    There is increasing evidence that heavy ethanol exposure in early life may produce long-lasting neurobehavioral consequences, since brain structural maturation continues until adolescence. It is well established that females are more susceptible to alcohol-induced neurotoxicity and that ethanol consumption is increasing among women, especially during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence through early adulthood in female rats may induce hippocampal histological damage and neurobehavioral impairments. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) by gavage from the 35(th)-90(th) day of life. Ethanol-exposed animals displayed reduced exploration of the central area and increased number of fecal boluses in the open field test indicative of anxiogenic responses. Moreover, chronic high ethanol exposure during adolescence induced marked impairments on short-term memory of female rats addressed on social recognition and step-down inhibitory avoidance tasks. These neurobehavioral deficits induced by ethanol exposure during adolescence through early adulthood were accompanied by the reduction of hippocampal formation volume as well as the loss of neurons, astrocytes and microglia cells in the hippocampus. These results indicate that chronic high ethanol exposure during adolescence through early adulthood in female rats induces long-lasting emotional and memory deficits associated with morphological and molecular alterations in the hippocampus. PMID:25922423

  8. Effects of subchronic aluminum exposure on spatial memory, ultrastructure and L-LTP of hippocampus in rats.

    PubMed

    Zhang, Lifeng; Jin, Cuihong; Liu, Qiufang; Lu, Xiaobo; Wu, Shengwen; Yang, Jinghua; Du, Yanqiu; Zheng, Linlin; Cai, Yuan

    2013-01-01

    Epidemiological investigations have indicated that aluminum (Al), as an important environmental neurotoxicant, could cause damage to the cognitive function which was closely related with neurodegenerative diseases. Long-term potentiation (LTP) is one form of synaptic plasticity in association with cognitive function. Previous studies have demonstrated that Al impaired early phase long-term potentiation (E-LTP) in vivo and in vitro. However, Al-induced damage to late phase long-term potentiation (L-LTP) has poorly been studied. The present study was designed to observe the effects of subchronic Al exposure on the spatial memory, hippocampus ultrastructure and L-LTP in rats. Pregnant Wistar rats were assigned to four groups. Neonatal rats were exposed to Al by parental lactation from parturition to weaning for 3 weeks and then fed with the distilled water containing 0, 0.2%, 0.4% and 0.6% aluminum chloride (AlCl3) respectively from weaning to postnatal 3 months. The levels of Al in blood and hippocampus were quantitated by atomic absorption spectrophotometer. Morris water maze test was performed to study spatial memory. The induction and maintenance of L-LTP in area of Schaffer collateral- CA1 synapse was recorded by extracellular microelectrode recording technology in hippocampus of experimental rats. Hippocampus was collected for transmission electron microscopy observation. The results showed that the Al concentrations in blood and hippocampus of Al-exposed rats were higher than those of the control rats. Al could impair spatial memory ability of rats. Neuronal and synaptic ultrastructure from Al-exposed rats presented pathological changes; the incidence of L-LTP has a decrease trend while population spike (PS) amplitude was much smaller significantly stimulated by high-frequency stimulation (HFS) in Al-exposed rats. Our findings showed that Al exposure caused spatial memory damage, under which the neuronal and synaptic ultrastructure changes maybe were their

  9. Comparative effects of parathion and chlorpyrifos on extracellular endocannabinoid levels in rat hippocampus: Influence on cholinergic toxicity

    SciTech Connect

    Liu, Jing; Parsons, Loren; Pope, Carey

    2013-11-01

    Parathion (PS) and chlorpyrifos (CPF) are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). Endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) can modulate neurotransmission by inhibiting neurotransmitter release. We proposed that differential inhibition of eCB-degrading enzymes (fatty acid amide hydrolase, FAAH, and monoacylglycerol lipase, MAGL) by PS and CPF leads to differences in extracellular eCB levels and toxicity. Microdialysis cannulae were implanted into hippocampus of adult male rats followed by treatment with vehicle (peanut oil, 2 ml/kg, sc), PS (27 mg/kg) or CPF (280 mg/kg) 6–7 days later. Signs of toxicity, AChE, FAAH and MAGL inhibition, and extracellular levels of AEA and 2AG were measured 2 and 4 days later. Signs were noted in PS-treated rats but not in controls or CPF-treated rats. Cholinesterase inhibition was extensive in hippocampus with PS (89–90%) and CPF (78–83%) exposure. FAAH activity was also markedly reduced (88–91%) by both OPs at both time-points. MAGL was inhibited by both OPs but to a lesser degree (35–50%). Increases in extracellular AEA levels were noted after either PS (about 2-fold) or CPF (about 3-fold) while lesser treatment-related 2-AG changes were noted. The cannabinoid CB1 receptor antagonist/inverse agonist AM251 (3 mg/kg, ip) had no influence on functional signs after CPF but markedly decreased toxicity in PS-treated rats. The results suggest that extracellular eCBs levels can be markedly elevated by both PS and CPF. CB1-mediated signaling appears to play a role in the acute toxicity of PS but the role of eCBs in CPF toxicity remains unclear. - Highlights: • Chlorpyrifos and parathion both extensively inhibited hippocampal cholinesterase. • Functional signs were only noted with parathion. • Chlorpyrifos and parathion increased hippocampal extracellular anandamide levels. • 2-Arachidonoylglycerol levels were

  10. Protein kinases paralleling late-phase LTP formation in dorsal hippocampus in the rat.

    PubMed

    Li, Lin; Wan, Jia; Sase, Sunetra; Gröger, Marion; Pollak, Arnold; Korz, Volker; Lubec, Gert

    2014-10-01

    Hippocampal long term potentiation (LTP), representing a cellular model for learning and memory formation, can be dissociated into at least two phases: a protein-synthesis-independent early phase, lasting about 4h and a protein-synthesis-dependent late phase LTP lasting 6h or longer, or even days. A large series of protein kinases have been shown to be involved and herein, a distinct set of protein kinases proposed to be involved in memory retrieval in previous work was tested in dorsal hippocampus of the rat following induction of late-phase LTP. A bipolar stimulation electrode was chronically implanted into the perforant path, while two monopolar recording electrodes were implanted into the dentate gyrus of the dorsal hippocampus. The recording electrode was measuring extracellular excitatory postsynaptic potentials, while the other one measured population spikes. Protein kinases were determined by immunoblotting and immunoflourescence on hippocampal areas showed the distribution pattern of protein kinases PKN1 and NEK7. Induction of LTP was proven, elevated levels for protein kinases PKN1, RPS6KB1, STK4, CDC42BPB, PRKG, TLK, BMX and decreased levels for NEK7, MAK14 and PLK1 were observed. A remarkable overlap of protein kinases observed in spatial memory processes with those proposed in LTP formation was demonstrated. The findings may be relevant for design of future studies on protein kinases and for the interpretation of previous work. PMID:24911953

  11. Effect of Prolonged Simulated Microgravity on Metabolic Proteins in Rat Hippocampus: Steps toward Safe Space Travel.

    PubMed

    Wang, Yun; Javed, Iqbal; Liu, Yahui; Lu, Song; Peng, Guang; Zhang, Yongqian; Qing, Hong; Deng, Yulin

    2016-01-01

    Mitochondria are not only the main source of energy in cells but also produce reactive oxygen species (ROS), which result in oxidative stress when in space. This oxidative stress is responsible for energy imbalances and cellular damage. In this study, a rat tail suspension model was used in individual experiments for 7 and 21 days to explore the effect of simulated microgravity (SM) on metabolic proteins in the hippocampus, a vital brain region involved in learning, memory, and navigation. A comparative (18)O-labeled quantitative proteomic strategy was used to observe the differential expression of metabolic proteins. Forty-two and sixty-seven mitochondrial metabolic proteins were differentially expressed after 21 and 7 days of SM, respectively. Mitochondrial Complex I, III, and IV, isocitrate dehydrogenase and malate dehydrogenase were down-regulated. Moreover, DJ-1 and peroxiredoxin 6, which defend against oxidative damage, were up-regulated in the hippocampus. Western blot analysis of proteins DJ-1 and COX 5A confirmed the mass spectrometry results. Despite these changes in mitochondrial protein expression, no obvious cell apoptosis was observed after 21 days of SM. The results of this study indicate that the oxidative stress induced by SM has profound effects on metabolic proteins. PMID:26523826

  12. The reduction of volume and fiber bundle connections in the hippocampus of EGR3 transgenic schizophrenia rats

    PubMed Central

    Ma, Ensen; Song, Tianbin; Zhang, Hui; Lu, Jie; Wang, Liwen; Zhao, Qichao; Guo, Runcai; Li, Miao; Ma, Guolin; Lu, Guangming; Li, Kefeng

    2015-01-01

    Background and objective There is a growing consensus that schizophrenia is ultimately caused by abnormal communication between spatially disparate brain structures. White matter fasciculi represent the primary infrastructure for long distance communication in the brain. In this study, we aimed to investigate the white matter connection in schizophrenia susceptible brain regions of early growth response factor 3 (EGR3) expressing rats. Methods A rat model of schizophrenia was created by the transfection of the EGR3 gene into rat hippocampus. All animals were placed in a fixation system using a commercial rat-dedicated coil. Schizophrenia susceptible brain regions were scanned using in vivo diffusion tensor magnetic resonance imaging. The volume, quantity, average length of fiber bundles, fractional anisotropy, apparent diffusion coefficient, the relative heterosexual fraction, and volume ratio were collected in the whole brain and schizophrenia related brain areas (the hippocampus, thalamus, and prefrontal lobe). MedINRIA software was used for data processing of diffusion tensor and fiber bundles tracking. The fibronectin in relevant brain regions was also analyzed. Results There was a significant decrease in the volume of the fiber beam through the left hippocampus dentate in the schizophrenia model group in comparison to the control group and the risperidone treatment group (P<0.05). A significant reduction in the volume and number of the fiber bundles was also observed in left prefrontal–left hippocampus, left hippocampus–left thalamus, left prefrontal–left hippocampus–left thalamus areas in the model group (all P<0.05). Conclusion The volume of hippocampus and the number of fiber bundles were reduced in EGR3 transgenic schizophrenia rats, and are the most sensitive indicators in schizophrenia. The diffusion tensor imaging technique plays an important role in the evaluation of patients with schizophrenia. PMID:26170675

  13. Pentoxifylline Alleviates Perinatal Hypoxic-Ischemia-Induced Short-term Memory Impairment by Suppressing Apoptosis in the Hippocampus of Rat Pups

    PubMed Central

    2016-01-01

    Purpose: Perinatal hypoxic-ischemic brain damage is a major cause of acute mortality and chronic neurologic morbidity in infants and children. We investigated the effects of pentoxifylline, a methylxanthine derivative and type-4 phosphodiesterase inhibitor, on short-term memory and apoptotic neuronal cell death in the hippocampus following perinatal hypoxic-ischemia in newborn rats. Methods: We used a step-down avoidance task to evaluate short-term memory and 3ʹ-5ʹ-cyclic adenosine monophosphate (cAMP) assay to detect cAMP levels. We evaluated apoptosis using a terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay for evidence of DNA fragmentation, immunohistochemistry for caspase-3 levels, and western blot for Bcl-2 and Bax. Results: Perinatal hypoxic-ischemic injury increased apoptotic cell death in the hippocampus, resulting in impaired short-term memory with decreased cAMP levels. Pentoxifylline treatment improved short-term memory by suppressing apoptotic cell death in the hippocampus with elevated cAMP levels. Conclusions: Pentoxifylline ameliorated perinatal hypoxic-ischemia in rat pups. This alleviating effect could be ascribed to the inhibition apoptosis due to increased cAMP production by pentoxifylline. PMID:27377942

  14. Quantitative profiling of neurotransmitter abnormalities in the hippocampus of rats treated with lipopolysaccharide: Focusing on kynurenine pathway and implications for depression.

    PubMed

    Guo, Yujin; Cai, Hualin; Chen, Lei; Liang, Donglou; Yang, Ranyao; Dang, Ruili; Jiang, Pei

    2016-06-15

    Peripheral administration of lipopolysaccharide (LPS) can induce the rodents to a depression-like state accompanied with remarkable changes of neurotransmitter systems. In this study, the effect of an intraperitoneal LPS injection (3mg/kg) on the concentrations of neurotransmitters was investigated by in vivo microdialysis in rat hippocampus. To further explore dysregulation pattern of the neurotransmitters following continuous inflammatory process, we then analyzed the neurotransmitters in the hippocampus of rats after 2-week LPS exposure (500μg/kg every other day). Acute treatment of LPS quickly enhanced glutamate release and increased the extracellular levels of dopamine, serotonin and their metabolites. Elevated glutamate status was also found in the chronic inflamed hippocampus, whereas dopamine and serotonin was decreased following prolonged LPS exposure. Interestingly, both acute and chronic treatment of LPS significantly elevated hippocampal kynurenine concentrations and altered the balance between the serotonin and kynurenine branches of tryptophan metabolism-increasing kynurenine/tryptophan ratio, but decreasing serotonin/tryptophan ratio. Additionally, kynurenic acid, the endogenous NMDA receptor antagonist, and the ratio of kynurenic acid/kynurenine were significantly decreased by acute treatment of LPS, which may further strengthen NMDA receptor activation. Since that NMDA activation can exacerbate inflammatory and neurodegenerative process, the enhanced glutamate release and dysregulated kynurenine pathway might constitute a vicious cycle playing a pivotal role in the neuropsychiatric disorders associated with inflammation, such as depression. PMID:27235347

  15. Morphological changes in cultures of hippocampus following prenatal irradiation in the rat

    SciTech Connect

    Hamdorf, G.; Shahar, A.; Cervos-Navarro, J.; Scheffler, A.; Sparenberg, A.; Skoberla, A. )

    1990-07-01

    The effect of prenatal irradiation was studied in organotypic cultures of hippocampus, prepared from newborn rats that had been exposed to whole-body irradiation of 1 Gy from a {sup 60}Co-source at day 13 of pregnancy. Light and electron microscopic observations showed remarkable damage to neuronal mitochondria accompanied by extensive swelling, vacuolation of the Golgi complex, and formation of multilamellar bodies and vesicles of the lysosomal type. In contrast to neuronal alterations, no delay in synaptogenesis or onset of myelination was observed based upon the absence of significant morphological changes in synapses and myelin sheaths. Using this tissue culture model it could be confirmed that prenatal exposure to irradiation, even at low doses, induces specific morphological changes in the brain.

  16. Hippocampus, perirhinal cortex, and complex visual discriminations in rats and humans

    PubMed Central

    Hales, Jena B.; Broadbent, Nicola J.; Velu, Priya D.

    2015-01-01

    Structures in the medial temporal lobe, including the hippocampus and perirhinal cortex, are known to be essential for the formation of long-term memory. Recent animal and human studies have investigated whether perirhinal cortex might also be important for visual perception. In our study, using a simultaneous oddity discrimination task, rats with perirhinal lesions were impaired and did not exhibit the normal preference for exploring the odd object. Notably, rats with hippocampal lesions exhibited the same impairment. Thus, the deficit is unlikely to illuminate functions attributed specifically to perirhinal cortex. Both lesion groups were able to acquire visual discriminations involving the same objects used in the oddity task. Patients with hippocampal damage or larger medial temporal lobe lesions were intact in a similar oddity task that allowed participants to explore objects quickly using eye movements. We suggest that humans were able to rely on an intact working memory capacity to perform this task, whereas rats (who moved slowly among the objects) needed to rely on long-term memory. PMID:25593294

  17. Effects of streptozotocin-induced type 1 maternal diabetes on PI3K/AKT signaling pathway in the hippocampus of rat neonates.

    PubMed

    Hami, Javad; Kerachian, Mohammad-Amin; Karimi, Razieh; Haghir, Hossein; Sadr-Nabavi, Ariane

    2016-06-01

    Diabetes in pregnancy impairs hippocampus development in offspring, leading to behavioral problems and learning deficits. Phosphatidylinositol 3-kinase/protein kinase B (PKB/Akt) signaling pathway plays a pivotal role in the regulation of neuronal proliferation, survival and death. The present study was designed to examine the effects of maternal diabetes on PKB/Akt expression and phosphorylation in the developing rat hippocampus. Wistar female rats were maintained diabetic from a week before pregnancy through parturition and male offspring was killed at first postnatal day (P1). The hippocampal expression and phosphorylation level of PKB/Akt, one of the key molecules in PI3K/AKT signaling pathway, was evaluated using real-time polymerase chain reaction (PCR) and western blot analysis. We found a significant bilateral downregulation of AKT1 gene expression in the hippocampus of pups born to diabetic mothers (p < 0.05). Interestingly, our results revealed a marked upregulation of Akt1 gene in insulin-treated group compared with other groups (p < 0.05). The western blot analysis also showed the reduction of phosphorylation level of all AKT isoforms in both diabetic and insulin-treated groups compared with control (p < 0.05). Moreover, the results showed a significant increase in phosphorylation level of AKT in insulin-treated group compared with the diabetic group. These results represent that diabetes during pregnancy strongly influences the regulation of PKB/AKT in the developing rat hippocampus. Furthermore, although the control of glycemia by insulin administration is not sufficient to prevent the alterations in PKB/Akt expression, it modulates the phosphorylation process, thus ultimately resulting in a situation comparable to that found in the normal condition. PMID:26479041

  18. Effects of diclofenac sodium on the hippocampus of rats with acute subdural hematoma: histological, stereological, and molecular approach.

    PubMed

    Türkmen, A P; Kaplan, S; Aksoy, A; Altunkaynak, Bz; Yurt, Kk; Elibol, E; Çokluk, C; Onger, Me

    2016-01-01

    This study was aimed at evaluating the potential effects of acute subdural hematoma (ASDH) and diclofenac sodium (DS) therapy following ASDH on the rat hippocampus. Twenty-four male Sprague Dawley rats were used and divided into four groups. 0.1 ml of non-heparinized autologous blood from the tail vein of the animals in the non-treatment group (NTG) and treatment group (TG) was injected into the subdural space. The TG received intramuscular diclofenac sodium at a 15 mg/kg dose daily from the postoperative second hour to the seventh day after the operation. The control group (CG) and sham group (SG) were used for control and sham operations, respectively. On the postoperative eighth day, all animals were sacrificed, and the hippocampi of all animals were stereologically and histologically evaluated. Also blood samples of the animals were biochemically analyzed. As a result of the study, the mean number of neurons in CA1, CA2, and CA3 regions of the hippocampus and the total number of neurons were decreased in the hippocampus samples of the NTG and especially the TG subjects. When comparing the second blood samples, there was no difference between the levels of adrenaline and serotonin among the groups. However, after the operation, noradrenalin levels in the treatment group were found to be higher than those of the sham and control groups (p < 0.05). In the NTG and TG, histopathological findings were observed such as Nissl condensation as well as completely dead and indistinguishable neurons with abnormally shaped, shrunken cytoplasm and nuclei. Also necrotic areas on the specimens of the TG were seen. In immunohistochemical sections, c-FOS positivity was decreased in the NTG and especially the TG. Otherwise, PGC-1 positive cells were increased in the NTG and especially the TG. In this study, it was shown for the first time by means of stereological techniques that using DS after ASDH caused a decrease in the number of hippocampal neurons (CA1, CA2, and CA3

  19. Effects of developmental alcohol exposure vs. intubation stress on BDNF and TrkB expression in the hippocampus and frontal cortex of neonatal rats

    PubMed Central

    Boschen, K.E.; Criss, K.J.; Palamarchouk, V.; Roth, T.L.; Klintsova, A.Y.

    2015-01-01

    Third trimester-equivalent alcohol exposure causes significant deficits in hippocampal and cortical neuroplasticity, resulting in alterations to dendritic arborization, hippocampal adult neurogenesis, and performance on learning tasks. The current study investigated the impact of neonatal alcohol exposure (postnatal days 4–9, 5.25 g/kg/day) on expression of brain-derived neurotrophic factor (BDNF) and the tropomyosin-related kinase B (TrkB) receptor in the hippocampal and frontal cortex of infant Long-Evans rats. Levels of BDNF protein were increased in the hippocampus, but not frontal cortex, of alcohol-exposed rats 24 hrs after the last dose, when compared with undisturbed (but not sham-intubated) control animals. BDNF protein levels showed a trend towards increase in hippocampus of sham-intubated animals as well, suggesting an effect of the intubation procedure. TrkB protein was increased in the hippocampus of alcohol-exposed animals compared to sham-intubated pups, indicating an alcohol-specific effect on receptor expression. In addition, expression of bdnf total mRNA in alcohol-exposed and sham-intubated pups was enhanced in the hippocampus; however, there was a differential effect of alcohol and intubation stress on exon I- and IV-specific mRNA transcripts. Further, plasma corticosterone was found to be increased in both alcohol-exposed and sham-intubated pups compared to undisturbed animals. Upregulation of BDNF could potentially represent a neuroprotective mechanism activated following alcohol exposure or stress. The results suggest that alcohol exposure and stress have both overlapping and unique effects on BDNF, and highlight the need for the stress of intubation to be taken into consideration in studies that implement this route of drug delivery. PMID:25805052

  20. Effects of developmental alcohol exposure vs. intubation stress on BDNF and TrkB expression in the hippocampus and frontal cortex of neonatal rats.

    PubMed

    Boschen, K E; Criss, K J; Palamarchouk, V; Roth, T L; Klintsova, A Y

    2015-06-01

    Third trimester-equivalent alcohol exposure causes significant deficits in hippocampal and cortical neuroplasticity, resulting in alterations to dendritic arborization, hippocampal adult neurogenesis, and performance on learning tasks. The current study investigated the impact of neonatal alcohol exposure (postnatal days 4-9, 5.25 g/kg/day) on expression of brain-derived neurotrophic factor (BDNF) and the tropomyosin-related kinase B (TrkB) receptor in the hippocampal and frontal cortex of infant Long-Evans rats. Levels of BDNF protein were increased in the hippocampus, but not frontal cortex, of alcohol-exposed rats 24h after the last dose, when compared with undisturbed (but not sham-intubated) control animals. BDNF protein levels showed a trend toward increase in hippocampus of sham-intubated animals as well, suggesting an effect of the intubation procedure. TrkB protein was increased in the hippocampus of alcohol-exposed animals compared to sham-intubated pups, indicating an alcohol-specific effect on receptor expression. In addition, expression of bdnf total mRNA in alcohol-exposed and sham-intubated pups was enhanced in the hippocampus; however, there was a differential effect of alcohol and intubation stress on exon I- and IV-specific mRNA transcripts. Further, plasma corticosterone was found to be increased in both alcohol-exposed and sham-intubated pups compared to undisturbed animals. Upregulation of BDNF could potentially represent a neuroprotective mechanism activated following alcohol exposure or stress. The results suggest that alcohol exposure and stress have both overlapping and unique effects on BDNF, and highlight the need for the stress of intubation to be taken into consideration in studies that implement this route of drug delivery. PMID:25805052

  1. Neurochemical impact of bisphenol A in the hippocampus and cortex of adult male albino rats.

    PubMed

    Khadrawy, Yasser A; Noor, Neveen A; Mourad, Iman M; Ezz, Heba S Aboul

    2016-09-01

    Bisphenol A (BPA), an endocrine-disrupting chemical, is widely used in the manufacture of polycarbonated plastics and epoxy resins and line metal beverage cans. Growing evidence suggests that BPA acts directly on neuronal functions as it is lipophilic and could accumulate in the brain. The present study aims to investigate the effect of two doses of BPA (10 mg/kg for 6 and 10 weeks and 25 mg/kg for 6 weeks) on excitatory (glutamate and aspartate) and inhibitory (γ-aminobutyric acid, glycine, and taurine) amino acid neurotransmitter levels in the cortex and hippocampus. This study extends to investigate the effect of BPA on acetylcholinesterase (AchE) activity and some oxidative stress parameters in the two regions. In the cortex, a significant increase in the excitatory and a significant decrease in the inhibitory amino acids occurred after BPA (10 mg/kg for 10 weeks and 25 mg/kg for 6 weeks). This was accompanied by a significant increase in lipid peroxidation, nitric oxide, and reduced glutathione after 6 weeks of BPA (25 mg/kg). In the hippocampus, a significant increase in the excitatory and inhibitory amino acid neurotransmitters occurred after 6 weeks of BPA. Hippocampal lipid peroxidation increased significantly after BPA exposure and hippocampal reduced glutathione increased significantly after 6 weeks of BPA exposure (10 mg/kg). BPA induced a significant increase in cortical and hippocampal AchE activity. The present neurochemical changes in the cortex and hippocampus suggest that BPA induced a state of excitotoxicity and oxidative stress. This may raise concerns about the exposure of humans to BPA due to its wide applications in industry. PMID:25903087

  2. Cognitive decline is associated with reduced surface GluR1 expression in the hippocampus of aged rats.

    PubMed

    Yang, Yuan-Jian; Chen, Hai-Bo; Wei, Bo; Wang, Wei; Zhou, Ping-Liang; Zhan, Jin-Qiong; Hu, Mao-Rong; Yan, Kun; Hu, Bin; Yu, Bin

    2015-03-30

    Individual differences in cognitive aging exist in humans and in rodent populations, yet the underlying mechanisms remain largely unclear. Activity-dependent delivery of GluR1-containing AMPA receptor (AMPARs) plays an essential role in hippocampal synaptic plasticity, learning and memory. We hypothesize that alterations of surface GluR1 expression in the hippocampus might correlate with age-related cognitive decline. To test this hypothesis, the present study evaluated the cognitive function of young adult and aged rats using Morris water maze. After the behavioral test, the surface expression of GluR1 protein in hippocampal CA1 region of rats was determined using Western blotting. The results showed that the surface expression of GluR1 in the hippocampus of aged rats that are cognitively impaired was much lower than that of young adults and aged rats with preserved cognitive abilities. The phosphorylation levels of GluR1 at Ser845 and Ser831 sites, which promote the synaptic delivery of GluR1, were also selectively decreased in the hippocampus of aged-impaired rats. Correlation analysis reveals that greater decrease in surface GluR1 expression was associated with worse behavioral performance. These results suggest that reduced surface GluR1 expression may contribute to cognitive decline that occurs in normal aging, and different pattern of surface GluR1 expression might be responsible for the individual differences in cognitive aging. PMID:25697598

  3. Social isolation-induced increase in NMDA receptors in the hippocampus exacerbates emotional dysregulation in mice.

    PubMed

    Chang, Chih-Hua; Hsiao, Ya-Hsin; Chen, Yu-Wen; Yu, Yang-Jung; Gean, Po-Wu

    2015-04-01

    Epidemiological studies have shown that early life adverse events have long-term effects on the susceptibility to subsequent stress exposure in adolescence, but the precise mechanism is unclear. In the present study, mice on postnatal day 21-28 were randomly assigned to either a group or isolated cages for 8 weeks. The socially isolated (SI) mice exhibited a higher level of spontaneous locomotor activity, a longer duration of immobility in the forced swimming test (FST), significantly less prepulse inhibition (PPI) and an increase in aggressive (but not attack) behavior. However, acute stress markedly exacerbated the attack counts of the SI mice but did not affect the group housing (GH) mice. SI mice exhibited higher synaptosomal NR2A and NR2B levels in the hippocampus as compared to the GH mice. Whole-cell patch clamp recordings of CA1 neurons in hippocampal slices showed that the SI mice exhibited a higher input-output relationship of NMDAR-EPSCs as compared to the GH mice. Application of the NR2B -specific antagonist ifenprodil produced a greater attenuating effect on NMDAR-EPSCs in slices from the SI mice. NMDAR EPSCs recorded from the SI mice had a slower deactivation kinetic. MK-801, CPP and ifenprodil, the NMDA antagonists, reversed acute stress-induced exaggeration of aggressive and depressive behaviors. Furthermore, acute stress-induced exacerbation of attack behavior in the SI mice was abolished after the knockdown of NR2B expression. These results suggest that social isolation-induced increased expression of NMDA receptors in the hippocampus involves stress exacerbation of aggressive behaviors. Amelioration of aggressive behaviors by NMDA antagonists may open a new avenue for the treatment of psychopathologies that involve outbursts of emotional aggression in neglected children. PMID:25348768

  4. Effects of the Methanolic Extract of Vitellaria paradoxa Stem Bark Against Scopolamine-Induced Cognitive Dysfunction and Oxidative Stress in the Rat Hippocampus.

    PubMed

    Foyet, Harquin Simplice; Asongalem, Acha Emmanuel; Oben, Eyong Kenneth; Cioanca, Oana; Hancianu, Monica; Hritcu, Lucian

    2016-10-01

    Vitellaria paradoxa C.F. Gaertn (Sapotaceae) is a perennial three which naturally grows in the northern part of Cameroon. It has been traditionally used in the Cameroonian folk medicine for treating inflammation and pain. In the present study, we evaluate the possible anti-amnesic and antioxidative effects of the methanolic extract of V. paradoxa stem bark in an Alzheimer's disease (AD) rat model of scopolamine. Rats received a single injection of scopolamine (1.5 mg/kg) before behavioral testing and were treated with the methanolic extract (25 and 50 mg/kg), daily, for eight continuous days. Also, the antioxidant activity in the hippocampus was assessed using the total content of reduced glutathione and malondialdehyde levels. The scopolamine-treated rats exhibited the following: decrease of exploratory time and discrimination index within the novel object recognition test, decrease of spontaneous alternations percentage within Y-maze task, and increase of working memory errors, reference memory errors, and time taken to consume all five baits within radial arm-maze task. Administration of the methanolic extract significantly improved these parameters, suggesting positive effects on memory formation processes and antioxidant potential. Our results suggest that the methanolic extract ameliorates scopolamine-induced memory impairment by attenuation of the oxidative stress in the rat hippocampus. PMID:26620052

  5. Toxic effect of aflatoxin B1 and the role of recovery on the rat cerebral cortex and hippocampus.

    PubMed

    Bahey, Noha Gamal; Abd Elaziz, Hekmat Osman; Gadalla, Kamal Kamal El Sayed

    2015-12-01

    Aflatoxin B1 (AFB1) is the most toxic and well-known mycotoxin that exists in many food stuff. Exposure to AFB1 has been reported to produce serious biochemical and structural alterations in human and animal organs, however, its effect on the brain is not well studied. Therefore, this study was aimed to investigate the possible histopathological effect of AFB1 and its withdrawal on the cerebral cortex and hippocampus. Fifteen adult female Wistar rats were divided into 3 equal groups: control, AFB1 (15.75 μg/kg/orally, once weekly, for 8 weeks) and recovery groups. Brain sections were processed for hematoxylin and eosin staining as well as for NeuN and GFAP immunostaining. AFB1 administration resulted in several histopathological alterations including; cellular degeneration, dilatation of the blood vessels and significant decrease in the thickness of the frontal cortex and the hippocampal CA1 pyramidal cell layer. In the frontal cortex, there was a significant reduction in the percentage of astrocyte distribution without changes in neuronal numbers. On the other hand, in the hippocampal CA1 region, there was a significant reduction of neuronal number and a significant increase in the percentage of astrocyte distribution. Importantly, AFB1-induced structural alterations were rescued following AFB1 withdrawal. In conclusion, AFB1 induce histological alterations in the rat brain which are potentially reversible upon withdrawal. PMID:26380901

  6. Glucose Injections into the Dorsal Hippocampus or Dorsolateral Striatum of Rats Prior to T-Maze Training: Modulation of Learning Rates and Strategy Selection

    ERIC Educational Resources Information Center

    Canal, Clinton E.; Stutz, Sonja J.; Gold, Paul E.

    2005-01-01

    The present experiments examined the effects of injecting glucose into the dorsal hippocampus or dorsolateral striatum on learning rates and on strategy selection in rats trained on a T-maze that can be solved by using either a hippocampus-sensitive place or striatum-sensitive response strategy. Percentage strategy selection on a probe trial…

  7. Neurodegeneration and inflammation in hippocampus in experimental autoimmune encephalomyelitis induced in rats by one--time administration of encephalitogenic T cells.

    PubMed

    Kurkowska-Jastrzębska, I; Swiątkiewicz, M; Zaremba, M; Cudna, A; Piechal, A; Pyrzanowska, J; Widy-Tyszkiewicz, E; Członkowska, A

    2013-09-17

    Cognitive dysfunction is relatively frequent in multiple sclerosis (MS) and it happens from the early stages of the disease. There is increasing evidence that the grey matter may be involved in autoimmune inflammation during relapses of MS. The purpose of this study was to evaluate if a single transfer of encephalitogenic T cells, mimicking a relapse of MS, may cause hippocampal damage and memory disturbances in rats. Lewis rats were injected with anti-MBP CD4+ T cells, that induced one-phase autoimmune encephalomyelitis (EAE) with full recovery from motor impairments at 10-15 days. The spatial learning and memory were tested by the Morris water maze test in control and EAE animals, 30 and 90 days post-induction (dpi). The neural injury and inflammation was investigated in the hippocampus by immunohistochemistry and quantitative analyses. There was a marked decrease in the number of CA1 and CA4 pyramidal neurons 5 dpi. The loss of neurons then aggravated till the 90 dpi. An increase in microglial and astroglial activation and in pro-inflammatory cytokines mRNA expression in the hippocampus, were present 30 and 90 dpi. Nerve growth factor and brain-derived neurotrophic factor mRNA levels were also significantly elevated. The water maze test, however, did not reveal memory deficits. The present data indicate that a single transfer of autoimmune T cells results in preserved inflammation and probable on-going neuronal injury in the hippocampus, long after recovery from motor disturbances. These findings suggest that any relapse of the MS may start the neurodegenerative process in the hippocampus, which is not necessarily connected with memory deficits. PMID:23806721

  8. Activity of the anterior cingulate cortex and ventral hippocampus underlie increases in contextual fear generalization.

    PubMed

    Cullen, Patrick K; Gilman, T Lee; Winiecki, Patrick; Riccio, David C; Jasnow, Aaron M

    2015-10-01

    Memories for context become less specific with time resulting in animals generalizing fear from training contexts to novel contexts. Though much attention has been given to the neural structures that underlie the long-term consolidation of a context fear memory, very little is known about the mechanisms responsible for the increase in fear generalization that occurs as the memory ages. Here, we examine the neural pattern of activation underlying the expression of a generalized context fear memory in male C57BL/6J mice. Animals were context fear conditioned and tested for fear in either the training context or a novel context at recent and remote time points. Animals were sacrificed and fluorescent in situ hybridization was performed to assay neural activation. Our results demonstrate activity of the prelimbic, infralimbic, and anterior cingulate (ACC) cortices as well as the ventral hippocampus (vHPC) underlie expression of a generalized fear memory. To verify the involvement of the ACC and vHPC in the expression of a generalized fear memory, animals were context fear conditioned and infused with 4% lidocaine into the ACC, dHPC, or vHPC prior to retrieval to temporarily inactivate these structures. The results demonstrate that activity of the ACC and vHPC is required for the expression of a generalized fear memory, as inactivation of these regions returned the memory to a contextually precise form. Current theories of time-dependent generalization of contextual memories do not predict involvement of the vHPC. Our data suggest a novel role of this region in generalized memory, which should be incorporated into current theories of time-dependent memory generalization. We also show that the dorsal hippocampus plays a prolonged role in contextually precise memories. Our findings suggest a possible interaction between the ACC and vHPC controls the expression of fear generalization. PMID:26165137

  9. A single bout of resistance exercise improves memory consolidation and increases the expression of synaptic proteins in the hippocampus.

    PubMed

    Fernandes, Jansen; Soares, Juliana Carlota Kramer; do Amaral Baliego, Luiz Guilherme Zaccaro; Arida, Ricardo Mario

    2016-08-01

    Over the past decade, several studies have indicated that chronic resistance exercise (i.e., strength training, weight lifting, etc.) is beneficial for brain health and cognitive function. However, little is known about the effects of a single bout of resistance exercise on brain function, particularly on memory consolidation. Therefore, the purpose of the present study is to examine the effects of a single bout of resistance exercise applied immediately after the training of fear conditioning on memory consolidation and on the expression of IGF-1 and synaptic proteins in the hippocampus. Male Wistar rats were familiarized with climbing a ladder without a load for 3 days and randomly assigned into control (CTL) and resistance exercise (RES) groups. The RES group was subjected to a single bout of resistance exercise applied immediately after fear conditioning training. Subsequently, the animals were tested for contextual (24 h) and tone (48 h) fear memory. Another group of animals were subjected to a single bout of resistance exercise and euthanized 24 h later for hippocampal analysis of IGF-1 and synaptic proteins (synapsin I, synaptophysin, and PSD-95). The exercised rats improved contextual but not tone fear memory. Hippocampal IGF-1 was not altered by resistance exercise. However, the levels of synapsin I, synaptophysin, and PSD-95 increased significantly in the RES group. The results suggested that a single bout of resistance exercise applied immediately after fear conditioning could improve contextual memory, probably through the activation of pre- and postsynaptic machinery required for memory consolidation. © 2016 Wiley Periodicals, Inc. PMID:27008926

  10. Icariin, a major constituent from Epimedium brevicornum, attenuates ibotenic acid-induced excitotoxicity in rat hippocampus.

    PubMed

    Zong, Nan; Li, Fei; Deng, Yuanyuan; Shi, Jingshan; Jin, Feng; Gong, Qihai

    2016-10-15

    Excitotoxicity is one of the most extensively studied causes of neuronal death and plays an important role in Alzheimer's disease (AD). Icariin is a flavonoid component of a traditional Chinese medicine reported to possess a broad spectrum of pharmacological effects. The present study was designed to investigate the effects of icariin against learning and memory impairment induced by excitotoxicity. Here, we demonstrated that rats receiving intracerebroventricular injection of excitatory neurotoxin ibotenic acid exhibited impaired learning and memory. Oral administration of icariin at doses of 20 and 40mg/kg rescued behavioral performance and protected against neurotoxicity in rat hippocampus by suppressing ibotenic acid induced pro-apoptosis. Furthermore, Western blott of hippocampal specimens revealed that icariin up-regulated the expression of calbindin-D28k protein following ibotenic acid administration. Additionally, icariin inhibited mitogen-activated protein kinase (MAPK) family phosphorylation and nuclear factor kappa B (NF-κB) signaling, implicating the MAPK signaling and NF-κB signaling pathways were involved in the mechanism underlying icariin-mediated neuroprotection against ibotenic acid-induced excitotoxicity. These data suggested that icariin could be a potential agent for treatment of excitotoxicity-related diseases, including AD. PMID:27368415

  11. Anticonvulsant and neuroprotective effects of Rosa damascena hydro-alcoholic extract on rat hippocampus

    PubMed Central

    Homayoun, Mansour; Seghatoleslam, Masoumeh; Pourzaki, Mojtaba; Shafieian, Reihaneh; Hosseini, Mahmoud; Ebrahimzadeh Bideskan, Alireza

    2015-01-01

    Objective: Previously, analgesic, hypnotic, and anticonvulsant effects have been suggested for Rosa damascena (R. damascena). In the present study, possible anti-seizure and neuro-protective effects of hydro-alcoholic extract of R. damascena has been investigated after inducing seizures in rats by pentylenetetrazole (PTZ). Materials and Methods: The rats were divided to five groups: (1) Control: received saline, (2) PTZ: 100 mg/kg, i.p., (3) PTZ- Extract 50 mg/kg (PTZ-Ext 50), (4) PTZ- Extract 100 mg/kg (PTZ-Ext 100), and (5) PTZ- Extract 200 mg/kg (PTZ-Ext 200) groups which were treated with 50, 100, and 200 mg/kg respectively of hydro-alcoholic extract of R. damascena for one week before PTZ injection. The animals were examined for electrocorticography (ECoG) recording and finally, the brains were removed for histological study. Results: The hydro-alcoholic extract of R. damascena significantly prolonged the latency of seizure attacks and reduced the frequency and amplitude of epileptiform burst discharges induced by PTZ injection. Moreover, all three doses of the extract significantly inhibited production of dark neurons in different regions of the hippocampus in the mentioned animal model. Conclusion: The present study showed that the hydro-alcoholic extract of R. damascena has anticonvulsant and neuroprotective effects. More investigations are needed to be done in order to better understand the responsible compound(s) as well as the possible mechanism(s). PMID:26101759

  12. Ulinastatin suppresses endoplasmic reticulum stress and apoptosis in the hippocampus of rats with acute paraquat poisoning

    PubMed Central

    Li, Hai-feng; Zhao, Shi-xing; Xing, Bao-peng; Sun, Ming-li

    2015-01-01

    Lung injury is the main manifestation of paraquat poisoning. Few studies have addressed brain damage after paraquat poisoning. Ulinastatin is a protease inhibitor that can effectively stabilize lysosomal membranes, prevent cell damage, and reduce the production of free radicals. This study assumed that ulinastatin would exert these effects on brain tissues that had been poisoned with paraquat. Rat models of paraquat poisoning were intraperitoneally injected with ulinastatin. Simultaneously, rats in the control group were administered normal saline. Hematoxylin-eosin staining showed that most hippocampal cells were contracted and nucleoli had disappeared in the paraquat group. Fewer cells in the hippocampus were concentrated and nucleoli had disappeared in the ulinastatin group. Western blot assay showed that expressions of GRP78 and cleaved-caspase-3 were significantly lower in the ulinastatin group than in the paraquat group. Immunohistochemical findings showed that CHOP immunoreactivity was significantly lower in the ulinastatin group than in the paraquat group. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling staining showed that the number of apoptotic cells was reduced in the paraquat and ulinastatin groups. These data confirmed that endoplasmic reticular stress can be induced by acute paraquat poisoning. Ulinastatin can effectively inhibit this stress as well as cell apoptosis, thereby exerting a neuroprotective effect. PMID:25878598

  13. Prenatal ethanol exposure reduces the effects of excitatory amino acids in the rat hippocampus

    SciTech Connect

    Noble, E.P.; Ritchie, T. )

    1989-01-01

    Chronic alcohol ingestion during pregnancy can lead to the Fetal Alcohol Syndrome (FAS), a disorder marked by learning disabilities. A rat model of FAS was used by introducing pregnant Sprague-Dawley rats to a liquid diet containing 35% ethanol-derived calories (E), while a second group was pair-fed an isocaloric liquid diet without ethanol (P). A third group of pregnant dams received ad libitum lab chow (C). At parturition, pups from the E and P groups were cross fostered by C mothers and all groups received lab chow. During adulthood, male offspring were sacrificed and hippocampal and prefrontal cortical slices were prelabeled with (3H)inositol. Phosphoinositide (PI) hydrolysis was determined by measuring the accumulation of (3H)inositol phosphates in the presence of LiCl in response to activation of various excitatory amino acid (EAA) receptors. In hippocampal slices, ibotenate- and quisqualate-induced PI hydrolysis was reduced in E compared to P and C animals. Moreover, the inhibitory effect of N-methyl-D-aspartate (NMDA) on carbachol-induced PI hydrolysis, evident in P and C animals, was completely abolished in the hippocampus of E animals. In contrast, in the prefrontal cerebral cortex, this inhibitory effect of NMDA prevailed even in the E animals. The evidence suggests that prenatal ethanol exposure alters the activity of EAA receptors in the hippocampal generation of 2nd messengers.

  14. [A comparative analysis of restoration of electroencephalographic and protein-synthesizing activities in neocortex and hippocampus in hibernating (ground squirrels) and nonhibernating (rats) animals during exit from hypothermia].

    PubMed

    Ignat'ev, D A; Gordon, R Ia; Vorob'ev, V V; Rogachevskiĭ, V V

    2005-01-01

    A similarity in the sequence of restoration of the EEG spectrum between ground squirrels arousing from torpor and rats passing out of artificial hypothermia (17-18 degrees C) was shown. First of all, the low-frequency part of the EEG spectrum was restored. As animals warmed up, their breathing became hurried, cold shivering appeared, and the theta- and alpha-rhythms increased. During the exit from hypothermia, the activity of the protein-synthesizing system in both rats and ground squirrels was almost entirely restored when the animal body temperature achieved 21-22 degrees C. In ground squirrel, the rate of protein synthesis in the neocortex was lower than in hippocampus CA1 and CA3 areas, whereas in rats, on the contrary, it was higher in the neocortex in comparison with the CA3 area. PMID:15759514

  15. Dynamic Contrast-Enhanced MRI of Gd-albumin Delivery to the Rat Hippocampus In Vivo by Convection-Enhanced Delivery

    PubMed Central

    Kim, Jung Hwan; Astary, Garrett W.; Nobrega, Tatiana L.; Kantorovich, Svetlana; Carney, Paul R.; Mareci, Thomas H.; Sarntinoranont, Malisa

    2013-01-01

    Convection enhanced delivery (CED) shows promise in treating neurological diseases due to its ability to circumvent the blood-brain barrier (BBB) and deliver therapeutics directly to the parenchyma of the central nervous system (CNS). Such a drug delivery method may be useful in treating CNS disorders involving the hippocampus such temporal lobe epilepsy and gliomas; however, the influence of anatomical structures on infusate distribution is not fully understood. As a surrogate for therapeutic agents, we used gadolinium-labeled-albumin (Gd-albumin) tagged with Evans blue dye to observe the time dependence of CED infusate distributions into the rat dorsal and ventral hippocampus in vivo with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). For finer anatomical detail, final distribution volumes (Vd) of the infusate were observed with high-resolution T1-weighted MR imaging and light microscopy of fixed brain sections. Dynamic images demonstrated that Gd-albumin preferentially distributed within the hippocampus along neuroanatomical structures with less fluid resistance and less penetration was observed in dense cell layers. Furthermore, significant leakage into adjacent cerebrospinal fluid (CSF) spaces such as the hippocampal fissure, velum interpositum and midbrain cistern occurred toward the end of infusion. Vd increased linearly with infusion volume (Vi) at a mean Vd/Vi ratio of 5.51 ± 0.55 for the dorsal hippocampus infusion and 5.30 ± 0.83 for the ventral hippocampus infusion. This study demonstrated the significant effects of tissue structure and CSF space boundaries on infusate distribution during CED. PMID:22687936

  16. CREB-binding protein (CBP) levels in the rat hippocampus fail to predict chronological or cognitive aging

    PubMed Central

    Pereira, Inês Tomás; Coletta, Christopher E.; Perez, Evelyn V.; Kim, David H.; Gallagher, Michela; Goldberg, Ilya G.; Rapp, Peter R.

    2012-01-01

    Normal cognitive aging is associated with deficits in memory processes dependent on the hippocampus, along with large-scale changes in the hippocampal expression of many genes. Histone acetylation can broadly influence gene expression and has been recently linked to learning and memory. We hypothesized that cAMP response element binding (CREB)-binding protein (CBP), a key histone acetyltransferase, may contribute to memory decline in normal aging. Here, we quantified CBP protein levels in the hippocampus of young, aged unimpaired and aged impaired rats, classified on the basis of spatial memory capacity documented in the Morris water maze. First, CBP-immunofluorescence was quantified across the principal cell layers of the hippocampus using both low and high resolution laser scanning imaging approaches. Second, digital images of CBP immunostaining were analyzed by a multi-purpose classifier algorithm (WND-CHARM) with validated sensitivity across many types of input materials. Finally, CBP protein levels in the principal subfields of the hippocampus were quantified by quantitative western blotting. CBP levels were equivalent as a function of age and cognitive status in all analyses. The sensitivity of the techniques used was substantial, sufficient to reveal differences across the principal cell fields of the hippocampus, and to correctly classify images from young and aged animals independent of CBP-immunoreactivity. The results are discussed in the context of recent evidence suggesting that CBP decreases may be most relevant in conditions of aging that, unlike normal cognitive aging, involve significant neuron loss. PMID:22884549

  17. Galanin inhibits acetylcholine release in the ventral hippocampus of the rat: histochemical, autoradiographic, in vivo, and in vitro studies

    SciTech Connect

    Fisone, G.; Wu, C.F.; Consolo, S.; Nordstroem, O.; Brynne, N.; Bartfai, T.; Melander, T.; Hoekfelt, T.

    1987-10-01

    A high density of galanin binding sites was found by using /sup 125/I-labeled galanin, iodinated by chloramine-T, followed by autoradiography in the ventral, but not in the dorsal, hippocampus of the rat. Lesions of the fimbria and of the septum caused disappearance of a major population of these binding sites, suggesting that a large proportion of them is localized on cholinergic nerve terminals of septal afferents. As a functional correlate to these putative galanin receptor sites, it was shown, both in vivo and in vitro, that galanin, in a concentration-dependent manner, inhibited the evoked release of acetylcholine in the ventral, but not in the dorsal, hippocampus. Intracerebroventricularly applied galanin fully inhibited the scopolamine stimulated release of acetylcholine in the ventral, but not in the dorsal, hippocampus, as measured by the microdialysis technique. In vitro, galanin inhibited the 25 mM K/sup +/-evoked release of (/sup 3/H)acetylcholine from slices of the ventral hippocampus, with an IC/sub 50/ value of approx. = 50 nM. These results are discussed with respect to the colocalization of galanin- and choline acetyltransferase-like immunoreactivity in septal somata projecting to the hippocampus.

  18. Histological study on hippocampus, amygdala and cerebellum following low lead exposure during prenatal and postnatal brain development in rats.

    PubMed

    Barkur, Rajashekar Rao; Bairy, Laxminarayana K

    2016-06-01

    Neuropsychological studies in children who are exposed to lead during their early brain development have shown to develop behavioural and cognitive deficit. The aim of the present study was to assess the cellular damage in hippocampus, amygdala and cerebellum of rat pups exposed to lead during different periods of early brain development. Five groups of rat pups were investigated. (a) Control group (n = 8) (mothers of these rats were given normal drinking water throughout gestation and lactation), (b) pregestation lead-exposed group (n = 8) (mothers of these rats were exposed to 0.2% lead acetate in the drinking water for one month before conception), (c) gestation lead-exposed group (n = 8) (exposed to 0.2% lead acetate in the drinking water through the mother throughout gestation [gestation day 01 to day 21]), (d) lactation lead-exposed group (n = 8) (exposed to 0.2% lead acetate in the drinking water through the mother throughout lactation [postnatal day 01 to day 21]) and (e) gestation and lactation lead-exposed group (n = 8) (exposed to 0.2% lead acetate throughout gestation and lactation). On postnatal day 30, rat pups of all the groups were killed. Numbers of surviving neurons in the hippocampus, amygdala and cerebellum regions were counted using cresyl violet staining technique. Histological data indicate that lead exposure caused significant damage to neurons of hippocampus, amygdala and cerebellum regions in all lead-exposed groups except lactation lead-exposed group. The extent of damage to neurons of hippocampus, amygdala and cerebellum regions in lactation lead-exposed group was comparable to gestation and lactation groups even though the duration of lead exposure was much less in lactation lead-exposed group. To conclude, the postnatal period of brain development seems to be more vulnerable to lead neurotoxicity compared to prenatal period of brain development. PMID:25147304

  19. Electrographic seizures are significantly reduced by in vivo inhibition of neuronal uptake of extracellular glutamine in rat hippocampus

    PubMed Central

    Kanamori, Keiko; Ross, Brian D.

    2013-01-01

    Summary Rats were given unilateral kainate injection into hippocampal CA3 region, and the effect of chronic electrographic seizures on extracellular glutamine (GLNECF) was examined in those with low and steady levels of extracellular glutamate (GLUECF). GLNECF, collected by microdialysis in awake rats for 5 h, decreased to 62 ± 4.4% of the initial concentration (n = 6). This change correlated with the frequency and magnitude of seizure activity, and occurred in the ipsilateral but not in contralateral hippocampus, nor in kainate-injected rats that did not undergo seizure (n = 6). Hippocampal intracellular GLN did not differ between the Seizure and No-Seizure Groups. These results suggested an intriguing possibility that seizure-induced decrease of GLNECF reflects not decreased GLN efflux into the extracellular fluid, but increased uptake into neurons. To examine this possibility, neuronal uptake of GLNECF was inhibited in vivo by intrahippocampal perfusion of 2-(methylamino)isobutyrate, a competitive and reversible inhibitor of the sodium-coupled neutral amino acid transporter (SNAT) subtypes 1 and 2, as demonstrated by 1.8 ± 0.17 fold elevation of GLNECF (n = 7). The frequency of electrographic seizures during uptake inhibition was reduced to 35 ± 7% (n = 7) of the frequency in pre-perfusion period, and returned to 88 ± 9% in the post-perfusion period. These novel in vivo results strongly suggest that, in this well-established animal model of temporal-lobe epilepsy, the observed seizure-induced decrease of GLNECF reflects its increased uptake into neurons to sustain enhanced glutamatergic epileptiform activity, thereby demonstrating a possible new target for anti-seizure therapies. PMID:24070846

  20. Glucocorticoid Ultradian Rhythmicity Directs Cyclical Gene Pulsing of the Clock Gene Period 1 in Rat Hippocampus

    PubMed Central

    McKenna, M. A.; Pooley, J. R.; Kershaw, Y. M.; Meijer, O. C.; de Kloet, E. R.; Lightman, S. L.

    2016-01-01

    In vivo glucocorticoid (GC) secretion exhibits a distinctive ultradian rhythmicity. The lipophilic hormone can rapidly diffuse into cells, although only the pulse peak is of sufficient amplitude to activate the low affinity glucocorticoid receptor (GR). Discrete pulses readily access brain regions such as the hippocampus where GR expression is enriched and known to regulate neuronal function, including memory and learning processes. In the present study, we have tested the hypothesis that GR brain targets are responsive to ultradian GC rhythmicity. We have used adrenalectomised rats replaced with pulses of corticosterone to determine the transcriptional effects of ultradian pulses in the hippocampus. Confocal microscopy confirmed that each GC pulse results in transient GR nuclear localisation in hippocampal CA1 neurones. Concomitant GR activation and DNA binding was demonstrated by synthetic glucocorticoid response element oligonucleotide binding, and verified for the Clock gene Period 1 promoter region by chromatin immunoprecipitation assays. Strikingly each GC pulse induced a ‘burst’ of transcription of Period 1 measured by heterogeneous nuclear RNA quantitative polymerase chain reaction. The net effect of pulsatile GC exposure on accumulation of the mature transcript was also assessed, revealing a plateau of mRNA levels throughout the time course of pulsatile exposure, indicating the pulse timing works optimally for steady state Per1 expression. The plateau dropped to baseline within 120 min of the final pulse, indicating a relatively short half-life for hippocampal Per1. The significance of this strict temporal control is that any perturbation to the pulse frequency or duration would have rapid quantitative effects on the levels of Per1. This in turn could affect hippocampal function, especially circadian related memory and learning processes. PMID:20649850

  1. K+ depolarization evokes ATP, adenosine and glutamate release from glia in rat hippocampus: a microelectrode biosensor study

    PubMed Central

    Heinrich, A; Andó, RD; Túri, G; Rózsa, B; Sperlágh, B

    2012-01-01

    BACKGROUND AND PURPOSE This study was undertaken to characterize the ATP, adenosine and glutamate outflow evoked by depolarization with high K+ concentrations, in slices of rat hippocampus. EXPERIMENTAL APPROACH We utilized the microelectrode biosensor technique and extracellular electrophysiological recording for the real-time monitoring of the efflux of ATP, adenosine and glutamate. KEY RESULTS ATP, adenosine and glutamate sensors exhibited transient and reversible current during depolarization with 25 mM K+, with distinct kinetics. The ecto-ATPase inhibitor ARL67156 enhanced the extracellular level of ATP and inhibited the prolonged adenosine efflux, suggesting that generation of adenosine may derive from the extracellular breakdown of ATP. Stimulation-evoked ATP, adenosine and glutamate efflux was inhibited by tetrodotoxin, while exposure to Ca2+-free medium abolished ATP and adenosine efflux from hippocampal slices. Extracellular elevation of ATP and adenosine were decreased in the presence of NMDA receptor antagonists, D-AP-5 and ifenprodil, whereas non-NMDA receptor blockade by CNQX inhibited glutamate but not ATP and adenosine efflux. The gliotoxin fluoroacetate and P2X7 receptor antagonists inhibited the K+-evoked ATP, adenosine and glutamate efflux, while carbenoxolone in low concentration and probenecid decreased only the adenosine efflux. CONCLUSIONS AND IMPLICATIONS Our results demonstrated activity-dependent gliotransmitter release in the hippocampus in response to ongoing neuronal activity. ATP and glutamate were released by P2X7 receptor activation into extracellular space. Although the increased extracellular levels of adenosine did derive from released ATP, adenosine might also be released directly via pannexin hemichannels. LINKED ARTICLE This article is commented on by Sershen, pp. 1000–1002 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2012.02072.x PMID:22394324

  2. Glycyrrhizin ameliorates oxidative stress and inflammation in hippocampus and olfactory bulb in lithium/pilocarpine-induced status epilepticus in rats.

    PubMed

    González-Reyes, Susana; Santillán-Cigales, Juan Jair; Jiménez-Osorio, Angélica Saraí; Pedraza-Chaverri, José; Guevara-Guzmán, Rosalinda

    2016-10-01

    Glycyrrhizin (GL) is a triterpene present in the roots and rhizomes of Glycyrrhiza glabra that has anti-inflammatory, hepatoprotective and neuroprotective effects. Recently, it was demonstrated that GL produced neuroprotective effects on the postischemic brain as well as on the kainic acid injury model in rats. In addition to this, GL also prevented excitotoxic effects on primary cultures. The aims of the present study were to evaluate GL scavenging properties and to investigate GL's effect on oxidative stress and inflammation in the lithium/pilocarpine-induced seizure model in two cerebral regions, hippocampus and olfactory bulb, at acute time intervals (3 or 24h) after status epilepticus (SE). Fluorometric methods showed that GL scavenged three reactive oxygen species: hydrogen peroxide, peroxyl radicals and superoxide anions. In contrast, GL was unable to scavenge peroxynitrite, hydroxyl radicals, singlet oxygen and 2,2-diphenil-1-picrylhydrazyl (DPPH) radicals suggesting that GL is a weak scavenger. Additionally, administration of GL (50mg/kg, i.p.) 30min before pilocarpine administration significantly suppressed oxidative stress. Moreover, malondialdehyde levels were diminished and glutathione levels were maintained at control values in both cerebral regions at 3 and 24 after SE. At 24h after SE, glutathione S-transferase and superoxide dismutase activity increased in the hippocampus, while both glutathione reductase and glutathione peroxidase activity were unchanged in the olfactory bulb at that time. In addition, GL suppressed the induction of the proinflammatory cytokines interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in both cerebral regions evaluated. These results suggest that GL confers protection against pilocarpine damage via antioxidant and anti-inflammatory effects. PMID:27490898

  3. Gestational and early postnatal hypothyroidism alters VGluT1 and VGAT bouton distribution in the neocortex and hippocampus, and behavior in rats.

    PubMed

    Navarro, Daniela; Alvarado, Mayvi; Navarrete, Francisco; Giner, Manuel; Obregon, Maria Jesus; Manzanares, Jorge; Berbel, Pere

    2015-01-01

    Thyroid hormones are fundamental for the expression of genes involved in the development of the CNS and their deficiency is associated with a wide spectrum of neurological diseases including mental retardation, attention deficit-hyperactivity disorder and autism spectrum disorders. We examined in rat whether developmental and early postnatal hypothyroidism affects the distribution of vesicular glutamate transporter-1 (VGluT1; glutamatergic) and vesicular inhibitory amino acid transporter (VGAT; GABAergic) immunoreactive (ir) boutons in the hippocampus and somatosensory cortex, and the behavior of the pups. Hypothyroidism was induced by adding 0.02% methimazole (MMI) and 1% KClO4 to the drinking water starting at embryonic day 10 (E10; developmental hypothyroidism) and E21 (early postnatal hypothyroidism) until day of sacrifice at postnatal day 50. Behavior was studied using the acoustic prepulse inhibition (somatosensory attention) and the elevated plus-maze (anxiety-like assessment) tests. The distribution, density and size of VGluT1-ir and VGAT-ir boutons in the hippocampus and somatosensory cortex was abnormal in MMI pups and these changes correlate with behavioral changes, as prepulse inhibition of the startle response amplitude was reduced, and the percentage of time spent in open arms increased. In conclusion, both developmental and early postnatal hypothyroidism significantly decreases the ratio of GABAergic to glutamatergic boutons in dentate gyrus leading to an abnormal flow of information to the hippocampus and infragranular layers of the somatosensory cortex, and alter behavior in rats. Our data show cytoarchitectonic alterations in the basic excitatory hippocampal loop, and in local inhibitory circuits of the somatosensory cortex and hippocampus that might contribute to the delayed neurocognitive outcome observed in thyroid hormone deficient children born in iodine deficient areas, or suffering from congenital hypothyroidism. PMID:25741243

  4. Gestational and early postnatal hypothyroidism alters VGluT1 and VGAT bouton distribution in the neocortex and hippocampus, and behavior in rats

    PubMed Central

    Navarro, Daniela; Alvarado, Mayvi; Navarrete, Francisco; Giner, Manuel; Obregon, Maria Jesus; Manzanares, Jorge; Berbel, Pere

    2015-01-01

    Thyroid hormones are fundamental for the expression of genes involved in the development of the CNS and their deficiency is associated with a wide spectrum of neurological diseases including mental retardation, attention deficit-hyperactivity disorder and autism spectrum disorders. We examined in rat whether developmental and early postnatal hypothyroidism affects the distribution of vesicular glutamate transporter-1 (VGluT1; glutamatergic) and vesicular inhibitory amino acid transporter (VGAT; GABAergic) immunoreactive (ir) boutons in the hippocampus and somatosensory cortex, and the behavior of the pups. Hypothyroidism was induced by adding 0.02% methimazole (MMI) and 1% KClO4 to the drinking water starting at embryonic day 10 (E10; developmental hypothyroidism) and E21 (early postnatal hypothyroidism) until day of sacrifice at postnatal day 50. Behavior was studied using the acoustic prepulse inhibition (somatosensory attention) and the elevated plus-maze (anxiety-like assessment) tests. The distribution, density and size of VGluT1-ir and VGAT-ir boutons in the hippocampus and somatosensory cortex was abnormal in MMI pups and these changes correlate with behavioral changes, as prepulse inhibition of the startle response amplitude was reduced, and the percentage of time spent in open arms increased. In conclusion, both developmental and early postnatal hypothyroidism significantly decreases the ratio of GABAergic to glutamatergic boutons in dentate gyrus leading to an abnormal flow of information to the hippocampus and infragranular layers of the somatosensory cortex, and alter behavior in rats. Our data show cytoarchitectonic alterations in the basic excitatory hippocampal loop, and in local inhibitory circuits of the somatosensory cortex and hippocampus that might contribute to the delayed neurocognitive outcome observed in thyroid hormone deficient children born in iodine deficient areas, or suffering from congenital hypothyroidism. PMID:25741243

  5. Prevention of postoperative fatigue syndrome in rat model by ginsenoside Rb1 via down-regulation of inflammation along the NMDA receptor pathway in the hippocampus.

    PubMed

    Chen, Wei-Zhe; Liu, Shu; Chen, Fan-Feng; Zhou, Chong-Jun; Yu, Jian; Zhuang, Cheng-Le; Shen, Xian; Chen, Bi-Cheng; Yu, Zhen

    2015-01-01

    Postoperative fatigue syndrome (POFS) is a common complication which decelerates recovery after surgery. The present study investigated the anti-fatigue effect of ginsenoside Rb1 (GRb1) through the inflammatory cytokine-mediated N-methyl-D-aspartate (NMDA) receptor pathway. A POFS rat model was created by major small intestinal resection and assessed with an open field test. Real-time quantitative polymerase chain reaction, western blot analysis, high performance liquid chromatography and a transmission electron microscopic analysis were used to determine typical biochemical parameters in the hippocampus. Our results showed that POFS rats exhibited fatigue associated with an increased expression of inflammatory cytokines and NMDA receptor 1, higher (kynurenine)/(tryptophan) and (kynurenine)/(kynurenic acid) on postoperative days 1 and 3, and an increased expression of indoleamine 2,3-dioxygenase (IDO) on postoperative day 1. Degenerated neurons were found in the hippocampus of POFS rats. The NMDA receptor antagonist MK801 had a significant effect on central fatigue on postoperative day 1. GRb1 had no effect on IDO or tryptophan metabolism, but exhibited a significant effect on POFS by inhibiting the expression of inflammatory cytokines and NMDA receptor 1. These data suggested that inflammatory cytokines could activate tryptophan metabolism to cause POFS through the NMDA receptor pathway. GRb1 had an anti-fatigue effect on POFS by reducing inflammatory cytokines and NMDA receptors. PMID:25747983

  6. The effect of rosemary extract on spatial memory, learning and antioxidant enzymes activities in the hippocampus of middle-aged rats

    PubMed Central

    Rasoolijazi, Homa; Mehdizadeh, Mehdi; Soleimani, Mansoureh; Nikbakhte, Farnaz; Eslami Farsani, Mohsen; Ababzadeh, Shima

    2015-01-01

    Background: The Rosemary extract (RE) possesses various antioxidant, cytoprotective and cognition- improving bioactivities. In this study, we postulated which doses of RE have a more effect on the hippocampus of middle-aged rats. Methods: In this experimental study, thirty-two middle-aged male Wistar rats were fed by different doses (50,100 and 200 mg/kg/day) of RE (containing 40% carnosic acid) or distilled water for 12 weeks. The effects of different RE doses on learning and spatial memory scores, hippocampal neuronal survival, antioxidant enzymes and lipid peroxidation amount were evaluated by one and two way analysis of variance (ANOVA). Results: It seemed that RE (100mg/kg) could recover the spatial memory retrieval score (p< 0.05). The amount of activity of SOD, GPx and CAT enzymes in the hippocampus of animals of the RE (100mg/kg) group showed a significant increase compared to the normal group (p< 0.01), (p< 0.01) and (p< 0.05), respectively. Also, the amount of activity of GPx in the RE (50 mg/kg) group of animals showed a significant increase compared to the normal group (p< 0.05). No significant difference was found between the groups in the MDA level. Conclusion: The results revealed that rosemary extract (40% carnosic acid) may improve the memory score and oxidative stress activity in middle aged rats in a dose dependent manner, especially in 100mg/kg. PMID:26034740

  7. Pregnancy and lactation differentially modify the transcriptional regulation of steroidogenic enzymes through DNA methylation mechanisms in the hippocampus of aged rats.

    PubMed

    Rossetti, María F; Varayoud, Jorgelina; Lazzarino, Gisela P; Luque, Enrique H; Ramos, Jorge G

    2016-07-01

    In the present study, we examined the mRNA expression and DNA methylation state of steroidogenic enzymes in the hippocampus of young adult (90-days-old) and middle-aged (450-days-old) nulliparous rats, and middle-aged multiparous rats subjected to three pregnancies with and without lactation. Aging decreased the mRNA levels of steroidogenic-related genes, while pregnancy and lactation significantly reduced the effect of aging, maintaining high expression levels of cytochrome P450 side-chain cleavage (P450scc), steroid 5α-reductase-1 (5αR-1), cytochrome P450arom (P450arom) and aldosterone synthase (P450(11β)-2). In addition, pregnancy and lactation diminished the methylation state of the 5αR-1 promoter and increased the transcription of brain-derived neurotrophic factor, synaptophysin and spinophilin. Pregnancy without lactation increased P450scc and 5αR-1 gene expression and decreased the methylation of their promoters. We concluded that the age-related decrease in the mRNA expression of steroidogenic enzymes is differentially attenuated by pregnancy and lactation in the rat hippocampus and that differential methylation mechanisms could be involved. PMID:27040308

  8. Ovariectomy and subsequent treatment with estrogen receptor agonists tune the innate immune system of the hippocampus in middle-aged female rats.

    PubMed

    Sárvári, Miklós; Kalló, Imre; Hrabovszky, Erik; Solymosi, Norbert; Liposits, Zsolt

    2014-01-01

    The innate immune system including microglia has a major contribution to maintenance of the physiological functions of the hippocampus by permanent monitoring of the neural milieu and elimination of tissue-damaging threats. The hippocampus is vulnerable to age-related changes ranging from gene expression to network connectivity. The risk of hippocampal deterioration increases with the decline of gonadal hormone supply. To explore the impact of hormone milieu on the function of the innate immune system in middle-aged female rats, we compared mRNA expression in the hippocampus after gonadal hormone withdrawal, with or without subsequent estrogen replacement using estradiol and isotype-selective estrogen receptor (ER) agonists. Targeted profiling assessed the status of the innate immune system (macrophage-associated receptors, complement, inhibitory neuronal ligands), local estradiol synthesis (P450 aromatase) and estrogen reception (ER). Results established upregulation of macrophage-associated (Cd45, Iba1, Cd68, Cd11b, Cd18, Fcgr1a, Fcgr2b) and complement (C3, factor B, properdin) genes in response to ovariectomy. Ovariectomy upregulated Cd22 and downregulated semaphorin3A (Sema3a) expression, indicating altered neuronal regulation of microglia. Ovariectomy also led to downregulation of aromatase and upregulation of ERα gene. Of note, analogous changes were observed in the hippocampus of postmenopausal women. In ovariectomized rats, estradiol replacement attenuated Iba1, Cd11b, Fcgr1a, C3, increased mannose receptor Mrc1, Cd163 and reversed Sema3a expression. In contrast, reduced expression of aromatase was not reversed by estradiol. While the effects of ERα agonist closely resembled those of estradiol, ERβ agonist was also capable of attenuating the expression of several macrophage-associated and complement genes. These data together indicate that the innate immune system of the aging hippocampus is highly responsive to the gonadal hormone milieu. In

  9. Impairment of long-term potentiation in the hippocampus of alcohol-treated OLETF rats.

    PubMed

    Min, Jung-Ah; Lee, Hye-Ryeon; Kim, Jae-Ick; Ju, Anes; Kim, Dai-Jin; Kaang, Bong-Kiun

    2011-08-01

    Type 2 diabetes and chronic heavy alcohol consumption each have been known to be associated with the impairment of hippocampus-dependent cognitive functions. Although both conditions often coexist clinically and there is accumulated evidence of a relationship between the two, the combined effect on hippocampal long-term potentiation (LTP) has not yet been investigated. We compared the effect of type 2 diabetes itself with that of type 2 diabetes with chronic heavy alcohol consumption on the hippocampal LTP using Otsuka Long-Evans Tokushima Fatty (OLETF) rat model, which resembles the characteristics of human type 2 diabetes. Ten of 16-week-old male OLETF rats were randomized into two treatment groups according to weight: the OLETF-Alcohol (O-A, n=5) and the OLETF-Control (O-C, n=5). The rats in the O-A group were fed Lieber-DeCarli Regular EtOH over a 10-week period and the amount of alcohol consumption was 8.42±2.52g/kg/day. To ensure the effect of poor glycemic control on LTP, intraperitoneal glucose tolerance test was performed after a 10-week treatment. The hippocampal LTP was measured by extracellular field excitatory post-synaptic potentials at Shaffer collateral (SC) synapses in the CA1 region. Although the O-A group showed significantly lower fasting and postprandial glucose (P<0.01 and P=0.02, respectively), the hippocampal LTP was more significantly attenuated in the O-A group than the O-C group (P=0.032). The results of this study suggested that chronic heavy alcohol consumption could potentiate the impairment of hippocampal LTP in individuals with impaired glucose tolerance or early type 2 diabetes, even though it did not aggravate, but did improve glycemic control. Clinical attention to chronic heavy drinking will be required in preventing cognitive impairment in individuals with type 2 diabetes. PMID:21683761

  10. Chronic MDMA induces neurochemical changes in the hippocampus of adolescent and young adult rats: Down-regulation of apoptotic markers.

    PubMed

    García-Cabrerizo, Rubén; García-Fuster, M Julia

    2015-07-01

    While hippocampus is a brain region particularly susceptible to the effects of MDMA, the cellular and molecular changes induced by MDMA are still to be fully elucidated, being the dosage regimen, the species and the developmental stage under study great variables. This study compared the effects of one and four days of MDMA administration following a binge paradigm (3×5 mg/kg, i.p., every 2 h) on inducing hippocampal neurochemical changes in adolescent (PND 37) and young adult (PND 58) rats. The results showed that chronic MDMA caused hippocampal protein deficits in adolescent and young adult rats at different levels: (1) impaired serotonergic (5-HT2A and 5-HT2C post-synaptic receptors) and GABAergic (GAD2 enzyme) signaling, and (2) decreased structural cytoskeletal neurofilament proteins (NF-H, NF-M and NF-L). Interestingly, these effects were not accompanied by an increase in apoptotic markers. In fact, chronic MDMA inhibited proteins of the apoptotic pathway (i.e., pro-apoptotic FADD, Bax and cytochrome c) leading to an inhibition of cell death markers (i.e., p-JNK1/2, cleavage of PARP-1) and suggesting regulatory mechanisms in response to the neurochemical changes caused by the drug. The data, together with the observed lack of GFAP activation, support the view that chronic MDMA effects, regardless of the rat developmental age, extends beyond neurotransmitter systems to impair other hippocampal structural cell markers. Interestingly, inhibitory changes in proteins from the apoptotic pathway might be taking place to overcome the protein deficits caused by MDMA. PMID:26068050

  11. Total Phenolic Content and Antioxidant Activity of Different Types of Chocolate, Milk, Semisweet, Dark, and Soy, in Cerebral Cortex, Hippocampus, and Cerebellum of Wistar Rats

    PubMed Central

    da Silva Medeiros, Niara; Koslowsky Marder, Roberta; Farias Wohlenberg, Mariane; Funchal, Cláudia; Dani, Caroline

    2015-01-01

    Chocolate is a product consumed worldwide and it stands out for presenting an important amount of phenolic compounds. In this study, the total phenolic content and antioxidant activity in the cerebral cortex, hippocampus, and cerebellum of male Wistar rats when consuming different types of chocolate, including milk, semisweet, dark, and soy, was evaluated. The total polyphenols concentration and antioxidant activity in vitro by the method of DPPH radical-scavenging test were evaluated in chocolate samples. Lipid peroxidation (TBARS), protein oxidation (carbonyl), sulfhydryl groups, and activity of SOD enzyme in cerebral cortex, hippocampus, and cerebellum of rats treated or not with hydrogen peroxide and/or chocolate were also evaluated. The dark chocolate demonstrated higher phenolic content and antioxidant activity, followed by semisweet, soy, and milk chocolates. The addition of chocolate in the diet of the rats reduced lipid peroxidation and protein oxidation caused by hydrogen peroxide. In the sulfhydryl assay, we observed that the levels of nonenzymatic defenses only increased with the chocolate treatments The SOD enzyme activity was modulated in the tissues treated with the chocolates. We observed in the samples of chocolate a significant polyphenol content and an important antioxidant activity; however, additional studies with different chocolates and other tissues are necessary to further such findings. PMID:26649198

  12. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels.

    PubMed

    Roque, Angélica; Ochoa-Zarzosa, Alejandra; Torner, Luz

    2016-07-01

    Adult animals subjected to chronic stress show an inflammatory response in the hippocampus which has been related to cognitive dysfunction and psychopathology. However the immediate consequences of early life stress on hippocampal glial cells have not been studied. Here we analyzed the effects of maternal separation (MS) on astrocyte and microglial cell morphology in the hippocampal hilus, compared the expression of cytokines in the hippocampus and hypothalamus, and the peripheral response of cytokines, on postnatal day (PD) 15. Male rat pups of MS (3h/day, PD1-PD14) and Control (CONT) pups showed similar microglial cell densities in the hilus, but MS pups presented more activated microglia. MS decreased astrocyte density and the number of processes in the hilus. Cytokine mRNA expression (qPCR) was analyzed in MS and CONT groups, sacrificed (i) under basal (B) conditions or (ii) after a single stress event (SS) at PN15. In hippocampal extracts, MS increased IL-1β mRNA, under B and SS conditions while IL-6 and TNF-α did not change. In hypothalamic tissue, MS increased TNF-α and IL-6 mRNA, but not IL-1b, after SS. Peripheral concentrations of IL-1β were decreased under B and SS conditions in MS; IL-6 concentration increased after SS in MS pups, and TNF-α concentration was unchanged. In conclusion, MS activates microglial cells and decreases astrocyte density in the hippocampus. A differential cytokine expression is observed in the hippocampus and the hypothalamus after MS, and after SS. Also, MS triggers an independent response of peripheral cytokines. These specific responses together could contribute to decrease hippocampal neurogenesis and alter the neuroendocrine axis. PMID:26431692

  13. Eating habits modulate short term memory and epigenetical regulation of brain derived neurotrophic factor in hippocampus of low-and high running capacity rats

    PubMed Central

    Torma, Ferenc; Bori, Zoltan; Koltai, Erika; Felszeghy, Klara; Vacz, Gabriella; Koch, Lauren; Britton, Steven; Boldogh, Istvan; Radak, Zsolt

    2014-01-01

    Exercise capacity and dietary restriction (DR) are linked to improved quality of life, including enhanced brain function and neuro-protection. Brain derived neurotrophic factor (BDNF) is one of the key proteins involved in the beneficial effects of exercise on brain. Low capacity runner (LCR) and high capacity runner (HCR) rats were subjected to DR in order to investigate the regulation of BDNF. HCR-DR rats out-performed other groups in a passive avoidance test. BDNF content increased significantly in the hippocampus of HCR-DR groups compared to control groups (p<0.05). The acetylation of H3 increased significantly only in the LCR-DR group. However, Chip-assay revealed that the specific binding between acetylated histone H3 and BNDF promoter was increased in both LCR-DR and HCR-DR groups. In spite of these increases in binding, at the transcriptional level only, the LCR-DR group showed an increase in BDNF mRNA content. Additionally, DR also induced the activity of cAMP response element-binding protein (CREB), while the content of SIRT1 was not altered. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) was elevated in HCR-DR groups. But, based on the levels of nuclear respiratory factor-1 and cytocrome c oxidase, it appears that DR did not cause mitochondrial biogenesis. The data suggest that DR-mediated induction of BDNF levels includes chromatin remodeling. Moreover, DR does not induce mitochondrial biogenesis in the hippocampus of LCR/HCR rats. DR results in different responses to a passive avoidance test, and BDNF regulation in LCR and HCR rats. PMID:25043449

  14. NMDA receptors are upregulated and trafficked to the plasma membrane after sigma-1 receptor activation in the rat hippocampus.

    PubMed

    Pabba, Mohan; Wong, Adrian Y C; Ahlskog, Nina; Hristova, Elitza; Biscaro, Dante; Nassrallah, Wissam; Ngsee, Johnny K; Snyder, Melissa; Beique, Jean-Claude; Bergeron, Richard

    2014-08-20

    Sigma-1 receptors (σ-1Rs) are endoplasmic reticulum resident chaperone proteins implicated in many physiological and pathological processes in the CNS. A striking feature of σ-1Rs is their ability to interact and modulate a large number of voltage- and ligand-gated ion channels at the plasma membrane. We have reported previously that agonists for σ-1Rs potentiate NMDA receptor (NMDAR) currents, although the mechanism by which this occurs is still unclear. In this study, we show that in vivo administration of the selective σ-1R agonists (+)-SKF 10,047 [2S-(2α,6α,11R*]-1,2,3,4,5,6-hexahydro-6,11-dimethyl-3-(2-propenyl)-2,6-methano-3-benzazocin-8-ol hydrochloride (N-allylnormetazocine) hydrochloride], PRE-084 (2-morpholin-4-ylethyl 1-phenylcyclohexane-1-carboxylate hydrochloride), and (+)-pentazocine increases the expression of GluN2A and GluN2B subunits, as well as postsynaptic density protein 95 in the rat hippocampus. We also demonstrate that σ-1R activation leads to an increased interaction between GluN2 subunits and σ-1Rs and mediates trafficking of NMDARs to the cell surface. These results suggest that σ-1R may play an important role in NMDAR-mediated functions, such as learning and memory. It also opens new avenues for additional studies into a multitude of pathological conditions in which NMDARs are involved, including schizophrenia, dementia, and stroke. PMID:25143613

  15. Neuroprotective effects of ginsenoside Rg3 against homocysteine-induced excitotoxicity in rat hippocampus.

    PubMed

    Kim, Jong-Hoon; Cho, Soo Yeun; Lee, Jun-Ho; Jeong, Sang Min; Yoon, In-Soo; Lee, Byung-Hwan; Lee, Joon-Hee; Pyo, Mi Kyung; Lee, Sang-Mok; Chung, Jun-Mo; Kim, Sunoh; Rhim, Hyewhon; Oh, Jae-Wook; Nah, Seung-Yeol

    2007-03-01

    We previously demonstrated that ginsenoside Rg(3) (Rg(3)), one of the active ingredients in Panax ginseng, attenuates NMDA receptor-mediated currents and NMDA-induced neurotoxicity (Kim, S., Kim, T., Ahn, K., Park, W.K., Nah, S.Y., Rhim, H., 2004. Ginsenoside Rg(3) antagonizes NMDA receptors through a glycine modulatory site in rat cultured hippocampal neurons. Biochem. Biophys. Res. Commun. 323, 416-424). Accumulating evidence suggests that homocysteine (HC), a metabolite of methionine, exerts its excitotoxicity through NMDA receptor activation. In the present study, we examined the neuroprotective effects of Rg(3) on HC-induced hippocampal excitotoxicity in vitro and in vivo. Our in vitro studies using rat cultured hippocampal neurons revealed that Rg(3) treatment significantly and dose-dependently inhibited HC-induced hippocampal cell death, with an EC(50) value of 28.7+/-7.5 muM. Rg(3) treatment not only significantly reduced HC-induced DNA damage, but also dose-dependently attenuated HC-induced caspase-3 activity in vitro. Our in vivo studies revealed that intracerebroventricular (i.c.v.) pre-administration of Rg(3) significantly and dose-dependently reduced i.c.v. HC-induced hippocampal damage in rats. To examine the mechanisms underlying the in vitro and in vivo neuroprotective effects of Rg(3) against HC-induced hippocampal excitotoxicity, we examined the effect of Rg(3) on HC-induced intracellular Ca(2+) elevations in cultured hippocampal cells and found that Rg(3) treatment dose-dependently inhibited HC-induced intracellular Ca(2+) elevation, with an IC(50) value of 41.5+/-17.5 muM. In addition, Rg(3) treatment dose-dependently inhibited HC-induced currents in Xenopus oocytes expressing the NMDA receptor, with an IC(50) of 47.3+/-14.2 muM. These results collectively indicate that Rg(3)-induced neuroprotection against HC in rat hippocampus might be achieved via inhibition of HC-mediated NMDA receptor activation. PMID:17239831

  16. Reciprocal Regulation of Epileptiform Neuronal Oscillations and Electrical Synapses in the Rat Hippocampus

    PubMed Central

    Kinjo, Erika R.; Higa, Guilherme S. V.; Morya, Edgard; Valle, Angela C.; Kihara, Alexandre H.; Britto, Luiz R. G.

    2014-01-01

    Gap junction (GJ) channels have been recognized as an important mechanism for synchronizing neuronal networks. Herein, we investigated the participation of GJ channels in the pilocarpine-induced status epilepticus (SE) by analyzing electrophysiological activity following the blockade of connexins (Cx)-mediated communication. In addition, we examined the regulation of gene expression, protein levels, phosphorylation profile and distribution of neuronal Cx36, Cx45 and glial Cx43 in the rat hippocampus during the acute and latent periods. Electrophysiological recordings revealed that the GJ blockade anticipates the occurrence of low voltage oscillations and promotes a marked reduction of power in all analyzed frequencies.Cx36 gene expression and protein levels remained stable in acute and latent periods, whereas upregulation of Cx45 gene expression and protein redistribution were detected in the latent period. We also observed upregulation of Cx43 mRNA levels followed by changes in the phosphorylation profile and protein accumulation. Taken together, our results indisputably revealed that GJ communication participates in the epileptiform activity induced by pilocarpine. Moreover, considering that specific Cxs undergo alterations through acute and latent periods, this study indicates that the control of GJ communication may represent a focus in reliable anti-epileptogenic strategies. PMID:25299405

  17. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    PubMed

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). PMID:22406520

  18. Recent memory for socially transmitted food preferences in rats does not depend on the hippocampus.

    PubMed

    Thapa, Rajat; Sparks, Fraser T; Hanif, Wahab; Gulbrandsen, Tine; Sutherland, Robert J

    2014-10-01

    The standard model of systems consolidation holds that the hippocampus (HPC) is involved only in the initial storage and retrieval of a memory. With time hippocampal-neocortical interactions slowly strengthen the neocortical memory, ultimately enabling retrieval of the memory without the HPC. Key support for this idea comes from experiments measuring memory recall in the socially-transmitted food preference (STFP) task in rats. HPC damage within a day or two of STFP learning can abolish recall, but similar damage five or more days after learning has no effect. We hypothesize that disruption of cellular consolidation outside the HPC could contribute to the amnesia with recent memories, perhaps playing a more important role than the loss of HPC. This view predicts that intraHPC infusion of Tetrodotoxin (TTX), which can block conduction of action potentials from the lesion sites, will block the retrograde amnesia in the STFP task. Here we confirm the previously reported retrograde amnesia with neurotoxic HPC damage within the first day after learning, but show that co-administration of TTX with the neurotoxin blocks the retrograde amnesia despite very extensive HPC damage. These results indicate that HPC damage disrupts cellular consolidation of the recent memory elsewhere; STFP memory may not ever depend on the HPC. PMID:24862355

  19. Spatial properties of astrocyte gap junction coupling in the rat hippocampus

    PubMed Central

    Anders, Stefanie; Minge, Daniel; Griemsmann, Stephanie; Herde, Michel K.; Steinhäuser, Christian; Henneberger, Christian

    2014-01-01

    Gap junction coupling enables astrocytes to form large networks. Its strength determines how easily a signalling molecule diffuses through the network and how far a locally initiated signal can spread. Changes of coupling strength are well-documented during development and in response to various stimuli. Precise quantification of coupling is needed for studying such modifications and their functional consequences. We therefore explored spatial properties of astrocyte coupling in a model simulating dye loading of single astrocytes. Dye spread into the astrocyte network could be characterized by a coupling length constant and coupling anisotropy. In experiments, the fluorescent marker Alexa Fluor 594 was used to measure these parameters in CA1 and dentate gyrus of the rat hippocampus. Coupling did not differ between regions but showed a temperature-dependence, partially owing to changes of intracellular diffusivity, detected by measuring coupling length constants but not the more variable cell counts of dye-coupled astrocytes. We further found that coupling is anisotropic depending on distance to the pyramidal cell layer, which correlated with regional differences of astrocyte morphology. This demonstrates that applying these new analytical approaches provides useful quantitative information on gap junction coupling and its heterogeneity. PMID:25225094

  20. Spatial properties of astrocyte gap junction coupling in the rat hippocampus.

    PubMed

    Anders, Stefanie; Minge, Daniel; Griemsmann, Stephanie; Herde, Michel K; Steinhäuser, Christian; Henneberger, Christian

    2014-10-19

    Gap junction coupling enables astrocytes to form large networks. Its strength determines how easily a signalling molecule diffuses through the network and how far a locally initiated signal can spread. Changes of coupling strength are well-documented during development and in response to various stimuli. Precise quantification of coupling is needed for studying such modifications and their functional consequences. We therefore explored spatial properties of astrocyte coupling in a model simulating dye loading of single astrocytes. Dye spread into the astrocyte network could be characterized by a coupling length constant and coupling anisotropy. In experiments, the fluorescent marker Alexa Fluor 594 was used to measure these parameters in CA1 and dentate gyrus of the rat hippocampus. Coupling did not differ between regions but showed a temperature-dependence, partially owing to changes of intracellular diffusivity, detected by measuring coupling length constants but not the more variable cell counts of dye-coupled astrocytes. We further found that coupling is anisotropic depending on distance to the pyramidal cell layer, which correlated with regional differences of astrocyte morphology. This demonstrates that applying these new analytical approaches provides useful quantitative information on gap junction coupling and its heterogeneity. PMID:25225094

  1. Investigation of Propolis’ Effect on Thiobarbituric Acid Reactive Substances and Anti-Oxidant Enzyme Levels of Hippocampus in Diabetic Rats Induced by Streptozotocin

    PubMed Central

    Köksal, Burcu; Emre, Memet Hanifi; Polat, Alaadin

    2015-01-01

    BACKGROUND: Propolis is an organic resinous viscous substance collected from flower bud and plant sprig by bees. Propolis has a potential treatment agent for oxidative damage caused by diabetes in hippocampus due to its flavonoid and phenolic content. AIM: In this study effect of propolis on thiobarbituric acid reactive substances and anti-oxidative enzyme levels of hippocampus in diabetic rats induced by streptozotocin was investigated. MATERIALS AND METHODS: The study involved measuring levels of SOD, CAT, GSH-Px and TBARs in hippocampus tissue of STZ-induced diabetic rats (Adult Male Sprague Dawley rats) after applying propolis for one month. The subjects of the study were composed of 51 rats randomly assigned to four groups (Control, STZ, P+STZ and STZ+P). For analysis of data, Kruskal Wallis Test was utilized. RESULTS: The findings of the study showed that there were no significant difference in the levels of TBARS, SOD, CAT and GSH-Px of hippocampus across the groups. CONCLUSION: Propolis application in four-week duration does not have effect on TBARS, SOD, CAT and GSH-Px levels of hippocampus of diabetic rats. These findings mean that more time for observing oxidative harms on hippocampus is needed. PMID:27275196

  2. Calorie restriction improves cognitive decline via up-regulation of brain-derived neurotrophic factor: tropomyosin-related kinase B in hippocampus ofobesity-induced hypertensive rats.

    PubMed

    Kishi, Takuya; Hirooka, Yoshitaka; Nagayama, Tomomi; Isegawa, Kengo; Katsuki, Masato; Takesue, Ko; Sunagawa, Kenji

    2015-01-01

    In metabolic syndrome (MetS), previous studies have suggested that cognitive decline is worsened. Among the factors associated with cognition, decreased brain-derived neurotrophic factor (BDNF) in the hippocampus causes cognitive decline. We previously reported that exercise training with calorie restriction yielded protection against cognitive decline via BDNF in the hippocampus of hypertensive rats. The aim of the present study was to determine whether or not calorie restriction results in protection against cognitive decline via BDNF and its receptor tropomyosin-related kinase B (TrkB) in the hippocampus of MetS model rats. We divided dietary-induced obesity-prone and hypertensive rats (OP), as metabolic syndrome model rats, into three groups, fed with a high fat diet (HF), treated with calorie restriction (CR) plus vehicle, and treated with CR and ANA-12 (a TrkB antagonist) (CR+A). After treatment for 28 days, body weight, insulin, fasting blood glucose, adiponectin, systolic blood pressure, and oxidative stress in the hippocampus were significantly lower, and BDNF expression in the hippocampus was significantly higher in CR and CR+A than in HF. Cognitive performance determined by the Morris water maze test was significantly higher in CR than in HF, whereas the benefit was attenuated in CR+A. In conclusion, calorie restriction protects against cognitive decline via up-regulation of BDNF/TrkB through an antioxidant effect in the hippocampus of dietary-induced obesity rats. PMID:25503654

  3. Involvement of AMPA/kainate and GABAA receptors in topiramate neuroprotective effects against methylphenidate abuse sequels involving oxidative stress and inflammation in rat isolated hippocampus.

    PubMed

    Motaghinejad, Majid; Motevalian, Manijeh

    2016-08-01

    Abuses of methylphenidate (MPH) as psychostimulant cause neural damage of brain cells. Neuroprotective properties of topiramate (TPM) have been indicated in several studies but its exact mechanism of action remains unclear. The current study evaluates protective role of various doses of TPM and its mechanism of action in MPH induced oxidative stress and inflammation. The neuroprotective effects of various doses of TPM against MPH induced oxidative stress and inflammation were evaluated and then the action of TPM was studied in presence of domoic acid (DOM), as AMPA/kainate receptor agonist and bicuculline (BIC) as GABAA receptor antagonist, in isolated rat hippocampus. Open Field Test (OFT) was used to investigate motor activity changes. Oxidative, antioxidant and inflammatory factors were measured in isolated hippocampus. TPM (70 and 100mg/kg) decreased MPH induced motor activity disturbances and inhibit MPH induced oxidative stress and inflammation. On the other hand pretreatment of animals with DOM or BIC, inhibit this effect of TPM and potentiate MPH induced motor activity disturbances and increased lipid peroxidation, mitochondrial oxidized form of glutathione (GSSG) level, interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in isolated hippocampal cells and decreased reduced form of glutathione (GSH) level, superoxide dismutase, glutathione peroxidase and glutathione reductase activity. It seems that TPM can protect cells of hippocampus from oxidative stress and neuroinflammation and it could be partly by activation of GABAA receptor and inhibition of AMPA/kainite receptor. PMID:27105819

  4. Activation of matrix metalloproteinase in dorsal hippocampus drives improvement in spatial working memory after intra-VTA nicotine infusion in rats.

    PubMed

    Shu, Hui; Zheng, Guo-qing; Wang, Xiaona; Sun, Yanyun; Liu, Yushan; Weaver, John Michael; Shen, Xianzhi; Liu, Wenlan; Jin, Xinchun

    2015-10-01

    The hippocampus receives dopaminergic projections from the ventral tegmental area (VTA) and substantia nigra. These inputs appear to provide a modulatory signal that influences hippocampus-dependent behaviors. Enhancements in working memory performance have been previously reported following acute smoking/nicotine exposure. However, the underlying mechanism remains unclear. This study investigated the effects of nicotine on spatial working memory (SWM) and the mechanisms involved. Delayed alternation T-maze task was used to assess SWM. In situ and gel gelatin zymography were used to detect matrix metalloproteinase-9 (MMP-9) in SWM. Systemic or local (intra-VTA) administration of nicotine significantly improves SWM, which was accompanied by increased MMP-9 activity in dorsal hippocampus (dHPC). Intra-dHPC administration of MMP inhibitor FN-439 abolished the memory enhancement induced by intra-VTA nicotine infusion. FN-439 had no effect on locomotor behavior. Our data suggest that intra-VTA nicotine infusion activates MMP-9 in dHPC to improve SWM in rats. PMID:26263395

  5. Aluminum overload increases oxidative stress in four functional brain areas of neonatal rats

    PubMed Central

    2012-01-01

    Background Higher aluminum (Al) content in infant formula and its effects on neonatal brain development are a cause for concern. This study aimed to evaluate the distribution and concentration of Al in neonatal rat brain following Al treatment, and oxidative stress in brain tissues induced by Al overload. Methods Postnatal day 3 (PND 3) rat pups (n =46) received intraperitoneal injection of aluminum chloride (AlCl3), at dosages of 0, 7, and 35 mg/kg body wt (control, low Al (LA), and high Al (HA), respectively), over 14 d. Results Aluminum concentrations were significantly higher in the hippocampus (751.0 ± 225.8 ng/g v.s. 294.9 ± 180.8 ng/g; p < 0.05), diencephalon (79.6 ± 20.7 ng/g v.s. 20.4 ± 9.6 ng/g; p < 0.05), and cerebellum (144.8 ± 36.2 ng/g v.s. 83.1 ± 15.2 ng/g; p < 0.05) in the HA group compared to the control. The hippocampus, diencephalon, cerebellum, and brain stem of HA animals displayed significantly higher levels of lipid peroxidative products (TBARS) than the same regions in the controls. However, the average superoxide dismutase (SOD) activities in the cerebral cortex, hippocampus, cerebellum, and brain stem were lower in the HA group compared to the control. The HA animals demonstrated increased catalase activity in the diencephalon, and increased glutathione peroxidase (GPx) activity in the cerebral cortex, hippocampus, cerebellum, and brain stem, compared to controls. Conclusion Aluminum overload increases oxidative stress (H2O2) in the hippocampus, diencephalon, cerebellum, and brain stem in neonatal rats. PMID:22613782

  6. SO2 inhalation modulates the expression of apoptosis-related genes in rat hippocampus via its derivatives in vivo.

    PubMed

    Yun, Yang; Li, Hongyan; Li, Guangke; Sang, Nan

    2010-09-01

    The possible neurotoxicity of SO(2) has been implicated by determining morphological change, oxidative stress, DNA damage and membrane channel alteration in previous studies, however, its detailed mechanisms remain unclear. In the present study, we investigated SO(2) inhalation-induced effects on the transcription and translation of several apoptosis-related genes (p53, bax, bcl-2, c-fos, and c-jun) in rat hippocampus, using real-time RT-PCR analysis and western blotting technique, respectively. The results demonstrate that SO(2) statistically increased p53 expression and the ratio of bax to bcl-2 in a concentration-dependent manner. Also, mRNA and protein levels of c-fos and c-jun significantly elevated in proportion to exposure concentration. Then, we treated primary cultured hippocampal neurons with SO(2) derivatives (bisulfite and sulfite, 3:1 M/M), and examined mRNA levels of above genes. The results show that P53, c-fos, c-jun mRNA expression and the ratio of bax to bcl-2 augmented as functions of SO(2) derivative concentration and exposure time, and confirm that SO(2) affected the transcription and translation process of apoptosis-related genes in central nervous system via its derivatives in vivo. The present data provide further evidence for SO(2)-caused neurological insults, and imply that two major pathways associated with p53 and AP-1 might play important roles in the pathogenesis. PMID:20545484

  7. Long-term spatial memory and morphological changes in hippocampus of Wistar rats exposed to smoke from Carica papaya leaves

    PubMed Central

    Oyewole, Aboyeji Lukuman; Owoyele, Bamidele Victor

    2014-01-01

    Objective To investigate the effects of smoking of dried leaves of Carica papaya (pawpaw) based on ethnopharmacological information which indicated that smoking of papaya leaves could influence motor performance and learning. Methods Twenty-four rats were used for the study, and were grouped into four groups. Groups 1 served as the control (not exposed to papaya leaves smoke), while Groups 2, 3 and 4 were exposed to smoke from 6.25 g, 12.50 g and 18.75 g of dry pawpaw leaves respectively in a smoking chamber twice daily for 21 d with each exposure lasting for 3 min. Lastly, hippocampus was harvested in each group for histological study. Results The results showed that there were significant (P<0.05) increases in mean of recall latencies of long-term spatial memory in the animal administered the high dose while the other groups had significantly (P<0.05) lower frequencies. Histological investigation showed signs of mild neural degeneration in high dose group and hypochromic appearance of the Nissl substance in all treated groups. Conclusions In conclusion, the findings from this study has demonstrated that smoking of papaya leaves has the ability to maintain an intact long-term spatial memory at all doses but retrieving such memory is faster with the low and medium dosages. PMID:25182440

  8. Age-related decline in multiple unit action potentials of CA3 region of rat hippocampus: correlation with lipid peroxidation and lipofuscin concentration and the effect of centrophenoxine.

    PubMed

    Sharma, D; Maurya, A K; Singh, R

    1993-01-01

    Changes in lipid peroxidation, lipofuscin concentration, and multiple unit activity (MUA recorded in conscious animals) in the CA3 region were studied in the hippocampus of male Wistar rats aged 4, 8, 16, and 24 months. The lipid peroxidation and lipofuscin concentration were increased with age. The MUA, however, declined with age. Correlational analyses were performed for the four age groups to determine the relationship between the age-associated decline in MUA with the age-related alterations in lipid peroxidation and lipofuscin concentrations. The age-related increase in lipid peroxidation correlated positively with the age-associated increase in lipofuscin concentration. The age-related increases in lipid peroxidation and lipofuscin concentration correlated negatively with the changes in MUA. Since lipid peroxidation may affect neuronal electrophysiology, our data suggested that age-related increase in lipid peroxidation may contribute to an age-associated decline in neuronal electrical activity. Centrophenoxine effects were studied on the three above-mentioned age-associated changes in the hippocampus. The drug had no effect on all three parameters in 4- and 8-month-old rats. In 16- and 24-month-old rats, however, the drug significantly increased the MUA but concomitantly decreased lipofuscin concentration and lipid peroxidation. Correlational analyses of the data on MUA, lipid peroxidation and lipofuscin concentration from the centrophenoxine-treated animals showed that the drug-induced diminution in both lipofuscin and lipid peroxidation was significantly correlated with the drug-induced increase in MUA. The differential effect of the drug in younger (4-8 months) and older (16-24 months) animals indicated that the stimulation of MUA was clearly associated with concomitant decrease in lipid peroxidation and lipofuscin concentration. PMID:8367013

  9. Prenatal stress decreases Bdnf expression and increases methylation of Bdnf exon IV in rats

    PubMed Central

    Boersma, Gretha J; Lee, Richard S; Cordner, Zachary A; Ewald, Erin R; Purcell, Ryan H; Moghadam, Alexander A; Tamashiro, Kellie L

    2014-01-01

    There is ample evidence that exposure to stress during gestation increases the risk of the offspring to develop mood disorders. Brain-derived neurotrophic factor (Bdnf) plays a critical role during neuronal development and is therefore a prime candidate to modulate neuronal signaling in adult offspring of rat dams that were stressed during gestation. In the current study, we tested the hypothesis that alterations in Bdnf expression in prenatally stressed (PNS) offspring are mediated by changes in DNA methylation in exons IV and VI of the Bdnf gene. We observed decreased Bdnf expression in the amygdala and hippocampus of prenatally stressed rats both at weaning and in adulthood. This decrease in Bdnf expression was accompanied by increased DNA methylation in Bdnf exon IV in the amygdala and hippocampus, suggesting that PNS-induced reduction in Bdnf expression may, at least in part, be mediated by increased DNA methylation of Bdnf exon IV. Expression of DNA methyltransferases (Dnmt) 1 and 3a was increased in PNS rats in the amygdala and hippocampus. Our data suggest that PNS induces decreases in Bdnf expression that may at least in part be mediated by increased DNA methylation of Bdnf exon IV. PMID:24365909

  10. Protective effect of L-Theanine against aluminium induced neurotoxicity in cerebral cortex, hippocampus and cerebellum of rat brain - histopathological, and biochemical approach.

    PubMed

    Sumathi, Thangarajan; Shobana, Chandrasekar; Thangarajeswari, Mohan; Usha, Ramakrishnan

    2015-01-01

    L-Theanine is an amino acid derivative primarily found in tea. It has been reported to promote relaxation and have neuroprotective effects. The present study was designed to investigate the role of oxidative stress and the status of antioxidant system in the management of aluminum chloride (AlCl3) induced brain toxicity in various rat brain regions and further to elucidate the potential role of L-Theanine in alleviating such negative effects. Aluminium administration significantly decreased the level of reduced glutathione and the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, Na(+)/K(+) ATPase, Ca(2+) ATPase and Mg(2+) ATPase and increased the level of lipid peroxidation and the activities of alkaline phosphatase, acid phosphatase, alanine transaminase and aspartate transaminase in all the brain regions when compared with control rats. Pre-treatment with L-Theanine at a dose of 200 mg/kg b.w. significantly increased the antioxidant status and activities of membrane bound enzymes and also decreased the level of LPO and the activities of marker enzymes, when compared with aluminium induced rats. Aluminium induction also caused histopathological changes in the cerebral cortex, cerebellum and hippocampus of rat brain which was reverted by pretreatment with L-Theanine. The present study clearly indicates the potential of L-Theanine in counteracting the damage inflicted by aluminium on rat brain regions. PMID:24654859

  11. Evidence for Hippocampus-Dependent Contextual Learning at Postnatal Day 17 in the Rat

    ERIC Educational Resources Information Center

    Foster, Jennifer A.; Burman, Michael A.

    2010-01-01

    Long-term memory for fear of an environment (contextual fear conditioning) emerges later in development (postnatal day; PD 23) than long-term memory for fear of discrete stimuli (PD 17). As contextual, but not explicit cue, fear conditioning relies on the hippocampus; this has been interpreted as evidence that the hippocampus is not fully…

  12. Voluntary exercise and palatable high-fat diet both improve behavioural profile and stress responses in male rats exposed to early life stress: role of hippocampus.

    PubMed

    Maniam, Jayanthi; Morris, Margaret J

    2010-11-01

    Childhood trauma induced by adverse early life experience is associated with increased risk of psychological disorders in adulthood. Disruption of normal development has been shown to affect hippocampal morphology and function, influencing adaptations to stress. Here we investigated whether palatable food and/or exercise would ameliorate the behavioural responses following early life stress in rats. Rats were subjected to 15 (S15) or 180 (S180) minutes separation from dams on postnatal days 2-14. After weaning, rats were assigned to either receive chow (C), high-fat diet (HFD), voluntary exercise (running, R), or combined HFD and R for 11 weeks. In addition to anxiety- and depression-like behaviours, response to restraint stress was measured. Glucocorticoid receptor (GR), brain-derived neurotrophic factor (BDNF) and 5-hydroxytryptamine receptor 1A (5HT1A) receptor mRNA in the hippocampus were measured. S180 rats had similar body weight to S15, however their plasma insulin concentrations were double those of S15 rats when consuming HFD; adding exercise reduced plasma insulin. Anxiety-like behaviour in S180 rats, measured using Light Dark test (LDT) and Elevated Plus Maze (EPM) were ameliorated by the provision of HFD, R or HFD+R. A similar effect was observed on depression-like behaviour assessed by forced swim test (FST), with less time being spent immobile. Exposure to early-life stress during development was associated with significant reductions in hippocampal GR, 5HT1A receptor and BDNF mRNA, and these changes were normalized in S180 rats provided with HFD or exercise. Prolonged maternal separation resulted in exacerbated hyperinsulinemia when consuming HFD suggesting that these rats are metabolically disadvantaged. In summary, voluntary exercise alone or in combination with HFD produced beneficial effects on both behaviour and metabolic outcomes in rats exposed to early life stress. PMID:20594764

  13. Theta oscillation and neuronal activity in rat hippocampus are involved in temporal discrimination of time in seconds

    PubMed Central

    Nakazono, Tomoaki; Sano, Tomomi; Takahashi, Susumu; Sakurai, Yoshio

    2015-01-01

    The discovery of time cells revealed that the rodent hippocampus has information regarding time. Previous studies have suggested that the role of hippocampal time cells is to integrate temporally segregated events into a sequence using working memory with time perception. However, it is unclear whether hippocampal cells contribute to time perception itself because most previous studies employed delayed matching-to-sample tasks that did not separately evaluate time perception from working memory processes. Here, we investigated the function of the rat hippocampus in time perception using a temporal discrimination task. In the task, rats had to discriminate between durations of 1 and 3 s to get a reward, and maintaining task-related information as working memory was not required. We found that some hippocampal neurons showed firing rate modulation similar to that of time cells. Moreover, theta oscillation of local field potentials (LFPs) showed a transient enhancement of power during time discrimination periods. However, there were little relationships between the neuronal activities and theta oscillations. These results suggest that both the individual neuronal activities and theta oscillations of LFPs in the hippocampus have a possibility to be engaged in seconds order time perception; however, they participate in different ways. PMID:26157367

  14. Chronic brain inflammation causes a reduction in GluN2A and GluN2B subunits of NMDA receptors and an increase in the phosphorylation of mitogen-activated protein kinases in the hippocampus

    PubMed Central

    2014-01-01

    Neuroinflammation plays a key role in the initiation and progression of neurodegeneration in Alzheimer’s disease (AD). Chronic neuroinflammation results in diminished synaptic plasticity and loss of GluN1 N-methyl-D-aspartate (NMDA) receptors in the hippocampus, leading to the cognitive deficits that are the most common symptoms of AD. Therefore, it is suggested that chronic inflammation may alter expression levels of GluN2A and GluN2B subunits of NMDA receptors and associated intracellular signalling. Chronic neuroinflammation was induced by chronic infusion of lipopolysaccharide (LPS) into the fourth ventricle in Fischer-344 rats. The status of hippocampus-dependent memory was evaluated in control rats and rats chronically infused with LPS. Microglial activation in the hippocampus was examined using immunohistochemical staining. Western blot analysis was used to measure membrane levels of GluN2A and GluN2B subunits of NMDA receptors and mitogen-activated protein kinase (MAPK) in the hippocampi of these rats, and immunofluorescent double labeling was used to assess the cellular location of MAPK. Microglial activation was observed in the hippocampi of rats that showed memory impairments with chronic LPS infusion. Chronic LPS infusion reduced the levels of GluN2A and GluN2B and increased the levels of phosphorylated MAPKs in the hippocampus. MAPK-positive immunoreactivity was observed mostly in the neurons and also in non-neuronal cells. Reductions in GluN2A and GluN2B subunits of NMDA receptors coupled with altered MAPK signaling, in response to inflammatory stimuli may be related to the cognitive deficits observed in AD. PMID:24761931

  15. The 5-HT6 receptor antagonist idalopirdine potentiates the effects of acetylcholinesterase inhibition on neuronal network oscillations and extracellular acetylcholine levels in the rat dorsal hippocampus.

    PubMed

    Herrik, Kjartan F; Mørk, Arne; Richard, Nelly; Bundgaard, Christoffer; Bastlund, Jesper F; de Jong, Inge E M

    2016-08-01

    The 5-HT6 receptor has emerged as a promising target for cognitive disorders and combining a 5-HT6 receptor antagonist with an acetylcholinesterase inhibitor (AChEI) represents a novel approach for the symptomatic treatment of Alzheimer's disease (AD). A recent phase 2 trial showed that the selective 5-HT6 receptor antagonist idalopirdine (Lu AE58054) improved cognition in patients with moderate AD on stable treatment with the AChEI donepezil. Here we investigated the effects of idalopirdine in combination with donepezil on hippocampal function using in vivo electrophysiology and microdialysis. Network oscillations in the hippocampus were recorded during electrical stimulation of the brainstem nucleus pontis oralis (nPO) in the anesthetized rat and hippocampal acetylcholine (ACh) levels were measured in the freely-moving rat. In addition, potential pharmacokinetic interactions between idalopirdine and donepezil were assessed. Idalopirdine alone did not affect hippocampal network oscillations or ACh levels. Donepezil (0.3 and 1.0 mg/kg i.v.) dose-dependently increased hippocampal theta and gamma power during nPO stimulation. Idalopirdine (2 mg/kg i.v.), administered 1 h prior to donepezil, potentiated the theta and gamma response to 0.3 mg/kg donepezil and prolonged the gamma response to 1 mg/kg donepezil. Donepezil (1.3 mg/kg s.c.) increased extracellular ACh levels in the hippocampus and this was further augmented by administration of idalopirdine (10 mg/kg p.o.) 2 h prior to donepezil. These effects could not be attributed to a pharmacokinetic interaction between the compounds. This study demonstrates that idalopirdine potentiates the effects of donepezil on two pharmacodynamic biomarkers associated with cognition, i.e. neuronal oscillations and extracellular ACh levels in the hippocampus. Such potentiation could contribute to the procognitive effects of idalopirdine observed in donepezil-treated AD patients. PMID:27039041

  16. Effects of overexpression of Sim2 on spatial memory and expression of synapsin I in rat hippocampus.

    PubMed

    Meng, Xianfang; Peng, Bin; Shi, Jing; Zheng, Yao; Chen, Hao; Zhang, Jing; Li, Lingli; Zhang, Chun

    2006-10-01

    The single-minded 2 gene (Sim2) plays a crucial role in the mental retardation of Down Syndrome (DS). To explore how Sim2 influences spatial memory, a DNA plasmid-encoding mouse Sim2 (mSim2) wrapped with liposome was bilaterally injected into the hippocampus of rats. The effect of overexpressing mSim2 on spatial learning was determined by a Morris water maze task. The expression of synapsin I was detected by reverse transcriptional-polymerase chain reaction (RT-PCR) analysis and immunohistochemistry, respectively. The phosphosynapsin was also examined by immunohistochemistry. As demonstrated by RT-PCR, mSim2 was overexpressed in the hippocampus of rats, and pcDNA3/mSim2-transfected rats showed longer latency to find the hidden platform compared with pcDNA3-transfected rats (P<0.05). Synapsin I mRNA and protein expression were decreased significantly by mSim2 transfection, as demonstrated by RT-PCR and immunohistochemistry. Moreover, the expression profile of phosphosynapsin was similar to that of synapsin I. So it is concluded that Sim2 could impair the ability of learning and memory by inhibiting synaptic plasticity, and may play a crucial role in the pathogenesis of DS. PMID:16963290

  17. Changes of AMPA receptor properties in the neocortex and hippocampus following pilocarpine-induced status epilepticus in rats.

    PubMed

    Malkin, Sergey L; Amakhin, Dmitry V; Veniaminova, Ekaterina A; Kim, Kira Kh; Zubareva, Olga E; Magazanik, Lev G; Zaitsev, Aleksey V

    2016-07-01

    Temporal lobe epilepsy (TLE) is the most common type of epilepsy in humans. The lithium-pilocarpine model in rodents reproduces some of the main features of human TLE. Three-week-old Wistar rats were used in this study. The changes in AMPA receptor subunit composition were investigated in several brain areas, including the medial prefrontal cortex (mPFC), the temporal cortex (TC), and the dorsal (DH) and ventral hippocampus (VH) during the first week following pilocarpine-induced status epilepticus (PILO-induced SE). In the hippocampus, GluA1 and GluA2 mRNA expression slightly decreased after PILO-induced SE and returned to the initial level on the seventh day. We did not detect any significant changes in mRNA expression of the GluA1 and GluA2 subunits in the TC, whereas in the mPFC we observed a significant increase of GluA1 mRNA expression on the third day and a decrease in GluA2 mRNA expression during the entire first week. Accordingly, the GluA1/GluA2 expression ratio increased in the mPFC, and the functional properties of the pyramidal cell excitatory synapses were disturbed. Using whole-cell voltage-clamp recordings, we found that on the third day following PILO-induced SE, isolated mPFC pyramidal neurons showed an inwardly rectifying current-voltage relation of kainate-evoked currents, suggesting the presence of GluA2-lacking calcium-permeable AMPARs (CP-AMPARs). IEM-1460, a selective antagonist of CP-AMPARs, significantly reduced the amplitude of evoked EPSC in pyramidal neurons from mPFC slices on the first and third days, but not on the seventh day. The antagonist had no effects on EPSC amplitude in slices from control animals. Thus, our data demonstrate that PILO-induced SE affects subunit composition of AMPARs in different brain areas, including the mPFC. SE induces transient (up to few days) incorporation of CP-AMPARs in the excitatory synapses of mPFC pyramidal neurons, which may disrupt normal circuitry functions. PMID:27109923

  18. Neurotransmission in the hippocampus

    SciTech Connect

    Frotscher, D. ); Kugler, P. ); Misgled, U. ); Zilles, K. (Anatomisches Institut der Universitat Koln, Joseph-Stelzmann-S

    1988-01-01

    This book contains the following five chapters: introduction; neuronal elements in the hippocampus and their synaptic connections; Membrane properties and postsynaptic responses of hippocampal neurons; The enzyme histochemistry of neurotransmitter metabolism; and Receptor autoradiography in the hippocampus of man and rat.

  19. Suppression of axonal conduction by sinusoidal stimulation in rat hippocampus in vitro

    NASA Astrophysics Data System (ADS)

    Jensen, A. L.; Durand, D. M.

    2007-06-01

    Deep brain stimulation (DBS), also known as high frequency stimulation (HFS), is a well-established therapy for Parkinson's disease and essential tremor, and shows promise for the therapeutic control of epilepsy. However, the direct effect of DBS on neural elements close to the stimulating electrode remains an important unanswered question. Computational studies have suggested that HFS has a dual effect on neural elements inhibiting cell bodies, while exciting axons. Prior experiments have shown that sinusoidal HFS (50 Hz) can suppress synaptic and non-synaptic cellular activity in several in vitro epilepsy models, in all layers of the hippocampus. However, the effects of HFS on axons near the electrode are still unclear. In the present study, we tested the hypothesis that HFS suppresses axonal conduction in vitro. Sinusoidal HFS was applied to the alvear axon field of transverse rat hippocampal slices. The results show that HFS suppresses the alvear compound action potential (CAP) as well as the CA1 antidromic evoked potential (AEP). Complete suppression was observed as a 100% reduction in the amplitude of the evoked field potential for the duration of the stimulus. Evoked potential width and latency were not significantly affected by sinusoidal HFS. Suppression was dependent on HFS amplitude and frequency, but independent of stimulus duration and synaptic transmission. The frequency dependence of sinusoidal HFS is similar to that observed in clinical DBS, with maximal suppression between 50 and 200 Hz. HFS produced not only suppression of axonal conduction but also a correlated rise in extracellular potassium. These data provide new insights into the effects of HFS on neuronal elements, and show that HFS can block axonal activity through non-synaptic mechanisms.

  20. Galvanic vestibular stimulation impairs cell proliferation and neurogenesis in the rat hippocampus but not spatial memory.

    PubMed

    Zheng, Yiwen; Geddes, Lisa; Sato, Go; Stiles, Lucy; Darlington, Cynthia L; Smith, Paul F

    2014-05-01

    Galvanic vestibular stimulation (GVS) is a method of activating the peripheral vestibular system using direct current that is widely employed in clinical neurological testing. Since movement is recognized to stimulate hippocampal neurogenesis and movement is impossible without activation of the vestibular system, we speculated that activating the vestibular system in rats while minimizing movement, by delivering GVS under anesthesia, would affect hippocampal cell proliferation and neurogenesis, and spatial memory. Compared with the sham control group, the number of cells incorporating the DNA replication marker, bromodeoxyuridine (BrdU), was significantly reduced in the bilateral hippocampi in both the cathode left-anode right and cathode right-anode left stimulation groups (P ≤ 0.0001). The majority of the BrdU(+ve) cells co-expressed Ki-67, a marker for the S phase of the cell cycle, suggesting that these BrdU(+ve) cells were still in the cell cycle; however, there was no significant difference in the degree of co-labeling between the two stimulation groups. Single labeling for doublecortin (DCX), a marker of immature neurons, showed that while there was no significant difference between the different groups in the number of DCX(+ve) cells in the right dentate gryus, in the left dentate gyrus there was a significant decrease in the cathode left-anode right group compared with the sham controls (P ≤ 0.03). Nonetheless, when animals were tested in place recognition, object exploration and Morris water maze tasks, there were no significant differences between the GVS groups and the sham controls. These results suggest that GVS can have striking effects on cell proliferation and possibly neurogenesis in the hippocampus, without affecting spatial memory. PMID:24449222

  1. Dynamic changes of excitatory amino acid receptors in the rat hippocampus following transient cerebral ischemia

    SciTech Connect

    Westerberg, E.; Monaghan, D.T.; Kalimo, H.; Cotman, C.W.; Wieloch, T.W.

    1989-03-01

    The changes in excitatory amino acid receptor ligand binding induced by transient cerebral ischemia were studied in the rat hippocampal subfields. Ten minutes of ischemia was induced by common carotid artery occlusion combined with hypotension, and the animals were allowed variable periods of recovery ranging from 1 day to 4 weeks. The binding of 3H-AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) to quisqualate receptors, 3H-kainic acid (KA) to kainate receptors, and 3H-glutamate to N-methyl-D-aspartate (NMDA) receptors as determined by quantitative autoradiography. One week following ischemia the CA1 region of the hippocampus displayed a severe (90%) dendrosomatic lesion with preservation of presynaptic terminals. This was associated with a 60% decrease in AMPA binding and a 25% decrease in glutamate binding to NMDA receptors. At 4 weeks postischemia, both AMPA and NMDA sites were greatly reduced. Although the dentate gyrus granule cells are resistant to an ischemic insult of this magnitude, this region showed marked changes in receptor binding. One week following ischemia, the AMPA and NMDA binding decreased by approximately 40 and 20%, respectively. Following 2 weeks of recovery, the NMDA binding was not significantly different from control level, while the AMPA binding remained depressed up to 4 weeks postischemia. The high density of KA binding sites in the inner molecular layer of the dentate gyrus was unaffected by the ischemic insult, despite an extensive degeneration of cells in the hilus of dentate gyrus which projects glutamatergic afferents to this area.

  2. Pre- and Posttreatment With Edaravone Protects CA1 Hippocampus and Enhances Neurogenesis in the Subgranular Zone of Dentate Gyrus After Transient Global Cerebral Ischemia in Rats

    PubMed Central

    Lei, Shan; Li, Weisong; Gao, Ming; He, Xijing; Zheng, Juan; Li, Xu; Wang, Xiao; Wang, Ning; Zhang, Junfeng; Qi, Cunfang; Lu, Haixia; Chen, Xinlin; Liu, Yong

    2014-01-01

    Edaravone is clinically used for treatment of patients with acute cerebral infarction. However, the effect of double application of edaravone on neurogenesis in the hippocampus following ischemia remains unknown. In the present study, we explored whether pre- and posttreatment of edaravone had any effect on neural stem/progenitor cells (NSPCs) in the subgranular zone of hippocampus in a rat model of transient global cerebral ischemia and elucidated the potential mechanism of its effects. Male Sprague-Dawley rats were divided into three groups: sham-operated (n = 15), control (n = 15), and edaravone-treated (n = 15) groups. Newly generated cells were labeled by 5-bromo-2-deoxyuridine. Immunohistochemistry was used to detect neurogenesis. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling was used to detect cell apoptosis. Reactive oxygen species (ROS) were detected by 2,7-dichlorofluorescien diacetate assay in NSPCs in vitro. Hypoxia-inducible factor-1α (HIF-1α) and cleaved caspase-3 proteins were quantified by western blot analysis. Treatment with edaravone significantly increased the number of NSPCs and newly generated neurons in the subgranular zone (p < .05). Treatment with edaravone also decreased apoptosis of NSPCs (p < .01). Furthermore, treatment with edaravone significantly decreased ROS generation and inhibited HIF-1α and cleaved caspase-3 protein expressions. These findings indicate that pre- and posttreatment with edaravone enhances neurogenesis by protecting NSPCs from apoptosis in the hippocampus, which is probably mediated by decreasing ROS generation and inhibiting protein expressions of HIF-1α and cleaved caspase-3 after cerebral ischemia. PMID:25388889

  3. Effect of Electroacupuncture on Cell Apoptosis and ERK Signal Pathway in the Hippocampus of Adult Rats with Cerebral Ischemia-Reperfusion

    PubMed Central

    Wu, Chunxiao; Wang, Jiao; Li, Chun; Zhou, Guoping; Xu, Xiuhong; Zhang, Xin; Lan, Xiao

    2015-01-01

    Background. EA therapy is a traditional therapeutic approach for alleviation of cerebral I/R-induced brain injury. We investigated the effect of EA on MCAO rat model to examine the mechanism of apoptosis in the rat hippocampus. Methods. 200 male Sprague-Dawley rats were randomly divided into sham, I/R, EA, ERK inhibitor (PD), and ERK inhibitor+EA (PD+EA) groups. Each group was subdivided into 5 groups according to different time points. Locomotor behaviors were evaluated using neurological scales and morphological examination was performed using HE staining. Apoptosis index of neural cells in local infarcted area was measured by TUNEL and p-ERK expression was detected using immunohistochemistry technique and western blot analysis. Results. Neurological deficit scores and neural apoptosis in the EA group were lower than I/R group at the same time points, respectively. At different time points, p-ERK level was increased in the ischemic hippocampal CA1 in the EA group as compared to I/R group; the increased level was increased most at 1 day, 3 days, and 1 week (p < 0.01). Conclusion. EA alleviates neurological deficit, reduces apoptosis index, and simultaneously upregulates the expression of p-ERK signal pathway in rats subjected to I/R injury. PMID:26633985

  4. Developmental Exposure to a Commercial PBDE Mixture: Effects on Protein Networks in the Cerebellum and Hippocampus of Rats

    PubMed Central

    Royland, Joyce E.; Osorio, Cristina; Winnik, Witold M.; Ortiz, Pedro; Lei, Lei; Ramabhadran, Ram; Alzate, Oscar

    2014-01-01

    Background: Polybrominated diphenyl ethers (PBDEs) are structurally similar to polychlorinated biphenyls (PCBs) and have both central (learning and memory deficits) and peripheral (motor dysfunction) neurotoxic effects at concentrations/doses similar to those of PCBs. The cellular and molecular mechanisms for these neurotoxic effects are not fully understood; however, several studies have shown that PBDEs affect thyroid hormones, cause oxidative stress, and disrupt Ca2+-mediated signal transduction. Changes in these signal transduction pathways can lead to differential gene regulation with subsequent changes in protein expression, which can affect the development and function of the nervous system. Objective: In this study, we examined the protein expression profiles in the rat cerebellum and hippocampus following developmental exposure to a commercial PBDE mixture, DE-71. Methods: Pregnant Long-Evans rats were dosed perinatally with 0 or 30.6 mg/kg/day of DE-71 from gestation day 6 through sampling on postnatal day 14. Proteins from the cerebellum and hippocampus were extracted, expression differences were detected by two-dimensional difference gel electrophoresis, and proteins were identified by tandem mass spectrometry. Protein network interaction analysis was performed using Ingenuity® Pathway Analysis, and the proteins of interest were validated by Western blotting. Results: Four proteins were significantly differentially expressed in the cerebellum following DE-71 exposure, whereas 70 proteins were significantly differentially expressed in the hippocampus. Of these proteins, 4 from the cerebellum and 47 from the hippocampus, identifiable by mass spectrometry, were found to have roles in mitochondrial energy metabolism, oxidative stress, apoptosis, calcium signaling, and growth of the nervous system. Conclusions: Results suggest that changes in energy metabolism and processes related to neuroplasticity and growth may be involved in the developmental

  5. Enhanced expression of Pctk1, Tcf12 and Ccnd1 in hippocampus of rats: Impact on cognitive function, synaptic plasticity and pathology.

    PubMed

    Wu, Ke; Li, Shoudong; Bodhinathan, Karthik; Meyers, Craig; Chen, Weijun; Campbell-Thompson, Martha; McIntyre, Lauren; Foster, Thomas C; Muzyczka, Nicholas; Kumar, Ashok

    2012-01-01

    We previously identified a set of 50 genes that were differentially transcribed in the hippocampal CA1 region of aged, learning-impaired rats compared to aged, superior learning animals during a Morris water maze paradigm. In the current study, we expressed three of these genes (Pctk1, Tcf12 and Ccnd1), which had shown increased transcription in aged, learning impaired rats, in the hippocampus of young rats using viral gene transfer and tested for learning and memory deficits at age 7-14months. Pctk1 injected animals displayed a modest deficit in acquiring latency in both the Morris water maze and the reverse Morris maze. In the radial arm water maze paradigm, Pctk1, Tcf12 and Ccnd1 expressing animals all showed significant deficits in spatial working memory compared to controls. Rats injected with Ccnd1 and Tcf12, but not Pctk1, also showed a significant deficit in spatial reference memory in the radial arm water maze. Electrophysiological experiments revealed no difference in LTP in Ccnd1 and Pctk1 animals. However, LTD induced by low frequency stimulation was observed in control and Ccnd1 animals, but not in Pctk1 treated animals. In addition, neither Ccnd1 nor Pctk1 expression produced any detectable neuropathology. In contrast Tcf12 expressing animals displayed significant neurodegeneration in both CA1 and dentate gyrus. Several Tcf12 animals also developed tumors that appeared to be glioblastomas, suggesting that aberrant Tcf12 expression in the hippocampus is tumorigenic. Thus, behavioral experiments suggested that overexpression of Pctk1 and Ccnd1 produce a deficit in learning and memory, but electrophysiological experiments do not point to a simple mechanism. In contrast, the learning and memory deficits in Tcf12 animals are likely due to neuropathology associated with Tcf12 gene expression. PMID:21982980

  6. Sex- and age-specific differences in relaxin family peptide receptor expression within the hippocampus and amygdala in rats.

    PubMed

    Meadows, K L; Byrnes, E M

    2015-01-22

    Relaxin is an essential pregnancy-related hormone with broad peripheral effects mediated by activation of relaxin-like family peptide 1 receptors (RXFP1). More recent studies suggest an additional role for relaxin as a neuropeptide, with RXFP1 receptors expressed in numerous brain regions. Neurons in an area of the brainstem known as the nucleus incertus (NI) produce relaxin 3 (RLN3), the most recently identified neuropeptide in the relaxin family. RLN3 has been shown to activate both RXFP1 and relaxin-like family peptide receptor 3 (RXFP3) receptor subtypes. Studies suggest wide-ranging neuromodulatory effects of both RXFP1 and RXFP3 activation, although to date the majority of studies have been conducted in young males. In the current study, we examined potential sex- and age-related changes in RLN3 gene expression in the NI as well as RXFP1 and RXFP3 gene expression in the dorsal hippocampus (HI), ventral hippocampus (vHI) and amygdala (AMYG) using young adult (9-12weeks) and middle-aged (9-12months) male and female rats. In addition, regional changes in RXFP1 and RXFP3 protein expression were examined in the CA1, CA2/CA3 and dentate gyrus (DG) as well as within basolateral (BLA), central (CeA), and medial (MeA) amygdaloid nuclei. In the NI, RLN3 showed an age-related decrease in males. In the HI, only the RXFP3 receptor showed an age-related change in gene expression, however, both receptor subtypes showed age-related changes in protein expression that were region specific. Additionally, while gene and protein expression of both receptors increased with age in AMYG, these effects were both region- and sex-specific. Finally, overall males displayed a greater number of cells that express the RXFP3 protein in all of the amygdaloid nuclei examined. Cognitive and emotional processes regulated by activity within the HI and AMYG are modulated by both sex and age. The vast majority of studies exploring the influence of sex on age-related changes in the HI and AMYG have

  7. Dorsal and Ventral Hippocampus Modulate Autonomic Responses but Not Behavioral Consequences Associated to Acute Restraint Stress in Rats

    PubMed Central

    Scopinho, América A.; Lisboa, Sabrina F. S.; Guimarães, Francisco S.; Corrêa, Fernando M. A.; Resstel, Leonardo B. M.; Joca, Sâmia R. L.

    2013-01-01

    Recent evidence has suggested that the dorsal (DH) and the ventral (VH) poles of the hippocampus are structurally, molecularly and functionally different regions. While the DH is preferentially involved in the modulation of spatial learning and memory, the VH modulates defensive behaviors related to anxiety. Acute restraint is an unavoidable stress situation that evokes marked and sustained autonomic changes, which are characterized by elevated blood pressure (BP), intense heart rate (HR) increases, skeletal muscle vasodilatation and cutaneous vasoconstriction, which are accompanied by a rapid skin temperature drop followed by body temperature increases. In addition to those autonomic responses, animals submitted to restraint also present behavioral changes, such as reduced exploration of the open arms of an elevated plus-maze (EPM), an anxiogenic-like effect. In the present work, we report a comparison between the effects of pharmacological inhibition of DH and VH neurotransmission on autonomic and behavioral responses evoked by acute restraint stress in rats. Bilateral microinjection of the unspecific synaptic blocker cobalt chloride (CoCl2, 1mM) into the DH or VH attenuated BP and HR responses, as well as the decrease in the skin temperature, elicited by restraint stress exposure. Moreover, DH or VH inhibition before restraint did not change the delayed increased anxiety behavior observed 24 h later in the EPM. The present results demonstrate for the first time that both DH and VH mediate stress-induced autonomic responses to restraint but they are not involved in the modulation of the delayed emotional consequences elicited by such stress. PMID:24147071

  8. Chronic stress alters the expression levels of longevity-related genes in the rat hippocampus.

    PubMed

    Sánchez-Hidalgo, Ana C; Muñoz, Mario F; Herrera, Antonio J; Espinosa-Oliva, Ana M; Stowell, Rianne; Ayala, Antonio; Machado, Alberto; Venero, José L; de Pablos, Rocío M

    2016-07-01

    The molecular mechanisms underlying the negative effects of psychological stress on cellular stress during aging and neurodegenerative diseases are poorly understood. The main objective of this study was to test the effect of chronic psychological stress, and the consequent increase of circulating glucocorticoids, on several hippocampal genes involved in longevity. Sirtuin-1, p53, thioredoxin-interacting protein, and heat shock protein 70 were studied at the mRNA and protein levels in stressed and non-stressed animals. Stress treatment for 10 days decreased sirtuin-1 and heat shock protein 70 levels, but increased levels of p53, thioredoxin-interacting protein and the NADPH oxidase enzyme. Examination of protein expression following two months of stress treatment indicated that sirtuin-1 remained depressed. In contrast, an increase was observed for thioredoxin-interacting protein, heat shock protein 70, p53 and the NADPH oxidase enzyme. The effect of stress was reversed by mifepristone, a glucocorticoid receptor antagonist. These data suggest that chronic stress could contribute to aging in the hippocampus. PMID:27120255

  9. Vulnerability versus resilience to prenatal stress in male and female rats; implications from gene expression profiles in the hippocampus and frontal cortex.

    PubMed

    Van den Hove, D L A; Kenis, G; Brass, A; Opstelten, R; Rutten, B P F; Bruschettini, M; Blanco, C E; Lesch, K P; Steinbusch, H W M; Prickaerts, J

    2013-10-01

    Adverse life events during pregnancy may impact upon the developing fetus, predisposing prenatally stressed offspring to the development of psychopathology. In the present study, we examined the effects of prenatal restraint stress (PS) on anxiety- and depression-related behavior in both male and female adult Sprague-Dawley rats. In addition, gene expression profiles within the hippocampus and frontal cortex (FC) were examined in order to gain more insight into the molecular mechanisms that mediate the behavioral effects of PS exposure. PS significantly increased anxiety-related behavior in male, but not female offspring. Likewise, depression-related behavior was increased in male PS rats only. Further, male PS offspring showed increased basal plasma corticosterone levels in adulthood, whereas both PS males and females had lower stress-induced corticosterone levels when compared to controls. Microarray-based profiling of the hippocampus and FC showed distinct sex-dependent changes in gene expression after PS. Biological processes and/or signal transduction cascades affected by PS included glutamatergic and GABAergic neurotransmission, mitogen-activated protein kinase (MAPK) signaling, neurotrophic factor signaling, phosphodiesterase (PDE)/ cyclic nucleotide signaling, glycogen synthase kinase 3 (GSK3) signaling, and insulin signaling. Further, the data indicated that epigenetic regulation is affected differentially in male and female PS offspring. These sex-specific alterations may, at least in part, explain the behavioral differences observed between both sexes, i.e. relative vulnerability versus resilience to PS in male versus female rats, respectively. These data reveal novel potential targets for antidepressant and mood stabilizing drug treatments including PDE inhibitors and histone deacetylase (HDAC) inhibitors. PMID:23199416

  10. Naringenin Mitigates Iron-Induced Anxiety-Like Behavioral Impairment, Mitochondrial Dysfunctions, Ectonucleotidases and Acetylcholinesterase Alteration Activities in Rat Hippocampus.

    PubMed

    Chtourou, Yassine; Slima, Ahlem Ben; Gdoura, Radhouane; Fetoui, Hamadi

    2015-08-01

    Studies demonstrated that the iron chelating antioxidant restores brain dysfunction induced by iron toxicity in animals. Earlier, we found that iron overload-induced cerebral cortex apoptosis correlated with oxidative stress could be protected by naringenin (NGEN). In this respect, the present study is focused on the mechanisms associated with the protective efficacy of NGEN, natural flavonoid compound abundant in the peels of citrus fruit, on iron induced impairment of the anxiogenic-like behaviour, purinergic and cholinergic dysfunctions with oxidative stress related disorders on mitochondrial function in the rat hippocampus. Results showed that administration of NGEN (50 mg/kg/day) by gavage significantly ameliorated anxiogenic-like behaviour impairment induced by the exposure to 50 mg of Fe-dextran/kg/day intraperitoneally for 28 days in rats, decreased iron-induced reactive oxygen species formation and restored the iron-induced decrease of the acetylcholinesterase expression level, mitochondrial membrane potential and mitochondrial complexes activities in the hippocampus of rats. Moreover, NGEN was able to restore the alteration on the activity and expression of ectonucleotidases such as adenosine triphosphate diphosphohydrolase and 5'-nucleotidase, enzymes which hydrolyze and therefore control extracellular ATP and adenosine concentrations in the synaptic cleft. These results may contribute to a better understanding of the neuroprotective role of NGEN, emphasizing the influence of including this flavonoid in the diet for human health, possibly preventing brain injury associated with iron overload. PMID:26050208

  11. Correlation Between IL-10 and microRNA-187 Expression in Epileptic Rat Hippocampus and Patients with Temporal Lobe Epilepsy

    PubMed Central

    Alsharafi, Walid A.; Xiao, Bo; Abuhamed, Mutasem M.; Bi, Fang-Fang; Luo, Zhao-Hui

    2015-01-01

    Accumulating evidence is emerging that microRNAs (miRNAs) are key regulators in controlling neuroinflammatory responses that are known to play a potential role in the pathogenesis of temporal lobe epilepsy (TLE). The aim of the present study was to investigate the dynamic expression pattern of interleukin (IL)-10 as an anti-inflammatory cytokine and miR-187 as a post-transcriptional inflammation-related miRNA in the hippocampus of a rat model of status epilepticus (SE) and patients with TLE. We performed a real-time quantitative PCR and western blot on rat hippocampus 2 h, 7 days, 21 days and 60 days following pilocarpine-induced SE, and on hippocampus obtained from TLE patients and normal controls. To detect the relationship between IL-10 and miR-187 on neurons, lipopolysaccharide (LPS) and IL-10-stimulated neurons were performed. Furthermore, we identified the effect of antagonizing miR-187 by its antagomir on IL-10 secretion. Here, we reported that IL-10 secretion and miR-187 expression levels are inversely correlated after SE. In patients with TLE, the expression of IL-10 was also significantly upregulated, whereas miR-187 expression was significantly downregulated. Moreover, miR-187 expression was significantly reduced following IL-10 stimulation in an IL-10–dependent manner. On the other hand, antagonizing miR-187 promoted the production of IL-10 in hippocampal tissues of rat model of SE. Our findings demonstrate a critical role of miR-187 in the physiological regulation of IL-10 anti-inflammatory responses and elucidate the role of neuroinflammation in the pathogenesis of TLE. Therefore, modulation of the IL-10 / miR-187 axis may be a new therapeutic approach for TLE. PMID:26696826

  12. Rosemary extract improves cognitive deficits in a rats model of repetitive mild traumatic brain injury associated with reduction of astrocytosis and neuronal degeneration in hippocampus.

    PubMed

    Song, Hai; Xu, Lincheng; Zhang, Rongping; Cao, Zhenzhen; Zhang, Huan; Yang, Li; Guo, Zeyun; Qu, Yongqiang; Yu, Jianyun

    2016-05-27

    In this study, we investigated whether Rosemary extract (RE) improved cognitive deficits in repetitive mild Traumatic brain injury (rmTBI) rats and its potential mechanisms. The present results showed that rmTBI caused cognitive deficits, such as increased latency to find platform and decreased time spent in target quadrant in Morris water maze (MWM). These behavioral alterations were accompanying with the increased neuronal degeneration and glial fibrillary acidic protein (GFAP)-positive cells, increased Reactive oxygen species (ROS) generation, decreased activity of Superoxide Dismutase (SOD), Glutathione Peroxidase (GPx) and Catalase (CAT), elevated protein level of IL-1β, IL-6 and TNF-α in hippocampus. Treatment with RE prevented these changes above. Our findings confirmed the effect of rosemary extract on improvement of cognitive deficits and suggested its mechanisms might be mediated by anti-oxidative and anti-inflammatory. Therefore, rosemary extract may be a potential treatment to improve cognitive deficits in rmTBI patients. PMID:27113205

  13. Gestational stress and fluoxetine treatment differentially affect plasticity, methylation and serotonin levels in the PFC and hippocampus of rat dams.

    PubMed

    Gemmel, Mary; Rayen, Ine; van Donkelaar, Eva; Loftus, Tiffany; Steinbusch, Harry W; Kokras, Nikolaos; Dalla, Christina; Pawluski, Jodi L

    2016-07-01

    Women are more likely to develop depression during childbearing years with up to 20% of women suffering from depression during pregnancy and in the postpartum period. Increased prevalence of depression during the perinatal period has resulted in frequent selective serotonin reuptake inhibitor (SSRI) antidepressant treatment; however the effects of such medications on the maternal brain remain limited. Therefore, the aim of the present study is to investigate the effects of the SSRI medication, fluoxetine, on neurobiological differences in the maternal brain. To model aspects of maternal depression, gestational stress was used. Sprague-Dawley rat dams were exposed to either gestational stress and/or fluoxetine (5mg/kg/day) to form the following four groups: 1. Control+Vehicle, 2. Stress+Vehicle, 3. Control+Fluoxetine, and 4. Stress+Fluoxetine. At weaning maternal brains were collected. Main findings show that gestational stress alone increased synaptophysin and serotonin metabolism in the cingulate cortex2 region of the cortex while fluoxetine treatment after stress normalized these effects. In the hippocampus, fluoxetine treatment, regardless of gestational stress exposure, decreased both global measures of methylation in the dentate gyrus, as measured by Dnmt3a immunoreactivity, as well as serotonin metabolism. No further changes in synaptophysin, PSD-95, or Dnmt3a immunoreactivity were seen in the cortical or hippocampal areas investigated. These findings show that gestational stress and SSRI medication affect the neurobiology of the maternal brain in a region-specific manner. This work adds to a much needed area of research aimed at understanding neurobiological changes associated with maternal depression and the role of SSRI treatment in altering these changes in the female brain. PMID:27060483

  14. Involvement of dorsal hippocampus glutamatergic and nitrergic neurotransmission in autonomic responses evoked by acute restraint stress in rats.

    PubMed

    Moraes-Neto, T B; Scopinho, A A; Biojone, C; Corrêa, F M A; Resstel, L B M

    2014-01-31

    The dorsal hippocampus (DH) is a structure of the limbic system that is involved in emotional, learning and memory processes. There is evidence indicating that the DH modulates cardiovascular correlates of behavioral responses to stressful stimuli. Acute restraint stress (RS) is an unavoidable stress situation that evokes marked and sustained autonomic changes, which are characterized by elevated blood pressure (BP), intense heart rate (HR) increase and a decrease in cutaneous temperature. In the present study, we investigated the involvement of an N-methyl-D-aspartate (NMDA) glutamate receptor/nitric oxide (NO) pathway of the DH in the modulation of autonomic (arterial BP, HR and tail skin temperature) responses evoked by RS in rats. Bilateral microinjection of the NMDA receptor antagonist AP-7 (10 nmol/500 nL) into the DH attenuated RS-evoked autonomic responses. Moreover, RS evoked an increase in the content of NO₂/NO₃ in the DH, which are products of the spontaneous oxidation of NO under physiological conditions that can provide an indirect measurement of NO production. Bilateral microinjection of N-propyl-L-arginine (0.1 nmol/500 nL; N-propyl, a neuronal NO synthase (nNOS) inhibitor) or carboxy-PTIO (2 nmol/500 nL; c-PTIO, an NO scavenger) into the DH also attenuated autonomic responses evoked by RS. Therefore, our findings suggest that a glutamatergic system present in the DH is involved in the autonomic modulation during RS, acting via NMDA receptors and nNOS activation. Furthermore, the present results suggest that NMDA receptor/nNO activation has a facilitatory influence on RS-evoked autonomic responses. PMID:24269610

  15. Selective Pharmacological Modulation of Pyramidal Neurons and Interneurons in the CA1 Region of the Rat Hippocampus

    PubMed Central

    Martina, Marzia; Comas, Tanya; Mealing, Geoffrey A. R.

    2013-01-01

    The hippocampus is a complex network tightly regulated by interactions between excitatory and inhibitory neurons. In neurodegenerative disorders where cognitive functions such as learning and memory are impaired this excitation-inhibition balance may be altered. Interestingly, the uncompetitive N-methyl-d-aspartate receptor (NMDAR) antagonist memantine, currently in clinical use for the treatment of Alzheimer’s disease, may alter the excitation-inhibition balance in the hippocampus. However, the specific mechanism by which memantine exerts this action is not clear. To better elucidate the effect of memantine on hippocampal circuitry, we studied its pharmacology on NMDAR currents in both pyramidal cells (PCs) and interneurons (Ints) in the CA1 region of the hippocampus. Applying whole-cell patch-clamp methodology to acute rat hippocampal slices, we report that memantine antagonism is more robust in PCs than in Ints. Using specific NMDAR subunit antagonists, we determined that this selective antagonism of memantine is attributable to specific differences in the molecular make-up of the NMDARs in excitatory and inhibitory neurons. These findings offer new insight into the mechanism of action and therapeutic potential of NMDA receptor pharmacology in modulating hippocampal excitability. PMID:23493925

  16. The motirod: a novel physical skill task that enhances motivation to learn and thereby increases neurogenesis especially in the female hippocampus.

    PubMed

    DiFeo, Gina; Curlik, Daniel M; Shors, Tracey J

    2015-09-24

    Males and females perform differently on a variety of training tasks. In the present study we examined performance of male and female rats while they were trained with a gross motor skill in which they learn to maintain their balance on an accelerating rotating rod (the accelerating rotarod). During training, many animals simply step off the rod, thus terminating the training. This problem was addressed by placing cold water below the rod. We termed the new training procedure "motirod" training because the trained animals were apparently motivated to remain on the rod for longer periods of time. Groups of male and female adult Sprague-Dawley rats were trained on either the standard accelerating rotarod or the motirod for four trials per day on four consecutive days. Latency to fall from the rod (in seconds) was recorded. The motivating feature increased performance especially in females (p=.001). As a consequence of enhanced performance, females retained significantly more new cells in the dentate gyrus of the hippocampus than those trained on the accelerating rotarod or those that received no training. In addition, individuals that learned well retained more new cells, irrespective of sex or task conditions. Previous studies have established that new cells rescued from death by learning remain in the hippocampus for months and mature into neurons (Leuner et al., 2004a; Shors, 2014). These data suggest that sex differences in physical skill learning can arise from sex differences in motivation, which thereby influence how many new neurons survive in the adult brain. This article is part of a Special Issue entitled SI: Brain and Memory. PMID:25543070

  17. Ketogenic diet does not impair spatial ability controlled by the hippocampus in male rats.

    PubMed

    Fukushima, Atsushi; Ogura, Yuji; Furuta, Miyako; Kakehashi, Chiaki; Funabashi, Toshiya; Akema, Tatsuo

    2015-10-01

    A ketogenic diet was recently shown to reduce glutamate accumulation in synaptic vesicles, decreasing glutamate transmission. We questioned whether a ketogenic diet affects hippocampal function, as glutamate transmission is critically involved in visuospatial ability. In the present study, male Wistar rats were maintained on a ketogenic diet containing 10% protein and 90% fat with complements for 3 weeks to change their energy expenditure from glucose-dependent to fat-dependent. Control rats were fed a diet containing 10% protein, 10% fat, and 80% carbohydrates. The fat-dependent energy expenditure induced by the ketogenic diet led to decreased body weight and increased blood ketone production, though the rats in the two groups consumed the same number of calories. The ketogenic diet did not alter food preferences for the control or high-fat diet containing 10% protein, 45% fat, and 45% carbohydrates. Anxiety in the open field was not altered by ingestion the ketogenic diet. However, rats fed the ketogenic diet performed better in the Y-maze test than rats fed the control diet. No difference was observed between the two groups in the Morris water maze test. Finally, Western blot revealed that the hippocampal expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit 1 (GluR1) was significantly increased in mice fed a ketogenic diet. These results suggest that hippocampal function is not impaired by a ketogenic diet and we speculate that the fat-dependent energy expenditure does not impair visuospatial ability. PMID:26111645

  18. Catalpol increases hippocampal neuroplasticity and up-regulates PKC and BDNF in the aged rats.

    PubMed

    Liu, Jing; He, Qiao-Jie; Zou, Wei; Wang, Hong-Xia; Bao, Yong-Ming; Liu, Yu-Xin; An, Li-Jia

    2006-12-01

    Rehmannia, a traditional Chinese medical herb, has a long history in age-related disease therapy. Previous work has indicated that catalpol is a main active ingredient performing neuroprotective effect in rehmannia, while the mechanism underlying the effect remains poorly understood. In this study, we attempt to investigate the effect of catalpol on presynaptic proteins and explore a potential mechanism. The hippocampal levels of GAP-43 and synaptophysin in 3 groups of 4 months (young group), 22-24 months (aged group) and catalpol-treated 22-24 months (catalpol-treated group) rats were evaluated by western blotting. Results clearly showed a significant decrease in synaptophysin (46.6%) and GAP-43 (61.4%) levels in the aged group against the young animals and an increase (45.0% and 31.8% respectively) in the catalpol-treated aged rats in comparison with the untreated aged group. In particular, synaptophysin immunoreactivity (OD) in the dentate granule layer of the hippocampus was increased 0.0251 in the catalpol-treated group as compared with the aged group. The study also revealed a catalpol-associated increase of PKC and BDNF in the hippocampus of the catalpol-treated group in comparison with the aged rats and highly correlated with synaptophysin and GAP-43. Such positive correlations between presynaptic proteins and signaling molecules also existed in the young group. These results suggested that catalpol could increase presynaptic proteins and up-regulate relative signaling molecules in the hippocampus of the aged rats. Consequently, it seemed to indicate that catalpol might ameliorate age-related neuroplasticity loss by "normalizing" presynaptic proteins and their relative signaling pathways in the aged rats. PMID:17078935

  19. Opposite effects of lead exposure on taurine- and HFS-induced LTP in rat hippocampus.

    PubMed

    Yu, Kuai; Yu, Shan-Shan; Ruan, Di-Yun

    2005-01-30

    The effect of lead exposure on taurine-induced long-term potentiation (LTP(TAU)) was examined and compared with high-frequency stimulation-induced one (LTP(HFS)). Field excitatory postsynaptic potentials (fEPSP) and fiber volley (FV) in area CA1 of hippocampal slice were recorded in control and lead-exposed rats. In contrast to the inhibitory effects of lead exposure on LTP(HFS), the amplitude of LTP(TAU) in the lead-exposed rats (199.3+/-13.7%, n=12) was significantly larger than that in controls (152.3+/-17.0%, n=12). It was also observed that taurine induced greater FV potentiation in lead-exposed rats (162.6+/-9.0%, n=10) than controls (132.1+/-6.9%, n=11). In addition, after a previous HFS, sequent perfusion of taurine could further increase the synaptic efficacy in lead-exposed rats. These results provide the first evidence that chronic lead exposure has opposite effects on the two types of LTP resulting from different lead toxicity sites. PMID:15639549

  20. Evidence that the branched-chain amino acid L-valine prevents exercise-induced release of 5-HT in rat hippocampus.

    PubMed

    Gomez-Merino, D; Béquet, F; Berthelot, M; Riverain, S; Chennaoui, M; Guezennec, C Y

    2001-07-01

    The branched-chain amino acid L-valine competes with tryptophan for transport into the brain and has previously been shown to decrease brain 5-HT synthesis. The purpose of this study was to assess, using a combined venous catheterization and in vivo microdialysis method, the effect of pre-exercise L-valine administration on 5-hydroxytryptamine (5-HT) metabolism in the ventral hippocampus of rats submitted to an acute intensive treadmill running (120 min at 25 m x min(-1) followed by 150 min of recovery). The presented results include measurement of extracellular tryptophan (TRP), the 5-HT precursor, and extracellular 5-hydroxyindoleacetic acid (5-HIAA), the 5-HT metabolite. The data clearly demonstrate that exercise induces 5-HT release in the rat hippocampus: in control group, hippocampal 5-HT levels increase from 123.7 +/- 6.4% at the end of exercise to 133.9 +/- 6.4% after 60 min of recovery. Moreover, two hours of intensive running induced significant increases both in extracellular TRP levels (from 120 min of exercise to 30 min of recovery) and 5-HIAA levels (from 90 min of exercise to 90 min of recovery). Pre-exercise administration of L-valine prevents significantly the exercise-induced 5-HT release: 5-HT levels are maintained to baseline during exercise and recovery. With regard to the competitive effect of L-valine with TRP, we could observe a treatment-induced decrease in brain TRP levels (from 120 min of exercise to the end of recovery). Besides, L-valine does not prevent exercise-induced increase in 5-HIAA levels. The present study evidences that an acute intensive exercise stimulates 5-HT metabolism in the rat hippocampus, and that a pre-exercise administration of L-valine prevents, via a limiting effect on 5-HT synthesis, exercise-induced 5-HT release. This study provides some anwers to previous human and animal investigations, showing physiological and psychological benefits of branched-chain amino acids supplementation on performance. PMID:11510866

  1. Activation of γ-aminobutyric Acid (A) Receptor Protects Hippocampus from Intense Exercise-induced Synapses Damage and Apoptosis in Rats

    PubMed Central

    Ding, Yi; Xie, Lan; Chang, Cun-Qing; Chen, Zhi-Min; Ai, Hua

    2015-01-01

    Background: Our previous study has confirmed that one bout of exhaustion (Ex) can cause hippocampus neurocyte damage, excessive apoptosis, and dysfunction. Its initial reason is intracellular calcium overload in hippocampus triggered by N-methyl-D-aspartic acid receptor (NMDAR) over-activation. NMDAR activation can be suppressed by γ-aminobutyric acid (A) receptor (GABAAR). Whether GABAAR can prevent intense exercise-induced hippocampus apoptosis, damage, or dysfunction will be studied in this study. Methods: According to dose test, rats were randomly divided into control (Con), Ex, muscimol (MUS, 0.1 mg/kg) and bicuculline (BIC, 0.5 mg/kg) groups, then all rats underwent once swimming Ex except ones in Con group only underwent training. Intracellular free calcium concentration ([Ca2+]i) was measured by Fura-2-acetoxymethyl ester; glial fibrillary acidic protein (GFAP) and synaptophysin (SYP) immunofluorescence were also performed; apoptosis were displayed by dUTP nick end labeling (TUNEL) stain; endoplasmic reticulum stress-induced apoptosis pathway was detected by Western blotting analysis; Morris water maze was used to detect learning ability and spatial memory. Results: The appropriate dose was 0.1 mg/kg for MUS and 0.5 mg/kg for BIC. Ex group showed significantly increased [Ca2+]i and astrogliosis; TUNEL positive cells and levels of GFAP, B cell lymphoma-2 (Bcl-2) associated X protein (Bax), caspase-3, caspase-12 cleavage, CCAAT/enhancer binding protein homologous protein (CHOP), and p-Jun amino-terminal kinase (p-JNK) in Ex group also raised significantly compared to Con group, while SYP, synapse plasticity, and Bcl-2 levels in Ex group were significantly lower than those in Con group. These indexes were back to normal in MUS group. BIC group had the highest levels of [Ca2+]i, astrogliosis, TUNEL positive cell, GFAP, Bax, caspase-3, caspase-12 cleavage, CHOP, and p-JNK, it also gained the lowest SYP, synapse plasticity, and Bcl-2 levels among all groups

  2. Alpha1-Adrenoceptor Antagonists Improve Memory by Activating N-methyl-D-Aspartate-Induced Ion Currents in the Rat Hippocampus

    PubMed Central

    Ko, Il Gyu; Kim, Sung Eun; Shin, Mal Soon; Kang, Yeon Ho; Cho, Jung Wan; Shin, Key Moon; Kim, Chang Ju; Lim, Baek Vin

    2015-01-01

    Purpose: Alpha1 (α1)-adrenoceptor antagonists are widely used to treat lower urinary tract symptoms. These drugs not only act on peripheral tissues, but also cross the blood-brain barrier and affect the central nervous system. Therefore, α1-adrenoceptor antagonists may enhance brain functions. In the present study, we investigated the effects of tamsulosin, an α1-adrenoceptor antagonist, on short-term memory, as well as spatial learning and memory, in rats. Methods: The step-down avoidance test was used to evaluate short-term memory, and an eight-arm radial maze test was used to evaluate spatial learning and memory. TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling) staining was performed in order to evaluate the effect of tamsulosin on apoptosis in the hippocampal dentate gyrus. Patch clamp recordings were used to evaluate the effect of tamsulosin on ionotropic glutamate receptors, such as N-methyl-D-aspartate (NMDA), amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and kainate receptors, in hippocampal CA1 neurons. Results: Tamsulosin treatment improved short-term memory, as well as spatial learning and memory, without altering apoptosis. The amplitudes of NMDA-induced ion currents were dose-dependently increased by tamsulosin. However, the amplitudes of AMPA- and kainate-induced ion currents were not affected by tamsulosin. Conclusions: Tamsulosin enhanced memory function by activating NMDA receptor-mediated ion currents in the hippocampus without initiating apoptosis. The present study suggests the possibility of using tamsulosin to enhance memory under normal conditions, in addition to its use in treating overactive bladder. PMID:26739177

  3. Antioxidant Activity of Grapevine Leaf Extracts against Oxidative Stress Induced by Carbon Tetrachloride in Cerebral Cortex, Hippocampus and Cerebellum of Rats

    PubMed Central

    Wohlenberg, Mariane; Almeida, Daniela; Bokowski, Liane; Medeiros, Niara; Agostini, Fabiana; Funchal, Cláudia; Dani, Caroline

    2014-01-01

    In recent years, it has become increasingly important to study the beneficial properties of derivatives of grapes and grapevine. The objective of this study was to determine the antioxidant activity of Vitis labrusca leaf extracts, comparing conventional and organic grapevines, in different brain areas of rats. We used male Wistar rats treated with grapevine leaf extracts for a period of 14 days, and on the 15th day, we administered in half of the rats, mineral oil and the other half, carbon tetrachloride (CCl4). The animals were euthanized by decapitation and the cerebral cortex, hippocampus and cerebellum were removed to assess oxidative stress parameters and the activity of antioxidant enzymes. Lipid peroxidation levels (TBARS) were unchanged. However, CCl4 induced oxidative damage to proteins in all tissues studied, and this injury was prevented by both extracts. Superoxide dismutase (SOD) activity was increased by CCl4 in the cerebral cortex and decreased in other tissues. However, CCl4 increased catalase (CAT) activity in the cerebellum and decreased it in the cerebral cortex. The SOD/CAT ratio was restored in the cerebellum by both extracts and only in the cerebral cortex by the organic extract. PMID:26784867

  4. Antioxidant Activity of Grapevine Leaf Extracts against Oxidative Stress Induced by Carbon Tetrachloride in Cerebral Cortex, Hippocampus and Cerebellum of Rats.

    PubMed

    Wohlenberg, Mariane; Almeida, Daniela; Bokowski, Liane; Medeiros, Niara; Agostini, Fabiana; Funchal, Cláudia; Dani, Caroline

    2014-01-01

    In recent years, it has become increasingly important to study the beneficial properties of derivatives of grapes and grapevine. The objective of this study was to determine the antioxidant activity of Vitis labrusca leaf extracts, comparing conventional and organic grapevines, in different brain areas of rats. We used male Wistar rats treated with grapevine leaf extracts for a period of 14 days, and on the 15th day, we administered in half of the rats, mineral oil and the other half, carbon tetrachloride (CCl₄). The animals were euthanized by decapitation and the cerebral cortex, hippocampus and cerebellum were removed to assess oxidative stress parameters and the activity of antioxidant enzymes. Lipid peroxidation levels (TBARS) were unchanged. However, CCl₄ induced oxidative damage to proteins in all tissues studied, and this injury was prevented by both extracts. Superoxide dismutase (SOD) activity was increased by CCl₄ in the cerebral cortex and decreased in other tissues. However, CCl₄ increased catalase (CAT) activity in the cerebellum and decreased it in the cerebral cortex. The SOD/CAT ratio was restored in the cerebellum by both extracts and only in the cerebral cortex by the organic extract. PMID:26784867

  5. Cholinergic grafts in the neocortex or hippocampus of aged rats: reduction of delay-dependent deficits in the delayed non-matching to position task.

    PubMed

    Dunnett, S B; Badman, F; Rogers, D C; Evenden, J L; Iversen, S D

    1988-10-01

    Aged (24 month) rats have previously been shown to manifest delay-dependent deficits in the performance of an operant delayed non-matching to position task. In the present experiment, cholinergic-rich grafts implanted into either the neocortex or the hippocampus of aged rats are shown to reinnervate the host neocortex and hippocampus, respectively, and to provide a significant amelioration of the host animals' short-term memory impairments. The results are discussed in light of the cholinergic hypothesis of geriatric memory dysfunction. PMID:3181353

  6. Resveratrol exerts antidepressant properties in the chronic unpredictable mild stress model through the regulation of oxidative stress and mTOR pathway in the rat hippocampus and prefrontal cortex.

    PubMed

    liu, Song; Li, Tong; Liu, Hansen; Wang, Xueer; Bo, Shishi; Xie, Yunkai; Bai, Xuemei; Wu, Lin; Wang, Zhen; Liu, Dexiang

    2016-04-01

    Depression is one of the most common neuropsychiatric disorders and has been associated with oxidative stress and brain protein alterations. Resveratrol is a natural polyphenol enriched in Polygonum cuspidatum and has diverse biological activities including potent antidepressant-like effects. The present study attempts to explore the mechanisms underlying the antidepressant-like action of resveratrol by measuring oxidative stress parameters and phosphorylation of AKT/mTOR pathway in the rat hippocampus and prefrontal cortex (PFC) exposed to the chronic unpredictable mild stress (CUMS). Male Wistar rats were subjected to CUMS protocol for a period of 4 weeks to induce depressive-like behavior. The results showed that resveratrol treatment (80 mg/kg/i.p. 4 weeks) significantly reversed the CUMS-induced behavioral abnormalities (reduced sucrose preference, increased immobility time and decreased locomotor activity) and biochemical changes (increased lipid peroxidation and decreased superoxide dismutase). Additionally, CUMS exposure significantly decreased phosphorylation of Akt and mTOR in the hippocampus and PFC, while resveratrol treatment normalized these parameters. In conclusion, our study showed that resveratrol exerted antidepressant-like effects in CUMS rats, which was mediated in part by its antioxidant action, up-regulation of phosphor-Akt and mTOR levels in the hippocampus and PFC. PMID:26801825

  7. The effects of cocaine self-administration on dendritic spine density in the rat hippocampus are dependent on genetic background.

    PubMed

    Miguéns, Miguel; Kastanauskaite, Asta; Coria, Santiago M; Selvas, Abraham; Ballesteros-Yañez, Inmaculada; DeFelipe, Javier; Ambrosio, Emilio

    2015-01-01

    Chronic exposure to cocaine induces modifications to neurons in the brain regions involved in addiction. Hence, we evaluated cocaine-induced changes in the hippocampal CA1 field in Fischer 344 (F344) and Lewis (LEW) rats, 2 strains that have been widely used to study genetic predisposition to drug addiction, by combining intracellular Lucifer yellow injection with confocal microscopy reconstruction of labeled neurons. Specifically, we examined the effects of cocaine self-administration on the structure, size, and branching complexity of the apical dendrites of CA1 pyramidal neurons. In addition, we quantified spine density in the collaterals of the apical dendritic arbors of these neurons. We found differences between these strains in several morphological parameters. For example, CA1 apical dendrites were more branched and complex in LEW than in F344 rats, while the spine density in the collateral dendrites of the apical dendritic arbors was greater in F344 rats. Interestingly, cocaine self-administration in LEW rats augmented the spine density, an effect that was not observed in the F344 strain. These results reveal significant structural differences in CA1 pyramidal cells between these strains and indicate that cocaine self-administration has a distinct effect on neuron morphology in the hippocampus of rats with different genetic backgrounds. PMID:23966583

  8. Time course of neuronal damage in the hippocampus following lithium-pilocarpine status epilepticus in 12-day-old rats.

    PubMed

    Druga, Rastislav; Mares, Pavel; Kubová, Hana

    2010-10-01

    Status epilepticus (SE) leads to serious damage in hippocampus of the adult brain. Much less is known about immature brain where neuronal degeneration may have different localization and time course. Lithium-pilocarpine SE was induced in 12-day-old male Wistar rats. Six different intervals after SE (from 4 h to 1 week) were studied using Fluoro-Jade B staining. Three to four animals were used for every interval. Severity of damage in individual parts of hippocampal formation was semi-quantified. A consistent neuronal damage occurred in all hippocampal fields (CA 1, CA 3, dentate gyrus) at all survival intervals. Hippocampal fields CA 1 and CA 3 exhibited degeneration of interneurons located mainly in stratum oriens and pyramidale at shorter intervals (4-12h). Massive degeneration of pyramidal cells started at 24h in CA 1 and at 48 h in CA 3. Dentate gyrus exhibited degenerating neurons in granular layer with a peak at short intervals (4-8 h), and molecular layer was spared. The lower blade of dentate gyrus was more affected than the upper blade. Damage of hilar neurons was negligible. Our results demonstrate that SE elicited in immature rats causes acute neurodegeneration in the hippocampus. Time course of this degeneration is different for individual parts of hippocampal formation and for individual cell types. PMID:20673826

  9. Altered Expression of Endoplasmic Reticulum Stress Associated Genes in Hippocampus of Learned Helpless Rats: Relevance to Depression Pathophysiology

    PubMed Central

    Timberlake, Matthew A.; Dwivedi, Yogesh

    2016-01-01

    The unfolded protein response (UPR) is an evolutionarily conserved defensive mechanism that is used by cells to correct misfolded proteins that accumulate in the endoplasmic reticulum. These proteins are misfolded as a result of physical stress on a cell and initiate a host of downstream effects that govern processes ranging from inflammation to apoptosis. To examine whether UPR system plays a role in depression, we examined the expression of genes that are part of the three different pathways for UPR activation, namely GRP78, GRP94, ATF6, XBP-1, ATF4, and CHOP using an animal model system that distinguishes vulnerability (learned helpless, LH) from resistance (non-learned helpless, NLH) to develop depression. Rats were exposed to inescapable shock on days 1 and 7 and were tested for escape latency on day 14. Rats not given shock but tested for escape latency were used as tested control (TC). Plasma corticosterone (CORT) levels were measured. Expression levels of various UPR associated genes were determined in hippocampus using qPCR. We found that the CORT level was higher in LH rats compared with TC and NLH rats. Expression of GRP78, GRP94, ATF6, and XBP-1 were significantly upregulated in LH rats compared with TC or NLH rats, whereas NLH rats did not show such changes. Expression levels of ATF4 and CHOP showed trends toward upregulation but were not significantly altered in LH or NLH group. Our data show strong evidence of altered UPR system in depressed rats, which could be associated with development of depressive behavior. PMID:26793110

  10. A single intracerebroventricular Aβ25-35 infusion leads to prolonged alterations in arginine metabolism in the rat hippocampus and prefrontal cortex.

    PubMed

    Bergin, D H; Jing, Y; Zhang, H; Liu, P

    2015-07-01

    While amyloid beta (Aβ) plays a central role in the development of Alzheimer's disease (AD), recent evidence suggests the involvement of arginine metabolism in AD pathogenesis. Earlier research has shown that a single intracerebroventricular (i.c.v.) infusion of pre-aggregated Aβ25-35 (the neurotoxic domain of the full-length Aβ) altered arginine metabolism in the rat hippocampus (particularly the CA2/3 and dentate gyrus (DG) sub-regions) and prefrontal cortex (PFC) at the time point of 8 days post-infusion. The present study measured the levels of L-arginine and its nine downstream metabolites (L-citrulline, L-ornithine, agmatine, putrescine, spermidine, spermine, glutamate, GABA and glutamine) in the hippocampus and PFC at the time points of 42 and 97 days following a single bilateral i.c.v. infusion of Aβ25-35 (30 nmol/rat) or Aβ35-25 (reverse peptide; 30 nmol/rat). At the 42-day time point, Aβ25-35 resulted in decreased levels of glutamate, glutamine and spermine in the CA2/3 sub-region of the hippocampus. At the 97-day time point, however, there were decreased L-ornithine, GABA and putrescine levels, but increased glutamate/GABA ratio, in the PFC and increased spermine levels in the DG sub-region. Cluster analyses showed that L-arginine and its three main metabolites L-citrulline, L-ornithine and agmatine formed distinct groups, which changed as a function of Aβ25-35 at the 42-day and 97-day time points, particularly in the CA2/3 and PFC regions respectively. This study, for the first time, demonstrates that a single i.c.v. infusion of pre-aggregated Aβ25-35 leads to prolonged alterations in arginine metabolism in a region-specific and time-dependent manner, which further supports the involvement of arginine metabolism in AD pathogenesis. PMID:25907447

  11. Grouping Pentylenetetrazol-Induced Epileptic Rats According to Memory Impairment and MicroRNA Expression Profiles in the Hippocampus

    PubMed Central

    Liu, Xixia; Wu, Yuan; Huang, Qi; Zou, Donghua; Qin, Weihan; Chen, Zhen

    2015-01-01

    Previous studies have demonstrated a close relationship between abnormal regulation of microRNA (miRNA) and various types of diseases, including epilepsy and other neurological disorders of memory. However, the role of miRNA in the memory impairment observed in epilepsy remains unknown. In this study, a model of temporal lobe epilepsy (TLE) was induced via pentylenetetrazol (PTZ) kindling in Sprague-Dawley rats. First, the TLE rats were subjected to Morris water maze to identify those with memory impairment (TLE-MI) compared with TLE control rats (TLE-C), which presented normal memory. Both groups were analyzed to detect dysregulated miRNAs in the hippocampus; four up-regulated miRNAs (miR-34c, miR-374, miR-181a, and miR-let-7c-1) and seven down-regulated miRNAs (miR-1188, miR-770-5p, miR-127-5p, miR-375, miR-331, miR-873-5p, and miR-328a) were found. Some of the dysregulated miRNAs (miR-34c, miR-1188a, miR-328a, and miR-331) were confirmed using qRT-PCR, and their blood expression patterns were identical to those of their counterparts in the rat hippocampus. The targets of these dysregulated miRNAs and other potentially enriched biological signaling pathways were analyzed using bioinformatics. Following these results, the MAPK, apoptosis and hippocampal signaling pathways might be involved in the molecular mechanisms underlying the memory disorders of TLE. PMID:25962166

  12. Age-related metabolic fatigue during low glucose conditions in rat hippocampus

    PubMed Central

    Galeffi, Francesca; Shetty, Pavan K.; Sadgrove, Matthew P.; Turner, Dennis A.

    2015-01-01

    Previous reports have indicated that with aging, intrinsic brain tissue changes in cellular bioenergetics may hamper the brain’s ability to cope with metabolic stress. Therefore, we analyzed the effects of age on neuronal sensitivity to glucose deprivation by monitoring changes in field excitatory postsynaptic potentials (fEPSPs), tissue Po2, and NADH fluorescence imaging in the CA1 region of hippocampal slices obtained from F344 rats (1–2, 3–6, 12–20, and >22 months). Forty minutes of moderate low glucose (2.5 mM) led to approximately 80% decrease of fEPSP amplitudes and NADH decline in all 4 ages that reversed after reintroduction of 10 mM glucose. However, tissue slices from 12 to 20 months and >22-month-old rats were more vulnerable to low glucose: fEPSPs decreased by 50% on average 8 minutes faster compared with younger slices. Tissue oxygen utilization increased after onset of 2.5 mM glucose in all ages of tissue slices, which persisted for 40 minutes in younger tissue slices. But, in older tissue slices the increased oxygen utilization slowly faded and tissue Po2 levels increased toward baseline values after approximately 25 minutes of glucose deprivation. In addition, with age the ability to regenerate NADH after oxidation was diminished. The NAD+/NADH ratio remained relatively oxidized after low glucose, even during recovery. In young slices, glycogen levels were stable throughout the exposure to low glucose. In contrast, with aging utilization of glycogen stores was increased during low glucose, particularly in hippocampal slices from >22 months old rats, indicating both inefficient metabolism and increased demand for glucose. Lactate addition (20 mM) improved oxidative metabolism by directly supplementing the mitochondrial NADH pool and maintained fEPSPs in young as well as aged tissue slices, indicating that inefficient metabolism in the aging tissue can be improved by directly enhancing NADH regeneration. PMID:25443286

  13. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context

    PubMed Central

    Rivera, Patricia; Bindila, Laura; Pastor, Antoni; Pérez-Martín, Margarita; Pavón, Francisco J.; Serrano, Antonia; de la Torre, Rafael; Lutz, Beat; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3+ or BrdU+ cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3+), astroglia (GFAP+), and microglia (Iba1+ cells) were analyzed in the hippocampus, hypothalamus and striatum of rats intraperitoneally treated with URB597 (0.3 mg/kg/day) at one dose/4-days resting or 5 doses (1 dose/day). Repeated URB597 treatment increased the plasma levels of the N-acylethanolamines oleoylethanolamide, palmitoylethanolamide and arachidonoylethanolamine, reduced the plasma levels of glucose, triglycerides and cholesterol, and induced a transitory body weight decrease. The hippocampi of repeated URB597-treated rats showed a reduced number of phospho-H3+ and BrdU+ subgranular cells as well as GFAP+, Iba1+ and cleaved caspase-3+ cells, which was accompanied with decreased hippocampal expression of the cannabinoid CB1 receptor gene Cnr1 and Faah. In the hypothalami of these rats, the number of phospho-H3+, GFAP+ and 3-weeks-old BrdU+ cells was specifically decreased. The reduced striatal expression of CB1 receptor in repeated URB597-treated rats was only associated with a reduced apoptosis. In contrast, the striatum of acute URB597-treated rats showed an increased number of subventricular proliferative, astroglial and apoptotic cells, which was accompanied with increased Faah expression. Main results indicated that FAAH inhibitor URB597 decreased neural proliferation, glia and apoptosis in a brain region-dependent manner, which were coupled to local changes in Faah and/or Cnr1 expression and a negative energy context. PMID:25870539

  14. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context.

    PubMed

    Rivera, Patricia; Bindila, Laura; Pastor, Antoni; Pérez-Martín, Margarita; Pavón, Francisco J; Serrano, Antonia; de la Torre, Rafael; Lutz, Beat; Rodríguez de Fonseca, Fernando; Suárez, Juan

    2015-01-01

    Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3(+) or BrdU(+) cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3(+)), astroglia (GFAP(+)), and microglia (Iba1(+) cells) were analyzed in the hippocampus, hypothalamus and striatum of rats intraperitoneally treated with URB597 (0.3 mg/kg/day) at one dose/4-days resting or 5 doses (1 dose/day). Repeated URB597 treatment increased the plasma levels of the N-acylethanolamines oleoylethanolamide, palmitoylethanolamide and arachidonoylethanolamine, reduced the plasma levels of glucose, triglycerides and cholesterol, and induced a transitory body weight decrease. The hippocampi of repeated URB597-treated rats showed a reduced number of phospho-H3(+) and BrdU(+) subgranular cells as well as GFAP(+), Iba1(+) and cleaved caspase-3(+) cells, which was accompanied with decreased hippocampal expression of the cannabinoid CB1 receptor gene Cnr1 and Faah. In the hypothalami of these rats, the number of phospho-H3(+), GFAP(+) and 3-weeks-old BrdU(+) cells was specifically decreased. The reduced striatal expression of CB1 receptor in repeated URB597-treated rats was only associated with a reduced apoptosis. In contrast, the striatum of acute URB597-treated rats showed an increased number of subventricular proliferative, astroglial and apoptotic cells, which was accompanied with increased Faah expression. Main results indicated that FAAH inhibitor URB597 decreased neural proliferation, glia and apoptosis in a brain region-dependent manner, which were coupled to local changes in Faah and/or Cnr1 expression and a negative energy context. PMID:25870539

  15. Kainate receptors in the rat hippocampus: A distribution and time course of changes in response to unilateral lesions of the entorhinal cortex

    SciTech Connect

    Ulas, J.; Monaghan, D.T.; Cotman, C.W. )

    1990-07-01

    The response of kainate receptors to deafferentation and subsequent reinnervation following unilateral entorhinal cortex lesions was studied in the rat hippocampus using quantitative in vitro autoradiography. The binding levels of (3H)kainic acid (KA) and changes in the distribution of KA sites were investigated in the dentate gyrus molecular layer (ML) and in various terminal zones in the CA1 field at 1, 3, 7, 14, 21, 30, and 60 d postlesion. The data from both the ipsilateral and contralateral hippocampus were compared with those from unoperated controls. The first changes in KA receptor distribution were observed 21 d postlesion when the dense band of KA receptors occupying the inner one-third of the ML expanded into the denervated outer two-thirds of the ipsilateral ML. The spreading of the KA receptor field into previously unoccupied zones continued 30 and 60 d postlesion. At these time points, the zone enriched in (3H)KA binding sites became significantly (on average 50%) wider than in unoperated controls. No changes were observed in either the distribution or binding levels in other hippocampal areas or in the contralateral hippocampus at any studied time point. Saturation analysis of binding in the ipsilateral ML 60 d postlesion revealed changes in the maximum number of receptor sites (Bmax) without changes in KA receptor affinity (Kd). The data suggest that the elevation of the (3H)KA binding in the outer two-thirds of the ML reflects an increase in the number of both low and high affinity receptor binding sites. The pattern of KA receptor redistribution was similar to the well-characterized pattern of sprouting of commissural/associational systems from the inner one-third into the outer two-thirds of the ML after entorhinal lesions.

  16. Neuronal Gonadotrophin-Releasing Hormone (GnRH) and Astrocytic Gonadotrophin Inhibitory Hormone (GnIH) Immunoreactivity in the Adult Rat Hippocampus.

    PubMed

    Ferris, J K; Tse, M T; Hamson, D K; Taves, M D; Ma, C; McGuire, N; Arckens, L; Bentley, G E; Galea, L A M; Floresco, S B; Soma, K K

    2015-10-01

    Gonadotrophin-releasing hormone (GnRH) and gonadotrophin inhibitory hormone (GnIH) are neuropeptides secreted by the hypothalamus that regulate reproduction. GnRH receptors are not only present in the anterior pituitary, but also are abundantly expressed in the hippocampus of rats, suggesting that GnRH regulates hippocampal function. GnIH inhibits pituitary gonadotrophin secretion and is also expressed in the hippocampus of a songbird; its role outside of the reproductive axis is not well established. In the present study, we employed immunohistochemistry to examine three forms of GnRH [mammalian GnRH-I (mGnRH-I), chicken GnRH-II (cGnRH-II) and lamprey GnRH-III (lGnRH-III)] and GnIH in the adult rat hippocampus. No mGnRH-I and cGnRH-II+ cell bodies were present in the hippocampus. Sparse mGnRH-I and cGnRH-II+ fibres were present within the CA1 and CA3 fields of the hippocampus, along the hippocampal fissure, and within the hilus of the dentate gyrus. No lGnRH-III was present in the rodent hippocampus. GnIH-immunoreactivity was present in the hippocampus in cell bodies that resembled astrocytes. Males had more GnIH+ cells in the hilus of the dentate gyrus than females. To confirm the GnIH+ cell body phenotype, we performed double-label immunofluorescence against GnIH, glial fibrillary acidic protein (GFAP) and NeuN. Immunofluorescence revealed that all GnIH+ cell bodies in the hippocampus also contained GFAP, a marker of astrocytes. Taken together, these data suggest that GnRH does not reach GnRH receptors in the rat hippocampus primarily via synaptic release. By contrast, GnIH might be synthesised locally in the rat hippocampus by astrocytes. These data shed light on the sites of action and possible functions of GnRH and GnIH outside of the hypothalamic-pituitary-gonadal axis. PMID:26258544

  17. Upregulation of p‑Akt by glial cell line‑derived neurotrophic factor ameliorates cell apoptosis in the hippocampus of rats with streptozotocin‑induced diabetic encephalopathy.

    PubMed

    Cui, Weigang; Zhang, Yinghua; Lu, Derong; Ren, Mingxin; Yuan, Guoyan

    2016-01-01

    The loss of neurotrophic factor support has been shown to contribute to the development of the central nervous system. Glial cell line‑derived neurotrophic factor (GDNF), a potent neurotrophic factor, is closely associated with apoptosis and exerts neuroprotective effects on numerous populations of cells. However, the underlying mechanisms of these protective effects remain unknown. In the present study, a significant increase in Bax levels and DNA fragmentation was observed in the hippocampus obtained from the brains of diabetic rats 60 days after diabetes had been induced. The apoptotic changes were correlated with the loss of GDNF/Akt signaling. GDNF administration was found to reverse the diabetes‑induced Bax and DNA fragmentation changes. This was associated with an improvement in the level of p‑Akt/Akt. In addition, combination of GDNF with a specific inhibitor of the phosphoinositide 3‑kinase (PI3K)/Akt pathway, Wortmannin, significantly abrogated the effects of GDNF on the levels of p‑Akt/Akt, Bax and DNA fragmentation. However, a p38 mitogen‑activated proten kinase (MAPK) inhibitor, SB203580, had no effect on the expression of p‑Akt/Akt, Bax or DNA fragmentation. These results demonstrate the pivotal role of GDNF as well as the PI3K/Akt pathway, but not the MAPK pathway, in the prevention of diabetes‑induced neuronal apoptosis in the hippocampus. PMID:26549420

  18. Differential Activation of Mitogen-Activated Protein Kinases, ERK 1/2, p38(MAPK) and JNK p54/p46 During Postnatal Development of Rat Hippocampus.

    PubMed

    Costa, Ana Paula; Lopes, Mark William; Rieger, Débora K; Barbosa, Sabrina Giovana Rocha; Gonçalves, Filipe Marques; Xikota, João Carlos; Walz, Roger; Leal, Rodrigo B

    2016-05-01

    Mitogen-activated protein kinases (MAPKs) are a group of serine-threonine kinases, including p38(MAPK), ERK 1/2 and JNK p54/p46, activated by phosphorylation in response to extracellular stimuli. The early postnatal period is characterized by significant changes in brain structure as well as intracellular signaling. In the hippocampus MAPKs have been involved in the modulation of development and neural plasticity. However, the temporal profile of MAPK activation throughout the early postnatal development is incomplete. An understanding of this profile is important since slight changes in the activity of these enzymes, in response to environmental stress in specific developmental windows, might alter the course of development. The present study was undertaken to investigate the hippocampal differential activation of MAPK during postnatal period. MAPK activation and total content were evaluated by Western blotting of hippocampal tissue obtained from male Wistar rats at postnatal days (P) 1, 4, 7, 10, 14, 21, 30 and 60. The total content and phosphorylation of each MAPK was expressed as mean ± SEM and then calculates as a percentile compared to P1 (set at 100 %). The results showed: (1) phosphorylation peaks of p38(MAPK) at PN4 (p = 0.036) and PN10 to PN60; (2) phosphorylation of ERK1 and ERK2 were increased with age (ERK1 p = 0.0000005 and ERK2 p = 0.003); (3) phosphorylation profile of JNK p54/p46 was not changed during the period analyzed (JNKp56 p = 0.716 and JNKp46 p = 0.192). Therefore, the activity profile of ERK 1/2 and p38(MAPK) during postnatal development of rat hippocampus are differentially regulated. Our results demonstrate that ERK 1/2 and p38(MAPK) are dynamically regulated during postnatal neurodevelopment, suggesting temporal correlation of MAPK activity with critical periods when programmed cell death and synaptogenesis are occurring. This suggests an important role for these MAPKs in postnatal development of rat hippocampus. PMID

  19. BDNF increases BrdU-IR cells in the injured adult zebra finch hippocampus.

    PubMed

    Lucas, Nikola N; Lee, Diane W

    2009-08-01

    Steroid-mediated cell proliferation, differentiation, and survival can be triggered by learning, experience, and brain injury. In the uninjured canary song system, testosterone induces cell proliferation that is blocked by an antibody to brain-derived neurotrophic factor (BDNF). However, little is known with regard to the effects of neurotrophic factors on injury-induced cell proliferation and incorporation. To address this, adult male zebra finches received bilateral hippocampal lesions by infusing saline into one hemisphere and BDNF into the other. BrdU (2-bromo-5-deoxyuridine) was then injected to label mitotic cells. A greater number of BrdU-immunoreactive (BrdU-IR) cells were observed in the BDNF-treated hemisphere in the hippocampus, but not in the septum or stem cell-rich subventricular zone, indicating that BDNF promoted localized cell proliferation and incorporation at the injury site only. PMID:19512953

  20. Prefrontal Cortex and Hippocampus Subserve Different Components of Working Memory in Rats

    ERIC Educational Resources Information Center

    Yoon, Taejib; Okada, Jeffrey; Jung, Min W.; Kim, Jeansok J.

    2008-01-01

    Both the medial prefrontal cortex (mPFC) and hippocampus are implicated in working memory tasks in rodents. Specifically, it has been hypothesized that the mPFC is primarily engaged in the temporary storage and processing of information lasting from a subsecond to several seconds, while the hippocampal function becomes more critical as the working…

  1. Kindling-Induced Changes in Plasticity of the Rat Amygdala and Hippocampus

    ERIC Educational Resources Information Center

    Schubert, Manja; Siegmund, Herbert; Pape, Hans-Christian; Albrecht, Doris

    2005-01-01

    Temporal lobe epilepsy (TLE) is often accompanied by interictal behavioral abnormalities, such as fear and memory impairment. To identify possible underlying substrates, we analyzed long-term synaptic plasticity in two relevant brain regions, the lateral amygdala (LA) and the CA1 region of the hippocampus, in the kindling model of epilepsy. Wistar…

  2. MICROINJECTION OF DYNORPHIN INTO THE HIPPOCAMPUS IMPAIRS SPATIAL LEARNING IN RATS

    EPA Science Inventory

    The effect of hippocampal dynorphin administration on learning and memory was examined in spatial and nonspatial tasks. ilateral infusion of dynorphin A(1-8)(DYN; 10 or 20 ug in one ul) into the dorsal hippocampus resulted in dose-related impairment of spatial working memory in a...

  3. CHRONIC DEVELOPMENTAL LEAD EXPOSURE REDUCES NEUROGENESIS IN ADULT RAT HIPPOCAMPUS BUT DOES NOT IMPAIR SPATIAL LEARNING.

    EPA Science Inventory

    It has long been heralded that the mature brain does not generate new neurons, it only loses them as a function of injury, disease and age. An exciting recent finding in neuroscience has been that the dentate granule cell layer of the hippocampus has the distinctive property of ...

  4. Estrogen administration modulates hippocampal GABAergic subpopulations in the hippocampus of trimethyltin-treated rats

    PubMed Central

    Corvino, Valentina; Di Maria, Valentina; Marchese, Elisa; Lattanzi, Wanda; Biamonte, Filippo; Michetti, Fabrizio; Geloso, Maria Concetta

    2015-01-01

    Given the well-documented involvement of estrogens in the modulation of hippocampal functions in both physiological and pathological conditions, the present study investigates the effects of 17-beta estradiol (E2) administration in the rat model of hippocampal neurodegeneration induced by trimethyltin (TMT) administration (8 mg/kg), characterized by loss of pyramidal neurons in CA1, CA3/hilus hippocampal subfields, associated with astroglial and microglial activation, seizures and cognitive impairment. After TMT/saline treatment, ovariectomized animals received two doses of E2 (0.2 mg/kg intra-peritoneal) or vehicle, and were sacrificed 48 h or 7 days after TMT-treatment. Our results indicate that in TMT-treated animals E2 administration induces the early (48 h) upregulation of genes involved in neuroprotection and synaptogenesis, namely Bcl2, trkB, cadherin 2 and cyclin-dependent-kinase-5. Increased expression levels of glutamic acid decarboxylase (gad) 67, neuropeptide Y (Npy), parvalbumin, Pgc-1α and Sirtuin 1 genes, the latter involved in parvalbumin (PV) synthesis, were also evident. Unbiased stereology performed on rats sacrificed 7 days after TMT treatment showed that although E2 does not significantly influence the extent of TMT-induced neuronal death, significantly enhances the TMT-induced modulation of GABAergic interneuron population size in selected hippocampal subfields. In particular, E2 administration causes, in TMT-treated rats, a significant increase in the number of GAD67-expressing interneurons in CA1 stratum oriens, CA3 pyramidal layer, hilus and dentate gyrus, accompanied by a parallel increase in NPY-expressing cells, essentially in the same regions, and of PV-positive cells in CA1 pyramidal layer. The present results add information concerning the role of in vivo E2 administration on mechanisms involved in cellular plasticity in the adult brain. PMID:26594149

  5. Activity-based anorexia during adolescence disrupts normal development of the CA1 pyramidal cells in the ventral hippocampus of female rats.

    PubMed

    Chowdhury, Tara G; Ríos, Mariel B; Chan, Thomas E; Cassataro, Daniela S; Barbarich-Marsteller, Nicole C; Aoki, Chiye

    2014-12-01

    Anorexia nervosa (AN) is a psychiatric illness characterized by restricted eating and irrational fears of gaining weight. There is no accepted pharmacological treatment for AN, and AN has the highest mortality rate among psychiatric illnesses. Anorexia nervosa most commonly affects females during adolescence, suggesting an effect of sex and hormones on vulnerability to the disease. Activity-based anorexia (ABA) is a rodent model of AN that shares symptoms with AN, including over-exercise, elevation of stress hormones, and genetic links to anxiety traits. We previously reported that ABA in adolescent female rats results in increased apical dendritic branching in CA1 pyramidal cells of the ventral hippocampus at postnatal day 44 (P44). To examine the long-term effects of adolescent ABA (P44) in female rats, we compared the apical branching in the ventral hippocampal CA1 after recovery from ABA (P51) and after a relapse of ABA (P55) with age-matched controls. To examine the age-dependence of the hippocampal plasticity, we examined the effect of ABA during adulthood (P67). We found that while ABA at P44 resulted in increased branching of ventral hippocampal pyramidal cells, relapse of ABA at P55 resulted in decreased branching. ABA induced during adulthood did not have an effect on dendritic branching, suggesting an age-dependence of the vulnerability to structural plasticity. Cells from control animals were found to exhibit a dramatic increase in branching, more than doubling from P44 to P51, followed by pruning from P51 to P55. The proportion of mature spines on dendrites from the P44-ABA animals is similar to that on dendrites from P55-CON animals. These results suggest that the experience of ABA may cause precocious anatomical development of the ventral hippocampus. Importantly, we found that adolescence is a period of continued development of the hippocampus, and increased vulnerability to mental disorders during adolescence may be due to insults during this

  6. Excitotoxic increase of xanthine dehydrogenase and xanthine oxidase in the rat olfactory cortex.

    PubMed

    Battelli, M G; Buonamici, L; Abbondanza, A; Virgili, M; Contestabile, A; Stirpe, F

    1995-05-26

    Excitotoxic lesions induced by systemic injection of kainic acid, resulted in 2-3-fold increase of xanthine dehydrogenase and xanthine oxidase activities in the rat olfactory cortex 48-72 h after drug administration. A significant increase of the xanthine oxidase/dehydrogenase ratio was also observed at 4 and 48 h post-injection. No similar changes were noticed in the hippocampus. The enhancement of enzyme activity seems to be primarily a consequence of the altered cell composition in damaged area. Free radicals produced by the increased oxygen-dependent form of the enzyme could in turn aggravate the excitotoxic brain injury. PMID:7656426

  7. Activation of cannabinoid CB1 receptors in the ventral hippocampus improved stress-induced amnesia in rat.

    PubMed

    Mohammadmirzaei, Negin; Rezayof, Ameneh; Ghasemzadeh, Zahra

    2016-09-01

    The ventral hippocampus (VH) has a high distribution of cannabinoid CB1 receptors which are important in modulating stress responses. Stress exposure activates the hypothalamic-pituitary-adrenal axis (HPA) which can impact hippocampal formation to change hippocampus-based memories. The purpose of the present study was to determine the possible role of the VH cannabinoid CB1 receptors in stress-induced amnesia using a step-through passive avoidance procedure in male Wistar rats. In order to induce acute stress, the animals were placed on an elevated platform for different time periods (10, 20 and 30min). Our results indicated that post-training 20 and 30min exposure to stress, but not 10min, induced amnesia. Post-training microinjection of a cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA; 2.5-7.5ng/rat) into the VH (intra-VH) induced amnesia. Interestingly, post-training intra-VH microinjection of the same doses of ACPA improved stress-induced amnesia. On the other hand, post-training intra-VH microinjection of a selective CB1 receptor antagonist, AM-251 (20-50ng/rat) with exposure to an ineffective stress (10min) potentiated the effect of stress on memory consolidation and induced amnesia. It should be noted that post-training intra-VH microinjection of the same doses of AM-251 alone had no effect on memory consolidation. Our results revealed that post-training intra-VH microinjection of AM-251, prior to ACPA microinjection, inhibited the reversal effect of ACPA on acute elevated platform stress. Taken together, it can be concluded that exposure to post-training inescapable stress impaired memory consolidation. The impairing effects of stress on memory retrieval may be mediated by the VH cannabinoid CB1 receptors. PMID:27282634

  8. Involvement of L-type-like amino acid transporters in S-nitrosocysteine-stimulated noradrenaline release in the rat hippocampus.

    PubMed

    Satoh, S; Kimura, T; Toda, M; Maekawa, M; Ono, S; Narita, H; Miyazaki, H; Murayama, T; Nomura, Y

    1997-11-01

    Nitrogen oxides, such as nitric oxide, have been shown to regulate neuronal functions, including neurotransmitter release. We investigated the effect of S-nitroso-L-cysteine (SNC) on noradrenaline (NA) release in the rat hippocampus in vivo and in vitro. SNC stimulated [3H]NA release from prelabeled hippocampal slices in a dose-dependent manner. SNC stimulated endogenous NA release within 30 min to almost five times the basal level in vivo (microdialysis in freely moving rats). In a Na+-containing Tyrode's buffer, SNC-stimulated [3H]NA release was inhibited 30% by the coaddition of L-leucine. In the Na+-free, choline-containing buffer, SNC-stimulated [3H]NA release, which was similar to that in the Na+-containing buffer, was inhibited markedly by L-leucine, L-alanine, L-methionine, L-phenylalanine, and L-tyrosine. The effects of the other amino acids examined were smaller or very limited. The effect of L-leucine was stronger than that of D-leucine. A specific inhibitor of the L-type amino acid transporter, 2-aminobicyclo[2.2.1]-heptane-2-carboxylate (BCH), inhibited the effects of SNC on [3H]NA release in the Na+-free buffer. Uptake of L-[3H]leucine into the slices in the Na+-free buffer was inhibited by SNC, BCH, and L-phenylalanine, but not by L-lysine. The effect of SNC on cyclic GMP accumulation was not inhibited by L-leucine, although SNC stimulated cyclic GMP accumulation at concentrations up to 25 microM, much less than the concentration that stimulates NA release. These findings suggest that SNC is incorporated into rat hippocampus via the L-type-like amino acid transporter, at least in Na+-free conditions, and that SNC stimulates NA release in vivo and in vitro in a cyclic GMP-independent manner. PMID:9349567

  9. Effects of divalproex and atypical antipsychotic drugs on dopamine and acetylcholine efflux in rat hippocampus and prefrontal cortex.

    PubMed

    Huang, Mei; Li, Zhu; Ichikawa, Junji; Dai, Jin; Meltzer, Herbert Y

    2006-07-12

    Mood stabilizers (e.g., valproic acid) and antipsychotic drugs (APDs) are commonly co-administered in the treatment of bipolar disorder and schizophrenia. The basis for any synergism between these classes of drugs in either group of disorders has been little studied. Previous studies have shown that atypical APDs (e.g., clozapine) preferentially increases dopamine (DA) and acetylcholine (ACh) efflux in rat medial prefrontal cortex (mPFC) and hippocampus (HIP), both of which have been suggested to contribute to their ability to improve cognition in patients with schizophrenia. We have recently reported that the anticonvulsant mood stabilizers (AMS), valproic acid, carbamazepine, and zonisamide, but not lithium, also preferentially increase DA efflux in the rat mPFC, and that, at subthreshold doses, the AMS also augment the ability of the atypical APDs clozapine and risperidone to increase DA but not ACh efflux in the mPFC. The present study examined the ability of divalproex (DVX), which is chemically related to valproic acid, to enhance DA and ACh efflux in the HIP and to augment the effect of atypical APDs on ACh efflux in the HIP and mPFC. DVX, 500 mg/kg, significantly increased DA and ACh efflux in the HIP, and DA, but not ACh, efflux in the mPFC, whereas a lower dose of DVX, 50 mg/kg, had no effect on DA or ACh in either region. However, DVX, 50 mg/kg, combined with the atypical APDs olanzapine (1.0 mg/kg) or aripiprazole (0.3 mg/kg) significantly potentiated the effect of both APDs on DA, but not ACh efflux in the HIP and mPFC. Pretreatment of olanzapine or aripiprazole with the selective serotonin 5-HT(1A) antagonist, WAY100635 (1.0 mg/kg) partially but significantly blocked the effect of the combination of DVX, 50 mg/kg, and olanzapine or aripiprazole, on DA efflux in both the HIP and mPFC. WAY100635 did not affect the ability of the combination of olanzapine or aripiprazole and DVX to enhance ACh efflux in the HIP or mPFC. Subchronic administration of the

  10. Effect of fluoride on calcium ion concentration and expression of nuclear transcription factor kappa-B ρ65 in rat hippocampus.

    PubMed

    Zhang, Jing; Zhu, Wen-Jing; Xu, Xiao-Hong; Zhang, Zi-Gui

    2011-07-01

    The study investigated the neurotoxicity of drinking water fluorosis in rat hippocampus. Just weaning male Sprague-Dawley (SD) rats were given 15, 30, 60 mg/L NaF solution and tap water for 9 months. The calcium ion concentration ([Ca(2+)]) in synaptosomes was measured by double wavelength fluorescence spectrophotometer and the expression level of nuclear transcription factor kappa-B ρ65 (NF-κB ρ65) in hippocampal CA3 region was measured by immunohistochemistry. The results showed that [Ca(2+)] significantly increased (F = 33.218, P < 0.01) in moderate fluoride group compared with the control group, and the expression level of NF-κB ρ65 in CA3 region presented an increasing trend as fluoride concentration increased. These results indicate that increase of synaptosomes [Ca(2+)] and NF-κB ρ65 expression level may be the molecular basis of central nervous system damage caused by chronic fluoride intoxication. NF-κB ρ65 in CA3 region is probably a target molecule for fluorosis. PMID:20304620

  11. Intrathecal Veratridine Administration Increases MAC in Rats

    PubMed Central

    Zhang, Yi; Sharma, Manohar; Eger, Edmond I; Laster, Michael J.; Hemmings, Hugh C.; Harris, R. Adron

    2008-01-01

    Background Results from several studies point to sodium channels as potential mediators of the immobility produced by inhaled anesthetics. We hypothesized that the intrathecal administration of veratridine, a drug that enhances the activity or effect of sodium channels, should increase MAC. Methods We measured the change in isoflurane MAC caused by intrathecal infusion of various concentrations of veratridine into the lumbothoracic subarachnoid space of rats. We compared these result to those obtained from intracerebroventricular infusion. Results As predicted, intrathecal infusion of veratridine increased MAC. The greatest infused concentration (25 μM) also produced neuronal injury in the hind limbs of two rats and decreased the peak effect on MAC. A concentration of 1.6 μM produced the greatest (21%) increase in MAC. Intraventricular infusion of 1.6 and 6.4 μM veratridine did not alter MAC. Rats given 25 μM died. Conclusion Intrathecal administration of veratradine increases MAC of isoflurane, a finding consistent with a role for sodium channels as potential mediators of the immobility produced by inhaled anesthetics. Implications Intrathecal administration of veratridine can increase MAC, presumably by an effect on sodium channels. PMID:18713899

  12. Increased Mesohippocampal Dopaminergic Activity and Improved Depression-Like Behaviors in Maternally Separated Rats Following Repeated Fasting/Refeeding Cycles

    PubMed Central

    Jahng, Jeong Won; Yoo, Sang Bae; Kim, Jin Young; Kim, Bom-Taeck; Lee, Jong-Ho

    2012-01-01

    We have previously reported that rats that experienced 3 h of daily maternal separation during the first 2 weeks of birth (MS) showed binge-like eating behaviors with increased activity of the hypothalamic-pituitary-adrenal axis when they were subjected to fasting/refeeding cycles repeatedly. In this study, we have examined the psychoemotional behaviors of MS rats on the fasting/refeeding cycles, together with their brain dopamine levels. Fasting/refeeding cycles normalized the ambulatory activity of MS rats, which was decreased by MS experience. Depression-like behaviors, but not anxiety, by MS experience were improved after fasting/refeeding cycles. Fasting/refeeding cycles did not significantly affect the behavioral scores of nonhandled (NH) control rats. Fasting/refeeding cycles increased dopamine levels not only in the hippocampus but also in the midbrain dopaminergic neurons in MS rats, but not in NH controls. Results demonstrate that fasting/refeeding cycles increase the mesohippocampal dopaminergic activity and improve depression-like behaviors in rats that experienced MS. Together with our previous paper, it is suggested that increased dopamine neurotransmission in the hippocampus may be implicated in the underlying mechanisms by which the fasting/refeeding cycles induce binge-like eating and improve depression-like behaviors in MS rats. PMID:22934157

  13. Post-seizure α-tocopherol treatment decreases neuroinflammation and neuronal degeneration induced by status epilepticus in rat hippocampus.

    PubMed

    Ambrogini, Patrizia; Minelli, Andrea; Galati, Claudia; Betti, Michele; Lattanzi, Davide; Ciffolilli, Silvia; Piroddi, Marta; Galli, Francesco; Cuppini, Riccardo

    2014-08-01

    Vitamin E (as α-tocopherol, α-T) was shown to have beneficial effects in epilepsy, mainly ascribed to its antioxidant properties. Besides radical-induced neurotoxicity, neuroinflammation is also involved in the pathophysiology of epilepsy, since neuroglial activation and cytokine production exacerbate seizure-induced neurotoxicity and contribute to epileptogenesis. We previously showed that α-T oral supplementation before inducing status epilepticus, markedly reduces astrocytic and microglial activation, neuronal cell death and oxidative stress in the hippocampus, as observed 4 days after seizure. In order to evaluate the possibility that such a neuroprotective and anti-inflammatory effect may also provide a strategy for an acute intervention in epilepsy, in this study, seizures were induced by single intaperitoneal injection of kainic acid and, starting from 3 h after status epilepticus, rats were treated with an intraperitoneal bolus of α-T (250 mg/kg b.w.; once a day) for 4 days, that was the time after which morphological and biochemical analyses were performed on hippocampus. Post-seizure α-T administration significantly reduced astrocytosis and microglia activation, and decreased neuron degeneration and spine loss; these effects were associated with the presence of a lowered lipid peroxidation in hippocampus. These results confirm and further emphasize the anti-inflammatory and neuroprotective role of α-T in kainic acid-induced epilepsy. Moreover, the findings show that post-seizure treatment with α-T provides an effective secondary prevention against post-seizure inflammation-induced brain damages and possibly against their epileptogenic effects. PMID:24488645

  14. A novel cognitive impairment mechanism that astrocytic p-connexin 43 promotes neuronic autophagy via activation of P2X7R and down-regulation of GLT-1 expression in the hippocampus following traumatic brain injury in rats.

    PubMed

    Sun, Liqian; Gao, Junling; Zhao, Manman; Cui, Jianzhong; Li, Youxiang; Yang, Xinjian; Jing, Xiaobin; Wu, Zhongxue

    2015-09-15

    Connexin 43 (Cx43) is one of the major gap junction proteins in astrocytes. Our previous studies reported that astrocytic phosphorylated Cx43 (p-CX43) regulated neuronic autophagy levels in the rat hippocampus after traumatic brain injury (TBI). In this study, we explored the underlying molecular mechanism by which gap junctional intercellular communication influenced neuronic autophagy and therefore initiated cognitive and memory impairments after TBI. The gap junctional blocker carbenoxolone (CBX) or autophagy inhibitor 3-methyladenine (3-MA) reduced latencies, as compared to TBI rats. Similarly, CBX or 3-MA restored long-term potentiation (LTP), relative to TBI hippocampal slices. Immunoblotting analysis showed that the expression of autophagy-related gene Beclin-1 in the hippocampus post-TBI were decreased in response to treatment with CBX, the P2X7 receptor (P2X7R) antagonist Oxidized ATP (OxATP) or ceftriaxone (Cef) which increased the expression and activity of the glutamate transporter (GLT-1) in the central nervous system (CNS). Moreover, CBX or OxATP pretreatment increased GLT-1 level in the rat hippocampus after TBI. However, CBX pretreatment suppressed P2X7R expression whereas maintained P2X7 level post-TBI. Confocal images revealed that p-CX43, P2X7 and GLT-1 strongly colocalized with glial fibrillary acidic protein (GFAP). Taken together, these results implied that Cx43, might induce neuronic autophagy by activation of P2X7R and reduce the expression of GLT-1 in the hippocampus, promoting TBI-induced cognitive deficits repair. Therefore, control of this communication may be serve as therapeutic strategies for intervention against TBI. PMID:26031379

  15. Insulin action on polyunsaturated phosphatidic acid formation in rat brain: an "in vitro" model with synaptic endings from cerebral cortex and hippocampus.

    PubMed

    Zulian, Sandra E; de Boschero, Mónica G Ilincheta; Giusto, Norma M

    2009-07-01

    The highly efficient formation of phosphatidic acid from exogenous 1-stearoyl-2-arachidonoyl-sn-glycerol (SAG) in rat brain synaptic nerve endings (synaptosomes) from cerebral cortex and hippocampus is reported. Phosphatidic acid synthesized from SAG or 1,2-dipalmitoyl-sn-glycerol (DPG) was 17.5 or 2.5 times higher, respectively, than from endogenous synaptosomal diacylglycerides. Insulin increased diacylglycerol kinase (DAGK) action on endogenous substrate in synaptic terminals from hippocampus and cerebral cortex by 199 and 97%, respectively. Insulin preferentially increased SAG phosphorylation from hippocampal membranes. In CC synaptosomes insulin increased phosphatidic acid (PA) synthesis from SAG by 100% with respect to controls. Genistein (a tyrosine kinase inhibitor) inhibited this stimulatory insulin effect. Okadaic acid or cyclosporine, used as Ser/Threo protein phosphatase inhibitors, failed to increase insulin effect on PA formation. GTP gamma S and particularly NaF were potent stimulators of PA formation from polyunsaturated diacylglycerol but failed to increase this phosphorylation when added after 5 min of insulin exposure. GTP gamma S and NaF increased phosphatidylinositol 4,5 bisphosphate (PIP2) labeling with respect to controls when SAG was present. On the contrary, they decreased polyphosphoinositide labeling with respect to controls in the presence of DPG. Our results indicate that a DAGK type 3 (DAGKepsilon) which preferentially, but not selectively, utilizes 1-acyl-2-arachidonoyl-sn-glycerol and which could be associated with polyphosphoinositide resynthesis, participates in synaptic insulin signaling. GTP gamma S and NaF appear to be G protein activators related to insulin and the insulin receptor, both affecting the signaling mechanism that augments phosphatidic acid formation. PMID:19130221

  16. Protective effects of chronic treatment with a standardized extract of Ginkgo biloba L. in the prefrontal cortex and dorsal hippocampus of middle-aged rats.

    PubMed

    Ribeiro, Marcelo L; Moreira, Luciana M; Arçari, Demetrius P; Dos Santos, Letícia França; Marques, Antônio Cezar; Pedrazzoli, José; Cerutti, Suzete M

    2016-10-15

    This study assessed the effects of chronic treatment with a standardized extract of Ginkgo biloba L. (EGb) on short-term and long-term memory as well as on anxiety-like and locomotor activity using the plus-maze discriminative avoidance task (PM-DAT). Additionally, we evaluated the antioxidant and neuroprotective effects of EGb on the prefrontal cortex (PFC) and dorsal hippocampus (DH) of middle-aged rats using the comet assay. Twelve-month-old male Wistar rats were administered vehicle or EGb (0.5mgkg(-1) or 1.0gkg(-1)) for 30days. Behavioural data showed that EGb treatment improved short-term memory. Neither an anti-anxiety effect nor a change in locomotor activity was observed. Twenty-four hours after the behavioural tests, the rats were decapitated, and the PFC and DH were quickly dissected out and prepared for the comet assay. The levels of DNA damage in the PFC were significantly lower in rats that were treated with 1.0gkg(-1) EGb. Both doses of EGb decreased H2O2-induced DNA breakage in cortical cells, whereas the levels of DNA damage in the EGb-treated animals were significantly lower than those in the control animals. No significant differences in the level of DNA damage in hippocampal cells were observed among the experimental groups. EGb treatment was not able to reduce H2O2-induced DNA damage in hippocampal cells. Altogether, our data provide the first demonstration that chronic EGb treatment improved the short-term memory of middle-aged rats, an effect that could be associated with a reduction in free radical production in the PFC. These data suggest that EGb treatment might increase the survival of cortical neurons and corroborate and extend the view that EGb has protective and therapeutic properties. PMID:27424157

  17. Acute caffeine treatment increases extracellular nucleotide hydrolysis from rat striatal and hippocampal synaptosomes.

    PubMed

    da Silva, Rosane Souza; Bruno, Alessandra Nejar; Battastini, Ana Maria Oliveira; Sarkis, João José Freitas; Lara, Diogo Rizzato; Bonan, Carla Denise

    2003-08-01

    The psychostimulant caffeine promotes behavioral effects such as hyperlocomotion, anxiety, and disruption of sleep by blockade of adenosine receptors. The availability of extracellular adenosine depends on its release by transporters or by the extracellular ATP catabolism performed by the ecto-nucleotidase pathway. This study verified the effect of caffeine on NTPDase 1 (ATP diphosphohydrolase) and 5'-nucleotidase of synaptosomes from hippocampus and striatum of rats. Caffeine and theophylline tested in vitro were unable to modify nucleotide hydrolysis. Caffeine chronically administered in the drinking water at 0.3 g/L or 1 g/L for 14 days failed to affect nucleotide hydrolysis. However, acute administration of caffeine (30 mg/kg, i.p.) produced an enhancement of ATP (50%) and ADP (32%) hydrolysis in synaptosomes of hippocampus and striatum, respectively. This activation of ATP and ADP hydrolysis after acute treatment suggests a compensatory effect to increase adenosine levels and counteract the antagonist action of caffeine. PMID:12834266

  18. Non-Homogeneous Stereological Properties of the Rat Hippocampus from High-Resolution 3D Serial Reconstruction of Thin Histological Sections

    PubMed Central

    Ropireddy, Deepak; Bachus, Susan E.; Ascoli, Giorgio A.

    2012-01-01

    Integrating hippocampal anatomy from neuronal dendrites to whole-system may help elucidate its relation to function. Towards this aim, we digitally traced the cytoarchitectonic boundaries of the dentate gyrus (DG) and areas CA3/CA1 throughout their entire longitudinal extent from high-resolution images of thin cryostatic sections of adult rat brain. The 3D computational reconstruction identified all isotropic 16 µm voxels with appropriate sub-regions and layers (http://krasnow1.gmu.edu/cn3/hippocampus3d). Overall, DG, CA3, and CA1 occupied comparable volumes (15.3, 12.2, and 18.8 mm3, respectively), but displayed substantial rostro-caudal volumetric gradients: CA1 made up more than half of the posterior hippocampus while CA3 and DG were more prominent in the anterior regions. The CA3/CA1 ratio increased from ~0.4 to ~1 septo-temporally, due to a specific change in stratum radiatum volume. Next we virtually embedded 1.8 million neuronal morphologies stochastically resampled from 244 digital reconstructions, emulating the dense packing of granular and pyramidal layers, and appropriately orienting the principal dendritic axes relative to local curvature. The resulting neuropil occupancy reproduced recent electron microscopy data measured in a restricted location. Extension of this analysis across each layer and sub-region over the whole hippocampus revealed highly non-homogeneous dendritic density. In CA1, dendritic occupancy was >60% higher temporally than septally (0.46 vs. 0.28, s.e.m. ~0.05). CA3 values varied both across subfields (from 0.35 in CA3b/CA3c to 0.50 in CA3a) and layers (0.48, 0.34, and 0.27 in oriens, radiatum, and lacunosum-moleculare, respectively). Dendritic occupancy was substantially lower in DG, especially in the supra-pyramidal blade (0.18). The computed probability of dendro-dendritic collision significantly correlated with expression of the membrane repulsion signal DSCAM. These heterogeneous stereological properties reflect and complement

  19. Modulation of GABA-mediated synaptic transmission by endogenous zinc in the immature rat hippocampus in vitro.

    PubMed Central

    Xie, X; Hider, R C; Smart, T G

    1994-01-01

    1. Intracellular recordings from postnatal 2- to 12-day-old (P2-12) rat hippocampal CA3 pyramidal neurones exhibited spontaneous synaptic potentials mediated by GABAA receptors. These potentials can be separated on the basis of amplitude into two classes which are referred to as small and large. 2. The large depolarizing potentials were reversibly inhibited by the Zn2+ chelator 1,2-diethyl-3-hydroxypyridin-4-one (CP94). The small inhibitory postsynaptic potentials. (IPSPs) were apparently unaffected. 3. Stimulation of the mossy fibre pathway evoked composite excitatory postsynaptic potentials (EPSPs) and IPSPs. Threshold stimulus-evoked synaptic potentials were mediated by GABAA receptors and were reversibly blocked by CP94. The responses evoked by suprathreshold stimulation and persisting in the presence of bicuculline or CP94 were partially inhibited by 2-amino-5-phosphonopropionic acid (AP5) and were completely blocked with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). 4. L-Histidine, which preferentially forms complexes with Cu2+ > Zn2+ > Fe2+ > Mn2+, inhibited both naturally occurring spontaneous and evoked GABAA-mediated large synaptic potentials without affecting the neuronal resting membrane properties. Exogenously applied Zn2+ induced large spontaneous synaptic potentials and prolonged the duration of the evoked potentials. These effects were reversibly blocked by histidine. 5. The metal chelating agent diethyldithiocarbamate had little effect on the large amplitude synaptic potentials. 6. The transition metal divalent cations Fe2+ and Mn2+ did not initiate large synaptic potentials in CA3 neurones; however, Cu2+ depolarized the membrane and enhanced both excitatory and inhibitory synaptic transmission, resulting in a transient increase in the frequency of the large amplitude events. In comparison, zinc increased the frequency of the large potentials and also induced such events in neurons (P4-21) where innate potentials were absent. The postsynaptic

  20. Effects of rasagiline, its metabolite aminoindan and selegiline on glutamate receptor mediated signalling in the rat hippocampus slice in vitro

    PubMed Central

    2011-01-01

    Background Rasagiline, a new drug developed to treat Parkinson's disease, is known to inhibit monoamine oxidase B. However, its metabolite R-(-)-aminoindan does not show this kind of activity. The present series of in vitro experiments using the rat hippocampal slice preparation deals with effects of both compounds on the pyramidal cell response after electric stimulation of the Schaffer Collaterals in comparison to selegiline, another MAO B inhibitor. Method Stimulation of the Schaffer Collaterals by single stimuli (SS) or theta burst stimulation (TBS) resulted in stable responses of pyramidal cells measured as population spike amplitude (about 1 mV under control SS conditions or about 2 mV after TBS). Results During the first series, this response was attenuated in the presence of rasagiline and aminoindan-to a lesser degree of selegiline-in a concentration dependent manner (5-50 μM) after single stimuli as well as under TBS. During oxygen/glucose deprivation for 10 min the amplitude of the population spike breaks down by 75%. The presence of rasagiline and aminoindan, but rarely the presence of selegiline, prevented this break down. Following glutamate receptor mediated enhancements of neuronal transmission in a second series of experiments very clear differences could be observed in comparison to the action of selegiline: NMDA receptor, AMPA receptor as well as metabotropic glutamate receptor mediated increases of transmission were concentration dependently (0,3 - 2 μM) antagonized by rasagiline and aminoindan, but not by selegiline. On the opposite, only selegiline attenuated kainate receptor mediated increases of excitability. Thus, both monoamino oxidase (MAO) B inhibitors show attenuation of glutamatergic transmission in the hippocampus but interfere with different receptor mediated excitatory modulations at low concentrations. Conclusions Since aminoindan does not induce MAO B inhibition, these effects must be regarded as being independent from MAO B

  1. Fluoride and arsenic exposure impairs learning and memory and decreases mGluR5 expression in the hippocampus and cortex in rats.

    PubMed

    Jiang, Shoufang; Su, Jing; Yao, Sanqiao; Zhang, Yanshu; Cao, Fuyuan; Wang, Fei; Wang, Huihui; Li, Jun; Xi, Shuhua

    2014-01-01

    Fluoride and arsenic are two common inorganic contaminants in drinking water that are associated with impairment in child development and retarded intelligence. The present study was conducted to explore the effects on spatial learning, memory, glutamate levels, and group I metabotropic glutamate receptors (mGluRs) expression in the hippocampus and cortex after subchronic exposure to fluoride, arsenic, and a fluoride and arsenic combination in rats. Weaned male Sprague-Dawley rats were assigned to four groups. The control rats drank tap water. Rats in the three exposure groups drank water with sodium fluoride (120 mg/L), sodium arsenite (70 mg/L), and a sodium fluoride (120 mg/L) and sodium arsenite (70 mg/L) combination for 3 months. Spatial learning and memory was measured in Morris water maze. mGluR1 and mGluR5 mRNA and protein expression in the hippocampus and cortex was detected using RT-PCR and Western blot, respectively. Compared with controls, learning and memory ability declined in rats that were exposed to fluoride and arsenic both alone and combined. Combined fluoride and arsenic exposure did not have a more pronounced effect on spatial learning and memory compared with arsenic and fluoride exposure alone. Compared with controls, glutamate levels decreased in the hippocampus and cortex of rats exposed to fluoride and combined fluoride and arsenic, and in cortex of arsenic-exposed rats. mGluR5 mRNA and protein expressions in the hippocampus and mGluR5 protein expression in the cortex decreased in rats exposed to arsenic alone. Interestingly, compared with fluoride and arsenic exposure alone, fluoride and arsenic combination decreased mGluR5 mRNA expression in the cortex and protein expression in the hippocampus, suggesting a synergistic effect of fluoride and arsenic. These data indicate that fluoride and arsenic, either alone or combined, can decrease learning and memory ability in rats. The mechanism may be associated with changes of glutamate level and

  2. Voxelized computational model for convection-enhanced delivery in the rat ventral hippocampus: comparison with in vivo MR experimental studies.

    PubMed

    Kim, Jung Hwan; Astary, Garrett W; Kantorovich, Svetlana; Mareci, Thomas H; Carney, Paul R; Sarntinoranont, Malisa

    2012-09-01

    Convection-enhanced delivery (CED) is a promising local delivery technique for overcoming the blood-brain barrier (BBB) and treating diseases of the central nervous system (CNS). For CED, therapeutics are infused directly into brain tissue and the drug agent is spread through the extracellular space, considered to be highly tortuous porous media. In this study, 3D computational models developed using magnetic resonance (MR) diffusion tensor imaging data sets were used to predict CED transport in the rat ventral hippocampus using a voxelized modeling previously developed by our group. Predicted albumin tracer distributions were compared with MR-measured distributions from in vivo CED in the ventral hippocampus up to 10 μL of Gd-DTPA albumin tracer infusion. Predicted and measured tissue distribution volumes and distribution patterns after 5 and 10 μL infusions were found to be comparable. Tracers were found to occupy the underlying landmark structures with preferential transport found in regions with less fluid resistance such as the molecular layer of the dentate gyrus. Also, tracer spread was bounded by high fluid resistance layers such as the granular cell layer and pyramidal cell layer of dentate gyrus. Leakage of tracers into adjacent CSF spaces was observed towards the end of infusions. PMID:22532321

  3. Voxelized Computational Model for Convection-Enhanced Delivery in the Rat Ventral Hippocampus: Comparison with In Vivo MR Experimental Studies

    PubMed Central

    Kim, Jung Hwan; Astary, Garrett W.; Kantorovich, Svetlana; Mareci, Thomas H.; Carney, Paul R.; Sarntinoranont, Malisa

    2012-01-01

    Convection-enhanced delivery (CED) is a promising local delivery technique for overcoming the blood–brain barrier (BBB) and treating diseases of the central nervous system (CNS). For CED, therapeutics are infused directly into brain tissue and the drug agent is spread through the extracellular space, considered to be highly tortuous porous media. In this study, 3D computational models developed using magnetic resonance (MR) diffusion tensor imaging data sets were used to predict CED transport in the rat ventral hippocampus using a voxelized modeling previously developed by our group. Predicted albumin tracer distributions were compared with MR-measured distributions from in vivo CED in the ventral hippocampus up to 10 μL of Gd-DTPA albumin tracer infusion. Predicted and measured tissue distribution volumes and distribution patterns after 5 and 10 μL infusions were found to be comparable. Tracers were found to occupy the underlying landmark structures with preferential transport found in regions with less fluid resistance such as the molecular layer of the dentate gyrus. Also, tracer spread was bounded by high fluid resistance layers such as the granular cell layer and pyramidal cell layer of dentate gyrus. Leakage of tracers into adjacent CSF spaces was observed towards the end of infusions. PMID:22532321

  4. Neonatal immune challenge exacerbates seizure-induced hippocampus-dependent memory impairment in adult rats.

    PubMed

    Yin, Ping; Li, Zhen; Wang, Ying-Yan; Qiao, Na-Na; Huang, Shan-Ying; Sun, Ruo-Peng; Wang, Ji-Wen

    2013-04-01

    Our aim was to examine whether neonatal lipopolysaccharide (LPS) exposure is associated with changes in microglia and whether these alternations could influence later seizure-induced neurobehavioral outcomes. Male pups were first injected intraperitoneally with either LPS or saline on postnatal day 3 (P3) and postnatal day 5 (P5). Immunohistochemical analysis showed that LPS-treated animals exhibited increased microglia activation that persisted into adolescence. At P45, seizures were induced in rats by intraperitoneal injection of kainic acid (KA). Rats treated with LPS neonatally showed significantly greater proinflammatory responses and performed significantly worse in the Y-maze, Morris water maze, and inhibitory avoidance tasks after KA insult. Treatment with minocycline at the time of neonatal LPS exposure to block LPS-induced microglia alternation attenuated the exaggerated neuroinflammatory responses and alleviated memory impairment associated with the KA insult. Our findings suggest that neonatal immune activation can predispose the brain to exacerbated behavioral deficits following seizures in adulthood, possibly by priming microglia. PMID:23353000

  5. A 3-D Admittance-Level Computational Model of a Rat Hippocampus for Improving Prosthetic Design

    PubMed Central

    Gilbert, Andrew; Loizos, Kyle; RamRakhyani, Anil Kumar; Hendrickson, Phillip; Lazzi, Gianluca; Berger, Theodore W.

    2016-01-01

    Hippocampal prosthetic devices have been developed to bridge the gap between functioning portions of the hippocampus, in order to restore lost memory functionality in those suffering from brain injury or diseases. One approach taken in recent neuroprosthetic design is to use a multi-input, multi-output device that reads data from the CA3 in the hippocampus and electrically stimulates the CA1 in an attempt to mimic the appropriate firing pattern that would occur naturally between the two areas. However, further study needs to be conducted in order to optimize electrode placement, pulse magnitude, and shape for creating the appropriate firing pattern. This paper describes the creation and implementation of an anatomically correct 3D model of the hippocampus to simulate the electric field patterns and axonal activation from electrical stimulation due to an implanted electrode array. The activating function was applied to the voltage results to determine the firing patterns in possible axon locations within the CA1. PMID:26736751

  6. A 3-D admittance-level computational model of a rat hippocampus for improving prosthetic design.

    PubMed

    Gilbert, Andrew; Loizos, Kyle; RamRakhyani, Anil Kumar; Hendrickson, Phillip; Lazzi, Gianluca; Berger, Theodore W

    2015-01-01

    Hippocampal prosthetic devices have been developed to bridge the gap between functioning portions of the hippocampus, in order to restore lost memory functionality in those suffering from brain injury or diseases. One approach taken in recent neuroprosthetic design is to use a multi-input, multi-output device that reads data from the CA3 in the hippocampus and electrically stimulates the CA1 in an attempt to mimic the appropriate firing pattern that would occur naturally between the two areas. However, further study needs to be conducted in order to optimize electrode placement, pulse magnitude, and shape for creating the appropriate firing pattern. This paper describes the creation and implementation of an anatomically correct 3D model of the hippocampus to simulate the electric field patterns and axonal activation from electrical stimulation due to an implanted electrode array. The activating function was applied to the voltage results to determine the firing patterns in possible axon locations within the CA1. PMID:26736751

  7. Increased myocardial catalase in rats fed ethanol.

    PubMed Central

    Fahimi, H. D.; Kino, M.; Hicks, L.; Thorp, K. A.; Abelman, W. H.

    1979-01-01

    The effects of chronic intake of dietary ethanol upon catalase, an enzyme capable of metabolizing ethanol, as well as upon myocardial morphology and hemodynamics, were studied in the rat. Ethanol, comprising 36% of dietary calories, administered to rats for 5 weeks, was associated with increased myocardial catalase of 45.9 +/- 3.7 IU/mg protein, compared to 21.0 +/- 1.8 IU/mg protein in pair-fed controls. The enzyme activity remained significantly elevated after 18 weeks of ethanol. Hepatic catalase did not differ in these groups. Parallel cytochemical studies confirmed the increase in myocardial catalase by demonstrating an increase in peroxisomes. Gross and light-microscopic examinations revealed no abnormalities at either 5 or 18 weeks. Remarkably few ultrastructural abnormalities were seen in this material fixed by vascular perfusion. Hemodynamic studies after 5 weeks of ethanol revealed decreased left ventricle systolic pressure and decreased mean arterial pressure but no change in ventricular filling pressure. The possibility of catalase playing a metabolic and potentially protective role in rat myocardium chronically exposed to ethanol is discussed. Images Figure 3 Figure 4-6 Figures 1 and 2 Figures 7 and 8 p[389]-a PMID:474705

  8. ZK91587: a novel synthetic antimineralocorticoid displays high affinity for corticosterone (type I) receptors in the rat hippocampus

    SciTech Connect

    Sutanto, W.; de Kloet, E.R.

    1988-01-01

    In vitro cytosol binding assays have shown the properties of binding of a novel steroid, ZK91587 (15..beta.., 16..beta..b-methylene-mexrenone) in the brain of rats. Scatchard and Woolf analyses of the binding data reveal the binding of (/sup 3/H) ZK91587 to the total hippocampal coritcosteroid receptor sites with high affinity, and low capacity. When 100-fold excess RU28362 was included simultaneously with (/sup 3/H) ZK91587, the labelled steroid binds with the same affinity and capacity. Relative binding affinities (RBA) of various steroids for the Type I or Type II corticosteroid receptor in these animals are: Type I: ZK91587 = corticosterone (B) > cortisol (F); Type II: B > F >>> ZK91587. In the binding kinetic study, ZK91587 has a high association rate of binding in the rat. The steroid dissociates following a one slope pattern, indicating, the present data demonstrate that in the rat hippocampus, ZK91587 binds specifically to the Type I (corticosterone-preferring/mineralocorticoid-like receptor.

  9. Differential proteomics analysis of the analgesic effect of electroacupuncture intervention in the hippocampus following neuropathic pain in rats

    PubMed Central

    2012-01-01

    Background Evidence is building steadily on the effectiveness of acupuncture therapy in pain relief and repeated acupuncture-induced pain relief is accompanied by improvement of hippocampal neural synaptic plasticity. To further test the cellular and molecular changes underlying analgesic effect of acupuncture, the global change of acupuncture associated protein profiles in the hippocampus under neuropathic pain condition was profiled. Methods The chronic constrictive injury (CCI) model was established by ligature of the unilateral sciatic nerve in adult Wistar rats. Rats were randomized into normal control (NC) group, CCI group, and CCI with electroacupuncture (EA) stimulation group. EA was applied to bilateral Zusanli (ST36) and Yanglingquan (GB34) in the EA group. Differentially expressed proteins in the hippocampus in the three groups were identified by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry. The functional clustering of the identified proteins was analyzed by Mascot software. Results After CCI, the thermal pain threshold of the affected hind footpad was decreased and was reversed gradually by 12 sessions of acupuncture treatment. Following EA, there were 19 hippocampal proteins identified with significant changes in expression (>2-fold), which are involved in metabolic, physiological, and cellular processes. The top three canonical pathways identified were “cysteine metabolism”, “valine, leucine, and isoleucine degradation” and “mitogen-activated protein kinase (MAPK) signaling”. Conclusions These data suggest that the analgesic effect of EA is mediated by regulation of hippocampal proteins related to amino acid metabolism and activation of the MAPK signaling pathway. PMID:23198761

  10. Preictal Activity of Subicular, CA1, and Dentate Gyrus Principal Neurons in the Dorsal Hippocampus before Spontaneous Seizures in a Rat Model of Temporal Lobe Epilepsy

    PubMed Central

    Fujita, Satoshi; Toyoda, Izumi; Thamattoor, Ajoy K.

    2014-01-01

    Previous studies suggest that spontaneous seizures in patients with temporal lobe epilepsy might be preceded by increased action potential firing of hippocampal neurons. Preictal activity is potentially important because it might provide new opportunities for predicting when a seizure is about to occur and insight into how spontaneous seizures are generated. We evaluated local field potentials and unit activity of single, putative excitatory neurons in the subiculum, CA1, CA3, and dentate gyrus of the dorsal hippocampus in epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Average action potential firing rates of neurons in the subiculum, CA1, and dentate gyrus, but not CA3, increased significantly and progressively beginning 2–4 min before locally recorded spontaneous seizures. In the subiculum, CA1, and dentate gyrus, but not CA3, 41–57% of neurons displayed increased preictal activity with significant consistency across multiple seizures. Much of the increased preictal firing of neurons in the subiculum and CA1 correlated with preictal theta activity, whereas preictal firing of neurons in the dentate gyrus was independent of theta. In addition, some CA1 and dentate gyrus neurons displayed reduced firing rates preictally. These results reveal that different hippocampal subregions exhibit differences in the extent and potential underlying mechanisms of preictal activity. The finding of robust and significantly consistent preictal activity of subicular, CA1, and dentate neurons in the dorsal hippocampus, despite the likelihood that many seizures initiated in other brain regions, suggests the existence of a broader neuronal network whose activity changes minutes before spontaneous seizures initiate. PMID:25505320

  11. Astroglia-Microglia Cross Talk during Neurodegeneration in the Rat Hippocampus

    PubMed Central

    Batlle, Montserrat; Ferri, Lorenzo; Andrade, Carmen; Ortega, Francisco-Javier; Vidal-Taboada, Jose M.; Pugliese, Marco; Mahy, Nicole; Rodríguez, Manuel J.

    2015-01-01

    Brain injury triggers a progressive inflammatory response supported by a dynamic astroglia-microglia interplay. We investigated the progressive chronic features of the astroglia-microglia cross talk in the perspective of neuronal effects in a rat model of hippocampal excitotoxic injury. N-Methyl-D-aspartate (NMDA) injection triggered a process characterized within 38 days by atrophy, neuronal loss, and fast astroglia-mediated S100B increase. Microglia reaction varied with the lesion progression. It presented a peak of tumor necrosis factor-α (TNF-α) secretion at one day after the lesion, and a transient YM1 secretion within the first three days. Microglial glucocorticoid receptor expression increased up to day 5, before returning progressively to sham values. To further investigate the astroglia role in the microglia reaction, we performed concomitant transient astroglia ablation with L-α-aminoadipate and NMDA-induced lesion. We observed a striking maintenance of neuronal death associated with enhanced microglial reaction and proliferation, increased YM1 concentration, and decreased TNF-α secretion and glucocorticoid receptor expression. S100B reactivity only increased after astroglia recovery. Our results argue for an initial neuroprotective microglial reaction, with a direct astroglial control of the microglial cytotoxic response. We propose the recovery of the astroglia-microglia cross talk as a tissue priority conducted to ensure a proper cellular coordination that retails brain damage. PMID:25977914

  12. Electroacupuncture improves cognitive ability following cerebral ischemia reperfusion injury via CaM-CaMKIV-CREB signaling in the rat hippocampus

    PubMed Central

    Zhang, Yun; Lin, Ruhui; Tao, Jing; Wu, Yunan; Chen, Bin; Yu, Kunqiang; Chen, Jixiang; Li, Xiaojie; Chen, Li-Dian

    2016-01-01

    The aim of the present study was to investigate the effect of electroacupuncture (EA) on cognitive deficits, and the underlying mechanism following cerebral ischemia-reperfusion (I/R) via the calmodulin (CaM)-calmodulin-dependent protein kinase type IV (CaMKIV)-cyclic adenosine monophosphate response elements binding protein (CREB) intracellular signaling pathway in the hippocampus. In total, 45 adult female Sprague-Dawley rats were randomly divided into three groups, namely the sham group, the middle cerebral artery occlusion (MCAO) group and the MCAO + EA group. Rats in the MCAO and MCAO + EA groups were modeled for post-stroke cognitive impairment. EA was performed at the Baihui and Shenting acupuncture points for 30 min/day for one week in the MCAO + EA group. Behavioral testing was analyzed using a step-down apparatus, while 2,3,5-triphenyl tetrazolium chloride was used to detect the infarct volume and lesion size. In addition, CaM activity was assessed by cyclic nucleotide-dependent phosphodiesterase analysis, and the protein expression levels of CaM, CaMKIV, phosphorylated (p)-CaMKIV, CREB and p-CREB were analyzed by western blot analysis. The cerebral I/R injured rat model in the MCAO group was established successfully with regard to the infarct volume and neuronal lesion size, as compared with the sham group. EA was demonstrated to effectively improve the cognitive ability, as measured by the step-down apparatus test, and decrease the infarct volume when compared with the MCAO group (P<0.05). The step-down apparatus test for the EA-treated rats revealed improved learning and reduced memory impairment when compared with the MCAO group. Furthermore, CaM activity and CaM protein expression levels in the MCAO + EA group were lower compared with those in the MCAO group (P<0.05). By contrast, the protein expression levels of CaMKIV, p-CaMKIV, CREB and p-CREB were significantly reduced in the MCAO group when compared with the sham group (P<0.05), although the

  13. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats

    PubMed Central

    Díaz, Alfonso; Treviño, Samuel; Guevara, Jorge; Muñoz-Arenas, Guadalupe; Brambila, Eduardo; Espinosa, Blanca; Moreno-Rodríguez, Albino; Lopez-Lopez, Gustavo; Peña-Rosas, Ulises; Venegas, Berenice; Handal-Silva, Anabella; Morán-Perales, José Luis; Flores, Gonzalo; Aguilar-Alonso, Patricia

    2016-01-01

    Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats. PMID:27069534

  14. Energy Drink Administration in Combination with Alcohol Causes an Inflammatory Response and Oxidative Stress in the Hippocampus and Temporal Cortex of Rats.

    PubMed

    Díaz, Alfonso; Treviño, Samuel; Guevara, Jorge; Muñoz-Arenas, Guadalupe; Brambila, Eduardo; Espinosa, Blanca; Moreno-Rodríguez, Albino; Lopez-Lopez, Gustavo; Peña-Rosas, Ulises; Venegas, Berenice; Handal-Silva, Anabella; Morán-Perales, José Luis; Flores, Gonzalo; Aguilar-Alonso, Patricia

    2016-01-01

    Energy drinks (EDs) are often consumed in combination with alcohol because they reduce the depressant effects of alcohol. However, different researches suggest that chronic use of these psychoactive substances in combination with alcohol can trigger an oxidative and inflammatory response. These processes are regulated by both a reactive astrogliosis and an increase of proinflammatory cytokines such as IL-1β, TNF-α, and iNOS, causing cell death (apoptosis) at the central and peripheral nervous systems. Currently, mechanisms of toxicity caused by mixing alcohol and ED in the brain are not well known. In this study, we evaluated the effect of chronic alcohol consumption in combination with ED on inflammatory response and oxidative stress in the temporal cortex (TCx) and hippocampus (Hp) of adult rats (90 days old). Our results demonstrated that consuming a mixture of alcohol and ED for 60 days induced an increase in reactive gliosis, IL-1β, TNF-α, iNOS, reactive oxygen species, lipid peroxidation, and nitric oxide, in the TCx and Hp. We also found immunoreactivity to caspase-3 and a decrease of synaptophysin in the same brain regions. The results suggested that chronic consumption of alcohol in combination with ED causes an inflammatory response and oxidative stress, which induced cell death via apoptosis in the TCx and Hp of the adult rats. PMID:27069534

  15. Oxidative Stress Activates the Transcription Factors FoxO 1a and FoxO 3a in the Hippocampus of Rats Exposed to Low Doses of Ozone

    PubMed Central

    Gómez-Crisóstomo, Nancy P.; Rodríguez Martínez, Erika

    2014-01-01

    The exposure to low doses of ozone induces an oxidative stress state, which is involved in neurodegenerative diseases. Forkhead box O (FoxO) family of transcription factors are activated by oxidative signals and regulate cell proliferation and resistance to oxidative stress. Our aim was to study the effect of chronic exposure to ozone on the activation of FoxO 1a and FoxO 3a in the hippocampus of rats. Male Wistar rats were divided into six groups and exposed to 0.25 ppm of ozone for 0, 7, 15, 30, 60, and 90 days. After treatment, the groups were processed for western blotting and immunohistochemistry against FoxO 3a, Mn SOD, cyclin D2, FoxO 1a, and active caspase 3. We found that exposure to ozone increased the activation of FoxO 3a at 30 and 60 days and expression of Mn SOD at all treatment times. Additionally, increases in cyclin D2 from 7 to 90 days; FoxO 1a at 15, 30, and 60 days; and activate caspase 3 from 30 to 60 days of exposure were noted. The results indicate that ozone alters regulatory pathways related to both the antioxidant system and the cell cycle, inducing neuronal reentry into the cell cycle and apoptotic death. PMID:24967006

  16. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    SciTech Connect

    Kodavanti, Prasada Rao S.; Osorio, Cristina; Royland, Joyce E.; Ramabhadran, Ram; Alzate, Oscar

    2011-11-15

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca{sup 2+}-mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studies showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit {beta} (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: Black-Right-Pointing-Pointer We performed brain proteomic analysis of rats exposed to the neurotoxicant

  17. Senegenin Attenuates Hepatic Ischemia-Reperfusion Induced Cognitive Dysfunction by Increasing Hippocampal NR2B Expression in Rats

    PubMed Central

    Gu, Xiaoping; Zheng, Yaguo; Sun, Yu-e; Liang, Ying; Bo, Jinhua; Ma, Zhengliang

    2012-01-01

    Background The root of Polygala tenuifolia, a traditional Chinese medicine, has been used to improve memory and intelligence, while the underlying mechanisms remain largely unknown. In this study, we investigated the protective effects of senegenin, an component of Polygala tenuifolia root extracts, on cognitive dysfunction induced by hepatic ischemia-reperfusion. Methodology/Principal Findings Initially, we constructed a rat model of hepatic ischemia-reperfusion (HIR) and found that the memory retention ability of rats in the step-down and Y maze test was impaired after HIR, paralleled by a decrease of N-methyl-D-aspartate (NMDA) receptor NR2B subunit mRNA and protein expressions in hippocampus. Furthermore, we found that administration of senegenin by gavage attenuated HIR-induced cognitive impairment in a dose and time dependent manner, and its mechanisms might partly due to the increasing expression of NR2B in rat hippocampus. Conclusions/Significance Cognitive dysfunction induced by HIR is associated with reduction of NR2B expression. Senegenin plays a neuroprotective role in HIR via increasing NR2B expression in rat hippocampus. These findings suggest that senegenin might be a potential agent for prevention and treatment of postoperative cognitive dysfunction (POCD) or other neurodegenerative diseases. PMID:23029109

  18. Glutamate receptors in the dorsal hippocampus mediate the acquisition, but not the expression, of conditioned place aversion induced by acute morphine withdrawal in rats

    PubMed Central

    Hou, Yuan-yuan; Liu, Yao; Kang, Shuo; Yu, Chuan; Chi, Zhi-qiang; Liu, Jing-gen

    2009-01-01

    Aim: To evaluate the role of glutamate receptors in the dorsal hippocampus (DH) in the motivational component of morphine withdrawal. Methods: NMDA receptor antagonist D-AP5 (5 μg/0.5 μL per side) or AMPA receptor antagonist NBQX (2 μg/0.5 μL per side) was microinjected into DH of rats. Conditioned place aversion (CPA) induced by naloxone-precipitated morphine withdrawal were assessed. Results: Preconditioning microinjection of D-AP5 or NBQX into the DH impaired the acquisition of CPA in acute morphine-dependent rats. However, intra-DH microinjection of D-AP5 or NBQX after conditioning but before the testing session had no effect on the expression of CPA. Conclusion: Our results suggest that NMDA and AMPA receptors in the dorsal hippocampus are involved in the acquisition, but not in the expression, of the negative motivational components of acute morphine withdrawal in rats. PMID:19767765

  19. {gamma}-aminobutyric acid{sub A} (GABA{sub A}) receptor regulates ERK1/2 phosphorylation in rat hippocampus in high doses of Methyl Tert-Butyl Ether (MTBE)-induced impairment of spatial memory

    SciTech Connect

    Zheng Gang; Zhang Wenbin; Zhang Yun; Chen Yaoming; Liu Mingchao; Yao Ting; Yang Yanxia; Zhao Fang; Li Jingxia; Huang Chuanshu; Luo Wenjing Chen Jingyuan

    2009-04-15

    Experimental and occupational exposure to Methyl Tert-Butyl Ether (MTBE) has been reported to induce neurotoxicological and neurobehavioral effects, such as headache, nausea, dizziness, and disorientation, etc. However, the molecular mechanisms involved in MTBE-induced neurotoxicity are still not well understood. In the present study, we investigated the effects of MTBE on spatial memory and the expression and function of GABA{sub A} receptor in the hippocampus. Our results demonstrated that intraventricular injection of MTBE impaired the performance of the rats in a Morris water maze task, and significantly increased the expression of GABA{sub A} receptor {alpha}1 subunit in the hippocampus. The phosphorylation of ERK1/2 decreased after the MTBE injection. Furthermore, the decreased ability of learning and the reduction of phosphorylated ERK1/2 level of the MTBE-treated rats was partly reversed by bicuculline injected 30 min before the training. These results suggested that MTBE exposure could result in impaired spatial memory. GABA{sub A} receptor may play an important role in the MTBE-induced impairment of learning and memory by regulating the phosphorylation of ERK in the hippocampus.

  20. Dysregulation of Neuregulin-1/ErbB signaling in the prefrontal cortex and hippocampus of rats exposed to chronic unpredictable mild stress.

    PubMed

    Dang, Ruili; Cai, Hualin; Zhang, Ling; Liang, Donglou; Lv, Chuanfeng; Guo, Yujin; Yang, Ranyao; Zhu, Yungui; Jiang, Pei

    2016-02-01

    Exposure to chronic stress increases the likelihood of developing depression, but the underlying mechanisms remain equivocal. While recent evidence has indicated that Neuregulin-1 (NRG1) and its ErbB receptors play an essential role in neural development and function, and NRG1 has emerged as a novel modulator involved in the response of brain to stress, there is limited evidence concerning the effects of chronic stress exposure on NRG1/ErbB signaling. To fill this critical gap, we examined the protein expression of NRG1 and ErbB receptors in the brain of rats following chronic unpredictable mild stress (CUMS) exposure. After 6weeks of CUMS procedures, the rats were induced to a depression-like state. The stressed rats displayed elevated expression of NRG1 and phosphorylated ErbB4 (pErbB4) in the prefrontal cortex, whereas ErbB2 and pErbB2 were inhibited. In the hippocampus, CUMS also attenuated activation of the both ErbB receptors and suppressed the downstream Akt and ERK phosphorylation. Meanwhile, administration of sertraline enhanced NRG1/ErbB signaling and partly normalized the stress-induced behavioral changes and the disturbances of NRG1/ErbB system in CUMS rats. Combined, our data firstly showed the aberrant changes of NRG1/ErbB system in the brain of the animal model of depression, providing new evidence for the involvement of NRG1/ErbB pathway in the development and treatment of depression. PMID:26626816

  1. Influence of metabotropic glutamate receptor agonists on the inhibitory effects of adenosine A1 receptor activation in the rat hippocampus.

    PubMed

    de Mendonça, A; Ribeiro, J A

    1997-08-01

    1. Glutamate and other amino acids are the main excitatory neurotransmitters in many brain regions, including the hippocampus, by activating ion channel-coupled glutamate receptors, as well as metabotropic receptors linked to G proteins and second messenger systems. Several conditions which promote the release of glutamate, like frequency stimulation and hypoxia, also lead to an increase in the extracellular levels of the important neuromodulator, adenosine. We studied whether the activation of different subgroups of metabotropic glutamate receptors (mGluR) could modify the known inhibitory effects of a selective adenosine A1 receptor agonist on synaptic transmission in the hippocampus. The experiments were performed on hippocampal slices taken from young (12-14 days old) rats. Stimulation was delivered to the Schaffer collateral/commissural fibres, and evoked field excitatory postsynaptic potentials (fe. p.s.p.) recorded extracellularly from the stratum radiatum in the CAI area. 2. The concentration-response curve for the inhibitory effects of the selective adenosine A1 receptor agonist, N6-cyclopentyladenosine (CPA; 2-50 nM), on the fe.p.s.p. slope (EC50 = 12.5 (9.2-17.3; 95% confidence intervals)) was displaced to the right by the group I mGluR selective agonist, (R,S)-3,5-dihydroxyphenylglycine (DPHG; 10 microM) (EC50 = 27.2 (21.4-34.5) nM, n = 4). The attenuation of the inhibitory effect of CPA (10 nM) on the fe.p.s.p. slope by DHPG (10 microM) was blocked in the presence of the mGluR antagonist (which blocks group I and II mGluR), (R,S)-alpha-methyl-4-carboxyphenylglycine (MCPG; 500 microM). DHPG (10 microM) itself had an inhibitory effect of 20.1 +/- 1.9% (n = 4) on the fe.p.s.p. slope. 3. The concentration-response curves for the inhibitory effects of CPA (2-20 nM) on the fe.p.s.p. slope were not modified either in the presence of the group II mGluR selective agonist, (2S,3S,4S)-alpha-(carboxycyclopropyl)glycine (L-CCG-I; 1 microM), or in the presence of

  2. Influence of metabotropic glutamate receptor agonists on the inhibitory effects of adenosine A1 receptor activation in the rat hippocampus

    PubMed Central

    de Mendonça, Alexandre; Ribeiro, J A

    1997-01-01

    Glutamate and other amino acids are the main excitatory neurotransmitters in many brain regions, including the hippocampus, by activating ion channel-coupled glutamate receptors, as well as metabotropic receptors linked to G proteins and second messenger systems. Several conditions which promote the release of glutamate, like frequency stimulation and hypoxia, also lead to an increase in the extracellular levels of the important neuromodulator, adenosine. We studied whether the activation of different subgroups of metabotropic glutamate receptors (mGluR) could modify the known inhibitory effects of a selective adenosine A1 receptor agonist on synaptic transmission in the hippocampus. The experiments were performed on hippocampal slices taken from young (12–14 days old) rats. Stimulation was delivered to the Schaffer collateral/commissural fibres, and evoked field excitatory postsynaptic potentials (fe.p.s.p.) recorded extracellularly from the stratum radiatum in the CA1 area. The concentration-response curve for the inhibitory effects of the selective adenosine A1 receptor agonist, N6-cyclopentyladenosine (CPA; 2–50 nM), on the fe.p.s.p. slope (EC50=12.5 (9.2–17.3; 95% confidence intervals)) was displaced to the right by the group I mGluR selective agonist, (R,S)-3,5-dihydroxyphenylglycine (DPHG; 10 μM) (EC50=27.2 (21.4–34.5) nM, n=4). The attenuation of the inhibitory effect of CPA (10 nM) on the fe.p.s.p. slope by DHPG (10 μM) was blocked in the presence of the mGluR antagonist (which blocks group I and II mGluR), (R,S)-α-methyl-4-carboxyphenylglycine (MCPG; 500 μM). DHPG (10 μM) itself had an inhibitory effect of 20.1±1.9% (n=4) on the fe.p.s.p. slope. The concentration-response curves for the inhibitory effects of CPA (2–20 nM) on the fe.p.s.p. slope were not modified either in the presence of the group II mGluR selective agonist, (2S,3S,4S)-α-(carboxycyclopropyl)glycine (L-CCG-I; 1 μM), or in the presence of the non

  3. Adult Onset-hypothyroidism has Minimal Effects on Synaptic Transmission in the Hippocampus of Rats Independent of Hypothermia

    EPA Science Inventory

    Introduction: Thyroid hormones (TH) influence central nervous system (CNS) function during development and in adulthood. The hippocampus, a brain area critical for learning and memory is sensitive to TH insufficiency. Synaptic transmission in the hippocampus is impaired following...

  4. Neuroprotective properties of marrow-isolated adult multilineage-inducible cells in rat hippocampus following global cerebral ischemia are enhanced when complexed to biomimetic microcarriers.

    PubMed

    Garbayo, Elisa; Raval, Ami P; Curtis, Kevin M; Della-Morte, David; Gomez, Lourdes A; D'Ippolito, Gianluca; Reiner, Teresita; Perez-Stable, Carlos; Howard, Guy A; Perez-Pinzon, Miguel A; Montero-Menei, Claudia N; Schiller, Paul C

    2011-12-01

    Cell-based therapies for global cerebral ischemia represent promising approaches for neuronal damage prevention and tissue repair promotion. We examined the potential of marrow-isolated adult multilineage-inducible (MIAMI) cells, a homogeneous subpopulation of immature human mesenchymal stromal cell, injected into the hippocampus to prevent neuronal damage induced by global ischemia using rat organotypic hippocampal slices exposed to oxygen-glucose deprivation and rats subjected to asphyxial cardiac arrest. We next examined the value of combining fibronectin-coated biomimetic microcarriers (FN-BMMs) with epidermal growth factor (EGF)/basic fibroblast growth factor (bFGF) pre-treated MIAMI compared to EGF/bFGF pre-treated MIAMI cells alone, for their in vitro and in vivo neuroprotective capacity. Naïve and EGF/bFGF pre-treated MIAMI cells significantly protected the Cornu Ammonis layer 1 (CA1) against ischemic death in hippocampal slices and increased CA1 survival in rats. MIAMI cells therapeutic value was significantly increased when delivering the cells complexed with FN-BMMs, probably by increasing stem cell survival and paracrine secretion of pro-survival and/or anti-inflammatory molecules as concluded from survival, differentiation and gene expression analysis. Four days after oxygen and glucose deprivation and asphyxial cardiac arrest, few transplanted cells administered alone survived in the brain whereas stem cell survival improved when injected complexed with FN-BMMs. Interestingly, a large fraction of the transplanted cells administered alone or in complexes expressed βIII-tubulin suggesting that partial neuronal transdifferentiation may be a contributing factor to the neuroprotective mechanism of MIAMI cells. PMID:21496021

  5. NEUROPROTECTIVE PROPERTIES OF MARROW-ISOLATED ADULT MULTILINEAGE INDUCIBLE CELLS IN RAT HIPPOCAMPUS FOLLOWING GLOBAL CEREBRAL ISCHEMIA ARE ENHANCED WHEN COMPLEXED TO BIOMIMETIC MICROCARRIERS

    PubMed Central

    Garbayo, E.; Raval, A.P.; Curtis, K.M.; Della-Morte, D.; Gomez, L.A.; D'Ippolito, G.; Reiner, T.; Perez-Stable, C.; Howard, G.A.; Perez-Pinzon, M.A.; Montero-Menei, C.N.; Schiller, P.C.

    2015-01-01

    Cell-based therapies for global cerebral ischemia represent promising approaches for neuronal damage prevention and tissue repair promotion. We examined the potential of Marrow-Isolated Adult Multilineage Inducible (MIAMI) cells, a homogeneous subpopulation of immature human mesenchymal stromal cell, injected into the hippocampus to prevent neuronal damage induced by global ischemia using rat organotypic hippocampal slices exposed to oxygen-glucose deprivation (OGD) and rats subjected to asphyxial cardiac arrest (ACA). We next examined the value of combining fibronectin-coated biomimetic microcarriers (FN-BMMs) with EGF/bFGF pre-treated MIAMI compared to EGF/bFGF pre-treated MIAMI cells alone, for their in vitro and in vivo neuroprotective capacity. Naïve and EGF/bFGF pre-treated MIAMI cells significantly protected the Cornu Ammonis layer 1 (CA1) against ischemic death in hippocampal slices and increased CA1 survival in rats. MIAMI cells therapeutic value was significantly increased when delivering the cells complexed with FN-BMMs, probably by increasing stem cell survival and paracrine secretion of pro-survival and/or anti-inflammatory molecules as concluded from survival, differentiation and gene expression analysis. Four days after OGD and ACA, few transplanted cells administered alone survived in the brain whereas stem cell survival improved when injected complexed with FN-BMMs. Interestingly, a large fraction of the transplanted cells administered alone or in complexes expressed βIII-Tubulin suggesting that partial neuronal transdifferentiation may be a contributing factor to the neuroprotective mechanism of MIAMI cells. PMID:21496021

  6. Prenatal Nicotine and Maternal Deprivation Stress De-Regulate the Development of CA1, CA3, and Dentate Gyrus Neurons in Hippocampus of Infant Rats

    PubMed Central

    Wang, Hong; Gondré-Lewis, Marjorie C.

    2013-01-01

    Adverse experiences by the developing fetus and in early childhood are associated with profound effects on learning, emotional behavior, and cognition as a whole. In this study we investigated the effects of prenatal nicotine exposure (NIC), postnatal maternal deprivation (MD) or the combination of the two (NIC+MD) to determine if hippocampal neuron development is modulated by exposure to drugs of abuse and/or stress. Growth of rat offspring exposed to MD alone or NIC+MD was repressed until after weaning. In CA1 but not CA3 of postnatal day 14 (P14) pups, MD increased pyramidal neurons, however, in dentate gyrus (DG), decreased granule neurons. NIC had no effect on neuron number in CA1, CA3 or DG. Unexpectedly, NIC plus MD combined caused a synergistic increase in the number of CA1 or CA3 neurons. Neuron density in CA regions was unaffected by treatment, but in the DG, granule neurons had a looser packing density after NIC, MD or NIC+MD exposure. When septotemporal axes were analyzed, the synergism of stress and drug exposure in CA1 and CA3 was associated with rostral, whereas MD effects were predominantly associated with caudal neurons. TUNEL labeling suggests no active apoptosis at P14, and doublecortin positive neurons and mossy fibers were diminished in NIC+MD relative to controls. The laterality of the effect of nicotine and/or maternal deprivation in right versus left hippocampus was also analyzed and found to be insiginificant. We report for the first time that early life stressors such as postnatal MD and prenatal NIC exposure, when combined, may exhibit synergistic consequences for CA1 and CA3 pyramidal neuron development, and a potential antagonistic influence on developing DG neurons. These results suggest that early stressors may modulate neurogenesis, apoptosis, or maturation of glutamatergic neurons in the hippocampus in a region-specific manner during critical periods of neurodevelopment. PMID:23785432

  7. Neurotoxic Methamphetamine Doses Increase LINE-1 Expression in the Neurogenic Zones of the Adult Rat Brain

    PubMed Central

    Moszczynska, Anna; Flack, Amanda; Qiu, Ping; Muotri, Alysson R.; Killinger, Bryan A.

    2015-01-01

    Methamphetamine (METH) is a widely abused psychostimulant with the potential to cause neurotoxicity in the striatum and hippocampus. Several epigenetic changes have been described after administration of METH; however, there are no data regarding the effects of METH on the activity of transposable elements in the adult brain. The present study demonstrates that systemic administration of neurotoxic METH doses increases the activity of Long INterspersed Element (LINE-1) in two neurogenic niches in the adult rat brain in a promoter hypomethylation-independent manner. Our study also demonstrates that neurotoxic METH triggers persistent decreases in LINE-1 expression and increases the LINE-1 levels within genomic DNA in the striatum and dentate gyrus of the hippocampus, and that METH triggers LINE-1 retrotransposition in vitro. We also present indirect evidence for the involvement of glutamate (GLU) in LINE-1 activation. The results suggest that LINE-1 activation might occur in neurogenic areas in human METH users and might contribute to METH abuse-induced hippocampus-dependent memory deficits and impaired performance on several cognitive tasks mediated by the striatum. PMID:26463126

  8. Regulation of muscarinic acetylcholine receptor-mediated synaptic responses by GABAB receptors in the rat hippocampus

    PubMed Central

    Morton, Robin A; Manuel, Nick A; Bulters, Diederick O; Cobb, Stuart R; Davies, Ceri H

    2001-01-01

    Both GABAB and muscarinic acetylcholine receptors (mAChRs) influence hippocampal-dependent mnemonic processing. Here the possibility of a direct interaction between GABAB receptors and mAChR-mediated synaptic responses has been studied using intracellular recording in rat hippocampal slices. The GABAB receptor agonist(−)-baclofen (5–10 μm) depressed an atropine-sensitive slow EPSP (EPSPM) and occluded the GABAB-receptor-mediated IPSP (IPSPB) which preceded it. These inhibitory effects were accompanied by postsynaptic hyperpolarization (9 ± 2 mV) and a reduction in cell input resistance (12 ± 3 %). The selective GABAB receptor antagonist CGP 55845A (1 μm) fully reversed the depressant effects of (−)-baclofen (5–10 μm) such that in the combined presence of (−)-baclofen and CGP 55845A the EPSPM was 134 ± 21 % of control. (−)-Baclofen (5–10 μm) caused a small (28 ± 11 %) inhibition of carbachol-induced (3.0 μm) postsynaptic depolarizations and increases in input resistance. CGP 55845A (1 μm) alone caused an increase in the amplitude of the EPSPM (253 ± 74 % of control) and blocked the IPSPB that preceded it. In contrast, the selective GABA uptake inhibitor NNC 05–0711 (10 μm) increased the amplitude of the IPSPB by 141 ± 38 % and depressed the amplitude of the EPSPM by 58 ± 10 %. This inhibition was abolished by CGP 55845A (1 μm). Taken together these data provide good evidence that synaptically released GABA activates GABAB receptors that inhibit mAChR-mediated EPSPs in hippocampal CA1 pyramidal neurones. The mechanism of inhibition may involve both pre- and postsynaptic elements. PMID:11559773

  9. Acetyl-L-carnitine restores choline acetyltransferase activity in the hippocampus of rats with partial unilateral fimbria-fornix transection.

    PubMed

    Piovesan, P; Quatrini, G; Pacifici, L; Taglialatela, G; Angelucci, L

    1995-02-01

    Transection of the fimbria-fornix bundle in adult rats results in degeneration of the septohippocampal cholinergic pathway, reminiscent of that occurring in aging as well as Alzheimer disease. We report here a study of the effect of a treatment with acetyl-L-carnitine (ALCAR) in three-month-old Fischer 344 rats bearing a partial unilateral fimbria-fornix transection. ALCAR is known to ameliorate some morphological and functional disturbances in the aged central nervous system (CNS). We used choline acetyltransferase (ChAT) and acetyl cholinesterase (AChE) as markers of central cholinergic function, and nerve growth factor (NGF) levels as indicative of the trophic regulation of the medio-septal cholinergic system. ChAT and AChE activities were significantly reduced in the hippocampus (HIPP) ipsilateral to the lesion as compared to the contralateral one, while no changes were observed in the septum (SPT), nucleus basalis magnocellularis (NBM) or frontal cortex (FCX). ALCAR treatment restored ChAT activity in the ipsilateral HIPP, while AChE levels were not different from those of untreated animals, and did not affect NGF content in either SPT or HIPP. PMID:7793306

  10. Vasopressin cells in the medial amygdala of the rat project to the lateral septum and ventral hippocampus.

    PubMed

    Caffé, A R; van Leeuwen, F W; Luiten, P G

    1987-07-01

    The rat brain contains a large number of vasopressin (VP) immunoreactive fibers, the sites of origin of which have not yet been established completely. For instance, the sources of VP fiber systems in the amygdala, ventral hippocampus (VH), mediodorsal thalamic nucleus, ventral tegmental area, and dorsal raphe yet remain obscure. These VP fibers may originate in any of the recently described extrahypothalamic VP cell groups, viz., medial amygdaloid nucleus (AME), dorsomedial hypothalamic nucleus, or locus coeruleus, since VP efferents from these cells still remain to be demonstrated. In search of AME VP efferents three approaches were followed: (1) the Phaseolus vulgaris anterograde tracing method, (2) immunocytochemistry after AME lesioning, and (3) retrograde transport of a fluorescent dye in combination with immunofluorescence. The results demonstrate that VP cells in the AME project to (1) the lateral septum (LS) by the ventral amygdalofugal pathway and (2) the VH via the amygdalohippocampal transition zone. In addition, the VP projection from the bed nucleus of the stria terminalis (BST) to the LS was confirmed. There was no indication that VP cells in the AME project through the amygdalotegmental pathway to the medulla oblongata and spinal cord. The results support the possibility that the BST and AME are an anatomical entity that may be part of the central loci controlling sexual processes in the rat. PMID:3305600

  11. Pharmacokinetics of ginsenoside Rg1 in rat medial prefrontal cortex, hippocampus, and lateral ventricle after subcutaneous administration.

    PubMed

    Xue, Wei; Liu, Yang; Qi, Wen-Yuan; Gao, Yan; Li, Min; Shi, Ai-Xin; Li, Ke-Xin

    2016-06-01

    The present study aimed to investigate pharmacokinetics of Rg1 in rat medial prefrontal cortex (mPFC), hippocampus (HIP), and lateral ventricle (LV) after subcutaneous injection. For the first time, intracerebral pharmacokinetics of Rg1 was studied in freely moving rats by microdialysis technique. Rg1 concentrations in dialysates were detected by a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method and were revised using in vivo probe-recovery in HIP and LV. The pharmacokinetic parameters were then determined using non-compartmental models. Since the in vivo recoveries remained stable in HIP and LV during 9 h dialysis, average recoveries were used to revise dialysate concentrations. After dosing, Rg1 was soon detected in brain extracellular fluid (bECF) and cerebrospinal fluid (CSF). The elimination of Rg1 was significantly slower in mPFC than in HIP and LV, and significantly greater AUC was obtained in mPFC than in HIP. Rg1 kinetics in bECF and CSF indicate that Rg1 can go across the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB), and then immediately distribute to learning and memory-related regions in brain, which may lead to rapid pharmacological onset. There may be active transport and target-mediated disposition of Rg1 in the CNS, which need to be further clarified. PMID:27324597

  12. GONADAL STEROIDS REGULATED THE EXPRESSION OF GLIAL FIBRILLARY ACIDIC PROTEIN IN THE ADULT MALE RAT HIPPOCAMPUS

    EPA Science Inventory

    This study demonstrates that gonadal steroids (estradiol, testosterone, dihydrotestosterone) can inhibit the expression of glial fibrillary acidic protein and it MRNA in the adult male rat brain. esticular hormones may influence the activity of astrocytes in the intact and lesion...

  13. Regional expression and ultrastructural localization of EphA7 in the hippocampus and cerebellum of adult rat.

    PubMed

    Amegandjin, Clara A; Jammow, Wafaa; Laforest, Sylvie; Riad, Mustapha; Baharnoori, Moogeh; Badeaux, Frédérique; DesGroseillers, Luc; Murai, Keith K; Pasquale, Elena B; Drolet, Guy; Doucet, Guy

    2016-08-15

    EphA7 is expressed in the adult central nervous system (CNS), where its roles are yet poorly defined. We mapped its distribution using in situ hybridization (ISH) and immunohistochemistry (IHC) combined with light (LM) and electron microscopy (EM) in adult rat and mouse brain. The strongest ISH signal was in the hippocampal pyramidal and granule cell layers. Moderate levels were detected in habenula, striatum, amygdala, the cingulate, piriform and entorhinal cortex, and in cerebellum, notably the Purkinje cell layer. The IHC signal distribution was consistent with ISH results, with transport of the protein to processes, as exemplified in the hippocampal neuropil layers and weakly stained pyramidal cell layers. In contrast, in the cerebellum, the Purkinje cell bodies were the most strongly immunolabeled elements. EM localized the cell surface-expression of EphA7 essentially in postsynaptic densities (PSDs) of dendritic spines and shafts, and on some astrocytic leaflets, in both hippocampus and cerebellum. Perikaryal and dendritic labeling was mostly intracellular, associated with the synthetic and trafficking machineries. Immunopositive vesicles were also observed in axons and axon terminals. Quantitative analysis in EM showed significant differences in the frequency of labeled elements between regions. Notably, labeled dendrites were ∼3-5 times less frequent in cerebellum than in hippocampus, but they were individually endowed with ∼10-40 times higher frequencies of PSDs, on their shafts and spines. The cell surface localization of EphA7, being preferentially in PSDs, and in perisynaptic astrocytic leaflets, provides morphologic evidence that EphA7 plays key roles in adult CNS synaptic maintenance, plasticity, or function. J. Comp. Neurol. 524:2462-2478, 2016. © 2016 Wiley Periodicals, Inc. PMID:26780036

  14. Stimulation of 5-HT1A receptors in the dorsal hippocampus and inhibition of limbic seizures induced by kainic acid in rats.

    PubMed Central

    Gariboldi, M.; Tutka, P.; Samanin, R.; Vezzani, A.

    1996-01-01

    1. We studied whether the stimulation of 5-HT1A receptors by 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT), a specific 5-HT1A receptor agonist, reduced electroencephalographic (EEG) seizures induced by intrahippocampal injection of 0.04 microgram in 0.5 microliter of the glutamate analogue kainic acid in freely-moving rats. 2. Pretreatment with 8-OH-DPAT 15 min earlier at the same site as kainic acid injection, caused a dose-dependent decrease of kainic acid-induced seizure activity. One and 10 micrograms significantly reduced the total time spent in seizures by 72% on average and the total number of seizures by 58% (P < 0.01) and 43% (P < 0.05) respectively. The latency to onset of the first seizure was increased 2.8 times (P < 0.01) only after 1 microgram 8-OH-DPAT; 0.1 microgram was ineffective on all seizure parameters. 3. Systemic administration of 25, 100 and 1000 micrograms kg-1 8-OH-DPAT significantly reduced the total number of seizures and the total time in seizures induced by intrahippocampal kainic acid by 52% and 74% on average. The latency to onset of the first seizure was delayed 1.8 times by 100 and 1000 micrograms kg-1 (P < 0.05). 4. The anticonvulsant action of 8-OH-DPAT given intrahippocampally or systemically was significantly blocked by 5 micrograms, but not 1 microgram WAY 100635, a selective 5-HT1A receptor antagonist, administered in the hippocampus before the agonist. 5. These results indicate that postsynaptic 5-HT1A receptors in the hippocampus mediate the anticonvulsant action of 8-OH-DPAT and that their stimulation has an inhibitory role in the generation of limbic seizures. PMID:8922726

  15. Ethinyl estradiol and levonorgestrel alter cognition and anxiety in rats concurrent with a decrease in tyrosine hydroxylase expression in the locus coeruleus and brain-derived neurotrophic factor expression in the hippocampus.

    PubMed

    Simone, Jean; Bogue, Elizabeth A; Bhatti, Dionnet L; Day, Laura E; Farr, Nathan A; Grossman, Anna M; Holmes, Philip V

    2015-12-01

    In the United States, more than ten million women use contraceptive hormones. Ethinyl estradiol and levonorgestrel have been mainstay contraceptive hormones for the last four decades. Surprisingly, there is scant information regarding their action on the central nervous system and behavior. Intact female rats received three weeks of subcutaneous ethinyl estradiol (10 or 30μg/rat/day), levonorgestrel (20 or 60μg/rat/day), a combination of both (10/20μg/rat/day and 30/60μg/rat/day), or vehicle. Subsequently, the rats were tested in three versions of the novel object recognition test to assess learning and memory, and a battery of tests for anxiety-like behavior. Serum estradiol and ovarian weights were measured. All treatment groups exhibited low endogenous 17β-estradiol levels at the time of testing. Dose-dependent effects of drug treatment manifested in both cognitive and anxiety tests. All low dose drugs decreased anxiety-like behavior and impaired performance on novel object recognition. In contrast, the high dose ethinyl estradiol increased anxiety-like behavior and improved performance in cognitive testing. In the cell molecular analyses, low doses of all drugs induced a decrease in tyrosine hydroxylase mRNA and protein in the locus coeruleus. At the same time, low doses of ethinyl estradiol and ethinyl estradiol/levonorgestrel increased galanin protein in this structure. Consistent with the findings above, the low dose treatments of ethinyl estradiol and combination ethinyl estradiol/levonorgestrel reduced brain-derived neurotrophic factor mRNA in the hippocampus. These effects of ethinyl estradiol 10μg alone and in combination with levonorgestrel 20μg suggest a diminution of norepinephrine input into the hippocampus resulting in a decline in learning and memory. PMID:26352480

  16. Developmental onset of long-term potentiation in area CA1 of the rat hippocampus.

    PubMed Central

    Harris, K M; Teyler, T J

    1984-01-01

    Long-term potentiation (l.t.p.) was studied in area CA1 of rat hippocampal slices during development at post-natal days 1-8, 15 and 60. Tetanic stimulation at 100 Hz for 1 s was delivered to the fibres in stratum radiatum and the time course of potentiation was recorded in stratum pyramidale for 20 min after tetanus. L.t.p. was measured at 20 min post-tetanus as an increase in the amplitude of the population spike. The time course and magnitude of post-tetanic potentiation (p.t.p.) differed with age. For 60-day-old animals p.t.p. was seen as a maximally potentiated response immediately post-tetanus that declined to a smaller potentiated response by 5 min post-tetanus. For animals younger than 15 days the response was also maximally potentiated immediately post-tetanus with subsequent decline. However, the duration of maximal potentiation was shorter and the magnitude was less. A different time course of p.t.p. was observed at 15 days. The maximal potentiation was approximately equal to that seen at 60 days, but instead of declining, the response remained maximally potentiated throughout the entire post-tetanus monitoring period. L.t.p. was first observed at post-natal day 5, and by post-natal days 7 and 8 substantial levels of l.t.p. were seen consistently. The greatest magnitude of l.t.p. was found at 15 days, and was considerably more than that produced at 60 days. When the duration of l.t.p. was monitored for longer than 20 min the response declined back to pretetanus levels by 1-1 1/2 h for animals younger than 15 days. In 15-day-old rats the response remained maximally potentiated for the full 72 min that it was monitored, with no decline. In control experiments of low-frequency stimulation (l.f.s.) at 1/15 s for 100 stimuli, hippocampal slices from 60-day-old animals showed response elevation. In contrast, l.f.s. resulted in response decrement over time for slices from 5-15-day-old animals. Three measures of pretetanus excitability in area CA1 suggested an

  17. Changes in Neurons and Synapses in Hippocampus of Streptozotocin-Induced Type 1 Diabetes Rats: A Stereological Investigation.

    PubMed

    Zhao, Feng; Li, Jing; Mo, Linlong; Tan, Min; Zhang, Ting; Tang, Yong; Zhao, Yuanyu

    2016-09-01

    Previous studies have indicated that diabetes could cause hippocampus atrophy, neuron loss, and synaptic plasticity impairment. However, biological conclusions based on density were difficult to interpret because the changes in density could be due to an alteration of total quantity and/or an alteration in the reference volume. In the present study, we used unbiased stereological methods to investigate the effects of type 1 diabetes on the total volume of CA1 and dentate gyrus (DG), the total number of neurons and the total number of Spinophilin/NeurabinII-positive boutons in CA1 and DG of streptozotocin-treated rat model. Fifty Sprague-Dawley rats were randomly divided into sodium citrate buffer-treated group (control group) and streptozotocin (STZ)-treated group (diabetes group), in which type 1 diabetes was induced by streptozotocin injection. Learning and memory were measured using the Morris water maze test. Our results indicated that diabetes induced deficit in learning/memory, decrease in total CA1 volume (by 51.5%) and degeneration in synaptic structures in CA1 sr (by 30.2%). While there were no significant changes in total DG volume, total neuron number in CA1 and DG, total Spinophilin/NeurabinII-positive bouton number in DG. The present study provided the first evidence of changes in the total volume, the total neuron number and the total Spinophilin/NeurabinII-positive bouton number in CA1 and DG of STZ-induced diabetic rats. Anat Rec, 299:1174-1183, 2016. © 2016 Wiley Periodicals, Inc. PMID:27064698

  18. Quercetin attenuates neuronal death against aluminum-induced neurodegeneration in the rat hippocampus.

    PubMed

    Sharma, D R; Wani, W Y; Sunkaria, A; Kandimalla, R J; Sharma, R K; Verma, D; Bal, A; Gill, K D

    2016-06-01

    Aluminum is a light weight and toxic metal present ubiquitously on earth, which has gained considerable attention due to its neurotoxic effects. It also has been linked ecologically and epidemiologically to several neurological disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), Guamanian-Parkinsonian complex and Amyotrophic lateral sclerosis (ALS). The mechanism of aluminum neurotoxicity is poorly understood, but it is well documented that aluminum generates reactive oxygen species (ROS). Enhanced ROS production leads to disruption of cellular antioxidant defense systems and release of cytochrome c (cyt-c) from mitochondria to cytosol resulting in apoptotic cell death. Quercetin (a natural flavonoid) protects it from oxidative damage and has been shown to decrease mitochondrial damage in various animal models of oxidative stress. We hypothesized that if oxidative damage to mitochondria does play a significant role in aluminum-induced neurodegeneration, and then quercetin should ameliorate neuronal apoptosis. Administration of quercetin (10mg/kg body wt/day) reduced aluminum (10mg/kg body wt/day)-induced oxidative stress (decreased ROS production, increased mitochondrial superoxide dismutase (MnSOD) activity). In addition, quercetin also prevents aluminum-induced translocation of cyt-c, and up-regulates Bcl-2, down-regulates Bax, p53, caspase-3 activation and reduces DNA fragmentation. Quercetin also obstructs aluminum-induced neurodegenerative changes in aluminum-treated rats as seen by Hematoxylin and Eosin (H&E) staining. Further electron microscopic studies revealed that quercetin attenuates aluminum-induced mitochondrial swelling, loss of cristae and chromatin condensation. These results indicate that treatment with quercetin may represent a therapeutic strategy to attenuate the neuronal death against aluminum-induced neurodegeneration. PMID:26944603

  19. Ontogeny of kainate-induced gamma oscillations in the rat CA3 hippocampus in vitro

    PubMed Central

    Tsintsadze, Vera; Minlebaev, Marat; Suchkov, Dimitry; Cunningham, Mark O.; Khazipov, Roustem

    2015-01-01

    GABAergic inhibition, which is instrumental in the generation of hippocampal gamma oscillations, undergoes significant changes during development. However, the development of hippocampal gamma oscillations remains largely unknown. Here, we explored the developmental features of kainate-induced oscillations (KA-Os) in CA3 region of rat hippocampal slices. Up to postnatal day P5, the bath application of kainate failed to evoke any detectable oscillations. KA-Os emerged by the end of the first postnatal week; these were initially weak, slow (20–25 Hz, beta range) and were poorly synchronized with CA3 units and synaptic currents. Local field potential (LFP) power, synchronization of units and frequency of KA-Os increased during the second postnatal week to attain gamma (30–40 Hz) frequency by P15–21. Both beta and gamma KA-Os are characterized by alternating sinks and sources in the pyramidal cell layer, likely generated by summation of the action potential—associated currents and GABAergic synaptic currents, respectively. Blockade of GABA(A) receptors with gabazine completely suppressed KA-Os at all ages indicating that GABAergic mechanisms are instrumental in their generation. Bumetanide, a NKCC1 chloride co-transporter antagonist which renders GABAergic responses inhibitory in the immature hippocampal neurons, failed to induce KA-Os at P2–4 indicating that the absence of KA-Os in neonates is not due to depolarizing actions of GABA. The linear developmental profile, electrographic features and pharmacological properties indicate that CA3 hippocampal beta and gamma KA-Os are fundamentally similar in their generative mechanisms and their delayed onset and developmental changes likely reflect the development of perisomatic GABAergic inhibition. PMID:26041996

  20. Synaptic Proteins In Schizophrenia Hippocampus Indicate Increased Neuronal Activity in CA3

    PubMed Central

    Li, Wei; Ghose, Subroto; Gleason, Kelly; Begovic’, Anita; Perez, Jessica; Bartko, John; Russo, Scott; Wagner, Anthony D.; Selemon, Lynn; Tamminga, Carol A.

    2015-01-01

    In schizophrenia, hippocampal perfusion is increased and declarative memory function is degraded. Based on a model of hippocampal dysfunction in schizophrenic psychosis, we postulated increased NMDA receptor signaling in CA3. Here we demonstrate that the GluN2B-containing NMDA receptors (GluN2B/GluN1) and its associated postsynaptic membrane protein PSD95 are both increased in human hippocampal CA3 from schizophrenia cases, but not in CA1 tissue. Quantitative analyses of Golgi-stained hippocampal neurons show an increase in spine density on CA3 pyramidal cell apical dendrites (stratum radiatum) and an increase in the number of thorny excrescences. AMPA receptor subunit proteins are not altered in CA3 or CA1 subfields, nor are several additional related signaling proteins. These hippocampal data are consistent with increased excitatory signaling in CA3 and/or with an elevation in silent synapses in CA3, a state which may contribute to development of long term potentiation with subsequent stimulation and ‘un-silencing’. These changes are plausibly associated with increased associational activity in CA3, degraded declarative memory function and with psychotic manifestations in schizophrenia. The influence of these hyperactive hippocampal projections onto targets in limbic neocortex could contribute to components of schizophrenia manifestations in other cerebral regions. PMID:25585032

  1. Interaction between the basolateral amygdala and dorsal hippocampus is critical for cocaine memory reconsolidation and subsequent drug context-induced cocaine-seeking behavior in rats.

    PubMed

    Wells, Audrey M; Lasseter, Heather C; Xie, Xiaohu; Cowhey, Kate E; Reittinger, Andrew M; Fuchs, Rita A

    2011-11-01

    Contextual stimulus control over instrumental drug-seeking behavior relies on the reconsolidation of context-response-drug associative memories into long-term memory storage following retrieval-induced destabilization. According to previous studies, the basolateral amygdala (BLA) and dorsal hippocampus (DH) regulate cocaine-related memory reconsolidation; however, it is not known whether these brain regions interact or independently control this phenomenon. To investigate this question, rats were trained to lever press for cocaine reinforcement in a distinct environmental context followed by extinction training in a different context. Rats were then briefly re-exposed to the cocaine-paired context to destabilize cocaine-related memories, or they were exposed to an unpaired context. Immediately thereafter, the rats received unilateral microinfusions of anisomycin (ANI) into the BLA plus baclofen/muscimol (B/M) into the contralateral (BLA/DH disconnection) or ipsilateral DH, or they received contralateral or ipsilateral microinfusions of vehicle. They then remained in their home cages overnight or for 21 d, followed by additional extinction training and a test of cocaine-seeking behavior (nonreinforced active lever responding). BLA/DH disconnection following re-exposure to the cocaine-paired context, but not the unpaired context, impaired subsequent drug context-induced cocaine-seeking behavior relative to vehicle or ipsilateral ANI + B/M treatment. Prolonged home cage stay elicited a time-dependent increase, or incubation, of drug-context-induced cocaine-seeking behavior, and BLA/DH disconnection inhibited this incubation effect despite some recovery of cocaine-seeking behavior. Thus, the BLA and DH interact to regulate the reconsolidation of cocaine-related associative memories, thereby facilitating the ability of drug-paired contexts to trigger cocaine-seeking behavior and contributing to the incubation of cocaine-seeking behavior. PMID:22005750

  2. Effects of systemic administration of the essential oil of bergamot (BEO) on gross behaviour and EEG power spectra recorded from the rat hippocampus and cerebral cortex.

    PubMed

    Rombolà, Laura; Corasaniti, Maria Tiziana; Rotiroti, Domenicantonio; Tassorelli, Cristina; Sakurada, Shinobu; Bagetta, G; Morrone, Luigi Antonio

    2009-01-01

    Bergamot (Citrus bergamia Risso et Poiteau) is a citrus fruit growing almost exclusively in the South of Italy. Its essential oil is obtained by cold pressing of the epicarp and, partly, of the mesocarp of the fresh fruit. Although this phytocomplex has been used for centuries, reputedly effectively, as a traditional medicine, there is very little verified scientific evidence to support this use. This paper reports original data on the systemic effects of the essential oil of bergamot (BEO) on gross behaviour and EEG activity recorded from the hippocampus and cerebral cortex of the rat. The Fast Fourier Transformation (FFT) was used to analyse and quantify the energy in single frequency bands of the EEG spectrum. The results obtained indicate that systemic administration of increasing volumes of BEO produces dose-dependent increases in locomotor and exploratory activity that correlate with a predominant increase in the energy in the faster frequency bands of the EEG spectrum. These data contribute to our understanding of the neurobiological profile of BEO. PMID:19775539

  3. Dopamine D2 receptor expression in hippocampus and parahippocampal cortex of rat, cat, and human in relation to tyrosine hydroxylase-immunoreactive fibers.

    PubMed

    Goldsmith, S K; Joyce, J N

    1994-06-01

    A detailed study comparing the distribution of D2 receptors and tyrosine hydroxylase-immunoreactive fibers in the hippocampus and parahippocampal cortices of the rat, cat, and human was conducted. The distribution of [125I]epidepride binding to D2 receptors along the transverse and longitudinal axes of the hippocampus and parahippocampus differed among the species. In rat hippocampus, the number of sites was highest in septal portions of lacunosum-moleculare of CA1 and stratum moleculare of the subiculum. Virtually no binding to D2 receptors existed in the temporal hippocampus. For the cat hippocampus, the highest binding existed in the inner one-third of the molecular layer of the dentate gyrus (DG). There were also significant numbers of D2 receptors in strata radiatum and oriens of the CA subfields, with almost undetectable levels in lacunosum moleculare and subiculum. The number of sites was higher in the septal than temporal hippocampus. In the human hippocampus, highest binding was observed in the molecular layer of DG and the subiculum, with lower levels in strata oriens and lacunosum-moleculare of CA3, and very low binding in CA1. The histochemical demonstration of the pattern of mossy fibers revealed an organization complementary to that of D2 receptors in cat and human. In none of the species was there significant expression of D2 receptors in the entorhinal cortex, except in the caudal extreme of this region in the rat. In that region a trilaminar pattern was exhibited that continued into the perirhinal cortex. A trilaminar pattern of D2 receptor expression was observed in the perirhinal cortex of all species, with the highest values in the external and deep laminae and low expression in the middle laminae. The organization of dopamine fibers was assessed by comparing the distribution of tyrosine hydroxylase-positive and dopamine beta-hydroxylase-immunoreactive fibers in these same regions. It revealed consistent mismatches between the pattern of D2

  4. Spatial Memory Consolidation is Associated with Induction of Several Lysine-Acetyltransferase (Histone Acetyltransferase) Expression Levels and H2B/H4 Acetylation-Dependent Transcriptional Events in the Rat Hippocampus

    PubMed Central

    Bousiges, Olivier; Vasconcelos, Anne Pereira de; Neidl, Romain; Cosquer, Brigitte; Herbeaux, Karine; Panteleeva, Irina; Loeffler, Jean-Philippe; Cassel, Jean-Christophe; Boutillier, Anne-Laurence

    2010-01-01

    Numerous genetic studies have shown that the CREB-binding protein (CBP) is an essential component of long-term memory formation, through its histone acetyltransferase (HAT) function. E1A-binding protein p300 and p300/CBP-associated factor (PCAF) have also recently been involved in memory formation. By contrast, only a few studies have reported on acetylation modifications during memory formation, and it remains unclear as to how the system is regulated during this dynamic phase. We investigated acetylation-dependent events and the expression profiles of these HATs during a hippocampus-dependent task taxing spatial reference memory in the Morris water maze. We found a specific increase in H2B and H4 acetylation in the rat dorsal hippocampus, while spatial memory was being consolidated. This increase correlated with the degree of specific acetylated histones enrichment on some memory/plasticity-related gene promoters. Overall, a global increase in HAT activity was measured during this memory consolidation phase, together with a global increase of CBP, p300, and PCAF expression. Interestingly, these regulations were altered in a model of hippocampal denervation disrupting spatial memory consolidation, making it impossible for the hippocampus to recruit the CBP pathway (CBP regulation and acetylated-H2B-dependent transcription). CBP has long been thought to be present in limited concentrations in the cells. These results show, for the first time, that CBP, p300, and PCAF are dynamically modulated during the establishment of a spatial memory and are likely to contribute to the induction of a specific epigenetic tagging of the genome for hippocampus-dependent (spatial) memory consolidation. These findings suggest the use of HAT-activating molecules in new therapeutic strategies of pathological aging, Alzheimer's disease, and other neurodegenerative disorders. PMID:20811339

  5. Simvastatin increases excitability in the hippocampus via a PI3 kinase-dependent mechanism.