Science.gov

Sample records for rat microglial cells

  1. Cytomegalovirus Infection of the Rat Developing Brain In Utero Prominently Targets Immune Cells and Promotes Early Microglial Activation

    PubMed Central

    Cloarec, Robin; Bauer, Sylvian; Luche, Hervé; Buhler, Emmanuelle; Pallesi-Pocachard, Emilie; Salmi, Manal; Courtens, Sandra; Massacrier, Annick; Grenot, Pierre; Teissier, Natacha; Watrin, Françoise; Schaller, Fabienne; Adle-Biassette, Homa; Gressens, Pierre; Malissen, Marie; Stamminger, Thomas; Streblow, Daniel N.; Bruneau, Nadine; Szepetowski, Pierre

    2016-01-01

    Background Congenital cytomegalovirus infections are a leading cause of neurodevelopmental disorders in human and represent a major health care and socio-economical burden. In contrast with this medical importance, the pathophysiological events remain poorly known. Murine models of brain cytomegalovirus infection, mostly neonatal, have brought recent insights into the possible pathogenesis, with convergent evidence for the alteration and possible involvement of brain immune cells. Objectives and Methods In order to confirm and expand those findings, particularly concerning the early developmental stages following infection of the fetal brain, we have created a model of in utero cytomegalovirus infection in the developing rat brain. Rat cytomegalovirus was injected intraventricularly at embryonic day 15 (E15) and the brains analyzed at various stages until the first postnatal day, using a combination of gene expression analysis, immunohistochemistry and multicolor flow cytometry experiments. Results Rat cytomegalovirus infection was increasingly seen in various brain areas including the choroid plexi and the ventricular and subventricular areas and was prominently detected in CD45low/int, CD11b+ microglial cells, in CD45high, CD11b+ cells of the myeloid lineage including macrophages, and in CD45+, CD11b– lymphocytes and non-B non-T cells. In parallel, rat cytomegalovirus infection of the developing rat brain rapidly triggered a cascade of pathophysiological events comprising: chemokines upregulation, including CCL2-4, 7 and 12; infiltration by peripheral cells including B-cells and monocytes at E17 and P1, and T-cells at P1; and microglia activation at E17 and P1. Conclusion In line with previous findings in neonatal murine models and in human specimen, our study further suggests that neuroimmune alterations might play critical roles in the early stages following cytomegalovirus infection of the brain in utero. Further studies are now needed to determine which

  2. Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4

    PubMed Central

    2011-01-01

    Background Activation of amoeboid microglial cells (AMC) and its related inflammatory response have been linked to the periventricular white matter damage after hypoxia in neonatal brain. Hypoxia increases free ATP in the brain and then induces various effects through ATP receptors. The present study explored the possible mechanism in ATP induced AMC activation in hypoxia. Results We first examined the immunoexpression of P2X4, P2X7 and P2Y12 in the corpus callosum (CC) and subependyma associated with the lateral ventricles where both areas are rich in AMC. Among the three purinergic receptors, P2X4 was most intensely expressed. By double immunofluorescence, P2X4 was specifically localized in AMC (from P0 to P7) but the immunofluorescence in AMC was progressively diminished with advancing age (P14). It was further shown that P2X4 expression was noticeably enhanced in P0 day rats subjected to hypoxia and killed at 4, 24, 72 h and 7 d versus their matching controls by double labeling and western blotting analysis. P2X4 expression was most intense at 7 d whence the inflammatory response was drastic after hypoxia. We then studied the association of P2X4 with cytokine release in AMC after hypoxic exposure. In primary microglial cells exposed to hypoxia, IL-1β and TNF-α protein levels were up-regulated. Blockade of P2X4 receptor with 2', 3'-0-(2, 4, 6-Trinitrophenyl) adenosine 5'-triphosphate, a selective P2X1-7 blocker resulted in partial suppression of IL-1β (24% vs hypoxic group) and TNF-α expression (40% vs hypoxic group). However, pyridoxal phosphate-6-azo (benzene-2, 4-disulfonic acid) tetrasodium salt hydrate, a selective P2X1-3, 5-7 blocker did not exert any significant effect on the cytokine expression. Conclusions It is concluded that P2X4 which is constitutively expressed by AMC in postnatal rats was enhanced in hypoxia. Hypoxia induced increase in IL-1β and TNF-α expression was reversed by 2', 3'-0-(2, 4, 6-Trinitrophenyl) adenosine 5'-triphosphate

  3. Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells

    PubMed Central

    Abbasi Habashi, Soraya; Sabouni, Farzaneh; Moghimi, Ali; Ansari Majd, Saeed

    2016-01-01

    Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. This study examined whether bromelain, the pineapple-derived extract, may exert an anti-inflammatory effect in primary microglia and may be neuroprotective by regulating microglial activation. Methods: Following the isolation of neonatal rat primary microglial cells, the activation profile of microglia was investigated by studying the effects of bromelain (5, 10, 20, and 30 µg/ml) on the levels of NO, inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) in microglia treated with lipopolysaccharide (LPS) (1 µg/ml). Data were analyzed using Student's t-test. P values less than 0.05 were considered to be statistically significant, compared with the LPS-treated group without bromelain. Results: Results showed that pretreatment of rat primary microglia with bromelain, decreased the production of NO induced by LPS (1 µg/ml) treatment in a dose-dependent manner. Bromelain (30 µg/ml) also significantly reduced the expression of iNOS at mRNA level and NF-κB at protein level. Moreover, the study of mitochondrial activity in microglia indicated that bromelain had no cytotoxicity at any of the applied doses, suggesting that the anti-inflammatory effects of bromelain are not due to cell death. Conclusion: Bromelain can be of potential use as an agent for alleviation of symptoms in neurodegenerative diseases. PMID:26459398

  4. Maternal separation activates microglial cells and induces an inflammatory response in the hippocampus of male rat pups, independently of hypothalamic and peripheral cytokine levels.

    PubMed

    Roque, Angélica; Ochoa-Zarzosa, Alejandra; Torner, Luz

    2016-07-01

    Adult animals subjected to chronic stress show an inflammatory response in the hippocampus which has been related to cognitive dysfunction and psychopathology. However the immediate consequences of early life stress on hippocampal glial cells have not been studied. Here we analyzed the effects of maternal separation (MS) on astrocyte and microglial cell morphology in the hippocampal hilus, compared the expression of cytokines in the hippocampus and hypothalamus, and the peripheral response of cytokines, on postnatal day (PD) 15. Male rat pups of MS (3h/day, PD1-PD14) and Control (CONT) pups showed similar microglial cell densities in the hilus, but MS pups presented more activated microglia. MS decreased astrocyte density and the number of processes in the hilus. Cytokine mRNA expression (qPCR) was analyzed in MS and CONT groups, sacrificed (i) under basal (B) conditions or (ii) after a single stress event (SS) at PN15. In hippocampal extracts, MS increased IL-1β mRNA, under B and SS conditions while IL-6 and TNF-α did not change. In hypothalamic tissue, MS increased TNF-α and IL-6 mRNA, but not IL-1b, after SS. Peripheral concentrations of IL-1β were decreased under B and SS conditions in MS; IL-6 concentration increased after SS in MS pups, and TNF-α concentration was unchanged. In conclusion, MS activates microglial cells and decreases astrocyte density in the hippocampus. A differential cytokine expression is observed in the hippocampus and the hypothalamus after MS, and after SS. Also, MS triggers an independent response of peripheral cytokines. These specific responses together could contribute to decrease hippocampal neurogenesis and alter the neuroendocrine axis. PMID:26431692

  5. Microglial Cells Prevent Hemorrhage in Neonatal Focal Arterial Stroke.

    PubMed

    Fernández-López, David; Faustino, Joel; Klibanov, Alexander L; Derugin, Nikita; Blanchard, Elodie; Simon, Franziska; Leib, Stephen L; Vexler, Zinaida S

    2016-03-01

    Perinatal stroke leads to significant morbidity and long-term neurological and cognitive deficits. The pathophysiological mechanisms of brain damage depend on brain maturation at the time of stroke. To understand whether microglial cells limit injury after neonatal stroke by preserving neurovascular integrity, we subjected postnatal day 7 (P7) rats depleted of microglial cells, rats with inhibited microglial TGFbr2/ALK5 signaling, and corresponding controls, to transient middle cerebral artery occlusion (tMCAO). Microglial depletion by intracerebral injection of liposome-encapsulated clodronate at P5 significantly reduced vessel coverage and triggered hemorrhages in injured regions 24 h after tMCAO. Lack of microglia did not alter expression or intracellular redistribution of several tight junction proteins, did not affect degradation of collagen IV induced by the tMCAO, but altered cell types producing TGFβ1 and the phosphorylation and intracellular distribution of SMAD2/3. Selective inhibition of TGFbr2/ALK5 signaling in microglia via intracerebral liposome-encapsulated SB-431542 delivery triggered hemorrhages after tMCAO, demonstrating that TGFβ1/TGFbr2/ALK5 signaling in microglia protects from hemorrhages. Consistent with observations in neonatal rats, depletion of microglia before tMCAO in P9 Cx3cr1(GFP/+)/Ccr2(RFP/+) mice exacerbated injury and induced hemorrhages at 24 h. The effects were independent of infiltration of Ccr2(RFP/+) monocytes into injured regions. Cumulatively, in two species, we show that microglial cells protect neonatal brain from hemorrhage after acute ischemic stroke. PMID:26961944

  6. Cannabinoids and neuronal damage: differential effects of THC, AEA and 2-AG on activated microglial cells and degenerating neurons in excitotoxically lesioned rat organotypic hippocampal slice cultures.

    PubMed

    Kreutz, Susanne; Koch, Marco; Ghadban, Chalid; Korf, Horst-Werner; Dehghani, Faramarz

    2007-01-01

    Cannabinoids (CBs) are attributed neuroprotective effects in vivo. Here, we determined the neuroprotective potential of CBs during neuronal damage in excitotoxically lesioned organotypic hippocampal slice cultures (OHSCs). OHSCs are the best characterized in vitro model to investigate the function of microglial cells in neuronal damage since blood-borne monocytes and T-lymphocytes are absent and microglial cells represent the only immunocompetent cell type. Excitotoxic neuronal damage was induced by NMDA (50 microM) application for 4 h. Neuroprotective properties of 9-carboxy-11-nor-delta-9-tetrahydrocannabinol (THC), N-arachidonoylethanolamide (AEA) or 2-arachidonoylglycerol (2-AG) in different concentrations were determined after co-application with NMDA by counting degenerating neurons identified by propidium iodide labeling (PI(+)) and microglial cells labeled by isolectin B(4) (IB(4)(+)). All three CBs used significantly decreased the number of IB(4)(+) microglial cells in the dentate gyrus but the number of PI(+) neurons was reduced only after 2-AG treatment. Application of AM630, antagonizing CB2 receptors highly expressed by activated microglial cells, did not counteract neuroprotective effects of 2-AG, but affected THC-mediated reduction of IB(4)(+) microglial cells. Our results indicate that (1) only 2-AG exerts neuroprotective effects in OHSCs; (2) reduction of IB(4)(+) microglial cells is not a neuroprotective event per se and involves other CB receptors than the CB2 receptor; (3) the discrepancy in the neuroprotective effects of CBs observed in vivo and in our in vitro model system may underline the functional relevance of invading monocytes and T-lymphocytes that are absent in OHSCs. PMID:17010339

  7. Microglial Activation in Rat Experimental Spinal Cord Injury Model

    PubMed Central

    Abdanipour, Alireza; Tiraihi, Taki; Taheri, Taher; Kazemi, Hadi

    2013-01-01

    Background: The present study was designed to evaluate the secondary microglial activation processes after spinal cord injury (SCI). Methods: A quantitative histological study was performed to determine ED-1 positive cells, glial cell density, and cavitation size in untreated SCI rats at days 1, 2, and 4, and weeks 1, 2, 3, and 4. Results: The results of glial cell quantification along the 4900-µm long injured spinal cord showed a significant increase in glial cell density percentage at day 2 as compared to other days. Whereas the highest increase in ED-1 immunoreactive cells (monocyte/phagocyte marker in rats) was observed at day 2 (23.15%) post-injury. Evaluation of cavity percentage showed a significant difference between weeks 3 and 4 post-injury groups. Conclusions: This study provides a new insight into the multiphase immune response to SCI, including cellular inflammation, macrophages/microglia activation, glial cell density, and cavitation. Better understanding of the inflammatory processes associated with acute SCI would permit the development of better therapeutic strategies. PMID:23999718

  8. Microglial AGE-albumin is critical in promoting alcohol-induced neurodegeneration in rats and humans.

    PubMed

    Byun, Kyunghee; Bayarsaikhan, Delger; Bayarsaikhan, Enkhjargal; Son, Myeongjoo; Oh, Seyeon; Lee, Jaesuk; Son, Hye-In; Won, Moo-Ho; Kim, Seung U; Song, Byoung-Joon; Lee, Bonghee

    2014-01-01

    Alcohol is a neurotoxic agent, since long-term heavy ingestion of alcohol can cause various neural diseases including fetal alcohol syndrome, cerebellar degeneracy and alcoholic dementia. However, the molecular mechanisms of alcohol-induced neurotoxicity are still poorly understood despite numerous studies. Thus, we hypothesized that activated microglial cells with elevated AGE-albumin levels play an important role in promoting alcohol-induced neurodegeneration. Our results revealed that microglial activation and neuronal damage were found in the hippocampus and entorhinal cortex following alcohol treatment in a rat model. Increased AGE-albumin synthesis and secretion were also observed in activated microglial cells after alcohol exposure. The expressed levels of receptor for AGE (RAGE)-positive neurons and RAGE-dependent neuronal death were markedly elevated by AGE-albumin through the mitogen activated protein kinase pathway. Treatment with soluble RAGE or AGE inhibitors significantly diminished neuronal damage in the animal model. Furthermore, the levels of activated microglial cells, AGE-albumin and neuronal loss were significantly elevated in human brains from alcoholic indivisuals compared to normal controls. Taken together, our data suggest that increased AGE-albumin from activated microglial cells induces neuronal death, and that efficient regulation of its synthesis and secretion is a therapeutic target for preventing alcohol-induced neurodegeneration. PMID:25140518

  9. Role of endoplasmic reticulum (ER) stress in cocaine-induced microglial cell death.

    PubMed

    Costa, Blaise Mathias; Yao, Honghong; Yang, Lu; Buch, Shilpa

    2013-06-01

    While it has been well-documented that drugs of abuse such as cocaine can enhance progression of human immunodeficiency virus (HIV)-associated neuropathological disorders, the underlying mechanisms mediating these effects remain poorly understood. The present study was undertaken to examine the effects of cocaine on microglial viability. Herein we demonstrate that exposure of microglial cell line-BV2 or rat primary microglia to exogenous cocaine resulted in decreased cell viability as determined by MTS and TUNEL assays. Microglial toxicity of cocaine was accompanied by an increase in the expression of cleaved caspase-3 as demonstrated by western blot assays. Furthermore, increased microglial toxicity was also associated with a concomitant increase in the production of intracellular reactive oxygen species, an effect that was ameliorated in cells pretreated with NADPH oxidase inhibitor apocynin, thus emphasizing the role of oxidative stress in this process. A novel finding of this study was the involvement of endoplasmic reticulum (ER) signaling mediators such as PERK, Elf2α, and CHOP, which were up regulated in cells exposed to cocaine. Reciprocally, blocking CHOP expression using siRNA ameliorated cocaine-mediated cell death. In conclusion these findings underscore the importance of ER stress in modulating cocaine induced microglial toxicity. Understanding the link between ER stress, oxidative stress and apoptosis could lead to the development of therapeutic strategies targeting cocaine-mediated microglial death/dysfunction. PMID:23404095

  10. Evidence that MDMA ('ecstasy') increases cannabinoid CB2 receptor expression in microglial cells: role in the neuroinflammatory response in rat brain.

    PubMed

    Torres, Elisa; Gutierrez-Lopez, Maria Dolores; Borcel, Erika; Peraile, Ines; Mayado, Andrea; O'Shea, Esther; Colado, Maria Isabel

    2010-04-01

    3,4-Methylenedioxymethamphetamine (MDMA, 'ecstasy') produces selective long-lasting serotonergic neurotoxicity in rats. The drug also produces acute hyperthermia which modulates the severity of the neurotoxic response. In addition, MDMA produces signs of neuroinflammation reflected as microglial activation and an increase in the release of interleukin-1beta, the latter of which appears to be a consequence of the hyperthermic response and to be implicated in the neurotoxicity induced by the drug. Over-expression of the cannabinoid CB2 receptor in microglia during non-immune and immune pathological conditions is thought to be aimed at controlling the production of neurotoxic factors such as proinflammatory cytokines. Our objective was to study the pattern of CB2 receptor expression following MDMA and to examine the effect of JWH-015 (a CB2 agonist) on the MDMA-induced neuroinflammatory response as well as 5-hydroxytryptamine (5-HT) neurotoxicity. Adult Dark Agouti rats were given MDMA (12.5 mg/kg, i.p.) and killed 3 h or 24 h later for the determination of CB2 receptor expression. JWH-015 was given 48 h, 24 h and 0.5 h before MDMA and 1 h and/or 6 h later and animals were killed for the determination of microglial activation (3 h and 24 h) and 5-HT neurotoxicity (7 days). MDMA increased CB2 receptor expression shortly after administration and these receptors were found in microglia. JWH-015 decreased MDMA-induced microglial activation and interleukin-1beta release and slightly decreased MDMA-induced 5-HT neurotoxicity. In conclusion, CB2 receptor activation reduces the neuroinflammatory response following MDMA and provides partial neuroprotection against the drug. PMID:20067581

  11. Trimethyltin-Induced Microglial Activation via NADPH Oxidase and MAPKs Pathway in BV-2 Microglial Cells

    PubMed Central

    Kim, Da Jung; Kim, Yong Sik

    2015-01-01

    Trimethyltin (TMT) is known as a potent neurotoxicant that causes neuronal cell death and neuroinflammation, particularly in the hippocampus. Microglial activation is one of the prominent pathological features of TMT neurotoxicity. Nevertheless, it remains unclear how microglial activation occurs in TMT intoxication. In this study, we aimed to investigate the signaling pathways in TMT-induced microglial activation using BV-2 murine microglial cells. Our results revealed that TMT generates reactive oxygen species (ROS) and increases the expression of CD11b and nuclear factor-κB- (NF-κB-) mediated nitric oxide (NO) and tumor necrosis factor- (TNF-) α in BV-2 cells. We also observed that NF-κB activation was controlled by p38 and JNK phosphorylation. Moreover, TMT-induced ROS generation occurred via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in BV-2 cells. Interestingly, treatment with the NADPH oxidase inhibitor apocynin significantly suppressed p38 and JNK phosphorylation and NF-κB activation and ultimately the production of proinflammatory mediators upon TMT exposure. These findings indicate that NADPH oxidase-dependent ROS generation activated p38 and JNK mitogen-activated protein kinases (MAPKs), which then stimulated NF-κB to release proinflammatory mediators in the TMT-treated BV-2 cells. PMID:26221064

  12. Recognition of Betaine as an Inhibitor of Lipopolysaccharide-Induced Nitric Oxide Production in Activated Microglial Cells

    PubMed Central

    Amiraslani, Banafsheh; Sabouni, Farzaneh; Abbasi, Shahsanam; Nazem, Habiballah; Sabet, Mohammadsadegh

    2012-01-01

    Background: Neuroinflammation, as a major outcome of microglia activation, is an important factor for progression of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. Microglial cells, as the first-line defense in the central nervous system, act as a source of neurotoxic factors such as nitric oxide (NO), a free radical which is involved in neuronal cell death. The aim of this study was to inhibit production of NO in activated microglial cells in order to decrease neurological damages that threat the central nervous system. Methods: An in vitro model of a newborn rat brain cell culture was used to examine the effect of betaine on the release of NO induced by lipopolysaccharide (LPS). Briefly, primary microglial cells were stimulated by LPS and after 2 minutes, they were treated by different concentrations of betaine. The production of NO was assessed by the Griess assay while cell viability was determined by the MTT assay. Results: Our investigations indicated that LPS-induced NO release was attenuated by betaine, suggesting that this compound might inhibit NO release. The effects of betaine on NO production in activated microglial cells after 24 h were "dose-dependent". It means that microglial cells which were treated with higher concentrations of betaine, released lower amounts of NO. Also our observations showed that betaine compound has no toxic effect on microglial cells. Conclusion: Betaine has an inhibitory effect on NO release in activated microglial cells and may be an effective therapeutic component to control neurological disorders. PMID:22801281

  13. Microglial activation and increased synthesis of complement component C1q precedes blood-brain barrier dysfunction in rats.

    PubMed

    Lynch, Nicholas J; Willis, Colin L; Nolan, Christopher C; Roscher, Silke; Fowler, Maxine J; Weihe, Eberhard; Ray, David E; Schwaeble, Wilhelm J

    2004-01-01

    A reliable way to visualise the state of microglial activation is to monitor the microglial gene expression profile. Microglia are the only CNS resident cells that synthesise C1q, the recognition sub-component of the classical complement pathway, in vivo. C1q biosynthesis in resting ramified microglia is often low, but it increases dramatically in activated microglia. In this study, the expression of C1q was used to monitor microglial activation at all stages of 3-chloropropanediol-induced neurotoxicity, a new model of blood-brain barrier (BBB) breakdown. In rats, 3-chloropropanediol produces very focused lesions in the brain, characterised by early astrocyte swelling and loss, followed by neuronal death and barrier dysfunction. Using in situ hybridisation, immunohistochemistry, and real-time RT-PCR, we found that increased C1q biosynthesis and microglial activation precede BBB dysfunction by at least 18 and peak 48 h after injection of 3-chloropropanediol, which coincides with the onset of active haemorrhage. Microglial activation is biphasic; an early phase of global activation is followed by a later phase in which microglial activation becomes increasingly focused in the lesions. During the early phase, expression of the pro-inflammatory mediators interleukin-1beta (IL1beta), tumour necrosis factor alpha (TNFalpha) and early growth response-1 (Egr-1) increased in parallel with C1q, but was restricted to the lesions. Expression of C1q (but not IL1beta, TNFalpha or Egr-1) remains high after BBB function is restored, and is accompanied by late up-regulation of the C1q-associated serine proteases, C1r and C1s, suggesting that microglial biosynthesis of the activation complex of the classical pathway may support the removal of cell debris by activation of complement. PMID:14644096

  14. 1950 MHz IMT-2000 field does not activate microglial cells in vitro.

    PubMed

    Hirose, Hideki; Sasaki, Atsushi; Ishii, Nana; Sekijima, Masaru; Iyama, Takahiro; Nojima, Toshio; Ugawa, Yoshikazu

    2010-02-01

    Given the widespread use of the cellular phone today, investigation of potential biological effects of radiofrequency (RF) fields has become increasingly important. In particular, much research has been conducted on RF effects on brain function. To examine any biological effects on the central nervous system (CNS) induced by 1950 MHz modulation signals, which are controlled by the International Mobile Telecommunication-2000 (IMT-2000) cellular system, we investigated the effect of RF fields on microglial cells in the brain. We assessed functional changes in microglial cells by examining changes in immune reaction-related molecule expression and cytokine production after exposure to a 1950 MHz Wideband Code Division Multiple Access (W-CDMA) RF field, at specific absorption rates (SARs) of 0.2, 0.8, and 2.0 W/kg. Primary microglial cell cultures prepared from neonatal rats were subjected to an RF or sham field for 2 h. Assay samples obtained 24 and 72 h after exposure were processed in a blind manner. Results showed that the percentage of cells positive for major histocompatibility complex (MHC) class II, which is the most common marker for activated microglial cells, was similar between cells exposed to W-CDMA radiation and sham-exposed controls. No statistically significant differences were observed between any of the RF field exposure groups and the sham-exposed controls in percentage of MHC class II positive cells. Further, no remarkable differences in the production of tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and interleukin-6 (IL-6) were observed between the test groups exposed to W-CDMA signal and the sham-exposed negative controls. These findings suggest that exposure to RF fields up to 2 W/kg does not activate microglial cells in vitro. PMID:19650078

  15. Neonatal binge alcohol exposure increases microglial activation in the developing rat hippocampus.

    PubMed

    Boschen, K E; Ruggiero, M J; Klintsova, A Y

    2016-06-01

    Aberrant activation of the developing immune system can have long-term negative consequences on cognition and behavior. Teratogens, such as alcohol, activate microglia, the brain's resident immune cells, which could contribute to the lifelong deficits in learning and memory observed in humans with Fetal Alcohol Spectrum Disorders (FASD) and in rodent models of FASD. The current study investigates the microglial response of the brain 24h following neonatal alcohol exposure (postnatal days (PDs) 4-9, 5.25g/kg/day). On PD10, microglial cell counts and area of cell territory were assessed using unbiased stereology in the hippocampal subfields CA1, CA3 and dentate gyrus (DG), and hippocampal expression of pro- and anti-inflammatory genes was analyzed. A significant decrease in microglial cell counts in CA1 and DG was found in alcohol-exposed and sham-intubated (SI) animals compared to undisturbed suckle controls (SCs), suggesting overlapping effects of alcohol exposure and intubation alone on the neuroimmune response. Cell territory was decreased in alcohol-exposed animals in CA1, CA3, and DG compared to controls, suggesting the microglia have shifted to a more activated state following alcohol treatment. Furthermore, both alcohol-exposed and SI animals had increased levels of pro-inflammatory cytokines IL-1β, TNF-α, CD11b, and CCL4; in addition, CCL4 was significantly increased in alcohol-exposed animals compared to SI as well. Alcohol-exposed animals also showed increased levels of anti-inflammatory cytokine TGF-β compared to both SI and SCs. In summary, the number and activation of microglia in the neonatal hippocampus are both affected in a rat model of FASD, along with increased gene expression of pro- and anti-inflammatory cytokines. This study shows that alcohol exposure during development induces a neuroimmune response, potentially contributing to long-term alcohol-related changes to cognition, behavior and immune function. PMID:26996510

  16. Serial analysis of gene expression in a microglial cell line.

    PubMed

    Inoue, H; Sawada, M; Ryo, A; Tanahashi, H; Wakatsuki, T; Hada, A; Kondoh, N; Nakagaki, K; Takahashi, K; Suzumura, A; Yamamoto, M; Tabira, T

    1999-12-01

    We used the serial analysis of gene expression (SAGE) method to systematically analyze transcripts present in a microglial cell line. Over 10,000 SAGE tags were sequenced, and shown to represent 6,013 unique transcripts. Among the diverse transcripts that had not been previously detected in microglia were those for cytokines such as endothelial monocyte-activating polypeptide I (EMAP I), and for cell surface antigens, including adhesion molecules such as CD9, CD53, CD107a, CD147, CD162 and mast cell high affinity IgE receptor. In addition, we detected transcripts that were characteristic of hematopoietic cells or mesodermal structures, such as E3 protein, A1, EN-7, B94, and ufo. Furthermore, the profile contained a transcript, Hn1, that is important in hematopoietic cells and neurological development (Tang et al. Mamm Genome 8:695-696, 1997), suggesting the probable neural differentiation of microglia from the hematopoietic system in development. Messenger RNA expression of these genes was confirmed by RT-PCR in primary cultures of microglia. Significantly, this is the first systematic profiling of the genes expressed in a microglial cell line. The identification and further characterization of the genes described here should provide potential new targets for the study of microglial biology. PMID:10559785

  17. Levo-Tetrahydropalmatine Attenuates Bone Cancer Pain by Inhibiting Microglial Cells Activation

    PubMed Central

    Zhang, Mao-yin; Liu, Yue-peng; Zhang, Lian-yi; Yue, Dong-mei; Qi, Dun-yi; Liu, Gong-jian; Liu, Su

    2015-01-01

    Objective. The present study is to investigate the analgesic roles of L-THP in rats with bone cancer pain caused by tumor cell implantation (TCI). Methods. Thermal hyperalgesia and mechanical allodynia were measured at different time points before and after operation. L-THP (20, 40, and 60 mg/kg) were administrated intragastrically at early phase of postoperation (before pain appearance) and later phase of postoperation (after pain appearance), respectively. The concentrations of TNF-α, IL-1β, and IL-18 in spinal cord were measured by enzyme-linked immunosorbent assay. Western blot was used to test the activation of astrocytes and microglial cells in spinal cord after TCI treatment. Results. TCI treatment induced significant thermal hyperalgesia and mechanical allodynia. Administration of L-THP at high doses significantly prevented and/or reversed bone cancer-related pain behaviors. Besides, TCI-induced activation of microglial cells and the increased levels of TNF-α and IL-18 were inhibited by L-THP administration. However, L-THP failed to affect TCI-induced astrocytes activation and IL-1β increase. Conclusion. This study suggests the possible clinical utility of L-THP in the treatment of bone cancer pain. The analgesic effects of L-THP on bone cancer pain maybe underlying the inhibition of microglial cells activation and proinflammatory cytokines increase. PMID:26819501

  18. Anti-inflammatory effect of ginsenoside Rg5 in lipopolysaccharide-stimulated BV2 microglial cells.

    PubMed

    Lee, Yu Young; Park, Jin-Sun; Jung, Ji-Sun; Kim, Dong-Hyun; Kim, Hee-Sun

    2013-01-01

    Microglia are resident immune cells in the central nervous system. They play a role in normal brain development and neuronal recovery. However, overactivation of microglia causes neuronal death, which is associated with neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Therefore, controlling microglial activation has been suggested as an important target for treatment of neurodegenerative diseases. In the present study, we investigated the anti-inflammatory effect of ginsenoside Rg5 in lipopolysaccharide (LPS)-stimulated BV2 microglial cells and rat primary microglia. The data showed that Rg5 suppressed LPS-induced nitric oxide (NO) production and proinflammatory TNF-α secretion. In addition, Rg5 inhibited the mRNA expressions of iNOS, TNF-α, IL-1b, COX-2 and MMP-9 induced by LPS. Further mechanistic studies revealed that Rg5 inhibited the phophorylations of PI3K/Akt and MAPKs and the DNA binding activities of NF-kB and AP-1, which are upstream molecules controlling inflammatory reactions. Moreover, Rg5 suppressed ROS production with upregulation of hemeoxygenase-1 (HO-1) expression in LPS-stimulated BV2 cells. Overall, microglial inactivation by ginsenoside Rg5 may provide a therapeutic potential for various neuroinflammatory disorders. PMID:23698769

  19. Macrophagic and microglial responses after focal traumatic brain injury in the female rat

    PubMed Central

    2014-01-01

    Background After central nervous system injury, inflammatory macrophages (M1) predominate over anti-inflammatory macrophages (M2). The temporal profile of M1/M2 phenotypes in macrophages and microglia after traumatic brain injury (TBI) in rats is unknown. We subjected female rats to severe controlled cortical impact (CCI) and examined the postinjury M1/M2 time course in their brains. Methods The motor cortex (2.5 mm left laterally and 1.0 mm anteriorly from the bregma) of anesthetized female Wistar rats (ages 8 to 10 weeks; N = 72) underwent histologically moderate to severe CCI with a 5-mm impactor tip. Separate cohorts of rats had their brains dissociated into cells for flow cytometry, perfusion-fixed for immunohistochemistry (IHC) and ex vivo magnetic resonance imaging or flash-frozen for RNA and protein analysis. For each analytical method used, separate postinjury times were included for 24 hours; 3 or 5 days; or 1, 2, 4 or 8 weeks. Results By IHC, we found that the macrophagic and microglial responses peaked at 5 to 7 days post-TBI with characteristics of mixed populations of M1 and M2 phenotypes. Upon flow cytometry examination of immunological cells isolated from brain tissue, we observed that peak M2-associated staining occurred at 5 days post-TBI. Chemokine analysis by multiplex assay showed statistically significant increases in macrophage inflammatory protein 1α and keratinocyte chemoattractant/growth-related oncogene on the ipsilateral side within the first 24 hours after injury relative to controls and to the contralateral side. Quantitative RT-PCR analysis demonstrated expression of both M1- and M2-associated markers, which peaked at 5 days post-TBI. Conclusions The responses of macrophagic and microglial cells to histologically severe CCI in the female rat are maximal between days 3 and 7 postinjury. The response to injury is a mixture of M1 and M2 phenotypes. PMID:24761998

  20. Inhibition of microglial activity alters spinal wide dynamic range neuron discharge and reduces microglial Toll-like receptor 4 expression in neuropathic rats.

    PubMed

    Nazemi, Samad; Manaheji, Homa; Noorbakhsh, Syyed Mohammad; Zaringhalam, Jalal; Sadeghi, Mehdi; Mohammad-Zadeh, Mohammad; Haghparast, Abbas

    2015-07-01

    It is believed that neuropathic pain results from aberrant neuronal discharges although some evidence suggests that the activation of glia cells contributes to pain after an injury to the nervous system. This study aimed to evaluate the role of microglial activation on the hyper-responsiveness of wide dynamic range neurons (WDR) and Toll-like receptor 4 (TLR4) expressions in a chronic constriction injury (CCI) model of neuropathic pain in rats. Adult male Wistar rats (230 ± 30 g) underwent surgery for induction of CCI neuropathy. Six days after surgery, administration of minocycline (10, 20, and 40 mg/kg, i.p.) was initiated and continued until day 14. After administration of the last dose of minocycline or saline, a behavioral test was conducted, then animals were sacrificed and lumbar segments of the spinal cord were collected for Western blot analysis of TLR4 expression. The electrophysiological properties of WDR neurons were investigated by single unit recordings in separate groups. The findings showed that after CCI, in parallel with thermal hyperalgesia, the expression of TLR4 in the spinal cord and the evoked response of the WDR neurons to electrical, mechanical, and thermal stimulation significantly increased. Post-injury administration of minocycline effectively decreased thermal hyperalgesia, TLR4 expression, and hyper-responsiveness of WDR neurons in CCI rats. The results of this study indicate that post-injury, repeated administration of minocycline attenuated neuropathic pain by suppressing microglia activation and reducing WDR neuron hyper-responsiveness. This study confirms that post-injury modulation of microglial activity is a new strategy for treating neuropathic pain. PMID:25933029

  1. JAK-STAT signaling mediates gangliosides-induced inflammatory responses in brain microglial cells.

    PubMed

    Kim, Ohn Soon; Park, Eun Jung; Joe, Eun-hye; Jou, Ilo

    2002-10-25

    Neuronal cell membranes are particularly rich in gangliosides, which play important roles in brain physiology and pathology. Previously, we reported that gangliosides could act as microglial activators and are thus likely to participate in many neuronal diseases. In the present study we provide evidence that JAK-STAT inflammatory signaling mediates gangliosides-stimulated microglial activation. Both in rat primary microglia and murine BV2 microglial cells, gangliosides stimulated nuclear factor binding to GAS/ISRE elements, which are known to be STAT-binding sites. Consistent with this, gangliosides rapidly activated JAK1 and JAK2 and induced phosphorylation of STAT1 and STAT3. In addition, gangliosides increased transcription of the inflammation-associated genes inducible nitric-oxide synthase, ICAM-1, and MCP-1, which are reported to contain STAT-binding elements in their promoter regions. AG490, a JAK inhibitor, reduced induction of these genes, nuclear factor binding activity, and activation of STAT1 and -3 in gangliosides-treated microglia. AG490 also inhibited gangliosides-induced release of nitric oxide, an inflammation hallmark. Furthermore, AG490 markedly reduced activation of ERK1/2 MAPK, indicating that ERKs act downstream of JAK-STAT signaling during microglial activation. However, AG490 did not affect activation of p38 MAPK. We also report that the sialic acid residues present on gangliosides may be one of the essential components in activation of JAK-STAT signaling. The present study indicates that JAK-STAT signaling is an early event in gangliosides-induced brain inflammatory responses. PMID:12191995

  2. Enriched environment induces beneficial effects on memory deficits and microglial activation in the hippocampus of type 1 diabetic rats.

    PubMed

    Piazza, Francele Valente; Segabinazi, Ethiane; Centenaro, Lígia Aline; do Nascimento, Patrícia Severo; Achaval, Matilde; Marcuzzo, Simone

    2014-03-01

    Type 1 diabetes mellitus (T1DM) has been associated with long-term complications in the central nervous system, causing brain cellular dysfunctions and cognitive deficits. On the other hand, enriched environment (EE) induces experience-dependent plasticity, especially in the hippocampus, improving the performance of animals in learning and memory tasks. Thus, our objective was to investigate the influence of the EE on memory deficits, locomotion, corticosterone levels, synaptophysin (SYP) protein immunoreactivity, cell survival and microglial activation in the dentate gyrus (DG) of T1DM rat hippocampus. Male Wistar rats (21-day-old) were exposed to EE or maintained in standard housing (controls, C) for 3 months. At adulthood, the C and EE animals were randomly divided and diabetes was induced in half of them. All the animals received 4 doses of BrdU, 24 h apart. Hippocampus-dependent spatial memory, general locomotion and serum corticosterone levels were evaluated at the end of the experiment. The animals were transcardially perfused 30 days post-BrdU administration. Our results showed that EE was able to prevent/delay the development of memory deficits caused by diabetes in rats, however it did not revert the motor impairment observed in the diabetic group. SYP immunoreactivity was increased in the enriched healthy group. The EE decreased the serum corticosterone levels in diabetic adult rats and attenuated the injurious microglial activation, though without altering the decrease of the survival cell. Thus, EE was shown to help to ameliorate cognitive comorbidities associated with T1DM, possibly by reducing hyperactivity in the hypothalamic-pituitary-adrenal axis and microglial activation in diabetic animals. PMID:24318482

  3. Fractalkine Attenuates Microglial Cell Activation Induced by Prenatal Stress

    PubMed Central

    Ślusarczyk, Joanna; Trojan, Ewa; Głombik, Katarzyna; Chamera, Katarzyna; Roman, Adam; Budziszewska, Bogusława; Basta-Kaim, Agnieszka

    2016-01-01

    The potential contribution of inflammation to the development of neuropsychiatric diseases has recently received substantial attention. In the brain, the main immune cells are the microglia. As they are the main source of inflammatory factors, it is plausible that the regulation of their activation may be a potential therapeutic target. Fractalkine (CX3CL1) and its receptor CX3CR1 play a crucial role in the control of the biological activity of the microglia. In the present study, using microglial cultures we investigated whether fractalkine is able to reverse changes in microglia caused by a prenatal stress procedure. Our study found that the microglia do not express fractalkine. Prenatal stress decreases the expression of the fractalkine receptor, which in turn is enhanced by the administration of exogenous fractalkine. Moreover, treatment with fractalkine diminishes the prenatal stress-induced overproduction of proinflammatory factors such as IL-1β, IL-18, IL-6, TNF-α, CCL2, or NO in the microglial cells derived from prenatally stressed newborns. In conclusion, the present results revealed that the pathological activation of microglia in prenatally stressed newborns may be attenuated by fractalkine administration. Therefore, understanding of the role of the CX3CL1-CX3CR1 system may help to elucidate the mechanisms underlying the neuron-microglia interaction and its role in pathological conditions in the brain. PMID:27239349

  4. Microglial NLRP3 inflammasome activation mediates IL-1β-related inflammation in prefrontal cortex of depressive rats.

    PubMed

    Pan, Ying; Chen, Xu-Yang; Zhang, Qing-Yu; Kong, Ling-Dong

    2014-10-01

    Depression is an inflammatory disorder. Pro-inflammatory cytokine interleukin-1 beta (IL-1β) may play a pivotal role in the central nervous system (CNS) inflammation of depression. Here, we investigated IL-1β alteration in serum, cerebrospinal fluid (CSF) and prefrontal cortex (PFC) of chronic unpredictable mild stress (CUMS)-exposed rats, a well-documented model of depression, and further explored the molecular mechanism by which CUMS procedure induced IL-1β-related CNS inflammation. We showed that 12-week CUMS procedure remarkably increased PFC IL-1β mRNA and protein levels in depressive-like behavior of rats, without significant alteration of serum and CSF IL-1β levels. We found that CUMS procedure significantly caused PFC nuclear factor kappa B (NF-κB) inflammatory pathway activation in rats. The intriguing finding in this study was the induced activation of nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome with the increased IL-1β maturation in PFC of CUMS rats, suggesting a new grade of regulatory mechanism for IL-1β-related CNS inflammation. Moreover, microglial activation and astrocytic function impairment were observed in PFC of CUMS rats. The increased co-location of NLRP3 and ionized calcium binding adaptor molecule 1 (Iba1) protein expression supported that microglia in glial cells was the primary contributor for CUMS-induced PFC NLRP3 inflammasome activation in rats. These alterations in CUMS rats were restored by chronic treatment of the antidepressant fluoxetine, indicating that fluoxetine-mediated rat PFC IL-1β reduction involves both transcriptional and post-transcriptional regulatory mechanisms. These findings provide in vivo evidence that microglial NLRP3 inflammasome activation is a mediator of IL-1β-related CNS inflammation during chronic stress, and suggest a new therapeutic target for the prevention and treatment of depression. PMID:24859041

  5. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures

    PubMed Central

    Seele, Jana; Nau, Roland; Prajeeth, Chittappen K.; Stangel, Martin; Valentin-Weigand, Peter; Seitz, Maren

    2016-01-01

    Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes. PMID:27304968

  6. Astrocytes Enhance Streptococcus suis-Glial Cell Interaction in Primary Astrocyte-Microglial Cell Co-Cultures.

    PubMed

    Seele, Jana; Nau, Roland; Prajeeth, Chittappen K; Stangel, Martin; Valentin-Weigand, Peter; Seitz, Maren

    2016-01-01

    Streptococcus (S.) suis infections are the most common cause of meningitis in pigs. Moreover, S. suis is a zoonotic pathogen, which can lead to meningitis in humans, mainly in adults. We assume that glial cells may play a crucial role in host-pathogen interactions during S. suis infection of the central nervous system. Glial cells are considered to possess important functions during inflammation and injury of the brain in bacterial meningitis. In the present study, we established primary astrocyte-microglial cell co-cultures to investigate interactions of S. suis with glial cells. For this purpose, microglial cells and astrocytes were isolated from new-born mouse brains and characterized by flow cytometry, followed by the establishment of astrocyte and microglial cell mono-cultures as well as astrocyte-microglial cell co-cultures. In addition, we prepared microglial cell mono-cultures co-incubated with uninfected astrocyte mono-culture supernatants and astrocyte mono-cultures co-incubated with uninfected microglial cell mono-culture supernatants. After infection of the different cell cultures with S. suis, bacteria-cell association was mainly observed with microglial cells and most prominently with a non-encapsulated mutant of S. suis. A time-dependent induction of NO release was found only in the co-cultures and after co-incubation of microglial cells with uninfected supernatants of astrocyte mono-cultures mainly after infection with the capsular mutant. Only moderate cytotoxic effects were found in co-cultured glial cells after infection with S. suis. Taken together, astrocytes and astrocyte supernatants increased interaction of microglial cells with S. suis. Astrocyte-microglial cell co-cultures are suitable to study S. suis infections and bacteria-cell association as well as NO release by microglial cells was enhanced in the presence of astrocytes. PMID:27304968

  7. Differential effects of stress on microglial cell activation in male and female medial prefrontal cortex.

    PubMed

    Bollinger, Justin L; Bergeon Burns, Christine M; Wellman, Cara L

    2016-02-01

    Susceptibility to stress-linked psychological disorders, including post-traumatic stress disorder and depression, differs between men and women. Dysfunction of medial prefrontal cortex (mPFC) has been implicated in many of these disorders. Chronic stress affects mPFC in a sex-dependent manner, differentially remodeling dendritic morphology and disrupting prefrontally mediated behaviors in males and females. Chronic restraint stress induces microglial activation, reflected in altered microglial morphology and immune factor expression, in mPFC in male rats. Unstressed females exhibit increased microglial ramification in several brain regions compared to males, suggesting both heightened basal activation and a potential for sex-dependent effects of stress on microglial activation. Therefore, we assessed microglial density and ramification in the prelimbic region of mPFC, and immune-associated genes in dorsal mPFC in male and female rats following acute or chronic restraint stress. Control rats were left unstressed. On the final day of restraint, brains were collected for either qPCR or visualization of microglia using Iba-1 immunohistochemistry. Microglia in mPFC were classified as ramified, primed, reactive, or amoeboid, and counted stereologically. Expression of microglia-associated genes (MHCII, CD40, IL6, CX3CL1, and CX3CR1) was also assessed using qPCR. Unstressed females showed a greater proportion of primed to ramified microglia relative to males, alongside heightened CX3CL1-CX3CR1 expression. Acute and chronic restraint stress reduced the proportion of primed to ramified microglia and microglial CD40 expression in females, but did not significantly alter microglial activation in males. This sex difference in microglial activation could contribute to the differential effects of stress on mPFC structure and function in males versus females. PMID:26441134

  8. Differential Effects of Stress on Microglial Cell Activation in Male and Female Medial Prefrontal Cortex

    PubMed Central

    Bollinger, Justin L.; Bergeon Burns, Christine M.; Wellman, Cara L.

    2016-01-01

    Susceptibility to stress-linked psychological disorders, including post-traumatic stress disorder and depression, differs between men and women. Dysfunction of medial prefrontal cortex (mPFC) has been implicated in many of these disorders. Chronic stress affects mPFC in a sex-dependent manner, differentially remodeling dendritic morphology and disrupting prefrontally mediated behaviors in males and females. Chronic restraint stress induces microglial activation, reflected in altered microglial morphology and immune factor expression, in mPFC in male rats. Unstressed females exhibit increased microglial ramification in several brain regions compared to males, suggesting both heightened basal activation and a potential for sex-dependent effects of stress on microglial activation. Therefore, we assessed microglial density and ramification in the prelimbic region of mPFC, and immune-associated genes in dorsal mPFC in male and female rats following acute or chronic restraint stress. Control rats were left unstressed. On the final day of restraint, brains were collected for either qPCR or visualization of microglia using Iba-1 immunohistochemistry. Microglia in mPFC were classified as ramified, primed, reactive, or amoeboid, and counted stereologically. Expression of microglia-associated genes (MHCII, CD40, IL6, CX3CL1, and CX3CR1) was also assessed using qPCR. Unstressed females showed a greater proportion of primed to ramified microglia relative to males, alongside heightened CX3CL1-CX3CR1 expression. Acute and chronic restraint stress reduced the proportion of primed to ramified microglia and microglial CD40 expression in females, but did not significantly alter microglial activation in males. This sex difference in microglial activation could contribute to the differential effects of stress on mPFC structure and function in males versus females. PMID:26441134

  9. Microglial cell dysregulation in brain aging and neurodegeneration

    PubMed Central

    von Bernhardi, Rommy; Eugenín-von Bernhardi, Laura; Eugenín, Jaime

    2015-01-01

    Aging is the main risk factor for neurodegenerative diseases. In aging, microglia undergoes phenotypic changes compatible with their activation. Glial activation can lead to neuroinflammation, which is increasingly accepted as part of the pathogenesis of neurodegenerative diseases, including Alzheimer’s disease (AD). We hypothesize that in aging, aberrant microglia activation leads to a deleterious environment and neurodegeneration. In aged mice, microglia exhibit an increased expression of cytokines and an exacerbated inflammatory response to pathological changes. Whereas LPS increases nitric oxide (NO) secretion in microglia from young mice, induction of reactive oxygen species (ROS) predominates in older mice. Furthermore, there is accumulation of DNA oxidative damage in mitochondria of microglia during aging, and also an increased intracellular ROS production. Increased ROS activates the redox-sensitive nuclear factor kappa B, which promotes more neuroinflammation, and can be translated in functional deficits, such as cognitive impairment. Mitochondria-derived ROS and cathepsin B, are also necessary for the microglial cell production of interleukin-1β, a key inflammatory cytokine. Interestingly, whereas the regulatory cytokine TGFβ1 is also increased in the aged brain, neuroinflammation persists. Assessing this apparent contradiction, we have reported that TGFβ1 induction and activation of Smad3 signaling after inflammatory stimulation are reduced in adult mice. Other protective functions, such as phagocytosis, although observed in aged animals, become not inducible by inflammatory stimuli and TGFβ1. Here, we discuss data suggesting that mitochondrial and endolysosomal dysfunction could at least partially mediate age-associated microglial cell changes, and, together with the impairment of the TGFβ1-Smad3 pathway, could result in the reduction of protective activation and the facilitation of cytotoxic activation of microglia, resulting in the promotion of

  10. Anti-inflammatory effects and antioxidant activity of dihydroasparagusic acid in lipopolysaccharide-activated microglial cells.

    PubMed

    Salemme, Adele; Togna, Anna Rita; Mastrofrancesco, Arianna; Cammisotto, Vittoria; Ottaviani, Monica; Bianco, Armandodoriano; Venditti, Alessandro

    2016-01-01

    The activation of microglia and subsequent release of toxic pro-inflammatory factors are crucially associated with neurodegenerative disease, characterized by increased oxidative stress and neuroinflammation, including Alzheimer and Parkinson diseases and multiple sclerosis. Dihydroasparagusic acid is the reduced form of asparagusic acid, a sulfur-containing flavor component produced by Asparagus plants. It has two thiolic functions able to coordinate the metal ions, and a carboxylic moiety, a polar function, which may enhance excretion of the complexes. Thiol functions are also present in several biomolecules with important physiological antioxidant role as glutathione. The aim of this study is to evaluate the anti-inflammatory and antioxidant potential effect of dihydroasparagusic acid on microglial activation in an in vitro model of neuroinflammation. We have used lipopolysaccharide to induce an inflammatory response in primary rat microglial cultures. Our results suggest that dihydroasparagusic acid significantly prevented lipopolysaccharide-induced production of pro-inflammatory and neurotoxic mediators such as nitric oxide, tumor necrosis factor-α, prostaglandin E2, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression and lipoxygenase activity in microglia cells. Moreover it effectively suppressed the level of reactive oxygen species and affected lipopolysaccharide-stimulated activation of mitogen activated protein kinase, including p38, and nuclear factor-kB pathway. These results suggest that dihydroasparagusic acid's neuroprotective properties may be due to its ability to dampen induction of microglial activation. It is a compound that can effectively inhibit inflammatory and oxidative processes that are important factors of the etiopathogenesis of neurodegenerative diseases. PMID:26592472

  11. Gypenoside Attenuates β Amyloid-Induced Inflammation in N9 Microglial Cells via SOCS1 Signaling

    PubMed Central

    Cai, Hui; Liang, Qianlei; Ge, Guanqun

    2016-01-01

    Reducing β amyloid- (Aβ-) induced microglial activation is believed to be effective in treating Alzheimer's disease (AD). Microglia can be activated into classic activated state (M1 state) or alternative activated state (M2 state), and the former is harmful; in contrast, the latter is beneficial. Gypenoside (GP) is the major bioactive constituent of Gynostemma pentaphyllum, a traditional Chinese herb medicine. In this study, we hypothesized that GP attenuates Aβ-induced microglial activation by ameliorating microglial M1/M2 states, and the process may be mediated by suppressor of cell signaling protein 1 (SOCS1). In this study, we found that Aβ exposure increased the levels of microglial M1 markers, including iNOS expression, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6 releases, and coadministration of GP reversed the increase of M1 markers and enhanced the levels of M2 markers, including arginase-1 (Arg-1) expression, IL-10, brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF) releases in the Aβ-treated microglial cells. SOCS1-siRNA, however, significantly abolished the GP-induced effects on the levels of microglial M1 and M2 markers. These findings indicated that GP attenuates Aβ-induced microglial activation by ameliorating M1/M2 states, and the process may be mediated by SOCS1. PMID:27213058

  12. Gypenoside Attenuates β Amyloid-Induced Inflammation in N9 Microglial Cells via SOCS1 Signaling.

    PubMed

    Cai, Hui; Liang, Qianlei; Ge, Guanqun

    2016-01-01

    Reducing β amyloid- (Aβ-) induced microglial activation is believed to be effective in treating Alzheimer's disease (AD). Microglia can be activated into classic activated state (M1 state) or alternative activated state (M2 state), and the former is harmful; in contrast, the latter is beneficial. Gypenoside (GP) is the major bioactive constituent of Gynostemma pentaphyllum, a traditional Chinese herb medicine. In this study, we hypothesized that GP attenuates Aβ-induced microglial activation by ameliorating microglial M1/M2 states, and the process may be mediated by suppressor of cell signaling protein 1 (SOCS1). In this study, we found that Aβ exposure increased the levels of microglial M1 markers, including iNOS expression, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6 releases, and coadministration of GP reversed the increase of M1 markers and enhanced the levels of M2 markers, including arginase-1 (Arg-1) expression, IL-10, brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF) releases in the Aβ-treated microglial cells. SOCS1-siRNA, however, significantly abolished the GP-induced effects on the levels of microglial M1 and M2 markers. These findings indicated that GP attenuates Aβ-induced microglial activation by ameliorating M1/M2 states, and the process may be mediated by SOCS1. PMID:27213058

  13. Peripheral viral infection induced microglial sensome genes and enhanced microglial cell activity in the hippocampus of neonatal piglets.

    PubMed

    Ji, Peng; Schachtschneider, Kyle M; Schook, Lawrence B; Walker, Frederick R; Johnson, Rodney W

    2016-05-01

    Although poorly understood, early-life infection is predicted to affect brain microglial cells, making them hypersensitive to subsequent stimuli. To investigate this, we assessed gene expression in hippocampal tissue obtained from a previously published study reporting increased microglial cell activity and reduced hippocampal-dependent learning in neonatal piglets infected with porcine reproductive and respiratory syndrome virus (PRRSV), a virus that induces interstitial pneumonia. Infection altered expression of 455 genes, of which 334 were up-regulated and 121 were down-regulated. Functional annotation revealed that immune function genes were enriched among the up-regulated differentially expressed genes (DEGs), whereas calcium binding and synaptic vesicle genes were enriched among the down-regulated DEGs. Twenty-six genes encoding part of the microglia sensory apparatus (i.e., the sensome) were up-regulated (e.g., IL1R1, TLR2, and TLR4), whereas 15 genes associated with the synaptosome and synaptic receptors (e.g., NPTX2, GABRA2, and SLC5A7) were down-regulated. As the sensome may foretell microglia reactivity, we next inoculated piglets with culture medium or PRRSV at PD 7 and assessed hippocampal microglia morphology and function at PD 28 when signs of infection were waning. Consistent with amplification of the sensome, microglia from PRRSV piglets had enhanced responsiveness to chemoattractants, increased phagocytic activity, and secreted more TNFα in response to lipopolysaccharide and Poly I:C. Immunohistochemical staining indicated PRRSV infection increased microglia soma length and length-to-width ratio. Bipolar rod-like microglia not evident in hippocampus of control piglets, were present in infected piglets. Collectively, this study suggests early-life infection alters the microglia sensome as well as microglial cell morphology and function. PMID:26872419

  14. Stress Granules Modulate SYK to Cause Microglial Cell Dysfunction in Alzheimer's Disease

    PubMed Central

    Ghosh, Soumitra; Geahlen, Robert L.

    2015-01-01

    Microglial cells in the brains of Alzheimer's patients are known to be recruited to amyloid-beta (Aβ) plaques where they exhibit an activated phenotype, but are defective for plaque removal by phagocytosis. In this study, we show that microglia stressed by exposure to sodium arsenite or Aβ(1–42) peptides or fibrils form extensive stress granules (SGs) to which the tyrosine kinase, SYK, is recruited. SYK enhances the formation of SGs, is active within the resulting SGs and stimulates the production of reactive oxygen and nitrogen species that are toxic to neuronal cells. This sequestration of SYK inhibits the ability of microglial cells to phagocytose Escherichia coli or Aβ fibrils. We find that aged microglial cells are more susceptible to the formation of SGs; and SGs containing SYK and phosphotyrosine are prevalent in the brains of patients with severe Alzheimer's disease. Phagocytic activity can be restored to stressed microglial cells by treatment with IgG, suggesting a mechanism to explain the therapeutic efficacy of intravenous IgG. These studies describe a mechanism by which stress, including exposure to Aβ, compromises the function of microglial cells in Alzheimer's disease and suggest approaches to restore activity to dysfunctional microglial cells. PMID:26870803

  15. Microglial Cells as a Link between Cannabinoids and the Immune Hypothesis of Psychiatric Disorders.

    PubMed

    Lisboa, Sabrina F; Gomes, Felipe V; Guimaraes, Francisco S; Campos, Alline C

    2016-01-01

    Psychiatric disorders are one of the leading causes of disability worldwide. Although several therapeutic options are available, the exact mechanisms responsible for the genesis of these disorders remain to be fully elucidated. In the last decade, a body of evidence has supported the involvement of the immune system in the pathophysiology of these conditions. Microglial cells play a significant role in maintaining brain homeostasis and surveillance. Dysregulation of microglial functions has been associated with several psychiatric conditions. Cannabinoids regulate the brain-immune axis and inhibit microglial cell activation. Here, we summarized evidence supporting the hypothesis that microglial cells could be a target for cannabinoid influence on psychiatric disorders, such as anxiety, depression, schizophrenia, and stress-related disorders. PMID:26858686

  16. Microglial Cells as a Link between Cannabinoids and the Immune Hypothesis of Psychiatric Disorders

    PubMed Central

    Lisboa, Sabrina F.; Gomes, Felipe V.; Guimaraes, Francisco S.; Campos, Alline C.

    2016-01-01

    Psychiatric disorders are one of the leading causes of disability worldwide. Although several therapeutic options are available, the exact mechanisms responsible for the genesis of these disorders remain to be fully elucidated. In the last decade, a body of evidence has supported the involvement of the immune system in the pathophysiology of these conditions. Microglial cells play a significant role in maintaining brain homeostasis and surveillance. Dysregulation of microglial functions has been associated with several psychiatric conditions. Cannabinoids regulate the brain–immune axis and inhibit microglial cell activation. Here, we summarized evidence supporting the hypothesis that microglial cells could be a target for cannabinoid influence on psychiatric disorders, such as anxiety, depression, schizophrenia, and stress-related disorders. PMID:26858686

  17. NG2 expression in microglial cells affects the expression of neurotrophic and proinflammatory factors by regulating FAK phosphorylation

    PubMed Central

    Zhu, Lie; Su, Qing; Jie, Xiang; Liu, Antang; Wang, Hui; He, Beiping; Jiang, Hua

    2016-01-01

    Neural/glial antigen 2 (NG2), a chondroitin sulfate proteoglycan, is significantly upregulated in a subset of glial cells in the facial motor nucleus (FMN) following CNS injury. NG2 is reported to promote the resulting inflammatory reaction, however, the mechanism by which NG2 mediates these effects is yet to be determined. In this study, we examined the changes in NG2 expressing microglial cells in the FMN in response to facial nerve axotomy (FNA) in mice. Our findings indicated that NG2 expression was progressively induced and upregulated specifically in the ipsilateral facial nucleus following FNA. To further investigate the effects of NG2 expression, in vivo studies in NG2-knockout mice and in vitro studies in rat microglial cells transfected with NG2 shRNAs were performed. Abolition of NG2 expression both in vitro and in vivo resulted in increased expression of neurotrophic factors (nerve growth factor and glial derived neurotrophic factor), decreased expression of inflammatory mediators (tumor necrosis factor-α and interleukin-1β) and decreased apoptosis in the ipsilateral facial nucleus in response to FNA. Furthermore, we demonstrated the role of FAK in these NG2-induced effects. Taken together, our findings suggest that NG2 expression mediates inflammatory reactions and neurodegeneration in microglial cells in response to CNS injury, potentially by regulating FAK phosphorylation. PMID:27306838

  18. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces microglial nitric oxide production and subsequent rat primary cortical neuron apoptosis through p38/JNK MAPK pathway.

    PubMed

    Li, Yuanye; Chen, Gang; Zhao, Jianya; Nie, Xiaoke; Wan, Chunhua; Liu, Jiao; Duan, Zhiqing; Xu, Guangfei

    2013-10-01

    It has been widely accepted that microglia, which are the innate immune cells in the brain, upon activation can cause neuronal damage. In the present study, we investigated the role of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in regulating microglial nitric oxide production and its role in causing neuronal damage. The study revealed that TCDD stimulates the expression of inducible nitric oxide synthase (iNOS) as well as the production of nitric oxide (NO) in a dose- and time-dependent manner. Further, a rapid activation of p38 and JNK MAPKs was found in HAPI microglia following TCDD treatment. Blockage of p38 and JNK kinases with their specific inhibitors, SB202190 and SP600125, significantly reduced TCDD-induced iNOS expression and NO production. In addition, it was demonstrated through treating rat primary cortical neurons with media conditioned with TCDD treated microglia that microglial iNOS activation mediates neuronal apoptosis. Lastly, it was also found that p38 and JNK MAPK inhibitors could attenuate the apoptosis of rat cortical neurons upon exposure to medium conditioned by TCDD-treated HAPI microglial cells. Based on these observations, we highlight that the p38/JNK MAPK pathways play an important role in TCDD-induced iNOS activation in rat HAPI microglia and in the subsequent induction of apoptosis in primary cortical neurons. PMID:23969120

  19. Automatic Counting of Microglial Cells in Healthy and Glaucomatous Mouse Retinas

    PubMed Central

    Rojas, Blanca; Ramírez, Ana I.; de Hoz, Rosa; Salazar, Juan J.; Triviño, Alberto; Ramírez, José M.

    2015-01-01

    Proliferation of microglial cells has been considered a sign of glial activation and a hallmark of ongoing neurodegenerative diseases. Microglia activation is analyzed in animal models of different eye diseases. Numerous retinal samples are required for each of these studies to obtain relevant data of statistical significance. Because manual quantification of microglial cells is time consuming, the aim of this study was develop an algorithm for automatic identification of retinal microglia. Two groups of adult male Swiss mice were used: age-matched controls (naïve, n = 6) and mice subjected to unilateral laser-induced ocular hypertension (lasered; n = 9). In the latter group, both hypertensive eyes and contralateral untreated retinas were analyzed. Retinal whole mounts were immunostained with anti Iba-1 for detecting microglial cell populations. A new algorithm was developed in MATLAB for microglial quantification; it enabled the quantification of microglial cells in the inner and outer plexiform layers and evaluates the area of the retina occupied by Iba-1+ microglia in the nerve fiber-ganglion cell layer. The automatic method was applied to a set of 6,000 images. To validate the algorithm, mouse retinas were evaluated both manually and computationally; the program correctly assessed the number of cells (Pearson correlation R = 0.94 and R = 0.98 for the inner and outer plexiform layers respectively). Statistically significant differences in glial cell number were found between naïve, lasered eyes and contralateral eyes (P<0.05, naïve versus contralateral eyes; P<0.001, naïve versus lasered eyes and contralateral versus lasered eyes). The algorithm developed is a reliable and fast tool that can evaluate the number of microglial cells in naïve mouse retinas and in retinas exhibiting proliferation. The implementation of this new automatic method can enable faster quantification of microglial cells in retinal pathologies. PMID:26580208

  20. Constitutive and functional expression of YB-1 in microglial cells.

    PubMed

    Keilhoff, G; Titze, M; Esser, T; Langnaese, K; Ebmeyer, U

    2015-08-20

    Y-box-binding protein (YB-1) is a member of the cold-shock protein family and participates in a wide variety of DNA/RNA-dependent cellular processes including DNA repair, transcription, mRNA splicing, packaging, and translation. At the cellular level, YB-1 is involved in cell proliferation and differentiation, stress responses, and malignant cell transformation. A general role for YB-1 during inflammation has also been well described; however, there are minimal data concerning YB-1 expression in microglia, which are the immune cells of the brain. Therefore, we studied the expression of YB-1 in a clinically relevant global ischemia model for neurological injury following cardiac arrest. This model is characterized by massive neurodegeneration of the hippocampal CA1 region and the subsequent long-lasting activation of microglia. In addition, we studied YB-1 expression in BV-2 cells, which are an accepted microglia culture model. BV-2 cells were stressed by oxygen/glucose deprivation (OGD), OGD-relevant mediators, lipopolysaccharide (LPS), and phagocytosis-inducing cell debris and nanoparticles. Using quantitative polymerase chain reaction (PCR), we show constitutive expression of YB-1 transcripts in unstressed BV-2 cells. The functional upregulation of the YB-1 protein was demonstrated in microglia in vivo and in BV-2 cells in vitro. All stressors except for LPS were potent enhancers of the level of YB-1 protein, which appears to be regulated primarily by proteasomal degradation and, to a lesser extent, by the activation (phosphorylation) of the translation initiation factor eIF4E. The proteasome of BV-2 cells is impaired by OGD, which results in decreased protein degradation and therefore increased levels of YB-1 protein. LPS induces proteasome activity, which enables the level of YB-1 protein to remain at control levels despite enhanced protein ubiquitination. The proteasome inhibitor MG-132 was able to increase YB-1 protein levels in control and LPS

  1. Microglial cell death induced by glycated bovine serum albumin: nitric oxide involvement.

    PubMed

    Khazaei, Mohammad R; Habibi-Rezaei, Mehran; Karimzadeh, Fereshteh; Moosavi-Movahedi, Ali Akbar; Sarrafnejhad, Abdo Alfattah; Sabouni, Farzaneh; Bakhti, Mostafa

    2008-08-01

    Nonenzymatic glycation results in the formation of advanced glycation end products (AGEs) through a nonenzymatic multistep reaction of reducing sugars with proteins. AGEs have been suspected to be involved in the pathogenesis of several chronic clinical neurodegenerative complications including Alzheimer's disease, which is characterized with the activation of microglial cells in neuritic plaques. To find out the consequence of this activation on microglial cells, we treated the cultured microglial cells with different glycation levels of Bovine Serum Albumin (BSA) which were prepared in vitro. Extent of glycation of protein has been characterized during 16 weeks of incubation with glucose. Treatment of microglial cells with various levels of glycated albumin induced nitric oxide (NO) production and consequently cell death. We also tried to find out the mode of death in AGE-activated microglial cells. Altogether, our results suggest that AGE treatment causes microglia to undergo NO-mediated apoptotic and necrotic cell death in short term and long term, respectively. NO production is a consequence of iNOS expression in a JNK dependent RAGE signalling after activation of RAGE by AGE-BSA. PMID:18463114

  2. Low-dose methotrexate reduces peripheral nerve injury-evoked spinal microglial activation and neuropathic pain behavior in rats

    PubMed Central

    Scholz, Joachim; Abele, Andrea; Marian, Claudiu; Häussler, Annett; Herbert, Teri A.; Woolf, Clifford J.; Tegeder, Irmgard

    2008-01-01

    Peripheral nerve injuries that provoke neuropathic pain are associated with microglial activation in the spinal cord. We have investigated the characteristics of spinal microglial activation in three distinct models of peripheral neuropathic pain: spared nerve injury (SNI), chronic constriction injury, and spinal nerve ligation. In all models, dense clusters of cells immunoreactive for the microglial marker CD11b formed in the ipsilateral dorsal horn 7 days after injury. Microglial expression of ionized calcium binding adapter molecule 1 (Iba1) increased by up to 40% and phosphorylation of p38 mitogen-activated protein kinase, a marker of microglial activity, by 45%. Expression of the lysosomal ED1-antigen indicated phagocytic activity of the cells. Unlike the peripheral nerve lesions, rhizotomy produced only a weak microglial reaction within the spinal gray matter but a strong activation of microglia and phagocytes in the dorsal funiculus at lumbar and thoracic spinal cord levels. This suggests that although degeneration of central terminals is sufficient to elicit microglial activation, it does not account for the inflammatory response in the dorsal horn after peripheral nerve injury. Early intrathecal treatment with low-dose methotrexate, beginning at the time of injury, decreased microglial activation, reduced p38 phosphorylation, and attenuated pain-like behavior after SNI. In contrast, systemic or intrathecal delivery of the glucocorticoid dexamethasone did not inhibit the activation of microglia or reduce pain-like behavior. We confirm that microglial activation is crucial for the development of pain after nerve injury, and demonstrate that suppression of this cellular immune response is a promising approach for preventing neuropathic pain. PMID:18215468

  3. Phagocytosis-dependent and independent mechanisms underlie the microglial cell damage caused by carbon nanotube agglomerates.

    PubMed

    Shigemoto-Mogami, Yukari; Hoshikawa, Kazue; Hirose, Akihiko; Sato, Kaoru

    2016-01-01

    Although carbon nanotubes (CNTs) are used in many fields, including energy, healthcare, environmental technology, materials, and electronics, the adverse effects of CNTs in the brain are poorly understood. In this study, we investigated the effects of CNTs on cultured microglia, as microglia are the first responders to foreign materials. We compared the effects of sonicated suspensions of 5 kinds of CNTs and their flow-through filtered with a 0.22 µm membrane filter on microglial viability. We found that sonicated suspensions caused microglial cell damage, but their flow-through did not. The number of microglial aggregates was well correlated with the extent of the damage. We also determined that the CNT agglomerates consisted of two groups: one was phagocytosed by microglia and caused microglial cell damage, and the other caused cell damage without phagocytosis. These results suggest that phagocytosis-dependent and independent mechanisms underlie the microglial cell damage caused by CNT agglomerates and it is important to conduct studies about the relationships between physical properties of nanomaterial-agglomerates and cell damage. PMID:27432236

  4. Microglial activation mediates host neuronal survival induced by neural stem cells.

    PubMed

    Wu, Hui-Mei; Zhang, Li-Feng; Ding, Pei-Shang; Liu, Ya-Jing; Wu, Xu; Zhou, Jiang-Ning

    2014-07-01

    The rational of neural stem cells (NSCs) in the therapy of neurological disease is either to replace dead neurons or to improve host neuronal survival, the latter of which has got less attention and the underlying mechanism is as yet little known. Using a transwell co-culture system, we reported that, in organotypic brain slice cultures, NSCs significantly improved host neuronal viability. Interestingly, this beneficial effect of NSCs was abrogated by a microglial inhibitor minocycline, while it was mimicked by a microglial agonist, Toll-like receptor 9 (TLR9) ligand CpG-ODN, which supports the pro-vital mediation by microglia on this NSCs-improved neuronal survival. Moreover, we showed that NSCs significantly induced host microglial movement and higher expression of a microglial marker IBA-1, the latter of which was positively correlated with TLR9 or extracellular-regulated protein kinases 1/2 (ERK1/2) activation. Real-time PCR revealed that NSCs inhibited the expression of pro-inflammatory molecules, but significantly increased the expression of molecules associated with a neuroprotective phenotype such as CX3CR1, triggering receptor expressed on myeloid cells-2 (TREM2) and insulin growth factor 1 (IGF-1). Similarly, in the microglia cells, NSCs induced the same microglial response as that in the slices. Further treatment with TLR9 ligand CpG-ODN, TLR9 inhibitor chloroquine (CQ) or ERK1/2 inhibitor U0126 demonstrated that TLR9-ERK1/2 pathway was involved in the NSCs-induced microglial activation. Collectively, this study indicated that NSCs improve host neuronal survival by switching microglia from a detrimental to a neuroprotective phenotype in adult mouse brain, and the microglial TLR9-ERK1/2 pathway seems to participate in this NSCs-mediated rescue action. PMID:24725889

  5. Anti-Neuroinflammatory Effects of the Calcium Channel Blocker Nicardipine on Microglial Cells: Implications for Neuroprotection

    PubMed Central

    Huang, Bor-Ren; Chang, Pei-Chun; Yeh, Wei-Lan; Lee, Chih-Hao; Tsai, Cheng-Fang; Lin, Chingju; Lin, Hsiao-Yun; Liu, Yu-Shu; Wu, Caren Yu-Ju; Ko, Pei-Ying; Huang, Shiang-Suo; Hsu, Horng-Chaung; Lu, Dah-Yuu

    2014-01-01

    Background/Objective Nicardipine is a calcium channel blocker that has been widely used to control blood pressure in severe hypertension following events such as ischemic stroke, traumatic brain injury, and intracerebral hemorrhage. However, accumulating evidence suggests that inflammatory processes in the central nervous system that are mediated by microglial activation play important roles in neurodegeneration, and the effect of nicardipine on microglial activation remains unresolved. Methodology/Principal Findings In the present study, using murine BV-2 microglia, we demonstrated that nicardipine significantly inhibits microglia-related neuroinflammatory responses. Treatment with nicardipine inhibited microglial cell migration. Nicardipine also significantly inhibited LPS plus IFN-γ-induced release of nitric oxide (NO), and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Furthermore, nicardipine also inhibited microglial activation by peptidoglycan, the major component of the Gram-positive bacterium cell wall. Notably, nicardipine also showed significant anti-neuroinflammatory effects on microglial activation in mice in vivo. Conclusion/Significance The present study is the first to report a novel inhibitory role of nicardipine on neuroinflammation and provides a new candidate agent for the development of therapies for inflammation-related neurodegenerative diseases. PMID:24621589

  6. Fine-tuning the central nervous system: microglial modelling of cells and synapses

    PubMed Central

    Xavier, Anna L.; Menezes, João R. L.; Goldman, Steven A.; Nedergaard, Maiken

    2014-01-01

    Microglia constitute as much as 10–15% of all cells in the mammalian central nervous system (CNS) and are the only glial cells that do not arise from the neuroectoderm. As the principal CNS immune cells, microglial cells represent the first line of defence in response to exogenous threats. Past studies have largely been dedicated to defining the complex immune functions of microglial cells. However, our understanding of the roles of microglia has expanded radically over the past years. It is now clear that microglia are critically involved in shaping neural circuits in both the developing and adult CNS, and in modulating synaptic transmission in the adult brain. Intriguingly, microglial cells appear to use the same sets of tools, including cytokine and chemokine release as well as phagocytosis, whether modulating neural function or mediating the brain's innate immune responses. This review will discuss recent developments that have broadened our views of neuro-glial signalling to include the contribution of microglial cells. PMID:25225087

  7. Effects of Elderberry Juice from Different Genotypes on Oxidative and Inflammatory Responses in Microglial Cells

    PubMed Central

    Jiang, J.M.; Zong, Y.; Chuang, D.Y.; Lei, W.; Lu, C.-H.; Gu, Z.; Fritsche, K.L.; Thomas, A.L.; Lubahn, D.B.; Simonyi, A.; Sun, G.Y.

    2016-01-01

    Many species of berries are nutritious food and offer health benefits. However, among the different types of berries, information on health effects of American elderberries (Sambucus nigra subsp. canadensis) has been lacking and little is known about whether elderberry consumption can confer neuroprotective effects on the central nervous system. Microglial cells constitute a unique class of immune cells and exhibit characteristic properties to carry out multifunctional duties in the brain. Activation of microglial cells has been implicated in brain injury and in many types of neurodegenerative diseases. Our recent studies demonstrated the ability for endotoxin (lipopolysaccharide, LPS) and interferon gamma (IFNγ) to induce reactive oxygen species (ROS) and nitric oxide (NO) in murine microglial cells (BV-2) through activating NADPH oxidase and the MAPK pathways. In this study, BV-2 microglial cells were used to examine effects of elderberry juice obtained from different genotypes on oxidative and inflammatory responses induced by LPS and IFNγ. Results show that ‘Wyldewood’ extract demonstrated antioxidant properties by inhibiting IFNγ-induced ROS production and p-ERK1/2 expression. On the other hand, most juice extracts exerted small effects on LPS-induced NO production and some extracts showed an increase in NO production upon stimulation with IFNγ. The disparity of responses on ROS and NO production from different extracts suggests possible presence of unknown endogenous factor(s) in the extract in promoting the IFNγ-induced iNOS synthesis pathway. PMID:27158184

  8. Effect of CCL2 on BV2 microglial cell migration: Involvement of probable signaling pathways.

    PubMed

    Bose, Shambhunath; Kim, Sunyoung; Oh, Yeonsoo; Moniruzzaman, Md; Lee, Gyeongjun; Cho, Jungsook

    2016-05-01

    Microglia, the resident macrophages of the central nervous system, play a vital role in the regulation of innate immune function and neuronal homeostasis of the brain. Currently, much interest is being generated regarding the investigation of the microglial migration that results in their accumulation at focal sites of injury. Chemokines including CCL2 are known to cause the potential induction of migration of microglial cells, although the underlying mechanisms are not well understood. In the present study, using murine neonatal BV2 microglial cells as a model, we investigate the impact of CCL2 on the migration of microglial cells and address the probable molecular events within the cellular signaling cascades mediating CCL2-induced cell migration. Our results demonstrate concentration- and time-dependent induction of BV2 cell migration by CCL2 and reveal complex mechanisms involving the activation of MEK, ERK1/2, and Akt, and their cross-talk. In addition, we demonstrate that the MEK/ERK pathway activated by CCL2 treatment mediate p90RSK activation in BV2 cells. Moreover, our findings indicate that Akt, ERK1/2, and p90RSK are the downstream effectors of PI3K in the CCL2-induced signaling. Finally, phosphorylation of the transcription factors c-jun and ATF-1 is found to be a further downstream signaling cascade in the CCL2-mediated action. Our results suggest that CCL2-induced activation of c-jun and ATF-1 is likely to be linked to the MEK/ERK and PI3K signaling pathways, respectively. Taken together, these findings contribute to a better understanding of CCL2-induced microglial migration and the probable signaling pathways involved. PMID:26878647

  9. Docosahexaenoic acid modulates inflammatory and antineurogenic functions of activated microglial cells.

    PubMed

    Antonietta Ajmone-Cat, Maria; Lavinia Salvatori, Maria; De Simone, Roberta; Mancini, Melissa; Biagioni, Stefano; Bernardo, Antonietta; Cacci, Emanuele; Minghetti, Luisa

    2012-03-01

    The complex process of microglial activation encompasses several functional activation states associated either with neurotoxic/antineurogenic or with neurotrophic/proneurogenic properties, depending mainly on the extent of activation and the nature of the activating stimuli. Several studies have demonstrated that acute exposure to the prototypical activating agent lipopolysaccharide (LPS) confers antineurogenic properties upon microglial cells. Acutely activated microglia ortheir conditioned media (CM) reduce neural stem progenitor cell (NPC) survival and prevent NPC differentiation into neurons. The present study tested the hypothesis that docosahexaenoic acid (DHA), a long-chain polyunsatured fatty acid (L-PUFA) with potent immunomodulatory properties, could dampen microglial proinflammatory functions and modulate their antineurogenic effect. We demonstrate that DHA dose dependently inhibits the synthesis of inflammatory products in activated microglia without inducing an alternative antiinflammatory phenotype. Among the possible DHA mechanisms of action, we propose the inhibition of p38 MAPK phosphorylation and the activation of the nuclear receptor peroxisome proliferator activated receptor (PPAR)-γ. The attenuation of M1 proinflammatory phenotype has relevant consequences for the survival and differentiation of NPC, because DHA reverses the antineurogenic activities of conditioned media from LPS-activated microglia. Our study identifies new relevant potentially protective and proneurogenic functions of DHA, exerted through the modulation of microglial functions, that could be exploited to sustain or promote neuroregenerative processes in damaged/aged brain. PMID:22057807

  10. Data from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with Withaferin A (WA).

    PubMed

    Narayan, Malathi; Seeley, Kent W; Jinwal, Umesh K

    2016-06-01

    Mass spectrometry data collected in a study analyzing the effect of withaferin A (WA) on a mouse microglial (N9) cell line is presented in this article. Data was collected from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with either WA or DMSO vehicle control. This article reports all the proteins that were identified in this analysis. The data presented here is related to the published research article on the effect of WA on the differential regulation of proteins in mouse microglial cells [1]. Mass spectrometry data has also been deposited in the ProteomeXchange with the identifier PXD003032. PMID:27054189

  11. Data from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with Withaferin A (WA)

    PubMed Central

    Narayan, Malathi; Seeley, Kent W.; Jinwal, Umesh K.

    2016-01-01

    Mass spectrometry data collected in a study analyzing the effect of withaferin A (WA) on a mouse microglial (N9) cell line is presented in this article. Data was collected from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with either WA or DMSO vehicle control. This article reports all the proteins that were identified in this analysis. The data presented here is related to the published research article on the effect of WA on the differential regulation of proteins in mouse microglial cells [1]. Mass spectrometry data has also been deposited in the ProteomeXchange with the identifier PXD003032. PMID:27054189

  12. Spontaneously hypertensive rats display reduced microglial activation in response to ischemic stroke and lipopolysaccharide

    PubMed Central

    2012-01-01

    Background For successful translation to clinical stroke studies, the Stroke Therapy Academic Industry Round Table criteria have been proposed. Two important criteria are testing of therapeutic interventions in conscious animals and the presence of a co-morbidity factor. We chose to work with hypertensive rats since hypertension is an important modifiable risk factor for stroke and influences the clinical outcome. We aimed to compare the susceptibility to ischemia in hypertensive rats with those in normotensive controls in a rat model for induction of ischemic stroke in conscious animals. Methods The vasoconstrictor endothelin-1 was stereotactically applied in the vicinity of the middle cerebral artery of control Wistar Kyoto rats (WKYRs) and Spontaneously Hypertensive rats (SHRs) to induce a transient decrease in striatal blood flow, which was measured by the Laser Doppler technique. Infarct size was assessed histologically by Cresyl Violet staining. Sensory-motor functions were measured at several time points using the Neurological Deficit Score. Activation of microglia and astrocytes in the striatum and cortex was investigated by immunohistochemistry using antibodies against CD68/Iba-1 and glial fibrillary acidic protein. Results and conclusions The SHRs showed significantly larger infarct volumes and more pronounced sensory-motor deficits, compared to the WKYRs at 24 h after the insult. However, both differences disappeared between 24 and 72 h. In SHRs, microglia were less susceptible to activation by lipopolysaccharide and there was a reduced microglial activation after induction of ischemic stroke. These quantitative and qualitative differences may be relevant for studying the efficacy of new treatments for stroke in accordance to the Stroke Therapy Academic Industry Round Table criteria. PMID:22647642

  13. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum.

    PubMed

    López-Pedrajas, Rosa; Ramírez-Lamelas, Dolores T; Muriach, Borja; Sánchez-Villarejo, María V; Almansa, Inmaculada; Vidal-Gil, Lorena; Romero, Francisco J; Barcia, Jorge M; Muriach, María

    2015-01-01

    Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB), considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone, and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p., for 18 days. Reduced and oxidized forms of glutathione (GSH) and oxidized glutathione (GSSG), glutathione peroxidase (GPx) activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68, and GFAP expression were determined. Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations. Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction. PMID:26283916

  14. Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum

    PubMed Central

    López-Pedrajas, Rosa; Ramírez-Lamelas, Dolores T.; Muriach, Borja; Sánchez-Villarejo, María V.; Almansa, Inmaculada; Vidal-Gil, Lorena; Romero, Francisco J.; Barcia, Jorge M.; Muriach, María

    2015-01-01

    Different mechanisms have been suggested for cocaine neurotoxicity, including oxidative stress alterations. Nuclear factor kappa B (NF-κB), considered a sensor of oxidative stress and inflammation, is involved in drug toxicity and addiction. NF-κB is a key mediator for immune responses that induces microglial/macrophage activation under inflammatory processes and neuronal injury/degeneration. Although cerebellum is commonly associated to motor control, muscular tone, and balance. Its relation with addiction is getting relevance, being associated to compulsive and perseverative behaviors. Some reports indicate that cerebellar microglial activation induced by cannabis or ethanol, promote cerebellar alterations and these alterations could be associated to addictive-related behaviors. After considering the effects of some drugs on cerebellum, the aim of the present work analyzes pro-inflammatory changes after cocaine exposure. Rats received daily 15 mg/kg cocaine i.p., for 18 days. Reduced and oxidized forms of glutathione (GSH) and oxidized glutathione (GSSG), glutathione peroxidase (GPx) activity and glutamate were determined in cerebellar homogenates. NF-κB activity, CD68, and GFAP expression were determined. Cerebellar GPx activity and GSH/GSSG ratio are significantly decreased after cocaine exposure. A significant increase of glutamate concentration is also observed. Interestingly, increased NF-κB activity is also accompanied by an increased expression of the lysosomal mononuclear phagocytic marker ED1 without GFAP alterations. Current trends in addiction biology are focusing on the role of cerebellum on addictive behaviors. Cocaine-induced cerebellar changes described herein fit with previosus data showing cerebellar alterations on addict subjects and support the proposed role of cerebelum in addiction. PMID:26283916

  15. Nitrated Alpha Synuclein Induced Alterations in Microglial Immunity is Regulated by CD4+ T Cell Subsets1

    PubMed Central

    Reynolds, Ashley D.; Stone, David K.; Mosley, R. Lee; Gendelman, Howard E.

    2009-01-01

    Microglial inflammatory neuroregulatory activities affect the tempo of nigrostriatal degeneration during Parkinson's disease (PD). Such activities are induced, in part, by misfolded, nitrated alpha-synuclein (N-α-syn) within Lewy bodies released from dying or dead dopaminergic neurons. Such pathobiologic events initiate innate and adaptive immune responses affecting neurodegeneration. We posit that the neurobiological activities of activated microglia are affected by cell-protein and cell-cell contacts, in that microglial interactions with N-α-syn and CD4+ T cells substantively alter the microglial proteome. This leads to alterations in cell homeostatic functions and disease. CD4+CD25+ regulatory T cells (Treg) suppress N-α-syn microglial induced reactive oxygen species and nuclear factor kappa B activation by modulating redox-active enzymes, cell migration, phagocytosis, and bioenergetic protein expression and cell function. In contrast, CD4+CD25− effector T cells exacerbate microglial inflammation and induce “putative” neurotoxic responses. These data support the importance of adaptive immunity in the regulation of PD-associated microglial inflammation. PMID:19299711

  16. Entry and distribution of microglial cells in human embryonic and fetal cerebral cortex.

    PubMed

    Monier, Anne; Adle-Biassette, Homa; Delezoide, Anne-Lise; Evrard, Philippe; Gressens, Pierre; Verney, Catherine

    2007-05-01

    Microglial cells penetrate into and scatter throughout the human cortical grey and white matter according to a specific spatiotemporal pattern during the first 2 trimesters of gestation. Routes of entry were quantitatively and qualitatively different from those identified in the diencephalon. Starting at 4.5 gestational weeks, amoeboid microglial cells, characterized by different antibodies as Iba1, CD68, CD45, and MHC-II, entered the cerebral wall from the ventricular lumen and the leptomeninges. Migration was mainly radial and tangential toward the immature white matter, subplate layer, and cortical plate, whereas pial cells populated the prospective layer I. The intraparenchymal vascular route of entry was detectable only from 12 gestational weeks. Interestingly, microglial cells accumulated in restricted laminar bands particularly at 19 to 24 gestational weeks among the corona radiata fibers rostrally, extending caudally in the immature white matter to reach the visual radiations. This accumulation of proliferating MIB1-positive microglia (as shown by MIB1-Iba1 double immunolabeling) was located at the site of white matter injury in premature neonates. The spatiotemporal organization of microglia in the immature white and grey matter suggests that these cells may play active roles in developmental processes and in injury to the developing brain. PMID:17483694

  17. Microglial depletion using intrahippocampal injection of liposome-encapsulated clodronate in prolonged hypothermic cardiac arrest in rats.

    PubMed

    Drabek, Tomas; Janata, Andreas; Jackson, Edwin K; End, Brad; Stezoski, Jason; Vagni, Vincent A; Janesko-Feldman, Keri; Wilson, Caleb D; van Rooijen, Nico; Tisherman, Samuel A; Kochanek, Patrick M

    2012-04-01

    Trauma patients who suffer cardiac arrest (CA) from exsanguination rarely survive. Emergency preservation and resuscitation using hypothermia was developed to buy time for resuscitative surgery and delayed resuscitation with cardiopulmonary bypass (CPB), but intact survival is limited by neuronal death associated with microglial proliferation and activation. Pharmacological modulation of microglia may improve outcome following CA. Systemic injection of liposome-encapsulated clodronate (LEC) depletes macrophages. To test the hypothesis that intrahippocampal injection of LEC would attenuate local microglial proliferation after CA in rats, we administered LEC or PBS into the right or left hippocampus, respectively. After rapid exsanguination and 6min no-flow, hypothermia was induced by ice-cold (IC) or room-temperature (RT) flush. Total duration of CA was 20min. Pre-treatment (IC, RTpre) and post-treatment (RTpost) groups were studied, along with shams (cannulation only) and CPB controls. On day 7, shams and CPB groups showed neither neuronal death nor microglial activation. In contrast, the number of microglia in hippocampus in each individual group (IC, RTpre, RTpost) was decreased with LEC vs. PBS by ∼34-46% (P<0.05). Microglial proliferation was attenuated in the IC vs. RT groups (P<0.05). Neuronal death did not differ between hemispheres or IC vs. RT groups. Thus, intrahippocampal injection of LEC attenuated microglial proliferation by ∼40%, but did not alter neuronal death. This suggests that microglia may not play a pivotal role in mediating neuronal death in prolonged hypothermic CA. This novel strategy provides us with a tool to study the specific effects of microglia in hypothermic CA. PMID:21970817

  18. c-Src function is necessary and sufficient for triggering microglial cell activation.

    PubMed

    Socodato, Renato; Portugal, Camila C; Domith, Ivan; Oliveira, Nádia A; Coreixas, Vivian S M; Loiola, Erick C; Martins, Tânia; Santiago, Ana Raquel; Paes-de-Carvalho, Roberto; Ambrósio, António F; Relvas, João B

    2015-03-01

    Microglial cells are the resident macrophages of the central nervous system. Their function is essential for neuronal tissue homeostasis. After inflammatory stimuli, microglial cells become activated changing from a resting and highly ramified cell shape to an amoeboid-like morphology. These morphological changes are associated with the release of proinflammatory cytokines and glutamate, as well as with high phagocytic activity. The acquisition of such phenotype has been associated with activation of cytoplasmic tyrosine kinases, including those of the Src family (SFKs). In this study, using both in vivo and in vitro inflammation models coupled to FRET-based time-lapse microscopy, lentiviruses-mediated shRNA delivery and genetic gain-of-function experiments, we demonstrate that among SFKs c-Src function is necessary and sufficient for triggering microglia proinflammatory signature, glutamate release, microglia-induced neuronal loss, and phagocytosis. c-Src inhibition in retinal neuroinflammation experimental paradigms consisting of intravitreal injection of LPS or ischemia-reperfusion injury significantly reduced microglia activation changing their morphology to a more resting phenotype and prevented neuronal apoptosis. Our data demonstrate an essential role for c-Src in microglial cell activation. PMID:25421817

  19. Microglial Activation & Chronic Neurodegeneration

    PubMed Central

    Lull, Melinda E.; Block, Michelle L.

    2010-01-01

    Microglia, the resident innate immune cells in the brain, have long been implicated in the pathology of neurodegenerative diseases. Accumulating evidence points to activated microglia as a chronic source of multiple neurotoxic factors, including TNFα, NO, IL1-β, and reactive oxygen species (ROS), driving progressive neuron damage. Microglia can become chronically activated by either a single stimulus (ex. LPS or neuron damage) or multiple stimuli exposures to result in cumulative neuronal loss over time. While the mechanisms driving these phenomena are just beginning to be understood, reactive microgliosis (the microglial response to neuron damage) and ROS have been implicated as key mechanisms of chronic and neurotoxic microglial activation, particularly in the case of Parkinson’s Disease. Here, we review the mechanisms of neurotoxicity associated with chronic microglial activation and discuss the role of neuronal death and microglial ROS driving the chronic and toxic microglial phenotype. PMID:20880500

  20. Global gene expression changes in BV2 microglial cell line during rabies virus infection.

    PubMed

    Zhao, Pingsen; Yang, Yujiao; Feng, Hao; Zhao, Lili; Qin, Junling; Zhang, Tao; Wang, Hualei; Yang, Songtao; Xia, Xianzhu

    2013-12-01

    Microglia plays a crucial role during virus pathogenesis in the central nervous system (CNS). Infection by rabies virus (RABV) causes a fatal infection in the CNS of all warm-blooded animals. However, the microglial responses to RABV infection have been scarcely reported. To better understand microglia-RABV interactions at the transcriptional level, a genome wide gene expression profile in mouse microglial cells line BV2 was performed using microarray analysis. The global messenger RNA changes in murine microglial cell line BV2 after 12, 24 and 48 h of infection with rabies virus CVS-11 strain were investigated using DNA Microarray and quantitative real-time PCR. Infection of CVS-11 at different time points induced different gene expression signatures in BV2 cells. The expression patterns of differentially expressed genes are shown by K-means clustering in four clusters in RABV- or mock-infected microglia at 12, 24 and 48h post infection (hpi). Gene ontology and network analysis of the differentially expressed genes in responses to RABV were performed by the Ingenuity Pathway Analysis system (IPA, Ingenuity® Systems, http://www.ingenuity.com). The results revealed that 28 genes were significantly up-regulated (P<0.01) and 1 gene was significantly down-regulated (P<0.01) in microglial cells at 12hpi, 72 genes were significantly up-regulated (P<0.01) and 24 genes were significantly down-regulated (P<0.01) at 24hpi, and 671 genes were significantly up-regulated (P<0.01) and 190 genes were significantly down-regulated (P<0.01) at 48hpi. Genes in BV2 were significantly regulated (P<0.01) in response to RABV infection and they were found to be interferon stimulated genes (Isg15, Isg20, Oasl1, Oasl2, Ifit2, Irf7 and Ifi203), chemokine genes (Ccl5, Cxcl10 and Ccrl2) and the proinflammatory factor gene (Interleukin 6). The results indicated that the differentially expressed genes from microglial cells after RABV infection were mainly involved in innate immune responses

  1. Are Microglial Cells the Regulators of Lymphocyte Responses in the CNS?

    PubMed Central

    Almolda, Beatriz; González, Berta; Castellano, Bernardo

    2015-01-01

    The infiltration of immune cells in the central nervous system is a common hallmark in different neuroinflammatory conditions. Accumulating evidence indicates that resident glial cells can establish a cross-talk with infiltrated immune cells, including T-cells, regulating their recruitment, activation and function within the CNS. Although the healthy CNS has been thought to be devoid of professional dendritic cells (DCs), numerous studies have reported the presence of a population of DCs in specific locations such as the meninges, choroid plexuses and the perivascular space. Moreover, the infiltration of DC precursors during neuroinflammatory situations has been proposed, suggesting a putative role of these cells in the regulation of lymphocyte activity within the CNS. On the other hand, under specific circumstances, microglial cells are able to acquire a phenotype of DC expressing a wide range of molecules that equip these cells with all the necessary machinery for communication with T-cells. In this review, we summarize the current knowledge on the expression of molecules involved in the cross-talk with T-cells in both microglial cells and DCs and discuss the potential contribution of each of these cell populations on the control of lymphocyte function within the CNS. PMID:26635525

  2. Development of the microglial phenotype in culture.

    PubMed

    Szabo, M; Gulya, K

    2013-06-25

    Selected morphological, molecular and functional aspects of various microglial cell populations were characterized in cell cultures established from the forebrains of E18 rat embryos. The mixed primary cortical cultures were maintained for up to 28days using routine culturing techniques when the microglial cells in the culture were not stimulated or immunologically challenged. During culturing, expansion of the microglial cell populations was observed, as evidenced by quantitative assessment of selected monocyte/macrophage/microglial cell-specific markers (human leukocyte antigen (HLA) DP, DQ, DR, CD11b/c and Iba1) via immunocyto- and histochemistry and Western blot analysis. The Iba1 immunoreactivity in Western blots steadily increased about 750-fold, and the number of Iba1-immunoreactive cells rose at least 67-fold between one day in vitro (DIV1) and DIV28. Morphometric analysis on binary (digital) silhouettes of the microglia revealed their evolving morphology during culturing. Microglial cells were mainly ameboid in the early stages of in vitro differentiation, while mixed populations of ameboid and ramified cell morphologies were characteristic of older cultures as the average transformation index (TI) increased from 1.96 (DIV1) to 15.17 (DIV28). Multiple immunofluorescence labeling of selected biomarkers revealed different microglial phenotypes during culturing. For example, while HLA DP, DQ, DR immunoreactivity was present exclusively in ameboid microglia (TI<3) between DIV1 and DIV10, CD11b/c- and Iba1-positive microglial cells were moderately (TI<13) and progressively (TI<81) more ramified, respectively, and always present throughout culturing. Regardless of the age of the cultures, proliferating microglia were Ki67-positive and characterized by low TI values (TI<3). The microglial function was assessed by an in vitro phagocytosis assay. Unstimulated microglia with low TI values were significantly more active in phagocytosing fluorescent microspheres than

  3. Ethanol downregulates N-acyl phosphatidylethanolamine-phospholipase D expression in BV2 microglial cells via epigenetic mechanisms.

    PubMed

    Correa, Fernando; De Laurentiis, Andrea; Franchi, Ana María

    2016-09-01

    Excessive ethanol drinking has deleterious effects on the brain. However, the effects of alcohol on microglia, the main mediator of the brain's innate immune response remain poorly understood. On the other hand, the endocannabinoid system plays a fundamental role in regulating microglial reactivity and function. Here we studied the effects of acute ethanol exposure to murine BV2 microglial cells on N-acyl phosphatidylethanolamine-phospholipase D (NAPE-PLD), a major synthesizing enzyme of anandamide and other N-acylethanolamines. We found that ethanol downregulated microglial NAPE-PLD expression by activating cAMP/PKA and ERK1/2. These signaling pathways converged on increased phosphorylation of CREB. Moreover, ethanol induced and increase in histone acetyltransferase activity which led to higher levels of acetylation of histone H3. Taken together, our results suggest that ethanol actions on microglial NAPE-PLD expression might involve epigenetic mechanisms. PMID:27266665

  4. (-)-Epigallocatechin-3-gallate inhibits voltage-gated proton currents in BV2 microglial cells.

    PubMed

    Jin, Sanghee; Park, Mijung; Song, Jin-Ho

    2013-01-01

    (-)-Epigallocatechin-3-gallate (EGCG), the principal constituent of green tea, protects neurons from toxic insults by suppressing the microglial secretion of neurotoxic inflammatory mediators. Voltage-gated proton channels are expressed in microglia, and are required for NADPH oxidase-dependent reactive oxygen species generation. Brain damage after ischemic stroke is dependent on proton channel activity. Accordingly, we examined whether EGCG could inhibit proton channel function in the murine microglial BV2 cells. EGCG potently inhibited proton currents with an IC(50) of 3.7 μM. Other tea catechins, (-)-epigallocatechin, (-)-epicatechin and (-)-epicatechin-3-gallate, were far less potent than EGCG. EGCG did not change the kinetics of proton currents such as the activation and the deactivation time constants, the reversal potential and the activation voltage, suggesting that the gating process of proton channels were not altered by EGCG. EGCG is known to disturb lipid rafts by sequestering cholesterol. However, neither extraction of cholesterol with methyl-β-cyclodextrin or cholesterol supplementation could reverse the EGCG inhibition of proton currents. In addition, the EGCG effect was preserved in the presence of the cytoskeletal stabilizers paclitaxel and phalloidin, phosphatase inhibitors, the antioxidant Trolox, superoxide dismutase or catalase. The proton channel inhibition can be a substantial mechanism for EGCG to suppress microglial activation and subsequent neurotoxic events. PMID:23201067

  5. Fyn Kinase Regulates Microglial Neuroinflammatory Responses in Cell Culture and Animal Models of Parkinson's Disease

    PubMed Central

    Panicker, Nikhil; Saminathan, Hariharan; Jin, Huajun; Neal, Matthew; Harischandra, Dilshan S.; Gordon, Richard; Kanthasamy, Kavin; Lawana, Vivek; Sarkar, Souvarish; Luo, Jie; Anantharam, Vellareddy; Kanthasamy, Anumantha G.

    2015-01-01

    Sustained neuroinflammation mediated by resident microglia is recognized as a key pathophysiological contributor to many neurodegenerative diseases, including Parkinson's disease (PD), but the key molecular signaling events regulating persistent microglial activation have yet to be clearly defined. In the present study, we examined the role of Fyn, a non-receptor tyrosine kinase, in microglial activation and neuroinflammatory mechanisms in cell culture and animal models of PD. The well-characterized inflammogens LPS and TNFα rapidly activated Fyn kinase in microglia. Immunocytochemical studies revealed that activated Fyn preferentially localized to the microglial plasma membrane periphery and the nucleus. Furthermore, activated Fyn phosphorylated PKCδ at tyrosine residue 311, contributing to an inflammogen-induced increase in its kinase activity. Notably, the Fyn-PKCδ signaling axis further activated the LPS- and TNFα-induced MAP kinase phosphorylation and activation of the NFκB pathway, implying that Fyn is a major upstream regulator of proinflammatory signaling. Functional studies in microglia isolated from wild-type (Fyn+/+) and Fyn knock-out (Fyn−/−) mice revealed that Fyn is required for proinflammatory responses, including cytokine release as well as iNOS activation. Interestingly, a prolonged inflammatory insult induced Fyn transcript and protein expression, indicating that Fyn is upregulated during chronic inflammatory conditions. Importantly, in vivo studies using MPTP, LPS, or 6-OHDA models revealed a greater attenuation of neuroinflammatory responses in Fyn−/− and PKCδ −/− mice compared with wild-type mice. Collectively, our data demonstrate that Fyn is a major upstream signaling mediator of microglial neuroinflammatory processes in PD. SIGNIFICANCE STATEMENT Parkinson's disease (PD) is a complex multifactorial disease characterized by the progressive loss of midbrain dopamine neurons. Sustained microglia-mediated neuroinflammation has

  6. Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6

    PubMed Central

    2014-01-01

    Microglia are the primary immunocompetent cells in brain tissue and microglia-mediated inflammation is associated with the pathogenesis of various neuronal disorders. Recently, many studies have shown that mesenchymal stem cells (MSCs) display a remarkable ability to modulate inflammatory and immune responses through the release of a variety of bioactive molecules, thereby protecting the central nervous system. Previously, we reported that MSCs have the ability to modulate inflammatory responses in a traumatic brain injury model and that the potential mechanisms may be partially attributed to upregulated TNF-α stimulated gene/protein 6 (TSG-6) expression. However, whether TSG-6 exerts an anti-inflammatory effect by affecting microglia is not fully understood. In this study, we investigated the anti-inflammatory effects of MSCs and TSG-6 in an in vitro lipopolysaccharide (LPS)-induced BV2 microglial activation model. We found that MSCs and TSG-6 significantly inhibited the expression of pro-inflammatory mediators in activated microglia. However, MSC effects on microglia were attenuated when TSG-6 expression was silenced. In addition, we found that the activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) pathways in LPS-stimulated BV2 microglial cells was significantly inhibited by TSG-6. Furthermore, we found that the presence of CD44 in BV2 microglial cells was essential for MSC- and TSG-6-mediated inhibition of pro-inflammatory gene expression and of NF-κB and MAPK activation in BV2 microglial cells. The results of this study suggest that MSCs can modulate microglia activation through TSG-6 and that TSG-6 attenuates the inflammatory cascade in activated microglia. Our study indicates that novel mechanisms are responsible for the immunomodulatory effect of MSCs on microglia and that MSCs, as well as TSG-6, might be promising therapeutic agents for the treatment of neurotraumatic injuries or neuroinflammatory diseases associated with

  7. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells.

    PubMed

    Rimmerman, Neta; Juknat, Ana; Kozela, Ewa; Levy, Rivka; Bradshaw, Heather B; Vogel, Zvi

    2011-08-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD's anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed. PMID:21533611

  8. Characterization of putative Japanese encephalitis virus receptor molecules on microglial cells.

    PubMed

    Thongtan, Thananya; Wikan, Nitwara; Wintachai, Phitchayapak; Rattanarungsan, Chutima; Srisomsap, Chantragan; Cheepsunthorn, Poonlarp; Smith, Duncan R

    2012-04-01

    Japanese encephalitis virus (JEV) a mosquito-borne flavivirus is a major cause of viral encephalitis in Asia. While the principle target cells for JEV in the central nervous system are believed to be neurons, microglia are activated in response to JEV and have been proposed to act as a long lasting virus reservoir. Viral attachment to a host cell is the first step of the viral entry process and is a critical mediator of tissue tropism. This study sought to identify molecules associated with JEV entry to microglial cells. Virus overlay protein-binding assay (VOPBA) and liquid chromatography-mass spectrometry (LC/MS/MS) identified the 37/67 kDa high-affinity laminin receptor protein and nucleolin as a potential JEV-binding proteins. These proteins were subsequently investigated for a contribution to JEV entry to mouse microglial BV-2 cells together with other possible candidate receptor molecules including Hsp70, Hsp90, GRP78, CD14, and CD4. In antibody mediated inhibition of infection experiments, both anti-laminin receptor and anti-CD4 antibodies significantly reduced virus entry while anti-Hsp70 and 90 antibodies produced a slight reduction. Significant inhibition of virus entry (up to 80%) was observed in the presence of lipopolysaccharide (LPS) which resulted in a complete down-regulation of CD4 and moderate down-regulation of CD14. These results suggest that multiple receptor proteins may mediate the entry of JEV to microglial cells, with CD4 playing a major role. PMID:22337301

  9. Delayed activation of human microglial cells by high dose ionizing radiation.

    PubMed

    Chen, Hongxin; Chong, Zhao Zhong; De Toledo, Sonia M; Azzam, Edouard I; Elkabes, Stella; Souayah, Nizar

    2016-09-01

    Recent studies have shown that microglia affects the fate of neural stem cells in response to ionizing radiation, which suggests a role for microglia in radiation-induced degenerative outcomes. We therefore investigated the effects of γ-irradiation on cell survival, proliferation, and activation of microglia and explored associated mechanisms. Specifically, we evaluated cellular and molecular changes associated with exposure of human microglial cells (CHME5) to low and high doses of acute cesium-137 γ rays. Twenty-four hours after irradiation, cell cycle analyses revealed dose-dependent decreases in the fraction of cells in S and G2/M phase, which correlated with significant oxidative stress. By one week after irradiation, 20-30% of the cells exposed to high doses of γ rays underwent apoptosis, which correlated with significant concomitant decrease in metabolic activity as assessed by the MTT assay, and microglial activation as judged by both morphological changes and increased expression of Glut-5 and CR43. These changes were associated with increases in the mRNA levels for IL-1α, IL-10 and TNFα. Together, the results show that human CHME5 microglia are relatively resistant to low and moderate doses of γ rays, but are sensitive to acute high doses, and that CHME5 cells are a useful tool for in vitro study of human microglia. PMID:27265419

  10. Effects of aspirin on expression of iron transport and storage proteins in BV-2 microglial cells.

    PubMed

    Xu, Yan Xin; Du, Fang; Jiang, Li Rong; Gong, Jing; Zhou, Yu-Fu; Luo, Qian Qian; Qian, Zhong Ming; Ke, Ya

    2015-12-01

    In the light of recent studies, we hypothesized that aspirin might have the functions to regulate the expression of iron transport proteins and then affect cellular iron levels. To test this hypothesis, we investigated the effects of aspirin on expression of iron uptake protein transferrin receptor 1 (TfR1), iron release protein ferroportin 1 (Fpn1) and iron storage protein ferritin using Western blot analysis and on tumor necrosis factor (TNF)-αlpha, interleukin (IL)-6, interleukin (IL)-10 and hepcidin using quantitative real-time PCR in BV-2 microglial cells treated with lipopolysaccharides (LPS). We found that aspirin significantly down-regulated TfR1, while also up-regulated Fpn1 and ferritin expressions in BV-2 microglial cells in vitro. We also showed that TfR1 and Fpn1 expressions were significantly higher, while ferritin contents, IL-6, TNF-alpha and hepcidin mRNA levels were lower in cells treated with aspirin plus LPS than those in cells treated with LPS only. We concluded that aspirin has a negative effect on cell iron contents under 'normal' conditions and could partly reverse LPS-induced-disruption in cell iron balance under in vitro inflammatory conditions. Our findings also suggested that hepcidin might play a dominant role in the control of TfR1 expression by aspirin in the cells treated with LPS. PMID:26522688

  11. Hippocampal microglial activation and glucocorticoid receptor down-regulation precipitate visceral hypersensitivity induced by colorectal distension in rats.

    PubMed

    Zhang, Gongliang; Zhao, Bing-Xue; Hua, Rong; Kang, Jie; Shao, Bo-Ming; Carbonaro, Theresa M; Zhang, Yong-Mei

    2016-03-01

    Visceral hypersensitivity is a common characteristic in patients suffering from irritable bowel syndrome (IBS) and other disorders with visceral pain. Although the pathogenesis of visceral hypersensitivity remains speculative due to the absence of pathological changes, the long-lasting sensitization in neuronal circuitry induced by early life stress may play a critical role beyond the digestive system even after complete resolution of the initiating event. The hippocampus integrates multiple sources of afferent inputs and sculpts integrated autonomic outputs for pain and analgesia regulation. Here, we examined the hippocampal mechanism in the pathogenesis of visceral hypersensitivity with a rat model induced by neonatal and adult colorectal distensions (CRDs). Neither neonatal nor adult CRD evoked behavioral abnormalities in adulthood; however, adult re-exposure to CRD induced persistent visceral hypersensitivity, depression-like behaviors, and spatial learning impairment in rats that experienced neonatal CRD. Rats that experienced neonatal and adult CRDs presented a decrease in hippocampal glucocorticoid receptor (GR) immunofluorescence staining and protein expression, and increases in hippocampal microglial activation and cytokine (IL-1β and TNF-α) accumulation. The decrease in hippocampal GR expression and increase in hippocampal IL-1β and TNF-α accumulation could be prevented by hippocampal local infusion of minocycline, a microglial inhibitor. These results suggest that neonatal CRD can increase the vulnerability of hippocampal microglia, and adult CRD challenge facilitates the hippocampal cytokine release from the sensitized microglia, which down-regulates hippocampal GR protein expression and, subsequently, precipitates visceral hypersensitivity. PMID:26656865

  12. Ghrelin Inhibits Oligodendrocyte Cell Death by Attenuating Microglial Activation

    PubMed Central

    Lee, Jee Youn

    2014-01-01

    Background Recently, we reported the antiapoptotic effect of ghrelin in spinal cord injury-induced apoptotic cell death of oligodendrocytes. However, how ghrelin inhibits oligodendrocytes apoptosis, is still unknown. Therefore, in the present study, we examined whether ghrelin inhibits microglia activation and thereby inhibits oligodendrocyte apoptosis. Methods Using total cell extracts prepared from BV-2 cells activated by lipopolysaccharide (LPS) with or without ghrelin, the levels of p-p38 phosphor-p38 mitogen-activated protein kinase (p-p38MAPK), phospho-c-Jun N-terminal kinase (pJNK), p-c-Jun, and pro-nerve growth factor (proNGF) were examined by Western blot analysis. Reactive oxygen species (ROS) production was investigated by using dichlorodihydrofluorescein diacetate. To examine the effect of ghrelin on oligodendrocyte cell death, oligodendrocytes were cocultured in transwell chambers of 24-well plates with LPS-stimulated BV-2 cells. After 48 hours incubation, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling staining were assessed. Results Ghrelin treatment significantly decreased levels of p-p38MAPK, p-JNK, p-c-Jun, and proNGF in LPS-stimulated BV-2 cells. ROS production increased in LPS-stimulated BV-2 cells was also significantly inhibited by ghrelin treatment. In addition, ghrelin significantly inhibited oligodendrocyte cell death when cocultured with LPS-stimulated BV-2 cells. Conclusion Ghrelin inhibits oligodendrocyte cell death by decreasing proNGF and ROS production as well as p38MAPK and JNK activation in activated microglia as an anti-inflammatory hormone. PMID:25309797

  13. [The immunomodulatory role of retinal microglial cells in age-related macular degeneration].

    PubMed

    Zhang, P F; Sun, X D

    2016-05-11

    Age-related macular degeneration (AMD) is one of the major causes of visual impairment in the elder population. Recent studies have revealed that retinal microgliacytes may play an important role in the pathogenesis of AMD, and the activation of retinal microglia could regulate the progress of AMD. The immunomodulatory role of retinal microglial cells is reviewed in this article, so as to investigate the mechanism and provide new insight for prevention and treatment of AMD.(Chin J Ophthalmol, 2016, 52: 386-390). PMID:27220713

  14. Effects of chronic low dose rotenone treatment on human microglial cells

    PubMed Central

    2009-01-01

    Background Exposure to toxins/chemicals is considered to be a significant risk factor in the pathogenesis of Parkinson's disease (PD); one putative chemical is the naturally occurring herbicide rotenone that is now used widely in establishing PD models. We, and others, have shown that chronic low dose rotenone treatment induces excessive accumulation of Reactive Oxygen Species (ROS), inclusion body formation and apoptosis in dopaminergic neurons of animal and human origin. Some studies have also suggested that microglia enhance the rotenone induced neurotoxicity. While the effects of rotenone on neurons are well established, there is little or no information available on the effect of rotenone on microglial cells, and especially cells of human origin. The aim of the present study was to investigate the effects of chronic low dose rotenone treatment on human microglial CHME-5 cells. Methods We have shown previously that rotenone induced inclusion body formation in human dopaminergic SH-SY5Y cells and therefore used these cells as a control for inclusion body formation in this study. SH-SY5Y and CHME-5 cells were treated with 5 nM rotenone for four weeks. At the end of week 4, both cell types were analysed for the presence of inclusion bodies, superoxide dismutases and cell activation (only in CHME-5 cells) using Haematoxylin and Eosin staining, immunocytochemical and western blotting methods. Levels of active caspases and ROS (both extra and intra cellular) were measured using biochemical methods. Conclusion The results suggest that chronic low dose rotenone treatment activates human microglia (cell line) in a manner similar to microglia of animal origin as shown by others. However human microglia release excessive amounts of ROS extracellularly, do not show excessive amounts of intracellular ROS and active caspases and most importantly do not show any protein aggregation or inclusion body formation. Human microglia appear to be resistant to rotenone (chronic, low

  15. Prenylated Flavonoids from Cudrania tricuspidata Suppress Lipopolysaccharide-Induced Neuroinflammatory Activities in BV2 Microglial Cells

    PubMed Central

    Kim, Dong-Cheol; Yoon, Chi-Su; Quang, Tran Hong; Ko, Wonmin; Kim, Jong-Su; Oh, Hyuncheol; Kim, Youn-Chul

    2016-01-01

    In Korea and China, Cudrania tricuspidata Bureau (Moraceae) is an important traditional medicinal plant used to treat lumbago, hemoptysis, and contusions. The C. tricuspidata methanol extract suppressed both production of NO and PGE2 in BV2 microglial cells. Cudraflavanone D (1), isolated from this extract, remarkably suppressed the protein expression of inducible NO synthase and cyclooxygenase-2, and decreased the levels of NO and PGE2 in BV2 microglial cells exposed to lipopolysaccharide. Cudraflavanone D (1) also decreased IL-6, TNF-α, IL-12, and IL-1β production, blocked nuclear translocation of NF-κB heterodimers (p50 and p65) by interrupting the degradation and phosphorylation of inhibitor of IκB-α, and inhibited NF-κB binding. In addition, cudraflavanone D (1) suppressed the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK pathways. This study indicated that cudraflavanone D (1) can be a potential drug candidate for the cure of neuroinflammation. PMID:26907256

  16. Prenylated Flavonoids from Cudrania tricuspidata Suppress Lipopolysaccharide-Induced Neuroinflammatory Activities in BV2 Microglial Cells.

    PubMed

    Kim, Dong-Cheol; Yoon, Chi-Su; Quang, Tran Hong; Ko, Wonmin; Kim, Jong-Su; Oh, Hyuncheol; Kim, Youn-Chul

    2016-01-01

    In Korea and China, Cudrania tricuspidata Bureau (Moraceae) is an important traditional medicinal plant used to treat lumbago, hemoptysis, and contusions. The C. tricuspidata methanol extract suppressed both production of NO and PGE₂ in BV2 microglial cells. Cudraflavanone D (1), isolated from this extract, remarkably suppressed the protein expression of inducible NO synthase and cyclooxygenase-2, and decreased the levels of NO and PGE₂ in BV2 microglial cells exposed to lipopolysaccharide. Cudraflavanone D (1) also decreased IL-6, TNF-α, IL-12, and IL-1β production, blocked nuclear translocation of NF-κB heterodimers (p50 and p65) by interrupting the degradation and phosphorylation of inhibitor of IκB-α, and inhibited NF-κB binding. In addition, cudraflavanone D (1) suppressed the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK pathways. This study indicated that cudraflavanone D (1) can be a potential drug candidate for the cure of neuroinflammation. PMID:26907256

  17. Regulation of Macrophage, Dendritic Cell, and Microglial Phenotype and Function by the SOCS Proteins

    PubMed Central

    McCormick, Sarah M.; Heller, Nicola M.

    2015-01-01

    Macrophages are innate immune cells of dynamic phenotype that rapidly respond to external stimuli in the microenvironment by altering their phenotype to respond to and to direct the immune response. The ability to dynamically change phenotype must be carefully regulated to prevent uncontrolled inflammatory responses and subsequently to promote resolution of inflammation. The suppressor of cytokine signaling (SOCS) proteins play a key role in regulating macrophage phenotype. In this review, we summarize research to date from mouse and human studies on the role of the SOCS proteins in determining the phenotype and function of macrophages. We will also touch on the influence of the SOCS on dendritic cell (DC) and microglial phenotype and function. The molecular mechanisms of SOCS function in macrophages and DCs are discussed, along with how dysregulation of SOCS expression or function can lead to alterations in macrophage/DC/microglial phenotype and function and to disease. Regulation of SOCS expression by microRNA is discussed. Novel therapies and unanswered questions with regard to SOCS regulation of monocyte–macrophage phenotype and function are highlighted. PMID:26579124

  18. Microglial cells (BV-2) internalize titanium dioxide (TiO2) nanoparticles: toxicity and cellular responses.

    PubMed

    Rihane, Naima; Nury, Thomas; M'rad, Imen; El Mir, Lassaad; Sakly, Mohsen; Amara, Salem; Lizard, Gérard

    2016-05-01

    Because of their whitening and photocatalytic effects, titanium dioxide nanoparticles (TiO2-NPs) are widely used in daily life. These NPs can be found in paints, plastics, papers, sunscreens, foods, medicines (pills), toothpastes, and cosmetics. However, the biological effect of TiO2-NPs on the human body, especially on the central nervous system, is still unclear. Many studies have demonstrated that the brain is one of the target organs in acute or chronic TiO2-NPs toxicity. The present study aimed to investigate the effect of TiO2-NPs at different concentrations (0.1 to 200 μg/mL) on murine microglial cells (BV-2) to assess their activity on cell growth and viability, as well as their neurotoxicity. Different parameters were measured: cell viability, cell proliferation and DNA content (SubG1 peak), mitochondrial depolarization, overproduction of reactive oxygen species (especially superoxide anions), and ultrastructural changes. Results showed that TiO2-NPs induced some cytotoxic effects with a slight inhibition of cell growth. Thus, at high concentrations, TiO2-NPs were not only able to inhibit cell adhesion but also enhanced cytoplasmic membrane permeability to propidium iodide associated with a loss of mitochondrial transmembrane potential and an overproduction of superoxide anions. No induction of apoptosis based on the presence of a SubG1 peak was detected. The microscopic observations also indicated that small groups of nanosized particles and micron-sized aggregates were engulfed by the BV-2 cells and sequestered as intracytoplasmic aggregates after 24-h exposure to TiO2-NPs. Altogether, our data show that the accumulation TiO2-NPs in microglial BV-2 cells favors mitochondrial dysfunctions and oxidative stress. PMID:26846246

  19. In vivo dynamics of retinal microglial activation during neurodegeneration: confocal ophthalmoscopic imaging and cell morphometry in mouse glaucoma

    PubMed Central

    Bosco, Alejandra; Romero, Cesar R; Ambati, Balamurali K; Vetter, Monica L

    2015-01-01

    SHORT ABSTRACT Microglia activation and microgliosis are key responses to chronic neurodegeneration. Here, we present methods for in vivo, long-term visualization of retinal CX3CR1-GFP+ microglial cells by confocal ophthalmoscopy, and for threshold and morphometric analyses to identify and quantify their activation. We monitor microglial changes during early stages of age-related glaucoma. LONG ABSTRACT Microglia, which are CNS-resident neuroimmune cells, transform their morphology and size in response to CNS damage, switching to an activated state with distinct functions and gene expression profiles. The roles of microglial activation in health, injury and disease remain incompletely understood due to their dynamic and complex regulation in response to changes in their microenvironment. Thus, it is critical to non-invasively monitor and analyze changes in microglial activation over time in the intact organism. In vivo studies of microglial activation have been delayed by technical limitations to tracking microglial behavior without altering the CNS environment. This has been particularly challenging during chronic neurodegeneration, where long-term changes must be tracked. The retina, a CNS organ amenable to non-invasive live imaging, offers a powerful system to visualize and characterize the dynamics of microglia activation during chronic disorders. This protocol outlines methods for long-term, in vivo imaging of retinal microglia, using confocal ophthalmoscopy (cSLO) and CX3CR1-GFPGFP/+ reporter mice, to visualize microglia with cellular resolution. Also, we describe methods to quantify monthly changes in cell activation and density in large cell subsets (200–300 cells per retina). We confirm the use of somal area as a useful metric for live tracking of microglial activation in the retina by applying automated threshold-based morphometric analysis of in vivo images. We use these live image acquisition and analyses strategies to monitor the dynamic changes in

  20. Anti-neuro-inflammatory effects of Nardostachys chinensis in lipopolysaccharide-and lipoteichoic acid-stimulated microglial cells.

    PubMed

    Park, Sun Young; Kim, Young Hun; Park, Geuntae

    2016-05-01

    Excessive microglial cell activation is related to the progression of chronic neuro-inflammatory disorders. Heme oxygenase-1 (HO-1) expression mediated by the NFE2-related factor (Nrf-2) pathway is a key regulator of neuro-inflammation. Nardostachys chinensis is used as an anti-malarial, anti-nociceptive, and neurotrophic treatment in traditional Asian medicines. In the present study, we examined the effects of an ethyl acetate extract of N. chinensis (EN) on the anti-neuro-inflammatory effects mediated by HO-1 up-regulation in Salmonella lipopolysaccharide (LPS)- or Staphylococcus aureus lipoteichoic acid (LTA)-stimulated BV2 microglial cells. Our results indicated that EN suppressed pro-inflammatory cytokine production and induced HO-1 transcription and translation through Nrf-2/antioxidant response element (ARE) signaling. EN markedly inhibited LPS- and LTA-induced activation of nuclear factor-kappa B (NF-κB) as well as phosphorylation of mitogen-activated protein kinases (MAPKs) and signal transducer and activator of transcription (STAT). Furthermore, EN protected hippocampal HT22 cells from indirect neuronal toxicity mediated by LPS- and LTA-treated microglial cells. These results suggested that EN impairs LPS- and LTA-induced neuro-inflammatory responses in microglial cells and confers protection against indirect neuronal damage to HT22 cells. In conclusion, our findings indicate that EN could be used as a natural anti-neuro-inflammatory and neuroprotective agent. PMID:27478097

  1. Diversity and plasticity of microglial cells in psychiatric and neurological disorders.

    PubMed

    Nakagawa, Yutaka; Chiba, Kenji

    2015-10-01

    Recent advanced immunological analyses have revealed that the diversity and plasticity of macrophages lead to the identification of functional polarization states (classically activated M1 type and alternatively activated M2 type) which are dependent on the extracellular environment. M1 and M2 polarization states of macrophages play an important role in controlling the balance between pro-inflammatory and anti-inflammatory conditions. Microglial cells are resident mononuclear phagocytes in the central nervous system (CNS), express several macrophage-associated markers, and appear to display functional polarization states similar to macrophages. Like M1 macrophages, M1 polarized microglia can produce pro-inflammatory cytokines and mediators such as interleukin (IL) 1β, IL-6, tumor necrosis factor-α, CC-chemokine ligand 2, nitric oxide, and reactive oxygen species, suggesting that these molecules contribute to dysfunction of neural network in the CNS. On the other hand, M2 polarized microglia can produce anti-inflammatory cytokine, IL-10 and express several receptors that are implicated in inhibiting inflammation and restoring homeostasis. In this review, we summarize the diversity, plasticity, and immunoregulatory functions of M1 and M2 microglia in psychiatric and neurological disorders. Based on these aspects, we propose a contribution of imbalance between M1 and M2 polarization of microglia in bipolar disorder, obesity, amyotrophic lateral sclerosis, and Rett syndrome. Consequently, molecules that normalize the imbalance between M1 and M2 microglial polarization states may provide a beneficial therapeutic target for the treatment of these disorders. PMID:26129625

  2. Regulatory Effects of Caffeic Acid Phenethyl Ester on Neuroinflammation in Microglial Cells

    PubMed Central

    Tsai, Cheng-Fang; Kuo, Yueh-Hsiung; Yeh, Wei-Lan; Wu, Caren Yu-Ju; Lin, Hsiao-Yun; Lai, Sheng-Wei; Liu, Yu-Shu; Wu, Ling-Hsuan; Lu, Jheng-Kun; Lu, Dah-Yuu

    2015-01-01

    Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE), a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current study intended to probe the effects of CAPE on microglia activation by using in vitro and in vivo models. Western blot and Griess reaction assay revealed CAPE significantly inhibited the expressions of inducible nitric oxide synthase (NOS), cyclooxygenase (COX)-2 and the production of nitric oxide (NO). Administration of CAPE resulted in increased expressions of hemeoxygenase (HO)-1and erythropoietin (EPO) in microglia. The phosphorylated adenosine monophosphate-activated protein kinase (AMPK)-α was further found to regulate the anti-inflammatory effects of caffeic acid. In vivo results from immunohistochemistry along with rotarod test also revealed the anti-neuroinflammatory effects of CAPE in microglia activation. The current study has evidenced several possible molecular determinants, AMPKα, EPO, and HO-1, in mediating anti-neuroinflammatory responses in microglial cells. PMID:25768341

  3. Regulatory effects of caffeic acid phenethyl ester on neuroinflammation in microglial cells.

    PubMed

    Tsai, Cheng-Fang; Kuo, Yueh-Hsiung; Yeh, Wei-Lan; Wu, Caren Yu-Ju; Lin, Hsiao-Yun; Lai, Sheng-Wei; Liu, Yu-Shu; Wu, Ling-Hsuan; Lu, Jheng-Kun; Lu, Dah-Yuu

    2015-01-01

    Microglial activation has been widely demonstrated to mediate inflammatory processes that are crucial in several neurodegenerative disorders. Pharmaceuticals that can deliver direct inhibitory effects on microglia are therefore considered as a potential strategy to counter balance neurodegenerative progression. Caffeic acid phenethyl ester (CAPE), a natural phenol in honeybee propolis, is known to possess antioxidant, anti-inflammatory and anti-microbial properties. Accordingly, the current study intended to probe the effects of CAPE on microglia activation by using in vitro and in vivo models. Western blot and Griess reaction assay revealed CAPE significantly inhibited the expressions of inducible nitric oxide synthase (NOS), cyclooxygenase (COX)-2 and the production of nitric oxide (NO). Administration of CAPE resulted in increased expressions of hemeoxygenase (HO)-1and erythropoietin (EPO) in microglia. The phosphorylated adenosine monophosphate-activated protein kinase (AMPK)-α was further found to regulate the anti-inflammatory effects of caffeic acid. In vivo results from immunohistochemistry along with rotarod test also revealed the anti-neuroinflammatory effects of CAPE in microglia activation. The current study has evidenced several possible molecular determinants, AMPKα, EPO, and HO-1, in mediating anti-neuroinflammatory responses in microglial cells. PMID:25768341

  4. Ibudilast, a Pharmacologic Phosphodiesterase Inhibitor, Prevents Human Immunodeficiency Virus-1 Tat-Mediated Activation of Microglial Cells

    PubMed Central

    Kiebala, Michelle; Maggirwar, Sanjay B.

    2011-01-01

    Human Immunodeficiency Virus-1 (HIV-1)-associated neurocognitive disorders (HAND) occur, in part, due to the inflammatory response to viral proteins, such as the HIV-1 transactivator of transcription (Tat), in the central nervous system (CNS). Given the need for novel adjunctive therapies for HAND, we hypothesized that ibudilast would inhibit Tat-induced excess production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNFα) in microglial cells. Ibudilast is a non-selective cyclic AMP phosphodiesterase inhibitor that has recently shown promise as a treatment for neuropathic pain via its ability to attenuate glial cell activation. Accordingly, here we demonstrate that pre-treatment of both human and mouse microglial cells with increasing doses of ibudilast inhibited Tat-induced synthesis of TNFα by microglial cells in a manner dependent on serine/threonine protein phosphatase activity. Ibudilast had no effect on Tat-induced p38 MAP kinase activation, and blockade of adenosine A2A receptor activation did not reverse ibudilast's inhibition of Tat-induced TNFα production. Interestingly, ibudilast reduced Tat-mediated transcription of TNFα, via modulation of nuclear factor-kappa B (NF-κB) signaling, as shown by transcriptional activity of NF-κB and analysis of inhibitor of kappa B alpha (IκBα) stability. Together, our findings shed light on the mechanism of ibudilast's inhibition of Tat-induced TNFα production in microglial cells and may implicate ibudilast as a potential novel adjunctive therapy for the management of HAND. PMID:21494611

  5. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries.

    PubMed

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong

    2015-01-01

    Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions. PMID:25859655

  6. Inhibition of mammalian target of rapamycin attenuates early brain injury through modulating microglial polarization after experimental subarachnoid hemorrhage in rats.

    PubMed

    You, Wanchun; Wang, Zhong; Li, Haiying; Shen, Haitao; Xu, Xiang; Jia, Genlai; Chen, Gang

    2016-08-15

    Here, we aimed to study the role and underlying mechanism of mTOR in early brain injury (EBI) after subarachnoid hemorrhage (SAH). Experiment 1, the time course of mTOR activation in the cortex following SAH. Experiment 2, the role of mTOR in SAH-induced EBI. Adult SD rats were divided into four groups: sham group (n=18), SAH+vehicle group (n=18), SAH+rapamycin group (n=18), SAH+AZD8055 group (n=18). Experiment 3, we incubated enriched microglia with OxyHb. Rapamycin and AZD8055 were also used to demonstrate the mTOR's role on microglial polarization in vitro. The phosphorylation levels of mTOR and its substrates were significantly increased and peaked at 24h after SAH. Rapamycin or AZD8055 markedly decreased the phosphorylation levels of mTOR and its substrates and the activation of microglia in vivo, and promoted the microglial polarization from M1 phenotype to M2 phenotype. In addition, administration of rapamycin and AZD8055 following SAH significantly ameliorated EBI, including neuronal apoptosis, neuronal necrosis, brain edema and blood-brain barrier permeability. Our findings suggested that the rapamycin and AZD8055 could attenuate the development of EBI in this SAH model, possibly through inhibiting the activation of microglia by mTOR pathway. PMID:27423593

  7. Autologous bone marrow mononuclear cells therapy attenuates activated microglial/macrophage response and improves spatial learning after traumatic brain injury

    PubMed Central

    Bedi, Supinder S.; Walker, Peter A.; Shah, Shinil K.; Jimenez, Fernando; Thomas, Chelsea P.; Smith, Philippa; Hetz, Robert A.; Xue, Hasen; Pati, Shibani; Dash, Pramod K.; Cox, Charles S.

    2014-01-01

    Background Autologous bone marrow-derived mononuclear cells (AMNC) have shown therapeutic promise for central nervous system insults such as stroke and traumatic brain injury (TBI). We hypothesized that intravenous injection of AMNC provides neuroprotection which leads to cognitive improvement after TBI. Methods A controlled cortical impact (CCI) rodent traumatic brain injury (TBI) model was used to examine blood-brain barrier permeability (BBB), neuronal and glial apoptosis and cognitive behavior. Two groups of rats underwent CCI with (CCI-Autologous) or without AMNC treatment (CCI-Alone), consisting of 2 million AMNC/kilogram body weight harvested from the tibia and intravenously injected 72 hr after injury. CCI-Alone animals underwent sham harvests and received vehicle injections. Results 96 hr after injury, AMNC significantly reduced the BBB permeability in injured animals, and there was an increase in apoptosis of pro-inflammatory activated microglia in the ipsilateral hippocampus. At 4 weeks after injury, we examined changes in spatial memory after TBI due to AMNC treatment. There was a significant improvement in probe testing of CCI-Autologous group in comparison to CCI-Alone in the Morris Water Maze paradigm. Conclusions Our data demonstrate that the intravenous injection of AMNC after TBI leads to neuroprotection by preserving early BBB integrity and increasing activated microglial apoptosis. In addition, AMNC also improves cognitive function. PMID:23928737

  8. Remote Astrocytic and Microglial Activation Modulate Neuronal Hyperexcitability and Below-Level Neuropathic Pain after Spinal Injury in Rat

    PubMed Central

    Gwak, Young Seob; Hulsebosch, Claire E.

    2010-01-01

    In this study, we evaluated whether astrocytic and microglial activation mediates below-level neuropathic pain following spinal cord injury. Male Sprague-Dawley (225–250 g) rats were given low thoracic (T13) spinal transverse hemisection and behavioral, electrophysiological and immunohistochemical methods were used to examine the development and maintenance of below-level neuropathic pain. On post operation day 28, both hindlimbs showed significantly decreased paw withdrawal thresholds and thermal latencies as well as hyperexcitability of lumbar (L4-5) spinal wide dynamic range (WDR) neurons on both sides of spinal dorsal horn compared to sham controls (*p<0.05). Intrathecal treatment with propentofylline (PPF, 10 mM) for 7 consecutive days immediately after spinal injury attenuated the development of mechanical allodynia and thermal hyperalgesia in both hindlimbs in a dose related reduction compared to vehicle treatments (*p<0.05). Intrathecal treatment with single injections of PPF at 28 days after spinal injury, attenuated the existing mechanical allodynia and thermal hyperalgesia in both hindlimbs in a dose related reduction (*p<0.05). In electrophysiological studies, topical treatment of 10 mM PPF onto the spinal surface attenuated the neuronal hyperexcitability in response to mechanical stimuli. In immunohistochemical studies, astrocytes and microglia in rats with spinal hemisection showed significantly increased GFAP and OX-42 expression in both superficial and deep dorsal horns in the lumbar spinal dorsal horn compared to sham controls (*p<0.05) that was prevented in a dose related manner by PPF. In conclusion, our present data support astrocytic and microglial activation that contributes to below-level central neuropathic pain following spinal cord injury. PMID:19332108

  9. Myeloid/Microglial Driven Autologous Hematopoietic Stem Cell Gene Therapy Corrects a Neuronopathic Lysosomal Disease

    PubMed Central

    Sergijenko, Ana; Langford-Smith, Alexander; Liao, Ai Y; Pickford, Claire E; McDermott, John; Nowinski, Gabriel; Langford-Smith, Kia J; Merry, Catherine LR; Jones, Simon A; Wraith, J Edmond; Wynn, Robert F; Wilkinson, Fiona L; Bigger, Brian W

    2013-01-01

    Mucopolysaccharidosis type IIIA (MPSIIIA) is a lysosomal storage disorder caused by mutations in N-sulfoglucosamine sulfohydrolase (SGSH), resulting in heparan sulfate (HS) accumulation and progressive neurodegeneration. There are no treatments. We previously demonstrated improved neuropathology in MPSIIIA mice using lentiviral vectors (LVs) overexpressing SGSH in wild-type (WT) hematopoietic stem cell (HSC) transplants (HSCTs), achieved via donor monocyte/microglial engraftment in the brain. However, neurological disease was not corrected using LVs in autologous MPSIIIA HSCTs. To improve brain expression via monocyte/microglial specificity, LVs expressing enhanced green fluorescent protein (eGFP) under ubiquitous phosphoglycerate kinase (PGK) or myeloid-specific promoters were compared in transplanted HSCs. LV-CD11b-GFP gave significantly higher monocyte/B-cell eGFP expression than LV-PGK-GFP or LV-CD18-GFP after 6 months. Subsequently, autologous MPSIIIA HSCs were transduced with either LV-PGK-coSGSH or LV-CD11b-coSGSH vectors expressing codon-optimized SGSH and transplanted into MPSIIIA mice. Eight months after HSCT, LV-PGK-coSGSH vectors produced bone marrow SGSH (576% normal activity) similar to LV-CD11b-coSGSH (473%), but LV-CD11b-coSGSH had significantly higher brain expression (11 versus 7%), demonstrating improved brain specificity. LV-CD11b-coSGSH normalized MPSIIIA behavior, brain HS, GM2 ganglioside, and neuroinflammation to WT levels, whereas LV-PGK-coSGSH partly corrected neuropathology but not behavior. We demonstrate compelling evidence of neurological disease correction using autologous myeloid driven lentiviral-HSC gene therapy in MPSIIIA mice. PMID:23748415

  10. Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice.

    PubMed

    Ricard, Clément; Tchoghandjian, Aurélie; Luche, Hervé; Grenot, Pierre; Figarella-Branger, Dominique; Rougon, Geneviève; Malissen, Marie; Debarbieux, Franck

    2016-01-01

    Inflammatory cells, an integral component of tumor evolution, are present in Glioblastomas multiforme (GBM). To address the cellular basis and dynamics of the inflammatory microenvironment in GBM, we established an orthotopic syngenic model by grafting GL261-DsRed cells in immunocompetent transgenic LysM-EGFP//CD11c-EYFP reporter mice. We combined dynamic spectral two-photon imaging with multiparametric cytometry and multicolor immunostaining to characterize spatio-temporal distribution, morphology and activity of microglia and blood-derived infiltrating myeloid cells in live mice. Early stages of tumor development were dominated by microglial EYFP(+) cells invading the tumor, followed by massive recruitment of circulating LysM-EGFP(+) cells. Fluorescent invading cells were conventional XCR1(+) and monocyte-derived dendritic cells distributed in subpopulations of different maturation stages, located in different areas relative to the tumor core. The lethal stage of the disease was characterized by the progressive accumulation of EGFP(+)/EYFP(+) monocyte-derived dendritic cells. This local phenotypic regulation of monocyte subtypes marked a transition in the immune response. PMID:27193333

  11. Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice

    PubMed Central

    Ricard, Clément; Tchoghandjian, Aurélie; Luche, Hervé; Grenot, Pierre; Figarella-Branger, Dominique; Rougon, Geneviève; Malissen, Marie; Debarbieux, Franck

    2016-01-01

    Inflammatory cells, an integral component of tumor evolution, are present in Glioblastomas multiforme (GBM). To address the cellular basis and dynamics of the inflammatory microenvironment in GBM, we established an orthotopic syngenic model by grafting GL261-DsRed cells in immunocompetent transgenic LysM-EGFP//CD11c-EYFP reporter mice. We combined dynamic spectral two-photon imaging with multiparametric cytometry and multicolor immunostaining to characterize spatio-temporal distribution, morphology and activity of microglia and blood-derived infiltrating myeloid cells in live mice. Early stages of tumor development were dominated by microglial EYFP+ cells invading the tumor, followed by massive recruitment of circulating LysM-EGFP+ cells. Fluorescent invading cells were conventional XCR1+ and monocyte-derived dendritic cells distributed in subpopulations of different maturation stages, located in different areas relative to the tumor core. The lethal stage of the disease was characterized by the progressive accumulation of EGFP+/EYFP+ monocyte-derived dendritic cells. This local phenotypic regulation of monocyte subtypes marked a transition in the immune response. PMID:27193333

  12. Molecular mechanisms of microglial activation.

    PubMed

    Zielasek, J; Hartung, H P

    1996-01-01

    Microglial cells are brain macrophages which serve specific functions in the defense of the central nervous system (CNS) against microorganisms, the removal of tissue debris in neurodegenerative diseases or during normal development, and in autoimmune inflammatory disorders of the brain. In cultured microglial cells, several soluble inflammatory mediators such as cytokines and bacterial products like lipopolysaccharide (LPS) were demonstrated to induce a wide range of microglial activities, e.g. increased phagocytosis, chemotaxis, secretion of cytokines, activation of the respiratory burst and induction of nitric oxide synthase. Since heightened microglial activation was shown to play a role in the pathogenesis of experimental inflammatory CNS disorders, understanding the molecular mechanisms of microglial activation may lead to new treatment strategies for neurodegenerative disorders, multiple sclerosis and bacterial or viral infections of the nervous system. PMID:8876774

  13. Intravenous Multipotent Adult Progenitor Cell Therapy Attenuates Activated Microglial/Macrophage Response and Improves Spatial Learning After Traumatic Brain Injury

    PubMed Central

    Bedi, Supinder S.; Hetz, Robert; Thomas, Chelsea; Smith, Philippa; Olsen, Alex B.; Williams, Stephen; Xue, Hasen; Aroom, Kevin; Uray, Karen; Hamilton, Jason; Mays, Robert W.

    2013-01-01

    We previously demonstrated that the intravenous delivery of multipotent adult progenitor cells (MAPCs) after traumatic brain injury (TBI) in rodents provides neuroprotection by preserving the blood-brain barrier and systemically attenuating inflammation in the acute time frame following cell treatment; however, the long-term behavioral and anti-inflammatory effects of MAPC administration after TBI have yet to be explored. We hypothesized that the intravenous injection of MAPCs after TBI attenuates the inflammatory response (as measured by microglial morphology) and improves performance at motor tasks and spatial learning (Morris water maze [MWM]). MAPCs were administered intravenously 2 and 24 hours after a cortical contusion injury (CCI). We tested four groups at 120 days after TBI: sham (uninjured), injured but not treated (CCI), and injured and treated with one of two concentrations of MAPCs, either 2 million cells per kilogram (CCI-2) or 10 million cells per kilogram (CCI-10). CCI-10 rats showed significant improvement in left hind limb deficit on the balance beam. On the fifth day of MWM trials, CCI-10 animals showed a significant decrease in both latency to platform and distance traveled compared with CCI. Probe trials revealed a significant decrease in proximity measure in CCI-10 compared with CCI, suggesting improved memory retrieval. Neuroinflammation was quantified by enumerating activated microglia in the ipsilateral hippocampus. We observed a significant decrease in the number of activated microglia in the dentate gyrus in CCI-10 compared with CCI. Our results demonstrate that intravenous MAPC treatment after TBI in a rodent model offers long-term improvements in spatial learning as well as attenuation of neuroinflammation. PMID:24191266

  14. Time course study of microglial and behavioral alterations induced by 6-hydroxydopamine in rats.

    PubMed

    Silva, Thiago Pereira da; Poli, Anicleto; Hara, Daniela Balz; Takahashi, Reinaldo Naoto

    2016-05-27

    Understanding the mechanisms responsible for nonmotor manifestations of Parkinson's disease (PD) is crucial in the search for new therapeutic approaches. The aim of the present study was to evaluate the time course of behavioral, neurochemical, and microglial responses after a retrograde partial lesion of the nigrostriatal pathway induced by bilateral injection of 6-hydroxydopamine (6-OHDA). The results showed that 6-OHDA was able to produce both anhedonic and anxiety behaviors; however, an increase of microglial density in some brain areas (substantia nigra, hippocampus and striatum) and deficits in locomotor activity was observed only one week after the lesion. Striatal levels of dopamine (DA) and dihydroxyphenylacetic acid (DOPAC) were reduced by approximately 60% at all times tested. Conversely, increased levels of serotonin (5-HT) and its metabolite were also noted in the striatum only at the first week. These data extend our previous findings and suggest that the retrograde and partial damage of dopaminergic neurons in the substantia nigra can induce effects resembling premotor symptoms of PD, two and three weeks after injury. PMID:27113204

  15. Dual RNA Sequencing Reveals the Expression of Unique Transcriptomic Signatures in Lipopolysaccharide-Induced BV-2 Microglial Cells

    PubMed Central

    Kim, Sun Hwa; Park, Kyoung Sun; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2015-01-01

    Microglial cells become rapidly activated through interactions with pathogens, and the persistent activation of these cells is associated with various neurodegenerative diseases. Previous studies have investigated the transcriptomic signatures in microglia or macrophages using microarray technologies. However, this method has numerous restrictions, such as spatial biases, uneven probe properties, low sensitivity, and dependency on the probes spotted. To overcome this limitation and identify novel transcribed genes in response to LPS, we used RNA Sequencing (RNA-Seq) to determine the novel transcriptomic signatures in BV-2 microglial cells. Sequencing assessment and quality evaluation showed that approximately 263 and 319 genes (≥ 1.5 log2-fold), such as cytokines and chemokines, were strongly induced after 2 and 4 h, respectively, and the induction of several genes with unknown immunological functions was also observed. Importantly, we observed that previously unidentified transcription factors (TFs) (irf1, irf7, and irf9), histone demethylases (kdm4a) and DNA methyltransferases (dnmt3l) were significantly and selectively expressed in BV-2 microglial cells. The gene expression levels, transcription start sites (TSS), isoforms, and differential promoter usage revealed a complex pattern of transcriptional and post-transcriptional gene regulation upon infection with LPS. In addition, gene ontology, molecular networks and pathway analyses identified the top significantly regulated functional classification, canonical pathways and network functions at each activation status. Moreover, we further analyzed differentially expressed genes to identify transcription factor (TF) motifs (−950 to +50 bp of the 5’ upstream promoters) and epigenetic mechanisms. Furthermore, we confirmed that the expressions of key inflammatory genes as well as pro-inflammatory mediators in the supernatants were significantly induced in LPS treated primary microglial cells. This

  16. Estradiol attenuates spinal cord injury-induced pain by suppressing microglial activation in thalamic VPL nuclei of rats.

    PubMed

    Saghaei, Elham; Abbaszadeh, Fatemeh; Naseri, Kobra; Ghorbanpoor, Samar; Afhami, Mina; Haeri, Ali; Rahimi, Farzaneh; Jorjani, Masoumeh

    2013-04-01

    In our previous study we showed that central pain syndrome (CPS) induced by electrolytic injury caused in the unilateral spinothalamic tract (STT) is a concomitant of glial alteration at the site of injury. Here, we investigated the activity of glial cells in thalamic ventral posterolateral nuclei (VPL) and their contribution to CPS. We also examined whether post-injury administration of a pharmacological dose of estradiol can attenuate CPS and associated molecular changes. Based on the results,in the ipsilateral VPL the microglial phenotype switched o hyperactive mode and Iba1 expression was increased significantly on days 21 and 28 post-injury. The same feature was observed in contralateral VPL on day 28 (P<.05). These changes were strongly correlated with the onset of CPS (r(2)=0.670). STT injury did not induce significant astroglial response in both ipsilateral and contralateral VPL. Estradiol attenuated bilateral mechanical hypersensitivity 14 days after STT lesion (P<.05). Estradiol also suppressed microglial activation in the VPL. Taken together, these findings indicate that selective STT lesion induces bilateral microglia activation in VPL which might contribute to mechanical hypersensitivity. Furthermore, a pharmacological dose of estradiol reduces central pain possibly via suppression of glial activity in VPL region. PMID:23419864

  17. Brucella outer membrane protein Omp25 induces microglial cells in vitro to secrete inflammatory cytokines and inhibit apoptosis

    PubMed Central

    Ma, Qiao-Li; Liu, Ai-Cui; Ma, Xiao-Juan; Wang, Yan-Bai; Hou, Yu-Ting; Wang, Zhen-Hai

    2015-01-01

    Omp25 protein, an outer membrane protein of Brucella, can cause damage to the central nervous system. As one type of macrophage, microglial cells play a role in immune surveillance and immune protection in the central nervous system; therefore, they are major targets of bacterial attack. The present study examined BV2 mouse microglial cells that were stimulated with different concentrations of Omp25 recombinant protein, and the secretion of inflammatory cytokines by the BV2 cells as well as their level of apoptosis were observed. The objective of the study was to preliminarily illustrate the possible mechanism that Omp25 uses to damage the central nervous system. Mouse BV2 microglial cells were incubated with different concentrations of Omp25 for 24 h, and an enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion of the inflammatory cytokines interleukin (IL)-6, tumour necrosis factor (TNF)-α and HMGB1 (high mobility group box-1 protein); reverse transcription polymerase chain reaction (RT-PCR) was used to detect the expression of TLR4 (Toll-like receptor 4) mRNA; Annexin V-fluorescein isothiocyanate (FITC) double staining was used to detect apoptosis in the BV2 cells. After the BV2 cells were stimulated with different concentrations of Omp25, the levels of IL-6, TNF-α and HMGB1 was increased, and the difference was statistically significant compared with the control group (P<0.05). The secretion of TNF-α and HMGB1 showed a trend toward an initial increase followed by a decrease. The expression level of TLR4 mRNA was increased. Omp25 protein can inhibit apoptosis in BV2 cells. The outer membrane protein Omp25 of Brucella promotes microglial cells to secrete inflammatory cytokines and inhibit apoptosis. TLR4 may be involved in the immune response of the central nervous system to Brucella infection. PMID:26770344

  18. Brucella outer membrane protein Omp25 induces microglial cells in vitro to secrete inflammatory cytokines and inhibit apoptosis.

    PubMed

    Ma, Qiao-Li; Liu, Ai-Cui; Ma, Xiao-Juan; Wang, Yan-Bai; Hou, Yu-Ting; Wang, Zhen-Hai

    2015-01-01

    Omp25 protein, an outer membrane protein of Brucella, can cause damage to the central nervous system. As one type of macrophage, microglial cells play a role in immune surveillance and immune protection in the central nervous system; therefore, they are major targets of bacterial attack. The present study examined BV2 mouse microglial cells that were stimulated with different concentrations of Omp25 recombinant protein, and the secretion of inflammatory cytokines by the BV2 cells as well as their level of apoptosis were observed. The objective of the study was to preliminarily illustrate the possible mechanism that Omp25 uses to damage the central nervous system. Mouse BV2 microglial cells were incubated with different concentrations of Omp25 for 24 h, and an enzyme-linked immunosorbent assay (ELISA) was used to detect the secretion of the inflammatory cytokines interleukin (IL)-6, tumour necrosis factor (TNF)-α and HMGB1 (high mobility group box-1 protein); reverse transcription polymerase chain reaction (RT-PCR) was used to detect the expression of TLR4 (Toll-like receptor 4) mRNA; Annexin V-fluorescein isothiocyanate (FITC) double staining was used to detect apoptosis in the BV2 cells. After the BV2 cells were stimulated with different concentrations of Omp25, the levels of IL-6, TNF-α and HMGB1 was increased, and the difference was statistically significant compared with the control group (P<0.05). The secretion of TNF-α and HMGB1 showed a trend toward an initial increase followed by a decrease. The expression level of TLR4 mRNA was increased. Omp25 protein can inhibit apoptosis in BV2 cells. The outer membrane protein Omp25 of Brucella promotes microglial cells to secrete inflammatory cytokines and inhibit apoptosis. TLR4 may be involved in the immune response of the central nervous system to Brucella infection. PMID:26770344

  19. In situ Synthesis of Fluorescent Gold Nanoclusters by Nontumorigenic Microglial Cells.

    PubMed

    West, Abby L; Schaeublin, Nicole M; Griep, Mark H; Maurer-Gardner, Elizabeth I; Cole, Daniel P; Fakner, Alexis M; Hussain, Saber M; Karna, Shashi P

    2016-08-24

    To date, the directed in situ synthesis of fluorescent gold nanoclusters (AuNCs) has only been demonstrated in cancerous cells, with the theorized synthesis mechanism prohibiting AuNC formation in nontumorigenic cell lines. This limitation hinders potential biostabilized AuNC-based technology in healthy cells involving both chemical and mechanical analysis, such as the direct sensing of protein function and the elucidation of local mechanical environments. Thus, new synthesis strategies are required to expand the application space of AuNCs beyond cancer-focused cellular studies. In this contribution, we have developed the methodology and demonstrated the direct in situ synthesis of AuNCs in the nontumorigenic neuronal microglial line, C8B4. The as-synthesized AuNCs form in situ and are stabilized by cellular proteins. The clusters exhibit bright green fluorescence and demonstrate low (<10%) toxicity. Interestingly, elevated ROS levels were not required for the in situ formation of AuNCs, although intracellular reductants such as glutamate were required for the synthesis of AuNCs in C8B4 cells. To our knowledge, this is the first-ever demonstration of AuNC synthesis in nontumorigenic cells and, as such, it considerably expands the application space of biostabilized fluorescent AuNCs. PMID:27328035

  20. C1q, the recognition subcomponent of the classical pathway of complement, drives microglial activation.

    PubMed

    Färber, Katrin; Cheung, Giselle; Mitchell, Daniel; Wallis, Russell; Weihe, Eberhard; Schwaeble, Wilhelm; Kettenmann, Helmut

    2009-02-15

    Microglia, central nervous system (CNS) resident phagocytic cells, persistently police the integrity of CNS tissue and respond to any kind of damage or pathophysiological changes. These cells sense and rapidly respond to danger and inflammatory signals by changing their cell morphology; by release of cytokines, chemokines, or nitric oxide; and by changing their MHC expression profile. We have shown previously that microglial biosynthesis of the complement subcomponent C1q may serve as a reliable marker of microglial activation ranging from undetectable levels of C1q biosynthesis in resting microglia to abundant C1q expression in activated, nonramified microglia. In this study, we demonstrate that cultured microglial cells respond to extrinsic C1q with a marked intracellular Ca(2+) increase. A shift toward proinflammatory microglial activation is indicated by the release of interleukin-6, tumor necrosis factor-alpha, and nitric oxide and the oxidative burst in rat primary microglial cells, an activation and differentiation process similar to the proinflammatory response of microglia to exposure to lipopolysaccharide. Our findings indicate 1) that extrinsic plasma C1q is involved in the initiation of microglial activation in the course of CNS diseases with blood-brain barrier impairment and 2) that C1q synthesized and released by activated microglia is likely to contribute in an autocrine/paracrine way to maintain and balance microglial activation in the diseased CNS tissue. PMID:18831010

  1. TREM2 regulates microglial cell activation in response to demyelination in vivo

    PubMed Central

    Cantoni, Claudia; Bollman, Bryan; Licastro, Danilo; Xie, Mingqiang; Mikesell, Robert; Schmidt, Robert; Yuede, Carla M.; Galimberti, Daniela; Olivecrona, Gunilla; Klein, Robyn S.; Cross, Anne H.; Otero, Karel; Piccio, Laura

    2015-01-01

    Microglia are phagocytic cells that survey the brain and perform neuroprotective functions in response to tissue damage, but their activating receptors are largely unknown. Triggering receptor expressed on myeloid cells 2 (TREM2) is a microglial immunoreceptor whose loss-of-function mutations in humans cause presenile dementia, while genetic variants are associated with increased risk of neurodegenerative diseases. In myeloid cells, TREM2 has been involved in the regulation of phagocytosis, cell proliferation and inflammatory responses in vitro. However, it is unknown how TREM2 contributes to microglia function in vivo. Here, we identify a critical role for TREM2 in the activation and function of microglia during cuprizone (CPZ)-induced demyelination. TREM2-deficient (TREM2−/−) mice had defective clearance of myelin debris and more axonal pathology, resulting in impaired clinical performances compared to wild-type (WT) mice. TREM2−/− microglia proliferated less in areas of demyelination and were less activated, displaying a more resting morphology and decreased expression of the activation markers MHC II and inducible nitric oxide synthase as compared to WT. Mechanistically, gene expression and ultrastructural analysis of microglia suggested a defect in myelin degradation and phagosome processing during CPZ intoxication in TREM2−/− microglia. These findings place TREM2 as a key regulator of microglia activation in vivo in response to tissue damage. PMID:25631124

  2. Intracellular delivery of dendrimer triamcinolone acetonide conjugates into microglial and human retinal pigment epithelial cells.

    PubMed

    Kambhampati, Siva P; Mishra, Manoj K; Mastorakos, Panagiotis; Oh, Yumin; Lutty, Gerard A; Kannan, Rangaramanujam M

    2015-09-01

    Triamcinolone acetonide (TA) is a potent, intermediate-acting, steroid that has anti-inflammatory and anti-angiogenic activity. Intravitreal administration of TA has been used for diabetic macular edema, proliferative diabetic retinopathy and exudative age-related macular degeneration (AMD). However, the hydrophobicity, lack of solubility, and the side effects limit its effectiveness in the treatment of retinal diseases. In this study, we explore a PAMAM dendrimer-TA conjugate (D-TA) as a potential strategy to improve intracellular delivery and efficacy of TA to target cells. The conjugates were prepared with a high drug payload (∼ 21%) and were readily soluble in saline. Compared to free TA, D-TA demonstrated a significantly improved toxicity profile in two important target [microglial and human retinal pigment epithelium (RPE)] cells. The D-TA was ∼ 100-fold more effective than free TA in its anti-inflammatory activity (measured in microglia), and in suppressing VEGF production (in hypoxic RPE cells). Dendrimer-based delivery may improve the efficacy of TA towards both its key targets of inflammation and VEGF production, with significant clinical implications. PMID:25701805

  3. Suppression of LPS-induced inflammatory responses by inflexanin B in BV2 microglial cells.

    PubMed

    Lim, Ji-Youn; Sul, Donggeun; Hwang, Bang Yeon; Hwang, Kwang Woo; Yoo, Ki-Yeol; Park, So-Young

    2013-02-01

    Microglia are a type of resident macrophage that functions as an inflammation modulator in the central nervous system. Over-activation of microglia by a range of stimuli disrupts the physiological homeostasis of the brain, and induces inflammatory response and degenerative processes, such as those implicated in neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. Therefore, we investigated the possible anti-inflammatory mechanisms of inflexanin B in murine microglial BV2 cells. Lipopolysaccharide (LPS) activated BV2 cells and induced the production of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and cytokines (interleukins-1β and -6, and tumour necrosis factor α). The LPS-induced production of pro-inflammatory mediators was associated with the enhancement of nuclear factor-kappaB (NF-κB) nuclear translocation and the activation of mitogen-activated protein kinase (MAPK) including ERK1/2 and JNK. Conversely, pretreatment of cells with inflexanin B (10 and 20 μg/mL) significantly reduced the production of pro-inflammatory mediators. This was accompanied with the reduced nuclear translocation of NF-κB and reduced activation of MAPKs. These results suggest that inflexanin B attenuated the LPS-induced inflammatory process by inhibiting the activation of NF-κB and MAPKs. PMID:23458198

  4. Intracellular delivery of dendrimer triamcinolone acetonide conjugates into microglial and human retinal pigment epithelial cells

    PubMed Central

    Kambhampati, Siva P.; Mishra, Manoj K.; Mastorakos, Panagiotis; Oh, Yumin; Lutty, Gerard A.; Kannan, Rangaramanujam M.

    2016-01-01

    Triamcinolone acetonide (TA) is a potent, intermediate-acting, steroid that has anti-inflammatory and anti-angiogenic activity. Intravitreal administration of TA has been used for diabetic macular edema, proliferative diabetic retinopathy and exudative age-related macular degeneration (AMD). However, the hydrophobicity, lack of solubility, and the side effects limit its effectiveness in the treatment of retinal diseases. In this study, we explore a PAMAM dendrimer-TA conjugate (D-TA) as a potential strategy to improve intracellular delivery and efficacy of TA to target cells. The conjugates were prepared with a high drug payload (~21%) and were readily soluble in saline. Compared to free TA, D-TA demonstrated a significantly improved toxicity profile in two important target [microglial and human retinal pigment epithelium (RPE)] cells. The D-TA was ~100-fold more effective than free TA in its anti-inflammatory activity (measured in microglia), and in suppressing VEGF production (in hypoxic RPE cells). Dendrimer-based delivery may improve the efficacy of TA towards both its key targets of inflammation and VEGF production, with significant clinical implications. PMID:25701805

  5. SENP1 inhibits the IH-induced apoptosis and nitric oxide production in BV2 microglial cells.

    PubMed

    Liu, Song; Wang, Zhong-hua; Xu, Bo; Chen, Kui; Sun, Jin-yuan; Ren, Lian-ping

    2015-11-27

    To reveal SUMOylation and the roles of Sentrin-specific proteases (SENP)s in microglial cells under Intermittent hypoxia (IH) condition would provide more intensive view of understanding the mechanisms of IH-induced central nervous system (CNS) damage. Hence, in the present study, we detected the expression levels of SENPs in microglial cells under IH and normoxia conditions via RT-PCR assay. We found that SENP1 was significantly down-regulated in cells exposure to IH. Subsequently, the effect of IH for the activation of microglia and the potential roles of SENP1 in the SENP1-overexpressing cell lines were investigated via Western blotting, RT-PCR and Griess assay. The present study demonstrated the apoptosis-inducing and activating role of IH on microglia. In addition, we revealed that the effect of IH on BV-2 including apoptosis, nitric oxide synthase (iNOS) expression and nitric oxide (NO) induction can be attenuated by SENP1 overexpression. The results of the present study are of both theoretical and therapeutic significance to explore the potential roles of SENP1 under IH condition and elucidated the mechanisms underlying microglial survival and activation. PMID:26499079

  6. Maternal immune activation evoked by polyinosinic:polycytidylic acid does not evoke microglial cell activation in the embryo

    PubMed Central

    Smolders, Silke; Smolders, Sophie M. T.; Swinnen, Nina; Gärtner, Annette; Rigo, Jean-Michel; Legendre, Pascal; Brône, Bert

    2015-01-01

    Several studies have indicated that inflammation during pregnancy increases the risk for the development of neuropsychiatric disorders in the offspring. Morphological brain abnormalities combined with deviations in the inflammatory status of the brain can be observed in patients of both autism and schizophrenia. It was shown that acute infection can induce changes in maternal cytokine levels which in turn are suggested to affect fetal brain development and increase the risk on the development of neuropsychiatric disorders in the offspring. Animal models of maternal immune activation reproduce the etiology of neurodevelopmental disorders such as schizophrenia and autism. In this study the poly (I:C) model was used to mimic viral immune activation in pregnant mice in order to assess the activation status of fetal microglia in these developmental disorders. Because microglia are the resident immune cells of the brain they were expected to be activated due to the inflammatory stimulus. Microglial cell density and activation level in the fetal cortex and hippocampus were determined. Despite the presence of a systemic inflammation in the pregnant mice, there was no significant difference in fetal microglial cell density or immunohistochemically determined activation level between the control and inflammation group. These data indicate that activation of the fetal microglial cells is not likely to be responsible for the inflammation induced deficits in the offspring in this model. PMID:26300736

  7. Vaccinium bracteatum Thunb. Exerts Anti-Inflammatory Activity by Inhibiting NF-κB Activation in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Ko, Yong-Hyun; Seo, Jee-Yeon; Lee, Bo-Ram; Lee, Taek Hwan; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    This study was designed to evaluate the pharmacological effects of Vaccinium bracteatum Thunb. methanol extract (VBME) on microglial activation and to identify the underlying mechanisms of action of these effects. The anti-inflammatory properties of VBME were studied using lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. We measured the production of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase (COX)-2, prostaglandin E2 (PGE2), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) as inflammatory parameters. We also examined the effect of VBME on intracellular reactive oxygen species (ROS) production and the activity of nuclear factor-kappa B p65 (NF-κB p65). VBME significantly inhibited LPS-induced production of NO and PGE2 and LPS-mediated upregulation of iNOS and COX-2 expression in a dose-dependent manner; importantly, VBME was not cytotoxic. VBME also significantly reduced the generation of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. In addition, VBME significantly dampened intracellular ROS production and suppressed NF-κB p65 translocation by blocking IκB-α phosphorylation and degradation in LPS-stimulated BV2 cells. Our findings indicate that VBME inhibits the production of inflammatory mediators in BV-2 microglial cells by suppressing NF-κB signaling. Thus, VBME may be useful in the treatment of neurodegenerative diseases due to its ability to inhibit inflammatory mediator production in activated BV-2 microglial cells. PMID:27169820

  8. Thioxanthenes, chlorprothixene and flupentixol inhibit proton currents in BV2 microglial cells.

    PubMed

    Kim, Jiwon; Song, Jin-Ho

    2016-05-15

    The thioxanthene antipsychotic drugs chlorprothixene and flupentixol have anti-inflammatory and antioxidant properties. The reactive oxygen species produced by NADPH oxidase during microglia-mediated inflammatory responses cause neuronal damage, thereby contributing to various neurodegenerative diseases. Voltage-gated proton channels sustain the NADPH oxidase activity, and inhibition of the channels' activity reduces the production of reactive oxygen species. Herein, the effects of chlorprothixene and flupentixol on proton currents were investigated in BV2 microglial cells using the whole-cell patch-clamp method. Both drugs inhibited the proton currents in a concentration-dependent manner (IC50=1.7μM and 6.6μM, respectively). Chlorprothixene at 3μM slightly shifted the activation voltage toward depolarization. Both the activation and the deactivation kinetics of the proton currents were slowed by chlorprothixene 1.2- and 3.5-fold, respectively. Thus, the inhibition of proton currents may be partly responsible for the antioxidant effects of thioxanthene antipsychotic drugs. PMID:26945819

  9. Microglial cell activation is a source of metalloproteinase generation during hemorrhagic transformation

    PubMed Central

    del Zoppo, Gregory J; Frankowski, Harald; Gu, Yu-Huan; Osada, Takashi; Kanazawa, Masato; Milner, Richard; Wang, Xiaoyun; Hosomi, Naohisa; Mabuchi, Takuma; Koziol, James A

    2012-01-01

    Hemorrhage and edema accompany evolving brain tissue injury after ischemic stroke. In patients, these events have been associated with metalloproteinase (MMP)-9 in plasma. Both the causes and cellular sources of MMP-9 generation in this setting have not been defined. MMP-2 and MMP-9 in nonhuman primate tissue in regions of plasma leakage, and primary murine microglia and astrocytes, were assayed by immunocytochemistry, zymography, and real-time RT-PCR. Ischemia-related hemorrhage was associated with microglial activation in vivo, and with the leakage of plasma fibronectin and vitronectin into the surrounding tissue. In strict serum-depleted primary cultures, by zymography, pro-MMP-9 was generated by primary murine microglia when exposed to vitronectin and fibronectin. Protease secretion was enhanced by experimental ischemia (oxygen-glucose deprivation, OGD). Primary astrocytes, on each matrix, generated only pro-MMP-2, which decreased during OGD. Microglia–astrocyte contact enhanced pro-MMP-9 generation in a cell density-dependent manner under normoxia and OGD. Compatible with observations in a high quality model of focal cerebral ischemia, microglia, but not astrocytes, respond to vitronectin and fibronectin, found when plasma extravasates into the injured region. Astrocytes alone do not generate pro-MMP-9. These events explain the appearance of MMP-9 antigen in association with ischemia-induced cerebral hemorrhage and edema. PMID:22354151

  10. Infiltrating cells from host brain restore the microglial population in grafted cortical tissue.

    PubMed

    Wang, Cong; Tao, Sijue; Fang, Yukun; Guo, Jing; Zhu, Lirui; Zhang, Shengxiang

    2016-01-01

    Transplantation of embryonic cortical tissue is considered as a promising therapy for brain injury. Grafted neurons can reestablish neuronal network and improve cortical function of the host brain. Microglia is a key player in regulating neuronal survival and plasticity, but its activation and dynamics in grafted cortical tissue remain unknown. Using two-photon intravital imaging and parabiotic model, here we investigated the proliferation and source of microglia in the donor region by transplanting embryonic cortical tissue into adult cortex. Live imaging showed that the endogenous microglia of the grafted tissue were rapidly lost after transplantation. Instead, host-derived microglia infiltrated and colonized the graft. Parabiotic model suggested that the main source of infiltrating cells is the parenchyma of the host brain. Colonized microglia proliferated and experienced an extensive morphological transition and eventually differentiated into resting ramified morphology. Collectively, these results demonstrated that donor tissue has little contribution to the activated microglia and host brain controls the microglial population in the graft. PMID:27615195

  11. NitroDIGE analysis reveals inhibition of protein S-nitrosylation by epigallocatechin gallates in lipopolysaccharide-stimulated microglial cells

    PubMed Central

    2014-01-01

    Background Nitric oxide (NO) is a signaling molecule regulating numerous cellular functions in development and disease. In the brain, neuronal injury or neuroinflammation can lead to microglial activation, which induces NO production. NO can react with critical cysteine thiols of target proteins forming S-nitroso-proteins. This modification, known as S-nitrosylation, is an evolutionarily conserved redox-based post-translational modification (PTM) of specific proteins analogous to phosphorylation. In this study, we describe a protocol for analyzing S-nitrosylation of proteins using a gel-based proteomic approach and use it to investigate the modes of action of a botanical compound found in green tea, epigallocatechin-3-gallate (EGCG), on protein S-nitrosylation after microglial activation. Methods/Results To globally and quantitatively analyze NO-induced protein S-nitrosylation, the sensitive gel-based proteomic method, termed NitroDIGE, was developed by combining two-dimensional differential in-gel electrophoresis (2-D DIGE) with the modified biotin switch technique (BST) using fluorescence-tagged CyDye™ thiol reactive agents to label S-nitrosothiols. The NitroDIGE method showed high specificity and sensitivity in detecting S-nitrosylated proteins (SNO-proteins). Using this approach, we identified a subset of SNO-proteins ex vivo by exposing immortalized murine BV-2 microglial cells to a physiological NO donor, or in vivo by exposing BV-2 cells to endotoxin lipopolysaccharides (LPS) to induce a proinflammatory response. Moreover, EGCG was shown to attenuate S-nitrosylation of proteins after LPS-induced activation of microglial cells primarily by modulation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated oxidative stress response. Conclusions These results demonstrate that NitroDIGE is an effective proteomic strategy for “top-down” quantitative analysis of protein S-nitrosylation in multi-group samples in response to nitrosative stress due

  12. Inhibition of Peripheral TNF-α and Downregulation of Microglial Activation by Alpha-Lipoic Acid and Etanercept Protect Rat Brain Against Ischemic Stroke.

    PubMed

    Wu, Ming-Hsiu; Huang, Chao-Ching; Chio, Chung-Ching; Tsai, Kuen-Jer; Chang, Ching-Ping; Lin, Nan-Kai; Lin, Mao-Tsun

    2016-09-01

    Ischemic stroke, caused by obstruction of blood flow to the brain, would initiate microglia activation which contributes to neuronal damage. Therefore, inhibition of microglia-mediated neuroinflammation could be a therapeutic strategy for ischemic stroke. This study was aimed to elucidate the anti-inflammatory effects of alpha-lipoic acid and etanercept given either singly or in combination in rats subjected to middle cerebral artery occlusion. Both α-lipoic acid and etanercept markedly reduced cerebral infarct, blood-brain barrier disruption, and neurological motor deficits with the former drug being more effective with the dosage used. Furthermore, when used in combination, the reduction was more substantial. Remarkably, a greater diminution in the serum levels of tumor necrosis factor-alpha as well as the brain levels of microglial activation (e.g., microgliosis, amoeboid microglia, and microglial overexpression of tumor necrosis factor-α) was observed with the combined drug treatment as compared to the drugs given separately. We conclude that inhibition of peripheral tumor necrosis factor-alpha as well as downregulation of brain microglial activation by alpha-lipoic acid or etanercept protect rat brain against ischemic stroke. Moreover, when both drugs were used in combination, the stroke recovery was promoted more extensively. PMID:26374550

  13. Activation of murine microglial N9 cells is attenuated through cannabinoid receptor CB2 signaling.

    PubMed

    Ma, Lei; Jia, Ji; Liu, Xiangyu; Bai, Fuhai; Wang, Qiang; Xiong, Lize

    2015-02-27

    Inhibition of microglial activation is effective in treating various neurological disorders. Activation of microglial cannabinoid CB2 receptor induces anti-inflammatory effects, and the mechanism, however, is still elusive. Microglia could be activated into the classic activated state (M1 state) or the alternative activated state (M2 state), the former is cytotoxic, and the latter is neurotrophic. In this study, we used lipopolysaccharide (LPS) plus interferon-γ (IFNγ) to activate N9 microglia and hypothesized the pretreatment with cannabinoid CB2 receptor agonist AM1241 attenuates microglial activation by shifting microglial M1 to M2 state. We found that pretreatment with 5 μM AM1241 at 1 h before microglia were exposed to LPS plus IFNγ decreased the expression of inducible nitric oxide synthase (iNOS) and the release of pro-inflammatory factors, increased the expression of arginase 1 (Arg-1) and the release of anti-inflammatory and neurotrophic factors in microglia. However, these effects induced by AM1241 pretreatment were significantly reversed in the presence of 10 μM cannabinoid CB2 receptor antagonist AM630 or 10 μM protein kinase C (PKC) inhibitor chelerythrine. These findings indicated that AM1241 pretreatment attenuates microglial activation by shifting M1 to M2 activated state via CB2 receptor, and the AM1241-induced anti-inflammatory effects may be mediated by PKC. PMID:25637536

  14. Time-dependent retinal ganglion cell loss, microglial activation and blood-retina-barrier tightness in an acute model of ocular hypertension.

    PubMed

    Trost, A; Motloch, K; Bruckner, D; Schroedl, F; Bogner, B; Kaser-Eichberger, A; Runge, C; Strohmaier, C; Klein, B; Aigner, L; Reitsamer, H A

    2015-07-01

    Glaucoma is a group of neurodegenerative diseases characterized by the progressive loss of retinal ganglion cells (RGCs) and their axons, and is the second leading cause of blindness worldwide. Elevated intraocular pressure is a well known risk factor for the development of glaucomatous optic neuropathy and pharmacological or surgical lowering of intraocular pressure represents a standard procedure in glaucoma treatment. However, the treatment options are limited and although lowering of intraocular pressure impedes disease progression, glaucoma cannot be cured by the currently available therapy concepts. In an acute short-term ocular hypertension model in rat, we characterize RGC loss, but also microglial cell activation and vascular alterations of the retina at certain time points. The combination of these three parameters might facilitate a better evaluation of the disease progression, and could further serve as a new model to test novel treatment strategies at certain time points. Acute ocular hypertension (OHT) was induced by the injection of magnetic microbeads into the rat anterior chamber angle (n = 22) with magnetic position control, leading to constant elevation of IOP. At certain time points post injection (4d, 7d, 10d, 14d and 21d), RGC loss, microglial activation, and microvascular pericyte (PC) coverage was analyzed using immunohistochemistry with corresponding specific markers (Brn3a, Iba1, NG2). Additionally, the tightness of the retinal vasculature was determined via injections of Texas Red labeled dextran (10 kDa) and subsequently analyzed for vascular leakage. For documentation, confocal laser-scanning microscopy was used, followed by cell counts, capillary length measurements and morphological and statistical analysis. The injection of magnetic microbeads led to a progressive loss of RGCs at the five time points investigated (20.07%, 29.52%, 41.80%, 61.40% and 76.57%). Microglial cells increased in number and displayed an activated morphology

  15. Age-Related Differences in Neuropathic Pain Behavior and Spinal Microglial Activity after L5 Spinal Nerve Ligation in Male Rats

    PubMed Central

    Zeinali, Hossein; Manaheji, Homa; Zaringhalam, Jalal; Bahari, Zahra; Nazemi, Samad; Sadeghi, Mehdi

    2016-01-01

    Introduction: Several studies have reported the involvement of age-related changes in the development of neuropathic pain behaviors. However, limited data are available on the role of age in establishing and maintaining chronic neuropathic pain after peripheral nerve injury. Methods: In the present study, we examined age-related neuropathic behavior among rats in 4 age groups: pups (4 weeks old; weight, 60–80 g), juvenile rats (6 weeks old; weight, 120–140 g), and mature rats (10–12 weeks old; weight, 200–250 g). Because the exact contribution of spinal microglia and its association with the development of neuropathic pain remains unknown, we also evaluated the expression of spinal Iba1, a microglial marker, by using western blotting before and 5 days after spinal nerve ligation (SNL) as well as after the daily IP administration of minocycline (30 mg/kg). Results: Our results showed that SNL-induced mechanical allodynia but not thermal hyperalgesia in mature rats but not in pups (P<0.05 and P<0.01, respectively). The expression of spinal Iba1 in the juvenile rats was significantly lower than that in pups and mature rats (P<0.01). Moreover, administration of minocycline decreased the expression of spinal Iba1 in the pup rats more than in juvenile rats (P<0.001) and in the juvenile rats more than in the mature rats (P<0.05). Conclusion: These data suggest that the development of neuropathic behaviors and microglial activation after SNL could be age dependent. PMID:27563413

  16. Cannabinoid CB2 Receptor Mediates Nicotine-Induced Anti-Inflammation in N9 Microglial Cells Exposed to β Amyloid via Protein Kinase C

    PubMed Central

    Jia, Ji; Peng, Jie; Li, Zhaoju; Wu, Youping; Wu, Qunlin; Tu, Weifeng; Wu, Mingchun

    2016-01-01

    Background. Reducing β amyloid- (Aβ-) induced microglial activation is considered to be effective in treating Alzheimer's disease (AD). Nicotine attenuates Aβ-induced microglial activation; the mechanism, however, is still elusive. Microglia could be activated into classic activated state (M1 state) or alternative activated state (M2 state); the former is cytotoxic and the latter is neurotrophic. In this investigation, we hypothesized that nicotine attenuates Aβ-induced microglial activation by shifting microglial M1 to M2 state, and cannabinoid CB2 receptor and protein kinase C mediate the process. Methods. We used Aβ1–42 to activate N9 microglial cells and observed nicotine-induced effects on microglial M1 and M2 biomarkers by using western blot, immunocytochemistry, and enzyme-linked immunosorbent assay (ELISA). Results. We found that nicotine reduced the levels of M1 state markers, including inducible nitric oxide synthase (iNOS) expression and tumor necrosis factor α (TNF-α) and interleukin- (IL-) 6 releases; meanwhile, it increased the levels of M2 state markers, including arginase-1 (Arg-1) expression and brain-derived neurotrophic factor (BDNF) release, in the Aβ-stimulated microglia. Coadministration of cannabinoid CB2 receptor antagonist or protein kinase C (PKC) inhibitor partially abolished the nicotine-induced effects. Conclusion. These findings indicated that cannabinoid CB2 receptor mediates nicotine-induced anti-inflammation in microglia exposed to Aβ via PKC. PMID:26884647

  17. Anti-inflammatory effects of thymoquinone in activated BV-2 microglial cells.

    PubMed

    Taka, Equar; Mazzio, Elizabeth A; Goodman, Carl B; Redmon, Natalie; Flores-Rozas, Hernan; Reams, Renee; Darling-Reed, Selina; Soliman, Karam F A

    2015-09-15

    Thymoquinone (TQ), the main pharmacological active ingredient within the black cumin seed (Nigella sativa) is believed to be responsible for the therapeutic effects on chronic inflammatory conditions such as arthritis, asthma and neurodegeneration. In this study, we evaluated the potential anti-inflammatory role of TQ in lipopolysaccharide (LPS)-stimulated BV-2 murine microglia cells. The results obtained indicate that TQ was effective in reducing NO2(-) with an IC50 of 5.04μM, relative to selective iNOS inhibitor LNIL-l-N6-(1-iminoethyl)lysine (IC50 4.09μM). TQ mediated reduction in NO2(-) was found to parallel the decline of iNOS protein expression as confirmed by immunocytochemistry. In addition, we evaluated the anti-inflammatory effects of TQ on ninety-six (96) cytokines using a RayBio AAM-CYT-3 and 4 cytokine antibody protein array. Data obtained establish a baseline protein expression profile characteristic of resting BV-2 cells in the order of osteopontin>MIP-1alpha>MIP-1g>IGF-1 and MCP-I. In the presence of LPS [1ug/ml], activated BV-2 cells produced a sharp rise in specific pro-inflammatory cytokines/chemokine's IL-6, IL-12p40/70, CCL12 /MCP-5, CCL2/MCP-1, and G-CSF which were attenuated by the addition of TQ (10μM). The TQ mediated attenuation of MCP-5, MCP-1 and IL-6 protein in supernatants from activated BV-2 cells were corroborated by independent ELISA. Moreover, the data obtained from the RT(2) PCR demonstrated a similar pattern where the LPS mediated elevation of mRNA for IL-6, CCL12/MCP-5, CCL2/MCP-1 were significantly attenuated by TQ (10μM). Also, in this study, consistent data were obtained for both protein antibody array densitometry and ELISA assays. In addition, TQ was found to reduce LPS mediated elevation in gene expression of Cxcl10 and a number of other cytokines in the panel. These findings demonstrate the significant anti-inflammatory properties of TQ in LPS activated microglial cells. Therefore, the obtained results might indicate

  18. Microglial Dysregulation in Psychiatric Disease

    PubMed Central

    Frick, Luciana Romina; Williams, Kyle

    2013-01-01

    Microglia, the brain's resident immune cells, are phagocytes of the macrophage lineage that have a key role in responding to inflammation and immune challenge in the brain. More recently, they have been shown to have a number of important roles beyond immune surveillance and response, including synaptic pruning during development and the support of adult neurogenesis. Microglial abnormalities have been found in several neuropsychiatric conditions, though in most cases it remains unclear whether these are causative or are a reaction to some other underlying pathophysiology. Here we summarize postmortem, animal, neuroimaging, and other evidence for microglial pathology in major depression, schizophrenia, autism, obsessive-compulsive disorder, and Tourette syndrome. We identify gaps in the existing literature and important areas for future research. If microglial pathology proves to be an important causative factor in these or other neuropsychiatric diseases, modulators of microglial function may represent a novel therapeutic strategy. PMID:23690824

  19. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb.

    PubMed

    Grier, Bryce D; Belluscio, Leonardo; Cheetham, Claire E J

    2016-01-01

    The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses. PMID:27471450

  20. Olfactory Sensory Activity Modulates Microglial-Neuronal Interactions during Dopaminergic Cell Loss in the Olfactory Bulb

    PubMed Central

    Grier, Bryce D.; Belluscio, Leonardo; Cheetham, Claire E. J.

    2016-01-01

    The mammalian olfactory bulb (OB) displays robust activity-dependent plasticity throughout life. Dopaminergic (DA) neurons in the glomerular layer (GL) of the OB are particularly plastic, with loss of sensory input rapidly reducing tyrosine hydroxylase (TH) expression and dopamine production, followed by a substantial reduction in DA neuron number. Here, we asked whether microglia participate in activity-dependent elimination of DA neurons in the mouse OB. Interestingly, we found a significant reduction in the number of both DA neurons and their synapses in the OB ipsilateral to the occluded naris (occluded OB) within just 7 days of sensory deprivation. Concomitantly, the volume of the occluded OB decreased, resulting in an increase in microglial density. Microglia in the occluded OB also adopted morphologies consistent with activation. Using in vivo 2-photon imaging and histological analysis we then showed that loss of olfactory input markedly altered microglial-neuronal interactions during the time that DA neurons are being eliminated: both microglial process motility and the frequency of wrapping of DA neuron somata by activated microglia increased significantly in the occluded OB. Furthermore, we found microglia in the occluded OB that had completely engulfed components of DA neurons. Together, our data provide evidence that loss of olfactory input modulates microglial-DA neuron interactions in the OB, thereby suggesting an important role for microglia in the activity-dependent elimination of DA neurons and their synapses. PMID:27471450

  1. Radiation-Induced c-Jun Activation Depends on MEK1-ERK1/2 Signaling Pathway in Microglial Cells

    PubMed Central

    Deng, Zhiyong; Sui, Guangchao; Rosa, Paulo Mottin; Zhao, Weiling

    2012-01-01

    Radiation-induced normal brain injury is associated with acute and/or chronic inflammatory responses, and has been a major concern in radiotherapy. Recent studies suggest that microglial activation is a potential contributor to chronic inflammatory responses following irradiation; however, the molecular mechanism underlying the response of microglia to radiation is poorly understood. c-Jun, a component of AP-1 transcription factors, potentially regulates neural cell death and neuroinflammation. We observed a rapid increase in phosphorylation of N-terminal c-Jun (on serine 63 and 73) and MAPK kinases ERK1/2, but not JNKs, in irradiated murine microglial BV2 cells. Radiation-induced c-Jun phosphorylation is dependent on the canonical MEK-ERK signaling pathway and required for both ERK1 and ERK2 function. ERK1/2 directly interact with c-Jun in vitro and in cells; meanwhile, the JNK binding domain on c-Jun is not required for its interaction with ERK kinases. Radiation-induced reactive oxygen species (ROS) potentially contribute to c-Jun phosphorylation through activating the ERK pathway. Radiation stimulates c-Jun transcriptional activity and upregulates c-Jun-regulated proinflammatory genes, such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2. Pharmacologic blockade of the ERK signaling pathway interferes with c-Jun activity and inhibits radiation-stimulated expression of c-Jun target genes. Overall, our study reveals that the MEK-ERK1/2 signaling pathway, but not the JNK pathway, contributes to the c-Jun-dependent microglial inflammatory response following irradiation. PMID:22606284

  2. Electroacupuncture pretreatment prevents cognitive impairment induced by limb ischemia-reperfusion via inhibition of microglial activation and attenuation of oxidative stress in rats.

    PubMed

    Chen, Ye; Zhou, Jun; Li, Jun; Yang, Shi-Bin; Mo, Li-Qun; Hu, Jie-Hui; Yuan, Wan-Li

    2012-01-13

    Limb ischemia-reperfusion (LI/R) is associated with high morbidity and mortality. Furthermore, critical trauma survivors can present cognitive impairment. Cognitive function, survival rate, oxidative stress and neuronal health were examined to elucidate (1) the magnitude of cognitive effects of prolonged reperfusion, (2) potential players in the mechanistic pathway mediating such effects, and (3) possible benefits of electroacupuncture (EA) pretreatment at Baihui (GV20), Yanglingquan (GB34), Taichong (LR3), Zusanli (ST36) and Xuehai (SP10) acupoints. LI/R was induced in rats by placing a rubber tourniquet on each hind limb for 3h, and the animals were evaluated periodically for 7d after LI/R. Rats subjected to LI/R had significantly lower survival rates, and displayed evidence of brain injury and cognitive dysfunction (as determined by the Morris water maze test) 1d and 3d after reperfusion compared to sham-operated controls. LI/R also resulted in higher levels of reactive oxygen species (ROS) and malondialdehyde (MDA), microglial activation, and decreased superoxide dismutase (SOD) activity within Cornu Ammonis area 1 (CA1) of the hippocampus. Depressed survival rates, microglial activation, oxidative damage, and histological changes, as well as cognitive dysfunction were partially or fully attenuated in rats that received 14d of EA prior to LI/R. These findings indicate that LI/R can result in cognitive dysfunction related to activated microglia and elevated oxidative stress, and that EA has neuroprotective potential mediated, at least in part, by inhibition of microglial activation and attenuation of oxidative stress. PMID:22129788

  3. Lysosomal iron liberation is responsible for the vulnerability of brain microglial cells to iron oxide nanoparticles: comparison with neurons and astrocytes.

    PubMed

    Petters, Charlotte; Thiel, Karsten; Dringen, Ralf

    2016-01-01

    Iron oxide nanoparticles (IONPs) are used for various biomedical and neurobiological applications. Thus, detailed knowledge on the accumulation and toxic potential of IONPs for the different types of brain cells is highly warranted. Literature data suggest that microglial cells are more vulnerable towards IONP exposure than other types of brain cells. To investigate the mechanisms involved in IONP-induced microglial toxicity, we applied fluorescent dimercaptosuccinate-coated IONPs to primary cultures of microglial cells. Exposure to IONPs for 6 h caused a strong concentration-dependent increase in the microglial iron content which was accompanied by a substantial generation of reactive oxygen species (ROS) and by cell toxicity. In contrast, hardly any ROS staining and no loss in cell viability were observed for cultured primary astrocytes and neurons although these cultures accumulated similar specific amounts of IONPs than microglia. Co-localization studies with lysotracker revealed that after 6 h of incubation in microglial cells, but not in astrocytes and neurons, most IONP fluorescence was localized in lysosomes. ROS formation and toxicity in IONP-treated microglial cultures were prevented by neutralizing lysosomal pH by the application of NH4Cl or Bafilomycin A1 and by the presence of the iron chelator 2,2'-bipyridyl. These data demonstrate that rapid iron liberation from IONPs at acidic pH and iron-catalyzed ROS generation are involved in the IONP-induced toxicity of microglia and suggest that the relative resistance of astrocytes and neurons against acute IONP toxicity is a consequence of a slow mobilization of iron from IONPs in the lysosomal degradation pathway. PMID:26287375

  4. COUP-TF interacting protein 2 represses the initial phase of HIV-1 gene transcription in human microglial cells

    PubMed Central

    Marban, Céline; Redel, Laetitia; Suzanne, Stella; Van Lint, Carine; Lecestre, Dominique; Chasserot-Golaz, Sylvette; Leid, Mark; Aunis, Dominique; Schaeffer, Evelyne; Rohr, Olivier

    2005-01-01

    Human immunodeficiency virus type 1 (HIV-1) gene transcription is characterized by two temporally distinct phases. While the initial phase relies solely on cellular transcription factors, the subsequent phase is activated by the viral Tat transactivator. We have previously reported that the subsequent phase of viral gene transcription can be repressed by the chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting protein 2 (CTIP2) in human microglial cells [O. Rohr, D. Lecestre, S. Chasserot-Golaz, C. Marban, D. Avram, D. Aunis, M. Leid and E. Schaeffer (2003), J. Virol., 77, 5415–5427]. Here, we demonstrate that CTIP proteins also repress the initial phase of HIV-1 gene transcription, mainly supported by the cellular transcription factors Sp1 and COUP-TF in microglial cells. We report that CTIP2 represses Sp1- and COUP-TF-mediated activation of HIV-1 gene transcription and viral replication as a result of physical interactions with COUP-TF and Sp1 in microglial nuclei. Using laser confocal microscopy CTIP2 was found to colocalize with Sp1, COUP-TF and the heterochromatin-associated protein Hp1α, which is mainly detected in transcriptionally repressed heterochromatic region. Moreover, we describe that CTIP2 can be recruited to the HIV-1 promoter via its association with Sp1 bound to the GC-box sequences of the long terminal repeat (LTR). Since our findings demonstrate that CTIP2 interacts with the HIV-1 proximal promoter, it is likely that CTIP2 promotes HIV-1 gene silencing by forcing transcriptionally repressed heterochromatic environment to the viral LTR region. PMID:15849318

  5. Glycogen synthase kinase 3 is part of the molecular machinery regulating the adaptive response to LPS stimulation in microglial cells.

    PubMed

    Ajmone-Cat, Maria Antonietta; D'Urso, Maria Cristina; di Blasio, Giorgia; Brignone, Maria Stefania; De Simone, Roberta; Minghetti, Luisa

    2016-07-01

    Repeated stimulation of TLR4 signaling by lipopolysaccharide (LPS) in microglia induces a state of tolerance/sensitization consisting in the reprogramming of the expression of pro-inflammatory genes in favor of anti-inflammatory ones. The molecular mechanisms underlying this adaptive response are far to be elucidated. Glycogen synthase kinase 3 (GSK3) has emerged as crucial regulator of TLR signaling, mediating the balance between pro- and anti-inflammatory functions in both periphery and central nervous system. The present study extends this notion identifying GSK3 as part of the molecular machinery regulating the LPS-adaptive response in microglial cells, by using primary microglial cultures and organotypic hippocampal slices (OHSCs). We found that lithium chloride (LiCl), a widely used GSK3 inhibitor and the mainstay treatment for bipolar disorder, reinforced the LPS adaptive response by enhancing both downregulation of pro-inflammatory genes (inducible nitric oxide synthase, interleukin 1β, interleukin 6, tumor necrosis factor α), and upregulation of genes typically associated to anti-inflammatory functions (interleukin 10 and MRC1). The effects of GSK3 inhibition were mimicked by Wnt3a, added exogenously, and reversed by Inhibitor of Wnt-Response-1-endo, a pharmacological disruptor of the canonical Wnt/β-catenin pathway, and GW9662, a selective peroxisome proliferator activated receptor γ antagonist, suggesting that these two pathways are involved in the regulation of LPS-tolerance/sensitization by GSK. Finally, LiCl treatment of OHSCs enhanced the protective functional consequences of the microglial adaptive response to LPS on oligodendrocyte maturation, as indicated by MBP mRNA upregulation. These results further indicate GSK3 as key component in the orchestration of neuroinflammation and target for neuroprotective strategies. PMID:26593276

  6. A label-free impedance-based whole cell assay revealed a new G protein-coupled receptor ligand for mouse microglial cell migration.

    PubMed

    Fukano, Yasufumi; Okino, Nozomu; Furuya, Shigeki; Ito, Makoto

    2016-09-16

    We report the usefulness of an impedance-based label-free whole cell assay to identify new ligands for G protein-coupled receptors (GPCRs) involved in microglial cell migration. Authentic GPCR ligands were subjected to the impedance-based cell assay in order to examine the responses of ligands for MG5 mouse microglial cells. Complement component 5 (C5a), adenosine 5'-diphosphate (ADP), uridine 5'-triphosphate (UTP), lysophosphatidic acid (LPA), and lysophosphatidylserine (LysoPS) were found to elicit different cellular impedance patterns, i.e. C5a, ADP, and UTP caused a transient increase in cellular impedance, while LPA and LysoPS decreased it. The responses for C5a and ADP were abolished by pertussis toxin (PTX), but not rho-associated protein kinase inhibitor, Y-27632, indicating that C5a and ADP elicited responses through the Gαi pathway. On the other hand, the response for UTP, LPA or LysoPS was not cancelled by PTX or Y-27632. In a modified Boyden chamber assay, C5a and ADP, but not UTP, LPA, or LysoPS, induced the migration of MG5 cells. These results suggest that PTX-sensitive increase in cellular impedance with the assay is characteristic for ligands of GPCRs involved in microglial cell migration. We found using this assay that 5-oxo-6E,8Z,11Z,14Z-eicosatetraenoic acid (5-oxo-ETE) is a new chemoattractant inducing microglial cell migration through the activation of Gαi. PMID:27480930

  7. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42)-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells

    PubMed Central

    Yang, Ju; Shen, Ting-ting; Chen, Yi; Yang, Xue-Sen

    2016-01-01

    Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer’s disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells). Here, we explored the prostaglandin-E2 (PGE2)-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1–42) (fAβ42)-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA) agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP), and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases. PMID:26824354

  8. Curcumin Ameliorates the Reduction Effect of PGE2 on Fibrillar β-Amyloid Peptide (1-42)-Induced Microglial Phagocytosis through the Inhibition of EP2-PKA Signaling in N9 Microglial Cells.

    PubMed

    He, Gen-Lin; Luo, Zhen; Yang, Ju; Shen, Ting-Ting; Chen, Yi; Yang, Xue-Sen

    2016-01-01

    Inflammatory activation of microglia and β amyloid (Aβ) deposition are considered to work both independently and synergistically to contribute to the increased risk of Alzheimer's disease (AD). Recent studies indicate that long-term use of phenolic compounds provides protection against AD, primarily due to their anti-inflammatory actions. We previously suggested that phenolic compound curcumin ameliorated phagocytosis possibly through its anti-inflammatory effects rather than direct regulation of phagocytic function in electromagnetic field-exposed N9 microglial cells (N9 cells). Here, we explored the prostaglandin-E2 (PGE2)-related signaling pathway that involved in curcumin-mediated phagocytosis in fibrillar β-amyloid peptide (1-42) (fAβ42)-stimulated N9 cells. Treatment with fAβ42 increased phagocytosis of fluorescent-labeled latex beads in N9 cells. This increase was attenuated in a dose-dependent manner by endogenous and exogenous PGE2, as well as a selective EP2 or protein kinase A (PKA) agonist, but not by an EP4 agonist. We also found that an antagonist of EP2, but not EP4, abolished the reduction effect of PGE2 on fAβ42-induced microglial phagocytosis. Additionally, the increased expression of endogenous PGE2, EP2, and cyclic adenosine monophosphate (AMP), and activation of vasodilator-stimulated phosphoprotein, cyclic AMP responsive element-binding protein, and PKA were depressed by curcumin administration. This reduction led to the amelioration of the phagocytic abilities of PGE2-stimulated N9 cells. Taken together, these data suggested that curcumin restored the attenuating effect of PGE2 on fAβ42-induced microglial phagocytosis via a signaling mechanism involving EP2 and PKA. Moreover, due to its immune modulatory effects, curcumin may be a promising pharmacological candidate for neurodegenerative diseases. PMID:26824354

  9. Microglial responses to free-electron laser incisions in rat brain

    SciTech Connect

    Zhang, M.Z.; Edwards, G.S.; Reinsch, L.

    1995-12-31

    In the CNS, two distinct populations of ramified glia, microglia and astrocytes, are identified by two Ca{sup ++}-binding proteins, lipocortin 1 (LC1) and S100{beta}, respectively. In some forms of CNS trauma, the responses of these two populations are quite-different. The present study sought to characterize and compare the responses of microglia and astrocytes to cortical incisions made with the free-electron laser (FEL, 6.45 and 4.0 {mu}m wavelength) and with a scalpel. After 3 and 6 days recovery, rats were perfused with acidified glutaraldehyde; the activated glia were identified using immunohistochemistry and quantified using BIOQUANT. In a 200 {mu}m thick zone of gliosis located beneath the damaged necrotic tissue, similar response patterns were observed for both incision types. At either time point, S100-{beta}-positive glia showed only minor shape changes and slight increases relative to astrocytes in control regions. Conversely, the population density of microglia in the reaction zone increased approximately 2- and 3-fold at days 3 and 6, respectively. Mitotic figures are detected among the LC1-positive glia at day 3, indicating that the activated phagocytes arise from proliferating resident microglia rather than from hematogenous invaders. Thus, in this system, the glial response to CNS damage comprises primarily microglia rather than astrocytes. The data also suggest that the anti-inflammatory and immuno-suppressive properties of LC1 may play important roles in recovery from CNS trauma and disease. Preliminary experiment show subdued glial responses to incisions made with FEL at 6.45 versus. 4.0 {mu}m wavelengths, suggesting that tissue damage is wavelength dependent.

  10. Glial Cell Line-Derived Neurotrophic Factor Family Members Reduce Microglial Activation via Inhibiting p38MAPKs-Mediated Inflammatory Responses

    PubMed Central

    Rickert, Uta; Grampp, Steffen; Wilms, Henrik; Spreu, Jessica; Knerlich-Lukoschus, Friederike; Held-Feindt, Janka; Lucius, Ralph

    2014-01-01

    Previous studies have shown that glial cell line-derived neurotrophic factor (GDNF) family ligands (GFL) are potent survival factors for dopaminergic neurons and motoneurons with therapeutic potential for Parkinson's disease. However, little is known about direct influences of the GFL on microglia function, which are known to express part of the GDNF receptor system. Using RT-PCR and immunohistochemistrym we investigated the expression of the GDNF family receptor alpha 1 (GFR alpha) and the coreceptor transmembrane receptor tyrosine kinase (RET) in rat microglia in vitro as well as the effect of GFL on the expression of proinflammatory molecules in LPS activated microglia. We could show that GFL are able to regulate microglia functions and suggest that part of the well known neuroprotective action may be related to the suppression of microglial activation. We further elucidated the functional significance and pathophysiological implications of these findings and demonstrate that microglia are target cells of members of the GFL (GDNF and the structurally related neurotrophic factors neurturin (NRTN), artemin (ARTN), and persephin (PSPN)). PMID:26317008

  11. Anthocyanin-rich acai (Euterpe oleracea mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Age-related increases in oxidative stress and inflammation are associated with loss of cognitive and motor functions. Previous research has shown that supplementation with berry fruits can modulate signaling in primary hippocampal neurons or BV-2 mouse microglial cells. Because of the high polypheno...

  12. Acute HCV/HIV Coinfection Is Associated with Cognitive Dysfunction and Cerebral Metabolite Disturbance, but Not Increased Microglial Cell Activation

    PubMed Central

    Garvey, Lucy J.; Pavese, Nicola; Ramlackhansingh, Anil; Thomson, Emma; Allsop, Joanna M.; Politis, Marios; Kulasegaram, Ranjababu; Main, Janice; Brooks, David J.; Taylor-Robinson, Simon D.; Winston, Alan

    2012-01-01

    Background Microglial cell activation and cerebral function impairment are described in both chronic hepatitis C viral (HCV) and Human-Immune-Deficiency viral (HIV) infections. The aim of this study was to investigate the effect of acute HCV infection upon cerebral function and microglial cell activation in HIV-infected individuals. Methods A case-control study was conducted. Subjects with acute HCV and chronic HIV coinfection (aHCV) were compared to matched controls with chronic HIV monoinfection (HIVmono). aHCV was defined as a new positive plasma HCV RNA within 12 months of a negative RNA test. Subjects underwent neuro-cognitive testing (NCT), cerebral proton magnetic resonance spectroscopy (1H-MRS) and positron emission tomography (PET) using a 11C-radiolabeled ligand (PK11195), which is highly specific for translocator protein 18 kDA receptors on activated microglial cells. Differences between cases and controls were assessed using linear regression modelling. Results Twenty-four aHCV cases completed NCT and 1H-MRS, 8 underwent PET. Of 57 HIVmono controls completing NCT, 12 underwent 1H-MRS and 8 PET. Subjects with aHCV demonstrated on NCT, significantly poorer executive function (mean (SD) error rate 26.50(17.87) versus 19.09(8.12), p = 0.001) and on 1H-MRS increased myo-inositol/creatine ratios (mI/Cr, a marker of cerebral inflammation) in the basal ganglia (ratio of 0.71(0.22) versus 0.55(0.23), p = 0.03), compared to subjects with HIVmono. On PET imaging, no difference in 11C-PK11195 binding potential (BP) was observed between study groups (p>0.10 all cerebral locations), however lower BPs were associated with combination antiretroviral therapy (cART) use in the parietal (p = 0.01) and frontal (p = 0.03) cerebral locations. Discussion Poorer cognitive performance and disturbance of cerebral metabolites are observed in subjects with aHC,V compared to subjects with HIVmono. Higher 11C-PK11195 BP was not observed in subjects with aHCV, but was

  13. Depression as a microglial disease.

    PubMed

    Yirmiya, Raz; Rimmerman, Neta; Reshef, Ronen

    2015-10-01

    Despite decades of intensive research, the biological mechanisms that causally underlie depression are still unclear, and therefore the development of novel effective antidepressant treatments is hindered. Recent studies indicate that impairment of the normal structure and function of microglia, caused by either intense inflammatory activation (e.g., following infections, trauma, stroke, short-term stress, autoimmune or neurodegenerative diseases) or by decline and senescence of these cells (e.g., during aging, Alzheimer's disease, or chronic unpredictable stress exposure), can lead to depression and associated impairments in neuroplasticity and neurogenesis. Accordingly, some forms of depression can be considered as a microglial disease (microgliopathy), which should be treated by a personalized medical approach using microglial inhibitors or stimulators depending on the microglial status of the depressed patient. PMID:26442697

  14. Prior Binge Ethanol Exposure Potentiates the Microglial Response in a Model of Alcohol-Induced Neurodegeneration.

    PubMed

    Marshall, Simon Alex; Geil, Chelsea Rhea; Nixon, Kimberly

    2016-01-01

    Excessive alcohol consumption results in neurodegeneration which some hypothesize is caused by neuroinflammation. One characteristic of neuroinflammation is microglial activation, but it is now well accepted that microglial activation may be pro- or anti-inflammatory. Recent work indicates that the Majchrowicz model of alcohol-induced neurodegeneration results in anti-inflammatory microglia, while intermittent exposure models with lower doses and blood alcohol levels produce microglia with a pro-inflammatory phenotype. To determine the effect of a repeated binge alcohol exposure, rats received two cycles of the four-day Majchrowicz model. One hemisphere was then used to assess microglia via immunohistochemistry and while the other was used for ELISAs of cytokines and growth factors. A single binge ethanol exposure resulted in low-level of microglial activation; however, a second binge potentiated the microglial response. Specifically, double binge rats had greater OX-42 immunoreactivity, increased ionized calcium-binding adapter molecule 1 (Iba-1+) cells, and upregulated tumor necrosis factor-α (TNF-α) compared with the single binge ethanol group. These data indicate that prior ethanol exposure potentiates a subsequent microglia response, which suggests that the initial exposure to alcohol primes microglia. In summary, repeated ethanol exposure, independent of other immune modulatory events, potentiates microglial activity. PMID:27240410

  15. Prior Binge Ethanol Exposure Potentiates the Microglial Response in a Model of Alcohol-Induced Neurodegeneration

    PubMed Central

    Marshall, Simon Alex; Geil, Chelsea Rhea; Nixon, Kimberly

    2016-01-01

    Excessive alcohol consumption results in neurodegeneration which some hypothesize is caused by neuroinflammation. One characteristic of neuroinflammation is microglial activation, but it is now well accepted that microglial activation may be pro- or anti-inflammatory. Recent work indicates that the Majchrowicz model of alcohol-induced neurodegeneration results in anti-inflammatory microglia, while intermittent exposure models with lower doses and blood alcohol levels produce microglia with a pro-inflammatory phenotype. To determine the effect of a repeated binge alcohol exposure, rats received two cycles of the four-day Majchrowicz model. One hemisphere was then used to assess microglia via immunohistochemistry and while the other was used for ELISAs of cytokines and growth factors. A single binge ethanol exposure resulted in low-level of microglial activation; however, a second binge potentiated the microglial response. Specifically, double binge rats had greater OX-42 immunoreactivity, increased ionized calcium-binding adapter molecule 1 (Iba-1+) cells, and upregulated tumor necrosis factor-α (TNF-α) compared with the single binge ethanol group. These data indicate that prior ethanol exposure potentiates a subsequent microglia response, which suggests that the initial exposure to alcohol primes microglia. In summary, repeated ethanol exposure, independent of other immune modulatory events, potentiates microglial activity. PMID:27240410

  16. Induction of microglial toll-like receptor 4 by prothrombin kringle-2: a potential pathogenic mechanism in Parkinson's disease.

    PubMed

    Shin, Won-Ho; Jeon, Min-Tae; Leem, Eunju; Won, So-Yoon; Jeong, Kyoung Hoon; Park, Sang-Joon; McLean, Catriona; Lee, Sung Joong; Jin, Byung Kwan; Jung, Un Ju; Kim, Sang Ryoung

    2015-01-01

    Microglia-mediated neuroinflammation may play an important role in the initiation and progression of dopaminergic (DA) neurodegeneration in Parkinson's disease (PD), and toll-like receptor 4 (TLR4) is essential for the activation of microglia in the adult brain. However, it is still unclear whether patients with PD exhibit an increase in TLR4 expression in the brain, and whether there is a correlation between the levels of prothrombin kringle-2 (pKr-2) and microglial TLR4. In the present study, we first observed that the levels of pKr-2 and microglial TLR4 were increased in the substantia nigra (SN) of patients with PD. In rat and mouse brains, intranigral injection of pKr-2, which is not directly toxic to neurons, led to the disruption of nigrostriatal DA projections. Moreover, microglial TLR4 was upregulated in the rat SN and in cultures of the BV-2 microglial cell line after pKr-2 treatment. In TLR4-deficient mice, pKr-2-induced microglial activation was suppressed compared with wild-type mice, resulting in attenuated neurotoxicity. Therefore, our results suggest that pKr-2 may be a pathogenic factor in PD, and that the inhibition of pKr-2-induced microglial TLR4 may be protective against degeneration of the nigrostriatal DA system in vivo. PMID:26440368

  17. Microglial P2Y12 receptors regulate microglial activation and surveillance during neuropathic pain.

    PubMed

    Gu, Nan; Eyo, Ukpong B; Murugan, Madhuvika; Peng, Jiyun; Matta, Sanjana; Dong, Hailong; Wu, Long-Jun

    2016-07-01

    Microglial cells are critical in the pathogenesis of neuropathic pain and several microglial receptors have been proposed to mediate this process. Of these receptors, the P2Y12 receptor is a unique purinergic receptor that is exclusively expressed by microglia in the central nervous system (CNS). In this study, we set forth to investigate the role of P2Y12 receptors in microglial electrophysiological and morphological (static and dynamic) activation during spinal nerve transection (SNT)-induced neuropathic pain in mice. First, we found that a genetic deficiency of the P2Y12 receptor (P2Y12(-/-) mice) ameliorated pain hypersensitivities during the initiation phase of neuropathic pain. Next, we characterised both the electrophysiological and morphological properties of microglia in the superficial spinal cord dorsal horn following SNT injury. We show dramatic alterations including a peak at 3days post injury in microglial electrophysiology while high resolution two-photon imaging revealed significant changes of both static and dynamic microglial morphological properties by 7days post injury. Finally, in P2Y12(-/-) mice, these electrophysiological and morphological changes were ameliorated suggesting roles for P2Y12 receptors in SNT-induced microglial activation. Our results therefore indicate that P2Y12 receptors regulate microglial electrophysiological as well as static and dynamic microglial properties after peripheral nerve injury, suggesting that the microglial P2Y12 receptor could be a potential therapeutic target for the treatment of neuropathic pain. PMID:26576724

  18. Differential expression of miRNA-146a-regulated inflammatory genes in human primary neural, astroglial and microglial cells

    PubMed Central

    Li, Yuan Yuan; Cui, Jian Guo; Dua, Prerna; Pogue, Aileen I.; Bhattacharjee, Surjyadipta; Lukiw, Walter J.

    2013-01-01

    Micro RNA-146a (miRNA-146a) is an inducible, 22 nucleotide, small RNA over-expressed in Alzheimer’s disease (AD) brain. Up-regulated miRNA-146a targets several inflammation-related and membrane-associated messenger RNAs (mRNAs), including those encoding complement factor-H (CFH) and the interleukin-1 receptor associated kinase-1 (IRAK-1), resulting in significant decreases in their expression (p < 0.05, ANOVA). In this study we assayed miRNA-146a, CFH, IRAK-1 and tetraspanin-12 (TSPAN12), abundances in primary human neuronal-glial (HNG) co-cultures, in human astroglial (HAG) and microglial (HMG) cells stressed with Aβ42 peptide and tumor necrosis factor alpha (TNFα). The results indicate a consistent inverse relationship between miRNA-146a and CFH, IRAK-1 and TSPAN12 expression levels, and indicate that HNG, HAG and HMG cell types each respond differently to Aβ42-peptide + TNFα-triggered stress. While the strongest miRNA-146a-IRAK-1 response was found in HAG cells, the largest miRNA-146a-TSPAN12 response was found in HNG cells, and the most significant miRNA-146a-CFH changes were found in HMG cells, the ‘resident scavenging macrophages’ of the brain. PMID:21640790

  19. Down-regulation of BNIP3 by olomoucine, a CDK inhibitor, reduces LPS- and NO-induced cell death in BV2 microglial cells.

    PubMed

    Tsou, Yu-Chi; Wang, Hsiao-Hsien; Hsieh, Chii-Cheng; Sun, Kuang-Hui; Sun, Guang-Huan; Jhou, Ren-Shiang; Lin, Tz-I; Lu, Shou-Yun; Liu, Huan-Yun; Tang, Shye-Jye

    2016-08-15

    Proinflammatory responses eliciting the microglial production of cytokines and nitric oxide (NO) have been reported to play a crucial role in the acute and chronic pathogenic effects of neurodegeneration. Chemical inhibitors of cyclin-dependent kinases (CDKs) may prevent the progression of neurodegeneration by both limiting cell proliferation and reducing cell death. However, the mechanism underlying the protective effect of CDK inhibitors on microglia remains unexplored. In this study, we found that olomoucine, a CDK inhibitor, alleviated lipopolysaccharide (LPS)-induced BV2 microglial cell death by reducing the generation of NO and inhibiting the gene expression of proinflammatory cytokines. In addition, olomoucine reduced inducible NO synthase promoter activity and alleviated NF-κB- and E2F-mediated transcriptional activation. NO-induced cell death involved mitochondrial disruptions such as cytochrome c release and loss of mitochondrial membrane potential, and pretreatment with olomoucine prior to NO exposure reduced these disruptions. Microarray analysis revealed that olomoucine treatment induced prominent down-regulation of Bcl2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3), a pro-apoptotic Bcl-2 family protein that is involved in mitochondrial disruption. As BNIP3 knock-down significantly increased the viability of LPS- and NO-treated BV2 cells, we conclude that olomoucine may protect cells by limiting proinflammatory responses, thereby reducing NO generation. Simultaneously, down-regulation of BNIP3 prevents NO stimulation from inducing mitochondrial disruption. PMID:27345388

  20. Neurotoxicity effects of atrazine-induced SH-SY5Y human dopaminergic neuroblastoma cells via microglial activation.

    PubMed

    Ma, Kun; Wu, Hao-Yu; Zhang, Bo; He, Xi; Li, Bai-Xiang

    2015-11-01

    Atrazine (2-chloro-4-ethytlamino-6-isopropylamine-1,3,5-triazine; ATR) is a broad-spectrum herbicide with a wide range of applications worldwide. However, ATR is neurotoxic; it reduces dopamine levels in the substantia nigra and corpus striatum in the midbrain, affects the absorption of synaptic vesicles and synaptic bodies, and interferes with dopamine storage and uptake in synaptic vesicles, leading to neurodegenerative disorders. Microglia are resident immunocompetent and phagocytic cells that regulate and participate in the microenvironment in the central nervous system. They demonstrate macrophage characteristics after activation by releasing inflammatory cytokines and neurotoxic substances to increase the inflammatory response, and are thus involved in neurodegeneration. The aim of this study was to investigate the neurotoxic effects of ATR-activated microglia-mediated neuronal damage in terms of human dopaminergic neuroblastoma SH-SY5Y cell death. ATR was administered to BV-2 microglial cells at 12.5, 25, and 50 μM for 1, 6, 12, 24 and 48 h, respectively. ATR increased activated-microglia-induced overexpression of reactive oxygen species, inducible nitric oxide synthase, nitric oxide, gp91(phox), p47(phox), and the inflammatory cytokines tumor necrosis factor α and interleukin-1β, thus reducing SH-SY5Y cell viability. These results suggest that activated microglia may play a critical role in inflammation-mediated dopaminergic neuronal death, and provide the basis for further studies on the mechanisms of ATR-induced dopaminergic system toxicity. PMID:26256823

  1. Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells.

    PubMed

    Jeong, Jin-Woo; Jin, Cheng-Yun; Kim, Gi-Young; Lee, Jae-Dong; Park, Cheol; Kim, Gun-Do; Kim, Wun-Jae; Jung, Won-Kyo; Seo, Su Kil; Choi, Il-Whan; Choi, Yung Hyun

    2010-12-01

    Cordyceps militaris, a traditional medicinal mushroom, produces the bioactive compound cordycepin (3'-deoxyadenosine). Although cordycepin has been shown to have pharmacological, immunological stimulating, anti-cancer, and anti-inflammatory activities, its activities and cellular mechanisms during microglial activation have yet to be elucidated. Thus, we evaluated the anti-inflammatory effect of cordycepin on the production of inflammatory mediators in lipopolysaccharide (LPS)-stimulated murine BV2 microglia. We also investigated the effects of cordycepin on LPS-induced nuclear factor-kappaB (NF-κB) activation and on phosphorylation of mitogen-activated protein kinases (MAPKs). After LPS stimulation, nitric oxide (NO), prostaglandin E₂ (PGE₂), and pro-inflammatory cytokine production was detected in BV2 microglia. However, we found that cordycepin significantly inhibited the excessive production of NO, PGE₂, and pro-inflammatory cytokines in a concentration-dependent manner without causing cytotoxicity. In addition, cordycepin suppressed NF-κB translocation by blocking IkappaB-α (IκB-α) degradation and inhibited the phosphorylation of Akt, ERK-1/2, JNK, and p38 kinase. Our results indicate that the inhibitory effect of cordycepin on LPS-stimulated inflammatory mediator production in BV2 microglia is associated with the suppression of the NF-κB, Akt, and MAPK signaling pathways. Therefore, cordycepin may be useful in treating neurodegenerative diseases by inhibiting inflammatory mediator production in activated microglia. PMID:20937401

  2. Attenuation of microglial RANTES by NEMO-binding domain peptide inhibits the infiltration of CD8(+) T cells in the nigra of hemiparkinsonian monkey.

    PubMed

    Roy, A; Mondal, S; Kordower, J H; Pahan, K

    2015-08-27

    Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). Despite intense investigations, little is known about its pathological mediators. Here, we report the marked upregulation of RANTES (regulated on activation, normal T cell expressed and secreted) and eotaxin, chemokines that are involved in T cell trafficking, in the serum of hemiparkinsonian monkeys. Interestingly, 1-methyl-4-phenylpyridinium (MPP(+)), a Parkinsonian toxin, increased the expression of RANTES and eotaxin in mouse microglial cells. The presence of NF-κB binding sites in promoters of RANTES and eotaxin and down-regulation of these genes by NEMO-binding domain (NBD) peptide, selective inhibitor of induced NF-κB activation, in MPP(+)-stimulated microglial cells suggest that the activation of NF-κB plays an important role in the upregulation of these two chemokines. Consistently, serum enzyme-linked immuno assay (ELISA) and nigral immunohistochemistry further confirmed that these chemokines were strongly upregulated in MPTP-induced hemiparkinsonian monkeys and that treatment with NBD peptides effectively inhibited the level of these chemokines. Furthermore, the microglial upregulation of RANTES in the nigra of hemiparkinsonian monkeys could be involved in the altered adaptive immune response in the brain as we observed greater infiltration of CD8(+) T cells around the perivascular niche and deep brain parenchyma of hemiparkinsonian monkeys as compared to control. The treatment of hemiparkinsonian monkeys with NBD peptides decreased the microglial expression of RANTES and attenuated the infiltration of CD8(+) T cells in nigra. These results indicate the possible involvement of chemokine-dependent adaptive immune response in Parkinsonism. PMID:25783477

  3. Fasudil inhibits LPS-induced migration of retinal microglial cells via regulating p38-MAPK signaling pathway

    PubMed Central

    Xu, Fan; Xu, Yue; Zhu, Liqiong; Rao, Pinhong; Wen, Jiamin; Sang, Yunyun; Shang, Fu

    2016-01-01

    Purpose To investigate the effect and possible molecular mechanisms of fasudil on retinal microglial (RMG) cell migration. Methods Primary cultured RMG cells were incubated with lipopolysaccharide (LPS), fasudil, and/or SB203580 (a p38 inhibitor). RMG cell motility was determined with the scratch wound assay and the Transwell migration assay. The phosphorylation of p38 and levels of matrix metalloproteinase 2 (MMP-2) and MMP-9 were measured with western blot. Results In the scratch-induced migration assay, as well as in the Transwell migration assay, the results indicated that LPS stimulated the migratory potential of RMG cells and fasudil significantly reduced LPS-stimulated RMG cell migration in a concentration-dependent manner. However, fasudil had no effect on RMG cell migration in the absence of LPS stimulation. Moreover, fasudil reduced the level of phosphor-p38 mitogen-activated protein kinase (p-p38-MAPK) in a concentration-dependent manner, without effects on the levels of phospho-p44/42 (p-ERK1/2) and phospho-c-Jun N-terminal kinase (p-JNK). Cotreatment with SB203580 (a p38 inhibitor) and fasudil resulted in the synergistic reduction of MMP-2, MMP-9, and p-p38-MAPK, as well as a reduction in the LPS-stimulated migration capabilities of the RMG cells, suggesting fasudil suppresses the LPS-stimulated migration of RMG cells via directly downregulating the p38-MAPK signaling pathway. Conclusions Our studies indicated that fasudil inhibited LPS-stimulated RMG cell migration via suppression of the p38-MAPK signaling pathway. PMID:27441000

  4. Microglial Derived Tumor Necrosis Factor-α Drives Alzheimer’s Disease-Related Neuronal Cell Cycle Events

    PubMed Central

    Bhaskar, Kiran; Maphis, Nicole; Xu, Guixiang; Varvel, Nicholas H.; Kokiko-Cochran, Olga N; Weick, Jason P.; Staugaitis, Susan M.; Cardona, Astrid; Ransohoff, Richard M.; Herrup, Karl; Lamb, Bruce T.

    2013-01-01

    Massive neuronal loss is a key pathological hallmark of Alzheimer’s disease (AD). However, the mechanisms are still unclear. Here we demonstrate that neuroinflammation, cell autonomous to microglia, is capable of inducing neuronal cell cycle events (CCEs), which are toxic for terminally differentiated neurons. First, oligomeric amyloid-beta peptide (ApO)-mediated microglial activation induced neuronal CCEs via the tumor-necrosis factor-α (TNFα) and the c-Jun Kinase (JNK) signaling pathway. Second, adoptive transfer of CD11b+ microglia from AD transgenic mice (R1.40) induced neuronal cyclin D1 expression via TNFα signaling pathway. Third, genetic deficiency of TNFα in R1.40 mice (R1 .40-Tnfα−/−) iled to induce neuronal CCEs. Finally, the mitotically active neurons spatially co-exist with F4/80+ activated microglia in the human AD brain and that a portion of these neurons are apoptotic. Together our data suggest a cell-autonomous role of microglia, and identify TNFα as the responsible cytokine, in promoting neuronal CCEs in the pathogenesis of AD. PMID:24141019

  5. Involvement of PKA and HO-1 signaling in anti-inflammatory effects of surfactin in BV-2 microglial cells

    SciTech Connect

    Park, Sun Young; Kim, Ji-Hee; Lee, Sang Joon; Kim, YoungHee

    2013-04-01

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E{sub 2} (PGE{sub 2}), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, a component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases. - Highlights: ► Surfactin inhibits proinflammatory mediator synthesis in LTA-activated BV-2 cells. ► Surfactin suppresses NF-κB and STAT-1, but potentiates

  6. Resveratrol Inhibits Inflammatory Responses via the Mammalian Target of Rapamycin Signaling Pathway in Cultured LPS-Stimulated Microglial Cells

    PubMed Central

    Guo, Jia-Zhi; Zhang, Wei; He, Ying; Song, Rui; Wang, Wen-Min; Xiao, Chun-Jie; Lu, Di

    2012-01-01

    Background Resveratrol have been known to possess many pharmacological properties including antioxidant, cardioprotective and anticancer effects. Although current studies indicate that resveratrol produces neuroprotection against neurological disorders, the precise mechanisms for its beneficial effects are still not fully understood. We investigate the effect of anti-inflammatory and mechamisms of resveratrol by using lipopolysaccharide (LPS)-stimulated murine microglial BV-2 cells. Methodology/Principal Findings BV-2 cells were treated with resveratrol (25, 50, and 100 µM) and/or LPS (1 µg/ml). Nitric oxide (NO) and prostaglandin E2 (PGE2) were measured by Griess reagent and ELISA. The mRNA and protein levels of proinflammatory proteins and cytokines were analysed by RT-PCR and double immunofluorescence labeling, respectively. Phosphorylation levels of PTEN (phosphatase and tensin homolog deleted on chromosome 10), Akt, mammalian target of rapamycin (mTOR), mitogen-activated protein kinases (MAPKs) cascades, inhibitor κB-α (IκB-α) and cyclic AMP-responsive element-binding protein (CREB) were measured by western blot. Resveratrol significantly attenuated the LPS-induced expression of NO, PGE2, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and nuclear factor-κB (NF-κB) in BV-2 cells. Resveratrol increased PTEN, Akt and mTOR phosphorylation in a dose-dependent manner or a time-dependent manner. Rapamycin (10 nM), a specific mTOR inhibitor, blocked the effects of resveratrol on LPS-induced microglial activation. In addition, mTOR inhibition partially abolished the inhibitory effect of resveratrol on the phosphorylation of IκB-α, CREB, extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK). Conclusion and Implications This study indicates that resveratrol inhibited LPS-induced proinflammatory

  7. Anti-inflammatory effects of saponins derived from the roots of Platycodon grandiflorus in lipopolysaccharide‑stimulated BV2 microglial cells.

    PubMed

    Jang, Kyung-Jun; Kim, Hong Ki; Han, Min Ho; Oh, You Na; Yoon, Hyun-Min; Chung, Yoon Ho; Kim, Gi Young; Hwang, Hye Jin; Kim, Byung Woo; Choi, Yung Hyun

    2013-06-01

    Radix platycodi is the root of Platycodon grandiflorus A. DC, which has been widely used as a food material and for the treatment of a number of chronic inflammatory diseases in traditional oriental medicine. In this study, the anti‑inflammatory effects of the saponins isolated from radix platycodi (PGS) on the production of inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated BV2 murine microglial cells were examined. We also investigated the effects of PGS on LPS‑induced nuclear factor‑κB (NF-κB) activation and phosphoinositide 3-kinase (PI3K)/AKT and mitogen-activated protein kinase (MAPK) signaling pathways. Following stimulation with LPS, elevated nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokine production was detected in the BV2 microglial cells. However, PGS significantly inhibited the excessive production of NO, PGE2 and pro‑inflammatory cytokines, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in a concentration-dependent manner without causing any cytotoxic effects. In addition, PGS suppressed NF-κB translocation and inhibited the LPS-induced phosphorylation of AKT and MAPKs. Our results indicate that the inhibitory effect of PGS on LPS-stimulated inflammatory response in BV2 microglial cells is associated with the suppression of NF-κB activation and the PI3K/AKT and MAPK signaling pathways. Therefore, these findings suggest that PGS may be useful in the treatment of neurodegenerative diseases by inhibiting inflammatory responses in activated microglial cells. PMID:23563392

  8. Differential transcriptional profiles mediated by exposure to the cannabinoids cannabidiol and Δ9-tetrahydrocannabinol in BV-2 microglial cells

    PubMed Central

    Juknat, Ana; Pietr, Maciej; Kozela, Ewa; Rimmerman, Neta; Levy, Rivka; Coppola, Giovanni; Geschwind, Daniel; Vogel, Zvi

    2012-01-01

    BACKGROUND AND PURPOSE Apart from their effects on mood and reward, cannabinoids exert beneficial actions such as neuroprotection and attenuation of inflammation. The immunosuppressive activity of cannabinoids has been well established. However, the underlying mechanisms are largely unknown. We previously showed that the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) and the non-psychoactive cannabidiol (CBD) differ in their anti-inflammatory signalling pathways. EXPERIMENTAL APPROACH To characterize the transcriptional effects of CBD and THC, we treated BV-2 microglial cells with these compounds and performed comparative microarray analysis using the Illumina MouseRef-8 BeadChip platform. Ingenuity Pathway Analysis was performed to identify functional subsets of genes and networks regulated by CBD and/or THC. KEY RESULTS Overall, CBD altered the expression of many more genes; from the 1298 transcripts found to be differentially regulated by the treatments, 680 gene probe sets were up-regulated by CBD and 58 by THC, and 524 gene products were down-regulated by CBD and only 36 by THC. CBD-specific gene expression profile showed changes associated with oxidative stress and glutathione depletion, normally occurring under nutrient limiting conditions or proteasome inhibition and involving the GCN2/eIF2α/p8/ATF4/CHOP-TRIB3 pathway. Furthermore, CBD-stimulated genes were shown to be controlled by nuclear factors known to be involved in the regulation of stress response and inflammation, mainly via the (EpRE/ARE)-Nrf2/ATF4 system and the Nrf2/Hmox1 axis. CONCLUSIONS AND IMPLICATIONS These observations indicated that CBD, but much less than THC, induced a cellular stress response in microglial cells and suggested that this effect could underlie its anti-inflammatory activity. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012

  9. Anti-CD20 inhibits T cell-mediated pathology and microgliosis in the rat brain

    PubMed Central

    Anthony, Daniel C; Dickens, Alex M; Seneca, Nicholas; Couch, Yvonne; Campbell, Sandra; Checa, Begona; Kersemans, Veerle; Warren, Edward A; Tredwell, Matthew; Sibson, Nicola R; Gouverneur, Veronique; Leppert, David

    2014-01-01

    Objective The mechanism of action of anti-B cell therapy in multiple sclerosis (MS) is not fully understood. Here, we compared the effect of anti-CD20 therapy on microglial activation in two distinct focal rat models of MS. Methods The effect of anti-CD20 therapy on lesion formation and extralesional microglial activation was evaluated in the fDTH-EAE (experimental allergic encephalomyelitis) model, which is a focal demyelinating type-IV delayed-type hypersensitivity lesion. For comparison, effects were also assessed in the focal humoral MOG model induced by intracerebral injection of cytokine in myelin oligodendrocyte glycoprotein immunized rats. Microglial activation was assessed in situ and in vivo using the TSPO SPECT ligand [125I]DPA-713, and by immunostaining for MHCII. The effect of treatment on demyelination and lymphocyte recruitment to the brain were evaluated. Results Anti-CD20 therapy reduced microglial activation, and lesion formation in the humoral model, but it was most effective in the antibody-independent fDTH-EAE. Immunohistochemistry for MHCII also demonstrated a reduced volume of microglial activation in the brains of anti-CD20-treated fDTH-EAE animals, which was accompanied by a reduction in T-cell recruitment and demyelination. The effect anti-CD20 therapy in the latter model was similarly strong as compared to the T-cell targeting MS compound FTY720. Interpretation The suppression of lesion development by anti-CD20 treatment in an antibody-independent model suggests that B-cells play an important role in lesion development, independent of auto-antibody production. Thus, CD20-positive B-cell depletion has the potential to be effective in a wider population of individuals with MS than might have been predicted from our knowledge of the underlying histopathology. PMID:25493280

  10. Negative feedback between prostaglandin and alpha- and beta-chemokine synthesis in human microglial cells and astrocytes.

    PubMed

    Janabi, N; Hau, I; Tardieu, M

    1999-02-01

    The understanding of immune surveillance and inflammation regulation in cerebral tissue is essential in the therapy of neuroimmunological disorders. We demonstrate here that primary human glial cells were able to produce alpha- and beta-chemokines (IL-8 > growth related protein alpha (GROalpha) > RANTES > microphage inflammatory protein (MIP)-1alpha and MIP-1beta) in parallel to PGs (PGE2 and PGF2alpha) after proinflammatory cytokine stimulation: TNF-alpha + IL-1beta induced all except RANTES, which was induced by TNF-alpha + IFN-gamma. Purified cultures of astrocytes and microglia were also induced by the same combination of cytokines, to produce all these mediators except MIP-1alpha and MIP-1beta, which were produced predominantly by astrocytes. The inhibition of PG production by indomethacin led to a 37-60% increase in RANTES, MIP-1alpha, and MIP-1beta but not in GROalpha and IL-8 secretion. In contrast, inhibition of IL-8 and GRO activities using neutralizing Abs resulted in a specific 6-fold increase in PGE2 but not in PGF2alpha production by stimulated microglial cells and astrocytes, whereas Abs to beta-chemokines had no effect. Thus, the production of PGs in human glial cells down-regulates their beta-chemokine secretion, whereas alpha-chemokine production in these cells controls PG secretion level. These data suggest that under inflammatory conditions, the intraparenchymal production of PGs could control chemotactic gradient of beta-chemokines for an appropriate effector cell recruitment or activation. Conversely, the elevated intracerebral alpha-chemokine levels could reduce PG secretion, preventing the exacerbation of inflammation and neurotoxicity. PMID:9973432

  11. Phlorofucofuroeckol B suppresses inflammatory responses by down-regulating nuclear factor κB activation via Akt, ERK, and JNK in LPS-stimulated microglial cells.

    PubMed

    Yu, Dong-Kyung; Lee, Bonggi; Kwon, Misung; Yoon, Nayoung; Shin, Taisun; Kim, Nam-Gil; Choi, Jae-Sue; Kim, Hyeung-Rak

    2015-10-01

    Microglial activation has been implicated in many neurological disorders for its inflammatory and neurotrophic effects. In this study, we investigated the effects of phlorofucofuroeckol B (PFF-B) isolated from Ecklonia stolonifera, on the production of inflammatory mediators in lipopolysaccharide (LPS)-stimulated microglia. PFF-B decreased secretion of pro-inflammatory cytokines including tumor necrosis factor α, interleukin (IL)-1β, and IL-6 and the expression of pro-inflammatory proteins such as cyclooxygenase-2 and inducible nitric oxide synthase in LPS-stimulated BV-2 cells. Profoundly, PFF-B inhibited activation of nuclear factor kappaB (NF-κB) by preventing the degradation of inhibitor κB-α (IκB-α), which led to prevent the nuclear translocation of p65 NF-κB subunit. Moreover, PFF-B inhibited the phosphorylation of Akt, ERK, and JNK. These results indicate that the anti-inflammatory effect of PFF-B on LPS-stimulated microglial cells is mainly regulated by the inhibition of IκB-α/NF-κB and Akt/ERK/JNK pathways. Our study suggests that PFF-B can be considered as a therapeutic agent against neuroinflammation by inhibiting microglial activation. PMID:26341413

  12. Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system

    PubMed Central

    Dilger, Ryan N.; Johnson, Rodney W.

    2008-01-01

    Recent studies suggest that activation of the peripheral immune system elicits a discordant central (i.e., in the brain) inflammatory response in aged but otherwise healthy subjects compared with younger cohorts. A fundamental difference in the reactive state of microglial cells in the aged brain has been suggested as the basis for this discordant inflammatory response. Thus, the aging process appears to serve as a “priming” stimulus for microglia, and upon secondary stimulation with a triggering stimulus (i.e., peripheral signals communicating infection), these primed microglia release excessive quantities of proinflammatory cytokines. Subsequently, this exaggerated cytokine release elicits exaggerated behavioral changes including anorexia, hypersomnia, lethargy, decreased social interaction, and deficits in cognitive and motor function (collectively known as the sickness behavior syndrome). Whereas this reorganization of host priorities is normally adaptive in young subjects, there is a propensity for this response to be maladaptive in aged subjects, resulting in greater severity and duration of the sickness behavior syndrome. Consequently, acute bouts of cognitive impairment in elderly subjects increase the likelihood of poor self-care behaviors (i.e., anorexia, weight loss, noncompliance), which ultimately leads to higher rates of hospitalization and mortality. PMID:18495785

  13. Methamphetamine activates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and induces human immunodeficiency virus (HIV) transcription in human microglial cells

    PubMed Central

    Wires, Emily S.; Alvarez, David; Dobrowolski, Curtis; Wang, Yun; Morales, Marisela; Karn, Jonathan; Harvey, Brandon K.

    2012-01-01

    Human immunodeficiency virus (HIV) primarily infects glial cells in the central nervous system (CNS). Recent evidence suggests that HIV-infected individuals who abuse drugs such as methamphetamine (METH) have higher viral loads and experience more severe neurological complications than HIV-infected individuals who do not abuse drugs. The aim of this study was to determine the effect of METH on HIV expression from the HIV long terminal repeats (LTR) promoter and on an HIV integrated provirus in microglial cells, the primary host cells for HIV in the CNS. Primary human microglial cells immortalized with SV40 T-antigen (CHME-5 cells) were co-transfected with an HIV LTR reporter and the HIV Tat gene, a key regulator of viral replication and gene expression, and exposed to METH. Our results demonstrate that METH treatment induced LTR activation, an effect potentiated in the presence of Tat. We also found that METH increased the nuclear translocation of the nuclear factor kappa B (NF-κB), a key cellular transcriptional regulator of the LTR promoter, and the activity of an NF-κB-specific reporter plasmid in CHME-5 cells. The presence of a dominant-negative regulator of NF-κB blocked METH-related activation of the HIV LTR. Furthermore, treatment of HIV-latently infected CHME-5 (CHME-5/HIV) cells with METH induced HIV expression in a dose-dependent manner, and nuclear translocation of the p65 subunit of NF-κB. These results suggest that METH can stimulate HIV gene expression in microglia cells through activation of the NF-κB signaling pathway. This mechanism may outline the initial biochemical events leading to the observed increased neurodegeneration in HIV-positive individuals who use METH. PMID:22618514

  14. Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS.

    PubMed

    Hu, Zhuqin; Yu, Fengxiang; Gong, Ping; Qiu, Yu; Zhou, Wei; Cui, Yongyao; Li, Juan; Chen, Hongzhuan

    2014-04-15

    Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxic concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IкB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation. PMID

  15. Induction of microglial toll-like receptor 4 by prothrombin kringle-2: a potential pathogenic mechanism in Parkinson’s disease

    PubMed Central

    Shin, Won-Ho; Jeon, Min-Tae; Leem, Eunju; Won, So-Yoon; Jeong, Kyoung Hoon; Park, Sang-Joon; McLean, Catriona; Lee, Sung Joong; Jin, Byung Kwan; Jung, Un Ju; Kim, Sang Ryoung

    2015-01-01

    Microglia-mediated neuroinflammation may play an important role in the initiation and progression of dopaminergic (DA) neurodegeneration in Parkinson’s disease (PD), and toll-like receptor 4 (TLR4) is essential for the activation of microglia in the adult brain. However, it is still unclear whether patients with PD exhibit an increase in TLR4 expression in the brain, and whether there is a correlation between the levels of prothrombin kringle-2 (pKr-2) and microglial TLR4. In the present study, we first observed that the levels of pKr-2 and microglial TLR4 were increased in the substantia nigra (SN) of patients with PD. In rat and mouse brains, intranigral injection of pKr-2, which is not directly toxic to neurons, led to the disruption of nigrostriatal DA projections. Moreover, microglial TLR4 was upregulated in the rat SN and in cultures of the BV-2 microglial cell line after pKr-2 treatment. In TLR4-deficient mice, pKr-2-induced microglial activation was suppressed compared with wild-type mice, resulting in attenuated neurotoxicity. Therefore, our results suggest that pKr-2 may be a pathogenic factor in PD, and that the inhibition of pKr-2-induced microglial TLR4 may be protective against degeneration of the nigrostriatal DA system in vivo. PMID:26440368

  16. Reticulocalbin-1 Facilitates Microglial Phagocytosis

    PubMed Central

    Ding, Ying; Caberoy, Nora B.; Guo, Feiye; LeBlanc, Michelle E.; Zhang, Chenming; Wang, Weiwen; Wang, Feng; Chen, Rui; Li, Wei

    2015-01-01

    Phagocytosis is critical to the clearance of apoptotic cells, cellular debris and deleterious metabolic products for tissue homeostasis. Phagocytosis ligands directly recognizing deleterious cargos are the key to defining the functional roles of phagocytes, but are traditionally identified on a case-by-case basis with technical challenges. As a result, extrinsic regulation of phagocytosis is poorly defined. Here we demonstrate that microglial phagocytosis ligands can be systematically identified by a new approach of functional screening. One of the identified ligands is reticulocalbin-1 (Rcn1), which was originally reported as a Ca2+-binding protein with a strict expression in the endoplasmic reticulum. Our results showed that Rcn1 can be secreted from healthy cells and that secreted Rcn1 selectively bound to the surface of apoptotic neurons, but not healthy neurons. Independent characterization revealed that Rcn1 stimulated microglial phagocytosis of apoptotic but not healthy neurons. Ingested apoptotic cells were targeted to phagosomes and co-localized with phagosome marker Rab7. These data suggest that Rcn1 is a genuine phagocytosis ligand. The new approach described in this study will enable systematic identification of microglial phagocytosis ligands with broad applicability to many other phagocytes. PMID:25992960

  17. Properties of the pore-forming P2X7 purinoceptor in mouse NTW8 microglial cells

    PubMed Central

    Chessell, I P; Michel, A D; Humphrey, P P A

    1997-01-01

    We have used whole-cell patch clamping methods to study and characterize the cytolytic P2X7 (P2Z) receptor in the NTW8 mouse microglial cell line. At room temperature, in an extracellular solution containing 2 mM Ca2+ and 1 mM Mg2+, 2′- and 3′-O-(4-benzoylbenzoyl)-adenosine-5′-triphosphate (Bz-ATP; 300 μM), or ATP (3 mM), evoked peak whole cell inward currents, at a holding potential of −90 mV, of 549±191 and 644±198 pA, respectively. Current-voltage relationships generated with 3 mM ATP reversed at 4.6 mV and did not display strong rectification. In an extracellular solution containing zero Mg2+ and 500 μM Ca2+ (low divalent solution), brief (0.5 s) application of these agonists elicited larger maximal currents (909±138 and 1818±218 pA, Bz-ATP and ATP, respectively). Longer application of ATP (1 mM for 30 s) produced larger, slowly developing, currents which reached a plateau after approximately 15–20 s and were reversible on washing. Under these conditions, in the presence of ATP, ethidium bromide uptake could be demonstrated. Further applictions of 1 mM ATP produced rapid currents of the same magnitude as those observed during the 30 s application. Subsequent determination of concentration-effect curves to Bz-ATP, ATP and 2-methylthio-ATP yielded EC50 values of 58.3, 298 and 505 μM, respectively. These affects of ATP were antagonized by pyridoxal-phosphate-6-azophenyl- 2′, 4′-disulphonic acid (PPADS; 30 μM) but not suramin (100 μM). In low divalent solution, repeated application of 1 mM ATP for 1 s produced successively larger currents which reached a plateau, after 8 applications, of 466% of the first application current. PPADS (30 μM) prevented this augmentation, while 5-(N,N-hexamethylene)-amiloride (HMA) (100 μM) accelerated it such that maximal augmentation was observed after only one application of ATP in the presence of HMA. At a bath temperature of 32°C, current augmentation also

  18. AICAR (5-aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside) increases the production of toxic molecules and affects the profile of cytokines release in LPS-stimulated rat primary microglial cultures.

    PubMed

    Łabuzek, Krzysztof; Liber, Sebastian; Gabryel, Bozena; Okopień, Bogusław

    2010-01-01

    AICAR (5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside, Acadesine, AICA riboside) is an activator of AMP-activated protein kinase (AMPK). The results of recent studies suggest that AICAR, in addition to its application for treating metabolic disorders, may also have therapeutic potential for treating neuroinflammatory diseases where reactive microglia play an etiological role. However, the molecular mechanisms of action by which AICAR exerts its anti-inflammatory effects still remain unclear or controversial. In this paper we attempt to evaluate the effects of AICAR on non-stimulated and LPS-activated rat primary microglial cell cultures. The presented evidence supports the conclusion that AMPK activated by AICAR is involved in regulation of ROS and cytokine production (IL-1 beta, TNF-alpha (6h), IL-10 and TGF-beta) as well as arginase I and PGC-1alpha expression. Furthermore, we found that the effects of AICAR on IL-6 and TNF-alpha (12, 24h) release and on the expression of iNOS and NF-kappaB p65 are not AMPK-dependent because the pre-treatment of LPS-activated microglia with compound C (a pharmacological inhibitor of AMPK) did not reverse the effect of AICAR. The results of the presented study provide additional data about AMPK-dependent and -independent mechanisms whereby AICAR may modulate inflammatory response of microglia. PMID:19853624

  19. High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells.

    PubMed

    Goode, Angela E; Gonzalez Carter, Daniel A; Motskin, Michael; Pienaar, Ilse S; Chen, Shu; Hu, Sheng; Ruenraroengsak, Pakatip; Ryan, Mary P; Shaffer, Milo S P; Dexter, David T; Porter, Alexandra E

    2015-11-01

    Multi-walled carbon nanotubes (MWNTs) are increasingly being developed both as neuro-therapeutic drug delivery systems to the brain and as neural scaffolds to drive tissue regeneration across lesion sites. MWNTs with different degrees of acid oxidation may have different bioreactivities and propensities to aggregate in the extracellular environment, and both individualised and aggregated MWNTs may be expected to be found in the brain. Before practical application, it is vital to understand how both aggregates and individual MWNTs will interact with local phagocytic immune cells, the microglia, and ultimately to determine their biopersistence in the brain. The processing of extra- and intracellular MWNTs (both pristine and when acid oxidised) by microglia was characterised across multiple length scales by correlating a range of dynamic, quantitative and multi-scale techniques, including: UV-vis spectroscopy, light microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy. Dynamic, live cell imaging revealed the ability of microglia to break apart and internalise micron-sized extracellular agglomerates of acid oxidised MWNTs, but not pristine MWNTs. The total amount of MWNTs internalised by, or strongly bound to, microglia was quantified as a function of time. Neither the significant uptake of oxidised MWNTs, nor the incomplete uptake of pristine MWNTs affected microglial viability, pro-inflammatory cytokine release or nitric oxide production. However, after 24 h exposure to pristine MWNTs, a significant increase in the production of reactive oxygen species was observed. Small aggregates and individualised oxidised MWNTs were present in the cytoplasm and vesicles, including within multilaminar bodies, after 72 h. Some evidence of morphological damage to oxidised MWNT structure was observed including highly disordered graphitic structures, suggesting possible biodegradation. This work demonstrates the utility of dynamic

  20. Miglustat improves purkinje cell survival and alters microglial phenotype in feline Niemann-Pick disease type C.

    PubMed

    Stein, Veronika M; Crooks, Alexandra; Ding, Wenge; Prociuk, Maria; O'Donnell, Patricia; Bryan, Caroline; Sikora, Tracey; Dingemanse, Jasper; Vanier, Marie T; Walkley, Steven U; Vite, Charles H

    2012-05-01

    Niemann-Pick disease type C (NPC disease) is an incurable cellular lipid-trafficking disorder characterized by neurodegeneration and intralysosomal accumulation of cholesterol and glycosphingolipids. Treatment with miglustat, a small imino sugar that reversibly inhibits glucosylceramide synthase, which is necessary for glycosphingolipid synthesis, has been shown to benefit patients with NPC disease. The mechanism(s) and extent of brain cellular changes underlying this benefit are not understood. To investigate the basis of the efficacy of miglustat, cats with disease homologous to the juvenile-onset form of human NPC disease received daily miglustat orally beginning at 3 weeks of age. The plasma half-life of miglustat was 6.6 ± 1.1 hours, with a tmax, Cmax, and area under the plasma concentration-time curve of 1.7 ± 0.6 hours, 20.3 ± 4.6 μg/mL, and 104.1 ± 16.6 μg hours/mL, respectively. Miglustat delayed the onset of neurological signs and increased the lifespan of treated cats and was associated with decreased GM2 ganglioside accumulation in the cerebellum and improved Purkinje cell survival. Ex vivo examination of microglia from the brains of treated cats revealed normalization of CD1c and class II major histocompatibility complex expression, as well as generation of reactive oxygen species. Together, these results suggest that prolonged Purkinje cell survival, reduced glycosphingolipid accumulation, and/or the modulation of microglial immunophenotype and function contribute to miglustat-induced neurological improvement in treated cats. PMID:22487861

  1. Miglustat Improves Purkinje Cell Survival and Alters Microglial Phenotype in Feline Niemann-Pick Disease Type C

    PubMed Central

    Stein, Veronika M.; Crooks, Alexandra; Ding, Wenge; Prociuk, Maria; O’Donnell, Patricia; Bryan, Caroline; Sikora, Tracey; Dingemanse, Jasper; Vanier, Marie T.; Walkley, Steven U.; Vite, Charles H.

    2012-01-01

    Niemann-Pick disease type C (NPC disease) is an incurable cellular lipid trafficking disorder characterized by neurodegeneration and intralysosomal accumulation of cholesterol and glycosphingolipids. Treatment with miglustat, a small imino sugar that reversibly inhibits glucosylceramide synthase, which is necessary for glycosphingolipid synthesis, has been shown to benefit patients with NPC disease. The mechanism(s) and extent of brain cellular changes underlying this benefit are not understood. To investigate the basis of the efficacy of miglustat, cats with disease homologous to the juvenile-onset form of human NPC disease received daily miglustat orally beginning at 3 weeks of age. The plasma half-life of miglustat was 6.6 ± 1.1 hours, with a tmax, Cmax, and area under the plasma concentration-time curve of 1.7 ± 0.6 hours, 20.3 ± 4.6 μg/ml, and 104.1 ± 16.6 μg hours/ml, respectively. Miglustat delayed the onset of neurological signs and increased the lifespan of treated cats, and was associated with decreased GM2 ganglioside accumulation in the cerebellum and improved Purkinje cell survival. Ex vivo examination of microglia from the brains of treated cats revealed normalization of CD1c and class II major histocompatibility complex expression, as well as generation of reactive oxygen species. Together, these results suggest that prolonged Purkinje cell survival, reduced glycosphingolipid accumulation, and/or the modulation of microglial immunophenotype and function contribute to miglustat-induced neurological improvement in treated cats. PMID:22487861

  2. High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells

    PubMed Central

    Gonzalez Carter, Daniel A.; Motskin, Michael; Pienaar, Ilse S.; Chen, Shu; Hu, Sheng; Ruenraroengsak, Pakatip; Ryan, Mary P.; Shaffer, Milo S. P.; Dexter, David T.

    2016-01-01

    Multi-walled carbon nanotubes (MWNTs) are increasingly being developed both as neuro-therapeutic drug delivery systems to the brain and as neural scaffolds to drive tissue regeneration across lesion sites. MWNTs with different degrees of acid oxidation may have different bioreactivities and propensities to aggregate in the extracellular environment, and both individualised and aggregated MWNTs may be expected to be found in the brain. Before practical application, it is vital to understand how both aggregates and individual MWNTs will interact with local phagocytic immune cells, the microglia, and ultimately to determine their biopersistence in the brain. The processing of extra- and intracellular MWNTs (both pristine and when acid oxidised) by microglia was characterised across multiple length scales by correlating a range of dynamic, quantitative and multi-scale techniques, including: UV-vis spectroscopy, light microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy. Dynamic, live cell imaging revealed the ability of microglia to break apart and internalise micron-sized extracellular agglomerates of acid oxidised MWNT, but not pristine MWNTs. The total amount of MWNTs internalised by, or strongly bound to, microglia was quantified as a function of time. Neither the significant uptake of oxidised MWNTs, nor the incomplete uptake of pristine MWNTs affected microglial viability, pro-inflammatory cytokine release or nitric oxide production. However, after 24 hrs exposure to pristine MWNTs, a significant increase in the production of reactive oxygen species was observed. Small aggregates and individualised oxidised MWNTs were present in the cytoplasm and vesicles, including within multilaminar bodies, after 72 hours. Some evidence of morphological damage to oxidised MWNT structure was observed including highly disordered graphitic structures, suggesting possible biodegradation. This work demonstrates the utility of dynamic

  3. Interaction of HmC1q with leech microglial cells: involvement of C1qBP-related molecule in the induction of cell chemotaxis

    PubMed Central

    2012-01-01

    Background In invertebrates, the medicinal leech is considered to be an interesting and appropriate model to study neuroimmune mechanisms. Indeed, this non-vertebrate animal can restore normal function of its central nervous system (CNS) after injury. Microglia accumulation at the damage site has been shown to be required for axon sprouting and for efficient regeneration. We characterized HmC1q as a novel chemotactic factor for leech microglial cell recruitment. In mammals, a C1q-binding protein (C1qBP alias gC1qR), which interacts with the globular head of C1q, has been reported to participate in C1q-mediated chemotaxis of blood immune cells. In this study, we evaluated the chemotactic activities of a recombinant form of HmC1q and its interaction with a newly characterized leech C1qBP that acts as its potential ligand. Methods Recombinant HmC1q (rHmC1q) was produced in the yeast Pichia pastoris. Chemotaxis assays were performed to investigate rHmC1q-dependent microglia migration. The involvement of a C1qBP-related molecule in this chemotaxis mechanism was assessed by flow cytometry and with affinity purification experiments. The cellular localization of C1qBP mRNA and protein in leech was investigated using immunohistochemistry and in situ hybridization techniques. Results rHmC1q-stimulated microglia migrate in a dose-dependent manner. This rHmC1q-induced chemotaxis was reduced when cells were preincubated with either anti-HmC1q or anti-human C1qBP antibodies. A C1qBP-related molecule was characterized in leech microglia. Conclusions A previous study showed that recruitment of microglia is observed after HmC1q release at the cut end of axons. Here, we demonstrate that rHmC1q-dependent chemotaxis might be driven via a HmC1q-binding protein located on the microglial cell surface. Taken together, these results highlight the importance of the interaction between C1q and C1qBP in microglial activation leading to nerve repair in the medicinal leech. PMID:22356764

  4. The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells

    PubMed Central

    2010-01-01

    Background In several neuropathological conditions, microglia can become overactivated and cause neurotoxicity by initiating neuronal damage in response to pro-inflammatory stimuli. Our previous studies have shown that exposure to electromagnetic fields (EMF) activates cultured microglia to produce tumor necrosis factor (TNF)-α and nitric oxide (NO) through signal transduction involving the activator of transcription STAT3. Here, we investigated the role of STAT3 signaling in EMF-induced microglial activation and pro-inflammatory responses in more detail than the previous study. Methods N9 microglial cells were treated with EMF exposure or a sham treatment, with or without pretreatment with an inhibitor (Pyridone 6, P6) of the Janus family of tyrosine kinases (JAK). The activation state of microglia was assessed via immunoreaction using the microglial marker CD11b. Levels of inducible nitric oxide synthase (iNOS), TNF-α and NO were measured using real-time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and the nitrate reductase method. Activation of JAKs and STAT3 proteins was evaluated by western blotting for specific tyrosine phosphorylation. The ability of STAT3 to bind to DNA was detected with an electrophoresis mobility shift assay (EMSA). Results EMF was found to significantly induce phosphorylation of JAK2 and STAT3, and DNA-binding ability of STAT3 in N9 microglia. In addition, EMF dramatically increased the expression of CD11b, TNF-α and iNOS, and the production of NO. P6 strongly suppressed the phosphorylation of JAK2 and STAT3 and diminished STAT3 activity in EMF-stimulated microglia. Interestingly, expression of CD11b as well as gene expression and production of TNF-α and iNOS were suppressed by P6 at 12 h, but not at 3 h, after EMF exposure. Conclusions EMF exposure directly triggers initial activation of microglia and produces a significant pro-inflammatory response. Our findings confirm that

  5. Blueberry Supplementation Attenuates Microglial Activation in Hippocampal Intraocular Grafts to aged hosts

    PubMed Central

    Willis, Lauren M.; Freeman, Linnea; Bickford, Paula C.; Quintero, E. Matthew; Umphlet, Claudia D.; Moore, Alfred B.; Goetzl, Laura; Granholm, Ann-Charlotte

    2010-01-01

    Transplantation of central nervous tissue has been proposed as a therapeutic intervention for age-related neurodegenerative diseases and stroke. However, survival of embryonic neuronal cells is hampered by detrimental factors in the aged host brain such as circulating inflammatory cytokines and oxidative stress. We have previously found that supplementation with 2% blueberry in the diet increases graft growth and neuronal survival in intraocular hippocampal grafts to aged hosts. In the present study we explored possible biochemical mechanisms for this increased survival, and we here report decreased microglial activation and astrogliosis in intraocular hippocampal grafts to middle-aged hosts fed a 2% blueberry diet. Markers for astrocytes and for activated microglial cells were both decreased long-term after grafting to blueberry-treated hosts compared to age-matched rats on a control diet. Similar findings were obtained in the host brain, with a reduction in OX-6 immunoreactive microglial cells in the hippocampus of those recipients treated with blueberry. In addition, immunoreactivity for the pro-inflammatory cytokine IL-6 was found to be significantly attenuated in intraocular grafts by the 2% blueberry diet. These studies demonstrate direct effects of blueberry upon microglial activation both during isolated conditions and in the aged host brain and suggest that this nutraceutical can attenuate age-induced inflammation. PMID:20014277

  6. Role and Mechanism of Microglial Activation in Iron-Induced Selective and Progressive Dopaminergic Neurodegeneration

    PubMed Central

    Yan, Zhao-fen; Gao, Jun-hua; Sun, Li; Huang, Xi-yan; Liu, Zhuo; Yu, Shu-yang; Cao, Chen-Jie; Zuo, Li-jun; Chen, Ze-Jie; Hu, Yang; Wang, Fang; Hong, Jau-shyong; Wang, Xiao-min

    2016-01-01

    Parkinson’s disease (PD) patients have excessive iron depositions in substantia nigra (SN). Neuroinflammation characterized by microglial activation is pivotal for dopaminergic neurodegeneration in PD. However, the role and mechanism of microglial activation in iron-induced dopaminergic neurodegeneration in SN remain unclear yet. This study aimed to investigate the role and mechanism of microglial β-nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) activation in iron-induced selective and progressive dopaminergic neurodegeneration. Multiple primary midbrain cultures from rat, NOX2+/+ and NOX2−/− mice were used. Dopaminergic neurons, total neurons, and microglia were visualized by immunostainings. Cell viability was measured by MTT assay. Superoxide (O2·−) and intracellular reactive oxygen species (iROS) were determined by measuring SOD-inhibitable reduction of tetrazolium salt WST-1 and DCFH-DA assay. mRNA and protein were detected by real-time PCR and Western blot. Iron induces selective and progressive dopaminergic neurotoxicity in rat neuron–microglia–astroglia cultures and microglial activation potentiates the neurotoxicity. Activated microglia produce a magnitude of O2·− and iROS, and display morphological alteration. NOX2 inhibitor diphenylene iodonium protects against iron-elicited dopaminergic neurotoxicity through decreasing microglial O2·− generation, and NOX2−/− mice are resistant to the neurotoxicity by reducing microglial O2·− production, indicating that iron-elicited dopaminergic neurotoxicity is dependent of NOX2, a O2·−-generating enzyme. NOX2 activation is indicated by the increased mRNA and protein levels of subunits P47 and gp91. Molecules relevant to NOX2 activation include PKC-σ, P38, ERK1/2, JNK, and NF-ΚBP65 as their mRNA and protein levels are enhanced by NOX2 activation. Iron causes selective and progressive dopaminergic neurodegeneration, and microglial NOX2 activation potentiates the

  7. Lonicera japonica THUNB. Extract Inhibits Lipopolysaccharide-Stimulated Inflammatory Responses by Suppressing NF-κB Signaling in BV-2 Microglial Cells.

    PubMed

    Kwon, Seung-Hwan; Ma, Shi-Xun; Hong, Sa-Ik; Lee, Seok-Yong; Jang, Choon-Gon

    2015-07-01

    In the current study, we evaluated the anti-inflammatory effects of Lonicera japonica THUNB. (LJ) and its underlying molecular mechanism in lipopolysaccharide (LPS)-stimulated BV-2 microglial cells. Our results indicated that LJ significantly inhibits LPS-stimulated production of nitric oxide (NO) and prostaglandin E2 (PGE2). In addition, LJ inhibited inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at both the protein and mRNA levels. In LPS-stimulated BV-2 microglial cells, LJ inhibited proinflammatory cytokines and chemokines, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), monocyte chemoattractant protein-1 (MCP-1), matrix metalloproteinase-9 (MMP-9) enzymatic activities, and/or mRNA expression, as well as reactive oxygen species (ROS) production. LJ significantly suppressed activation of nuclear factor-κB (NF-κB) and its translocation from the cytosol to the nucleus and suppressed the DNA-binding activity of NF-κB. Furthermore, LJ significantly inhibited phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK 1/2), p38 mitogen-activated protein kinases (MAPKs), phosphatidylinositol 3-kinases (PI3K)/Akt, and Janus kinase 1 (JAK1)/signal transducer and activator of transcription (STAT)1/3. Collectively, our findings indicated that the antineuroinflammatory properties of LJ in LPS-induced BV-2 microglial cells is due to downregulation of proinflammatory cytokines and chemokines downstream of inhibition of NF-κB activation. PMID:25897683

  8. Changes in phagocytosis and expression of microglial cells in craniocerebral injury mice models.

    PubMed

    Guo, F Y; Liu, T; Chen, J J; Gao, W; Yang, F; Zhou, X Y; Liao, Y L

    2016-01-01

    The objective of this study was to investigate the changes in phagocytic function and expression quantities of CD11b and tumor necrosis factor-α (TNF-α) among microglia cells of craniocerebral injury mice. Modified Feeney method was used to establish the craniocerebral injury mice models. Twenty-one male SPF mice were divided into a control group and a trauma group. The scalp was incised and a bone window was opened in the control group without cerebral injury. In the trauma group, the mice were sacrificed after the craniocerebral injury at 1, 3, 6, 12, 24 and 48 h to make frozen sections of cerebral tissues. The phagocytic rate of microglia cells was observed by using fluorescent microsphere. The changes in the expression quantities of CD11b and TNF-α were detected by enzyme-linked immuno sorbent assay (ELISA). The phagocytic ability of the microglia cells after the craniocerebral injury increased at 1 h after injury compared with that of the control group (P less than 0.01). The expression of surface antigen CD11b of the microglia cells and the expression of TNF-α increased at 1, 3, 6, 12, 24 and 48 h after the injury compared with those of the control group (P less than 0.01). The phagocytic ability of the microglia cells increased. The expressions of CD11b and TNF-α were also gradually enhanced in the acute phase after craniocerebral injury, and then gradually decreased to the normal level. The expressions of CD11b and TNF-α indicated a high consistency with the changing trend of the phagocytic ability, suggesting that the microglia cells may participate in the regulation of the inflammatory process of the central nervous system through absorbing apoptotic cells and increasing and secreting inflammatory and anti-inflammatory factors. PMID:27358141

  9. Non-cell-autonomous Neurotoxicity of α-synuclein Through Microglial Toll-like Receptor 2

    PubMed Central

    Kim, Changyoun; Lee, He-Jin; Masliah, Eliezer

    2016-01-01

    Synucleinopathies are a collection of neurological diseases that are characterized by deposition of α-synuclein aggregates in neurons and glia. These diseases include Parkinson's disease (PD), dementia with Lewy bodies, and multiple system atrophy. Although it has been increasingly clear that α-synuclein is implicated in the pathogenesis of PD and other synucleinopathies, the precise mechanism underlying the disease process remains to be unraveled. The past studies on how α-synuclein exerts pathogenic actions have focused on its direct, cell-autonomous neurotoxic effects. However, recent findings suggested that there might be indirect, non-cell-autonomous pathways, perhaps through the changes in glial cells, for the pathogenic actions of this protein. Here, we present evidence that α-synuclein can cause neurodegeneration through a non-cell-autonomous manner. We show that α-synuclein can be secreted from neurons and induces inflammatory responses in microglia, which in turn secreted neurotoxic agents into the media causing neurodegeneration. The neurotoxic response of microglia was mediated by activation of toll-like receptor 2 (TLR2), a receptor for neuron-derived α-synuclein. This work suggests that TLR2 is the key molecule that mediates non-cell-autonomous neurotoxic effects of α-synuclein, hence a candidate for the therapeutic target. PMID:27358579

  10. Small-Ruminant Lentivirus Enhances PrP-Sc Accumulation in Cultured Sheep Microglial Cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scrapie is the prototype member of the family of transmissible spongiform encephalopathies, fatal neurodegenerative diseases associated with conversion and accumulation of prion proteins in a number of neural and extraneural cell types. Although scrapie has been the focus of research investigations...

  11. Cynandione A from Cynanchum wilfordii attenuates the production of inflammatory mediators in LPS-induced BV-2 microglial cells via NF-κB inactivation.

    PubMed

    Yang, Seung Bo; Lee, Sang Min; Park, Ji-Hae; Lee, Tae Hoon; Baek, Nam-In; Park, Hi-Joon; Lee, Hyejung; Kim, Jiyoung

    2014-01-01

    Cynanchum wilfordii is one of most widely used medicinal plants in Oriental medicine for the treatment of various conditions. In the present study, we isolated cynandione A (CA) from an extract of Cynanchum wilfordii roots (CWE) and investigated the effects of CA on the expression of inducible nitric oxide synthase (iNOS) and pro-inflammatory cytokines in lipopolysaccharide (LPS)-induced BV-2 microglial cells. CWE and CA significantly decreased LPS-induced nitric oxide production and the expression of iNOS in a concentration-dependent manner, while they (CWE up to 500 µg/mL and CA up to 80 µM) did not exhibit cytotoxic activity. Results from reverse transcription-polymerase chain reaction (RT-PCR) analysis and enzyme-linked immunosorbent assay (ELISA) showed that CA significantly attenuated the expression of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1β in LPS-stimulated BV-2 cells. Furthermore, CA inhibited the phosphorylation of inhibitor kappa B-alpha (IκB-α) and translocation of nuclear factor-kappa B (NF-κB) to the BV-2 cell nucleus, indicating that CWE and CA may have effective anti-inflammatory activities via NF-κB inactivation in stimulated microglial cells. PMID:25087960

  12. Withania somnifera and Its Withanolides Attenuate Oxidative and Inflammatory Responses and Up-Regulate Antioxidant Responses in BV-2 Microglial Cells.

    PubMed

    Sun, Grace Y; Li, Runting; Cui, Jiankun; Hannink, Mark; Gu, Zezong; Fritsche, Kevin L; Lubahn, Dennis B; Simonyi, Agnes

    2016-09-01

    Withania somnifera (L.) Dunal, commonly known as Ashwagandha, has been used in Ayurvedic medicine for promoting health and quality of life. Recent clinical trials together with experimental studies indicated significant neuroprotective effects of Ashwagandha and its constituents. This study is aimed to investigate anti-inflammatory and anti-oxidative properties of this botanical and its two withanolide constituents, namely, Withaferin A and Withanolide A, using the murine immortalized BV-2 microglial cells. Ashwagandha extracts not only effectively inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) and reactive oxygen species (ROS) production in BV-2 cells, but also stimulates the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway, leading to induction of heme oxygenase-1 (HO-1), both in the presence and absence of LPS. Although the withanolides were also capable of inhibiting LPS-induced NO production and stimulating Nrf2/HO-1 pathway, Withaferin A was tenfold more effective than Withanolide A. In serum-free culture, LPS can also induce production of long thin processes (filopodia) between 4 and 8 h in BV-2 cells. This morphological change was significantly suppressed by Ashwagandha and both withanolides at concentrations for suppressing LPS-induced NO production. Taken together, these results suggest an immunomodulatory role for Ashwagandha and its withanolides, and their ability to suppress oxidative and inflammatory responses in microglial cells by simultaneously down-regulating the NF-kB and upregulating the Nrf2 pathways. PMID:27209361

  13. Amyloid β25-35 induced ROS-burst through NADPH oxidase is sensitive to iron chelation in microglial Bv2 cells.

    PubMed

    Part, Kristin; Künnis-Beres, Kai; Poska, Helen; Land, Tiit; Shimmo, Ruth; Zetterström Fernaeus, Sandra

    2015-12-10

    Iron chelation therapy and inhibition of glial nicotinamide adenine dinucleotide phosphate (NADPH) oxidase can both represent possible routes for Alzheimer's disease modifying therapies. The metal hypothesis is largely focused on direct binding of metals to the N-terminal hydrophilic 1-16 domain peptides of Amyloid beta (Aβ) and how they jointly give rise to reactive oxygen species (ROS) production. The cytotoxic effects of Aβ through ROS and metals are mainly studied in neuronal cells using full-length Aβ1-40/42 peptides. Here we study cellularly-derived ROS during 2-60min in response to non-metal associated mid domain Aβ25-35 in microglial Bv2 cells by fluorescence based spectroscopy. We analyze if Aβ25-35 induce ROS production through NADPH oxidase and if the production is sensitive to iron chelation. NADPH oxidase inhibitor diphenyliodonium (DPI) is used to confirm the production of ROS through NADPH oxidase. We modulate cellular iron homeostasis by applying cell permeable iron chelators desferrioxamine (DFO) and deferiprone (DFP). NADPH oxidase subunit gp91-phox level was analyzed by Western blotting. Our results show that Aβ25-35 induces strong ROS production through NADPH oxidase in Bv2 microglial cells. Intracellular iron depletion resulted in restrained Aβ25-35 induced ROS. PMID:26505916

  14. Microglial TIR-domain-containing adapter-inducing interferon-β (TRIF) deficiency promotes retinal ganglion cell survival and axon regeneration via nuclear factor-κB

    PubMed Central

    2012-01-01

    Background TIR-domain-containing adapter-inducing interferon-β (TRIF) is the sole downstream adaptor of Toll-like receptor (TLR)3, which is one of the major signaling pathways in immune cells leading to neuroinflammation in the central nervous system. Overexpression of TRIF may lead to activation of inflammatory responses, and contribute to pathophysiological progression in both acute and chronic neurodegenerative retinal diseases. In the present study, was aimed to elucidate the contributions of TRIF to optic nerve (ON) regeneration and retinal ganglion cell (RGC) survival following injury to the ON, a widely studied model of central nervous system injury and of degenerative diseases such as glaucoma. Methods We used retrograde labeling with a fluorochrome, hydroxystilbamidine (Fluorogold) to evaluate RGC survival, and immunostaining with growth-associated protein-43 to evaluate axon regeneration in an ON crush model. Changes in microglial cytokines following RGC injury was examined with ELISA and real-time PCR. In vivo studies were carried out in wild-type and trif-/- mice. A Transwell co-culture system and migration test were used to mimic the crosstalk between microglia and RGCs. TRIF-associated downstream adaptors were determined by western blotting. Results Compared with wild-type (WT) mice, TRIF knockout (KO) mice displayed a robust ability to regenerate axons 3 or 7 days after nerve injury. In addition, RGC survival was considerably higher in trif-/- than in WT mice. ON lesion induced less microglial activation in trif-/- than in WT mice. and more WT microglia distorted and migrated toward the foramen opticum. In the transwell system, few trif-/- microglia migrated through the membrane when stimulated by the performed lesion on RGC axons in a transwell system. Inactivation of microglial cells in trif-/- mice was associated with reduced production of inflammatory cytokines, as detected with real-time RT-PCR and ELISA. Furthermore western blot analysis

  15. Treatment with polyamine oxidase inhibitor reduces microglial activation and limits vascular injury in ischemic retinopathy.

    PubMed

    Patel, C; Xu, Z; Shosha, E; Xing, J; Lucas, R; Caldwell, R W; Caldwell, R B; Narayanan, S P

    2016-09-01

    Retinal vascular injury is a major cause of vision impairment in ischemic retinopathies. Insults such as hyperoxia, oxidative stress and inflammation contribute to this pathology. Previously, we showed that hyperoxia-induced retinal neurodegeneration is associated with increased polyamine oxidation. Here, we are studying the involvement of polyamine oxidases in hyperoxia-induced injury and death of retinal vascular endothelial cells. New-born C57BL6/J mice were exposed to hyperoxia (70% O2) from postnatal day (P) 7 to 12 and were treated with the polyamine oxidase inhibitor MDL 72527 or vehicle starting at P6. Mice were sacrificed after different durations of hyperoxia and their retinas were analyzed to determine the effects on vascular injury, microglial cell activation, and inflammatory cytokine profiling. The results of this analysis showed that MDL 72527 treatment significantly reduced hyperoxia-induced retinal vascular injury and enhanced vascular sprouting as compared with the vehicle controls. These protective effects were correlated with significant decreases in microglial activation as well as levels of inflammatory cytokines and chemokines. In order to model the effects of polyamine oxidation in causing microglial activation in vitro, studies were performed using rat brain microvascular endothelial cells treated with conditioned-medium from rat retinal microglia stimulated with hydrogen peroxide. Conditioned-medium from activated microglial cultures induced cell stress signals and cell death in microvascular endothelial cells. These studies demonstrate the involvement of polyamine oxidases in hyperoxia-induced retinal vascular injury and retinal inflammation in ischemic retinopathy, through mechanisms involving cross-talk between endothelial cells and resident retinal microglia. PMID:27239699

  16. Safflower Yellow regulates microglial polarization and inhibits inflammatory response in LPS-stimulated Bv2 cells.

    PubMed

    Yang, Xing-Wang; Li, Yan-Hua; Zhang, Hui; Zhao, Yong-Fei; Ding, Zhi-Bin; Yu, Jie-Zhong; Liu, Chun-Yun; Liu, Jian-Chun; Jiang, Wei-Jia; Feng, Qian-Jin; Xiao, Bao-Guo; Ma, Cun-Gen

    2016-03-01

    Activated microglia, especially polarized M1 cells, produce pro-inflammatory cytokines and free radicals, thereby contributing directly to neuroinflammation and various brain disorders. Given that excessive or chronic neuroinflammation within the central nervous system (CNS) exacerbates neuronal damage, molecules that modulate neuroinflammation are candidates as neuroprotective agents. In this study, we provide evidence that Safflor yellow (SY), the main active component in the traditional Chinese medicine safflower, modulates inflammatory responses by acting directly on BV2 microglia. LPS stimulated BV2 cells to upregulate expression of TLR4-Myd88 and MAPK-NF-κB signaling pathways and to release IL-1β, IL-6, TNF-α, and COX-2. However, SY treatment inhibited expression of TLR4-Myd88 and p-38/p-JNK-NF-κB, downregulated expression of iNOS, CD16/32, and IL-12, and upregulated CD206 and IL-10. In conclusion, our results demonstrate that SY exerts an anti-inflammatory effect on BV2 microglia, possibly through TLR-4/p-38/p-JNK/NF-κB signaling pathways and the conversion of microglia from inflammatory M1 to an anti-inflammatory M2 phenotype. PMID:26634402

  17. Anti-inflammatory effects of three-dimensional graphene foams cultured with microglial cells.

    PubMed

    Song, Qin; Jiang, Ziyun; Li, Ning; Liu, Ping; Liu, Liwei; Tang, Mingliang; Cheng, Guosheng

    2014-08-01

    One of the key goals in nerve tissue engineering is to develop new materials which cause less or no neuroinflammation. Despite the rapid advances of using graphene as a neural interface material, it still remains unknown whether graphene could provoke neuroinflammation or not, and whether and how the topographical features of graphene influence the neuroinflammation induction. By immunofluorescence, Elisa technique, western blot, scanning electron microscope (SEM) methods, we investigated the pro- and/or anti-inflammatory responses of microglia in the graphene films (2D-graphene) or graphene foams (3D-graphene) culturing systems. Furthermore, the growth situations of the neural stem cells (NSCs) in the conditioned culture medium produced in the graphene substrates were evaluated. The results show that: 1) neither 2D nor 3D graphene induced distinct neuroinflammation when compared to the tissue culture polystyrene (TCPS) substrates; 2) the topographical structures of the graphene might affect the material/cell interactions, leading to disparate effects on lipopolysaccharide (LPS)-induced neuroinflammation; 3) 3D graphene exhibited a remarkable capability of rescuing LPS-induced neuroinflammation probably through the restriction of microglia morphological transformation by the unique topographical features on the surface, showing the ability of anti-inflammation against external insults, while 2D graphene failed to. These results provide insights into the diverse biological effects of the material's topographical structures and open new opportunity for the applications of graphene in neuroscience. PMID:24875763

  18. Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro.

    PubMed

    Rey, C; Nadjar, A; Buaud, B; Vaysse, C; Aubert, A; Pallet, V; Layé, S; Joffre, C

    2016-07-01

    Sustained inflammation in the brain together with microglia activation can lead to neuronal damage. Hence limiting brain inflammation and activation of microglia is a real therapeutic strategy for inflammatory disease. Resolvin D1 (RvD1) and resolvin E1 (RvE1) derived from n-3 long chain polyunsaturated fatty acids are promising therapeutic compounds since they actively turn off the systemic inflammatory response. We thus evaluated the anti-inflammatory activities of RvD1 and RvE1 in microglia cells in vitro. BV2 cells were pre-incubated with RvD1 or RvE1 before lipopolysaccharide (LPS) treatment. RvD1 and RvE1 both decreased LPS-induced proinflammatory cytokines (TNF-α, IL-6 and IL-1β) gene expression, suggesting their proresolutive activity in microglia. However, the mechanisms involved are distinct as RvE1 regulates NFκB signaling pathway and RvD1 regulates miRNAs expression. Overall, our findings support that pro-resolving lipids are involved in the resolution of brain inflammation and can be considered as promising therapeutic agents for brain inflammation. PMID:26718448

  19. Inhibition of Nitric Oxide Production in BV2 Microglial Cells by Triterpenes from Tetrapanax papyriferus.

    PubMed

    Cho, Namki; Moon, Eun Hye; Kim, Hyun Woo; Hong, Jaewoo; Beutler, John A; Sung, Sang Hyun

    2016-01-01

    It is well known that activated microglia produce nitric oxide (NO), which has an important role in the pathophysiology of several neurodegenerative diseases such as Alzheimer's disease. In the course of searching for novel therapeutic agents from medicinal plants against neuroinflammatory diseases, the methanolic extract of Tetrapanax papyriferus was found to have significant NO inhibitory activity in lipopolysaccharide (LPS)-stimulated BV2 microglia cells. Nine oleanane-type triterpenes, including two new compounds, epipapyriogenin C-3-O-β-d-glucopyranoside (6) and 11-O-butylpapyrioside LIIc (9), were isolated from the leaves and stems of Tetrapanax papyriferus. The structures of these compounds were elucidated with 1D- and 2D-NMR and MS data. Among these Δ(11,13) oleanane-type triterpenes, compound 3 showed significant NO inhibitory activity in BV-2 cells, reducing the LPS-induced expression of COX-2 and pro-inflammatory cytokines such as TNF-α and IL-6. Compounds 7 and 9 also showed NO inhibitory activities among the Δ(12) oleanane-type triterpene saponins. These results show that oleanane-type triterpenes isolated from T. papyriferus could be a potential natural resource of NO inhibitors used in the treatment of neurodegenerative disorders. PMID:27070561

  20. Exposure to electromagnetic field attenuates oxygen-glucose deprivation-induced microglial cell death by reducing intracellular Ca(2+) and ROS.

    PubMed

    Duong, Cao Nguyen; Kim, Jae Young

    2016-01-01

    Purpose The aim of this research was to demonstrate the protective effects of electromagnetic field (EMF) exposure on the human microglial cell line, HMO6, against ischemic cell death induced by in vitro oxygen-glucose deprivation (OGD). Materials and methods HMO6 cells were cultured for 4 h under OGD with or without exposure to EMF with different combinations of frequencies and intensities (10, 50, or 100 Hz/1 mT and 50 Hz/0.01, 0.1, or 1 mT). Cell survival, intracellular calcium and reactive oxygen species (ROS) levels were measured. Results OGD caused significant HMO6 cell death as well as elevation of intracellular Ca(2+) and ROS levels. Among different combinations of EMF frequencies and intensities, 50 Hz/1 mT EMF was the most potent to attenuate OGD-induced cell death and intracellular Ca(2+) and ROS levels. A significant but less potent protective effect was also found at 10 Hz/1 mT, whereas no protective effect was found at other combinations of EMF. A xanthine oxidase inhibitor reversed OGD-induced ROS production and cell death, while NADPH oxidase and mitochondrial respiration chain complex II inhibitors did not affect cell death. Conclusions 50 Hz/1 mT EMF protects human microglial cells from OGD-induced cell death by interfering with OGD-induced elevation of intracellular Ca(2+) and ROS levels, and xanthine oxidase is one of the main mediators involved in OGD-induced HMO6 cell death. Non-invasive treatment of EMF radiation may be clinically useful to attenuate hypoxic-ischemic brain injury. PMID:26882219

  1. [Microglial Phagocytosis in the Neurodegenerative Diseases].

    PubMed

    Cao, Sheng-nan; Bao, Xiu-qi; Sun, Hua; Zhang, Dan

    2016-04-01

    Microglia are the resident innate immune cells in the brain. Under endogenous or exogenous stimulates, they become activated and play an important role in the neurodegenerative diseases. Microglial phagocytosis is a process of receptor-mediated engulfment and degradation of apoptotic cells. In addition, microglia can phagocyte brain-specific cargo, such as myelin debris and abnormal protein aggregation. However, recent studies have shown that microglia can also phagocyte stressed-but-viable neurons, causing loss of neurons in the brain. Thus, whether microglial phagocytosis is beneficial or not in neurodegenerative disease remains controversial. This article reviews microglial phagocytosis related mechanisms and its potential roles in neurodegenerative diseases, with an attempt to provide new insights in the treatment of neurodegenerative diseases. PMID:27181903

  2. Involvement of mitogen-activated protein kinase and NF-κB signaling pathways in perfluorooctane sulfonic acid-induced inflammatory reaction in BV2 microglial cells.

    PubMed

    Zhu, Jingying; Qian, Wenyi; Wang, Yixin; Gao, Rong; Wang, Jun; Xiao, Hang

    2015-12-01

    Microglial activation is closely related to the pathogenesis of neurodegenerative diseases by producing proinflammatory cytokines. Perfluorooctane sulfonic acid (PFOS), known as an emerging persistent organic pollutant, is reported to disturb human immune homeostasis; however, whether it affects cytokine production or the immune response in the central nervous system remains unclear. The present study was aimed to explore whether PFOS contributed to inflammatory action and to investigate the corresponding mechanisms in BV2 microglia. PFOS-mediated morphologic changes, cytokine responses and signaling events were examined by light microscopy, real-time polymerase chain reaction, enzyme-linked immunosorbent assay and Western blot assays. Our results indicated that PFOS increased BV2 cells activation and simultaneously increased tumor necrosis factor alpha and interleukin-6 expression. In addition, the c-Jun N-terminal protein kinase inhibitor (SP600125), as well as ERK1/2 blocker (PD98059), transcriptionally at least, displayed anti-inflammatory properties on PFOS-elicited cytokine responses. Moreover, the inflammatory transcription factor NF-κB was specifically activated by PFOS as well. These results, taken together, suggested that PFOS exerts its functional effects on the response of microglial cell activation via, in part, the c-Jun N-terminal protein kinase, ERK and NF-κB signaling pathways with its subsequent influence on proinflammatory action. PMID:25677194

  3. Minocycline, an antibiotic with inhibitory effect on microglial activation, attenuates the maintenance and reinstatement of methamphetamine-seeking behavior in rat.

    PubMed

    Attarzadeh-Yazdi, Ghassem; Arezoomandan, Reza; Haghparast, Abbas

    2014-08-01

    Methamphetamine (METH) is a major criminal justice and public health problem. Repeated use of METH causes dependence in humans and there are currently no particular pharmacological treatments for METH addiction. Glial cell activation is linked with METH abuse and METH administration causes activation of these cells in many areas of the brain. Many studies have demonstrated that glial cell modulators can modulate drug abuse effects. In this study, we examined the effect of the putative microglial inhibitor, minocycline on maintenance and prime-induced reinstatement of METH seeking behavior using the conditioned place preference (CPP) paradigm. CPP induced with METH (1 mg/kg, i.p. for 3 days) lasted for 11 days after cessation of METH treatment and priming dose of METH (0.5 mg/kg, i.p.) reinstated the extinguished METH-induced CPP. Daily treatment of minocycline (40 mg/kg, i.p.) followed by establishment of CPP blocked the maintenance of METH-induced CPP and also could attenuate priming-induced reinstatement. Furthermore, daily bilateral intra-accumbal injection of minocycline (10 and 20 μg/0.5 μl saline), during extinction period blocked the maintenance of METH CPP but just the highest dose of that could attenuate priming-induced reinstatement. We showed that minocycline administration during extinction period could facilitate extinction and maybe abolish the ability of drug-related cues evoke reinstatement, suggesting that minocycline might be considered as a promising therapeutic agent in preventing relapse in METH dependent individuals. PMID:24768984

  4. Proinflammatory-activated glioma cells induce a switch in microglial polarization and activation status, from a predominant M2b phenotype to a mixture of M1 and M2a/B polarized cells

    PubMed Central

    Lisi, Lucia; Stigliano, Egidio; Lauriola, Libero; Navarra, Pierluigi; Russo, Cinzia Dello

    2014-01-01

    Malignant gliomas are primary brain tumors characterized by morphological and genetic complexities, as well as diffuse infiltration into normal brain parenchyma. Within gliomas, microglia/macrophages represent the largest tumor-infiltrating cell population, contributing by at least one-third to the total tumor mass. Bi-directional interactions between glioma cells and microglia may therefore play an important role on tumor growth and biology. In the present study, we have characterized the influence of glioma-soluble factors on microglial function, comparing the effects of media harvested under basal conditions with those of media obtained after inducing a pro-inflammatory activation state in glioma cells. We found that microglial cells undergo a different pattern of activation depending on the stimulus; in the presence of activated glioma-derived factors, i.e. a condition mimicking the late stage of pathology, microglia presents as a mixture of polarization phenotypes (M1 and M2a/b), with up-regulation of iNOS (inducible nitric oxide synthase), ARG (arginase) and IL (interleukine)-10. At variance, microglia exposed to basal glioma-derived factors, i.e. a condition resembling the early stage of pathology, shows a more specific pattern of activation, with increased M2b polarization status and up-regulation of IL-10 only. As far as viability and cell proliferation are concerned, both LI-CM [LPS (lipopolysaccharide)–IFNγ (interferon γ) conditioned media] and C-CM (control-conditioned media) induce similar effects on microglial morphology. Finally, in human glioma tissue obtained from surgical resection of patients with IV grade glioblastoma, we detected a significant amount of CD68 positive cells, which is a marker of macrophage/microglial phagocytic activity, suggesting that in vitro findings presented here might have a relevance in the human pathology as well. PMID:24689533

  5. Microglial Janus kinase/signal transduction and activator of transcription 3 pathway activity directly impacts astrocyte and spinal neuron characteristics.

    PubMed

    Molet, Jenny; Mauborgne, Annie; Diallo, Mickael; Armand, Vincent; Geny, David; Villanueva, Luis; Boucher, Yves; Pohl, Michel

    2016-01-01

    After peripheral nerve injury microglial reactivity change in the spinal cord is associated with an early activation of Janus kinase (JAK)/STAT3 transduction pathway whose blockade attenuates local inflammation and pain hypersensitivity. However, the consequences of microglial JAK/STAT3-mediated signaling on neighboring cells are unknown. Using an in vitro paradigm we assessed the impact of microglial JAK/STAT3 activity on functional characteristics of astrocytes and spinal cord neurons. Purified rat primary microglia was stimulated with JAK/STAT3 classical activator interleukin-6 in the presence or absence of a selective STAT3 inhibitor and rat primary astrocytes or spinal cord neurons were exposed to microglia conditioned media (CM). JAK/STAT3 activity-generated microglial CM modulated both astrocyte and neuron characteristics. Beyond inducing mRNA expression changes in various targets of interest in astrocytes and neurons, microglia CM activated c-Jun N-terminal kinase, STAT3 and NF-κB intracellular pathways in astrocytes and promoted their proliferation. Without modifying neuronal excitability or survival, CM affected the nerve processes morphology and distribution of the post-synaptic density protein 95, a marker of glutamatergic synaptic contacts. These findings show that JAK/STAT3 activity in microglia impacts the functional characteristics of astrocytes and neurons. This suggests its participation in spinal cord tissue plasticity and remodeling occurring after peripheral nerve injury. We show that the activity of JAK/STAT3 pathway in microglial cells confers them a specific signaling modality toward neighboring cells, promoting astrocyte proliferation and changes in neuronal morphology. These in vitro data suggest that the early JAK/STAT3 activation in spinal cord microglia, associated with peripheral nerve injury, participates in functional alteration of various cell populations and in spinal tissue remodeling. PMID:26440453

  6. Armeniacae semen extract suppresses lipopolysaccharide-induced expressions of cyclooxygenase [correction of cycloosygenase]-2 and inducible nitric oxide synthase in mouse BV2 microglial cells.

    PubMed

    Chang, Hyun-Kyung; Yang, Hye-Young; Lee, Taeck-Hyun; Shin, Min-Chul; Lee, Myoung-Hwa; Shin, Mal-Soon; Kim, Chang-Ju; Kim, Ok-Jin; Hong, Seon-Pyo; Cho, Sonhae

    2005-03-01

    Armeniacae semen is the seed of Prunus armeniaca L. var. ansu MAXIM which is classified into Rosaceae. In traditional oriental medicine, Armeniacae semen has been used for the treatment of pain and inflammatory diseases. In this study, the effect of Armeniacae semen extract on lipopolysaccharide-induced inflammation was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, reverse transcription-polymerase chain reaction (RT-PCR), Western blot, prostaglandin E2 immunoassay, and nitric oxide detection on mouse BV2 microglial cells. In the present results, Armeniacae semen extract suppressed prostaglandin E2 synthesis and nitric oxide production by inhibiting the lipopolysaccharide-stimulated enhancement of cyclooxygenase-2 and inducible nitric oxide synthase mRNA expression in BV2 cells. These results show that Armeniacae semen exerts anti-inflammatory and analgesic effects probably by suppression of cyclooxygenase-2 and inducible nitric oxide synthase expressions. PMID:15744067

  7. Quercetin Attenuates Inflammatory Responses in BV-2 Microglial Cells: Role of MAPKs on the Nrf2 Pathway and Induction of Heme Oxygenase-1

    PubMed Central

    Sun, Grace Y.; Chen, Zihong; Jasmer, Kimberly J.; Chuang, Dennis Y.; Gu, Zezong; Hannink, Mark; Simonyi, Agnes

    2015-01-01

    A large group of flavonoids found in fruits and vegetables have been suggested to elicit health benefits due mainly to their anti-oxidative and anti-inflammatory properties. Recent studies with immune cells have demonstrated inhibition of these inflammatory responses through down-regulation of the pro-inflammatory pathway involving NF-κB and up-regulation of the anti-oxidative pathway involving Nrf2. In the present study, the murine BV-2 microglial cells were used to compare anti-inflammatory activity of quercetin and cyanidin, two flavonoids differing by their alpha, beta keto carbonyl group. Quercetin was 10 folds more potent than cyanidin in inhibition of lipopolysaccharide (LPS)-induced NO production as well as stimulation of Nrf2-induced heme-oxygenase-1 (HO-1) protein expression. In addition, quercetin demonstrated enhanced ability to stimulate HO-1 protein expression when cells were treated with LPS. In an attempt to unveil mechanism(s) for quercetin to enhance Nrf2/HO-1 activity under endotoxic stress, results pointed to an increase in phospho-p38MAPK expression upon addition of quercetin to LPS. In addition, pharmacological inhibitors for phospho-p38MAPK and MEK1/2 for ERK1/2 further showed that these MAPKs target different sites of the Nrf2 pathway that regulates HO-1 expression. However, inhibition of LPS-induced NO by quercetin was not fully reversed by TinPPIX, a specific inhibitor for HO-1 activity. Taken together, results suggest an important role of quercetin to regulate inflammatory responses in microglial cells and its ability to upregulate HO-1 against endotoxic stress through involvement of MAPKs. PMID:26505893

  8. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway

    PubMed Central

    Kim, Su Jung; Hong, Seung Bok; Park, Jin-Kyu

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway. PMID:27563334

  9. Anti-Inflammatory Activity of Bee Venom in BV2 Microglial Cells: Mediation of MyD88-Dependent NF-κB Signaling Pathway.

    PubMed

    Im, Eun Ju; Kim, Su Jung; Hong, Seung Bok; Park, Jin-Kyu; Rhee, Man Hee

    2016-01-01

    Bee venom has long been used as a traditional folk medicine in Korea. It has been reportedly used for the treatment of arthritis, cancer, and inflammation. Although its anti-inflammatory activity in lipopolysaccharide- (LPS-) stimulated inflammatory cells has been reported, the exact mechanism of its anti-inflammatory action has not been fully elucidated. Therefore, the aim of this study was to investigate the anti-inflammatory mechanism of bee venom in BV2 microglial cells. We first investigated whether NO production in LPS-activated BV2 cells was inhibited by bee venom, and further iNOS mRNA and protein expressions were determined. The mRNA and protein levels of proinflammatory cytokines were examined using semiquantitative RT-PCR and immunoblotting, respectively. Moreover, modulation of the transcription factor NF-κB by bee venom was also investigated using a luciferase assay. LPS-induced NO production in BV2 microglial cells was significantly inhibited in a concentration-dependent manner upon pretreatment with bee venom. Bee venom markedly reduced the mRNA expression of COX-2, TNF-α, IL-1β, and IL-6 and suppressed LPS-induced activation of MyD88 and IRAK1 and phosphorylation of TAK1. Moreover, NF-κB translocation by IKKα/β phosphorylation and subsequent IκB-α degradation were also attenuated. Thus, collectively, these results indicate that bee venom exerts its anti-inflammatory activity via the IRAK1/TAK1/NF-κB signaling pathway. PMID:27563334

  10. Subneurotoxic copper(II)-induced NF-κB-dependent microglial activation is associated with mitochondrial ROS

    SciTech Connect

    Hu, Zhuqin; Yu, Fengxiang; Gong, Ping; Qiu, Yu; Zhou, Wei; Cui, Yongyao; Li, Juan Chen, Hongzhuan

    2014-04-15

    Microglia-mediated neuroinflammation and the associated neuronal damage play critical roles in the pathogenesis of neurodegenerative disorders. Evidence shows an elevated concentration of extracellular copper(II) in the brains of these disorders, which may contribute to neuronal death through direct neurotoxicity. Here we explored whether extracellular copper(II) triggers microglial activation. Primary rat microglia and murine microglial cell line BV-2 cells were cultured and treated with copper(II). The content of tumor necrosis factor-α (TNF-α) and nitric oxide in the medium was determined. Extracellular hydrogen peroxide was quantified by a fluorometric assay with Amplex Red. Mitochondrial superoxide was measured by MitoSOX oxidation. At subneurotoxic concentrations, copper(II) treatment induced a dose- and time-dependent release of TNF-α and nitric oxide from microglial cells, and caused an indirect, microglia-mediated neurotoxicity that was blocked by inhibition of TNF-α and nitric oxide production. Copper(II)-initiated microglial activation was accompanied with reduced IkB-α expression as well as phosphorylation and translocation of nuclear factor-κB (NF-κB) p65 and was blocked by NF-κB inhibitors (BAY11-7082 and SC-514). Moreover, copper(II) treatment evoked a rapid release of hydrogen peroxide from microglial cells, an effect that was not affected by NADPH oxidase inhibitors. N-acetyl-cysteine, a scavenger of reactive oxygen species (ROS), abrogated copper(II)-elicited microglial release of TNF-α and nitric oxide and subsequent neurotoxicity. Importantly, mitochondrial production of superoxide, paralleled to extracellular release of hydrogen peroxide, was induced after copper(II) stimulation. Our findings suggest that extracellular copper(II) at subneurotoxic concentrations could trigger NF-κB-dependent microglial activation and subsequent neurotoxicity. NADPH oxidase-independent, mitochondria-derived ROS may be involved in this activation

  11. Microglial p53 activation is detrimental to neuronal synapses during activation-induced inflammation: Implications for neurodegeneration.

    PubMed

    Jebelli, Joseph; Hooper, Claudie; Pocock, Jennifer M

    2014-11-01

    P53 is a tumour suppressor protein thought to be primarily involved in cancer biology, but recent evidence suggests it may also coordinate novel functions in the CNS, including mediation of pathways underlying neurodegenerative disease. In microglia, the resident immune cells of the brain, p53 activity can promote an activation-induced pro-inflammatory phenotype Jayadev et al. (2011) [1], as well as neurodegeneration Davenport et al. (2010) [2]. Synapse degeneration is one of the earliest pathological events in many chronic neurodegenerative diseases Conforti et al. (2007) and Clare et al. (2010) [3,4] and may be influenced by early microglial responses. Here we examined synaptic properties of neurons following modulation of p53 activity in rat microglia exposed to inflammatory stimuli. A significant reduction in the expression of the neuronal synaptic markers synaptophysin and drebrin, occurred following microglial activation and was seen prior to any visible signs of neuronal cell death, including neuronal cleaved caspase-3 activation. This synaptic marker loss together with microglial secretion of the inflammatory cytokines tumour necrosis factor α (TNF-α) and interleukin 1-β (IL-1β) was abolished by the removal of microglia or inhibition of microglial p53 activation. These results suggest that transcriptional-dependent p53 activities in microglia may drive a non-cell autonomous process of synaptic degeneration in neurons during neuroinflammatory degenerative diseases. PMID:25204787

  12. Nicotine contributes to the neural stem cells fate against toxicity of microglial-derived factors induced by Aβ via the Wnt/β-catenin pathway.

    PubMed

    Jiang, De-Qi; Wei, Mei-Dan; Wang, Ke-Wan; Lan, Yan-Xian; Zhu, Ning; Wang, Yong

    2016-01-01

    Recent studies have demonstrated that the molecules secreted from microglias play important roles in the cell fate determination of neural stem cells (NSCs), and nicotinic acetylcholine receptor agonist treatment could reduce neuroinflammation in some neurodegenerative disease models, such as Alzheimer's disease (AD). However, it is not clear how nicotine plays a neuroprotective role in inflammation-mediated central nervous diseases, and its possible mechanisms in the process remain largely elusive. The aim of this study is to improve the survival microenvironment of NSCs co-cultured with microglias in vitro by weakening inflammation that mediated by accumulation of β-amyloid peptide (Aβ). The viability, proliferation, differentiation, apoptosis of NSCs and underlying mechanisms associated with Wnt signaling pathway were investigated. The results showed that Aβ could directly damage NSCs. Furthermore, concomitant to elevated levels of TNF-α, IL-1β derived from microglias, the NSCs had been damaged more severely with the upregulation of Axin 2, p-β-catenin and the downregulation of β-catenin, p-GSK-3β, microtubule-associated protein-2, choline acetyltransferase. However, addition of 10 μmol/L nicotine before microglias treated with Aβ was beneficial to protect the NSCs against neurotoxicity of microglial-derived factors induced by Aβ, which partially rescued proliferation, differentiation and inhibited apoptosis of NSCs via activation of Wnt/β-catenin pathway. Taken together, these data imply that low concentration nicotine attenuates NSCs injury induced by microglial-derived factors via Wnt signaling pathway. Thus, treatment with nicotinic acetylcholine receptor agonist provides a promising research field for neural stem cell fate and therapeutic intervention in neuroinflammation diseases. PMID:26001208

  13. Glucocerebrosidase 1 deficient Danio rerio mirror key pathological aspects of human Gaucher disease and provide evidence of early microglial activation preceding alpha-synuclein-independent neuronal cell death

    PubMed Central

    Keatinge, Marcus; Bui, Hai; Menke, Aswin; Chen, Yu-Chia; Sokol, Anna M.; Bai, Qing; Ellett, Felix; Da Costa, Marc; Burke, Derek; Gegg, Matthew; Trollope, Lisa; Payne, Thomas; McTighe, Aimee; Mortiboys, Heather; de Jager, Sarah; Nuthall, Hugh; Kuo, Ming-Shang; Fleming, Angeleen; Schapira, Anthony H.V.; Renshaw, Stephen A.; Highley, J. Robin; Chacinska, Agnieszka; Panula, Pertti; Burton, Edward A.; O'Neill, Michael J.; Bandmann, Oliver

    2015-01-01

    Autosomal recessively inherited glucocerebrosidase 1 (GBA1) mutations cause the lysosomal storage disorder Gaucher's disease (GD). Heterozygous GBA1 mutations (GBA1+/−) are the most common risk factor for Parkinson's disease (PD). Previous studies typically focused on the interaction between the reduction of glucocerebrosidase (enzymatic) activity in GBA1+/− carriers and alpha-synuclein-mediated neurotoxicity. However, it is unclear whether other mechanisms also contribute to the increased risk of PD in GBA1+/− carriers. The zebrafish genome does not contain alpha-synuclein (SNCA), thus providing a unique opportunity to study pathogenic mechanisms unrelated to alpha-synuclein toxicity. Here we describe a mutant zebrafish line created by TALEN genome editing carrying a 23 bp deletion in gba1 (gba1c.1276_1298del), the zebrafish orthologue of human GBA1. Marked sphingolipid accumulation was already detected at 5 days post-fertilization with accompanying microglial activation and early, sustained up-regulation of miR-155, a master regulator of inflammation. gba1c.1276_1298del mutant zebrafish developed a rapidly worsening phenotype from 8 weeks onwards with striking reduction in motor activity by 12 weeks. Histopathologically, we observed marked Gaucher cell invasion of the brain and other organs. Dopaminergic neuronal cell count was normal through development but reduced by >30% at 12 weeks in the presence of ubiquitin-positive, intra-neuronal inclusions. This gba1c.1276_1298del zebrafish line is the first viable vertebrate model sharing key pathological features of GD in both neuronal and non-neuronal tissue. Our study also provides evidence for early microglial activation prior to alpha-synuclein-independent neuronal cell death in GBA1 deficiency and suggests upregulation of miR-155 as a common denominator across different neurodegenerative disorders. PMID:26376862

  14. Anti-inflammatory mechanism of α-viniferin regulates lipopolysaccharide-induced release of proinflammatory mediators in BV2 microglial cells.

    PubMed

    Dilshara, Matharage Gayani; Lee, Kyoung-Tae; Kim, Hee Ju; Lee, Hak-Ju; Choi, Yung Hyun; Lee, Chang-Min; Kim, Lark Kyun; Kim, Gi-Young

    2014-07-01

    α-Viniferin is an oligostilbene of trimeric resveratrol and has anticancer activity; however, the molecular mechanism underlying the anti-inflammatory effects of α-viniferin has not been completely elucidated thus far. Therefore, we determined the mechanism by which α-viniferin regulates lipopolysaccharide (LPS)-induced expression of proinflammatory mediators in BV2 microglial cells. Treatment with α-viniferin isolated from Clematis mandshurica decreased LPS-induced production of nitric oxide (NO) and prostaglandin E2 (PGE2). α-Viniferin also downregulated the LPS-induced expression of proinflammatory genes such as iNOS and COX-2 by suppressing the activity of nuclear factor kappa B (NF-κB) via dephosphorylation of Akt/PI3K. Treatment with a specific NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), indirectly showed that NF-κB is a crucial transcription factor for expression of these genes in the early stage of inflammation. Additionally, our results indicated that α-viniferin suppresses NO and PGE2 production in the late stage of inflammation through induction of heme oxygenase-1 (HO-1) regulated by nuclear factor erythroid 2-related factor (Nrf2). Taken together, our data indicate that α-viniferin suppresses the expression of proinflammatory genes iNOS and COX-2 in the early stage of inflammation by inhibiting the Akt/PI3K-dependent NF-κB activation and inhibits the production of proinflammatory mediators NO and PGE2 in the late stage by stimulating Nrf2-mediated HO-1 signaling pathway in LPS-stimulated BV2 microglial cells. These results suggest that α-viniferin may be a potential candidate to regulate LPS-induced inflammation. PMID:24859013

  15. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells

    PubMed Central

    Park, SE; Sapkota, K; Kim, S; Kim, H; Kim, SJ

    2011-01-01

    BACKGROUND AND PURPOSE Kaempferol, a dietary flavonoid and phyto-oestrogen, is known to have anti-inflammatory properties. Microglial activation has been implicated in various neurodegenerative diseases. Anti-inflammatory effects of kaempferol and the underlying mechanisms were investigated by using LPS-stimulated microglial BV2 cells. EXPERIMENTAL APPROACH Cell viability was measured using MTT and neutral red assays. elisa, Western blot, immunocytochemistry and electrophoretic mobility-shift assay were used to analyse NO, PGE2, TNF-α and IL-1β production, inducible NOS (iNOS), COX-2 expression and the involvement of signalling pathways such as toll-like receptor-4 (TLR4), MAPK cascades, PKB (AKT) and NF-κB. Accumulation of reaction oxygen species (ROS) was measured by nitroblue tetrazolium and 2′7′-dichlorofluorescein diacetate assay. Matrix metalloproteinase activity was investigated by zymography and immunoblot assay. Phagocytotic activity was assessed by use of latex beads. KEY RESULTS Kaempferol significantly attenuated LPS-induced NO, PGE2, TNF-α, IL-1β and ROS production and phagocytosis in a concentration-dependent manner. Kaempferol suppressed the expression of iNOS, COX-2, MMP-3 and blocked the TLR4 activation. Moreover, kaempferol inhibited LPS-induced NF-κB activation and p38 MAPK, JNK and AKT phosphorylation. CONCLUSION AND IMPLICATIONS Kaempferol was able to reduce LPS-induced inflammatory mediators through the down-regulation of TLR4, NF-κB, p38 MAPK, JNK and AKT suggesting that kaempferol has therapeutic potential for the treatment of neuroinflammatory diseases. PMID:21449918

  16. The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells.

    PubMed

    Kwon, Seung-Hwan; Ma, Shi-Xun; Hwang, Ji-Young; Ko, Yong-Hyun; Seo, Ji-Yeon; Lee, Bo-Ram; Lee, Seok-Yong; Jang, Choon-Gon

    2016-05-01

    In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase kinase-3β (GSK-3β), and their downstream transcription factor, nuclear factor-kappa B (NF-κB). EUE also blocked the nuclear translocation of NF-κB and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and PGE₂ production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and GSK-3β, consequently suppressing NF-κB activation and inducing Nrf2-dependent HO-1 activation. PMID:27068259

  17. Dietary Sutherlandia and Elderberry Mitigate Cerebral Ischemia-Induced Neuronal Damage and Attenuate p47phox and Phospho-ERK1/2 Expression in Microglial Cells

    PubMed Central

    Chuang, Dennis Y.; Cui, Jiankun; Simonyi, Agnes; Engel, Victoria A.; Chen, Shanyan; Fritsche, Kevin L.; Thomas, Andrew L.; Applequist, Wendy L.; Folk, William R.; Lubahn, Dennis B.; Sun, Albert Y.; Sun, Grace Y.

    2014-01-01

    Sutherlandia (Sutherlandia frutescens) and elderberry (Sambucus spp.) are used to promote health and for treatment of a number of ailments. Although studies with cultured cells have demonstrated antioxidative and anti-inflammatory properties of these botanicals, little is known about their ability to mitigate brain injury. In this study, C57BL/6 J male mice were fed AIN93G diets without or with Sutherlandia or American elderberry for 2 months prior to a 30-min global cerebral ischemia induced by occlusion of the bilateral common carotid arteries (BCCAs), followed by reperfusion for 3 days. Accelerating rotarod assessment at 24 h after BCCA occlusion showed amelioration of sensorimotor impairment in the mice fed the supplemented diets as compared with the ischemic mice fed the control diet. Quantitative digital pathology assessment of brain slides stained with cresyl violet at 3 days after ischemia/reperfusion (I/R) revealed significant reduction in neuronal cell death in both dietary groups. Immunohistochemical staining for ionized calcium-binding adapter molecule-1 demonstrated pronounced activation of microglia in the hippocampus and striatum in the ischemic brains 3 days after I/R, and microglial activation was significantly reduced in animals fed supplemented diets. Mitigation of microglial activation by the supplements was further supported by the decrease in expression of p47phox, a cytosolic subunit of NADPH oxidase, and phospho-ERK1/2, a mitogen-activated protein kinase known to mediate a number of cytoplasmic processes including oxidative stress and neuroinflammatory responses. These results demonstrate neuroprotective effect of Sutherlandia and American elderberry botanicals against oxidative and inflammatory responses to cerebral I/R. PMID:25324465

  18. The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells

    PubMed Central

    Kwon, Seung-Hwan; Ma, Shi-Xun; Hwang, Ji-Young; Ko, Yong-Hyun; Seo, Ji-Yeon; Lee, Bo-Ram; Lee, Seok-Yong; Jang, Choon-Gon

    2016-01-01

    In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase kinase-3β (GSK-3β), and their downstream transcription factor, nuclear factor-kappa B (NF-κB). EUE also blocked the nuclear translocation of NF-κB and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and PGE2 production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and GSK-3β, consequently suppressing NF-κB activation and inducing Nrf2-dependent HO-1 activation. PMID:27068259

  19. Microglial content-dependent inhibitory effects of calcitonin gene-related peptide (CGRP) on murine retroviral infection of glial cells.

    PubMed

    Malon, Jennifer T; Grlickova-Duzevik, Eliza; Vaughn, James; Beaulac, Holly; Vunk, Tyler R; Cao, Ling

    2015-02-15

    C57BL/6 (B6) mice develop peripheral neuropathy post-LP-BM5 infection, a murine model of HIV-1 infection, along with the up-regulation of select spinal cord cytokines. We investigated if calcitonin gene-related peptide (CGRP) contributed to the development of peripheral neuropathy by stimulating glial responses. An increased expression of lumbar spinal cord CGRP was observed in vivo, post-LP-BM5 infection. Consequently, in vitro CGRP co-treatments led to a microglial content-dependent attenuation of viral loads in spinal cord mixed glia infected with selected doses of LP-BM5. This inhibition was neither caused by the loss of glia nor induced via the direct inhibition of LP-BM5 by CGRP. PMID:25670002

  20. Localization of P-glycoprotein at the nuclear envelope of rat brain cells

    SciTech Connect

    Babakhanian, Karlo; Bendayan, Moise; Bendayan, Reina . E-mail: r.bendayan@utoronto.ca

    2007-09-21

    P-Glycoprotein is a plasma membrane drug efflux protein implicated in extrusion of cytotoxic compounds out of a cell. There is now evidence that suggests expression of this transporter at several subcellular sites, including the nucleus, mitochondria, and Golgi apparatus. This study investigated the localization and expression of P-glycoprotein at the nuclear membrane of rat brain microvessel endothelial (RBE4) and microglial (MLS-9) cell lines. Immunocytochemistry at the light and electron microscope levels using P-glycoprotein monoclonals antibodies demonstrated the localization of the protein at the nuclear envelope of RBE4 and MLS-9 cells. Western blot analysis revealed a single band of 170-kDa in purified nuclear membranes prepared from isolated nuclei of RBE4 and MLS-9 cells. These findings indicate that P-glycoprotein is expressed at the nuclear envelope of rat brain cells and suggest a role in multidrug resistance at this subcellular site.

  1. Involvement of Microglial P2Y12 Signaling in Tongue Cancer Pain.

    PubMed

    Tamagawa, T; Shinoda, M; Honda, K; Furukawa, A; Kaji, K; Nagashima, H; Akasaka, R; Chen, J; Sessle, B J; Yonehara, Y; Iwata, K

    2016-09-01

    To elucidate if microglial P2Y12 receptor (P2Y12R) mechanisms are involved in the trigeminal spinal subnucleus caudalis (Vc; also known as the medullary dorsal horn) in intraoral cancer pain, we developed a rat model of tongue cancer pain. Squamous cell carcinoma (SCC) cells were inoculated into the tongue of rats; sham control rats received the vehicle instead. Nociceptive behavior was measured as the head-withdrawal reflex threshold (HWRT) to mechanical or heat stimulation applied to the tongue under light anesthesia. On day 14 after the SCC inoculation, activated microglia and P2Y12R expression were examined immunohistochemically in the Vc. The HWRT was also studied in SCC-inoculated rats with successive intra-cisterna magna (i.c.m.) administration of specific P2Y12R antagonist (MRS2395) or intraperitoneal administration of minocycline, a microglial activation inhibitor. Tongue cancer was histologically verified in SCC-inoculated rats, within which the HWRT to mechanical stimulation of the tongue was significantly decreased, as compared with that of vehicle-inoculated rats, although the HWRT to heat stimulation was not. Microglia was strongly activated on day 14, and the administration of MRS2395 or minocycline reversed associated nocifensive behavior and microglial activation in SCC-inoculated rats for 14 d. The activity of Vc wide dynamic range nociceptive neurons was also recorded electrophysiologically in SCC-inoculated and sham rats. Background activity and noxious mechanically evoked responses of wide dynamic range neurons were significantly increased in SCC-inoculated rats versus sham rats, and background activity and mechanically evoked responses were significantly suppressed following i.c.m. administration of MRS2395 in SCC-inoculated rats as compared with sham. The present findings suggest that SCC inoculation that produces tongue cancer results in strong activation of microglia via P2Y12 signaling in the Vc, in association with increased excitability

  2. Microglial Dynamics and Role in the Healthy and Diseased Brain

    PubMed Central

    Perry, V. Hugh

    2015-01-01

    The study of the dynamics and functions of microglia in the healthy and diseased brain is a matter of intense scientific activity. The application of new techniques and new experimental approaches has allowed the identification of novel microglial functions and the redefinition of classic ones. In this review, we propose the study of microglial functions, rather than their molecular profiles, to better understand and define the roles of these cells in the brain. We review current knowledge on the role of surveillant microglia, proliferating microglia, pruning/neuromodulatory microglia, phagocytic microglia, and inflammatory microglia and the molecular profiles that are associated with these functions. In the remodeling scenario of microglial biology, the analysis of microglial functional states will inform about the roles in health and disease and will guide us to a more precise understanding of the multifaceted roles of this never-resting cells. PMID:24722525

  3. Galectin-3 enhances angiogenic and migratory potential of microglial cells via modulation of integrin linked kinase signaling

    PubMed Central

    Wesley, Umadevi V.; Vemuganti, Raghu; Ayvaci, Rabia; Dempsey, Robert J.

    2013-01-01

    Focal cerebral ischemia initiates self-repair mechanisms that include the production of neurotrophic factors and cytokines. Galectin-3 is an important angiogenic cytokine. We have previously demonstrated that expression of galectin 3 (Gal-3), a carbohydrate binding protein is significantly upregulated in activated microglia in the brains of rats subjected to focal ischemia. Further blocking of Gal-3 function with Gal-3 neutralizing antibody decreased the microvessel density in ischemic brain. We currently show that Gal-3 significantly increases the viability of microglia BV2 cells subjected to oxygen glucose deprivation (OGD) and re-oxygenation. Exogenous Gal-3 promoted the formation of pro-angiogenic structures in an in vitro human umbilical vein endothelial (HUVEC) and BV2 cell co-culture model. Gal-3 induced angiogenesis was associated with increased expression of vascular endothelial growth factor. The conditioned medium of BV2 cells exposed to OGD contained increased Gal-3 levels, and promoted the formation of pro-angiogenic structures in an in vitro HUVEC culture model. Gal-3 also augmented the in vitro migratory potential of BV2 microglia. Gal-3 mediated functions were associated with increased levels of integrin-linked kinase (ILK) signaling as demonstrated by the impaired angiogenesis and migration of BV2 cells following targeted silencing of ILK expression by SiRNA. Furthermore, we show that ILK levels correlate with the levels of phos-AKT and ERK1/2 that are downstream effectors of ILK pathway. Taken together, our studies indicate that Gal-3 contributes to angiogenesis and microglia migration that may have implications in post stroke repair. PMID:23246924

  4. Engraftment of Human Glioblastoma Cells in Immunocompetent Rats through Acquired Immunosuppression

    PubMed Central

    Huszthy, Peter C.; Sakariassen, Per Ø.; Espedal, Heidi; Brokstad, Karl A.; Bjerkvig, Rolf; Miletic, Hrvoje

    2015-01-01

    Transplantation of glioblastoma patient biopsy spheroids to the brain of T cell-compromised Rowett (nude) rats has been established as a representative animal model for human GBMs, with a tumor take rate close to 100%. In immunocompetent littermates however, primary human GBM tissue is invariably rejected. Here we show that after repeated passaging cycles in nude rats, human GBM spheroids are enabled to grow in the brain of immunocompetent rats. In case of engraftment, xenografts in immunocompetent rats grow progressively and host leukocytes fail to enter the tumor bed, similar to what is seen in nude animals. In contrast, rejection is associated with massive infiltration of the tumor bed by leukocytes, predominantly ED1+ microglia/macrophages, CD4+ T helper cells and CD8+ effector cells, and correlates with elevated serum levels of pro-inflammatory cytokines IL-1β, IL-18 and TNF-α. We observed that in nude rat brains, an adaptation to the host occurs after several in vivo passaging cycles, characterized by striking attenuation of microglial infiltration. Furthermore, tumor-derived chemokines that promote leukocyte migration and their entry into the CNS such as CXCL-10 and CXCL-12 are down-regulated, and the levels of TGF-β2 increase. We propose that through serial in vivo passaging in nude rats, human GBM cells learn to avoid and or/ suppress host immunity. Such adapted GBM cells are in turn able to engraft in immunocompetent rats without signs of an inflammatory response. PMID:26291724

  5. Regulation of rotenone-induced microglial activation by 5-lipoxygenase and cysteinyl leukotriene receptor 1.

    PubMed

    Zhang, Xiao-Yan; Chen, Lu; Yang, Yi; Xu, Dong-Min; Zhang, Si-Ran; Li, Chen-Tan; Zheng, Wei; Yu, Shu-Ying; Wei, Er-Qing; Zhang, Li-Hui

    2014-07-14

    The 5-lipoxygenase (5-LOX) products cysteinyl leukotrienes (CysLTs) are potent pro-inflammatory mediators. CysLTs mediate their biological actions through activating CysLT receptors (CysLT(1)R and CysLT(2)R). We have recently reported that 5-LOX and CysLT(1)R mediated PC12 cell injury induced by high concentrations of rotenone (0.3-10 μM), which was reduced by the selective 5-LOX inhibitor zileuton and CysLT(1)R antagonist montelukast. The purpose of this study was to examine the regulatory roles of the 5-LOX/CysLT(1)R pathway in microglial activation induced by low concentration rotenone. After mouse microglial BV2 cells were stimulated with rotenone (0.3-3 nM), phagocytosis and release of pro-inflammatory cytokine were assayed as indicators of microglial activation. We found that rotenone (1 and 3 nM) increased BV2 microglial phagocytosis and the release of the pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Zileuton and montelukast prevented rotenone (3 nM)-induced phagocytosis and cytokine release. Furthermore, rotenone significantly up-regulated 5-LOX expression, induced 5-LOX translocation to the nuclear envelope, and increased the production of CysLTs. These responses were inhibited by zileuton. Rotenone also increased CysLT(1)R expression and induced nuclear translocation of CysLT(1)R. In primary rat microglia, rotenone (10 nM) increased release of IL-1β and TNF-α, whereas zileuton (0.1 μΜ) and montelukast (0.01 μΜ) significantly inhibited this response. These results indicated that 5-LOX and CysLT(1)R might be key regulators of microglial activation induced by low concentration of rotenone. Interference of 5-LOX/CysLT(1)R pathway may be an effective therapeutic strategy for microglial inflammation. PMID:24858057

  6. TAM receptors regulate multiple features of microglial physiology.

    PubMed

    Fourgeaud, Lawrence; Través, Paqui G; Tufail, Yusuf; Leal-Bailey, Humberto; Lew, Erin D; Burrola, Patrick G; Callaway, Perri; Zagórska, Anna; Rothlin, Carla V; Nimmerjahn, Axel; Lemke, Greg

    2016-04-14

    Microglia are damage sensors for the central nervous system (CNS), and the phagocytes responsible for routine non-inflammatory clearance of dead brain cells. Here we show that the TAM receptor tyrosine kinases Mer and Axl regulate these microglial functions. We find that adult mice deficient in microglial Mer and Axl exhibit a marked accumulation of apoptotic cells specifically in neurogenic regions of the CNS, and that microglial phagocytosis of the apoptotic cells generated during adult neurogenesis is normally driven by both TAM receptor ligands Gas6 and protein S. Using live two-photon imaging, we demonstrate that the microglial response to brain damage is also TAM-regulated, as TAM-deficient microglia display reduced process motility and delayed convergence to sites of injury. Finally, we show that microglial expression of Axl is prominently upregulated in the inflammatory environment that develops in a mouse model of Parkinson's disease. Together, these results establish TAM receptors as both controllers of microglial physiology and potential targets for therapeutic intervention in CNS disease. PMID:27049947

  7. New compound, 5-O-isoferuloyl-2-deoxy-D-ribono-γ-lacton from Clematis mandshurica: Anti-inflammatory effects in lipopolysaccharide-stimulated BV2 microglial cells.

    PubMed

    Dilshara, Matharage Gayani; Lee, Kyoung-Tae; Lee, Chang-Min; Choi, Yung Hyun; Lee, Hak-Ju; Choi, Il-Whan; Kim, Gi-Young

    2015-01-01

    Microglia are main immune cells to exacerbate neural disorders in persistent overactivating. Therefore, it is a good strategy to regulate microglia for the treatment of neural disorders. In the present study, we isolated and characterized a novel compound, 5-O-isoferuloyl-2-deoxy-D-ribono-γ-lacton (5-DRL) from Clematis mandshurica, and evaluated its anti-inflammatory effect in lipopolysaccharide (LPS)-treated BV2 microglial cells. 5-DRL inhibited the expression of LPS-stimulated proinflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2), as well as their regulatory genes inducible NO syntheses (iNOS) and cyclooxygenase-2 (COX-2). 5-DRL also downregulated the LPS-induced DNA-binding activity of nuclear factor-κB (NF-κB) through suppression of the nuclear translocation of the NF-κB subunits, p65 and p50. Consistent with the inhibition of iNOS and COX-2 via NF-κB activity with 5-DRL, an inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), also led to the suppression of LPS-induced iNOS and COX-2 expression. Additionally, 5-DRL corresponding with antioxidants, N-acetylcysteine (NAC) and glutathione (GSH), remarkably inhibited reactive oxygen species (ROS) generation. Both NAC and GSH, thus attenuated the expression of iNOS and COX-2 by suppressing NF-κB activation, indicating that 5-DRL suppresses LPS-induced iNOS and COX-2 expression through downregulation of the ROS-dependent NF-κB signaling pathway. The present study also indicated that 5-DRL suppresses NO and PGE2 production by inducing heme oxygenase-1 (HO-1) via nuclear factor erythroid 2-related factor 2 (Nrf2). Taken together, the present data indicate that 5-DRL attenuates the production of proinflammatory mediators such as NO and PGE2 as well as their regulatory genes in LPS-stimulated BV2 microglial cells by inhibiting ROS-dependent NF-κB activation and stimulating the Nrf2/HO-1 signal pathway. These data may be implicated in the application of 5-DRL in LPS

  8. Inhibitory effect of ent-Sauchinone on amyloidogenesis via inhibition of STAT3-mediated NF-κB activation in cultured astrocytes and microglial BV-2 cells

    PubMed Central

    2014-01-01

    Background ent-Sauchinone is a polyphenolic compound found in plants belonging to the lignan family. ent-Sauchinone has been shown to modulate the expression of inflammatory factors through the nuclear factor-kappa B (NF-κB) signaling pathway. It is well known that neuroinflammation is associated with amyloidogenesis. Thus, in the present study, we investigated whether ent-Sauchinone could have anti-amyloidogenic effects through the inhibition of NF-κB pathways via its anti-inflammatory property. Methods To investigate the potential effect of ent-Sauchinone on anti-neuroinflammation and anti-amyloidogenesis in in vitro studies, we used microglial BV-2 cells and cultured astrocytes treated with ent-Sauchinone (1, 5, and 10 μM) for 24 hours. For the detection of anti-neuro-inflammatory responses, reative oxygen species (ROS) and Nitric oxide (NO) generation and inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression were measured with assay kits and western blotting. β-secretase and β-secretase activities and β-amyloid levels were determined for measuring the anti-amyloidogenic effects of ent-Sauchinone by enzyme assay kits. NF-κB and STAT3 signals were detected with electromobility shift assay (EMSA) to study the related signaling pathways. The binding of ent-Sauchinone to STAT3 was evaluated by a pull-down assay and by a docking model using Autodock VINA software (Hoover’s Inc., Texas, United states). Results ent-Sauchinone (1, 5, and 10 μM) effectively decreased lipopolysaccharide (LPS)-(1 μg/ml) induced inflammatory responses through the reduction of ROS and NO generations and iNOS and COX-2 expressions in cultured astrocytes and microglial BV-2 cells. ent-Sauchinone also inhibited LPS-induced amyloidogenesis through the inhibition of β-secretase and β-secretase activity. NF- κB amyloid and STAT3, critical transcriptional factors regulating not only inflammation but also amyloidogenesis, were also inhibited in a

  9. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    PubMed Central

    2013-01-01

    Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM), as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF. PMID:23363775

  10. LPS-induced iNOS expression in N9 microglial cells is suppressed by geniposide via ERK, p38 and nuclear factor-κB signaling pathways.

    PubMed

    Zhang, Gu; He, Jun-Lin; Xie, Xiao-Yan; Yu, Chao

    2012-09-01

    Activated microglia producing reactive nitrogen species, inflammatory factors, reactive oxygen species (ROS) and other neurovirulent factors, can lead to the development of neurodegenerative diseases. Certain compounds can inhibit the activation of microglia. However, the mechanisms remain unclear. In the present study, we investigated the inhibitory effect of geniposide on the production of ROS and inducible nitric oxide synthase (iNOS) in lipopolysaccharide (LPS)-stimulated N9 murine microglial cells through the p38, ERK1/2 and nuclear factor-κB (NF-κB) signaling pathways. After the N9 cells were pre-treated with the vehicle or geniposide and exposed to LPS for the time indicated, the MTT conversion test was used to assess cell viability. Suitable concentrations were chosen and adjusted according to the experiments. Extracellular nitric oxide (NO) release was measured by Griess reaction. The formation of ROS and intracellular NO was evaluated by fluorescence imaging. NOS activities were determined using commercially available kits. The morphology of the N9 cells was examined by hematoxylin and eosin staining. The expression of iNOS mRNA was examined by RT-PCR. The protein levels of iNOS, p38 mitogen-activated protein kinase (MAPK), ERK1/2 and NF-κB, inhibitory factor-κB-α (IκB-α) were determined by western blot analysis. The results showed that geniposide attenuated the activation of N9 cells and inhibited the overproduction of NO, intracellular ROS and the expression of iNOS induced by LPS in the cells. In addition, geniposide blocked the phosphorylation of p38, ERK1/2 and inhibited the drop-off of IκB induced by LPS in the cells. These data indicate that geniposide has therapeutic potential for the treatment of neurodegenerative diseases, and that it exerts its effects by inhibiting inflammation. PMID:22710392

  11. Dynamic changes in global microRNAome and transcriptome reveal complex miRNA-mRNA regulated host response to Japanese Encephalitis Virus in microglial cells

    PubMed Central

    Kumari, Bharti; Jain, Pratistha; Das, Shaoli; Ghosal, Suman; Hazra, Bibhabasu; Trivedi, Ashish Chandra; Basu, Anirban; Chakrabarti, Jayprokas; Vrati, Sudhanshu; Banerjee, Arup

    2016-01-01

    Microglia cells in the brain play essential role during Japanese Encephalitis Virus (JEV) infection and may lead to change in microRNA (miRNA) and mRNA profile. These changes may together control disease outcome. Using Affymetrix microarray platform, we profiled cellular miRNA and mRNA expression at multiple time points during viral infection in human microglial (CHME3) cells. In silico analysis of microarray data revealed a phased pattern of miRNAs expression, associated with JEV replication and provided unique signatures of infection. Target prediction and pathway enrichment analysis identified anti correlation between differentially expressed miRNA and the gene expression at multiple time point which ultimately affected diverse signaling pathways including Notch signaling pathways in microglia. Activation of Notch pathway during JEV infection was demonstrated in vitro and in vivo. The expression of a subset of miRNAs that target multiple genes in Notch signaling pathways were suppressed and their overexpression could affect JEV induced immune response. Further analysis provided evidence for the possible presence of cellular competing endogenous RNA (ceRNA) associated with innate immune response. Collectively, our data provide a uniquely comprehensive view of the changes in the host miRNAs induced by JEV during cellular infection and identify Notch pathway in modulating microglia mediated inflammation. PMID:26838068

  12. Long-Term Upregulation of Inflammation and Suppression of Cell Proliferation in the Brain of Adult Rats Exposed to Traumatic Brain Injury Using the Controlled Cortical Impact Model

    PubMed Central

    Acosta, Sandra A.; Tajiri, Naoki; Shinozuka, Kazutaka; Ishikawa, Hiroto; Grimmig, Bethany; Diamond, David; Sanberg, Paul R.; Bickford, Paula C.; Kaneko, Yuji; Borlongan, Cesar V.

    2013-01-01

    The long-term consequences of traumatic brain injury (TBI), specifically the detrimental effects of inflammation on the neurogenic niches, are not very well understood. In the present in vivo study, we examined the prolonged pathological outcomes of experimental TBI in different parts of the rat brain with special emphasis on inflammation and neurogenesis. Sixty days after moderate controlled cortical impact injury, adult Sprague-Dawley male rats were euthanized and brain tissues harvested. Antibodies against the activated microglial marker, OX6, the cell cycle-regulating protein marker, Ki67, and the immature neuronal marker, doublecortin, DCX, were used to estimate microglial activation, cell proliferation, and neuronal differentiation, respectively, in the subventricular zone (SVZ), subgranular zone (SGZ), striatum, thalamus, and cerebral peduncle. Stereology-based analyses revealed significant exacerbation of OX6-positive activated microglial cells in the striatum, thalamus, and cerebral peduncle. In parallel, significant decrements in Ki67-positive proliferating cells in SVZ and SGZ, but only trends of reduced DCX-positive immature neuronal cells in SVZ and SGZ were detected relative to sham control group. These results indicate a progressive deterioration of the TBI brain over time characterized by elevated inflammation and suppressed neurogenesis. Therapeutic intervention at the chronic stage of TBI may confer abrogation of these deleterious cell death processes. PMID:23301065

  13. Administration of DHA Reduces Endoplasmic Reticulum Stress-Associated Inflammation and Alters Microglial or Macrophage Activation in Traumatic Brain Injury

    PubMed Central

    Harvey, Lloyd D.; Yin, Yan; Attarwala, Insiya Y.; Begum, Gulnaz; Deng, Julia; Yan, Hong Q.; Dixon, C. Edward

    2015-01-01

    We investigated the effects of the administration of docosahexaenoic acid (DHA) post-traumatic brain injury (TBI) on reducing neuroinflammation. TBI was induced by cortical contusion injury in Sprague Dawley rats. Either DHA (16 mg/kg in dimethyl sulfoxide) or vehicle dimethyl sulfoxide (1 ml/kg) was administered intraperitonially at 5 min after TBI, followed by a daily dose for 3 to 21 days. TBI triggered activation of microglia or macrophages, detected by an increase of Iba1 positively stained microglia or macrophages in peri-lesion cortical tissues at 3, 7, and 21 days post-TBI. The inflammatory response was further characterized by expression of the proinflammatory marker CD16/32 and the anti-inflammatory marker CD206 in Iba1+ microglia or macrophages. DHA-treated brains showed significantly fewer CD16/32+ microglia or macrophages, but an increased CD206+ phagocytic microglial or macrophage population. Additionally, DHA treatment revealed a shift in microglial or macrophage morphology from the activated, amoeboid-like state into the more permissive, surveillant state. Furthermore, activated Iba1+ microglial or macrophages were associated with neurons expressing the endoplasmic reticulum (ER) stress marker CHOP at 3 days post-TBI, and the administration of DHA post-TBI concurrently reduced ER stress and the associated activation of Iba1+ microglial or macrophages. There was a decrease in nuclear translocation of activated nuclear factor kappa-light-chain-enhancer of activated B cells protein at 3 days in DHA-treated tissue and reduced neuronal degeneration in DHA-treated brains at 3, 7, and 21 days after TBI. In summary, our study demonstrated that TBI mediated inflammatory responses are associated with increased neuronal ER stress and subsequent activation of microglia or macrophages. DHA administration reduced neuronal ER stress and subsequent association with microglial or macrophage polarization after TBI, demonstrating its therapeutic potential to

  14. Administration of DHA Reduces Endoplasmic Reticulum Stress-Associated Inflammation and Alters Microglial or Macrophage Activation in Traumatic Brain Injury.

    PubMed

    Harvey, Lloyd D; Yin, Yan; Attarwala, Insiya Y; Begum, Gulnaz; Deng, Julia; Yan, Hong Q; Dixon, C Edward; Sun, Dandan

    2015-01-01

    We investigated the effects of the administration of docosahexaenoic acid (DHA) post-traumatic brain injury (TBI) on reducing neuroinflammation. TBI was induced by cortical contusion injury in Sprague Dawley rats. Either DHA (16 mg/kg in dimethyl sulfoxide) or vehicle dimethyl sulfoxide (1 ml/kg) was administered intraperitonially at 5 min after TBI, followed by a daily dose for 3 to 21 days. TBI triggered activation of microglia or macrophages, detected by an increase of Iba1 positively stained microglia or macrophages in peri-lesion cortical tissues at 3, 7, and 21 days post-TBI. The inflammatory response was further characterized by expression of the proinflammatory marker CD16/32 and the anti-inflammatory marker CD206 in Iba1(+) microglia or macrophages. DHA-treated brains showed significantly fewer CD16/32(+) microglia or macrophages, but an increased CD206(+) phagocytic microglial or macrophage population. Additionally, DHA treatment revealed a shift in microglial or macrophage morphology from the activated, amoeboid-like state into the more permissive, surveillant state. Furthermore, activated Iba1(+) microglial or macrophages were associated with neurons expressing the endoplasmic reticulum (ER) stress marker CHOP at 3 days post-TBI, and the administration of DHA post-TBI concurrently reduced ER stress and the associated activation of Iba1(+) microglial or macrophages. There was a decrease in nuclear translocation of activated nuclear factor kappa-light-chain-enhancer of activated B cells protein at 3 days in DHA-treated tissue and reduced neuronal degeneration in DHA-treated brains at 3, 7, and 21 days after TBI. In summary, our study demonstrated that TBI mediated inflammatory responses are associated with increased neuronal ER stress and subsequent activation of microglia or macrophages. DHA administration reduced neuronal ER stress and subsequent association with microglial or macrophage polarization after TBI, demonstrating its therapeutic

  15. Microglial interleukin-1β in the ipsilateral dorsal horn inhibits the development of mirror-image contralateral mechanical allodynia through astrocyte activation in a rat model of inflammatory pain.

    PubMed

    Choi, Hoon-Seong; Roh, Dae-Hyun; Yoon, Seo-Yeon; Moon, Ji-Young; Choi, Sheu-Ran; Kwon, Soon-Gu; Kang, Suk-Yun; Han, Ho-Jae; Kim, Hyun-Woo; Beitz, Alvin J; Oh, Seog-Bae; Lee, Jang-Hern

    2015-06-01

    Damage on one side of the body can also result in pain on the contralateral unaffected side, called mirror-image pain (MIP). Currently, the mechanisms responsible for the development of MIP are unknown. In this study, we investigated the involvement of spinal microglia and interleukin-1β (IL-1β) in the development of MIP using a peripheral inflammatory pain model. After unilateral carrageenan injection, mechanical allodynia (MA) in both hind paws and the expression levels of spinal Iba-1, IL-1β, and GFAP were evaluated. Ipsilateral MA was induced beginning at 3 hours after carrageenan injection, whereas contralateral MA showed a delayed onset occurring 5 days after injection. A single intrathecal (i.t.) injection of minocycline, a tetracycline derivative that displays selective inhibition of microglial activation, or an interleukin-1 receptor antagonist (IL-1ra) on the day of carrageenan injection caused an early temporary induction of contralateral MA, whereas repeated i.t. treatment with these drugs from days 0 to 3 resulted in a long-lasting contralateral MA, which was evident in its advanced development. We further showed that IL-1β was localized to microglia and that minocycline inhibited the carrageenan-induced increases in spinal Iba-1 and IL-1β expression. Conversely, minocycline or IL-1ra pretreatment increased GFAP expression as compared with that of control rats. However, i.t. pretreatment with fluorocitrate, an astrocyte inhibitor, restored minocycline- or IL-1ra-induced contralateral MA. These results suggest that spinal IL-1β derived from activated microglia temporarily suppresses astrocyte activation, which can ultimately prevent the development of contralateral MA under inflammatory conditions. These findings imply that microglial IL-1β plays an important role in regulating the induction of inflammatory MIP. PMID:25749305

  16. Proteomic Analysis of the Effects of Aged Garlic Extract and Its FruArg Component on Lipopolysaccharide-Induced Neuroinflammatory Response in Microglial Cells

    PubMed Central

    Mossine, Valeri V.; Nknolise, Dineo L.; Li, Jilong; Chen, Zhenzhou; Cheng, Jianlin; Greenlief, C. Michael; Mawhinney, Thomas P.; Brown, Paula N.; Fritsche, Kevin L.; Hannink, Mark; Lubahn, Dennis B.; Sun, Grace Y.; Gu, Zezong

    2014-01-01

    Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress. PMID:25420111

  17. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells.

    PubMed

    Zhou, Hui; Qu, Zhe; Mossine, Valeri V; Nknolise, Dineo L; Li, Jilong; Chen, Zhenzhou; Cheng, Jianlin; Greenlief, C Michael; Mawhinney, Thomas P; Brown, Paula N; Fritsche, Kevin L; Hannink, Mark; Lubahn, Dennis B; Sun, Grace Y; Gu, Zezong

    2014-01-01

    Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress. PMID:25420111

  18. Microglial action in glioma: a boon turns bane.

    PubMed

    Ghosh, Anirban; Chaudhuri, Swapna

    2010-06-15

    Microglia has the potential to shape the neuroimmune defense with vast array of functional attributes. The cells prime infiltrated lymphocytes to retain their effector functions, play crucial role in controlling microenvironmental milieu and significantly participate in glioma. Reports demonstrate microglial accumulation in glioma and predict their assistance in glioma growth and spreading. Clarification of the 'double-edged' appearance of microglia is necessary to unfold its role in glioma biology. In this article the interpretation of microglial activities has been attempted to reveal their actual function in glioma. Contrary to the trendy acceptance of its glioma promoting infamy, accumulated evidences make an effort to view the state of affairs in favor of the cell. Critical scrutiny indicates that microglial immune assaults are intended to demolish the neoplastic cells in brain. But the weaponry of microglia has been tactically utilized by glioma in their favor as the survival strategy. Hence the defender appears as enemy in advanced glioma. PMID:20338195

  19. Developmental changes in microglial mobilization are independent of apoptosis in the neonatal mouse hippocampus.

    PubMed

    Eyo, Ukpong B; Miner, Samuel A; Weiner, Joshua A; Dailey, Michael E

    2016-07-01

    During CNS development, microglia transform from highly mobile amoeboid-like cells to primitive ramified forms and, finally, to highly branched but relatively stationary cells in maturity. The factors that control developmental changes in microglia are largely unknown. Because microglia detect and clear apoptotic cells, developmental changes in microglia may be controlled by neuronal apoptosis. Here, we assessed the extent to which microglial cell density, morphology, motility, and migration are regulated by developmental apoptosis, focusing on the first postnatal week in the mouse hippocampus when the density of apoptotic bodies peaks at postnatal day 4 and declines sharply thereafter. Analysis of microglial form and distribution in situ over the first postnatal week showed that, although there was little change in the number of primary microglial branches, microglial cell density increased significantly, and microglia were often seen near or engulfing apoptotic bodies. Time-lapse imaging in hippocampal slices harvested at different times over the first postnatal week showed differences in microglial motility and migration that correlated with the density of apoptotic bodies. The extent to which these changes in microglia are driven by developmental neuronal apoptosis was assessed in tissues from BAX null mice lacking apoptosis. We found that apoptosis can lead to local microglial accumulation near apoptotic neurons in the pyramidal cell body layer but, unexpectedly, loss of apoptosis did not alter overall microglial cell density in vivo or microglial motility and migration in ex vivo tissue slices. These results demonstrate that developmental changes in microglial form, distribution, motility, and migration occur essentially normally in the absence of developmental apoptosis, indicating that factors other than neuronal apoptosis regulate these features of microglial development. PMID:26576723

  20. Tiagabine Protects Dopaminergic Neurons against Neurotoxins by Inhibiting Microglial Activation

    PubMed Central

    Liu, Jie; Huang, Dongping; Xu, Jing; Tong, Jiabin; Wang, Zishan; Huang, Li; Yang, Yufang; Bai, Xiaochen; Wang, Pan; Suo, Haiyun; Ma, Yuanyuan; Yu, Mei; Fei, Jian; Huang, Fang

    2015-01-01

    Microglial activation and inflammation are associated with progressive neuronal apoptosis in neurodegenerative disorders such as Parkinson’s disease (PD). γ-Aminobutyric acid (GABA), the major inhibitory neurotransmitter in the central nervous system, has recently been shown to play an inhibitory role in the immune system. Tiagabine, a piperidine derivative, enhances GABAergic transmission by inhibiting GABA transporter 1 (GAT 1). In the present study, we found that tiagabine pretreatment attenuated microglial activation, provided partial protection to the nigrostriatal axis and improved motor deficits in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD. The protective function of tiagabine was abolished in GAT 1 knockout mice that were challenged with MPTP. In an alternative PD model, induced by intranigral infusion of lipopolysaccharide (LPS), microglial suppression and subsequent neuroprotective effects of tiagabine were demonstrated. Furthermore, the LPS-induced inflammatory activation of BV-2 microglial cells and the toxicity of conditioned medium toward SH-SY5Y cells were inhibited by pretreatment with GABAergic drugs. The attenuation of the nuclear translocation of nuclear factor κB (NF-κB) and the inhibition of the generation of inflammatory mediators were the underlying mechanisms. Our results suggest that tiagabine acts as a brake for nigrostriatal microglial activation and that it might be a novel therapeutic approach for PD. PMID:26499517

  1. Stereological and somatotopic analysis of the spinal microglial response to peripheral nerve injury

    PubMed Central

    Beggs, Simon; Salter, Michael W.

    2016-01-01

    The involvement of glia, and glia-neuronal signalling in enhancing nociceptive transmission has become an area of intense scientific interest. In particular, a role has emerged for activated microglia in the development and maintenance of neuropathic pain following peripheral nerve injury. Following activation, spinal microglia proliferate and release many substances which are capable of modulating neuronal excitability within the spinal cord. Here, we the investigated the response of spinal microglia to a unilateral spared nerve injury (SNI) in terms of the quantitative increase in cell number and the spatial distribution of the increase. Design-based stereological techniques were combined with iba-1 immunohistochemistry to estimate the total number of microglia in the spinal dorsal horn in naïve and peripheral nerve-injured adult rats. In addition, by mapping the central terminals of hindlimb nerves, the somatotopic distribution of the microglial response was mapped. Following SNI there was a marked increase in the number of spinal microglia: The total number of microglia (mean ± SD) in the dorsal horn sciatic territory of the naïve rat was estimated to be 28,591 ± 2715. Following SNI the number of microglia was 82,034 ± 8828. While the pattern of microglial activation generally followed somatotopic boundaries, with the majority of microglia within the territory occupied by peripherally axotomised primary afferents, some spread was seen into regions occupied by intact, ‘spared’ central projections of the sural nerve. This study provides a reproducible method of assaying spinal microglial dynamics following peripheral nerve injury both quantitatively and spatially. PMID:17267172

  2. Retinoic acid receptor agonist Am80 inhibits CXCL2 production from microglial BV-2 cells via attenuation of NF-κB signaling.

    PubMed

    Takaoka, Yuichiro; Takahashi, Moeka; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Shudo, Koichi; Katsuki, Hiroshi

    2016-09-01

    Accumulating lines of evidence suggest that retinoic acid receptor agonists such as Am80 exerts anti-inflammatory actions in the central nervous system, although detailed mechanisms of the action remain largely unknown. Our previous findings suggest that Am80 provides therapeutic effect on intracerebral hemorrhage in mice via suppression of expression of chemokine (C-X-C motif) ligand 2 (CXCL2). Here we investigated the mechanisms of inhibitory action of Am80 on expression of CXCL2 and other pro-inflammatory factors in microglial BV-2 cells. Pretreatment with Am80 markedly suppressed lipopolysaccharide (LPS)-induced expression of CXCL2 mRNA and release of CXCL2 protein. Am80 had no effect on LPS-induced activation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinase. On the other hand, Am80 prevented LPS-induced nuclear translocation of p65 subunit of NF-κB complex. In addition, total expression levels of p65 and IκBα proteins, as well as of mRNAs encoding p65 and IκBα, were lowered by Am80. Dependence of CXCL2 expression on NF-κB was confirmed by the effect of an NF-κB inhibitor caffeic acid phenethyl ester that abolished LPS-induced CXCL2 expression. Caffeic acid phenethyl ester also abolished LPS-induced expression of inducible nitric oxide synthase, interleukin-1β and tumor necrosis factor α, which may be relevant to the inhibitory effect of Am80 on expression of these pro-inflammatory factors. We additionally found that Am80 attenuated LPS-induced up-regulation of CD14, a co-receptor for Toll-like receptor 4 (TLR4). These results suggest that inhibitory effect on TLR4 signaling mediated by NF-κB pathway underlies the anti-inflammatory action of retinoic acid receptor agonists in microglia. PMID:27351827

  3. Recruitment of Tat to Heterochromatin Protein HP1 via Interaction with CTIP2 Inhibits Human Immunodeficiency Virus Type 1 Replication in Microglial Cells

    PubMed Central

    Rohr, Olivier; Lecestre, Dominique; Chasserot-Golaz, Sylvette; Marban, Céline; Avram, Dorina; Aunis, Dominique; Leid, Mark; Schaeffer, Evelyne

    2003-01-01

    The Tat protein of human immunodeficiency virus type 1 (HIV-1) plays a key role as inducer of viral gene expression. We report that Tat function can be potently inhibited in human microglial cells by the recently described nuclear receptor cofactor chicken ovalbumin upstream promoter transcription factor-interacting protein 2 (CTIP2). Overexpression of CTIP2 leads to repression of HIV-1 replication, as a result of inhibition of Tat-mediated transactivation. In contrast, the related CTIP1 was unable to affect Tat function and viral replication. Using confocal microscopy to visualize Tat subcellular distribution in the presence of the CTIPs, we found that overexpression of CTIP2, and not of CTIP1, leads to disruption of Tat nuclear localization and recruitment of Tat within CTIP2-induced nuclear ball-like structures. In addition, our studies demonstrate that CTIP2 colocalizes and associates with the heterochromatin-associated protein HP1α. The CTIP2 protein harbors two Tat and HP1 interaction interfaces, the 145-434 and the 717-813 domains. CTIP2 and HP1α associate with Tat to form a three-protein complex in which the 145-434 CTIP2 domain interacts with the N-terminal region of Tat, while the 717-813 domain binds to HP1. The importance of this Tat binding interface and of Tat subnuclear relocation was confirmed by analysis of CTIP2 deletion mutants. Our findings suggest that inhibition of HIV-1 expression by CTIP2 correlates with recruitment of Tat within CTIP2-induced structures and relocalization within inactive regions of the chromatin via formation of the Tat-CTIP2-HP1α complex. These data highlight a new mechanism of Tat inactivation through subnuclear relocalization that may ultimately lead to inhibition of viral pathogenesis. PMID:12692243

  4. Prostaglandin signaling suppresses beneficial microglial function in Alzheimer's disease models.

    PubMed

    Johansson, Jenny U; Woodling, Nathaniel S; Wang, Qian; Panchal, Maharshi; Liang, Xibin; Trueba-Saiz, Angel; Brown, Holden D; Mhatre, Siddhita D; Loui, Taylor; Andreasson, Katrin I

    2015-01-01

    Microglia, the innate immune cells of the CNS, perform critical inflammatory and noninflammatory functions that maintain normal neural function. For example, microglia clear misfolded proteins, elaborate trophic factors, and regulate and terminate toxic inflammation. In Alzheimer's disease (AD), however, beneficial microglial functions become impaired, accelerating synaptic and neuronal loss. Better understanding of the molecular mechanisms that contribute to microglial dysfunction is an important objective for identifying potential strategies to delay progression to AD. The inflammatory cyclooxygenase/prostaglandin E2 (COX/PGE2) pathway has been implicated in preclinical AD development, both in human epidemiology studies and in transgenic rodent models of AD. Here, we evaluated murine models that recapitulate microglial responses to Aβ peptides and determined that microglia-specific deletion of the gene encoding the PGE2 receptor EP2 restores microglial chemotaxis and Aβ clearance, suppresses toxic inflammation, increases cytoprotective insulin-like growth factor 1 (IGF1) signaling, and prevents synaptic injury and memory deficits. Our findings indicate that EP2 signaling suppresses beneficial microglia functions that falter during AD development and suggest that inhibition of the COX/PGE2/EP2 immune pathway has potential as a strategy to restore healthy microglial function and prevent progression to AD. PMID:25485684

  5. Microglial polarization and plasticity: evidence from organotypic hippocampal slice cultures.

    PubMed

    Ajmone-Cat, Maria Antonietta; Mancini, Melissa; De Simone, Roberta; Cilli, Piera; Minghetti, Luisa

    2013-10-01

    Increasing evidence indicates that "functional plasticity" is not solely a neuronal attribute but a hallmark of microglial cells, the main brain resident macrophage population. Far from being a univocal phenomenon, microglial activation can originate a plethora of functional phenotypes, encompassing the classic M1 proinflammatory and the alternative M2 anti-inflammatory phenotypes. This concept overturns the popular view of microglial activation as a synonym of neurotoxicity and neurogenesis failure in brain disorders. The characterization of the alternative programs is a matter of intense investigation, but still scarce information is available on the course of microglial activation, on the reversibility of the different commitments and on the capability of preserving molecular memory of previous priming stimuli. By using organotypic hippocampal slice cultures as a model, we developed paradigms of stimulation aimed at shedding light on some of these aspects. We show that persistent stimulation of TLR4 signaling promotes an anti-inflammatory response and microglial polarization toward M2-like phenotype. Moreover, acute and chronic preconditioning regimens permanently affect the capability to respond to a later challenge, suggesting the onset of mechanisms of molecular memory. Similar phenomena could occur in the intact brain and differently affect the vulnerability of mature and newborn neurons to noxious signals. PMID:23918452

  6. Quantitating the subtleties of microglial morphology with fractal analysis

    PubMed Central

    Karperien, Audrey; Ahammer, Helmut; Jelinek, Herbert F.

    2013-01-01

    It is well established that microglial form and function are inextricably linked. In recent years, the traditional view that microglial form ranges between “ramified resting” and “activated amoeboid” has been emphasized through advancing imaging techniques that point to microglial form being highly dynamic even within the currently accepted morphological categories. Moreover, microglia adopt meaningful intermediate forms between categories, with considerable crossover in function and varying morphologies as they cycle, migrate, wave, phagocytose, and extend and retract fine and gross processes. From a quantitative perspective, it is problematic to measure such variability using traditional methods, but one way of quantitating such detail is through fractal analysis. The techniques of fractal analysis have been used for quantitating microglial morphology, to categorize gross differences but also to differentiate subtle differences (e.g., amongst ramified cells). Multifractal analysis in particular is one technique of fractal analysis that may be useful for identifying intermediate forms. Here we review current trends and methods of fractal analysis, focusing on box counting analysis, including lacunarity and multifractal analysis, as applied to microglial morphology. PMID:23386810

  7. Systemic inflammation regulates microglial responses to tissue damage in vivo.

    PubMed

    Gyoneva, Stefka; Davalos, Dimitrios; Biswas, Dipankar; Swanger, Sharon A; Garnier-Amblard, Ethel; Loth, Francis; Akassoglou, Katerina; Traynelis, Stephen F

    2014-08-01

    Microglia, the resident immune cells of the central nervous system, exist in either a "resting" state associated with physiological tissue surveillance or an "activated" state in neuroinflammation. We recently showed that ATP is the primary chemoattractor to tissue damage in vivo and elicits opposite effects on the motility of activated microglia in vitro through activation of adenosine A2A receptors. However, whether systemic inflammation affects microglial responses to tissue damage in vivo remains largely unknown. Using in vivo two-photon imaging of mice, we show that injection of lipopolysaccharide (LPS) at levels that can produce both clear neuroinflammation and some features of sepsis significantly reduced the rate of microglial response to laser-induced ablation injury in vivo. Under proinflammatory conditions, microglial processes initially retracted from the ablation site, but subsequently moved toward and engulfed the damaged area. Analyzing the process dynamics in 3D cultures of primary microglia indicated that only A2A , but not A1 or A3 receptors, mediate process retraction in LPS-activated microglia. The A2A receptor antagonists caffeine and preladenant reduced adenosine-mediated process retraction in activated microglia in vitro. Finally, administration of preladenant before induction of laser ablation in vivo accelerated the microglial response to injury following systemic inflammation. The regulation of rapid microglial responses to sites of injury by A2A receptors could have implications for their ability to respond to the neuronal death occurring under conditions of neuroinflammation in neurodegenerative disorders. PMID:24807189

  8. Estrogen ameliorates microglial activation by inhibiting the Kir2.1 inward-rectifier K(+) channel.

    PubMed

    Wu, Shih-Ying; Chen, Yun-Wen; Tsai, Sheng-Feng; Wu, Sheng-Nan; Shih, Yao-Hsiang; Jiang-Shieh, Ya-Fen; Yang, Ting-Ting; Kuo, Yu-Min

    2016-01-01

    Microglial activation is implicated in the pathogenesis of Parkinson's disease (PD). Although the etiology of PD remains unclear, age and male gender are known PD risk factors. By comparing microglia and dopaminergic (DA) neurons in the substantia nigra (SN) of male and female mice of different ages, we found that the degrees of microglial activation and DA neuron loss increased with age in both genders, but were more pronounced in males, as were peripheral lipopolysaccharide (LPS)-induced microglial activation and DA neuron loss. A bilateral ovariectomy (OVX) eliminated the female-associated protection against age- and LPS-induced microglial activation, which suggests that ovary hormones are involved in gender-specific responses. Treating female mice with 17β-estradiol supplements reduced the age-associated microglial activation in OVX mice. Moreover, pretreating mouse BV2 microglial cells with 17β-estradiol inhibited LPS-induced elevation of Toll-like receptor 4, phosphorylated p38, and TNF-α levels. We then examined the effect of 17β-estradiol on inward-rectifier K(+) channel Kir2.1, a known regulator of microglial activation. We found that 17β-estradiol inhibited the Kir2.1 activity of BV2 cells by reducing the probability that the channel would be open. We conclude that age- and inflammation-associated microglial activation is attenuated by ovarian estrogen, because it inhibits Kir2.1. PMID:26960267

  9. Estrogen ameliorates microglial activation by inhibiting the Kir2.1 inward-rectifier K+ channel

    PubMed Central

    Wu, Shih-Ying; Chen, Yun-Wen; Tsai, Sheng-Feng; Wu, Sheng-Nan; Shih, Yao-Hsiang; Jiang-Shieh, Ya-Fen; Yang, Ting-Ting; Kuo, Yu-Min

    2016-01-01

    Microglial activation is implicated in the pathogenesis of Parkinson’s disease (PD). Although the etiology of PD remains unclear, age and male gender are known PD risk factors. By comparing microglia and dopaminergic (DA) neurons in the substantia nigra (SN) of male and female mice of different ages, we found that the degrees of microglial activation and DA neuron loss increased with age in both genders, but were more pronounced in males, as were peripheral lipopolysaccharide (LPS)-induced microglial activation and DA neuron loss. A bilateral ovariectomy (OVX) eliminated the female-associated protection against age- and LPS-induced microglial activation, which suggests that ovary hormones are involved in gender-specific responses. Treating female mice with 17β-estradiol supplements reduced the age-associated microglial activation in OVX mice. Moreover, pretreating mouse BV2 microglial cells with 17β-estradiol inhibited LPS-induced elevation of Toll-like receptor 4, phosphorylated p38, and TNF-α levels. We then examined the effect of 17β-estradiol on inward-rectifier K+ channel Kir2.1, a known regulator of microglial activation. We found that 17β-estradiol inhibited the Kir2.1 activity of BV2 cells by reducing the probability that the channel would be open. We conclude that age- and inflammation-associated microglial activation is attenuated by ovarian estrogen, because it inhibits Kir2.1. PMID:26960267

  10. Downregulation of NO and PGE2 in LPS-stimulated BV2 microglial cells by trans-isoferulic acid via suppression of PI3K/Akt-dependent NF-κB and activation of Nrf2-mediated HO-1.

    PubMed

    Dilshara, Matharage Gayani; Lee, Kyoung-Tae; Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Kang, Chang-Hee; Park, Sang Rul; Choi, Yung Hyun; Choi, Il-Whan; Hyun, Jin-Won; Chang, Weon-Young; Kim, Yeon-Su; Lee, Hak-Ju; Kim, Gi-Young

    2014-01-01

    Little is known about whether trans-isoferulic acid (TIA) regulates the production of lipopolysaccharide (LPS)-induced proinflammatory mediators. Therefore, we examined the effect of TIA isolated from Clematis mandshurica on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in BV2 microglial cells. We found that TIA inhibited the production of LPS-induced NO and PGE2 without accompanying cytotoxicity in BV2 microglial cells. TIA also downregulated the expression levels of specific regulatory genes such as inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) by suppressing LPS-induced NF-κB activity via dephosphorylation of PI3K/Akt. In addition, we demonstrated that a specific NF-κB inhibitor PDTC and a selective PI3K/Akt inhibitor, LY294002 effectively attenuated the expression of LPS-stimulated iNOS and COX-2 mRNA, while LY294002 suppressed LPS-induced NF-κB activity, suggesting that TIA attenuates the expression of these proinflammatory genes by suppressing PI3K/Akt-mediated NF-κB activity. Our results showed that TIA suppressed NO and PGE2 production through the induction of nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent heme oxygenase-1 (HO-1). Taken together, our data indicate that TIA suppresses the production of proinflammatory mediators such as NO and PGE2, as well as their regulatory genes, in LPS-stimulated BV2 microglial cells, by inhibiting PI3K/Akt-dependent NF-κB activity and enhancing Nrf2-mediated HO-1 expression. PMID:24291391

  11. Tomato lectin histochemistry for microglial visualization.

    PubMed

    Villacampa, Nàdia; Almolda, Beatriz; González, Berta; Castellano, Bernardo

    2013-01-01

    The use of different lectins for the study of microglial cells in the central nervous system (CNS) is a valuable tool that has been extensively used in the last years for the selective staining of this glial cell population, not only in normal physiological conditions, but also in a wide range of pathological situations where the normal homeostasis of the parenchyma is disturbed. In this chapter we accurately describe the methodology for the selective labelling of microglial cells by using the tomato lectin (TL), a protein lectin obtained from Lycopersicum esculentum with specific affinity for poly-N-acetyl lactosamine sugar residues which are found on the plasma membrane and in the cytoplasm of microglia. Here we describe how to perform this technique on vibratome, frozen, and paraffin sections for optical microscopy, as well as for transmission electron microscopy (TEM) studies. Using this methodology it is possible to visualize amoeboid microglia in the developing brain, ramified microglia in the adult, and activated/reactive microglia in the experimentally damaged brain. In addition, as TL also recognized sugar residues in endothelial cells, this technique is very useful for the study of the relationship established between microglia and the CNS vasculature. PMID:23813385

  12. β-chemokine production by neural and glial progenitor cells is enhanced by HIV-1 Tat: Effects on microglial migration

    PubMed Central

    Hahn, Yun Kyung; Vo, Phu; Fitting, Sylvia; Block, Michelle L.; Hauser, Kurt F.; Knapp, Pamela E.

    2010-01-01

    HIV-1 neuropathology results from collective effects of viral proteins and inflammatory mediators on several cell types. Significant damage is mediated indirectly through inflammatory conditions promulgated by glial cells, including microglia that are productively infected by HIV-1, and astroglia. Neural and glial progenitors exist in both developing and adult brains. To determine whether progenitors are targets of HIV-1, a multi-plex assay was performed to assess chemokine/cytokine expression after treatment with viral proteins Tat or gp120. In the initial screen, ten analytes were basally released by murine striatal progenitors. The beta-chemokines CCL5/RANTES, CCL3/MIP-1α, and CCL4/MIP-1β were increased by 12 h exposure to HIV-1 Tat. Secreted factors from Tat-treated progenitors were chemoattractive towards microglia, an effect blocked by 2D7 anti-CCR5 antibody pretreatment. Tat and opiates have interactive effects on astroglial chemokine secretion, but this interaction did not occur in progenitors. gp120 did not affect chemokine/cytokine release, although both CCR5 and CXCR4, which serve as gp120 co-receptors, were detected in progenitors. We postulate that chemokine production by progenitors may be a normal, adaptive process that encourages immune inspection of newly generated cells. Pathogens such as HIV might usurp this function to create a maladaptive state, especially during development or regeneration, when progenitors are numerous. PMID:20403075

  13. Microglial VPAC1R mediates a novel mechanism of neuroimmune-modulation of hippocampal precursor cells via IL-4 release

    PubMed Central

    Nunan, Robert; Sivasathiaseelan, Harri; Khan, Damla; Zaben, Malik; Gray, William

    2014-01-01

    Neurogenesis, the production of new neurons from neural stem/progenitor cells (NSPCs), occurs throughout adulthood in the dentate gyrus of the hippocampus, where it supports learning and memory. The innate and adaptive immune systems are increasingly recognized as important modulators of hippocampal neurogenesis under both physiological and pathological conditions. However, the mechanisms by which the immune system regulates hippocampal neurogenesis are incompletely understood. In particular, the role of microglia, the brains resident immune cell is complex, as they have been reported to both positively and negatively regulate neurogenesis. Interestingly, neuronal activity can also regulate the function of the immune system. Here, we show that depleting microglia from hippocampal cultures reduces NSPC survival and proliferation. Furthermore, addition of purified hippocampal microglia, or their conditioned media, is trophic and proliferative to NSPCs. VIP, a neuropeptide released by dentate gyrus interneurons, enhances the proliferative and pro-neurogenic effect of microglia via the VPAC1 receptor. This VIP-induced enhancement is mediated by IL-4 release, which directly targets NSPCs. This demonstrates a potential neuro-immuno-neurogenic pathway, disruption of which may have significant implications in conditions where combined cognitive impairments, interneuron loss, and immune system activation occurs, such as temporal lobe epilepsy and Alzheimer's disease. PMID:24801739

  14. Redox Control of Microglial Function: Molecular Mechanisms and Functional Significance

    PubMed Central

    McBean, Gethin; Cindric, Marina; Egea, Javier; López, Manuela G.; Rada, Patricia; Zarkovic, Neven

    2014-01-01

    Abstract Neurodegenerative diseases are characterized by chronic microglial over-activation and oxidative stress. It is now beginning to be recognized that reactive oxygen species (ROS) produced by either microglia or the surrounding environment not only impact neurons but also modulate microglial activity. In this review, we first analyze the hallmarks of pro-inflammatory and anti-inflammatory phenotypes of microglia and their regulation by ROS. Then, we consider the production of reactive oxygen and nitrogen species by NADPH oxidases and nitric oxide synthases and the new findings that also indicate an essential role of glutathione (γ-glutamyl-l-cysteinylglycine) in redox homeostasis of microglia. The effect of oxidant modification of macromolecules on signaling is analyzed at the level of oxidized lipid by-products and sulfhydryl modification of microglial proteins. Redox signaling has a profound impact on two transcription factors that modulate microglial fate, nuclear factor kappa-light-chain-enhancer of activated B cells, and nuclear factor (erythroid-derived 2)-like 2, master regulators of the pro-inflammatory and antioxidant responses of microglia, respectively. The relevance of these proteins in the modulation of microglial activity and the interplay between them will be evaluated. Finally, the relevance of ROS in altering blood brain barrier permeability is discussed. Recent examples of the importance of these findings in the onset or progression of neurodegenerative diseases are also discussed. This review should provide a profound insight into the role of redox homeostasis in microglial activity and help in the identification of new promising targets to control neuroinflammation through redox control of the brain. Antioxid. Redox Signal. 21, 1766–1801. PMID:24597893

  15. Modulation of microglial immune responses by a novel thiourea derivative.

    PubMed

    Chern, Jyh-Haur; Hsu, Pei-Chien; Wang, Li-Wen; Tsay, Huey-Jen; Kang, Iou-Jiun; Shie, Feng-Shiun

    2010-10-01

    Increasing evidence indicates that microglial activation plays an important role in the pathogenesis of Alzheimer's disease (AD). In AD, activated microglia may facilitate the clearance of beta-amyloid (Abeta), a neurotoxic component in AD pathogenesis. However, microglial activation comes at the cost of triggering neuro-inflammation, which contributes to cerebral dysfunction. Thus, pharmacological approaches that can achieve a favorable combination of a reduced microglia-mediated neuro-inflammation, and an enhanced Abeta clearance may be beneficial for preventing the progression of the disease. Here, we show that some newly synthesized compounds may exert such a combination of functions. Using mouse primary microglia and RAW264.7 cells, we found that some thiourea derivatives significantly enhanced microglial Abeta phagocytosis and suppressed microglial immune responses, as evidenced by the reduced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2). Of note, some commercially available inhibitors for iNOS and/or COX-2, such as ibuprofen, dextromethorphan, and N(G)-methyl-l-arginine (l-NMA), show negligible effects on microglial Abeta phagocytosis. Among the thiourea derivatives, our data show that a lead compound, designated as compound #326, (1-Naphthalen-1-yl-3-[5-(3-thioureido-phenoxy)-pentyl]-thiourea) appears to be the most potent in promoting Abeta phagocytosis and in inhibiting the LPS-induced expression of iNOS and COX-2 (when used at concentrations in the low muM range). The potency of compound #326 may have beneficial effects on modulating microglial activation in AD. The structure-activity relationship indicates that the thiourea group, alkyl linker, and the hydrophobic aryl group largely influence the dual functions of the compounds. These findings may indicate a structural basis for the improved design of future drug therapies for AD. PMID:20637185

  16. Anti-neuroinflammatory effect of aurantiamide acetate from the marine fungus Aspergillus sp. SF-5921: inhibition of NF-κB and MAPK pathways in lipopolysaccharide-induced mouse BV2 microglial cells.

    PubMed

    Yoon, Chi-Su; Kim, Dong-Cheol; Lee, Dong-Sung; Kim, Kyoung-Su; Ko, Wonmin; Sohn, Jae Hak; Yim, Joung Han; Kim, Youn-Chul; Oh, Hyuncheol

    2014-12-01

    In the course of a search for anti-neuroinflammatory metabolites from marine fungi, aurantiamide acetate (1) was isolated from marine-derived Aspergillus sp. as an anti-neuroinflammatory component. Compound 1 dose-dependently inhibited the production of nitric oxide (NO) and prostaglandin E2 (PGE2) in BV2 microglial cells. It also attenuated inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and other pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). In a further study designed to elucidate the mechanism of its anti-neuroinflammatory effect, compound 1 was shown to block the activation of nuclear factor-kappa B (NF-κB) in lipopolysaccharide (LPS)-induced BV2 microglial cells by inhibiting the phosphorylation of the inhibitor kappa B-α (IκB)-α. In addition, compound 1 decreased the phosphorylation levels of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs). These results suggest that compound 1 has an anti-neuroinflammatory effect on LPS stimulation through its inhibition of the NF-κB, JNK and p38 pathways. PMID:25448500

  17. Peripheral formalin injection induces unique spinal cord microglial phenotypic changes.

    PubMed

    Fu, Kai-Yuan; Tan, Yong-Hui; Sung, Backil; Mao, Jianren

    2009-01-16

    Microglia are resident immune cells of brain and activated by peripheral tissue injury. In the present study, we investigated the possible induction of several microglial surface immunomolecules in the spinal cord, including leukocyte common antigen (LCA/CD45), MHC class I antigen, MHC class II antigen, Fc receptor, and CD11c following formalin injection into the rat's hind paw. CD45 and MHC class I were upregulated in the activated microglia, which was evident on day 3 with the peak expression on day 7 following peripheral formalin injection. There was a very low basal expression of MHC class II, CD11c, and the Fc receptor, which did not change after the formalin injection. These results, for the first time, indicate that peripheral formalin injection can induce phenotypic changes of microglia with distinct upregulation of CD45 and MHC class I antigen. The data suggest that phenotypic changes of the activated microglia may be a unique pattern of central changes following peripheral tissue injury. PMID:19015000

  18. Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling.

    PubMed

    Abiega, Oihane; Beccari, Sol; Diaz-Aparicio, Irune; Nadjar, Agnes; Layé, Sophie; Leyrolle, Quentin; Gómez-Nicola, Diego; Domercq, María; Pérez-Samartín, Alberto; Sánchez-Zafra, Víctor; Paris, Iñaki; Valero, Jorge; Savage, Julie C; Hui, Chin-Wai; Tremblay, Marie-Ève; Deudero, Juan J P; Brewster, Amy L; Anderson, Anne E; Zaldumbide, Laura; Galbarriatu, Lara; Marinas, Ainhoa; Vivanco, Maria dM; Matute, Carlos; Maletic-Savatic, Mirjana; Encinas, Juan M; Sierra, Amanda

    2016-05-01

    Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance

  19. Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling

    PubMed Central

    Nadjar, Agnes; Layé, Sophie; Leyrolle, Quentin; Gómez-Nicola, Diego; Domercq, María; Pérez-Samartín, Alberto; Sánchez-Zafra, Víctor; Savage, Julie C.; Hui, Chin-Wai; Deudero, Juan J. P.; Brewster, Amy L.; Anderson, Anne E.; Zaldumbide, Laura; Galbarriatu, Lara; Marinas, Ainhoa; Vivanco, Maria dM.; Matute, Carlos; Maletic-Savatic, Mirjana

    2016-01-01

    Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance

  20. Role of Microglial Activation in the Pathophysiology of Bacterial Meningitis.

    PubMed

    Barichello, Tatiana; Generoso, Jaqueline S; Simões, Lutiana R; Goularte, Jessica A; Petronilho, Fabricia; Saigal, Priyanka; Badawy, Marwa; Quevedo, João

    2016-04-01

    Bacterial meningitis is a life-threatening infection associated with cognitive impairment in many survivors. The pathogen invades the central nervous system (CNS) by penetrating through the luminal side of the cerebral endothelium, which is an integral part of the blood-brain barrier. The replication of bacteria within the subarachnoid space occurs concomitantly with the release of their compounds that are highly immunogenic. These compounds known as pathogen-associated molecular patterns (PAMPs) may lead to both an increase in the inflammatory response in the host and also microglial activation. Microglia are the resident macrophages of the CNS which, when activated, can trigger a host of immunological pathways. Classical activation increases the production of pro-inflammatory cytokines, chemokines, and reactive oxygen species, while alternative activation is implicated in the inhibition of inflammation and restoration of homeostasis. The inflammatory response from classical microglial activation can facilitate the elimination of invasive microorganisms; however, excessive or extended microglial activation can result in neuronal damage and eventually cell death. This review aims to discuss the role of microglia in the pathophysiology of bacterial meningitis as well as the process of microglial activation by PAMPs and by endogenous constituents that are normally released from damaged cells known as danger-associated molecular patterns (DAMPs). PMID:25744564

  1. Experimental autoimmune neuritis induces differential microglia activation in the rat spinal cord.

    PubMed

    Beiter, Thomas; Artelt, Matthias R; Trautmann, Katrin; Schluesener, Hermann J

    2005-03-01

    The reactive spatial and temporal activation pattern of parenchymal spinal cord microglia was analyzed in rat experimental autoimmune neuritis (EAN). We observed a differential activation of spinal cord microglial cells. A significant increase in ED1(+) microglia predominantly located in the dorsal horn grey matter of lumbar and thoracic spinal cord levels was observed on Day 12. As revealed by morphological criteria and by staining with further activation markers [allograft inflammatory factor 1 (AIF-1), EMAPII, OX6, P2X(4)R], reactive microglia did not reach a macrophage-like state of full activation. On Day 12, a significant proliferative response could be observed, affecting all spinal cord areas and including ED1(+) microglial cells and a wide range of putative progenitor cells. Thus, in rat EAN, a reactive localized and distinct microglial activation correlating with a generalized proliferative response could be observed. PMID:15710454

  2. Sesquiterpenes inhibiting the microglial activation from Laurus nobilis.

    PubMed

    Chen, Hongqiang; Xie, Chunfeng; Wang, Hao; Jin, Da-Qing; Li, Shen; Wang, Meicheng; Ren, Quanhui; Xu, Jing; Ohizumi, Yasushi; Guo, Yuanqiang

    2014-05-21

    The inhibitory reagents to inhibit the activation of microglial cells may be potentially useful for the treatment of neurodegenerative diseases. The leaves of the plant Laurus nobilis belonging to the family Lauraceae, namely, bay leaves, have been used as a popular spice, and their extract showed moderate inhibition on microglial activation. A further phytochemical investigation of the leaves led to the isolation of two new (1, 2) and eight known (3-10) sesquiterpenes. Their structures were elucidated on the basis of extensive 1D and 2D NMR (HMQC, HMBC, (1)H-(1)H COSY, and NOESY) spectroscopic data analyses and Chem3D modeling. The following biological studies disclosed that these isolated compounds showed inhibitory activities on LPS-induced microglial activation. The results of our phytochemical investigation, including two new sesquiterpenes (1 and 2) and the first report of two compounds (3 and 4) from this species, further revealed the chemical composition of bay leaves as a popular spice, and the biological studies implied that bay leaves, containing bioactive substances with the inhibition of microglial activation, were potentially beneficial to human health. PMID:24801989

  3. Cocaine-mediated microglial activation involves the ER stress-autophagy axis.

    PubMed

    Guo, Ming-Lei; Liao, Ke; Periyasamy, Palsamy; Yang, Lu; Cai, Yu; Callen, Shannon E; Buch, Shilpa

    2015-01-01

    Cocaine abuse leads to neuroinflammation, which, in turn, contributes to the pathogenesis of neurodegeneration associated with advanced HIV-1 infection. Autophagy plays important roles in both innate and adaptive immune responses. However, the possible functional link between cocaine and autophagy has not been explored before. Herein, we demonstrate that cocaine exposure induced autophagy in both BV-2 and primary rat microglial cells as demonstrated by a dose- and time-dependent induction of autophagy-signature proteins such as BECN1/Beclin 1, ATG5, and MAP1LC3B. These findings were validated wherein cocaine treatment of BV-2 cells resulted in increased formation of puncta in cells expressing either endogenous MAP1LC3B or overexpressing GFP-MAP1LC3B. Specificity of cocaine-induced autophagy was confirmed by treating cells with inhibitors of autophagy (3-MA and wortmannin). Intriguingly, cocaine-mediated induction of autophagy involved upstream activation of 2 ER stress pathways (EIF2AK3- and ERN1-dependent), as evidenced by the ability of the ER stress inhibitor salubrinal to ameliorate cocaine-induced autophagy. In vivo validation of these findings demonstrated increased expression of BECN1, ATG5, and MAP1LC3B-II proteins in cocaine-treated mouse brains compared to untreated animals. Increased autophagy contributes to cocaine-mediated activation of microglia since pretreatment of cells with wortmannin resulted in decreased expression and release of inflammatory factors (TNF, IL1B, IL6, and CCL2) in microglial cells. Taken together, our findings suggest that cocaine exposure results in induction of autophagy that is closely linked with neuroinflammation. Targeting autophagic proteins could thus be considered as a therapeutic strategy for the treatment of cocaine-related neuroinflammation diseases. PMID:26043790

  4. Hydrangenol inhibits lipopolysaccharide-induced nitric oxide production in BV2 microglial cells by suppressing the NF-κB pathway and activating the Nrf2-mediated HO-1 pathway.

    PubMed

    Kim, Hee-Ju; Kang, Chang-Hee; Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Dilshara, Matharage Gayani; Lee, Seungheon; Choi, Yung Hyun; Seo, Yong Taek; Kim, Gi-Young

    2016-06-01

    We previously demonstrated the anti-inflammatory effect of water extract of Hydrangea macrophylla in lipopolysaccharide (LPS)-stimulated macrophage cells. Here, we investigated whether hydrangenol, a bioactive component of H. macrophylla, attenuates the expression of nitric oxide (NO) and its associated gene, inducible NO synthase (iNOS), in LPS-stimulated BV2 microglial cells. Our data showed that low dosages of hydrangenol inhibited LPS-stimulated NO release and iNOS expression without any accompanying cytotoxicity. Hydrangenol also suppressed LPS-induced nuclear translocation of nuclear factor-κB (NF-κB) subunits, consequently inhibiting DNA-binding activity of NF-κB. Additionally, the NF-κB inhibitors, pyrrolidine dithiocarbamate (PDTC) and PS-1145, significantly attenuated LPS-induced iNOS expression, indicating that hydrangenol-induced NF-κB inhibition might be a key regulator of iNOS expression. Furthermore, our data showed that hydrangenol suppresses NO production by inducing heme oxygenase-1 (HO-1). The presence of cobalt protoporphyrin, a specific HO-1 inducer, potently suppressed LPS-induced NO production. Hydrangenol also promoted nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and subsequently increased its binding activity at the specific antioxidant response element sites. Additionally, transient knockdown of Nrf2 significantly downregulated hydrangenol-induced HO-1 expression, indicating that hydrangenol-induced Nrf2 is an upstream regulator of HO-1. Taken together, these data suggest that hydrangenol attenuates NO production and iNOS expression in LPS-stimulated BV2 microglial cells by inhibiting NF-κB activation and by stimulating the Nrf2-mediated HO-1 signaling pathway. Therefore, hydrangenol is a promising therapeutic agent for treatment of LPS-mediated inflammatory diseases. PMID:27032067

  5. Hexane fraction of Zingiberis Rhizoma Crudus extract inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated BV2 microglial cells via the NF-kappaB pathway.

    PubMed

    Jung, Hyo Won; Yoon, Cheol-Ho; Park, Kwon Moo; Han, Hyung Soo; Park, Yong-Ki

    2009-06-01

    Excessive production of inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE2), and proinflammatory cytokines, including tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) from activated microglia contributes to uncontrolled inflammation in neurodegenerative diseases. It seems possible that treatment with anti-inflammatory agents, including plants used in Oriental medicine, might delay the progression of neurodegeneration through the inhibition of microglial activation. The present study is focused on the inhibitory effect of the rhizome hexane fraction extract of Zingiber officinale Roscoe (ginger hexan extract; GHE) on the production of inflammatory mediators such as NO, PGE(2), and proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated BV-2 cells, a mouse microglial cell line. GHE significantly inhibited the excessive production of NO, PGE(2), TNF-alpha, and IL-1beta in LPS-stimulated BV2 cells. In addition, GHE attenuated the mRNA expressions and protein levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory cytokines. The molecular mechanisms that underlie GHE-mediated attenuation are related to the inhibition of the phosphorylation of three mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38 MAPK, and c-Jun N-terminal kinase (JNK), and the activation of nuclear factor-kappaB (NF-kappaB). Our results indicate that GHE exhibits anti-inflammatory properties by suppressing the transcription of inflammatory mediator genes through the MAPK and NF-kappaB signaling pathways. The anti-inflammatory properties of GHE may make it useful as a therapeutic candidate for the treatment of human neurodegenerative diseases. PMID:19233241

  6. Microglial response to Alzheimer's disease is differentially modulated by voluntary wheel running and enriched environments.

    PubMed

    Rodríguez, J J; Noristani, H N; Verkhratsky, A

    2015-03-01

    Alzheimer's disease (AD) is an untreatable neurodegenerative disease that deteriorates memory. Increased physical/cognitive activity reduces dementia risk by promoting neuronal and glial response. Although few studies have investigated microglial response in wild-type rodents following exposure to physical/cognitive stimulation, environmental-induced changes of microglia response to AD have been neglected. We investigated effects of running (RUN) and enriched (ENR) environments on numerical density (N v, #/mm(3)) and morphology of microglia in a triple transgenic (3×Tg-AD) mouse model of AD that closely mimics AD pathology in humans. We used immunohistochemical approach to characterise microglial domain by measuring their overall cell surface, volume and somata volume. 3×Tg-AD mice housed in standard control (STD) environment showed significant increase in microglial N v (11.7 %) in CA1 stratum lacunosum moleculare (S.Mol) of the hippocampus at 12 months compared to non-transgenic (non-Tg) animals. Exposure to combined RUN and ENR environments prevented an increase in microglial N v in 3×Tg-AD and reduced microglial numbers to non-Tg control levels. Interestingly, 3×Tg-AD mice housed solely in ENR environment displayed significant decrease in microglial N v in CA1 subfield (9.3 % decrease), stratum oriens (11.5 % decrease) and S.Mol (7.6 % decrease) of the hippocampus compared to 3×Tg-AD mice housed in STD environment. Morphological analysis revealed microglial hypertrophy due to pronounced increase in microglia surface, volume and somata volume (61, 78 and 41 %) in 3×Tg-AD mice housed in RUN (but not in ENR) compared to STD environment. These results indicate that exposure to RUN and ENR environments have differential effects on microglial density and activation-associated changes in microglial morphology. PMID:24374506

  7. Donepezil Regulates 1-Methyl-4-phenylpyridinium-Induced Microglial Polarization in Parkinson's Disease.

    PubMed

    Chen, Teng; Hou, Ruihua; Xu, Shujun; Wu, Chengyuan

    2015-10-21

    1-Methyl-4-phenylpyridinium (MPP+) induces microglial activation and degeneration of dopaminergic (DAergic) neurons. Donepezil is a well-known acetylcholinesterase inhibitor used clinically to treat cognitive dysfunction in Alzheimer's disease (AD). In the present study, we tested the hypothesis that MPP+ promotes microglial M1 polarization and suppresses M2 polarization and that this can be restored by donepezil. Results indicate that MPP+ treatment in microglial BV2 cells promotes microglial polarization toward the M1 state. However, pretreatment with donepezil inhibited MPP+-induced M1 polarization in microglia by suppressing the release of interleukin (IL)-6, IL-1β, or tumor necrosis factor (TNF)-α. Importantly, we found that MPP+ inhibited microglial M2 polarization by suppressing expression of Arg-1, Fizz1, and Ym1, which was also rescued by pretreatment with donepezil. In addition, IL-4-mediated induction of anti-inflammatory marker genes IL-10, IL-13, and transforming growth factor-β2 (TGF-β2) were significantly attenuated by MPP+ in BV2 cells, which was restored by pretreatment with donepezil in a concentration-dependent manner. Mechanistically, we found that the addition of MPP+ reduced the intensity of phosphorylated signal transducer and activator of transcription 6 (STAT6) but not total STAT6 in IL-4-stimulated BV2 cells. Importantly, pretreatment of microglial BV2 cells with donepezil 3 h prior to administration of MPP+ rescued the reduction of STAT6 phosphorylation induced by MPP+. PMID:26114860

  8. Morin downregulates nitric oxide and prostaglandin E2 production in LPS-stimulated BV2 microglial cells by suppressing NF-κB activity and activating HO-1 induction.

    PubMed

    Dilshara, Matharage Gayani; Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Lee, Seungheon; Choi, Yung Hyun; Kim, Gi-Young

    2016-06-01

    Morin possesses anti-inflammatory activity against septic shock and allergic responses, and prevents acute liver damage. However, the biological mechanism of action of morin in neuroinflammation remains largely unknown. Therefore, the present study investigated whether morin has the ability to attenuate expression of proinflammatory mediators such as nitric oxide (NO) and prostaglandin E2 (PGE2) in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. Morin inhibited the expression of LPS-induced proinflammatory mediators such as NO and PGE2, without any cytotoxic effects. Furthermore, LPS-induced inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) were inhibited both at the mRNA and protein levels in response to morin. Morin also attenuated LPS-induced DNA-binding activity of nuclear transcription factor-κB (NF-κB) and its promoter activity. Pyrrolidine dithiocarbamate (PDTC), a specific NF-κB inhibitor, downregulated the expression of LPS-induced iNOS and COX-2, which suggests that morin-mediated NF-κB inhibition is the main signaling pathway responsible for the inhibition of iNOS and COX-2 expression. Additionally, morin increased induction of heme oxygenase-1 (HO-1) activity, leading to the suppression of NO and PGE2 production. Our results indicate that morin downregulates the expression of proinflammatory genes, such as iNOS and COX-2, involved in the synthesis of NO and PGE2 in LPS-stimulated BV2 microglial cells by suppressing NF-κB activity and activation of HO-1. Taken together, the findings of the present study suggest that morin may have potential as a therapeutic for the prevention of neuroinflammation. PMID:27131287

  9. Altered microglial phagocytosis in GPR34-deficient mice.

    PubMed

    Preissler, Julia; Grosche, Antje; Lede, Vera; Le Duc, Diana; Krügel, Katja; Matyash, Vitali; Szulzewsky, Frank; Kallendrusch, Sonja; Immig, Kerstin; Kettenmann, Helmut; Bechmann, Ingo; Schöneberg, Torsten; Schulz, Angela

    2015-02-01

    GPR34 is a Gi/o protein-coupled receptor (GPCR) of the nucleotide receptor P2Y12 -like group. This receptor is highly expressed in microglia, however, the functional relevance of GPR34 in these glial cells is unknown. Previous results suggested an impaired immune response in GPR34-deficient mice infected with Cryptococcus neoformans. Here we show that GPR34 deficiency results in morphological changes in retinal and cortical microglia. RNA sequencing analysis of microglia revealed a number of differentially expressed transcripts involved in cell motility and phagocytosis. We found no differences in microglial motility after entorhinal cortex lesion and in response to laser lesion. However, GPR34-deficient microglia showed reduced phagocytosis activity in both retina and acutely isolated cortical slices. Our study identifies GPR34 as an important signaling component controlling microglial function, morphology and phagocytosis. PMID:25142016

  10. Doxycycline Suppresses Microglial Activation by Inhibiting the p38 MAPK and NF-kB Signaling Pathways.

    PubMed

    Santa-Cecília, Flávia V; Socias, Benjamin; Ouidja, Mohand O; Sepulveda-Diaz, Julia E; Acuña, Leonardo; Silva, Rangel L; Michel, Patrick P; Del-Bel, Elaine; Cunha, Thiago M; Raisman-Vozari, Rita

    2016-05-01

    In neurodegenerative diseases, the inflammatory response is mediated by activated glial cells, mainly microglia, which are the resident immune cells of the central nervous system. Activated microglial cells release proinflammatory mediators and neurotoxic factors that are suspected to cause or exacerbate these diseases. We recently demonstrated that doxycycline protects substantia nigra dopaminergic neurons in an animal model of Parkinson's disease. This effect was associated with a reduction of microglial cell activation, which suggests that doxycycline may operate primarily as an anti-inflammatory drug. In the present study, we assessed the anti-inflammatory potential of doxycycline using lipopolysaccharide (LPS)-activated primary microglial cells in culture as a model of neuroinflammation. Doxycycline attenuated the expression of key activation markers in LPS-treated microglial cultures in a concentration-dependent manner. More specifically, doxycycline treatment lowered the expression of the microglial activation marker IBA-1 as well as the production of ROS, NO, and proinflammatory cytokines (TNF-α and IL-1β). In primary microglial cells, we also found that doxycycline inhibits LPS-induced p38 MAP kinase phosphorylation and NF-kB nuclear translocation. The present results indicate that the effect of doxycycline on LPS-induced microglial activation probably occurs via the modulation of p38 MAP kinase and NF-kB signaling pathways. These results support the idea that doxycycline may be useful in preventing or slowing the progression of PD and other neurodegenerative diseases that exhibit altered glia function. PMID:26745968