Science.gov

Sample records for rat lung tumours

  1. Evaluation of tumour vascularisation in two rat sarcoma models for studying isolated lung perfusion. Injection route determines the origin of tumour vessels.

    PubMed

    Pan, Youmin; Krueger, T; Tran, Nam; Yan, Hua; Ris, H-B; McKee, T A

    2005-01-01

    Isolated cytostatic lung perfusion (ILP) is an attractive technique allowing delivery of a high-dose of cytostatic agents to the lungs while limiting systemic toxicity. In developing a rat model of ILP, we have analysed the effect of the route of tumour cell injection on the source of tumour vessels. Pulmonary sarcomas were established by injecting a sarcoma cell suspension either by the intravenous (i.v.) route or directly into the lung parenchyma. Ink perfusion through either pulmonary artery (PA) or bronchial arteries (BA) was performed and the characteristics of the tumour deposits defined. i.v. and direct injection methods induced pulmonary sarcoma nodules, with similar histological features. The intraparenchymal injection of tumour cells resulted in more reliable and reproducible tumour growth and was associated with a longer survival of the animals. i.v. injected tumours developed a PA-derived vascular tree whereas directly injected tumours developed a BA-derived vasculature. PMID:15905614

  2. Tumours of the lung

    PubMed Central

    Stünzi, H.; Head, K. W.; Nielsen, S. W.

    1974-01-01

    Lung tumours are not common in domestic animals; there has not been the increase in epidermoid carcinomas and anaplastic small-cell carcinomas that has occurred in man this century. Adenocarcinoma is the most common type in animals. The biological behaviour of each type of tumour in animals seems to be much the same as in man. The tumours are described histologically, the main categories being: epidermoid carcinoma, anaplastic carcinoma, adenocarcinoma, combined epidermoid and adenocarcinoma, carcinoid tumours, bronchial gland tumours, benign tumours, and sarcomas. ImagesFig. 13Fig. 14Fig. 15Fig. 16Fig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12 PMID:4371738

  3. Haemangioleiomyomatous tumour of the lung.

    PubMed Central

    Soorae, A S; Bharucha, H

    1980-01-01

    A case of haemangioleiomyomatous tumour of the lung, occurring as a peripheral, solitary nodule in an asymptomatic 54-year-old man is presented. The tumour was well-demarcated and microscopically it was characterised by the presence of vascular spaces with endothelial, pericytic, and, predominantly, smooth muscle proliferation. Islands of cartilage and slit-like spaces lined by bronchial epithelium make this a hamartomatous lesion of a quite distinctive and unusual variety, which does not fit any of the well-recognised patterns of hamartomas previously described. The long-term prognosis after limited excision is considered to be favourable. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7358861

  4. An unusual tumour of the lung.

    PubMed

    Ayadi, L; Abid, N; Makni, S; Bahri, I; Frikha, I; Sellami-Boudawara, T

    2015-03-01

    We report a case of a 51-year-old woman with a solitary mast cell tumour of the lung, a rare neoplasm with only three previously-reported cases reported in the literature. Unlike previous cases, the tumour in the present case was bulky, measuring 14 cm in diameter and budding into the segmental bronchus. Histologically, it showed proliferation of typical metachromatic mast cells intermingled with undifferentiated cells with a ratio of 3:1. The neoplastic mast cells stained strongly with tryptase, CD117, CD68 and CD45, CD14 and CD33; whereas the undifferentiated cells lacked all these markers and expressed EMA and cytokeratin. Histological examination of bone marrow and laboratory data were unremarkable. To our knowledge, this is the fourth case of solitary extracutaneous mastocytoma of the lung. The differentiating features of this neoplasm and a review of literature are presented. PMID:26591626

  5. Premitive neuro-ectodermal tumour of the lung

    PubMed Central

    Patil, Pradeep; Malur, Prakash; Annurshetru, Shivappa

    2015-01-01

    Primitive neuro-ectodermal tumour of the lung is an extremely rare occurrence and we hereby report a case of a neuro-ectodermal tumour of the lung which was proved by immuno-histochemical examination of the resected specimen, and he had a very aggressive pattern of behavior. PMID:26793390

  6. Aerosolised 5-azacytidine suppresses tumour growth and reprogrammes the epigenome in an orthotopic lung cancer model

    PubMed Central

    Reed, M D; Tellez, C S; Grimes, M J; Picchi, M A; Tessema, M; Cheng, Y S; March, T H; Kuehl, P J; Belinsky, S A

    2013-01-01

    Background: Epigenetic silencing by promoter methylation and chromatin remodelling affects hundreds of genes and is a causal event for lung cancer. Treatment of patients with low doses of the demethylating agent 5-azacytidine in combination with the histone deacetylase inhibitor entinostat has yielded clinical responses. The subcutaneous dosing route for consecutive days and reduced bioavailability of 5-azacytidine because of inactivation by cytidine deaminase may limit the expansion of epigenetic therapy into Phase III trials. To mitigate these barriers, an aerosol of 5-azacytidine was generated and characterised. Methods: The effect of aerosol vs systemic delivery of 5-azacytidine on tumour burden and molecular response of engrafted lung tumours in the nude rat was compared. Results: Pharmacokinetics revealed major improvement in the half-life of 5-azacytidine in lung tissue with aerosol delivery. Aerosolised 5-azacytidine significantly reduced lung tumour burden and induced global demethylation of the epigenome at one-third of the comparable effective systemic dose. High commonality for demethylation of genes was seen in tumours sampled throughout lung lobes and across treated animals receiving the aerosolised drug. Conclusion: Collectively, these findings show that aerosolised 5-azacytidine targets the lung, effectively reprogrammes the epigenome of tumours, and is a promising approach to combine with other drugs for treating lung cancer. PMID:24045660

  7. Site-specific volumetric analysis of lung tumour motion

    NASA Astrophysics Data System (ADS)

    Pepin, Eric W.; Wu, Huanmei; Sandison, George A.; Langer, Mark; Shirato, Hiroki

    2010-06-01

    The treatment of lung cancer with radiation therapy is hindered by respiratory motion. Real-time adjustments to compensate for this motion are hampered by mechanical system latencies and imaging-rate restrictions. To better understand tumour motion behaviour for adaptive image-guided radiation therapy of lung cancer, the volume of a tumour's motion space was investigated. Motion data were collected by tracking an implanted fiducial using fluoroscopy at 30 Hz during treatment sessions. A total of 637 treatment fractions from 31 tumours were used in this study. For each fraction, data points collected from three consecutive breathing cycles were used to identify instantaneous tumour location. A convex hull was created over these data points, defining the tumour motion envelope. The study sought a correlation between the tumour location in the lung and the convex hull's volume and shape. It was found that tumours located in the upper apex had smaller motion envelopes (<50 mm3), whereas tumours located near the chest wall or diaphragm had larger envelopes (>70 mm3). Tumours attached to fixed anatomical structures had small motion spaces. Three general shapes described the tumour motion envelopes: 50% of motion envelopes enclosed largely 1D oscillation, 38% enclosed an ellipsoid path, 6% enclosed an arced path and 6% were of hybrid shape. This location-space correlation suggests it may be useful in developing a predictive model, but more work needs to be done to verify it.

  8. Lung flooding enables efficient lung sonography and tumour imaging in human ex vivo and porcine in vivo lung cancer model

    PubMed Central

    2013-01-01

    Background Sonography has become the imaging technique of choice for guiding intraoperative interventions in abdominal surgery. Due to artefacts from residual air content, however, videothoracoscopic and open intraoperative ultrasound-guided thermoablation of lung malignancies are impossible. Lung flooding is a new method that allows complete ultrasound imaging of lungs and their tumours. Methods Fourteen resected tumourous human lung lobes were examined transpleurally with B-mode ultrasound before (in atelectasis) and after lung flooding with isotonic saline solution. In two swine, the left lung was filled with 15 ml/kg isotonic saline solution through the left side of a double-lumen tube. Lung tumours were simulated by transthoracic ultrasound-guided injection of 5 ml of purified bovine serum albumin in glutaraldehyde, centrally into the left lower lung lobe. The rate of tumour detection, the severity of disability caused by residual gas, and sonomorphology of the lungs and tumours were assessed. Results The ex vivo tumour detection rate was 100% in flooded human lung lobes and 43% (6/14) in atelectatic lungs. In all cases of atelectasis, sonographic tumour imaging was impaired by residual gas. Tumours and atelectatic tissue were isoechoic. In 28% of flooded lungs, a little residual gas was observed that did not impair sonographic tumour imaging. In contrast to tumours, flooded lung tissue was hyperechoic, homogeneous, and of fine-grained structure. Because of the bronchial wall three-laminar structure, sonographic differentiation of vessels and bronchi was possible. In all cases, malignant tumours in the flooded lung appeared well-demarcated from the lung parenchyma. Adenocarcinoma, squamous, and large cell carcinomas were hypoechoic. Bronchioloalveolar cell carcinoma was slightly hyperechoic. Transpleural sonography identifies endobronchial tumour growth and bronchial wall destruction. With transthoracic sonography, the flooded animal lung can be completely

  9. Effect of Resection of Lung Tumours on the Steroid Abnormalities in Patients with Lung Cancer

    PubMed Central

    Rao, L. G. S.

    1971-01-01

    The urinary excretion of androsterone, aetiocholanolone, total 17-oxosteroids, and 17-hydroxycorticosteroids (17-OHCS) was measured in 40 patients with lung cancer three days before resection and again 10-15 days after resection of their lung tumours. There was a significant postoperative increase in the excretion of 17-OHCS but a significant decrease in the excretion of androsterone and aetiocholanolone, resulting in an increase of the preoperative abnormalities in steroid excretion in these patients. Since there was no change in steroid excretion towards normal after resection of the lung tumours, it seems that the steroid abnormalities found in lung cancer are not the effect of the presence of the lung tumours. As the excretions of 17-OHCS and 11-deoxy-17-oxosteroids change in opposite directions after resection, it is suggested that a dissociation of factors that control the excretion of these two groups of steroids takes place as a response to surgical stress in patients with lung cancer. PMID:5130212

  10. Towards fluoroscopic respiratory gating for lung tumours without radiopaque markers

    NASA Astrophysics Data System (ADS)

    Berbeco, Ross I.; Mostafavi, Hassan; Sharp, Gregory C.; Jiang, Steve B.

    2005-10-01

    Due to the risk of pneumothorax, many clinicians are reluctant to implant radiopaque markers within patients' lungs for the purpose of radiographic or fluoroscopic tumour localization. We propose a method of gated therapy using fluoroscopic information without the implantation of radiopaque markers. The method presented here does not rely on any external motion signal either. Breathing phase information is found by analysing the fluoroscopic intensity fluctuations in the lung. As the lungs fill/empty, the radiological pathlength through them shortens/lengthens, giving brighter/darker fluoroscopic intensities. The phase information is combined with motion-enhanced template matching to turn the beam on when the tumour is in the desired location. A study based on patient data is presented to demonstrate the feasibility of this procedure. The resulting beam-on pattern is similar to that produced by an external gating system. The only discrepancies occur briefly and at the gate edges.

  11. Metabolic consequences of methotrexate therapy in tumour-bearing rats.

    PubMed

    Rofe, A M; Bourgeois, C S; Washington, J M; Philcox, J C; Coyle, P

    1994-02-01

    The metabolic response of the tumour-bearing host to methotrexate (MTX) therapy was investigated with particular attention to effects resulting from MTX-induced anorexia. Biochemical changes in female Dark Agouti rats bearing mammary adenocarcinomas and treated with MTX (0.5 mg/kg, 2 i.m. injections, 24 h apart) were compared with untreated (CON) tumour-bearing rats, and tumour-bearing rats pair-fed (PF) to the MTX group. MTX treatment halted progression of the tumour (tumour 6% of bodyweight) while the tumour burden doubled in the CON and PF groups. A number of biochemical and haematological changes were specific to MTX treatment and did not result from decreased food intake. MTX treatment was associated with significantly decreased plasma calcium, bilirubin, alkaline phosphatase, aspartate aminotransferase and the total white cell count. Decreases in plasma albumin and total protein concentrations were observed in both MTX and PF rats. Other parameters commonly used to assess renal and liver function were not significantly affected by MTX. MTX reversed the hypoglycaemia, hyperketonaemia and hypertriglyceridaemia induced by tumour-bearing. In contrast, PF rats had an even more pronounced hypoglycaemia and hyperketonaemia than the CON rats. Measurement of glucose uptake in vivo with 2-deoxy[U-14C]-glucose showed that MTX treatment halved the glucose requirement of the tumour (8.2% of bodyweight compared to 12.2% in the control). It is concluded that the potentially adverse effects of MTX treatment on host metabolism are outweighed by the beneficial effects of a reduced metabolic demand resulting from inhibition of tumour progression. PMID:8157287

  12. Tumour ablation: current role in the kidney, lung and bone.

    PubMed

    Gillams, Alice

    2009-01-01

    The last few years have seen a rapid expansion in the use and availability of ablation techniques with hundreds of papers published. Radiofrequency remains the front-runner in terms of cost, ease of set-up, versatility and flexibility but other techniques are catching up. Ablation with cryotherapy and microwave, which were previously only available at open laparotomy due to the large size of the probes, are now readily performed percutaneously, with a predictable reduction in morbidity. Ablation is now accepted as the first line of treatment in patients with limited volume hepatocellular carcinoma who are not candidates for transplantation. There is continuing debate in most other areas but the evidence is increasing for an important role in liver metastases, renal carcinoma, inoperable lung tumours and some bone tumours. PMID:19965298

  13. Spectral and lifetime domain measurements of rat brain tumours

    NASA Astrophysics Data System (ADS)

    Abi Haidar, D.; Leh, B.; Allaoua, K.; Genoux, A.; Siebert, R.; Steffenhagen, M.; Peyrot, D.; Sandeau, N.; Vever-Bizet, C.; Bourg-Heckly, G.; Chebbi, I.; Collado-Hilly, M.

    2012-02-01

    During glioblastoma surgery, delineation of the brain tumour margins remains difficult especially since infiltrated and normal tissues have the same visual appearance. This problematic constitutes our research interest. We developed a fibre-optical fluorescence probe for spectroscopic and time domain measurements. First measurements of endogenous tissue fluorescence were performed on fresh and fixed rat tumour brain slices. Spectral characteristics, fluorescence redox ratios and fluorescence lifetime measurements were analysed. Fluorescence information collected from both, lifetime and spectroscopic experiments, appeared promising for tumour tissue discrimination. Two photon measurements were performed on the same fixed tissue. Different wavelengths are used to acquire two-photon excitation-fluorescence of tumorous and healthy sites.

  14. Endogenous pacemaker activity of rat tumour somatotrophs

    PubMed Central

    Kwiecien, Renata; Robert, Christophe; Cannon, Robert; Vigues, Stephan; Arnoux, Annie; Kordon, Claude; Hammond, Constance

    1998-01-01

    Cells derived from a rat pituitary tumour (GC cell line) that continuously release growth hormone behave as endogenous pacemakers. In simultaneous patch clamp recordings and cytosolic Ca2+ concentration ([Ca2+]i) imaging, they displayed rhythmic action potentials (44.7 ± 2.7 mV, 178 ± 40 ms, 0.30 ± 0.04 Hz) and concomitant [Ca2+]i transients (374 ± 57 nM, 1.0 ± 0.2 s, 0.27 ± 0.03 Hz). Action potentials and [Ca2+]i transients were reversibly blocked by removal of external Ca2+, addition of nifedipine (1 μM) or Ni2+ (40 μM), but were insensitive to TTX (1 μM). An L-type Ca2+ current activated at -33.6 ± 0.4 mV (holding potential (Vh), −40 mV), peaked at -1.8 ± 1.3 mV, was reduced by nifedipine and enhanced by S-(+)-SDZ 202 791. A T/R-type Ca2+ current activated at -41.7 ± 2.7 mV (Vh, -80 or -60 mV), peaked at -9.2 ± 3.0 mV, was reduced by low concentrations of Ni2+ (40 μM) or Cd2+ (10 μM) and was toxin resistant. Parallel experiments revealed the expression of the class E calcium channel α1-subunit mRNA. The K+ channel blockers TEA (25 mM) and charybdotoxin (10–100 nM) enhanced spike amplitude and/or duration. Apamin (100 nM) also strongly reduced the after-spike hyperpolarization. The outward K+ tail current evoked by a depolarizing step that mimicked an action potential reversed at −69.8 ± 0.3 mV, presented two components, lasted 2–3 s and was totally blocked by Cd2+ (400 μM). The slow pacemaker depolarization (3.5 ± 0.4 s) that separated consecutive spikes corresponded to a 2- to 3-fold increase in membrane resistance, was strongly Na+ sensitive but TTX insensitive. Computer simulations showed that pacemaker activity can be reproduced by a minimum of six currents: an L-type Ca2+ current underlies the rising phase of action potentials that are repolarized by a delayed rectifier and Ca2+-activated K+ currents. In between spikes, the decay of Ca2+-activated K+ currents and a persistent inward cationic current depolarize the membrane

  15. TMEM196 acts as a novel functional tumour suppressor inactivated by DNA methylation and is a potential prognostic biomarker in lung cancer

    PubMed Central

    Liu, Wen-bin; Han, Fei; Jiang, Xiao; Chen, Hong-qiang; Zhao, Huan; Liu, Yong; Li, Yong-hong; Huang, Chuanshu; Cao, Jia; Liu, Jin-yi

    2015-01-01

    Epigenetic silencing of tumour suppressors contributes to the development and progression of lung cancer. We recently found that TMEM196 was hypermethylated in lung cancer. This study aimed to clarify its epigenetic regulation, possible roles and clinical significance. TMEM196 methylation correlated with loss of protein expression in chemical-induced rat lung pathologic lesions and human lung cancer tissues and cell lines. 5-aza-2′-deoxycytidine restored TMEM196 expression. Moreover, TMEM196 hypermethylation was detected in 61.2% of primary lung tumours and found to be associated with poor differentiation and pathological stage of lung cancer. Functional studies showed that ectopic re-expression of TMEM196 in lung cancer cells inhibited cell proliferation, clonogenicity, cell motility and tumour formation. However, TMEM196 knockdown increased cell proliferation and inhibited apoptosis and cell-cycle arrest. These effects were associated with upregulation of p21 and Bax, and downregulation of cyclin D1, c-myc, CD44 and β-catenin. Kaplan–Meier survival curves showed that TMEM196 downregulation was significantly associated with shortened survival in lung cancer patients. Multivariate analysis showed that patients with TMEM196 expression had a better overall survival. Our results revealed for the first time that TMEM196 acts as a novel functional tumour suppressor inactivated by DNA methylation and is an independent prognostic factor of lung cancer. PMID:26056045

  16. A soft agar colony assay for Lewis lung tumour and B16 melanoma taken directly from the mouse.

    PubMed Central

    Courtenay, V. D.

    1976-01-01

    A soft agar colony assay has been developed for the B16 mouse melanoma and the Lewis lung tumour. The special features of the technique are the use of a gas phase with 5% O2 instead of air and the addition of rat red blood cells. Single cell suspensions are prepared by trypsinization from the solid tumour and the cells are plated out in 0-3% agar over a layer of 0-5% agar in 30-mm Petri dishes. After 8 to 15 days' incubation in 5% O2, colonies of more than 50 cells are produced. Plating efficiencies of between 30 and 50% are usually obtained. The addition of up to 10(4) heavily irradiated tumour cells gives some further improvement in plating efficiency for the B16 melanoma but not for the Lewis lung tumour. Applications of the technique to measure cell survival in the two tumours after treatment with cytotoxic drugs and radiation are reported. The scatter of experimental points is relatively small, and in comparative experiments good agreement has been obtained with results using in vivo assay techniques. PMID:782495

  17. Synchronized moving aperture radiation therapy (SMART): average tumour trajectory for lung patients

    NASA Astrophysics Data System (ADS)

    Neicu, Toni; Shirato, Hiroki; Seppenwoolde, Yvette; Jiang, Steve B.

    2003-03-01

    Synchronized moving aperture radiation therapy (SMART) is a new technique for treating mobile tumours under development at Massachusetts General Hospital (MGH). The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumour motion induced by respiration. SMART is based on the concept of the average tumour trajectory (ATT) exhibited by a tumour during respiration. During the treatment simulation stage, tumour motion is measured and the ATT is derived. Then, the original IMRT MLC leaf sequence is modified using the ATT to compensate for tumour motion. During treatment, the tumour motion is monitored. The treatment starts when leaf motion and tumour motion are synchronized at a specific breathing phase. The treatment will halt when the tumour drifts away from the ATT and will resume when the synchronization between tumour motion and radiation beam is re-established. In this paper, we present a method to derive the ATT from measured tumour trajectory data. We also investigate the validity of the ATT concept for lung tumours during normal breathing. The lung tumour trajectory data were acquired during actual radiotherapy sessions using a real-time tumour-tracking system. SMART treatment is simulated by assuming that the radiation beam follows the derived ATT and the tumour follows the measured trajectory. In simulation, the treatment starts at exhale phase. The duty cycle of SMART delivery was calculated for various treatment times and gating thresholds, as well as for various exhale phases where the treatment begins. The simulation results show that in the case of free breathing, for 4 out of 11 lung datasets with tumour motion greater than 1 cm from peak to peak, the error in tumour tracking can be controlled to within a couple of millimetres while maintaining a reasonable delivery efficiency. That is to say, without any breath coaching/control, the ATT is a valid concept for some lung

  18. Identification of a common oncofoetal protein in x-ray and chemically induced rat gastrointestinal tumours.

    PubMed Central

    Stevens, R. H.; Cole, D. A.; Cheng, H. F.

    1981-01-01

    An apparently unique circulating common oncofoetal protein has been identified in rat small-bowel, colonic and pancreatic adenocarcinomas. The tumours were induced by ionizing radiation (small bowel), an alkyl hydrocarbon, 1,2-dimethylhydrazine (colon) and a polyaromatic hydrocarbon, 7,12-dimethylbenz[a]anthracene (pancreas). The oncofoetal protein was identified by the use of specific xenogenic antitumour rabbit sera generated to the X-ray-induced neoplasm. In addition, the foetal protein was also found always to occur in the liver and lungs of those animals bearing the chemically induced tumours as well as in their serum. These results suggest the existence of a close relationship at the molecular level in the tumorigenic processes, even though induction is by apparently different mechanisms, for cancers arising in tissue or common embryonic origin. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:6788060

  19. Stereotactic ablative body radiotherapy (SABR) for primary and secondary lung tumours

    PubMed Central

    Gaya, Andrew

    2012-01-01

    Abstract Stereotactic ablative body radiotherapy (SABR) represents a technological breakthrough in radiotherapy technique, with proven benefits to patients in terms of improved tumour control and overall survival. The key components of SABR are described. The current evidence base for SABR for the treatment of primary and secondary lung tumours is appraised, and key ongoing trials are identified. PMID:23023165

  20. A New Model for Inducing Malignant Ovarian Tumours in Rats*

    PubMed Central

    Hilfrich, J.

    1973-01-01

    After the implantation of ovarian tissue into the spleen of gonadectomized female Sprague-Dawley rats (splenic ovary), luteomata and later benign granulosa or granulosa-theca cell tumours develop. Treatment of these rats with 7,12 dimethylbenz(a)anthracene (DMBA), given intravenously, 2 mg/kg body weight weekly, total dosage 40 mg/kg, immediately and especially 25 weeks after implantation of ovarian tissue into the spleen, led to malignant, partially metastasizing granulosa, and in one case theca cell tumours, 16-46 weeks after beginning the carcinogen treatment. No malignant neoplastic growth was seen when diethylnitrosamine (DEN), 20 mg/kg once weekly for life, was injected subcutaneously immediately or 25 weeks after implanting ovarian tissue. Since the normal, non-implanted rat ovary was not affected by DMBA treatment the malignant transformation of splenic ovaries in the respective experimental groups may be related to the increased stimulation by pituitary gonadotrophins and formation of luteomata or beginning granulosa and theca cell proliferations. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9 PMID:4353388

  1. Radiofrequency Ablation of Lung Tumours with the Patient Under Thoracic Epidural Anaesthesia

    SciTech Connect

    Pouliquen, Cassiopee; Kabbani, Youssef Saignac, Pierre; Gekiere, Jean-Pierre; Palussiere, Jean

    2011-02-15

    Radiofrequency ablation of lung tumours is a curative technique that is newly considered being offered to nonsurgical patients. It is of major interest because it enables local destruction of the tumour without surgery and spares healthy parenchyma. However, some patients have previous serious respiratory failure, thus ruling out mechanical ventilation. To operate with the patient under thoracic epidural is an answer to this problem. Our experience shows that the procedure is able to be performed completely without converting to general anaesthesia.

  2. Phantom tumour of the lung in a patient with renal failure misdiagnosed as chest infection

    PubMed Central

    Althomali, Sarah Ali; Almalki, Mazen Mohammed; Mohiuddin, Syed Atif

    2014-01-01

    Phantom or vanishing tumour of the lung is a rare finding on chest radiographs that has been reported secondary to heart failure or chronic kidney disease. It has been described as an interlobular effusion of the transverse or oblique fissure of the right lung. Although it is uncommon, it should always be considered as a differential diagnosis for a radiographic opacity of the right-middle lung zone because it can be easily mistaken for a lung mass or infiltration. We herein present a case involving a patient with chronic kidney disease and a radiographic opacity of the right-middle lung that was diagnosed as a chest infection. The patient did not respond to various antibiotics and showed a poor response to diuretics, the standard treatment for phantom tumour. However, the patient markedly improved after dialysis, and the radiographic chest opacity disappeared. PMID:24943144

  3. Phantom tumour of the lung in a patient with renal failure misdiagnosed as chest infection.

    PubMed

    Althomali, Sarah Ali; Almalki, Mazen Mohammed; Mohiuddin, Syed Atif

    2014-01-01

    Phantom or vanishing tumour of the lung is a rare finding on chest radiographs that has been reported secondary to heart failure or chronic kidney disease. It has been described as an interlobular effusion of the transverse or oblique fissure of the right lung. Although it is uncommon, it should always be considered as a differential diagnosis for a radiographic opacity of the right-middle lung zone because it can be easily mistaken for a lung mass or infiltration. We herein present a case involving a patient with chronic kidney disease and a radiographic opacity of the right-middle lung that was diagnosed as a chest infection. The patient did not respond to various antibiotics and showed a poor response to diuretics, the standard treatment for phantom tumour. However, the patient markedly improved after dialysis, and the radiographic chest opacity disappeared. PMID:24943144

  4. Intra-tumour signalling entropy determines clinical outcome in breast and lung cancer.

    PubMed

    Banerji, Christopher R S; Severini, Simone; Caldas, Carlos; Teschendorff, Andrew E

    2015-03-01

    The cancer stem cell hypothesis, that a small population of tumour cells are responsible for tumorigenesis and cancer progression, is becoming widely accepted and recent evidence has suggested a prognostic and predictive role for such cells. Intra-tumour heterogeneity, the diversity of the cancer cell population within the tumour of an individual patient, is related to cancer stem cells and is also considered a potential prognostic indicator in oncology. The measurement of cancer stem cell abundance and intra-tumour heterogeneity in a clinically relevant manner however, currently presents a challenge. Here we propose signalling entropy, a measure of signalling pathway promiscuity derived from a sample's genome-wide gene expression profile, as an estimate of the stemness of a tumour sample. By considering over 500 mixtures of diverse cellular expression profiles, we reveal that signalling entropy also associates with intra-tumour heterogeneity. By analysing 3668 breast cancer and 1692 lung adenocarcinoma samples, we further demonstrate that signalling entropy correlates negatively with survival, outperforming leading clinical gene expression based prognostic tools. Signalling entropy is found to be a general prognostic measure, valid in different breast cancer clinical subgroups, as well as within stage I lung adenocarcinoma. We find that its prognostic power is driven by genes involved in cancer stem cells and treatment resistance. In summary, by approximating both stemness and intra-tumour heterogeneity, signalling entropy provides a powerful prognostic measure across different epithelial cancers. PMID:25793737

  5. Intra-Tumour Signalling Entropy Determines Clinical Outcome in Breast and Lung Cancer

    PubMed Central

    Banerji, Christopher R. S.; Severini, Simone; Caldas, Carlos; Teschendorff, Andrew E.

    2015-01-01

    The cancer stem cell hypothesis, that a small population of tumour cells are responsible for tumorigenesis and cancer progression, is becoming widely accepted and recent evidence has suggested a prognostic and predictive role for such cells. Intra-tumour heterogeneity, the diversity of the cancer cell population within the tumour of an individual patient, is related to cancer stem cells and is also considered a potential prognostic indicator in oncology. The measurement of cancer stem cell abundance and intra-tumour heterogeneity in a clinically relevant manner however, currently presents a challenge. Here we propose signalling entropy, a measure of signalling pathway promiscuity derived from a sample’s genome-wide gene expression profile, as an estimate of the stemness of a tumour sample. By considering over 500 mixtures of diverse cellular expression profiles, we reveal that signalling entropy also associates with intra-tumour heterogeneity. By analysing 3668 breast cancer and 1692 lung adenocarcinoma samples, we further demonstrate that signalling entropy correlates negatively with survival, outperforming leading clinical gene expression based prognostic tools. Signalling entropy is found to be a general prognostic measure, valid in different breast cancer clinical subgroups, as well as within stage I lung adenocarcinoma. We find that its prognostic power is driven by genes involved in cancer stem cells and treatment resistance. In summary, by approximating both stemness and intra-tumour heterogeneity, signalling entropy provides a powerful prognostic measure across different epithelial cancers. PMID:25793737

  6. Lungs and subcutaneous metastases from a solitary fibrous tumour of the pancreas

    PubMed Central

    Tesfom, Meron F.; Caldwell, Carole; Hanasoge, Raveesh; Bramhall, Simon R.

    2015-01-01

    Solitary fibrous tumour is an uncommon mesenchymal neoplasm previously thought to only originate from the pleura; it is seen only rarely in an extra-pleural location. We report the first case of pancreatic solitary fibrous tumour in an 87-year-old woman that has metastasized to the lungs and subcutaneous tissue. We have identified a solitary mass excised from the groin region, which is positive for CD34 and vimentic marker with high proliferative rate, nuclear atypia and cellular necrosis. Imaging studies confirmed a slow-growing solitary mass in the uncinate lobe of the pancreas with evidence of lung metastasis. PMID:26612261

  7. DT-diaphorase and cytochrome B5 reductase in human lung and breast tumours.

    PubMed Central

    Marín, A.; López de Cerain, A.; Hamilton, E.; Lewis, A. D.; Martinez-Peñuela, J. M.; Idoate, M. A.; Bello, J.

    1997-01-01

    The level of expression of enzymes that can activate or detoxify bioreductive agents within tumours has emerged as an important feature in the development of these anti-tumour compounds. The levels of two such reductase enzymes have been determined in 19 human non-small-cell lung tumours and 20 human breast tumours, together with the corresponding normal tissue. DT-diaphorase (DTD) enzyme levels (both expression and activity) were determined in these samples. Cytochrome b5 reductase (Cytb5R) activity was also assessed. With the exception of six patients, the levels of DTD activity were below 45 nmol min(-1) mg(-1) in the normal tissues assayed. DTD tumour activity was extremely variable, distinguishing two different groups of patients, one with DTD activity above 79 nmol min(-1) mg(-1) and the other with levels that were in the same range as found for the normal tissues. In 53% of the lung tumour samples, DTD activity was increased with respect to the normal tissue by a factor of 2.4-90.3 (range 79-965 nmol min[-1] mg[-1]). In 70% of the breast tumour samples, DTD activity was over 80 nmol min(-1) mg(-1) (range 83-267 nmol min[-1] mg[-1]). DTD expression measured by Western blot correlated well with the enzyme activity measured in both tumour and normal tissues. The levels of the other reductase enzyme, Cytb5R, were not as variable as those for DTD, being in the same range in both tumour and normal tissue or slightly higher in the normal tissues. The heterogeneous nature of DTD activity and expression reinforces the need to measure enzyme levels in individual patients before therapy with DTD-activated bioreductive drugs. Images Figure 1 Figure 2 PMID:9328153

  8. NMR metabolomics of human lung tumours reveals distinct metabolic signatures for adenocarcinoma and squamous cell carcinoma.

    PubMed

    Rocha, Cláudia M; Barros, António S; Goodfellow, Brian J; Carreira, Isabel M; Gomes, Ana; Sousa, Vitor; Bernardo, João; Carvalho, Lina; Gil, Ana M; Duarte, Iola F

    2015-01-01

    Lung tumour subtyping, particularly the distinction between adenocarcinoma (AdC) and squamous cell carcinoma (SqCC), is a critical diagnostic requirement. In this work, the metabolic signatures of lung carcinomas were investigated through (1)H NMR metabolomics, with a view to provide additional criteria for improved diagnosis and treatment planning. High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (NMR) spectroscopy was used to analyse matched tumour and adjacent control tissues from 56 patients undergoing surgical excision of primary lung carcinomas. Multivariate modeling allowed tumour and control tissues to be discriminated with high accuracy (97% classification rate), mainly due to significant differences in the levels of 13 metabolites. Notably, the magnitude of those differences were clearly distinct for AdC and SqCC: major alterations in AdC were related to phospholipid metabolism (increased phosphocholine, glycerophosphocholine and phosphoethanolamine, together with decreased acetate) and protein catabolism (increased peptide moieties), whereas SqCC had stronger glycolytic and glutaminolytic profiles (negatively correlated variations in glucose and lactate and positively correlated increases in glutamate and alanine). Other tumour metabolic features were increased creatine, glutathione, taurine and uridine nucleotides, the first two being especially prominent in SqCC and the latter in AdC. Furthermore, multivariate analysis of AdC and SqCC profiles allowed their discrimination with a 94% classification rate, thus showing great potential for aiding lung tumours subtyping. Overall, this study has provided new, clear evidence of distinct metabolic signatures for lung AdC and SqCC, which can potentially impact on diagnosis and provide important leads for future research on novel therapeutic targets or imaging tracers. PMID:25368033

  9. Beneficial role of overexpression of TFPI-2 on tumour progression in human small cell lung cancer☆

    PubMed Central

    Lavergne, Marion; Jourdan, Marie-Lise; Blechet, Claire; Guyetant, Serge; Pape, Alain Le; Heuze-Vourc’h, Nathalie; Courty, Yves; Lerondel, Stephanie; Sobilo, Julien; Iochmann, Sophie; Reverdiau, Pascale

    2013-01-01

    Tissue factor pathway inhibitor-2 (TFPI-2) is a potent inhibitor of plasmin, a protease which is involved in tumour progression by activating (MMPs). This therefore makes TFPI-2 a potential inhibitor of invasiveness and the development of metastases. In this study, low levels of TFPI-2 expression were found in 65% of patients with small cell lung cancer (SCLC), the most aggressive type of lung cancer. To study the impact of TFPI-2 in tumour progression, TFPI-2 was overexpressed in NCI-H209 SCLC cells which were orthotopically implanted in nude mice. Investigations showed that TFPI-2 inhibited lung tumour growth. Such inhibition could be explained in vitro by a decrease in tumour cell viability, blockade of G1/S phase cell cycle transition and an increase in apoptosis shown in NCI-H209 cells expressing TFPI-2. We also demonstrated that TFPI-2 upregulation in NCI-H209 cells decreased MMP expression, particularly by downregulating MMP-1 and MMP-3. Moreover, TFPI-2 inhibited phosphorylation of the MAPK signalling pathway proteins involved in the induction of MMP transcripts, among which MMP-1 was predominant in SCLC tissues and was inversely expressed with TFPI-2 in 35% of cases. These results suggest that downregulation of TFPI-2 expression could favour the development of SCLC. PMID:23905012

  10. Codon 12 Ki-ras mutation in non-small-cell lung cancer: comparative evaluation in tumoural and non-tumoural lung.

    PubMed Central

    Urban, T.; Ricci, S.; Lacave, R.; Antoine, M.; Kambouchner, M.; Capron, F.; Bernaudin, J. F.

    1996-01-01

    Ki-ras activation by point mutation on codon 12 has been reported in non-small-cell lung carcinomas and in various models of experimental lung tumours induced by chemical carcinogens. The cellular targets for carcinogenic compounds of tobacco smoke are usually considered to be the cells of the bronchial mucosa or alveolar epithelium. However, little is known about preneoplastic events in bronchopulmonary carcinogenesis. The hypothesis of the presence of widespread target cells containing Ki-ras mutation was investigated by evaluating concurrent neoplastic and non-neoplastic bronchial and alveolar samples from 51 patients with non-small-cell lung carcinomas. The polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method used can detect one cell with a mutation on codon 12 among 10(2) normal cells. In tumour samples, a mutation was detected in 20% of adenocarcinomas, but in none of the adenosquamous or squamous cell carcinomas. No mutation was detected in the non-neoplastic bronchial or parenchymal samples. When using an enriched PCR-RFLP method detecting one mutated allele among 10(3) normal alleles a mutation was detected in 23% of adenocarcinomas. In conclusion, Ki-ras activation by mutation on codon 12 was not observed in non-neoplastic bronchial or parenchymal tissues in patients with bronchopulmonary cancers and does not appear to be a genetic event present in non-malignant epithelial target cells exposed to tobacco smoke. Images Figure 1 Figure 2 Figure 3 PMID:8855973

  11. Modulation of lung liquid clearance by isoproterenol in rat lungs.

    PubMed

    Saldías, F; Lecuona, E; Friedman, E; Barnard, M L; Ridge, K M; Sznajder, J I

    1998-05-01

    beta-Adrenergic agonists have been reported to increase lung liquid clearance by stimulating active Na+ transport across the alveolar epithelium. We studied mechanisms by which beta-adrenergic isoproterenol (Iso) increases lung liquid clearance in isolated perfused fluid-filled rat lungs. Iso perfused through the pulmonary circulation at concentrations of 10(-4) to 10(-8) M increased lung liquid clearance compared with that of control lungs (P < 0.01). The increase in lung liquid clearance was inhibited by the beta-antagonist propranolol (10(-5) M), the Na(+)-channel blocker amiloride (10(-4) M), and the antagonist of Na-K-ATPase, ouabain (5 x 10(-4) M). Colchicine, which inhibits cell microtubular transport of ion-transporting proteins to the plasma membrane, blocked the stimulatory effects of Iso on active Na+ transport, whereas the isomer lumicolchicine, which does not affect cell microtubular transport, did not inhibit Na+ transport. In parallel with these changes, the Na-K-ATPase alpha 1-subunit protein abundance and activity increased in alveolar type II cells stimulated by 10(-6) M Iso. Colchicine blocked the stimulatory effect of Iso and the recruitment of Na-K-ATPase alpha 1-protein to the basolateral membrane of alveolar type II cells. Accordingly, Iso increased active Na+ transport and lung liquid clearance by stimulation of beta-adrenergic receptors and probably by upregulation of apical Na+ channels and basolateral Na-K-ATPase mechanisms. Recruitment from intracellular pools and microtubular transport of Na+ pumps to the plasma membrane participate in beta-adrenergic stimulation of lung liquid clearance in rat lungs. PMID:9612284

  12. Quantifying the effect of respiratory motion on lung tumour dosimetry with the aid of a breathing phantom with deforming lungs

    NASA Astrophysics Data System (ADS)

    Nioutsikou, Elena; Symonds-Tayler, J. Richard N.; Bedford, James L.; Webb, Steve

    2006-07-01

    The contribution of organ and tumour motion to the degradation of planned dose distributions during radiotherapy to the breathing lung has been experimentally investigated and quantified. An anthropomorphic, tissue-equivalent breathing phantom with deformable lungs has been built, in which the lung tumour can be driven in any arbitrary 3D trajectory. The trajectory is programmed into a motion controller connected to a high-precision moving platform that is connected to the tumour. The motion controller is connected to the accelerator's dose counter and the speed of motion is scaled to the dose rate. This ensures consistent delivery despite variation in either the dose rate or inter-segment timing. For this study, the phantom was made to breathe by a set of periodic equations representing respiratory motion by an asymmetric, trigonometric function. Several motion amplitudes were selected to be applied in the primary axis of motion. Five three-dimensional, geometrically conformal (3DCRT) fractions with different starting phases (spaced uniformly in the breathing cycle) were delivered to the phantom and compared to a delivery where the phantom was static at the end-expiration position. A set of intensity-modulated radiotherapy plans (IMRT) was subsequently delivered in the same manner. Bigger amplitudes of motion resulted in a higher degree of dose blurring. Severe underdosages were observed when deliberately selecting the PTV wrongly, their extent being correlated with the degree of margin error. IMRT motion-averaged dose distributions exhibited areas of high dose in the gross tumour volume (GTV) which were not present in the static irradiations, arising from booster segments that the optimizer was creating to achieve planning target volume (PTV) homogeneity during the inverse-planning process. 3DCRT, on the other hand, did not demonstrate such effects. It has been concluded that care should be taken to control the delivered fluence when delivering IMRT to the

  13. Cyclopentenylcytosine does not enhance cisplatin-induced radiosensitization in human lung tumour cells

    PubMed Central

    RODERMOND, HANS M.; CATE, ROSEMARIE TEN; HAVEMAN, JAAP; VAN KUILENBURG, ANDRÉ; MEDEMA, JAN PAUL; VAN BREE, CHRIS; FRANKEN, NICOLAAS A.P.

    2010-01-01

    The search for agents that enhance the effect of ionizing radiation has been an object of study for decades. In this study, the sensitizing properties of cyclopentenylcytosine (CPEC) on radiation and cisplatin-induced radiosensitization in human squamous lung carcinoma cells were investigated. Human lung tumour SW-1573 cells (SWp, parental; SWg, gemcitabine-resistant) were incubated with CPEC and cisplatin and subsequently irradiated with different doses of γ-rays. Clonogenic survival was determined to measure the effectiveness of the treatments. CPEC (1 or 2 μM) treatment for 4 h decreased the plating efficiency to 75 and 50% in SWp and SWg cells, respectively. In the SWg cells, 0.1 and 1 μM CPEC for 4 h enhanced the cell killing effect of cisplatin. However, an increase was not noted in the SWp cells. Due to the moderate toxicity of 1 μM for 4 h, this CPEC dose was used in the radiosensitization experiments. However, CPEC neither radiosensitized the lung tumour cells nor enhanced the radiosensitizing effect of cisplatin. A 2-h incubation with 4 μM cisplatin also decreased the plating efficiency to 75–80% in the two cell lines. Using this cisplatin dose, radiosensitization was obtained in the two cell lines. Although cisplatin treatment clearly radiosensitized the lung tumour cells, CPEC treatment did not. Cisplatin-induced radiosensitization was also not enhanced by CPEC. PMID:22966339

  14. Body protein and lipid deficit in tumour-bearing rats in relation to age.

    PubMed Central

    Oudart, H.; Heitz, A.; Bnouham, M.; Malan, A.; Le Maho, Y.

    1993-01-01

    Cancer cachexia is among the most dramatic situations of depletion in body energy reserves. To ascertain whether the pattern of body composition alteration during tumour development is influenced by aging as in uncomplicated starvation, we compared the difference of body composition between Yoshida sarcoma bearing rats and young (200 g, 7 weeks) and adult (400 g, 13 weeks) control rats. After the same duration of tumour bearing, mass and composition of tumours were similar in adult and young rats, indicating that they are independent of host age. Food intake decreased to a remarkably similar value in both young and adults. Body water content was elevated in hosts of both ages. The relative deficit of body lipid vs controls was similar for both, the absolute lipid deficit being therefore larger in adult than in young tumour-bearing rats (14.3 +/- 4.4 g vs 6.8 +/- 0.9 g; P < 0.01). In contrast, there was a relatively larger deficit of body protein in young rats. Paradoxically, these rats still maintained a positive nitrogen balance whereas this balance was negative in adult tumour-bearing rats. In conclusion, as previously shown in uncomplicated undernutrition, the anorexia induced by Yoshida sarcoma development is still associated with some protein accretion in young rats whereas cachexia develops in adults. PMID:8217604

  15. Bronchopleural Fistula After Radiofrequency Ablation of Lung Tumours

    SciTech Connect

    Cannella, Mathieu; Cornelis, Francois; Descat, Edouard; Ferron, Stephane; Carteret, Thibault; Castagnede, Hugues; Palussiere, Jean

    2011-02-15

    The present article describes two cases of bronchopleural fistula (BPF) occurring after radiofrequency ablation of lung tumors. Both procedures were carried out using expandable multitined electrodes, with no coagulation of the needle track. After both ablations, ground-glass opacities encompassed the nodules and abutted the visceral pleura. The first patient had a delayed pneumothorax, and the second had a recurrent pneumothorax. Both cases of BPF were diagnosed on follow-up computed tomography chest scans (i.e., visibility of a distinct channel between the lung or a peripheral bronchus and the pleura) and were successfully treated with chest tubes alone. Our goal is to highlight the fact that BPF can occur without needle-track coagulation and to suggest that minimally invasive treatment is sufficient to cure BPFs of this specific origin.

  16. Combined Micro-PET/Micro-CT Imaging of Lung Tumours in SPC-raf and SPC-myc Transgenic Mice

    PubMed Central

    Rodt, Thomas; Luepke, Matthias; Boehm, Claudia; Hueper, Katja; Halter, Roman; Glage, Silke; Hoy, Ludwig; Wacker, Frank; Borlak, Juergen; von Falck, Christian

    2012-01-01

    Introduction SPC-raf and SPC-myc transgenic mice develop disseminated and circumscribed lung adenocarcinoma respectively, allowing for assessment of carcinogenesis and treatment strategies. The purpose of this study was to investigate the technical feasibility, the correlation of initial findings to histology and the administered radiation dose of combined micro-PET/micro-CT in these animal models. Material and Methods 14 C57BL/6 mice (4 nontransgenic, 4 SPC-raf transgenic, 6 SPC-myc transgenic) were examined using micro-CT and 18F-Fluoro-deoxyglucose micro-PET in-vivo. Micro-PET data was corrected for random events and scatter prior to reconstruction with a 3D-FORE/2D-OSEM iterative algorithm. Rigid micro-PET/micro-CT registration was performed. Tumour-to-non-tumour ratios were calculated for different lung regions and focal lesions. Diffuse tumour growth was quantified using a semiautomated micro-CT segmentation routine reported earlier. Regional histologic tumour load was assessed using a 4-point rating scale. Gamma radiation dose was determined using thermoluminescence dosimeters. Results Micro-CT allowed visualisation of diffuse and circumscribed tumours in SPC-raf and SPC-myc transgenic animals along with morphology, while micro-PET provided information on metabolism, but lacked morphologic detail. Mean tumour-to-non-tumour ratio was 2.47 for circumscribed lesions. No significant correlation could be shown between histological tumour load and tumour-to-nontumour ratio for diffuse tumours in SPC-raf transgenic animals. Calculation of the expected dose based on gamma dosimetry yielded approximately 140 mGy/micro-PET examination additional to approximately 200 mGy due to micro-CT. Conclusions Combined micro-PET/micro-CT imaging allows for in-vivo assessment of lung tumours in SPC-raf and SPC-myc transgenic mice. The technique has potential for the evaluation of carcinogenesis and treatment strategies in circumscribed lung tumours. PMID:23028537

  17. Acute vascular response to cediranib treatment in human non-small-cell lung cancer xenografts with different tumour stromal architecture

    PubMed Central

    Jiang, Yanyan; Allen, Danny; Kersemans, Veerle; Devery, Aoife M.; Bokobza, Sivan M.; Smart, Sean; Ryan, Anderson J.

    2015-01-01

    Objectives Tumours can be categorised based on their stromal architecture into tumour vessel and stromal vessel phenotypes, and the phenotypes have been suggested to define tumour response to chronic treatment with a VEGFR2 antibody. However, it is unclear whether the vascular phenotypes of tumours associate with acute vascular response to VEGFR tyrosine kinase inhibitors (TKI), or whether the early changes in vascular function are associated with subsequent changes in tumour size. This study was sought to address these questions by using xenograft models of human non-small cell lung cancer (NSCLC) representing stromal vessel phenotype (Calu-3) and tumour vessel phenotype (Calu-6), respectively. Methods For dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), nude mice bearing established Calu-3 or Calu-6 xenografts were treated with a potent pan-VEGFR TKI, cediranib (6 mg/kg), at 0 h and 22 h. DCE-MRI was performed 2 h before the first dose and 2 h after the second dose of cediranib to examine acute changes in tumour vessel perfusion. Tumours were harvested for hypoxia detection by CA9 immunohistochemistry. For tumour growth study, mice carrying established Calu-3 or Calu-6 tumours were treated with cediranib once daily for 5 days. Results Twenty-four hours after cediranib administration, the perfusion of Calu-3 tumours was markedly reduced, with a significant increase in hypoxia. In contrast, neither perfusion nor hypoxia was significantly affected in Calu-6 tumours. Tumour regressions were induced in Calu-3 xenografts, but not in Calu-6 xenografts, although there was a trend towards tumour growth inhibition after 5 days of cediranib treatment. Conclusion These findings suggest that tumour stromal architecture may associate with acute tumour vascular response to VEGFR TKI, and this acute tumour vascular response may be a promising early predictive marker of response to VEGFR TKI in NSCLC. PMID:26323213

  18. Assessment of tumour viability in human lung cancer xenografts with texture-based image analysis

    PubMed Central

    Turkki, Riku; Linder, Nina; Holopainen, Tanja; Wang, Yinhai; Grote, Anne; Lundin, Mikael; Alitalo, Kari; Lundin, Johan

    2015-01-01

    Aims To build and evaluate an automated method for assessing tumour viability in histological tissue samples using texture features and supervised learning. Methods H&E-stained sections (n=56) of human non-small cell lung adenocarcinoma xenografts were digitised with a whole-slide scanner. A novel image analysis method based on local binary patterns and a support vector machine classifier was trained with a set of sample regions (n=177) extracted from the whole-slide images and tested with another set of images (n=494). The extracted regions, or single-tissue entity images, were chosen to represent as pure as possible examples of three morphological tissue entities: viable tumour tissue, non-viable tumour tissue and mouse host tissue. Results An agreement of 94.5% (area under the curve=0.995, kappa=0.90) was achieved to classify the single-tissue entity images in the test set (n=494) into the viable tumour and non-viable tumour tissue categories. The algorithm assigned 250 of the 252 non-viable and 219 of the 242 of viable sample regions to the correct categories, respectively. This corresponds to a sensitivity of 90.5% and specificity of 99.2%. Conclusions The proposed image analysis-based tumour viability assessment resulted in a high agreement with expert annotations. By providing extraction of detailed information of the tumour microenvironment, the automated method can be used in preclinical research settings. The method could also have implications in cancer diagnostics, cancer outcome prognostics and prediction. PMID:26021331

  19. Transient dehydration of lungs in tail-suspended rats

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Steskal, J.; Morey-Holton, E. R.

    1985-01-01

    The fluid balance in the lungs of rats exposed to head-down tilt is examined. Six Munich-Wister rats were suspended for 7 days and 10 Sprague-Dawley rats for 14 days using the technique of Morey (1979). The water contents of the lungs of the suspended and a control group are calculated and compared. The data reveal that the two-days suspended rats had dehydrated lungs; however, the lungs of the 14-day suspended and control group rats were similar. It is noted that the dehydration in the 2-day suspended rats is caused by general dehydration not the head-tilt position.

  20. Association of long lasting unsurmountable histamine H2 blockade and gastric carcinoid tumours in the rat.

    PubMed Central

    Poynter, D; Pick, C R; Harcourt, R A; Selway, S A; Ainge, G; Harman, I W; Spurling, N W; Fluck, P A; Cook, J L

    1985-01-01

    The oral administration of loxtidine, a potent histamine H2-antagonist, to a total of 378 rats at doses of 50, 185, or 685 mg/kg/day for 116 weeks resulted in the late formation of carcinoid tumours of the gastric fundus. The first such tumour was detected after 712 days of treatment. There was no dose related response; 11 rats at the low level of treatment were affected, 12 at the intermediate and 11 at the high. Twenty seven females but only seven males were affected. No gastric tumours were found in the 228 controls. There is no evidence that loxtidine acts as a direct carcinogen and it is suggested that the tumours were the result of prolonged achlorhydria produced by a potent unsurmountable histamine H2 receptor antagonist. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 11 Fig. 12 PMID:2867954

  1. Bone-marrow-derived mesenchymal stem cells inhibit gastric aspiration lung injury and inflammation in rats.

    PubMed

    Zhou, Jing; Jiang, Liyan; Long, Xuan; Fu, Cuiping; Wang, Xiangdong; Wu, Xiaodan; Liu, Zilong; Zhu, Fen; Shi, Jindong; Li, Shanqun

    2016-09-01

    Gastric aspiration lung injury is one of the most common clinical events. This study investigated the effects of bone-marrow-derived mesenchymal stem cells (BMSCs) on combined acid plus small non-acidified particle (CASP)-induced aspiration lung injury. Enhanced green fluorescent protein (EGFP(+) ) or EGFP(-) BMSCs or 15d-PGJ2 were injected via the tail vein into rats immediately after CASP-induced aspiration lung injury. Pathological changes in lung tissues, blood gas analysis, the wet/dry weight ratio (W/D) of the lung, levels of total proteins and number of total cells and neutrophils in bronchoalveolar lavage fluid (BALF) were determined. The cytokine levels were measured using ELISA. Protein expression was determined by Western blot. Bone-marrow-derived mesenchymal stem cells treatment significantly reduced alveolar oedema, exudation and lung inflammation; increased the arterial partial pressure of oxygen; and decreased the W/D of the lung, the levels of total proteins and the number of total cells and neutrophils in BALF in the rats with CASP-induced lung injury. Bone-marrow-derived mesenchymal stem cells treatment decreased the levels of tumour necrosis factor-α and Cytokine-induced neutrophil chemoattractant (CINC)-1 and the expression of p-p65 and increased the levels of interleukin-10 and 15d-PGJ2 and the expression of peroxisome proliferator-activated receptor (PPAR)-γ in the lung tissue in CASP-induced rats. Tumour necrosis factor-α stimulated BMSCs to secrete 15d-PGJ2 . A tracking experiment showed that EGFP(+) BMSCs were able to migrate to local lung tissues. Treatment with 15d-PGJ2 also significantly inhibited CASP-induced lung inflammation and the production of pro-inflammatory cytokines. Our results show that BMSCs can protect lung tissues from gastric aspiration injury and inhibit lung inflammation in rats. A beneficial effect might be achieved through BMSC-derived 15d-PGJ2 activation of the PPAR-γ receptor, reducing the production of

  2. Building motion models of lung tumours from cone-beam CT for radiotherapy applications.

    PubMed

    Martin, James; McClelland, Jamie; Yip, Connie; Thomas, Christopher; Hartill, Clare; Ahmad, Shahreen; O'Brien, Richard; Meir, Ivan; Landau, David; Hawkes, David

    2013-03-21

    A method is presented to build a surrogate-driven motion model of a lung tumour from a cone-beam CT scan, which does not require markers. By monitoring an external surrogate in real time, it is envisaged that the motion model be used to drive gated or tracked treatments. The motion model would be built immediately before each fraction of treatment and can account for inter-fraction variation. The method could also provide a better assessment of tumour shape and motion prior to delivery of each fraction of stereotactic ablative radiotherapy. The two-step method involves enhancing the tumour region in the projections, and then fitting the surrogate-driven motion model. On simulated data, the mean absolute error was reduced to 1 mm. For patient data, errors were determined by comparing estimated and clinically identified tumour positions in the projections, scaled to mm at the isocentre. Averaged over all used scans, the mean absolute error was under 2.5 mm in superior-inferior and transverse directions. PMID:23442367

  3. Neutron computed tomography of rat lungs.

    PubMed

    Metzke, R W; Runck, H; Stahl, C A; Schillinger, B; Calzada, E; Mühlbauer, M; Schulz, M; Schneider, M; Priebe, H-J; Wall, W A; Guttmann, J

    2011-01-01

    Using conventional methods, three-dimensional imaging of the lung is challenging because of the low contrast between air and tissue and the large differences in dimensions between various pulmonary structures. The small distal airway structures and the high air-to-tissue ratio of lung tissue require an imaging technique which reliably discriminates between air and water. The objective of this study was to assess whether neutron computed tomography would satisfy such a requirement. This method utilizes the unique characteristic of neutrons of directly interacting with the atomic nucleus rather than being scattered by the atomic shell. Neutron computed tomography was tested in rats and allowed differentiation of larger lung structures (e.g., lobes) and distal airways. Airways could be identified reliably down to the sixth bronchial generation, in some cases even down to the tenth generation. The lung could be stabilized for sufficiently long exposure times to achieve an image resolution of 50-60 µm, which is the current physical resolution limit of the neutron computed tomography facility. Neutron computed tomography allowed excellent lung imaging without the need for additional tissue preparation or contrast media. The enhanced structural resolution obtained by applying this new research technique may improve understanding of lung physiology and respiratory therapy. PMID:21119223

  4. Tumourigenic non-small-cell lung cancer mesenchymal circulating tumour cells: a clinical case study

    PubMed Central

    Morrow, C. J.; Trapani, F.; Metcalf, R. L.; Bertolini, G.; Hodgkinson, C. L.; Khandelwal, G.; Kelly, P.; Galvin, M.; Carter, L.; Simpson, K. L.; Williamson, S.; Wirth, C.; Simms, N.; Frankliln, L.; Frese, K. K.; Rothwell, D. G.; Nonaka, D.; Miller, C. J.; Brady, G.; Blackhall, F. H.; Dive, C.

    2016-01-01

    Background Over the past decade, numerous reports describe the generation and increasing utility of non-small-cell lung cancer (NSCLC) patient-derived xenografts (PDX) from tissue biopsies. While PDX have proven useful for genetic profiling and preclinical drug testing, the requirement of a tissue biopsy limits the available patient population, particularly those with advanced oligometastatic disease. Conversely, ‘liquid biopsies’ such as circulating tumour cells (CTCs) are minimally invasive and easier to obtain. Here, we present a clinical case study of a NSCLC patient with advanced metastatic disease, a never smoker whose primary tumour was EGFR and ALK wild-type. We demonstrate for the first time, tumorigenicity of their CTCs to generate a patient CTC-derived eXplant (CDX). Patients and methods CTCs were enriched at diagnosis and again 2 months later during disease progression from 10 ml blood from a 48-year-old NSCLC patient and implanted into immunocompromised mice. Resultant tumours were morphologically, immunohistochemically, and genetically compared with the donor patient's diagnostic specimen. Mice were treated with cisplatin and pemetrexed to assess preclinical efficacy of the chemotherapy regimen given to the donor patient. Results The NSCLC CDX expressed lung lineage markers TTF1 and CK7 and was unresponsive to cisplatin and pemetrexed. Examination of blood samples matched to that used for CDX generation revealed absence of CTCs using the CellSearch EpCAM-dependent platform, whereas size-based CTC enrichment revealed abundant heterogeneous CTCs of which ∼80% were mesenchymal marker vimentin positive. Molecular analysis of the CDX, mesenchymal and epithelial CTCs revealed a common somatic mutation confirming tumour origin and showed CDX RNA and protein profiles consistent with the predominantly mesenchymal phenotype. Conclusions This study shows that the absence of NSCLC CTCs detected by CellSearch (EpCAM+) does not preclude CDX generation

  5. Automated lung segmentation of low resolution CT scans of rats

    NASA Astrophysics Data System (ADS)

    Rizzo, Benjamin M.; Haworth, Steven T.; Clough, Anne V.

    2014-03-01

    Dual modality micro-CT and SPECT imaging can play an important role in preclinical studies designed to investigate mechanisms, progression, and therapies for acute lung injury in rats. SPECT imaging involves examining the uptake of radiopharmaceuticals within the lung, with the hypothesis that uptake is sensitive to the health or disease status of the lung tissue. Methods of quantifying lung uptake and comparison of right and left lung uptake generally begin with identifying and segmenting the lung region within the 3D reconstructed SPECT volume. However, identification of the lung boundaries and the fissure between the left and right lung is not always possible from the SPECT images directly since the radiopharmaceutical may be taken up by other surrounding tissues. Thus, our SPECT protocol begins with a fast CT scan, the lung boundaries are identified from the CT volume, and the CT region is coregistered with the SPECT volume to obtain the SPECT lung region. Segmenting rat lungs within the CT volume is particularly challenging due to the relatively low resolution of the images and the rat's unique anatomy. Thus, we have developed an automated segmentation algorithm for low resolution micro-CT scans that utilizes depth maps to detect fissures on the surface of the lung volume. The fissure's surface location is in turn used to interpolate the fissure throughout the lung volume. Results indicate that the segmentation method results in left and right lung regions consistent with rat lung anatomy.

  6. Immunological screening of a glycoprotein antigen expressed by Zajdela ascites hepatoma cells on normal rat tissues and tumour cells.

    PubMed

    Nato, F; Goulut, C; Mirshahi, M; Bourrillon, R

    1991-10-01

    Expression of the glycoprotein MII2 antigen originally identified in Zajdela ascites hepatoma cells was investigated in several normal rat tissues and in more or less differentiated tumours using biochemical and immunological approaches. SDS-polyacrylamide gel electrophoresis followed by fluorography or immunoblotting with an antiserum raised against the purified MII2 antigen revealed that this antigen was absent from normal liver cells. ELISA assays, indirect immunofluorescence and immunoprecipitation experiments using the same antiserum showed that this glycoprotein was not expressed in various normal tissues such as liver, spleen, lung, pancreas, intestine and stomach, but it was unexpectedly detected in kidney and thymic tissues. However, the molecular weight of the antigens immunoprecipitated from kidney and thymus was lower than the one of MII2 (Mr of 60,000 versus 110,000-160,000 for purified MII2). No staining was observed in embryonic rat liver at 10 and 20 days of development. Moreover, this antigen was present on the surface of Morris hepatoma 7777, another rapidly proliferating and poorly differentiated hepatocellular carcinoma. In contrast, this antigen was not detected on the surface of in vitro Zajdela hepatoma cells (ZHC) or of partially differentiated hepatomas (Faza) which have recovered some hepatic functions. In addition, the MII2 antigen was found on the human non-hepatic HT-29 tumour cell line, under its undifferentiated form (HT-29 G+ subline). The possible relationships between the expression of this antigen and both the malignant transformation process and the differentiation process are discussed. PMID:1656518

  7. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients

    PubMed Central

    Chabon, Jacob J.; Simmons, Andrew D.; Lovejoy, Alexander F.; Esfahani, Mohammad S.; Newman, Aaron M.; Haringsma, Henry J.; Kurtz, David M.; Stehr, Henning; Scherer, Florian; Karlovich, Chris A.; Harding, Thomas C.; Durkin, Kathleen A.; Otterson, Gregory A.; Purcell, W. Thomas; Camidge, D. Ross; Goldman, Jonathan W.; Sequist, Lecia V.; Piotrowska, Zofia; Wakelee, Heather A.; Neal, Joel W.; Alizadeh, Ash A.; Diehn, Maximilian

    2016-01-01

    Circulating tumour DNA (ctDNA) analysis facilitates studies of tumour heterogeneity. Here we employ CAPP-Seq ctDNA analysis to study resistance mechanisms in 43 non-small cell lung cancer (NSCLC) patients treated with the third-generation epidermal growth factor receptor (EGFR) inhibitor rociletinib. We observe multiple resistance mechanisms in 46% of patients after treatment with first-line inhibitors, indicating frequent intra-patient heterogeneity. Rociletinib resistance recurrently involves MET, EGFR, PIK3CA, ERRB2, KRAS and RB1. We describe a novel EGFR L798I mutation and find that EGFR C797S, which arises in ∼33% of patients after osimertinib treatment, occurs in <3% after rociletinib. Increased MET copy number is the most frequent rociletinib resistance mechanism in this cohort and patients with multiple pre-existing mechanisms (T790M and MET) experience inferior responses. Similarly, rociletinib-resistant xenografts develop MET amplification that can be overcome with the MET inhibitor crizotinib. These results underscore the importance of tumour heterogeneity in NSCLC and the utility of ctDNA-based resistance mechanism assessment. PMID:27283993

  8. Circulating tumour DNA profiling reveals heterogeneity of EGFR inhibitor resistance mechanisms in lung cancer patients.

    PubMed

    Chabon, Jacob J; Simmons, Andrew D; Lovejoy, Alexander F; Esfahani, Mohammad S; Newman, Aaron M; Haringsma, Henry J; Kurtz, David M; Stehr, Henning; Scherer, Florian; Karlovich, Chris A; Harding, Thomas C; Durkin, Kathleen A; Otterson, Gregory A; Purcell, W Thomas; Camidge, D Ross; Goldman, Jonathan W; Sequist, Lecia V; Piotrowska, Zofia; Wakelee, Heather A; Neal, Joel W; Alizadeh, Ash A; Diehn, Maximilian

    2016-01-01

    Circulating tumour DNA (ctDNA) analysis facilitates studies of tumour heterogeneity. Here we employ CAPP-Seq ctDNA analysis to study resistance mechanisms in 43 non-small cell lung cancer (NSCLC) patients treated with the third-generation epidermal growth factor receptor (EGFR) inhibitor rociletinib. We observe multiple resistance mechanisms in 46% of patients after treatment with first-line inhibitors, indicating frequent intra-patient heterogeneity. Rociletinib resistance recurrently involves MET, EGFR, PIK3CA, ERRB2, KRAS and RB1. We describe a novel EGFR L798I mutation and find that EGFR C797S, which arises in ∼33% of patients after osimertinib treatment, occurs in <3% after rociletinib. Increased MET copy number is the most frequent rociletinib resistance mechanism in this cohort and patients with multiple pre-existing mechanisms (T790M and MET) experience inferior responses. Similarly, rociletinib-resistant xenografts develop MET amplification that can be overcome with the MET inhibitor crizotinib. These results underscore the importance of tumour heterogeneity in NSCLC and the utility of ctDNA-based resistance mechanism assessment. PMID:27283993

  9. Relevance of particle-induced rat lung tumors for assessing lung carcinogenic hazard and human lung cancer risk.

    PubMed Central

    Mauderly, J L

    1997-01-01

    Rats and other rodents are exposed by inhalation to identify agents that might present hazards for lung cancer in humans exposed by inhalation. In some cases, the results are used in attempts to develop quantitative estimates of human lung cancer risk. This report reviews evidence for the usefulness of the rat for evaluation of lung cancer hazards from inhaled particles. With the exception of nickel sulfate, particulate agents thought to be human lung carcinogens cause lung tumors in rats exposed by inhalation. The rat is more sensitive to carcinogenesis from nonfibrous particles than mice or Syrian hamsters, which have both produced false negatives. However, rats differ from mice and nonhuman primates in both the pattern of particle retention in the lung and alveolar epithelial hyperplastic responses to chronic particle exposure. Present evidence warrants caution in extrapolation from the lung tumor response of rats to inhaled particles to human lung cancer hazard, and there is considerable uncertainty in estimating unit risks for humans from rat data. It seems appropriate to continue using rats in inhalation carcinogenesis assays of inhaled particles, but the upper limit of exposure concentrations must be set carefully to avoid false-positive results. A positive finding in both rats and mice would give greater confidence that an agent presents a carcinogenic hazard to man, and both rats and mice should be used if the agent is a gas or vapor. There is little justification for including Syrian hamsters in assays of the intrapulmonary carcinogenicity of inhaled agents. PMID:9400748

  10. Endotoxin-induced acute lung injury is enhanced in rats with spontaneous hypertension.

    PubMed

    Liu, Demeral D; Hsu, Yung Hsiang; Chen, Hsing I

    2007-01-01

    1. Acute lung injury (ALI), or acute respiratory distress syndrome, is a major cause of mortality in endotoxaemia. The present study tested whether the endotoxaemia-induced changes and associated ALI were enhanced in rats with established hypertension and to examine the possible mechanisms involved. 2. Fifty spontaneously hypertensive rats (SHR) and the same number of normotensive Wistar Kyoto (WKY) rats, aged 12-15 weeks, were used. The experiments were performed in conscious, unanaesthetized rats. Endotoxaemia was produced by intravenous lipopolysaccharide (LPS; 10 mg/kg). N(G)-Nitro-L-arginine methyl ester (L-NAME; 10 mg/kg, i.v.), L-N(6)-(1-iminoethyl)-lysine (L-Nil; 5 mg/kg, i.v.) and 3-morpholinosydnonimine (SIN-1; 5 mg/kg, i.v.) were given 5 min before LPS to observe the effects of nitric oxide synthase (NOS) inhibition and nitric oxide (NO) donation. 3. We monitored arterial pressure and heart rate and evaluated ALI by determining the lung weight/bodyweight ratio, lung weight gain, leakage of Evans blue dye, the protein concentration in bronchoalveolar lavage and histopathological examination. Plasma nitrate/nitrite, methyl guanidine, pro-inflammatory cytokines, including tumour necrosis factor-alpha and interleukin-1beta, and lung tissue cGMP were determined. Expression of mRNA for inducible and endothelial NOS was examined using reverse transcription-polymerase chain reaction. 4. Lipopolysaccharide caused systemic hypotension, ALI and increases in plasma nitrate/nitrite, methyl guanidine, pro-inflammatory cytokines and lung cGMP content. The LPS-induced changes were greater in SHR than in WKY rats. Pretreatment with L-NAME or L-Nil attenuated, whereas the NO donor SIN-1 aggravated, the endotoxin-induced changes. 5. In conclusion, rats with genetic hypertension are more susceptible to endotoxaemia and this results in a greater extent of ALI compared with normotensive WKY rats. PMID:17201737

  11. Tumour necrosis factor-α expression and cell recruitment in Sephadex particle-induced lung inflammation: effects of dexamethasone and cyclosporin A

    PubMed Central

    Williams, Cara M M; Smith, Lance; Flanagan, Brian F; Steve Clegg, L; Coleman, John W

    1997-01-01

    Tumour necrosis factor-α (TNF-α) is a cytokine with diverse properties consistent with a possible role in inflammatory disease. We investigated whether TNF-α is induced during the progression of lung inflammation elicited by a particulate non-antigenic stimulus, and whether pharmacological control of TNF-α expression influences recruitment of specific inflammatory cell types. A single intravenous injection of Sephadex particles into rats led to extensive granulomatous inflammation in lung alveolar and bronchial tissue that peaked in intensity after 24–72 h. Mononuclear cells were the principal component of granulomas, but neutrophils and eosinophils were also abundant. Numbers of mononuclear cells, neutrophils and eosinophils recovered by bronchoalveolar lavage (BAL) peaked at 72 h, 48 h and 72 h, respectively. Messenger RNA encoding TNF-α was induced in lung epithelial cells, lung granulomas and BAL cells 6 h after Sephadex administration and remained elevated for 72 h before declining to baseline by 7 days. In BAL cell populations TNF-α protein was localized to mononuclear cells at all times points pre- and post-Sephadex administration. Treatment of rats with dexamethasone significantly reduced the Sephadex-induced recruitment of mononuclear cells, neutrophils and eosinophils into the bronchoalveolar cavity, and significantly reduced TNF-α mRNA expression by BAL cells. Treatment of rats with cyclosporin A was without effect on Sephadex-induced elevations of mononuclear cell numbers and expression of TNF-α, but did reduce significantly recruitment of neutrophils and eosinophils to BAL cell populations. These results show that a sequential asthma-like recruitment of neutrophils, eosinophils and mononuclear cells into lung tissue can be induced by single exposure to a non-antigenic stimulus. Pharmacological and histological studies reveal that mononuclear cell mobilization relates closely to induced TNF-α expression, whereas mobilization of

  12. FATE OF INHALED NITROGEN DIOXIDE IN ISOLATED PERFUSED RAT LUNG

    EPA Science Inventory

    The fate of inhaled NO2 was studied with isolated perfused rat lungs. The isolated lungs were exposed to 5 ppm NO2 for 90 min at a ventilation rate of 45 ml/min. The NO2 exposure had no adverse effects on the lungs as judged from their weights, glucose uptake, or lactate producti...

  13. The Presence of Tumour Specific Membrane Antigen in the Serum of Rats with Chemically Induced Sarcomata

    PubMed Central

    Thomson, D. M. P.; Steele, K.; Alexander, P.

    1973-01-01

    Antibodies to the tumour-specific transplantation type antigen (TSTA) of a transplanted methylcholanthrene-induced sarcoma (MC-1) in syngeneic rats were studied using the techniques of indirect membrane immunofluorescence and mixed haemadsorption with a 51Cr-labelled indicator cell. After tumour excision, anti-TSTA antibody was readily measurable in both serum and lymph. In contrast, the tumour-bearing animal had no measurable anti-TSTA antibody in the serum but low titres in the lymph. Consequently, we formed the hypothesis that in the presence of a growing tumour the serum contained antigen-antibody complexes with antigen in excess. To test this hypothesis, tumour-bearing serum was examined for the presence of free antigen and antigen-antibody complexes by 2 different methods. In the first method, tumour-bearing serum was cross-linked with glutaraldehyde and was found to absorb specifically the anti-TSTA antibody, indicating free circulating TSTA. Next, antigen-antibody complexes were split with salt or acid and separated into a low molecular weight (or “antigen”) fraction (<100,000) and a high molecular weight (or “antibody”) fraction (>100,000). The low M.W. fraction specifically inhibited the anti-TSTA antibody when tested by either membrane immunofluorescence or mixed haemadsorption, indicating the presence of antigen from antigen-antibody complexes in the tumour-bearing circulation. The possible effect on the host's immune response of circulating free tumour antigen and antigen-antibody complexes are discussed. PMID:4568460

  14. Characterization of (+/-)-methadone uptake by rat lung.

    PubMed Central

    Chi, C H; Dixit, B N

    1977-01-01

    1. By use of a sensitive and specific fluorescence assay procedure it was shown that after subcutaneous administration to rats, (+/-)-methadone was concentrated in the lung. Lung to serum ratios ranging from 25 to 60 were obtained indicating that the rat lung tissue was capable of extracting (+/-)-methadone against a concentration gradient. 2. This phenomenon was investigated in vitro with rat lung slices incubated in Krebs-Ringer phosphate buffer (pH 7.4). The uptake was expressed in terms of tissue to medium concentration ratios (T/M ratio). 3. The principal observations were: (i) Studies on the time-course of the uptake showed that the T/M ratios of (+/-)-methadone increased rapidly during the first 60 min of incubation and then more slowly, with a plateau occurring at 180 min; (ii) The T/M ratio of (+/-)-methadone progressively increased from 9.5 to 17 as the pH of the incubation medium was varied from 6.2 to 7.5; (iii) When the concentration of (+/-)-methadone in the incubation medium was varied from 0.005 to 0.5 mM, the T/M ratio decreased rapidly suggesting self-saturation of the transport process. Beyond the medium concentration of 0.5 mM, the T/M ratio declined very slowly. 4. These results suggested that at low concentrations, (+/-)-methadone was transported predominantly by a self-saturable process while at higher concentrations it was transported by a process of simple diffusion. 5. At low concentrations (0.01 mM) the uptake of (+)-methadone was higher than that of (-)-isomer indicating stereo-specificity of the uptake process. The uptake of (+/-)-methadone at low concentration (0.01 mM) was significantly inhibited by low temperature, lack of O2, lack of glucose, lack of Na+ in the incubation medium, and by exposure of the tissue to high temperature (approximately 100 degrees C). The uptake was also inhibited by relatively high concentration of iodoacetate (1.0 mM) and of naloxone (1.0 mM). 6. Kinetic analysis of data showed that the diffusion constant

  15. Postoperative intrapleural BCG in lung cancer: lack of efficacy and possible enhancement of tumour growth.

    PubMed Central

    Bakker, W; Nijhuis-Heddes, J M; Wever, A M; Brutel de la Rivière, A; van der Velde, E A; Dijkman, J H

    1981-01-01

    Fifty-six patients out of a group of 99 with lung cancer received postoperative intrapleural BCG (Pasteur strain) in three different dosages (16 X 10(6) culturable particles (cp), 32 X 10(6) cp, and 64 X 10(6) cp). When comparing the whole group of 99 patients with a historical control group of 126 patients no statistically significant differences were found in survival and disease-free interval. The two groups were well matched in respect of age, sex, histology, stage of disease, and type of operation. Patients with epidermoid carcinoma stage I receiving BCG, however, did significantly worse than those who had not received BCG in terms of disease-free interval. This unfavourable trend was caused by earlier local recurrences rather than metastases. The possible phenomenon of enhanced tumour growth noted in or patients with epidermoid carcinoma stage I might be related to the dosages used in this study, but the different BCG strain used hinders comparison with other studies. We conclude that BCG has no beneficial effect on survival or on disease-free interval; possible enhancement of tumour growth in stage I epidermoid carcinoma was found. PMID:7330812

  16. The seventh tumour-node-metastasis staging system for lung cancer: Sequel or prequel?

    PubMed

    van Meerbeeck, Jan P; Janssens, Annelies

    2013-09-01

    Anatomical cancer extent is an important predictor of prognosis and determines treatment choices. In non-small-cell lung cancer (NSCLC) the tumour-node-metastasis (TNM) classification developed by Pierre Denoix replaced in 1968 the Veterans Administration Lung cancer Group (VALG) classification, which was still in use for small-cell lung cancer (SCLC). Clifton Mountain suggested several improvements based on a database of mostly surgically treated United States (US) patients from a limited number of centres. This database was pivotal for a uniform reporting of lung cancer extent by the American Joint Committee of Cancer (AJCC) and the International Union against Cancer (IUCC), but it suffered increasingly from obsolete diagnostic and staging procedures and did not reflect new treatment modalities. Moreover, its findings were not externally validated in large Japanese and European databases, resulting in persisting controversies which could not be solved with the available database. The use of different mediastinal lymph-node maps in Japan, the (US) and Europe facilitated neither the exchange nor the comparison of treatment results. Peter Goldstraw, a United Kingdom (UK) thoracic surgeon, started the process of updating the sixth version in 1996 and brought it to a good end 10 years later. His goals were to improve the TNM system in lung cancer by addressing the ongoing controversies, to validate the modifications and additional descriptors, to validate the TNM for use in staging SCLC and carcinoid tumours, to propose a new uniform lymph-node map and to investigate the prognostic value of non-anatomical factors. A staging committee was formed within the International Association for the Study of Lung Cancer (IASLC) - which supervised the collection of the retrospective data from >100,000 patients with lung cancer - treated throughout the world between 1990 and 2000, analyse them with the help of solid statistics and validate externally with the Surveillance

  17. Radioisotope scanning of brain, liver, lung and bone with a note on tumour localizing agents

    PubMed Central

    Lavender, J. P.

    1973-01-01

    Radioisotopic scanning of brain, liver, lungs and the skeleton is briefly reviewed with a survey of recent developments of clinical significance. In brain scanning neoplasm detection rates of greater than 90% are claimed. The true figure is probably 70-80%. Autopsy data shows a number of false negatives, particularly with vascular lesions. Attempts to make scanning more specific in differentiating neoplasm from vascular lesions by rapid sequence blood flow studies are reviewed. In liver scanning by means of colloids again high success rate is claimed but small metastases are frequently missed and the false negative scan rate is probably quite high. Lung scanning still has its main place in investigating pulmonary embolic disease. Ventilation studies using Xenon 133 are useful, particularly combined with perfusion studies. The various radiopharmaceuticals for use in bone scanning are reviewed. The appearance of technetium labelled phosphate compounds will probably allow much wider use of total skeletal scanning. Research into tumour localizing agents continues, the most recent and interesting being Gallium citrate and labelled bleomycin. Neither agent is predictable however although Gallium may have a place in Hodgkins disease and bronchogenic neoplasm and both may have a place in the detection of cerebral tumours. ImagesFig. 1Fig. 2Fig. 3p452-bFig. 3bFig. 4Fig. 5Fig. 5bFig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 12c & 12dFig. 13Fig. 13 b,c,dFig. 14Fig. 14bFig. 15Fig. 15bFig. 16Fig. 17Fig. 18 PMID:4602127

  18. Validation of dose painting of lung tumours using alanine/EPR dosimetry.

    PubMed

    Knudtsen, Ingerid Skjei; Svestad, Jørund Graadal; Skaug Sande, Erlend Peter; Rekstad, Bernt Louni; Rødal, Jan; van Elmpt, Wouter; Öllers, Michel; Hole, Eli Olaug; Malinen, Eirik

    2016-03-21

    Biologic image guided radiotherapy (RT) with escalated doses to tumour sub volumes challenges today's RT dose planning and delivery systems. In this phantom study, we verify the capability of a clinical dose planning and delivery system to deliver an 18F-FDG-PET based dose painted treatment plan to a lung tumour. Furthermore, we estimate the uncertainties of the dose painted treatment compared to conventional RT plans. An anthropomorphic thorax phantom of polystyrene and polyurethane was constructed based on CT images of a lung cancer patient. 101 EPR/alanine dosimeters were placed in separate cavities within the phantom. IMRT and VMAT plans were generated in Eclipse (version 10.0, Analytical Anisotropic Algorithm version 10.2.28, Varian Medical Systems, Inc.) for 6 and 15 MV photons, based on 18F-FDG-PET/CT images of the patient. A boost dose of 3.8 Gy/fraction was given to the 18F-FDG-avid region (biological planning volume; BTV), whereas 3.1 Gy/fraction was planned to the planning target volume (PTV, excluding the BTV). For the homogenous plans, 3.2 Gy/fraction was given to the PTV. Irradiation of the phantom was carried out at a Varian Trilogy linear accelerator (Varian Medical Systems, Inc.). Uncertainties involved in treatment planning and delivery were estimated from portal dosimetry gamma evaluation. Measured and calculated doses were compared by Bland-Altmann analysis. For all treatment plans, all dose-volume objectives could be achieved in the treatment planning system. The mean absolute differences between calculated and measured doses were small (<0.1 Gy) for BTV, PTV-BTV, lung and soft tissue. The estimated uncertainty of the planned doses was less than 3% for all plans, whereas the estimated uncertainty in the measured doses was less 2.3%. Our results show that planning and delivery of dose escalated lung cancer treatment on a clinical dose planning and delivery system has high dosimetric accuracy. The uncertainties associated with the dose escalated

  19. Montelukast reduces sepsis-induced lung and renal injury in rats.

    PubMed

    Khodir, Ahmed E; Ghoneim, Hamdy A; Rahim, Mona Abdel; Suddek, Ghada M

    2014-10-01

    This study was undertaken to examine the effects of montelukast (MNT) on lung and kidney injury in lipopolysaccharide (LPS) induced systemic inflammatory response. Rats were randomized into 5 groups (n = 8 rats/group): (i) Control; (ii) LPS treated (10 mg/kg body mass, by intraperitoneal (i.p.) injection); (iii) LPS + MNT (10 mg/kg, per oral (p.o.)); (iv) LPS + MNT (20 mg/kg, p.o); (v) LPS + dexamethasone (DEX; 1 mg/kg, i.p.). Twenty-four hours after sepsis was induced, the lung or kidney:body mass ratio and percent survival of rats were determined. Creatinine, blood urea nitrogen (BUN), albumin, total protein, and LDH activity were measured. Lung and kidney samples were taken for histological assessment and for determination of their malondialdehyde (MDA) and glutathione (GSH) contents. The expression of tumour necrosis factor α (TNF-α) in tissue was evaluated immunohistochemically. LPS significantly increased the organ:body mass ratio, serum creatinine, BUN, and LDH, and decreased serum albumin and total protein levels. MDA levels increased in lung and kidney tissues after treatment with LPS, and there was a concomitant reduction in GSH levels. Immunohistochemical staining of lung and kidney specimens from LPS-treated rats revealed high expression levels of TNF-α. MNT suppresses the release of inflammatory and oxidative stress markers. Additionally, MNT effectively preserved tissue morphology as evidenced by histological evaluation. These results demonstrate that MNT could have lung and renoprotective effects against the inflammatory process during endotoxemia. This effect can be attributed to its antioxidant and (or) anti-inflammatory properties. PMID:25243774

  20. Tumour suppressor HLJ1: A potential diagnostic, preventive and therapeutic target in non-small cell lung cancer

    PubMed Central

    Tsai, Meng-Feng; Wang, Chi-Chung; Chen, Jeremy JW

    2014-01-01

    Lung cancer is the leading cause of cancer-related mortality throughout the world. Non-small cell lung cancer (NSCLC) accounts for 85% of all diagnosed lung cancers. Despite considerable progress in the diagnosis and treatment of the disease, the overall 5-year survival rate of NSCLC patients remains lower than 15%. The most common causes of death in lung cancer patients are treatment failure and metastasis. Therefore, developing novel strategies that target both tumour growth and metastasis is an important and urgent mission for the next generation of anticancer therapy research. Heat shock proteins (HSPs), which are involved in the fundamental defence mechanism for maintaining cellular viability, are markedly activated during environmental or pathogenic stress. HSPs facilitate rapid cell division, metastasis, and the evasion of apoptosis in cancer development. These proteins are essential players in the development of cancer and are prime therapeutic targets. In this review, we focus on the current understanding of the molecular mechanisms responsible for HLJ1’s role in lung cancer carcinogenesis and progression. HLJ1, a member of the human HSP 40 family, has been characterised as a tumour suppressor. Research studies have also reported that HLJ1 shows promising dual anticancer effects, inhibiting both tumour growth and metastasis in NSCLC. The accumulated evidence suggests that HLJ1 is a potential biomarker and treatment target for NSCLC. PMID:25493224

  1. A new tumour associated antigen of non-small cell lung cancer: tumour liberated proteins (TLP)--a possible new tumor marker.

    PubMed

    Garaci, E; Sinibaldi, P; Rasi, G

    1996-01-01

    TLP (Tumour Liberated Proteins) is a 214 kDa protein, isolated from lung cancer tissue and synthetic nonapeptide CSH-275 is a major epitope identified on a 100 kDa TLP fragment and used to create antibodies in rabbit (antiserum termed CSH-419). CSH-419 antiserum, labelled or conjugated as necessary, was used to detect TLP on sera from NSCLC patients by a new ELISA test set up as a 1 step sandwich format test. This ELISA was performed on sera from 534 individuals. TLP was detected in 53.1% of NSCLC patients, with a 0% response in patients with cancers other than NSCLC, 7.6% response in unknown blood donors, and 17.4% response in patients with chronic lung diseases correlated with an elevated risk for lung cancer. TLP was particularly present in early stages of disease: 75% in stage I, 56% in stage II and III and 45% in stage IV. The presence of TLP antigen in sera from NSCLC patients indicates that TLP could represent an useful tumour marker. PMID:8694552

  2. HIFU and Chemotherapy Synergistic Inhibitory Effect on Dunning AT2 Tumour-Bearing Rats

    NASA Astrophysics Data System (ADS)

    Curiel, Laura; Paparel, Philipe; Chesnais, Sabrina; Gelet, Albert; Chapelon, Jean-Yves

    2005-03-01

    Since there is no 100% satisfactory treatment for localized prostate cancer in patients presenting symptoms representing a poor prognosis (stage T3, high Gleason score, PSA level greater than 15 ng/ml, etc.), this study aimed to evaluate the therapeutic and synergistic inhibition effects of using High Intensity Focused Ultrasound (HIFU) in combination with chemotherapy (Taxane + Estramustine). Forty-one Dunning AT2 tumour-bearing Copenhagen rats receiving HIFU and/or chemotherapy were divided into four groups: control group; chemotherapy group; HIFU group; and HIFU-chemotherapy combined group. Increase in the tumour volume was observed over 3 weeks and the tumour volume doubling time was evaluated. Growth curves for each group were then plotted and statistically evaluated. HIFU treatment combined with Taxane + Estramusine was found to have a significant synergistic effect; on day 30, the distribution of tumour volume relative to the treatment group was significantly different (p = 0.0007). The control group volumes were significantly greater than those of the chemotherapy-only (p = 0.006) or HIFU-only group (p = 0.006). The greatest difference was observed between the chemotherapy plus HIFU combined group and the control group. Additionally, tumour-doubling times were 7.7 days for the control group, 13.2 days for the HIFU-only group, and 31.2 days for the chemotherapy plus HIFU group. The differences in tumour growth rates between the chemotherapy plus HIFU combined group and a chemotherapy-only + HIFU-only grouping was 3.8% (p = 0.0020). Thus, the combined chemotherapy plus HIFU treatment was clearly more effective in reducing the tumour size than HIFU only or chemotherapy only, which indicates a synergy between the two types of treatment. Our results suggest that this combined therapy could be useful for the treatment of high-risk prostate cancer.

  3. Localized hypothermia: impact on oxygenation, microregional perfusion, metabolic and bioenergetic status of subcutaneous rat tumours.

    PubMed Central

    Kelleher, D. K.; Nauth, C.; Thews, O.; Krueger, W.; Vaupel, P.

    1998-01-01

    The effect of localized hypothermia on microcirculatory and metabolic parameters in s.c. DS sarcomas on the hind foot dorsum of Sprague-Dawley rats was investigated. Tumours were cooled by superfusion of the tumour surface with cooled saline solution to 25 degrees C or 15 degrees C. Control tumours remained at 35 degrees C. These temperatures were maintained for 30 min. In tumour oxygenation measurements, hypothermia at 25 degrees C and 15 degrees C caused progressive decreases in the size of the fraction of pO2 measurements between 0 and 2.5 mmHg together with a reduction in pO2 variability. No significant changes in median or mean pO2 or in the fraction of pO2 measurements between 0 and 5 mmHg, and 0 and 10 mmHg were observed. Using laser Doppler flowmetry, red blood cell flux was found to decrease significantly upon 25 degrees C or 15 degrees C hypothermia treatment to 67% and 37% of starting values respectively, whereas no significant changes were seen in control tumours over the whole observation period. Viscosity was measured in blood and plasma samples over a range of temperatures and was found to increase with decreasing temperature. Assessment of tumour glucose levels showed an increased concentration of glucose following 15 degrees C hypothermia, an observation consistent with a 'slowing down' of glycolysis. No changes in lactate or adenylate phosphate levels were observed. As a way of improving tumour oxygenation, localized hypothermia may therefore be a useful means of radiosensitization. PMID:9662251

  4. Role of tumour necrosis factor in the induction of nitric oxide synthase in a rat model of endotoxin shock.

    PubMed Central

    Thiemermann, C.; Wu, C. C.; Szabó, C.; Perretti, M.; Vane, J. R.

    1993-01-01

    1. This study investigates the role of tumour necrosis factor (TNF) in the induction of nitric oxide synthase (NOS) by bacterial endotoxin (lipopolysaccharide; LPS) in a rat model of endotoxin shock. 2. In anaesthetized rats, pretreatment with a monoclonal antibody for TNF (TNFab; 20 mg kg-1, s.c., at 16 h prior to LPS) ameliorated the fall in mean arterial blood pressure (MAP) in response to LPS (2 mg kg-1, i.v.). For instance, endotoxaemia for 180 min resulted in a fall in MAP from 114 +/- 6 (control) to 84 +/- 5 mmHg (P < 0.01; n = 7). In contrast, animals pretreated with TNFab prior to LPS injection maintained significantly higher MAP when compared to LPS-control (MAP at 180 min; 118 +/- 3 mmHg; P < 0.01, n = 5). 3. Three hours of endotoxaemia was also associated with a significant reduction of the contractile effects of noradrenaline (NA) (10(-8)-10(-6) M) on the thoracic aorta ex vivo. This hyporeactivity to NA was partially restored by in vitro treatment of the vessels with NG-nitro-L-arginine methyl ester (L-NAME, 20 min, 3 x 10(-4) M). Pretreatment of rats with TNFab (20 mg kg-1; at 16 h prior to LPS) significantly (P < 0.05) attenuated the LPS-induced hyporeactivity of rat aortic rings ex vivo. L-NAME did not enhance the contractions of aortic rings obtained from TNFab pretreated LPS-rats. 4. At 180 min after LPS there was a significant elevation of the induced NOS activity in the lung (5.14 +/- 0.57 pmol citrulline mg-1 min-1, n = 8).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7693276

  5. Reproductive senescence, fertility and reproductive tumour profile in ageing female Han Wistar rats.

    PubMed

    Mitchard, Terri L; Klein, Stephanie

    2016-01-01

    A study using vehicle administration in 104 female rats investigated reproductive aging in Han Wistar rats as a useful tool to interprete carcinogenicity studies where hormonal patterns are perturbated. From 16 weeks of age oestrous cycles were monitored every 6 weeks to investigate reproductive ageing. A subset of 20 females was used to assess fertility at 21 months of age. The animals were necropsied after 106-107 weeks on study and female reproductive organs, mammary glands and pituitary glands were examined for hyperplasias and/or tumours. The majority of rats had regular oestrous cycles up to 6 months of age. After this age, there was a rapid decline in the number of rats with regular oestrous cycles and an increase in irregular cycles and cycles in persistent di-oestrus with an occasional pro-oestrus. By the end of the study, the majority of animals were acyclic and the few remaining cyclic animals had irregular cycles. In the fertility assessment, 19/20 animals mated but only four animals became pregnant. These pregnant animals had normal numbers of corpora lutea of pregnancy but had high pre-implantation losses and could not sustain a viable pregnancy. 65 animals (62.5%) showed adenomas and/or pituitary hyperplasia in the pituitary gland at necropsy. The pituitary tumours were likely to be prolactin secreting that give rise to pseudopregnancy and mammary tumours, demonstrated by the fact that 43/65 (66%) of the affected animals had histopathological signs of these conditions. Multiple corpora lutea were found in 61% of all animals at time of termination. Only one uterine tumour was seen in this study probably due to lack of persistent oestrus seen in these animals. PMID:26655996

  6. Atrial natriuretic polypeptide-like material in rat lung

    SciTech Connect

    Chang, J.K.; Chang, D.; Xie, C.W.; Song, D.L.; Li, X.R.; Zhang, S.X.; Wang, T.L.; Tang, J.

    1986-03-05

    Atrial natriuretic polypeptide-like immunoreactive material (ANP-IR) was found in rat lung by radioimmunoassay, with the concentration ranging from 0.6-1.2 pmol/g of tissue in each lobe. PAP-immunohistochemical study demonstrated that specific staining of granules for ..cap alpha..-human ANP are mainly located in the muscular layer of the pulmonary vein. Fractionation of lung extract by gel filtration and reserve phase HPLC revealed the presence of multiple forms of ANP-IR, which possibly possessed molecular structure partially different from rat ANP, atriopeptin I and III. Intravenous injection of lung extract induced potent diuresis and natriuresis in rats. These responses could be abolished when the lung extract was preincubated with antiserum for ..cap alpha..-human ANP. Specific binding sites for /sup 125/I-labeled rat ANP were also found in lung membrane preparation by radioreceptor assay. Incubation of synthetic atriopeptin III (10/sup -9/ to 10/sup -6/M) with lung tissue induced 1-28 fold increase in lung cGMP content. The results suggest that ANP-IR and its receptors existing in rat lung may be involved in the regulation of pulmonary function and have a synergic effect with ANP of cardiac origin in the control of water-electrolytes balance.

  7. Suppressed rate of carcinogenesis and decreases in tumour volume and lung metastasis in CXCL14/BRAK transgenic mice.

    PubMed

    Hata, Ryu-Ichiro; Izukuri, Kazuhito; Kato, Yasumasa; Sasaki, Soichiro; Mukaida, Naofumi; Maehata, Yojiro; Miyamoto, Chihiro; Akasaka, Tetsu; Yang, Xiaoyan; Nagashima, Yoji; Takeda, Kazuyoshi; Kiyono, Tohru; Taniguchi, Masaru

    2015-01-01

    Cancer progression involves carcinogenesis, an increase in tumour size, and metastasis. Here, we investigated the effect of overexpressed CXC chemokine ligand 14 (CXCL14) on these processes by using CXCL14/BRAK (CXCL14) transgenic (Tg) mice. The rate of AOM/DSS-induced colorectal carcinogenesis in these mice was significantly lower compared with that for isogenic wild type C57BL/6 (Wt) mice. When tumour cells were injected into these mice, the size of the tumours that developed and the number of metastatic nodules in the lungs of the animals were always significantly lower in the Tg mice than in the Wt ones. Injection of anti-asialo-GM1 antibodies to the mice before and after injection of tumour cells attenuated the suppressing effects of CXCL14 on the tumor growth and metastasis, suggesting that NK cell activity played an important role during CXCL14-mediated suppression of tumour growth and metastasis. The importance of NK cells on the metastasis was also supported when CXCL14 was expressed in B16 melanoma cells. Further, the survival rates after tumour cell injection were significantly increased for the Tg mice. As these Tg mice showed no obvious abnormality, we propose that CXCL14 to be a promising molecular target for cancer suppression/prevention. PMID:25765541

  8. Cold ischemia-induced autophagy in rat lung tissue

    PubMed Central

    CHEN, XU; WU, JING-XIANG; YOU, XING-JI; ZHU, HONG-WEI; WEI, JIONG-LIN; XU, MEI-YING

    2015-01-01

    Autophagy is a highly conserved pathway that permits recycling of nutrients within the cell and is rapidly upregulated during starvation or cell stress. Autophagy has been implicated in the pathophysiological process of warm ischemia-reperfusion injury in the rat lung. Cold ischemia (CI) preservation for lung transplantation also exhibits cell stress and nutrient deprivation, however, little is known with regard to the involvement of autophagy in this process. In the present study, CI preservation-induced autophagy and apoptosis was investigated in the lungs of Sprague Dawley rats. Sprague Dawley rat lungs were flushed and preserved at 4°C (i.e. CI) for various durations (0, 3, 6, 12 and 24 h). The levels of autophagy, autophagic cell death and apoptosis were measured at each time point following CI. The results revealed that autophagy was induced by CI preservation, which was initiated at 3 h, peaked at 6 h after CI and declined thereafter. Additionally, a coexistence of autophagic cell death and apoptosis was observed in rat lung tissues following prolonged CI. These findings demonstrate that autophagy is involved in the pathophysiological process of lung CI. Furthermore, autophagic cell death in addition to necrosis and apoptosis occurs following CI in the lung. CI preservation may therefore be a potential mechanism of lung injury during organ preservation prior to lung transplantation. PMID:25435100

  9. Improving accuracy of markerless tracking of lung tumours in fluoroscopic video by incorporating diaphragm motion

    NASA Astrophysics Data System (ADS)

    Schwarz, M.; Teske, H.; Stoll, M.; Bendl, Rolf

    2014-03-01

    Purpose: Conformal radiation of moving tumours is a challenging task in radiotherapy. Tumour motion induced by respiration can be visualized in fluoroscopic images recorded during patients breathing. Markerless methods making use of registration techniques can be used to estimate tumour motion. However, registration methods might fail when the tumour is hidden by ribs. Using motion of anatomical surrogates, like the diaphragm, is promising to model tumour motion. Methods: A sequence of 116 fluoroscopic images was analyzed and the tumour positions were manually defined by three experts. A block matching (BM) technique is used to calculate the displacement vector relatively to a selected reference image of the first breathing cycle. An enhanced method was developed: Positions, when the tumour is not located behind a rib, are taken as valid estimations of the tumour position. Furthermore, these valid estimations are used to establish a linear model of tumour position and diaphragm motion. For invalid estimations the calculated tumour positions are not taken into consideration, and instead the model is used to determine tumour motion. Results: Enhancing BM with a model of tumour motion from diaphragm motion improves the tracking accuracy when the tumour moves behind a rib. The error (mean ± SD) in longitudinal dimension was 2.0 ± 1.5mm using only BM and 1.0 ± 1.1mm when the enhanced approach was used. Conclusion: The enhanced tracking technique is capable to improve tracking accuracy compared to BM in the case that the tumour is occluded by ribs.

  10. Melatonin potentiates the anti-tumour effect of pravastatin in rat mammary gland carcinoma model

    PubMed Central

    Orendáš, Peter; Kubatka, Peter; Bojková, Bianka; Kassayová, Monika; Kajo, Karol; Výbohová, Desanka; Kružliak, Peter; Péč, Martin; Adamkov, Marián; Kapinová, Andrea; Adamicová, Katarína; Sadloňová, Vladimíra; Chmelová, Martina; Stollárová, Nadežda

    2014-01-01

    Previous studies in the field of cancer research have suggested a possible role for statins in the reduction of risk in certain malignancies. The purpose of these studies was to examine the chemopreventive effects of pravastatin alone and in combination with pineal hormone melatonin in the N-methyl-N-nitrosourea-induced mammary carcinogenesis model. Pravastatin was given orally (1 00 mg/kg) and melatonin was added to the water (20 μg/ml). Chemoprevention began seven days prior to carcinogen administration and subsequently continued for 15 weeks until autopsy. At autopsy, mammary tumours were removed and prepared for histopathological and immunohistochemical analysis. Parameters of experimental carcinogenesis, mechanism of action (biomarkers of apoptosis, angiogenesis and proliferation) and side effects after long-term treatment in animals were assessed. Pravastatin alone suppressed tumour frequency by 20.5% and average tumour volume by 15% compared with controls. Combined administration of the drugs decreased tumour frequency by 69% and lengthened tumour latency by nine days compared with control animals. The ration between high and low grade carcinomas was apparently reduced in both treated groups. The analysis of carcinoma cells showed significant expression increase in caspase-3 and caspase-7 after pravastatin treatment; however, combined treatment even more pronounced increase in the expression of both caspases. Regarding VEGFR-2 expression, a small effect in carcinomas of both treated groups was found. In plasma metabolism evaluation, pravastatin alone significantly decreased levels of glucose and triacylglycerols. Our results suggest a mild anti-neoplastic effect of pravastatin in this rat mammary gland carcinoma model. Statins co-administered with other suitable drug (e.g. melatonin) should be further evaluated for tumour-preventive properties. PMID:25270735

  11. Mathematical modelling of tumour volume dynamics in response to stereotactic ablative radiotherapy for non-small cell lung cancer

    NASA Astrophysics Data System (ADS)

    Tariq, Imran; Humbert-Vidan, Laia; Chen, Tao; South, Christopher P.; Ezhil, Veni; Kirkby, Norman F.; Jena, Rajesh; Nisbet, Andrew

    2015-05-01

    This paper reports a modelling study of tumour volume dynamics in response to stereotactic ablative radiotherapy (SABR). The main objective was to develop a model that is adequate to describe tumour volume change measured during SABR, and at the same time is not excessively complex as lacking support from clinical data. To this end, various modelling options were explored, and a rigorous statistical method, the Akaike information criterion, was used to help determine a trade-off between model accuracy and complexity. The models were calibrated to the data from 11 non-small cell lung cancer patients treated with SABR. The results showed that it is feasible to model the tumour volume dynamics during SABR, opening up the potential for using such models in a clinical environment in the future.

  12. Oral N-acetylcysteine reduces bleomycin-induced lung damage and mucin Muc5ac expression in rats.

    PubMed

    Mata, M; Ruíz, A; Cerdá, M; Martinez-Losa, M; Cortijo, J; Santangelo, F; Serrano-Mollar, A; Llombart-Bosch, A; Morcillo, E J

    2003-12-01

    Oxidative stress is involved in the pathogenesis of pulmonary fibrosis, therefore antioxidants may be of therapeutic value. Clinical work indicates that N-acetylcysteine (NAC) may be beneficial in this disease. The activity of this antioxidant was examined on bleomycin-induced lung damage, mucus secretory cells hyperplasia and mucin Muc5ac gene expression in rats. NAC (3 mmol x kg(-1) x day(-1)) or saline was given orally to Sprague-Dawley rats for 1 week prior to a single intratracheal instillation of bleomycin (2.5 U x kg(-1)) and for 14 days postinstillation. NAC decreased collagen deposition in bleomycin-exposed rats (hydroxyproline content was 4,257+/-323 and 3,200+/-192 microg x lung(-1) in vehicle- and NAC-treated rats, respectively) and lessened the fibrotic area assessed by morphometric analysis. The bleomycin-induced increases in lung tumour necrosis factor-alpha and myeloperoxidase activity were reduced by NAC treatment. The numbers of mucus secretory cells in airway epithelium, and the Muc5ac messenger ribonucleic acid and protein expression, were markedly augmented in rats exposed to bleomycin. These changes were significantly reduced in NAC-treated rats. These results indicate that bleomycin increases the number of airway secretory cells and their mucin production, and that oral N-acetylcysteine improved pulmonary lesions and reduced the mucus hypersecretion in the bleomycin rat model. PMID:14680076

  13. FACTORS DETERMINING DEGREE OF INFLATION IN INTRATRACHEALLY FIXED RAT LUNGS

    EPA Science Inventory

    The total lung capacity (TLC) of rats was measured in vivo and was compared to the displacement volume of the lungs following intratracheal fixation with glutaraldehyde or formaldehyde solution. When glutaraldehyde was used the speed of infusion of the fixative was an important f...

  14. Thyroid tumours in rats and hepatomas in mice after griseofulvin treatment.

    PubMed Central

    Rustia, M.; Shubik, P.

    1978-01-01

    Griseofulvin, an antibiotic used to treat dermatophystosis, was tested for carcinogenicity in mice, rats and hamsters. Three groups of mice and rats were given the drug in powdered diet in alternating 5-week periods for life, at dose levels of 3.0%, 1.5% and 0.3% (mice) and 2.0%, 1.0% and 0.2% (rats). A group of mice and 3 groups of hamsters received continuous daily treatment for life with griseofulvin at 3.0%, 1.5%, 0.3% and 0.1% dose levels respectively. A significant incidence of hepatic tumours was observed at the 2 higher treatment levels in mice. Also, statistically significant rates (P less than or equal to 0.001 and/or P less than or equal to 0.020) of thyroid tumours, indicating a dose-response, were recorded in male rats at the 2.0%, 1.0%, and 0.2% dose levels, and in females at the 2.0% and 1.0% dose levels. Hamsters did not develop neoplasms in response to treatment at any level. Images Figs. 2-5 Figs. 6-9 PMID:698038

  15. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats.

    PubMed

    Miyawaki, Shingo; Kawamura, Yoshimi; Oiwa, Yuki; Shimizu, Atsushi; Hachiya, Tsuyoshi; Bono, Hidemasa; Koya, Ikuko; Okada, Yohei; Kimura, Tokuhiro; Tsuchiya, Yoshihiro; Suzuki, Sadafumi; Onishi, Nobuyuki; Kuzumaki, Naoko; Matsuzaki, Yumi; Narita, Minoru; Ikeda, Eiji; Okanoya, Kazuo; Seino, Ken-Ichiro; Saya, Hideyuki; Okano, Hideyuki; Miura, Kyoko

    2016-01-01

    The naked mole-rat (NMR, Heterocephalus glaber), which is the longest-lived rodent species, exhibits extraordinary resistance to cancer. Here we report that NMR somatic cells exhibit a unique tumour-suppressor response to reprogramming induction. In this study, we generate NMR-induced pluripotent stem cells (NMR-iPSCs) and find that NMR-iPSCs do not exhibit teratoma-forming tumorigenicity due to the species-specific activation of tumour-suppressor alternative reading frame (ARF) and a disruption mutation of the oncogene ES cell-expressed Ras (ERAS). The forced expression of Arf in mouse iPSCs markedly reduces tumorigenicity. Furthermore, we identify an NMR-specific tumour-suppression phenotype-ARF suppression-induced senescence (ASIS)-that may protect iPSCs and somatic cells from ARF suppression and, as a consequence, tumorigenicity. Thus, NMR-specific ARF regulation and the disruption of ERAS regulate tumour resistance in NMR-iPSCs. Our findings obtained from studies of NMR-iPSCs provide new insight into the mechanisms of tumorigenicity in iPSCs and cancer resistance in the NMR. PMID:27161380

  16. Tumour resistance in induced pluripotent stem cells derived from naked mole-rats

    PubMed Central

    Miyawaki, Shingo; Kawamura, Yoshimi; Oiwa, Yuki; Shimizu, Atsushi; Hachiya, Tsuyoshi; Bono, Hidemasa; Koya, Ikuko; Okada, Yohei; Kimura, Tokuhiro; Tsuchiya, Yoshihiro; Suzuki, Sadafumi; Onishi, Nobuyuki; Kuzumaki, Naoko; Matsuzaki, Yumi; Narita, Minoru; Ikeda, Eiji; Okanoya, Kazuo; Seino, Ken-ichiro; Saya, Hideyuki; Okano, Hideyuki; Miura, Kyoko

    2016-01-01

    The naked mole-rat (NMR, Heterocephalus glaber), which is the longest-lived rodent species, exhibits extraordinary resistance to cancer. Here we report that NMR somatic cells exhibit a unique tumour-suppressor response to reprogramming induction. In this study, we generate NMR-induced pluripotent stem cells (NMR-iPSCs) and find that NMR-iPSCs do not exhibit teratoma-forming tumorigenicity due to the species-specific activation of tumour-suppressor alternative reading frame (ARF) and a disruption mutation of the oncogene ES cell-expressed Ras (ERAS). The forced expression of Arf in mouse iPSCs markedly reduces tumorigenicity. Furthermore, we identify an NMR-specific tumour-suppression phenotype—ARF suppression-induced senescence (ASIS)—that may protect iPSCs and somatic cells from ARF suppression and, as a consequence, tumorigenicity. Thus, NMR-specific ARF regulation and the disruption of ERAS regulate tumour resistance in NMR-iPSCs. Our findings obtained from studies of NMR-iPSCs provide new insight into the mechanisms of tumorigenicity in iPSCs and cancer resistance in the NMR. PMID:27161380

  17. The cholesterol-binding protein NPC2 restrains recruitment of stromal macrophage-lineage cells to early-stage lung tumours.

    PubMed

    Kamata, Tamihiro; Jin, Hong; Giblett, Susan; Patel, Bipin; Patel, Falguni; Foster, Charles; Pritchard, Catrin

    2015-09-01

    The tumour microenvironment is known to play an integral role in facilitating cancer progression at advanced stages, but its function in some pre-cancerous lesions remains elusive. We have used the (V600) (E)BRAF-driven mouse lung model that develop premalignant lesions to understand stroma-tumour interactions during pre-cancerous development. In this model, we have found that immature macrophage-lineage cells (IMCs) producing PDGFA, TGFβ and CC chemokines are recruited to the stroma of premalignant lung adenomas through CC chemokine receptor 1 (CCR1)-dependent mechanisms. Stromal IMCs promote proliferation and transcriptional alterations suggestive of epithelial-mesenchymal transition in isolated premalignant lung tumour cells ex vivo, and are required for the maintenance of early-stage lung tumours in vivo. Furthermore, we have found that IMC recruitment to the microenvironment is restrained by the cholesterol-binding protein, Niemann-Pick type C2 (NPC2). Studies on isolated cells ex vivo confirm that NPC2 is secreted from tumour cells and is taken up by IMCs wherein it suppresses secretion of the CCR1 ligand CC chemokine 6 (CCL6), at least in part by facilitating its lysosomal degradation. Together, these findings show that NPC2 secreted by premalignant lung tumours suppresses IMC recruitment to the microenvironment in a paracrine manner, thus identifying a novel target for the development of chemopreventive strategies in lung cancer. PMID:26183450

  18. Cell Population Kinetics of a Spontaneous Rat Tumour During Serial Transplantation

    PubMed Central

    Steel, G. G.; Adams, K.; Hodgett, J.; Janik, P.

    1971-01-01

    Studies have been made on the growth and cell population kinetics of a spontaneous rat mammary fibroadenoma and of 10 successive transplantation passages. The volume doubling time decreased from about 30 days in the primary tumour and first two transplants to 1·7 days in the tenth transplant. This acceleration was accompanied by a considerable shortening of the mitotic cycle and of its S and G1 phases but without change in the proportion of time spent in S. There was also a reduction in the apparent extent of cell loss and a considerable increase in the growth fraction. Histological changes were noted and studies by feulgen densitometry indicated a considerable shift in ploidy from hyperdiploid to hypertetraploid. The results constitute a detailed example of the effect on tumour growth kinetics of serial transplantation. ImagesFig. 5 PMID:5144541

  19. Isolated limb perfusion with melphalan, tumour necrosis factor-alpha and oncolytic vaccinia virus improves tumour targeting and prolongs survival in a rat model of advanced extremity sarcoma.

    PubMed

    Pencavel, Tim D; Wilkinson, Michelle J; Mansfield, David C; Khan, Aadil A; Seth, Rohit; Karapanagiotou, Eleni M; Roulstone, Victoria; Aguilar, Richard J; Chen, Nanhai G; Szalay, Aladar A; Hayes, Andrew J; Harrington, Kevin J

    2015-02-15

    Isolated limb perfusion (ILP) is a treatment for advanced extremity sarcoma and in-transit melanoma. Advancing this procedure by investigating the addition of novel agents, such as cancer-selective oncolytic viruses, may improve both the therapeutic efficacy of ILP and the tumour-targeted delivery of oncolytic virotherapy. Standard in vitro assays were used to characterise single agent and combinatorial activities of melphalan, tumour necrosis factor-alpha (TNF-α) and Lister strain vaccinia virus (GLV-1h68) against BN175 rat sarcoma cells. An orthotopic model of advanced extremity sarcoma was used to evaluate survival of animals after ILP with combinations of TNF-α, melphalan and GLV-1h68. We investigated the efficiency of viral tumour delivery by ILP compared to intravenous therapy, the locoregional and systemic biodistribution of virus after ILP, and the effect of mode of administration on antibody response. The combination of melphalan and GLV-1h68 was synergistic in vitro. The addition of virus to standard ILP regimens was well tolerated and demonstrated superior tumour targeting compared to intravenous administration. Triple therapy (melphalan/TNF-α/GLV-1h68) resulted in increased tumour growth delay and enhanced survival compared to other treatment regimens. Live virus was recovered in large amounts from perfused regions, but in smaller amounts from systemic organs. The addition of oncolytic vaccinia virus to existing TNF-α/melphalan-based ILP strategies results in survival advantage in an immunocompetent rat model of advanced extremity sarcoma. Virus administered by ILP has superior tumour targeting compared to intravenous delivery. Further evaluation and clinical translation of this approach is warranted. PMID:24978211

  20. Boron absorption imaging in rat lung colon adenocarcinoma metastases

    NASA Astrophysics Data System (ADS)

    Altieri, S.; Bortolussi, S.; Bruschi, P.; Fossati, F.; Vittor, K.; Nano, R.; Facoetti, A.; Chiari, P.; Bakeine, J.; Clerici, A.; Ferrari, C.; Salvucci, O.

    2006-05-01

    Given the encouraging results from our previous work on the clinical application of BNCT on non-resectable, chemotherapy resistant liver metastases, we explore the possibility to extend our technique to lung metastases. A fundamental requirement for BNCT is achieving higher 10B concentrations in the metastases compared to those in healthy tissue. For this reason we developed a rat model with lung metastases in order to study the temporal distribution of 10B concentration in tissues and tumoral cells. Rats with induced lung metastases from colon adenocarcinoma were sacrificed two hours after intraperitoneal Boronphenylalanine infusion. The lungs were harvested, frozen in liquid nitrogen and subsequently histological sections underwent neutron autoradiography in the nuclear reactor Triga Mark II, University of Pavia. Our findings demonstrate higher Boron uptake in tumoral nodules compared to healthy lung parenchyma 2 hours after Boronphenylalanine infusion.

  1. Deoxyelephantopin, a novel multifunctional agent, suppresses mammary tumour growth and lung metastasis and doubles survival time in mice

    PubMed Central

    Huang, Chi-Chang; Lo, Chiu-Ping; Chiu, Chih-Yang; Shyur, Lie-Fen

    2010-01-01

    Background and purpose: Elephantopus scaber L. (Asteraceae) is a traditional herbal medicine with anti-cancer effects. We evaluated the in vitro and in vivo efficacy of a major sesquiterpene lactone constituent of E. scaber, deoxyelephantopin (DET), against mammary adenocarcinoma and the underlying molecular mechanism. Experimental approach: A variety of cellular assays, immunoblotting and immunohistochemistry, as well as both orthotopic and metastatic TS/A tumour models in BALB/c mice, were used. Test mice were pretreated and post-treated with DET or paclitaxel and mammary tumour growth evaluated. Key results: DET (≤2 µg·mL−1) significantly inhibited colony formation, cell proliferation, migration and invasion of TS/A cells and induced G2/M arrest and apoptosis in TS/A cells. c-Jun N-terminal kinase-mediated p21Waf1/Cip1 expression and caspase activation cascades were up-regulated by DET, effects suppressed by N-acetyl-L-cysteine. Moreover, tumour necrosis factor α-induced matrix metalloproteinase-9 enzyme activity and expression and nuclear factor-kappa B activation were abolished by DET. Pretreatment with DET was more effective than paclitaxel, for profound suppression of orthotopic tumour growth (99% vs. 68% reduction in tumour size) and lung metastasis of TS/A cells (82% vs. 63% reduction in metastatic pulmonary foci) and prolonged median survival time (56 vs. 37 days, P < 0.01) in mice. The levels of cyclooxygenase-2 and vascular endothelial growth factor in metastatic lung tissues of TS/A-bearing mice were attenuated by DET. Conclusions and implications: Our data provide evidence for the suppression of mammary adenocarcinoma by DET with several mechanisms and suggest that DET has potential as a chemopreventive agent for breast cancer. PMID:20105176

  2. Apigenin protects against bleomycin-induced lung fibrosis in rats

    PubMed Central

    CHEN, LING; ZHAO, WEI

    2016-01-01

    Apigenin is a non-toxic and non-mutagenic flavone that exists abundantly in numerous herbs and vegetables. Apigenin exerts anti-proliferative and anti-inflammatory properties. The aim of the present study was to investigate the effects of apigenin on bleomycin-induced lung fibrosis in rats. A single intratracheal instillation of bleomycin (5 mg/kg) was administered and rats were sacrificed on 7 and 28 days post bleomycin instillation. The instillation of bleomycin resulted in decreased body weight and an increase in the lung index. In addition, bleomycin administration increased the hydroxyproline content, myeloperoxidase (MPO) activity, tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β levels and decreased the superoxide dismutase (SOD) activity in the rat lung tissues. Excessive collagen deposits were detected in the lung tissues in bleomycin-treated rats compared with normal control rats. Notably, the oral administration of apigenin (10, 15 and 20 mg/kg/day) appeared to prevent the fibrotic process. The treatment suppressed the increases in hydroxyproline content, MPO activity, TNF-α and TGF-β levels and attenuated the reduction of SOD activity that were induced by bleomycin. Furthermore, excessive collagen deposition was inhibited by the apigenin treatment. Collectively, these results suggest that apigenin may function as a potent anti-inflammatory and anti-fibrotic agent against bleomycin-induced lung fibrosis. PMID:26889245

  3. Metabolism of N-methylcarbazole by rat lung microsomes.

    PubMed

    Ibe, B O; Raj, J U

    1994-01-01

    N-methylcarbazole (NMC) is a procarcinogenic component of tobacco smoke particulate matter. It is metabolized by liver microsomes into some hydroxylated metabolites such as the potent mutagen N-hydroxymethylcarbazole (NHMC). Lung metabolism and toxicity of NMC is not known. Since the lung is the primary organ of inhalation of tobacco smoke, NMC metabolism by lung microsomes was studied in comparison with the metabolism by liver microsomes. Liver or lung microsomes (1 mg/mL) were incubated with 0.5 mM NMC for 30 min at 37 degrees C. NMC metabolites were extracted with ethyl acetate and analyzed by reversed-phase high-performance liquid chromatography. Rat lung microsomes metabolized NMC with a similar profile to liver microsomes, although lung microsomes produced greater number of metabolites. The potent mutagen NHMC was also the major NMC metabolite produced by lung microsomes, as confirmed by particle beam mass spectrometry. However, lung microsomes produced only 10% of NHMC produced by liver microsomes. Metabolism of NMC by lung microsomes also led to depletion of the endogenous antioxidant glutathione by 34% compared to controls, indicating a significant generation of some reactive intermediates during NMC metabolism by lung microsomes. The data show that the lung participates directly in producing the potent mutagen NHMC from NMC present in tobacco smoke. PMID:7925139

  4. 3D thoracoscopic ultrasound volume measurement validation in an ex vivo and in vivo porcine model of lung tumours

    NASA Astrophysics Data System (ADS)

    Hornblower, V. D. M.; Yu, E.; Fenster, A.; Battista, J. J.; Malthaner, R. A.

    2007-01-01

    The purpose of this study was to validate the accuracy and reliability of volume measurements obtained using three-dimensional (3D) thoracoscopic ultrasound (US) imaging. Artificial 'tumours' were created by injecting a liquid agar mixture into spherical moulds of known volume. Once solidified, the 'tumours' were implanted into the lung tissue in both a porcine lung sample ex vivo and a surgical porcine model in vivo. 3D US images were created by mechanically rotating the thoracoscopic ultrasound probe about its long axis while the transducer was maintained in close contact with the tissue. Volume measurements were made by one observer using the ultrasound images and a manual-radial segmentation technique and these were compared with the known volumes of the agar. In vitro measurements had average accuracy and precision of 4.76% and 1.77%, respectively; in vivo measurements had average accuracy and precision of 8.18% and 1.75%, respectively. The 3D thoracoscopic ultrasound can be used to accurately and reproducibly measure 'tumour' volumes both in vivo and ex vivo.

  5. Increased expression of the Th17-IL-6R/pSTAT3/BATF/RorγT-axis in the tumoural region of adenocarcinoma as compared to squamous cell carcinoma of the lung.

    PubMed

    Balabko, Ljubov; Andreev, Katerina; Burmann, Nadine; Schubert, Melanie; Mathews, Martina; Trufa, Denis I; Reppert, Sarah; Rau, Tilmann; Schicht, Martin; Sirbu, Horia; Hartmann, Arndt; Finotto, Susetta

    2014-01-01

    Here we describe increased expression of IL6R in the tumoural region of lung tissue from patients affected by lung adenocarcinoma as compared to squamous cell lung carcinoma. Moreover, here we found increased IL6R in the tumour free part of the lung. By using a murine model of lung adenocarcinoma, we discovered that few lung tumour cells expressed IL-6R and CD4+CD25+Foxp-3+ T regulatory cells down-regulated IL-6R in the tumour bearing lungs. Downstream of IL-6R, the Th17 lineage-specification factors: Signal transducer and activator of transcription 3 (STAT3), Basic leucine zipper transcription factor, BATF and a protein encoded by the RORC in human (RAR-related orphan receptor C) (RORγT), were also found induced in the tumoural region of lung tissue from patients affected by lung adenocarcinoma as compared to those carrying squamous cell carcinoma. Moreover, pSTAT3 protein was found phosphorylated and auto-phosphorylated in the tumoural region of patients with adeno cell carcinoma of the lung as compared to the tumoural region of patients with squamous cell carcinoma of the lung. Intranasal application of anti-IL-6R antibodies in a murine model of lung adenocarcinoma, induced T regulatory cell markers such as Foxp3, Ctla4, Icos, Il10, Il21, Folr4 and Lag3 and inhibited Rorc in lung adenocarcinoma. PMID:25491772

  6. Trophoblast Deportation to the Lungs of Cotton Rats (Sigmodon hispidus)

    PubMed Central

    Perle, Krista M D La; Green, M Gia; Niewiesk, Stefan

    2014-01-01

    Cotton rats (Sigmodon hispidus) have been used to study a variety of infectious agents, particularly human respiratory viral pathogens. During the course of comprehensive pathologic evaluations of aging breeders from our breeding colony, 6 of 22 (27%) female cotton rats had histologic evidence, limited to the lungs, of embolized cells that were confirmed to be trophoblastic in origin by HSD3B1 immunoreactivity. When pulmonary trophoblast emboli were numerous, they usually were associated with additional histologic findings in the lungs, including pulmonary edema and hemorrhage, endothelial hypertrophy, fibrinoid vascular necrosis, and abundant alveolar macrophages containing fresh fibrin and hemolyzing erythrocytes. Of the 6 cotton rats with pulmonary trophoblast emboli, 5 (83%) were at 8 to 18 d of the 27-d gestation period, with the greatest number of emboli per lung present between days 10 through 14. The remaining cotton rat had a focal pulmonary trophoblast embolus and was not pregnant but had delivered a litter 3 mo previously. Three other cotton rats in either the early or late stages of gestation showed no histologic evidence of pulmonary trophoblast deportation. This report is the first to document pulmonary trophoblast emboli in cotton rats. This finding suggests that cotton rats may be an alternative animal model for the study of normal and aberrant trophoblast deportation in routine pregnancies and gestational pathologic conditions in women. PMID:25527025

  7. Responses of rat lungs following inhalation of beryllium metal particles to achieve relatively low lung burdens

    SciTech Connect

    Finch, G.L.; Haley, P.J.; Hoover, M.D.; Cuddihy, R.G.

    1991-01-01

    Potential health effects resulting from the accidental exposure of people to beryllium metal are of concern. To investigate the effects of relatively low levels of beryllium metal on lung clearance, we simultaneously exposed rats to beryllium metal and radioactive tracer particles. Exposure to beryllium metal aerosol to achieve estimated lung burdens of 9 or 52 {mu}g significantly retarded clearance up to 365 days after exposure compared to controls, whereas lung burdens of 1.5 or 2 {mu}g had no significant effect on clearance. Groups of rats were sacrificed at 8, 16, 40, 90, 210 and 365 days after exposure for bronchoalveolar lavage. The total numbers of cells, incidence of neutrophils, the levels of total protein, and the enzymes lactate dehydrogenase and {beta}-glucuronidase were generally elevated in lavage fluids from groups of rats that also had impaired lung clearance. This study serves to further define the levels of beryllium metal required to retard lung clearance and induce accompanying pathological responses in the lungs of rats. 11 refs., 5 figs., 1 tab.

  8. Assessment of texture measures susceptibility to noise in conventional and contrast enhanced computed tomography lung tumour images.

    PubMed

    Al-Kadi, Omar Sultan

    2010-09-01

    Noise is one of the major problems that hinder an effective texture analysis of disease in medical images, which may cause variability in the reported diagnosis. In this paper seven texture measurement methods (two wavelet, two model and three statistical based) were applied to investigate their susceptibility to subtle noise caused by acquisition and reconstruction deficiencies in computed tomography (CT) images. Features of lung tumours were extracted from two different conventional and contrast enhanced CT image data-sets under filtered and noisy conditions. When measuring the noise in the background open-air region of the analysed CT images, noise of Gaussian and Rayleigh distributions with varying mean and variance was encountered, and Fishers' distance was used to differentiate between an original extracted lung tumour region of interest (ROI) with the filtered and noisy reconstructed versions. It was determined that the wavelet packet (WP) and fractal dimension measures were the least affected, while the Gaussian Markov random field, run-length and co-occurrence matrices were the most affected by noise. Depending on the selected ROI size, it was concluded that texture measures with fewer extracted features can decrease susceptibility to noise, with the WP and the Gabor filter having a stable performance in both filtered and noisy CT versions and for both data-sets. Knowing how robust each texture measure under noise presence is can assist physicians using an automated lung texture classification system in choosing the appropriate feature extraction algorithm for a more accurate diagnosis. PMID:20060263

  9. Photodynamic therapy using intravenous delta-aminolaevulinic acid-induced protoporphyrin IX sensitisation in experimental hepatic tumours in rats.

    PubMed Central

    Svanberg, K.; Liu, D. L.; Wang, I.; Andersson-Engels, S.; Stenram, U.; Svanberg, S.

    1996-01-01

    The efficacy of photodynamic therapy (PDT) using delta-aminolaevulinic acid (ALA)-induced protoporphyrin IX (PpIX) sensitisation and laser light at 635 nm was investigated in the treatment of experimental hepatic tumours. The model of liver tumours was induced either by local inoculation or by administration of tumour cells through the portal vein in rats. ALA at a dose of 60 mg kg(-1) b.w. was intravenously administered 60 min before PDT. PpIX accumulation in tumour, normal liver and abdominal wall muscle was detected by means of laser-induced fluorescence (LIF). Laser Doppler imaging (LDI) was used to determine changes in the superficial blood flow in connection with PDT. Histopathological examinations were performed to evaluate the PDT effects on the tumour and the surrounding liver tissue, including pathological features in the microvascular system. The accumulation of PpIX, as monitored by LIF, showed high fluorescence intensities at about 635 nm in both the hepatic tumour tissue and normal liver and low values in the abdominal wall. LDI demonstrated that the blood flow in the treated tumour and its surrounding normal liver tissue decreased immediately after the PDT, indicating an effect on the vascular system. A large number of thrombi in the irradiated tumour were found microscopically 3 h after the PDT. The tumour growth rate showed a marked decrease when evaluated 3 and 6 days after the treatment. These results show that the ALA-PDT is effective in the inhibition of growth of experimental hepatic tumours. Images Figure 4 Figure 5 Figure 7 Figure 9 PMID:8932330

  10. Circadian variations in 32P uptake of DMBA-induced mammary tumour and Walker carcinosarcoma in rats.

    PubMed Central

    Møoller, U.; Bojsen, J.

    1976-01-01

    The 32P uptake in a mammary tumour induced by DMBA and in the Walker 256 carcinosarcoma was measured by external GM -tubes. The uptake was significantly higher than in the skin. During exposure to a synchronized light regime a circadian variation was present in the 32P uptake of the hormone-dependent DMBA-induced tumour. The maximal 32P uptake was in the dark period, in which the highest temperature in the tumour has also been found (Møoller and Bojsen, 1975). In the hormone-independent Walker 256 carcinosarcoma there was no periodicity in 32P uptake. No variation in 32P uptake was registered in the skin of normal controls or in tumour-bearing rats. PMID:820364

  11. Antioxidant enzyme expression in rat lungs during hyperoxia.

    PubMed

    Ho, Y S; Dey, M S; Crapo, J D

    1996-05-01

    To understand the molecular mechanisms that upregulate the activities of pulmonary antioxidant enzymes in adult rats during exposure to 85% oxygen, the relative contents of corresponding mRNA in normal and hyperoxic lungs were determined. Hyperoxic exposure drastically induced the expression of lung manganese-containing superoxide dismutase (MnSOD) mRNA. Maximal induction of MnSOD mRNA occurred at days 3 and 5 of exposure to hyperoxia, reaching a 600 and a 340% increase over the levels of air-exposed rats, respectively. In addition, hyperoxia induced lung mRNA for glucose-6-phosphate dehydrogenase, glutathione peroxidase, glyceraldehyde-3-phosphate dehydrogenase, alpha-tubulin, and gamma-actin to different extends at various days of exposure. Hyperoxia had little or no effect on the levels of mRNA for copper/zinc-containing superoxide dismutase (CuZnSOD), catalase, heat shock protein (HSP70), and creatine kinase. Nuclear run-on experiments showed that the transcriptional rate of the MnSOD gene is enhanced in hyperoxic rat lungs by approximately 400% at day 3 of exposure compared with that of controls. The specific activities of CuZnSOD and MnSOD in these lung samples per unit of lung protein or DNA were also determined. The activity of CuZnSOD in hyperoxic lungs was found to be unchanged compared with controls, except a 20% decrease at day 7 of exposure when standardized against protein content of lung homogenate. Changes of CuZnSOD activity were more dramatic in hyperoxic lungs (a 40% increase at days 3, 5, 7, and 14 of exposure) when enzyme activity was normalized using lung DNA content. Surprisingly, no proportional increase of lung MnSOD enzyme activity was observed at days 3 and 5 of oxygen exposure. The increase of MnSOD activity per unit of lung protein also did not parallel the increase in MnSOD protein content at days 5, 7, and 14 of exposure. These data suggest that, in addition to transcriptional activation, translational and/or posttranslational

  12. Lipopolysaccharide induces expression of collagen VI in the rat lung.

    PubMed

    Okawa, Sayuri; Unuma, Kana; Yamada, Atsushi; Aki, Toshihiko; Uemura, Koichi

    2015-01-01

    The involvement of the lung during the septic systemic inflammatory response elicited by administration of lipopolysaccharide (LPS) was investigated. Eight-week-old male Sprague-Dawley rats were injected i.p. with 15 mg/kg LPS. After 24 h, the lungs were excised to evaluate the cellular responses to LPS. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF) analysis revealed that type VI collagen (ColVI) was extremely upregulated during sepsis in the rat lung within the first 24 h of LPS administration. Upregulation of ColVI protein and its mRNA was demonstrated by Western blot analysis, real time PCR, and immunohistochemistry. To the best of our knowledge, this is the first report demonstrating the activation of ColVI in the rat lung at the early stage of systemic inflammation. Activation of ColVI might be involved in sepsis-mediated lung fibrosis at an early stage. PMID:26023260

  13. NEUROGENIC RESPONSES OF RAT LUNG TO DIESEL EXHAUST

    EPA Science Inventory

    The investigators are among the first researchers to investigate neurogenic inflammation in the lungs of rats exposed to whole diesel exhaust. After exposure to both concentrations of diesel exhaust, consistently higher levels of plasma leakage and lower activity of the enz...

  14. In patients with a tumour invading the phrenic nerve does prophylactic diaphragm plication improve postoperative lung function?

    PubMed

    Beattie, Gwyn W; Dunn, William G; Asif, Mohammed

    2016-09-01

    A best evidence topic in thoracic surgery was written according to a structured protocol. The question addressed was 'In patients with tumours involving the phrenic nerve, does prophylactic diaphragm plication improve lung function following tumour resection?' Using the reported search, 258 papers were found of which 6 represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. Three case reports and one case series represent 37 patients in the literature along with two relevant animal studies. Patients treated with prophylactic plication at the time of injury or sacrifice of the phrenic nerve had reduced radiological evidence of diaphragm paralysis, lower reported shortness of breath and reduced requirement for ventilatory support. In patients with prophylactic diaphragm plication and a concurrent pulmonary resection, the predicted postoperative lung function correlated closely with the postoperative measured FEV1, FVC and gas transfer. The postoperative measured FEV1 was reported as 86-98%, the FVC 82-89% and gas transfer 97% of the predicted values. Two animal models investigate the mechanics of respiration, spirometry and gas exchange following diaphragmatic plication. A randomized control study in four dogs measured a 50% reduction in tidal volume and respiratory rate, a 40% decrease in arterial PO2 and a 43% increase in arterial CO2 when the phrenic nerve was crushed in animals with a pneumonectomy but without prophylactic diaphragm plication. A further randomized control animal study with 28 dogs found that plicating the diaphragm after unilateral phrenic nerve transection resulted in a significant increase in tidal volume and lung compliance and a significant decrease in respiratory frequency and the work of breathing. Prophylactic diaphragm plication may preserve lung function, reduce the risk of

  15. Prostaglandin synthesis by chicken and rat lung microsomes

    SciTech Connect

    Craig-Schmidt, M.C.; Faircloth, S.A.; Wu-Wang, C.Y.

    1986-03-01

    A comparison between chicken and rat lung was made for microsomal prostaglandin (PG) synthesis from 1-/sup 14/C-arachidonic acid. Microsomal protein (2.0 mg) from chicken or rat lung was incubated in the presence of 20 ..mu..g of 1-/sup 14/C-arachidonic acid (specific activity = 3 x 10/sup 6/ dpm/..mu..mol for chicken; 6 x 10/sup 6/ dpm/..mu..mol for rat), 0.05 M Tris-HCl buffer (pH = 8.0), 0.5 mM epinephrine, and 1 mM reduced glutathione in a total volume of 0.5 ml in a 37/sup 0/C water bath with shaking for 15 min. After acidification with 1 M HCl to pH 3, prostaglandins were extracted with ethyl acetate. The products of the reactions were separated by reversed phase chromatography, and the radioactivity of each prostanoid fraction was determined. The predominant prostanoid synthesized by chicken lung microsomes was PGE/sub 2/, followed by much lower amounts of thromboxane B/sub 2/ (TXB/sub 2/), PGF/sub 2//sub ..cap alpha../ and PGD/sub 2/. In at lung, 6-keto-PGF/sub 1//sub ..cap alpha../ was the predominant product formed, with minor amounts of 6-keto-PGE/sub 1/, TXB/sub 2/, PGF/sub 2//sub ..cap alpha../ and PGD/sub 2/. In rat lung, 6-keto-FGF/sub 1//sub ..cap alpha../ was the predominant product formed, with minor amounts of 6-keto-PGF/sub 1//sub ..cap alpha../ was the predominant product formed, with minor amounts of 6-keto-PGE/sub 1/, TXB/sub 2/, PGF/sub 2//sub ..cap alpha../, PGE/sub 2/ and PGD/sub 2/ being formed. Enzyme specific activity (pmol of PG produced per mg microsomal protein per min) was 11.9 for PGE/sub 2/ produced by chicken lung and 16. 7 for 6-keto-P/sub 1//sub ..cap alpha../ produced by rat lung. Thus, there appears to be a species variation in chicken compared to rat for the lung prostanoids which are known to cause bronchial dilation.

  16. Fluorometry of ischemia reperfusion injury in rat lungs in vivo

    NASA Astrophysics Data System (ADS)

    Sepehr, R.; Staniszewski, K.; Jacobs, E. R.; Audi, S.; Ranji, Mahsa

    2013-02-01

    Previously we demonstrated the utility of optical fluorometry to evaluate lung tissue mitochondrial redox state in isolated perfused rats lungs under various chemically-induced respiratory states. The objective of this study was to evaluate the effect of acute ischemia on lung tissue mitochondrial redox state in vivo using optical fluorometry. Under ischemic conditions, insufficient oxygen supply to the mitochondrial chain should reduce the mitochondrial redox state calculated from the ratio of the auto-fluorescent mitochondrial metabolic coenzymes NADH (Nicotinamide Adenine Dinucleotide) and FAD (Flavoprotein Adenine Dinucleotide). The chest of anesthetized, and mechanically ventilated Sprague-Dawley rat was opened to induce acute ischemia by clamping the left hilum to block both blood flow and ventilation to one lung for approximately 10 minutes. NADH and FAD fluorescent signals were recorded continuously in a dark room via a fluorometer probe placed on the pleural surface of the left lung. Acute ischemia caused a decrease in FAD and an increase in NADH, which resulted in an increase in the mitochondrial redox ratio (RR=NADH/FAD). Restoration of blood flow and ventilation by unclamping the left hilum returned the RR back to its baseline. These results (increase in RR under ischemia) show promise for the fluorometer to be used in a clinical setting for evaluating the effect of pulmonary ischemia-reperfusion on lung tissue mitochondrial redox state in real time.

  17. Efficacy and safety of cryobiopsy versus forceps biopsy for interstitial lung diseases and lung tumours: A systematic review and meta-analysis.

    PubMed

    Ganganah, Oormila; Guo, Shu Liang; Chiniah, Manu; Li, Yi Shi

    2016-07-01

    Forceps biopsy (FB) is the most commonly used diagnostic tool for lung pathologies. FB is associated with a high diagnostic failure rate. Cryobiopsy (CB) is a novel technique providing a larger specimen size, few artefacts, more alveolar parts and superior diagnostic yield. CB, however, has drawbacks such as higher bleeding and pneumothorax rate. We conducted a meta-analysis to investigate the specimen area, diagnostic rate and bleeding severity in CB versus FB in interstitial lung diseases (ILDs) and lung tumours. A systematic literature search of PUBMED, BIOSIS PREVIEW and OVID databases was conducted using specific search terms. Eligible studies including RCTs and non-RCTs comparing cryobiopsy/cryotransbronchial biopsy (CB/CTBB) and forceps biopsy/forceps transbronchial biopsy (FB/FTBB) for specimen area, diagnostic rate and bleeding rate in ILDs and lung tumours were analysed. Two reviewers independently extracted data and evaluated the quality of the studies. Eight studies involving 916 patients were analysed. Specimen area (mm(2) ) was significantly larger in CB/CTBB than FB/FTBB (standard mean difference = 1.21, 95% confidence interval (0.94, 1.48), P < 0.00001). The diagnostic rate was significantly higher in CB/CTBB than FB/FTBB (Risk ratio 1.36, 95% confidence interval (1.16, 1.59), P = 0.0002). Three studies compared the bleeding severity with only one showing significantly more bleeding in CB. Cryobiopsy/cryotransbronchial shows superiority to FB/FTBB for specimen area and diagnostic rate. CB/CTBB has better efficacy over FB/FTBB. PMID:26991519

  18. A proposed framework for consensus-based lung tumour volume auto-segmentation in 4D computed tomography imaging

    NASA Astrophysics Data System (ADS)

    Martin, Spencer; Brophy, Mark; Palma, David; Louie, Alexander V.; Yu, Edward; Yaremko, Brian; Ahmad, Belal; Barron, John L.; Beauchemin, Steven S.; Rodrigues, George; Gaede, Stewart

    2015-02-01

    This work aims to propose and validate a framework for tumour volume auto-segmentation based on ground-truth estimates derived from multi-physician input contours to expedite 4D-CT based lung tumour volume delineation. 4D-CT datasets of ten non-small cell lung cancer (NSCLC) patients were manually segmented by 6 physicians. Multi-expert ground truth (GT) estimates were constructed using the STAPLE algorithm for the gross tumour volume (GTV) on all respiratory phases. Next, using a deformable model-based method, multi-expert GT on each individual phase of the 4D-CT dataset was propagated to all other phases providing auto-segmented GTVs and motion encompassing internal gross target volumes (IGTVs) based on GT estimates (STAPLE) from each respiratory phase of the 4D-CT dataset. Accuracy assessment of auto-segmentation employed graph cuts for 3D-shape reconstruction and point-set registration-based analysis yielding volumetric and distance-based measures. STAPLE-based auto-segmented GTV accuracy ranged from (81.51  ±  1.92) to (97.27  ±  0.28)% volumetric overlap of the estimated ground truth. IGTV auto-segmentation showed significantly improved accuracies with reduced variance for all patients ranging from 90.87 to 98.57% volumetric overlap of the ground truth volume. Additional metrics supported these observations with statistical significance. Accuracy of auto-segmentation was shown to be largely independent of selection of the initial propagation phase. IGTV construction based on auto-segmented GTVs within the 4D-CT dataset provided accurate and reliable target volumes compared to manual segmentation-based GT estimates. While inter-/intra-observer effects were largely mitigated, the proposed segmentation workflow is more complex than that of current clinical practice and requires further development.

  19. Nilotinib ameliorates lipopolysaccharide-induced acute lung injury in rats

    SciTech Connect

    El-Agamy, Dina S.

    2011-06-01

    The present study aimed to investigate the effect of the new tyrosine kinase inhibitor, nilotinib on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and explore its possible mechanisms. Male Sprague-Dawley rats were given nilotinib (10 mg/kg) by oral gavage twice daily for 1 week prior to exposure to aerosolized LPS. At 24 h after LPS exposure, bronchoalveolar lavage fluid (BALF) samples and lung tissue were collected. The lung wet/dry weight (W/D) ratio, protein level and the number of inflammatory cells in the BALF were determined. Optical microscopy was performed to examine the pathological changes in lungs. Malondialdehyde (MDA) content, superoxidase dismutase (SOD) and reduced glutathione (GSH) activities as well as nitrite/nitrate (NO{sub 2}{sup -}/NO{sub 3}{sup -}) levels were measured in lung tissues. The expression of inflammatory cytokines, tumor necrosis factor-{alpha} (TNF-{alpha}), transforming growth factor-{beta}{sub 1} (TGF-{beta}{sub 1}) and inducible nitric oxide synthase (iNOS) were determined in lung tissues. Treatment with nilotinib prior to LPS exposure significantly attenuated the LPS-induced pulmonary edema, as it significantly decreased lung W/D ratio, protein concentration and the accumulation of the inflammatory cells in the BALF. This was supported by the histopathological examination which revealed marked attenuation of LPS-induced ALI in nilotinib treated rats. In addition, nilotinib significantly increased SOD and GSH activities with significant decrease in MDA content in the lung. Nilotinib also reduced LPS mediated overproduction of pulmonary NO{sub 2}{sup -}/NO{sub 3}{sup -} levels. Importantly, nilotinib caused down-regulation of the inflammatory cytokines TNF-{alpha}, TGF-{beta}{sub 1} and iNOS levels in the lung. Taken together, these results demonstrate the protective effects of nilotinib against the LPS-induced ALI. This effect can be attributed to nilotinib ability to counteract the inflammatory cells

  20. Epithelial-myoepithelial tumour of the lung: a case report referring to its molecular histogenesis

    PubMed Central

    2011-01-01

    Tracheobronchial submucous glands can be considered the pulmonary equivalent of minor salivary glands and therefore they can develop most of the tumours originated in these. Nevertheless, in spite of the wide distribution of this kind of glands along the tracheobronchial tree, pulmonary salivary gland-like neoplasms are not very frequent. Among them, the most frequent are mucoepidermoid and adenoid cystic carcinomas. On the contrary, pulmonary neoplasms showing a mixture of epithelial and myoepithelial elements are extraordinary infrequent, with only 11 cases collected from literature. We present the case of a 76 year-old woman with no interesting pathological history, to whom a pulmonary nodule is detected during a study of unknown origin neutropenia. An upper right lobectomy is performed. After macro and microscopic study, the diagnosis of pulmonary epithelial-myoepithelial tumour is made. It is a low malignant potential tumour with capacity to locally recur and less frequently to metastasize. Our case has the peculiarity of not being connected neither to visceral pleura nor to bronchial tree; we have not found this characteristic in any literature reviewed case. These tumours have been named in a lot of different ways, including adenomyoepithelioma, epithelial-myoepithelial tumour, epithelial-myoepithelial carcinoma or epithelial-myoepithelial tumour of uncertain malignant potential. The p27/kip-1 protein plays a fundamental role in the development of these neoplasms. As we have verified in our case, its aberrant cytoplasmic location, besides its proved oncogenic function, would favour the proliferation of stem cells, which would explain both dual phenotype with presence of myoepithelial cells without connection with the bronchial tree, and TTF-1 immunostaining in epithelial cells. PMID:21798017

  1. Epithelial-myoepithelial tumour of the lung: a case report referring to its molecular histogenesis.

    PubMed

    Muñoz, Guillermo; Felipo, Francesc; Marquina, Isabel; Del Agua, Celia

    2011-01-01

    Tracheobronchial submucous glands can be considered the pulmonary equivalent of minor salivary glands and therefore they can develop most of the tumours originated in these. Nevertheless, in spite of the wide distribution of this kind of glands along the tracheobronchial tree, pulmonary salivary gland-like neoplasms are not very frequent. Among them, the most frequent are mucoepidermoid and adenoid cystic carcinomas. On the contrary, pulmonary neoplasms showing a mixture of epithelial and myoepithelial elements are extraordinary infrequent, with only 11 cases collected from literature.We present the case of a 76 year-old woman with no interesting pathological history, to whom a pulmonary nodule is detected during a study of unknown origin neutropenia. An upper right lobectomy is performed.After macro and microscopic study, the diagnosis of pulmonary epithelial-myoepithelial tumour is made. It is a low malignant potential tumour with capacity to locally recur and less frequently to metastasize. Our case has the peculiarity of not being connected neither to visceral pleura nor to bronchial tree; we have not found this characteristic in any literature reviewed case.These tumours have been named in a lot of different ways, including adenomyoepithelioma, epithelial-myoepithelial tumour, epithelial-myoepithelial carcinoma or epithelial-myoepithelial tumour of uncertain malignant potential.The p27/kip-1 protein plays a fundamental role in the development of these neoplasms. As we have verified in our case, its aberrant cytoplasmic location, besides its proved oncogenic function, would favour the proliferation of stem cells, which would explain both dual phenotype with presence of myoepithelial cells without connection with the bronchial tree, and TTF-1 immunostaining in epithelial cells. PMID:21798017

  2. Lung cancer in rats exposed to fibrogenic dusts

    SciTech Connect

    Holland, L.M.; Wilson, J.S.; Tillery, M.I.; Smith, D.M.

    1984-01-01

    Fischer-344 rats were exposed to quartz dusts and to quartz-bearing oil shale dusts in long-term inhalation studies. Aerosol concentrations of 12 mg/m/sup 3/ and 152-176 mg/m/sup 3/ for quartz and shale dusts, respectively, were used in exposure regimens lasting up to two years. Pulmonary fibrosis was observed in most animals surviving beyond 400 days. Adenocarcinomas and epidermoid carcinomas of the lung were observed in animals from all exposure groups, including those exposed to quartz alone. The pulmonary tumors were a late effect, with the earliest lung tumor being observed after 651 days. 13 references, 10 figures, 4 tables.

  3. Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression

    PubMed Central

    Zhang, Wen Cai; Chin, Tan Min; Yang, Henry; Nga, Min En; Lunny, Declan Patrick; Lim, Edwin Kok Hao; Sun, Li Li; Pang, Yin Huei; Leow, Yi Ning; Malusay, Shanneen Rossellini Y; Lim, Priscilla Xin Hui; Lee, Jeravan Zili; Tan, Benedict Jian Wei; Shyh-Chang, Ng; Lim, Elaine Hsuen; Lim, Wan Teck; Tan, Daniel Shao Weng; Tan, Eng Huat; Tai, Bee Choo; Soo, Ross Andrew; Tam, Wai Leong; Lim, Bing

    2016-01-01

    The tumour-initiating cell (TIC) model accounts for phenotypic and functional heterogeneity among tumour cells. MicroRNAs (miRNAs) are regulatory molecules frequently aberrantly expressed in cancers, and may contribute towards tumour heterogeneity and TIC behaviour. More recent efforts have focused on miRNAs as diagnostic or therapeutic targets. Here, we identified the TIC-specific miRNAs, miR-1246 and miR-1290, as crucial drivers for tumour initiation and cancer progression in human non-small cell lung cancer. The loss of either miRNA impacted the tumour-initiating potential of TICs and their ability to metastasize. Longitudinal analyses of serum miR-1246 and miR-1290 levels across time correlate their circulating levels to the clinical response of lung cancer patients who were receiving ongoing anti-neoplastic therapies. Functionally, direct inhibition of either miRNA with locked nucleic acid administered systemically, can arrest the growth of established patient-derived xenograft tumours, thus indicating that these miRNAs are clinically useful as biomarkers for tracking disease progression and as therapeutic targets. PMID:27325363

  4. Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression.

    PubMed

    Zhang, Wen Cai; Chin, Tan Min; Yang, Henry; Nga, Min En; Lunny, Declan Patrick; Lim, Edwin Kok Hao; Sun, Li Li; Pang, Yin Huei; Leow, Yi Ning; Malusay, Shanneen Rossellini Y; Lim, Priscilla Xin Hui; Lee, Jeravan Zili; Tan, Benedict Jian Wei; Shyh-Chang, Ng; Lim, Elaine Hsuen; Lim, Wan Teck; Tan, Daniel Shao Weng; Tan, Eng Huat; Tai, Bee Choo; Soo, Ross Andrew; Tam, Wai Leong; Lim, Bing

    2016-01-01

    The tumour-initiating cell (TIC) model accounts for phenotypic and functional heterogeneity among tumour cells. MicroRNAs (miRNAs) are regulatory molecules frequently aberrantly expressed in cancers, and may contribute towards tumour heterogeneity and TIC behaviour. More recent efforts have focused on miRNAs as diagnostic or therapeutic targets. Here, we identified the TIC-specific miRNAs, miR-1246 and miR-1290, as crucial drivers for tumour initiation and cancer progression in human non-small cell lung cancer. The loss of either miRNA impacted the tumour-initiating potential of TICs and their ability to metastasize. Longitudinal analyses of serum miR-1246 and miR-1290 levels across time correlate their circulating levels to the clinical response of lung cancer patients who were receiving ongoing anti-neoplastic therapies. Functionally, direct inhibition of either miRNA with locked nucleic acid administered systemically, can arrest the growth of established patient-derived xenograft tumours, thus indicating that these miRNAs are clinically useful as biomarkers for tracking disease progression and as therapeutic targets. PMID:27325363

  5. Inhibition of Lysyl Oxidase and Lysyl Oxidase-Like Enzymes Has Tumour-Promoting and Tumour-Suppressing Roles in Experimental Prostate Cancer

    PubMed Central

    Nilsson, Maria; Adamo, Hanibal; Bergh, Anders; Halin Bergström, Sofia

    2016-01-01

    Lysyl oxidase (LOX) and LOX-like (LOXL) enzymes are key players in extracellular matrix deposition and maturation. LOX promote tumour progression and metastasis, but it may also have tumour-inhibitory effects. Here we show that orthotopic implantation of rat prostate AT-1 tumour cells increased LOX and LOXLs mRNA expressions in the tumour and in the surrounding non-malignant prostate tissue. Inhibition of LOX enzymes, using Beta-aminopropionitrile (BAPN), initiated before implantation of AT-1 cells, reduced tumour growth. Conversely, treatment that was started after the tumours were established resulted in unaffected or increased tumour growth. Moreover, treatment with BAPN did not suppress the formation of spontaneous lymph node metastases, or lung tumour burden, when tumour cells were injected intravenously. A temporal decrease in collagen fibre content, which is a target for LOX, was observed in tumours and in the tumour-adjacent prostate tissue. This may explain why early BAPN treatment is more effective in inhibiting tumour growth compared to treatment initiated later. Our data suggest that the enzymatic function of the LOX family is context-dependent, with both tumour-suppressing and tumour-promoting properties in prostate cancer. Further investigations are needed to understand the circumstances under which LOX inhibition may be used as a therapeutic target for cancer patients. PMID:26804196

  6. Hyperbaric oxygen treatment ameliorates lung injury in paraquat intoxicated rats.

    PubMed

    Akcılar, Raziye; Akcılar, Aydın; Şimşek, Hasan; Koçak, Fatma Emel; Koçak, Cengiz; Yümün, Gündüz; Bayat, Zeynep

    2015-01-01

    Paraquat (PQ) is an agrochemical agent commonly used worldwide, which can cause acute lung injury (ALI) and death. Hyperbaric oxygen treatment (HBOT) is a therapeutic method, but the mechanisms of the protective effect of HBOT on ALI remain elusive. The purpose of this study was to evaluate the effect of HBOT on acute lung injury induced by PQ in rats. Wistar Albino rats (n=21) were separated into three groups of seven animals each: control (C), PQ, and PQ + HBOT groups. 20 mg/kg PQ was administered intraperitoneally in PQ and PQ + HBOT groups to induce experimental lung injury. Three days after PQ treatment, PQ + HBOT group was administered 100% O2 at 2.0 ATA for 1 hour per day, for five consecutive days. At the end of the study, lung tissue was obtained for determining total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI) and histopathological determination. Tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), basic fibroblast growth factor (bFGF), transforming growth factor (TGF)-β1 mRNA levels were assessed by quantitative reverse transcription-polymerase chain reaction. In addition, the inducible nitric oxide synthase (iNOS) level in the plasma was determined. Plasma iNOS, OSI, tissue TNF-α, TGF-β1 and bFGF mRNA levels, and histological injury scores in PQ + HBOT group were significantly lower than PQ group. TAS level in PQ + HBOT group was significantly higher than PQ group. The findings suggest that HBOT could effectively ameliorate PQ-induced lung injury in rats. PMID:26722498

  7. Hyperbaric oxygen treatment ameliorates lung injury in paraquat intoxicated rats

    PubMed Central

    Akcılar, Raziye; Akcılar, Aydın; Şimşek, Hasan; Koçak, Fatma Emel; Koçak, Cengiz; Yümün, Gündüz; Bayat, Zeynep

    2015-01-01

    Paraquat (PQ) is an agrochemical agent commonly used worldwide, which can cause acute lung injury (ALI) and death. Hyperbaric oxygen treatment (HBOT) is a therapeutic method, but the mechanisms of the protective effect of HBOT on ALI remain elusive. The purpose of this study was to evaluate the effect of HBOT on acute lung injury induced by PQ in rats. Wistar Albino rats (n=21) were separated into three groups of seven animals each: control (C), PQ, and PQ + HBOT groups. 20 mg/kg PQ was administered intraperitoneally in PQ and PQ + HBOT groups to induce experimental lung injury. Three days after PQ treatment, PQ + HBOT group was administered 100% O2 at 2.0 ATA for 1 hour per day, for five consecutive days. At the end of the study, lung tissue was obtained for determining total oxidant status (TOS), total antioxidant status (TAS), oxidative stress index (OSI) and histopathological determination. Tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), basic fibroblast growth factor (bFGF), transforming growth factor (TGF)-β1 mRNA levels were assessed by quantitative reverse transcription-polymerase chain reaction. In addition, the inducible nitric oxide synthase (iNOS) level in the plasma was determined. Plasma iNOS, OSI, tissue TNF-α, TGF-β1 and bFGF mRNA levels, and histological injury scores in PQ + HBOT group were significantly lower than PQ group. TAS level in PQ + HBOT group was significantly higher than PQ group. The findings suggest that HBOT could effectively ameliorate PQ-induced lung injury in rats. PMID:26722498

  8. Anti-tumour efficacy of calusterone against DMBA-induced rat mammary adenocarcinoma in vivo and in organ culture.

    PubMed Central

    Horn, H.; Erlichman, I.; Levij, I. S.

    1976-01-01

    The effect of calusterone (7beta,17alpha-dimethyltestosterone) on rat mammary DMBA-induced adenocarcinoma was studied both in vivo and in organ culture. In vivo all 8 tumours with a diameter of less than 30 mm regressed following calusterone injection (10 mg/day for 2-3 weeks). In organ culture calusterone (20 mug/ml medium) inhibited the synthesis of DNA and RNA in all 7 cases examined. Testosterone also inhibited the synthesis of DNA and RNA in organ culture in 12 out of 14 and 10 out of 14 tumours respectively. Oestradiol-17beta on the other hand had no effect on DNA and RNA synthesis in organ culture although 70% of the tumours examined were ovarian dependent, i.e. regressed following castration. This could be explained by the direct effect of calusterone on rat adenocarcinoma compared with the indirect effect of oestradiol-17beta which probably exerts its action by activating the secretion of prolactin which acts on the tumour. PMID:131571

  9. Fluorescence distribution and photodynamic effect of ALA-induced PP IX in the DMH rat colonic tumour model.

    PubMed Central

    Bedwell, J.; MacRobert, A. J.; Phillips, D.; Bown, S. G.

    1992-01-01

    Aminolaevulinic acid (ALA) is the first committed step in haem synthesis. In the presence of excess ALA the natural regulatory feedback system is disrupted allowing accumulation of protoporphyrin IX (PP IX) the last intermediate product before haem, and an effective sensitiser. This method of endogenous photosensitisation of cells has been exploited for photodynamic therapy (PDT). We have studied the fluorescence distribution and biological effect of induced PP IX in normal and tumour tissue in the rat colon. Fluorescence in normal colonic tissue was at a peak of 4 h with a rapid fall off by 6 h. The fluorescence had returned to background levels by 24 h. All normal tissue layers followed the same fluorescence profile but the mucosa showed fluorescent levels six times higher than the submucosa, with muscle barely above background values. At 6 h the ratio of fluorescence levels between normal mucosa and viable tumour was approximately 1:6. At this time laser treatment showed necrosis of normal mucosa and tumour with sparing of normal muscle. There was good correlation between the fluorescence distribution and the biological effect of ALA-induced photosensitisation on exposure to red light. ALA may be superior to conventional sensitisers for tumours that produce haem as the PP IX is synthesised in malignant cells while the other sensitisers mainly localise to the vascular stroma of tumours. There is also a greater concentration difference between the PP IX levels in tumours and in normal mucosa and normal muscle than with the other photosensitisers raising the possibility of more selective necrosis in tumours. Images p820-a Figure 2 Figure 3 Figure 4 Figure 7 Figure 8 PMID:1616853

  10. Endotoxin suppresses surfactant synthesis in cultured rat lung cells

    SciTech Connect

    Li, J.J.; Sanders, R.L.; McAdam, K.P.; Gelfand, J.A.; Burke, J.F.

    1989-02-01

    Pulmonary complications secondary to postburn sepsis are a major cause of death in burned patients. Using an in vitro organotypic culture system, we examined the effect of E. coli endotoxin (LPS) on lung cell surfactant synthesis. Our results showed that E. coli endotoxin (1.0, 2.5, 10 micrograms LPS/ml) was capable of suppressing the incorporation of /sup 3/H-choline into de novo synthesized surfactant, lamellar bodies (LB), and common myelin figures (CMF) at 50%, 68%, and 64%, respectively. In a similar study, we were able to show that LPS also inhibited /sup 3/H-palmitate incorporation by cultured lung cells. LPS-induced suppression of surfactant synthesis was reversed by hydrocortisone. Our results suggest that LPS may play a significant role in reducing surfactant synthesis by rat lung cells, and thus contribute to the pathogenesis of sepsis-related respiratory distress syndrome (RDS) in burn injury.

  11. Automatic classification of lung tumour heterogeneity according to a visual-based score system in dynamic contrast enhanced CT sequences

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Alessandro; Baiocco, Serena

    2016-03-01

    Computed tomography (CT) technologies have been considered for a long time as one of the most effective medical imaging tools for morphological analysis of body parts. Contrast Enhanced CT (CE-CT) also allows emphasising details of tissue structures whose heterogeneity, inspected through visual analysis, conveys crucial information regarding diagnosis and prognosis in several clinical pathologies. Recently, Dynamic CE-CT (DCE-CT) has emerged as a promising technique to perform also functional hemodynamic studies, with wide applications in the oncologic field. DCE-CT is based on repeated scans over time performed after intravenous administration of contrast agent, in order to study the temporal evolution of the tracer in 3D tumour tissue. DCE-CT pushes towards an intensive use of computers to provide automatically quantitative information to be used directly in clinical practice. This requires that visual analysis, representing the gold-standard for CT image interpretation, gains objectivity. This work presents the first automatic approach to quantify and classify the lung tumour heterogeneities based on DCE-CT image sequences, so as it is performed through visual analysis by experts. The approach developed relies on the spatio-temporal indices we devised, which also allow exploiting temporal data that enrich the knowledge of the tissue heterogeneity by providing information regarding the lesion status.

  12. Radiation pneumonitis in patients with lung and mediastinal tumours: a retrospective study of risk factors focused on pulmonary emphysema

    PubMed Central

    Kimura, T; Togami, T; Takashima, H; Nishiyama, Y; Ohkawa, M; Nagata, Y

    2012-01-01

    Objectives To evaluate the impact of pulmonary emphysema (PE) on the incidence and severity of radiation pneumonitis (RP) in patients with lung and mediastinal tumours. Methods 92 patients were enrolled. Involved-field radiation therapy (non-small cell carcinoma or mediastinal tumours in 69 patients; median 70 Gy) and accelerated hyperfractionation (limited disease small cell carcinoma in 23 patients; median 45 Gy) were performed. Common Terminology Criteria for Adverse Events v.3.0 was used to evaluate RP and the relationship with the percentage of pulmonary volume irradiated to >20 Gy (V20) and PE. PE was diagnosed by the presence of low-attenuation areas (LAAs) on CT scans and was classified into Grades 0–4 according to the extent of the LAAs. Results The median follow-up time was 16 months. The 6-month cumulative incidence of RP at Grade 3 or greater was 7.7% and 34.1% in patients with a V20 of <25% and ≥25%, respectively (p=0.017). In patients with PE Grades 0, 1, 2 and 3 or greater, the incidence of RP was 16.5%, 9.1%, 8.6% and 54.0%, respectively. As the PE Grade increased, the incidence of RP also increased significantly. Conclusion The incidence and severity of RP are significantly higher in patients with a high V20 value as well as in those with severe PE. PMID:21385918

  13. Enhanced Re-Endothelialization of Decellularized Rat Lungs.

    PubMed

    Stabler, Collin T; Caires, Luiz C; Mondrinos, Mark J; Marcinkiewicz, Cezary; Lazarovici, Philip; Wolfson, Marla R; Lelkes, Peter I

    2016-05-01

    Decellularized lung tissue has been recognized as a potential platform to engineer whole lung organs suitable for transplantation or for modeling a variety of lung diseases. However, many technical hurdles remain before this potential may be fully realized. Inability to efficiently re-endothelialize the pulmonary vasculature with a functional endothelium appears to be the primary cause of failure of recellularized lung scaffolds in early transplant studies. Here, we present an optimized approach for enhanced re-endothelialization of decellularized rodent lung scaffolds with rat lung microvascular endothelial cells (ECs). This was achieved by adjusting the posture of the lung to a supine position during cell seeding through the pulmonary artery. The supine position allowed for significantly more homogeneous seeding and better cell retention in the apex regions of all lobes than the traditional upright position, especially in the right upper and left lobes. Additionally, the supine position allowed for greater cell retention within large diameter vessels (proximal 100-5000 μm) than the upright position, with little to no difference in the small diameter distal vessels. EC adhesion in the proximal regions of the pulmonary vasculature in the decellularized lung was dependent on the binding of EC integrins, specifically α1β1, α2β1, and α5β1 integrins to, respectively, collagen type-I, type-IV, and fibronectin in the residual extracellular matrix. Following in vitro maturation of the seeded constructs under perfusion culture, the seeded ECs spread along the vascular wall, leading to a partial reestablishment of endothelial barrier function as inferred from a custom-designed leakage assay. Our results suggest that attention to cellular distribution within the whole organ is of paramount importance for restoring proper vascular function. PMID:26935764

  14. A dosimetric phantom study of dose accuracy and build-up effects using IMRT and RapidArc in stereotactic irradiation of lung tumours

    PubMed Central

    2012-01-01

    Background and purpose Stereotactic lung radiotherapy (SLRT) has emerged as a curative treatment for medically inoperable patients with early-stage non-small cell lung cancer (NSCLC) and the use of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc treatments (VMAT) have been proposed as the best practical approaches for the delivery of SLRT. However, a large number of narrow field shapes are needed in the dose delivery of intensity-modulated techniques and the probability of underdosing the tumour periphery increases as the effective field size is decreased. The purpose of this study was to evaluate small lung tumour doses irradiated by intensity-modulated techniques to understand the risk for dose calculation errors in precision radiotherapy such as SLRT. Materials and methods The study was executed with two heterogeneous phantoms with targets of Ø1.5 and Ø4.0 cm. Dose distributions in the simulated tumours delivered by small sliding window apertures (SWAs), IMRT and RapidArc treatment plans were measured with radiochromic film. Calculation algorithms of pencil beam convolution (PBC) and anisotropic analytic algorithm (AAA) were used to calculate the corresponding dose distributions. Results Peripheral doses of the tumours were decreased as SWA decreased, which was not modelled by the calculation algorithms. The smallest SWA studied was 2 mm, which reduced the 90% isodose line width by 4.2 mm with the Ø4.0 cm tumour as compared to open field irradiation. PBC was not able to predict the dose accurately as the gamma evaluation failed to meet the criteria of ±3%/±1 mm on average in 61% of the defined volume with the smaller tumour. With AAA the corresponding value was 16%. The dosimetric inaccuracy of AAA was within ±3% with the optimized treatment plans of IMRT and RapidArc. The exception was the clinical RapidArc plan with dose overestimation of 4%. Conclusions Overall, the peripheral doses of the simulated lung tumours were

  15. Production of Histamine-like and Prostaglandin-Like Substances from Serum Incubated with Rat, Dog, Mouse or Human Tumours

    PubMed Central

    Apps, M. C. P.; Cater, D. B.

    1973-01-01

    When diluted serum was incubated at 37° with finely minced tumour tissue (from rat, dog, mouse or man) there was a fall of haemolytic complement titre (0-30 minutes), the production of a “histamine-like” material (30-90 minutes) and a prostaglandin-like “active lipid” (90-150 minutes). This latter was extracted with ethyl acetate at pH 3 and produced contraction of a rat stomach-fundus-strip preparation. Production of both types of activity was approximately proportional to the quantity of serum in the incubation mixture and to the fall in the haemolytic complement titre. With a constant amount of serum there was an optimum quantity of tumour, above which no further increase of active material was obtained. Aspirin or indomethacin added to the serum abolished the production of the “active lipid” but did not affect the “histamine-like” material. Inhibition of C′1 activity had a similar effect, but inhibition of C′3 abolished the production of both “histamine-like” and “prostaglandin-like” activity. When tumour was incubated with Tyrode's solution, both active fractions were present but their amount did not increase with time. When serum was incubated with liver or muscle from rat or guinea-pig, there was no “production” of either “histamine-like” or “prostaglandin-like” material. PMID:4349540

  16. Immunoscintigraphy of small-cell lung cancer xenografts with anti neural cell adhesion molecule monoclonal antibody, 123C3: improvement of tumour uptake by internalisation.

    PubMed

    Kwa, H B; Wesseling, J; Verhoeven, A H; van Zandwijk, N; Hilkens, J

    1996-02-01

    The efficacy of three murine monoclonal antibodies (MAbs) for immunoscintigraphy of small-cell lung cancer (SCLS) xenografts was studied in a Balb/c nu/nu mouse model. These Mabs, 123C3, 123A8 and MOC191, belong to cluster 1 of anti-SCLC MAbs and bind to the neural cell adhesion molecule (NCAM) with similar affinity. After intraperitoneal injection of these MAbs, labelled with 125I, the highest uptake in tumour tissue was obtained with MAb 123C3. Seven days after the administration of this MAb 13.9% of the injected dose per gram of tumour tissue was retained in the tumour. The corresponding tumour tissue ratios ranged from 3.97 for blood to 31.03 for colon. The imaging results and the tumour uptake were less favourable for the two other MAbs, 123A8 and MOC191 (fractions of injected dose respectively 6.7% and 9.2%), although affinity, biological activity after labelling and uptake in non-tumour tissues were very similar for all three MAbs. These results may be explained by the differences in the interaction between the MAbs and the tumour cells. Mab 123C3 is internalised into tumour cells, whereas both other anti-NCAM Mabs are not. Internalisation into NCI H69 cells was demonstrated in vitro by radioimmunoassay, confocal laser scanning microscopy and electron microscopy. The internalised fraction of MAb 123C3 was 22.3% after 24h, whereas this fraction was only 7.5% for MAb 123A8. Although the internalised radiolabeled Mabs are usually degraded and dehalogenated intracellularly, the retained radioactivity is high. Apparently, intracellular degradation of radiolabelled MAb 123C3 and subsequent secretion of radioactive iodine did not prevent the accumulation of intracellular radioactivity. In conclusion, accumulation and retention of radioactivity in the tumour tissue, due to internalisation of radiolabelled MAbs, may improve the results immunoscintigraphy. PMID:8595157

  17. Segmental hemodynamics during partial liquid ventilation in isolated rat lungs

    PubMed Central

    Ko, Angela C.; Hirsh, Emily; Wong, Andrew C.; Moore, Timothy M.; Taylor, Aubrey E.; Hirschl, Ronald B.; Younger, John G.

    2011-01-01

    Partial liquid ventilation (PLV) is a means of ventilatory support in which gas ventilation is carried out in a lung partially filled with a perfluorocarbon liquid capable of supporting gas exchange. Recently, this technique has been proposed as an adjunctive therapy for cardiac arrest, during which PLV with cold perfluorocarbons might rapidly cool the intrathoracic contents and promote cerebral protective hypothermia while not interfering with gas exchange. A concern during such therapy will be the effect of PLV on pulmonary hemodynamics during very low blood flow conditions. In the current study, segmental (i.e. precapillary, capillary, and postcapillary) hemodynamics were studied in the rat lung using a standard isolated lung perfusion system at a flow rate of 6 ml/min ( ~5% normal cardiac output). Lungs received either gas ventilation or 5 or 10 ml/kg PLV. Segmental pressures and vascular resistances were determined, as was transcapillary fluid flux. The relationship between individual hemodynamic parameters and PLV dose was examined using linear regression, with n = 5 in each study group. PLV at both the 5 and 10 ml/kg dose produced no detectable changes in pulmonary blood flow or in transcapillary fluid flux (all R2 values < 0.20). Conclusion: In an isolated perfused lung model of low flow conditions, normal segmental hemodynamic behavior was preserved during liquid ventilation. These data support further investigation of this technique as an adjunct to cardiopulmonary resuscitation. PMID:12668304

  18. Gene expression analysis in rat lungs after intratracheal exposure to nanoparticles doped with cadmium

    NASA Astrophysics Data System (ADS)

    Coccini, Teresa; Fabbri, Marco; Roda, Elisa; Grazia Sacco, Maria; Manzo, Luigi; Gribaldo, Laura

    2011-07-01

    Silica nanoparticles (NPs) incorporating cadmium (Cd) have been developed for a range of potential application including drug delivery devices. Occupational Cd inhalation has been associated with emphysema, pulmonary fibrosis and lung tumours. Mechanistically, Cd can induce oxidative stress and mediate cell-signalling pathways that are involved in inflammation.This in vivo study aimed at investigating pulmonary molecular effects of NPs doped with Cd (NP-Cd, 1 mg/animal) compared to soluble CdCl2 (400 μg/animal), in Sprague Dawley rats treated intra-tracheally, 7 and 30 days after administration. NPs of silica containing Cd salt were prepared starting from commercial nano-size silica powder (HiSil™ T700 Degussa) with average pore size of 20 nm and surface area of 240 m2/g. Toxicogenomic analysis was performed by the DNA microarray technology (using Agilent Whole Rat Genome Microarray 4×44K) to evaluate changes in gene expression of the entire genome. These findings indicate that the whole genome analysis may represent a valuable approach to assess the whole spectrum of biological responses to cadmium containing nanomaterials.

  19. 4D radiobiological modelling of the interplay effect in conventionally and hypofractionated lung tumour IMRT

    PubMed Central

    Uzan, J; Baker, C; Nahum, A

    2015-01-01

    Objective: To study the impact of the interplay between respiration-induced tumour motion and multileaf collimator leaf movements in intensity-modulated radiotherapy (IMRT) as a function of number of fractions, dose rate on population mean tumour control probability () using an in-house developed dose model. Methods: Delivered dose was accumulated in a voxel-by-voxel basis inclusive of tumour motion over the course of treatment. The effect of interplay on dose and was studied for conventionally and hypofractionated treatments using digital imaging and communications in medicine data sets. Moreover, the effect of dose rate on interplay was also studied for single-fraction treatments. Simulations were repeated several times to obtain for each plan. Results: The average variation observed in mean dose to the target volumes were −0.76% ± 0.36% for the 20-fraction treatment and −0.26% ± 0.68% and −1.05% ± 0.98% for the three- and single-fraction treatments, respectively. For the 20-fraction treatment, the drop in was −1.05% ± 0.39%, whereas for the three- and single-fraction treatments, it was −2.80% ± 1.68% and −4.00% ± 2.84%, respectively. By reducing the dose rate from 600 to 300 MU min−1 for the single-fraction treatments, the drop in was reduced by approximately 1.5%. Conclusion: The effect of interplay on is negligible for conventionally fractionated treatments, whereas considerable drop in is observed for the three- and single-fraction treatments. Reduced dose rate could be used in hypofractionated treatments to reduce the interplay effect. Advances in knowledge: A novel in silico dose model is presented to determine the impact of interplay effect in IMRT treatments on . PMID:25251400

  20. Measurement of the acute metabolic response to hypoxia in rat tumours in vivo using magnetic resonance spectroscopy and hyperpolarised pyruvate

    PubMed Central

    Bluff, Joanne E.; Reynolds, Steven; Metcalf, Stephen; Alizadeh, Tooba; Kazan, Samira M.; Bucur, Adriana; Wholey, Emily G.; Bibby, Becky A.S.; Williams, Leigh; Paley, Martyn N.; Tozer, Gillian M.

    2015-01-01

    Purpose To estimate the rate constant for pyruvate to lactate conversion in tumours in response to a hypoxic challenge, using hyperpolarised 13C1-pyruvate and magnetic resonance spectroscopy. Methods and materials Hypoxic inspired gas was used to manipulate rat P22 fibrosarcoma oxygen tension (pO2), confirmed by luminescence decay of oxygen-sensitive probes. Hyperpolarised 13C1-pyruvate was injected into the femoral vein of anaesthetised rats and slice-localised 13C magnetic resonance (MR) spectra acquired. Spectral integral versus time curves for pyruvate and lactate were fitted to a precursor-product model to estimate the rate constant for tumour conversion of pyruvate to lactate (kpl). Mean arterial blood pressure (MABP) and oxygen tension (ArtpO2) were monitored. Pyruvate and lactate concentrations were measured in freeze-clamped tumours. Results MABP, ArtpO2 and tumour pO2 decreased significantly during hypoxia. kpl increased significantly (p < 0.01) from 0.029 ± 0.002 s−1 to 0.049 ± 0.006 s−1 (mean ± SEM) when animals breathing air were switched to hypoxic conditions, whereas pyruvate and lactate concentrations were minimally affected by hypoxia. Both ArtpO2 and MABP influenced the estimate of kpl, with a strong negative correlation between kpl and the product of ArtpO2 and MABP under hypoxia. Conclusion The rate constant for pyruvate to lactate conversion, kpl, responds significantly to a rapid reduction in tumour oxygenation. PMID:25824978

  1. Sensitivity of locally recurrent rat mammary tumour cell lines to syngeneic polymorphonuclear cell, macrophage and natural killer cell cytolysis.

    PubMed

    Aeed, P A; Welch, D R

    1988-12-01

    Using a recently developed model for studying the biology of locally recurrent (LR) mammary tumours in the 13762NF rat mammary adenocarcinoma system, we examined the sensitivity to polymorphonuclear cell, macrophage and natural killer cell cytolysis. The parental MTF7(T20) cell line; the 'primary' tumours which arose following subcutaneous inoculation into the mammary fat pad, sc1 and sc3; and the local recurrences (following surgical excision) LR1 and LR1a from sc1, and LR3 from sc3 were all cells generally resistant to specific PMN cytolysis. LPS-activated macrophages caused 25.1%, 38.7% and 58.8% specific cytolysis in MTF7, sc1 and LR1 cells, respectively at E:T of 20:1 and 72 h co-incubation. LR1a, sc3 and LR3 lysis ranged from 0-4.4% under the same conditions. Non-activated macrophages did not lyse any of the cell lines. Locally recurrent and 'primary' tumour cell lines were also not lysed by naive NK cells (range 0.5-4.0% cytolysis). NK cells activated with bropirimine, a potent immunomodulator currently being studied in clinical trials, and/or interleukin-2 were mildly more effective at killing LR cells. Our results show that locally recurrent tumours exhibit heterogeneous sensitivities and are different from 'primary' tumour cells in sensitivities to immune cell killing, but they are not necessarily more or less sensitive. Results with bropirimine-activated or IL-2-activated NK cells emphasize that nonspecific activation is insufficient to eliminate all tumour subpopulations. PMID:3224080

  2. Analysis of lung tumor risks in rats exposed to radon.

    PubMed

    Gilbert, E S; Cross, F T; Dagle, G E

    1996-03-01

    Using data on 3117 rats exposed by inhalation to radon, radon progeny and uranium ore dust, the hazard function (or age-specific risk) for lung tumor incidence was modeled as a function of exposure, exposure rate and other factors. The overall estimate of lifetime risk was 237 cases per 10(6) rats per WLM (237 per 10(6) WLM), reasonably comparable to estimates obtained from data for humans. The data below 1000 WLM (20-640 WLM) were consistent with linearity with positive excess risks at all levels; however, evidence of statistically significant excess risk was limited to exposures of 80 WLM or greater. Evidence for an inverse exposure-rate effect was limited primarily to cumulative exposures exceeding 1000 WLM (1280-10,240 WLM) and to comparison of results at 100 and 1000 WL. Even at these levels, the possibility that the effect might be explained by time since last exposure or by heterogeneity across experiments could not be entirely excluded. The inverse exposure-rate effect was strongest for epidermoid and adenosquamous tumors, and the only indication of such an effect at exposures below 1000 WLM was modest evidence (P=0.024) in analyses limited to these tumors. When all lung tumors, or all malignant lung tumors, were included, there was no evidence of such an effect below 1000 WLM. These data support the viewpoint that the inverse exposure-rate effect is primarily a high-dose phenomenon. PMID:8927704

  3. Ultrastructural alterations during embryonic rats' lung development caused by ozone.

    PubMed

    López, Irma; Sánchez, Ivonne; Bizarro, Patricia; Acevedo, Sandra; Ustarroz, Martha; Fortoul, Teresa

    2008-01-01

    Ozone (O3) is an oxidizing agent that acts on phospholipids, proteins and sugars of cellular membranes producing free radicals, which cause oxidative damages. The O3 exposure has been used as a model to study oxidative stress, in which the respiratory airways represent the entrance to the organism. In this study, ultrastructural alterations were identified at the bronchiolar level during the intra-uterine lung development, using an O3 exposure model in pregnant rats during 18, 20 and 21 days of gestation. Twelve pregnant Wistar rats, six controls and six exposed to 1 ppm O3 inhalation during 12 h per day, were used. The rats were sacrificed at gestational days 18, 20 and 21; the fetuses were obtained and their lungs dissected. The ultrastructural analysis evidenced swollen mitochondria, cytoplasmic vacuolization of the epithelial cells and structural disorder caused by the oxidative stress. At gestation day 20, flake-off epithelial cells and laminar bodies in the bronchiolar lumen were observed. In the 21-gestation-day group, the mitochondria were edematous and their cristae were disrupted by the damage caused in mitochondrial membranes. PMID:18083976

  4. Bitumen fume-induced gene expression profile in rat lung

    SciTech Connect

    Gate, Laurent . E-mail: laurent.gate@inrs.fr; Langlais, Cristina; Micillino, Jean-Claude; Nunge, Herve; Bottin, Marie-Claire; Wrobel, Richard; Binet, Stephane

    2006-08-15

    Exposure to bitumen fumes during paving and roofing activities may represent an occupational health risk. To date, most of the studies performed on the biological effect of asphalt fumes have been done with regard to their content in carcinogenic polycyclic aromatic hydrocarbons (PAH). In order to gain an additional insight into the mechanisms of action of bitumen fumes, we studied their pulmonary effects in rodents following inhalation using the microarray technology. Fisher 344 rats were exposed for 5 days, 6 h/day to bitumen fumes generated at road paving temperature (170 {sup o}C) using a nose-only exposition device. With the intention of studying the early transcriptional events induced by asphalt fumes, lung tissues were collected immediately following exposure and gene expression profiles in control and exposed rats were determined by using oligonucleotide microarrays. Data analysis revealed that genes involved in lung inflammatory response as well as genes associated with PAH metabolization and detoxification were highly expressed in bitumen-exposed animals. In addition, the expression of genes related to elastase activity and its inhibition which are associated with emphysema was also modulated. More interestingly genes coding for monoamine oxidases A and B involved in the metabolism of neurotransmitters and xenobiotics were downregulated in exposed rats. Altogether, these data give additional information concerning the bitumen fumes biological effects and would allow to better review the health effects of occupational asphalt fumes exposure.

  5. Experimental lung injury promotes alterations in energy metabolism and respiratory mechanics in the lungs of rats: prevention by exercise.

    PubMed

    da Cunha, Maira J; da Cunha, Aline A; Scherer, Emilene B S; Machado, Fernanda Rossato; Loureiro, Samanta O; Jaenisch, Rodrigo B; Guma, Fátima; Lago, Pedro Dal; Wyse, Angela T S

    2014-04-01

    In the present study we investigated the effects of lung injury on energy metabolism (succinate dehydrogenase, complex II, cytochrome c oxidase, and ATP levels), respiratory mechanics (dynamic and static compliance, elastance and respiratory system resistance) in the lungs of rats, as well as on phospholipids in bronchoalveolar lavage fluid. The protective effect of physical exercise on the alterations caused by lung injury, including lung edema was also evaluated. Wistar rats were submitted to 2 months of physical exercise. After this period the lung injury was induced by intratracheal instillation of lipopolysaccharide. Adult Wistar rats were submitted to 2 months of physical exercise and after this period the lung injury was induced by intratracheal instillation of lipopolysaccharide in dose 100 μg/100 g body weight. The sham group received isotonic saline instillation. Twelve hours after the injury was performed the respiratory mechanical and after the rats were decapitated and samples were collected. The rats subjected to lung injury presented a decrease in activities of the enzymes of the electron transport chain and ATP levels in lung, as well as the formation of pulmonary edema. A decreased lung dynamic and static compliance, as well as an increase in respiratory system resistance, and a decrease in phospholipids content were observed. Physical exercise was able to totally prevent the decrease in succinate dehydrogenase and complex II activities and the formation of pulmonary edema. It also partially prevented the increase in respiratory system resistance, but did not prevent the decrease in dynamic and static compliance, as well as in phospholipids content. These findings suggest that the mitochondrial dysfunction may be one of the important contributors to lung damage and that physical exercise may be beneficial in this pathology, although it did not prevent all changes present in lung injury. PMID:24378995

  6. Interleukin-33 enhances programmed oncosis of ST2L-positive low-metastatic cells in the tumour microenvironment of lung cancer

    PubMed Central

    Akimoto, M; Hayashi, J-I; Nakae, S; Saito, H; Takenaga, K

    2016-01-01

    The proinflammatory interleukin-33 (IL-33) binds to its receptor ST2L on the surface of immune cells and stimulates the production of Th2 cytokines; however, the effects of IL-33 on tumour cells are poorly understood. Here we show that ST2 was significantly downregulated in human lung cancer tissues and cells compared with normal lung tissues and cells. IL-33 expression was also inversely correlated with the stages of human lung cancers. In accordance with this finding, low-metastatic cells but not high-metastatic cells derived from Lewis lung carcinoma expressed functional ST2L. IL-33 was abundantly present in the tumours established by the low-metastatic cells compared with those formed by the high-metastatic cells. Although the low-metastatic cells scarcely expressed IL-33 in vitro, these cells did expry 6ess this molecule in vivo, likely due to stimulation by intratumoural IL-1β and IL-33. Importantly, IL-33 enhanced the cell death of ST2L-positive low-metastatic cells, but not of ST2L-negative high-metastatic cells, under glucose-depleted, glutamine-depleted and hypoxic conditions through p38 MAPK and mTOR activation, and in a mitochondria-dependent manner. The cell death was characterised by cytoplasmic blisters and karyolysis, which are unique morphological features of oncosis. Inevitably, the low-metastatic cells, but not of the high-metastatic cells, grew faster in IL-33−/− mice than in wild-type mice. Furthermore, IL-33 selected for the ST2L-positive, oncosis-resistant high-metastatic cells under conditions mimicking the tumour microenvironment. These data suggest that IL-33 enhances lung cancer progression by selecting for more malignant cells in the tumour microenvironment. PMID:26775708

  7. The increased gastroprotective effect of pioglitazone in cholestatic rats: role of nitric oxide and tumour necrosis factor alpha.

    PubMed

    Moezi, Leila; Janahmadi, Zeinab; Amirghofran, Zahra; Nekooeian, Ali Akbar; Dehpour, Ahmad R

    2014-02-01

    The prevalence of gastric ulcers is high in cholestatic patients, but the exact mechanism of this increased frequency remains uncertain. It has been shown that pioglitazone accelerates the healing of pre-existing gastric ulcers. The present study was designed to investigate the effect of pioglitazone, on the gastric mucosal lesions in cholestatic rats. Cholestasis was induced by surgical ligation of common bile duct and sham-operated rats served as control. Different groups of sham and cholestatic animals received solvent or pioglitazone (5, 15, 30 mg/kg) for 7 days. On the day eight rats were killed after oral ethanol administration and the area of gastric lesions was measured. The serums of rats were also collected to determine serum levels of tumour necrosis factor alpha (TNF-α), IL-1β and bilirubin. The ethanol-induced gastric mucosal damage was significantly more severe in cholestatic rats than sham-operated ones. Pretreatment with pioglitazone dose-dependently attenuated gastric lesions induced by ethanol in both sham and cholestatic rats, but this effect was more prominent in cholestatic ones. The effect of pioglitazone was associated with a significant fall in serum levels of TNF-α in cholestatic rats. L-NAME, a non-selective nitric oxide synthase (NOS) inhibitor, and decreased pioglitazone-induced gastroprotective effect in cholestatic rats, while aminoguanidine, a selective inducible NOS inhibitor, potentiated pioglitazone-induced gastroprotective effect in the cholestatic rats. Chronic treatment with pioglitazone exerts an enhanced gastroprotective effect on the stomach ulcers of cholestatic rats compared to sham rats probably due to constitutive NOS induction and/or inducible NOS inhibition and attenuating release of TNF-α. PMID:24456333

  8. Effective Rat Lung Tumor Model for Stereotactic Body Radiation Therapy.

    PubMed

    Zhang, Zhang; Wodzak, Michelle; Belzile, Olivier; Zhou, Heling; Sishc, Brock; Yan, Hao; Stojadinovic, Strahinja; Mason, Ralph P; Brekken, Rolf A; Chopra, Rajiv; Story, Michael D; Timmerman, Robert; Saha, Debabrata

    2016-06-01

    Stereotactic body radiation therapy (SBRT) has found an important role in the treatment of patients with non-small cell lung cancer, demonstrating improvements in dose distribution and even tumor cure rates, particularly for early-stage disease. Despite its emerging clinical efficacy, SBRT has primarily evolved due to advances in medical imaging and more accurate dose delivery, leaving a void in knowledge of the fundamental biological mechanisms underlying its activity. Thus, there is a critical need for the development of orthotropic animal models to further probe the biology associated with high-dose-per-fraction treatment typical of SBRT. We report here on an improved surgically based methodology for generating solitary intrapulmonary nodule tumors, which can be treated with simulated SBRT using the X-RAD 225Cx small animal irradiator and Small Animal RadioTherapy (SmART) Plan treatment system. Over 90% of rats developed solitary tumors in the right lung. Furthermore, the tumor response to radiation was monitored noninvasively via bioluminescence imaging (BLI), and complete ablation of tumor growth was achieved with 36 Gy (3 fractions of 12 Gy each). We report a reproducible, orthotopic, clinically relevant lung tumor model, which better mimics patient treatment regimens. This system can be utilized to further explore the underlying biological mechanisms relevant to SBRT and high-dose-per-fraction radiation exposure and to provide a useful model to explore the efficacy of radiation modifiers in the treatment of non-small cell lung cancer. PMID:27223828

  9. Removal of albumin microinjected in rat lung perimicrovascular space.

    PubMed

    Ying, X; Qiao, R; Ishikawa, S; Bhattacharya, J

    1994-09-01

    We used a microinjection approach to assess hydraulic properties of lung perimicrovascular adventitia (interstitial cuff surrounding microvessels). Isolated blood-perfused rat lungs held at constant airway pressure were microscopically viewed to identify subpleural venules (20 microns diam). Venular adventitia were microinjected with 20 nl of fluorescent albumin (4 g/dl), and then adventitial fluorescence was quantified at the injection site by either photometery or imaging. Nonlinear decay of adventitial fluorescence indicated liquid flux from the injection site into normal interstitium. In some experiments, we determined that the adventitial fluorescence flowed longitudinally along the venule length and filled single lymphatics. The fluorescence decay at the injection site was best described by equations of convective but not diffusive transport. The decay time constant (time to 37% initial), which relates inversely to hydraulic conductivity, increased 10-fold above baseline on lung expansion with airway pressure from 5 to 15 cmH2O (P < 0.05). However, presence or absence of blood flow, increase in filtration pressure, and tissue edema were all without effect on the time constant. Our estimate of the lower limit of baseline adventitial hydraulic conductivity was 5 x 10(-6) ml.cm-2.s-1.cmH2O-1. We conclude that hydraulic conductivity of perimicrovascular adventitia is not augmented by edema but that it is decreased by lung expansion. PMID:7836133

  10. Biodistribution and clearance of instilled carbon nanotubes in rat lung

    PubMed Central

    Elgrabli, Dan; Floriani, Magali; Abella-Gallart, Steve; Meunier, Laurent; Gamez, Christelle; Delalain, Patrice; Rogerieux, Françoise; Boczkowski, Jorge; Lacroix, Ghislaine

    2008-01-01

    Background Constituted only by carbon atoms, CNT are hydrophobic and hardly detectable in biological tissues. These properties make biokinetics and toxicology studies more complex. Methods We propose here a method to investigate the biopersistence of CNT in organism, based on detection of nickel, a metal present in the MWCNT we investigated. Results and conclusion Our results in rats that received MWCNT by intratracheal instillation, reveal that MWCNT can be eliminated and do not significantly cross the pulmonary barrier but are still present in lungs 6 months after a unique instillation. MWCNT structure was also showed to be chemically modified and cleaved in the lung. These results provide the first data of CNT biopersistence and clearance at 6 months after respiratory administration. PMID:19068117

  11. Tracking lung tumour motion using a dynamically weighted optical flow algorithm and electronic portal imaging device

    NASA Astrophysics Data System (ADS)

    Teo, P. T.; Crow, R.; Van Nest, S.; Sasaki, D.; Pistorius, S.

    2013-07-01

    This paper investigates the feasibility and accuracy of using a computer vision algorithm and electronic portal images to track the motion of a tumour-like target from a breathing phantom. A multi-resolution optical flow algorithm that incorporates weighting based on the differences between frames was used to obtain a set of vectors corresponding to the motion between two frames. A global value representing the average motion was obtained by computing the average weighted mean from the set of vectors. The tracking accuracy of the optical flow algorithm as a function of the breathing rate and target visibility was investigated. Synthetic images with different contrast-to-noise ratios (CNR) were created, and motions were tracked. The accuracy of the proposed algorithm was compared against potentiometer measurements giving average position errors of 0.6 ± 0.2 mm, 0.2 ± 0.2 mm and 0.1 ± 0.1 mm with average velocity errors of 0.2 ± 0.2 mm s-1, 0.4 ± 0.3 mm s-1 and 0.6 ± 0.5 mm s-1 for 6, 12 and 16 breaths min-1 motions, respectively. The cumulative average position error reduces more rapidly with the greater number of breathing cycles present in higher breathing rates. As the CNR increases from 4.27 to 5.6, the average relative error approaches zero and the errors are less dependent on the velocity. When tracking a tumour on a patient's digitally reconstructed radiograph images, a high correlation was obtained between the dynamically weighted optical flow algorithm, a manual delineation process and a centroid tracking algorithm. While the accuracy of our approach is similar to that of other methods, the benefits are that it does not require manual delineation of the target and can therefore provide accurate real-time motion estimation during treatment.

  12. Vascular response to radiation injury in the rat lung.

    PubMed

    Peterson, L M; Evans, M L; Graham, M M; Eary, J F; Dahlen, D D

    1992-02-01

    Changes in relative left-to-right lung blood flow ratios were followed as an index of vascular radiation injury in left-hemithorax-irradiated Sprague-Dawley rats. Single doses of 11 to 21 Gy gamma radiation resulted in a dose-dependent decrease in relative blood flow to the irradiated lung from 3 to 5 weeks after exposure during the development of pneumonitis. Blood flow returned to near normal by 5 weeks after lower doses (11-13.5 Gy). After a single dose of 15 Gy the left-to-right blood flow ratio recovered to 75% of normal at 12 weeks and leveled off. Following 18 Gy irradiation a second period of reduced flow began 16 weeks after exposure. After 21 Gy irradiation flow to the irradiated side remained low for 1 year after exposure. Rats that received a single dose of 18 Gy to the left hemithorax were also treated with one or two of the following drugs: captopril, cyproheptadine, dexamethasone, diethylcarbamazine, penicillamine, or theophylline. Dexamethasone was most effective at preventing the decrease in blood flow to the irradiated lung when treatment was continued through the pneumonitis period and dose was not tapered until 8 weeks after radiation exposure. All other drugs and drug combinations were, for the most part, virtually ineffective after the pneumonitis period. There was a relatively poor correlation with earlier vascular permeability surface area product studies. This suggests that endothelial damage, as well as damage to other cell types, contributes to the development of post-irradiation fibrosis in the lung. PMID:1734443

  13. Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Matthews, Q.; Jirasek, A.; Lum, J. J.; Brolo, A. G.

    2011-11-01

    This work applies noninvasive single-cell Raman spectroscopy (RS) and principal component analysis (PCA) to analyze and correlate radiation-induced biochemical changes in a panel of human tumour cell lines that vary by tissue of origin, p53 status and intrinsic radiosensitivity. Six human tumour cell lines, derived from prostate (DU145, PC3 and LNCaP), breast (MDA-MB-231 and MCF7) and lung (H460), were irradiated in vitro with single fractions (15, 30 or 50 Gy) of 6 MV photons. Remaining live cells were harvested for RS analysis at 0, 24, 48 and 72 h post-irradiation, along with unirradiated controls. Single-cell Raman spectra were acquired from 20 cells per sample utilizing a 785 nm excitation laser. All spectra (200 per cell line) were individually post-processed using established methods and the total data set for each cell line was analyzed with PCA using standard algorithms. One radiation-induced PCA component was detected for each cell line by identification of statistically significant changes in the PCA score distributions for irradiated samples, as compared to unirradiated samples, in the first 24-72 h post-irradiation. These RS response signatures arise from radiation-induced changes in cellular concentrations of aromatic amino acids, conformational protein structures and certain nucleic acid and lipid functional groups. Correlation analysis between the radiation-induced PCA components separates the cell lines into three distinct RS response categories: R1 (H460 and MCF7), R2 (MDA-MB-231 and PC3) and R3 (DU145 and LNCaP). These RS categories partially segregate according to radiosensitivity, as the R1 and R2 cell lines are radioresistant (SF2 > 0.6) and the R3 cell lines are radiosensitive (SF2 < 0.5). The R1 and R2 cell lines further segregate according to p53 gene status, corroborated by cell cycle analysis post-irradiation. Potential radiation-induced biochemical response mechanisms underlying our RS observations are proposed, such as (1) the regulated

  14. Severe psychosis due to Cushing's syndrome in a patient with a carcinoid tumour in the lung: a case report and review of the current management.

    PubMed

    Baba, Mohamad; Ray, Debamalya

    2015-01-01

    Severe psychosis in patients with Cushing's syndrome is a rare occurrence and can be extremely resistant to medical therapy. We describe a case of a 51-year-old Afro-Caribbean female patient, with refractory severe hypertension (initially resistant to polypharmacy) and gradual development of severe psychosis secondary to ectopic Cushing's syndrome, who was subsequently diagnosed to have a carcinoid tumour in her lung. Her psychotic episodes - secondary to hypercortisolism and initially refractory to the medical therapy - subsided only after the resection of the carcinoid tumour in her right lower pulmonary lobe. Early localization and appropriate surgical resection of the ectopic ACTH-secreting tumour can be of immense value to the successful alleviation of the psychotic episodes of the patients with ectopic Cushing's syndrome. PMID:25926160

  15. Recovery from silver-nanoparticle-exposure-induced lung inflammation and lung function changes in Sprague Dawley rats.

    PubMed

    Song, Kyung Seuk; Sung, Jae Hyuck; Ji, Jun Ho; Lee, Ji Hyun; Lee, Jong Seong; Ryu, Hyeon Ryol; Lee, Jin Kyu; Chung, Yong Hyun; Park, Hyun Min; Shin, Beom Soo; Chang, Hee Kyung; Kelman, Bruce; Yu, Il Je

    2013-03-01

    In a previous study, the lung function, as indicated by the tidal volume, minute volume, and peak inspiration flow, decreased during 90 days of exposure to silver nanoparticles and was accompanied by inflammatory lesions in the lung morphology. Therefore, this study investigated the recovery from such lung function changes in rats following the cessation of 12 weeks of nanoparticle exposure. Male and female rats were exposed to silver nanoparticles (14-15 nm diameter) at concentrations of 0.66 × 10(6) particles/cm(3) (49 μg/m(3), low dose), 1.41 × 10(6) particles/cm(3) (117 μg/m(3), middle dose), and 3.24 × 10(6) particles/cm(3) (381 μg/m(3), high dose) for 6 h/day in an inhalation chamber for 12 weeks. The rats were then allowed to recover. The lung function was measured every week during the exposure period and after the cessation of exposure, plus animals were sacrificed after the 12-week exposure period, and 4 weeks and 12 weeks after the exposure cessation. An exposure-related lung function decrease was measured in the male rats after the 12-week exposure period and 12 weeks after the exposure cessation. In contrast, the female rats did not show a consistent lung function decrease either during the exposure period or following the exposure cessation. The histopathology showed a gradual recovery from the lung inflammation in the female rats, whereas the male rats in the high-dose group exhibited persistent inflammation throughout the 12-week recovery period. Therefore, the present results suggest a potential persistence of lung function changes and inflammation induced by silver nanoparticle exposure above the no observed adverse effect level. PMID:22264098

  16. Is there a standard of care for the radical management of non-small cell lung cancer involving the apical chest wall (Pancoast tumours)?

    PubMed

    Peedell, C; Dunning, J; Bapusamy, A

    2010-06-01

    The term Pancoast tumour encompasses a wide range of tumours that invade the apical chest wall. Although less than 5% of non-small cell lung cancers are Pancoast tumours, they still account for most cases. They often pose a formidable challenge to the multidisciplinary lung cancer team due to their relative rarity, anatomical proximity to vital structures, differing stages of presentation, and their association with smoking-related illnesses. A lack of clinical trials makes comparisons between different treatment modalities very difficult and the management of Pancoast tumours has been largely based on the published retrospective experience of large single institutions. The bimodality approach of induction radiotherapy followed by surgical resection has been the accepted standard of care for the last 50 years, with reported 5-year survival rates of 30% in selected patients. However, two recent prospective multicentre phase II studies using a trimodality approach of induction concurrent chemoradiotherapy followed by surgical resection (followed by two further cycles of adjuvant chemotherapy in one of the studies), have reported 5-year survival rates of 44-56%. This has led to some authorities advocating the trimodality approach as the new standard of care for the management of Pancoast tumours. In this overview, the historical evolution of the management of Pancoast tumours and recent published studies on the trimodality approach are discussed. This is followed by a discussion of whether the trimodality approach should be seen as a new standard of care. Finally, other potential treatment options and the possibilities for future research are deliberated. PMID:20347280

  17. Poster — Thur Eve — 65: A dosimetric comparison of isocentric and non-isocentric coplanar SBRT VMAT plans for peripheral lung tumours

    SciTech Connect

    Conroy, L; Liu, HW; Lau, H; Smith, WL

    2014-08-15

    Volumetric modulated arc therapy (VMAT) delivers lung sterotactic body radiotherapy (SBRT) in shorter treatment time and less monitor units with comparable coverage and organ at risk sparing compared to conventional SBRT treatments. Isocentric VMAT treatment of peripheral lung tumours occasionally requires couch shifts that can inhibit 360° gantry rotation, resulting in additional imaging shifts for each treatment session, and increased potential for involuntary in-fraction motion. Here, we investigate whether non-isocentric VMAT plans can achieve comparable plan quality to isocentric plans for peripheral lung tumours. Three patient plans were selected with targets displaced > 8.5 cm (range: 8.8 – 9.9 cm) laterally from patient midline. For each patient, a plan with isocentre placed within the target volume (isocentric plan) was created and optimized. The same optimization parameters were then used to create a plan with the isocentre at patient midline (non-isocentric plan). Plan quality was evaluated and compared based on planning target volume (PTV) coverage, high dose spillage, dose homogeneity, intermediate dose spillage, dose fall-off gradient, and organ at risk contraints. Non-isocentric plans of equivalent plan quality to isocentric plans were achieved for all patients by optimizing collimator rotations. Field isocentres can be placed at patient midline, as opposed to inside the target volume, with no significant degradation in VMAT plan quality for lateral tumour displacements up to 10 cm. Non-isocentric treatment of peripheral lung tumours could result in decreased overall treatment session time and eliminate the need for imaging shifts prior to VMAT treatment.

  18. Lung transplantation in the rat. III. Functional studies in iso- and allografts

    SciTech Connect

    Marck, K.W.; Prop, J.; Wildevuur, C.R.

    1983-08-01

    Recently a microsurgical technique for orthotopic left lung transplantation in the rat was developed. The aim of this study was to investigate the influence of the operation itself and of an unmodified rejection reaction on the function of the transplanted rat lung. Orthotopic left lung transplantation was performed in 59 rats (34 isografts and 25 allografts). Isografts demonstrated a mean left lung perfusion of 23.1% in the first two postoperative weeks. Seven out of the 10 animals, subjected to a repeated scintigraphy 5-10 weeks later, had an increased graft perfusion, resulting in an almost normal mean left lung perfusion of 34.8%. At that time chest roentgenography revealed a good aeration of the grafts, that at autopsy had a normal aspect. Allografts showed an initial mean left lung perfusion (24.6%) similar to the isografts, which, however, declined sharply a few days later (4.3%). At that time chest roentgenography revealed totally opalescent grafts that at autopsy had the hepatized aspect characteristic of lung allograft rejection. These results of isogeneic and allogeneic lung transplantation in the rat were comparable with those of canine auto- and allotransplantation. For immunogenetic and economical reasons lung transplantation in the rat is a good alternative animal model in lung transplantation research.

  19. A Low-Protein Diet Enhances Angiotensin II Production in the Lung of Pregnant Rats but Not Nonpregnant Rats

    PubMed Central

    Gao, Haijun; Tanchico, Daren Tubianosa; Yallampalli, Uma; Yallampalli, Chandrasekhar

    2016-01-01

    Pulmonary angiotensin II production is enhanced in pregnant rats fed a low-protein (LP) diet. Here we assessed if LP diet induces elevations in angiotensin II production in nonpregnant rats and whether Ace expression and ACE activity in lungs are increased. Nonpregnant rats were fed a normal (CT) or LP diet for 8, 12, or 17 days and timed pregnant rats fed for 17 days from Day 3 of pregnancy. Plasma angiotensin II, expressions of Ace and Ace2, and activities of these proteins in lungs, kidneys, and plasma were measured. These parameters were compared among nonpregnant rats or between nonpregnant and pregnant rats fed different diets. Major findings are as follows: (1) plasma angiotensin II levels were slightly higher in the LP than CT group on Days 8 and 12 in nonpregnant rats; (2) expression of Ace and Ace2 and abundance and activities of ACE and ACE2 in lungs, kidneys, and plasma of nonpregnant rats were unchanged by LP diet except for minor changes; (3) the abundance and activities of ACE in lungs of pregnant rats fed LP diet were greater than nonpregnant rats, while those of ACE2 were decreased. These results indicate that LP diet-induced increase in pulmonary angiotensin II production depends on pregnancy. PMID:27195150

  20. Lung eicosanoids in perinatal rats with congenital diaphragmatic hernia

    PubMed Central

    Ijsselstijn, H.; Zijlstra, F. J.; Van Dijk, J. P. M.; De Jongste, J. C.

    1997-01-01

    Abnormal levels of pulmonary eicosanoids have been reported in infants with persistent pulmonary hypertension (PPH) and congenital diaphragmatic hernia (CDH). We hypothesized that a dysbalance of vasoconstrictive and vasodilatory eicosanoids is involved in PPH in CDH patients. The levels of several eicosanoids in lung homogenates and in bronchoalveolar lavage fluid of controls and rats with CDH were measured after caesarean section or spontaneous birth. In controls the concentration of the stable metabolite of prostacyclin (6-keto-PGF1α), thromboxane A2 (TxB2), prostaglandin E2 (PGE2), and leukotriene B4 (LTB4) decreased after spontaneous birth. CDH pups showed respiratory insufficiency directly after birth. Their lungs had higher levels of 6- keto-PGF1α, reflecting the pulmonary vasodilator prostacyclin (PGI2), than those of controls. We conclude that in CDH abnormal lung eicosanoid levels are present perinatally. The elevated levels of 6-keto-PGF1α in CDH may reflect a compensation mechanism for increased vascular resistance. PMID:18472832

  1. Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Shi, Xianbao; Sun, Hongzhi; Zhou, Dun; Xi, Huanjiu; Shan, Lina

    2015-04-01

    Arctigenin (ATG) has been reported to possess anti-inflammatory properties. However, the effects of ATG on lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains not well understood. In the present study, our investigation was designed to reveal the effect of ATG on LPS-induced ALI in rats. We found that ATG pretreatment attenuated the LPS-induced ALI, as evidenced by the reduced histological scores, myeloperoxidase activity, and wet-to-dry weight ratio in the lung tissues. This was accompanied by the decreased levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-1 (IL-6) in the bronchoalveolar lavage fluid. Furthermore, ATG downregulated the expression of nuclear factor kappa B (NF-κB) p65, promoted the phosphorylation of inhibitor of nuclear factor-κB-α (IκBα) and activated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPKα) in the lung tissues. Our results suggested that ATG attenuates the LPS-induced ALI via activation of AMPK and suppression of NF-κB signaling pathway. PMID:25008149

  2. Inhibition of Neutrophil Exocytosis Ameliorates Acute Lung Injury in Rats

    PubMed Central

    Uriarte, Silvia M.; Rane, Madhavi J.; Merchant, Michael L.; Jin, Shunying; Lentsch, Alex B.; Ward, Richard A.; McLeish, Kenneth R.

    2013-01-01

    Exocytosis of neutrophil granules contributes to acute lung injury (ALI) induced by infection or inflammation, suggesting that inhibition of neutrophil exocytosis in vivo could be a viable therapeutic strategy. This study was conducted to determine the effect of a cell-permeable fusion protein that inhibits neutrophil exocytosis (TAT-SNAP-23) on ALI using an immune complex deposition model in rats. The effect of inhibition of neutrophil exocytosis by intravenous administration of TAT-SNAP-23 on ALI was assessed by albumin leakage, neutrophil infiltration, lung histology, and proteomic analysis of bronchoalveolar lavage fluid (BALf). Administration of TAT-SNAP-23, but not TAT-Control, significantly reduced albumin leakage, total protein levels in the BALf, and intra-alveolar edema and hemorrhage. Evidence that TAT-SNAP-23 inhibits neutrophil exocytosis included a reduction in plasma membrane CD18 expression by BALf neutrophils and a decrease in neutrophil granule proteins in BALf. Similar degree of neutrophil accumulation in the lungs and/or BALf suggests that TAT-SNAP-23 did not alter vascular endothelial cell function. Proteomic analysis of BALf revealed that components of the complement and coagulation pathways were significantly reduced in BALf from TAT-SNAP-23-treated animals. Our results indicate that administration of a TAT-fusion protein that inhibits neutrophil exocytosis reduces in vivo ALI. Targeting neutrophil exocytosis is a potential therapeutic strategy to ameliorate ALI. PMID:23364427

  3. Inflammatory effects of inhaled sulfur mustard in rat lung

    SciTech Connect

    Malaviya, Rama; Sunil, Vasanthi R.; Cervelli, Jessica; Anderson, Dana R.; Holmes, Wesley W.; Conti, Michele L.; Gordon, Ronald E.; Laskin, Jeffrey D.; Laskin, Debra L.

    2010-10-15

    Inhalation of sulfur mustard (SM), a bifunctional alkylating agent that causes severe lung damage, is a significant threat to both military and civilian populations. The mechanisms mediating its cytotoxic effects are unknown and were investigated in the present studies. Male rats Crl:CD(SD) were anesthetized, and then intratracheally intubated and exposed to 0.7-1.4 mg/kg SM by vapor inhalation. Animals were euthanized 6, 24, 48 h or 7 days post-exposure and bronchoalveolar lavage fluid (BAL) and lung tissue collected. Exposure of rats to SM resulted in rapid pulmonary toxicity, including focal ulceration and detachment of the trachea and bronchial epithelia from underlying mucosa, thickening of alveolar septal walls and increased numbers of inflammatory cells in the tissue. There was also evidence of autophagy and apoptosis in the tissue. This was correlated with increased BAL protein content, a marker of injury to the alveolar epithelial lining. SM exposure also resulted in increased expression of markers of inflammation including cyclooxygenase-2 (COX-2), tumor necrosis factor-{alpha} (TNF{alpha}), inducible nitric oxide synthase (iNOS), and matrix metalloproteinase-9 (MMP-9), each of which has been implicated in pulmonary toxicity. Whereas COX-2, TNF{alpha} and iNOS were mainly localized in alveolar regions, MMP-9 was prominent in bronchial epithelium. In contrast, expression of the anti-oxidant hemeoxygenase, and the anti-inflammatory collectin, surfactant protein-D, decreased in the lung after SM exposure. These data demonstrate that SM-induced oxidative stress and injury are associated with the generation of cytotoxic inflammatory proteins which may contribute to the pathogenic response to this vesicant.

  4. Overexpression of WDR79 in non-small cell lung cancer is linked to tumour progression.

    PubMed

    Sun, Yang; Yang, Chao; Chen, Jieying; Song, Xin; Li, Zhen; Duan, Minlan; Li, Jianglin; Hu, Xiaoxiao; Wu, Kuangpei; Yan, Guobei; Yang, Cai; Liu, Jing; Tan, Weihong; Ye, Mao

    2016-04-01

    WD-repeat protein 79 (WDR79), a member of the WD-repeat protein family, acts as a scaffold protein, participating in telomerase assembly, Cajal body formation and DNA double-strand break repair. Here, we first report that WDR79 is frequently overexpressed in cell lines and tissues derived from non-small cell lung cancer (NSCLC). Knockdown of WDR79 significantly inhibited the proliferation of NSCLC cells in vitro and in vivo by inducing cell cycle arrest and apoptosis. WD-repeat protein 79 -induced cell cycle arrest at the G0/G1 phase was associated with the expression of G0/G1-related cyclins and cyclin-dependent kinase complexes. We also provide evidence that WDR79 knockdown induces apoptosis via a mitochondrial pathway. Collectively, these results suggest that WDR79 is involved in the tumorigenesis of NSCLC and is a potential novel diagnostic marker and therapeutic target for NSCLC. PMID:26849396

  5. Ras gene mutation-independent tumours in the intestine of the rat by a single dose of N-methyl-N-nitrosourea.

    PubMed Central

    Waldmann, V.; Rabes, H. M.

    1992-01-01

    Aiming at a sequential analysis of the role of ras gene point mutations during intestinal carcinogenesis, we established an experimental rat tumour model using N-methyl-N-nitrosourea (MNU) as an initiating agent as this carcinogen has been found to induce rat mammary carcinomas with a high prevalence of ras gene mutations. MNU treatment of a total of 249 rats (25 or 50 mg/kg i.p.) in various combinations with partial hepatectomy, hydroxyurea infusion and/or phenobarbital exposure resulted in a high incidence of intestinal adenomas and carcinomas of different histological types, besides liver, soft tissue and auditory sebaceous gland tumours. With PCR-amplified DNA the prevalence of mutations of codon 12 and 61 of H-, K- and N-ras was determined in dot blots by hybridization with 32P-labelled allele-specific oligonucleotides. Ras gene point mutations were not observed in any of the 41 intestinal rat tumours randomly selected from various experimental groups. Considering the high prevalence of ras mutations in MNU-induced mammary carcinomas of the rat the observed complete lack of ras mutations in intestinal tumours induced in the rat by the same carcinogen suggests that organ-specific intraspecies differences in the mechanism of malignant transformation exist even for a heterolytically decomposing, direct acting carcinogen like MNU. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:1390191

  6. Effects of acute and chronic administration of methylprednisolone on oxidative stress in rat lungs* **

    PubMed Central

    Torres, Ronaldo Lopes; Torres, Iraci Lucena da Silva; Laste, Gabriela; Ferreira, Maria Beatriz Cardoso; Cardoso, Paulo Francisco Guerreiro; Belló-Klein, Adriane

    2014-01-01

    Objective: To determine the effects of acute and chronic administration of methylprednisolone on oxidative stress, as quantified by measuring lipid peroxidation (LPO) and total reactive antioxidant potential (TRAP), in rat lungs. Methods: Forty Wistar rats were divided into four groups: acute treatment, comprising rats receiving a single injection of methylprednisolone (50 mg/kg i.p.); acute control, comprising rats i.p. injected with saline; chronic treatment, comprising rats receiving methylprednisolone in drinking water (6 mg/kg per day for 30 days); and chronic control, comprising rats receiving normal drinking water. Results: The levels of TRAP were significantly higher in the acute treatment group rats than in the acute control rats, suggesting an improvement in the pulmonary defenses of the former. The levels of lung LPO were significantly higher in the chronic treatment group rats than in the chronic control rats, indicating oxidative damage in the lung tissue of the former. Conclusions: Our results suggest that the acute use of corticosteroids is beneficial to lung tissue, whereas their chronic use is not. The chronic use of methylprednisolone appears to increase lung LPO levels. PMID:25029646

  7. Brain and spinal tumour.

    PubMed

    Goh, C H; Lu, Y Y; Lau, B L; Oy, J; Lee, H K; Liew, D; Wong, A

    2014-12-01

    This study reviewed the epidemiology of brain and spinal tumours in Sarawak from January 2009 till December 2012. The crude incidence of brain tumour in Sarawak was 4.6 per 100,000 population/year with cumulative rate 0.5%. Meningioma was the most common brain tumour (32.3%) and followed by astrocytoma (19.4%). Only brain metastases showed a rising trend and cases were doubled in 4 years. This accounted for 15.4% and lung carcinoma was the commonest primary. Others tumour load were consistent. Primitive neuroectodermal tumour (PNET) and astrocytoma were common in paediatrics (60%). We encountered more primary spinal tumour rather than spinal metastases. Intradural schwannoma was the commonest and frequently located at thoracic level. The current healthcare system in Sarawak enables a more consolidate data collection to reflect accurate brain tumours incidence. This advantage allows subsequent future survival outcome research and benchmarking for healthcare resource planning. PMID:25934956

  8. Studies on acetyl-CoA carboxylase and fatty acid synthase from rat mammary gland and mammary tumours.

    PubMed Central

    Ahmad, P M; Feltman, D S; Ahmad, F

    1982-01-01

    The activities of two lipogenic enzymes, acetyl-CoA carboxylase and fatty acid synthase, were determined in two transplantable mammary adenocarcinomas (13762 and R3230AC) carried by non-pregnant, pregnant and lactating rats, and in mammary tissue of control animals (non-tumour-carrying) of comparable physiological states. During mammary-gland differentiation of control or tumour-carrying animals, the activities of acetyl-CoA carboxylase and fatty acid synthase in the lactating gland increased by about 40--50-fold over the values found in non-pregnant animals. On the other hand, in tumours carried by lactating dams there were only modest increases (1.5--2-fold) in acetyl-CoA carboxylase and fatty acid synthase compared with the neoplasms carried by non-pregnant animals. On the basis of the Km values for different substrates and immunodiffusion and immunotitration data, the fatty acid synthase of neoplastic tissues appeared to be indistinguishable from the control mammary-gland enzyme. However, a comparison of the immunotitration and immunodiffusion experiments indicated that the mammary-gland acetyl-CoA carboxylase might differ from the enzyme present in mammary neoplasms. Images Fig. 1. Fig. 2. PMID:6130760

  9. Tumour oxygen dynamics measured simultaneously by near-infrared spectroscopy and 19F magnetic resonance imaging in rats.

    PubMed

    Xia, Mengna; Kodibagkar, Vikram; Liu, Hanli; Mason, Ralph P

    2006-01-01

    Simultaneous near-infrared spectroscopy (NIRS) and magnetic resonance imaging (MRI) were used to investigate the correlation between tumour vascular oxygenation and tissue oxygen tension dynamics in rat breast 13762NF tumours with respect to hyperoxic gas breathing. NIRS directly detected global variations in the oxygenated haemoglobin concentration (Delta[HbO(2)]) within tumours and oxygen tension (pO(2)) maps were achieved using (19)F MRI of the reporter molecule hexafluorobenzene. Multiple correlations were examined between rates and magnitudes of vascular (Delta[HbO(2)]) and tissue (pO(2)) responses. Significant correlations were found between response to oxygen and carbogen breathing using either modality. Comparison of results for the two methods showed a correlation between the vascular perfusion rate ratio and the mean pO(2) values (R(2) > 0.7). The initial rates of increase of Delta[HbO(2)] and the slope of dynamic pO(2) response, d(pO(2))/dt, of well-oxygenated voxels in response to hyperoxic challenge were also correlated. These results demonstrate the feasibility of simultaneous measurements using NIRS and MRI. As expected, the rate of pO(2) response to oxygen is primarily dependent upon the well perfused rather than poorly perfused vasculature. PMID:16357430

  10. Long term effects of maternal protein restriction on postnatal lung alveoli development of rat offspring.

    PubMed

    Farid, S A; Mahmoud, O M; Salem, N A; Abdel-Alrahman, G; Hafez, G A

    2015-01-01

    Poor nutrition of women during pregnancy causes reduction in foetal growth and can adversely affect the development of the foetal lungs. The purpose of the present study was to assess the effects of maternal protein restriction on the postnatal lung development in neonatal period, and on lung structure in adult rat offspring. Female virgin Sprague-Dawley albino rats (more than 200 g) were used. One male rat was introduced into a cage with one female for matting. Once the pregnancy was confirmed, pregnant rats were divided into two main groups; each consists of 6 female as follow: 1 - normally nourished group; 2 - protein deficient group. After delivery, offspring were subdivided into three groups: 1 day after delivery, 2 weeks and 2 months postnatal. Rat body and lung weight were recorded and ratio of lung weight to body weight was assessed. Total plasma protein and serum albumin were assessed for all groups. Lung tissue stained with H&E for histological and morphometric analysis. Immunohistochemistry was performed to evaluate the number of cells positive for pulmonary surfactant protein A. Our results showed that protein restriction interfere with neonatal and postnatal lung development resulting in morphological and morphometric changes of normal lung development. We concluded that protein deficiency lead to developmental retardation of lung. PMID:26620509

  11. Kinetics of reversible-sequestration of leukocytes by the isolated perfused rat lung

    SciTech Connect

    Goliaei, B.

    1980-08-01

    The kinetics and morphology of sequestration and margination of rat leukocytes were studied using an isolated perfused and ventilated rat lung preparation. Whole rat blood, bone marrow suspension, or leukocyte suspensions, were used to perfuse the isolated rat lung. The lung was also perfused with latex particle suspensions and the passage of particles through the lung capillaries was studied. When a leukocyte suspension was perfused through the lung in the single-pass mode, the rate of sequestration decreased as more cells were perfused. In contrast, latex particles of a size comparable to that of leukocytes were totally stopped by the lung. When the leukocyte suspension was recirculated through the lung, cells were rapidly removed from circulation until a steady state was reached, after which no net removal of cells by the lung occurred. These results indicate that leukocytes are reversibly sequestered from circulation. The sequestered cells marginated and attached to the luminal surface of the endothelium of post-capillary venules and veins. A mathematical model was developed based on the assumption that the attachment and detachment of leukocytes to blood vessel walls follows first-order kinetics. The model correctly predicts the following characteristics of the system: (a) the kinetics of the sequestration of leukocytes by the lung; (b) the existence of a steady state when a suspension of leukocytes is recirculated through the lung; and (c) the independence of the fraction of cells remaining in circulation from the starting concentration for all values of starting concentration. (ERB)

  12. Canadian consensus: inhibition of ALK-positive tumours in advanced non-small-cell lung cancer

    PubMed Central

    Melosky, B.; Agulnik, J.; Albadine, R.; Banerji, S.; Bebb, D.G.; Bethune, D.; Blais, N.; Butts, C.; Cheema, P.; Cheung, P.; Cohen, V.; Deschenes, J.; Ionescu, D.N.; Juergens, R.; Kamel-Reid, S.; Laurie, S.A.; Liu, G.; Morzycki, W.; Tsao, M.S.; Xu, Z.; Hirsh, V.

    2016-01-01

    Anaplastic lymphoma kinase (alk) is an oncogenic driver in non-small-cell lung cancer (nsclc). Chromosomal rearrangements involving the ALK gene occur in up to 4% of nonsquamous nsclc patients and lead to constitutive activation of the alk signalling pathway. ALK-positive nsclc is found in relatively young patients, with a median age of 50 years. Patients frequently have brain metastasis. Targeted inhibition of the alk pathway prolongs progression-free survival in patients with ALK-positive advanced nsclc. The results of several recent clinical trials confirm the efficacy and safety benefit of crizotinib and ceritinib in this population. Canadian oncologists support the following consensus statement: All patients with advanced nonsquamous nsclc (excluding pure neuroendocrine carcinoma) should be tested for the presence of an ALK rearrangement. If an ALK rearrangement is present, treatment with a targeted alk inhibitor in the first-line setting is recommended. As patients become resistant to first-generation alk inhibitors, other treatments, including second-generation alk inhibitors can be considered. PMID:27330348

  13. Canadian consensus: inhibition of ALK-positive tumours in advanced non-small-cell lung cancer.

    PubMed

    Melosky, B; Agulnik, J; Albadine, R; Banerji, S; Bebb, D G; Bethune, D; Blais, N; Butts, C; Cheema, P; Cheung, P; Cohen, V; Deschenes, J; Ionescu, D N; Juergens, R; Kamel-Reid, S; Laurie, S A; Liu, G; Morzycki, W; Tsao, M S; Xu, Z; Hirsh, V

    2016-06-01

    Anaplastic lymphoma kinase (alk) is an oncogenic driver in non-small-cell lung cancer (nsclc). Chromosomal rearrangements involving the ALK gene occur in up to 4% of nonsquamous nsclc patients and lead to constitutive activation of the alk signalling pathway. ALK-positive nsclc is found in relatively young patients, with a median age of 50 years. Patients frequently have brain metastasis. Targeted inhibition of the alk pathway prolongs progression-free survival in patients with ALK-positive advanced nsclc. The results of several recent clinical trials confirm the efficacy and safety benefit of crizotinib and ceritinib in this population. Canadian oncologists support the following consensus statement: All patients with advanced nonsquamous nsclc (excluding pure neuroendocrine carcinoma) should be tested for the presence of an ALK rearrangement. If an ALK rearrangement is present, treatment with a targeted alk inhibitor in the first-line setting is recommended. As patients become resistant to first-generation alk inhibitors, other treatments, including second-generation alk inhibitors can be considered. PMID:27330348

  14. Rat lung inflammatory responses after in vivo and in vitro exposure to various stone particles.

    PubMed

    Becher, R; Hetland, R B; Refsnes, M; Dahl, J E; Dahlman, H J; Schwarze, P E

    2001-09-01

    Rat lung alveolar macrophages and type 2 cells were exposed for 20 h in vitro to various stone particles with differing contents of metals and minerals (a type of mylonite, gabbro, feldspar, and quartz). The capability to induce the release of the inflammatory cytokines interleukin-6 (IL-6), tumour necrosis factor-alpha (TNF-alpha), and macrophage inflammatory protein-2 (MIP-2) was investigated. We found marked differences in potency between the various particles, with mylonite being most potent overall, followed by gabbro, and with feldspar and quartz having an approximately similar order of lower potency. The results also demonstrated differences in cytokine release pattern between the two cell types. For all particle types including quartz, type 2 cells showed the most marked increase in MIP-2 and IL-6 secretion, whereas the largest increase in TNF-alpha release was observed in macrophages. To investigate possible correlations between in vitro and in vivo inflammatory responses, rats were instilled with the same types of particles and bronchoalveolar lavage (BAL) fluid was collected after 20 h. The results demonstrated a correlation between the in vitro cytokine responses and the number of neutrophilic cells in the BAL fluid. The BAL fluid also showed a strong MIP-2 response to mylonite. However, this was the only particle type to give a significant cytokine response in the BAL fluid. We further examined whether a similar graded inflammatory response would be continued in type 2 cells and alveolar macrophages isolated from the exposed animals. Again a differential cytokine release pattern was observed between type 2 cells and macrophages, although the order of potency between particle types was altered. In conclusion, various stone particles caused differential inflammatory responses after both in vitro and in vivo exposure, with mylonite being the most potent stone particle. The results suggest the alveolar type 2 cell to be an important participant in the

  15. Cobalt iontophoresis of sensory nerves in the rat lung.

    PubMed

    El-Bermani, A W; Chang, T L

    1979-02-01

    By iontophoretically introducing, first, cobalt and, subsequently, sulfide ions into the vagus nerve, it is possible to trace sensory nerves to their endings in the rat lung. Nerve fibers and terminals are found predominantly in the adventitia of the airways and blood vessels. Some nerves are found in the submucosa of the bronchi and bronchioles. Some are found in the cardiac muscle on the periphery of pulmonary veins, and a few nerves are seen to end among smooth muslces of the blood vessels and the airways. At least three types of nerve endings can be identified at the light microscopic level: (1) free nerve endings; (2) brush-like endings; (3) knob-like terminals. PMID:760496

  16. Glucose-induced thermogenesis in patients with small cell lung carcinoma. Before and after inhibition of tumour growth by chemotherapy.

    PubMed

    Simonsen, L; Bülow, J; Sengeløv, H; Madsen, J; Ovesen, L

    1993-07-01

    Seven weight-losing patients with histologically verified small cell lung carcinoma were given an oral glucose load of 75 g before and at least 3 weeks after the end of chemotherapy to examine the effect of glucose on whole body and skeletal muscle thermogenesis before and after reduction of tumour. Whole body energy expenditure was measured by the open circuit ventilated hood system. Forearm blood flow was measured by venous-occlusion strain-gauge plethysmography. The uptake of oxygen in skeletal muscle was calculated as the product of the forearm blood flow and the difference in a-v oxygen concentration. Whole body resting energy expenditure (REE) did not increase, it was 4.4 +/- 0.3 kJ min-1 (mean +/- SE) before chemotherapy and 4.4 +/- 0.2 kJ min-1 after chemotherapy. The glucose-induced thermogenesis in the 180 min following the glucose load was 93.6 +/- 9.9 kJ 180 min-1 before chemotherapy. This is significantly increased compared to that found in a healthy control group (74.7 +/- 4.8 kJ 180 min-1, P < 0.02). The glucose-induced thermogenesis was significantly reduced to 47.7 +/- 10.2 kJ 180 min-1 (P < 0.05) after chemotherapy. The oxygen uptake in resting skeletal muscles was 6.9 +/- 0.3 mumol 100 g-1 min-1 before chemotherapy and 7.0 +/- 0.7 mumol 100 g-1 min-1 after chemotherapy. This did not increase during the first 90 min following the glucose load in either investigations. In the period 90-180 min following the glucose load, the oxygen uptake was significantly increased before chemotherapy as compared to after chemotherapy, which suggests that the reduced whole body thermogenesis after chemotherapy in part was due to reduced skeletal muscle thermogenesis. PMID:8396523

  17. Zanamivir Oral Delivery: Enhanced Plasma and Lung Bioavailability in Rats

    PubMed Central

    Shanmugam, Srinivasan; Im, Ho Taek; Sohn, Young Taek; Kim, Kyung Soo; Kim, Yong- Il; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon; Woo, Jong Soo

    2013-01-01

    The objective of this study was to enhance the oral bioavailability (BA) of zanamivir (ZMR) by increasing its intestinal permeability using permeation enhancers (PE). Four different classes of PEs (Labrasol®, sodium cholate, sodium caprate, hydroxypropyl β-cyclodextrin) were investigated for their ability to enhance the permeation of ZMR across Caco-2 cell monolayers. The flux and Papp of ZMR in the presence of sodium caprate (SC) was significantly higher than other PEs in comparison to control, and was selected for further investigation. All concentrations of SC (10-200 mM) demonstrated enhanced flux of ZMR in comparison to control. The highest flux (13 folds higher than control) was achieved for the formulation with highest SC concentration (200 mM). The relative BA of ZMR formulation containing SC (PO-SC) in plasma at a dose of 10 mg/kg following oral administration in rats was 317.65% in comparison to control formulation (PO-C). Besides, the AUC0-24 h of ZMR in the lungs following oral administration of PO-SC was 125.22 ± 27.25 ng hr ml-1 with a Cmax of 156.00 ± 24.00 ng/ml reached at 0.50±0.00 h. But, there was no ZMR detected in the lungs following administration of control formulation (PO-C). The findings of this study indicated that the oral formulation PO-SC containing ZMR and SC was able to enhance the BA of ZMR in plasma to an appropriate amount that would make ZMR available in lungs at a concentration higher (>10 ng/ml) than the IC50 concentration of influenza virus (0.64-7.9 ng/ml) to exert its therapeutic effect. PMID:24009875

  18. Method of Isolated Ex Vivo Lung Perfusion in a Rat Model: Lessons Learned from Developing a Rat EVLP Program

    PubMed Central

    Nelson, Kevin; Bobba, Christopher; Eren, Emre; Spata, Tyler; Tadres, Malak; Hayes,, Don; Black, Sylvester M.

    2015-01-01

    The number of acceptable donor lungs available for lung transplantation is severely limited due to poor quality. Ex-Vivo Lung Perfusion (EVLP) has allowed lung transplantation in humans to become more readily available by enabling the ability to assess organs and expand the donor pool. As this technology expands and improves, the ability to potentially evaluate and improve the quality of substandard lungs prior to transplant is a critical need. In order to more rigorously evaluate these approaches, a reproducible animal model needs to be established that would allow for testing of improved techniques and management of the donated lungs as well as to the lung-transplant recipient. In addition, an EVLP animal model of associated pathologies, e.g., ventilation induced lung injury (VILI), would provide a novel method to evaluate treatments for these pathologies. Here, we describe the development of a rat EVLP lung program and refinements to this method that allow for a reproducible model for future expansion. We also describe the application of this EVLP system to model VILI in rat lungs. The goal is to provide the research community with key information and “pearls of wisdom”/techniques that arose from trial and error and are critical to establishing an EVLP system that is robust and reproducible. PMID:25741794

  19. Method of isolated ex vivo lung perfusion in a rat model: lessons learned from developing a rat EVLP program.

    PubMed

    Nelson, Kevin; Bobba, Christopher; Eren, Emre; Spata, Tyler; Tadres, Malak; Hayes, Don; Black, Sylvester M; Ghadiali, Samir; Whitson, Bryan A

    2015-01-01

    The number of acceptable donor lungs available for lung transplantation is severely limited due to poor quality. Ex-Vivo Lung Perfusion (EVLP) has allowed lung transplantation in humans to become more readily available by enabling the ability to assess organs and expand the donor pool. As this technology expands and improves, the ability to potentially evaluate and improve the quality of substandard lungs prior to transplant is a critical need. In order to more rigorously evaluate these approaches, a reproducible animal model needs to be established that would allow for testing of improved techniques and management of the donated lungs as well as to the lung-transplant recipient. In addition, an EVLP animal model of associated pathologies, e.g., ventilation induced lung injury (VILI), would provide a novel method to evaluate treatments for these pathologies. Here, we describe the development of a rat EVLP lung program and refinements to this method that allow for a reproducible model for future expansion. We also describe the application of this EVLP system to model VILI in rat lungs. The goal is to provide the research community with key information and "pearls of wisdom"/techniques that arose from trial and error and are critical to establishing an EVLP system that is robust and reproducible. PMID:25741794

  20. Rat models of asthma and chronic obstructive lung disease.

    PubMed

    Martin, James G; Tamaoka, Meiyo

    2006-01-01

    The rat has been extensively used to model asthma and somewhat less extensively to model chronic obstructive pulmonary disease (COPD). The features of asthma that have been successfully modeled include allergen-induced airway constriction, eosinophilic inflammation and allergen-induced airway hyperresponsiveness. T-cell involvement has been directly demonstrated using adoptive transfer techniques. Both CD4+ and CD8+ T cells are activated in response to allergen challenge in the sensitized rat and express Thelper2 cytokines (IL-4, IL-5 and IL-13). Repeated allergen exposure causes airway remodeling. Dry gas hyperpnea challenge also evokes increases in lung resistance, allowing exercise-induced asthma to be modeled. COPD is modeled using elastase-induced parenchymal injury to mimic emphysema. Cigarette smoke-induced airspace enlargement occurs but requires months of cigarette exposure. Inflammation and fibrosis of peripheral airways is an important aspect of COPD that is less well modeled. Novel approaches to the treatment of COPD have been reported including treatments aimed at parenchymal regeneration. PMID:16337418

  1. Pyrrolidine Dithiocarbamate Attenuates Paraquat-Induced Lung Injury in Rats

    PubMed Central

    Chang, Xiuli; Shao, Chunfeng; Wu, Qing; Wu, Qiangen; Huang, Min; Zhou, Zhijun

    2009-01-01

    Paraquat (PQ) has been demonstrated that the main target organ for the toxicity is the lung. This study aimed to investigate the potential protective effect of PDTC on the PQ-induced pulmonary damage. Fifty-four rats were divided into control, PQ-treated and PQ+PDTC-treated groups. Rats in the PQ group were administrated 40 mg/kg PQ by gastric gavage, and PDTC group with 40 mg/kg PQ followed by injection of 120 mg/kg PDTC (IP). On the days 3, 7, 14 and 21 after treatments, the activities of GSH-Px, SOD, MDA level and the content of HYP were measured. TGF-β1 mRNA and protein were assayed by RT-PCR and ELISA. MDA level in plasma and BALF was increased and the activities of GSH-Px and SOD were decreased significantly in the PQ-treated groups (P < .05) compared with control group. While the activities of GSH-Px and SOD in the PQ+PDTC-treated groups was markedly higher than that of PQ-treated groups (P < .05), and in contrast, MDA level was lower. TGF-β1 mRNA and protein were significantly lower in the PQ+PDTC-treated groups than that of PQ-treated groups (P < .05). The histopathological changes in the PQ+PDTC-treated groups were milder than those of PQ groups. Our results suggested that PDTC treatment significantly attenuated paraquat-induced pulmonary damage. PMID:19639047

  2. EGFR mutation testing in lung cancer: a review of available methods and their use for analysis of tumour tissue and cytology samples

    PubMed Central

    Ellison, Gillian; Zhu, Guanshan; Moulis, Alexandros; Dearden, Simon; Speake, Georgina; McCormack, Rose

    2013-01-01

    Aims Activating mutations in the gene encoding epidermal growth factor receptor (EGFR) can confer sensitivity to EGFR tyrosine kinase inhibitors such as gefitinib in patients with advanced non-small-cell lung cancer. Testing for mutations in EGFR is therefore an important step in the treatment-decision pathway. We reviewed reported methods for EGFR mutation testing in patients with lung cancer, initially focusing on studies involving standard tumour tissue samples. We also evaluated data on the use of cytology samples in order to determine their suitability for EGFR mutation analysis. Methods We searched the MEDLINE database for studies reporting on EGFR mutation testing methods in patients with lung cancer. Results Various methods have been investigated as potential alternatives to the historical standard for EGFR mutation testing, direct DNA sequencing. Many of these are targeted methods that specifically detect the most common EGFR mutations. The development of targeted mutation testing methods and commercially available test kits has enabled sensitive, rapid and robust analysis of clinical samples. The use of screening methods, subsequent to sample micro dissection, has also ensured that identification of more rare, uncommon mutations is now feasible. Cytology samples including fine needle aspirate and pleural effusion can be used successfully to determine EGFR mutation status provided that sensitive testing methods are employed. Conclusions Several different testing methods offer a more sensitive alternative to direct sequencing for the detection of common EGFR mutations. Evidence published to date suggests cytology samples are viable alternatives for mutation testing when tumour tissue samples are not available. PMID:23172555

  3. The stereochemical configuration of lysobisphosphatidic acid from rat liver, rabbit lung and pig lung.

    PubMed

    Joutti, A; Brotherus, J; Renkonen, O; Laine, R; Fischer, W

    1976-11-19

    Lysobisphosphatidic acid known also as bis(monoacyl-glycerol)phosphate, was isolated from liver of rats treated with Triton WR1339, and from rabbit and pig lung. Alkaline hydrolysates of all these samples of lysobisphosphatidic acid were essentially similar and contained phosphorus, total glycerol, free glycerol, total glycerophosphates, beta-glycerophosphate, total alpha-glycerophosphates, sn-glycero-1-phosphate and sn-glycero-3-phosphate in a molar ratio of 1.0 : 2.0 : 1.0 : 1.0 :0.6 : 0.4 : 0.38 : 0.04. This proves that the backbone of the principal lysobisphosphatidic acid from all three sources has the structure of 1-sn-glycerophospho-1-sn-glycerol. PMID:990300

  4. Depressed glucose utilization in lungs of BB wistar spontaneously diabetic rats

    SciTech Connect

    Uhal, B.D.; Moxley, M.A.; Longmore, W.J.

    1986-03-05

    Lungs of BB wistar spontaneously diabetic rats were perfused with (/sup 14/C(U))glucose in modified Krebs Ringer bicarbonate medium for 1.5 hours. Lungs from non-diabetic BB Wistar rats were perfused simultaneously and served as controls. The perfusions were terminated by rapid freezing of the tissue in liquid N/sub 2/ followed by separation of surfactant and residual lung fractions. The rates of glucose incorporation into surfactant DSPC, PG, and PE were decreased 4.7, 2.4 and 2.5-fold, respectively, in lungs of spontaneously diabetic rats when expressed as final product specific activities. The rate of glucose incorporation into residual PC was also reduced by 2.3-fold. Expressed as moles incorporated per gram wet weight of lung, incorporations into surfactant DSPC, PG and residual PC were also reduced by 4.1, 6.3 and 3.8-fold respectively. These data; (1) agree with previous studies of the lungs of streptozotocin and alloxan-diabetic rats; (2) show that the depressed glucose utilization for lipid synthesis observed previously is not due to streptozotocin or alloxan toxicity; (3) suggest that the BB Wistar rat will provide a useful model for the study of the effects of insulin-dependent diabetes on lung metabolism.

  5. Interactions of ozone and antineoplastic drugs on rat lung fibroblasts and Walker rat carcinoma cells

    SciTech Connect

    Wenzel, D.G.; Morgan, D.L.

    1983-05-01

    Cultured rat lung fibroblasts (F-cells) and Walker rat carcinoma cells (WRC-cells) labeled with /sup 51/Cr were exposed to the following antitumor drugs alone or with O/sub 3/: carmustine (BCNU), doxorubicin (Dox), cisplatin (CPt), mitomycin C (Mit C) or vitamin K/sub 3/ (Vit K). Release of /sup 51/Cr (cell injury) was greater for F-cells than WRC-cells with any single treatment. Pretreatment with any drug (400 microM), except for Vit K with WRC-cells, did not significantly increase O/sub 3/-induced loss of /sup 51/Cr. Co-exposure of F-cells to drugs and O/sub 3/ resulted in a marked potentiation of O/sub 3/-induced injury with Vit K, and an inhibition with Dox.

  6. Febuxostat protects rats against lipopolysaccharide-induced lung inflammation in a dose-dependent manner.

    PubMed

    Fahmi, Alaa N A; Shehatou, George S G; Shebl, Abdelhadi M; Salem, Hatem A

    2016-03-01

    The aim of the present work was to investigate possible protective effects of febuxostat, a highly potent xanthine oxidase inhibitor, against acute lung injury (ALI) induced by lipopolysaccharide (LPS) in rats. Male Sprague Dawley rats were randomly divided into six groups, as follows: (i) vehicle control group; (ii) and (iii) febuxostat 10 and febuxostat 15 groups, drug-treated controls; (iv) LPS group, receiving an intraperitoneal injection of LPS (7.5 mg/kg); (v) and (vi) febuxostat 10-LPS and febuxostat 15-LPS groups, receiving oral treatment of febuxostat (10 and 15 mg/kg/day, respectively) for 7 days before LPS. After 18 h administration of LPS, blood was collected for C-reactive protein (CRP) measurement. Bronchoalveolar lavage fluid (BALF) was examined for leukocyte infiltration, lactate dehydrogenase (LDH) activity, protein content, and total nitrate/nitrite. Lung weight gain was determined, and lung tissue homogenate was prepared and evaluated for oxidative stress. Tumor necrosis factor-α (TNF-α) was assessed in BALF and lung homogenate. Moreover, histological changes of lung tissues were evaluated. LPS elicited lung injury characterized by increased lung water content (by 1.2 fold), leukocyte infiltration (by 13 fold), inflammation and oxidative stress (indicated by increased malondialdehyde (MDA), by 3.4 fold), and reduced superoxide dismutase (SOD) activity (by 34 %). Febuxostat dose-dependently decreased LPS-induced lung edema and elevations in BALF protein content, infiltration of leukocytes, and LDH activity. Moreover, the elevated levels of TNF-α in BALF and lung tissue of LPS-treated rats were attenuated by febuxostat pretreatment. Febuxostat also displayed a potent antioxidant activity by decreasing lung tissue levels of MDA and enhancing SOD activity. Histological analysis of lung tissue further demonstrated that febuxostat dose-dependently reversed LPS-induced histopathological changes. These findings demonstrate a significant dose

  7. CXCR4 Blockade Attenuates Hyperoxia Induced Lung Injury in Neonatal Rats

    PubMed Central

    Drummond, Shelley; Ramachandran, Shalini; Torres, Eneida; Huang, Jian; Hehre, Dorothy; Suguihara, Cleide; Young, Karen C.

    2015-01-01

    Background Lung inflammation is a key factor in the pathogenesis of bronchopulmonary dysplasia (BPD). Stromal derived factor-1 (SDF-1) and its receptor chemokine receptor 4 (CXCR4) modulate the inflammatory response. Whether antagonism of CXCR4 will alleviate lung inflammation in neonatal hyperoxia-induced lung injury is unknown. Objective To determine whether CXCR4 antagonism would attenuate lung injury in rodents with experimental BPD by decreasing pulmonary inflammation. Methods Newborn rats exposed to normoxia (RA) or hyperoxia (FiO2=0.9) from postnatal day 2 (P2)-P16 were randomized to receive the CXCR4 antagonist, AMD3100 or placebo (PL) from P5 to P15. Lung alveolarization, angiogenesis, and inflammation were evaluated at P16. Results As compared to RA, hyperoxic-PL pups had a decrease in alveolarization, reduced lung vascular density and increased lung inflammation. In contrast, AMD3100-treated hyperoxic pups had improved alveolarization and increased angiogenesis. This improvement in lung structure was accompanied by a decrease in bronchoalveolar lavage fluid macrophage and neutrophil count and reduced lung myeloperoxidase activity. Conclusion CXCR4 antagonism decreases lung inflammation and improves alveolar as well as vascular structure in neonatal rats with experimental BPD. These findings suggest a novel therapeutic strategy to alleviate lung injury in preterm infants with BPD. PMID:25825119

  8. Necroptosis and parthanatos are involved in remote lung injury after receiving ischemic renal allografts in rats.

    PubMed

    Zhao, Hailin; Ning, Jiaolin; Lemaire, Alexandre; Koumpa, Foteini-Stefania; Sun, James J; Fung, Anthony; Gu, Jianteng; Yi, Bin; Lu, Kaizhi; Ma, Daqing

    2015-04-01

    Early renal graft injury could result in remote pulmonary injury due to kidney-lung cross talk. Here we studied the possible role of regulated necrosis in remote lung injury in a rat allogeneic transplantation model. In vitro, human lung epithelial cell A549 was challenged with TNF-α and conditioned medium from human kidney proximal tubular cells (HK-2) after hypothermia-hypoxia insults. In vivo, the Brown-Norway rat renal grafts were extracted and stored in 4 °C Soltran preserving solution for up to 24 h and transplanted into Lewis rat recipients, and the lungs were harvested on day 1 and day 4 after grafting for further analysis. Ischemia-reperfusion injury in the renal allograft caused pulmonary injury following engraftment. PARP-1 (marker for parthanatos) and receptor interacting protein kinase 1 (Rip1) and Rip3 (markers for necroptosis) expression was significantly enhanced in the lung. TUNEL assays showed increased cell death of lung cells. This was significantly reduced after treatment with necrostatin-1 (nec-1) or/and 3-aminobenzamide (3-AB). Acute immune rejection exacerbated the remote lung injury and 3-AB or/and Nec-1 combined with cyclosporine A conferred optimal lung protection. Thus, renal graft injury triggered remote lung injury, likely through regulated necrosis. This study could provide the molecular basis for combination therapy targeting both pathways of regulated necrosis to treat such complications after renal transplantation. PMID:25517913

  9. Inhaled cigarette smoke induces the formation of DNA adducts in lungs of rats

    SciTech Connect

    Bond, J.A.; Chen, B.T.; Griffith, W.C.; Mauderly, J.L.

    1989-06-01

    Cigarette smoking causes a variety of adverse human health effects, including lung cancer. The molecular events associated with smoke-induced carcinogenesis are thought to be related in part to the genotoxic activities of the chemicals associated with smoke. The purpose of this investigation was to determine the molecular dosimetry of compounds in cigarette smoke in lungs of rats exposed by inhalation. These studies investigated the effects of exposure mode, sex, and time (adduct persistence) on the level of DNA adducts. Male and female F344/N rats were exposed 6 hr/day, 5 days/week for 22 days to cigarette smoke by nose-only intermittent (NOI), nose-only continuous (NOC), or whole-body continuous (WBC) exposures. Separate groups of rats were sham-exposed nose-only (NOS) or whole-body (WBS) to filtered air. All smoke exposure modes yielded daily smoke exposure concentration X time products of 600 mg particulate.hr/m3 for the first week and 1200 mg particulate.hour/m3 thereafter. Groups of rats were killed at 18 hr and 3 weeks after the 22-day exposure period and DNA adducts in lung tissues were quantified by the /sup 32/P-postlabeling method. There were significant (p less than 0.05) increases in levels of clearly resolved lung DNA adducts in male and female rats exposed to smoke compared to sham-exposed rats. There were no significant effects of exposure mode or sex on lung DNA adducts. Mean levels (+/- SE) of clearly resolved lung DNA adducts for both sexes combined in NOI, NOC, WBC, NOS, and WBS groups were 50 +/- 4, 52 +/- 6, 52 +/- 7, 21 +/- 6, and 22 +/- 4 adducts per 10(9) bases, respectively. Levels of clearly resolved DNA adducts were significantly less in lungs of rats killed 3 weeks after exposure and had declined to near control levels, suggesting that smoke-induced adducts are repaired by lung DNA repair enzymes.

  10. Attenuation of bleomycin-induced lung fibrosis in rats by mesna.

    PubMed

    El-Medany, Azza; Hagar, Hanan H; Moursi, Mahmoud; At Muhammed, Raeesa; El-Rakhawy, Fatma I; El-Medany, Gamila

    2005-02-10

    Lung fibrosis is a common side effect of the chemotherapeutic agent, bleomycin. Current evidence suggests that reactive oxygen species may play a key role in the development of lung fibrosis. The present study examined the effect of mesna on bleomycin-induced lung fibrosis in rats. Animals were divided into three groups: (1) saline control group; (2) Bleomycin group in which rats were injected with bleomycin (15 mg/kg, i.p.) three times a week for four weeks; (3) Bleomycin and mesna group, in which mesna was given to rats (180 mg/kg/day, i.p.) a week prior to bleomycin and daily during bleomycin injections for 4 weeks until the end of the treatment. Bleomycin treatment resulted in a pronounced fall in the average body weight of animals. Bleomycin-induced pulmonary injury and lung fibrosis was indicated by increased lung hydroxyproline content, and elevated nitric oxide synthase, myeoloperoxidase, platelet activating factor, and tumor necrosis factor-alpha in lung tissues. On the other hand, bleomycin induced a reduction in reduced glutathione concentration and angiotensin converting enzyme activity in lung tissues. Moreover, bleomycin-induced severe histological changes in lung tissues revealed as lymphocytes and neutrophils infiltration, increased collagen deposition and fibrosis. Co-administration of bleomycin and mesna reduced bleomycin-induced weight loss and attenuated lung injury as evaluated by the significant reduction in hydroxyproline content, nitric oxide synthase activity, and concentrations of myeoloperoxidase, platelet activating factor, and tumor necrosis factor-alpha in lung tissues. Furthermore, mesna ameliorated bleomycin-induced reduction in reduced glutathione concentration and angiotensin activity in lung tissues. Finally, histological evidence supported the ability of mesna to attenuate bleomycin-induced lung fibrosis and consolidation. Thus, the findings of the present study provide evidence that mesna may serve as a novel target for

  11. Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress.

    PubMed

    Sepehr, Reyhaneh; Staniszewski, Kevin; Maleki, Sepideh; Jacobs, Elizabeth R; Audi, Said; Ranji, Mahsa

    2012-04-01

    Ventilation with enhanced fractions of O(2) (hyperoxia) is a common and necessary treatment for hypoxemia in patients with lung failure, but prolonged exposure to hyperoxia causes lung injury. Ischemia-reperfusion (IR) injury of lung tissue is common in lung transplant or crush injury to the chest. These conditions are associated with apoptosis and decreased survival of lung tissue. The objective of this work is to use cryoimaging to evaluate the effect of exposure to hyperoxia and IR injury on lung tissue mitochondrial redox state in rats. The autofluorescent mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are electron carriers in ATP generation. These intrinsic fluorophores were imaged for rat lungs using low-temperature fluorescence imaging (cryoimaging). Perfused lungs from four groups of rats were studied: normoxia (control), control perfused with an mitochondrial complex IV inhibitor (potassium cyanide, KCN), rats exposed to hyperoxia (85% O(2)) for seven days, and from rats subjected to lung IR in vivo 24 hours prior to study. Each lung was sectioned sequentially in the transverse direction, and the images were used to reconstruct a three-dimensional (3-D) rendering. In KCN perfused lungs the respiratory chain was more reduced, whereas hyperoxic and IR lung tissue have a more oxidized respiratory chain than control lung tissue, consistent with previously measured mitochondrial dysfunction in both hyperoxic and IR lungs. PMID:22559688

  12. Optical imaging of tissue mitochondrial redox state in intact rat lungs in two models of pulmonary oxidative stress

    NASA Astrophysics Data System (ADS)

    Sepehr, Reyhaneh; Staniszewski, Kevin; Maleki, Sepideh; Jacobs, Elizabeth R.; Audi, Said; Ranji, Mahsa

    2012-04-01

    Ventilation with enhanced fractions of O2 (hyperoxia) is a common and necessary treatment for hypoxemia in patients with lung failure, but prolonged exposure to hyperoxia causes lung injury. Ischemia-reperfusion (IR) injury of lung tissue is common in lung transplant or crush injury to the chest. These conditions are associated with apoptosis and decreased survival of lung tissue. The objective of this work is to use cryoimaging to evaluate the effect of exposure to hyperoxia and IR injury on lung tissue mitochondrial redox state in rats. The autofluorescent mitochondrial metabolic coenzymes nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are electron carriers in ATP generation. These intrinsic fluorophores were imaged for rat lungs using low-temperature fluorescence imaging (cryoimaging). Perfused lungs from four groups of rats were studied: normoxia (control), control perfused with an mitochondrial complex IV inhibitor (potassium cyanide, KCN), rats exposed to hyperoxia (85% O2) for seven days, and from rats subjected to lung IR in vivo 24 hours prior to study. Each lung was sectioned sequentially in the transverse direction, and the images were used to reconstruct a three-dimensional (3-D) rendering. In KCN perfused lungs the respiratory chain was more reduced, whereas hyperoxic and IR lung tissue have a more oxidized respiratory chain than control lung tissue, consistent with previously measured mitochondrial dysfunction in both hyperoxic and IR lungs.

  13. Effects of Hypothyroidism and Progesterone on Mammary Tumours Induced by 7,12-Dimethylbenz(a)anthracene in Sprague-Dawley Rats

    PubMed Central

    Jabara, Anne G.; Maritz, J. S.

    1973-01-01

    Hypothyroidism, alone or combined with progesterone, significantly decreased 7,12-dimethylbenz(a)anthracene (DMBA) mammary tumorigenesis relative to controls. However, the decrease was less in the progesterone-treated group, and statistical analysis showed that progesterone enhanced tumorigenesis to the same extent in hypothyroid animals as in the controls. Most tumours in hypothyroid progesterone-treated rats were adenocarcinomata; in the absence of the hormone most tumours were benign. However, the difference between the tumour types in the 2 groups was not statistically significant. The morphological changes observed in the endocrine glands, genital tracts and non-neoplastic mammary tissue, considered in relation to previously reported data, suggest that hypothyroidism reduced the tumour yield mainly by secondarily inhibiting somatotrophin production and secretion, although the effect of decreased food intake could not be excluded completely. The higher tumour yield in the hypothyroid progesterone-treated rats may have been due to higher circulating levels of prolactin in this group compared with those in the hypothyroid group which received no hormone. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8 PMID:4738218

  14. Protective Effects of Lycopene on Furan-treated Diabetic and Non-diabetic Rat Lung.

    PubMed

    Baş, Hatice; Pandir, Dilek

    2016-02-01

    We assessed the effects of furan and lycopene on the histopathological and biochemical changes on lungs, body and lung weights, and food consumption of rats. Furan and diabetes caused histopathological changes, increment in malondialdehyde levels, and decrease in antioxidant enzyme activities. Lycopene showed a protective effect against these damages, except for glutathione-S-transferase and glutathione peroxidase activities. Consequently, furan and diabetes resulted in lung toxicity. Our findings demonstrate that furan treatment resulted in more alterations in histology and biochemical parameters in diabetic rats and lycopene showed protective effects against these alterations. PMID:27003172

  15. Multiwalled carbon nanotubes intratracheally instilled into the rat lung induce development of pleural malignant mesothelioma and lung tumors.

    PubMed

    Suzui, Masumi; Futakuchi, Mitsuru; Fukamachi, Katsumi; Numano, Takamasa; Abdelgied, Mohamed; Takahashi, Satoru; Ohnishi, Makoto; Omori, Toyonori; Tsuruoka, Shuji; Hirose, Akihiko; Kanno, Jun; Sakamoto, Yoshimitsu; Alexander, David B; Alexander, William T; Jiegou, Xu; Tsuda, Hiroyuki

    2016-07-01

    Multiwalled carbon nanotubes (MWCNT) have a fibrous structure and physical properties similar to asbestos and have been shown to induce malignant mesothelioma of the peritoneum after injection into the scrotum or peritoneal cavity in rats and mice. For human cancer risk assessment, however, data after administration of MWCNT via the airway, the exposure route that is most relevant to humans, is required. The present study was undertaken to investigate the carcinogenicity of MWCNT-N (NIKKISO) after administration to the rat lung. MWCNT-N was fractionated by passing it through a sieve with a pore size of 25 μm. The average lengths of the MWCNT were 4.2 μm before filtration and 2.6 μm in the flow-through fraction; the length of the retained MWCNT could not be determined. For the present study, 10-week-old F344/Crj male rats were divided into five groups: no treatment, vehicle control, MWCNT-N before filtration, MWCNT-N flow-through and MWCNT-N retained groups. Administration was by the trans-tracheal intrapulmonary spraying (TIPS) method. Rats were administered a total of 1 mg/rat during the initial 2 weeks of the experiment and then observed up to 109 weeks. The incidences of malignant mesothelioma and lung tumors (bronchiolo-alveolar adenomas and carcinomas) were 6/38 and 14/38, respectively, in the three groups administered MWCNT and 0/28 and 0/28, respectively, in the control groups. All malignant mesotheliomas were localized in the pericardial pleural cavity. The sieve fractions did not have a significant effect on tumor incidence. In conclusion, administration of MWCNT to the lung in the rat induces malignant mesothelioma and lung tumors. PMID:27098557

  16. Respiratory mechanics and lung histology in normal rats anesthetized with sevoflurane.

    PubMed

    Correa, F C; Ciminelli, P B; Falcão, H; Alcântara, B J; Contador, R S; Medeiros, A S; Zin, W A; Rocco, P R

    2001-08-01

    Respiratory system, lung, and chest wall mechanical properties were subdivided into their resistive, elastic, and viscoelastic/inhomogeneous components in normal rats, to define the sites of action of sevoflurane. In addition, we aimed to determine the extent to which pretreatment with atropine modified these parameters. Twenty-four rats were divided into four groups of six animals each: in the P group, rats were sedated (diazepam) and anesthetized with pentobarbital sodium; in the S group, sevoflurane was administered; in the AP and AS groups, atropine was injected 20 min before sedation/anesthesia with pentobarbital and sevoflurane, respectively. Sevoflurane increased lung viscoelastic/inhomogeneous pressures and static elastance compared with rats belonging to the P group. In AS rats, lung static elastance increased in relation to the AP group. In conclusion, sevoflurane anesthesia acted not at the airway level but at the lung periphery, stiffening lung tissues and increasing mechanical inhomogeneities. These findings were supported by the histological demonstration of increased areas of alveolar collapse and hyperinflation. The pretreatment with atropine reduced central and peripheral airway secretion, thus lessening lung inhomogeneities. PMID:11457797

  17. Fluorescence spectroscopy and cryoimaging of rat lung tissue mitochondrial redox state

    NASA Astrophysics Data System (ADS)

    Sepehr, R.; Audi, S.; Staniszewski, K.; Maleki, S.; Ranji, M.

    2011-07-01

    The objective of this study was to demonstrate the utility of optical cryoimaging and fluorometry to evaluate tissue redox state of the mitochondrial metabolic coenzymes NADH (Nicotinamide Adenine Dinucleotide) and FAD (Flavin Adenine Dinucleotide) in intact rat lungs. The ratio (NADH/FAD), referred to as mitochondrial redox ratio (RR), is a measure of the lung tissue mitochondrial redox state. Isolated rat lungs were connected to a ventilation-perfused system. Surface NADH and FAD fluorescence signals were acquired before and after lung perfusion in the absence (control perfusate) or presence of potassium cyanide (KCN, complex IV inhibitor) to reduce the mitochondrial respiratory chain (state 5 respiration). Another group of lungs were perfused with control perfusate or KCN-containing perfusate as above, after which the lungs were deflated and frozen rapidly for subsequent 3D cryoimaging. Results demonstrate that lung treatment with KCN increased lung surface NADH signal by 22%, decreased FAD signal by 8%, and as result increased RR by 31% as compared to control perfusate (baseline) values. Cryoimaging results also show that KCN increased mean lung tissue NADH signal by 37%, decreased mean FAD signal by 4%, and increased mean RR by 47%. These results demonstrate the utility of these optical techniques to evaluate the effect of pulmonary oxidative stress on tissue mitochondrial redox state in intact lungs.

  18. Inhaled nitric oxide exacerbated phorbol-induced acute lung injury in rats.

    PubMed

    Lin, Hen I; Chu, Shi Jye; Hsu, Kang; Wang, David

    2004-01-01

    In this study, we determined the effect of inhaled nitric oxide (NO) on the acute lung injury induced by phorbol myristate acetate (PMA) in isolated rat lung. Typical acute lung injury was induced successfully by PMA during 60 min of observation. PMA (2 microg/kg) elicited a significant increase in microvascular permeability, (measured using the capillary filtration coefficient Kfc), lung weight gain, lung weight/body weight ratio, pulmonary arterial pressure (PAP) and protein concentration of the bronchoalveolar lavage fluid. Pretreatment with inhaled NO (30 ppm) significantly exacerbated acute lung injury. All of the parameters reflective of lung injury increased significantly except PAP (P<0.05). Coadministration of Nomega-nitro-L-arginine methyl ester (L-NAME) (5 mM) attenuated the detrimental effect of inhaled NO in PMA-induced lung injury, except for PAP. In addition, L-NAME (5 mM) significantly attenuated PMA-induced acute lung injury except for PAP. These experimental data suggest that inhaled NO significantly exacerbated acute lung injury induced by PMA in rats. L-NAME attenuated the detrimental effect of inhaled NO. PMID:14643171

  19. Mechanical properties and reactivity of vessels in isolated perfused lungs of chronically hypoxic rats.

    PubMed

    Emery, C J; Bee, D; Barer, G R

    1981-11-01

    1. Chronically hypoxic rats kept in 10% (v/v) O2 for 3--6 weeks, were compared with littermate control rats. Pulmonary vascular resistance, measured from the slope of the pressure-flow relationship in isolated lungs perfused with blood of normal packed cell volume was higher in chronically hypoxic than control rats even during normoxia. 2. Chronically hypoxic rats weighed less than control rats but their pulmonary vascular volume, measured with labelled albumin was similar to control rats. This, together with evidence that the number of precapillary vessels is not reduced, does not suggest a large reduction in the vascular bed in chronic hypoxia. 3. A greater vasodilator action of isoprenaline and adenosine in chronically hypoxic than control lungs suggested a higher normoxic vascular tone. This higher tone was not the sole cause of increased resistance in chronically hypoxic lungs, since maximal vasodilatation did not reduce resistance to control levels. The chief cause was probably encroachment of new muscle on the vascular lumen of small vessels. 4. Pulmonary arterial compliance was reduced in chronically hypoxic lungs. 5. Reactivity of vessels to ventilation hypoxia, over a wide range of oxygen tension, to angiotensin II (ANG II) and to adenosine 5'-triphosphate (ATP) was significantly greater in chronically hypoxic than control lungs, but thresholds to these stimuli were not reduced. PMID:7285503

  20. SBRT of lung tumours: Monte Carlo simulation with PENELOPE of dose distributions including respiratory motion and comparison with different treatment planning systems

    NASA Astrophysics Data System (ADS)

    Panettieri, Vanessa; Wennberg, Berit; Gagliardi, Giovanna; Amor Duch, Maria; Ginjaume, Mercè; Lax, Ingmar

    2007-07-01

    The purpose of this work was to simulate with the Monte Carlo (MC) code PENELOPE the dose distribution in lung tumours including breathing motion in stereotactic body radiation therapy (SBRT). Two phantoms were modelled to simulate a pentagonal cross section with chestwall (unit density), lung (density 0.3 g cm-3) and two spherical tumours (unit density) of diameters respectively of 2 cm and 5 cm. The phase-space files (PSF) of four different SBRT field sizes of 6 MV from a Varian accelerator were calculated and used as beam sources to obtain both dose profiles and dose-volume histograms (DVHs) in different volumes of interest. Dose distributions were simulated for five beams impinging on the phantom. The simulations were conducted both for the static case and including the influence of respiratory motion. To reproduce the effect of breathing motion different simulations were performed keeping the beam fixed and displacing the phantom geometry in chosen positions in the cranial and caudal and left-right directions. The final result was obtained by combining the different position with two motion patterns. The MC results were compared with those obtained with three commercial treatment planning systems (TPSs), two based on the pencil beam (PB) algorithm, the TMS-HELAX (Nucletron, Sweden) and Eclipse (Varian Medical System, Palo Alto, CA), and one based on the collapsed cone algorithm (CC), Pinnacle3 (Philips). Some calculations were also carried out with the analytical anisotropic algorithm (AAA) in the Eclipse system. All calculations with the TPSs were performed without simulated breathing motion, according to clinical practice. In order to compare all the TPSs and MC an absolute dose calibration in Gy/MU was performed. The analysis shows that the dose (Gy/MU) in the central part of the gross tumour volume (GTV) is calculated for both tumour sizes with an accuracy of 2-3% with PB and CC algorithms, compared to MC. At the periphery of the GTV the TPSs overestimate

  1. Irradiation of Varying Volumes of Rat Lung to Same Mean Lung Dose: a Little to a Lot or a Lot to a Little?

    SciTech Connect

    Semenenko, Vladimir A. Molthen, Robert C.; Li Chunrong; Morrow, Natalya V.; Li Rongshan; Ghosh, Swarajit N.; Medhora, Meetha M.; Li, X. Allen

    2008-07-01

    Purpose: To investigate whether irradiating small lung volumes with a large dose or irradiating large lung volumes with a small dose, given the same mean lung dose (MLD), has a different effect on pulmonary function in laboratory animals. Methods and Materials: WAG/Rij/MCW male rats were exposed to single fractions of 300 kVp X-rays. Four treatments, in decreasing order of irradiated lung volume, were administered: (1) whole lung irradiation, (2) right lung irradiation, (3) left lung irradiation, and (4) irradiation of a small lung volume with four narrow beams. The irradiation times were chosen to accumulate the same MLD of 10, 12.5, or 15 Gy with each irradiated lung volume. The development of radiation-induced lung injury for {<=}20 weeks was evaluated as increased breathing frequency, mortality, and histopathologic changes in the irradiated and control rats. Results: A significant elevation of respiratory rate, which correlated with the lung volume exposed to single small doses ({>=}5 Gy), but not with the MLD, was observed. The survival of the rats in the whole-lung-irradiated group was MLD dependent, with all events occurring between 4.5 and 9 weeks after irradiation. No mortality was observed in the partial-volume irradiated rats. Conclusions: The lung volume irradiated to small doses might be the dominant factor influencing the loss of pulmonary function in the rat model of radiation-induced lung injury. Caution should be used when new radiotherapy techniques that result in irradiation of large volumes of normal tissue are used for the treatment of lung cancer and other tumors in the thorax.

  2. Asbestos-induced changes in rat lung parenchyma.

    PubMed

    Johnson, N F

    1987-01-01

    Fischer 344 rats have been exposed to UICC crocidolite by whole-body inhalation procedures for periods of 1 d to 12 mo. Material was obtained from the same location in the left lung, and the numbers of cells in the parenchyma were identified and determined by transmission electron microscopy. An immediate increase (1 d of exposure) was evident in the number of type II cells, suggesting a direct action of the dust on these cells. The number of interstitial and alveolar macrophages showed a significant increase after 3 mo of exposure. The number of alveolar macrophages containing dust particles after a 1-d exposure was 49%, and the corresponding value after 12 mo of exposure was 92%. The longer periods of exposure were associated with an increase in the number of particles per macrophage. Polymorphs appeared in the interstitium at airway bifurcations, prior to their appearance in the alveolar space. These bifurcations were also the initial sites where evidence of cell damage and collagen deposition was seen. In this experiment crocidolite appears to be weakly fibrogenic, and other factors may be needed to produce the marked lesions seen in human asbestosis. PMID:3033254

  3. Asbestos-induced changes in rat lung parenchyma

    SciTech Connect

    Johnson, N.F.

    1987-01-01

    Fischer 344 rats have been exposed to UICC crocidolite by whole-body inhalation procedures for periods of 1 d to 12 mo. Material was obtained from the same location in the left lung, and the numbers of cells in the parenchyma were identified and determined by transmission electron microscopy. An immediate increase (1 d of exposure) was evident in the number of type II cells, suggesting a direct action of the dust on these cells. The number of interstitial and alveolar, macrophages showed a significant increase after 3 mo of exposure. The number of alveolar macrophages containing dust particles after a 1-d exposure was 49%, and the corresponding value after 12 mo of exposure was 92%. The longer periods of exposure were associated with an increase in the number of particles per macrophage. Polymorphs appeared in the interstitium at airway bifurcations, prior to their appearance in the alveolar space. These bifurcations were also the initial sites where evidence of cell damage and collagen deposition was seen. In this experiment crocidolite appears to be weakly fibrogenic, and other factors may be needed to produce the marked lesions seen in human asbestosis.

  4. Loss of lysophosphatidic acid receptor-3 enhances cell migration in rat lung tumor cells

    SciTech Connect

    Hayashi, Mai; Okabe, Kyoko; Yamawaki, Yasuna; Teranishi, Miki; Honoki, Kanya; Mori, Toshio; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2011-02-18

    Research highlights: {yields} Loss of the Lpar3 expression due to aberrant DNA methylation occurred in rat lung tumor cells. {yields} The Lpar3 inhibited cell migration of rat lung tumor cells. {yields} The Lpar3 may act as a negative regulator of rat lung tumor cells. -- Abstract: Lysophosphatidic acid (LPA) indicates several biological effects, such as cell proliferation, differentiation and migration. LPA interacts with G protein-coupled transmembrane LPA receptors. In our previous report, we detected that loss of the LPA receptor-1 (Lpar1) expression is due to its aberrant DNA methylation in rat tumor cell lines. In this study, to assess an involvement of the other LPA receptor, Lpar3, in the pathogenesis of rat lung tumor cells, we measured the expression levels of the Lpar3 gene and its DNA methylation status by reverse transcription (RT)-polymerase chain reaction (PCR) and bisulfite sequencing analyses, respectively. RLCNR lung adenocarcinoma cells showed reduced expression of the Lpar3, compared with normal lung tissues. In the 5' upstream region of the Lpar3, normal lung tissues were unmethylated. By contrast, RLCNR cells were highly methylated, correlating with reduced expressions of the Lpar3. Based on these results, we generated the Lpar3-expressing RLCNR-a3 cells and measured the cell migration ability. Interestingly, the cell migration of RLCNR-a3 cells was significantly lower than that of RLCNR cells. This study suggests that loss of the Lpar3 due to aberrant DNA methylation may be involved in the progression of rat lung tumor cells.

  5. Differential diagnosis of malignant tumours in the abdominal cavity of rats after intraperitoneal injection of crocidolite or benzo[a]pyrene.

    PubMed

    Friemann, J; Varnai, M; Sutter, C; Hohr, B; Behrens, A; Althoff, G H; Schilpkoter, H W

    1996-01-01

    In our investigation (i.p. test), crocidolite and benzo[a]pyrene, both caused a progression from initially reactive, then autonomously transformed proliferation of myofibroblasts and undifferentiated mesenchymal cells to malignant, multidirectionally differentiated (desmin and ED-1 positive) fibro-histiocytic tumours. Immunohistochemically these tumours showed no morphological characteristics (for example co-expression of vimentin and keratin in spindle-shaped tumour cells) of human asbestos-associated malignant mesotheliomas. On the other hand many tumour cells induced by crocidolite and benzo[a]pyrene had an ultrastructural appearance resembling fibroblasts and myofibroblasts. These have been demonstrated in only a few desmoplastic and sarcomatous mesotheliomas in human beings. None of the tumours revealed the typical ultrastructural features of epitheloid or transitional mesotheliomas. Apparently, both carcinogenic substances induce the transformation of undifferentiated pluripotent mesenchymal cells in rat peritoneum, regardless of their localization in the submesothelial compartment or perivascular connective tissue (preferentially after crocidolite application) or in the connective tissue pseudocapsule of major benzo[a]pyrene containing beeswax/tricaprylin depots in the mesometrium and mesenterial fatty tissue. In this way asbestos fibres in this animal experiment do not seem to induce an arrest in differentiation of intermediate or immature mesothelial cells as supposed formerly, but rather affect undifferentiated mesenchyme cells and myofibroblasts. This is an explanation for the immunohistochemical expression of markers of muscular differentiation in these tumour cells, which is known to occur in human malignant fibro-histiocytic tumours. If supplementary immunohistochemical investigations with different keratin antibodies also fail to confirm the mesothelial differentiation of the tumours induced in our i.p. test, the decision to call them "mesotheliomas

  6. Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line.

    PubMed

    Li, Hui; van Berlo, Damien; Shi, Tingming; Speit, Günter; Knaapen, Ad M; Borm, Paul J A; Albrecht, Catrin; Schins, Roel P F

    2008-02-15

    Chronic inhalation of high concentrations of respirable quartz particles has been implicated in various lung diseases including lung fibrosis and cancer. Generation of reactive oxygen species (ROS) and oxidative stress is considered a major mechanism of quartz toxicity. Curcumin, a yellow pigment from Curcuma longa, has been considered as nutraceutical because of its strong anti-inflammatory, antitumour and antioxidant properties. The aim of our present study was to investigate whether curcumin can protect lung epithelial cells from the cytotoxic, genotoxic and inflammatory effects associated with quartz (DQ12) exposure. Electron paramagnetic resonance (EPR) measurements using the spin-trap DMPO demonstrated that curcumin reduces hydrogen peroxide-dependent hydroxyl-radical formation by quartz. Curcumin was also found to reduce quartz-induced cytotoxicity and cyclooxygenase 2 (COX-2) mRNA expression in RLE-6TN rat lung epithelial cells (RLE). Curcumin also inhibited the release of macrophage inflammatory protein-2 (MIP-2) from RLE cells as observed upon treatment with interleukin-1 beta (IL-1beta) and tumour necrosis factor-alpha (TNFalpha). However, curcumin failed to protect the RLE cells from oxidative DNA damage induced by quartz, as shown by formamidopyrimidine glycosylase (FPG)-modified comet assay and by immunocytochemistry for 8-hydroxydeoxyguanosine. In contrast, curcumin was found to be a strong inducer of oxidative DNA damage itself at non-cytotoxic and anti-inflammatory concentrations. In line with this, curcumin also enhanced the mRNA expression of the oxidative stress response gene heme oxygenase-1 (ho-1). Curcumin also caused oxidative DNA damage in NR8383 rat alveolar macrophages and A549 human lung epithelial cells. Taken together, these observations indicate that one should be cautious in considering the potential use of curcumin in the prevention or treatment of lung diseases associated with quartz exposure. PMID:18001810

  7. Curcumin protects against cytotoxic and inflammatory effects of quartz particles but causes oxidative DNA damage in a rat lung epithelial cell line

    SciTech Connect

    Li Hui; Berlo, Damien van; Shi Tingming; Speit, Guenter; Knaapen, Ad M.; Borm, Paul J.A.; Albrecht, Catrin; Schins, Roel P.F.

    2008-02-15

    Chronic inhalation of high concentrations of respirable quartz particles has been implicated in various lung diseases including lung fibrosis and cancer. Generation of reactive oxygen species (ROS) and oxidative stress is considered a major mechanism of quartz toxicity. Curcumin, a yellow pigment from Curcuma longa, has been considered as nutraceutical because of its strong anti-inflammatory, antitumour and antioxidant properties. The aim of our present study was to investigate whether curcumin can protect lung epithelial cells from the cytotoxic, genotoxic and inflammatory effects associated with quartz (DQ12) exposure. Electron paramagnetic resonance (EPR) measurements using the spin-trap DMPO demonstrated that curcumin reduces hydrogen peroxide-dependent hydroxyl-radical formation by quartz. Curcumin was also found to reduce quartz-induced cytotoxicity and cyclooxygenase 2 (COX-2) mRNA expression in RLE-6TN rat lung epithelial cells (RLE). Curcumin also inhibited the release of macrophage inflammatory protein-2 (MIP-2) from RLE cells as observed upon treatment with interleukin-1 beta (IL-1{beta}) and tumour necrosis factor-alpha (TNF{alpha}). However, curcumin failed to protect the RLE cells from oxidative DNA damage induced by quartz, as shown by formamidopyrimidine glycosylase (FPG)-modified comet assay and by immunocytochemistry for 8-hydroxydeoxyguanosine. In contrast, curcumin was found to be a strong inducer of oxidative DNA damage itself at non-cytotoxic and anti-inflammatory concentrations. In line with this, curcumin also enhanced the mRNA expression of the oxidative stress response gene heme oxygenase-1 (ho-1). Curcumin also caused oxidative DNA damage in NR8383 rat alveolar macrophages and A549 human lung epithelial cells. Taken together, these observations indicate that one should be cautious in considering the potential use of curcumin in the prevention or treatment of lung diseases associated with quartz exposure.

  8. Radioimmunotherapy of micrometastases in lung with vascular targeted 213Bi.

    PubMed

    Kennel, S J; Boll, R; Stabin, M; Schuller, H M; Mirzadeh, S

    1999-04-01

    A model system has been used to test the efficacy of vascular targeting of alpha-particle emitter 213Bi for therapy of small, 'artificial' metastases in mouse lung. Specific monoclonal antibody (mAb) 201 B was used to deliver greater than 30% of the injected dose to lung where tumours had developed due to intravenous injection of cells. Specific 213Bi-mAb 201B treatment of BALB/c mammary carcinoma EMT-6 tumours in lung resulted in a dose-dependent destruction of tumours and an extended lifespan of treated animals relative to controls. Significant reduction of lung tumour burden was noted in animals treated with 0.93 MBq injected dose or as little as 14 Gy absorbed dose to the lung. Animals treated with higher doses (2.6-6.7 MBq) had nearly complete cure of lung tumours but eventually died of lung fibrosis induced by the treatment. Four other tumour cell types were studied: murine Line 1 lung carcinomas in syngeneic BALB/c mice, rat IC-12 tracheal carcinoma growing in severe combined immune deficient (SCID) mice, and two human tumours--epidermoid carcinoma A431 and lung carcinoma A549--growing in SCID mice. In all cases, the number of lung tumour colonies was reduced in animals treated with specific, labelled mAb relative to those in animals treated with control 213Bi MAb or EDTA complexed 213Bi. Tumours treated in immunodeficient SCID mice were partially destroyed or at least retarded in growth, but ultimately regrew and proved fatal, indicating that an intact immune function is necessary for complete cure. The data show that the short-lived alpha-particle emitter 213Bi can be effectively targeted to lung blood vessels and that tumour cells growing in the lung are killed. The mechanism may involve direct killing of tumour cells from alpha-particle irradiation, killing through destruction of blood supply to the tumour, or a combination of the two. PMID:10389994

  9. Radioimmunotherapy of micrometastases in lung with vascular targeted213Bi

    PubMed Central

    Kennel, S J; Boll, R; Stabin, M; Schuller, H M; Mirzadeh, S

    1999-01-01

    A model system has been used to test the efficacy of vascular targeting of α-particle emitter213Bi for therapy of small, ‘artificial’ metastases in mouse lung. Specific monoclonal antibody (mAb) 201B was used to deliver greater than 30% of the injected dose to lung where tumours had developed due to intravenous injection of cells. Specific213Bi-mAb 201B treatment of BALB/c mammary carcinoma EMT-6 tumours in lung resulted in a dose-dependent destruction of tumours and an extended lifespan of treated animals relative to controls. Significant reduction of lung tumour burden was noted in animals treated with 0.93 MBq injected dose or as little as 14 Gy absorbed dose to the lung. Animals treated with higher doses (2.6–6.7 MBq) had nearly complete cure of lung tumours but eventually died of lung fibrosis induced by the treatment. Four other tumour cell types were studied: murine Line 1 lung carcinomas in syngeneic BALB/c mice, rat IC-12 tracheal carcinoma growing in severe combined immune deficient (SCID) mice, and two human tumours – epidermoid carcinoma A431 and lung carcinoma A549 – growing in SCID mice. In all cases, the number of lung tumour colonies was reduced in animals treated with specific, labelled mAb relative to those in animals treated with control213Bi MAb or EDTA complexed213Bi. Tumours treated in immunodeficient SCID mice were partially destroyed or at least retarded in growth, but ultimately regrew and proved fatal, indicating that an intact immune function is necessary for complete cure. The data show that the short-lived α-particle emitter213Bi can be effectively targeted to lung blood vessels and that tumour cells growing in the lung are killed. The mechanism may involve direct killing of tumour cells from α-particle irradiation, killing through destruction of blood supply to the tumour, or a combination of the two. © 1999 Cancer Research Campaign PMID:10389994

  10. 3D cine magnetic resonance imaging of rat lung ARDS using gradient-modulated SWIFT with retrospective respiratory gating

    NASA Astrophysics Data System (ADS)

    Kobayashi, Naoharu; Lei, Jianxun; Utecht, Lynn; Garwood, Michael; Ingbar, David H.; Bhargava, Maneesh

    2015-03-01

    SWeep Imaging with Fourier Transformation (SWIFT) with gradient modulation and DC navigator retrospective gating is introduced as a 3D cine magnetic resonance imaging (MRI) method for the lung. In anesthetized normal rats, the quasi-simultaneous excitation and acquisition in SWIFT enabled extremely high sensitivity to the fast-decaying parenchymal signals (TE=~4 μs), which are invisible with conventional MRI techniques. Respiratory motion information was extracted from DC navigator signals and the SWIFT data were reconstructed to 3D cine images with 16 respiratory phases. To test this technique's capabilities, rats exposed to > 95% O2 for 60 hours for induction of acute respiratory distress syndrome (ARDS), were imaged and compared with normal rat lungs (N=7 and 5 for ARDS and normal groups, respectively). SWIFT images showed lung tissue density differences along the gravity direction. In the cine SWIFT images, a parenchymal signal drop at the inhalation phase was consistently observed for both normal and ARDS rats due to lung inflation (i.e. decrease of the proton density), but the drop was less for ARDS rats. Depending on the respiratory phase and lung region, the lungs from the ARDS rats showed 1-24% higher parenchymal signal intensities relative to the normal rat lungs, likely due to accumulated extravascular water (EVLW). Those results demonstrate that SWIFT has high enough sensitivity for detecting the lung proton density changes due to gravity, different phases of respiration and accumulation of EVLW in the rat ARDS lungs.

  11. Induction of Lipocalin2 in a Rat Model of Lung Irradiation.

    PubMed

    Sultan, Sadaf; Ahmad, Shakil; Rave-Fränk, Margret; Malik, Ihtzaz Ahmed; Hess, Clemens F; Christiansen, Hans; Cameron, Silke

    2016-01-01

    Previously, we showed that lipocalin2 (LCN2) serum levels increased after liver irradiation and during acute-phase conditions. Here, we evaluate LCN2 expression and serum levels after single-dose lung irradiation with 25 Gy, percutaneously administered to the lung of randomly-paired male Wistar rats. Due to the concave anatomy of the lung recesses, the irradiation field included the upper part of the liver. No rat died due to irradiation. In control tissue, lung immunohistochemistry showed a high constitutive expression of LCN2+ granulocytes. LCN2 mRNA levels in lung tissue increased up to 24 h (9 ± 2.3-fold) after irradiation. However, serum LCN2 levels remained undetectable after lung irradiation. LCN2 expression in the upper part of the liver increased up to 4.2-fold after lung irradiation, but the lower liver showed an early decrease. Acute-phase cytokines (IL-1β and TNF-α) showed a significant increase on transcript level in both lung and upper liver, whilst the lower liver did not show any considerable increase. In conclusion, constitutive expression of LCN2 in local immune cells demonstrates its local role during stress conditions in the lung. The absence of LCN2 in the serum strengthens our previous findings that the liver is the key player in secreting LCN2 during stress conditions with liver involvement. PMID:27136530

  12. Ginsenoside Rg3 attenuated omethoate-induced lung injury in rats.

    PubMed

    Wang, J; Yu, X F; Zhao, J J; Shi, S M; Fu, L; Sui, D Y

    2016-06-01

    Organophosphorus exposure affects different organs such as the lung, gastrointestinal tract, liver, and brain. The present experiment aimed to evaluate the effect of ginsenoside Rg3 on lung injury induced by acute omethoate poisoning. Rats were administered with omethoate subcutaneously at a single dose of 60 mg/kg, followed by ginsenoside Rg3 (5, 10, or 20 mg/kg) treatment. Histopathological examination of the lung was performed at 24 h after the omethoate exposure. The antioxidative parameters in the lung were also assayed. Moreover, the activities of acetylcholinesterase, myeloperoxidase, and the content of tumor necrosis factor α (TNF-α) in the lung were determined. The results showed that ginsenoside Rg3 attenuated omethoate-induced lung injury. Ginsenoside Rg3 increased the level of glutathione in the lung (p < 0.05 or p < 0.01). The altered activities of superoxide dismutase and catalase in the lung were also ameliorated by ginsenoside Rg3 treatment (p < 0.05 or p < 0.01). Ginsenoside Rg3 caused significant reductions in the contents of malondialdehyde, TNF-α, and the activity of myeloperoxidase (p < 0.05 or p < 0.01). The present study demonstrated that ginsenoside Rg3 had a protective effect against omethoate-induced lung injury in rats, and the mechanisms were related to its antioxidant potential and anti-inflammatory effect. PMID:26240163

  13. Radiation injury in rat lung: II. Angiotensin-converting enzyme activity

    SciTech Connect

    Ward, W.F.; Solliday, N.H.; Molteni, A.; Port, C.D.

    1983-11-01

    To determine the role of endothelial dysfunction in the pathogenesis of radiation-induced pulmonary injury, lung angiotensin-converting enzyme (ACE) activity, arterial perfusion, and ultrastructure were examined from 1 to 150 days after a single exposure of 25 Gy of /sup 60/Co gamma rays to the right hemithorax of rats. Arterial perfusion to the irradiated right lung increased during the first 2 weeks, then decreased to approximately 80% of the left lung value at 30 days postirradiation. Perfusion of the irradiated lung continued to decline, and by 90 to 150 days was only 40% of that of the shielded lung. ACE activity in the irradiated right lung did not change significantly until 30 days after exposure, when it decreased to 72% of that in the left lung. ACE activity in the right lung declined steadily from 30 to 90 days postirradiation, then reached a plateau through 150 days at less than 20% of normal. Perivascular and interstitial edema was evident at 1 day after irradiation and persisted for 30 days. Endothelial cells exhibited blebbing, fragmentation, and increased basement membrane at 30 days. Mast cells were present in the septa, but interstitial collagen was not increased at that time. From 90 to 150 days postexposure, progressive obliteration of capillaries by fibrotic reactions was observed. Thus decreased ACE activity accompanies radiation-induced hypoperfusion and endothelial ultrastructural changes in rat lung. All of these reactions precede the development of pulmonary fibrosis.

  14. Induction of Lipocalin2 in a Rat Model of Lung Irradiation

    PubMed Central

    Sultan, Sadaf; Ahmad, Shakil; Rave-Fränk, Margret; Malik, Ihtzaz Ahmed; Hess, Clemens F.; Christiansen, Hans; Cameron, Silke

    2016-01-01

    Previously, we showed that lipocalin2 (LCN2) serum levels increased after liver irradiation and during acute-phase conditions. Here, we evaluate LCN2 expression and serum levels after single-dose lung irradiation with 25 Gy, percutaneously administered to the lung of randomly-paired male Wistar rats. Due to the concave anatomy of the lung recesses, the irradiation field included the upper part of the liver. No rat died due to irradiation. In control tissue, lung immunohistochemistry showed a high constitutive expression of LCN2+ granulocytes. LCN2 mRNA levels in lung tissue increased up to 24 h (9 ± 2.3-fold) after irradiation. However, serum LCN2 levels remained undetectable after lung irradiation. LCN2 expression in the upper part of the liver increased up to 4.2-fold after lung irradiation, but the lower liver showed an early decrease. Acute-phase cytokines (IL-1β and TNF-α) showed a significant increase on transcript level in both lung and upper liver, whilst the lower liver did not show any considerable increase. In conclusion, constitutive expression of LCN2 in local immune cells demonstrates its local role during stress conditions in the lung. The absence of LCN2 in the serum strengthens our previous findings that the liver is the key player in secreting LCN2 during stress conditions with liver involvement. PMID:27136530

  15. Poster — Thur Eve — 12: Implementation of a Clinical Lung Tumour High Dose Containment Verification Procedure using Respiratory Cone-Beam CT (4DCBCT) on a Varian TrueBeam Linac

    SciTech Connect

    Beaudry, J.; Bergman, A.

    2014-08-15

    Lung tumours move due to respiratory motion. This is managed during planning by acquiring a 4DCT and capturing the excursion of the GTV (gross tumour volume) throughout the breathing cycle within an IGTV (Internal Gross Tumour Volume) contour. Patients undergo a verification cone-beam CT (CBCT) scan immediately prior to treatment. 3D reconstructed images do not consider tumour motion, resulting in image artefacts, such as blurring. This may lead to difficulty in identifying the tumour on reconstructed images. It would be valuable to create a 4DCBCT reconstruction of the tumour motion to confirm that does indeed remain within the planned IGTV. CBCT projections of a Quasar Respiratory Motion Phantom are acquired in Treatment mode (half-fan scan) on a Varian TrueBeam accelerator. This phantom contains a mobile, low-density lung insert with an embedded 3cm diameter tumour object. It is programmed to create a 15s periodic, 2cm (sup/inf) displacement. A Varian Real-time Position Management (RPM) tracking-box is placed on the phantom breathing platform. Breathing phase information is automatically integrated into the projection image files. Using in-house Matlab programs and RTK (Reconstruction Tool Kit) open-source toolboxes, the projections are re-binned into 10 phases and a 4DCBCT scan reconstructed. The planning IGTV is registered to the 4DCBCT and the tumour excursion is verified to remain within the planned contour. This technique successfully reconstructs 4DCBCT images using clinical modes for a breathing phantom. UBC-BCCA ethics approval has been obtained to perform 4DCBCT reconstructions on lung patients (REB#H12-00192). Clinical images will be accrued starting April 2014.

  16. Natural Antioxidant Betanin Protects Rats from Paraquat-Induced Acute Lung Injury Interstitial Pneumonia

    PubMed Central

    Ma, Deshun; Zhang, Miao; Yang, Xuelian; Tan, Dehong

    2015-01-01

    The effect of betanin on a rat paraquat-induced acute lung injury (ALI) model was investigated. Paraquat was injected intraperitoneally at a single dose of 20 mg/kg body weight, and betanin (25 and 100 mg/kg/d) was orally administered 3 days before and 2 days after paraquat administration. Rats were sacrificed 24 hours after the last betanin dosage, and lung tissue and bronchoalveolar lavage fluid (BALF) were collected. In rats treated only with paraquat, extensive lung injury characteristic of ALI was observed, including histological changes, elevation of lung : body weight ratio, increased lung permeability, increased lung neutrophilia infiltration, increased malondialdehyde (MDA) and myeloperoxidase (MPO) activity, reduced superoxide dismutase (SOD) activity, reduced claudin-4 and zonula occluden-1 protein levels, increased BALF interleukin (IL-1) and tumor necrosis factor (TNF)-α levels, reduced BALF IL-10 levels, and increased lung nuclear factor kappa (NF-κB) activity. In rats treated with betanin, paraquat-induced ALI was attenuated in a dose-dependent manner. In conclusion, our results indicate that betanin attenuates paraquat-induced ALI possibly via antioxidant and anti-inflammatory mechanisms. Thus, the potential for using betanin as an auxilliary therapy for ALI should be explored further. PMID:25861636

  17. Stress adaptation and low-frequency impedance of rat lungs.

    PubMed

    Peslin, R; Duvivier, C; Bekkari, H; Reichart, E; Gallina, C

    1990-09-01

    At transpulmonary pressures (Ptp) of 7-12 cmH2O, pressure-volume hysteresis of isolated cat lungs has been found to be 20-50% larger than predicted from their amount of stress adaptation (J. Hildebrandt, J. Appl. Physiol. 28: 365-372, 1970). This behavior is inconsistent with linear viscoelasticity and has been interpreted in terms of plastoelasticity. We have reinvestigated this phenomenon in isolated lungs from 12 Wistar rats by measuring 1) the changes in Ptp after 0.5-ml step volume changes (initial Ptp of 5 cmH2O) and 2) their response to sinusoidal pressure forcing from 0.01 to 0.67 Hz (2 cmH2O peak to peak, mean Ptp of 6 cmH2O). Stress adaptation curves were found to fit approximately Hildebrandt's logarithmic model [delta Ptp/delta V = A - B.log(t)] from 0.2 to 100 s, where delta V is the step volume change, A and B are coefficients, and t is time. A and B averaged 1.06 +/- 0.11 and 0.173 +/- 0.019 cmH2O/ml, respectively, with minor differences between stress relaxation and stress recovery curves. The response to sinusoidal forcing was characterized by the effective resistance (Re) and elastance (EL). Re decreased from 2.48 +/- 0.41 cmH2O.ml-1.s at 0.01 Hz to 0.18 +/- 0.03 cmH2O.ml-1.s at 0.5 Hz, and EL increased from 0.99 +/- 0.10 to 1.26 +/- 0.20 cmH2O/ml on the same frequency range. These data were analyzed with the frequency-domain version of the same model, complemented by a Newtonian resistance (R) to account for airway resistance: Re = R + B/ (9.2f) and EL = A + 0.25B + B . log 2 pi f, where f is the frequency.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2246156

  18. Identification of rat lung – prominent genes by a parallel DNA microarray hybridization

    PubMed Central

    Chen, Zhongming; Chen, Jiwang; Weng, Tingting; Jin, Nili; Liu, Lin

    2006-01-01

    Background The comparison of organ transcriptomes is an important strategy for understanding gene functions. In the present study, we attempted to identify lung-prominent genes by comparing the normal transcriptomes of rat lung, heart, kidney, liver, spleen, and brain. To increase the efficiency and reproducibility, we first developed a novel parallel hybridization system, in which 6 samples could be hybridized onto a single slide at the same time. Results We identified the genes prominently expressed in the lung (147) or co-expressed in lung-heart (23), lung-liver (37), lung-spleen (203), and lung-kidney (98). The known functions of the lung-prominent genes mainly fell into 5 categories: ligand binding, signal transducer, cell communication, development, and metabolism. Real-time PCR confirmed 13 lung-prominent genes, including 5 genes that have not been investigated in the lung, vitamin D-dependent calcium binding protein (Calb3), mitogen activated protein kinase 13 (Mapk13), solute carrier family 29 transporters, member 1 (Slc29a1), corticotropin releasing hormone receptor (Crhr1), and lipocalin 2 (Lcn2). Conclusion The lung-prominent genes identified in this study may provide an important clue for further investigation of pulmonary functions. PMID:16533406

  19. Role of glutathione in lung retention of 99mTc-hexamethylpropyleneamine oxime in two unique rat models of hyperoxic lung injury.

    PubMed

    Audi, Said H; Roerig, David L; Haworth, Steven T; Clough, Anne V

    2012-08-15

    Rat exposure to 60% oxygen (O(2)) for 7 days (hyper-60) or to >95% O(2) for 2 days followed by 24 h in room air (hyper-95R) confers susceptibility or tolerance, respectively, of the otherwise lethal effects of subsequent exposure to 100% O(2). The objective of this study was to determine if lung retention of the radiopharmaceutical agent technetium-labeled-hexamethylpropyleneamine oxime (HMPAO) is differentially altered in hyper-60 and hyper-95R rats. Tissue retention of HMPAO is dependent on intracellular content of the antioxidant GSH and mitochondrial function. HMPAO was injected intravenously in anesthetized rats, and planar images were acquired. We investigated the role of GSH in the lung retention of HMPAO by pretreating rats with the GSH-depleting agent diethyl maleate (DEM) prior to imaging. We also measured GSH content and activities of mitochondrial complexes I and IV in lung homogenate. The lung retention of HMPAO increased by ≈ 50% and ≈ 250% in hyper-60 and hyper-95R rats, respectively, compared with retention in rats exposed to room air (normoxic). DEM decreased retention in normoxic (≈ 26%) and hyper-95R (≈ 56%) rats compared with retention in the absence of DEM. GSH content increased by 19% and 40% in hyper-60 and hyper-95R lung homogenate compared with normoxic lung homogenate. Complex I activity decreased by ≈ 50% in hyper-60 and hyper-95R lung homogenate compared with activity in normoxic lung homogenate. However, complex IV activity was increased by 32% in hyper-95R lung homogenate only. Furthermore, we identified correlations between the GSH content in lung homogenate and the DEM-sensitive fraction of HMPAO retention and between the complex IV/complex I activity ratio and the DEM-insensitive fraction of HMPAO retention. These results suggest that an increase in the GSH-dependent component of the lung retention of HMPAO may be a marker of tolerance to sustained exposure to hyperoxia. PMID:22628374

  20. Role of glutathione in lung retention of 99mTc-hexamethylpropyleneamine oxime in two unique rat models of hyperoxic lung injury

    PubMed Central

    Roerig, David L.; Haworth, Steven T.; Clough, Anne V.

    2012-01-01

    Rat exposure to 60% oxygen (O2) for 7 days (hyper-60) or to >95% O2 for 2 days followed by 24 h in room air (hyper-95R) confers susceptibility or tolerance, respectively, of the otherwise lethal effects of subsequent exposure to 100% O2. The objective of this study was to determine if lung retention of the radiopharmaceutical agent technetium-labeled-hexamethylpropyleneamine oxime (HMPAO) is differentially altered in hyper-60 and hyper-95R rats. Tissue retention of HMPAO is dependent on intracellular content of the antioxidant GSH and mitochondrial function. HMPAO was injected intravenously in anesthetized rats, and planar images were acquired. We investigated the role of GSH in the lung retention of HMPAO by pretreating rats with the GSH-depleting agent diethyl maleate (DEM) prior to imaging. We also measured GSH content and activities of mitochondrial complexes I and IV in lung homogenate. The lung retention of HMPAO increased by ∼50% and ∼250% in hyper-60 and hyper-95R rats, respectively, compared with retention in rats exposed to room air (normoxic). DEM decreased retention in normoxic (∼26%) and hyper-95R (∼56%) rats compared with retention in the absence of DEM. GSH content increased by 19% and 40% in hyper-60 and hyper-95R lung homogenate compared with normoxic lung homogenate. Complex I activity decreased by ∼50% in hyper-60 and hyper-95R lung homogenate compared with activity in normoxic lung homogenate. However, complex IV activity was increased by 32% in hyper-95R lung homogenate only. Furthermore, we identified correlations between the GSH content in lung homogenate and the DEM-sensitive fraction of HMPAO retention and between the complex IV/complex I activity ratio and the DEM-insensitive fraction of HMPAO retention. These results suggest that an increase in the GSH-dependent component of the lung retention of HMPAO may be a marker of tolerance to sustained exposure to hyperoxia. PMID:22628374

  1. Respiratory Tract Lung Geometry and Dosimetry Model for Male Sprague-Dawley Rats

    SciTech Connect

    Miller, Frederick J.; Asgharian, Bahman; Schroeter, Jeffry D.; Price, Owen; Corley, Richard A.; Einstein, Daniel R.; Jacob, Rick E.; Cox, Timothy C.; Kabilan, Senthil; Bentley, Timothy

    2015-07-24

    While inhalation toxicological studies of various compounds have been conducted using a number of different strains of rats, mechanistic dosimetry models have only had tracheobronchial (TB) structural data for Long-Evans rats, detailed morphometric data on the alveolar region of Sprague-Dawley rats and limited alveolar data on other strains. Based upon CT imaging data for two male Sprague-Dawley rats, a 15-generation, symmetric typical path model was developed for the TB region. Literature data for the alveolar region of Sprague-Dawley rats were analyzed to develop an eight-generation model, and the two regions were joined to provide a complete lower respiratory tract model for Sprague-Dawley rats. The resulting lung model was used to examine particle deposition in Sprague-Dawley rats and to compare these results with predicted deposition in Long-Evans rats. Relationships of various physiologic variables and lung volumes were either developed in this study or extracted from the literature to provide the necessary input data for examining particle deposition. While the lengths, diameters and branching angles of the TB airways differed between the two Sprague-Dawley rats, the predicted deposition patterns in the three major respiratory tract regions were very similar. Between Sprague-Dawley and Long-Evans rats, significant differences in TB and alveolar predicted deposition fractions were observed over a wide range of particle sizes, with TB deposition fractions being up to 3- to 4-fold greater in Sprague-Dawley rats and alveolar deposition being significantly greater in Long-Evans rats. Thus, strain-specific lung geometry models should be used for particle deposition calculations and interspecies dose comparisons.

  2. Respiratory tract lung geometry and dosimetry model for male Sprague-Dawley rats.

    SciTech Connect

    Miller, Frederick J.; Asgharian, Bahman; Schroeter, Jeffry D.; Price, Owen; Corley, Richard A.; Einstein, Daniel R.; Jacob, Rick E.; Cox, Timothy C.; Kabilan, Senthil; Bentley, Timothy

    2014-08-26

    While inhalation toxicological studies of various compounds have been conducted using a number of different strains of rats, mechanistic dosimetry models have only had tracheobronchial (TB) structural data for Long-Evans rats, detailed morphometric data on the alveolar region of Sprague-Dawley rats and limited alveolar data on other strains. Based upon CT imaging data for two male Sprague-Dawley rats, a 15-generation, symmetric typical path model was developed for the TB region. Literature data for the alveolar region of Sprague-Dawley rats were analyzed to develop an eight-generation model, and the two regions were joined to provide a complete lower respiratory tract model for Sprague-Dawley rats. The resulting lung model was used to examine particle deposition in Sprague-Dawley rats and to compare these results with predicted deposition in Long-Evans rats. Relationships of various physiologic variables and lung volumes were either developed in this study or extracted from the literature to provide the necessary input data for examining particle deposition. While the lengths, diameters and branching angles of the TB airways differed between the two Sprague- Dawley rats, the predicted deposition patterns in the three major respiratory tract regions were very similar. Between Sprague-Dawley and Long-Evans rats, significant differences in TB and alveolar predicted deposition fractions were observed over a wide range of particle sizes, with TB deposition fractions being up to 3- to 4-fold greater in Sprague-Dawley rats and alveolar deposition being significantly greater in Long-Evans rats. Thus, strain-specific lung geometry models should be used for particle deposition calculations and interspecies dose comparisons.

  3. Iron supplementation at high altitudes induces inflammation and oxidative injury to lung tissues in rats

    SciTech Connect

    Salama, Samir A.; Omar, Hany A.; Maghrabi, Ibrahim A.; AlSaeed, Mohammed S.; EL-Tarras, Adel E.

    2014-01-01

    Exposure to high altitudes is associated with hypoxia and increased vulnerability to oxidative stress. Polycythemia (increased number of circulating erythrocytes) develops to compensate the high altitude associated hypoxia. Iron supplementation is, thus, recommended to meet the demand for the physiological polycythemia. Iron is a major player in redox reactions and may exacerbate the high altitudes-associated oxidative stress. The aim of this study was to explore the potential iron-induced oxidative lung tissue injury in rats at high altitudes (6000 ft above the sea level). Iron supplementation (2 mg elemental iron/kg, once daily for 15 days) induced histopathological changes to lung tissues that include severe congestion, dilatation of the blood vessels, emphysema in the air alveoli, and peribronchial inflammatory cell infiltration. The levels of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α), lipid peroxidation product and protein carbonyl content in lung tissues were significantly elevated. Moreover, the levels of reduced glutathione and total antioxidant capacity were significantly reduced. Co-administration of trolox, a water soluble vitamin E analog (25 mg/kg, once daily for the last 7 days of iron supplementation), alleviated the lung histological impairments, significantly decreased the pro-inflammatory cytokines, and restored the oxidative stress markers. Together, our findings indicate that iron supplementation at high altitudes induces lung tissue injury in rats. This injury could be mediated through excessive production of reactive oxygen species and induction of inflammatory responses. The study highlights the tissue injury induced by iron supplementation at high altitudes and suggests the co-administration of antioxidants such as trolox as protective measures. - Highlights: • Iron supplementation at high altitudes induced lung histological changes in rats. • Iron induced oxidative stress in lung tissues of rats at high altitudes. • Iron

  4. Comparative Microscopic Study of Human and Rat Lungs After Overexposure to Welding Fume

    PubMed Central

    ANTONINI, JAMES M.; ROBERTS, JENNY R.; SCHWEGLER-BERRY, DIANE; MERCER, ROBERT R.

    2015-01-01

    Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2 mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these

  5. Comparative microscopic study of human and rat lungs after overexposure to welding fume.

    PubMed

    Antonini, James M; Roberts, Jenny R; Schwegler-Berry, Diane; Mercer, Robert R

    2013-11-01

    Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these

  6. Differential responses of targeted lung redox enzymes to rat exposure to 60 or 85% oxygen.

    PubMed

    Gan, Zhuohui; Roerig, David L; Clough, Anne V; Audi, Said H

    2011-07-01

    Rat exposure to 60% O(2) (hyper-60) or 85% O(2) (hyper-85) for 7 days confers susceptibility or tolerance, respectively, of the otherwise lethal effects of exposure to 100% O(2). The objective of this study was to determine whether activities of the antioxidant cytosolic enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex III are differentially altered in hyper-60 and hyper-85 lungs. Duroquinone (DQ), an NQO1 substrate, or its hydroquinone (DQH(2)), a complex III substrate, was infused into the arterial inflow of isolated, perfused lungs, and the venous efflux rates of DQH(2) and DQ were measured. Based on inhibitor effects and kinetic modeling, capacities of NQO1-mediated DQ reduction (V(max1)) and complex III-mediated DQH(2) oxidation (V(max2)) increased by ∼140 and ∼180% in hyper-85 lungs, respectively, compared with rates in lungs of rats exposed to room air (normoxic). In hyper-60 lungs, V(max1) increased by ∼80%, with no effect on V(max2). Additional studies revealed that mitochondrial complex I activity in hyper-60 and hyper-85 lung tissue homogenates was ∼50% lower than in normoxic lung homogenates, whereas mitochondrial complex IV activity was ∼90% higher in only hyper-85 lung tissue homogenates. Thus NQO1 activity increased in both hyper-60 and hyper-85 lungs, whereas complex III activity increased in hyper-85 lungs only. This increase, along with the increase in complex IV activity, may counter the effects the depression in complex I activity might have on tissue mitochondrial function and/or reactive oxygen species production and may be important to the tolerance of 100% O(2) observed in hyper-85 rats. PMID:21551015

  7. Differential responses of targeted lung redox enzymes to rat exposure to 60 or 85% oxygen

    PubMed Central

    Gan, Zhuohui; Roerig, David L.; Clough, Anne V.

    2011-01-01

    Rat exposure to 60% O2 (hyper-60) or 85% O2 (hyper-85) for 7 days confers susceptibility or tolerance, respectively, of the otherwise lethal effects of exposure to 100% O2. The objective of this study was to determine whether activities of the antioxidant cytosolic enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) and mitochondrial complex III are differentially altered in hyper-60 and hyper-85 lungs. Duroquinone (DQ), an NQO1 substrate, or its hydroquinone (DQH2), a complex III substrate, was infused into the arterial inflow of isolated, perfused lungs, and the venous efflux rates of DQH2 and DQ were measured. Based on inhibitor effects and kinetic modeling, capacities of NQO1-mediated DQ reduction (Vmax1) and complex III-mediated DQH2 oxidation (Vmax2) increased by ∼140 and ∼180% in hyper-85 lungs, respectively, compared with rates in lungs of rats exposed to room air (normoxic). In hyper-60 lungs, Vmax1 increased by ∼80%, with no effect on Vmax2. Additional studies revealed that mitochondrial complex I activity in hyper-60 and hyper-85 lung tissue homogenates was ∼50% lower than in normoxic lung homogenates, whereas mitochondrial complex IV activity was ∼90% higher in only hyper-85 lung tissue homogenates. Thus NQO1 activity increased in both hyper-60 and hyper-85 lungs, whereas complex III activity increased in hyper-85 lungs only. This increase, along with the increase in complex IV activity, may counter the effects the depression in complex I activity might have on tissue mitochondrial function and/or reactive oxygen species production and may be important to the tolerance of 100% O2 observed in hyper-85 rats. PMID:21551015

  8. Quantifying Single Microvessel Permeability in Isolated Blood-perfused Rat Lung Preparation

    PubMed Central

    Kandasamy, Kathirvel; Parthasarathi, Kaushik

    2014-01-01

    The isolated blood-perfused lung preparation is widely used to visualize and define signaling in single microvessels. By coupling this preparation with real time imaging, it becomes feasible to determine permeability changes in individual pulmonary microvessels. Herein we describe steps to isolate rat lungs and perfuse them with autologous blood. Then, we outline steps to infuse fluorophores or agents via a microcatheter into a small lung region. Using these procedures described, we determined permeability increases in rat lung microvessels in response to infusions of bacterial lipopolysaccharide. The data revealed that lipopolysaccharide increased fluid leak across both venular and capillary microvessel segments. Thus, this method makes it possible to compare permeability responses among vascular segments and thus, define any heterogeneity in the response. While commonly used methods to define lung permeability require postprocessing of lung tissue samples, the use of real time imaging obviates this requirement as evident from the present method. Thus, the isolated lung preparation combined with real time imaging offers several advantages over traditional methods to determine lung microvascular permeability, yet is a straightforward method to develop and implement. PMID:25045895

  9. Cyclin D expression in plutonium-induced lung tumors in F344 rats

    SciTech Connect

    Hahn, F.F.; Kelly, G.

    1995-12-01

    The genetic mechanisms responsible for {alpha}-radiation-induced lung cancer in rats following inhalation of {sup 239}Pu is an ongoing area of research in our laboratory. Previous studies have examined the status of the p53 gene by immunohistochemistry. Only two tumors (2/26 squamous cell carcinomas) exhibited detectable levels of p53 products. Both were the result of mutations in codons 280 and 283. More recent studies of X-ray-induced lung tumors in rats showed a similar lack of involvement of p53. In conclusion, we found that {alpha}-radiation-induced rat lung tumors have a high incidence (31 of 39) of cyclin D{sub 1} overexpression.

  10. Effect of Bile Acid on Fetal Lung in Rat Model of Intrahepatic Cholestasis of Pregnancy

    PubMed Central

    Yu, Ling; Ding, Yiling; Huang, Ting; Huang, Xiaoxia

    2014-01-01

    Objective. To determine the correlation between maternal bile acid (BA) level and fetal pulmonary surfactant in rats and study the effects of BA on fetal lung in rat model of intrahepatic cholestasis of pregnancy. Methods. Forty pregnant rats were treated with (A) 5.5 mg/kg BA, (B) 1.4 mg/kg BA, and (C) 1 ml physiological saline. Levels of total bile acid (TBA), ALT, AST, TBIL, DBIL, and SP-A were determined and the lungs of fetal rats were analyzed for pathological changes. Results. Groups A and B intervened with BA showed significant higher level of TBA in both maternal and fetal serum, more mortality rate of fetal rats, more concentration of SP-A in fetal serum, and wider alveolus mesenchyme of fetal rats than the control Group C. Higher level of BA associated with increased fetal risk and lower numerical density of mitochondria in type II alveolar epithelial cells. The levels of TBA in maternal serum were found to have significant positive correlation with those in fetal serum and SP-A level but negatively with the area of alveolus and the numerical density of lamellar body. Conclusions. The TBA level in maternal serum showed significant association with lung pathological changes in fetal rats. PMID:24778648

  11. Effects of inactivated Bordetella pertussis on phosphodiesterase in the lung of ovalbumin sensitized and challenged rats.

    PubMed

    Wang, Ya-Juan; Song, Shun-De; Chen, Jun-Chun; Wang, Xue-Feng; Jiang, Ya-Li; Xie, Qiang-Min; Chen, Ji-Qiang; Li, Zi-Gang; Tang, Hui-Fang

    2014-01-01

    This paper indicated that inactivated Bordetella pertussis (iBp) can enhance the lung airway hyperreactivity of the rats sensitized and challenged with OVA. The mechanisms were involved in the upregulation of cAMP-PDE activity and PDE4A, PDE4D, and PDE3 gene expression in the lungs. But only PDE4 activity was different between the OVA and OVA+iBp groups, and PDE4D expression was significantly increased in iBp rats alone. So, our data suggested that cosensitization with OVA and iBp affects lung airway reactivity by modulating the lung cAMP-PDE activity and PDE4D gene expression. PMID:25120928

  12. Toxic effects of cadmium on the developing rat lung. II. Glycogen and phospholipid metabolism

    SciTech Connect

    Daston, G.P.

    1982-01-01

    Maternal exposure to Cd reduces lung weight and alters pulmonary surfactant accumulation in the fetus. This may lead to respiratory distress and death postnatally. In this study, the effects of maternal Cd administration on additional biochemical parameters of the fetal lung were investigated. Pregnant rats were given sc injections of 8 mg/kg CdCl/sub 2/ on d 12-15 of gestation and sacrificed throughout late gestation. Fetal lungs were examined for protein, DNA, and glycogen. Incorporation of choline into total and disaturated phosphatidylcholine and sphingomyelin were measured in fetal lung slices. The DNA content of the treated lungs was reduced, but the protein/DNA ratio was not altered. Thus the reduced lung weight was due to hypoplasia, not hypotrophy. Incorporation of choline into pulmonary sphingomyelin was not altered by the treatment. Choline incorporation into both total and disaturated phosphatidylcholine, the most important surfactant component, was reduced on the final days of gestation. Glycogen was reduced in both absolute quantity and cellular concentration in lungs of treated fetuses. Glucose derived from glycogen is a major metabolic substrate in the fetal lung and probably contributes greatly to phospholipid synthesis. The reduction in glucose concentration in lungs of treated fetuses may be a factor in the diminished synthesis of pulmonary surfactant phosphatidylcholine before birth. Prenatal Cd exposure causes pulmonary hypoplasia; reduces the amount of glycogen present in the fetal lung; and diminishes the rate of synthesis of pulmonary surfactant phosphatidylcholine.

  13. Lung response to ultrafine Kevlar aramid synthetic fibrils following 2-year inhalation exposure in rats.

    PubMed

    Lee, K P; Kelly, D P; O'Neal, F O; Stadler, J C; Kennedy, G L

    1988-07-01

    Four groups of 100 male and 100 female rats were exposed to ultrafine Kevlar fibrils at concentrations of 0, 2.5, 25, and 100 fibrils/cc for 6 hr/day, 5 days/week for 2 years. One group was exposed to 400 fibrils/cc for 1 year and allowed to recover for 1 year. At 2.5 fibrils/cc, the lungs had normal alveolar architecture with a few dust-laden macrophages (dust cell response) in the alveolar airspaces. At 25 fibrils/cc, the lungs showed a dust cell response, slight Type II pneumocyte hyperplasia, alveolar bronchiolarization, and a negligible amount of collagenized fibrosis in the alveolar duct region. At 100 fibrils/cc, the same pulmonary responses were seen as at 25 fibrils/cc. In addition, cystic keratinizing squamous cell carcinoma (CKSCC) was found in 4 female rats, but not in male rats. Female rats had more prominent foamy alveolar macrophages, cholesterol granulomas, and alveolar bronchiolarization. These pulmonary lesions were related to the development of CKSCC. The lung tumors were derived from metaplastic squamous cells in areas of alveolar bronchiolarization. At 400 fibrils/cc following 1 year of recovery, the lung dust content, average fiber length, and the pulmonary lesions were markedly reduced, but slight centriacinar emphysema and minimal collagenized fibrosis were found in the alveolar duct region. One male and 6 female rats developed CKSCC. The lung tumors were a unique type of experimentally induced tumors in the rats and have not been seen as spontaneous tumors in man or animals. Therefore, the relevance of this type of lung tumor to the human situation is minimal. PMID:3209007

  14. Isolation and Culture of Alveolar Epithelial Type I and Type II Cells from Rat Lungs

    PubMed Central

    Gonzalez, Robert F.; Dobbs, Leland G.

    2014-01-01

    The pulmonary alveolar epithelium, comprised of alveolar Type I (TI) and Type II (TII) cells, covers more than 99% of the internal surface area of the lungs. The study of isolated and cultured alveolar epithelial TI and TII cells has provided a large amount of information about the functions of both cell types. This chapter provides information about methods for isolating and culturing both of these cell types from rat lungs. PMID:23097106

  15. Extraction and Quantification of Carbon Nanotubes in Biological Matrices with Application to Rat Lung Tissue

    PubMed Central

    Doudrick, Kyle; Corson, Nancy; Oberdörster, Günter; Elder, Alison; Herckes, Pierre; Halden, Rolf U.; Westerhoff, Paul

    2013-01-01

    Extraction of carbon nanotubes (CNTs) from biological matrices such as rat lung tissue is integral to developing a quantification method for evaluating the environmental and human health exposure and toxicity of CNTs. The ability of various chemical treatment methods, including Solvable (2.5% sodium hydroxide/surfactant mixture), ammonium hydroxide, nitric acid, sulfuric acid, hydrochloric acid, hydrofluoric acid, hydrogen peroxide, and proteinase K, to extract CNTs from rat lung tissue was evaluated. CNTs were quantified using programmed thermal analysis (PTA). Two CNTs were used to represent the lower (500°C) and upper (800°C) PTA limit of CNT thermal stability. The recovery efficiency of each of the eight chemical reagents evaluated was found to depend on the ability to (1) minimize oxidation of CNTs, (2) remove interfering background carbon from the rat lung tissue, and (3) separate the solid-phase CNTs from the liquid-phase dissolved tissue via centrifugation. A two-step extraction method using Solvable and proteinase K emerged as the optimal approach, enabling a recovery of 98 ± 15% of a 2.9 ± 0.19 µg CNT loading that was spiked into whole rat lungs. Due to its high yield and applicability to low organ burdens of nanomaterials, this extraction method is particularly well suited for in vivo studies to quantify clearance rates and retained CNTs in lungs and other organs. PMID:23992048

  16. Lung and systemic oxidant and antioxidant activity after graded smoke exposure in the rat.

    PubMed

    Lalonde, C; Picard, L; Campbell, C; Demling, R

    1994-01-01

    We wanted to determine the effect of a graded smoke inhalation on lung and systemic oxidant stress, and its relationship to physiological and histological change. Male Wistar rats were given 12 breaths of 10 ml/kg (n = 8) (group 1) or 20 ml/kg (n = 8) (group 2) tidal volume, using cotton toweling smoke through the trachea using positive pressure. Rats were monitored, then killed at 24 hr. Data were compared to controls (n = 8). Peak group 1 and group 2 carboxyhemoglobins were 22 +/- 6 and 46 +/- 6%, with a mortality prior to 24 hr of 14% and 50%, respectively. Group 1 rats showed only moderate lung dysfunction but with severe airway inflammation and edema, alveolar inflammation and atelectasis, with a decrease in PaO2 from the control of 96 +/- 4 to 72 +/- 5 torr. No increase in lung, liver, or kidney oxidant-induced lipid peroxidation, measured as malondialdehyde lung, liver, or kidney oxidant-induced lipid peroxidation, measured as malondialdehyde (MDA), or decrease in the antioxidant defenses catalase was noted. Group 2 rats demonstrated severe airways edema, alveolar atelectasis, and alveolar edema, and a PaO2 decreasing below 60 torr, corresponding with a 3-fold increase in lung tissue MDA and 35% decrease in catalase. In addition, liver and kidney tissue MDA doubled, and catalase activity decreased by 40%. Increased oxygen consumption was also demonstrated.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8149511

  17. Effect of Stem Cell Therapy on Amiodarone Induced Fibrosing Interstitial Lung Disease in Albino Rat

    PubMed Central

    Zaglool, Somaya Saad; Zickri, Maha Baligh; Abd El Aziz, Dalia Hussein; Mabrouk, Doaa; Metwally, Hala Gabr

    2011-01-01

    Background and Objectives: The fibrosing forms of interstitial lung disease (ILD) are associated with significant morbidity and mortality. ILD may be idiopathic, secondary to occupational, infection, complicate rheumatic diseases or drug induced. Efficacy of antifibrotic agents is as far as, limited and uncertain. No effective treatment was confirmed for pulmonary fibrosis except lung transplantation. The present study aimed at investigating the possible effect of human cord blood mesenchymal stem cell (MSC) therapy on fibrosing ILD. This was accomplished by using amiodarone as a model of induced lung damage in albino rat. Methods and Results: Seventeen adult male albino rats were divided into 3 groups. Rats of amiodarone group were given 30 mg/kg of amiodarone orally 6 days/ week for 6 weeks. Rats of stem cell therapy group were injected with stem cells in the tail vein following confirmation of lung damage and left for 4 weeks before sacrifice. Obstructed bronchioles, thickened interalveolar septa and thickened wall of pulmonary vessels were found and proved morphometrically. Reduced type I pneumocytes and increased area% of collagen fibers were recorded. All findings regressed on stem cell therapy. Conclusions: Cord blood MSC therapy proved definite amelioration of fibrosing interstitial lung disease provided therapy starts early in the development of the pathogenesis. PMID:24298346

  18. Effects of chronic exposure to ozone on collagen in rat lung

    SciTech Connect

    Wright, E.S.; Kehrer, J.P.; White, D.M.; Smiler, K.L.

    1988-03-15

    Pulmonary fibrosis is a consequence of severe injury from some toxic agents including high doses of ozone. It is not known, however, whether chronic exposure to low doses of ozone, such as those encountered in polluted ambient atmospheres, could also result in abnormal accumulations of lung collagen. Rats were exposed to ozone for 20 hr per day, 7 days per week for 3, 6, 12, and 18 months at concentrations of 0.12, 0.25, or 0.50 ppm. Controls were exposed under identical conditions to purified air. Upon removal from the chambers, rats were euthanized and lung tissue slices incubated with (14C)proline. The incorporation of 14C into hydroxyproline and the total hydroxyproline content of lung tissue were measured as estimates of lung collagen synthesis and content, respectively. The formation of labeled hydroxyproline tended to decrease significantly with time in controls and at the three ozone doses. There were, however, no significant dose-related changes at any of the time points tested. Total lung hydroxyproline increased with age in all groups, but no dose-related changes were detected at any time point. It was concluded that chronic exposure of rats to ozone at concentrations which approximate ambient urban concentrations did not affect normal age-related changes in either synthesis or accumulation of lung collagen.

  19. Platelet-activating factor mediates hemodynamic changes and lung injury in endotoxin-treated rats.

    PubMed Central

    Chang, S W; Feddersen, C O; Henson, P M; Voelkel, N F

    1987-01-01

    Within 20 min after intraperitoneal injection of Salmonella enteritidis endotoxin in rats, blood platelet-activating factor (PAF) increased from 4.3 +/- 1.3 to 13.7 +/- 2.0 ng/ml (P less than 0.01) and lung PAF from 32.3 +/- 4.9 to 312.3 +/- 19.6 ng (P less than 0.01), but not lung lavage PAF. We tested the effect of PAF receptor antagonists, CV 3988 and SRI 63-441, on endotoxin-induced hemodynamic changes and lung vascular injury. Pretreatment with CV 3988 attenuated systemic hypotension, preserved hypoxic pulmonary vasoconstriction, and prolonged survival of awake catheter-implanted endotoxin-treated (20 mg/kg) rats. Pretreatment with SRI 63-441 prevented the depressed hypoxic pulmonary vasoconstriction after low dose (2 mg/kg) endotoxin. Both CV 3988 and SRI 63-441 blocked the increased extravascular accumulation of 125I-albumin and water in perfused lungs isolated from endotoxin-treated rats. We conclude that PAF is produced in the lung during endotoxemia and may be an important mediator of the systemic and pulmonary hemodynamic changes as well as the acute lung vascular injury after endotoxemia. PMID:3553241

  20. Lipopolysaccharide induces expression of tumour necrosis factor alpha in rat brain: inhibition by methylprednisolone and by rolipram

    PubMed Central

    Buttini, M; Mir, A; Appel, K; Wiederhold, K H; Limonta, S; Gebicke-Haerter, P J; Boddeke, H W G M

    1997-01-01

    We have investigated the effects of the phosphodiesterase (PDE) type IV inhibitor rolipram and of the glucocorticoid methylprednisolone on the induction of tumour necrosis factor alpha (TNF-α) mRNA and protein in brains of rats after peripheral administration of lipopolysaccharide (LPS).After intravenous administration of LPS, a similar time-dependent induction of both TNF-α mRNA and protein was observed in rat brain. Peak mRNA and protein levels were found 7 h after administration of LPS.In situ hybridization experiments with a specific antisense TNF-α riboprobe suggested that the cells responsible for TNF-α production in the brain were microglia.Intraperitoneal administration of methylprednisolone inhibited the induction of TNF-α protein in a dose-dependent manner. A maximal inhibition of TNF-α protein production by 42.9±10.2% was observed at a dose regimen consisting of two injections of each 30 mg kg−1 methylprednisolone.Intraperitoneal administration of rolipram also inhibited the induction of TNF-α protein in a dose-dependent manner. The maximal inhibition of TNF-α protein production was 96.1±12.2% and was observed at a dose regimen of three separate injections of each 3 mg kg−1 rolipram.In situ hybridization experiments showed that the level of TNF-α mRNA induced in rat brain by LPS challenge was reduced by intraperitoneal administration of methylprednisolone (2×15 mg kg−1) and of rolipram (3×3 mg kg−1).We suggest that peripheral administration of LPS induces a time-dependent expression of TNF-α in rat brain, presumably in microglial cells, and that methylprednisolone and rolipram inhibit LPS-induced expression of TNF-α in these cells via a decrease of TNF-α mRNA stability and/or TNF-α gene transcription. PMID:9421299

  1. Strain differences of cadmium-induced toxicity in rats: Insight from spleen and lung immune responses.

    PubMed

    Demenesku, Jelena; Popov Aleksandrov, Aleksandra; Mirkov, Ivana; Ninkov, Marina; Zolotarevski, Lidija; Kataranovski, Dragan; Brceski, Ilija; Kataranovski, Milena

    2016-08-10

    The impact of genetic background on effects of acute i.p. cadmium administration (0.5mg/kg and 1mg/kg) on basic immune activity of spleen and lungs was examined in two rat strains, Albino Oxford (AO) and Dark Agouti (DA), known to react differently to chemicals. More pronounced inhibition of Concanavalin A (ConA)-induced and Interleukin (IL)-2 stimulated spleen cell proliferation as well as higher levels of nitric oxide (known to decrease cell's proliferative ability) in DA rats at 1mg/kg, along with greater inhibition of ConA-induced Interferon (IFN-γ)-production by total and mononuclear (MNC) spleen cells and IL-17 production by spleen MNC in DA vs. AO rats at this dose show greater susceptibility of this strain to Cd effects on spleen cells response. More pronounced infiltration of neutrophils/CD11b(+) cells to lungs of DA rats treated with 1mg/kg of Cd and decreased IL-17 lung cell responses noted solely in DA rats speaks in favor of their higher susceptibility to this metal. However, lack of strain disparity in lung cells IFN-γ responses show that there are regional differences as well. Novel data from this study depict complexity of the influence of genetic background on the effects of cadmium on host immune reactivity. PMID:27234498

  2. Influence of age on the biochemical response of rat lung to ozone exposure

    SciTech Connect

    Mustafa, M.G.; Elsayed, N.M.; Ospital, J.J.; Hacker, A.D.

    1985-11-01

    We have previously examined the influence of animal age on the pulmonary response to ozone (O3) in rats between 7 and 90 days of age. In the present study, we expanded the age groups of rats, and examined in greater detail the relationship between animal age and pulmonary response to inhaled O3. We exposed 7 groups of specific pathogen free, male Sprague-Dawley rats, aged 24, 30, 45, 60, 90, 180, and 365 days, to 0.8 ppm (1568 micrograms/m3) O3 continuously for 3 days. After O3 exposure, we sacrificed the exposed rats and a matched number of controls from each age group, and analyzed their lungs for a series of physical and biochemical parameters, including glutathione metabolizing and NADPH producing enzyme activities. We observed that in control rats all the parameters increased as a function of age. However, the rate of increase was generally slower after age 60 days. After O3 exposure there was an increase in all the parameters for all age groups relative to their corresponding controls, but the extent of increase was significantly larger in rats 60 days and older than in younger rats. A regression of the difference in mean values between control and exposed animals for each parameter against age showed a linear correlation, indicating that the response was age-dependent. Since the magnitude of such increases is thought to reflect the degree of lung injury, the results suggest that O3 exposure causes greater lung injury in older rats than in younger rats. We tested this assumption by exposing rats from four different age groups (24, 45, 60 and 90 days) to a lethal dose of O3 (4 ppm or 7840 micrograms/m3 for 8 hours). The mortality rates were 50% and 83% for 24 and 45 day old rats, respectively, and 100% for 60 and 90 day old rats. The results of these studies further demonstrate that older rats are more susceptible to lung injury from O3 than younger rats.

  3. Biodistribution and tumour localisation of 131I SWA11 recognising the cluster w4 antigen in patients with small cell lung cancer.

    PubMed

    Ledermann, J A; Marston, N J; Stahel, R A; Waibel, R; Buscombe, J R; Ell, P J

    1993-07-01

    The biodistribution of radiolabelled SWA11, a mouse monoclonal antibody recognising the cluster w4 group antigen associated with small cell lung cancer (SCLC) was studied in patients with SCLC. Five patients were injected intravenously with approximately 5 mCi of 131I conjugated to 1 mg of SWA11. The half-life of the radiolabel in blood was short but there was a prolonged second phase of clearance with a half-life of about 40 h. Tumour was detected by gamma camera imaging two patients. However, most of the whole body radioactivity was located in the bone marrow. At least 35% of the radioactivity in blood 18 h after injection was bound to circulating granulocytes and this probably accounted for the unusual biodistribution of the radiolabel in man. This study shows that the biodistribution of radiolabelled SWA11 in man differs from human tumour xenograft models and that the antibody in unsuitable for targeting therapy to SCLC in man. PMID:8391302

  4. Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer

    PubMed Central

    Lecharpentier, A; Vielh, P; Perez-Moreno, P; Planchard, D; Soria, J C; Farace, F

    2011-01-01

    Background: Circulating tumour cells (CTC) have a crucial role in metastasis formation and can consistently provide information on patient prognosis. Epithelial-mesenchymal transition (EMT) is considered as an essential process in the metastatic cascade, but there is currently very few data demonstrating directly the existence of the EMT process in CTCs. Methods: CTCs were enriched by blood filtration using ISET (isolation by size of epithelial tumour cells), triply labelled with fluorescent anti-vimentin, anti-pan-keratin antibodies and SYTOX orange nuclear dye, and examined by confocal microscopy in six patients with metastatic non-small cell lung cancer (NSCLC). In parallel, CTCs were morphocytologically identified by an experienced cytopathologist. Results: Isolated or clusters of dual CTCs strongly co-expressing vimentin and keratin were evidenced in all patients (range 5–88/5 ml). CTCs expressing only vimentin were detected in three patients, but were less frequent (range 3–15/5 ml). No CTC expressing only keratin was detected. Conclusion: We showed for the first time the existence of hybrid CTCs with an epithelial/mesenchymal phenotype in patients with NSCLC. Their characterisation should provide further insight on the significance of EMT in CTCs and on the mechanism of metastasis in patients with NSCLC. PMID:21970878

  5. Inverse relationship of tumors and mononuclear cell leukemia infiltration in the lungs of F344 rats

    SciTech Connect

    Lundgren, D.L.; Griffith, W.C.; Hahn, F.F.

    1995-12-01

    In 1970 and F344 rat, along with the B6C3F{sub 1} mouse, were selected as the standard rodents for the National Cancer Institute Carcinogenic Bioassay program for studies of potentially carcinogenic chemicals. The F344 rat has also been used in a variety of other carcinogenesis studies, including numerous studies at ITRI. A major concern to be considered in evaluating carcinogenic bioassay studies using the F344 rat is the relatively high background incidence of mononuclear cell leukemia (MCL) (also referred to as large granular lymphocytic leukemia, Fischer rat leukemia, or monocytic leukemia). Incidences of MCL ranging from 10 to 72% in male F344 rats to 6 to 31% in female F344 rats have been reported. Gaining the understanding of the mechanisms involved in the negative correlations noted should enhance our understanding of the mechanisms involved in the development of lung cancer.

  6. Distribution of lymphoid nodules, aberrant crypt foci and tumours in the colon of carcinogen-treated rats.

    PubMed Central

    Cameron, I. L.; Garza, J.; Hardman, W. E.

    1996-01-01

    Sprague-Dawley rats were given eight weekly subcutaneous injections of 1,2-dimethylhydrazine (DMH) or of vehicle then were sacrificed at 1, 5 or 24 weeks after the last injection of DMH. The locations of pre-existing aggregates of lymphoid nodules (ALNs), the location and multiplicity (size) of aberrant crypt foci (ACF), and the locations of tumours in the colon were determined. A trimodal distribution of pre-existing ALNs along the length of the colon was significantly correlated with the timodal distribution of DMH-induced adenocarcinomas (ACs). A unimodal peak in ACF of all sizes occurred between the sites of two distal ALNs. Thus, the distribution of ACF at 1 or 5 weeks did not correlate with distribution of AC found at 24 weeks. Of the 2640 ACF observed at 1 or at 5 weeks, none were found in the proximal 25% of the colon where ACs eventually occurred. It was concluded that: (1) ALNs play a promotional role in AC formation; (2) the ACs which form in the proximal quarter of the colon seldom if ever form via an ACF precursor; and (3) the location, the number and the size of ACF observed early after DMH exposure did not correlate with the location or predict the incidence of ACs which eventually formed in the colon. Images Figure 1 PMID:8611402

  7. Effects of lysine clonixinate on cyclooxygenase I and II in rat lung and stomach preparations.

    PubMed

    Franchi, A M; Di Girolamo, G; de los Santos, A R; Martí, M L; Gimeno, M A

    1998-06-01

    Lysine clonixinate (LC) is a drug of antiinflammatory antipyretic and analgesic activity that produces minor digestive side-effects. This fact induced us to think that LC is possibly a weak COX-1 inhibitor. In order to investigate our hypothesis we inhibited cyclooxygenase activity with LC or indomethacin (INDO) in rat lung and stomach obtained from rats treated with lipopolysacharide (LPS) and control rats. Rat lung preparations incubated with 14C-arachidonic acid synthesise mainly PGE2. LC at 2.5 and 4.1 x 10(-5) M does not modify the basal production of PGE2 (probably COX-1) but at 6.8 x 10(-5) M significantly inhibited PGE2 production (approximately 48.5% inhibition, P<0.001). On the other hand, INDO at 10(-6) inhibited the basal production of PGE2 by around 73%. In LPS-treated rats, the production of PGE2 was significantly higher than in the lungs of control rats, probably due to the induction of COX-2. The addition of LC at 2.7 and 4.1 x 10(-5) M recovered the control values of PGE2 inhibiting, probably only from COX-2 activity. LC at higher concentrations (6.8 x 10(-5) M) and INDO 10(-6) M inhibited PGE2 formed by COX-2 and also partly by COX-1 activity. PMID:10189073

  8. Modification of the erythrocyte surface in rats bearing Yoshida ascites sarcoma is brought about by a tumour variant of alpha2-macroglobulin.

    PubMed Central

    Sanjay, A; Kalraiya, R D; Mehta, N G

    1997-01-01

    Erythrocytes from the circulation of rats bearing Yoshida ascites sarcoma exhibit higher concanavalin A (ConA)-mediated agglutinability than those from normal animals. A tetrameric glycoprotein of subunit molecular mass 170 kDa, purified from the cell-free ascites fluid, was found to confer higher ConA-mediated agglutinability on erythrocytes in vitro. An antiserum to this tumour-derived protein failed to detect any cross-reactive component in normal rat plasma or in any of the normal tissues examined. An immunoreactive protein was, however, detected in blood plasma when the acute-phase reaction was stimulated by injection of turpentine. The cross-reactive acute-phase protein was purified by ConA-affinity, gel-filtration and ion-exchange chromatography, and identified as alpha2-macroglobulin. The acute-phase protein and the protein obtained from the ascites fluid have identical or very similar native and subunit molecular masses, subunit arrangement and pI. They both are able to inhibit trypsin and, as a consequence, acquire greater mobility in native PAGE. In addition, the two proteins bind to rat erythrocytes non-specifically, and in similar amounts. However, despite these similarities, the acute-phase protein is unable to enhance the agglutinability of erythrocytes. The two proteins differ in their carbohydrate content, but this differential glycosylation is not the cause of the difference in their surface modification activity. The chemically deglycosylated proteins show a small but consistent difference in the size of their polypeptides. Their tryptic peptide maps, although largely similar, show some differences, as do their amino acid compositions. It is probable that the proteins are independent members of the same (alpha-macroglobulin) family. The rat embryo is also found to express a soluble protein consisting of a 170 kDa polypeptide that cross-reacts with the antibody to the tumour-derived protein. The purified embryo protein is able to alter the Con

  9. Carvacrol and Pomegranate Extract in Treating Methotrexate-Induced Lung Oxidative Injury in Rats

    PubMed Central

    Şen, Hadice Selimoğlu; Şen, Velat; Bozkurt, Mehtap; Türkçü, Gül; Güzel, Abdulmenap; Sezgi, Cengizhan; Abakay, Özlem; Kaplan, Ibrahim

    2014-01-01

    Background This study was designed to evaluate the effects of carvacrol (CRV) and pomegranate extract (PE) on methotrexate (MTX)-induced lung injury in rats. Material/Methods A total of 32 male rats were subdivided into 4 groups: control (group I), MTX treated (group II), MTX+CRV treated (group III), and MTX+PE treated (group IV). A single dose of 73 mg/kg CRV was administered intraperitoneally to rats in group III on Day 1 of the investigation. To group IV, a dose of 225 mg/kg of PE was administered via orogastric gavage once daily over 7 days. A single dose of 20 mg/kg of MTX was given intraperitoneally to groups II, III, and IV on Day 2. The total duration of experiment was 8 days. Malondialdehyde (MDA), total oxidant status (TOS), total antioxidant capacity (TAC), and oxidative stress index (OSI) were measured from rat lung tissues and cardiac blood samples. Results Serum and lung specimen analyses demonstrated that MDA, TOS, and OSI levels were significantly greater in group II relative to controls. Conversely, the TAC level was significantly reduced in group II when compared to the control group. Pre-administering either CRV or PE was associated with decreased MDA, TOS, and OSI levels and increased TAC levels compared to rats treated with MTX alone. Histopathological examination revealed that lung injury was less severe in group III and IV relative to group II. Conclusions MTX treatment results in rat lung oxidative damage that is partially counteracted by pretreatment with either CRV or PE. PMID:25326861

  10. Ultrahigh resolution optical coherence tomography imaging of diseased rat lung using Gaussian shaped super continuum sources

    NASA Astrophysics Data System (ADS)

    Nishizawa, N.; Ishida, S.; Kitatsuji, M.; Ohshima, H.; Hasegawa, Y.; Matsushima, M.; Kawabe, T.

    2012-02-01

    We have been investigating ultrahigh resolution optical coherence tomography (UHR-OCT) imaging of lung tissues using fiber super continuum sources. The high power, low-noise, Gaussian shaped supercontinuum generated with ultrashort pulses and optical fibers at several wavelengths were used as the broadband light sources for UHR-OCT. For the 800 nm wavelength region, the axial resolution was 3.0 um in air and 2.0 um in tissue. Since the lung consists of tiny alveoli which are separated by thin wall, the UHR-OCT is supposed to be effective for lung imaging. The clear images of alveoli of rat were observed with and without index matching effects by saline. In this work, we investigated the UHR-OCT imaging of lung disease model. The lipopolysaccharide (LPS) induced acute lung injury / acute respiratory distress syndrome (ALI/ARDS) model of rat was prepared as the sample with disease and the UHR-OCT imaging of the disease part was demonstrated. The increment of signal intensity by pleural thickening was observed. The accumulation of exudative fluid in alveoli was also observed for two samples. By the comparison with normal lung images, we can obviously show the difference in the ALI/ARDS models. Since the lung consists of alveolar surrounded by capillary vessels, the effect of red-blood cells (RBC) is considered to be important. In this work, ex-vivo UHR-OCT imaging of RBC was demonstrated. Each RBC was able to be observed individually using UHR-OCT. The effect of RBC was estimated with the rat lung perfused with PBS.

  11. Biochemical detection of type I cell damage after nitrogen dioxide-induced lung injury in rats.

    PubMed

    McElroy, M C; Pittet, J F; Allen, L; Wiener-Kronish, J P; Dobbs, L G

    1997-12-01

    We have previously shown that injury to lung epithelial type I cells can be detected biochemically by measuring the airway fluid content of a type I cell-specific protein, rTI40, in a model of severe acute lung injury [M. C. McElroy, J.-F. Pittet, S. Hashimoto, L. Allen, J. P. Wiener-Kronish, and L. G. Dobbs. Am. J. Physiol. 268 (Lung Cell. Mol. Physiol. 12): L181-L186, 1995]. The first objective of the present study was to evaluate the utility of rTI40 in the assessment of alveolar injury in a model of milder acute lung injury. Rats were exposed to 18 parts/ million NO2 for 12 h; control rats received filtered air for 12 h. In NO2-exposed rats, the total amount of rTI40 in bronchoalveolar fluid was elevated 2-fold compared with control values (P < 0.001); protein concentration was 8.5-fold of control values (P < 0.001). The increase in rTI40 was associated with morphological evidence of injury to type I cells limited to the proximal alveolar regions of the lung. The second objective was to correlate the severity of alveolar type I cell injury with functional measurements of lung epithelial barrier integrity. NO2 inhalation stimulated distal air space fluid clearance despite a significant increase in lung endothelial and epithelial permeability to protein. These data demonstrate that rTI40 is a useful biochemical marker for mild focal injury and that exposure to NO2 alters lung barrier function. Taken together with our earlier studies, these results suggest that the quantity of recoverable rTI40 can be used as an index of the severity of damage to the alveolar epithelium. PMID:9435578

  12. Phosphatidylcholine kinetics in neonatal rat lungs and the effects of rhuKGF and betamethasone.

    PubMed

    Bernhard, Wolfgang; Gesche, Jens; Raith, Marco; Poets, Christian F

    2016-05-15

    Surfactant, synthesized by type II pneumocytes (PN-II), mainly comprises phosphatidylcholine (PC) and is essential to prevent neonatal respiratory distress. Furthermore, PC is essential to lung tissue growth and maintenance as a membrane component. Recent findings suggest that the lung contributes to systemic lipid homeostasis via PC export through ABC-A1 transporter expression. Hence it is important to consider pharmacological interventions in neonatal lung PC metabolism with respect to such export. Five-day-old rats were treated with carrier (control), intraperitoneal betamethasone, subcutaneous recombinant human keratinocyte growth factor (rhuKGF), or their combination for 48 h. Animals were intraperitoneally injected with 50 mg/kg [D9-methyl]choline chloride 1.5, 3.0, and 6.0 h before death at day 7, and lung lavage fluid (LLF) and tissue were harvested. Endogenous PC, D9-labeled PC species, and their water-soluble precursors (D9-)choline and (D9-)phosphocholine were determined by tandem mass spectrometry. Treatment increased secreted and tissue PC pools but did not change equilibrium composition of PC species in LLF. However, all treatments increased specific surfactant components in tissue. In control rats, peak D9-PC in lavaged lung was reached after 3 h and was decreased at 6 h. Only 13% of this net loss in lavaged lung was found in LLF. Such decrease was not present in lungs treated with betamethasone and/or with rhuKGF. D9-PC loss at 3-6 h and PC synthesis calculated from D9 enrichment of phosphocholine indicated that daily synthesis rate is higher than total pool size. We conclude that lung tissue contributes to systemic PC homeostasis in neonatal rats, which is altered by glucocorticoid and rhuKGF treatment. PMID:26944086

  13. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    SciTech Connect

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir; Richardson, Jason R.; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  14. Evaluation of Cucurbita maxima extract against scopolamine-induced amnesia in rats: implication of tumour necrosis factor alpha.

    PubMed

    Jawaid, Talha; Shakya, Ashok K; Siddiqui, Hefazat Hussain; Kamal, Mehnaz

    2014-01-01

    Cucurbita maxima (CM) seed oil is commonly used in Indian folk medicine to treat various ailments. We have investigated the effect of CM seed oil on memory impairment induced by scopolamine in rats. Male adult Wistar rats were administered scopolamine 1 mg/kg body weight, i.p. or 1.25 mg/kg body weight, s.c. to induce memory impairment. The nootropic agent piracetam 100 mg/kg body weight, i.p. and CM seed oil 100 and 200 mg/kg body weight, p.o. were administered daily for five consecutive days. The memory function was evaluated in the Morris water maze (MWM) test, the social recognition test (SRT), the elevated plus maze (EPM) test, and the pole climbing test (PCT). Acetylcholinesterase (AChE) activity and oxidative stress parameters were estimated in the cortex, hippocampus, and cerebellum of the brains after completion of the behavioural studies. The effects of scopolamine on the levels of the tumour necrosis factor alpha (TNF-α) transcript were also investigated. Scopolamine caused memory impairment in all the behavioural paradigms along with a significant increase in the AChE activity and oxidative stress in the brain. Scopolamine also caused a significant increase in the expression of TNF-α in the hippocampus. CM seed oil exhibited antiamnesic activity as indicated by a significant reduction in the latency time in the MWM test and decreased social interaction during trial 2 in the SRT. Further, treatment with CM seed oil significantly decreased the AChE activity and malondialdehyde levels and increased the glutathione level in brain regions. CM seed oil also significantly decreased the expression of TNF-α in the hippocampus. The effect of CM seed oil on behavioural and biochemical parameters was comparable to that observed in rats treated with piracetam. These results indicate that CM seed oil may exert antiamnesic activity which may be attributed to the inhibition of AChE and inflammation as well as its antioxidant activity in the brain. PMID:25711042

  15. Dual hit lipopolysaccharide & oleic acid combination induced rat model of acute lung injury/acute respiratory distress syndrome

    PubMed Central

    Hagawane, T.N.; Gaikwad, R.V.; Kshirsagar, N.A.

    2016-01-01

    Background & objectives: Despite advances in therapy and overall medical care, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) management remains a problem. Hence the objective of this study was to develop a rat model that mimics human ALI/ARDS. Methods: Four groups of Wistar rats, 48 per group were treated with (i) intratracheal (IT) lipopolysaccharide (LPS) (5 mg/kg) dissolved in normal saline (NS), (ii) intravenous (iv) oleic acid (OA) (250 μl/kg) suspension in bovine serum albumin (BSA), (iii) dual hit: IT LPS (2 mg/kg) dissolved in NS and iv OA (100 μl/kg) and (iv) control group: IT NS and iv BSA. From each group at set periods of time various investigations like chest X-rays, respiratory rate (RR), tidal volume (TV), total cell count, differential cell count, total protein count and cytokine levels in bronchoalveolar lavage fluid (BALF), lung wet/dry weight ratio and histopathological examination were done. Results: It was noted that the respiratory rate, and tumour necrosis factor-α (TNF-α) levels were significantly higher at 4 h in the dual hit group as compared to LPS, OA and control groups. Interleukin-6 (IL-6) levels were significantly higher in the dual hit group as compared to LPS at 8 and 24 h, OA at 8 h and control (at all time intervals) group. IL-1β levels were significantly higher in LPS and dual hit groups at all time intervals, but not in OA and control groups. The injury induced in dual hit group was earlier and more sustained as compared to LPS and OA alone. Interpretation & conclusions: The lung pathology and changes in respiration functions produced by the dual hit model were closer to the diagnostic criteria of ALI/ARDS in terms of clinical manifestations and pulmonary injury and the injury persisted longer as compared to LPS and OA single hit model. Therefore, the ARDS model produced by the dual hit method was closer to the diagnostic criteria of ARDS in terms of clinical manifestations and pulmonary injury. PMID

  16. Brevetoxin Forms Covalent DNA Adducts in Rat Lung Following Intratracheal Exposure

    PubMed Central

    Radwan, Faisal F.Y.; Ramsdell, John S.

    2008-01-01

    Background Human exposure to brevetoxins produced by the red tide organism, Karenia brevis, is an increasing public health concern. Using in vitro exposure of rat liver cells to brevetoxin B (PbTx-2), the primary toxin product of K. brevis, we previously showed that it formed C27,28-epoxy brevetoxin metabolites capable of covalently binding to nucleic acids, a common initiation step for carcinogenesis. Objective This study was undertaken to evaluate nucleic acid adduction in lung following in vitro and in vivo brevetoxin exposures. Methods To clarify reactions of brevetoxin epoxide with DNA, we analyzed reaction products of PbTx-6 (a C27,28 epoxide metabolite of brevetoxin B) with nucleosides. We also analyzed adducts from nucleic acid hydrolysates of isolated rat lung cells treated with PbTx-2 or PbTx-6 in vitro and lung tissue from rats after intratracheal exposure to PbTx-2 or PbTx-6 at 45 μg toxin/kg body weight. Results Our results indicate that PbTx-2 forms DNA adducts with cytidine after treatment of isolated lung cells, and forms DNA adducts with adenosine and guanosine after intratracheal exposure. Conclusions These results are consistent with metabolic activation of highly reactive brevetoxin intermediates that bind to nucleic acid. These findings provide a basis for monitoring exposure and assessing the hazard associated with depurination of brevetoxin–nucleotide adducts in lung tissue. PMID:18629316

  17. Effects of Anoectochilus formosanus Hayata extract and glucocorticoid on lung maturation in preterm rats.

    PubMed

    Chen, C M; Wang, L F; Cheng, K T; Hsu, H H; Gau, B; Su, B

    2004-09-01

    We investigated the effects of maternal administration of Anoectochilus formosanus extract and dexamethasone on lung maturation in preterm rats. A. formosanus group mothers were tube-fed A. formosanus extract (300 mg/kg body wt./day) for 7 days from days 12-18 of gestation. Dexamethasone group mothers were injected intraperitoneally with dexamethasone (0.2 mg/kg body wt.) in saline on day 18 of gestation. Control group mothers were similarly injected with saline alone. On day 19 of gestation, fetuses were delivered by cesarean section. A. formosanus treatment significantly increased the fetal lung/body weight ratio, as compared to dexamethasone treatment. Saturated phosphatidylcholine levels in fetal lung tissue and growth hormone levels in maternal serum were significantly increased in the A. formosanus- and dexamethasone-treated groups as compared to controls. The histological appearance of preterm rat lungs revealed extensive branching of intermediate airways, denser mesenchyme, and more epithelial tubules in the dexamethasone and A. formosanus groups as compared with the control group. These results suggest that antenatal A. formosanus treatment may play a role in accelerating fetal rat lung maturation. PMID:15500262

  18. Neonatal developmental pattern of superoxide dismutase and aniline hydroxylase in rat lung

    SciTech Connect

    Kakkar, P.; Jaffery, F.N.; Viswanathan, P.N.

    1986-10-01

    The developmental biology of superoxide dismutase and aniline hydroxylase was followed in rat lungs from prenatal stage to 3 months old. Total superoxide dismutase activity as determined by spectrophotometry as well as electrophoresis was high in the prenatal rat lung, decreased in the first 24 hr postpartum, increased within 7 days, and then decreased gradually to adult levels. On polyacrylamide gel electrophoresis only two isozymic forms of superoxide dismutase were located as achromatic zones in the fetal lung. In the adult rat lung, there were three molecular forms of superoxide dismutase, two in the postmitochondrial supernatant and one in the mitochondrial fraction. Unlike superoxide dismutase, aniline hydroxylase was detectable only after 5 days of age and the activity exhibited a gradual increase afterward up to 1 month of age. The developmental pattern of superoxide dismutase and aniline hydroxylase activities in lung may be significant in understanding the mechanism of body defenses and their regulatory modulations in response to toxic air pollutants and environmental stress.

  19. CHANGES IN COMPLEX CARBOHYDRATE CONTENT AND STRUCTURE IN RAT LUNGS CAUSED BY PROLONGED OZONE INHALATION

    EPA Science Inventory

    EPA GRANT NUMBER: R828112C065III
    Title: Changes in Complex Carbohydrate Content and Structure in Rat Lungs Caused by Prolonged Ozone Inhalation
    Investigator: Bhandaru Radhakrishnamurthy
    Institution: Tulane University of Louisiana
    EPA...

  20. FORMATION OF CIGARETTE SMOKE-INDUCED DNA ADDUCTS IN THE RAT LUNG AND NASAL MUCOSA

    EPA Science Inventory

    The formation of DNA adducts in the nasal, lung, and liver tissues of rats exposed daily to fresh smoke from a University of Kentucky refernece cigarette (2R1) for up to 40 weeks was examined. he amount of smoke total particulate matter (TPM) inhaled and the blood carboxyhemoglob...

  1. Surfactant therapy restores gas exchange in lung injury due to paraquat intoxication in rats.

    PubMed

    So, K L; de Buijzer, E; Gommers, D; Kaisers, U; van Genderen, P J; Lachmann, B

    1998-08-01

    Paraquat is a weed killer which causes often fatal lung damage in humans and other animals. There is evidence that the pulmonary surfactant system is involved in the pathophysiology of respiratory failure after paraquat intoxication and, therefore, the possible therapeutic effect of intratracheal surfactant administration on gas exchange in rats with progressive lung injury induced by paraquat poisoning was studied. In one group of rats, the time course of the development of lung injury due to paraquat intoxication was characterized. In a second group of rats, 72 h after paraquat intoxication, the animals underwent mechanical ventilation and only those animals in which the arterial oxygen tension/inspiratory oxygen fraction (Pa,O2/FI,O2) decreased to below 20 kPa (150 mmHg) received exogenous surfactant (200 mg x kg(-1) body weight). Within 3 days the rats in group 1 developed progressive respiratory failure, demonstrated not only by impaired gas exchange and lung mechanics but also by increased minimal surface tension and increased protein concentration in bronchoalveolar lavage fluid. In group 2, intratracheal surfactant administration increased Pa,O2/FI,O2 significantly within 5 min (14.4+/-2.4 kPa (108+/-18 mmHg)) to (55.2+/-53 kPa (414+/-40 mmHg)) and sustained this level for at least 2 h. It is concluded that intratracheal surfactant administration is a promising approach in the treatment of severe respiratory failure caused by paraquat poisoning. PMID:9727775

  2. Antioxidant effects of selenium on lung injury in paraquat intoxicated rats

    USGS Publications Warehouse

    Kim, K.S.; Suh, G.J.; Kwon, W.Y.; Kwak, Y.H.; Lee, Kenneth; Lee, H.J.; Jeong, K.Y.; Lee, M.W.

    2012-01-01

    CONTEXT: Paraquat (PQ) causes lethal intoxication by inducing oxidant injury to the lung. Selenium is a cofactor for glutathione peroxidase (GPx), which is one of the major endogenous antioxidant enzymes. OBJECTIVE: To determine whether selenium post-treatment activates GPx, decreases lung injury, and improves survival in PQ intoxicated rats. MATERIALS AND METHODS: Male Spraque-Dawley rats were categorized into three groups: sham (n = 6), PQ (n = 12), and PQ + Se (n = 12). In the PQ and PQ + Se groups, 50 mg/kg of PQ was administered intraperitoneally. After 10 minutes, 60 μg/kg of Se (PQ + Se) or saline (PQ) was administered via the tail vein. Six rats per group were euthanized 6 hours or 24 hours later. Lung tissues were harvested for the measurement of GPx activity, reduced glutathione (GSH), glutathione disulfide (GSSG) and malondialdehyde (MDA) and for histological analysis. Using separated set of rats, survival of PQ (n = 10) and PQ + Se (n = 10) were observed for 72 hours. RESULTS: GPx activity in the PQ group at the 6-hour and 24-hour time points was lower than in the sham group (p CONCLUSION: Single dose of selenium post-treatment activates GPx and attenuates lipid peroxidation and lung injury early after paraquat intoxication, but does not improve 72 hours of survival.

  3. PRENATAL DEXAMETHASONE ADMINISTRATION DISRUPTS THE PATTERN OF CELLULAR DEVELOPMENT IN RAT LUNG

    EPA Science Inventory

    To examine whether prenatal exposure to glucocorticoids could adversely affect subsequent cellular development of the lung, we administered 0.2 mg/kg of dexamethasone to pregnant rats on gestational days 17, 18, and 19. ungs of the offspring were then examined for patterns of cel...

  4. TYLOXAPOL CONFERS DURABLE PROTECTION AGAINST HYPEROXIC LUNG INJURY IN THE RAT

    EPA Science Inventory

    We tested the hypothesis that the non-lipid components of ExosurfR, tyloxapol (TY) and cetyl alcohol (CA), protect against hyperoxic lung injury by either 1) direct radical scavenging activity or 2) induction of the animals? endogenous anti-oxidant defenses. Adult rats were in...

  5. Active Oxygen Metabolites and Thromboxane in Phorbol Myristate Acetate Toxicity to the Isolated, Perfused Rat Lung.

    NASA Astrophysics Data System (ADS)

    Carpenter, Laurie Jean

    When administered intravenously or intratracheally to rats, rabbits and sheep, phorbol myristate acetate (PMA) produces changes in lung morphology and function are similar to those seen in humans with the adult respiratory distress syndrome (ARDS). Therefore, it is thought that information about the mechanism of ARDS development can be gained from experiments using PMA-treated animals. Currently, the mechanisms by which PMA causes pneumotoxicity are unknown. Results from other studies in rabbits and in isolated, perfused rabbit lungs suggest that PMA-induced lung injury is mediated by active oxygen species from neutrophils (PMN), whereas studies in sheep and rats suggest that PMN are not required for the toxic response. The role of PMN, active oxygen metabolites and thromboxane (TxA_2) in PMA-induced injury to isolated, perfused rat lungs (IPLs) was examined in this thesis. To determine whether PMN were required for PMA to produce toxicity to the IPL, lungs were perfused for 30 min with buffer containing various concentrations of PMA (in the presence or absence of PMN). When concentrations >=q57 ng/ml were added to medium devoid of added PMN, perfusion pressure and lung weight increased. When a concentration of PMA (14-28 ng/ml) that did not by itself cause lungs to accumulate fluid was added to the perfusion medium containing PMN (1 x 10 ^8), perfusion pressure increased, and lungs accumulated fluid. These results indicate that high concentrations of PMA produce lung injury which is independent of PMN, whereas injury induced by lower concentrations is PMN-dependent. To examine whether active oxygen species were involved in mediating lung injury induced by PMA and PMN, lungs were coperfused with the oxygen radical scavengers SOD and/or catalase. Coperfusion with either or both of these enzymes totally protected lungs against injury caused by PMN and PMA. These results suggest that active oxygen species (the hydroxyl radical in particular), mediate lung injury in

  6. N-Methyl-D-aspartate Receptor Excessive Activation Inhibited Fetal Rat Lung Development In Vivo and In Vitro

    PubMed Central

    Liao, Zhengchang; Zhou, Xiaocheng; Luo, Ziqiang; Huo, Huiyi; Wang, Mingjie; Yu, Xiaohe; Cao, Chuanding; Ding, Ying; Xiong, Zeng

    2016-01-01

    Background. Intrauterine hypoxia is a common cause of fetal growth and lung development restriction. Although N-methyl-D-aspartate receptors (NMDARs) are distributed in the postnatal lung and play a role in lung injury, little is known about NMDAR's expression and role in fetal lung development. Methods. Real-time PCR and western blotting analysis were performed to detect NMDARs between embryonic days (E) 15.5 and E21.5 in fetal rat lungs. NMDAR antagonist MK-801's influence on intrauterine hypoxia-induced retardation of fetal lung development was tested in vivo, and NMDA's direct effect on fetal lung development was observed using fetal lung organ culture in vitro. Results. All seven NMDARs are expressed in fetal rat lungs. Intrauterine hypoxia upregulated NMDARs expression in fetal lungs and decreased fetal body weight, lung weight, lung-weight-to-body-weight ratio, and radial alveolar count, whereas MK-801 alleviated this damage in vivo. In vitro experiments showed that NMDA decreased saccular circumference and area per unit and downregulated thyroid transcription factor-1 and surfactant protein-C mRNA expression. Conclusions. The excessive activation of NMDARs contributed to hypoxia-induced fetal lung development retardation and appropriate blockade of NMDAR might be a novel therapeutic strategy for minimizing the negative outcomes of prenatal hypoxia on lung development. PMID:27478831

  7. The lectin-like domain of tumor necrosis factor improves lung function after rat lung transplantation—Potential role for a reduction in reactive oxygen species generation*

    PubMed Central

    Hamacher, Jürg; Stammberger, Uz; Roux, Jeremie; Kumar, Sanjiv; Yang, Guang; Xiong, Chenling; Schmid, Ralph A.; Fakin, Richard M.; Chakraborty, Trinad; Hossain, Hamid M. D.; Pittet, Jean-François; Wendel, Albrecht; Black, Stephen M.; Lucas, Rudolf

    2016-01-01

    Objective To test the hypothesis that the lectin-like domain of tumor necrosis factor, mimicked by the TIP peptide, can improve lung function after unilateral orthotopic lung isotransplantation. Because of a lack of a specific treatment for ischemia reperfusion-mediated lung injury, accompanied by a disrupted barrier integrity and a dysfunctional alveolar liquid clearance, alternative therapies restoring these parameters after lung transplantation are required. Design Prospective, randomized laboratory investigation. Setting University-affiliated laboratory. Subjects Adult female rats. Interventions Tuberoinfundibular peptide, mimicking the lectin-like domain of tumor necrosis factor, mutant TIP peptide, N,N′-diacetylchitobiose/TIP peptide, and amiloride/TIP peptide were instilled intratracheally in the left lung immediately before the isotransplantation was performed. An additional group received an intravenous TIP peptide treatment, 1.5 mins before transplantation. Studies using isolated rat type II alveolar epithelial cell monolayers and ovine pulmonary endothelial cells were also performed. Measurements and Main Results Intratracheal pretreatment of the transplantable left lung with the TIP peptide, but not with an inactive mutant TIP peptide, resulted in significantly improved oxygenation 24 hrs after transplantation. This treatment led to a significantly reduced neutrophil content in the lavage fluid. Both the effects on oxygenation and neutrophil infiltration were inhibited by the epithelial sodium channel blocker amiloride. The TIP peptide blunted reactive oxygen species production in pulmonary artery endothelial cells under hypoxia and reoxygenation and reduced reactive oxygen species content in the transplanted rat lungs in vivo. Ussing chamber experiments using monolayers of primary type II rat pneumocytes indicated that the primary site of action of the peptide was on the apical side of these cells. Conclusions These data demonstrate that the TIP

  8. Natural inhalation exposure to coal smoke and wood smoke induces lung cancer in mice and rats

    SciTech Connect

    Liang, C.K.; Quan, N.Y.; Cao, S.R.; He, X.Z.; Ma, F. )

    1988-06-01

    In a rural area with a high mortality rate of lung cancer in humans, mice and rats were placed in an environment in which they inhaled coal smoke and wood smoke in indoor air for 15 to 19 months. The incidences of lung cancer in mice in the control group, wood group, and coal group were 17.0% (29/171), 45.8% (81/177), and 89.5% (188/210), respectively: in rats the incidences were 0.9% (1/110), 0 (0/110), and 67.2% (84/125), respectively. In addition, the pollutants in the air were analyzed. The results indicate that coal smoke is a highly significant risk factor for lung cancer in humans in Xuan Wei County of Yun Nan Province in China.

  9. Lowering of innate resistance of the lungs to the growth of blood-borne cancer cells in states of topical and systemic stress.

    PubMed Central

    Van Den Brenk, H. A.; Stone, M. G.; Kelly, H.; Sharpington, C.

    1976-01-01

    The survival and clonogenic growth (measured in terms of colony forming efficiency (CFE) of intravenously injected (i.v.) Walker (W256) tumour cells in the lungs of rats was greatly enhanced by states of topical and systemic stress induced by the intraperitoneal (i.p.) injection of rats with a single dose of 10(-5)-10(-3) mmol g-1 body weight of adrenaline and other beta-adrenergic agonists, inflammatory agents (including local x-irradiation), convulsive seizures, "tumbling" or physical restraint. Lowering of innate resistance of the host to growth of seeded tumour cells induced by states of topical and systemic stress, and by the addition of an excess of lethally irradiated (LI) tumour cells to i.v. injected intact tumour cells, were all potentiated by treatment of rats with aminophylline, an inhibitor of cyclic AMP phosphodiesterase. Enhancement of tumour growth by systemic stress was inhibited by bilateral total or medullary adrenalectomy and is attributed to the release and actions of endogenous adreno-medullary hormones. Alpha-adrenergic and most non-adrenergic agents administered in maximum tolerated doses did not significantly affect host resistance to tumour growth in the lungs. These findings, correlated with measurements of cyclic AMP in the lungs of normal and stressed rats, suggest that changes in the resistance of the host to tumour growth involve changes in cyclic nucleotide metabolism in the target tissues (tumour bed); possible mechanisms of action of cyclic nucleotides in this respect are discussed. PMID:175820

  10. Time-dependent changes of autophagy and apoptosis in lipopolysaccharide-induced rat acute lung injury

    PubMed Central

    Lin, Li; Zhang, Lijun; Yu, Liangzhu; Han, Lu; Ji, Wanli; Shen, Hui; Hu, Zhenwu

    2016-01-01

    Objective(s): Abnormal lung cell death including autophagy and apoptosis is the central feature in acute lung injury (ALI). To identify the cellular mechanisms and the chronology by which different types of lung cell death are activated during lipopolysaccharide (LPS)-induced ALI, we decided to evaluate autophagy (by LC3-II and autophagosome) and apoptosis (by caspase-3) at different time points after LPS treatment in a rat model of LPS-induced ALI. Materials and Methods: Sprague-Dawley rats were randomly divided into two groups: control group and LPS group. ALI was induced by LPS intraperitoneal injection (3 mg/kg). The lung tissues were collected to measure lung injury score by histopathological evaluation, the protein expression of LC3-II and caspase-3 by Western blot, and microstructural changes by electron microscopy analysis. Results: During ALI, lung cell death exhibited modifications in the death process at different stages of ALI. At early stages (1 hr and 2 hr) of ALI, the mode of lung cell death started with autophagy in LPS group and reached a peak at 2 hr. As ALI process progressed, apoptosis was gradually increased in the lung tissues and reached its maximal level at later stages (6 hr), while autophagy was time-dependently decreased. Conclusion: These findings suggest that activated autophagy and apoptosis might play distinct roles at different stages of LPS-induced ALI. This information may enhance the understanding of lung pathophysiology at the cellular level during ALI and pulmonary infection, and thus help optimize the timing of innovating therapeutic approaches in future experiments with this model. PMID:27482344

  11. Relation of hypoxia inducible factor 1α and 2α in operable non-small cell lung cancer to angiogenic/molecular profile of tumours and survival

    PubMed Central

    Giatromanolaki, A; Koukourakis, M I; Sivridis, E; Turley, H; Talks, K; Pezzella, F; Gatter, K C; Harris, A L

    2001-01-01

    Hypoxia inducible factors HIF1α and HIF2α are important proteins involved in the regulation of the transcription of a variety of genes related to erythropoiesis, glycolysis and angiogenesis. Hypoxic stimulation results in rapid increase of the HIF1α and 2α protein levels, as a consequence of a redox-sensitive stabilization. The HIFαs enter the nucleus, heterodimerize with the HIF1β protein, and bind to DNA at the hypoxia response elements (HREs) of target genes. In this study we evaluated the immunohistochemical expression of these proteins in 108 tissue samples from non-small-cell lung cancer (NSCLC) and in normal lung tissues. Both proteins showed a mixed cytoplasmic/nuclear pattern of expression in cancer cells, tumoural vessels and tumour-infiltrating macrophages, as well as in areas of metaplasia, while normal lung components showed negative or very weak cytoplasmic staining. Positive HIF1α and HIF2α expression was noted in 68/108 (62%) and in 54/108 (50%) of cases respectively. Correlation analysis of HIF2α expression with HIF1α expression showed a significant association (P < 0.0001, r = 0.44). A strong association of the expression of both proteins with the angiogenic factors VEGF (P < 0.004), PD-ECGF (P < 0.003) and bFGF (P < 0.04) was noted. HIF1α correlated with the expression of bek-bFGF receptor expression (P = 0.01), while HIF2α was associated with intense VEGF/KDR-activated vascularization (P = 0.002). HIF2α protein was less frequently expressed in cases with a medium microvessel density (MVD); a high rate of expression was noted in cases with both low and high MVD (P = 0.006). Analysis of overall survival showed that HIF2α expression was related to poor outcome (P = 0.008), even in the group of patients with low MVD (P = 0.009). HIF1α expression was marginally associated with poor prognosis (P = 0.08). In multivariate analysis HIF2α expression was an independent prognostic indicator (P = 0.006, t-ratio 2.7). We conclude that HIF1

  12. A role for platelet-derived growth factor-BB in rat postpneumonectomy compensatory lung growth.

    PubMed

    Yuan, Shizeng; Hannam, Vicky; Belcastro, Rosetta; Cartel, Nicholas; Cabacungan, Judy; Wang, Jinxia; Diambomba, Yenge; Johnstone, Leslie; Post, Martin; Tanswell, A Keith

    2002-07-01

    Unilateral pneumonectomy leads to compensatory growth in the residual lung, the mediators of which are largely unknown. We hypothesized, based on its other known roles in lung cell growth, that platelet-derived growth factor (PDGF)-BB would be an essential mediator of postpneumonectomy compensatory lung growth. Left-sided pneumonectomies were performed on 21-d-old rats, for comparison with sham-operated or unoperated control animals. Body weights were not different between groups. Right lung weights and DNA content were significantly increased (p < 0.05), compared with controls, by 10 d after pneumonectomy. The rate of DNA synthesis was maximal on d 5 postpneumonectomy. Total right lung PDGF-B mRNA and PDGF-BB protein increased after pneumonectomy, but were apparently tightly regulated, relative to total right lung beta-actin mRNA and protein content, respectively. However, PDGF-BB expression after pneumonectomy was apparently not purely constitutive, in that daily i.p. injections of a truncated soluble PDGF beta-receptor both reduced activation of the native PDGF beta-receptor, and attenuated increased lung DNA synthesis on d 3 after pneumonectomy. These findings are consistent with a critical role for PDGF-BB in postpneumonectomy lung growth. PMID:12084843

  13. Collagen crosslink location: a molecular marker for fibrosis in lungs of rats with experimental silicosis

    SciTech Connect

    Gerriets, J.E.; Reiser, K.M.; Last, J.A.

    1986-05-01

    Collagen content is increased in lungs of animals with experimental silicosis. They hypothesize that the collagen deposited in such fibrotic lungs differs structurally from normal lung collagen. Silicotic lung collagen shows an increase in lysine hydroxylation. In addition, the ratio of the difunctional crosslinks DHLNL (dihydroxylysinonorleucine) to HLNL (hydroxylysinonorleucine) is sharply elevated compared to that in control lungs. The peptide ..cap alpha..1(I)CB7 x ..cap alpha..2(I)CB1 crosslinked by HLNL was demonstrated in NaB/sup 3/H/sub 4/-reduced, CNBr-digested collagen from rat tail tendon by peptide purification, followed by periodate oxidation and amino acid analysis. Further structural analysis of this peptide was obtained by digestion of the crosslinked peptide with trypsin and purification of the tryptic peptide containing this crosslink followed by amino acid analysis. They then examined the analogous collagenous peptide in normal and silicotic lungs and analyzed the crosslink it contained. They observed that DHLNL was present at specific sites previously containing HLNL; that is, the collagen in fibrotic lungs is altered at specific sites by post-translational modification of a lysine residue by hydroxylation in a predictable way. They conclude that such unusual hydroxylation of a specific lysine residue in the ..cap alpha..2 chain provides a molecular marker for fibrotic lung collagen.

  14. Esophageal pressure as an estimate of average pleural pressure with lung or chest distortion in rats.

    PubMed

    Pecchiari, Matteo; Loring, Stephen H; D'Angelo, Edgardo

    2013-04-01

    Pressure-volume curves of the lungs and chest wall require knowledge of an effective 'average' pleural pressure (Pplav), and are usually estimated using esophageal pressure as Ples-V and Pwes-V curves. Such estimates could be misleading when Ppl becomes spatially non-uniform with lung lavage or shape distortion of the chest. We therefore measured Ples-V and Pwes-V curves in conditions causing spatial non-uniformity of Ppl in rats. Ples-V curves of normal lungs were unchanged by chest removal. Lung lavage depressed PLes-V but not Pwes-V curves to lower volumes, and chest removal after lavage increased volumes at PL≥15cmH2O by relieving distortion of the mechanically heterogeneous lungs. Chest wall distortion by ribcage compression or abdominal distension depressed Pwes-V curves and Ples-V curves of normal lungs only at Pl≥3cmH2O. In conclusion, Pes reflects Pplav with normal and mechanically heterogeneous lungs. With chest wall distortion and dependent deformation of the normal lung, changes of Ples-V curves are qualitatively consistent with greater work of inflation. PMID:23416404

  15. Clearance of polonium-210-enriched cigarette smoke from the rat trachea and lung

    SciTech Connect

    Cohen, B.S.; Harley, N.H.; Tso, T.C.

    1985-06-30

    The distribution and clearance of alpha radioactivity in the lungs of rats were measured after inhalation of smoke from cigarettes highly enriched in /sup 210/Po. Female Fischer rats were exposed daily for 6 months to smoke from cigarettes with 500 times the normal content of /sup 210/Po. Control rats were exposed to standard cigarette smoke. Animals were serially withdrawn and killed. After necropsy the trachea, major bronchi, larynx, and nasopharynx were examined for surface alpha activity by an etched track technique utilizing cellulose nitrate detectors. Areas of accumulated activity were seen on samples of larynx from rats exposed to the /sup 210/Po-enriched cigarettes. No other local accumulations were seen on the airways. The lower lungs were analyzed radiochemically for /sup 210/Po. Both radiochemical analysis and track measurements showed highly elevated activity concentrations in rats exposed to the /sup 210/Po-enriched cigarettes. Following withdrawal from smoking, both short- and long-term clearance components were seen. The parameters which fit the postexposure data for clearance of the lung burden cannot fit the buildup during the exposure period.

  16. Effects of Chinese medicinal herbs on a rat model of chronic Pseudomonas aeruginosa lung infection.

    PubMed

    Song, Z; Johansen, H K; Moser, C; Høiby, N

    1996-05-01

    The aim of the study was to evaluate the effects of two kinds of Chinese medicinal herbs, Isatis tinctoria L (ITL) and Daphne giraldii Nitsche (DGN), on a rat model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis (CF). Compared to the control group, both drugs were able to reduce the incidence of lung abscess (p < 0.05) and to decrease the severity of the macroscopic pathology in lungs (p < 0.05). In the great majority of the rats, the herbs altered the inflammatory response in the lungs from an acute type inflammation, dominated by polymorphonuclear leukocytes (PMN), to a chronic type inflammation, dominated by mononuclear leukocytes (MN). DGN also improved the clearance of P. aeruginosa from the lungs (p < 0.03) compared with the control group. There were no significant differences between the control group and the two herbal groups with regard to serum IgG and IgA anti-P. aeruginosa sonicate antibodies. However, the IgM concentration in the ITL group was significantly lower than in the control group (p < 0.03). These results suggest that the two medicinal herbs might be helpful to CF patients with chronic P. aeruginosa lung infection, DGN being the most favorable. PMID:8703440

  17. Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan

    PubMed Central

    Maishi, Nako; Ohba, Yusuke; Akiyama, Kosuke; Ohga, Noritaka; Hamada, Jun-ichi; Nagao-Kitamoto, Hiroko; Alam, Mohammad Towfik; Yamamoto, Kazuyuki; Kawamoto, Taisuke; Inoue, Nobuo; Taketomi, Akinobu; Shindoh, Masanobu; Hida, Yasuhiro; Hida, Kyoko

    2016-01-01

    Tumour blood vessels are gateways for distant metastasis. Recent studies have revealed that tumour endothelial cells (TECs) demonstrate distinct phenotypes from their normal counterparts. We have demonstrated that features of TECs are different depending on tumour malignancy, suggesting that TECs communicate with surrounding tumour cells. However, the contribution of TECs to metastasis has not been elucidated. Here, we show that TECs actively promote tumour metastasis through a bidirectional interaction between tumour cells and TECs. Co-implantation of TECs isolated from highly metastatic tumours accelerated lung metastases of low metastatic tumours. Biglycan, a small leucine-rich repeat proteoglycan secreted from TECs, activated tumour cell migration via nuclear factor-κB and extracellular signal–regulated kinase 1/2. Biglycan expression was upregulated by DNA demethylation in TECs. Collectively, our results demonstrate that TECs are altered in their microenvironment and, in turn, instigate tumour cells to metastasize, which is a novel mechanism for tumour metastasis. PMID:27295191

  18. Tumour endothelial cells in high metastatic tumours promote metastasis via epigenetic dysregulation of biglycan.

    PubMed

    Maishi, Nako; Ohba, Yusuke; Akiyama, Kosuke; Ohga, Noritaka; Hamada, Jun-Ichi; Nagao-Kitamoto, Hiroko; Alam, Mohammad Towfik; Yamamoto, Kazuyuki; Kawamoto, Taisuke; Inoue, Nobuo; Taketomi, Akinobu; Shindoh, Masanobu; Hida, Yasuhiro; Hida, Kyoko

    2016-01-01

    Tumour blood vessels are gateways for distant metastasis. Recent studies have revealed that tumour endothelial cells (TECs) demonstrate distinct phenotypes from their normal counterparts. We have demonstrated that features of TECs are different depending on tumour malignancy, suggesting that TECs communicate with surrounding tumour cells. However, the contribution of TECs to metastasis has not been elucidated. Here, we show that TECs actively promote tumour metastasis through a bidirectional interaction between tumour cells and TECs. Co-implantation of TECs isolated from highly metastatic tumours accelerated lung metastases of low metastatic tumours. Biglycan, a small leucine-rich repeat proteoglycan secreted from TECs, activated tumour cell migration via nuclear factor-κB and extracellular signal-regulated kinase 1/2. Biglycan expression was upregulated by DNA demethylation in TECs. Collectively, our results demonstrate that TECs are altered in their microenvironment and, in turn, instigate tumour cells to metastasize, which is a novel mechanism for tumour metastasis. PMID:27295191

  19. Lung dosimetry and risk assessment of nanoparticles: Evaluating and extending current models in rats and humans

    SciTech Connect

    Kuempel, E.D.; Tran, C.L.; Castranova, V.; Bailer, A.J.

    2006-09-15

    Risk assessment of occupational exposure to nanomaterials is needed. Human data are limited, but quantitative data are available from rodent studies. To use these data in risk assessment, a scientifically reasonable approach for extrapolating the rodent data to humans is required. One approach is allometric adjustment for species differences in the relationship between airborne exposure and internal dose. Another approach is lung dosimetry modeling, which provides a biologically-based, mechanistic method to extrapolate doses from animals to humans. However, current mass-based lung dosimetry models may not fully account for differences in the clearance and translocation of nanoparticles. In this article, key steps in quantitative risk assessment are illustrated, using dose-response data in rats chronically exposed to either fine or ultrafine titanium dioxide (TiO{sub 2}), carbon black (CB), or diesel exhaust particulate (DEP). The rat-based estimates of the working lifetime airborne concentrations associated with 0.1% excess risk of lung cancer are approximately 0.07 to 0.3 mg/m{sup 3} for ultrafine TiO{sub 2}, CB, or DEP, and 0.7 to 1.3 mg/m{sup 3} for fine TiO{sub 2}. Comparison of observed versus model-predicted lung burdens in rats shows that the dosimetry models predict reasonably well the retained mass lung burdens of fine or ultrafine poorly soluble particles in rats exposed by chronic inhalation. Additional model validation is needed for nanoparticles of varying characteristics, as well as extension of these models to include particle translocation to organs beyond the lungs. Such analyses would provide improved prediction of nanoparticle dose for risk assessment.

  20. Sunitinib malate (SU-11248) reduces tumour burden and lung metastasis in an intratibial human xenograft osteosarcoma mouse model

    PubMed Central

    Kumar, Ram Mohan Ram; Arlt, Matthias JE; Kuzmanov, Aleksandar; Born, Walter; Fuchs, Bruno

    2015-01-01

    Osteosarcoma is a rare type of cancer that commonly occurs as a primary bone tumour in children and adolescents and is associated with a poor clinical outcome. Despite complex treatment protocols, including chemotherapy combined with surgical resection, the prognosis for patients with osteosarcoma and metastases remains poor and more effective therapies are required. In this study, we evaluated the therapeutic efficacy of sunitinib malate, a wide-spectrum tyrosine kinase inhibitor, in a preclinical mouse model of osteosarcoma. Sunitinib significantly inhibited proliferation, provoked apoptosis and induced G2/M cell cycle arrest in the human osteosarcoma cell lines SaOS-2 and 143B in vitro. Importantly, sunitinib treatment significantly reduced tumour burden, microvessel density and suppressed pulmonary metastasis in a 143B cell-derived intratibial osteosarcoma model in SCID mice. Sunitinib significantly decreased primary tumor tissue proliferation and reduced tumor vasculature. Our study indicates that sunitinib has potential for effective treatment of metastasizing osteosarcoma and provides the framework for future clinical trials with sunitinib alone or in combination with conventional and other novel therapeutics aiming at increased treatment efficacy and improved patient outcome. PMID:26328246

  1. The influence of high iron diet on rat lung manganese absorption

    SciTech Connect

    Thompson, Khristy; Molina, Ramon; Donaghey, Thomas; Brain, Joseph D.; Wessling-Resnick, Marianne . E-mail: wessling@hsph.harvard.edu

    2006-01-15

    Individuals chronically exposed to manganese are at high risk for neurotoxic effects of this metal. A primary route of exposure is through respiration, although little is known about pulmonary uptake of metals or factors that modify this process. High dietary iron levels inversely affect intestinal uptake of manganese, and a major goal of this study was to determine if dietary iron loading could increase lung non-heme iron levels and alter manganese absorption. Rats were fed a high iron (1% carbonyl iron) or control diet for 4 weeks. Lung non-heme iron levels increased {approx}2-fold in rats fed the high iron diet. To determine if iron-loading affected manganese uptake, {sup 54}Mn was administered by intratracheal (it) instillation or intravenous (iv) injection for pharmacokinetic studies. {sup 54}Mn absorption from the lungs to the blood was lower in it-instilled rats fed the 1% carbonyl iron diet. Pharmacokinetics of iv-injected {sup 54}Mn revealed that the isotope was cleared more rapidly from the blood of iron-loaded rats. In situ analysis of divalent metal transporter-1 (DMT1) expression in lung detected mRNA in airway epithelium and bronchus-associated lymphatic tissue (BALT). Staining of the latter was significantly reduced in rats fed the high iron diet. In situ analysis of transferrin receptor (TfR) mRNA showed staining in BALT alone. These data demonstrate that manganese absorption from the lungs to the blood can be modified by iron status and the route of administration.

  2. Effect of dietary vitamin E level on the biochemical response of rat lung to ozone inhalation

    SciTech Connect

    Elsayed, N.M.; Kass, R.; Mustafa, M.G.; Hacker, A.D.; Ospital, J.J.; Chow, C.K.; Cross, C.E.

    1988-01-01

    We examined the effects of dietary vitamin E level on rat lung response to ozone (O3) inhalation. In one study, we fed 1-month-old Sprague-Dawley (SD) rats a test diet containing 0 or 50 IU vitamin E/kg for 2 months, and then exposed one-half of the animals from each dietary group to 0.8 ppm (1,568 micrograms/m3) O3 intermittently (8 hours daily) and the other half to room air for 7 days. After O3 exposure, we found significant increases in marker enzyme activities in rat lungs from both dietary groups relative to corresponding air-exposed controls, but the magnitude of increases was greater for the 0 IU than the 50 IU group. In another study, we fed 1-month-old SD rats a test diet containing 10, 50, or 500 IU vitamin E/kg for 2 months and then exposed one-half of the animals from each dietary group to 0.8 ppm (1,568 micrograms/m3) O3 continuously and the other half to room air for 4 days. The O3 exposure increased the metabolic activities in rat lungs from all three dietary groups relative to corresponding air-exposed controls, but the magnitude of increases was greater for the 10 IU than the 50 IU or 500 IU group, and the difference between the 50 IU and 500 IU groups was small. Because a greater increase in lung metabolism after O3 exposure is thought to be associated with a greater tissue injury, the results suggest that an absence of dietary vitamin E exacerbates lung injury from O3 inhalation, while its presence protects from injury. However, the magnitude of this protective effect does not increase proportionately with increased dietary vitamin E supplementation beyond a certain level.

  3. Melatonin reduces acute lung inflammation, edema, and hemorrhage in heatstroke rats

    PubMed Central

    Wu, Wen-shiann; Chou, Ming-ting; Chao, Chien-ming; Chang, Chen-kuei; Lin, Mao-tsun; Chang, Ching-ping

    2012-01-01

    Aim: To assess the therapeutic effect of melatonin on heat-induced acute lung inflammation and injury in rats. Methods: Heatstroke was induced by exposing anesthetized rats to heat stress (36 °C, 100 min). Rats were treated with vehicle or melatonin (0.2, 1, 5 mg/kg) by intravenous administration 100 min after the initiatioin of heatstroke and were allowed to recover at room temperature (26 °C). The acute lung injury was quantified by morphological examination and by determination of the volume of pleural exudates, the number of polymorphonuclear (PMN) cells, and the myeloperoxidase (MPO) activity. The concentrations of tumor necrosis factor, interleukin (IL)-1β, IL-6, and IL-10 in bronchoalveolar fluid (BALF) were measured by ELISA. Nitric oxide (NO) level was determined by Griess method. The levels of glutamate and lactate-to-pyruvate ratio were analyzed by CMA600 microdialysis analyzer. The concentrations of hydroxyl radicals were measured by a procedure based on the hydroxylation of sodium salicylates leading to the production of 2,3-dihydroxybenzoic acid (DHBA). Results: Melatonin (1 and 5 mg/kg) significantly (i) prolonged the survival time of heartstroke rats (117 and 186 min vs 59 min); (ii) attenuated heatstroke-induced hyperthermia and hypotension; (iii) attenuated acute lung injury, including edema, neutrophil infiltration, and hemorrhage scores; (iv) down-regulated exudate volume, BALF PMN cell number, and MPO activity; (v) decreased the BALF levels of lung inflammation response cytokines like TNF-alpha, interleukin (IL)-1β, and IL-6 but further increased the level of an anti-inflammatory cytokine IL-10; (vi) reduced BALF levels of glutamate, lactate-to-pyruvate ratio, NO, 2,3-DHBA, and lactate dehydrogenase. Conclusion: Melatonin may improve the outcome of heatstroke in rats by attenuating acute lung inflammation and injury. PMID:22609835

  4. Evaluation of quartz crystals in rat lungs by X-ray diffractometry.

    PubMed

    Kam, J K

    1981-10-01

    The NIOSH (National Institute of Occupational Safety and Health)-recommended procedure of determining quartz through X-ray diffractometry was applied to rat lungs. Using a compressed air nebulizer inside a closed chamber, 150 male Sprague-Dawley rats were exposed to monodisperse particles of quartz for varying time intervals. The rats were subsequently sacrifice by cervical dislocation and their lungs were removed for ashing inside a muffle furnace at 600 degrees C for 4 hr. The ashed materials were then filtered onto silver membranes and scanned by an /-ray diffractometer. The results, expressed in MG SiO2 were compared to standard values derived from PVC filters. The values suggested that the NIOSH method could be used by biochemists to quantify minerals and crystalline structures in organic materials. PMID:6270784

  5. Role of the KATP channel in the protective effect of nicorandil on cyclophosphamide-induced lung and testicular toxicity in rats.

    PubMed

    Ahmed, Lamiaa A; El-Maraghy, Shohda A; Rizk, Sherine M

    2015-01-01

    This study is the first to investigate the role of the KATP channel in the possible protection mediated by nicorandil against cyclophosphamide-induced lung and testicular toxicity in rats. Animals received cyclophosphamide (150 mg/kg/day, i.p.) for 2 consecutive days and then were untreated for the following 5 days. Nicorandil (3 mg/kg/day, p.o.) was administered starting from the day of cyclophosphamide injection with or without glibenclamide (5 mg/kg/day, p.o.). Nicorandil administration significantly reduced the cyclophosphamide-induced deterioration of testicular function, as demonstrated by increases in the level of serum testosterone and the activities of the testicular 3β- hydroxysteroid, 17β-hydroxysteroid and sorbitol dehydrogenases. Furthermore, nicorandil significantly alleviated oxidative stress (as determined by lipid peroxides and reduced glutathione levels and total antioxidant capacity), as well as inflammatory markers (tumour necrosis factor-α and interleukin-1β), in bronchoalveolar lavage fluid and testicular tissue. Finally, the therapy decreased the levels of fibrogenic markers (transforming growth factor-β and hydroxyproline) and ameliorated the histological alterations (as assessed by lung fibrosis grading and testicular Johnsen scores). The co-administration of glibenclamide (a KATP channel blocker) blocked the protective effects of nicorandil. In conclusion, KATP channel activation plays an important role in the protective effect of nicorandil against cyclophosphamide-induced lung and testicular toxicity. PMID:26403947

  6. Role of the KATP channel in the protective effect of nicorandil on cyclophosphamide-induced lung and testicular toxicity in rats

    PubMed Central

    Ahmed, Lamiaa A.; EL-Maraghy, Shohda A.; Rizk, Sherine M.

    2015-01-01

    This study is the first to investigate the role of the KATP channel in the possible protection mediated by nicorandil against cyclophosphamide-induced lung and testicular toxicity in rats. Animals received cyclophosphamide (150 mg/kg/day, i.p.) for 2 consecutive days and then were untreated for the following 5 days. Nicorandil (3 mg/kg/day, p.o.) was administered starting from the day of cyclophosphamide injection with or without glibenclamide (5 mg/kg/day, p.o.). Nicorandil administration significantly reduced the cyclophosphamide-induced deterioration of testicular function, as demonstrated by increases in the level of serum testosterone and the activities of the testicular 3β- hydroxysteroid, 17β-hydroxysteroid and sorbitol dehydrogenases. Furthermore, nicorandil significantly alleviated oxidative stress (as determined by lipid peroxides and reduced glutathione levels and total antioxidant capacity), as well as inflammatory markers (tumour necrosis factor-α and interleukin-1β), in bronchoalveolar lavage fluid and testicular tissue. Finally, the therapy decreased the levels of fibrogenic markers (transforming growth factor-β and hydroxyproline) and ameliorated the histological alterations (as assessed by lung fibrosis grading and testicular Johnsen scores). The co-administration of glibenclamide (a KATP channel blocker) blocked the protective effects of nicorandil. In conclusion, KATP channel activation plays an important role in the protective effect of nicorandil against cyclophosphamide-induced lung and testicular toxicity. PMID:26403947

  7. Attenuated mRNA expression of inflammatory mediators in neonatal rat lung following lipopolysaccharide treatment

    PubMed Central

    Le Rouzic, Valerie; Wiedinger, Kari; Zhou, Heping

    2012-01-01

    Neonates are known to exhibit increased susceptibility to bacterial and viral infections and increasing evidence demonstrates that the increased susceptibility is related to their attenuated immune response to infections. The lung is equipped with an innate defense system involving both cellular and humoral mediators. The present study was performed to characterize the expression of inflammatory mediators in the lung of neonatal rats in comparison with older animals. Rats at postnatal day 1 (P1), P21, and P70 were treated with saline or 0.25 mg/kg lipopolysaccharide (LPS) via intraperitoneal injection. Two hours later, animals were sacrificed and the transcriptional response of key inflammatory mediators and enzyme activity of myeloperoxidase (MPO) in the lung of these animals were examined. LPS-induced messenger RNA (mRNA) expression of pro-inflammatory cytokines, namely interleukin (IL)-1β, IL-6, and tumor necrosis factor-α, antiinflammatory cytokines, namely IL-10 and IL-1 receptor antagonist (IL-1ra), and chemokines, namely macrophage inflammatory protein (MIP)-1β, MIP-2, and monocyte chemotactic protein-1, in P1 lung was much reduced compared to that in P21 and P70 animals at 2 hours postinjection. These data suggest that LPS-induced transcriptional response of cytokines and chemokines was much reduced in P1 lung even though the protein levels of these genes were not ascertained and mRNA levels of these genes may not reflect their final protein levels. MPO activity in LPS-treated P1 lung was also significantly attenuated compared to that in LPS-treated P70 lung, suggesting impaired neutrophil infiltration in P1 lung at 2 hours following LPS treatment. In parallel, the baseline mRNA expression of LPS-binding protein (LBP) in P1 lung was much lower than that in P21 and P70 lungs. While the protein level of LBP was not examined and the mRNA level of LBP may not reflect its final protein level, the reduced transcriptional response of cytokines and chemokines in

  8. A new experimental model of acid- and endotoxin-induced acute lung injury in rats.

    PubMed

    Puig, F; Herrero, R; Guillamat-Prats, R; Gómez, M N; Tijero, J; Chimenti, L; Stelmakh, O; Blanch, L; Serrano-Mollar, A; Matthay, M A; Artigas, A

    2016-08-01

    The majority of the animal models of acute lung injury (ALI) are focused on the acute phase. This limits the studies of the mechanisms involved in later phases and the effects of long-term treatments. Thus the goal of this study was to develop an experimental ALI model of aspiration pneumonia, in which diffuse alveolar damage continues for 72 h. Rats were intratracheally instilled with one dose of HCl (0.1 mol/l) followed by another instillation of one dose of LPS (0, 10, 20, 30, or 40 μg/g body weight) 2 h later, which models aspiration of gastric contents that progresses to secondary lung injury from bacteria or bacterial products. The rats were euthanized at 24, 48, and 72 h after the last instillation. The results showed that HCl and LPS at all doses caused activation of inflammatory responses, increased protein permeability and apoptosis, and induced mild hypoxemia in rat lungs at 24 h postinstillation. However, this lung damage was present at 72 h only in rats receiving HCl and LPS at the doses of 30 and 40 μg/g body wt. Mortality (∼50%) occurred in the first 48 h and only in the rats treated with HCl and LPS at the highest dose (40 μg/g body wt). In conclusion, intratracheal instillation of HCl followed by LPS at the dose of 30 μg/g body wt results in severe diffuse alveolar damage that continues at least 72 h. This rat model of aspiration pneumonia-induced ALI will be useful for testing long-term effects of new therapeutic strategies in ALI. PMID:27317688

  9. Decreased Expression of Met During Differentiation in Rat Lung

    PubMed Central

    Kato, T.; Oka, K.; Nakamura, T.; Ito, A.

    2016-01-01

    Organ-specific stem cells play key roles in maintaining the epithelial cell layers of lung. Bronchioalveolar stem cells (BASCs) are distal lung epithelial stem cells of adult mice. Alveolar type 2 (AT2) cells have important functions and serve as progenitor cells of alveolar type 1 (AT1) cells to repair the epithelium when they are injured. Hepatocyte growth factor (HGF) elicits mitogenic, morphogenic, and anti-apoptotic effects on lung epithelial cells through tyrosine phosphorylation of Met receptor, and thus is recognized as a pulmotrophic factor. To understand which cells HGF targets in lung, we identified the cells expressing Met by immunofluorescence assay. Met was strongly expressed in BASCs, which expressed an AT2 cell marker, pro-SP-C, and a club cell marker, CCSP. In alveoli, we found higher expression of Met in primary AT2 than in AT1 cells, which was confirmed using primary AT2 cells. We further examined the mitogenic activity of HGF in AT2-cell-derived alveolar-like cysts (ALCs) in 3D culture. Multicellular ALCs expressed Met, and HGF enhanced the ALC production. Taking these findings together, BASCs could also be an important target for HGF, and HGF-Met signaling could function more potent on cells that have greater multipotency in adult lung. PMID:26972715

  10. Lipogenesis in liver, lung and adipose tissue of rats fed with oleoylanilide.

    PubMed Central

    Casals, C; Garcia-Barreno, P; Municio, A M

    1983-01-01

    Oleoylanilide was administered orally to groups of rats according to different patterns. Subcellular fractionation of liver, lung and adipose tissue was then carried out in order to study the main enzyme activities involved in the lipogenesis. The observed findings indicate that adipose tissue and lung are the main target organs for the anilide, adipose tissue being involved in a general decrease of the enzyme activities, whereas transacylation reaction exhibits the most marked depletion of all the enzyme activities in the lung. The enzyme activities in liver were not markedly affected by this oral administration, although some data support the existence of a latent liver toxicity. These data suggest that oleoylanilide has the capacity to alter lipid metabolism of lung and adipose tissue to a considerable extent, whereas no major effect was produced in the liver. This different organ response could be related to the lymphatic gland via absorption of the substance. PMID:6882376

  11. Phosphodiesterase-5 inhibition by sildenafil citrate in a rat model of bleomycin-induced lung fibrosis.

    PubMed

    Yildirim, Alper; Ersoy, Yasemin; Ercan, Feriha; Atukeren, Pinar; Gumustas, Koray; Uslu, Unal; Alican, Inci

    2010-06-01

    Sildenafil, a selective and potent inhibitor of cyclic guanosine monophosphate (cGMP)-specific phosphodiesterase (PDE)5, has a relaxant effect on the smooth muscle cells of the arterioles supplying the human corpus cavernosum acting via nitric oxide (NO)-dependent mechanism. This study aimed to investigate the possible protective effect of sildenafil citrate on the extent of tissue integrity, oxidant-antioxidant status and neutrophil infiltration to the inflamed organ in a rat model of bleomycin-induced lung fibrosis. Lung fibrosis was induced by intratracheal administration of 0.1 ml of bleomycin hydrochloride (5 mg/kg in 0.9% NaCl) under anesthesia to Sprague-Dawley rats (200-250 g; n = 7-8 per group). Control rats received an equal volume of saline intratracheally. In the treatment groups, the rats were treated with either sildenafil citrate (10 mg/kg per day; subcutaneously) or saline for 14 days. Another group of rats were administered subcutaneously with N(G)-nitro-l-arginine methyl ester (l-NAME; 20 mg/kg in 0.9% NaCl) 5 min after sildenafil injections. After decapitation, the lungs were excised and taken for microscopic evaluation or stored for the measurement of malondialdehyde (MDA) and glutathione (GSH) levels, and myeloperoxidase (MPO) activity, and for the assessment of apoptosis. Trunk blood was collected for the assessment of serum tumor necrosis factor (TNF)-alpha and interleukin (IL)-1beta levels. In the group with lung fibrosis, the lung tissue was characterized by microscopic lesions, increased lipid peroxidation with a concomitant reduction in GSH content, increased MPO activity and apoptosis. Serum TNF-alpha and IL-1beta levels were higher in the lung fibrosis group compared to control values. Sildenafil reversed tissue MDA levels, MPO activity and serum pro-inflammatory cytokine levels, and preserved GSH content although its effect on the extent of tissue lesion and apoptosis was not statistically significant. Treatment with l-NAME reversed

  12. Strong correlation between lung ultrasound and chest computerized tomography imaging for the detection of acute lung injury/acute respiratory distress syndrome in rats

    PubMed Central

    Ma, Huan; Huang, Daozheng; Guo, Liheng; Chen, Quanfu; Zhong, Wenzhao

    2016-01-01

    Background Lung ultrasound (LUS) is a clinical imaging technique for diagnosing acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In humans and several large animals, LUS demonstrates similar specificity and sensitivity to computerized tomography (CT) scanning. Current study evaluated the degree of agreement between LUS and CT imaging in characterizing ALI/ARDS in rats. Methods Thirty male Sprague-Dawley rats were imaged by LUS before randomization into three groups to receive intratracheal saline, 3 or 6 mg/kg LPS respectively (n=10). LUS and CT imaging was conducted 2 hours after instillation. Cross table analyses and kappa statistics were used to determine agreement levels between LUS and CT assessments of lung condition. Results Before instillation, rats presented with a largely A-pattern in LUS images, however, a significantly increase B-lines were observed in all groups after instillation and showed dose response to LPS or to saline. One rat treated with 6 mg/kg lipopolysaccharide (LPS) presented with lung consolidation. The agreement between the LUS and the CT in detecting the main characteristics of ALI/ARDS in rat was strong (r=0.758, P<0.01, k=0.737). Conclusions In conclusion, LUS detects ALI/ARDS with high agreement with micro PET/CT scanning in a rat model, suggesting that LUS represents a positive refinement in rat ALI/ARDS disease models. PMID:27499930

  13. Positive End-Expiratory Pressure and Variable Ventilation in Lung-Healthy Rats under General Anesthesia

    PubMed Central

    Camilo, Luciana M.; Ávila, Mariana B.; Cruz, Luis Felipe S.; Ribeiro, Gabriel C. M.; Spieth, Peter M.; Reske, Andreas A.; Amato, Marcelo; Giannella-Neto, Antonio; Zin, Walter A.; Carvalho, Alysson R.

    2014-01-01

    Objectives Variable ventilation (VV) seems to improve respiratory function in acute lung injury and may be combined with positive end-expiratory pressure (PEEP) in order to protect the lungs even in healthy subjects. We hypothesized that VV in combination with moderate levels of PEEP reduce the deterioration of pulmonary function related to general anesthesia. Hence, we aimed at evaluating the alveolar stability and lung protection of the combination of VV at different PEEP levels. Design Randomized experimental study. Setting Animal research facility. Subjects Forty-nine male Wistar rats (200–270 g). Interventions Animals were ventilated during 2 hours with protective low tidal volume (VT) in volume control ventilation (VCV) or VV and PEEP adjusted at the level of minimum respiratory system elastance (Ers), obtained during a decremental PEEP trial subsequent to a recruitment maneuver, and 2 cmH2O above or below of this level. Measurements and Main Results Ers, gas exchange and hemodynamic variables were measured. Cytokines were determined in lung homogenate and plasma samples and left lung was used for histologic analysis and diffuse alveolar damage scoring. A progressive time-dependent increase in Ers was observed independent on ventilatory mode or PEEP level. Despite of that, the rate of increase of Ers and lung tissue IL-1 beta concentration were significantly lower in VV than in VCV at the level of the PEEP of minimum Ers. A significant increase in lung tissue cytokines (IL-6, IL-1 beta, CINC-1 and TNF-alpha) as well as a ventral to dorsal and cranial to caudal reduction in aeration was observed in all ventilated rats with no significant differences among groups. Conclusions VV combined with PEEP adjusted at the level of the PEEP of minimal Ers seemed to better prevent anesthesia-induced atelectasis and might improve lung protection throughout general anesthesia. PMID:25383882

  14. The relevance of the rat lung response to particle overload for human risk assessment: a workshop consensus report.

    PubMed

    2000-01-01

    On 23-24 March 1998, the International Life Sciences Institute (ILSI) Risk Science Institute convened a workshop entitled "Relevance of the Rat Lung Response to Particle Overload for Human Risk Assessment." The workshop addressed the numerous study reports of lung tumors in rats resulting from chronic inhalation exposures to poorly soluble, nonfibrous particles of low acute toxicity and not directly genotoxic. These poorly soluble particles, indicated by the acronym PSPs (e.g., carbon black, coal dust, diesel soot, nonasbestiform talc, and titanium dioxide), elicit tumors in rats when deposition overwhelms the clearance mechanisms of the lung resulting in a condition referred to as "overload." These PSPs have been shown not to induce tumors in mice and hamsters, and the available data in humans are consistently negative. The objectives were twofold: (1) to provide guidance for risk assessment on the interpretation of neoplastic and nonneoplastic responses of the rat lung to PSPs; and (2) to identify important data gaps in our understanding of the lung responses of rats and other species to PSPs. Utilizing the five critical reviews of relevant literature that follow herein and the combined expertise and experience of the 30 workshop participants, a number of questions were addressed. The consensus views of the workshop participants are presented in this report. Because it is still not known with certainty whether high lung burdens of PSPs can lead to lung cancer in humans via mechanisms similar to those of the rat, in the absence of mechanistic data to the contrary it must be assumed that the rat model can identify potential carcinogenic hazards to humans. Since the apparent responsiveness of the rat model at overload is dependent on coexistent chronic active inflammation and cell proliferation, at lower lung doses where chronic active inflammation and cell proliferation are not present, no lung cancer hazard is anticipated. PMID:10715616

  15. Role of focal adhesion kinase in lung remodeling of endotoxemic rats.

    PubMed

    Petroni, Ricardo Costa; Teodoro, Walcy R; Guido, Maria Carolina; Barbeiro, Hermes Vieira; Abatepaulo, Fátima; Theobaldo, Mariana Cardillo; Biselli, Paolo Cesare; Soriano, Francisco Garcia

    2012-05-01

    Despite significant advances in the care of critically ill patients, acute lung injury continues to be a complex problem with high mortality. The present study was designed to characterize early lipopolysaccharide (LPS)-induced pulmonary injury and small interfering RNA targeting focal adhesion kinase (FAK) as a possible therapeutic tool in the septic lung remodeling process. Male Wistar rats were assigned into endotoxemic group and control group. Total collagen deposition was performed 8, 16, and 24 h after LPS injection. Focal adhesion kinase expression, interstitial and vascular collagen deposition, and pulmonary mechanics were analyzed at 24 h. Intravenous injection of small interfering RNA targeting FAK was used to silence expression of the kinase in pulmonary tissue. Focal adhesion kinase, total collagen deposition, and pulmonary mechanics showed increased in LPS group. Types I, III, and V collagen showed increase in pulmonary parenchyma, but only type V increased in vessels 24 h after LPS injection. Focal adhesion kinase silencing prevented lung remodeling in pulmonary parenchyma at 24 h. In conclusion, LPS induced a precocious and important lung remodeling. There was fibrotic response in the lung characterized by increased amount in total and specific-type collagen. These data may explain the frequent clinical presentation during sepsis of reduced lung compliance, oxygen diffusion, and pulmonary hypertension. The fact that FAK silencing was protective against lung collagen deposition underscores the therapeutic potential of FAK targeting by small interfering RNA. PMID:22293597

  16. Mutagenesis by asbestos in the lung of lambda-lacI transgenic rats.

    PubMed

    Topinka, J; Loli, P; Georgiadis, P; Dusinská, M; Hurbánková, M; Kováciková, Z; Volkovová, K; Kazimírová, A; Barancoková, M; Tatrai, E; Oesterle, D; Wolff, T; Kyrtopoulos, S A

    2004-09-01

    In order to get more insight into the mechanism of asbestos-related lung cancer, the mutagenic potential of asbestos was examined in vivo in rat lung. Groups of five transgenic lambda-lacI (Big Blue) rats were intratracheally instilled with single doses of 1 or 2mg, or with four weekly doses of 2mg, per animal of the amosite asbestos. Sixteen weeks after instillation, the mutation frequency was found to be increased in lung DNA by 2-fold at doses of 2 mg (P = 0.035) and of 4 x 2 mg (P = 0.007) amosite. No significant changes were observed after 4 weeks of exposure. In separate experiments, wild-type F344 rats were treated by the same regimen as described above and markers of inflammation, genotoxicity, cell proliferation and lung tissue damage were analysed. Our results indicate a weak but persistent inflammation and cell proliferation which possibly plays a major role in the observed mutagenic effect. PMID:15288534

  17. Establishment of a Rat Adjuvant Arthritis-Interstitial Lung Disease Model

    PubMed Central

    Song, Liu-nan; Kong, Xiao-dan; Wang, Hong-jiang; Zhan, Li-bin

    2016-01-01

    Introduction. Development of an animal model of rheumatoid arthritis-interstitial lung disease (RA-ILD) and improved knowledge of the pathogenesis of RA-ILD may facilitate earlier diagnosis and the development of more effective targeted therapies. Methods. Adult male Wistar rats were studied in an adjuvant arthritis (AA) model induced by the injection of Freund's complete adjuvant (FCA). Rats were sacrificed on days 7, 14, 21, and 28 after FCA injection. Lung tissue was obtained for histopathological examination and evaluation of Caveolin-1 (Cav-1) and transforming growth factor-β (TGF-β1) protein expression levels. Results. Pulmonary inflammation was evident in lung tissue from day 21 after FCA injection. Inflammation and mild fibrosis were observed in lung tissue on day 28 after FCA injection. Cav-1 protein expression was significantly decreased from day 7 through day 28 and TGF-β1 protein expression was significantly increased on day 28 after FCA injection compared to control (P < 0.05). Conclusion. We established an AA rat model that exhibited the extra-articular complication of RA-ILD. We identified Cav-1 and TGF-β1 as protein biomarkers of RA-ILD in this model and propose their signaling pathway as a possible target for therapeutic intervention. PMID:26881215

  18. Effect of a single injection of high-dose FK506 on lung transplantation in rats.

    PubMed

    Sano, Y; Maruyama, S; Aoe, M; Date, H; Shimizu, N

    1996-01-01

    Orthotopic left lung grafts from Brown Norway (BN) donors were transplanted to Lewis (LEW) rat recipients which had been treated with a single dose of FK506 10mg/kg body weight intramuscularly on postoperative day 3. Although the lungs were rejected with a median survival time of 7 days, with a range of 6-8 days in the untreated controls, maximum survival was prolonged to 60 days. The major adverse effects of this therapy were reduction of feeding, loss of body weight, and diarrhea. One of the 7 rats died on the 21st postoperative day due to anorexia. The effects of this therapy were investigated by histopathological examination and flow cytometric analysis using monoclonal antibodies against rat lymphocytes: OX-39 (anti-interleukin 2 receptor (IL-2R)) and OX-6 (anti-class II MHC). Histopathologically, the lung allografts showed mild perivascular and peribronchiolar cuffs of mononuclear cells, while marked reduction of the thymic medulla with FK506 treatment was also observed. Flow cytometric analysis of the transplanted lung showed no significant changes. Regarding the thymus, the percentages of positive cells labeled with OX-39 and OX-6 were significantly suppressed after this treatment. In the spleen, the number of OX-6-positive cells significantly decreased. The results using this therapy thus suggest that the suppression of IL-2R and MHC class II expression was systemically maintained for a long time. PMID:9017963

  19. Novel Flurometric Tool to Assess Mitochondrial Redox State of Isolated Perfused Rat Lungs after Exposure to Hyperoxia.

    PubMed

    Sepehr, R; Audi, S H; Staniszewski, K S; Haworth, S T; Jacobs, E R; Ranji, M

    2013-10-16

    Recently we demonstrated the utility of optical fluorometry to detect a change in the redox status of mitochondrial autofluorescent coenzymes NADH (Nicotinamide Adenine Dinucleotide) and FAD (oxidized form of Flavin Adenine Dinucleotide (FADH2,)) as a measure of mitochondrial function in isolated perfused rat lungs (IPL). The objective of this study was to utilize optical fluorometry to evaluate the effect of rat exposure to hyperoxia (>95% O2 for 48 hours) on lung tissue mitochondrial redox status of NADH and FAD in a nondestructive manner in IPL. Surface NADH and FAD signals were measured before and after lung perfusion with perfusate containing rotenone (ROT, complex I inhibitor), potassium cyanide (KCN, complex IV inhibitor), and/or pentachlorophenol (PCP, uncoupler). ROT- or KCN-induced increase in NADH signal is considered a measure of complex I activity, and KCN-induced decrease in FAD signal is considered a measure of complex II activity. The results show that hyperoxia decreased complex I and II activities by 63% and 55%, respectively, as compared to lungs of rats exposed to room air (normoxic rats). Mitochondrial complex I and II activities in lung homogenates were also lower (77% and 63%, respectively) for hyperoxic than for normoxic lungs. These results suggest that the mitochondrial matrix is more reduced in hyperoxic lungs than in normoxic lungs, and demonstrate the ability of optical fluorometry to detect a change in mitochondrial redox state of hyperoxic lungs prior to histological changes characteristic of hyperoxia. PMID:25379360

  20. Imbalance of Th17/Tregs in rats with smoke inhalation-induced acute lung injury.

    PubMed

    Zhang, Fan; Li, Mian-yang; Lan, Ya-ting; Wang, Cheng-bin

    2016-01-01

    T helper (Th) 17 cells and CD4(+) CD25(+) regulatory T (Treg) cells are supposed to be critically involved in regulating autoimmune and inflammatory diseases. The aim of this study was to investigate the Th17/Treg pattern in rats with gunpowder smog-induced acute lung injury. Wistar rats were equally randomized to three groups: normal control group, ALI 6 h group (smoke inhalation for 6 h) and ALI 24 h group (smoke inhalation for 24 h). We observed changes in cell counting in bronchoalveolar lavage fluid (BALF), alveolar-capillary membrane permeability and lung tissue pathology. Moreover, rats in ALI 6 h and ALI 24 h group showed increased expression of Th17 cell and related cytokines (IL-17 A, IL-6, TGF-β and IL-23). Meanwhile, Treg prevalence and related cytokines (IL-10, IL-2 and IL-35) were decreased. Consequently, the ratio of Th17/Treg was higher after smoke inhalation. Additionally, Th1 cell decreased while Th2 cell increased at 6 h and 24 h after smoke inhalation. In conclusion, Th17/Treg imbalance exists in rats with smoke inhalation-induced acute lung injury, suggesting its potential role in the pathogenesis of this disease. PMID:26884314

  1. Imbalance of Th17/Tregs in rats with smoke inhalation-induced acute lung injury

    PubMed Central

    Zhang, Fan; Li, Mian-yang; Lan, Ya-ting; Wang, Cheng-bin

    2016-01-01

    T helper (Th) 17 cells and CD4+ CD25+ regulatory T (Treg) cells are supposed to be critically involved in regulating autoimmune and inflammatory diseases. The aim of this study was to investigate the Th17/Treg pattern in rats with gunpowder smog-induced acute lung injury. Wistar rats were equally randomized to three groups: normal control group, ALI 6 h group (smoke inhalation for 6 h) and ALI 24 h group (smoke inhalation for 24 h). We observed changes in cell counting in bronchoalveolar lavage fluid (BALF), alveolar-capillary membrane permeability and lung tissue pathology. Moreover, rats in ALI 6 h and ALI 24 h group showed increased expression of Th17 cell and related cytokines (IL-17 A, IL-6, TGF-β and IL-23). Meanwhile, Treg prevalence and related cytokines (IL-10, IL-2 and IL-35) were decreased. Consequently, the ratio of Th17/Treg was higher after smoke inhalation. Additionally, Th1 cell decreased while Th2 cell increased at 6 h and 24 h after smoke inhalation. In conclusion, Th17/Treg imbalance exists in rats with smoke inhalation-induced acute lung injury, suggesting its potential role in the pathogenesis of this disease. PMID:26884314

  2. AIRWAY CELL AND NUCLEAR DEPTH DISTRIBUTION IN HUMAN RAT LUNGS

    EPA Science Inventory

    To predict the critical cells that are subject to injury from inhaled radon and other alpha particle sources it is necessary to calculate the dose absorbed by the different cells in the lungs. n order to provide information necessary to make these dose determinations, the airway ...

  3. Cigarette smoke ventilation decreases prostaglandin inactivation in rat and hamster lungs

    SciTech Connect

    Maennistoe, J.; Uotila, P.

    1982-06-01

    The effects of cigarette smoke on the metabolism of exogenous PGE2 and PGF2 alpha were investigated in isolated rat and hamster lungs. When isolated lungs from animals were ventilated with cigarette smoke during pulmonary infusion of 100 nmol of PGE2 or PGF2 alpha, the amounts of the 15-keto-metabolites in the perfusion effluent were decreased. Pre-exposure of animals to cigarette smoke daily for 3 weeks did not change the metabolism of PGE2 when the lungs were ventilated with air. Cigarette smoke ventilation of lungs from pre-exposed animals caused, however, a similar decrease in the metabolism of PGE2 as in animals not previously exposed to smoke. After pulmonary injection of 10 nmol of /sup 14/C-PGE2 the radioactivity appeared more rapidly in the effluent during cigarette smoke ventilation suggesting inhibition of the PGE2 uptake mechanism. In rat lungs pulmonary vascular pressor responses to PGE2 and PGF2 alpha were inhibited by smoke ventilation.

  4. Comparative investigations of the biodurability of mineral fibers in the rat lung.

    PubMed Central

    Muhle, H; Bellmann, B; Pott, F

    1994-01-01

    The biodurability of various glass fibers, rockwool, and ceramic fibers was examined in rat lungs and compared with natural mineral fibers. Experiments were based on studies that have shown that the biodurability of fibers is one of the essential factors of the carcinogenic potency of these materials. Sized fractions of fibers were instilled intratracheally into Wistar rats. The evenness of distribution of fibers in the lung was checked by scanning electron microscopy (SEM) or careful examination of the fiber suspension before treatment. After serial sacrifices up to 24 months after treatment, the fibers were analyzed by SEM following low temperature ashing of the lungs. Parameters measured included number of fibers, diameter, and length distribution at the various sacrifice dates, so that analyses could be made of the elimination kinetics of fibers from the lung in relation to fiber length (FL). Size selective plots of the fiber elimination correlated with fiber diameters enables the mechanism of the fiber elimination (dissolution, fiber breakage, physical clearance) to be interpreted. The half-time of fiber elimination from the lung ranges from about 10 days for wollastonite to more than 300 days for crocidolite. The biodurability of man-made vitreous fibers (MMVF) is between these values and is dependent on the chemical composition of the fibers and the diameter and length distribution. Results indicate that the in vivo durability of glass fibers is considerably longer than expected from extrapolation of published data on their in vitro dissolution rates. PMID:7882923

  5. 3D MRI of non-Gaussian 3He gas diffusion in the rat lung

    NASA Astrophysics Data System (ADS)

    Jacob, Richard E.; Laicher, Gernot; Minard, Kevin R.

    2007-10-01

    In 3He magnetic resonance images of pulmonary air spaces, the confining architecture of the parenchymal tissue results in a non-Gaussian distribution of signal phase that non-exponentially attenuates image intensity as diffusion weighting is increased. Here, two approaches previously used for the analysis of non-Gaussian effects in the lung are compared and related using diffusion-weighted 3He MR images of mechanically ventilated rats. One approach is model-based and was presented by Yablonskiy et al., while the other approach utilizes the second order decay contribution that is predicted from the cumulant expansion theorem. Total lung coverage is achieved using a hybrid 3D pulse sequence that combines conventional phase encoding with sparse radial sampling for efficient gas usage. This enables the acquisition of nine 3D images using a total of only ˜1 L of hyperpolarized 3He gas. Diffusion weighting ranges from 0 s/cm 2 to 40 s/cm 2. Results show that the non-Gaussian effects of 3He gas diffusion in healthy rat lungs are directly attributed to the anisotropic geometry of lung microstructure as predicted by the Yablonskiy model, and that quantitative analysis over the entire lung can be reliably repeated in time-course studies of the same animal.

  6. Distribution of aerosolized particles in healthy and emphysematous rat lungs: comparison between experimental and numerical studies.

    PubMed

    Oakes, Jessica M; Marsden, Alison L; Grandmont, Céline; Darquenne, Chantal; Vignon-Clementel, Irene E

    2015-04-13

    In silico models of airflow and particle deposition in the lungs are increasingly used to determine the therapeutic or toxic effects of inhaled aerosols. While computational methods have advanced significantly, relatively few studies have directly compared model predictions to experimental data. Furthermore, few prior studies have examined the influence of emphysema on particle deposition. In this work we performed airflow and particle simulations to compare numerical predictions to data from our previous aerosol exposure experiments. Employing an image-based 3D rat airway geometry, we first compared steady flow simulations to coupled 3D-0D unsteady simulations in the healthy rat lung. Then, in 3D-0D simulations, the influence of emphysema was investigated by matching disease location to the experimental study. In both the healthy unsteady and steady simulations, good agreement was found between numerical predictions of aerosol delivery and experimental deposition data. However, deposition patterns in the 3D geometry differed between the unsteady and steady cases. On the contrary, satisfactory agreement was not found between the numerical predictions and experimental data for the emphysematous lungs. This indicates that the deposition rate downstream of the 3D geometry is likely proportional to airflow delivery in the healthy lungs, but not in the emphysematous lungs. Including small airway collapse, variations in downstream airway size and tissue properties, and tracking particles throughout expiration may result in a more favorable agreement in future studies. PMID:25682537

  7. Inhaled tobacco sterols: uptake by the lungs and disposition to selected organs of rats

    SciTech Connect

    Holden, W.E.; Maier, J.M.; Liebler, J.M.; Malinow, M.R.

    1988-08-01

    Tobacco sterols (cholesterol, beta-sitosterol, campesterol, and stigmasterol) are present in tobacco smoke and appear in plasma of mammals exposed to cigarette smoke. Because tobacco sterols may be important in the pathogenesis of smoking-induced lung and vascular diseases, we studied the pattern of deposition of cigarette sterols in the lungs and appearance of cigarette sterols in plasma and body organs of rats. After exposure to twenty 5 ml puffs of smoke from tobacco labeled with (4-/sup 14/C)cholesterol or beta-(4-/sup 14/C)sitosterol, rats were killed just after exposure (day 0) and on days 2, 5, 8, 11, 15, and 30, and the lungs and selected body organs analyzed for activity. We found that cigarette sterols are associated with particulates in cigarette smoke, deposited mostly in distal airspaces and parenchyma of the lungs, and appear in plasma and several body organs for more than 30 days after this single exposure to cigarette smoke. Bronchoalveolar lavage fluid contained relatively small amounts of radiolabel for only the first few days, suggesting that most of the sterols were rapidly incorporated in lung parenchyma. Because disorders of sterol metabolism have been implicated in a variety of diseases including atherosclerosis and cancer, the significance of tobacco sterols to human smoking-induced diseases deserves further study.

  8. Barrier effects of hyperosmolar signaling in microvascular endothelium of rat lung.

    PubMed

    Ragette, R; Fu, C; Bhattacharya, J

    1997-08-01

    We determined the effects of hyperosmolarity on lung microvascular barrier properties by means of the split-drop technique in single venular capillaries of the isolated, blood-perfused rat lung. Using isosmolar and hyperosmolar test solutions (colloid osmotic pressure = 21 cm H2O), we quantified transcapillary flux at a fixed absorptive capillary pressure, and the capillary hydraulic conductivity (Lp). Loss of barrier function was indicated in flux reversal from isosmolar absorption to hyperosmolar filtration (P < 0. 01), and by hyperosmolarity-induced Lp increase (P < 0.01). Barrier recovery after a 1-min hyperosmolar exposure was delayed > 25 min. The flux reversal was blocked by the tyrosine kinase inhibitors genistein and MDC (P < 0.01). Genistein also inhibited the Lp increase (P < 0.01). Immunoblots of hyperosmolarity-exposed, cultured rat lung microvascular endothelial cells (RLMEC) and of endothelial cells freshly harvested from lungs given hyperosmolar infusions indicated a genistein-inhibitable enhancement of protein tyrosine phosphorylation. Immunoprecipitation studies indicated tyrosine phosphorylation of the mitogen activated protein kinases (MAPK) ERK1 and ERK2 and the adaptor protein Shc in lysates of RLMEC exposed to hyperosmolar conditions. We conclude that in lung venular capillaries hyperosmolarity deteriorates barrier properties, possibly by inducing tyrosine phosphorylation of endothelial proteins. PMID:9239417

  9. Lung clearance of neutron-activated Mount St. Helens volcanic ash in the rat.

    PubMed

    Wehner, A P; Wilerson, C L; Stevens, D L

    1984-10-01

    To determine pulmonary deposition and clearance of inhaled volcanic ash, rats received a single 60-min, nose-only exposure to neutron-activated ash. Over a period of 128 days after exposure, the rats were sacrificed in groups of five animals. Lungs were analyzed for the radionuclide tracers 46Sc, 59Fe, and 60Co by gamma-ray spectrometry. The alveolar ash burdens, determined by the radionuclides 46Sc and 59Fe, are in good agreement for the majority of samples analyzed, indicating ash particulate levels in the lungs, rather than leached radionuclides. The ash deposition estimates based on 60Co were appreciably lower for the lungs, indicating that 60Co leached from the ash. Approximately 110 micrograms ash, or 6% of the inhaled ash, was initially retained in the deep lung. The biological half-time of the alveolar ash burden was 39 days. After 90 days, the mean lung burden had decreased to about 20% of its initial value; 128 days after exposure, about 10% remained. PMID:6489290

  10. The impact of sodium aescinate on acute lung injury induced by oleic acid in rats.

    PubMed

    Wei, Tian; Tong, Wang; Wen-ping, Sun; Xiao-hui, Deng; Qiang, Xue; Tian-shui, Li; Zhi-fang, Chen; Hong-fang, Jin; Li, Ni; Bin, Zhao; Jun-bao, Du; Bao-ming, Ge

    2011-12-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are associated with high rates of morbidity and mortality. Currently, several surfactant or anti-inflammatory drugs are under test as treatments for ALI. Sodium aescinate (SA) has been shown to exert anti-inflammatory and antiedematous effects. In the present work, the authors explored the effects of SA and the possible mechanisms of SA action in rats with ALI induced by oleic acid (OA) administration. Eight groups of rats received infusions of normal saline (NS) or OA. Rats exposed to OA were pretreated with 1 mg/kg of SA, or posttreated with SA at low (1 mg/kg), medium (2 mg/kg), or high (6 mg/kg) dose; a positive-control group received methylprednisolone. The pressure of oxygen in arterial blood (P(O(2))) levels, the pulmonary wet/dry weight (W/D) ratios, and indices of quantitative assessment (IQA) of histological lung injury were obtained 2 or 6 hours after OA injection (0.1 mL/kg, intravenously). The levels of superoxide dismutase (SOD), malondialdehyde (MDA), matrix metalloproteinase gelatinase B (MMP-9), and tissue inhibitor of metalloproteinase (TIMP-1) in both plasma and lung tissue were also determined. Both pre- and posttreatment with SA improved OA-induced pulmonary injury, increased P(O(2)) and SOD values, lowered IQA scores, and decreased the lung W/D ratio and MDA and MMP-9 levels in plasma and lung tissue. SA appeared to abrogate OA-induced ALI by modulating the levels of SOD, MDA, and MMP-9 in plasma and lung tissue. PMID:22087513

  11. Dexmedetomidine protects from post-myocardial ischaemia reperfusion lung damage in diabetic rats

    PubMed Central

    Kip, Gülay; Çelik, Ali; Bilge, Mustafa; Alkan, Metin; Kiraz, Hasan Ali; Özer, Abdullah; Şıvgın, Volkan; Erdem, Özlem; Arslan, Mustafa; Kavutçu, Mustafa

    2015-01-01

    Objective Diabetic complications and lipid peroxidation are known to have a close association. Lipid peroxidation commonly occurs at sites exposed to ischaemia, but distant organs and tissues also get damaged during ischaemia/reperfusion (I/R). Some of these targets are vital organs, such as the lung, liver, and kidney; the lung is the most frequently affected. The aim of our study was to investigate the effects of dexmedetomidine on I/R damage in lung tissue and on the oxidant/anti-oxidant system in diabetic rats. Material and methods Diabetes was induced with streptozotocin (55 mg/kg) in 18 Wistar Albino rats, which were then randomly divided into three groups (diabetes control (DC), diabetes plus ischaemia-reperfusion (DIR), and diabetes plus dexmedetomidine-ischaemia/reperfusion (DIRD)) after the effects of diabetes were clearly evident. The rats underwent a left thoracotomy and then ischaemia was produced in the myocardium muscle by a left anterior descending artery ligation for 30 min in the DIR and DIRD groups. I/R was performed for 120 min. The DIRD group received a single intraperitoneal dose of dexmedetomidine (100 µg/kg); the DIR group received no dexmedetomidine. Group DC was evaluated as the diabetic control group and also included six rats (C group) in which diabetes was not induced. These mice underwent only left thoracotomy and were closed without undergoing myocardial ischaemia. Histopathological changes, activities of catalase (CAT) and glutathione-S-transferase anti-oxidant enzymes, and malondialdehyde (MDA) levels were evaluated in the lung tissues of all rats. Results Neutrophil infiltration/aggregation was higher in the DIR group than in the C, DC, and DIRD groups (p=0.001, p=0.013, and p=0.042, respectively). The lung injury score was significantly higher in the DIR group than in the C and DC groups (p<0.0001 and p=0.024, respectively). The levels of MDA were significantly higher in the DIR group than in the C and DIRD groups. CAT activity

  12. Curcumin protects against sepsis-induced acute lung injury in rats.

    PubMed

    Xiao, Xuefei; Yang, Mingshi; Sun, Dao; Sun, Shenghua

    2012-07-01

    The present study aimed to investigate the effect of curcumin on sepsis-induced acute lung injury (ALI) in rats, and explore its possible mechanisms. Male Sprague-Dawley rats were randomly divided into the following five experimental groups (n = 20 per group): animals undergoing a sham cecal ligature puncture (CLP) (sham group); animals undergoing CLP (control group); or animals undergoing CLP and treated with vehicle (vehicle group), curcumin at 50 mg/kg (low-dose curcumin [L-Cur] group), or curcumin at 200 mg/kg (high-dose curcumin [H-Cur] group).At 6, 12, 24 h after CLP, blood, bronchoalveolar lavage fluid (BALF) and lung tissue were collected. The lung wet/dry weight (W/D) ratio, protein level, and the number of inflammatory cells in the BALF were determined. Optical microscopy was performed to examine the pathologic changes in lungs. Myeloperoxidase (MPO) activity, malondialdehyde (MDA) content, as well as superoxidase dismutase (SOD) activity were measured in lung tissues. The expression of inflammatory cytokines, tumor necrosis factor-alpha (TNF-α), interluekin-8 (IL-8), and macrophage migration inhibitory factor (MIF) were determined in the BALF. Survival rates were recorded at 72 h in the five groups in another experiment. Treatment with curcumin significantly attenuated the CLP-induced pulmonary edema and inflammation, as it significantly decreased lung W/D ratio, protein concentration, and the accumulation of the inflammatory cells in the BALF, as well as pulmonary MPO activity. This was supported by the histopathologic examination, which revealed marked attenuation of CLP-induced ALI in curcumin treated rats. In addition, curcumin significantly increased SOD activity with significant decrease in MDA content in the lung. Also, curcumin caused down-regulation of the inflammatory cytokines TNF-α, IL-8, and MIF levels in the lung. Importantly, curcumin improved the survival rate of rats by 40%-50% with CLP-induced ALI. Taken together, these results

  13. [Protective effect of curcumin on oleic-induced acute lung injury in rats].

    PubMed

    Zhu, Rui-fang; Zhou, Min; He, Jian-lin; Ding, Fu-yun; Yu, Shu-qin; Xu, Guang-lin

    2008-09-01

    To investigate the effect of curcumine on acute lung injury induced by oleic acid in rat and the possible mechanism of action. The rats were divided into 6 groups randomly: normal group, control group, curcumine groups (5, 10, 20 mg x kg(-1)) and dexamethasone group (1 mg x kg(-1)). During the experiment, acute lung injury was induced by oleic acid in rat. The changes of dynamic lung compliance were recorded by anrise 2005 pulmonary function test apparatus, light microscope was used to examine histological changes and lung index as well as wet to dry weight ratio was calculated by weighting method. Lung vascular permeability and protein level in BALF were detected by ultraviolet spectrophotometry, and the concentrations of TNF-alpha, IL-6 and IL-10 in BALF were measured by enzyme linked immunosorbent assay (ELISA). The result showed that the changes of pulmonary compliance were inhibited and pulmonary function was improved by curcumine. The OA-induced elevation of lung index was restrained, as well as wet to dry weight ratio, lung vascular permeability, protein level, TNF-alpha (250.4 +/- 21.6 vs. 172.53 +/- 14.88, 122.2 +/- 10.98, 108.69 +/- 3.39) ng x L(-1), IL-6 (763.6 +/- 88.33 vs. 207.41 +/- 15.55, 172.13 +/- 21.91, 142.92 +/- 4.32) ng x L(-1) in BALF in curcumine groups, IL-10 (98.90 +/- 2.99 vs. 208.44 +/- 16.30, 218.43 +/- 6.23, 252.70 +/- 20.58) ng x L(-1) in BALF was increased, respectively significantly. Light microscope findings shown that the impairment in curcumine groups was far less severe than that in model groups. Pretreatment of curcumine showed beneficial effect on acute lung injury induced by oleic acid in rats. The mediation of both proinflammatory factor and anti-inflammatory factor by curcumine may be involved in mechanism of action of curcumine effects. PMID:19066061

  14. MRI-based measurements of aerosol deposition in the lung of healthy and elastase-treated rats.

    PubMed

    Oakes, Jessica M; Breen, Ellen C; Scadeng, Miriam; Tchantchou, Ghislain S; Darquenne, Chantal

    2014-06-15

    Aerosolized drugs are increasingly being used to treat chronic lung diseases or to deliver therapeutics systemically through the lung. The influence of disease, such as emphysema, on particle deposition is not fully understood. With the use of magnetic resonance imaging (MRI), the deposition pattern of iron oxide particles with a mass median aerodynamic diameter of 1.2 μm was assessed in the lungs of healthy and elastase-treated rats. Tracheostomized rats were ventilated with particles, at a tidal volume of 2.2 ml, and a breathing frequency of 80 breaths/min. Maximum airway pressure was significantly lower in the elastase-treated (Paw = 7.71 ± 1.68 cmH2O) than in the healthy rats (Paw = 10.43 ± 1.02 cmH2O; P < 0.01). This is consistent with an increase in compliance characteristic of an emphysema-like lung structure. Following exposure, lungs were perfusion fixed and imaged in a 3T MR scanner. Particle concentration in the different lobes was determined based on a relationship with the MR signal decay rate, R2 (*). Whole lung particle deposition was significantly higher in the elastase-treated rats (CE,part = 3.03 ± 0.61 μm/ml) compared with the healthy rats (CH,part = 1.84 ± 0.35 μm/ml; P < 0.01). However, when particle deposition in each lobe was normalized by total deposition in the lung, there was no difference between the experimental groups. However, the relative dispersion [RD = standard deviation/mean] of R2 (*) was significantly higher in the elastase-treated rats (RDE = 0.32 ± 0.02) compared with the healthy rats (RDH = 0.25 ± 0.02; P < 0.01). These data show that particle deposition is higher and more heterogeneously distributed in emphysematous lungs compared with healthy lungs. PMID:24790020

  15. Dose-related effects of hyperoxia on the lung inflammatory response in septic rats.

    PubMed

    Waisman, Dan; Brod, Vera; Rahat, Michal A; Amit-Cohen, Bat-Chen; Lahat, Nitza; Rimar, Doron; Menn-Josephy, Hanni; David, Miriam; Lavon, Ophir; Cavari, Yuval; Bitterman, Haim

    2012-01-01

    We evaluated the effects of hyperoxia on pulmonary inflammatory changes in sepsis induced by cecal ligation and puncture (CLP) in rats. Seven groups were studied: sham-operated rats breathing air for 20 or 48 h; CLP breathing air for 20 or 48 h; and CLP + 100% oxygen for 20 h, or 70% oxygen for 48 h, or 100% oxygen intermittently (6 h/d) for 48 h. Video microscopy was used to monitor lung macromolecular leak, microvascular flow velocity, and shear rates, and lung morphometry was used for leukocyte infiltration and solid tissue area. Cell counts, tumor necrosis factor α, and nitrites were determined in peripheral blood and lung lavage fluid. Expression of adhesion molecules in blood leukocytes was evaluated by flow cytometry. Cecal ligation and puncture induced inflammation manifested in leukopenia, left shift, thrombocytopenia, increased expression of L selectin and CD11, increased serum and lavage fluid tumor necrosis factor α and leukocytes, and increased lung tissue area, macromolecular leak, and sequestration of leukocytes. Inhalation of 100% oxygen for 20 h increased nitrites (P < 0.01) and decreased leukocyte count in lavage fluid (P < 0.05) and attenuated lung macromolecular leak and changes in solid tissue area (P < 0.01). Inhalation of 70% oxygen (48 h) attenuated expression of adhesion molecules (P < 0.001) but failed to attenuate markers of lung inflammation. In contrast, intermittent 100% oxygen exerted favorable effects on markers of inflammation, attenuated leukocyte expression of L selectin and CD11 (P < 0.01), decreased pulmonary sequestration of leukocytes (P < 0.001), and ameliorated changes in macromolecular leak (P < 0.01) and lung solid tissue area (P < 0.05). Our data support the beneficial effects of safe subtoxic regimens of normobaric hyperoxia on the systemic and pulmonary inflammatory response following CLP. PMID:21921827

  16. Chronic Alcohol Ingestion in Rats Alters Lung Metabolism, Promotes Lipid Accumulation, and Impairs Alveolar Macrophage Functions

    PubMed Central

    Romero, Freddy; Shah, Dilip; Duong, Michelle; Stafstrom, William; Hoek, Jan B.; Kallen, Caleb B.; Lang, Charles H.

    2014-01-01

    Chronic alcoholism impairs pulmonary immune homeostasis and predisposes to inflammatory lung diseases, including infectious pneumonia and acute respiratory distress syndrome. Although alcoholism has been shown to alter hepatic metabolism, leading to lipid accumulation, hepatitis, and, eventually, cirrhosis, the effects of alcohol on pulmonary metabolism remain largely unknown. Because both the lung and the liver actively engage in lipid synthesis, we hypothesized that chronic alcoholism would impair pulmonary metabolic homeostasis in ways similar to its effects in the liver. We reasoned that perturbations in lipid metabolism might contribute to the impaired pulmonary immunity observed in people who chronically consume alcohol. We studied the metabolic consequences of chronic alcohol consumption in rat lungs in vivo and in alveolar epithelial type II cells and alveolar macrophages (AMs) in vitro. We found that chronic alcohol ingestion significantly alters lung metabolic homeostasis, inhibiting AMP-activated protein kinase, increasing lipid synthesis, and suppressing the expression of genes essential to metabolizing fatty acids (FAs). Furthermore, we show that these metabolic alterations promoted a lung phenotype that is reminiscent of alcoholic fatty liver and is characterized by marked accumulation of triglycerides and free FAs within distal airspaces, AMs, and, to a lesser extent, alveolar epithelial type II cells. We provide evidence that the metabolic alterations in alcohol-exposed rats are mechanistically linked to immune impairments in the alcoholic lung: the elevations in FAs alter AM phenotypes and suppress both phagocytic functions and agonist-induced inflammatory responses. In summary, our work demonstrates that chronic alcohol ingestion impairs lung metabolic homeostasis and promotes pulmonary immune dysfunction. These findings suggest that therapies aimed at reversing alcohol-related metabolic alterations might be effective for preventing and

  17. Unattenuated structural and biochemical alterations in the rat lung during functional adaptation to ozone

    SciTech Connect

    Tepper, J.S.; Costa, D.L.; Lehmann, J.R.; Weber, M.F.; Hatch, G.E. )

    1989-08-01

    Acute ozone (O{sub 3}) exposure in humans produces changes in pulmonary function that attenuate with repeated exposure. This phenomenon, termed adaptation, has been produced in unanesthetized rats. Rats exposed to O3 (0, 0.35, 0.5, or 1.0 ppm) for 2.25 h for 5 consecutive days showed an increased frequency of breathing and a decreased tidal volume on Days 1 and 2 of exposure at all O{sub 3} concentrations. However, by Day 5 these breathing responses to O{sub 3} were diminished in rats exposed to 0.35 and 0.5 ppm, but not in rats exposed to 1.0 ppm. In addition, a flow limitation in smaller airways was observed after the second day of exposure to 0.5 ppm O{sub 3} that initially attenuated and then disappeared by the fifth day of exposure. In contrast to these findings, a light microscopic examination of fixed lung tissue sections from rats exposed to 0.5 ppm indicated a 5-day progressive pattern of epithelial damage and inflammation in the terminal bronchiolar region. A sustained 37% increase in lavageable protein was also observed over the course of the 5-day exposure regimen to 0.5 ppm. Lung glutathione increased initially, but it was within the control range on Days 4 and 5. Lung ascorbate was significantly elevated above control levels on Days 3 and 5. These data suggest that attenuation of the pulmonary function response to O{sub 3} occurs in laboratory rats with repeated exposure while biochemical and morphologic aspects of the tissue response continue to progress.

  18. Identification of vagal sensory receptors in the rat lung: are there subtypes of slowly adapting receptors?

    PubMed Central

    Bergren, D R; Peterson, D F

    1993-01-01

    1. We studied the characteristics of pulmonary sensory receptors whose afferent fibres are in the left vagus nerve of opened-chest rats. The activity of these receptors was recorded during mechanical ventilation approximating eupnoea, as well as during deflation, stepwise inflations and constant-pressure inflations of the lungs. Data were also collected from closed-chest rats and analysed separately. 2. Ninety-four per cent of receptors were located in the ipsilateral lung or airways with the remainder in the contralateral lung. 3. Not only were slowly adapting receptors (SARs) the most abundant pulmonary receptors but 21% of them were either exclusively or predominantly active during the deflationary phase of the ventilatory cycle. Deflationary units were found in opened- and closed-chest rats. The average conduction velocity for all fibres innervating SARs averaged 29.7 m s-1. 4. We found rapidly adapting receptors (RARs) to be extremely rare in the rat. Their activity was sparse and irregular. The conduction velocities of fibres innervating RARs averaged 12.3 m s-1. 5. Far more abundant than RARs in the remaining population of pulmonary fibres were C fibres. They were observed to have an average conduction velocity of 2.1 m s-1, base-level activity which was irregular and a high pressure threshold of activation and were stimulated by intravenous capsaicin injection. 6. Notable differences exist between pulmonary receptors in rats and those reported in other species. The variations include the abundant existence of intrapulmonary SARs with exclusively deflationary modulation and the rarity of RARs. We also encountered C fibres which have not previously been described systematically in the rat. PMID:8229824

  19. Budesonide ameliorates lung function of the cigarette smoke-exposed rats through reducing matrix metalloproteinase-1 content

    PubMed Central

    Sun, Jiawei; Zhang, Ping; Zhang, Bin; Li, Kang; Li, Zhu; Li, Junhong; Zhang, Yongjian; Sun, Wuzhuang

    2015-01-01

    Objectives: This study was conducted to investigate an effect of inhaled budesonide on cigarette smoke-exposed lungs with a possible mechanism involved in the event. Methods: Rats were exposed to air (control) and cigarette smoke (smoking) in presence and absence of budesonide. Inflammatory cell count in bronchoalveolar lavage fluid (BALF), lung function testing, mean liner intercept (MLI) in lung tissue, mean alveolar number (MAN) and a ratio of bronchial wall thickness and external diameter (BWT/D) were determined in the grouped rats, respectively. Contents of matrix metalloproteinase (MMP)-1, MMP-2 and tissue inhibitor of metalloproteinase (TIMP)-2 productions in BALF were examined as well. Results: There were significant changes in the above assessments in the smoking rats as compared to those in the control rats (all P < 0.01 and 0.05). Budesonide inhalation significantly decreased the numbers of the BALF cells and partly reversed lung function decline in the challenged rats (P < 0.01 and 0.05). However, this corticosteroid did not influence pathological changes in fine structures of the tobacco smoke-exposed lungs. Treatment with budesonide resulted in an obvious decrease in the MMP-1 but not MMP-2 and TIMP-2 productions (P < 0.05). Conclusion: Inhaled budesonide mitigates the ongoing inflammatory process in the smoked lungs and ameliorates declining lung function through reducing MMP-1 content. PMID:26191209

  20. Ultrastructural changes in rat lung during long-term exposure to oxygen.

    NASA Technical Reports Server (NTRS)

    Harrison, G. A.

    1971-01-01

    The pathogenesis of oxygen toxicity in the lung of rats was studied by electron microscopy. The following long-term effects were established: (1) a progressive destruction of the blood-air barrier beginning with the endothelial cell layer; (2) a profuse edema in the interstitial spaces in the pleural space in the alveoli and in the cytoplasm and organelles; (3) a continuing increase in the quantity and complexity of the alveolar exudate; (4) gradual hemolysis of red blood cells; and (5) eventual subsiding of the interstitial edema in surviving rats with a concomitant development of emphysema.

  1. AIRWAY STRUCTURE IN THE LONG EVANS RAT LUNG

    EPA Science Inventory

    To determine the degree of inter-animal variability among laboratory animals of the same strain and size, lengths and diameters of the same 200 airways were measured in solid casts in each of 10 male Long Evans rats. ntra-animal variability was substantially greater than interani...

  2. Pharmacological characterization of the late phase reduction in lung functions and correlations with microvascular leakage and lung edema in allergen-challenged Brown Norway rats.

    PubMed

    Mauser, Peter J; House, Aileen; Jones, Howard; Correll, Craig; Boyce, Christopher; Chapman, Richard W

    2013-12-01

    Late phase airflow obstruction and reduction in forced vital capacity are characteristic features of human asthma. Airway microvascular leakage and lung edema are also present in the inflammatory phase of asthma, but the impact of this vascular response on lung functions has not been precisely defined. This study was designed to evaluate the role of increased lung microvascular leakage and edema on the late phase changes in forced vital capacity (FVC) and peak expiratory flow (PEF) in allergen-challenged Brown Norway rats using pharmacological inhibitors of the allergic inflammatory response. Rats were sensitized and challenged with ovalbumin aerosol and forced expiratory lung functions (FVC, PEF) and wet and dry lung weights were measured 48 h after antigen challenge. Ovalbumin challenge reduced FVC (63% reduction) and PEF (33% reduction) and increased wet (65% increase) and dry (51% increase) lung weights. The antigen-induced reduction in FVC and PEF was completely inhibited by oral treatment with betamethasone and partially attenuated by inhibitors of arachidonic acid metabolism including indomethacin (cyclooxygenase inhibitor), 7-TM and MK-7246 (CRTH2 antagonists) and montelukast (CysLT1 receptor antagonist). Antagonists of histamine H1 receptors (mepyramine) and 5-HT receptors (methysergide) had no significant effects indicating that these pre-formed mast cell mediators were not involved. There was a highly significant (P < 0.005) correlation for the inhibition of FVC reduction and increase in wet and dry lung weights by these pharmacological agents. These results strongly support the hypothesis that lung microvascular leakage and the associated lung edema contribute to the reduction in forced expiratory lung functions in antigen-challenged Brown Norway rats and identify an important role for the cyclooxygenase and lipoxygenase products of arachidonic acid metabolism in these responses. PMID:23523662

  3. Impaired Lung Mitochondrial Respiration Following Perinatal Nicotine Exposure in Rats.

    PubMed

    Cannon, Daniel T; Liu, Jie; Sakurai, Reiko; Rossiter, Harry B; Rehan, Virender K

    2016-04-01

    Perinatal smoke/nicotine exposure predisposes to chronic lung disease and morbidity. Mitochondrial abnormalities may contribute as the PPARγ pathway is involved in structural and functional airway deficits after perinatal nicotine exposure. We hypothesized perinatal nicotine exposure results in lung mitochondrial dysfunction that can be rescued by rosiglitazone (RGZ; PPARγ receptor agonist). Sprague-Dawley dams received placebo (CON), nicotine (NIC, 1 mg kg(-1)), or NIC + RGZ (3 mg kg(-1)) daily from embryonic day 6 to postnatal day 21. Parenchymal lung (~10 mg) was taken from adult male offspring for mitochondrial assessment in situ. ADP-stimulated O2 consumption was less in NIC and NIC + RGZ compared to CON (F[2,14] = 17.8; 4.5 ± 0.8 and 4.1 ± 1.4 vs. 8.8 ± 2.5 pmol s mg(-1); p < 0.05). The respiratory control ratio for ADP, an index of mitochondrial coupling, was reduced in NIC and remediated in NIC + RGZ (F[2,14] = 3.8; p < 0.05). Reduced mitochondrial oxidative capacity and abnormal coupling were evident after perinatal nicotine exposure. RGZ improved mitochondrial function through tighter coupling of oxidative phosphorylation. PMID:26899624

  4. EFFECTS OF AMMONIUM NITRATE AEROSOL EXPOSURE ON LUNG STRUCTURE OF NORMAL AND ELASTASE-IMPAIRED RATS AND GUINEA PIGS

    EPA Science Inventory

    Groups of rats and guinea pigs with normal lungs and others with elastase-induced emphysema were exposed to aerosols of 0.60 MMAD at 1 mg/m3 for 6 hr/day, 5 days/wk for 4wk. orphologic and morphometeric studies were performed on lungs perfused with cacodylate-buffered 2% glutaral...

  5. Regulatory effects of hydrogen sulfide on alveolar epithelial cell endoplasmic reticulum stress in rats with acute lung injury

    PubMed Central

    Liu, Zhi-wei; Wang, Hai-ying; Guan, Lan; Zhao, Bin

    2015-01-01

    BACKGROUND: The present study was undertaken to examine the regulatory effect of hydrogen sulfide (H2S) on endoplasmic reticulum stress in alveolar epithelial cells of rats with acute lung injury (ALI) induced by oleic acid (OA). METHODS: Seventy-two male Sprague Dawley (SD) rats were divided into control group, oleic acid-induced ALI group (OA group), oleic acid-induced ALI with sodium hydrosulfide (NaHS) pretreatment group (OA+NaHS group), and sodium hydrosulfide treatment group (NaHS group). Rats of each group were further subdivided into 3 subgroups. Index of quantitative assessment of histological lung injury (IQA), wet/dry weight ratio (W/D) and H2S level of lung tissues were measured. The expressions of endoplasmic reticulum stress markers including glucose-regulated protein 78 (GRP78) and α-subunit of eukaryotic translation initiation factor-2 (elF2α) in lung tissues were measured by immunohistochemical staining and Western blotting. RESULTS: The IQA score and W/D ratio of lung tissues at the three time points significantly increased in rats injected with OA, but significantly decreased in other rats injected with OA and NaHS. The level of H2S in lung tissue at the three time points significantly decreased in rats injected with OA, but significantly increased in other rats injected with both OA and NaHS. GRP78 and elF2α decreased in rats injected with OA, but increased in other rats injected with both OA and NaHS, especially at 4-hour and 6-hour time points. CONCLUSION: The results suggested that H2S could promote alveolar epithelial cell endoplasmic reticulum stress in rats with ALI. PMID:25802570

  6. Effects of anesthetic regimes on inflammatory responses in a rat model of acute lung injury

    PubMed Central

    Fortis, Spyridon; Spieth, Peter M.; Lu, Wei-Yang; Parotto, Matteo; Haitsma, Jack J; Slutsky, Arthur S.; Zhong, Nanshan; Mazer, C. David; Zhang, Haibo

    2016-01-01

    Background Gamma amino butyric acid (GABA) is the major inhibitory neurotransmitter through activation of GABA receptors. Volatile anesthetics activate type A (GABAA) receptors resulting in inhibition of synaptic transmission. Lung epithelial cells have been recently found to express GABAA receptors that exert anti-inflammatory properties. We hypothesized that the volatile anesthetic sevoflurane (SEVO) attenuates lung inflammation through activation of lung epithelial GABAA receptors. Methods Sprague-Dawley rats were anesthetized with SEVO or ketamine/xylazine (KX). Acute lung inflammation was induced by intratracheal instillation of endotoxin, followed by mechanical ventilation for 4 h at a tidal volume of 15 mL/kg without positive end-expiratory pressure (two-hit lung injury model). To examine the specific effects of GABA, healthy human bronchial epithelial cells (BEAS-2B) were challenged with endotoxin in the presence and absence of GABA with and without addition of the GABAA receptor antagonist picrotoxin. Results Anesthesia with SEVO improved oxygenation and reduced pulmonary cytokine responses compared to KX. This phenomenon was associated with increased expression of the π subunit of GABAA receptors and glutamic acid decarboxylase (GAD). The endotoxin-induced cytokine release from BEAS-2B cells was attenuated by the treatment with GABA, which was reversed by the administration of picrotoxin. Conclusion Anesthesia with SEVO suppresses pulmonary inflammation thus protects the lung from the two-hit injury. The anti-inflammatory effect of SEVO is likely due to activation of pulmonary GABAA signaling pathways. PMID:22711173

  7. Application to Rat Lung of the Extended Rorschach-Hazlewood Model of Spin-Lattice Relaxation

    NASA Astrophysics Data System (ADS)

    Hackmann, Andreas; Ailion, David C.; Ganesan, Krishnamurthy; Goodrich, K. Craig; Chen, Songhua; Laicher, Gernot; Cutillo, Antonio G.

    1996-02-01

    The spin-lattice relaxation timeT1was measured in excised degassed (airless) rat lungs over the frequency range 6.7 to 80.5 MHz. The observed frequency dependence was fitted successfully to the water-biopolymer cross-relaxation theory proposed by H. E. Rorschach and C. F. Hazlewood (RH) [J. Magn. Reson.70,79 (1986)]. The rotating frame spin-lattice relaxation timeT1ρwas also measured in rat lung fragments over the frequency range 0.56 to 5.6 kHz, and the observed frequency dependence was explained with an extension of the RH model. The agreement between the theory and the experimental data in both cases is good.

  8. Formation of cigarette smoke-induced DNA adducts in the rat lung and nasal mucosa

    SciTech Connect

    Gupta, R.C.; Sopori, M.L.; Gairola, C.G.

    1989-01-01

    The formation of DNA adducts in the nasal, lung, and liver tissues of rats exposed daily to fresh smoke from a University of Kentucky reference cigarette (2R1) for up to 40 weeks was examined. The amount of smoke total particulate matter (TPM) inhaled and the blood carboxyhemoglobin (COHb) values averaged 5-5.5 mg smoke TPM/day/rat and 5.5%, respectively. The pulmonary AHH activity measured at the termination of each experiment showed an average increase of about two- to threefold in smoke-exposed groups. These observations suggested that animals effectively inhaled both gaseous and particulate phase constituents of cigarette smoke. DNAs from nasal, lung, and liver tissue were extracted and analyzed by an improved {sup 32}P-postlabeling procedure. The data demonstrate the DNA-damaging potential of long term fresh cigarette smoke exposure and suggest the ability of the tissue to partially recover from such damage following cessation of the exposure.

  9. Neutrophil function in a rat model of endotoxin-induced lung injury.

    PubMed

    Simons, R K; Maier, R V; Lennard, E S

    1987-02-01

    Polymorphonuclear neutrophil leukocytes (PMNs) are known to cross the alveolar-capillary barrier and enter the alveolus in acute adult respiratory distress syndrome (ARDS). The pathogenic role of PMNs in both the acute lung injury and subsequent infectious susceptibility in ARDS is not clear. In the present study we investigated the functional status of various neutrophil populations using a chronic, endotoxemia-induced ARDS model. Rats infused with Escherichia coli endotoxin for three days develop an acute lung injury with a histologic picture closely resembling human ARDS. The PMNs recovered from the circulation and by bronchoalveolar lavage were compared with normal rat PMNs. In endotoxemic animals, superoxide production was markedly enhanced in circulating PMNs, indicating production of high levels of potentially cytotoxic oxygen intermediates, while myeloperoxidase activity was decreased in both circulating and lavage PMNs, indicating depressed myeloperoxidase-dependent antimicrobial activity. PMID:3028317

  10. Mutagenesis by man-made mineral fibres in the lung of rats.

    PubMed

    Topinka, J b; Loli, P; Dusinská, M; Hurbánková, M; Kováciková, Z; Volkovová, K; Kazimírová, A; Barancoková, M; Tatrai, E; Wolff, T; Oesterle, D; Kyrtopoulos, S A; Georgiadis, P

    2006-03-20

    The potential of two asbestos substitute mineral fibres--rock (stone) wool RW1 and glass wool MMVF10--to induce gene mutations, DNA strand breaks, inflammation and oxidative stress has been studied in rats. Male homozygous lamda-lacI transgenic F344 rats were intratracheally instilled with single doses of 1 and 2 mg/animal of fibres or with multiple doses of 2 mg/animal administered weekly on four consecutive weeks (8 mg in total). Exposure to RW1 fibres for 16 weeks significantly increased mutant frequency (MF) in the lung in a dose-dependent manner, while MMVF10 fibres did not exhibit any increase of MF at any dose. RW1 fibres gave a significant increase of MF at a dose of 1 mg. Four weeks after instillation, neither the single nor the multiple doses significantly increased MF for both fibre types. To investigate mechanisms for induction of mutations, other genotoxicity markers and parameters of inflammatory and oxidative damage were determined in relation to MF. A weak correlation of mutagenicity data with other genotoxicity parameters studied was observed. DNA strand breaks as measured by comet assay were increased in alveolar macrophages and lung epithelial cells of RW1 and MMVF10 treated rats. RWl fibres caused more extensive lung inflammation as measured by release of neutrophils into broncho-alveolar lavage fluid than MMVF10 fibres. The effects were observed 16 weeks post-exposure, indicating a persistence of the pathogenic process during the exposure period. Only minor differences in the extent of inflammatory processes were observed between the doses of 2 mg and 4 x 2 mg, suggesting that any threshold for inflammation lies below the dose of 2 mg. With the exception of the highest dose of MMVF10 fibres after 16 weeks of exposure, no significant increase of oxidative damage as measured by levels of malondialdehyde in lung tissue was observed. MMVF10 fibres caused weaker inflammation in the lung of rats and did not exhibit any mutagenic effect. We conclude

  11. Effects of paving asphalt fume exposure on genotoxic and mutagenic activities in the rat lung.

    PubMed

    Zhao, H W; Yin, X J; Frazer, D; Barger, M W; Siegel, P D; Millecchia, L; Zhong, B Z; Tomblyn, S; Stone, S; Ma, J K H; Castranova, V; Ma, J Y C

    2004-02-14

    Asphalt fumes are complex mixtures of aerosols and vapors containing various organic compounds, including polycyclic aromatic hydrocarbons (PAHs). Previously, we have demonstrated that inhalation exposure of rats to asphalt fumes resulted in dose-dependent induction of CYP1A1 with concomitant down-regulation of CYP2B1 and increased phase II enzyme quinone reductase activity in the rat lung. In the present study, the potential genotoxic effects of asphalt fume exposure due to altered lung microsomal enzymes were studied. Rats were exposed to air or asphalt fume generated under road paving conditions at various concentrations and sacrificed the next day. Alveolar macrophages (AM) were obtained by bronchoalveolar lavage and examined for DNA damage using the comet assay. To evaluate the systemic genotoxic effect of asphalt fume, micronuclei formation in bone marrow polychromatic erythrocytes (PCEs) was monitored. Lung S9 from various exposure groups was isolated from tissue homogenates and characterized for metabolic activity in activating 2-aminoanthracene (2-AA) and benzo[a]pyrene (BaP) mutagenicity using the Ames test with Salmonella typhimurium YG1024 and YG1029. This study showed that the paving asphalt fumes significantly induced DNA damage in AM, as revealed by DNA migration in the comet assay, in a dose-dependent manner, whereas the micronuclei formation in bone marrow PCEs was not detected even at a very high exposure level (1733 mg h/m3). The conversion of 2-AA to mutagens in the Ames test required lung S9-mediated metabolic activation in a dose-dependent manner. In comparison to the controls, lung S9 from rats exposed to asphalt fume at a total exposure level of 479+/-33 mg h/m3 did not significantly enhance 2-AA mutagenicity with either S. typhimurium YG1024 or YG1029. At a higher total asphalt fume exposure level (1150+/-63 mg h/m3), S9 significantly increased the mutagenicity of 2-AA as compared to the control. However, S9 from asphalt fume-exposed rats

  12. Suppression in lung defense responses after bacterial infection in rats pretreated with different welding fumes

    SciTech Connect

    Antonini, James M. . E-mail: jga6@cdc.gov; Taylor, Michael D.; Millecchia, Lyndell; Bebout, Alicia R.; Roberts, Jenny R.

    2004-11-01

    Epidemiology suggests that inhalation of welding fumes increases the susceptibility to lung infection. The effects of chemically distinct welding fumes on lung defense responses after bacterial infection were compared. Fume was collected during gas metal arc (GMA) or flux-covered manual metal arc (MMA) welding using two consumable electrodes: stainless steel (SS) or mild steel (MS). The fumes were separated into water-soluble and -insoluble fractions. The GMA-SS and GMA-MS fumes were found to be relatively insoluble, whereas the MMA-SS was highly water soluble, with the soluble fraction comprised of 87% Cr and 11% Mn. On day 0, male Sprague-Dawley rats were intratracheally instilled with saline (vehicle control) or the different welding fumes (0.1 or 2 mg/rat). At day 3, the rats were intratracheally inoculated with 5 x 10{sup 3} Listeria monocytogenes. On days 6, 8, and 10, left lungs were removed, homogenized, cultured overnight, and colony-forming units were counted to assess pulmonary bacterial clearance. Bronchoalveolar lavage (BAL) was performed on right lungs to recover phagocytes and BAL fluid to measure the production of nitric oxide (NO) and immunomodulatory cytokines, including tumor necrosis factor-{alpha} (TNF-{alpha}), interleukin (IL)-2, IL-6, and IL-10. In contrast to the GMA-SS, GMA-MS, and saline groups, pretreatment with the highly water soluble MMA-SS fume caused significant body weight loss, extensive lung damage, and a dramatic reduction in pulmonary clearance of L. monocytogenes after infection. NO concentrations in BAL fluid and lung immunostaining of inducible NO synthase were dramatically increased in rats pretreated with MMA-SS before and after infection. MMA-SS treatment caused a significant decrease in IL-2 and significant increases in TNF-{alpha}, IL-6, and IL-10 after infection. In conclusion, pretreatment with MMA-SS increased production of NO and proinflammatory cytokines (TNF-{alpha} and IL-6) after infection, which are likely

  13. Suppression in lung defense responses after bacterial infection in rats pretreated with different welding fumes.

    PubMed

    Antonini, James M; Taylor, Michael D; Millecchia, Lyndell; Bebout, Alicia R; Roberts, Jenny R

    2004-11-01

    Epidemiology suggests that inhalation of welding fumes increases the susceptibility to lung infection. The effects of chemically distinct welding fumes on lung defense responses after bacterial infection were compared. Fume was collected during gas metal arc (GMA) or flux-covered manual metal arc (MMA) welding using two consumable electrodes: stainless steel (SS) or mild steel (MS). The fumes were separated into water-soluble and -insoluble fractions. The GMA-SS and GMA-MS fumes were found to be relatively insoluble, whereas the MMA-SS was highly water soluble, with the soluble fraction comprised of 87% Cr and 11% Mn. On day 0, male Sprague-Dawley rats were intratracheally instilled with saline (vehicle control) or the different welding fumes (0.1 or 2 mg/rat). At day 3, the rats were intratracheally inoculated with 5 x 10(3) Listeria monocytogenes. On days 6, 8, and 10, left lungs were removed, homogenized, cultured overnight, and colony-forming units were counted to assess pulmonary bacterial clearance. Bronchoalveolar lavage (BAL) was performed on right lungs to recover phagocytes and BAL fluid to measure the production of nitric oxide (NO) and immunomodulatory cytokines, including tumor necrosis factor-alpha (TNF-alpha), interleukin (IL)-2, IL-6, and IL-10. In contrast to the GMA-SS, GMA-MS, and saline groups, pretreatment with the highly water soluble MMA-SS fume caused significant body weight loss, extensive lung damage, and a dramatic reduction in pulmonary clearance of L. monocytogenes after infection. NO concentrations in BAL fluid and lung immunostaining of inducible NO synthase were dramatically increased in rats pretreated with MMA-SS before and after infection. MMA-SS treatment caused a significant decrease in IL-2 and significant increases in TNF-alpha, IL-6, and IL-10 after infection. In conclusion, pretreatment with MMA-SS increased production of NO and proinflammatory cytokines (TNF-alpha and IL-6) after infection, which are likely responsible for

  14. Biopersistence of rock wool in lungs after short-term inhalation in rats.

    PubMed

    Kudo, Yuichiro; Aizawa, Yoshiharu

    2008-01-01

    To evaluate the safety of rock wool (RW), an asbestos substitute, we examined the biopersistence of RW fibers in rat lungs based on the changes of fiber number and fiber size (length and diameter) by a nose-only inhalation exposure study. Twenty-four male Fischer 344 rats were exposed to RW fibers at a concentration of 30 mg/m(3) continuously for 3 h daily for 5 consecutive days. Six rats each were sacrificed shortly and at 1, 2, and 4 wk after exposure, and their lung tissues were ashed by a low-temperature plasma asher. Then the fiber numbers and fiber sizes in lungs were determined using a phase-contrast microscope and computed image analyzer. During the study period, the arithmetic mean (SD) values of fiber and weight concentrations were 78.5 (35.7) fibers/cm(3), and 29.9 (28.3) mg/m(3), respectively. The fiber number in lungs 4 wk after exposure significantly decreased from the baseline value (shortly after exposure) (p < .05). The half-life of fibers calculated from the approximate curve was 28 days for all fibers and 16 days for fibers with L > 20 microm, and the rate of decrease in fiber number was 46.3% at 4 wk after exposure (shortly-after group = 100%). Likewise, both length and diameter significantly decreased at 4 wk after exposure (p < .05), probably because fibers were phagosytosed and digested by alveolar macrophages, discharged to outside of the body by mucociliary movement, or dissolved by body fluid. It will be necessary in the future to further confirm the safety of RW fibers by assessing the biopersistence of fibers in the lungs and their pathological effects in our ongoing study performed in accordance with the guidelines established in the "Methods for Determination of Hazardous Properties for Human Health of Man Made Mineral Fibers" (EC protocol). PMID:18236228

  15. Sodium hydrosulfide alleviates lung inflammation and cell apoptosis following resuscitated hemorrhagic shock in rats

    PubMed Central

    Xu, Dun-quan; Gao, Cao; Niu, Wen; Li, Yan; Wang, Yan-xia; Gao, Chang-jun; Ding, Qian; Yao, Li-nong; Chai, Wei; Li, Zhi-chao

    2013-01-01

    Aim: To investigate the protective effects of hydrogen sulfide (H2S) against inflammation, oxidative stress and apoptosis in a rat model of resuscitated hemorrhagic shock. Methods: Hemorrhagic shock was induced in adult male SD rats by drawing blood from the femoral artery for 10 min. The mean arterial pressure was maintained at 35–40 mmHg for 1.5 h. After resuscitation the animals were observed for 200 min, and then killed. The lungs were harvested and bronchoalveolar lavage fluid was prepared. The levels of relevant proteins were examined using Western blotting and immunohistochemical analyses. NaHS (28 μmol/kg, ip) was injected before the resuscitation. Results: Resuscitated hemorrhagic shock induced lung inflammatory responses and significantly increased the levels of inflammatory cytokines IL-6, TNF-α, and HMGB1 in bronchoalveolar lavage fluid. Furthermore, resuscitated hemorrhagic shock caused marked oxidative stress in lung tissue as shown by significant increases in the production of reactive oxygen species H2O2 and ·OH, the translocation of Nrf2, an important regulator of antioxidant expression, into nucleus, and the decrease of thioredoxin 1 expression. Moreover, resuscitated hemorrhagic shock markedly increased the expression of death receptor Fas and Fas-ligand and the number apoptotic cells in lung tissue, as well as the expression of pro-apoptotic proteins FADD, active-caspase 3, active-caspase 8, Bax, and decreased the expression of Bcl-2. Injection with NaHS significantly attenuated these pathophysiological abnormalities induced by the resuscitated hemorrhagic shock. Conclusion: NaHS administration protects rat lungs against inflammatory responses induced by resuscitated hemorrhagic shock via suppressing oxidative stress and the Fas/FasL apoptotic signaling pathway. PMID:24122010

  16. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  17. Zinc supplementation ameliorates glycoprotein components and oxidative stress changes in the lung of streptozotocin diabetic rats.

    PubMed

    Sacan, Ozlem; Turkyilmaz, Ismet Burcu; Bayrak, Bertan Boran; Mutlu, Ozgur; Akev, Nuriye; Yanardag, Refiye

    2016-04-01

    Zinc (Zn) is a component of numerous enzymes that function in a wide range of biological process, including growth, development, immunity and intermediary metabolism. Zn may play a role in chronic states such as cardiovascular disease and diabetes mellitus. Zn acts as cofactor and for many enzymes and proteins and has antioxidant, antiinflammatory and antiapoptotic effects. Taking into consideration that lung is a possible target organ for diabetic complications, the aim of this study was to investigate the protective role of zinc on the glycoprotein content and antioxidant enzyme activities of streptozotocin (STZ) induced diabetic rat tissues. Female Swiss albino rats were divided into four groups. Group I, control; Group II, control + zinc sulfate; Group III, STZ-diabetic; Group IV, diabetic + zinc sulfate. Diabetes was induced by intraperitoneal injection of STZ (65 mg/kg body weight). Zinc sulfate was given daily by gavage at a dose of 100 mg/kg body weight every day for 60 days to groups II and IV. At the last day of the experiment, rats were sacrificed, lung tissues were taken. Also, glycoprotein components, tissue factor (TF) activity, protein carbonyl (PC), advanced oxidative protein products (AOPP), hydroxyproline, and enzyme activities in lung tissues were determined. Glycoprotein components, TF activity, lipid peroxidation, non enzymatic glycation, PC, AOPP, hydroxyl proline, lactate dehydrogenase, catalase, superoxide dismutase, myeloperoxidase, xanthine oxidase, adenosine deaminase and prolidase significantly increased in lung tissues of diabetic rats. Also, glutathione levels, paraoxonase, arylesterase, carbonic anhydrase, and Na(+)/K(+)- ATPase activities were decreased. Administration of zinc significantly reversed these effects. Thus, the study indicates that zinc possesses a significantly beneficial effect on the glycoprotein components and oxidant/antioxidant enzyme activities. PMID:26817646

  18. Effect of ambient PM(2.5) on lung mitochondrial damage and fusion/fission gene expression in rats.

    PubMed

    Li, Ruijin; Kou, Xiaojing; Geng, Hong; Xie, Jingfang; Yang, Zhenhua; Zhang, Yuexia; Cai, Zongwei; Dong, Chuan

    2015-03-16

    Exposure to ambient fine particulate matter (PM2.5) increases the risk of respiratory disease. Although previous mitochondrial research has provided new information about PM toxicity in the lung, the exact mechanism of PM2.5-mediated structural and functional damage of lung mitochondria remains unclear. In this study, changes in lung mitochondrial morphology, expression of mitochondrial fission/fusion markers, lipid peroxidation, and transport ATPase activity in SD rats exposed to ambient PM2.5 at different dosages were investigated. Also, the release of reactive oxygen species (ROS) via the respiratory burst in rat alveolar macrophages (AMs) exposed to PM2.5 was examined by luminol-dependent chemiluminescence (CL). The results showed that (1) PM2.5 deposited in the lung and induced pathological damage, particularly causing abnormal alterations of mitochondrial structure, including mitochondrial swelling and cristae disorder or even fragmentation in the presence of higher doses of PM2.5; (2) PM2.5 significantly affected the expression of specific mitochondrial fission/fusion markers (OPA1, Mfn1, Mfn2, Fis1, and Drp1) in rat lung; (3) PM2.5 inhibited Mn superoxide dismutase (MnSOD), Na(+)K(+)-ATPase, and Ca(2+)-ATPase activities and elevated malondialdehyde (MDA) content in rat lung mitochondria; and (4) PM2.5 induced rat AMs to produce ROS, which was inhibited by about 84.1% by diphenyleneiodonium chloride (DPI), an important ROS generation inhibitor. It is suggested that the pathological injury observed in rat lung exposed to PM2.5 is associated with mitochondrial fusion-fission dysfunction, ROS generation, mitochondrial lipid peroxidation, and cellular homeostasis imbalance. Damage to lung mitochondria may be one of the important mechanisms by which PM2.5 induces lung injury, contributing to respiratory diseases. PMID:25560372

  19. Hyperthyroidism increases the risk of ozone-induced lung toxicity in rats.

    PubMed

    Huffman, L J; Judy, D J; Brumbaugh, K; Frazer, D G; Reynolds, J S; McKinney, W G; Goldsmith, W T

    2001-05-15

    The risk of lung injury from ozone exposure has been well documented. It is also known that various factors may significantly influence the susceptibility of animals to the toxic effects of ozone. In the present study, we investigated the possibility that hyperthyroidism might be associated with increases in ozone-induced pulmonary toxicity. To create a hyperthyroid condition, mature male Sprague--Dawley rats were given injections of thyroxine (dose range: 0.1 to 1 mg/kg body wt daily for 7 days). Control rats received vehicle injections. The animals were then exposed to air or ozone (dose range: 0.5 to 3 ppm for 3 h). At 18 h postexposure, bronchoalveolar lavage fluid and cells were harvested. In hyperthyroid animals, ozone exposure was associated with three- to sixfold increases in bronchoalveolar lavage fluid lactate dehydrogenase activities and albumin levels as well as the number of polymorphonuclear leukocytes harvested by bronchoalveolar lavage above levels observed in ozone-exposed control rats. Additional results from the present study suggest that these thyroid hormone-linked effects cannot be fully explained by differences in whole-body metabolic rate or changes in the inhaled dose of ozone. These findings indicate that the risk of ozone-induced lung toxicity is substantially increased in a hyperthyroid state and suggest that the susceptibility of the lung to damage from ozone exposure may be significantly influenced by individual thyroid hormone status. PMID:11350211

  20. Response of the rat lung to respirable fractions of composite fiber-epoxy dusts

    SciTech Connect

    Luchtel, D.L.; Martin, T.R.; Boatman, E.S. )

    1989-02-01

    It is unknown whether respirable dusts derived from the machining of composite fiber-epoxy materials pose a health risk. To evaluate the potential pulmonary toxicity of these materials, we studied the effects of six samples of dusts previously well characterized physically, chemically, and morphologically in the lungs of specific pathogen-free rats. A single intratracheal bolus of 5 mg of each sample was injected into separate groups of five rats each. For comparison, free crystalline silica (quartz) and aluminum oxide were used as positive and negative controls in additional animals. One month later, the lungs were fixed and sectioned for light microscopy. Histopathology scores for the six composite-epoxy samples showed a continuum of lung injury that was between the negative and positive controls. None of the composite dusts had effects that paralleled those of quartz; however, four of the composite dusts produced reactions that were more severe than that seen with aluminum oxide. Therefore, respirable fractions of some types of composite materials can induce pathological changes in lungs of experimental animals. The features responsible for the variation in host response between samples are, as yet, unclear.

  1. Prevention of granulocyte-mediated oxidant lung injury in rats by a hydroxyl radical scavenger, dimethylthiourea.

    PubMed Central

    Fox, R B

    1984-01-01

    Toxic, partially reduced metabolites of oxygen (toxic oxygen radicals) are increasingly implicated in acute leukocyte-mediated tissue injury. To further probe the roles of oxygen radicals in acute lung edema, I studied the effects of a recently described and very potent oxygen radical scavenger, dimethylthiourea (DMTU) (Fox, R. B., R. N. Harada, R. M. Tate, and J. E. Repine, 1983, J. Appl. Physiol., 55:1456-1459) on polymorphonuclear leukocyte (PMN) oxidant function and on two types of lung injury mediated by oxygen radicals and PMN. DMTU (10 mM) blocked 79% of hydroxyl radical (OH) production by PMN in vitro without interfering with other PMN functions, such as O-2 production, myeloperoxidase activity, chemotaxis, degranulation, or aggregation. When isolated rat lung preparations were perfused with PMN activated to produce OH, lung weights were increased from 2.3 +/- 0.2 to 11.2 +/- 0.8 g. DMTU (10 mM) prevented 70% of these increases (lung weights, 5.0 +/- 1.1 g, P less than 0.005). Finally, when intact rats were exposed to 100% O2 for 66 h, lung weight:body weight ratios were increased from 5.78 +/- 0.33 to 8.87 +/- 0.16 g. DMTU (500 mg/kg) prevented 83% of this hyperoxia-induced lung edema in vivo (lung:body weight ratios, 6.05 +/- 0.21, P less than 0.001). Pharmacokinetic studies showed that DMTU diffused effectively into lung interstitial fluids and had a relatively long half-life (25-35 h) in the circulation. Because a variety of oxygen radicals, such as superoxide (O-2), hydrogen peroxide (H2O2), or OH are produced by PMN, there is usually some uncertainty about which one is responsible for injury. However, in these studies, DMTU did not scavenge O-2 and scavenged H2O2 only very slowly while scavenging OH very effectively. Therefore, DMTU may be useful in the investigation of the roles of oxygen radicals, especially OH, in acute granulocyte-mediated tissue injury. PMID:6090504

  2. Pulmonary deposition and clearance of glass fiber in rat lungs after long-term inhalation.

    PubMed Central

    Tanaka, I; Oyabu, T; Ishimatsu, S; Hori, H; Higashi, T; Yamato, H

    1994-01-01

    In this study Wistar male rats were exposed to glass fiber obtained by the disintegration of a binderless glass fiber filter, for 6 hr/day, 5 days/week for 12 months. The mass median aerodynamic diameter (MMAD) of the fiber, determined with an Andersen sampler, was 2.6 microns. The count median diameter and length of the fibers measured by scanning electron microscopy (SEM) were 0.51 and 5.5 microns, respectively. The daily average exposure fiber concentration was 2.2 +/- 0.6 mg/m3. Some rats were sacrificed 24 hr after removal from the exposure chamber following the 12 months' exposure. Others were sacrificed 12 months after the end of exposure. The wet organ weights were recorded at the time of death and the silicon content of the lungs was determined by absorption spectrophotometry. After 12 months' exposure, the amount of glass fiber retained in the rat lungs was 1.49 mg, and after 12 months' clearance it was 0.61 mg. The biological half-life in a single exponential model was to be 8.7 months, much longer than the predicted value of 1.5 months obtained in a previous experiment in which rats were exposed for 4 weeks to the same glass fiber. PMID:7882935

  3. Glucocorticoid hormones downregulate histidine decarboxylase mRNA and enzyme activity in rat lung.

    PubMed

    Zahnow, C A; Panula, P; Yamatodani, A; Millhorn, D E

    1998-08-01

    Histidine decarboxylase (HDC) is the primary enzyme regulating histamine biosynthesis. Histamine contributes to the pathogenesis of chronic inflammatory disorders such as asthma. Because glucocorticoids are effective in the treatment of asthma, we examined the effects of 6 h of exogenously administered dexamethasone (0.5-3,000 microg/kg ip), corticosterone (0.2-200 mg/kg ip), or endogenously elevated corticosterone (via exposure of rats to 10% oxygen) on HDC expression in the rat lung. HDC transcripts were decreased approximately 73% with dexamethasone treatment, 57% with corticosterone treatment, and 50% with exposure to 10% oxygen. Likewise, HDC enzyme activity was decreased 80% by treatment with dexamethasone and corticosterone and 60% by exposure to 10% oxygen. Adrenalectomy prevented the decreases in HDC mRNA and enzyme activity observed in rats exposed to 10% oxygen, suggesting that the adrenal gland is necessary for the mediation of hypoxic effects on HDC gene expression. These results demonstrate that corticosteroids initiate a process that leads to the decrease of HDC mRNA levels and enzyme activity in rat lung. PMID:9700103

  4. Gene Expression Profiling in Lung Tissues from Rat Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lam, Chiu-Wing; Zalesak, Selina M.; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Scully, Robert R.; Williams, Kyle; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (< 3 micron), that is respirable. The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues from rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, and 3 months after the last inhalation exposure. The total RNAs were isolated from lung tissues after being lavaged. The Agilent Rat GE v3 microarray was used to profile global gene expression (44K). The genes with significant expression changes are identified and the gene expression data were further analyzed using various statistical tools.

  5. Ethanolic Extract of Marsdenia condurango Ameliorates Benzo[a]pyrene-induced Lung Cancer of Rats

    PubMed Central

    Sikdar, Sourav; Mukherjee, Avinaba; Khuda-Bukhsh, Anisur Rahman

    2014-01-01

    Objectives: Condurango is widely used in various systems of complementary and alternative medicines (CAM) against oesophageal and stomach ailments including certain types of cancer. However, until now no systematic study has been conducted to verify its efficacy and dose with proper experimental support. Therefore, we examined if ethanolic extract of Condurango could ameliorate benzo[a]pyrene (BaP)-induced lung cancer in rats, in vivo to validate its use as traditional medicine. Methods Fifteen male and 15 female Sprague-Dawley (SD) rats were treated with 0.28 mg/kg of Sweet Bee Venom (SBV) (high-dosage group) and the same numbers of male and female SD rats were treated with 0.2 mL/kg of normal saline (control group) for 13 weeks. We selected five male and five female SD rats from the high-dosage group and the same numbers of male and female SD rats from the control group, and we observed these rats for four weeks. We conducted body-weight measurements, ophthalmic examinations, urinalyses and hematology, biochemistry, histology tests. Results: A histological study revealed gradual progress in lung tissue-repair activity in Condurango-fed cancer-bearing rats, showing gradual tissue recovery after three months of drug administration. Condurango has the capacity to generate reactive oxygen species (ROS), which may contribute to a reduction in anti-oxidative activity and to an induction of oxidative stress-mediated cancer cell-death. Condurango-activated pro-apoptotic genes (Bax, caspase-3, caspase-9, p53, cytochrome-c, apaf-1, ICAD and PARP) and down-regulated antiapoptotic-Bcl-2 expression were noted both at mRNA and protein levels. Studies on caspase-3 activation and PARP cleavage by western blot analysis revealed that Condurango induced apoptosis through a caspase-3-dependent pathway. Conclusion: The anticancer efficacy of an ethanolic extract of Condurango for treating BaP-induced lung cancer in rats lends support for its use in various traditional systems of

  6. Genomic instability in quartz dust exposed rat lungs: Is inflammation responsible?

    NASA Astrophysics Data System (ADS)

    Albrecht, C.; Knaapen, A. M.; Cakmak Demircigil, G.; Coskun, Erdem; van Schooten, F. J.; Borm, P. J. A.; Schins, R. P. F.

    2009-02-01

    Exposure to quartz dusts has been associated with lung cancer and fibrosis. Although the responsible mechanisms are not completely understood, progressive inflammation with associated induction of persistent oxidative stress has been discussed as a key event for these diseases. Previously we have evaluated the kinetics of pulmonary inflammation in the rat model following a single intratracheal instillation of 2mg DQ12 quartz, either in its native form or upon its surface modification with polyvinylpyridine-N-oxide or aluminium lactate. This model has been applied now to evaluate the role of inflammation in the kinetics of induction of DNA damage and response at 3, 7, 28, and 90 days after treatment. Bronchoalveolar lavage (BAL) cell counts and differentials as well as BAL fluid myeloperoxidase activity were used as markers of inflammation. Whole lung homogenate was investigated to determine the induction of the oxidative and pre-mutagenic DNA lesion 8-hydroxy-2-deoxy-guanosine (8-OHdG) by HPLC/ECD, while mRNA and protein expression of oxidative stress and DNA damage response genes including hemeoxygenase-1 (HO-1) and apurinic/apyrimidinic endonuclease (APE/Ref-1) were evaluated using Western blotting and real time PCR. Isolated lung epithelial cells from the treated rats were used for DNA strand breakage analysis using the alkaline comet assay as well as for micronucleus scoring in May-Gruenwald-Giemsa stained cytospin preparations. In the rats that were treated with quartz, no increased 8-OHdG levels were observed, despite the presence of a marked and persistent inflammation. However, DNA strand breakage in the lung epithelial cells of the quartz treated rats was significantly enhanced at 3 days, but not at 28 days. Moreover, significantly enhanced micronucleus frequencies were observed for all four time points investigated. In the animals that were treated with the PVNO modified quartz, micronuclei scores did not differ from controls, while in those treated with

  7. Anti‑inflammatory effects of Panax notoginseng saponins ameliorate acute lung injury induced by oleic acid and lipopolysaccharide in rats.

    PubMed

    Chen, Yu-Qing; Rong, Ling; Qiao, Jian-Ou

    2014-09-01

    This study investigated the effect of Panax notoginseng saponins (PNS) on acute lung injury (ALI) induced by oleic acid (OA) and lipopolysaccharide (LPS). A total of 28 Wistar rats were divided into four groups: sham; sham + PNS; OA‑LPS‑induced ALI and ALI + PNS. Lung tissue histology, lung wet‑to‑dry (W/D) weight ratio, extravascular lung water (EVLW) and epithelial sodium channel α (αENaC) mRNA and protein expression were examined. In addition, levels of inflammatory cytokines, including tumor necrosis factor α (TNF‑α), interleukin (IL)‑6 and IL‑10, as well as total leukocyte and neutrophil counts, were analyzed in rat bronchoalveolar lavage fluid (BALF) and serum. ALI + PNS rats were observed to exhibit significantly lower pulmonary parenchymal damage and EVLW compared with ALI rats. Furthermore, total leukocyte and neutrophil counts, and levels of inflammatory cytokines were significantly decreased following PNS administration in ALI rats. In addition, the decrease in αENaC mRNA and protein expression observed in the lung tissue of ALI rats was partially restored following PNS treatment. PNS treatment was demonstrated to ameliorate OA‑LPS‑induced ALI, potentially through restoration of αENaC mRNA and protein expression and through PNS‑induced anti‑inflammatory effects. PMID:24938646

  8. Effects of laser smoke on the lungs of rats

    SciTech Connect

    Baggish, M.S.; Elbakry, M.

    1987-05-01

    The sequelae of long-term inhalation of carbon dioxide laser smoke on 10 white rats were studied in a three-phase experiment. The fine particulate matter resulting from tissue vaporization was deposited in the animals' alveoli, which produced congestive interstitial pneumonia, bronchiolitis, and emphysema. The pathologic findings induced by laser plume are not dissimilar to those resulting from the long-term inhalation of other types of particulate matter. Use of an efficient smoke evacuator should offer substantial protection against these normal effects.

  9. Immunohistochemical characteristics of surfactant proteins a, B, C and d in inflammatory and tumorigenic lung lesions of f344 rats.

    PubMed

    Yokohira, Masanao; Yamakawa, Keiko; Nakano, Yuko; Numano, Takamasa; Furukawa, Fumio; Kishi, Sosuke; Ninomiya, Fumiko; Kanie, Shohei; Hitotsumachi, Hiroko; Saoo, Kousuke; Imaida, Katsumi

    2014-10-01

    Surfactant proteins (SPs), originally known as human lung surfactants, are essential to respiratory structure and function. There are 4 subtypes, SP-A, SP-B, SP-C and SP-D, with SP-A and SP-D having immunological functions, and SP-B and SP-C having physicochemical properties that reduce the surface tension at biological interfaces. In this experiment, the expressions of SP-A, SP-B, SP-C and SP-D in lung neoplastic lesions induced by N-bis (2-hydroxypropyl) nitrosamine (DHPN) and inflammatory lesions due to quartz instillation were examined and compared immunohistochemically. Formalin fixed paraffin embedded (FFPE) lung samples featuring inflammation were obtained with a rat quartz instillation model, and neoplastic lesions, hyperplasias and adenomas, were obtained with the rat DHPN-induced lung carcinogenesis model. In the rat quartz instillation model, male 10-week old F344 rats were exposed by intratracheal instillation (IT) to quartz at a dose of 2 mg/rat suspended in saline (0.2 ml) on day 0, and sacrificed on day 28. Lung tumorigenesis in F344 male rats was initiated by DHPN in drinking water for 2 weeks, and the animals were then sacrificed in week 30. Lung proliferative lesions, hyperplasias and adenomas, were observed with DHPN, and inflammation was observed with quartz. The expressions of SP-A, SP-B, SP-C and SP-D were examined immunohistochemically. SP-B and SP-C showed strong expression in lung hyperplasias and adenomas, while SP-A and SP-D were observed in mucus or exudates in inflammatory alveoli. These results suggest the possibility that SP-B and SP-C are related to lung tumorigenesis. PMID:25378802

  10. Surface fluorescence studies of tissue mitochondrial redox state in isolated perfused rat lungs.

    PubMed

    Staniszewski, Kevin; Audi, Said H; Sepehr, Reyhaneh; Jacobs, Elizabeth R; Ranji, Mahsa

    2013-04-01

    We designed a fiber-optic-based optoelectronic fluorometer to measure emitted fluorescence from the auto-fluorescent electron carriers NADH and FAD of the mitochondrial electron transport chain (ETC). The ratio of NADH to FAD is called the redox ratio (RR = NADH/FAD) and is an indicator of the oxidoreductive state of tissue. We evaluated the fluorometer by measuring the fluorescence intensities of NADH and FAD at the surface of isolated, perfused rat lungs. Alterations of lung mitochondrial metabolic state were achieved by the addition of rotenone (complex I inhibitor), potassium cyanide (KCN, complex IV inhibitor) and/or pentachlorophenol (PCP, uncoupler) into the perfusate recirculating through the lung. Rotenone- or KCN-containing perfusate increased RR by 21 and 30%, respectively. In contrast, PCP-containing perfusate decreased RR by 27%. These changes are consistent with the established effects of rotenone, KCN, and PCP on the redox status of the ETC. Addition of blood to perfusate quenched NADH and FAD signal, but had no effect on RR. This study demonstrates the capacity of fluorometry to detect a change in mitochondrial redox state in isolated perfused lungs, and suggests the potential of fluorometry for use in in vivo experiments to extract a sensitive measure of lung tissue health in real-time. PMID:23238793

  11. Caffeine Mitigates Lung Inflammation Induced by Ischemia-Reperfusion of Lower Limbs in Rats

    PubMed Central

    Chou, Wei-Chi; Kao, Ming-Chang; Yue, Chung-Tai; Tsai, Pei-Shan; Huang, Chun-Jen

    2015-01-01

    Reperfusion of ischemic limbs can induce inflammation and subsequently cause acute lung injury. Caffeine, a widely used psychostimulant, possesses potent anti-inflammatory capacity. We elucidated whether caffeine can mitigate lung inflammation caused by ischemia-reperfusion (IR) of the lower limbs. Adult male Sprague-Dawley rats were randomly allocated to receive IR, IR plus caffeine (IR + Caf group), sham-operation (Sham), or sham plus caffeine (n = 12 in each group). To induce IR, lower limbs were bilaterally tied by rubber bands high around each thigh for 3 hours followed by reperfusion for 3 hours. Caffeine (50 mg/kg, intraperitoneal injection) was administered immediately after reperfusion. Our histological assay data revealed characteristics of severe lung inflammation in the IR group and mild to moderate characteristic of lung inflammation in the IR + Caf group. Total cells number and protein concentration in bronchoalveolar lavage fluid of the IR group were significantly higher than those of the IR + Caf group (P < 0.001 and P = 0.008, resp.). Similarly, pulmonary concentrations of inflammatory mediators (tumor necrosis factor-α, interleukin-1β, and macrophage inflammatory protein-2) and pulmonary myeloperoxidase activity of the IR group were significantly higher than those of the IR + Caf group (all P < 0.05). These data clearly demonstrate that caffeine could mitigate lung inflammation induced by ischemia-reperfusion of the lower limbs. PMID:26648663

  12. Incorporation of glucose carbons into rat lung lipids after exposure to 0.6 ppm ozone.

    PubMed

    Bassett, D J; Rabinowitz, J L

    1985-05-01

    Continuous exposure to low concentrations of ozone has previously been associated with proliferation of lung alveolar type II epithelial cells. In this study, 14C incorporation into tissue lipids was determined in isolated rat lungs by perfusion with [U-14C]glucose, at a time of maximal hyperplasia brought about by 3 days continuous exposure to 0.6 ppm ozone. Ozone exposed lungs exhibited increased rates of glycolytic energy production, indicated by an 89% increase in 3H2O generation on perfusion with [5-3H]glucose, from a control value of 17.5 +/- 2.1 mumol X h-1 X g-1 X dry wt-1 (+/- SE, n = 4). Ozone exposure resulted in enhanced 14C incorporations into glyceride-glycerol and fatty acid moieties of lung lipids of 95 and 180%, respectively, with a greater proportion of label being recovered in shorter chain fatty acids. Although increased labeling was observed in both neutral and phospholipids, the pattern of 14C recovery suggested a relative increased glucose carbon incorporation into lung free fatty acids, phosphatidic acid, and such membrane associated lipids as phosphatidylinositol and those containing sphingosine. These results are consistent with the needs of a dividing cell population for enhanced energy production and synthesis of new lipids. PMID:3993775

  13. Moderate postnatal hyperoxia accelerates lung growth and attenuates pulmonary hypertension in infant rats after exposure to intra-amniotic endotoxin.

    PubMed

    Tang, Jen-Ruey; Seedorf, Gregory J; Muehlethaler, Vincent; Walker, Deandra L; Markham, Neil E; Balasubramaniam, Vivek; Abman, Steven H

    2010-12-01

    To determine the separate and interactive effects of fetal inflammation and neonatal hyperoxia on the developing lung, we hypothesized that: 1) antenatal endotoxin (ETX) causes sustained abnormalities of infant lung structure; and 2) postnatal hyperoxia augments the adverse effects of antenatal ETX on infant lung growth. Escherichia coli ETX or saline (SA) was injected into amniotic sacs in pregnant Sprague-Dawley rats at 20 days of gestation. Pups were delivered 2 days later and raised in room air (RA) or moderate hyperoxia (O₂, 80% O₂ at Denver's altitude, ∼65% O₂ at sea level) from birth through 14 days of age. Heart and lung tissues were harvested for measurements. Intra-amniotic ETX caused right ventricular hypertrophy (RVH) and decreased lung vascular endothelial growth factor (VEGF) and VEGF receptor-2 (VEGFR-2) protein contents at birth. In ETX-exposed rats (ETX-RA), alveolarization and vessel density were decreased, pulmonary vascular wall thickness percentage was increased, and RVH was persistent throughout the study period compared with controls (SA-RA). After antenatal ETX, moderate hyperoxia increased lung VEGF and VEGFR-2 protein contents in ETX-O₂ rats and improved their alveolar and vascular structure and RVH compared with ETX-RA rats. In contrast, severe hyperoxia (≥95% O₂ at Denver's altitude) further reduced lung vessel density after intra-amniotic ETX exposure. We conclude that intra-amniotic ETX induces fetal pulmonary hypertension and causes persistent abnormalities of lung structure with sustained pulmonary hypertension in infant rats. Moreover, moderate postnatal hyperoxia after antenatal ETX restores lung growth and prevents pulmonary hypertension during infancy. PMID:20709730

  14. [Scintigraphic imaging of macrophages involved in lung vasoreflex: rat model].

    PubMed

    Ndoye, O; Mbodj, M; Gassama Seck, S; Sizaret, P Y; Abeille, B; Le Pape, A

    2003-01-01

    At time of pathological situations, a pulmonary fixation of labelled substances injected by intravenous way is observed. This fixation would result from a phagocytosis of these substances by abnormal cells whose presence was induced in the endothelium: Pulmonary Intravascular Macrophages (PIM's). After activation by phagocytosis, these cells are able to secrete powerful vasoactive mediators capable of inducing cardiopulmonary accidents. Hepatic cholestase was induced in Wistar rats by ligation and section of common bile duct. The recruitment of PIM's was followed in vivo by phagocytosis scintigraphic imaging after labelled colloid injection. During the 35 days of evolution of the pathology, we observe a pulmonary fixation of the colloid agents which progresses up to 70% as well as a concomitant decease in the hepatic activity. Histologic examination showed numerous cells related to pulmonary capillaries' endothelium belonging to mononuclear phagocytes line and expressing an activated phenotype of monocytes. The scintigraphic and histological tests carried out enabled us to validate the model of induction of PIM's in rat by ligation of the choledoque one. The study of the vasoactive response via certain mediators can from now be approached, a Doppler technique on the pig aorta is being in the course of evaluation. PMID:15770812

  15. Functional and inflammatory alterations in the lung following exposure of rats to nitrogen mustard

    SciTech Connect

    Sunil, Vasanthi R.; Patel, Kinal J.; Shen, Jianliang; Reimer, David; Gow, Andrew J.; Laskin, Jeffrey D.; Laskin, Debra L.

    2011-01-01

    Nitrogen mustard is a vesicant that causes damage to the respiratory tract. In these studies, we characterized the acute effects of nitrogen mustard on lung structure, inflammatory mediator expression, and pulmonary function, with the goal of identifying mediators potentially involved in toxicity. Treatment of rats (male Wistar, 200-225 g) with nitrogen mustard (mechlorethamine hydrochloride, i.t., 0.25 mg/kg) resulted in marked histological changes in the respiratory tract, including necrotizing bronchiolitis, thickening of alveolar septa, and inflammation which was evident within 24 h. This was associated with increases in bronchoalveolar lavage protein and cells, confirming injury to alveolar epithelial regions of the lung. Nitrogen mustard administration also resulted in increased expression of inducible nitric oxide synthase and cyclooxygenase-2, pro-inflammatory proteins implicated in lung injury, in alveolar macrophages and alveolar and bronchial epithelial cells. Expression of connective tissue growth factor and matrix metalloproteinase-9, mediators regulating extracellular matrix turnover was also increased, suggesting that pathways leading to chronic lung disease are initiated early in the pathogenic process. Following nitrogen mustard exposure, alterations in lung mechanics and function were also observed. These included decreases in baseline static compliance, end-tidal volume and airway resistance, and a pronounced loss of methacholine responsiveness in resistance, tissue damping and elastance. Taken together, these data demonstrate that nitrogen mustard induces rapid structural and inflammatory changes in the lung which are associated with altered lung functioning. Understanding the nature of the injury induced by nitrogen mustard and related analogs may aid in the development of efficacious therapies for treatment of pulmonary injury resulting from exposure to vesicants.

  16. Hypoxic preconditioning with cobalt attenuates hypobaric hypoxia-induced oxidative damage in rat lungs.

    PubMed

    Shukla, Dhananjay; Saxena, Saurabh; Jayamurthy, Purushotman; Sairam, Mustoori; Singh, Mrinalini; Jain, Swatantra Kumar; Bansal, Anju; Ilavazaghan, Govindaswamy

    2009-01-01

    Shukla, Dhananjay, Saurabh Saxena, Purushotman Jayamurthy, Mustoori Sairam, Mrinalini, Singh, Swatantra Kumar Jain, Anju Bansal, and Govindaswamy Ilavazaghan. High Alt. Med. Biol. 10:57-69, 2009.-Hypoxic preco759nditioning (HPC) provides robust protection against injury from subsequent prolonged hypobaric hypoxia, which is a characteristic of high altitude and is known to induce oxidative injury in lung by increasing the generation of reactive oxygen species (ROS) and decreasing the effectiveness of the antioxidant defense system. We hypothesize that HPC with cobalt might protect the lung from subsequent hypobaric hypoxia-induced lung injury. HPC with cobalt can be achieved by oral feeding of CoCl(2) (12.5 mg kg(-1)) in rats for 7 days. Nonpreconditioned rats responded to hypobaric hypoxia (7619 m) by increased reactive oxygen species (ROS) generation and a decreased GSH/GSSG ratio. They also showed a marked increase in lipid peroxidation, heat-shock proteins (HSP32, HSP70), metallothionins (MT), levels of inflammatory cytokines (TNF-alpha, IFN-gamma, MCP-1), and SOD, GPx, and GST enzyme activity. In contrast, rats preconditioned with cobalt were far less impaired by severe hypobaric hypoxia, as observed by decreased ROS generation, lipid peroxidation, and inflammatory cytokine release and an inceased GSH/GSSG ratio. Increased expression of antioxidative proeins Nrf-1, HSP-32, and MT was also observed in cobalt- preconditioned animals. A marked increase in the protein expression and DNA binding activity of hypoxia-inducible transcriptional factor (HIF-1alpha) and its regulated genes, such as erythropoietin (EPO) and glucose transporter-1 (glut-1), was observed after HPC with cobalt. We conclude that HPC with cobalt enhances antioxidant status in the lung and protects from subsequent hypobaric hypoxia-induced oxidative stress. PMID:19278353

  17. Mitigation of radiation-induced lung injury with EUK-207 and genistein: effects in adolescent rats.

    PubMed

    Mahmood, J; Jelveh, S; Zaidi, A; Doctrow, S R; Hill, R P

    2013-02-01

    Exposure of civilian populations to radiation due to accident, war or terrorist act is an increasing concern. The lung is one of the more radiosensitive organs that may be affected in people receiving partial-body irradiation and radiation injury in lung is thought to be associated with the development of a prolonged inflammatory response. Here we examined how effectively damage to the lung can be mitigated by administration of drugs initiated at different times after radiation exposure and examined response in adolescent animals for comparison with the young adult animals that we had studied previously. We studied the mitigation efficacy of the isoflavone genistein (50 mg/kg) and the salen-Mn superoxide dismutase-catalase mimetic EUK-207 (8 mg/kg), both of which have been reported to scavenge reactive oxygen species and reduce activity of the NFkB pathway. The drugs were given by subcutaneous injection to 6- to 7-week-old Fisher rats daily starting either immediately or 2 weeks after irradiation with 12 Gy to the whole thorax. The treatment was stopped at 28 weeks post irradiation and the animals were assessed for levels of inflammatory cytokines, activated macrophages, oxidative damage and fibrosis at 48 weeks post irradiation. We demonstrated that both genistein and EUK-207 delayed and suppressed the increased breathing rate associated with pneumonitis. These agents also reduced levels of oxidative damage (50-100%), levels of TGF-β1 expression (75-100%), activated macrophages (20-60%) and fibrosis (60-80%). The adolescent rats developed pneumonitis earlier following irradiation of the lung than did the adult rats leading to greater severe morbidity requiring euthanasia (∼37% in adolescents vs. ∼10% in young adults) but the extent of the mitigation of the damage was similar or slightly greater. PMID:23237541

  18. Hypertensive Rat Lungs Retain Hallmarks of Vascular Disease upon Decellularization but Support the Growth of Mesenchymal Stem Cells

    PubMed Central

    Scarritt, Michelle E.; Bonvillain, Ryan W.; Burkett, Brian J.; Wang, Guangdi; Glotser, Elana Y.; Zhang, Qiang; Sammarco, Mimi C.; Betancourt, Aline M.; Sullivan, Deborah E.

    2014-01-01

    There are an insufficient number of donor organs available to meet the demand for lung transplantation. This issue could be addressed by regenerating functional tissue from diseased or damaged lungs that would otherwise be deemed unsuitable for transplant. Detergent-mediated whole-lung decellularization produces a three-dimensional natural scaffold that can be repopulated with various cell types. In this study, we investigated the decellularization and initial recellularization of diseased lungs using a rat model of monocrotaline-induced pulmonary hypertension (MCT-PHT). Decellularization of control and MCT-PHT Sprague-Dawley rat lungs was accomplished by treating the lungs with a combination of Triton X-100, sodium deoxycholate, NaCl, and DNase. The resulting acellular matrices were characterized by DNA quantification, Western blotting, immunohistochemistry, and proteomic analyses revealing that decellularization was able to remove cells while leaving the extracellular matrix (ECM) components and lung ultrastructure intact. Decellularization significantly reduced DNA content (∼30-fold in MCT-PHT lungs and ∼50-fold in the control lungs) and enriched ECM components (>60-fold in both the control and MCT-PHT lungs) while depleting cellular proteins. MicroCT visualization of MCT-PHT rat lungs indicated that the vasculature was narrowed as a result of MCT treatment, and this characteristic was unchanged by decellularization. Mean arterial vessel diameter of representative decellularized MCT-PHT and control scaffolds was estimated to be 0.152±0.134 mm and 0.247±0.160 mm, respectively. Decellularized MCT-PHT lung scaffolds supported attachment and survival of rat adipose-derived stem cells (rASCs), seeded into the airspace or the vasculature, for at least 2 weeks. The cells seeded in MCT-PHT lung scaffolds proliferated and underwent apoptosis similar to control scaffolds; however, the initial percentage of apoptotic cells was slightly higher in MCT-PHT lungs (2

  19. Early and late effects of prenatal corticosteroid treatment on the microRNA profiles of lung tissue in rats

    PubMed Central

    YU, HONG-REN; LI, SUNG-CHOU; TSENG, WAN-NING; TAIN, YOU-LIN; CHEN, CHIH-CHENG; SHEEN, JIUNN-MING; TIAO, MAO-MENG; KUO, HO-CHANG; HUANG, CHAO-CHENG; HSIEH, KAI-SHENG; HUANG, LI-TUNG

    2016-01-01

    Glucocorticoids have been administered to mothers at risk of premature delivery to induce maturation of preterm fetal lungs and prevent the development of respiratory distress syndrome. Micro (mi)RNAs serve various crucial functions in cell proliferation, differentiation and organ development; however, few studies have demonstrated an association between miRNAs and lung development. The aim of the present study was to investigate alterations in the miRNA profiles of rat lung tissue following prenatal glucocorticoid therapy for fetal lung development. The differences in miRNA expression profiles were compared between postnatal days 7 (D7) and 120 (D120) rat lung tissues, followed by validation using reverse transcription-quantitative polymerase chain reaction. The miRNA profiles of rat lung tissues following prenatal dexamethasone (DEX) therapy were also investigated. miRNAs with 2-fold changes were selected for further analysis. At D120, 6 upregulated and 6 downregulated miRNAs were detected, compared with D7. Among these differentially expressed miRNAs, miR-101-3p and miR-99b-5p were associated with the lowest and highest expressions of miRNA at D7, respectively. A limited impact on the miRNA profiles of rat lung tissues was observed following prenatal DEX treatment, which may help to further clarify the mechanisms underlying normal lung development. However, the results of the present study cannot entirely elucidate the effects of prenatal DEX treatment on the lung development of premature infants, and further studies investigating the impact of prenatal corticosteroids on fetal lung miRNA profiles are required. PMID:26997989

  20. Rat lung macrophage tumor cytotoxin production: impairment by chronic in vivo cigarette smoke exposure.

    PubMed

    Flick, D A; Gonzalez-Rothi, R J; Harris, J O; Gifford, G E

    1985-11-01

    Macrophages in the presence of bacteria-derived lipopolysaccharide (LPS) stimuli produce a soluble cytotoxin which is toxic to tumor cells. In this study, we examined various parameters of cytotoxin production from pulmonary lavage cells obtained from Fisher 344 cesarean-derived rats. Cultures of macrophages were derived from pulmonary lavage cells and stimulated in vitro with LPS. Cytotoxin production was assayed in vitro using an L-929 cell target assay. Pulmonary lavage preparations contained a relatively pure population of macrophages, and adherence studies revealed that nonadherent lavage cells contributed negligible amounts of cytotoxin, indicating that macrophages were responsible for cytotoxin production. After LPS stimulation, cytotoxin production became maximal within 10 h and thereafter plateaued. Doses of LPS above 0.1 microgram/ml were optimal for production, and in the absence of LPS, no cytotoxin was detected. Because cigarette smoke is the major etiological factor in the development of lung cancers and because smoking is known to profoundly alter the function of alveolar macrophages in humans and experimental animals, subsequent experiments examined the role of chronic cigarette smoke exposure on tumoricidal activity of lung macrophages. Rats were exposed in vivo for 8 wk to either cigarette smoke or air (sham-treated controls). When lavage cells were cultured and stimulated with LPS (1 microgram/ml), 5- to 10-fold less cytotoxin was produced by lavage cells from rats exposed to cigarette smoke. Similarly, using a direct cytotoxicity assay, lung macrophages of smoke-exposed animals also revealed marked impairment in cytotoxicity against L-929 cell targets, and this was noted over a wide range of macrophage:tumor target cell ratios. Another product of macrophages, interferon, was also decreased in rats exposed in vivo to cigarette smoke when compared to sham-treated controls. These results suggest that cigarette smoke exposure may impair pulmonary

  1. Adenoviral gene transfer of macrophage inflammatory protein-2 in rat lung.

    PubMed Central

    Foley, R.; Driscoll, K.; Wan, Y.; Braciak, T.; Howard, B.; Xing, Z.; Graham, F.; Gauldie, J.

    1996-01-01

    Replication-defective adenoviral vectors are capable of localized transfer and expression of incorporated gene product in lung tissue. We have constructed an adenoviral vector that expresses rat macrophage inflammatory protein (MIP)-2, a C-X-C chemokine specifically chemotactic for neutrophils, Supernatants from 293 cells, infected with the adenoviral MIP-2 (ADMIP-2) construct, showed potent chemotactic activity and the ability of the ADMIP-2 vector to transcribe and make functional protein was confirmed. In vivo analysis of bronchoalveolar lavage fluid from rats after intratracheal instillation of ADMIP-2 (10(9) plaque-forming units) showed a 10-fold increase in the absolute number of neutrophils in bronchoalveolar lavage fluid as opposed to rats treated with an equal titer of an E1-disabled control virus expressing firefly luciferase (ADCA-18). Neutrophils constituted 65% of total BAL cells with alveolar macrophages being the other major cell type recovered. Rat MIP-2 protein was increased (nanograms per milliliter) in bronchoalveolar lavage fluid over a period of 7 days in ADMIP-2-treated animals. MIP-2 mRNA was demonstrated by Northern blot analysis in lung tissue, and histological analysis confirmed the presence of massive localized tissue neutrophilia. Evidence of chronic tissue injury and repair (ie, fibrosis) was not detected up to 2 weeks after the neutrophil infiltrate had resolved, subsequent to decreased chemokine presence. Adenoviral gene transfer proved an effective tool for the assessment of lung tissue expression of this chemokine in vivo and is useful in developing rodent models of tissue neutrophilia. Images Figure 2 Figure 3 Figure 4 Figure 5 Figure 7 Figure 8 PMID:8863686

  2. Cellular kinetics in the lungs of aging Fischer 344 rats after acute exposure to ozone.

    PubMed Central

    Vincent, R.; Adamson, I. Y.

    1995-01-01

    Lung repair in aging Fischer 344 male rats was investigated after an acute inhalation exposure to ozone. Adult (9-month-old) and senescent (24-month-old) rats were exposed to 0.8 ppm ozone for a single period of 6 hours, and thereafter studied over 5 days of recovery in clean air. The animals were given intraperitoneal injections of colchicine and [3H]thymidine, 4 hours and 1.5 hours before termination, respectively. The lungs were inflated with glutaraldehyde, and tissue samples were embedded in epoxy resin for electron microscopy, or in glycol methacrylate for light-microscopic autoradiography. Exposure to ozone produced epithelial injury in alveolar ducts and terminal bronchioles, later reflected by the transient increase in mitotic activity of nonciliated bronchiolar cells and alveolar type 2 cells. The increase in metaphase-arrested cells and [3H]thymidine-labeled cells in bronchioles followed similar time courses, ie, maximal at days 1.5 to 2, and subsiding by day 3. In the alveoli, type 1 cell necrosis was observed early after exposure (6 hours recovery), without notable structural changes in the interstitial and endothelial compartments. The increased mitotic activity in the alveolar septa was mostly due to proliferation of epithelial type 2 cells, which was maximal at day 1.5, and of interstitial cells, maximal at day 2.5. The magnitude of the mitotic responses of nonciliated bronchiolar cells, alveolar type 2 cells and interstitial cells was highest (+50%) in the lungs of senescent rats. Although the cellular events during repair are essentially similar in both age groups, the results indicate that senescent rats have a significantly higher level of initial injury from inhalation of ozone than adult animals. Images Figure 1 Figure 2 Figure 5 PMID:7717445

  3. Clopidogrel reduces the inflammatory response of lung in a rat model of decompression sickness.

    PubMed

    Bao, Xiao-Chen; Chen, Hong; Fang, Yi-Qun; Yuan, Heng-Rong; You, Pu; Ma, Jun; Wang, Fang-Fang

    2015-06-01

    Inflammation and platelet activation are critical phenomena in the setting of decompression sickness. Clopidogrel (Clo) inhibits platelet activation and may also reduce inflammation. The goal of this study was to investigate if Clo had a protective role in decompression sickness (DCS) through anti-inflammation way. Male Sprague-Dawley rats (n=111) were assigned to three groups: control+vehicle group, DCS+vehicle, DCS+Clo group. The experimental group received 50 mg/kg of Clo or vehicle for 3 days, then compressed to 1,600 kPa (150 msw) in 28 s, maintained at 150 msw for 242 s and decompressed to surface at 3m/s. In a control experiment, rats were also treated with vehicle for 3 days and maintained at atmospheric pressure for an equivalent period of time. Clinical assessment took place over a period of 30 min after surfacing. At the end, blood samples were collected for blood cells counts and cytokine detection. The pathology and the wet/dry ratio of lung tissues, immunohistochemical detection of lung tissue CD41 expression, the numbers of P-selectin positive platelets and platelet-leukocyte conjugates in blood were tested. We found that Clo significantly reduced the DCS mortality risk (mortality rate: 11/45 with Clo vs. 28/46 in the untreated group, P<0.01). Clo reduced the lung injury, the wet/dry ratio of lung, the accumulation of platelet and leukocyte in lung, the fall in platelet count, the WBC count, the numbers of activated platelets and platelet-leukocyte complexes in peripheral blood. It was concluded that Clo can play a protective role in decompression sickness through reducing post-decompression platelet activation and inflammatory process. PMID:25784626

  4. The isolation and culture of endothelial colony-forming cells from human and rat lungs.

    PubMed

    Alphonse, Rajesh S; Vadivel, Arul; Zhong, Shumei; Zong, Shumei; McConaghy, Suzanne; Ohls, Robin; Yoder, Mervin C; Thébaud, Bernard

    2015-11-01

    Blood vessels are crucial for the normal development, lifelong repair and homeostasis of tissues. Recently, vascular progenitor cell-driven 'postnatal vasculogenesis' has been suggested as an important mechanism that contributes to new blood vessel formation and organ repair. Among several described progenitor cell types that contribute to blood vessel formation, endothelial colony-forming cells (ECFCs) have received widespread attention as lineage-specific 'true' vascular progenitors. Here we describe a protocol for the isolation of pulmonary microvascular ECFCs from human and rat lung tissue. Our technique takes advantage of an earlier protocol for the isolation of circulating ECFCs from the mononuclear cellular fraction of peripheral blood. We adapted the earlier protocol to isolate resident ECFCs from the distal lung tissue. After enzymatic dispersion of rat or human lung samples into a cellular suspension, CD31-expressing cells are positively selected using magnetic-activated cell sorting and plated in endothelial-specific growth conditions. The colonies arising after 1-2 weeks in culture are carefully separated and expanded to yield pure ECFC cultures after a further 2-3 weeks. The resulting cells demonstrate the defining characteristics of ECFCs such as (i) 'cobblestone' morphology of cultured cell monolayers; (ii) acetylated low-density lipoprotein uptake and Ulex europaeus lectin binding; (iii) tube-like network formation in Matrigel; (iv) expression of endothelial cell-specific surface markers and the absence of hematopoietic or myeloid surface antigens; (v) self-renewal potential displayed by the most proliferative cells; and (vi) contribution to de novo vessel formation in an in vivo mouse implant model. Assuming typical initial cell adhesion and proliferation rates, the entire procedure can be completed within 4 weeks. Isolation and culture of lung vascular ECFCs will allow assessment of the functional state of these cells in experimental and human

  5. Ethanol gastric lesion aggravated by lung injury in rat. Therapy effect of antiulcer agents.

    PubMed

    Stancic-Rokotov, D; Sikiric, P; Seiwerth, S; Slobodnjak, Z; Aralica, J; Aralica, G; Perovic, D; Anic, T; Zoricic, I; Buljat, G; Prkacin, I; Gjurasin, M; Rucman, R; Petek, M; Turkovic, B; Ivasovic, Z; Jagic, V; Staresinic, M; Boban-Blagaic, A

    2001-01-01

    Hemorrhagic mucosal lesions in the stomach in the rat induced by an intragastrical application of 1 ml of 50 or 75% ethanol were aggravated by preceding lung damage provoked by an intratracheal instillation of pyrogen-free saline or HCl (pH 1.75) or 50-h exposure to 100% oxygen. Due to the particular preceding aggravating circumstances, these lesions were taken to be of a special kind, rather than ordinary. So far, it is not known whether and how antiulcer agents may influence these lesions. Rats received an intratracheal (i.t.) HCl instillation [1.5 ml/kg HCl (pH 1.75)] (lung-lesion), and an intragastric instillation of 96% ethanol (gastric lesion; 1 ml/rat, 24 h after i.t. HCl instillation), and were sacrificed 1 h after ethanol. Basically, in lung injured rats, the subsequent ethanol-gastric lesion was markedly aggravated. This aggravation, however, in turn, did not affect the severity of the lung lesions in the further period, at least for a 1-h observation. Taking intratracheal HCl-instillation as time 0, a gastric pentadecapeptide, GEPPPGKPADDAGLV, M.W.1419, coded BPC 157 (PL-10, PLD-116; 10 microg, 10 ng, 10 pg), ranitidine (10 mg), atropine (10 mg), omeprazole (10 mg), were given [/kg, intraperitoneally (i.p.)] (1) once, only prophylactically [as a pre-treatment (at -1 h), or as a co-treatment (at 0)], or only therapeutically (at +18 h or +24 h); (2) repeatedly, combining prophylactic/therapeutic regimens [(-1 h)+(+24 h) or (0)+(+24 h)], or therapeutic/therapeutic regimens [(+18 h)+(+24 h)]. In general, the antiulcer agents did protect against ethanol gastric lesions regardless of the presence of the severe lung injury, in all of the used regimens. Of note, combining their prophylactic and salutary regimens (at -1 h/+24 h, or at 0/+24 h) may increase the antiulcer potential, and the effect that had been not seen already with single application, became prominent after repeated treatment. PMID:11595452

  6. Frequent aberrant methylation of p16INK4a in primary rat lung tumors.

    PubMed Central

    Swafford, D S; Middleton, S K; Palmisano, W A; Nikula, K J; Tesfaigzi, J; Baylin, S B; Herman, J G; Belinsky, S A

    1997-01-01

    The p16INK4a (p16) tumor suppressor gene is frequently inactivated by homozygous deletion or methylation of the 5' CpG island in cell lines derived from human non-small-cell lung cancers. However, the frequency of dysfunction in primary tumors appears to be significantly lower than that in cell lines. This discordance could result from the occurrence or selection of p16 dysfunction during cell culture. Alternatively, techniques commonly used to examine tumors for genetic and epigenetic alterations may not be sensitive enough to detect all dysfunctions within the heterogeneous cell population present in primary tumors. If p16 inactivation plays a central role in development of non-small-cell lung cancer, then the frequency of gene inactivation in primary tumors should parallel that observed in cell lines. The present investigation addressed this issue in primary rat lung tumors and corresponding derived cell lines. A further goal was to determine whether the aberrant p16 gene methylation seen in human tumors is a conserved event in this animal model. The rat p16 gene was cloned and sequenced, and the predicted amino acid sequence of its product found to be 62% homologous to the amino acid sequence of the human analog. Homozygous deletion accounted for loss of p16 expression in 8 of 20 cell lines, while methylation of the CpG island extending throughout exon 1 was observed in 9 of 20 cell lines. 2-Deoxy-5-azacytidine treatment of cell lines with aberrant methylation restored gene expression. The methylated phenotype seen in cell lines showed an absolute correlation with detection of methylation in primary tumors. Aberrant methylation was also detected in four of eight primary tumors in which the derived cell line contained a deletion in p16. These results substantiate the primary tumor as the origin for dysfunction of the p16 gene and implicate CpG island methylation as the major mechanism for inactivating this gene in the rat lung tumors examined. Furthermore, rat

  7. Impact of acute exposure to WTC dust on ciliated and goblet cells in lungs of rats

    PubMed Central

    Cohen, Mitchell D.; Vaughan, Joshua M.; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Ghio, Andrew; Zelikoff, Judith; Lung-chi, Chen

    2015-01-01

    Clinical studies and the World Trade Center (WTC) Health Registry have revealed increases in the incidence of chronic (non-cancer) lung disorders among first responders (FR) who were at Ground Zero during the initial 72 h after the collapse. Our previous analyses of rats exposed to building-derived WTC dusts using exposure scenarios/levels that mimicked FR mouth-breathing showed that a single WTC dust exposure led to changes in expression of genes whose products could be involved in the lung ailments, but few other significant pathologies. We concluded that rather than acting as direct inducers of many of the FR health effects, it was more likely inhaled WTC dusts instead may have impacted on toxicities induced by other rescue-related co-pollutants present in Ground Zero air. To allow for such effects to occur, we hypothesized that the alkaline WTC dusts induced damage to the normal ability of the lungs to clear inhaled particles. To validate this, rats were exposed on two consecutive days (2 h/d, by intratracheal inhalation) to WTC dust (collected 12–13 September 2001) and examined over a 1-yr period thereafter for changes in the presence of ciliated cells in the airways and hyperplastic goblet cells in the lungs. WTC dust levels in the lungs were assessed in parallel to verify that any changes in levels of these cells corresponded with decreases in host ability to clear the particles themselves. Image analyses of the rat lungs revealed a significant decrease in ciliated cells and increase in hyperplastic goblet cells due to the single series of WTC dust exposures. The study also showed there was only a nominal non-significant decrease (6–11%) in WTC dust burden over a 1-yr period after the final exposure. These results provide support for our current hypothesis that exposure to WTC dusts caused changes in airway morphology/cell composition; such changes could, in turn, have led to potential alterations in the clearance/toxicities of other pollutants inhaled

  8. Impact of acute exposure to WTC dust on ciliated and goblet cells in lungs of rats.

    PubMed

    Cohen, Mitchell D; Vaughan, Joshua M; Garrett, Brittany; Prophete, Colette; Horton, Lori; Sisco, Maureen; Ghio, Andrew; Zelikoff, Judith; Lung-chi, Chen

    2015-01-01

    Clinical studies and the World Trade Center (WTC) Health Registry have revealed increases in the incidence of chronic (non-cancer) lung disorders among first responders (FR) who were at Ground Zero during the initial 72 h after the collapse. Our previous analyses of rats exposed to building-derived WTC dusts using exposure scenarios/levels that mimicked FR mouth-breathing showed that a single WTC dust exposure led to changes in expression of genes whose products could be involved in the lung ailments, but few other significant pathologies. We concluded that rather than acting as direct inducers of many of the FR health effects, it was more likely inhaled WTC dusts instead may have impacted on toxicities induced by other rescue-related co-pollutants present in Ground Zero air. To allow for such effects to occur, we hypothesized that the alkaline WTC dusts induced damage to the normal ability of the lungs to clear inhaled particles. To validate this, rats were exposed on two consecutive days (2 h/d, by intratracheal inhalation) to WTC dust (collected 12-13 September 2001) and examined over a 1-yr period thereafter for changes in the presence of ciliated cells in the airways and hyperplastic goblet cells in the lungs. WTC dust levels in the lungs were assessed in parallel to verify that any changes in levels of these cells corresponded with decreases in host ability to clear the particles themselves. Image analyses of the rat lungs revealed a significant decrease in ciliated cells and increase in hyperplastic goblet cells due to the single series of WTC dust exposures. The study also showed there was only a nominal non-significant decrease (6-11%) in WTC dust burden over a 1-yr period after the final exposure. These results provide support for our current hypothesis that exposure to WTC dusts caused changes in airway morphology/cell composition; such changes could, in turn, have led to potential alterations in the clearance/toxicities of other pollutants inhaled

  9. Effects of protein deficiency and food restriction on lung ascorbic acid and glutathione in rats exposed to ozone

    SciTech Connect

    Dubick, M.A.; Heng, H.; Rucker, R.B.

    1985-08-01

    Weanling (52 +/- 4 g) or adult (259 +/- 16 g) male Sprague-Dawley rats were fed ad libitum casein-based diets containing 4 or 16% protein. A third group (food restricted) was fed daily the 16% protein diet, but at the food intake level of the 4% protein group. After 3 wk (weanling) or 5 wk (adults), half of the rats in each group were continuously exposed to 0.64 ppm ozone for 7 d. Ascorbic acid and reduced glutathione levels were then measured. In the heart and liver from weanling rats, ascorbic acid concentrations were lower in the protein-deficient group than in either control group. In the liver from weanling rats glutathione concentrations were also reduced in response to protein deficiency. Exposure to ozone produced no additional response. For adult rats the response for liver glutathione was similar to that of the weanlings. The liver ascorbate concentration, however, was consistently lower in adult rats compared to weanlings exposed to ozone. In lungs from adult rats, the ascorbic acid concentration was lower in the protein-deficient group than in either control group. On a whole-organ basis, both ascorbic acid and glutathione were usually higher in lungs from rats exposed to ozone than from those exposed to air. Interestingly, protein deficiency did not appear to compromise the lung's ability to maintain, in relative terms, the ascorbic acid or glutathione concentration in response to ozone.

  10. Withaferin A attenuates lipopolysaccharide-induced acute lung injury in neonatal rats.

    PubMed

    Gao, S; Li, H; Zhou, X-Q; You, J-B; Tu, D-N; Xia, G; Jiang, J-X; Xin, C

    2015-01-01

    Withaferin A (WFA) is an active compound from Withania somnifera and has been reported to exhibit a variety of pharmacological activities such as anti—inflammatory, immunomodulatory and anti—tumor properties. In the present study, we investigated the potential protective role of WFA on acute lung injury in neonatal rats induced by lipopolysaccharide (LPS). We found that WFA significantly attenuated the pathological changes of lungs induced by LPS injection. Administration with WFA obviously decreased pulmonary neutrophil infiltration accompanied with decreased MPO concentrations. WFA also reduced the expression of pro—inflammatory cytokines including MIP—2, TNF—α, IL—1β and IL—6. Meanwhile, the expression levels of anti—inflammatory mediators such as TGF—β1 and IL—10 were significantly increased following WFA administration. Moreover, WFA protected LPS—treated rats from oxidative damage via up—regulation of TBARS and H2O2 concentrations and down—regulation of ROS contents. Taken together, the present study demonstrated that WFA administration attenuated LPS—induced lung injury through inhibition of inflammatory responses and oxidative stress. PMID:26255139

  11. Glycyrrhizic Acid Prevents Sepsis-Induced Acute Lung Injury and Mortality in Rats.

    PubMed

    Zhao, Hongyu; Zhao, Min; Wang, Yu; Li, Fengchun; Zhang, Zhigang

    2016-02-01

    Glycyrrhizic acid (GA), an active ingredient in licorice, has multiple pharmacological activities. However, the effects of GA on sepsis-induced acute lung injury (ALI) have not been determined. Tthe aim of this study was to investigate the molecular mechanism involved in the effects of GA against sepsis-induced ALI in rats. We found that GA alleviated sepsis-induced ALI through improvements in various pathological changes, as well as decreases in the lung wet/dry weight ratio and total protein content in bronchoalveolar lavage fluid, and a significant increase in the survival rate of treated rats. Additionally, GA markedly inhibited sepsis-induced pulmonary inflammatory responses. Moreover, we found that treatment with GA inhibited oxidative stress damage and apoptosis in lung tissue induced by ALI. Finally, GA treatment significantly inhibited NF-κ B, JNK and P38 MAPK activation. Our data indicate that GA has a protective effect against sepsis-induced ALI by inhibiting the inflammatory response, damage from oxidative stress, and apoptosis via inactivation of NF-κB and MAPK signaling pathways, providing a molecular basis for a new medical treatment for sepsis-induced ALI. PMID:26385569

  12. Ebselen Attenuates Lung Injury in Experimental Model of Carrageenan-Induced Pleurisy in Rats.

    PubMed

    Petronilho, Fabricia; Florentino, Drielly; Silvestre, Fernanda; Danielski, Lucineia Gainski; Nascimento, Diego Zapelini; Vieira, Andriele; Kanis, Luiz Alberto; Fortunato, Jucelia Jeremias; Badawy, Marwa; Barichello, Tatiana; Quevedo, Joao

    2015-08-01

    The study evaluates the role of Ebselen (Eb), an organoselenium compound in animal model of acute lung injury induced by carrageenan (CG). Wistar rats received saline or 2 % λ-carrageenan in the pleural cavity, and treatment with Eb (50 mg/kg intragastrically) or dexamethasone (Dx) (0.5 mg/kg intraperitoneal) after CG administration. After 4 h, rats were euthanized and the pleural exudate removed for analysis of the total cell count, total protein, lactate dehydrogenase, and nitrite/nitrate. Moreover, lung tissue were removed to verify the myeloperoxidase activity and oxidative damage. Eb showed anti-inflammatory activity by inhibiting leukocyte influx, myeloperoxidase activity, and nitrite/nitrate concentration. Eb presented with an anti-inflammatory activity similar to Dx and an antioxidant activity better than Dx. This study suggests that Eb plays an important role against the oxidative damage associated with anti-inflammatory activity in animal model of acute lung injury, proving to be similar or potentially more effective than Dx. PMID:25616904

  13. Efficient estimation of the total number of acini in adult rat lung

    PubMed Central

    Barré, Sébastien F.; Haberthür, David; Stampanoni, Marco; Schittny, Johannes C.

    2014-01-01

    Abstract Pulmonary airways are subdivided into conducting and gas‐exchanging airways. An acinus is defined as the small tree of gas‐exchanging airways, which is fed by the most distal purely conducting airway. Until now a dissector of five consecutive sections or airway casts were used to count acini. We developed a faster method to estimate the number of acini in young adult rats. Right middle lung lobes were critical point dried or paraffin embedded after heavy metal staining and imaged by X‐ray micro‐CT or synchrotron radiation‐based X‐rays tomographic microscopy. The entrances of the acini were counted in three‐dimensional (3D) stacks of images by scrolling through them and using morphological criteria (airway wall thickness and appearance of alveoli). Segmentation stopper were placed at the acinar entrances for 3D visualizations of the conducting airways. We observed that acinar airways start at various generations and that one transitional bronchiole may serve more than one acinus. A mean of 5612 (±547) acini per lung and a mean airspace volume of 0.907 (±0.108) μL per acinus were estimated. In 60‐day‐old rats neither the number of acini nor the mean acinar volume did correlate with the body weight or the lung volume. PMID:24997068

  14. Potential role of Saudi red propolis in alleviating lung damage induced by methicillin resistant Staphylococcus aureus virulence in rats.

    PubMed

    Saddiq, Amna Ali; Mohamed, Azza Mostafa

    2016-07-01

    The aim of this study was to explore the protective impact of aqueous extract of Saudi red propolis against rat lung damage induced by the pathogenic bacteria namely methicillin resistant Staphylococcus aureus (MRSA) ATCC 6538 strain. Infected rats were received a single intraperitoneal (i.p.) injection of bacterial suspension at a dose of 1 X 10(6) CFU / 100g body weight. Results showed that oral administration of an aqueous extract of propolis (50mg/100g body weight) daily for two weeks to infected rats simultaneously with bacterial infection, effectively ameliorated the alteration of oxidative stress biomarker, malondialdehyde (MDA), as well as the antioxidant markers, glutathione peroxidase (GPx) and superoxide dismutase (SOD), in lungs of infected rats compared with infected untreated ones. Also, the used propolis extract successfully modulated the alterations in proinflammatory mediators, tumor necrosis factor-α (TNF- α) and vascular endothelial growth factor (VEGF) in serum. In addition, the propolis extract successfully modulated the oxidative DNA damage and the apoptosis biomarker, caspase 3, in lungs of S aureus infected rats compared with infected untreated animals. The biochemical results were supported by histo-pathological observation of lung tissues. In conclusion, the beneficial prophylactic role of the aqueous extract of Saudi red propolis against lung damage induced by methicillin resistant S aureus may be related to the antioxidant, anti-inflammatory, immunomodulatory and antiapoptosis of its active constituents. PMID:27393432

  15. Mesenteric lymph duct drainage attenuates acute lung injury in rats with severe intraperitoneal infection.

    PubMed

    Zhang, Yanmin; Zhang, Shukun; Tsui, Naiqiang

    2015-01-01

    The purpose of this study is to investigate the hypothesis that the mesenteric lymphatic system plays an important role in acute lung injury in a rat model induced by severe intraperitoneal infection. Male Wistar rats weighing 250∼300 g were randomly divided into 3 groups and subjected to sham operation, intraperitoneal infection, or mesenteric lymphatic drainage. The activity of diamine oxidase (DAO) and myeloperoxidase (MPO) were measured by enzymatic assay. The endotoxin levels in plasma, lymph, and bronchoalveolar lavage fluid (BALF) were evaluated using the limulus amoebocyte lysate reagent. The cytokines, adhesion factors, chemokines, and inflammatory factors were detected by ELISA. TLR-4, NF-kB, and IRAK-4 were analyzed by Western blotting. Compared with sham-operated rats, rats with intraperitoneal infection had increased MPO and decreased DAO activity in intestinal tissues. Mesenteric lymph drainage reduced the alterations in MPO and DAO activity induced by intraperitoneal infection. The MPO activity in pulmonary tissue and the permeability of pulmonary blood vessels were also increased, which were partially reversed by mesenteric lymph drainage. The endotoxin levels in lymphatic fluid and alveolar perfusion fluid were elevated after intraperitoneal infection but decreased to control levels after lymph drainage. No alterations in the levels of plasma endotoxin were observed. The number of neutrophils was increased in BALF and lymph in the infected rats, and was also reduced after drainage. Lymph drainage also decreased the levels of inflammatory cytokines, chemokines, and adhesion factors in the plasma, lymph, and BALF, as well as the levels of TLR-4, NF-kB, and IRAK-4 in pulmonary and intestinal tissues. The mesenteric lymphatic system is the main pathway involved in early lung injury caused by severe intraperitoneal infection, in which activation of the TLR-4 signal pathway may play a role. PMID:25537798

  16. Angiotensin II receptor expression and inhibition in the chronically hypoxic rat lung.

    PubMed Central

    Zhao, L.; al-Tubuly, R.; Sebkhi, A.; Owji, A. A.; Nunez, D. J.; Wilkins, M. R.

    1996-01-01

    1. Angiotensin II (AII) binding density and the effect of chronic AII receptor blockade were examined in the rat model of hypoxia-induced pulmonary hypertension. 2. [125I]-[Sar1,Ile2]AII binding capacity was increased in lung membranes from rats exposed to hypoxia (10% fractional inspired O2) for 7 days compared to normal rats (Bmax 108 +/- 12 vs 77 +/- 3 fmol mg-1 protein; P < 0.05), with no significant change in dissociation constant. Competition with specific AII receptor subtype antagonists demonstrated that AT1 is the predominant subtype in both normal and hypoxic lung. 3. Rats treated intravenously with the AT1 antagonist, GR138950C, 1 mg kg-1 day-1 rather than saline alone during 7 days of exposure to hypoxia developed less pulmonary hypertension (pulmonary arterial pressure: 21.3 +/- 1.7 vs 28.3 +/- 1.1 mmHg; P < 0.05), right ventricular hypertrophy (right/left ventricle weight ratio: 0.35 +/- 0.01 vs 0.45 +/- 0.01; P < 0.05) and pulmonary artery remodelling (abundance of thick-walled pulmonary vessels: 9.6 +/- 1.4% vs 20.1 +/- 0.9%; P < 0.05). 4. The reduction in cardiac hypertrophy and pulmonary remodelling with the AT1 antagonist was greater than that achieved by a dose of sodium nitroprusside (SNP) that produced a comparable attenuation of the rise in pulmonary arterial pressure during hypoxia. 5. The data suggest that AII, via the AT1 receptor, has a role in the early pathogenesis of hypoxia-induced pulmonary hypertension in the rat. PMID:8937726

  17. Airborne particles of the california central valley alter the lungs of healthy adult rats.

    PubMed Central

    Smith, Kevin R; Kim, Seongheon; Recendez, Julian J; Teague, Stephen V; Ménache, Margaret G; Grubbs, David E; Sioutas, Constantinos; Pinkerton, Kent E

    2003-01-01

    Epidemiologic studies have shown that airborne particulate matter (PM) with a mass median aerodynamic diameter < 10 microm (PM10) is associated with an increase in respiratory-related disease. However, there is a growing consensus that particles < 2.5 microm (PM2.5), including many in the ultrafine (< 0.1 microm) size range, may elicit greater adverse effects. PM is a complex mixture of organic and inorganic compounds; however, those components or properties responsible for biologic effects on the respiratory system have yet to be determined. During the fall and winter of 2000-2001, healthy adult Sprague-Dawley rats were exposed in six separate experiments to filtered air or combined fine (PM2.5) and ultrafine portions of ambient PM in Fresno, California, enhanced approximately 20-fold above outdoor levels. The intent of these studies was to determine if concentrated fine/ultrafine fractions of PM are cytotoxic and/or proinflammatory in the lungs of healthy adult rats. Exposures were for 4 hr/day for 3 consecutive days. The mean mass concentration of particles ranged from 190 to 847 microg/m3. PM was enriched primarily with ammonium nitrate, organic and elemental carbon, and metals. Viability of cells recovered by bronchoalveolar lavage (BAL) from rats exposed to concentrated PM was significantly decreased during 4 of 6 weeks, compared with rats exposed to filtered air (p< 0.05). Total numbers of BAL cells were increased during 1 week, and neutrophil numbers were increased during 2 weeks. These observations strongly suggest exposure to enhanced concentrations of ambient fine/ultrafine particles in Fresno is associated with mild, but significant, cellular effects in the lungs of healthy adult rats. PMID:12782490

  18. Distinct Patterns of Wnt3a and Wnt5a Signaling Pathway in the Lung from Rats with Endotoxic Shock.

    PubMed

    Hii, Hiong-Ping; Liao, Mei-Hui; Chen, Shiu-Jen; Wu, Chin-Chen; Shih, Chih-Chin

    2015-01-01

    Septic shock is a syndrome with severe hypotension and multiple organ dysfunction caused by an imbalance between pro-inflammatory and anti-inflammatory response. The most common risk factor of acute lung injury is severe sepsis. Patients with sepsis-related acute respiratory distress syndrome have higher mortality. Recent studies reveal regulatory roles of Wnt3a and Wnt5a signaling in inflammatory processes. Wnt3a signaling has been implicated in anti-inflammatory effects, whereas Wnt5a signaling has been postulated to have pro-inflammatory properties. However, the balance between Wnt3a and Wnt5a signaling pathway in the lung of rats with endotoxic shock has not been determined. Thus, we investigated the major components of Wnt3a and Wnt5a signaling pathway in the lung of endotoxemic rats. Male Wistar rats were intravenously infused with saline or lipopolysaccharide (LPS, 10 mg/kg). The changes of hemodynamics, biochemical variables, and arterial blood gas were examined during the experimental period. At 6 h after saline or LPS, animals were sacrificed, and lungs were obtained for analyzing superoxide production, water accumulation, histologic assessment, and protein expressions of Wnt3a and Wnt5a signaling pathway. Animals that received LPS showed circulatory failure, multiple organ dysfunction, metabolic acidosis, hyperventilation, lung edema, and high mortality. The lung from rats with endotoxic shock exhibited significant decreases in the levels of Wnt3a, Fzd1, Dsh1, phosphorylated GSK-3β at Ser9, and β-catenin. In contrast, the expressions of Wnt5a, Fzd5, and CaMKII were up-regulated in the lung of endotoxemic rats. These findings indicate the major components of Wnt3a and Wnt5a signaling in the lung are disturbed under endotoxic insult. PMID:26218875

  19. The expression of aquaporins 1 and 5 in rat lung after thoracic irradiation

    PubMed Central

    Sun, Cheng-Ying; Zhao, Yu-Xia; Zhong, Wen; Liu, Da-Wei; Chen, Yan-Zhi; Qin, Li-Li; Bai, Lu; Liu, Dan

    2014-01-01

    Radiation-induced lung toxicity (RILT), leading to radiation pneumonia or fibrosis, is a primary problem of radiation therapy. The pathogenesis of RILT remains unclear. In this study, we used a rat model of RILT to examine the expression of aquaporins (AQPs) after radiation injury. Sprague Dawley rats were given a single dose of 17 Gy (dose rate of 3.0 Gy/min) of X-irradiation to the thorax. Rats that survived acute pneumonitis (at 1–4 weeks) were evaluated weekly for the expression of AQP1 and AQP5 in the lung by immunohistochemical and reverse transcription polymerase chain reaction (RT-PCR) analyses. Immunohistochemical analysis showed that AQP1 protein was expressed in the capillary endothelium, and its level was significantly decreased after irradiation. AQP5 protein was expressed in the alveolar epithelium, and its level was increased between Days 7 and 14 after irradiation but decreased at Day 28, compared with the sham group. The RT-PCR results were consistent with the immunohistochemical analysis results. In summary, this study provides the first report of AQP1 and AQP5 expression in a model of radiation-induced pulmonary inflammation and edema. Decreased levels of AQP1 and AQP5 after irradiation suggest that these proteins play a role in the pathogenesis of RILT. PMID:24570172

  20. Lung lesions and anti-ulcer agents beneficial effect: anti-ulcer agents pentadecapeptide BPC 157, ranitidine, omeprazole and atropine ameliorate lung lesion in rats.

    PubMed

    Stancic-Rokotov, D; Slobodnjak, Z; Aralica, J; Aralica, G; Perovic, D; Staresinic, M; Gjurasin, M; Anic, T; Zoricic, I; Buljat, G; Prkacin, I; Sikiric, P; Seiwerth, S; Rucman, R; Petek, M; Turkovic, B; Kokic, N; Jagic, V; Boban-Blagaic, A

    2001-01-01

    Anti-ulcer agents may likely attenuate lesions outside the gastrointestinal tract, since they had protected gastrectomized rats (a "direct cytoprotective effect"). Therefore, their therapeutic potential in lung/stomach lesions were shown. Rats received an intratracheal (i.t.) HCl instillation [1.5 ml/kg HCl (pH 1.75)] (lung lesion), and an intragastric (i.g.) instillation of 96% ethanol (gastric lesion; 1 ml/rat, 24 h after i.t. HCl instillation), then sacrificed 1 h after ethanol. Basically, in lung-injured rats, the subsequent ethanol-gastric lesion was markedly aggravated. This aggravation, however, in turn, did not affect the severity of the lung lesions in the further period, at least for 1 h of observation. Taking intratracheal HCl-instillation as time 0, a gastric pentadecapeptide, GEPPPGKPADDAGLV, M.W.1419, coded BPC 157 (10 microg, 10 ng, 10 pg), ranitidine (10 mg), atropine (10 mg), omeprazole (10 mg), were given [/kg, intraperitoneally (i.p.)] (i) once, only prophylactically [as a pre-treatment (at -1h)], or as a co-treatment [at 0)], or only therapeutically (at +18h or +24 h); (ii) repeatedly, combining prophylactic/therapeutic regimens [(-1 h)+(+24 h)] or [(0)+(+24 h)], or therapeutic/therapeutic regimens [(+18 h)+(+24 h)]. For all agents, combining their prophylactic and salutary regimens (at -1 h/+24 h, or at 0/+24 h) attenuated lung lesions; even if effect had been not seen already with a single application, it became prominent after repeated treatment. In single application studies, relative to controls, a co-treatment (except to omeprazole), a pre-treatment (at -1 h) (pentadecapeptide BPC 157 and atropine, but not ranitidine and omeprazole) regularly attenuated, while therapeutically, atropine (at +18 h), pentadecapeptide BPC 157 highest dose and omeprazole (at +24 h), reversed the otherwise more severe lung lesions. PMID:11595454

  1. Novel Flurometric Tool to Assess Mitochondrial Redox State of Isolated Perfused Rat Lungs After Exposure to Hyperoxia

    PubMed Central

    Audi, Said H.; Staniszewski, Kevin S.; Haworth, Steven T.; Jacobs, Elizabeth R.; Ranji, Mahsa; Zablocki, Clement J.

    2013-01-01

    Recently, we demonstrated the utility of optical fluorometry to detect a change in the redox status of mitochondrial autofluorescent coenzymes nicotinamide adenine dinucleotide (NADH) and oxidized form of flavin adenine dinucleotide \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$({\\rm FADH}_{2})$\\end{document} (FAD), as a measure of mitochondrial function in isolated perfused rat lungs (IPL). The objective of this paper was to utilize optical fluorometry to evaluate the effect of rat exposure to hyperoxia (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${>}{95\\%}~{\\rm O}_{2}$\\end{document} for 48 h) on lung tissue mitochondrial redox status of NADH and FAD in a nondestructive manner in IPL. Surface NADH and FAD signals were measured before and after lung perfusion with perfusate containing rotenone (ROT, complex I inhibitor), potassium cyanide (KCN, complex IV inhibitor), and/or pentachlorophenol (PCP, uncoupler). ROT- or KCN-induced increase in NADH signal is considered a measure of complex I activity, and KCN-induced decrease in FAD signal is considered a measure of complex II activity. The results show that hyperoxia decreased complex I and II activities by 63% and 55%, respectively, when compared to lungs of rats exposed to room air (normoxic rats). Mitochondrial complex I and II activities in lung homogenates were also lower (77% and 63%, respectively) for hyperoxic than for normoxic lungs. These results suggest that the mitochondrial matrix is more reduced in hyperoxic lungs than in normoxic lungs, and demonstrate the ability of optical fluorometry to detect a change

  2. Efficacy of Leukadherin-1 in the Prevention of Hyperoxia-Induced Lung Injury in Neonatal Rats.

    PubMed

    Jagarapu, Jawahar; Kelchtermans, Jelte; Rong, Min; Chen, Shaoyi; Hehre, Dorothy; Hummler, Stefanie; Faridi, Mohd Hafeez; Gupta, Vineet; Wu, Shu

    2015-12-01

    Lung inflammation plays a key role in the pathogenesis of bronchopulmonary dysplasia (BPD), a chronic lung disease of premature infants. The challenge in BPD management is the lack of effective and safe antiinflammatory agents. Leukadherin-1 (LA1) is a novel agonist of the leukocyte surface integrin CD11b/CD18 that enhances leukocyte adhesion to ligands and vascular endothelium and thus reduces leukocyte transendothelial migration and influx to the injury sites. Its functional significance in preventing hyperoxia-induced neonatal lung injury is unknown. We tested the hypothesis that administration of LA1 is beneficial in preventing hyperoxia-induced neonatal lung injury, an experimental model of BPD. Newborn rats were exposed to normoxia (21% O2) or hyperoxia (85% O2) and received twice-daily intraperitoneal injection of LA1 or placebo for 14 days. Hyperoxia exposure in the presence of the placebo resulted in a drastic increase in the influx of neutrophils and macrophages into the alveolar airspaces. This increased leukocyte influx was accompanied by decreased alveolarization and angiogenesis and increased pulmonary vascular remodeling and pulmonary hypertension (PH), the pathological hallmarks of BPD. However, administration of LA1 decreased macrophage infiltration in the lungs during hyperoxia. Furthermore, treatment with LA1 improved alveolarization and angiogenesis and decreased pulmonary vascular remodeling and PH. These data indicate that leukocyte recruitment plays an important role in the experimental model of BPD induced by hyperoxia. Targeting leukocyte trafficking using LA1, an integrin agonist, is beneficial in preventing lung inflammation and protecting alveolar and vascular structures during hyperoxia. Thus, targeting integrin-mediated leukocyte recruitment and inflammation may provide a novel strategy in preventing and treating BPD in preterm infants. PMID:25909334

  3. Protective effects of dexamethasone on early acute lung injury induced by oleic acid in rats

    PubMed Central

    Huang, Bin; Wang, Dao-Xin; Deng, Wang

    2014-01-01

    Objective: Whether alveolar edema could be cleared by alveolar epithelial is a key to the treatment and prognosis of ALI (acute lung injury). In this study, oleic acid(OA)-induced ALI model was established, the expression of α1 Na+/K+-ATPase (NKA) and β1 Na+/K+-ATPase were performed in vivo to investigate the mechanism of alveolar fluid clearance (AFC) in ALI and the effect of early low doses of dexamethasone on alveolar fluid clearance. Methods: In this study, Male rats were challenged by OA with or without dexamethasone (1 mg/kg, iv) post-treatment. Lung histopathology, blood gas, pulmonary vascular permeability, BALF IL-6, MPO and NKA activity of lung were examined. α1NKA and β1NKA mRNA and protein expression were detected. Results: The results indicated that compared with sham operated group, NKA activity, mRNA and protein expression of α1NKA and β1NKA were decreased in OA treated group, while wet/dry ratio, lung index, IL-6, and MPO activity were increased significantly. Pulmonary edema was obviously seen under light microscope. Those indexes were improved in dexamethasone treated group compared to OA treated group. Conclusion: The expression of NKA to decline for the lung injury is one important mechanism of pulmonary edema. Early low dose of dexamethasone treatment could suppress the expression of inflammatory mediators, improved lung epithelial-endothelial barrier permeability, increased the expressions of α1 NKA and β1 NKA mRNA, α1 NKA and β1 NKA protein level, stimulated NKA activity and decreased pulmonary edema. In conclusion, these observations suggest that early low dose of dexamethasone treatment has a protective effect on OA induced ALI. PMID:25663967

  4. Effect of acute ozone exposure on the proteinase-antiproteinase balance in the rat lung

    SciTech Connect

    Pickrell, J.A.; Gregory, R.E.; Cole, D.J.; Hahn, F.F.; Henderson, R.F.

    1987-04-01

    Lung disease may result from a persisting proteinase excess or a depletion of antiproteinase in pulmonary parenchyma. We investigated the in vivo effect of a 48-hr exposure to ozone at 0.5, 1.0, or 1.5 ppm on proteinase and antiproteinase activity of rat lungs. Elastase inhibitory capacities of serum, lung tissue, and airway washings were measured as indicators of antielastase activity. Trypsin inhibitory capacity was measured using an esterolytic procedure. Proteinase was measured as radioactive release from a /sup 14/C-globin substrate. The 48-hr exposures to O/sub 3/ at levels up to 1 ppm produced concentration-dependent decreases of 35-80% of antiproteinase activities in serum and in lung tissue. However, exposure to 1.5 ppm O/sub 3/ resulted in no decrease in antiproteinase activities. Acid proteinase activities (pH 4.2) were increased 65-120% by exposure to 1 or 1.5 ppm O/sub 3/, which correlated with inflammatory cells noted histologically. At 1.5 ppm O/sub 3/, pulmonary edema and hemorrhage were noted in histologic sections. These changes led to a flooding of the alveoli with up to 40 times normal protein levels and a greater than fivefold increase in airway antiproteinase. These data suggest that serum and soluble lung tissue antiproteinase activity decreased upon exposure to low levels of ozone. However, if O/sub 3/ exposure is high enough to produce pulmonary hemorrhage, antiproteinase may increase following serum exudation. These changes may be important in the development of ozone-induced lung diseases, especially emphysema.

  5. Deguelin Attenuates Reperfusion Injury and Improves Outcome after Orthotopic Lung Transplantation in the Rat

    PubMed Central

    Paulus, Patrick; Ockelmann, Pia; Tacke, Sabine; Karnowski, Nora; Ellinghaus, Peter; Scheller, Bertram; Holfeld, Johannes; Urbschat, Anja; Zacharowski, Kai

    2012-01-01

    The main goal of adequate organ preservation is to avoid further cellular metabolism during the phase of ischemia. However, modern preservation solutions do rarely achieve this target. In donor organs hypoxia and ischemia induce a broad spectrum of pathologic molecular mechanisms favoring primary graft dysfunction (PGD) after transplantation. Increased hypoxia-induced transcriptional activity leads to increased vascular permeability which in turn is the soil of a reperfusion edema and the enhancement of a pro-inflammatory response in the graft after reperfusion. We hypothesize that inhibition of the respiration chain in mitochondria and thus inhibition of the hypoxia induced mechanisms might reduce reperfusion edema and consecutively improve survival in vivo. In this study we demonstrate that the rotenoid Deguelin reduces the expression of hypoxia induced target genes, and especially VEGF-A, dose-dependently in hypoxic human lung derived cells. Furthermore, Deguelin significantly suppresses the mRNA expression of the HIF target genes VEGF-A, the pro-inflammatory CXCR4 and ICAM-1 in ischemic lungs vs. control lungs. After lung transplantation, the VEGF-A induced reperfusion-edema is significantly lower in Deguelin-treated animals than in controls. Deguelin-treated rats exhibit a significantly increased survival-rate after transplantation. Additionally, a downregulation of the pro-inflammatory molecules ICAM-1 and CXCR4 and an increase in the recruitment of immunomodulatory monocytes (CD163+ and CD68+) to the transplanted organ involving the IL4 pathway was observed. Therefore, we conclude that ischemic periods preceding reperfusion are mainly responsible for the increased vascular permeability via upregulation of VEGF. Together with this, the resulting endothelial dysfunction also enhances inflammation and consequently lung dysfunction. Deguelin significantly decreases a VEGF-A induced reperfusion edema, induces the recruitment of immunomodulatory monocytes and thus

  6. Metyrapone alleviates deleterious effects of maternal food restriction on lung development and growth of rat offspring.

    PubMed

    Paek, David S; Sakurai, Reiko; Saraswat, Aditi; Li, Yishi; Khorram, Omid; Torday, John S; Rehan, Virender K

    2015-02-01

    Maternal food restriction (MFR) causes intrauterine growth restriction, a known risk factor for developing chronic lung disease. However, it is unknown whether this negative outcome is gender specific or preventable by blocking the MFR-induced hyperglucocorticoidism. Using a well-established rat model, we used metyrapone (MTP), an inhibitor of glucocorticoid synthesis, to study the MFR-induced lung changes on postnatal day (p) 21 in a gender-specific manner. From embryonic day 10 until delivery, pregnant dams were fed either an ad libitum diet or a 50% caloric restricted diet with or without MTP supplementation. Postnatally, the offspring were fed ad libitum from healthy dams until p21. Morphometric, Western blot, and immunohistochemical analysis of the lungs demonstrated that MTP mitigated the MFR-mediated decrease in alveolar count, decrease in adipogenic protein peroxisome proliferator-activated receptor γ, increase in myogenic proteins (fibronectin, α-smooth muscle actin, and calponin), increase in Wnt signaling intermediates (lymphoid enhancer-binding factor 1 and β-catenin), and increase in glucocorticoid receptor (GR) levels. The MFR-induced lung phenotype and the effects of MTP were similar in both genders. To elucidate the mechanism of MFR-induced shift of the adipogenic-to-myogenic phenotype, lung fibroblasts were used to independently study the effects of (1) nutrient restriction and (2) excess steroid exposure. Nutrient deprivation increased myogenic proteins, Wnt signaling intermediates, and GR, all changes blocked by protein supplementation. MTP also blocked, likely by normalizing nicotinamide adenine dinucleotide phosphate levels, the corticosterone-induced increase in myogenic proteins, but had no effect on GR levels. In summary, protein restriction and increased glucocorticoid levels appear to be the key players in MFR-induced lung disease, affecting both genders. PMID:24916330

  7. Effect of acute ozone exposure on the proteinase-antiproteinase balance in the rat lung.

    PubMed

    Pickrell, J A; Gregory, R E; Cole, D J; Hahn, F F; Henderson, R F

    1987-04-01

    Lung disease may result from a persisting proteinase excess or a depletion of antiproteinase in pulmonary parenchyma. We investigated the in vivo effect of a 48-hr exposure to ozone at 0.5, 1.0, or 1.5 ppm on proteinase and antiproteinase activity of rat lungs. Elastase inhibitory capacities of serum, lung tissue, and airway washings were measured as indicators of antielastase activity. Trypsin inhibitory capacity was measured using an esterolytic procedure. Proteinase was measured as radioactive release from a 14C-globin substrate. The 48-hr exposures to O3 at levels up to 1 ppm produced concentration-dependent decreases of 35-80% of antiproteinase activities in serum and in lung tissue. However, exposure to 1.5 ppm O3 resulted in no decrease in antiproteinase activities. Acid proteinase activities (pH 4.2) were increased 65-120% by exposure to 1 or 1.5 ppm O3, which correlated with inflammatory cells noted histologically. At 1.5 ppm O3, pulmonary edema and hemorrhage were noted in histologic sections. These changes led to a flooding of the alveoli with up to 40 times normal protein levels and a greater than fivefold increase in airway antiproteinase. These data suggest that serum and soluble lung tissue antiproteinase activity decreased upon exposure to low levels of ozone. However, if O3 exposure is high enough to produce pulmonary hemorrhage, antiproteinase may increase following serum exudation. These changes may be important in the development of ozone-induced lung diseases, especially emphysema. PMID:3549351

  8. Chronic cigarette smoke exposure adversely alters /sup 14/C-arachidonic acid metabolism in rat lungs, aortas and platelets

    SciTech Connect

    Lubawy, W.C.; Valentovic, M.A.; Atkinson, J.E.; Gairola, G.C.

    1983-08-08

    Male rats were exposed to freshly generated cigarette smoke once daily, 5 times a week for 10 weeks. Inhalation of smoke was verified by elevated carboxyhemoglobin in blood sampled immediately after smoke exposure and by increased lung aryl hydrocarbon hydroxylase activity 24 hours after the last smoke exposure. Aortic rings isolated from smoke-exposed rats synthesized less prostacyclin (PGI2) from /sup 14/C-arachidonic acid than rings from sham rats. Platelets from smoke-exposed rats synthesized more thromboxane (TXA2) from /sup 14/C-arachidonic acid than platelets from room controls but not those from sham rats. Lung microsomes from smoke-exposed rats synthesized more TXA2 and had a lower PGI2/TXA2 ratio than lung microsomes from room controls and shams. It is concluded that chronic cigarette smoke exposure alters arachidonic acid metabolism in aortas, platelets and lungs in a manner resulting in decreased PGI2 and increased TXA2, thereby creating a condition favoring platelet aggregation and a variety of cardiovascular diseases.

  9. Malignant Leydig cell tumour of the testis.

    PubMed

    Powari, Manish; Kakkar, Nandita; Singh, S K; Rai, R S; Jogai, Sanjay

    2002-01-01

    A case of malignant Leydig cell tumour is presented. It is a rare primary malignant tumour of the testis and occurs exclusively in adults. The present case is of interest because it occurred at the young age of 25 years which is rare. Histologically it showed almost all features which suggest malignancy and also had metastases to the lungs and liver. The clinical details and pathology of this tumour are discussed. PMID:11803271

  10. The dose of cyclophosphamide for treating paraquat-induced rat lung injury

    PubMed Central

    Choi, Jae-Sung; Jou, Sung-Shick; Oh, Mee-Hye; Kim, Young-Hee; Park, Min-Ju; Song, Ho-Yeon; Hong, Sae-Yong

    2013-01-01

    Background/Aims Cyclophosphamide (CP) is a promising treatment for severe cases of paraquat (PQ) poisoning. We investigated the effective dose of CP for mitigating PQ-induced lung injury. Methods Adult male Sprague-Dawley rats were allocated into five groups: control, PQ (35 mg/kg, intraperitoneal injection), and PQ + CP (1.5, 15, or 30 mg/kg). The dimensions of lung lesions were determined using X-ray microtomography (micro-CT), and histological changes and cytokine levels were recorded. Results The micro-CT results showed that 15 mg/kg CP was more effective than 1.5 mg/kg CP for treating PQ-induced lung injury. At a dose of 1.5 mg/kg, CP alleviated the histological evidence of inflammation and altered superoxide dismutase activity. Using 15 mg/kg CP reduced the elevated catalase activity and serum transforming growth factor (TGF)-β1 level. Conclusions A CP dose of > 15 mg/kg is effective for reducing the severity of PQ-induced lung injury as determined by histological and micro-CT tissue examination, possibly by modulating antioxidant enzyme and TGF-β1 levels. PMID:23864800

  11. Thromboxane release from irradiated perfused rat lungs: role of oncotic agents

    SciTech Connect

    Heinz, T.R.; Kot, P.A.; Ramwell, P.W.; Schneidkraut, M.J.

    1987-07-27

    Isolated lungs from 20 Gray (Gy) whole body irradiated rats were perfused with Krebs-Ringer bicarbonate plus 3% bovine serum albumin (KRB-BSA). The pulmonary effluent showed a 99% (p < .05) increase in immunoassayable thromboxane B2 (iTXB2) release compared with non-irradiated lungs. Since both arachidonic acid and cyclooxygenase products bind to albumin, studies were performed to determine if omission or substitution of this protein oncotic agent would alter the radiation-induced increase in pulmonary iTXB2 release. Irradiated, isolated lungs perfused with media from which the BSA was omitted (KRB) did not demonstrate the radiation-induced increase in pulmonary iTXB2 release. Similarly, irradiated lungs perfused with media in which Dextran 70 (KRB plus 3% Dextran 70, KRB-Dextran 70) was substituted for BSA also did not show the radiation-induced increase in pulmonary effluent iTXB2 levels. These studies demonstrate the importance of including albumin as the oncotic agent in perfused organ systems when studying cyclooxygenase product release. 23 references, 2 tables.

  12. Use of multiphoton microscopy to diagnose liver cancer and lung metastasis in an orthotopic rat model.

    PubMed

    Yan, Jun; Zhuo, Shuangmu; Chen, Gang; Tan, Changjun; Zhu, Weifeng; Lu, Jianping; Fan, Jia; Chen, Jianxin; Zhou, Jian

    2012-01-01

    Liver or lung biopsy for suspicious lesions has several disadvantages such as bleeding, bile leak or pneumothorax, needle track seeding, and time-consuming histopathological procedure. The ability to directly observe cellular and subcellular details and then perform "optical biopsy" is a major goal in the development of new interventional techniques. Multiphoton microscopy (MPM) enables real-time noninvasive visualization of tissue architecture and cell morphology in live tissue. We performed a study to evaluate whether MPMcan make real-time optical diagnosis for liver cancer and lung metastasis using an orthotopic rat model with Morris hepatoma. We found that real-time high-resolution MPMimaging could clearly show tissue architecture and cell morphology. In the normal liver tissue, MPMimaging clearly revealed the blood-filled sinusoids and cords of hepatocytes. In the cancerous tissue, MPMimaging clearly illustrated that cancer cells displayed marked cellular and nuclear pleomorphism. MPMimages were comparable to golden standard hematoxylin-eosin staining images. Moreover, MPMimaging had deep penetration with the capability of optical sectioning. In short, MPMcan make real-time optical diagnosis for liver cancer and lung metastasis. This study provides the groundwork for further using multiphoton endoscopy to perform real-time noninvasive "optical biopsy" for liver cancer and lung metastasis in the near future. PMID:22331704

  13. A comparative study of lung toxicity in rats induced by three types of nanomaterials

    PubMed Central

    2013-01-01

    The public is increasingly exposed to various engineered nanomaterials because of their mass production and wide application. Even when the biological effects of nanomaterials have been assessed, the underlying mechanisms of action in vivo are poorly understood. The present study was designed to seek a simple, effective, and oxidative stress-based biomarker system used for screening toxicity of nanomaterials. Nano-ferroso-ferric oxide (nano-Fe3O4), nano-silicon dioxide (nano-SiO2), and single-walled carbon nanotubes (SWCNTs) were dispersed in corn oil and characterized using transmission electron microscopy (TEM). Rats were exposed to the three nanomaterials by intratracheal instillation once every 2 days for 5 weeks. We investigated their lung oxidative and inflammatory damage by bronchoalveolar lavage fluid (BALF) detection and comparative proteomics by lung tissue. Two-dimensional electrophoresis (2-DE) of proteins isolated from the lung tissue, followed by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry, was performed. In the present study, we chose to detect lactate dehydrogenase, total antioxidant capacity, superoxide dismutase, and malondialdehyde as the biomarker system for screening the oxidative stress of nanomaterials and IL-6 as the inflammatory biomarker in BALF. Proteomics analysis revealed 17 differentially expressed proteins compared with the control group: nine were upregulated and eight were downregulated. Our results indicated that exposure by intratracheal instillation to any of the three typical nanomaterials may cause lung damage through oxidative damage and/or an inflammatory reaction. PMID:24321467

  14. Effects of the oestrous cycle on the metabolism of arachidonic acid in rat isolated lung.

    PubMed Central

    Bakhle, Y S; Zakrzewski, J T

    1982-01-01

    1. The metabolism of exogenous arachidonic acid perfused through the pulmonary circulation was investigated in lungs taken from rats at different stages of the oestrous cycle. 2. Following perfusion with [14C]arachidonic acid there was more radioactivity associated with cyclo-oxygenase products in general at pro-oestrus than at any other stage of the cycle. 3. Production of 6-oxo-prostaglandin F1 alpha and hence of prostacyclin (PGI2) was also highest at pro-oestrus. 4. Production of thromboxane B2 was highest at pro-oestrus although it was never greater than PGI2 production at any stage. 5. Radioactivity retained in lung tissue was mostly present in phospholipid and free fatty acid fractions with the distribution at pro-oestrus being different from the other stages. 6. Following perfusion with [14C]oleic acid (which is not a substrate for cyclooxygenase), variations in the distribution of label in radioactivity in lung were also observed. However, these were not related to the stages of the oestrous cycle in the same way as those associated with arachidonic acid. 7. We conclude that both pathways of arachidonic acid metabolism in lung--oxidation via cyclo-oxygenase and incorporation into phospholipid - are affected by the progress of the oestrous cycle. 8. Altered arachidonate metabolism appeared to be associated chiefly with pro-oestrus and may be linked to those hormones involved in this stage of the oestrous cycle. PMID:6809935

  15. A comparative study of lung toxicity in rats induced by three types of nanomaterials

    NASA Astrophysics Data System (ADS)

    Lin, Zhiqing; Ma, Li; X, Zhu-ge; Zhang, Huashan; Lin, Bencheng

    2013-12-01

    The public is increasingly exposed to various engineered nanomaterials because of their mass production and wide application. Even when the biological effects of nanomaterials have been assessed, the underlying mechanisms of action in vivo are poorly understood. The present study was designed to seek a simple, effective, and oxidative stress-based biomarker system used for screening toxicity of nanomaterials. Nano-ferroso-ferric oxide (nano-Fe3O4), nano-silicon dioxide (nano-SiO2), and single-walled carbon nanotubes (SWCNTs) were dispersed in corn oil and characterized using transmission electron microscopy (TEM). Rats were exposed to the three nanomaterials by intratracheal instillation once every 2 days for 5 weeks. We investigated their lung oxidative and inflammatory damage by bronchoalveolar lavage fluid (BALF) detection and comparative proteomics by lung tissue. Two-dimensional electrophoresis (2-DE) of proteins isolated from the lung tissue, followed by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry, was performed. In the present study, we chose to detect lactate dehydrogenase, total antioxidant capacity, superoxide dismutase, and malondialdehyde as the biomarker system for screening the oxidative stress of nanomaterials and IL-6 as the inflammatory biomarker in BALF. Proteomics analysis revealed 17 differentially expressed proteins compared with the control group: nine were upregulated and eight were downregulated. Our results indicated that exposure by intratracheal instillation to any of the three typical nanomaterials may cause lung damage through oxidative damage and/or an inflammatory reaction.

  16. A comparative study of lung toxicity in rats induced by three types of nanomaterials.

    PubMed

    Lin, Zhiqing; Ma, Li; X, Zhu-Ge; Zhang, Huashan; Lin, Bencheng

    2013-01-01

    The public is increasingly exposed to various engineered nanomaterials because of their mass production and wide application. Even when the biological effects of nanomaterials have been assessed, the underlying mechanisms of action in vivo are poorly understood. The present study was designed to seek a simple, effective, and oxidative stress-based biomarker system used for screening toxicity of nanomaterials. Nano-ferroso-ferric oxide (nano-Fe3O4), nano-silicon dioxide (nano-SiO2), and single-walled carbon nanotubes (SWCNTs) were dispersed in corn oil and characterized using transmission electron microscopy (TEM). Rats were exposed to the three nanomaterials by intratracheal instillation once every 2 days for 5 weeks. We investigated their lung oxidative and inflammatory damage by bronchoalveolar lavage fluid (BALF) detection and comparative proteomics by lung tissue. Two-dimensional electrophoresis (2-DE) of proteins isolated from the lung tissue, followed by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry, was performed. In the present study, we chose to detect lactate dehydrogenase, total antioxidant capacity, superoxide dismutase, and malondialdehyde as the biomarker system for screening the oxidative stress of nanomaterials and IL-6 as the inflammatory biomarker in BALF. Proteomics analysis revealed 17 differentially expressed proteins compared with the control group: nine were upregulated and eight were downregulated. Our results indicated that exposure by intratracheal instillation to any of the three typical nanomaterials may cause lung damage through oxidative damage and/or an inflammatory reaction. PMID:24321467

  17. Evolution of Silver Nanoparticles in the Rat Lung Investigated by X-ray Absorption Spectroscopy

    PubMed Central

    2015-01-01

    Following a 6-h inhalation exposure to aerosolized 20 and 110 nm diameter silver nanoparticles, lung tissues from rats were investigated with X-ray absorption spectroscopy, which can identify the chemical state of silver species. Lung tissues were processed immediately after sacrifice of the animals at 0, 1, 3, and 7 days post exposure and the samples were stored in an inert and low-temperature environment until measured. We found that it is critical to follow a proper processing, storage and measurement protocol; otherwise only silver oxides are detected after inhalation even for the larger nanoparticles. The results of X-ray absorption spectroscopy measurements taken in air at 85 K suggest that the dominating silver species in all the postexposure lung tissues were metallic silver, not silver oxide, or solvated silver cations. The results further indicate that the silver nanoparticles in the tissues were transformed from the original nanoparticles to other forms of metallic silver nanomaterials and the rate of this transformation depended on the size of the original nanoparticles. We found that 20 nm diameter silver nanoparticles were significantly modified after aerosolization and 6-h inhalation/deposition, whereas larger, 110 nm diameter nanoparticles were largely unchanged. Over the seven-day postexposure period the smaller 20 nm silver nanoparticles underwent less change in the lung tissue than the larger 110 nm silver nanoparticles. In contrast, silica-coated gold nanoparticles did not undergo any modification processes and remained as the initial nanoparticles throughout the 7-day study period. PMID:25517690

  18. Influence of parenteral nutrition on phospholipid metabolism in posttraumatic rat lungs.

    PubMed

    Bahrami, S; Gasser, H; Redl, H; Strohmaier, W; Schlag, G

    1986-01-01

    In the current investigation, we studied two groups of rats--one group supplied exogenous phospholipid precursors (carbohydrate plus fat emulsion group) and the other given only calories (carbohydrate group)--to evaluate the effects on surfactant composition by normocaloric alimentation, using a hypovolemic-traumatic shock model. The total phospholipid (PHL) contents of lung tissue were similar in both groups. However, we found differences in the dipalmitoylphosphatidylcholine fraction (DPPC--the most important component of surfactant material) in both lung tissue and lavage fluid. With lipid emulsion, there was an increased fraction of saturated lecithins (mainly DPPC) both in lung tissue and lavage fluid, similar to former studies with hypocaloric alimentation. In this model, those findings suggest that the PHL pattern does not depend on the quantity of caloric supply, but, rather, on the infusion composition. The enhanced DPPC content is further reflected in improved surfactant status: lipid in parenteral nutrition (PN) may exert a direct salutary effect on lung mechanics. PMID:3099005

  19. Effects of methylene blue in acute lung injury induced by oleic acid in rats

    PubMed Central

    Cassiano Silveira, Ana Paula; Vento, Daniella Alves; Albuquerque, Agnes Afrodite Sumarelli; Celotto, Andrea Carla; Tefé-Silva, Cristiane; Ramos, Simone Gusmão; Rubens de Nadai, Tales; Rodrigues, Alfredo José; Poli-Neto, Omero Benedicto

    2016-01-01

    Background In acute lung injury (ALI), rupture of the alveolar-capillary barrier determines the protein-rich fluid influx into alveolar spaces. Previous studies have reported that methylene blue (MB) attenuates such injuries. This investigation was carried out to study the MB effects in pulmonary capillary permeability. Methods Wistar rats were divided into five groups: (I) Sham: saline bolus; (II) MB, MB infusion for 2 h; (III) oleic acid (OA), OA bolus; (IV) MB/OA, MB infusion for 2 h, and at 5 min after from the beginning, concurrently with an OA bolus; and (V) OA/MB, OA bolus, and after 2 h, MB infusion for 2 h. After 4 h, blood, bronchoalveolar lavage (BAL), and lung tissue were collected from all groups for analysis of plasma and tissue nitric oxide, calculation of the wet weight to dry weight ratio (WW/DW), and histological examination of lung tissue. Statistical analysis was performed using nonparametric test. Results Although favourable trends have been observed for permeability improvement parameters (WW/WD and protein), the results were not statistically significant. However, histological analysis of lung tissue showed reduced lesion areas in both pre- and post-treatment groups. Conclusions The data collected using this experimental model was favourable only through macroscopic and histological analysis. These observations are valid for both MB infusions before or after induction of ALI. PMID:26855944

  20. Saikosaponin-d attenuates ventilator-induced lung injury in rats

    PubMed Central

    Wang, Hong-Wei; Liu, Ming; Zhong, Tai-Di; Fang, Xiang-Ming

    2015-01-01

    Saikosaponin-d is one of the main bioactive components in the traditional Chinese medicine Bupleurum falcatum L and possesses anti-inflammatory and immune-modulatory properties. The current study aimed to investigate the protective effects of saikosaponin-d on ventilator-induced lung injury (VILI) in rats. We found that saikosaponin-d treatment significantly attenuated the pathological changes of lungs induced by mechanical ventilation. Administration of saikosaponin-d reduced the pulmonary neutrophil infiltration as well as the MPO concentrations. Saikosaponin-d also decreased the expression of pro-inflammatory cytokines including MIP-2, IL-6 and TNF-α. Meanwhile, the expression of anti-inflammatory mediators, such as TGF-β1 and IL-10, was obviously elevated after saikosaponin-d administration. Saikosaponin-d remarkably reduced the oxidative stress and apoptosis rate in lung tissues. On the molecular level, saikosaponin-d treatment obviously downregulated the expression of caspases-3 and the pro-apoptotic protein bax, and promoted the expression level of anti-apoptotic protein bcl-2. Collectively, our study demonstrated that saikosaponin-d may attenuate ventilator induced lung injury through inhibition of inflammatory responses, oxidative stress and apoptosis. PMID:26628997

  1. Expression changes of inflammatory factors in the rat lung of decompression sickness induced by fast buoyancy ascent escape.

    PubMed

    Wang, Hai-Tao; Fang, Yi-Qun; You, Pu; Bao, Xiao-Chen; Yuan, Heng-Rong; Ma, Jun; Wang, Fang-Fang; Li, Kai-Cheng

    2015-01-01

    Fast buoyancy ascent escape is one of the major naval submarine escape maneuvers. Decompression sickness (DCS) is the major bottleneck to increase the depth of fast buoyancy ascent escape. Rapid decompression induces the release of inflammatory mediators and results in tissue inflammation cascades and a protective anti-inflammatory response. In our previous study, we found that DCS caused by simulated fast buoyancy ascent escape could induce acute lung injury (ALI) and the expression changes of the proinflammatory cytokines: tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β and IL-6 in rat lung tissue. In order to study the expression change characteristics of TNF-α, IL-1β, IL-6, IL-10 and IL-13 in the rat lung of DCS caused by simulated fast buoyancy ascent escape, we detected the rat lung mRNA and protein levels of TNF-α, IL-1β, IL-6, IL-10 and IL-13 at 0.5 hour after DCS caused by simulated fast buoyancy ascent escape (fast escape group), compared with the normal control group (control group) and diving DCS (decompression group). We observed that DCS caused by simulated fast buoyancy ascent escape could increase the mRNA levels of TNF-α, IL-1β, IL-6, IL-10, and the protein levels of TNF-α, IL-10 in rat lung tissue. At the same time, we found that the protein level of IL-13 was also downregulated in rat lung tissue. TNF-α, IL-10 and IL-13 may be involved in the process of the rat lung injury of DCS caused by simulated fast buoyancy ascent escape. In conclusion, the expression changes of inflammatory factors in the rat lung of DCS caused by simulated fast buoyancy ascent escape were probably different from that in the rat lung of diving DCS, which indicated that the pathological mechanism of DCS caused by simulated fast buoyancy ascent escape might be different from that of diving DCS. PMID:26094300

  2. Lung changes in rats following inhalation exposure to volcanic ash for two years.

    PubMed

    Wehner, A P; Dagle, G E; Clark, M L; Buschbom, R L

    1986-08-01

    Rats were exposed by inhalation to 5 or 50 mg/m3 Mount St. Helens volcanic ash, to 50 mg/m3 quartz (positive controls), or to filtered room air (sham-exposed controls), for 6 hr/day, 5 days/week, for up to 24 months to investigate biological effects of chronic inhalation exposure to volcanic ash under controlled laboratory conditions. Exposure-related lung changes comprised accelerated respiratory frequency; alveolar macrophage accumulation; interstitial reaction; lymphoreticular reaction in peribronchiolar regions and in mediastinal lymph nodes; alveolar proteinosis in the 50- mg/m3 ash- or quartz-exposed groups; increase in fresh lung weights; decreased body weight and increased mortality in the quartz-exposed group; and epidermoid carcinomas especially in the quartz-exposed females and, to a lesser extent, in the 50-mg/m3 ash-exposed females. The observed changes reflect significant dose-response and agent-response relationships. PMID:3732218

  3. An exposure system for measuring nasal and lung uptake of vapors in rats

    SciTech Connect

    Dahl, A.R.; Brookins, L.K.; Gerde, P.

    1995-12-01

    Inhaled gases and vapors often produce biological damage in the nasal cavity and lower respiratory tract. The specific site within the respirator tract at which a gas or vapor is absorbed strongly influences the tissues at risk to potential toxic effects; to predict or to explain tissue or cell specific toxicity of inhaled gases or vapors, the sites at which they are absorbed must be known. The purpose of the work reported here was to develop a system for determining nose and lung absorption of vapors in rats, an animal commonly used in inhalation toxicity studies. In summary, the exposure system described allows us to measure in the rate: (1) nasal absorption and desorption of vapors; (2) net lung uptake of vapors; and (3) the effects of changed breathing parameters on vapor uptake.

  4. Alterations in the K-ras and p53 genes in rat lung tumors

    SciTech Connect

    Belinsky, S.A.; Swafford, D.S.; Finch, G.L.; Mitchell, C.E.

    1997-06-01

    Activation of the K-ras protooncogene and inactivation of the p53 tumor suppressor gene are events common to many types of human cancers. Molecular epidemiology studies have associated mutational profiles in these genes with specific exposures. The purpose of this paper is to review investigations that have examined the role of the K-ras and p53 genes in lung tumors induced in the F344 rat by mutagenic and nonmutagenic exposures. Mutation profiles within the K-ras and p53 genes, if present in rat lung tumors, would help to define some of the molecular mechanisms underlying cancer induction by various environmental agents. Pulmonary adenocarcinomas or squamous cell carcinomas were induced by tetranitromethane (TNM), 4-methylnitrosamino-1-(3-pyridyl)-1-butanone (NNK), beryllium metal, plutonium-239, X-ray, diesel exhaust, or carbon black. These agents were chosen because the tumors they produced could arise via different types of DNA damage. Mutation of the K-ras gene was determined by approaches that included DNA transfection, direct sequencing, mismatch hybridization, and restriction fragment length polymorphism analysis. The frequency for mutation of the K-ras gene was exposure dependent. The transition mutations formed could have been derived from deamination of cytosine. Alteration in the p53 gene was assessed by immunohistochemical analysis for p53 protein and single-strand conformation polymorphism (SSCP) analysis of exons 4 to 9. None of the 93 adenocarinomas examined was immunoreactive toward the anti-p53 antibody CM1. In contrast, 14 of 71 squamous cell carcinomas exhibited nuclear p53 immunoreactivity with no correlation to type of exposure. However, SSCP analysis only detected mutations in 2 of 14 squamous cell tumors that were immunoreactive, suggesting that protein stabilization did not stem from mutations within the p53 gene. Thus, the p53 gene does not appear to be involved in the genesis of most rat lung tumors. 2 figs., 2 tabs., 48 refs.

  5. Influence of Particle Size on Persistence and Clearance of Aerosolized Silver Nanoparticles in the Rat Lung

    PubMed Central

    Anderson, Donald S.; Patchin, Esther S.; Silva, Rona M.; Uyeminami, Dale L.; Sharmah, Arjun; Guo, Ting; Das, Gautom K.; Brown, Jared M.; Shannahan, Jonathan; Gordon, Terry; Chen, Lung Chi; Pinkerton, Kent E.; Van Winkle, Laura S.

    2015-01-01

    The growing use of silver nanoparticles (AgNPs) in consumer products raises concerns about potential health effects. This study investigated the persistence and clearance of 2 different size AgNPs (20 and 110 nm) delivered to rats by single nose-only aerosol exposures (6 h) of 7.2 and 5.4 mg/m3, respectively. Rat lung tissue was assessed for silver accumulations using inductively-coupled plasma mass spectrometry (ICP-MS), autometallography, and enhanced dark field microscopy. Involvement of tissue macrophages was assessed by scoring of silver staining in bronchoalveolar lavage fluid (BALF). Silver was abundant in most macrophages at 1 day post-exposure. The group exposed to 20 nm AgNP had the greatest number of silver positive BALF macrophages at 56 days post-exposure. While there was a significant decrease in the amount of silver in lung tissue at 56 days post-exposure compared with 1 day following exposure, at least 33% of the initial delivered dose was still present for both AgNPs. Regardless of particle size, silver was predominantly localized within the terminal bronchial/alveolar duct junction region of the lung associated with extracellular matrix and within epithelial cells. Inhalation of both 20 and 110 nm AgNPs resulted in a persistence of silver in the lung at 56 days post-exposure and local deposition as well as accumulation of silver at the terminal bronchiole alveolar duct junction. Further the smaller particles, 20 nm AgNP, produced a greater silver burden in BALF macrophages as well as greater persistence of silver positive macrophages at later timepoints (21 and 56 days). PMID:25577195

  6. Effects of an endogenous nitric oxide synthase inhibitor on phorbol myristate acetate-induced acute lung injury in rats.

    PubMed

    Lin, Hen I; Chu, Shi Jye; Wang, David; Chen, Hsing I; Hsu, Kang

    2003-01-01

    1. In the present study, we determined whether the endogenous nitric oxide (NO) synthase (NOS) inhibitor Nomega-nitro-l-arginine methyl ester (l-NAME) could ameliorate the acute lung injury (ALI) induced by phorbol myristate acetate (PMA) in rat isolated lung. 2. Typical ALI was induced successfully by PMA during 60 min of observation. At 2 micro g/kg, PMA elicited a significant increase in microvascular permeability (measured using the capillary filtration coefficient Kfc), lung weight gain, lung weight/bodyweight ratio, pulmonary arterial pressure (PAP) and protein concentration of bronchoalveolar lavage fluid. 3. Pretreatment with the NOS inhibitor l-NAME (5 mmol/L) significantly attenuated ALI. None of the parameters reflective of lung injury showed significant increase, except for PAP (P < 0.001). The addition of l-arginine (4 mmol/L) blocked the protective effective of l-NAME. Pretreatment with l-arginine exacerbated PMA-induced lung injury. 4. These data suggest that l-NAME significantly ameliorates ALI induced by PMA in rats, indicating that endogenous NO plays a key role in the development of lung oedema in PMA-induced lung injury. PMID:12859432

  7. Pharmaco-thermodynamics of deuterium-induced oedema in living rat brain via 1H2O MRI: implications for boron neutron capture therapy of malignant brain tumours

    NASA Astrophysics Data System (ADS)

    Medina, Daniel C.; Li, Xin; Springer, Charles S., Jr.

    2005-05-01

    In addition to its common usage as a tracer in metabolic and physiological studies, deuterium possesses anti-tumoural activity and confers protection against γ-irradiation. A more recent interest in deuterium emanates from the search for alternatives capable of improving neutron penetrance whilst reducing healthy tissue radiation dose deposition in boron neutron capture therapy of malignant brain tumours. Despite this potential clinical application, deuterium induces brain oedema, which is detrimental to neutron capture therapy. In this study, five adult male rats were titrated with deuterated drinking water while brain oedema was monitored via water proton magnetic resonance imaging. This report concludes that deuterium, as well as deuterium-induced brain oedema, possesses a uniform brain bio-distribution. At a steady-state blood fluid deuteration value of 16%, when the deuterium isotope fraction in drinking water was 25%, a mean oedematous volume change of 9 ± 2% (p-value <0.001) was observed in the rat brain—this may account for neurological and behavioural abnormalities found in mammals drinking highly deuterated water. In addition to characterizing the pharmaco-thermodynamics of deuterium-induced oedema, this report also estimates the impact of oedema on thermal neutron enhancement and effective dose reduction factors using simple linear transport calculations. While body fluid deuteration enhances thermal neutron flux penetrance and reduces dose deposition, oedema has the opposite effect because it increases the volume of interest, e.g., the brain volume. Thermal neutron enhancement and effective dose reduction factors could be reduced by as much as ~10% in the presence of a 9% water volume increase (oedema). All three authors have contributed equally to this work.

  8. Particulate matters collected from ceramic factories in Lampang Province affecting rat lungs*

    PubMed Central

    Fongmoon, Duriya; Pongnikorn, Surathat; Chaisena, Aphiruk; Iamsaard, Sitthichai

    2014-01-01

    Background: Lung cancer ranks as the fifth largest of all cancer cases in Thailand. However, it is the first leading cancer in the northern part of Thailand (data from 2003–2007). There are several predisposing causes that lead to lung cancer and one important inducement is particulate matters (PMs). Lampang Province in Thailand is famous for the ceramic industry, where there are over 200 ceramic industrial factories. PMs are produced during the ceramic manufacturing process and spread throughout all of the working areas. It is very possible that workers could directly inhale PM-contaminated air during working hours. Objective: This study focuses on the toxic effects of PMs collected from ceramic factories on genes and lungs of rats. Methods: PMs collected from six ceramic factories in Lampang Province were extracted using dimethyl sulfoxide (DMSO). The inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) were used to analyze the chemical elements at lower and higher concentrations, respectively. Then, the toxicity of PMs on the genes was examined by the Ames test, and subsequently, the effect of PMs on DNA was examined by quantifying the amount of 8-hydroxy-2′-deoxyguanosine (8-OHdG). Finally, the toxicity of the PMs on rat’s lungs was examined by histology. Results: As chemical elements of lower concentrations, cadmium, chromium, nickel, copper, and lead were detected by ICP-MS. As chemical elements of higher concentrations, manganese, magnesium, zinc, iron, potassium, calcium, and sodium were detected by ICP-OES. No mutagenicity in Salmonella typhimurium was found in the PM extracts from all six factories by utilizing the Ames test. In the histological study, the reduction in spaces of alveolar ducts and sacs, and terminal bronchioles, the thickening of interstitial connective tissues were noted by PM extracts in high amounts (100 and 350 μg). Female rats were more sensitive to PM

  9. Gene Expression Profiling of Lung Tissue of Rats Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Feiveson, Alan H.; Lam, Chiu-Wing; Kidane, Yared H.; Ploutz-Snyder Robert; Yeshitla, Samrawit; Zalesak, Selina M.; Scully, Robert R.; Wu, Honglu; James, John T.

    2014-01-01

    The purpose of the study is to analyze the dynamics of global gene expression changes in the lung tissue of rats exposed to lunar dust particles. Multiple pathways and transcription factors were identified using the Ingenuity Pathway Analysis tool, showing the potential networks of these signaling regulations involved in lunar dust-induced prolonged proflammatory response and toxicity. The data presented in this study, for the first time, explores the molecular mechanisms of lunar dust induced toxicity. This work contributes not only to the risk assessment for future space exploration, but also to the understanding of the dust-induced toxicity to humans on earth.

  10. Therapeutic Effect of Intravenous Infusion of Perfluorocarbon Emulsion on LPS-Induced Acute Lung Injury in Rats

    PubMed Central

    Lv, Qi; Yin, Xiaofeng; Song, Jianqi; Landén, Ning Xu; Fan, Haojun

    2014-01-01

    Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) are the leading causes of death in critical care. Despite extensive efforts in research and clinical medicine, mortality remains high in these diseases. Perfluorocarbon (PFC), a chemical compound known as liquid ventilation medium, is capable of dissolving large amounts of physiologically important gases (mainly oxygen and carbon dioxide). In this study we aimed to investigate the effect of intravenous infusion of PFC emulsion on lipopolysaccharide (LPS) induced ALI in rats and elucidate its mechanism of action. Forty two Wistar rats were randomly divided into three groups: 6 rats were treated with saline solution by intratracheal instillation (control group), 18 rats were treated with LPS by intratracheal instillation (LPS group) and the other 18 rats received PFC through femoral vein prior to LPS instillation (LPS+PFC group). The rats in the control group were sacrificed 6 hours later after saline instillation. At 2, 4 and 6 hours of exposure to LPS, 6 rats in the LPS group and 6 rats in LPS+PFC group were sacrificed at each time point. By analyzing pulmonary pathology, partial pressure of oxygen in the blood (PaO2) and lung wet-dry weight ratio (W/D) of each rat, we found that intravenous infusion of PFC significantly alleviated acute lung injury induced by LPS. Moreover, we showed that the expression of pulmonary myeloperoxidase (MPO), intercellular adhesion molecule-1 (ICAM-1) of endothelial cells and CD11b of polymorphonuclear neutrophils (PMN) induced by LPS were significantly decreased by PFC treatment in vivo. Our results indicate that intravenous infusion of PFC inhibits the infiltration of PMNs into lung tissue, which has been shown as the core pathogenesis of ALI/ARDS. Thus, our study provides a theoretical foundation for using intravenous infusion of PFC to prevent and treat ALI/ARDS in clinical practice. PMID:24489970

  11. Therapeutic effect of intravenous infusion of perfluorocarbon emulsion on LPS-induced acute lung injury in rats.

    PubMed

    Hou, Shike; Ding, Hui; Lv, Qi; Yin, Xiaofeng; Song, Jianqi; Landén, Ning Xu; Fan, Haojun

    2014-01-01

    Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) are the leading causes of death in critical care. Despite extensive efforts in research and clinical medicine, mortality remains high in these diseases. Perfluorocarbon (PFC), a chemical compound known as liquid ventilation medium, is capable of dissolving large amounts of physiologically important gases (mainly oxygen and carbon dioxide). In this study we aimed to investigate the effect of intravenous infusion of PFC emulsion on lipopolysaccharide (LPS) induced ALI in rats and elucidate its mechanism of action. Forty two Wistar rats were randomly divided into three groups: 6 rats were treated with saline solution by intratracheal instillation (control group), 18 rats were treated with LPS by intratracheal instillation (LPS group) and the other 18 rats received PFC through femoral vein prior to LPS instillation (LPS+PFC group). The rats in the control group were sacrificed 6 hours later after saline instillation. At 2, 4 and 6 hours of exposure to LPS, 6 rats in the LPS group and 6 rats in LPS+PFC group were sacrificed at each time point. By analyzing pulmonary pathology, partial pressure of oxygen in the blood (PaO2) and lung wet-dry weight ratio (W/D) of each rat, we found that intravenous infusion of PFC significantly alleviated acute lung injury induced by LPS. Moreover, we showed that the expression of pulmonary myeloperoxidase (MPO), intercellular adhesion molecule-1 (ICAM-1) of endothelial cells and CD11b of polymorphonuclear neutrophils (PMN) induced by LPS were significantly decreased by PFC treatment in vivo. Our results indicate that intravenous infusion of PFC inhibits the infiltration of PMNs into lung tissue, which has been shown as the core pathogenesis of ALI/ARDS. Thus, our study provides a theoretical foundation for using intravenous infusion of PFC to prevent and treat ALI/ARDS in clinical practice. PMID:24489970

  12. Effect of chlorphentermine on incorporation of (/sup 14/C)choline in the rat lung phospholipids

    SciTech Connect

    Gonmori, K.; Morita, T.; Mehendale, H.M.

    1986-03-01

    The effect of chlorphentermine (CP) treatment (50 mg/kg/day, per os (po)) on the incorporation of (/sup 14/C)choline into rat lung phospholipid was studied. Total phospholipid content was increased 2.0-fold and 1.7-fold after seven and /sup 14/ days, respectively, compared with the pair-fed rats. The incorporation of (14C)choline into phosphatidylcholine (PC) was significantly inhibited by either seven or 14 days of CP treatment. Nevertheless, the PC content was significantly increased by day 7 and stayed elevated at day 14 of CP treatment. Choline and phosphorylcholine contents were significantly decreased by the CP treatment. These results suggest that the higher accumulation of PC is due to inhibition of enzymes involved in the hydrolysis of phospholipids rather than to a stimulation of the phospholipid synthesis.

  13. Blocking Cyclic Adenosine Diphosphate Ribose-mediated Calcium Overload Attenuates Sepsis-induced Acute Lung Injury in Rats

    PubMed Central

    Peng, Qian-Yi; Zou, Yu; Zhang, Li-Na; Ai, Mei-Lin; Liu, Wei; Ai, Yu-Hang

    2016-01-01

    Background: Acute lung injury (ALI) is a common complication of sepsis that is associated with high mortality. Intracellular Ca2+ overload plays an important role in the pathophysiology of sepsis-induced ALI, and cyclic adenosine diphosphate ribose (cADPR) is an important regulator of intracellular Ca2+ mobilization. The cluster of differentiation 38 (CD38)/cADPR pathway has been found to play roles in multiple inflammatory processes but its role in sepsis-induced ALI is still unknown. This study aimed to investigate whether the CD38/cADPR signaling pathway is activated in sepsis-induced ALI and whether blocking cADPR-mediated calcium overload attenuates ALI. Methods: Septic rat models were established by cecal ligation and puncture (CLP). Rats were divided into the sham group, the CLP group, and the CLP+ 8-bromo-cyclic adenosine diphosphate ribose (8-Br-cADPR) group. Nicotinamide adenine dinucleotide (NAD+), cADPR, CD38, and intracellular Ca2+ levels in the lung tissues were measured at 6, 12, 24, and 48 h after CLP surgery. Lung histologic injury, tumor necrosis factor (TNF)-α, malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activities were measured. Results: NAD+, cADPR, CD38, and intracellular Ca2+ levels in the lungs of septic rats increased significantly at 24 h after CLP surgery. Treatment with 8-Br-cADPR, a specific inhibitor of cADPR, significantly reduced intracellular Ca2+ levels (P = 0.007), attenuated lung histological injury (P = 0.023), reduced TNF-α and MDA levels (P < 0.001 and P = 0.002, respectively) and recovered SOD activity (P = 0.031) in the lungs of septic rats. Conclusions: The CD38/cADPR pathway is activated in the lungs of septic rats, and blocking cADPR-mediated calcium overload with 8-Br-cADPR protects against sepsis-induced ALI. PMID:27411462

  14. The adenosine 2A receptor agonist GW328267C improves lung function after acute lung injury in rats.

    PubMed

    Folkesson, Hans G; Kuzenko, Stephanie R; Lipson, David A; Matthay, Michael A; Simmons, Mark A

    2012-08-01

    There is a significant unmet need for treatments of patients with acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS). The primary mechanism that leads to resolution of alveolar and pulmonary edema is active vectorial Na(+) and Cl(-) transport across the alveolar epithelium. Several studies have suggested a role for adenosine receptors in regulating this fluid transport in the lung. Furthermore, these studies point to the A(2A) subtype of adenosine receptor (A(2A)R) as playing a role to enhance fluid transport, suggesting that activation of the A(2A)R may enhance alveolar fluid clearance (AFC). The current studies test the potential therapeutic value of the A(2A)R agonist GW328267C to accelerate resolution of alveolar edema and ALI/ARDS in rats. GW328267C, at concentrations of 10(-5) M to 10(-3) M, instilled into the airspaces, increased AFC in control animals. GW328267C did not increase AFC beyond that produced by maximal β-adrenergic stimulation. The effect of GW328267C was inhibited by amiloride but was not affected by cystic fibrosis transmembrane conductance regulator inhibition. The drug was tested in three models of ALI, HCl instillation 1 h, LPS instillation 16 h, and live Escherichia coli instillation 2 h before GW328267C instillation. After either type of injury, GW328267C (10(-4) M) decreased pulmonary edema formation and restored AFC, measured 1 h after GW328267C instillation. These findings show that GW328267C has beneficial effects in experimental models of ALI and may be a useful agent for treating patients with ALI or prophylactically to prevent ALI. PMID:22659881

  15. [Stress-resistance and the condition of surfactant system and water balance in the lung of suspended rats].

    PubMed

    Bryndina, I G; Vasilieva, N N; Baranov, V M

    2013-01-01

    White male rats with the body mass of 180-220 grams were distributed into the open-field active (presumably stress-resistant) and open-field inactive (presumably stress vulnerable) groups for a 10-day experimental suspension with the purpose to evaluate the surfactant activity in bronchoalveolar lavages, total phospholipids and their fractions, and water balance in the lung. In modeled microgravity, augmented blood filling of the rat's lung increases the alveolar phospholipid content and alters the phospholipid fractional composition in the pulmonary surfactant. Ten-day suspension raises pulmonary surfactant activity to a greater extent in stress-resistant animals rather than in their stress vulnerable peers. PMID:24032163

  16. Proton MRI as a noninvasive tool to assess elastase-induced lung damage in spontaneously breathing rats.

    PubMed

    Quintana, Harry Karmouty; Cannet, Catherine; Zurbruegg, Stefan; Blé, François-Xavier; Fozard, John R; Page, Clive P; Beckmann, Nicolau

    2006-12-01

    Elastase-induced changes in lung morphology and function were detected in spontaneously breathing rats using conventional proton MRI at 4.7 T. A single dose of porcine pancreatic elastase (75 U/100 g body weight) or vehicle (saline) was administered intratracheally (i.t.) to male Brown Norway (BN) rats. MRI fluid signals were detected in the lungs 24 hr after administration of elastase and resolved within 2 weeks. These results correlated with perivascular edema and cellular infiltration observed histologically. Reductions in MRI signal intensity of the lung parenchyma, and increases in lung volume were detected as early as 2 weeks following elastase administration and remained uniform throughout the study, which lasted 8 weeks. Observations were consistent with air trapping resulting from emphysema detected histologically. In a separate experiment, animals were treated daily intraperitoneally (i.p.) with all-trans-retinoic acid (ATRA; 500 microg/kg body weight) or its vehicle (triglyceride oil) starting on day 21 after elastase administration and continuing for 12 days. Under these conditions, ATRA did not elicit a reversal of elastase-induced lung damage as measured by MRI and histology. The present approach complements other validated applications of proton MRI in experimental lung research as a method for assessing drugs in rat models of respiratory diseases. PMID:17029230

  17. Cadmium-enriched cigarette smoke-induced cytological and biochemical alterations in rat lungs

    SciTech Connect

    Gairola, C.G. )

    1989-01-01

    Male Sprague-Dawley rats were exposed daily for 52 wk in a nose-only exposure system to smoke from the University of Kentucky 2R1 reference cigarettes (SM) or from cigarettes made of cadmium-enriched tobacco (Cd-SM). At sacrifice, the animals were evaluated by bronchoalveolar lavage (BAL) for inflammatory cell response in the lungs, and the cells so obtained were analyzed for phagocytosis of particles (latex and IgG-coated SRBCs) and for their ability to release oxidants upon phagocytic challenge. Additionally, lung tissues were analyzed for Cd levels and lung homogenate fractions were assayed for aryl hydrocarbon hydroxylase (AHH) as well as total and selenium-dependent glutathione peroxidase (GSH-Px) activities. BAL cell counts showed a significant influx of inflammatory cells into the lungs of the Cd-SM group but not the SM group. The proportion of neutrophils in the BAL cells of the Cd-Sm group was elevated to 40 {plus minus} 9%, compared with less than 2% in the SM group. Phagocytosis of both types of particles by macrophages from SM and Cd-SM groups was similar to that of the control groups, except that a greater uptake of latex particles was seen is Cd-SM macrophages. The release of oxidants (superoxides and hydrogen peroxide) by the BAL cells was severely impaired in the Cd-SM group, whereas a slight stimulation was seen in the SM gropu. Pulmonary GSH-Px activity was the same in all groups. A significant induction of the pulmonary AHH activity was observed in the SM group only. The Cd levels in the lungs were approximately 8- and 200-fold greater than controls in SM and Cd-SM groups, respectively. These observation suggest a significant influence of tabacco Cd on the toxicity of cigarette smoke.

  18. The Impact of Heart Irradiation on Dose-Volume Effects in the Rat Lung

    SciTech Connect

    Luijk, Peter van Faber, Hette; Meertens, Harm; Schippers, Jacobus M.; Langendijk, Johannes A.; Brandenburg, Sytze; Kampinga, Harm H.; Coppes, Robert P. Ph.D.

    2007-10-01

    Purpose: To test the hypothesis that heart irradiation increases the risk of a symptomatic radiation-induced loss of lung function (SRILF) and that this can be well-described as a modulation of the functional reserve of the lung. Methods and Materials: Rats were irradiated with 150-MeV protons. Dose-response curves were obtained for a significant increase in breathing frequency after irradiation of 100%, 75%, 50%, or 25% of the total lung volume, either including or excluding the heart from the irradiation field. A significant increase in the mean respiratory rate after 6-12 weeks compared with 0-4 weeks was defined as SRILF, based on biweekly measurements of the respiratory rate. The critical volume (CV) model was used to describe the risk of SRILF. Fits were done using a maximum likelihood method. Consistency between model and data was tested using a previously developed goodness-of-fit test. Results: The CV model could be fitted consistently to the data for lung irradiation only. However, this fitted model failed to predict the data that also included heart irradiation. Even refitting the model to all data resulted in a significant difference between model and data. These results imply that, although the CV model describes the risk of SRILF when the heart is spared, the model needs to be modified to account for the impact of dose to the heart on the risk of SRILF. Finally, a modified CV model is described that is consistent to all data. Conclusions: The detrimental effect of dose to the heart on the incidence of SRILF can be described by a dose dependent decrease in functional reserve of the lung.

  19. Benefits of pre-, pro- and Syn-biotics for lung angiogenesis in malnutritional rats exposed to intermittent hypoxia

    PubMed Central

    Ahmad, Asma; Cai, Charles L; Kumar, Dharmendra; Cai, Fayme; D’Souza, Antoni; Fordjour, Lawrence; Ahmad, Taimur; Valencia, Gloria B; Aranda, Jacob V; Beharry, Kay D

    2014-01-01

    Extremely low birth weight and reduced caloric intake have significant adverse effects on lung development and are risk factors for bronchopulmonary dysplasia. Vascular endothelial growth factor (VEGF) is highly involved in lung microvascular development, and may be affected by nutritional status. To test the hypothesis that suboptimal nutrition decreases VEGF signaling in formula-fed neonatal rats, and to determine whether supplementation with probiotics, prebiotics, or synbiotics ameliorate the effects, rat pups at birth (P0) were placed in room air (RA) or intermittent hypoxia (12%) during hyperoxia (50% O2) from birth to P3. The pups were either maternally-fed; or formula-fed with or without supplementation. Formula-fed pups were separated from their mothers at birth and hand-gavaged every 3 hours. Lung VEGF signaling was determined on P3. In RA, all formula-fed groups were significantly growth suppressed with decreased lung weights. Hyperoxia had a less remarkable effect on body weight; and mean lung weight was lower only in the unsupplemented formula-fed group. Lung VEGF was decreased in all formula-fed RA and hyperoxia groups, except the probiotics group. In RA, sVEGFR-1 levels were elevated in all formula-fed groups except the synbiotics group. However in hyperoxia, sVEGFR-1 levels were higher in the unsupplemented formula group. All genes involved in angiogenesis were downregulated in the formula-fed groups compared to maternally-fed. Formula feeding results in significant malnutrition associated with decreased lung size and lung VEGF levels in neonatal rat pups. Probiotic supplementation prevented the adverse effects of combined hyperoxia and suboptimal nutrition on lung VEGF suggesting preservation of angiogenesis. PMID:25360212

  20. Alveolar macrophages. II. Inhibition of lymphocyte proliferation by purified macrophages from rat lung.

    PubMed Central

    Holt, P G

    1979-01-01

    Macrophages were prepared from the lung, peritoneal cavity and blood of normal, unstimulated rats from a number of strains. The macrophages were purified by adherence, and characterized via surface markers, enzyme activity and phagocytic capacity, and subsequently tested for activity in cultures of mitogen-stimulated syngeneic lymphocytes. Peritoneal macrophages and blood monocytes were mildly stimulatory, or ineffective in modulating mitogen-induced DNA synthesis; peritoneal macrophages reconstituted the blastogenic responses of macrophage-depleted lymph node cell cultures to normal limits. In contrast, alveolar macrophages were markedly inhibitory to lymphocyte proliferation; in some instances inhibitory activity was demonstrable when added alveolar macrophages comprised only 0.04% of the total cells in culture. Lymphocyte proliferation induced by T-cell mitogens was more susceptible to this inhibition than was proliferation induced by the B-cell mitogen LPS. Alveolar macrophages recovered from SPF rats, while less in number, exhibited comparable inhibitory activity. These results form part of an emerging picture picture of the normal alveolar macrophage as a potential 'suppressor' of T-cell activity in the lung. PMID:468308

  1. Oxygen toxicity in the perfused rat liver and lung under hyperbaric conditions.

    PubMed Central

    Nishiki, K; Jamieson, D; Oshino, N; Chance, B

    1976-01-01

    1. In the lung and liver of tocopherol-deficient rats, the activities of glutathione peroxidase and glucose 6-phosphate dehydrogenase were increased substantially, suggesting an important role for both enzymes in protecting the organ against the deleterious effects of lipid peroxides. 2. Facilitation of the glutathione peroxidase reaction by infusing t-butyl hydroperoxide caused the oxidation of nicotinamide nucleotides and glutathione, resulting in a concomitant increase in the rate of release of oxidized glutathione into the perfusate. Thus the rate of production of lipid peroxide and H2O2 in the perfused organ could be compared by simultaneous measurement of the rate of glutathione release and the turnover number of the catalase reaction. 3. On hyperbaric oxygenation at 4 X 10(5)Pa, H2O2 production, estimated from the turnover of the catalase reaction, was increased slightly in the liver, and glutathione release was increased slightly, in both lung and liver. 4. Tocopherol deficiency caused a marked increase in lipid-peroxide formation as indicated by a corresponding increase in glutathione release under hyperbaric oxygenation, with a further enhancement when the tocopherol-deficient rats were also starved. 5. The study demonstrates that the primary response to hyperbaric oxygenation is an elevation of the rate of lipid peroxidation rather than of the rate of formation of H2O2 or superoxide. PMID:12754

  2. [Effect of L-arginine on pro- and antioxidant status of the rat vessels and lungs in experimental rhabdomyolysis].

    PubMed

    Fylymonenko, V P; Nikitchenko, I V; Kaliman, P A

    2009-01-01

    The glycerol administration was found to cause accumulation of the total heme in rat blood serum, vessels and lungs that are accompanied by increase of TBA-reactive products and protein carbonyl derivates contents. A decrease of superoxide dismutase activity and an increase of reduced glutathione in lung were observed. Heme entering the vessels and lungs is accompanied by elevation in heme oxygenase activity. Pretreatment by L-arginine (0.5 h before glycerol administration) didn't affect blood serum and vessels changes caused by glycerol injection. However, in lungs, L-arginine prevents TBA-reactive products and protein carbonyl derivates accumulation, the decrease ofsuperoxide dismutase activity and causes the ealier heme oxygenase induction. Prooxidant effects of heme in tissues studied and possible mechanisms of L-arginine protective action in lung under experimental rhabdomyolysis are discussed. PMID:20095386

  3. Tumour necrosis factor-alpha-induced ICAM-1 expression in human vascular endothelial and lung epithelial cells: modulation by tyrosine kinase inhibitors.

    PubMed Central

    Burke-Gaffney, A.; Hellewell, P. G.

    1996-01-01

    1. Tumour necrosis factor-alpha (TNF alpha) increases the expression of the adhesion molecule intercellular adhesion molecule-1 (ICAM-1) on cultured endothelial and epithelial cells and modulation of this may be important in controlling inflammation. Activation of tyrosine kinase(s) is known to be involved in the signal transduction pathways of many cytokines. In this study we have investigated the effects of the tyrosine kinase inhibitors, ST638, tyrphostin AG 1288 and genistein, on TNF alpha-induced ICAM-1 expression in human alveolar epithelial (A549) and vascular endothelial (EAhy926) cell lines and also normal human lung microvascular endothelial cells (HLMVEC). 2. ICAM-1 expression on cultured cells was determined by a sensitive enzyme-linked immunosorbant assay (ELISA). Endothelial or epithelial monolayers were exposed to increasing doses of TNF-alpha (0.01-10 ng ml-1), in the presence or absence of either ST638 (3-100 microM), AG 1288 (3-100 microM) or genistein (100 microM) and ICAM-1 expression was measured at 4 and 24 h. Control experiments examined the effect of ST638 on phorbol 12-myristate 13-acetate (PMA, 20 ng ml-1, 4 h)-stimulated ICAM-1 and compared it to that of a specific protein kinase C inhibitor, R031-8220 (10 microM). Also, functional consequences of changes in ICAM-1 expression were assessed by measuring adhesion of 111 In-labelled human neutrophils to EAhy926 endothelial and A549 epithelial monolayers treated with TNF alpha, in the presence or absence of ST638. 3. ST638 caused a concentration-dependent reduction in TNF alpha- (0.1-10 ng ml-1)-induced ICAM-1 on EAhy926 endothelial (at 4 h) and A549 epithelial monolayers (at 4 and 24 h). In contrast, ST638 caused a concentration-dependent increase in TNF alpha- (0.1-10 ng ml-1)-induced ICAM-1 on EAhy926 endothelial cells at 24 h. Similar effects were seen with AG 1288 or genistein. ST638 (100 microM) significantly (P < 0.01) inhibited ICAM-1 expression on HLMVEC endothelial cells induced by

  4. Inflation with carbon monoxide in rat donor lung during cold ischemia phase ameliorates graft injury.

    PubMed

    Meng, Chao; Ma, Liangjuan; Liu, Jinfeng; Cui, Xiaoguang; Liu, Rongfang; Xing, Jingchun; Zhou, Huacheng

    2016-02-01

    Carbon monoxide (CO) attenuates lung ischemia reperfusion injury (IRI) via inhalation, and as an additive dissolved in flush/preservation solution. This study observed the effects of lung inflation with CO on lung graft function in the setting of cold ischemia. Donor lungs were inflated with 40% oxygen + 60% nitrogen (control group) or with 500 ppm CO + 40% oxygen + nitrogen (CO group) during the cold ischemia phase and were kept at 4℃ for 180 min. Recipients were sacrificed by exsanguinations at 180 min after reperfusion. Rats in the sham group had no transplantation and were performed as the recipients. Compared with the sham group, the oxygenation determined by blood gas analysis and the pressure-volume curves of the lung grafts decreased significantly, while the wet weight/dry weight (W/D) ratio, inflammatory reaction, oxidative stress, and cell apoptosis increased markedly (P < 0.05). However, compared to the control group, CO treatment improved the oxygenation (381 ± 58 vs. 308 ± 78 mm Hg) and the pressure-volume curves (15.8 ± 2.4 vs. 11.6 ± 1.7 mL/kg) (P < 0.05). The W/D ratio (4.6 ± 0.6) and the serum levels of interleukin-8 (279 ± 46 pg/mL) and tumor necrosis factor-α (377 ± 59 pg/mL) in the CO group decreased significantly compared to the control group (5.8 ± 0.8, 456 ± 63 pg/mL, and 520 ± 91 pg/mL) (P < 0.05). In addition, CO inflation also significantly decreased malondialdehyde activity and apoptotic cells in grafts, and increased the superoxide dismutase content. Briefly, CO inflation in donor lungs in the setting of cold ischemia attenuated lung IRI and improved the graft function compared with oxygen. PMID:26290141

  5. Preventive effects of dexmedetomidine on the liver in a rat model of acid-induced acute lung injury.

    PubMed

    Sen, Velat; Güzel, Abdulmenap; Şen, Hadice Selimoğlu; Ece, Aydın; Uluca, Unal; Söker, Sevda; Doğan, Erdal; Kaplan, İbrahim; Deveci, Engin

    2014-01-01

    The aim of this study was to examine whether dexmedetomidine improves acute liver injury in a rat model. Twenty-eight male Wistar albino rats weighing 300-350 g were allocated randomly to four groups. In group 1, normal saline (NS) was injected into the lungs and rats were allowed to breathe spontaneously. In group 2, rats received standard ventilation (SV) in addition to NS. In group 3, hydrochloric acid was injected into the lungs and rats received SV. In group 4, rats received SV and 100 µg/kg intraperitoneal dexmedetomidine before intratracheal HCl instillation. Blood samples and liver tissue specimens were examined by biochemical, histopathological, and immunohistochemical methods. Acute lung injury (ALI) was found to be associated with increased malondialdehyde (MDA), total oxidant activity (TOA), oxidative stress index (OSI), and decreased total antioxidant capacity (TAC). Significantly decreased MDA, TOA, and OSI levels and significantly increased TAC levels were found with dexmedetomidine injection in group 4 (P < 0.05). The highest histologic injury scores were detected in group 3. Enhanced hepatic vascular endothelial growth factor (VEGF) expression and reduced CD68 expression were found in dexmedetomidine group compared with the group 3. In conclusion, the presented data provide the first evidence that dexmedetomidine has a protective effect on experimental liver injury induced by ALI. PMID:25165710

  6. Ghrelin attenuates sepsis-associated acute lung injury oxidative stress in rats.

    PubMed

    Zeng, Mian; He, Wanmei; Li, Lijun; Li, Bin; Luo, Liang; Huang, Xubin; Guan, Kaipan; Chen, Weiling

    2015-04-01

    This study investigated the effect of ghrelin on oxidative stress in septic rat lung tissue. Male Sprague-Dawley rats were divided into sham-operation, sepsis, and ghrelin groups. Sepsis was induced by cecal ligation and puncture. Ghrelin was administered intraperitoneally at 3 and 15 h post-operation. Bronchoalveolar lavage was performed to collect alveolar macrophages (AMs). Inducible nitric oxide synthase (iNOS) messenger RNA (mRNA) expression in alveolar macrophages and iNOS protein levels were measured by reverse transcription PCR (RT-PCR) and Western blot. Pulmonary pathology was analyzed and nitrotyrosine expression was examined by immunohistochemistry. Plasma superoxide dismutase (SOD) and lung wet/dry weight were measured. In the sepsis group, iNOS mRNA expression in AMs was 1.33 ± 0.05, 1.44 ± 0.08, and 1.57 ± 0.11 at 6, 12, and 20 h post-surgery, respectively, and were higher compared with the sham-operation group (p<0.05). No increase was observed at longer time points. iNOS mRNA expression in the sepsis group was lower compared with the ghrelin group (2.27 ± 0.37) (p<0.05) at 20 h post-surgery. iNOS protein levels in the ghrelin group (0.87 ± 0.03, p<0.05) were lower than in the sepsis group at 20 h. Ghrelin group pathological scores were lower than in the sepsis group (p<0.05). Plasma SOD was slightly non-significantly decreased in the ghrelin group. No difference was observed in lung wet/dry weight ratios between sepsis and ghrelin groups. iNOS mRNA expression in AMs was elevated between 6 and 20 h after cecal ligation and puncture (CLP), but did not progress. Ghrelin attenuated pulmonary iNOS protein expression and tended to increase plasma SOD activity. Ghrelin suppressed pulmonary nitrosative stress in septic rats, but did not improve lung wet/dry weight ratios. PMID:25037094

  7. Anti-Tumor Action, Clinical Biochemistry Profile and Phytochemical Constituents of a Pharmacologically Active Fraction of S. crispus in NMU-Induced Rat Mammary Tumour Model

    PubMed Central

    Yaacob, Nik Soriani; Yankuzo, Hassan Muhammad; Devaraj, Sutha; Wong, Jimmy Ka Ming; Lai, Choon-Sheen

    2015-01-01

    Cancer patients seek alternative remedies such as traditional medicinal plants for safe and effective treatment and help overcome the side effects of conventional therapy. Current knowledge indicates that extracts of Strobilanthes crispus of the Acanthaceae family exhibit potent anticancer properties in vitro and are non-toxic in vivo. S. crispus was also reported to be protective against chemical hepatocarcinogenesis. We previously showed that a bioactive fraction of S. crispus leaves also synergized with tamoxifen to cause apoptosis of human breast cancer cell lines without damaging non-malignant epithelial cells. The present study aimed to evaluate the antitumor effect of S. crispus dichloromethane fraction (F3) using N-methyl-N-Nitrosourea (NMU)-induced rat mammary tumor model. Tumor regression was observed in 75% of the rats following 8-week oral administration of F3 with no secondary tumour formation and no signs of anemia or infection. However, no improvement in the liver and renal function profiles was observed. Major constituents of F3 were identified as lutein, 131-hydroxy-132-oxo-pheophytin a, campesterol, stigmasterol, β-sitosterol, pheophytin a and 132-hydroxy-pheophytin a. These compounds however, may not significantly contribute to the antitumor effect of F3. PMID:26000968

  8. Effects of Propofol and Midazolam on the Inflammation of Lungs after Intravenous Endotoxin Administration in Rats

    PubMed Central

    Celik, Mine Gursac; Saracoglu, Ayten; Saracoglu, Tolga; Kursad, Husnu; Dostbil, Aysenur; Aksoy, Mehmet; Ahiskalioglu, Ali; Ince, Ilker

    2015-01-01

    Objective: Pulmonary complications are important sepsis (such as ARDS, diffuse pneumonia). Acute respiratory distress syndrome (ARDS) is characterized by the extensive migration of neutrophils into alveoli of the lungs. Propofol and midazolam are the most widely used agents for sedation in intensive care units. Aimed to investigate the effects of anaesthesia with propofol and midazolam on measured hemodynamic variables and neutrophil migration induced by Escherichia Coli endotoxin (ECE) in pulmonary viscera. Materials and Methods: Forty Sprague Dawley male rats were randomly assigned to four groups: Thiopental Sodium 30 mg/kg was administered intraperitoneally to anesthetize the rats. They were ventilated via tracheotomy. Femoral artery was cannulated for the measurement of continuous blood pressure and gases. Group C was the control. After the administration of 1 mL/kg 0.9% NaCL, infusion began at 1 mL/kg/h rate. In Group E 15 mg/kg lipopolysaccharide derived from ECE was administered iv. In Group PE, after a bolus dose of 10 mg/kg propofol and 15 mg/kg ECE, 10 mg/kg/h infusion was applied. In Group ME, after 0.1 mg/kg midazolam bolus dose and 15 mg/kg ECE administration, 0.1 mg/kg/h infusion was administered iv. Rats were sacrified by iv potassium chloride. The lungs were then removed, fixed in 10% buffered formalin for 3 days and embedded in paraffin. They were graded on a scale of 0–3 according to the aggregation of neutrophils. Results: There was intense neutrophil migration in Group E (grade 2, 3). However, although mild neutrophil migration was obtained in 70% of the rat lungs in Group ME (grade 1, 2), it was recorded in only 30% of Group PE (grade 1). Conclusion: The sepsis model induced by ECE and compared with midazolam, propofol anaesthesia is associated with less neutrophil infiltration. In the light of the literature, propofol attenuate the free-radical-mediated lipid peroxidation and systemic inflammation in patients. PMID:26180495

  9. Phenotypical and functional characterization of alveolar macrophage subpopulations in the lungs of NO2-exposed rats

    PubMed Central

    Garn, Holger; Siese, Anette; Stumpf, Sabine; Wensing, Anka; Renz, Harald; Gemsa, Diethard

    2006-01-01

    Background Alveolar macrophages (AM) are known to play an important role in the regulation of inflammatory reactions in the lung, e.g. during the development of chronic lung diseases. Exposure of rats to NO2 has recently been shown to induce a shift in the activation type of AM that is characterized by reduced TNF-α and increased IL-10 production. So far it is unclear, whether a functional shift in the already present AM population or the occurrence of a new, phenotypically different AM population is responsible for these observations. Methods AM from rat and mice were analyzed by flow cytometry for surface marker expression and in vivo staining with PKH26 was applied to characterize newly recruited macrophages. Following magnetic bead separation, AM subpopulations were further analyzed for cytokine, inducible NO synthase (iNOS) and matrix metalloproteinase (MMP) mRNA expression using quantitative RT-PCR. Following in vitro stimulation, cytokines were quantitated in the culture supernatants by ELISA. Results In untreated rats the majority of AM showed a low expression of the surface antigen ED7 (CD11b) and a high ED9 (CD172) expression (ED7-/ED9high). In contrast, NO2 exposure induced the occurrence of a subpopulation characterized by the marker combination ED7+/ED9low. Comparable changes were observed in mice and by in vivo labeling of resident AM using the dye PKH26 we could demonstrate that CD11b positive cells mainly comprise newly recruited AM. Subsequent functional analyses of separated AM subpopulations of the rat revealed that ED7+ cells showed an increased expression and production of the antiinflammatory cytokine IL-10 whereas TNF-α production was lower compared to ED7- AM. However, iNOS and IL-12 expression were also increased in the ED7+ subpopulation. In addition, these cells showed a significantly higher mRNA expression for the matrix metalloproteinases MMP-7, -8, -9, and -12. Conclusion NO2 exposure induces the infiltration of an AM subpopulation

  10. Effects of Nigella sativa seed extract on ameliorating lung tissue damage in rats after experimental pulmonary aspirations.

    PubMed

    Kanter, Mehmet

    2009-01-01

    Aspiration of gastric contents can cause serious lung injury, although the mechanisms of pulmonary damage are still not clear and means of amelioration of the pulmonary damage have been little investigated. The black cumin seed, Nigella sativa L. (NS) has been shown to have specific health benefits and the aim of the current study was to investigate the possible beneficial effects of NS on experimental lung injury in male Wistar rats after pulmonary aspiration of different materials. The rats were randomly allotted into one of six experimental groups (n=7 per group): (1) saline control, (2) saline+NS treated, (3) Pulmocare (a specialized nutritional supplement given to pulmonary patients), (4) Pulmocare+NS treated, (5) hydrochloric acid, (6) hydrochloric acid+NS treated. The saline, Pulmocare and hydrochloric acid were injected into the lungs in a volume of 2 ml/kg. The rats received daily oral doses of NS volatile oil (400mg/kg body weight) by means of intragastric intubation for 7 days starting immediately after the pulmonary aspiration of the materials. After 7 days, the rats were sacrificed and tissue samples from both lungs were taken for histopathological investigation. To date, no similar study investigating the potential for NS treatment to protect against lung injury after pulmonary aspiration of materials has been reported. Our study showed that NS treatment inhibits the inflammatory pulmonary responses, reducing significantly (p<0.05) peribronchial inflammatory cell infiltration, alveolar septal infiltration, alveolar edema, alveolar exudate, alveolar macrophages, interstitial fibrosis, granuloma and necrosis formation in different pulmonary aspiration models. Our data indicate a significant reduction in the activity of inducible nitric oxide synthase (iNOS) and a rise in surfactant protein D in lung tissue of different pulmonary aspiration models after NS therapy. Based on our results, we conclude that NS treatment might be beneficial in lung injury and

  11. Elastolytic activity in the lungs of rats exposed to cadmium aerosolization

    SciTech Connect

    Padmanabhan, R.V.; Gudapaty, S.R.; Liener, I.E.; Hoidal, J.R.

    1982-10-01

    Rats were exposed for 1 hr per day for up to 35 days to an aerosol of 0.1% cadmium chloride. At periodic intervals, animals were sacrificed and their lungs lavaged. The lung lavage fluid was examined for polymorphonuclear leukocytes (PMN) and alveolar macrophages (AM). A portion of the cells of the lavage fluid was lysed, and the remainder of the cells were cultured. The lavage fluids, cell lysates, and conditioned media were assayed for elastolytic activity in the presence and absence of a peptide chloromethyl ketone and EDTA. Exposure to cadmium evoked a biphasic cellular response characterized by an initial influx (1-3 days) of PMN followed by a gradual increase in AM. This biphasic cellular response was accompanied by a shift in the type of elastolytic activity which was present in the lung lavage and its cellular components. The initial PMN phase was accompanied by the enhanced production of an elastase inhibited only by the peptide chloromethyl ketone, while the subsequent AM phase was associated with an elastase activity which was inhibited only by EDTA. The possible implication of these results with respect to the pathogenesis of emphysema is considered.

  12. RNA interference for CFTR attenuates lung fluid absorption at birth in rats

    PubMed Central

    Li, Tianbo; Koshy, Shyny; Folkesson, Hans G

    2008-01-01

    Background Small interfering RNA (siRNA) against αENaC (α-subunit of the epithelial Na channel) and CFTR (cystic fibrosis transmembrane conductance regulator) was used to explore ENaC and CTFR function in newborn rat lungs. Methods Twenty-four hours after trans-thoracic intrapulmonary (ttip) injection of siRNA-generating plasmid DNA (pSi-0, pSi-4, or pSi-C2), we measured CFTR and ENaC expression, extravascular lung water, and mortality. Results αENaC and CFTR mRNA and protein decreased by ~80% and ~85%, respectively, following αENaC and CFTR silencing. Extravascular lung water and mortality increased after αENaC and CFTR-silencing. In pSi-C2-transfected isolated DLE cells there were attenuated CFTR mRNA and protein. In pSi-4-transfected DLE cells αENaC mRNA and protein were both reduced. Interestingly, CFTR-silencing also reduced αENaC mRNA and protein. αENaC silencing, on the other hand, only slightly reduced CFTR mRNA and protein. Conclusion Thus, ENaC and CFTR are both involved in the fluid secretion to absorption conversion around at birth. PMID:18652671

  13. Loss of gap junctional intercellular communication in rat lung epithelial cells exposed to quartz particles.

    PubMed

    Ale-Agha, Niloofar; Albrecht, Catrin; Klotz, Lars-Oliver

    2009-12-01

    Chronic inhalation of quartz particles has been implicated in lung diseases including silicosis and cancer. The aim of this study was to investigate whether quartz particles affect gap junctional intercellular communication (GJIC) in rat lung epithelial cells (RLE-6TN). Here, we demonstrate that exposure of RLE-6TN cells to subtoxic doses of DQ12 standard quartz resulted in an up to 55% reduction of GJIC, as determined in a dye transfer assay. We show that connexin-43 (Cx43) is the major connexin responsible for intercellular communication in these lung epithelial cells and that exposure to quartz particles induces a significant internalization of Cx43. Downregulation of GJIC was attenuated by N-acetyl cysteine, suggesting the involvement of reactive oxygen species and/or cellular thiol homeostasis in the regulation of GJIC. Furthermore, an inhibitor of activation of extracellular signal-regulated kinases prevented the loss of GJIC in cells exposed to DQ12 quartz, although no direct phosphorylation of Cx43 upon exposure to DQ12 was detected. PMID:19766597

  14. Ultrastructure of rat lungs following exposure to aerosols of dibenzoxazepine (CR).

    PubMed Central

    Colgrave, H. F.; Brown, R. F.; Cox, R. A.

    1979-01-01

    Three groups of 18 animals were exposed respectively to the following large doses of dibenz (b.f)-1:4 oxazepine (CR) aerosols, 78,200,140,900 and 161,300 mg/min/m3. Animals were killed at intervals from 15 min to 2 days, and the lungs examined macroscopically, by electron microscopy and conventional histology. There were no deaths during or after exposure. Macroscopically the lungs from all rats appeared normal. Microscopically there were a few areas of mild congestion, haemorrhage and emphysema, but there was little variation between the different groups. Electron micrographs revealed some morphological alteration of the epithelium and endothelium but only occasional changes in the interstitium. The alterations took the form of "ballooning" of the endothelium with isolated foci of swelling and thickening of the epithelium. Interstitial oedema was observed in one animal only which was exposed to the highest concentration. The effects appeared similar in all groups, and are thought to be transient. The results of this investigation suggest that even high doses of CR aerosols cause minimal damage to the lung, and the structural alterations which do occur are believed to be due to the stress to which the animals were subjected during the exposure period. Images Fig. 1 Fig. 2 Fig. 3(a) Fig. 3(b) Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:444416

  15. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats.

    PubMed

    Li, G; Zhou, C L; Zhou, Q S; Zou, H D

    2016-02-01

    Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats. PMID:26648090

  16. Galantamine protects against lipopolysaccharide-induced acute lung injury in rats

    PubMed Central

    Li, G.; Zhou, CL.; Zhou, QS.; Zou, HD.

    2015-01-01

    Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats. PMID:26648090

  17. Clearance of bile and trypsin in rat lungs following aspiration of human gastric fluid

    PubMed Central

    Leung, Jason H.; Chang, Jui-Chih; Foltz, Emily; Bell, Sadé M.; Pi, Cinthia; Azad, Sassan; Everett, Mary Lou; Holzknecht, Zoie E.; Sanders, Nathan L.; Parker, William; Davis, R. Duane; Keshavjee, Shaf; Lin, Shu S.

    2016-01-01

    ABSTRACT Purpose: In the clinical setting, there is no reliable tool for diagnosing gastric aspiration. A potential way of diagnosing gastric fluid aspiration entails bronchoalveolar lavage (BAL) with subsequent examination of the BAL fluid for gastric fluid components that are exogenous to the lungs. The objective of this study was to determine the longevity of the gastric fluid components bile and trypsin in the lung, in order to provide an estimate of the time frame in which assessment of these components in the BAL might effectively be used as a measure of aspiration. Materials and Methods: Human gastric fluid (0.5 mg/kg) was infused in the right lung of intubated male Fischer 344 rats (n = 30). Animals were sacrificed at specified times following the experimentally induced aspiration, and bronchoalveolar lavage fluid (BALF) was collected. Bile concentrations were analyzed by an enzyme-linked chromatogenic method, and the concentration of trypsin was quantified using an ELISA. Data were analyzed using non-linear regression and a one-phase decay equation. Results: In this experimental model, the half-life of bile was 9.3 hours (r 2 = 0.81), and the half-life of trypsin was 9.0 hours (r 2 = 0.68). Conclusions: The half-lives of bile and trypsin in the rodent aspiration model suggest that the ability to detect aspiration may be limited to a few days post-aspiration. If studies using rats are any indication, it may be most effective to collect BAL samples within the first 24 hours of suspected aspiration events in order to detect aspiration. PMID:26873328

  18. Attenuation by phosphodiesterase inhibitors of lipopolysaccharide-induced thromboxane release and bronchoconstriction in rat lungs.

    PubMed

    Uhlig, S; Featherstone, R L; Held, H D; Nüsing, R; Schudt, C; Wendel, A

    1997-12-01

    Exposure of perfused rat lungs to lipopolysaccharides (LPS) causes induction of cyclooxygenase-2 followed by thromboxane (TX)-mediated bronchoconstriction (BC). Recently, phosphodiesterase (PDE) inhibitors have received much interest because they not only are bronchodilators but also can suppress release of proinflammatory mediators. In the present study, we investigated the effect of three different PDE inhibitors on TX release and BC in LPS-exposed perfused rat lungs. The PDE inhibitors used were motapizone (PDE III specific), rolipram (PDE IV specific), and zardaverine (mixed PDE III and IV specific). At 5 microM, a concentration at which all three compounds selectively block their respective PDE isoenzyme, rolipram (IC50 = 0.04 microM) and zardaverine (IC50 = 1.8 microM) largely attenuated the LPS-induced BC, whereas motapizone was almost ineffective (IC50 = 40 microM). In contrast to LPS, BC induced by the TX-mimetic U46619 was prevented with comparable strength by motapizone and rolipram. In LPS-treated lungs, the TX release was reduced to 50% of controls by rolipram and zardaverine but was unaltered in the presence of 5 microM motapizone. Increasing intracellular cAMP through perfusion of db-cAMP or forskolin (activates adenylate cyclase) also reduced TX release and BC. We conclude that PDE inhibitors act via elevation of intracellular cAMP. Although both PDE III and PDE IV inhibitors can relax airway smooth muscle, in the model of LPS-induced BC, PDE IV inhibitors are more effective because (in contrast to PDE III inhibitors) they also attenuate TX release. PMID:9400021

  19. Diameters of juxtacapillary venules determined by oil-drop method in rat lung.

    PubMed

    Sadurski, R; Tsukada, H; Ying, X; Bhattacharya, S; Bhattacharya, J

    1994-08-01

    We report a new method for precise quantification of lung microvascular diameter. Isolated blood-perfused rat lungs (500-g Sprague-Dawley rats) at constant inflation pressure [alveolar pressure (PA)] and stopped blood flow were viewed by microscopy and video. Subpleural venules of the second and third postcapillary generations were microinjected with oil colored with Sudan Black. Vascular pressure (Pvas) was varied in steps, and at each step the horizontal diameter (DH) and the length of the oil-filled segment were determined by microcaliper measurements of the replayed video image. At PA = 5 cmH2O, a decrease in Pvas from 25 to 0 cmH2O decreased DH in the second-generation venules from 55 +/- 2 (SE) to 41 +/- 1 microns (n = 13) and in the third-generation venules from 96 +/- 6 to 73 +/- 6 microns (n = 6). The constant-volume oil-filled segment conformed to the cylinder formula in that decreases in DH correlated linearly with 1/ square root of length, thereby indicating that at all Pvas values venular geometry was constant and probably circular in cross section. The decrease in Pvas to -5 cmH2O did not further decrease DH. At Pvas = 10-25 cmH2O, an increase in PA to 15 cmH2O did not significantly increase DH, although the increase in PA did diminish the slope (compliance) of the DH-Pvas relationship in second- but not third-generation venules. We conclude that 1) lung expansion decreases compliance of juxtacapillary venules, 2) venules retain circular cross sections at Pvas between -5 and 25 cmH2O, and 3) venules are patent at subzero Pvas. PMID:8002519

  20. Increase in the activities of glycolytic enzymes in rat lungs produced by nitrogen dioxide

    SciTech Connect

    Mochitate, K.; Miura, T.; Kubota, K.

    1985-01-01

    Male Jcl: Wistar rats were exposed to 2, 4, and 10 ppm NO/sub 2/ for 14, 10, and 7 d, respectively, to examine the effect of NO/sub 2/ on the lung glycolytic pathway, a major energy-generating system in the lung. A highly significant increase in the activities of hexokinase, phosphofructokinase, 3-phosphoglycerate kinase, pyruvate kinase (PK), and lactate dehydrogenase was observed after 5 d exposure to 10 ppm NO/sub 2/, and a significantly higher value was maintained until d 7. Similarly, the activities of all enzymes examined increased significantly by exposure to 4 ppm NO/sub 2/, reaching the maximum between 4 and 7 d of exposure, and then approached to near the control levels. The most remarkable increase was found in the PK activity, which reached 1.82- and 1.53-fold that of the control at d 5 (10 ppm) and d 7 (4 ppm) of exposure, respectively. Upon exposure to 2 ppm NO/sub 2/, the PK activity of exposed animals was also increased to 1.23-fold that of the control at d 7, and higher activity was maintained until d 14. The glucose-6-phosphate dehydrogenase activity of exposed animals increased significantly at d 3, 4, and 14 of exposures to 10, 4, and 2 ppm NO/sub 2/, respectively, and a significantly higher value was maintained in the following period of exposure. These results show that short-term exposure of rats to 2-10 ppm NO/sub 2/ induces the pulmonary systems concerning glycolysis and NADPH-generation. The generation of energy and NADPH in the lung may be enhanced by NO/sub 2/ inhalation.

  1. Peculiarities of hyperlipidaemia in tumour patients.

    PubMed Central

    Dilman, V. M.; Berstein, L. M.; Ostroumova, M. N.; Tsyrlina, Y. V.; Golubev, A. G.

    1981-01-01

    The study group included 684 cases: 258 patients with breast carcinoma, 113 males with lung cancer, 42 patients with rectal tumours, 42 patients with stomach tumours, 59 patients with fibroadenomatosis, and 170 healthy subjects of varying age (male and female). A relatively high blood triglyceride level was found in patients with breast, lung, rectal (females), and stomach (female) tumours. The blood concentration of high-density lipoprotein-cholesterol in patients with breast, lung, and stomach (female) tumours was relatively low. The elimination of tumour (breast carcinoma) did not lead to significant changes in lipid metabolism. There was no correlation between degree of lipidaemia and stage of tumour progression except in the cases of rectal cancer. Preliminary results are presented on the tentative classification of hyperlipoproteinaemia in tumour patients, using the lipid concentration threshold values advocated by Carlson et al. (1977); an increased frequency of Type IV hyperlipoproteinaemia proved to be the most characteristic feature of tumour patients. The results are discussed in terms of the concept of the importance of lipid metabolic disturbances, primarily those due to ageing, in the genesis of the syndrome of "cancerophilia" (predisposition to cancer). PMID:7248149

  2. Ex vivo effects of lysine clonixinate on cyclooxygenases in rat lung and stomach preparations.

    PubMed

    Franchi, A M; Girolamo, G D; De los Santos, A R; Marti, M L; Gimeno, M A

    1999-01-01

    Lysine clonixinate (LC) is an anti-inflammatory, anti-pyretic and analgesic drug with minor digestive side effects, which might suggest a weak COX-1 inhibitor. The aim of this study focused on ex vivo effects of LC 40 mg/kg ip and indomethacin (INDO) 10 mg/kg ip in lung and stomach preparations of control rats and LPS-treated rats (5 mg/kg ip). The non-steroidal antiinflammatory drugs were administered concomitantly, following three hours and before one, two or three hours of LPS treatment. Tissues were weighed and incubated in 2 ml of Kress Ringer Bicarbonate buffer containing glucose (11 mM) under an atmosphere of 95% oxygen and 5% CO(2). Approximately 200 mg of tissue were used for each determination; 0.25 microCi of (14)C-arachidonic acid was added to each tube and the tissues were incubated for 60 min. Prostanoids were extracted from the incubation medium and separated by TLC. Results were expressed as a percentage of the total radioactivity of the plates (% of cpm on plate/100 mg ww). It was found that LC animals that were not given LPS did not modify the synthesis of PGE(2); in lung and stomach tissues showing that did not inhibit COX-1 activity. However, LC inhibited clearly the synthesis of PGE(2) in both preparations obtained from LPS-treated animals. The inhibition was shown when the rats were treated concomitantly, 3 h after or 1 or 2 h before the injection of LPS. PMID:17657442

  3. Investigation on the durability of man-made vitreous fibers in rat lungs.

    PubMed Central

    Bellmann, B; Muhle, H; Kamstrup, O; Draeger, U F

    1994-01-01

    Two types of sized stonewool with median lengths of 6.7 and 10.1 microns and median diameters of 0.63 and 0.85 microns, and crocidolite with fibers of median length of 4.8 microns and median diameter of 0.18 microns were instilled intratracheally into female Wistar rats. A single dose of 2 mg in 0.3 ml saline was used for the stonewool samples and 0.1 mg in 0.3 ml saline for crocidolite. The evenness of distribution of fibers in the lung was checked by scanning electron microscopy (SEM). Five animals per group were sacrificed after 2 days, 1, 3, 6, and 12 months. After low-temperature ashing of the lungs about 200 fibers per animal were analyzed by SEM for length and diameter. The number and mass of fibers in the total lung were calculated. For the stonewool samples the decrease in the number of fibers in the lung ash followed approximately first order kinetics resulting in half-times of 90 and 120 days. The analysis of fiber number and diameter of different length fractions was used to estimate the contribution of three processes of fiber elimination: transport by macrophages for short fibers, breakage of fibers, and dissolution of fibers. (The process of transport by macrophages was found fastest for fibers with length < 2.5 microns). For the elimination of critical fibers with length > 5 microns, the breakage and dissolution were the most important processes. The breakage of fibers was predominant for one of the stonewool samples. The preferential type of the mechanism of fiber elimination is dependent on chemical composition and size distribution. PMID:7882927

  4. Insulin-like growth factor binding protein production and regulation in fetal rat lung cells.

    PubMed

    Price, W A; Moats-Staats, B M; D'Ercole, A J; Stiles, A D

    1993-04-01

    Insulin-like growth factor binding proteins (IGFBPs) are expressed in lung from early in gestation and may modulate IGF-stimulated fetal lung cell proliferation and/or differentiation. To begin to define IGFBP production and regulation in lung cells during development, we prepared primary cultures of 19 day gestation fetal rat lung fibroblasts and epithelial cells and identified IGFBPs secreted into medium. Ligand blot analysis of conditioned media (CM) from both cell types demonstrated IGFBP bands of approximately 39,000-45,000, 32,000, 24,000, and 22,000 M(r). These migration characteristics allowed the identification of the 39,000-45,000 M(r) bands as IGFBP-3 and the 24,000 M(r) band as IGFBP-4, while Western immunoblot analyses localized IGFBP-2 to the 32,000 M(r) band and IGFBP-5 to the 22,000 M(r) band. Polymerase chain reaction amplification of cDNAs generated by reverse transcription of fibroblast and epithelial cell RNA using specific oligodeoxynucleotide primers for IGFBPs 1 through 6, demonstrated the presence of amplified products for IGFBP-2, -3, -4, -5, and -6. In both cell types, IGFBP-2 and -3 production was sustained during 48 h of incubation in serum-free medium, whereas IGFBP-4 abundance increased only during the first 6 to 12 h of incubation. CM from fibroblasts and epithelial cells plated at low densities contained a high abundance of IGFBP-2 per microgram cellular DNA compared with cells at higher densities. In contrast, IGFBP-3 and -4 abundance normalized to cell DNA did not change with differing cell densities.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7682822

  5. Nitric oxide mediates lung injury induced by ischemia-reperfusion in rats.

    PubMed

    Kao, Shang Jyh; Peng, Tai-Chu; Lee, Ru Ping; Hsu, Kang; Chen, Chao-Fuh; Hung, Yu-Kuen; Wang, David; Chen, Hsing I

    2003-01-01

    Nitric oxide (NO) has been reported to play a role in lung injury (LI) induced by ischemia-reperfusion (I/R). However, controversy exists as to the potential beneficial or detrimental effect of NO. In the present study, an in situ, perfused rat lung model was used to study the possible role of NO in the LI induced by I/R. The filtration coefficient (Kfc), lung weight gain (LWG), protein concentration in the bronchoalveolar lavage (PCBAL), and pulmonary arterial pressure (PAP) were measured to evaluate the degree of pulmonary hypertension and LI. I/R resulted in increased Kfc, LWG, and PCBAL. These changes were exacerbated by inhalation of NO (20-30 ppm) or 4 mM L-arginine, an NO precursor. The permeability increase and LI caused by I/R could be blocked by exposure to 5 mM N omega-nitro-L-arginine methyl ester (L-NAME; a nonspecific NO synthase inhibitor), and this protective effect of L-NAME was reversed with NO inhalation. Inhaled NO prevented the increase in PAP caused by I/R, while L-arginine had no such effect. L-NAME tended to diminish the I/R-induced elevation in PAP, but the suppression was not statistically significant when compared to the values in the I/R group. These results indicate that I/R increases Kfc and promotes alveolar edema by stimulating endogenous NO synthesis. Exogenous NO, either generated from L-arginine or delivered into the airway, is apparently also injurious to the lung following I/R. PMID:12566987

  6. Inhaled nitric oxide: Dose response and the effects of blood in the isolated rat lung

    SciTech Connect

    Rich, G.F.; Roos, C.M.; Anderson, S.M.; Urich, D.C.; Daugherty, M.O.; Johns, R.A. )

    1993-09-01

    Inhaled nitric oxide (NO) is a vasodilator selective to the pulmonary circulation. Using isolated rat lungs, the authors determined the dose-response relationship of NO and the role of blood in mediating pulmonary vasodilation and selectivity. Inhaled 20, 50, 100, and 1,000 ppm NO attenuated (P < 0.001) hypoxic pulmonary vasoconstriction by 16.1 [+-] 4.9, 22.6 [+-] 6.8, 28.4 [+-] 3.5, and 69.3 [+-] 4.2%, respectively. Inhaled 13, 34, 67, and 670 ppm NO attenuated the increase in pulmonary arterial pressure secondary to angiotensin II more (P < 0.001) in Greenberg-Bohr buffer- (GB) than in blood-perfused lungs (51.7 [+-] 0.0, 71.9 [+-] 8.9, 78.2 [+-] 5.3, and 91.9 [+-] 2.1% vs. 14.3 [+-] 4.2, 23.8 [+-] 4.6, 28.4 [+-] 3.8, and 55.5 [+-] 5.9%, respectively). Samples from GB- but not blood-perfused lungs contained NO (93.0 [+-] 26.3 nM). Intravascular NO attenuated the response to angiotensin II more (P < 0.001) in GB- (with and without plasma) than in blood- (hematocrit = 41 and 5%) perfused lungs (75.6 [+-] 6.4 and 70.9 [+-] 4.8% vs. 22.2 [+-] 2.4 and 39.4 [+-] 7.6%). In conclusion, inhaled NO produces reversible dose-dependent pulmonary vasodilation over a large range of concentrations. Inhaled NO enters the circulation, but red blood cells prevent systematic vasodilation and also a significant amount of pulmonary vasodilation. 24 refs., 7 figs., 2 tabs.

  7. The pharmacological modulation of [3H]-disaturated phosphatidylcholine overflow from perifused lung slices of adult rats: a new method for the study of lung surfactant secretion.

    PubMed Central

    Gilfillan, A. M.; Hollingsworth, M.; Jones, A. W.

    1983-01-01

    Lung slices from adult rats incubated in [methyl-3H]-choline chloride formed [3H]-disaturated phosphatidylcholine ( [3H]-DSPC) which was used as an index of lung surfactant. The slices were perifused after 3 h incubation in [methyl-3H]-choline chloride and the overflow of [3H]-DSPC, as a rate coefficient, was used as a measure of surfactant secretion. The basal overflow of [3H]-DSPC rapidly declined over the first 30 min of perifusion and then declined slowly. Salbutamol induced a prolonged, and sometimes delayed, increase in [3H]-DSPC overflow, which was reduced by (+/-)-propranolol. Potassium chloride produced an immediate, and usually transient, increase in [3H]-DSPC overflow which was not modified by atropine or (+/-)-propranolol. Adenosine 5'-triphosphate, but not phenylephrine, also increased [3H]-DSPC overflow. This method can measure the magnitude and time-course of lung surfactant secretion induced by drugs. PMID:6689133

  8. Effect of ethanol, carbon tetrachloride, and methyl ethyl ketone on butanol oxidase activity in rat lung and liver

    SciTech Connect

    Carlson, G.P. )

    1989-01-01

    Tha ability of the rat liver to oxidize 2-butanol via a cytochrome P-450-mediated mixed-function oxidase reaction is well known. The purpose of this study was to examine this microsomal alcohol oxidizing system in rat lung and determine if it could be altered by treatments that inhibit or induce this activity. 2-Butanol was incubated with microsomal preparations from male rats, and methyl ethyl ketone production was measured by gas chromatography. The rate was six to eight times lower in lung than in liver. Administration of low doses of ethanol (0.5 ml/kg and 1.0 ml/kg) ip for 7 d did not alter activity in the liver but was inhibitory in the lung, as was a high dose of 3.0 ml/kg in the liver. Carbon tetrachloride (1.0 ml/kg, ip) decreased activity in both tissues, especially the lung. The effects of the two inhibitors were not additive. Methyl ethyl ketone induced 2-butanol oxidation in both tissues. The lung possesses butanol oxidase activity that is alterable by both inhibitors and inducers.

  9. DO ACUTE PHASE PROTEINS REFLECT SEVERITY OF INFLAMMATION IN RAT MODELS OF POLLUTANT-INDUCED LUNG INJURY?

    EPA Science Inventory

    Title: DO ACUTE PHASE PROTEINS REFLECT THE SEVERITY OF INFLAMMATION IN RAT MODELS OF POLLUTANT-INDUCED LUNG INJURY?

    M. C. Schladweiler, BS 1, P. S. Gilmour, PhD 2, D. L. Andrews, BS 1, D. L. Costa, ScD 1, A. D. Ledbetter, BS 1, K. E. Pinkerton, PhD 3 and U. P. Kodavanti, ...

  10. CHANGES IN LUNG ATP (ADENOSINE TRIPHOSPHATE) CONCENTRATION IN THE RAT AFTER LOW-LEVEL PHOSGENE EXPOSURE (JOURNAL VERSION)

    EPA Science Inventory

    Rats were exposed to phosgene for 4 hrs at concentrations of 0.05 to 1.0 ppm. Lung wet and dry wt and ATP concentration were measured immediately after exposure and for 3 days post-exposure. The accumulation of lavage fluid protein (LFP) was also measured as an index of damage or...

  11. FORMATION OF 8-OXO-7, 8-DIHYDRO-2'-DEOXYGUANOSINE IN RAT LUNG FOLLOWING SUB-CHRONIC INHALATION OF CARBON BLACK

    EPA Science Inventory

    ABSTRACT
    Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine, an oxidative adduct in the lung DNA of rats following sub-chronic inhalation of carbon black. Gallagher, J., Sams II, R.L., Inmon, J., Gelein, R., Elder, A., Oberdorster, G., Prahalad, A. (2002). Toxicol. Appl. Pharm...

  12. Detecting Radiation-Induced Injury Using Rapid 3D Variogram Analysis of CT Images of Rat Lungs

    SciTech Connect

    Jacob, Rick E.; Murphy, Mark K.; Creim, Jeffrey A.; Carson, James P.

    2013-10-01

    A new heterogeneity analysis approach to discern radiation-induced lung damage was tested on CT images of irradiated rats. The method, combining octree decomposition with variogram analysis, demonstrated a significant correlation with radiation exposure levels, whereas conventional measurements and pulmonary function tests did not. The results suggest the new approach may be highly sensitive for assessing even subtle radiation-induced changes

  13. Analysis of pulmonary surfactant in rat lungs after inhalation of nanomaterials: Fullerenes, nickel oxide and multi-walled carbon nanotubes.

    PubMed

    Kadoya, Chikara; Lee, Byeong-Woo; Ogami, Akira; Oyabu, Takako; Nishi, Ken-ichiro; Yamamoto, Makoto; Todoroki, Motoi; Morimoto, Yasuo; Tanaka, Isamu; Myojo, Toshihiko

    2016-01-01

    The health risks of inhalation exposure to engineered nanomaterials in the workplace are a major concern in recent years, and hazard assessments of these materials are being conducted. The pulmonary surfactant of lung alveoli is the first biological entity to have contact with airborne nanomaterials in inhaled air. In this study, we retrospectively evaluated the pulmonary surfactant components of rat lungs after a 4-week inhalation exposure to three different nanomaterials: fullerenes, nickel oxide (NiO) nanoparticles and multi-walled carbon nanotubes (MWCNT), with similar levels of average aerosol concentration (0.13-0.37 mg/m(3)). Bronchoalveolar lavage fluid (BALF) of the rat lungs stored after previous inhalation studies was analyzed, focusing on total protein and the surfactant components, such as phospholipids and surfactant-specific SP-D (surfactant protein D) and the BALF surface tension, which is affected by SP-B and SP-C. Compared with a control group, significant changes in the BALF surface tension and the concentrations of phospholipids, total protein and SP-D were observed in rats exposed to NiO nanoparticles, but not in those exposed to fullerenes. Surface tension and the levels of surfactant phospholipids and proteins were also significantly different in rats exposed to MWCNTs. The concentrations of phospholipids, total protein and SP-D and BALF surface tension were correlated significantly with the polymorphonuclear neutrophil counts in the BALF. These results suggest that pulmonary surfactant components can be used as measures of lung inflammation. PMID:25950198