Science.gov

Sample records for rat periventricular nucleus

  1. Neurons and Glial Cells Are Added to the Female Rat Anteroventral Periventricular Nucleus During Puberty.

    PubMed

    Mohr, Margaret A; Garcia, Francisca L; DonCarlos, Lydia L; Sisk, Cheryl L

    2016-06-01

    The anteroventral periventricular nucleus (AVPV) orchestrates the neuroendocrine-positive feedback response that triggers ovulation in female rodents. The AVPV is larger and more cell-dense in females than in males, and during puberty, only females develop the capacity to show a positive feedback response. We previously reported a potential new mechanism to explain this female-specific gain of function during puberty, namely a female-biased sex difference in the pubertal addition of new cells to the rat AVPV. Here we first asked whether this sex difference is due to greater cell proliferation and/or survival in females. Female and male rats received the cell birthdate marker 5-bromo-2'-deoxyuridine (BrdU; 200 mg/kg, ip) on postnatal day (P) 30; brains were collected at short and long intervals after BrdU administration to assess cell proliferation and survival, respectively. Overall, females had more BrdU-immunoreactive cells in the AVPV than did males, with no sex differences in the rate of cell attrition over time. Thus, the sex difference in pubertal addition of AVPV cells appears to be due to greater cell proliferation in females. Next, to determine the phenotype of pubertally born AVPV cells, daily BrdU injections were given to female rats on P28-56, and tissue was collected on P77 to assess colocalization of BrdU and markers for mature neurons or glia. Of the pubertally born AVPV cells, approximately 15% differentiated into neurons, approximately 19% into astrocytes, and approximately 23% into microglia. Thus, both neuro- and gliogenesis occur in the pubertal female rat AVPV and potentially contribute to maturation of female reproductive function. PMID:27145006

  2. Age- and Hormone-Regulation of N-Methyl-d-Aspartate Receptor Subunit NR2b in the Anteroventral Periventricular Nucleus of the Female Rat

    PubMed Central

    Maffucci, J. A.; Noel, M. L.; Gillette, R.; Wu, D.; Gore, A. C.

    2009-01-01

    Glutamate, acting through its N-methyl-d-aspartate (NMDA) and non-NMDA receptors in the hypothalamus, regulates reproductive neuroendocrine functions via direct and indirect actions upon gonadotrophin-releasing hormone (GnRH) neurones. Previous studies indicate that the NMDA receptor subunit NR2b undergoes changes in protein and gene expression in the hypothalamus in general, and on GnRH neurones in particular, during reproductive ageing. In the present study, we examined whether the NR2b-expressing cell population, both alone and in association with the NR1 subunit (i.e. the latter subunit is necessary for a functional NMDA receptor), is altered as a function of age and/or steroid hormone treatment. Studies focused on the anteroventral periventricular (AVPV) nucleus of the hypothalamus, a region critically involved in the control of reproduction. Young (3-5 months), middle-aged (9-12 months), and aged (approximately 22 months) female rats were ovariectomised and, 1 month later, they were treated sequentially with oestradiol plus progesterone, oestradiol plus vehicle, or vehicle plus vehicle, then perfused. Quantitative stereologic analysis of NR2b-immunoreactive cell numbers in the AVPV showed an age-associated decrease in the density of NR2b-immunoreactive cells, but no effect of hormone treatment. In a second study, immunofluorescent double labelling of NR2b and NR1 was analysed by confocal microscopy of fraction volume, a semi-quantitative measure of fluorescence intensity. No effect of ageing was detected for immunofluorescent NR1 or NR2b alone, whereas the NR2b fraction volume increased in the oestradiol plus vehicle group. With ageing, the fraction volume of the NR2b/NR1-colocalised subunits increased. Together with the stereology results, this suggests that, although fewer cells express the NR2b subunit in the ageing AVPV, a greater percentage of these subunits are co-expressed with NR1. Our results suggest that the subunit composition of NMDA receptors in

  3. Pre- and postnatal bisphenol A treatment does not alter the number of tyrosine hydroxylase-positive cells in the anteroventral periventricular nucleus (AVPV) of weanling male and female rats.

    PubMed

    Ferguson, Sherry A; Paule, Merle G; He, Zhen

    2015-10-22

    Exposure to Bisphenol A (BPA) may interfere with brain sexual differentiation. Altered numbers of tyrosine hydroxylase (TH) cells in the rodent anteroventral periventricular nucleus (AVPV) after developmental BPA treatment have been reported; however, definitive conclusions are lacking. The current study incorporated many of the guidelines suggested for endocrine disrupter research. Specifically, ethinyl estradiol (EE2) served as a reference estrogen, exogenous environmental estrogen exposure was controlled, BPA was administered orally, and subjects consumed a low phytoestrogen diet. Here, on gestational days 6-21, Sprague-Dawley rats (10-15/group) were gavaged with 2.5 or 25.0 µg BPA/kg/day or 5.0 or 10.0 µg EE2/kg/day or the vehicle (5 ml of 0.3% aqueous carboxymethylcellulose/kg/day). A naïve control group was weighed and restrained, but not gavaged. Beginning on postnatal day (PND) 1 and continuing until PND 21, the 4 pups/sex/litter were orally treated with the same dose their dam had received. On PND 21, 1/sex/litter was perfused and the brain removed. TH immunoreactivity (TH-ir) was counted in 8 images/pup by a technician blind to treatment status. ANOVA results indicated significantly higher TH-ir cells/mm(2) in females (main effect of sex: p<0.01); however, there was no significant effect of treatment or a significant interaction of treatment with sex. In a separate untreated group of PND 21 Sprague-Dawley pups, AVPV volume was quantified and no significant sexual dimorphism was apparent. Similar to our reported results of behavioral assessments, the BPA treatment paradigm used here (2.5 or 25.0 µg BPA/kg/day administered orally) does not appear to cause significant alterations in AVPV TH-ir. PMID:26206302

  4. Blockade of arginine vasotocin signaling reduces aggressive behavior and c-Fos expression in the preoptic area and periventricular nucleus of the posterior tuberculum in male Amphiprion ocellaris.

    PubMed

    Yaeger, C; Ros, A M; Cross, V; Deangelis, R S; Stobaugh, D J; Rhodes, J S

    2014-05-16

    Many marine fishes change sex in response to social cues when the dominance hierarchy is perturbed. Arginine-vasotocin (AVT) and the mammalian homolog arginine vasopressin are neuropeptides involved in social and reproductive behaviors across vertebrate taxa. The goal of this study was to determine whether AVT signaling influences aggression and expression of c-Fos, a marker of neuroplasticity, in key brain regions of the social decision circuit in Amphiprion ocellaris clownfish, a species where behavioral dominance precedes gonadal sex change from male to female. In experiment 1, juvenile clownfish (average mass 2.5g) were paired together in a tank (a total of 24 pairs), matched approximately for size with one fish randomly receiving either an intraperitoneal injection of the arginine vasopressin V1a receptor antagonist (Manning compound) or saline vehicle, and evaluated for aggressive and submissive behaviors over a 10-min period. The second experiment was a repeat of the first using five pairs of mature, reproductive males, except the animals interacted for 90-min immediately followed by euthanasia for immunohistochemical detection of c-Fos protein. Numbers of c-Fos-positive cells were quantified in the preoptic area of the hypothalamus (POA), the anterior tuberal nucleus (aTn), and periventricular nucleus of the posterior tuberculum (TPp). Manning compound significantly reduced aggression and the probability of winning the contest relative to saline (vehicle) controls. In experiment 2, saline-treated fish displayed approximately twice as many c-Fos-positive cells in the POA and 25% more in the TPp than the Manning-treated fish, no differences were observed in the aTn. Taken together, results suggest AVT signaling is necessary for aggressive behavior and expression of neuroplasticity in the POA and TPp that likely contributes to behavioral dominance and hence, sex change in A. ocellaris. PMID:24631675

  5. Relative Importance of the Arcuate and Anteroventral Periventricular Kisspeptin Neurons in Control of Puberty and Reproductive Function in Female Rats

    PubMed Central

    Hu, M. H.; Li, X. F.; McCausland, B.; Li, S. Y.; Gresham, R.; Kinsey-Jones, J. S.; Gardiner, J. V.; Sam, A. H.; Bloom, S. R.; Poston, L.; Lightman, S. L.; Murphy, K. G.

    2015-01-01

    Kisspeptin plays a critical role in pubertal timing and reproductive function. In rodents, kisspeptin perikarya within the hypothalamic arcuate (ARC) and anteroventral periventricular (AVPV) nuclei are thought to be involved in LH pulse and surge generation, respectively. Using bilateral microinjections of recombinant adeno-associated virus encoding kisspeptin antisense into the ARC or AVPV of female rats at postnatal day 10, we investigated the relative importance of these two kisspeptin populations in the control of pubertal timing, estrous cyclicity, and LH surge and pulse generation. A 37% knockdown of kisspeptin in the AVPV resulted in a significant delay in vaginal opening and first vaginal estrous, abnormal estrous cyclicity, and reduction in the occurrence of spontaneous LH surges, although these retained normal amplitude. This AVPV knockdown had no effect on LH pulse frequency, measured after ovariectomy. A 32% reduction of kisspeptin in the ARC had no effect on the onset of puberty but resulted in abnormal estrous cyclicity and decreased LH pulse frequency. Additionally, the knockdown of kisspeptin in the ARC decreased the amplitude but not the incidence of LH surges. These results might suggest that the role of AVPV kisspeptin in the control of pubertal timing is particularly sensitive to perturbation. In accordance with our previous studies, ARC kisspeptin signaling was critical for normal pulsatile LH secretion in female rats. Despite the widely reported role of AVPV kisspeptin neurons in LH surge generation, this study suggests that both AVPV and ARC populations are essential for normal LH surges and estrous cyclicity. PMID:25875299

  6. Revisiting the supratrigeminal nucleus in the rat.

    PubMed

    Fujio, T; Sato, F; Tachibana, Y; Kato, T; Tomita, A; Higashiyama, K; Ono, T; Maeda, Y; Yoshida, A

    2016-06-01

    The supratrigeminal nucleus (Vsup), originally proposed as a premotoneuron pool in the trigeminal reflex arc, is a key structure of jaw movement control. Surprisingly, however, the location of the rat Vsup has not precisely been defined. In light of our previous cat studies, we made two hypotheses regarding the rat Vsup: (1) the Vsup is cytoarchitectonically distinguishable from its surrounding structures; (2) the Vsup receives central axon terminals of the trigeminal mesencephalic nucleus (Vmes) neurons which are primary afferents innervating muscle spindles of jaw-closing muscles and periodontal ligaments around the teeth. To test the first hypothesis, we examined the cytoarchitecture of the rat Vsup. The Vsup was identified as an area medially adjacent to the dorsomedial part of trigeminal principal sensory nucleus (Vp), and extended from the level just rostral to the caudal two-thirds of the trigeminal motor nucleus (Vmo) to the level approximately 150μm caudal to the Vmo. Our rat Vsup was much smaller and its location was considerably different in comparison to the Vsup reported previously. To evaluate the second hypothesis, we tested the distribution patterns of Vmes primary afferent terminals in the cytoarchitectonically identified Vsup. After transganglionic tracer applications to the masseter, deep temporal, and medial pterygoid nerves, a large number of axon terminals were observed in all parts of Vsup (especially in its medial part). After applications to the inferior alveolar, infraorbital, and lingual nerves, a small number of axon terminals were labeled in the caudolateral Vsup. The Vsup could also be identified electrophysiologically. After electrical stimulation of the masseter nerve, evoked potentials with slow negative component were isolated only in the Vsup. The present findings suggest that the rat Vsup can be cytoarchitectonically and electrophysiologically identified, receives somatotopic termination of the trigeminal primary afferents, and

  7. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin may alter LH release patterns by abolishing sex differences in GABA/glutamate cell number and modifying the transcriptome of the male anteroventral periventricular nucleus.

    PubMed

    Del Pino Sans, Javier; Clements, Kelsey J; Suvorov, Alexander; Krishnan, Sudha; Adams, Hillary L; Petersen, Sandra L

    2016-08-01

    Developmental exposure to arylhydrocarbon receptor (AhR) ligands abolishes sex differences in a wide range of neural structures and functions. A well-studied example is the anteroventral periventricular nucleus (AVPV), a structure that controls sex-specific luteinizing hormone (LH) release. In the male, testosterone (T) secreted by the developing testes defeminizes LH release mechanisms; conversely, perinatal AhR activation by 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) blocks defeminization. To better understand developmental mechanisms altered by TCDD exposure, we first verified that neonatal TCDD exposure in male rats prevented the loss of AVPV GABA/glutamate neurons that are critical for female-typical LH surge release. We then used whole genome arrays and quantitative real-time polymerase chain reaction (QPCR) to compare AVPV transcriptomes of males treated neonatally with TCDD or vehicle. Our bioinformatics analyses showed that TCDD enriched gene sets important for neuron development, synaptic transmission, ion homeostasis, and cholesterol biosynthesis. In addition, upstream regulatory analysis suggests that both estrogen receptors (ER) and androgen receptors (AR) regulate genes targeted by TCDD. Of the 23 mRNAs found to be changed by TCDD at least 2-fold (p<0.05), most participate in the functions identified in our bioinformatics analyses. Several, including matrix metallopeptidase 9 and SRY-box 11 (Sox11), are known targets of E2. CUG triplet repeat, RNA binding protein 2 (cugbp2) is particularly interesting because it is sex-specific, oppositely regulated by estradiol (E2) and TCDD. Moreover, it regulates the post-transcriptional processing of molecules previously linked to sexual differentiation of the brain. These findings provide new insights into how TCDD may interfere with defeminization of LH release patterns. PMID:27185484

  8. Prolactin regulates kisspeptin neurons in the arcuate nucleus to suppress LH secretion in female rats.

    PubMed

    Araujo-Lopes, Roberta; Crampton, Jessica R; Aquino, Nayara S S; Miranda, Roberta M; Kokay, Ilona C; Reis, Adelina M; Franci, Celso R; Grattan, David R; Szawka, Raphael E

    2014-03-01

    Prolactin (PRL) is known to suppress LH secretion. Kisspeptin neurons regulate LH secretion and express PRL receptors. We investigated whether PRL acts on kisspeptin neurons to suppress LH secretion in lactating (Lac) and virgin rats. Lac rats displayed high PRL secretion and reduced plasma LH and kisspeptin immunoreactivity in the arcuate nucleus (ARC). Bromocriptine-induced PRL blockade significantly increased ARC kisspeptin and plasma LH levels in Lac rats but did not restore them to the levels of non-Lac rats. Bromocriptine effects were prevented by the coadministration of ovine PRL (oPRL). Virgin ovariectomized (OVX) rats treated with either systemic or intracerebroventricular oPRL displayed reduction of kisspeptin expression in the ARC and plasma LH levels, and these effects were comparable with those of estradiol treatment in OVX rats. Conversely, estradiol-treated OVX rats displayed increased kisspeptin immunoreactivity in the anteroventral periventricular nucleus, whereas oPRL had no effect in this brain area. The expression of phosphorylated signal transducer and activator of transcription 5 was used to determine whether kisspeptin neurons in the ARC were responsive to PRL. Accordingly, intracerebroventricular oPRL induced expression of phosphorylated signal transducer and activator of transcription 5 in the great majority of ARC kisspeptin neurons in virgin and Lac rats. We provide here evidence that PRL acts on ARC neurons to inhibit kisspeptin expression in female rats. During lactation, PRL contributes to the inhibition of ARC kisspeptin. In OVX rats, high PRL levels suppress kisspeptin expression and reduce LH release. These findings suggest a pathway through which hyperprolactinemia may inhibit LH secretion and thereby cause infertility. PMID:24456164

  9. Calretinin Neurons in the Rat Suprachiasmatic Nucleus.

    PubMed

    Moore, Robert Y

    2016-08-01

    The hypothalamic suprachiasmatic nucleus (SCN), a circadian pacemaker, is present in all mammalian brains. It has a complex organization of peptide-containing neurons that is similar among species, but calcium-binding proteins are expressed variably. Neurons containing calretinin have been described in the SCN in a number of species but not with association to circadian function. The objective of the present study is to characterize a calretinin neuron (CAR) group in the rat anterior hypothalamus anatomically and functionally with a detailed description of its location and a quantitative analysis of neuronal calretinin immunoreactivity at 3 times of day, 0600, 1400, and 1900 h, from animals in either light-dark or constant dark conditions. CAR neurons occupy a region in the dorsal and lateral SCN with a circadian rhythm in CAR immunoreactivity with a peak at 0600 h and a rhythm in cytoplasmic CAR distribution with a peak at 1400 h. CAR neurons should be viewed as an anatomical and functional component of the rat SCN that expands the definition from observations with cell stains. CAR neurons are likely to modulate temporal regulation of calcium in synaptic transmission. PMID:27330050

  10. Microarray analysis of neonatal rat anteroventral periventricular transcriptomes identifies the proapoptotic Cugbp2 gene as sex-specific and regulated by estradiol.

    PubMed

    Del Pino Sans, J; Krishnan, S; Aggison, L K; Adams, H L; Shrikant, M M; López-Giráldez, F; Petersen, S L

    2015-09-10

    Sexually dimorphic neural structures regulate numerous gender-specific functions including luteinizing hormone (LH) release patterns. The female cyclic surge pattern of release is controlled by the anteroventral periventricular nucleus (AVPV), a preoptic area (POA) region that is significantly smaller in males. The prevailing hypothesis used to explain these differences in structure and function is that a "default" feminine AVPV is defeminized by exposure to estradiol (E2), a metabolite of testosterone (T) produced by the perinatal testes. E2 exposure then culminates in apoptosis in the male AVPV, but the upstream pathways are poorly understood. To address this issue, we compared AVPV transcriptomes of postnatal day 2 (PND2) males and females with those of females treated with E2 or vehicle. Only six of 89 sex-specific genes were also regulated by E2 in the PND2 AVPV and E2 regulated over 280 genes not found to be sex-specific. Of targets that changed similarly in males and E2-treated females, the gene encoding CUG triplet repeat, RNA-binding protein 2 (Cugbp2), a proapoptotic protein, showed the highest fold-changes. Quantitative polymerase chain reaction (QPCR) studies confirmed higher mRNA levels in PND2 male and E2-treated female AVPVs wherein E2 induces apoptosis. POA mapping studies detected Cugbp2 mRNA in the AVPV and in the sexually dimorphic nucleus of the POA (SDN-POA); however, sex differences and E2 effects occurred only in the AVPV. Combined with evidence that Cugbp2 regulates splicing and translation of mRNAs linked to sexual differentiation, we propose that this gene mediates E2-dependent effects on AVPV defeminization. PMID:26166732

  11. Afferent projections to the deep mesencephalic nucleus in the rat

    SciTech Connect

    Veazey, R.B.; Severin, C.M.

    1982-01-10

    Afferent projections to the deep mesencephalic nucleus (DMN) of the rat were demonstrated with axonal transport techniques. Potential sources for projections to the DMN were first identified by injecting the nucleus with HRP and examining the cervical spinal cord, brain stem, and cortex for retrogradely labeled neurons. Areas consistently labeled were then injected with a tritiated radioisotope, the tissue processed for autoradiography, and the DMN examined for anterograde labeling. Afferent projections to the medial and/or lateral parts of the DMN were found to originate from a number of spinal, bulbar, and cortical centers. Rostral brain centers projecting to both medial and lateral parts of the DMN include the ipsilateral motor and somatosensory cortex, the entopeduncular nucleus, and zona incerta. at the level of the midbrain, the ipsilateral substantia nigra and contralateral DMN likewise project to the DMN. Furthermore, the ipsilateral superior colliculus projects to the DMN, involving mainly the lateral part of the nucleus. Afferents from caudal centers include bilateral projections from the sensory nucleus of the trigeminal complex and the nucleus medulla oblongata centralis, as well as from the contralateral dentate nucleus. The projections from the trigeminal complex and nucleus medullae oblongatae centralis terminate in the intermediate and medial parts of the DMN, whereas projections from the contralateral dentate nucleus terminate mainly in its lateral part. In general, the afferent connections of the DMN arise from diverse areas of the brain. Although most of these projections distribute throughout the entire extent of the DMN, some of them project mainly to either medial or lateral parts of the nucleus, thus suggesting that the organization of the DMN is comparable, at least in part, to that of the reticular formation of the pons and medulla, a region in which hodological differences between medial and lateral subdivisions are known to exist.

  12. IL-1β induces hypomyelination in the periventricular white matter through inhibition of oligodendrocyte progenitor cell maturation via FYN/MEK/ERK signaling pathway in septic neonatal rats.

    PubMed

    Xie, Di; Shen, Fengcai; He, Shaoru; Chen, Mengmeng; Han, Qianpeng; Fang, Ming; Zeng, Hongke; Chen, Chunbo; Deng, Yiyu

    2016-04-01

    Neuroinflammation elicited by microglia plays a key role in periventricular white matter (PWM) damage (PWMD) induced by infectious exposure. This study aimed to determine if microglia-derived interleukin-1β (IL-1β) would induce hypomyelination through suppression of maturation of oligodendrocyte progenitor cells (OPCs) in the developing PWM. Sprague-Dawley rats (1-day old) were injected with lipopolysaccharide (LPS) (1 mg/kg) intraperitoneally, following which upregulated expression of IL-1β and IL-1 receptor 1 (IL-1R1 ) was observed. This was coupled with enhanced apoptosis and suppressed proliferation of OPCs in the PWM. The number of PDGFR-α and NG2-positive OPCs was significantly decreased in the PWM at 24 h and 3 days after injection of LPS, whereas it was increased at 14 days and 28 days. The protein expression of Olig1, Olig2, and Nkx2.2 was significantly reduced, and mRNA expression of Tcf4 and Axin2 was upregulated in the developing PWM after LPS injection. The expression of myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3"-phosphodiesterase (CNPase) was downregulated in the PWM at 14 days and 28 days after LPS injection; this was linked to reduction of the proportion of myelinated axons and thinner myelin sheath as revealed by electron microscopy. Primary cultured OPCs treated with IL-1β showed the failure of maturation and proliferation. Furthermore, FYN/MEK/ERK signaling pathway was involved in suppression of maturation of primary OPCs induced by IL-1β administration. Our results suggest that following LPS injection, microglia are activated and produce IL-1β in the PWM in the neonatal rats. Excess IL-1β inhibits the maturation of OPCs via suppression of FYN/MEK/ERK phosphorylation thereby leading to axonal hypomyelination. PMID:26678483

  13. Efferent and afferent connections of the ventromedial hypothalamic nucleus determined by neural tracer analysis: implications for lordosis regulation in female rats.

    PubMed

    Shimogawa, Yuji; Sakuma, Yasuo; Yamanouchi, Korehito

    2015-02-01

    Neural connections of the ventromedial hypothalamic nucleus (VMN) to and from forebrain and midbrain structures, which are involved in the neuroendocrine regulation of reproduction, were investigated. A retrograde (fluoro-gold [FG]) or an anterograde neural tracer (phaseolus vulgaris-leucoagglutinin [PHA-L]) was injected into the left side of the VMN in ovariectomized rats. Six days after injection with FG or 11 days after injection with PHA-L, brains were fixed and sectioned. After immunohistochemistry, digital images of FG-labeled neural cell bodies (FG-cells) or PHA-L-labeled fibers (PHA-L-fibers) were analyzed. Injection sites of FG and PHA-L were mainly in the ventrolateral VMN. Considerable numbers of FG-cells and PHA-L-fibers were present in the left side of the medial amygdala, ventral lateral septum, preoptic area, bed nucleus of stria terminalis, dorsomedial hypothalamic nucleus, arcuate nucleus, periventricular nucleus of thalamus, and midbrain central gray. The lateral dorsal raphe nuclei contained many PHA-L-fibers but few FG-cells. By contrast, both sides of the median raphe nucleus contained many FG-cells but few PHA-L-fibers. Reciprocal direct neural connection between the right and left side of the VMN were observed. The present results provide an anatomical basis for functional relationships between the VMN and these nuclei. PMID:25448544

  14. Neuropeptidomics of the Supraoptic Rat Nucleus

    PubMed Central

    2008-01-01

    The mammalian supraoptic nucleus (SON) is a neuroendocrine center in the brain regulating a variety of physiological functions. Within the SON, peptidergic magnocellular neurons that project to the neurohypophysis (posterior pituitary) are involved in controlling osmotic balance, lactation, and parturition, partly through secretion of signaling peptides such as oxytocin and vasopressin into the blood. An improved understanding of SON activity and function requires identification and characterization of the peptides used by the SON. Here, small-volume sample preparation approaches are optimized for neuropeptidomic studies of isolated SON samples ranging from entire nuclei down to single magnocellular neurons. Unlike most previous mammalian peptidome studies, tissues are not immediately heated or microwaved. SON samples are obtained from ex vivo brain slice preparations via tissue punch and the samples processed through sequential steps of peptide extraction. Analyses of the samples via liquid chromatography mass spectrometry and tandem mass spectrometry result in the identification of 85 peptides, including 20 unique peptides from known prohormones. As the sample size is further reduced, the depth of peptide coverage decreases; however, even from individually isolated magnocellular neuroendocrine cells, vasopressin and several other peptides are detected. PMID:18816085

  15. Collateral projections from the lateral parabrachial nucleus to the paraventricular thalamic nucleus and the central amygdaloid nucleus in the rat.

    PubMed

    Liang, Shao-Hua; Yin, Jun-Bin; Sun, Yi; Bai, Yang; Zhou, Kai-Xiang; Zhao, Wen-Jun; Wang, Wei; Dong, Yu-Lin; Li, Yun-Qing

    2016-08-26

    Combined the retrograde double tracing with immunofluorescence histochemical staining, we examined the neurons in the lateral parabrachial nucleus (LPB) sent collateral projections to the paraventricular thalamic nucleus (PVT) and central amygdaloid nucleus (CeA) and their roles in the nociceptive transmission in the rat. After the injection of Fluoro-gold (FG) into the PVT and tetramethylrhodamine-dextran (TMR) into the CeA, respectively, FG/TMR double-labeled neurons were observed in the LPB. The percentages of FG/TMR double-labeled neurons to the total number of FG- or TMR-labeled neurons were 6.18% and 9.09%, respectively. Almost all of the FG/TMR double-labeled neurons (95%) exhibited calcitonin gene-related peptide (CGRP) immunoreactivity. In the condition of neuropathic pain, 94% of these neurons showed FOS immunoreactivity. The present data indicates that some of CGRP-expressing neurons in the LPB may transmit nociceptive information toward the PVT and CeA by way of axon collaterals. PMID:27423318

  16. Organotypic slice culture of the hypothalamic paraventricular nucleus of rat

    PubMed Central

    Cho, Eun Seong; Lee, So Yeong; Park, Jae-Yong; Hong, Seong-Geun

    2007-01-01

    Organotypic slice cultures have been developed as an alternative to acute brain slices because the neuronal viability and synaptic connectivity in these cultures can be preserved well for a prolonged period of time. This study evaluated a stationary organotypic slice culture developed for the hypothalamic paraventricular nucleus (PVN) of rat. The results showed that the slice cultures maintain the typical shape of the nucleus, the immunocytochemical signals for oxytocin, vasopressin, and corticotropin-releasing hormone, and the electrophysiological properties of PVN neurons for up to 3 weeks in vitro. The PVN neurons in the culture expressed the green fluorescent protein gene that had been delivered by the adenoviral vectors. The results indicate that the cultured slices preserve the properties of the PVN neurons, and can be used in longterm studies on these neurons in vitro. PMID:17322769

  17. Genetics Home Reference: periventricular heterotopia

    MedlinePlus

    ... heterotopia is a condition in which nerve cells ( neurons ) do not migrate properly during the early development ... means "out of place." In normal brain development, neurons form in the periventricular region, located around fluid- ...

  18. Recognition of Chewing Behavior from Electroencephalogram Recorded in the Rat's Nucleus Accumbens.

    PubMed

    Shao, Xiaozhuo; Zhang, Hengyi; Zheng, Xiaoxiang

    2005-01-01

    Nucleus accumbens is used to be considered as the interface to motor nerve system. In this paper, our object is to study the relationship between the electro-activity of neurons in nucleus accumbens and the rat-behavior. We recorded neurons action potentials with multichannel microelectrodes, which were chronically implanted in a rat's nucleus accumbens, during rats-chewing behavior. Through digital signal processing, we found significant features associated with the chewing activity and we could recognize the chewing behavior easily from the electroencephalogram with these features. This study suggests that neurons action potentials in a nucleus accumbens are activated by specific animal actions. PMID:17282644

  19. Effects of systemic L-tyrosine on dopamine release from rat corpus striatum and nucleus accumbens

    NASA Technical Reports Server (NTRS)

    During, Matthew J.; Acworth, Ian N.; Wurtman, Richard J.

    1988-01-01

    Intracerebral dialysis was used to monitor extracellular fluid from rat striatum and nucleus accumbens following the intraperitoneal administration of tyrosine. Dopamine concentrations in dialysates from both the striatum and the nucleus accumbens increased significantly in response to the tyrosine. The magnitude of the tyrosine effect was greater in the nucleus accumbens than in the striatum. Hence, mesolimbic dopaminergic neurons may be especially responsive to precursor availability.

  20. Characterisation of Arcuate Nucleus Kisspeptin/Neurokinin B Neuronal Projections and Regulation during Lactation in the Rat

    PubMed Central

    True, Cadence; Kirigiti, Melissa; Ciofi, Philippe; Grove, Kevin L.; Smith, M. Susan

    2011-01-01

    Lactation results in negative energy balance in the rat leading to decreased gonadotrophin-releasing hormone (GnRH) release and anoestrus. Inhibited GnRH release may be a result of decreased stimulatory tone from neuropeptides critical for GnRH neuronal activity, such as kisspeptin (Kiss1) and neurokinin B (NKB). The present study aimed to identify neuronal projections from the colocalised population of Kiss1/NKB cells in the arcuate nucleus (ARH) using double-label immunohistochemistry to determine where this population may directly regulate GnRH neuronal activity. Additionally, the present study further examined lactation-induced changes in the Kiss1 system that could play a role in decreased GnRH release. The colocalised ARH Kiss1/NKB fibres projected primarily to the internal zone of the median eminence (ME) where they were in close proximity to GnRH fibres; however, few Kiss1/NKB fibres from the ARH were seen at the level of GnRH neurones in the preoptic area (POA). Arcuate Kiss1/NKB peptide levels were decreased during lactation consistent with previous mRNA data. Surprisingly, anteroventral periventricular (AVPV) Kiss1 peptide levels were increased, whereas Kiss1 mRNA levels were decreased during lactation, suggesting active inhibition of peptide release. These findings indicate ARH Kiss1/NKB and AVPV Kiss1 appear to be inhibited during lactation, which may contribute to decreased GnRH release and subsequent reproductive dysfunction. Furthermore, the absence of a strong ARH Kiss1/NKB projection to the POA suggests regulation of GnRH by this population occurs primarily at the ME level via local projections. PMID:21029216

  1. Electrical microstimulation of the nucleus incertus induces forward locomotion and rotation in rats.

    PubMed

    Farooq, Usman; Kumar, Jigna Rajesh; Rajkumar, Ramamoorthy; Dawe, Gavin S

    2016-06-01

    Locomotion is essential for goal-oriented behavior. Theta frequency oscillations in the hippocampus have been associated with behavioral activation and initiation of movement. Recently, the nucleus incertus, a brainstem nucleus with widespread cortical and subcortical projections, has been reported to modulate the septo-hippocampal axis triggering theta activity in the hippocampus. This suggests that activation of the nucleus incertus would induce movement. In this study, we investigated the effects of electrical microstimulation of the nucleus incertus on locomotion in conscious rats. Rats chronically implanted with microelectrodes targeting the nucleus incertus were electrically stimulated while their behavior was tracked. High frequency electrical microstimulation of the nucleus incertus was sufficient to induce forward locomotion and rotation. The latencies of evoked locomotion were consistent with a role of the nucleus incertus in modulating premotor areas, possibly the septo-hippocampal axis. Electrical microstimulation of the nucleus incertus increased velocity, mobility and rotations during stimulation and post-stimulation. These results suggest that the nucleus incertus plays a role in behavioral activation and locomotion. PMID:27049117

  2. Social interaction reward decreases p38 activation in the nucleus accumbens shell of rats.

    PubMed

    Salti, Ahmad; Kummer, Kai K; Sadangi, Chinmaya; Dechant, Georg; Saria, Alois; El Rawas, Rana

    2015-12-01

    We have previously shown that animals acquired robust conditioned place preference (CPP) to either social interaction alone or cocaine alone. Recently it has been reported that drugs of abuse abnormally activated p38, a member of mitogen-activated protein kinase family, in the nucleus accumbens. In this study, we aimed to investigate the expression of the activated form of p38 (pp38) in the nucleus accumbens shell and core of rats expressing either cocaine CPP or social interaction CPP 1 h, 2 h and 24 h after the CPP test. We hypothesized that cocaine CPP will increase pp38 in the nucleus accumbens shell/core as compared to social interaction CPP. Surprisingly, we found that 24 h after social interaction CPP, pp38 neuronal levels were decreased in the nucleus accumbens shell to the level of naïve rats. Control saline rats that received saline in both compartments of the CPP apparatus and cocaine CPP rats showed similar enhanced p38 activation as compared to naïve and social interaction CPP rats. We also found that the percentage of neurons expressing dopaminergic receptor D2R and pp38 was also decreased in the shell of the nucleus accumbens of social interaction CPP rats as compared to controls. Given the emerging role of p38 in stress/anxiety behaviors, these results suggest that (1) social interaction reward has anti-stress effects; (2) cocaine conditioning per se does not affect p38 activation and that (3) marginal stress is sufficient to induce p38 activation in the shell of the nucleus accumbens. PMID:26300300

  3. Chronic ethanol treatment potientials ethanol-induced increases in interstitial nucleus accumbens endocannabinoid levels in rats

    PubMed Central

    Alvarez-Jaimes, Lily; Stouffer, David G.; Parsons, Loren H.

    2013-01-01

    We employed in vivo microdialysis to characterize the effect of an ethanol challenge injection on endocannabinoid levels in the nucleus accumbens of ethanol-naïve and chronic ethanol-treated rats. Ethanol (0.75 and 2 g/kg, i.p.) dose-dependently increased dialysate 2-arachidonoylglycerol (to a maximum 157 ± 20% of baseline) and decreased anandamide (to a minimum 52 ± 9% of baseline) in ethanol-naïve rats. The endocannabinoid clearance inhibitor N-(4-hydrophenyl) arachidonoylamide (AM404; 3 mg/kg) potentiated ethanol effects on 2-arachidonoylglycerol levels but did not alter ethanol-induced decreases in anandamide. AM404 alone did not alter dialysate levels of either endocannabinoid. Then, we characterized the effect of ethanol challenge on nucleus accumbens endocannabinoid levels in rats previously maintained on an ethanol-containing liquid diet. Ethanol challenge produced a greater and more prolonged increase in 2-arach-idonoylglycerol (to a maximum 394 ± 135% of baseline) in ethanol-experienced than in ethanol-naïve rats. The profile in ethanol-experienced rats was similar to that produced by AM404 pre-treatment in ethanol-naïve rats. AM404 in ethanol-experienced rats led to a further enhancement in the 2-arachidonoylglycerol response to ethanol challenge (to a maximum 704 ± 174% of baseline). Our findings demonstrate that ethanol-induced increases in nucleus accumbens 2-arachidonoylglycerol are potentiated in animals with a history of ethanol consumption. PMID:19650871

  4. The Suprachiasmatic Nucleus Modulates the Sensitivity of Arcuate Nucleus to Hypoglycemia in the Male Rat.

    PubMed

    Herrera-Moro Chao, D; León-Mercado, L; Foppen, E; Guzmán-Ruiz, M; Basualdo, M C; Escobar, C; Buijs, R M

    2016-09-01

    The suprachiasmatic nucleus (SCN) and arcuate nucleus (ARC) have reciprocal connections; catabolic metabolic information activates the ARC and inhibits SCN neuronal activity. Little is known about the influence of the SCN on the ARC. Here, we investigated whether the SCN modulated the sensitivity of the ARC to catabolic metabolic conditions. ARC neuronal activity, as determined by c-Fos immunoreactivity, was increased after a hypoglycemic stimulus by 2-deoxyglucose (2DG). The highest ARC neuronal activity after 2DG was found at the end of the light period (zeitgeber 11, ZT11) with a lower activity in the beginning of the light period (zeitgeber 2, ZT2), suggesting the involvement of the SCN. The higher activation of ARC neurons after 2DG at ZT11 was associated with higher 2DG induced blood glucose levels as compared with ZT2. Unilateral SCN-lesioned animals, gave a mainly ipsilateral activation of ARC neurons at the lesioned side, suggesting an inhibitory role of the SCN on ARC neurons. The 2DG-induced counterregulatory glucose response correlated with increased ARC neuronal activity and was significantly higher in unilateral SCN-lesioned animals. Finally, the ARC as site where 2DG may, at least partly, induce a counterregulatory response was confirmed by local microdialysis of 2DG. 2DG administration in the ARC produced a higher increase in circulating glucose compared with 2DG administration in surrounding areas such as the ventromedial nucleus of the hypothalamus (VMH). We conclude that the SCN uses neuronal pathways to the ARC to gate sensory metabolic information to the brain, regulating ARC glucose sensitivity and counterregulatory responses to hypoglycemic conditions. PMID:27429160

  5. The Role of the Nucleus Basalis Magnocellularis in Fear Conditioning Consolidation in the Rat

    ERIC Educational Resources Information Center

    Baldi, Elisabetta; Mariottini, Chiara; Bucherelli, Corrado

    2007-01-01

    The nucleus basalis magnocellularis (NBM) is known to be involved in the memorization of several conditioned responses. To investigate the role of the NBM in fear conditioning memorization, this neural site was subjected to fully reversible tetrodotoxin (TTX) inactivation during consolidation in adult male Wistar rats that had undergone fear…

  6. TRH injected into the nucleus accumbens shell releases dopamine and reduces feeding motivation in rats.

    PubMed

    Puga, L; Alcántara-Alonso, V; Coffeen, U; Jaimes, O; de Gortari, P

    2016-06-01

    The thyrotropin-releasing hormone (TRH), an anorexigenic factor that reduces food intake in food-restricted animals, may be involved in motivation for food. Injected centrally, TRH impairs acquisition of food-rewarded behavior. Through the TRH-R1 receptors, TRH injected in the nucleus accumbens increases dopamine content-perhaps the mechanism by which the peptide modulates food motivation. This, however, is still to be demonstrated. We sought to evaluate dopamine release by microdialysis after a TRH injection into the nucleus accumbens shell in free-moving fasted rats. In addition, we assessed dopamine content and turnover by HPLC and the relationship with the motivation for food by analyzing the performance of rats during a progressive-ratio (PR) operant-conditioning test. Finally, we determined serum leptin and triiodothyronine (T3) levels in order to evaluate the animals' metabolic response to food restriction and the impact of intra-accumbal TRH administration on circulating hormones. Intra-accumbal injections of TRH reduced food intake in food-restricted rats-compared to counterparts treated with saline-, without further decreasing T3 or leptin levels, which dropped due to their dietary regime. TRH-injected rats had lower breaking points on the PR schedule, which indicated lower motivation to eat. Accordingly, compared to saline-treated animals, dopamine release and turnover increased in the nucleus accumbens of TRH-injected rats, a finding that suggests a relationship between motivation for food and TRH-induced release of dopamine. PMID:27006143

  7. Periventricular leukomalacia in a neonatal calf

    PubMed Central

    KOYAMA, Kenji; FUJITA, Riku; MAEZAWA, Masaki; FUKUMOTO, Natsuko; HORIUCHI, Noriyuki; INOKUMA, Hisashi; KOBAYASHI, Yoshiyasu

    2016-01-01

    A 10-day-old, Japanese Black, female calf had shown astasia since just after birth. Focal symmetrical periventricular malacic lesions of the cerebrum and suppurative arthritis of the left hip joint were observed in macroscopic examination. Histologically, the cerebral lesions were confirmed as periventricular leukomalacia (PVL). The location and histological features of the lesions were similar to PVL in humans, caused by neonatal ischemia/hypovolemia. This is the first report of PVL in a neonatal calf. PMID:27010465

  8. Periventricular leukomalacia in a neonatal calf.

    PubMed

    Koyama, Kenji; Fujita, Riku; Maezawa, Masaki; Fukumoto, Natsuko; Horiuchi, Noriyuki; Inokuma, Hisashi; Kobayashi, Yoshiyasu

    2016-08-01

    A 10-day-old, Japanese Black, female calf had shown astasia since just after birth. Focal symmetrical periventricular malacic lesions of the cerebrum and suppurative arthritis of the left hip joint were observed in macroscopic examination. Histologically, the cerebral lesions were confirmed as periventricular leukomalacia (PVL). The location and histological features of the lesions were similar to PVL in humans, caused by neonatal ischemia/hypovolemia. This is the first report of PVL in a neonatal calf. PMID:27010465

  9. Mapping of Kisspeptin Receptor mRNA in the Whole Rat Brain and its Co-Localisation with Oxytocin in the Paraventricular Nucleus.

    PubMed

    Higo, S; Honda, S; Iijima, N; Ozawa, H

    2016-04-01

    The neuropeptide kisspeptin and its receptor play an essential role in reproduction as a potent modulator of the gonadotrophin-releasing hormone (GnRH) neurone. In addition to its reproductive function, kisspeptin signalling is also involved in extra-hypothalamic-pituitary-gonadal (HPG) axis systems, including oxytocin and arginine vasopressin (AVP) secretion. By contrast to the accumulating information for kisspeptin neurones and kisspeptin fibres, the histological distribution and function of the kisspeptin receptor in the rat brain remain poorly characterised. Using in situ hybridisation combined with immunofluorescence, the present study aimed to determine the whole brain map of Kiss1r mRNA (encoding the kisspeptin receptor), and to examine whether oxytocin or AVP neurones express Kiss1r. Neurones with strong Kiss1r expression were observed in several rostral brain areas, including the olfactory bulb, medial septum, diagonal band of Broca and throughout the preoptic area, with the most concentrated population being around 0.5 mm rostral to the bregma. Co-immunofluorescence staining revealed that, in these rostral brain areas, the vast majority of the Kiss1r-expressing neurones co-expressed GnRH. Moderate levels of Kiss1r mRNA were also noted in the rostral periventricular area, paraventricular nucleus (PVN), and throughout the arcuate nucleus. Relatively weak Kiss1r expression was observed in the supraoptic nucleus and supramammillary nuclei. Moderate to weak expression of Kiss1r was also observed in several regions in the midbrain, including the periaqueductal gray and dorsal raphe nucleus. We also examined whether oxytocin and AVP neurones in the PVN co-express Kiss1r. Immunofluorescence revealed the co-expression of Kiss1r in a subset of the oxytocin neurones but not in the AVP neurones in the PVN. The present study provides a fundamental anatomical basis for further examination of the kisspeptin signalling system in the extra-HPG axis, as well as in

  10. Different discharge properties of facial nucleus motoneurons following neurotmesis in a rat model.

    PubMed

    Shi, Suming; Xu, Lei; Li, Jianfeng; Han, Yuechen; Wang, Haibo

    2016-08-26

    Facial nucleus motoneurons innervating the facial expressive muscles are involved in a wide range of motor activities, however, the types of movement related neurons and their electrophysiological transformation after peripheral facial nerve injury haven't been revealed. This study was designed to elucidate the types of facial nucleus motoneurons and their alterations of discharge parameters following peripheral facial nerve injury in vivo. Here we set up a rat model by implanting electrode arrays into the brainstem and recorded the electrophysiological signals of facial nucleus neurons in the intact rats for 5 days, then transected the trunk of facial nerve (TF), and continued the record for 4 weeks. At the 4th week post-surgery, the morphological changes of TFs were analyzed. In this paper, we described two types of putative facial nucleus motoneurons based on their electrophysiological properties and their firing frequency adaptation. Type I motoneurons (n=57.6%) were characterized by a sustained spike adaptation, Type II motoneurons (n=26.2%) were identified by a phasic fast spike firing. Facial palsy and synkinesia, caused by neurotmesis of TF, were accompanied by firing rates reduction and firing pattern alteration of motoneurons. Our findings suggest the presence of two types of facial nucleus motorneurons, and their response patterns after neurotmesis support the notion that the discharge pattern of motorneurons may play an important role in the facial nerve function. PMID:27423319

  11. Decreased swelling pressure of rat nucleus pulposus associated with simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Mahmood, Mubashar

    1989-01-01

    Data are presented on the effects of actual and simulated weightlessness on the swelling pressure of nucleus pulposus in rats exposed to 12.5 days of flight aboard Cosmos 1887 or to seven days of tail suspension, respectively. The flight-exposed rats were adapted to normal gravity for over 50 hrs prior to sacrifice and tissue harvesting. In the experiments with flight-exposed rats, swelling pressures were 690, 675, and 622 mm Hg for flight rats, synchronous controls, and vivarium controls, respectively. In experiments with simulated weightlessness, swelling pressures were 295, 610, and 527 mm Hg for tail-suspended rats, cage controls, and vivarium controls, respectively, suggesting that fluid moves into the disc during seven days of simulated weightlessness.

  12. Isoperiodic neuronal activity in suprachiasmatic nucleus of the rat

    NASA Technical Reports Server (NTRS)

    Miller, J. D.; Fuller, C. A.

    1992-01-01

    A subpopulation of neurons in the suprachiasmatic nucleus (SCN) is shown here to exhibit isoperiodic bursting activity. The period of discharge in these cells may be lengthened or the periodicity may be transiently disrupted by photic stimulation. It is suggested that many, if not all, of these cells are vasoactive intestinal polypeptide (VIP) neurons. It is shown that the ultradian periodicity of these cells, estimates of the VIP neuron population size in the SCN, effects of partial lesions on tau (period), and estimates of the phase stability of SCN-driven circadian rhythms are consistent with a strongly coupled, multioscillator model of circadian rhythmicity, in which the oscillator population constitutes a restricted subset of the SCN neuronal population.

  13. Excitant amino acid projections from rat amygdala and thalamus to nucleus accumbens

    SciTech Connect

    Robinson, T.G.; Beart, P.M.

    1988-04-01

    High affinity uptake of D-(/sup 3/H)aspartate, (/sup 3/H)choline and (/sup 3/H)GABA was examined in synaptosomal-containing preparations of rat nucleus accumbens septi 7 to 10 days after unilateral or bilateral N-methyl-D-aspartate lesions confined to the parataenial nucleus of the thalamus or the basolateral nucleus of the amygdala. Uptake of both D-(/sup 3/H)aspartate and (/sup 3/H)choline was significantly reduced (11% and 14% less than control, respectively) by unilateral lesion of the thalamus, whereas (/sup 3/H)GABA uptake was unaffected. Bilateral thalamic lesions significantly reduced D-(/sup 3/H)aspartate uptake (11% less than control) into homogenates of the nucleus accumbens, whilst (/sup 3/H)GABA uptake was unaltered. D-(/sup 3/H)aspartate uptake was significantly reduced (26% less than control) following unilateral lesion of the amygdala, whereas both (/sup 3/H)GABA and (/sup 3/H)choline uptake were unaffected. Bilateral amygdaloid lesions significantly increased D-(/sup 3/H)aspartate uptake (39% greater than control), whilst uptake of (/sup 3/H)GABA was not affected. The results implicate glutamate and/or aspartate as putative neurotransmitters in afferent projections from the basolateral amygdala and the parataenial thalamus to the nucleus accumbens. Thalamic afferents to the nucleus accumbens may also utilize acetylcholine as their transmitter.

  14. Characterization of a folate-induced hypermotility response after bilateral injection into the rat nucleus accumbens

    SciTech Connect

    Stephens, R.L. Jr.

    1986-01-01

    The objective of these studies was to pharmacologically characterize the mechanism responsible for a folate-induced stimulation of locomotor activity in rats after bilateral injection into the nucleus accumbens region of the brain. Folic acid (FA) and 5-formyltetrahydrofolic acid (FTHF) produced this hypermotility response after intra-accumbens injection, while other reduced folic acid derivatives dihydrofolic acid, tetrahydrofolic acid, and 5-methyltetrahydrofolic acid were ineffective. Studies were designed to determine the role of catecholamines in the nucleus accumbens in the folate-induced hypermotility response. The findings suggest that the folate-induced response is dependent on intact neuronal dopamine stores, and is mediated by stimulation of dopamine receptors of the nucleus accumbens. However the folates do not appear to enhance dopaminergic neutransmission. Thus, FA and FTHF were inefficient at 1 mM concentrations in stimulating /sup 3/H-dopamine release from /sup 3/H-dopamine preloaded nucleus accumbens slices or dopamine from endogenous stores. Pteroic acid, the chemical precursor of folic acid which lacks the glutamate moiety, was ineffective in producing a stimulation of locomotor activity after intra-accumbens injection. Since glutamate is an excitatory amino acid (EAA), compounds characterized as EAA receptor antagonists were utilized to determine if the folate-induced hypermotility response is mediated by activation of EAA receptors in the nucleus accumbens. These results suggest that activation of quisqualate receptors of the nucleus accumbens may mediate the folate-induced hypermotility response.

  15. Diurnal rhythm of melatonin binding in the rat suprachiasmatic nucleus

    SciTech Connect

    Laitinen, J.T.; Castren, E.; Vakkuri, O.; Saavedra, J.M.

    1989-03-01

    We used quantitative in vitro autoradiography to localize and characterize 2-/sup 125/I-melatonin binding sites in the rat suprachiasmatic nuclei in relation to pineal melatonin production. In a light:dark cycle of 12:12 h, binding density exhibited significant diurnal variation with a peak at the dark-light transition and a trough 12 hours later. Saturation studies suggested that the decreased binding at light-dark transition might be due to a shift of the putative melatonin receptor to a low affinity state.

  16. Oxytocin nerve fibers innervate beta-endorphin neurons in the arcuate nucleus of the rat hypothalamus.

    PubMed

    Csiffáry, A; Ruttner, Z; Tóth, Z; Palkovits, M

    1992-09-01

    Fine, varicose oxytocin-containing nerve fibers have been demonstrated in the hypothalamic arcuate nucleus in rats. Using Phaseolus vulgaris leukoagglutinin as an anterograde tracer, fine neuronal fibers of paraventricular nucleus origin could be seen throughout the arcuate nucleus. Using double immunostaining, oxytocin-immunoreactive varicose fibers were observed around or in the close vicinity of beta-endorphin-immunoreactive neurons. Silver-gold-labeled oxytocin-immunoreactive presynaptic boutons were shown to make synaptic contacts with diaminobenzidine-labeled beta-endorphin-immunoreactive neurons by electron microscopy. These findings provide morphological evidence for a possible influence of oxytocin on the activity of the brain beta-endorphin system at the hypothalamic level. PMID:1279446

  17. Reduction in periventricular haemorrhage in preterm infants.

    PubMed Central

    Szymonowicz, W; Yu, V Y; Walker, A; Wilson, F

    1986-01-01

    Our previous cerebral ultrasound study of antecedents of periventricular haemorrhage in infants weighing 1250 g or less at birth suggested that neonatal events that caused increased or fluctuating cerebral blood flow lead to periventricular haemorrhage. As the risk period for this type of haemorrhage was the first four days of life strict guidelines were introduced to avoid the previously identified neonatal risk factors. No attempt was made to modify obstetric practice. Over the next two years, although the obstetric risk profile, the frequency and severity of hyaline membrane disease, and the gestation, birth weight, and sex distributions of a similar cohort of infants did not change, the incidence of periventricular haemorrhage decreased significantly from 60% to 36%. Significant antecedents of haemorrhage similar to those found in the previous study included severe bruising, low arterial:fractional inspiratory oxygen ratio and low packed cell volume on admission, hyaline membrane disease, hypercarbia, and hypoxaemia. Assisted ventilation, pneumothorax, treatment with tubocurarine, and hypotension were no longer significant risk factors for periventricular haemorrhage. A multivariate discriminant analysis correctly predicted haemorrhage in 86% of the study group when bruising, hypercarbia, hypoxaemia, hyaline membrane disease, and low gestation were considered. These results suggest that changes in neonatal practices can reduce the incidence of periventricular haemorrhage and that drug studies indicating similar reduction in haemorrhage need to be evaluated carefully to ensure that placebo and treated groups are in fact comparable. PMID:3740905

  18. Neurons in the nucleus tractus solitarius mediate the acupuncture analgesia in visceral pain rats.

    PubMed

    Liu, Kun; Gao, Xin-Yan; Li, Liang; Ben, Hui; Qin, Qing-Guang; Zhao, Yu-Xue; Zhu, Bing

    2014-12-01

    The study investigated the role of nucleus tractus solitarius (NTS) neurons in electroacupuncture (EA) analgesia in colorectal distension (CRD) rats. NTS neurons responding to both CRD test and EA conditioning stimulations were considered somato-visceral convergent neurons. The neuronal activities evoked by graded CRD showed multiple firing patterns indicating multisynaptic connections. Some of the CRD excitatory neurons were inhibited by EA and vice versa. There was no discrepancy among different acupoints in inducing the changes of unit discharges. Conclusively, EA could regulate CRD related neurons in the NTS through polysynaptic cross-talk mechanism, which mediates EA analgesia on visceral pain in anesthetized rats. PMID:25204607

  19. Vasopressin-immunoreactive cell bodies in the bed nucleus of the stria terminalis of the rat.

    PubMed

    van Leeuwen, F; Caffé, R

    1983-01-01

    In the dorsal and ventral portions of the bed nucleus of the stria terminalis of the rat numerous cell bodies immunoreactive for vasopressin and neurophysin II were found after colchicin pretreatment. These cells are predominantly multipolar but sometimes also bipolar, and have a width and length of approximately 9 and 16 microns, respectively. In the homozygous Brattleboro rat, which is deficient in vasopressin, no immunoreactive vasopressin was found in these cells. Following incubation with anti-oxytocin and anti-bovine neurophysin I, only magnocellular immunoreactive cell bodies were found in the septal region. The consequences of these results concerning the vasopressin fiber pathways in the brain are discussed. PMID:6339062

  20. Expression of Exocytosis Proteins in Rat Supraoptic Nucleus Neurones

    PubMed Central

    Tobin, V.; Schwab, Y.; Lelos, N.; Onaka, T.; Pittman, Q. J.; Ludwig, M.

    2012-01-01

    In magnocellular neurones of the supraoptic nucleus (SON), the neuropeptides vasopressin and oxytocin are synthesised and packaged into large dense-cored vesicles (LDCVs). These vesicles undergo regulated exocytosis from nerve terminals in the posterior pituitary gland and from somata/dendrites in the SON. Regulated exocytosis of LDCVs is considered to involve the soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor (SNARE) complex [comprising vesicle associated membrane protein 2 (VAMP-2), syntaxin-1 and soluble N-ethylmaleimide attachment protein-25 (SNAP-25)] and regulatory proteins [such as synaptotagmin-1, munc-18 and Ca2+-dependent activator protein for secretion (CAPS-1)]. Using fluorescent immunocytochemistry and confocal microscopy, in both oxytocin and vasopressin neurones, we observed VAMP-2, SNAP-25 and syntaxin-1-immunoreactivity in axon terminals. The somata and dendrites contained syntaxin-1 and other regulatory exocytosis proteins, including munc-18 and CAPS-1. However, the distribution of VAMP-2 and synaptotagmin-1 in the SON was limited to putative pre-synaptic contacts because they co-localised with synaptophysin (synaptic vesicle marker) and had no co-localisation with either oxytocin or vasopressin. SNAP-25 immunoreactivity in the SON was limited to glial cell processes and was not detected in oxytocin or vasopressin somata/dendrites. The present results indicate differences in the expression and localisation of exocytosis proteins between the axon terminals and somata/dendritic compartment. The absence of VAMP-2 and SNAP-25 immunoreactivity from the somata/dendrites suggests that there might be different SNARE protein isoforms expressed in these compartments. Alternatively, exocytosis of LDCVs from somata/dendrites may use a different mechanism from that described by the SNARE complex theory. PMID:21988098

  1. Hypothalamic paraventricular nucleus stimulation reduces intestinal injury in rats with ulcerative colitis

    PubMed Central

    Deng, Quan-Jun; Deng, Ding-Jing; Che, Jin; Zhao, Hai-Rong; Yu, Jun-Jie; Lu, Yong-Yu

    2016-01-01

    AIM: To investigate the effect and mechanism of stimulation of the hypothalamic paraventricular nucleus with glutamate acid in rats with ulcerative colitis (UC). METHODS: The rats were anesthetized with 10% chloral hydrate via abdominal injection and treated with an equal volume of TNBS + 50% ethanol enema, injected into the upper section of the anus with the tail facing up. Colonic damage scores were calculated after injecting a certain dose of glutamic acid into the paraventricular nucleus (PVN), and the effect of the nucleus tractus solitarius (NTS) and vagus nerve in alleviating UC injury through chemical stimulation of the PVN was observed in rats. Expression changes of C-myc, Apaf-1, caspase-3, interleukin (IL)-6, and IL-17 during the protection against UC injury through chemical stimulation of the PVN in rats were detected by Western blot. Malondialdehyde (MDA) content and superoxide dismutase (SOD) activity in colon tissues of rats were measured by colorimetric methods. RESULTS: Chemical stimulation of the PVN significantly reduced UC in rats in a dose-dependent manner. The protective effects of the chemical stimulation of the PVN on rats with UC were eliminated after chemical damage to the PVN. After glutamate receptor antagonist kynurenic acid was injected into the PVN, the protective effects of the chemical stimulation of the PVN were eliminated in rats with UC. After AVP-Vl receptor antagonist ([Deamino-penl, val4, D-Arg8]-vasopressin) was injected into NTS or bilateral chemical damage to NTS, the protective effect of the chemical stimulation of PVN on UC was also eliminated. After chemical stimulation of the PVN, SOD activity increased, MDA content decreased, C-myc protein expression significantly increased, caspase-3 and Apaf-1 protein expression significantly decreased, and IL-6 and IL-17 expression decreased in colon tissues in rats with UC. CONCLUSION: Chemical stimulation of the hypothalamic PVN provides a protective effect against UC injury in

  2. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens

    PubMed Central

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  3. Paradoxical augmented relapse in alcohol-dependent rats during deep-brain stimulation in the nucleus accumbens.

    PubMed

    Hadar, R; Vengeliene, V; Barroeta Hlusicke, E; Canals, S; Noori, H R; Wieske, F; Rummel, J; Harnack, D; Heinz, A; Spanagel, R; Winter, C

    2016-01-01

    Case reports indicate that deep-brain stimulation in the nucleus accumbens may be beneficial to alcohol-dependent patients. The lack of clinical trials and our limited knowledge of deep-brain stimulation call for translational experiments to validate these reports. To mimic the human situation, we used a chronic-continuous brain-stimulation paradigm targeting the nucleus accumbens and other brain sites in alcohol-dependent rats. To determine the network effects of deep-brain stimulation in alcohol-dependent rats, we combined electrical stimulation of the nucleus accumbens with functional magnetic resonance imaging (fMRI), and studied neurotransmitter levels in nucleus accumbens-stimulated versus sham-stimulated rats. Surprisingly, we report here that electrical stimulation of the nucleus accumbens led to augmented relapse behavior in alcohol-dependent rats. Our associated fMRI data revealed some activated areas, including the medial prefrontal cortex and caudate putamen. However, when we applied stimulation to these areas, relapse behavior was not affected, confirming that the nucleus accumbens is critical for generating this paradoxical effect. Neurochemical analysis of the major activated brain sites of the network revealed that the effect of stimulation may depend on accumbal dopamine levels. This was supported by the finding that brain-stimulation-treated rats exhibited augmented alcohol-induced dopamine release compared with sham-stimulated animals. Our data suggest that deep-brain stimulation in the nucleus accumbens enhances alcohol-liking probably via augmented dopamine release and can thereby promote relapse. PMID:27327255

  4. Local cholinergic and non-cholinergic neural pathways to the rat supraoptic nucleus

    SciTech Connect

    Meeker, M.L.

    1986-01-01

    An estimated two thirds of the input to the supraoptic nucleus of the rat hypothalamus (SON) including a functionally significant cholinergic innervation, arise from local sources of unknown origin. The sources of these inputs were identified utilizing Golgi-Cox, retrograde tracing, choline acetyltransferase immunocytochemistry and anterograde tracing methodologies. Multipolar Golgi impregnated neurons located dorsal and lateral to the SON extend spiney processes into the nucleus. Injections of the retrograde tracers, wheat germ agglutinin or wheat germ agglutinin-horseradish peroxidase, into the SON labeled cells bilaterally in the arcuate nucleus, and ipsilaterally in the lateral hypothalamus, anterior hypothalamus, nucleus of the diagonal band, subfornical organ, medial preoptic area, lateral preoptic area and in the region dorsolateral to the nucleus. Immunocytochemistry for choline acetyltransferase revealed cells within the ventro-caudal portion of cholinergic cell group, Ch4, which cluster dorsolateral to the SON, and extend axon- and dendrite-like processes into the SON. Cells double-labeled by choline acetyltransferase immunocytochemistry and retrograde tracer injections into the SON are localized within the same cholinergic cell group dorsolateral to the SON. Injections of the anterograde tracer, Phaseolus vulgaris-leucoagglutinin, deposited dorsolateral to the SON results in labeled pre-and post-synaptic processes within the SON. The identification and characterization of endogenous immunoglobulin within the SON and other neurons innervating areas lacking a blood-brain barrier established a novel and potentially important system for direct communication of the supraoptic cells with blood-borne constitutents.

  5. Isolation and characterization of neural stem cells from the neonatal rat cochlear nucleus.

    PubMed

    Rak, Kristen; Wasielewski, Natalia V; Radeloff, Andreas; Völkers, Johannes; Scherzed, Agmal; Jablonka, Sibylle; Hagen, Rudolf; Mlynski, Robert

    2011-03-01

    Neural stem cells have been identified in multiple parts of the postnatal mammalian brain, as well as in the inner ear. No investigation of potential neural stem cells in the cochlear nucleus has yet been performed. The aim of this study was to investigate potential neural stem cells from the cochlear nucleus by neurosphere assay and in histological sections to prove their capacity for self-renewal and for differentiation into progenitor cells and cells of the neuronal lineage. For this purpose, cells of the cochlear nucleus of postnatal day 6 rats were isolated and cultured for generation of primary neurospheres. Spheres were dissociated and cells analyzed for capacity for mitosis and differentiation. Cell division was detected by cell-counting assay and BrdU incorporation. Differentiated neural progenitor cells showed distinct labeling for Nestin and for Atoh1. Positive staining of ß-III Tubulin, glial fibrillary acid protein (GFAP) and myelin basic protein (MBP) showed differentiation into neurons, astrocytes and oligodendrocytes. Furthermore, Nestin- and BrdU-labeled cells could also be detected in histological sections. In conclusion, the isolated cells from the cochlear nucleus presented all the features of neural stem cells: cell division, presence of progenitor cells and differentiation into different cells of the neuronal lineage. The existence of neural stem cells may add to the understanding of developmental features in the cochlear nucleus. PMID:21258945

  6. Serotonergic projections from the caudal raphe nuclei to the hypoglossal nucleus in male and female rats

    PubMed Central

    Barker, Jessica R.; Thomas, Cathy F.; Behan, Mary

    2009-01-01

    The respiratory control system is sexually dimorphic. In many brain regions, including respiratory motor nuclei, serotonin (5HT) levels are higher in females than in males. We hypothesized that there could be sex differences in 5HT input to the hypoglossal nucleus, a region of the brainstem involved in upper airway control. Adult Fischer 344 rats were anesthetized and a retrograde transsynaptic neuroanatomical tracer, Bartha pseudorabies virus (PRV), was injected into the tongue. Sections through the medulla were reacted immunocytochemically for the presence of (i) PRV, (ii) tryptophan hydroxylase (TPH; marker of 5HT neurons), (iii) PRV combined with TPH, and (iv) 5HT. Sex hormone levels were measured in female rats and correlated with TPH immunoreactivity, as hypoglossal 5HT levels vary with the estrous cycle. The number of PRV neurons was comparable in male and female rats. The number and distribution of TPH immunoreactive neurons in the caudal raphe nuclei were similar in male and female rats. The subset of 5HT neurons that innervate hypoglossal motoneurons was also similar in male and female rats. With the exception of the ventrolateral region of the hypoglossal nucleus, 5HT immunoreactivity was similar in male and female rats. These data suggest that sex differences in 5HT modulation of hypoglossal motoneurons in male and female rats are not the result of sex differences in TPH or 5HT, but may result from differences in neurotransmitter release and reuptake, location of 5HT synaptic terminals on hypoglossal motoneurons, pre- and postsynaptic 5HT receptor expression, or the distribution of sex hormone receptors on hypoglossal or caudal raphe neurons. PMID:19073285

  7. Intraventricular haemorrhage and periventricular leucomalacia: ultrasound and autopsy correlation.

    PubMed Central

    Trounce, J Q; Fagan, D; Levene, M I

    1986-01-01

    The brains of 30 infants who died after at least one real time ultrasound scan were examined after fixation. The ultrasound diagnosis of either periventricular haemorrhage or periventricular leucomalacia was compared with the macroscopic and histological appearances. Each hemisphere was considered separately for both periventricular haemorrhage and periventricular leucomalacia. The accuracy of ultrasound diagnosis for periventricular haemorrhage was 88%, with sensitivity of 91% and specificity of 85%. The accuracy for periventricular leucomalacia was 90%, with sensitivity of 85% and specificity of 93%. Ultrasound was shown to diagnose the entire range of periventricular leucomalacia lesions. Three hemispheres showed the appearance of prolonged flare, and this correlated with extensive spongiosis and microcalcification of the periventricular white matter, although no macroscopic lesion was seen. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:3545096

  8. Urocortin 2 increases c-Fos expression in serotonergic neurons projecting to the ventricular/periventricular system

    PubMed Central

    Hale, Matthew W.; Stamper, Christopher E.; Staub, Daniel R.; Lowry, Christopher A.

    2010-01-01

    Serotonin plays an important role in the regulation of anxiety states and physiological responses to aversive stimuli. Intracerebroventricular (i.c.v.) injection of the stress- and anxiety-related neuropeptide urocortin 2 (Ucn 2) increases c-Fos expression in serotonergic neurons in the dorsal (DRD) and caudal (DRC) parts of the dorsal raphe nucleus. These regions contain a subset of serotonergic neurons that projects via the dorsal raphe periventricular tract to periventricular structures, including the subfornical organ and ependymal layer, and to the ventricular system. To determine if Ucn 2 activates ventricle/periventricular-projecting serotonergic neurons in the midbrain raphe complex we made i.c.v. injections of the retrograde tracer Fluoro-Gold into the lateral ventricle, followed 7 days later by i.c.v. injection of Ucn 2. The DRD at −8.18 mm and the DRC at −8.54 mm and −9.16 mm bregma were analyzed using a combined brightfield and immunofluorescence technique. Approximately 40% of the ventricle/periventricular-projecting neurons in the subdivisions sampled were serotonergic. Urocortin 2 increased c-Fos expression in ventricle/periventricular-projecting serotonergic neurons in the DRC and in non-ventricle/periventricular-projecting serotonergic neurons in the DRD and DRC. Of the total population of ventricle/periventricular-projecting serotonergic neurons in the DRC at −8.54 and −9.16 mm bregma, 35% expressed c-Fos following Ucn 2 injections. These data are consistent with previous studies showing that i.c.v. injection of Ucn 2 activates subpopulations of serotonergic neurons restricted to the mid-rostrocaudal DRD and DRC, and further demonstrate that these include both subsets of serotonergic neurons that do and do not project to the ventricle/periventricular system. PMID:20382145

  9. Dynamic changes of the neurogenic potential in the rat cochlear nucleus during post-natal development.

    PubMed

    Rak, Kristen; Völker, Johannes; Frenz, Silke; Scherzed, Agmal; Radeloff, Andreas; Hagen, Rudolf; Mlynski, Robert

    2013-05-01

    Neuronal stem cells have been described in the post-natal cochlear nucleus recently. The aim of the study was to analyse the neurogenic potential in the cochlear nucleus from the early post-natal days until adulthood. Cochlear nuclei from Sprague-Dawley rats from post-natal day P3 up to P40 were examined. Neurosphere assays showed persistent neurosphere formation from the early post-natal days until adulthood. The numbers of generated neurospheres were fewer in older ages. Neurospheres were smaller, but displayed the same pattern of neuronal stem cell markers. The markers GFAP, MBP and ß-III Tubulin showed differentiation of dissociated cells from the neurospheres in all cells of the neuronal lineage. BrdU incorporation could be detected, in an age-dependent decrease, in whole-mount experiments of the cochlear nucleus on all examined days. BrdU co-labelled with Atoh1 and ß-III Tubulin. In addition, gene expression and cellular distribution studies of the neuronal stem cell markers displayed an age-dependent reduction in both quantity and numbers. The presented results display a possible neurogenic potential until adulthood in the cochlear nucleus by in vitro and in vivo experiments. The fact that this potential is highest at a critical period of development reveals possible functional importance for the development of the cochlear nucleus and the auditory function. The persistent neurogenic potential displayed until adulthood could be a neurogenic niche in the adult cochlear nucleus, which might be used for potential therapeutic strategies. PMID:23455726

  10. Genetic and Dietary Effects on Dendrites in the Rat Hypothalamic Ventromedial Nucleus

    PubMed Central

    LaBelle, Denise R.; Cox, Julia M.; Dunn-Meynell, Ambrose A.; Levin, Barry E.; Flanagan-Cato, Loretta M.

    2009-01-01

    Both genetic and environmental factors contribute to individual differences in body weight regulation. The present study examined a possible role for the dendritic arbor of hypothalamic ventromedial nucleus (VMH) neurons in a model of diet-induced obesity (DIO) in male rats. Rats were screened and selectively bred for being either susceptible, i.e., exhibiting DIO, or diet resistant (DR) when exposed to a 31% fat diet. A 2×2 experimental design was used, based on these two strains of rats and exposure to rat chow versus the 31% fat diet for seven weeks. Golgi-impregnated neurons were measured for soma size and dendrite parameters, including number, length, and direction. As previously observed, each VMH neuron had a single long primary dendrite. Genetic background and diet did not affect soma size or the number of dendrites of VMH neurons. However, genetic background exerted a main effect on the length of the long primary dendrites. In particular, the long primary dendrites were approximately 12.5% shorter on the VMH neurons in the DIO rats compared with DR rats regardless of diet. This effect was isolated to the long primary dendrites extending in the dorsolateral direction, with these long primary dendrites 19% shorter for the DIO group compared with the DR group. This finding implicates the connectivity of the long primary dendrites on VMH neurons in the control of energy balance. The functional significance of these shortened dendrites and their afferents warrants further study. PMID:19698729

  11. HIV-1 Transgenic Female Rat: Synaptodendritic Alterations of Medium Spiny Neurons in the Nucleus Accumbens

    PubMed Central

    Roscoe, Robert F.; Mactutus, Charles F.

    2015-01-01

    HIV-1 associated neurocognitive deficits are increasing in prevalence, although the neuronal basis for these deficits is unclear. HIV-1 Tg rats constitutively express 7 of 9 HIV-associated proteins, and may be useful for studying the neuropathological substrates of HIV-1 associated neurocognitive disorders (HAND). In this study, adult female HIV-1 Tg rats and F344 control rats had similar growth rates, estrous cyclicity and startle reflex inhibition to a visual prepulse stimulus. Medium spiny neurons (MSNs) in the nucleus accumbens (NAcc) were ballistically-labeled utilizing the indocarbocyanine dye DiI. The branching complexity of MSNs in the NAcc was significantly decreased in HIV-1 Tg rats, relative to controls; moreover, the shorter length and decreased volume of dendritic spines, but unchanged head diameter, in HIV-1 Tg rats suggested a reduction of longer spines and an increase in shorter, less projected spines, indicating a population shift to a more immature spine phenotype. Collectively, these results from HIV-1 Tg female rats indicated significant synaptodendritic alterations of MSNs in the NAcc occur as a consequence of chronic, low-level, exposure to HIV-1 associated proteins. PMID:25037595

  12. Attenuated dopaminergic tone in the paraventricular nucleus contributing to sympathoexcitation in rats with Type 2 diabetes

    PubMed Central

    Liu, Xuefei; Li, Yulong; Mishra, Paras K.; Patel, Kaushik P.

    2013-01-01

    The study was conducted to investigate the role for dopamine in the centrally mediated sympathoexcitatory response in rats with Type 2 diabetes (T2D). T2D was induced by a combination of high-fat diet (HFD) and low-dose streptozotocin (STZ). HFD/STZ treatment for 12–14 wk resulted in significant increase in the number of FosB-positive cells in the paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM). In anesthetized rats, administration of exogenous dopamine (dopamine hydrochloride, 20 mM) in the PVN, but not in the RVLM, elicited decreases in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) in control rats and but not in the T2D rats. Blocking the endogenous dopamine with dopamine D1/D5 receptor antagonist SCH39166 (2 mM) in the PVN and RVLM, resulted in increases in RSNA, MAP, and heart rate (HR) in both control and T2D rats. These responses were significantly attenuated in T2D rats compared with control rats (PVN − ΔRSNA: 21 ± 10 vs. 44 ± 2%; ΔMAP: 7 ± 3 vs. 19 ± 6 mmHg, ΔHR: 17 ± 5 vs. 32 ± 4 bpm, P < 0.05). There were no significant increases in response to dopamine D2/D3 receptor antagonist raclopride application in the PVN and RVLM of both control and T2D rats. Furthermore, there were decreased dopamine D1 receptor and D2 receptor expressions in the PVN of T2D rats. Taken together, these data suggest that reduced endogenous dopaminergic tone within the PVN may contribute to the sympathoexcitation in T2D. PMID:24305061

  13. Nucleus accumbens neuronal maturation differences in young rats bred for low versus high voluntary running behaviour.

    PubMed

    Roberts, Michael D; Toedebusch, Ryan G; Wells, Kevin D; Company, Joseph M; Brown, Jacob D; Cruthirds, Clayton L; Heese, Alexander J; Zhu, Conan; Rottinghaus, George E; Childs, Thomas E; Booth, Frank W

    2014-05-15

    We compared the nucleus accumbens (NAc) transcriptomes of generation 8 (G8), 34-day-old rats selectively bred for low (LVR) versus high voluntary running (HVR) behaviours in rats that never ran (LVR(non-run) and HVR(non-run)), as well as in rats after 6 days of voluntary wheel running (LVR(run) and HVR(run)). In addition, the NAc transcriptome of wild-type Wistar rats was compared. The purpose of this transcriptomics approach was to generate testable hypotheses as to possible NAc features that may be contributing to running motivation differences between lines. Ingenuity Pathway Analysis and Gene Ontology analyses suggested that 'cell cycle'-related transcripts and the running-induced plasticity of dopamine-related transcripts were lower in LVR versus HVR rats. From these data, a hypothesis was generated that LVR rats might have less NAc neuron maturation than HVR rats. Follow-up immunohistochemistry in G9-10 LVR(non-run) rats suggested that the LVR line inherently possessed fewer mature medium spiny (Darpp-32-positive) neurons (P < 0.001) and fewer immature (Dcx-positive) neurons (P < 0.001) than their G9-10 HVR counterparts. However, voluntary running wheel access in our G9-10 LVRs uniquely increased their Darpp-32-positive and Dcx-positive neuron densities. In summary, NAc cellularity differences and/or the lack of running-induced plasticity in dopamine signalling-related transcripts may contribute to low voluntary running motivation in LVR rats. PMID:24665095

  14. Nucleus accumbens neuronal maturation differences in young rats bred for low versus high voluntary running behaviour

    PubMed Central

    Roberts, Michael D; Toedebusch, Ryan G; Wells, Kevin D; Company, Joseph M; Brown, Jacob D; Cruthirds, Clayton L; Heese, Alexander J; Zhu, Conan; Rottinghaus, George E; Childs, Thomas E; Booth, Frank W

    2014-01-01

    We compared the nucleus accumbens (NAc) transcriptomes of generation 8 (G8), 34-day-old rats selectively bred for low (LVR) versus high voluntary running (HVR) behaviours in rats that never ran (LVRnon-run and HVRnon-run), as well as in rats after 6 days of voluntary wheel running (LVRrun and HVRrun). In addition, the NAc transcriptome of wild-type Wistar rats was compared. The purpose of this transcriptomics approach was to generate testable hypotheses as to possible NAc features that may be contributing to running motivation differences between lines. Ingenuity Pathway Analysis and Gene Ontology analyses suggested that ‘cell cycle’-related transcripts and the running-induced plasticity of dopamine-related transcripts were lower in LVR versus HVR rats. From these data, a hypothesis was generated that LVR rats might have less NAc neuron maturation than HVR rats. Follow-up immunohistochemistry in G9–10 LVRnon-run rats suggested that the LVR line inherently possessed fewer mature medium spiny (Darpp-32-positive) neurons (P < 0.001) and fewer immature (Dcx-positive) neurons (P < 0.001) than their G9–10 HVR counterparts. However, voluntary running wheel access in our G9–10 LVRs uniquely increased their Darpp-32-positive and Dcx-positive neuron densities. In summary, NAc cellularity differences and/or the lack of running-induced plasticity in dopamine signalling-related transcripts may contribute to low voluntary running motivation in LVR rats. PMID:24665095

  15. An In Vivo Model of Reduced Nucleus Pulposus Glycosaminoglycan Content in the Rat Lumbar Intervertebral Disc

    PubMed Central

    Boxberger, John I.; Auerbach, Joshua D.; Sen, Sounok; Elliott, Dawn M.

    2009-01-01

    Study Design An in vivo model resembling early stage disc degeneration in the rat lumbar spine. Objective Simulate the reduced glycosaminoglycan content and altered mechanics observed in intervertebral disc degeneration using a controlled injection of chondroitinase ABC (ChABC). Summary of Background Data Nucleus glycosaminoglycan reduction occurs early during disc degeneration; however, mechanisms through which degeneration progresses from this state are unknown. Animal models simulating this condition are essential for understanding disease progression and for development of therapies aimed at early intervention. Methods ChABC was injected into the nucleus pulposus, and discs were evaluated via micro-CT, mechanical testing, biochemical assays, and histology 4 and 12 weeks after injection. Results At 4 weeks, reductions in nucleus glycosaminoglycan level by 43%, average height by 12%, neutral zone modulus by 40%, and increases in range of motion by 40%, and creep strain by 25% were found. Neutral zone modulus and range of motion were correlated with nucleus glycosaminoglycan. At 12 weeks, recovery of some mechanical function was detected as range of motion and creep returned to control levels; however, this was not attributed to glycosaminoglycan restoration, because mechanics were no longer correlated with glycosaminoglycan. Conclusion An in vivo model simulating physiologic levels of glycosaminoglycan loss was created to aid in understanding the relationships between altered biochemistry, altered mechanics, and altered cellular function in degeneration. PMID:18197098

  16. Forward masking in the medial nucleus of the trapezoid body of the rat.

    PubMed

    Gao, Fei; Berrebi, Albert S

    2016-05-01

    Perception of acoustic stimuli is modulated by the temporal and spectral relationship between sound components. Forward masking experiments show that the perception threshold for a probe tone is significantly impaired by a preceding masker stimulus. Forward masking has been systematically studied at the level of the auditory nerve, cochlear nucleus, inferior colliculus and auditory cortex, but not yet in the superior olivary complex. The medial nucleus of the trapezoid body (MNTB), a principal cell group of the superior olive, plays an essential role in sound localization. The MNTB receives excitatory input from the contralateral cochlear nucleus via the calyces of Held and innervates the ipsilateral lateral and medial superior olives, as well as the superior paraolivary nucleus. Here, we performed single-unit extracellular recordings in the MNTB of rats. Using a forward masking paradigm previously employed in studies of the inferior colliculus and auditory nerve, we determined response thresholds for a 20-ms characteristic frequency pure tone (the probe), and then presented it in conjunction with another tone (the masker) that was varied in intensity, duration, and frequency; we also systematically varied the masker-to-probe delay. Probe response thresholds increased and response magnitudes decreased when a masker was presented. The forward suppression effects were greater when masker level and masker duration were increased, when the masker frequency approached the MNTB unit's characteristic frequency, and as the masker-to-probe delay was shortened. Probe threshold shifts showed an exponential decay as the masker-to-probe delay increased. PMID:25921974

  17. Infection of male rats with Toxoplasma gondii results in enhanced delay aversion and neural changes in the nucleus accumbens core

    PubMed Central

    Tan, Donna; Soh, Linda Jing Ting; Lim, Lee Wei; Daniel, Tan Chia Wei; Zhang, Xiaodong; Vyas, Ajai

    2015-01-01

    Rats infected with the protozoan parasite Toxoplasma gondii exhibit reduced avoidance of predator odours. This behavioural change is likely to increase transmission of the parasite from rats to cats. Here, we show that infection with T. gondii increases the propensity of the infected rats to make more impulsive choices, manifested as delay aversion in an intertemporal choice task. Concomitantly, T. gondii infection causes reduction in dopamine content and neuronal spine density of the nucleus accumbens core, but not of the nucleus accumbens shell. These results are consistent with a role of the nucleus accumbens dopaminergic system in mediation of choice impulsivity and goal-directed behaviours. Our observations suggest that T. gondii infection in rats causes a syndromic shift in related behavioural constructs of innate aversion and making foraging decisions. PMID:25994671

  18. Protein Expression in the Nucleus Accumbens of Rats Exposed to Developmental Vitamin D Deficiency

    PubMed Central

    McGrath, John; Iwazaki, Takeshi; Eyles, Darryl; Burne, Thomas; Cui, Xiaoying; Ko, Pauline; Matsumoto, Izuru

    2008-01-01

    Introduction Developmental vitamin D (DVD) deficiency is a candidate risk factor for schizophrenia. Animal models have confirmed that DVD deficiency is associated with a range of altered genomic, proteomic, structural and behavioural outcomes in the rat. Because the nucleus accumbens has been implicated in neuropsychiatric disorders, in the current study we examined protein expression in this region in adult rats exposed to DVD deficiency Methods Female Sprague Dawley rats were maintained on a vitamin D deficient diet for 6 weeks, mated and allowed to give birth, after which a diet containing vitamin D was reintroduced. Male adult offspring (n = 8) were compared to control male (n = 8). 2-D gel electrophoresis-based proteomics and mass spectroscopy were used to investigate differential protein expression. Results There were 35 spots, mapped to 33 unique proteins, which were significantly different between the two groups. Of these, 22 were down-regulated and 13 up-regulated. The fold changes were uniformly small, with the largest FC being −1.67. Within the significantly different spots, three calcium binding proteins (calbindin1, calbindin2 and hippocalcin) were altered. Other proteins associated with DVD deficiency related to mitochondrial function, and the dynamin-like proteins. Conclusions Developmental vitamin D deficiency was associated with subtle changes in protein expression in the nucleus accumbens. Disruptions in pathways related to calcium-binding proteins and mitochondrial function may underlie some of the behavioural features associated with animal models of developmental vitamin D deficiency PMID:18545652

  19. Transient expression of somatostatin messenger RNA and peptide in the hypoglossal nucleus of the neonatal rat.

    PubMed

    Seroogy, K B; Bayliss, D A; Szymeczek, C L; Hökfelt, T; Millhorn, D E

    1991-06-21

    The postnatal developmental expression of somatostatin mRNA and peptide in the rat hypoglossal nucleus was analyzed using immunocytochemical and in situ hybridization techniques. Both the neuropeptide and its cognate mRNA were found to be transiently present within a subpopulation of hypoglossal motoneurons during the neonatal period. At the day of birth, a large population of perikarya situated in caudal, ventral regions of the hypoglossal nucleus expressed somatostatin. By postnatal day 7, the number of hypoglossal somata which expressed somatostatin had diminished considerably, and by 2 weeks postnatal, only few such cell bodies were found. By 3-4 weeks postnatal, somatostatin peptide- and mRNA-containing hypoglossal motoneurons were rarely observed, and in the adult, they were never detected, despite the use of colchicine. A double-labeling co-localization technique was used to demonstrate that somatostatin, when present perinatally, always coexisted with calcitonin gene-related peptide in hypoglossal motoneurons. The latter peptide, in contrast to somatostatin, was expressed in large numbers of somata throughout the entire hypoglossal nucleus and persisted within the motoneurons throughout development into adulthood. These results demonstrate that somatostatin is transiently expressed in motoneurons of the caudal, ventral tier of the hypoglossal nucleus in the neonatal rat. The developmental disappearance of somatostatin is most likely not due to cell death; hypoglossal somata continue to express calcitonin gene-related peptide, with which somatostatin coexisted perinatally, a high levels throughout development. Thus, it appears that the regulation of somatostatin expression in hypoglossal neurons occurs at the level of gene transcription or mRNA stability/degradation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1680035

  20. The differential contributions of the parvocellular and the magnocellular subdivisions of the red nucleus to skilled reaching in the rat.

    PubMed

    Morris, R; Vallester, K K; Newton, S S; Kearsley, A P; Whishaw, I Q

    2015-06-01

    During the execution of the skilled reaching task, naïve rats bring their elbow to the midline of their body to aim at the food target, perform the arpeggio movement to grasp it and supinate the paw to bring the food to their mouth. Red nucleus lesions in the rat interfere with each of these three movement elements of reaching. On the other hand, lesions to the rubrospinal tract, which originate from the magnocellular subdivision of the red nucleus, only interfere with the arpeggio movement. This latter evidence strongly suggests that impairment in aiming and supinating could be under the control of the parvocellular subdivision of the red nucleus. In order to test this hypothesis, rats were trained on the skilled reaching task and then received either complete lesions of the red nucleus or lesions restricted to its parvo- or magnocellular subdivision. In line with previous data, complete excitotoxic lesions of the red nucleus compromised limb aiming, arpeggio and supination. Lesions restricted to the parvocellular division of the red nucleus abolish supination and interfere with aiming, although the latter result did not reach significance. The results are discussed in terms of the distinct connectivity and functional significance of these two architectonic subdivisions of the red nucleus. PMID:25813707

  1. Effect of intermittent hypoxia on arcuate nucleus in the leptin-deficient rat.

    PubMed

    Ciriello, John; Moreau, Jason M; McCoy, Aaron; Jones, Douglas L

    2016-07-28

    Intermittent hypoxia (IH) is a major pathophysiological consequence of obstructive sleep apnea. Recently, it has been shown that IH results in changes in body energy balance, leptin secretion and concomitant alterations in arcuate nucleus (ARC). In this study, the role of leptin on these changes was investigated in leptin-deficient rats exposed to IH or normoxic control conditions. Body weights, consumatory and locomotor behaviours, and protein signaling in ARC were assessed immediately after IH exposure. Compared to normoxia, IH altered body weight, food intake, locomotor pattern, and the plasma concentration of leptin and angiotensin II in the wild-type rat. However, these changes were not observed in the leptin-deficient rat. Within ARC of wild-type animals, IH increased phosphorylated signal transducer and activator of transcription 3 and pro-opiomelanocortin protein expression, but not in the leptin-deficient rat. The long-form leptin receptor protein expression was not altered following IH in either rat strain. These data suggest that leptin is involved in mediating the alterations to body energy balance and ARC activity following IH. PMID:27222924

  2. Experimentally induced postinhibitory rebound in rat nucleus ambiguus is dependent on hyperpolarization parameters and membrane potential.

    PubMed

    Dean, J B; Czyzyk-Krzeska, M; Millhorn, D E

    1989-06-01

    Postinhibitory rebound (PIR), a transient depolarization subsequent to release from experimental hyperpolarization, was identified and characterized in 81% of the cells studied in the nucleus ambiguus in slices from medulla of rat. Hyperpolarizing current pulses were administered via the recording microelectrode in the bridge-balanced mode to test for PIR. The voltage trajectory was characterized by a depolarizing sag during the pulse, rebound depolarization (PIR) after the pulse and increased input resistance during rebound. The amplitude and time course of PIR were dependent on prepulse membrane potential, pulse amplitude and pulse duration. These results suggest a potential role of PIR in respiratory rhythmogenesis. PMID:2771207

  3. The centrally projecting Edinger-Westphal nucleus--I: Efferents in the rat brain.

    PubMed

    Dos Santos Júnior, Edmilson D; Da Silva, André V; Da Silva, Kelly R T; Haemmerle, Carlos A S; Batagello, Daniella S; Da Silva, Joelcimar M; Lima, Leandro B; Da Silva, Renata J; Diniz, Giovanne B; Sita, Luciane V; Elias, Carol F; Bittencourt, Jackson C

    2015-10-01

    The oculomotor accessory nucleus, often referred to as the Edinger-Westphal nucleus [EW], was first identified in the 17th century. Although its most well known function is the control of pupil diameter, some controversy has arisen regarding the exact location of these preganglionic neurons. Currently, the EW is thought to consist of two different parts. The first part [termed the preganglionic EW-EWpg], which controls lens accommodation, choroidal blood flow and pupillary constriction, primarily consists of cholinergic cells that project to the ciliary ganglion. The second part [termed the centrally projecting EW-EWcp], which is involved in non-ocular functions such as feeding behavior, stress responses, addiction and pain, consists of peptidergic neurons that project to the brainstem, the spinal cord and prosencephalic regions. However, in the literature, we found few reports related to either ascending or descending projections from the EWcp that are compatible with its currently described functions. Therefore, the objective of the present study was to systematically investigate the ascending and descending projections of the EW in the rat brain. We injected the anterograde tracer biotinylated dextran amine into the EW or the retrograde tracer cholera toxin subunit B into multiple EW targets as controls. Additionally, we investigated the potential EW-mediated innervation of neuronal populations with known neurochemical signatures, such as melanin-concentrating hormone in the lateral hypothalamic area [LHA] and corticotropin-releasing factor in the central nucleus of the amygdala [CeM]. We observed anterogradely labeled fibers in the LHA, the reuniens thalamic nucleus, the oval part of the bed nucleus of the stria terminalis, the medial part of the central nucleus of the amygdala, and the zona incerta. We confirmed our EW-LHA and EW-CeM connections using retrograde tracers. We also observed moderate EW-mediated innervation of the paraventricular nucleus of the

  4. Endogenous leptin contributes to baroreflex suppression within the solitary tract nucleus of aged rats.

    PubMed

    Arnold, Amy C; Diz, Debra I

    2014-12-01

    The decline in cardiovagal baroreflex function that occurs with aging is accompanied by an increase in circulating leptin levels. Our previous studies showed that exogenous leptin impairs the baroreflex sensitivity for control of heart rate in younger rats, but the contribution of this hormone to baroreflex dysfunction during aging is unknown. Thus we assessed the effect of bilateral leptin microinjection (500 fmol/60 nl) within the solitary tract nucleus (NTS) on the baroreflex sensitivity in older (66 ± 2 wk of age) urethane/chloralose anesthetized Sprague-Dawley rats with elevated circulating leptin levels. In contrast to the 63% reduction observed in younger rats, leptin did not alter the baroreflex sensitivity for bradycardia evoked by phenylephrine in older rats (0.76 ± 0.19 baseline vs. 0.71 ± 0.15 ms/mmHg after leptin; P = 0.806). We hypothesized that this loss of sensitivity reflected endogenous suppression of the baroreflex by elevated leptin, rather than cardiovascular resistance to the peptide. Indeed, NTS administration of a leptin receptor antagonist (75 pmol/120 nl) improved the baroreflex sensitivity for bradycardia in older rats (0.73 ± 0.13 baseline vs. 1.19 ± 0.26 at 10 min vs. 1.87 ± 0.32 at 60 min vs. 1.22 ± 0.54 ms/mmHg at 120 min; P = 0.002), with no effect in younger rats. There was no effect of the leptin antagonist on the baroreflex sensitivity for tachycardia, responses to cardiac vagal chemosensitive fiber activation, or resting hemodynamics in older rats. These findings suggest that the actions of endogenous leptin within the NTS, either produced locally or derived from the circulation, contribute to baroreflex suppression during aging. PMID:25260611

  5. Lesions of the central nucleus of the amygdala decrease taste threshold for sodium chloride in rats.

    PubMed

    Li, Jinrong; Yan, Jianqun; Chen, Ke; Lu, Bo; Wang, Qian; Yan, Wei; Zhao, Xiaolin

    2012-10-01

    Previous studies reported that NaCl intake was down-regulated in rats with bilateral lesions of the central nucleus of the amygdala (CeA). In line with the evidence from anatomical and physiological studies, such an inhibition could be the result of altered taste threshold for NaCl, one of the important factors in assessing taste functions. To assess the effect of CeA on the taste threshold for NaCl, a conditioned taste aversion (CTA) to a suprathreshold concentration of NaCl (0.1M) in rats with bilateral lesions of CeA or sham lesions was first established. And then, two-bottle choice tests between water and a series of concentrations of NaCl were conducted. The taste threshold for NaCl is defined as the lowest concentration at which there is a reliable difference scores between conditioned and control subjects. Rats with CeA lesions acquired a taste aversion for 0.1M NaCl when it was paired with LiCl and still retained the aversion after the two-bottle choice test. The results of the two-bottle choice test showed that the taste threshold for NaCl was 0.0006M in rats with CeA lesions, whereas in rats with sham lesions the threshold was 0.005M, which was identical to that of normal rats. The conditioned results confirm the claim that CeA is not essential in the profile of conditioned taste aversion. Our findings demonstrate that lesions of the CeA increased the sensitivity to NaCl taste in rats, indicating that the CeA may be involved in encoding the intensity of salty gustation elicited by NaCl. PMID:22796484

  6. Endogenous leptin contributes to baroreflex suppression within the solitary tract nucleus of aged rats

    PubMed Central

    Arnold, Amy C.

    2014-01-01

    The decline in cardiovagal baroreflex function that occurs with aging is accompanied by an increase in circulating leptin levels. Our previous studies showed that exogenous leptin impairs the baroreflex sensitivity for control of heart rate in younger rats, but the contribution of this hormone to baroreflex dysfunction during aging is unknown. Thus we assessed the effect of bilateral leptin microinjection (500 fmol/60 nl) within the solitary tract nucleus (NTS) on the baroreflex sensitivity in older (66 ± 2 wk of age) urethane/chloralose anesthetized Sprague-Dawley rats with elevated circulating leptin levels. In contrast to the 63% reduction observed in younger rats, leptin did not alter the baroreflex sensitivity for bradycardia evoked by phenylephrine in older rats (0.76 ± 0.19 baseline vs. 0.71 ± 0.15 ms/mmHg after leptin; P = 0.806). We hypothesized that this loss of sensitivity reflected endogenous suppression of the baroreflex by elevated leptin, rather than cardiovascular resistance to the peptide. Indeed, NTS administration of a leptin receptor antagonist (75 pmol/120 nl) improved the baroreflex sensitivity for bradycardia in older rats (0.73 ± 0.13 baseline vs. 1.19 ± 0.26 at 10 min vs. 1.87 ± 0.32 at 60 min vs. 1.22 ± 0.54 ms/mmHg at 120 min; P = 0.002), with no effect in younger rats. There was no effect of the leptin antagonist on the baroreflex sensitivity for tachycardia, responses to cardiac vagal chemosensitive fiber activation, or resting hemodynamics in older rats. These findings suggest that the actions of endogenous leptin within the NTS, either produced locally or derived from the circulation, contribute to baroreflex suppression during aging. PMID:25260611

  7. Fine structural changes in the lateral vestibular nucleus of aging rats

    NASA Technical Reports Server (NTRS)

    Johnson, J. E., Jr.; Miquel, J.

    1974-01-01

    The fine structure of the lateral vestibular nucleus was investigated in Sprague-Dawley rats, that were sacrified at 4 weeks, 6-8 weeks, 6-8 months, and 18-20 months of age. In the neuronal perikaria, the following age-associated changes were seen with increasing frequency with advancing age: rodlike nuclear inclusions and nuclear membrane invaginations; cytoplasmic dense bodies with the characteristics of lipofuscin; and moderate disorganization of the granular endoplasmic reticulum. Dense bodies were also seen in glial cells. Rats 18 to 20 months old showed dendritic swellings, axonal degeneration, and an apparent increase in the number of axosomatic synaptic terminals containing flattened vesicles (presumed to be inhibitory in function).

  8. Periventricular heterotopia in 6q terminal deletion syndrome: role of the C6orf70 gene.

    PubMed

    Conti, Valerio; Carabalona, Aurelie; Pallesi-Pocachard, Emilie; Parrini, Elena; Leventer, Richard J; Buhler, Emmanuelle; McGillivray, George; Michel, François J; Striano, Pasquale; Mei, Davide; Watrin, Françoise; Lise, Stefano; Pagnamenta, Alistair T; Taylor, Jenny C; Kini, Usha; Clayton-Smith, Jill; Novara, Francesca; Zuffardi, Orsetta; Dobyns, William B; Scheffer, Ingrid E; Robertson, Stephen P; Berkovic, Samuel F; Represa, Alfonso; Keays, David A; Cardoso, Carlos; Guerrini, Renzo

    2013-11-01

    Periventricular nodular heterotopia is caused by defective neuronal migration that results in heterotopic neuronal nodules lining the lateral ventricles. Mutations in filamin A (FLNA) or ADP-ribosylation factor guanine nucleotide-exchange factor 2 (ARFGEF2) cause periventricular nodular heterotopia, but most patients with this malformation do not have a known aetiology. Using comparative genomic hybridization, we identified 12 patients with developmental brain abnormalities, variably combining periventricular nodular heterotopia, corpus callosum dysgenesis, colpocephaly, cerebellar hypoplasia and polymicrogyria, harbouring a common 1.2 Mb minimal critical deletion in 6q27. These anatomic features were mainly associated with epilepsy, ataxia and cognitive impairment. Using whole exome sequencing in 14 patients with isolated periventricular nodular heterotopia but no copy number variants, we identified one patient with periventricular nodular heterotopia, developmental delay and epilepsy and a de novo missense mutation in the chromosome 6 open reading frame 70 (C6orf70) gene, mapping in the minimal critical deleted region. Using immunohistochemistry and western blots, we demonstrated that in human cell lines, C6orf70 shows primarily a cytoplasmic vesicular puncta-like distribution and that the mutation affects its stability and subcellular distribution. We also performed in utero silencing of C6orf70 and of Phf10 and Dll1, the two additional genes mapping in the 6q27 minimal critical deleted region that are expressed in human and rodent brain. Silencing of C6orf70 in the developing rat neocortex produced periventricular nodular heterotopia that was rescued by concomitant expression of wild-type human C6orf70 protein. Silencing of the contiguous Phf10 or Dll1 genes only produced slightly delayed migration but not periventricular nodular heterotopia. The complex brain phenotype observed in the 6q terminal deletion syndrome likely results from the combined

  9. Spinal pleomorphic xanthoastrocytoma companied with periventricular tumor

    PubMed Central

    Zhao, Xintong; Jiang, Xiaochun; Wang, Xiangming

    2015-01-01

    Pleomorphic xanthoastrocytoma (PXA) is a low grade tumor that occurs in supratentorial area of children and young adult. In the previous reports, PXA of spinal cord or multicentre was extremely rare. A 60-year-old patient of spinal PXA and periventricular tumor presented with waist pain and weakness of double legs for one month. Neuroimaging showed that a lesion at the level of L2-L3 and periventricular tumor. Postoperative microscopy indicated that WHO grade II PXA. Photomicrograph of the lesion showed spindle cells, marked nuclear and cytoplasmic pleomorphism, with foamy cytoplasm. Immunohistochemical staining showed that GFAP and S-100 were positive. This is a rare case of synchronous multicentric PXA. Physicians should be realized multicentric dissemination by meninges or cerebrospinal fluid in PXA patients. It is important to describe the particular case in order to better understanding of clinical features. PMID:25755815

  10. Corticotropin-releasing factor within the central nucleus of the amygdala and the nucleus accumbens shell mediates the negative affective state of nicotine withdrawal in rats

    PubMed Central

    Marcinkiewcz, Catherine A.; Prado, Melissa M.; Isaac, Shani K.; Marshall, Alex; Rylkova, Daria; Bruijnzeel, Adrie W.

    2008-01-01

    Tobacco addiction is a chronic disorder that is characterized by a negative affective state upon smoking cessation and relapse after periods of abstinence. Previous research has shown that an increased central release of corticotropin-releasing factor (CRF) at least partly mediates the deficit in brain reward function associated with nicotine withdrawal in rats. The aim of these studies was to investigate the role of CRF in the central nucleus of the amygdala (CeA), the lateral bed nucleus of the stria terminalis (BNST), and the nucleus accumbens shell (Nacc shell) in the deficit in brain reward function associated with precipitated nicotine withdrawal. The intracranial self-stimulation procedure was used to assess the negative affective aspects of nicotine withdrawal. Elevations in brain reward thresholds are indicative of a deficit in brain reward function. In all experiments, the nicotinic receptor antagonist mecamylamine (3 mg/kg) elevated the brain reward thresholds of the nicotine dependent rats (9 mg/kg/day of nicotine salt) and did not affect the brain reward thresholds of the saline-treated control rats. The administration of the nonspecific CRF1/2 receptor antagonist D-Phe CRF(12–41) into the CeA and the Nacc shell prevented the mecamylamine-induced elevations in brain reward thresholds in the nicotine dependent rats. Blockade of CRF1/2 receptors in the lateral BNST did not prevent the mecamylamine-induced elevations in brain reward thresholds in the nicotine dependent rats. These studies indicate that the negative emotional state associated with precipitated nicotine withdrawal is at least partly mediated by an increased release of CRF in the CeA and Nacc shell. PMID:19145226

  11. Homologous upregulation of sst2 somatostatin receptor expression in the rat arcuate nucleus in vivo.

    PubMed

    Tannenbaum, G S; Turner, J; Guo, F; Videau, C; Epelbaum, J; Beaudet, A

    2001-07-01

    In vitro studies using various cell systems have provided conflicting results regarding homologous regulation of somatostatin (SRIH) receptors, and information on whether SRIH regulates the expression of its own receptors in vivo is lacking. In the present study we examined, by in situ hybridization, the effects of pretreatment with the sst2-preferring SRIH analog, octreotide, in vivo, on mRNA levels of two SRIH receptor subtypes, sst1 and sst2, in rat brain and pituitary. (125)I-[DTrp(8)]-SRIH binding was also measured in these regions. Three hours after the iv injection of 50 microg octreotide to conscious adult male rats, there was a 46% increase (p < 0.01) in the labeling density of sst2 mRNA-expressing cells in the hypothalamic arcuate nucleus compared to normal saline-pretreated controls, but not in any of the other brain regions examined. Computer-assisted image analysis revealed that 3 h exposure to octreotide significantly (p < 0.01) augmented both the number and labeling density of sst2 mRNA-expressing cells in the arcuate nucleus, compared to those in saline-treated controls. By contrast, within the anterior pituitary gland, in vivo exposure to octreotide did not affect the expression of sst2 mRNA. No changes in sst1 mRNA-expressing cells were observed after octreotide treatment in any of the regions measured, indicating that the observed effects were homologous, i.e. specific of the receptor subtype stimulated. Octreotide pretreatment was also without effect on the density of (125)I-[DTrp(8)]-SRIH binding in either the arcuate nucleus or pituitary. These results demonstrate, for the first time, that SRIH preexposure in vivo upregulates the expression of a subtype of its own receptors, sst2, within the central nervous system. They further suggest that pretreatment with SRIH in vivo does not cause sst2 receptor desensitization in arcuate nucleus and pituitary. Such homologous regulatory mechanisms may play an important role in the neuroendocrine control

  12. Single-prolonged stress induces apoptosis in dorsal raphe nucleus in the rat model of posttraumatic stress disorder

    PubMed Central

    2012-01-01

    Introduction Post-traumatic stress disorder (PTSD) is an anxiety disorder that develops after exposure to a life-threatening traumatic experience. Meta-analyses of the brainstem showed that midsagittal area of the pons was significantly reduced in patients with PTSD, suggesting a potential apoptosis in dorsal raphe nucleus after single-prolonged stress (SPS). The aim of this study is to investigate whether SPS induces apoptosis in dorsal raphe nucleus in PTSD rats, which may be a possible mechanism of reduced volume of pons and density of gray matter. Methods In this study, rats were randomly divided into 1d, 7d and 14d groups after SPS along with the control group. The apoptosis rate was determined using annexin V-FITC/PI double-labeled flow cytometry (FCM). Levels of Cytochrome c (Cyt-C) was examined by Western blotting. Expression of Cyt-C on mitochondria in the dorsal raphe nucleus neuron was determined by enzymohistochemistry under transmission electron microscopy (TEM). The change of thiamine monophosphatase (TMP) levels was assessed by enzymohistochemistry under light microscope and TEM. Morphological changes of the ultrastructure of the dorsal raphe nucleus neuron were determined by TEM. Results Apoptotic morphological alterations were observed in dorsal raphe nucleus neuron for all SPS-stimulate groups of rats. The apoptosis rates were significantly increased in dorsal raphe nucleus neuron of SPS rats, along with increased release of cytochrome c from the mitochondria into the cytoplasm, increased expression of Cyt-C and TMP levels in the cytoplasm, which reached to the peak of increase 7 days of SPS. Conclusions The results indicate that SPS induced Cyt-C released from mitochondria into cytosol and apoptosis in dorsal raphe nucleus neuron of rats. Increased TMP in cytoplasm facilitated the clearance of apoptotic cells. We propose that this presents one of the mechanisms that lead to reduced volume of pons and gray matter associated with PTSD. PMID

  13. Dendritic morphology of neurons in medial prefrontal cortex, hippocampus, and nucleus accumbens in adult SH rats.

    PubMed

    Sánchez, Fremioth; Gómez-Villalobos, María de Jesús; Juarez, Ismael; Quevedo, Lucía; Flores, Gonzalo

    2011-03-01

    We have studied, in spontaneously hypertensive (SH) rats at different ages (2, 4, and 8 months old), the dendritic morphological changes of the pyramidal neurons of the medial prefrontal cortex (mPFC) and hippocampus and medium spiny neurons of the nucleus accumbens (NAcc) induced by the chronic effect of high-blood pressure. As control animals, we used Wistar-Kioto (WK) rats. Blood pressure was measured every 2 months to confirm the increase in arterial blood pressure. Spontaneous locomotor activity was assessed, and then brains were removed to study the dendritic morphology by the Golgi-Cox stain method followed by Sholl analysis. SH animals at 4 and 8 months of age showed decreased spine density in pyramidal neurons from the mPFC and in medium spiny cells from the NAcc. At 8 months of age as well the pyramidal neurons from the hippocampus exhibited a reduction in the number of dendritic spines. An increase in locomotion in a novel environment at all ages in the SH rats was observed. Our results indicate that high-blood pressure alters the neuronal dendrite morphology of the mPFC, hippocampus, and NAcc. The increased locomotion behavior supports the idea that dopaminergic transmission is altered in the SH rats. This could enhance our understanding of the consequences of chronic high-blood pressure on brain structure, which may implicate cognitive impairment in hypertensive patients. PMID:20665725

  14. Memory disturbances following ibotenic acid injections in the nucleus basalis magnocellularis of the rat.

    PubMed

    Mayo, W; Kharouby, M; Le Moal, M; Simon, H

    1988-07-12

    The behavioral effects of lesions of the nucleus basalis magnocellularis (NBM) on two spatial discrimination tasks (place navigation and cross maze) were examined in the rat. These tasks were designed to test reference memory. Lesions by bilateral injection of ibotenic acid into the NBM led to a severe and permanent impairment in the learning of the cross maze task. In the learning of the place navigation task, the rats with lesions showed only a transient deficit. Immediately after the removal of the platform, the rats with lesions explored the quadrant (NE) previously containing the platform as long as controls and above chance levels. The rats with lesions did not extinguish exploration like the controls, seen as a reduction both in time spent in the NE quadrant and in swimming activity. Taken together, the results showed that (1) NBM lesions impair reference memory, but (2) spare other aspects of memory. On the basis of the results in the place navigation task, procedural memory was assumed to remain intact after lesion of the NBM. Biochemical assays of choline acetyltransferase (ChAT) in various brain regions in the lesioned animals demonstrated a reduced ChAT activity in the neocortical projections of the NBM but not in the hippocampus. However, it cannot be decided from this work whether behavioral deficits result from the lesion of cholinergic or of non-cholinergic cells in the NBM. PMID:3401780

  15. Neural correlates for angular head velocity in the rat dorsal tegmental nucleus

    NASA Technical Reports Server (NTRS)

    Bassett, J. P.; Taube, J. S.; Oman, C. M. (Principal Investigator)

    2001-01-01

    Many neurons in the rat lateral mammillary nuclei (LMN) fire selectively in relation to the animal's head direction (HD) in the horizontal plane independent of the rat's location or behavior. One hypothesis of how this representation is generated and updated is via subcortical projections from the dorsal tegmental nucleus (DTN). Here we report the type of activity in DTN neurons. The majority of cells (75%) fired as a function of the rat's angular head velocity (AHV). Cells exhibited one of two types of firing patterns: (1) symmetric, in which the firing rate was positively correlated with AHV during head turns in both directions, and (2) asymmetric, in which the firing rate was positively correlated with head turns in one direction and correlated either negatively or not at all in the opposite direction. In addition to modulation by AHV, some of the AHV cells (40.1%) were weakly modulated by the rat's linear velocity, and a smaller number were modulated by HD (11%) or head pitch (15.9%). Autocorrelation analyses indicated that with the head stationary, AHV cells displayed irregular discharge patterns. Because afferents from the DTN are the major source of information projecting to the LMN, these results suggest that AHV information from the DTN plays a significant role in generating the HD signal in LMN. A model is proposed showing how DTN AHV cells can generate and update the LMN HD cell signal.

  16. Lesions of the entopeduncular nucleus in rats prevent apomorphine-induced deficient sensorimotor gating.

    PubMed

    Lütjens, Götz; Krauss, Joachim K; Schwabe, Kerstin

    2011-07-01

    Dopamine-induced hyperactivity and deficient sensorimotor gating, measured as prepulse inhibition (PPI) of the acoustic startle response (ASR), are used as animal models for neuropsychiatric disorders such as schizophrenia and Tourette's syndrome. We here investigated whether excitotoxic lesions of the rat entopeduncular nucleus (EPN), the equivalent to the human globus pallidus internus (GPi), would improve apomorphine-induced PPI-deficits and hyperactivity. Additionally, we investigated the effect of EPN lesions on cognition, motivation and motor skills. In male Sprague Dawley rats bilateral EPN lesions were induced by stereotactic injection of ibotenate (4 μg in 0.4 μl phosphate buffered saline, PBS) or sham-lesions by injection of vehicle PBS. After one week, rats were tested for learning and memory (continuous and delayed alternation, T-maze), for motivation (progressive ratio test with breakpoint of 3 min inactivity, Skinner box), and for motor skills (rotating rod). Thereafter, rats were tested for PPI of ASR (startle response system) after subcutaneous injection of apomorphine (1.0mg/kg and vehicle) and for locomotor activity (0.5mg/kg and vehicle). Ibotenate-induced EPN lesions did not affect learning and memory, motivation or motor skills. Basal locomotor activity and PPI was also not affected, but EPN lesions ameliorated apomorphine-induced hyperlocomotion and deficient PPI. This work indicates an important role of the EPN for the modulation of dopamine agonist-induced deficient sensorimotor gating and hyperlocomotion, without affecting normal behavioral function. PMID:21315767

  17. Neural correlates for angular head velocity in the rat dorsal tegmental nucleus.

    PubMed

    Bassett, J P; Taube, J S

    2001-08-01

    Many neurons in the rat lateral mammillary nuclei (LMN) fire selectively in relation to the animal's head direction (HD) in the horizontal plane independent of the rat's location or behavior. One hypothesis of how this representation is generated and updated is via subcortical projections from the dorsal tegmental nucleus (DTN). Here we report the type of activity in DTN neurons. The majority of cells (75%) fired as a function of the rat's angular head velocity (AHV). Cells exhibited one of two types of firing patterns: (1) symmetric, in which the firing rate was positively correlated with AHV during head turns in both directions, and (2) asymmetric, in which the firing rate was positively correlated with head turns in one direction and correlated either negatively or not at all in the opposite direction. In addition to modulation by AHV, some of the AHV cells (40.1%) were weakly modulated by the rat's linear velocity, and a smaller number were modulated by HD (11%) or head pitch (15.9%). Autocorrelation analyses indicated that with the head stationary, AHV cells displayed irregular discharge patterns. Because afferents from the DTN are the major source of information projecting to the LMN, these results suggest that AHV information from the DTN plays a significant role in generating the HD signal in LMN. A model is proposed showing how DTN AHV cells can generate and update the LMN HD cell signal. PMID:11466446

  18. Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2-sensitive neurons in rats

    PubMed Central

    Takakura, Ana Carolina Thomaz; Moreira, Thiago Santos; Colombari, Eduardo; West, Gavin H; Stornetta, Ruth L; Guyenet, Patrice G

    2006-01-01

    The rat retrotrapezoid nucleus (RTN) contains pH-sensitive neurons that are putative central chemoreceptors. Here, we examined whether these neurons respond to peripheral chemoreceptor stimulation and whether the input is direct from the solitary tract nucleus (NTS) or indirect via the respiratory network. A dense neuronal projection from commissural NTS (commNTS) to RTN was revealed using the anterograde tracer biotinylated dextran amine (BDA). Within RTN, 51% of BDA-labelled axonal varicosities contained detectable levels of vesicular glutamate transporter-2 (VGLUT2) but only 5% contained glutamic acid decarboxylase-67 (GAD67). Awake rats were exposed to hypoxia (n = 6) or normoxia (n = 5) 1 week after injection of the retrograde tracer cholera toxin B (CTB) into RTN. Hypoxia-activated neurons were identified by the presence of Fos-immunoreactive nuclei. CommNTS neurons immunoreactive for both Fos and CTB were found only in hypoxia-treated rats. VGLUT2 mRNA was detected in 92 ± 13% of these neurons whereas only 12 ± 9% contained GAD67 mRNA. In urethane–chloralose-anaesthetized rats, bilateral inhibition of the RTN with muscimol eliminated the phrenic nerve discharge (PND) at rest, during hyperoxic hypercapnia (10% CO2), and during peripheral chemoreceptor stimulation (hypoxia and/or i.v. sodium cyanide, NaCN). RTN CO2-activated neurons were recorded extracellularly in anaesthetized intact or vagotomized rats. These neurons were strongly activated by hypoxia (10–15% O2; 30 s) or by NaCN. Hypoxia and NaCN were ineffective in rats with carotid chemoreceptor denervation. Bilateral injection of muscimol into the ventral respiratory column 1.5 mm caudal to RTN eliminated PND and the respiratory modulation of RTN neurons. Muscimol did not change the threshold and sensitivity of RTN neurons to hyperoxic hypercapnia nor their activation by peripheral chemoreceptor stimulation. In conclusion, RTN neurons respond to brain PCO2 presumably via their intrinsic

  19. Modulation of persistent nociceptive inputs in the anterior pretectal nucleus of the rat.

    PubMed

    Villarreal, Cristiane Flora; Prado, Wiliam Alves

    2007-11-01

    The anterior pretectal nucleus (APtN) participates in nociceptive and antinociceptive mechanisms. Drugs were injected into the ventral APtN to evaluate how intrinsic mechanisms interact in the nucleus during persistent allodynia produced by a surgical incision in a rat hind paw. Naloxone (1 and 10 ng/0.08 microl), methysergide (0.037 and 3.7 ng/0.08 microl) or atropine (0.1 and 10 ng/0.08 microl) increased the allodynia. The effect of methysergide was intensified by naloxone or atropine, the effect of atropine was intensified by naloxone or methysergide, but the effect of naloxone was not changed by methysergide or atropine. DAMGO (1.5 microg/0.08 microl), oxotremorine (5 microg/0.08 microl) or serotonin (5 microg/0.08 microl) reduced the allodynia. The effect of DAMGO was less intense in methysergide-treated rats but was not changed in atropine-treated rats, the effect of serotonin was not changed by naloxone or atropine, and the effect of oxotremorine was not changed by naloxone or methysergide. Baclofen (150 ng/0.08 microl) increased, whereas phaclofen (300 ng/0.1 microl) reduced the allodynia. Bicuculline (50 ng/0.08 microl) increased the incision pain, while muscimol (50 ng/0.08 microl) did not change it. Phaclofen was inhibited by methysergide but was unchanged by atropine. The effect of DAMGO was reduced by phaclofen (100 ng/0.1 microl). We interpret these results as indicative that noxious inputs utilize cholinergic and serotonergic pathways in the vAPtN for the activation of descending pain control mechanisms, the serotonergic pathway being under the control of GABAergic neurons which, in turn, are modulated negatively by opioid nerve terminals. PMID:17350762

  20. Anatomical and functional connections between the locus coeruleus and the nucleus tractus solitarius in neonatal rats.

    PubMed

    Lopes, L T; Patrone, L G A; Li, K-Y; Imber, A N; Graham, C D; Gargaglioni, L H; Putnam, R W

    2016-06-01

    This study was designed to investigate brain connections among chemosensitive areas in newborn rats. Rhodamine beads were injected unilaterally into the locus coeruleus (LC) or into the caudal part of the nucleus tractus solitarius (cNTS) in Sprague-Dawley rat pups (P7-P10). Rhodamine-labeled neurons were patched in brainstem slices to study their electrophysiological responses to hypercapnia and to determine if chemosensitive neurons are communicating between LC and cNTS regions. After 7-10 days, retrograde labeling was observed in numerous areas of the brainstem, including many chemosensitive regions, such as the contralateral LC, cNTS and medullary raphe. Whole-cell patch clamp was done in cNTS. In 4 of 5 retrogradely labeled cNTS neurons that projected to the LC, firing rate increased in response to hypercapnic acidosis (15% CO2), even in synaptic blockade medium (SNB) (high Mg(2+)/low Ca(2+)). In contrast, 2 of 3 retrogradely labeled LC neurons that projected to cNTS had reduced firing rate in response to hypercapnic acidosis, both in the presence and absence of SNB. Extensive anatomical connections among chemosensitive brainstem regions in newborn rats were found and at least for the LC and cNTS, the connections involve some CO2-sensitive neurons. Such anatomical and functional coupling suggests a complex central respiratory control network, such as seen in adult rats, is already largely present in neonatal rats by at least day P7-P10. Since the NTS and the LC play a major role in memory consolidation, our results may also contribute to the understanding of the development of memory consolidation. PMID:27001176

  1. Ultrastructural changes in the hypothalamic supraoptic nucleus of the streptozotocin-induced diabetic rat.

    PubMed Central

    Dheen, S T; Tay, S S; Wong, W C

    1994-01-01

    Ultrastructural and morphometric studies were undertaken on the hypothalamic supraoptic nucleus of streptozotocin-induced diabetic rats over a period of 1 y. At 3 d, a few dendrites showing electron-dense cytoplasm and dilated rER were dispersed in the neuropil among seemingly normal neuronal somata. At 1-6 months, the somata contained numerous vacuoles of various sizes which probably originated from fragmented and dilated rER. Numerous unidentifiable vacuolated and electron-dense neuronal profiles were also seen in the neuropil. At 9-12 months, the number of degenerating electron-dense axon terminals and dendrites was markedly increased in diabetic rats. Glial cells containing electron-dense debris in their cytoplasm were involved in phagocytosis. At all time intervals studied, the mean cross-sectional cell area and mean cross-sectional nuclear area of supraoptic nuclei neurons of diabetic rats were significantly increased in comparison with age-matched controls injected with normal saline. The causative factors for these changes are not clear. However, it is suggested that the osmotic stress caused by chronic dehydration in the diabetic animals may be partly or wholly responsible for these ultrastructural changes. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 PMID:7928649

  2. Resveratrol attenuates inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis neurons associated with hyperalgesia in rats

    PubMed Central

    Sekiguchi, Kenta; Takehana, Shiori; Shibuya, Eri; Matsuzawa, Nichiwa; Hidaka, Shiori; Kanai, Yurie; Inoue, Maki; Kubota, Yoshiko; Shimazu, Yoshihito

    2016-01-01

    Background Resveratrol, a component of red wine, has been reported to decrease prostaglandin E2 production by inhibiting the cyclooxygenase-2 cascade and to modulate various voltage-dependent ion channels, suggesting that resveratrol could attenuate inflammatory hyperalgesia. However, the effects of resveratrol on inflammation-induced hyperexcitability of nociceptive neurons in vivo remain to be determined. Thus, the aim of the present study was to determine whether daily systemic administration of resveratrol to rats attenuates the inflammation-induced hyperexcitability of spinal trigeminal nucleus caudalis wide-dynamic range neurons associated with hyperalgesia. Results Inflammation was induced by injection of complete Freund’s adjuvant into the whisker pad. The threshold of escape from mechanical stimulation applied to whisker pad in inflamed rats was significantly lower than in control rats. The decreased mechanical threshold in inflamed rats was restored to control levels by daily systemic administration of resveratrol (2 mg/kg, i.p.). The mean discharge frequency of spinal trigeminal nucleus caudalis wide-dynamic range neurons to both nonnoxious and noxious mechanical stimuli in inflamed rats was significantly decreased after resveratrol administration. In addition, the increased mean spontaneous discharge of spinal trigeminal nucleus caudalis wide-dynamic range neurons in inflamed rats was significantly decreased after resveratrol administration. Similarly, resveratrol significantly diminished noxious pinch-evoked mean after discharge frequency and occurrence in inflamed rats. Finally, resveratrol restored the expanded mean size of the receptive field in inflamed rats to control levels. Conclusion These results suggest that chronic administration of resveratrol attenuates inflammation-induced mechanical inflammatory hyperalgesia and that this effect is due primarily to the suppression of spinal trigeminal nucleus caudalis wide dynamic range neuron

  3. Vasopressin cells in the bed nucleus of the stria terminalis of the rat: sex differences and the influence of androgens.

    PubMed

    van Leeuwen, F W; Caffe, A R; De Vries, G J

    1985-01-28

    A sex difference in the number of vasopressin-immunoreactive cells was found in the bed nucleus of the stria terminalis of the rat. The number of cells found in males exceeded the female corresponding value. A sharp decrease in the number of vasopressin-immunoreactive cells was noted 21 weeks after the castration of adult male rats. This decline could be reversed completely by a 5-week testosterone substitution therapy. PMID:3978433

  4. Nucleus accumbens core lesions retard instrumental learning and performance with delayed reinforcement in the rat

    PubMed Central

    Cardinal, Rudolf N; Cheung, Timothy HC

    2005-01-01

    Background Delays between actions and their outcomes severely hinder reinforcement learning systems, but little is known of the neural mechanism by which animals overcome this problem and bridge such delays. The nucleus accumbens core (AcbC), part of the ventral striatum, is required for normal preference for a large, delayed reward over a small, immediate reward (self-controlled choice) in rats, but the reason for this is unclear. We investigated the role of the AcbC in learning a free-operant instrumental response using delayed reinforcement, performance of a previously-learned response for delayed reinforcement, and assessment of the relative magnitudes of two different rewards. Results Groups of rats with excitotoxic or sham lesions of the AcbC acquired an instrumental response with different delays (0, 10, or 20 s) between the lever-press response and reinforcer delivery. A second (inactive) lever was also present, but responding on it was never reinforced. As expected, the delays retarded learning in normal rats. AcbC lesions did not hinder learning in the absence of delays, but AcbC-lesioned rats were impaired in learning when there was a delay, relative to sham-operated controls. All groups eventually acquired the response and discriminated the active lever from the inactive lever to some degree. Rats were subsequently trained to discriminate reinforcers of different magnitudes. AcbC-lesioned rats were more sensitive to differences in reinforcer magnitude than sham-operated controls, suggesting that the deficit in self-controlled choice previously observed in such rats was a consequence of reduced preference for delayed rewards relative to immediate rewards, not of reduced preference for large rewards relative to small rewards. AcbC lesions also impaired the performance of a previously-learned instrumental response in a delay-dependent fashion. Conclusions These results demonstrate that the AcbC contributes to instrumental learning and performance by

  5. Stimulation of the subthalamic nucleus engages the cerebellum for motor function in parkinsonian rats.

    PubMed

    Sutton, Alexander C; O'Connor, Katherine A; Pilitsis, Julie G; Shin, Damian S

    2015-11-01

    Deep brain stimulation (DBS) is effective in managing motor symptoms of Parkinson's disease in well-selected individuals. Recently, research has shown that DBS in the basal ganglia (BG) can alter neural circuits beyond the traditional basal ganglia-thalamus-cortical (BG-TH-CX) loop. For instance, functional imaging showed alterations in cerebellar activity with DBS in the subthalamic nucleus (STN). However, these imaging studies revealed very little about how cell-specific cerebellar activity responds to STN stimulation or if these changes contribute to its efficacy. In this study, we assess whether STN-DBS provides efficacy in managing motor symptoms in Parkinson's disease by recruiting cerebellar activity. We do this by applying STN-DBS in hemiparkinsonian rats and simultaneously recording neuronal activity from the STN, brainstem and cerebellum. We found that STN neurons decreased spiking activity by 55% during DBS (P = 0.038), which coincided with a decrease in most pedunculopontine tegmental nucleus and Purkinje neurons by 29% (P < 0.001) and 28% (P = 0.003), respectively. In contrast, spike activity in the deep cerebellar nuclei increased 45% during DBS (P < 0.001), which was likely from reduced afferent activity of Purkinje cells. Then, we applied STN-DBS at sub-therapeutic current along with stimulation of the deep cerebellar nuclei and found similar improvement in forelimb akinesia as with therapeutic STN-DBS alone. This suggests that STN-DBS can engage cerebellar activity to improve parkinsonian motor symptoms. Our study is the first to describe how STN-DBS in Parkinson's disease alters cerebellar activity using electrophysiology in vivo and reveal a potential for stimulating the cerebellum to potentiate deep brain stimulation of the subthalamic nucleus. PMID:25124274

  6. Food entrains clock genes but not metabolic genes in the liver of suprachiasmatic nucleus lesioned rats.

    PubMed

    Sabath, Elizabeth; Salgado-Delgado, Roberto; Guerrero-Vargas, Natali N; Guzman-Ruiz, Mara A; del Carmen Basualdo, Maria; Escobar, Carolina; Buijs, Ruud M

    2014-08-25

    Hepatic circadian transcription, considered to be driven by the liver clock, is largely influenced by food even uncoupling it from the suprachiasmatic nucleus (SCN). In SCN lesioned rats (SCNx) we determined the influence of a physiological feeding schedule on the entrainment of clock and clock-controlled (CCG) genes in the liver. We show that clock genes and the CCG Rev-erbα and peroxisome proliferator-activated receptor alpha (PPARα) in food-scheduled intact and SCNx have a robust diurnal differential expression persisting after a 24h fast. However, hepatic nicotinamide phosphoribosyl transferase (Nampt) shows time dependent changes that are lost in intact animals under fasting; moreover, it is unresponsive to the nutrient status in SCNx, indicating a poor reliance on liver clock genes and highlighting the relevance of SCN-derived signals for its metabolic status-related expression. PMID:24983496

  7. Nitric oxide in the nucleus raphe magnus modulates cutaneous blood flow in rats during hypothermia

    PubMed Central

    Arami, Masoumeh Kourosh; zade, Javad Mirnajafi; Komaki, Alireza; Amiri, Mahmood; Mehrpooya, Sara; Jahanshahi, Ali; Jamei, Behnam

    2015-01-01

    Objective(s): Nucleus Raphe Magnus (NRM) that is involved in the regulation of body temperature contains nitric oxide (NO) synthase. Considering the effect of NO on skin blood flow control, in this study, we assessed its thermoregulatory role within the raphe magnus. Materials and Methods: To this end, tail blood flow of male Wistar rats was measured by laser doppler following the induction of hypothermia. Results: Intra-NRM injection of SNP (exogenous NO donor, 0.1- 0.2 μl, 0.2 nM) increased the blood flow. Similarly, unilateral microinjection of glutamate (0.1- 0.2 μl, 2.3 nM) into the nucleus increased the blood flow. This effect of L-glutamate was reduced by prior intra NRM administration of NO synthase inhibitor NG-methyl-L-arginine or NG-nitro-L-arginine methyl ester (L-NAME, 0.1 µl, 100 nM). Conclusion: It is concluded that NO modulates the thermoregulatory response of NRM to hypothermia and may interact with excitatory amino acids in central skin blood flow regulation. PMID:26730333

  8. Elucidation of the anatomy of a satiety network: Focus on connectivity of the parabrachial nucleus in the adult rat.

    PubMed

    Zséli, Györgyi; Vida, Barbara; Martinez, Anais; Lechan, Ronald M; Khan, Arshad M; Fekete, Csaba

    2016-10-01

    We hypothesized that brain regions showing neuronal activation after refeeding comprise major nodes in a satiety network, and tested this hypothesis with two sets of experiments. Detailed c-Fos mapping comparing fasted and refed rats was performed to identify candidate nodes of the satiety network. In addition to well-known feeding-related brain regions such as the arcuate, dorsomedial, and paraventricular hypothalamic nuclei, lateral hypothalamic area, parabrachial nucleus (PB), nucleus of the solitary tract and central amygdalar nucleus, other refeeding activated regions were also identified, such as the parastrial and parasubthalamic nuclei. To begin to understand the connectivity of the satiety network, the interconnectivity of PB with other refeeding-activated neuronal groups was studied following administration of anterograde or retrograde tracers into the PB. After allowing for tracer transport time, the animals were fasted and then refed before sacrifice. Refeeding-activated neurons that project to the PB were found in the agranular insular area; bed nuclei of terminal stria; anterior hypothalamic area; arcuate, paraventricular, and dorsomedial hypothalamic nuclei; lateral hypothalamic area; parasubthalamic nucleus; central amygdalar nucleus; area postrema; and nucleus of the solitary tract. Axons originating from the PB were observed to closely associate with refeeding-activated neurons in the agranular insular area; bed nuclei of terminal stria; anterior hypothalamus; paraventricular, arcuate, and dorsomedial hypothalamic nuclei; lateral hypothalamic area; central amygdalar nucleus; parasubthalamic nucleus; ventral posterior thalamic nucleus; area postrema; and nucleus of the solitary tract. These data indicate that the PB has bidirectional connections with most refeeding-activated neuronal groups, suggesting that short-loop feedback circuits exist in this satiety network. J. Comp. Neurol. 524:2803-2827, 2016. © 2016 Wiley Periodicals, Inc. PMID:26918800

  9. Upregulation of orexin receptor in paraventricular nucleus promotes sympathetic outflow in obese Zucker rats

    PubMed Central

    Zhou, Jing-Jing; Yuan, Fang; Zhang, Yi; Li, De-Pei

    2015-01-01

    Sympathetic vasomotor tone is elevated in obesity-related hypertension. Orexin importantly regulates energy metabolism and autonomic function. We hypothesized that alteration of orexin receptor in the paraventricular nucleus (PVN) of the hypothalamus leads to elevated sympathetic vasomotor tone in obesity. We used in vivo measurement of sympathetic vasomotor tone and microinjection into brain nucleus, whole-cell patch clamp recording in brain slices, and immunocytochemical staining in obese Zucker rats (OZRs) and lean Zucker rats (LZRs). Microinjection of orexin 1 receptor (OX1R) antagonist SB334867 into the PVN reduced basal arterial blood pressure (ABP) and renal sympathetic nerve activity (RSNA) in anesthetized OZRs but not in LZRs. Microinjection of orexin A into the PVN produced greater increases in ABP and RSNA in OZRs than in LZRs. Western blot analysis revealed that OX1R expression levels in the PVN were significantly increased in OZRs compared with LZRs. OX1R immunoreactivity was positive in retrogradely labeled PVN-spinal neurons. The basal firing rate of labeled PVN-spinal neurons was higher in OZRs than in LZRs. SB334867 decreased the basal firing activity of PVN-spinal neurons in OZRs but had no effect in LZRs. Orexin A induced a greater increase in the firing rate of PVN-spinal neurons in OZRs than in LZRs. In addition, orexin A induced larger currents in PVN-spinal neurons in OZRs than in LZRs. These data suggest that upregulation of OX1R in the PVN promotes hyperactivity of PVN presympathetic neurons and elevated sympathetic outflow in obesity. PMID:26277341

  10. Dorsal Cochlear Nucleus of the Rat: Representation of Complex Sounds in Ears Damaged by Acoustic Trauma.

    PubMed

    Li, Yang; Ropp, Tessa-Jonne F; May, Bradford J; Young, Eric D

    2015-08-01

    Acoustic trauma damages the cochlea but secondarily modifies circuits of the central auditory system. Changes include decreases in inhibitory neurotransmitter systems, degeneration and rewiring of synaptic circuits, and changes in neural activity. Little is known about the consequences of these changes for the representation of complex sounds. Here, we show data from the dorsal cochlear nucleus (DCN) of rats with a moderate high-frequency hearing loss following acoustic trauma. Single-neuron recording was used to estimate the organization of neurons' receptive fields, the balance of inhibition and excitation, and the representation of the spectra of complex broadband stimuli. The complex stimuli had random spectral shapes (RSSs), and the responses were fit with a model that allows the quality of the representation and its degree of linearity to be estimated. Tone response maps of DCN neurons in rat are like those in other species investigated previously, suggesting the same general organization of this nucleus. Following acoustic trauma, abnormal response types appeared. These can be interpreted as reflecting degraded tuning in auditory nerve fibers plus loss of inhibitory inputs in DCN. Abnormal types are somewhat more prevalent at later times (103-376 days) following the exposure, but not significantly so. Inhibition became weaker in post-trauma neurons that retained inhibitory responses but also disappeared in many neurons. The quality of the representation of spectral shape, measured by sensitivity to the spectral shapes of RSS stimuli, was decreased following trauma; in fact, neurons with abnormal response types responded mainly to overall stimulus level, and not spectral shape. PMID:25967754

  11. Chronotropic and dromotropic responses to localized glutamate microinjections in the rat nucleus ambiguus☆

    PubMed Central

    Sampaio, Karla N.; Mauad, Hélder; Michael Spyer, K.; Ford, Timothy W.

    2014-01-01

    The cardioinhibitory effects of cardiac vagal motoneurons (CVMs) are mediated by activation of postganglionic neurons in the epicardial ganglia which have been shown to exert functionally selective effects on heart rate and atrioventricular conduction in the rat. Here we investigate whether CVMs producing these responses may occupy different rostrocaudal positions within the nucleus ambiguus. Excitation of CVMs was attempted by microinjections of glutamate into the nucleus ambiguus of an arterially perfused preparation in a grid extending over 2 mm in the rostrocaudal plane using the obex as a reference point. Microinjections were paired, one made during pacing to measure changes in atrioventricular conduction (P-R interval) independent of changes in heart rate and the other looking for changes in heart period (P-P interval) un-paced. Although evidence of a differential distribution was found in 7 cases, in the majority (13/20), sites producing maximal effects on both variables coincided. Maximal changes in atrioventricular conduction resulted from more rostral sites in 6 cases and from a more caudal site in only one. Overall, the ratio of the change in atrioventricular conduction to the change in heart rate for a given site was significantly greater 1 mm rostral to the obex than at either end of the test grid. We conclude that while CVMs controlling atrioventricular conduction are distributed with a peak somewhat rostral to those controlling heart rate in a number of animals, there is a significant overlap and much greater variability in this distribution in the rat than in cats and dogs. PMID:24177045

  12. Effects of electrical stimulation of the dorsal raphe nucleus on local cerebral blood flow in the rat

    SciTech Connect

    Bonvento, G.; Lacombe, P.; Seylaz, J. )

    1989-06-01

    We have studied the effects of electrical stimulation of the dorsal raphe nucleus on local cerebral blood flow (LCBF), as assessed by the quantitative ({sup 14}C)-iodoantipyrine autoradiographic technique. Stimulation of the dorsal raphe nucleus in the alpha-chloralose anesthetized rat caused a significant decrease in LCBF, ranging from -13 to -26% in 24 brain structures out of 33 investigated. The most pronounced decreases (-23 to -26%) were observed in the accumbens, amygdaloid, interpeduncular nuclei and in the median raphe nucleus, limbic system relays. The decreases also concerned cortical regions and the extrapyramidal system. These results indicate that activation of ascending serotonergic system produces a vasoconstriction and that the dorsal raphe nucleus has a widespread modulatory influence on the cerebral circulation.

  13. Gene expression changes in the nucleus accumbens of alcohol-preferring rats following chronic ethanol consumption

    PubMed Central

    Bell, Richard L.; Kimpel, Mark W.; McClintick, Jeanette N.; Strother, Wendy N.; Carr, Lucinda G.; Liang, Tiebing; Rodd, Zachary A.; Mayfield, R. Dayne; Edenberg, Howard J.; McBride, William J.

    2009-01-01

    The objective of this study was to determine the effects of binge-like alcohol drinking on gene expression changes in the nucleus accumbens (ACB) of alcohol-preferring (P) rats. Adult male P rats were given ethanol under multiple scheduled access (MSA; three 1-hr dark-cycle sessions/day) conditions for 8 weeks. For comparison purposes, a second ethanol drinking group was given continuous/daily alcohol access (CA; 24 hr/day). A third group was ethanol-naïve (W group). Average ethanol intakes for the CA and MSA groups were approximately 9.5 and 6.5 g/kg/day, respectively. Fifteen hr after the last drinking episode, rats were euthanized, the brains extracted, and the ACB dissected. RNA was extracted and purified for microarray analysis. The only significant differences were between the CA and W groups (p < 0.01; Storey false discovery rate = 0.15); there were 374 differences in named genes between these 2 groups. There were 20 significant Gene Ontology (GO) categories, which included negative regulation of protein kinase activity, anti-apoptosis, and regulation of G-protein-coupled receptor signaling. Ingenuity® analysis indicated a network of transcription factors, involving oncogenes (Fos, Jun, Junb had higher expression in the ACB of the CA group), suggesting increased neuronal activity. There were 43 genes located within rat QTLs for alcohol consumption and preference; 4 of these genes (Tgfa, Hspa5, Mtus1 and Creb3l2) are involved in anti-apoptosis and increased transcription, suggesting that they may be contributing to cellular protection and maintaining high alcohol intakes. Overall, these findings suggest that chronic CA drinking results in genomic changes that can be observed during the early acute phase of ethanol withdrawal. Conversely, chronic MSA drinking, with its associated protracted withdrawal periods, results in genomic changes that may be masked by tight regulation of these genes following repeated experiences of ethanol withdrawal. PMID:19666046

  14. In vivo release of glutamate in nucleus tractus solitarii of the rat during hypoxia.

    PubMed Central

    Mizusawa, A; Ogawa, H; Kikuchi, Y; Hida, W; Kurosawa, H; Okabe, S; Takishima, T; Shirato, K

    1994-01-01

    1. An attempt has been made to test the hypothesis that, in the caudal part of nucleus tractus solitarii (NTS) where carotid sinus nerve (CSN) afferents project, L-glutamate (Glut) modulates the hypoxic ventilatory response. 2. Unanaesthetized, peripherally chemodenervated (carotid body denervated; CBD) and sham-operated, freely moving rats were used. During peripheral chemoreceptor stimulation by hypoxia (10% O2 for 30 min) or doxapram (Dox) infusion (2 mg kg-1 (30 min)-1), ventilation was recorded and successively, under the same conditions, the extracellular Glut concentration ([Glut]o) in the caudal NTS was measured by in vivo microdialysis. [Glut]o was also measured during hyperoxic hypercapnia (10% CO2-30% O2 for 30 min). 3. Furthermore, the effects on ventilation of exogenous Glut, the NMDA (N-methyl-D-aspartate) receptor antagonist MK-801 or the ionotropic receptor antagonist kynurenate microinjected into the caudal NTS were investigated in sham-operated rats. 4. In sham-operated rats, both ventilation and [Glut]o in NTS were increased during peripheral chemoreceptor stimulation. On the other hand, no increases in either ventilation or Glut release were observed in CBD rats. In spite of ventilatory augmentation during hypercapnia, no response of [Glut]o to hypercapnia was observed in either group. 5. Local Glut application into NTS increased ventilation. Pretreatment with MK-801 or kynurenate reduced the hypoxic ventilatory response. This reduction in ventilation was mainly due to the decrease in tidal volume. 6. These results suggest that hypoxia induced the release of Glut in NTS and that this effect was mediated by arterial chemosensory input. Images Figure 2 PMID:7965835

  15. GALANIN IS A SELECTIVE MARKER OF THE RETROTRAPEZOID NUCLEUS IN RATS

    PubMed Central

    Stornetta, Ruth L.; Spirovski, Darko; Moreira, Thiago S.; Takakura, Ana C.; West, Gavin H.; Gwilt, Justin M.; Pilowsky, Paul M.; Guyenet, Patrice G.

    2008-01-01

    The rat retrotrapezoid nucleus (RTN) contains CO2-activated neurons that contribute to the central chemoreflex and to breathing automaticity. These neurons have two known markers, the transcription factor Phox2b and vesicular glutamate transporter 2 (VGLUT2). Non-catecholaminergic galanin-immunoreactive (ir) neurons within a region of the lower brainstem that seems identical to what is currently defined as the RTN have been previously described. Here we ask whether these galanin-expressing neurons are the same cells as the recently characterized CO2-sensitive neurons of the RTN. Using in situ hybridization, we found that pre-pro-galanin (PPGal) mRNA is expressed by an isolated cluster of neurons that is coextensive with the RTN as defined by a population of strongly Phox2b-ir neurons devoid of tyrosine-hydroxylase (Phox2b+TH− neurons). This bilateral structure contains about 1000 PPGal-mRNA positive neurons in the rat. The PPGal-mRNA positive neurons were Phox2b+TH− and as susceptible to destruction by the toxin [Sar9, Met (O2)11]-substance P as the rest of the RTN Phox2b+TH− cells of the RTN. CO2-activated neurons were recorded in the RTN of anesthetized rats and were labeled with biotinamide. Many of those cells (7/17, 41%, 5 rats) contained PPGal-mRNA. In conclusion, galanin mRNA is a very specific marker of the glutamatergic Phox2b+TH− neurons of the RTN but galanin mRNA identifies only half of these putative central respiratory chemoreceptors. PMID:19006184

  16. Effect of High Glucose on Stress-Induced Senescence of Nucleus Pulposus Cells of Adult Rats

    PubMed Central

    Kong, Jae-Gwan; Lee, Donghwan; Park, Eun-Young

    2015-01-01

    Study Design In vitro cell culture model. Purpose We investigated the effect of diabetes mellitus (DM) on senescence of adult nucleus pulposus (NP) cells. Overview of Literature DM is a major public health issue worldwide, especially adult-onset (type 2) DM. DM is also thought to be an important etiological factor in disc degeneration. Hyperglycemia is considered to be a major causative factor in the development of DM-associated diseases through senescence. However, little is known about the effects of DM on senescence in adult NP cells. Methods Adult NP cells were isolated from 24-week-old rats, cultured, and placed in either 10% fetal bovine serum (FBS, normal control) and 10% FBS plus two different high glucose concentrations (0.1 M or 0.2 M; experimental conditions) for 1 or 3 days. We identified and quantified the occurrence of senescence in adult rat NP cells using senescence-associated-beta-galactosidase (SA-β-Gal) staining. We also investigated the expression of proteins related to the replicative senescence (p53-p21-pRB) and stress-induced premature senescence (p16-pRB) pathways. Results The mean SA-β-Gal-positive percentage was increased in adult rat NP cells treated with high glucose in a dose- and time-dependent manner. Both high glucose levels increased the expression of p16 and pRB proteins in adult rat NP cells. However, the levels of p53 and p21 proteins were decreased in adult rat NP cells treated with both high glucose concentrations. Conclusions The current study demonstrated that high glucose accelerated stress-induced senescence in adult rat NP cells in a dose- and time-dependent manner. Accelerated stress-induced senescence in adult NP cells could be an emerging risk factor for intervertebral disc degeneration in older patients with DM. These results suggest that strict blood glucose control is important in prevent or delaying intervertebral disc degeneration in older patients with DM. PMID:25901224

  17. The supraoptic nucleus: a morphological and quantitative study in control and hypophysectomised rats.

    PubMed Central

    Crespo, D; Ramos, J; Gonzalez, C; Fernandez-Viadero, C

    1990-01-01

    Several quantitative and morphometric parameters were analysed in the pars principalis of the supraoptic nucleus (SON) of the hypothalamus in control and hypophysectomised rats at several postnatal ages. The cell number in the control group remained approximately constant from Day 1, when it was 5034 +/- 348 (mean +/- S.D.M.), until Day 90 when the number of cells was 5234 +/- 110. In the group that was hypophysectomised on Day 60, the number of neurons on Day 90 was 1366 +/- 131, which represents a loss of 74% of the neurons. Morphometric parameters on Day 90 indicated a significant difference in nuclear size, 52.1 +/- 6.7 microns 2 in controls and 57.3 +/- 6.8 microns 2 in the hypophysectomised group. Based on these results, it is concluded that there is no postnatal loss of neurons in the pars principalis of the SON in normal rats. As a consequence of the stress induced by hypophysectomy, the remaining cell population undergoes adaptive changes in the nuclear RNA synthesis machinery of neurohypophyseal hormone precursors in order to compensate for the reduction in the number of neurosecretory neurons. Images Fig. 1 Fig. 2 Fig. 3 PMID:2384330

  18. Anabolic-androgenic steroids decrease dendritic spine density in the nucleus accumbens of male rats.

    PubMed

    Wallin-Miller, Kathryn; Li, Grace; Kelishani, Diana; Wood, Ruth I

    2016-08-25

    Recent studies have demonstrated that anabolic-androgenic steroids (AAS) modify cognitive processes such as decision making and behavioral flexibility. However, the neural mechanisms underlying these AAS-induced cognitive changes remain poorly understood. The mesocorticolimbic dopamine (DA) system, particularly the nucleus accumbens (Acb), is important for reward, motivated behavior, and higher cognitive processes such as decision making. Therefore, AAS-induced plasticity in the DA system is a potential structural substrate for the observed cognitive alterations. High doses of testosterone (the most commonly-used AAS) increase dendritic spine density in limbic regions including the amygdala and hippocampus. However, effects on Acb are unknown. This was the focus of the present study. Adolescent male Long-Evans rats were treated chronically for 8weeks with high-dose testosterone (7.5mg/kg in water with 13% cyclodextrin) or vehicle sc. Brains were stained by Golgi-Cox to analyze neuronal morphology in medium spiny neurons of the shell region of Acb (AcbSh). Eightweeks of testosterone treatment significantly decreased spine density in AcbSh compared to brains of vehicle-treated rats (F1,14=5.455, p<0.05). Testosterone did not significantly affect total spine number, dendritic length, or arborization measured by Sholl analysis. These results show that AAS alter neuronal morphology in AcbSh by decreasing spine density throughout the dendritic tree, and provides a potential mechanism for AAS to modify cognition and decision-making behavior. PMID:27238893

  19. Bilateral transient changes in thalamic nucleus ventroposterior lateralis after thoracic hemisection in the rat

    PubMed Central

    Liang, Li

    2013-01-01

    We made simultaneous bilateral recordings of unit activity in the nucleus ventroposterior lateralis (VPL) in intact rats and after acute and chronic left thoracic hemisection. We observed an immediate bilateral decline in multireceptive units, reflecting a loss of nociceptive input on the lesion side and a loss of low-threshold inputs contralaterally. Unit properties were restored to normal by 6 wk. Mean spontaneous discharge frequency remained unchanged in left VPL at all intervals. Right VPL displayed a substantial increase in spontaneous discharge frequency at 2 and 4 wk, returning to normal by 6 wk. Activity in left VPL driven by Pinch or Brush of the right limb was unchanged except for an immediate decrease in the response to Pinch, which was reversed by 2 wk despite persistent left hemisection. In right VPL, the response to Pinch or Brush of the left hindlimb was enhanced at 2 and 4 wk but returned to normal by 6 wk. Behaviorally, the same rats displayed increased sensitivity to mechanical stimulation of the left hindlimb, but, unlike VPL activity, there was no significant behavioral recovery. Bursting cells were also observed bilaterally in VPL, but this did not match the restriction of scratches to the hindlimb contralateral to the hemisection considered to be evidence for neuropathic pain. The novel findings include recovery of responsiveness to Pinch on the side ipsilateral to the hemisection despite the lack of spinothalamic input as well as failure for the thalamus contralateral to hemisection to maintain its elevated responsiveness. PMID:23741041

  20. D2R DNA Transfer Into the Nucleus Accumbens Attenuates Cocaine Self-Administration in Rats

    PubMed Central

    THANOS, PANAYOTIS K.; MICHAELIDES, MICHAEL; UMEGAKI, HIROYUKI; VOLKOW, NORA D.

    2009-01-01

    Dopamine (DA) D2 receptor (D2R) agonists and antagonists can modulate self-administration behavior, conditioned place preference, and locomotor responses to cocaine. Low levels of D2R have also been observed in cocaine addicted subjects and in non human primates after chronic cocaine exposures. Prior studies had shown that D2R upregulation in the nucleus accumbens (NAc) in rodents trained to self-administer alcohol markedly attenuated alcohol preference and intake. Here we assess the effects of D2R upregulation in the NAc on cocaine intake in rats trained to self-administer cocaine. Following 2 weeks of i.v. cocaine self-administration (CSA), rats were stereotaxically treated with an adenovirus that carried the D2R gene to upregulate D2R in the NAc. D2R vector treatment resulted in a significant decrease (75%) in cocaine infusions and lever presses (70%) for cocaine. This effect lasted 6 days before cocaine consumption returned to baseline levels, which corresponds roughly to the time it takes D2R to return to baseline levels. These findings show that CSA and D2R in the NAc are negatively correlated and suggest that cocaine intake is modulated in part by D2R levels in NAc. Thus strategies aimed at increasing D2R expression in NAc may be beneficial in treating cocaine abuse and addiction. PMID:18418874

  1. Automated detection of periventricular veins on 7 T brain MRI

    NASA Astrophysics Data System (ADS)

    Kuijf, Hugo J.; Bouvy, Willem H.; Zwanenburg, Jaco J. M.; Viergever, Max A.; Biessels, Geert Jan; Vincken, Koen L.

    2015-03-01

    Cerebral small vessel disease is common in elderly persons and a leading cause of cognitive decline, dementia, and acute stroke. With the introduction of ultra-high field strength 7.0T MRI, it is possible to visualize small vessels in the brain. In this work, a proof-of-principle study is conducted to assess the feasibility of automatically detecting periventricular veins. Periventricular veins are organized in a fan-pattern and drain venous blood from the brain towards the caudate vein of Schlesinger, which is situated along the lateral ventricles. Just outside this vein, a region-of- interest (ROI) through which all periventricular veins must cross is defined. Within this ROI, a combination of the vesselness filter, tubular tracking, and hysteresis thresholding is applied to locate periventricular veins. All detected locations were evaluated by an expert human observer. The results showed a positive predictive value of 88% and a sensitivity of 95% for detecting periventricular veins. The proposed method shows good results in detecting periventricular veins in the brain on 7.0T MR images. Compared to previous works, that only use a 1D or 2D ROI and limited image processing, our work presents a more comprehensive definition of the ROI, advanced image processing techniques to detect periventricular veins, and a quantitative analysis of the performance. The results of this proof-of-principle study are promising and will be used to assess periventricular veins on 7.0T brain MRI.

  2. Rcan1 deficiency impairs neuronal migration and causes periventricular heterotopia.

    PubMed

    Li, Yang; Wang, Jie; Zhou, Yang; Li, Dan; Xiong, Zhi-Qi

    2015-01-14

    Periventricular heterotopia (PH) is a cortical malformation characterized by aggregation of neurons lining the lateral ventricles due to abnormal neuronal migration. The molecular mechanism underlying the pathogenesis of PH is unclear. Here we show that Regulators of calcineurin 1 (Rcan1), a Down syndrome-related gene, plays an important role in radial migration of rat cortical neurons. Downregulation of Rcan1 by expressing shRNA impaired neural progenitor proliferation and led to defects in radial migration and PH. Two isoforms of Rcan1 (Rcan1-1 and Rcan1-4) are expressed in the rat brain. Migration defects due to downregulation of Rcan1 could be prevented by shRNA-resistant expression of Rcan1-1 but not Rcan1-4. Furthermore, we found that Rcan1 knockdown significantly decreased the expression level of Flna, an F-actin cross-linking protein essential for cytoskeleton rearrangement and cell migration, mutation of which causes the most common form of bilateral PH in humans. Finally, overexpression of FLNA in Rcan1 knockdown neurons prevented migration abnormalities. Together, these findings demonstrate that Rcan1 acts upstream from Flna in regulating radial migration and suggest that impairment of Rcan1-Flna pathway may underlie PH pathogenesis. PMID:25589755

  3. ERK1/2 Phosphorylation in the Rat Supraoptic Nucleus, Dorsal Raphe Nucleus, and Locus Coeruleus Neurons Following Noxious Stimulation to the Hind Paw.

    PubMed

    Donnerer, Josef; Liebmann, Ingrid

    2016-01-01

    Phospho-ERK1/2 (pERK1/2) fluorescence-immunohistochemistry is specifically well suited to mirror neuronal activity in the pain pathway at the cellular level. This study employed this method to visualize neuronal activity in 3 rat CNS nuclei following an acute noxious stimulation. The rat hind paw was stimulated either by heat or by a sequence of mustard oil and heat. Two min after the thermal stimulation or after the combined mustard oil and thermal stimulation, there was a significant increase in cells showing pERK1/2 immunoreactivity in the supraoptic nucleus (SON), in the dorsal raphe nucleus (DRN), and in the locus coeruleus (LC). Pretreatment with the opioid analgesic morphine or the N-methyl-D-aspartate antagonist MK-801 markedly attenuated ERK1/2 phosphorylation. These findings support the concept that the SON, the DRN, and the LC are integrated into pain processing at the hypothalamic and brain stem level. PMID:26599629

  4. Positive reinforcing effect of oxytocin microinjection in the rat central nucleus of amygdala.

    PubMed

    László, K; Kovács, A; Zagoracz, O; Ollmann, T; Péczely, L; Kertes, E; Lacy, D G; Lénárd, L

    2016-01-01

    Neuropeptide oxytocin (OT) receives increasing attention since, it plays a role in various behaviors including anxiety, drug addiction, learning, social recognition, empathy, pair bonding and decreased aggression. The central nucleus of the amygdala (CeA), part of the limbic system, plays an important role in learning, memory, anxiety and reinforcing mechanisms. CeA was shown to be rich in OT-receptors (OTR). The aim of our study was to examine the possible effects of OT and OTR antagonist in the CeA on reinforcement using the conditioned place preference test and on anxiety using the elevated plus maze test. Male Wistar rats were microinjected bilaterally with 10 ng OT or 100 ng OT (Sigma: O6379, injected in volume of 0.4μl) or 10ng OTR antagonist (Sigma: L-2540) alone, or OTR antagonist 15 min prior 10 ng OT treatment or vehicle solution into the CeA. Rats receiving 10 ng OT spent significantly more time in the treatment quadrant during the test session, while 100 ng OT treatment produced no effect. Prior treatment with the non-peptide OTR antagonist blocked the effects of OT. The antagonist in itself did not influence the place preference. The elevated plus maze test revealed that 10 ng OT significantly increased the time spent in the open arms. OTR antagonist pre-treatment could inhibit this effect and the antagonist in itself did not affect the time spent in the open arms. Our results show that in the rat CeA OT has dose-dependent, positive reinforcing and anxiolytic effects, via OTR demonstrated by the blocking effects of selective OTR antagonist. PMID:26386304

  5. Dendritic regression dissociated from neuronal death but associated with partial deafferentation in aging rat supraoptic nucleus.

    PubMed

    Flood, D G; Coleman, P D

    1993-01-01

    As neurons are lost in normal aging, the dendrites of surviving neighbor neurons may proliferate, regress, or remain unchanged. In the case of age-related dendritic regression, it has been difficult to distinguish whether the regression precedes neuronal death or whether it is a consequence of loss of afferent supply. The rat supraoptic nucleus (SON) represents a model system in which there is no age-related loss of neurons, but in which there is an age-related loss of afferents. The magnocellular neurosecretory neurons of the SON, that produce vasopressin and oxytocin for release in the posterior pituitary, were studied in male Fischer 344 rats at 3, 12, 20, 27, 30, and 32 months of age. Counts in Nissl-stained sections showed no neuronal loss with age, and confirmed similar findings in other strains of rat and in mouse and human. Nucleolar size increased between 3 and 12 months of age, due, in part, to nucleolar fusion, and was unchanged between 12 and 32 months of age, indicating maintenance of general cellular function in old age. Dendritic extent quantified in Golgi-stained tissue increased between 3 and 12 months of age, was stable between 12 and 20 months, and decreased between 20 and 27 months. We interpret the increase between 3 and 12 months as a late maturational change. Dendritic regression between 20 and 27 months was probably the result of deafferentation due to the preceding age-related loss of the noradrenergic input to the SON from the ventral medulla. PMID:7507575

  6. Activin A increases arterial pressure in the hypothalamic paraventricular nucleus in rats by angiotension II.

    PubMed

    Ge, Jingyan; Fan, Yuqi; Lu, Yaqiong; Qi, Yan; Wang, Minghua; Liu, Zhonghui

    2016-06-15

    Activin A, a member of the transforming growth factor β superfamily, plays an important role in the central nervous system as a neurotrophic and neuroprotective factor. The hypothalamic paraventricular nucleus (PVN) in the central nervous system is characterized as an important integrative site to regulate arterial pressure (AP). However, whether activin A in the PVN is involved in the regulation of AP is not well characterized. This study aimed to determine the effect of activin A on AP in the PVN in rats. The results showed that activin βA, activin type IIA and IIB receptors (ActRIIA and ActRIIB), and Smad2 and Smad3 mRNA expressions were detectable in the PVN of WKY rats by reverse-transcription PCR, and the expression of ActRIIA protein in the PVN was further confirmed by immunohistochemical staining. A microinjection of angiotensin II (AngII) (0.1 nmol/100 nl) or activin A (2 ng/100 nl) into the PVN increased AP significantly in WKY rats (P<0.05). Moreover, activin A (5 ng/ml) promoted AngII release from the primary cultured PVN neurons that can increase AP and upregulated the expressions of ActRIIA and Smad3 mRNA in the primary cultured PVN neurons (P<0.05). These data suggest that activin A can regulate AP in the PVN in an autocrine or a paracrine manner, which is related to AngII release and the ActRIIA-Smad3 signal pathway. PMID:27138952

  7. Allopregnanolone in the bed nucleus of the stria terminalis modulates contextual fear in rats

    PubMed Central

    Nagaya, Naomi; Acca, Gillian M.; Maren, Stephen

    2015-01-01

    Trauma- and stress-related disorders are among the most common types of mental illness affecting the U.S. population. For many of these disorders, there is a striking sex difference in lifetime prevalence; for instance, women are twice as likely as men to be affected by posttraumatic stress disorder (PTSD). Gonadal steroids and their metabolites have been implicated in sex differences in fear and anxiety. One example, allopregnanolone (ALLO), is a neuroactive metabolite of progesterone that allosterically enhances GABAA receptor activity and has anxiolytic effects. Like other ovarian hormones, it not only occurs at different levels in males and females but also fluctuates over the female reproductive cycle. One brain structure that may be involved in neuroactive steroid regulation of fear and anxiety is the bed nucleus of the stria terminalis (BNST). To explore this question, we examined the consequences of augmenting or reducing ALLO activity in the BNST on the expression of Pavlovian fear conditioning in rats. In Experiment 1, intra-BNST infusions of ALLO in male rats suppressed freezing behavior (a fear response) to the conditioned context, but did not influence freezing to a discrete tone conditioned stimulus (CS). In Experiment 2, intra-BNST infusion of either finasteride (FIN), an inhibitor of ALLO synthesis, or 17-phenyl-(3α,5α)-androst-16-en-3-ol, an ALLO antagonist, in female rats enhanced contextual freezing; neither treatment affected freezing to the tone CS. These findings support a role for ALLO in modulating contextual fear via the BNST and suggest that sex differences in fear and anxiety could arise from differential steroid regulation of BNST function. The susceptibility of women to disorders such as PTSD may be linked to cyclic declines in neuroactive steroid activity within fear circuitry. PMID:26300750

  8. Assessment of individual differences in the rat nucleus accumbens transcriptome following taste-heroin extended access.

    PubMed

    Imperio, Caesar G; McFalls, Ashley J; Colechio, Elizabeth M; Masser, Dustin R; Vrana, Kent E; Grigson, Patricia S; Freeman, Willard M

    2016-05-01

    Heroin addiction is a disease of chronic relapse that harms the individual through devaluation of personal responsibilities in favor of finding and using drugs. Only some recreational heroin users devolve into addiction but the basis of these individual differences is not known. We have shown in rats that avoidance of a heroin-paired taste cue reliably identifies individual animals with greater addiction-like behavior for heroin. Here rats received 5min access to a 0.15% saccharin solution followed by the opportunity to self-administer either saline or heroin for 6h. Large Suppressors of the heroin-paired taste cue displayed increased drug escalation, motivation for drug, and drug loading behavior compared with Small Suppressors. Little is known about the molecular mechanisms of these individual differences in addiction-like behavior. We examined the individual differences in mRNA expression in the nucleus accumbens (NAc) of rats that were behaviorally stratified by addiction-like behavior using next-generation sequencing. We hypothesized that based on the avoidance of the drug-paired cue there will be a unique mRNA profile in the NAc. Analysis of strand-specific whole genome RNA-Seq data revealed a number of genes differentially regulated in NAc based on the suppression of the natural saccharine reward. Large Suppressors exhibited a unique mRNA prolife compared to Saline controls and Small Suppressors. Genes related to immunity, neuronal activity, and behavior were differentially expressed among the 3 groups. In total, individual differences in avoidance of a heroin-paired taste cue are associated with addiction-like behavior along with differential NAc gene expression. PMID:26733446

  9. Facilitation of the lordosis reflex of female rats from the ventromedial nucleus of the hypothalamus.

    PubMed Central

    Pfaff, D W; Sakuma, Y

    1979-01-01

    1. Effects of electrical stimulation of hypothalamic ventromedial nucleus (v.m.n.) on the lordosis reflex of female rats were examined in ovariectomized and oestrogen-primed animals with chronically implanted electrodes. 2. Lordosis triggered either by manual cutaneous stimulation or by male mounting, was facilitated by electrical stimulation of the v.m.n. 3 A gradual increase in lordosis performance followed a relatively long period of stimulation; never less than 15 min and usually about 1 hr of stimulation was necessary for maximum facilitation. Following the termination of stimulation, the performance returned gradually to the control level during a 5--8 hr period. 4. The optimal frequency of stimulation was between 10 and 30 Hz. Threshold for effective facilitation was, on the average, 12.5 microA. 5. Stimulation tended to induce larger facilitation when applied to the lateral side of v.m.n. 6. Pre-treatment with oestrogen was necessary to obtain facilitation by v.m.n. stimulation. The threshold dosage of oestrogen was 2.5 microgram per animal. 7. Stimulation was effective in adrenalectomized rats, in dexamethasone-primed animals, and in rats pre-treated with exogenous progesterone. Thus, adrenal prodesterone release is not required for the v.m.n. facilitation of lordosis. 8. Medial preoptic stimulation with the same parameters suppressed the lordosis reflex. 9. The v.m.n. participates in the control of lordosis by a facilitatory output. The delay before facilitation implies that the v.m.n. is not in the direct reflex-arc for the execution of lordosis. Rather, a summation or interaction process with an unusually long time course is involved. PMID:469715

  10. Allopregnanolone in the bed nucleus of the stria terminalis modulates contextual fear in rats.

    PubMed

    Nagaya, Naomi; Acca, Gillian M; Maren, Stephen

    2015-01-01

    Trauma- and stress-related disorders are among the most common types of mental illness affecting the U.S. population. For many of these disorders, there is a striking sex difference in lifetime prevalence; for instance, women are twice as likely as men to be affected by posttraumatic stress disorder (PTSD). Gonadal steroids and their metabolites have been implicated in sex differences in fear and anxiety. One example, allopregnanolone (ALLO), is a neuroactive metabolite of progesterone that allosterically enhances GABAA receptor activity and has anxiolytic effects. Like other ovarian hormones, it not only occurs at different levels in males and females but also fluctuates over the female reproductive cycle. One brain structure that may be involved in neuroactive steroid regulation of fear and anxiety is the bed nucleus of the stria terminalis (BNST). To explore this question, we examined the consequences of augmenting or reducing ALLO activity in the BNST on the expression of Pavlovian fear conditioning in rats. In Experiment 1, intra-BNST infusions of ALLO in male rats suppressed freezing behavior (a fear response) to the conditioned context, but did not influence freezing to a discrete tone conditioned stimulus (CS). In Experiment 2, intra-BNST infusion of either finasteride (FIN), an inhibitor of ALLO synthesis, or 17-phenyl-(3α,5α)-androst-16-en-3-ol, an ALLO antagonist, in female rats enhanced contextual freezing; neither treatment affected freezing to the tone CS. These findings support a role for ALLO in modulating contextual fear via the BNST and suggest that sex differences in fear and anxiety could arise from differential steroid regulation of BNST function. The susceptibility of women to disorders such as PTSD may be linked to cyclic declines in neuroactive steroid activity within fear circuitry. PMID:26300750

  11. Exercise prevents raphe nucleus mitochondrial overactivity in a rat depression model.

    PubMed

    Wen, Li; Jin, Yahong; Li, Lei; Sun, Shuangyu; Cheng, Shixiang; Zhang, Sai; Zhang, Yong; Svenningsson, Per

    2014-06-10

    Monoamine deficit and mitochondrial dysfunction may underlie depression. Serotoninergic neurons from raphe nuclei project widely and may be involved in depression. This study used chronic unpredictable stress (CUS) in rats as a model of depression to assess the effects of CUS, exercise and fluoxetine on mitochondrial function and serotonin levels in the raphe nuclei. Rats were divided into 4 groups (6 per group): control (C); depression (D), CUS for 28days; depression+exercise (DE), treadmill exercises from days 11-28 of CUS; depression+fluoxetine (DF), fluoxetine (5mg/kg/d i.g.) from days 11 to 28 of CUS. Behavioral changes were assessed using body weight, sucrose consumption tests (anhedonia) and open field tests (locomotor/exploratory behavior). Raphe nucleus mitochondrial function was determined using the respiratory control ratio, ATP synthesis rate, and activities of superoxide dismutase and glutathione peroxidase. Serotonin levels were measured in the raphe nuclei and hippocampus. On day 28 of CUS, body weight was higher in group C than in groups D, DE and DF (P<0.001), and higher in group DE than in group D or DF (P<0.05). Sucrose consumption was higher in group C than in groups D, DE and DF (P<0.001), higher in group DE than in groups D (P<0.001) or DF (P<0.05), and higher in group DF than in group D (P<0.05). All measures of mitochondrial function were increased in group D compared with the other groups (P<0.01). Hippocampal serotonin was lower in group D than in the other groups (P<0.01); levels in the raphe nuclei were elevated in group DE compared with the remaining groups (P<0.001). CUS in rats may cause overactivation of the mitochondria in the raphe nuclei, and exercise training may suppress these changes. PMID:24813829

  12. Endocannabinoids in amygdala and nucleus accumbens mediate social play reward in adolescent rats

    PubMed Central

    Trezza, Viviana; Damsteegt, Ruth; Manduca, Antonia; Petrosino, Stefania; Van Kerkhof, Linda W.M.; Pasterkamp, R. Jeroen; Zhou, Yeping; Campolongo, Patrizia; Cuomo, Vincenzo; Di Marzo, Vincenzo; Vanderschuren, Louk J.M.J.

    2012-01-01

    The brain endocannabinoid system plays a crucial role in emotional processes. We have previously identified an important role for endocannabinoids in social play behavior, a highly rewarding form of social interaction in adolescent rats. Here, we tested the hypothesis that endocannabinoid modulation of social play behavior occurs in brain regions implicated in emotion and motivation. Social play increased levels of the endocannabinoid anandamide in the amygdala and nucleus accumbens (NAc), but not in prefrontal cortex or hippocampus of 4–5 week old male Wistar rats. Furthermore, social play increased phosphorylation of CB1 cannabinoid receptors in the amygdala. Systemic administration of the anandamide hydrolysis inhibitor URB597 increased social play behavior, and augmented the associated elevation in anandamide levels in the amygdala, but not the NAc. Infusion of URB597 into the basolateral amygdala (BLA) increased social play behavior, and blockade of BLA CB1 cannabinoid receptors with the antagonist/inverse agonist SR141716A prevented the play-enhancing effects of systemic administration of URB597. Infusion of URB597 into the NAc also increased social play, but blockade of NAc CB1 cannabinoid receptors did not antagonize the play-enhancing effects of systemic URB597 treatment. Last, SR141716A did not affect social play after infusion into the core and shell subregions of the NAc, while it reduced social play when infused into the BLA. These data show that increased anandamide signalling in the amygdala and NAc augments social play, and identify the BLA as a prominent site of action for endocannabinoids to modulate the rewarding properties of social interactions in adolescent rats. PMID:23100412

  13. Effects of cholecystokinin-8s in the nucleus tractus solitarius of vagally deafferented rats

    PubMed Central

    Baptista, V.; Browning, K. N.; Travagli, R. A.

    2011-01-01

    We have shown recently that cholecystokinin octapeptide (CCK-8s) increases glutamate release from nerve terminals onto neurons of the nucleus tractus solitarius pars centralis (cNTS). The effects of CCK on gastrointestinal-related functions have, however, been attributed almost exclusively to its paracrine action on vagal afferent fibers. Because it has been reported that systemic or perivagal capsaicin pretreatment abolishes the effects of CCK, the aim of the present work was to investigate the response of cNTS neurons to CCK-8s in vagally deafferented rats. In surgically deafferented rats, intraperitoneal administration of 1 or 3 μg/kg CCK-8s increased c-Fos expression in cNTS neurons (139 and 251% of control, respectively), suggesting that CCK-8s’ effects are partially independent of vagal afferent fibers. Using whole cell patch-clamp techniques in thin brain stem slices, we observed that CCK-8s increased the frequency of spontaneous and miniature excitatory postsynaptic currents in 43% of the cNTS neurons via a presynaptic mechanism. In slices from deafferented rats, the percentage of cNTS neurons receiving glutamatergic inputs responding to CCK-8s decreased by ~50%, further suggesting that central terminals of vagal afferent fibers are not the sole site for the action of CCK-8s in the brain stem. Taken together, our data suggest that the sites of action of CCK-8s include the brain stem, and in cNTS, the actions of CCK-8s are not restricted to vagal central terminals but that nonvagal synapses are also involved. PMID:17122331

  14. NMR-based metabonomic in hippocampus, nucleus accumbens and prefrontal cortex of methamphetamine-sensitized rats.

    PubMed

    Bu, Qian; Lv, Lei; Yan, Guangyan; Deng, Pengchi; Wang, Yanli; Zhou, Jiaqing; Yang, Yanzhu; Li, Yan; Cen, Xiaobo

    2013-05-01

    (1)H NMR spectroscopy was applied to investigate the changes of cerebral metabolites in brain hippocampus, nucleus accumbens (NAC) and prefrontal cortex (PFC) of the rats subjected to subcutaneous twice-daily injections of 2.5mg/kg methamphetamine (MAP) for 7 days. The results indicated that MAP exposure induced significant behavioral sensitization and altered cerebral metabolites in rats. The neurotransmitters glutamate, glutamine and GABA significantly decreased in hippocampus, NAC and PFC. Specifically, increased succinic acid semialdehyde, a metabolism product of GABA, was observed in hippocampus. Additionally, decreased serotonin was observed in both NAC and PFC, whereas decreased dopamine was only observed in NAC after repeated MAP treatment. Glutathione obviously decreased in above brain regions, whereas acetylcysteine declined in hippocampus and NAC, and taurine declined in NAC and PFC. Homocysteic acid was elevated in hippocampus and NAC by repeated MAP administration. Membrane ingredients like phosphocholine elevated in response to MAP administration in NAC and PFC. N-Acetyl-aspartate, a marker of neuronal viability, decreased in the three regions; however, myo-inositol, a glial cell marker, increased in hippocampus and PFC. Tricarboxylic acid cycle intermediate products, such as α-ketoglutarate, succinate, citrate and the methionine significantly decreased in above three brain regions after MAP administration; however, ADP decreased in hippocampus. These results indicate that repeated MAP treatment causes neurotransmitters disturbance, imbalance between oxidative stress and antioxidants, and gliosis in hippocampus, NAC and PFC. Profound metabolic changes detected across brain regions provide the first evidence of metabonomic changes in MAP-induced sensitized rats. PMID:23462569

  15. Effects of neonatal alcohol exposure on vasoactive intestinal polypeptide neurons in the rat suprachiasmatic nucleus

    PubMed Central

    Farnell, Yuhua Z.; Allen, Gregg C.; Neuendorff, Nichole; West, James R.; Wei-Jung, A. Chen; Earnest, David J.

    2010-01-01

    Neonatal alcohol exposure produces long-term changes in the suprachiasmatic nucleus (SCN) that are presumably responsible for disturbances in the light–dark regulation of circadian behavior in adult rats, including the pattern of photoentrainment, rate of re-entrainment to shifted light–dark cycles, and phase-shifting responses to light. Because SCN neurons containing vasoactive intestinal polypeptide (VIP) receive direct photic input via the retinohypothalamic tract and thus play an important role in the circadian regulation of the SCN clock mechanism by light, the present study examined the long-term effects of neonatal alcohol exposure on VIP neuronal populations within the SCN of adult rats. Male Sprague-Dawley rat pups were exposed to alcohol (EtOH; 3.0, 4.5, or 6.0 g/kg/day) or isocaloric milk formula (gastrostomy control; GC) on postnatal days 4–9 using artificial-rearing methods. At 2–3 months of age, animals from the suckle control (SC), GC, and EtOH groups were exposed to constant darkness (DD) and SCN tissue was harvested for subsequent analysis of either VIP mRNA expression by quantitative polymerase chain reaction (PCR) and in situ hybridization or of VIP-immunoreactive (ir) neurons using stereological methods. Neonatal alcohol exposure had no impact on VIP mRNA expression but dramatically altered immunostaining of neurons containing this peptide within the SCN of adult rats. The relative abundance of VIP mRNA and anatomical distribution of neurons expressing this transcript were similar among all control- and EtOH-treated groups. However, the total number and density of VIP-ir neurons within the SCN were significantly decreased by about 35% in rats exposed to alcohol at a dose of 6.0 g/kg/day relative to that observed in both control groups. These results demonstrate that VIP neuronal populations in the SCN are vulnerable to EtOH-induced insult during brain development. The observed alterations in SCN neurons containing VIP may have an impact

  16. Alcohol-preferring (P) rats are more sensitive than Wistar rats to the reinforcing effects of cocaine self-administered directly into the nucleus accumbens shell.

    PubMed

    Katner, Simon N; Oster, Scott M; Ding, Zheng-Ming; Deehan, Gerald A; Toalston, Jamie E; Hauser, Sheketha R; McBride, William J; Rodd, Zachary A

    2011-10-01

    Wistar rats will self-administer cocaine directly into the nucleus accumbens shell (AcbSh), but not into the nucleus accumbens core. In human and animal literature, there is a genetic association between alcoholism and cocaine dependency. The current experiment examined whether selective breeding for high alcohol preference is also associated with greater sensitivity of the AcbSh to the reinforcing properties of cocaine. P and Wistar rats were given cocaine (0, 100, 200, 400, or 800 pmol/100 nl) to self-infuse into the AcbSh. Rats were given cocaine for the first 4 sessions (acquisition), artificial CSF for sessions 5 and 6 (extinction), and cocaine again in session 7 (reinstatement). During acquisition, P rats self-infused 200-800 pmol cocaine (59 infusions/session), whereas Wistar rats only reliably self-infused 800 pmol cocaine (38 infusions/session). Furthermore, P rats received a greater number of cocaine infusions in the 200, 400 and 800 pmol cocaine groups compared to respective Wistar groups during acquisition. Both P and Wistar rats reduced responding on the active lever when aCSF was substituted for cocaine, and reinstated responding in session 7 when cocaine was restored. However, P rats had significantly greater infusions during session 7 compared to session 4 at all concentrations of cocaine tested, whereas Wistar rats only displayed greater infusions during session 7 compared to session 4 at the 400 and 800 pmol cocaine concentrations. The present results suggest that, compared to Wistar rats, the AcbSh of P rats was more sensitive to the reinforcing effects of cocaine. The reinstatement data suggest that the AcbSh of P rats may have become sensitized to the reinforcing effects of cocaine. Overall, the findings from this study support a genetic association between high alcohol preference and greater sensitivity to the reinforcing effects of cocaine. PMID:21723879

  17. Autoradiographic distribution of /sup 125/I-galanin binding sites in the rat central nervous system

    SciTech Connect

    Skofitsch, G.; Sills, M.A.; Jacobowitz, D.M.

    1986-11-01

    Galanin (GAL) binding sites in coronal sections of the rat brain were demonstrated using autoradiographic methods. Scatchard analysis of /sup 125/I-GAL binding to slide-mounted tissue sections revealed saturable binding to a single class of receptors with a Kd of approximately 0.2 nM. /sup 125/I-GAL binding sites were demonstrated throughout the rat central nervous system. Dense binding was observed in the following areas: prefrontal cortex, the anterior nuclei of the olfactory bulb, several nuclei of the amygdaloid complex, the dorsal septal area, dorsal bed nucleus of the stria terminalis, the ventral pallidum, the internal medullary laminae of the thalamus, medial pretectal nucleus, nucleus of the medial optic tract, borderline area of the caudal spinal trigeminal nucleus adjacent to the spinal trigeminal tract, the substantia gelatinosa and the superficial layers of the dorsal spinal cord. Moderate binding was observed in the piriform, periamygdaloid, entorhinal, insular cortex and the subiculum, the nucleus accumbens, medial forebrain bundle, anterior hypothalamic, ventromedial, dorsal premamillary, lateral and periventricular thalamic nuclei, the subzona incerta, Forel's field H1 and H2, periventricular gray matter, medial and superficial gray strata of the superior colliculus, dorsal parts of the central gray, peripeduncular area, the interpeduncular nucleus, substantia nigra zona compacta, ventral tegmental area, the dorsal and ventral parabrachial and parvocellular reticular nuclei. The preponderance of GAL-binding in somatosensory as well as in limbic areas suggests a possible involvement of GAL in a variety of brain functions.

  18. Stimulated dopamine overflow and alpha-synuclein expression in the nucleus accumbens core distinguish rats bred for differential ethanol preference.

    PubMed

    Pelkonen, Anssi; Hiltunen, Mikko; Kiianmaa, Kalervo; Yavich, Leonid

    2010-08-01

    The key neurochemical systems and structures involved in the predisposition to substance abuse and preference to ethanol (EtOH) are not known in detail but clearly dopamine (DA) is an important modulator of addiction. Recent data indicate that alpha-synuclein (alpha-syn), a pre-synaptic protein, plays a role in regulation of DA release from the pre-synaptic terminals in striatum and the expression of this protein is different after drug abuse or following abstinence. In the present work, we analysed stimulated DA overflow in the dorsal and ventral striatum in EtOH naïve alko alchohol (AA) and alko non-alchohol (ANA) rats selected for more than 100 generations for their differential EtOH preference. In the same structures, we studied the expression of alpha-syn using western blotting. AA rats, in comparison with ANA rats, showed a marked reduction of stimulated peak DA overflow and higher levels of alpha-syn in the nucleus accumbens core. In the same structure, DA re-uptake was increased in AA rats in comparison with ANA rats. The effects of EtOH at low (0.1 g/kg) and higher (3 mg/kg) doses on DA overflow measured in the nucleus accumbens shell were similar in both lines. These results indicate that high expression of alpha-syn may contribute to the reduced DA overflow and the possible activation of re-uptake in the nucleus accumbens core of AA rats in comparison with ANA rats. PMID:20533994

  19. The nucleus prepositus hypoglossi contributes to head direction cell stability in rats.

    PubMed

    Butler, William N; Taube, Jeffrey S

    2015-02-11

    Head direction (HD) cells in the rat limbic system fire according to the animal's orientation independently of the animal's environmental location or behavior. These HD cells receive strong inputs from the vestibular system, among other areas, as evidenced by disruption of their directional firing after lesions or inactivation of vestibular inputs. Two brainstem nuclei, the supragenual nucleus (SGN) and nucleus prepositus hypoglossi (NPH), are known to project to the HD network and are thought to be possible relays of vestibular information. Previous work has shown that lesioning the SGN leads to a loss of spatial tuning in downstream HD cells, but the NPH has historically been defined as an oculomotor nuclei and therefore its role in contributing to the HD signal is less clear. Here, we investigated this role by recording HD cells in the anterior thalamus after either neurotoxic or electrolytic lesions of the NPH. There was a total loss of direction-specific firing in anterodorsal thalamus cells in animals with complete NPH lesions. However, many cells were identified that fired in bursts unrelated to the animals' directional heading and were similar to cells seen in previous studies that damaged vestibular-associated areas. Some animals with significant but incomplete lesions of the NPH had HD cells that were stable under normal conditions, but were unstable under conditions designed to minimize the use of external cues. These results support the hypothesis that the NPH, beyond its traditional oculomotor function, plays a critical role in conveying vestibular-related information to the HD circuit. PMID:25673848

  20. The Nucleus Prepositus Hypoglossi Contributes to Head Direction Cell Stability in Rats

    PubMed Central

    Butler, William N.

    2015-01-01

    Head direction (HD) cells in the rat limbic system fire according to the animal's orientation independently of the animal's environmental location or behavior. These HD cells receive strong inputs from the vestibular system, among other areas, as evidenced by disruption of their directional firing after lesions or inactivation of vestibular inputs. Two brainstem nuclei, the supragenual nucleus (SGN) and nucleus prepositus hypoglossi (NPH), are known to project to the HD network and are thought to be possible relays of vestibular information. Previous work has shown that lesioning the SGN leads to a loss of spatial tuning in downstream HD cells, but the NPH has historically been defined as an oculomotor nuclei and therefore its role in contributing to the HD signal is less clear. Here, we investigated this role by recording HD cells in the anterior thalamus after either neurotoxic or electrolytic lesions of the NPH. There was a total loss of direction-specific firing in anterodorsal thalamus cells in animals with complete NPH lesions. However, many cells were identified that fired in bursts unrelated to the animals' directional heading and were similar to cells seen in previous studies that damaged vestibular-associated areas. Some animals with significant but incomplete lesions of the NPH had HD cells that were stable under normal conditions, but were unstable under conditions designed to minimize the use of external cues. These results support the hypothesis that the NPH, beyond its traditional oculomotor function, plays a critical role in conveying vestibular-related information to the HD circuit. PMID:25673848

  1. Cholecystokinin release mediated by 5-HT3 receptors in rat cerebral cortex and nucleus accumbens.

    PubMed Central

    Paudice, P.; Raiteri, M.

    1991-01-01

    1. The effects of 5-hydroxytryptamine (5-HT) on the release of cholexystokinin-like immunoreactivity (CCK-LI) were examined in synaptosomes prepared from rat cerebral cortex and nucleus accumbens and depolarized by superfusion with 15 mM KCl. 2. In both areas 5-HT, tested between 0.1 and 100 nM, increased the calcium-dependent, depolarization-evoked CCK-LI release in a concentration-related manner. The concentration-response curves did not differ significantly between the two brain areas (EC50: 0.4 +/- 0.045 nM and 0.48 +/- 0.053 nM, respectively, in cortical and n. accumbens synaptosomes; maximal effect: about 60% at 10 nM 5-HT). 3. The 5-HT1/5-HT2 receptor antagonist methiothepin (300 nM) did not affect the CCK-LI release elicited by 10 nM 5-HT. However, the effects of 10 nM 5-HT were antagonized in a concentration-dependent manner by the 5-HT3 receptor antagonists (3 alpha-tropanyl)-1H-indole-3-carboxylic acid ester (ICS 205-930; 0.1-100 nM; IC50: 3.56 +/- 0.42 nM in the cortex and 3.90 +/- 0.50 nM in the n. accumbens) and ondasetron (IC50: 8.15 +/- 0.73 nM in the cerebral cortex). 5-HT (10 nM) was also strongly antagonized by 100 nM 1 alpha H, 3 alpha 5 alpha H-tropan-3-yl-3,5-dichlorobenzoate (MDL 72222) another blocker of the 5-HT3 receptor. Moreover, the 5-HT3 receptor agonist 1-phenylbiguanide (tested in the cerebral cortex between 0.1 and 100 nM) enhanced CCK-LI release in a manner almost identical to that of 5-HT (EC50 = 0.64 +/- 0.071 nM). 4. It is concluded that 5-HT can act as a potent releaser of CCK-LI in rat cerebrocortex and nucleus accumbens through the activation of receptors of the 5-HT3 type situated on the CCK-releasing terminals. This interaction may provide a rationale for the clinical development of both 5-HT3 and CCK receptor antagonists as novel anxiolytic drugs. PMID:1933141

  2. Presence of a dynorphin-like peptide in a restricted subpopulation of catecholaminergic neurons in rat nucleus tractus solitarii.

    PubMed

    Ceccatelli, S; Seroogy, K B; Millhorn, D E; Terenius, L

    1992-09-01

    Immunofluorescence colocalization techniques were used to examine the extent of coexistence of the endogenous opioid peptide dynorphin with catecholamines and the related opioid peptide enkephalin within neurons of the rat medulla oblongata. Immunoreactivities for dynorphin and the catecholamine-synthesizing enzyme tyrosine hydroxylase were found to coexist within a limited subpopulation of A2 catecholamine cells, localized to the medial nucleus of the nucleus tractus solitarii. Colocalization of the two opioid peptides was found mainly within perikarya situated in the medial and ventrolateral nuclei of the nucleus tractus solitarii. Triple-labeling studies revealed only rare cases of catecholamine/dynorphin/enkephalin coexistence. These data demonstrate that dynorphin is present within a restricted subpopulation of catecholamine neurons in the dorsal medulla oblongata. In addition, the content of either of the opioids enkephalin or dynorphin appears to distinguish subsets of medullary catecholamine neurons. PMID:1356595

  3. The vasopressinergic innervation of the brain in normal and castrated rats.

    PubMed

    DeVries, G J; Buijs, R M; Van Leeuwen, F W; Caffé, A R; Swaab, D F

    1985-03-01

    A detailed description is given of the distribution of vasopressin-immunoreactive structures in the brain of intact adult male rats. By application of a modified immunocytochemical procedure, vasopressin-immunoreactive fibers were detected in many new areas. In adult male rats which were castrated 15 weeks before death, vasopressin-immunoreactive cell bodies had disappeared from the bed nucleus of the stria terminalis and the medial amygdaloid nucleus. No obvious changes were found in vasopressin-immunoreactive cell bodies in other areas. Furthermore, a very strong reduction was seen in the density of vasopressin-immunoreactive fibers in the olfactory tubercle, nucleus of the diagonal band and its immediate surroundings, ventral pallidum, basal nucleus of Meynert, lateral septum, septofimbrial nucleus, ventral hippocampal formation, amygdaloid area, pre- and supramammillary nucleus, supramammillary decussation, (inter)dorsomedial, parafascicular, and ventral aspect of paraventricular thalamic nuclei, zona incerta, lateral habenular nucleus, ventral tegmental area, substantia nigra, periventricular gray, dorsal and median raphe nucleus, and locus coeruleus. No changes were observed in other areas containing vasopressin-immunoreactive fibers. These changes following gonadectomy were not observed in castrated rats which had been treated with testosterone. The results suggest that vasopressin projections from the bed nucleus of the stria terminalis and possibly from the medial amygdaloid nucleus require the presence of gonadal hormones for their normal appearance. This is in contrast to pathways arising from the hypothalamic vasopressin-producing nuclei, which fail to show obvious changes following castration. PMID:3882778

  4. Oleic acid synthesized by stearoyl-CoA desaturase (SCD-1) in the lateral periventricular zone of the developing rat brain mediates neuronal growth, migration and the arrangement of prospective synapses.

    PubMed

    Polo-Hernández, Erica; Tello, Vega; Arroyo, Angel A; Domínguez-Prieto, Marta; de Castro, Fernando; Tabernero, Arantxa; Medina, José M

    2014-06-27

    Our previous work has shown that oleic acid synthesized by astrocytes in response to serum albumin behaves as a neurotrophic factor in neurons, upregulating the expression of GAP-43 and MAP-2 proteins, which are respectively markers of axonal and dendrite growth. In addition, oleic acid promoted neuron migration and aggregation, resulting in clusters of neurons connected each other by the newly formed neurites. In this work we show that the presence of albumin or albumin plus oleic acid increases neuron migration in cultured explants of the lateral periventricular zone, resulting in an increase in the number of GAP-43-positive neurons leaving the explant. Upon silencing stearoyl-CoA desaturase-1 (SCD-1), a key enzyme in oleic acid synthesis by RNA of interference mostly prevented the effect of albumin but not that of albumin plus oleic acid, suggesting that the oleic acid synthesized due to the effect of albumin would be responsible for the increase in neuron migration. Oleic acid increased doublecortin (DCX) expression in cultured neurons, explants and organotypic slices, suggesting that DCX may mediate in the effect of oleic acid on neuron migration. The effect of oleic acid on neuron migration may be destined for the formation of synapses because the presence of oleic acid increased the expression of synaptotagmin and that of postsynaptic density protein (PDS-95), respectively markers of the pre- and postsynaptic compartments. In addition, confocal microscopy revealed the occurrence of points of colocalization between synaptotagmin and PDS-95, which is consistent with the idea that oleic acid promotes synapse arrangement. PMID:24836198

  5. Plasticity of GABAA receptor-mediated neurotransmission in the nucleus accumbens of alcohol-dependent rats

    PubMed Central

    Liang, Jing; Lindemeyer, A. Kerstin; Suryanarayanan, Asha; Meyer, Edward M.; Marty, Vincent N.; Ahmad, S. Omar; Shao, Xuesi Max; Olsen, Richard W.

    2014-01-01

    Chronic alcohol exposure-induced changes in reinforcement mechanisms and motivational state are thought to contribute to the development of cravings and relapse during protracted withdrawal. The nucleus accumbens (NAcc) is a key structure of the mesolimbic dopaminergic reward system and plays an important role in mediating alcohol-seeking behaviors. Here we describe the long-lasting alterations of γ-aminobutyric acid type A receptors (GABAARs) of medium spiny neurons (MSNs) in the NAcc after chronic intermittent ethanol (CIE) treatment, a rat model of alcohol dependence. CIE treatment and withdrawal (>40 days) produced decreases in the ethanol and Ro15-4513 potentiation of extrasynaptic GABAARs, which mediate the picrotoxin-sensitive tonic current (Itonic), while potentiation of synaptic receptors, which give rise to miniature inhibitory postsynaptic currents (mIPSCs), was increased. Diazepam sensitivity of both Itonic and mIPSCs was decreased by CIE treatment. The average magnitude of Itonic was unchanged, but mIPSC amplitude and frequency decreased and mIPSC rise time increased after CIE treatment. Rise-time histograms revealed decreased frequency of fast-rising mIPSCs after CIE treatment, consistent with possible decreases in somatic GABAergic synapses in MSNs from CIE rats. However, unbiased stereological analysis of NeuN-stained NAcc neurons did not detect any decreases in NAcc volume, neuronal numbers, or neuronal cell body volume. Western blot analysis of surface subunit levels revealed selective decreases in α1 and δ and increases in α4, α5, and γ2 GABAAR subunits after CIE treatment and withdrawal. Similar, but reversible, alterations occurred after a single ethanol dose (5 g/kg). These data reveal CIE-induced long-lasting neuroadaptations in the NAcc GABAergic neurotransmission. PMID:24694935

  6. Systemic administration of resveratrol suppress the nociceptive neuronal activity of spinal trigeminal nucleus caudalis in rats.

    PubMed

    Takehana, Shiori; Sekiguchi, Kenta; Inoue, Maki; Kubota, Yoshiko; Ito, Yukihiko; Yui, Kei; Shimazu, Yoshihito; Takeda, Mamoru

    2016-01-01

    Although a modulatory role has been reported for the red wine polyphenol resveratrol on several types of ion channels and excitatory synaptic transmission in the nervous system, the acute effects of resveratrol in vivo, particularly on nociceptive transmission of the trigeminal system, remain to be determined. The aim of the present study was to investigate whether acute intravenous resveratrol administration to rats attenuates the excitability of wide dynamic range (WDR) spinal trigeminal nucleus caudalis (SpVc) neurons in response to nociceptive and non-nociceptive mechanical stimulation in vivo. Extracellular single unit recordings were made from 18 SpVc neurons in response to orofacial mechanical stimulation of pentobarbital-anesthetized rats. Responses to both non-noxious and noxious mechanical stimuli were analyzed in the present study. The mean firing frequency of SpVc WDR neurons in response to both non-noxious and noxious mechanical stimuli was inhibited by resveratrol (0.5-2 mg/kg, i.v.) and maximum inhibition of the discharge frequency of both non-noxious and noxious mechanical stimuli was seen within 10 min. These inhibitory effects were reversed after approximately 20 min. The relative magnitude of inhibition by resveratrol of SpVc WDR neuronal discharge frequency was significantly greater for noxious than non-noxious stimulation. These results suggest that, in the absence of inflammatory or neuropathic pain, acute intravenous resveratrol administration suppresses trigeminal sensory transmission, including nociception, and so resveratrol may be used as a complementary and alternative medicine therapeutic agent for the treatment of trigeminal nociceptive pain, including hyperalgesia. PMID:26608254

  7. Expression of mineralocorticoid and glucocorticoid receptors in preautonomic neurons of the rat paraventricular nucleus.

    PubMed

    Chen, Jian; Gomez-Sanchez, Celso E; Penman, Alan; May, Paul J; Gomez-Sanchez, Elise

    2014-03-01

    Activation of mineralocorticoid receptors (MR) of the hypothalamic paraventricular nucleus (PVN) increases sympathetic excitation. To determine whether MR and glucocorticoid receptors (GR) are expressed in preautonomic neurons of the PVN and how they relate to endogenous aldosterone levels in healthy rats, retrograde tracer was injected into the intermediolateral cell column at T4 to identify preautonomic neurons in the PVN. Expression of MR, GR, 11-β hydroxysteroid dehydrogenase1 and 2 (11β-HSD1, 2), and hexose-6-phosphate dehydrogenase (H6PD) required for 11β-HSD1 reductase activity was assessed by immunohistochemistry. RT-PCR and Western blot analysis were used to determine MR gene and protein expression. Most preautonomic neurons were in the caudal mediocellular region of PVN, and most expressed MR; none expressed GR. 11β-HSD1, but not 11β-HSD2 nor H6PD immunoreactivity, was detected in the PVN. In rats with chronic low or high sodium intakes, the low-sodium diet was associated with significantly higher plasma aldosterone, MR mRNA and protein expression, and c-Fos immunoreactivity within labeled preautonomic neurons. Plasma corticosterone and sodium and expression of tonicity-responsive enhancer binding protein in the PVN did not differ between groups, suggesting osmotic adaptation to the altered sodium intake. These results suggest that MR within preautonomic neurons in the PVN directly participate in the regulation of sympathetic nervous system drive, and aldosterone may be a relevant ligand for MR in preautonomic neurons of the PVN under physiological conditions. Dehydrogenase activity of 11β-HSD1 occurs in the absence of H6PD, which regenerates NADP(+) from NADPH and may increase MR gene expression under physiological conditions. PMID:24381176

  8. Deep brain stimulation of the subthalamic nucleus increases premature responding in a rat gambling task.

    PubMed

    Aleksandrova, Lily R; Creed, Meaghan C; Fletcher, Paul J; Lobo, Daniela S S; Hamani, Clement; Nobrega, José N

    2013-05-15

    Deep brain stimulation of the subthalamic nucleus (STN-DBS) is a treatment option for the motor symptoms of Parkinson's disease (PD). However, several recent studies have found an association between STN-DBS and increased impulsivity. Currently, it is not clear whether the observed increase in impulsivity results from STN-DBS per se, or whether it involves an interaction with the underlying PD neuropathology and/or intake of dopaminergic drugs. We investigated the effects of STN-DBS on performance of intact rats on two tasks measuring impulsive responding: a novel rat gambling task (rGT) and a differential reinforcement of low rate responding (DRL20s) schedule. Following initial behavioural training, animals received electrode implantation into the STN (n=24) or sham surgery (n=24), and were re-tested on their assigned behavioural task, with or without STN-DBS. Bilateral STN-DBS administered for two hours immediately prior to testing, had no effects on rGT choice behaviour or on DRL response inhibition (p>0.05). However, STN-DBS significantly increased premature responding in the rGT task (p=0.0004), an effect that took several sessions to develop and persisted in subsequent trials when no stimulation was given. Consistent with the notion of distinct facets of impulsivity with unique neurochemical underpinnings, we observed differential effects of STN-DBS in the two tasks employed. These results suggest that STN-DBS in the absence of parkinsonism may not lead to a general loss of inhibitory control, but may instead affect impulsivity under specific conditions. PMID:23434606

  9. Intracellular Calcium Spikes in Rat Suprachiasmatic Nucleus Neurons Induced by BAPTA-Based Calcium Dyes

    PubMed Central

    Hong, Jin Hee; Min, Cheol Hong; Jeong, Byeongha; Kojiya, Tomoyoshi; Morioka, Eri; Nagai, Takeharu; Ikeda, Masayuki; Lee, Kyoung J.

    2010-01-01

    Background Circadian rhythms in spontaneous action potential (AP) firing frequencies and in cytosolic free calcium concentrations have been reported for mammalian circadian pacemaker neurons located within the hypothalamic suprachiasmatic nucleus (SCN). Also reported is the existence of “Ca2+ spikes” (i.e., [Ca2+]c transients having a bandwidth of 10∼100 seconds) in SCN neurons, but it is unclear if these SCN Ca2+ spikes are related to the slow circadian rhythms. Methodology/Principal Findings We addressed this issue based on a Ca2+ indicator dye (fluo-4) and a protein Ca2+ sensor (yellow cameleon). Using fluo-4 AM dye, we found spontaneous Ca2+ spikes in 18% of rat SCN cells in acute brain slices, but the Ca2+ spiking frequencies showed no day/night variation. We repeated the same experiments with rat (and mouse) SCN slice cultures that expressed yellow cameleon genes for a number of different circadian phases and, surprisingly, spontaneous Ca2+ spike was barely observed (<3%). When fluo-4 AM or BAPTA-AM was loaded in addition to the cameleon-expressing SCN cultures, however, the number of cells exhibiting Ca2+ spikes was increased to 13∼14%. Conclusions/Significance Despite our extensive set of experiments, no evidence of a circadian rhythm was found in the spontaneous Ca2+ spiking activity of SCN. Furthermore, our study strongly suggests that the spontaneous Ca2+ spiking activity is caused by the Ca2+ chelating effect of the BAPTA-based fluo-4 dye. Therefore, this induced activity seems irrelevant to the intrinsic circadian rhythm of [Ca2+]c in SCN neurons. The problems with BAPTA based dyes are widely known and our study provides a clear case for concern, in particular, for SCN Ca2+ spikes. On the other hand, our study neither invalidates the use of these dyes as a whole, nor undermines the potential role of SCN Ca2+ spikes in the function of SCN. PMID:20224788

  10. GABAA-receptor activation in the subthalamic nucleus compensates behavioral asymmetries in the hemiparkinsonian rat.

    PubMed

    Petri, David; Pum, Martin; Vesper, Jan; Huston, Joseph P; Schnitzler, Alfons

    2013-09-01

    The subthalamic nucleus (STN) has a pivotal role in the pathophysiology of Parkinson's disease (PD). Modulation of STN activity (by lesions, pharmacological or electrical stimulation) has been shown to improve motor parameters in PD patients and in animal models of PD. In an attempt to characterize the neurochemical bases for such antiparkinsonian action, we address specific neurotransmitter systems via local pharmacological manipulation of the STN in hemiparkinsonian rats. Here, we have focused on the GABAergic and glutamatergic receptors in the STN. In animals with unilateral 6-hydroxydopamine lesions of the nigro-striatal tract, we administered either the selective GABAA-agonist muscimol (0.5 μg and 1.0 μg), the non-competitive N-methyl-d-aspartate (NMDA)-antagonist MK-801 (dizocilpine; 2.5 μg), or vehicle (0.25 μl) into the STN. The effects of GABAergic and glutamatergic modulation of the STN on motor parameters were assessed by gauging rotational behavior and locomotion. Application of muscimol ipsilateral to the side of dopamine-depletion influenced turning behavior in a dose-dependent fashion, with the low dose re-adjusting turning behavior to a non-biased distribution, and the high dose evoking contraversive turning. The administration of MK-801 did not have such effects. These findings give evidence for the involvement of GABAergic activation in the STN in the compensation of motor asymmetries in the hemiparkinsonian rat, whereas N-methyl-d-aspartate (NMDA)-antagonism was ineffective in this model of PD. PMID:23727148

  11. Expression of mineralocorticoid and glucocorticoid receptors in preautonomic neurons of the rat paraventricular nucleus

    PubMed Central

    Chen, Jian; Gomez-Sanchez, Celso E.; Penman, Alan; May, Paul J.

    2013-01-01

    Activation of mineralocorticoid receptors (MR) of the hypothalamic paraventricular nucleus (PVN) increases sympathetic excitation. To determine whether MR and glucocorticoid receptors (GR) are expressed in preautonomic neurons of the PVN and how they relate to endogenous aldosterone levels in healthy rats, retrograde tracer was injected into the intermediolateral cell column at T4 to identify preautonomic neurons in the PVN. Expression of MR, GR, 11-β hydroxysteroid dehydrogenase1 and 2 (11β-HSD1, 2), and hexose-6-phosphate dehydrogenase (H6PD) required for 11β-HSD1 reductase activity was assessed by immunohistochemistry. RT-PCR and Western blot analysis were used to determine MR gene and protein expression. Most preautonomic neurons were in the caudal mediocellular region of PVN, and most expressed MR; none expressed GR. 11β-HSD1, but not 11β-HSD2 nor H6PD immunoreactivity, was detected in the PVN. In rats with chronic low or high sodium intakes, the low-sodium diet was associated with significantly higher plasma aldosterone, MR mRNA and protein expression, and c-Fos immunoreactivity within labeled preautonomic neurons. Plasma corticosterone and sodium and expression of tonicity-responsive enhancer binding protein in the PVN did not differ between groups, suggesting osmotic adaptation to the altered sodium intake. These results suggest that MR within preautonomic neurons in the PVN directly participate in the regulation of sympathetic nervous system drive, and aldosterone may be a relevant ligand for MR in preautonomic neurons of the PVN under physiological conditions. Dehydrogenase activity of 11β-HSD1 occurs in the absence of H6PD, which regenerates NADP+ from NADPH and may increase MR gene expression under physiological conditions. PMID:24381176

  12. Prenatal stress induces vulnerability to nicotine addiction and alters D2 receptors' expression in the nucleus accumbens in adult rats.

    PubMed

    Said, N; Lakehayli, S; El Khachibi, M; El Ouahli, M; Nadifi, S; Hakkou, F; Tazi, A

    2015-09-24

    Prenatal stress (PS) can induce several long-lasting behavioral and molecular abnormalities in rats. It can also be considered as a risk factor for many psychiatric diseases like schizophrenia, depression or PTSD and predispose to addiction. In this study, we investigated the effect of prenatal stress on the reinforcing properties of nicotine in the CPP paradigm. Then, we examined the mRNA expression of the D2 dopaminergic receptors using the quantitative real-time PCR technique in the nucleus accumbens (NAcc). We found that prenatally stressed rats exhibited a greater place preference for the nicotine-paired compartment than the control rats. Moreover, we observed an overexpression of the DRD2 gene in adult offspring stressed in utero and a downregulation in the PS NIC group (PS rats treated with nicotine) compared with their control counterparts (C NIC). These data suggest that maternal stress can permanently alter the offspring's addictive behavior and D2 receptors' expression. PMID:26192093

  13. Serotonin7 receptors in the lateral habenular nucleus regulate depressive-like behaviors in the hemiparkinsonian rats.

    PubMed

    Han, Ling Na; Zhang, Li; Sun, Yi Na; Du, Cheng Xue; Zhang, Yu Ming; Wang, Tao; Zhang, Jin; Liu, Jian

    2016-08-01

    Preclinical studies indicate that serotonin7 (5-HT7) receptors may regulate depressive-like behaviors. Depression is a common symptom in Parkinson's disease (PD); however, its pathophysiology is unclear. Here we examined whether 5-HT7 receptors in the lateral habenular nucleus (LHb) involve in the regulation of PD-related depression. Unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta in rats induced depressive-like responses as measured by the sucrose preference and forced swim tests when compared to sham-operated rats. Intra-LHb injection of 5-HT7 receptor agonist AS19 (1, 2 and 4μg/rat) induced or increased the expression of depressive-like behaviors in sham-operated and the lesioned rats. Further, intra-LHb injection of 5-HT7 receptor antagonist SB269970 (1.5, 3 and 6μg/rat) produced antidepressant effects in the two groups of rats. However, the doses producing these effects in the lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-LHb injection of AS19 (4μg/rat) decreased dopamine and 5-HT levels in the medial prefrontal cortex, habenula and hippocampus in sham-operated and the lesioned rats; whereas SB269970 (6μg/rat) increased dopamine and 5-HT levels in these structures. In addition, noradrenaline levels in these structures were not changed after intra-LHb injection of AS19 or SB269970 in the two groups of rats. These findings suggest that activation or blockade of 5-HT7 receptors in the LHb may change the activity of LHb glutamate neurons, and then decreases or increases dopamine and 5-HT levels in the limbic and limbic-related brain regions, which are involved in the regulation of depressive-like behaviors. PMID:27178363

  14. Microinjection of acetylcholine into cerebellar fastigial nucleus induces blood depressor response in anesthetized rats.

    PubMed

    Zhang, Changzheng; Luo, Wen; Zhou, Peiling; Sun, Tingzhe

    2016-08-26

    It is well known that the cerebellar fastigial nucleus (FN) is involved in cardiovascular modulation, and has direct evidence of cholinergic activity; however, whether and how acetylcholine (ACh) in the FN modulates blood pressure has not been investigated. In this study, we analyzed mean arterial pressure, maximal change in mean arterial pressure, and the reaction time of blood pressure changes after microinjection of cholinergic reagents into the FN in anesthetized rats. The results showed that ACh evoked a concentration-dependent (10, 30 and 100mM) effect on blood pressure down-regulation. The muscarinic ACh (mACh) receptor antagonist atropine, but not the nicotinic ACh (nACh) receptor antagonist mecamylamine, blocked the ACh-mediated depressor response. The mACh receptor agonist oxotremorine M, rather than nACh receptor agonist nicotine, mimicked the ACh-mediated blood pressure decrease in a dose-dependent manner (10, 30 and 100mM). These results indicate that cholinergic input in the cerebellar FN exerts a depressor effect on systemic blood pressure regulation, and such effects are substantially contributed by mACh rather than nACh receptors, although the precise mechanism concerning the role of mACh receptor in FN-mediated blood pressure modulation remains to be elucidated. PMID:27373533

  15. Stimulation of the Rat Subthalamic Nucleus is Neuroprotective Following Significant Nigral Dopamine Neuron Loss

    PubMed Central

    Spieles-Engemann, A. L.; Behbehani, M. M.; Collier, T. J.; Wohlgenant, S. L.; Steece-Collier, K.; Paumier, K.; Daley, B. F.; Gombash, S.; Madhavan, L.; Mandybur, G. T.; Lipton, J.W.; Terpstra, B.T.; Sortwell, C.E.

    2010-01-01

    Deep brain stimulation of the subthalamic nucleus (STN-DBS) is efficacious in treating the motor symptoms of Parkinson’s disease (PD). However, the impact of STN-DBS on the progression of PD is unknown. Previous preclinical studies have demonstrated that STN-DBS can attenuate the degeneration of a relatively intact nigrostriatal system from dopamine (DA)-depleting neurotoxins. The present study examined whether STN-DBS can provide neuroprotection in the face of prior significant nigral DA neuron loss similar to PD patients at the time of diagnosis. STN-DBS between two and four weeks after intrastriatal 6-hydroxydopamine (6-OHDA) provided significant sparing of DA neurons in the SN of rats. This effect was not due to inadvertent lesioning of the STN and was dependent upon proper electrode placement. Since STN-DBS appears to have significant neuroprotective properties, initiation of STN-DBS earlier in the course of PD may provide added neuroprotective benefits in addition to its ability to provide symptomatic relief. PMID:20307668

  16. The rat nucleus accumbens is involved in guiding of instrumental responses by stimuli predicting reward magnitude.

    PubMed

    Giertler, Christian; Bohn, Ines; Hauber, Wolfgang

    2003-10-01

    The present study examined the involvement of N-methyl-d-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolpropionate/kainate (AMPA/KA) and dopamine receptors in the nucleus accumbens (ACB) in influencing reaction times of instrumental responses by the expectancy of reward. A simple reaction time task demanding conditioned lever release was used in which the upcoming reward magnitude was signalled in advance by discriminative cues. After training, in control rats with vehicle infusions (0.5 micro L) into the ACB, reaction times of responses were significantly shorter to the discriminative cue predictive of high reward magnitude. Indirect stimulation of dopamine receptors in the ACB by d-amphetamine (20 micro g/0.5 micro L) decreased reaction times, impaired their guidance by cue-associated reward magnitudes and reduced the accuracy of task performance. Blockade of AMPA/KA receptors in the ACB by 6-cyano-7-nitroquino-xaline-2,3-dione (0.75 and 2.5 micro g/0.5 micro L) or NMDA receptors by d(-)-2-amino-5-phosphonopentanoic acid (5 micro g/0.5 micro L) produced a general increase in reaction times, but left guidance of reaction times by cue-associated reward magnitudes unaffected. Thus, stimulation of intra-ACB ionotropic glutamate receptors is critically involved in modulating the speed of instrumental responding to cues predictive for reward magnitude, but is not required for intact performance of previously learned instrumental behaviour. PMID:14622231

  17. Estrogen-induced neurochemical and electrophysiological changes in the parabrachial nucleus of the male rat.

    PubMed

    Saleh, Tarek M; Connell, Barry J; McQuaid, Tim; Cribb, Alastair E

    2003-11-14

    Estrogen has previously been shown to significantly change sympathetic and parasympathetic system output via an action within the central nuclei responsible for regulating autonomic tone. These estrogen-induced changes were observed within 30 min of systemic administration and could be blocked by the direct microinjection of the estrogen receptor antagonist, ICI 182780, into the parabrachial nucleus (PBN) of the pons. In the present investigation, we sought to determine the possible mechanism(s) by which estrogen produced these rapid changes in autonomic tone by determining if estrogen modulates neuronal excitability within the PBN. Male Sprague-Dawley rats were anaesthetized with Inactin (sodium thiobutabarbitol, 100 mg/kg) and instrumented for the intravenous injection of estrogen and placed in a stereotaxic frame for the insertion of a microdialysis probe or glass recording electrode into the PBN. In the first experiment, we sought to determine the local concentration of estrogen in the cerebrospinal fluid in the PBN following systemic injection of estrogen. In the second experiment, we sought to determine the functional significance of systemic estrogen injection on neuronal activity and amino acid neurotransmitter levels in the PBN. Systemic estrogen injection resulted in a significant increase in local estrogen concentration in the PBN which corresponded to a decrease in neuronal excitability and extracellular glutamate levels while increasing GABA levels in the PBN. These results suggest that estrogen decreases neuronal excitability in the PBN by modulating synaptic transmission via an increased release of GABA and a decreased release of glutamate. PMID:14568330

  18. Sensorimotor Processing in the Newborn Rat Red Nucleus during Active Sleep

    PubMed Central

    Del Rio-Bermudez, Carlos; Sokoloff, Greta

    2015-01-01

    Sensory feedback from sleep-related myoclonic twitches is thought to drive activity-dependent development in spinal cord and brain. However, little is known about the neural pathways involved in the generation of twitches early in development. The red nucleus (RN), source of the rubrospinal tract, has been implicated in the production of phasic motor activity during active sleep in adults. Here we hypothesized that the RN is also a major source of motor output for twitching in early infancy, a period when twitching is an especially abundant motor behavior. We recorded extracellular neural activity in the RN during sleep and wakefulness in 1-week-old unanesthetized rats. Neurons in the RN fired phasically before twitching and wake movements of the contralateral forelimb. A subpopulation of neurons in the RN exhibited a significant peak of activity after forelimb movement onset, suggesting reafferent sensory processing. Consistent with this observation, manual stimulation of the forelimb evoked RN responses. Unilateral inactivation of the RN using a mixture comprising GABAA, GABAB, and glycine receptor agonists caused an immediate and temporary increase in motor activity followed by a marked and prolonged decrease in twitching and wake movements. Altogether, these data support a causal role for the RN in infant motor behavior. Furthermore, they indicate that twitching, which is characterized by discrete motor output and reafferent input, provides an opportunity for sensorimotor integration and activity-dependent development of topography within the newborn RN. PMID:26019345

  19. Neonatal exposure to monosodium glutamate induces morphological alterations in suprachiasmatic nucleus of adult rat.

    PubMed

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Chávez-Saldaña, Margarita; Rojas, Patricia; Gutiérrez-Pérez, Oscar; Rojas, Carolina; Arteaga-Silva, Marcela

    2016-02-01

    Neonatal exposure to monosodium glutamate (MSG) induces circadian disorders in several physiological and behavioural processes regulated by the suprachiasmatic nucleus (SCN). The objective of this study was to evaluate the effects of neonatal exposure to MSG on locomotor activity, and on morphology, cellular density and expression of proteins, as evaluated by optical density (OD), of vasopressin (VP)-, vasoactive intestinal polypeptide (VIP)- and glial fibrillary acidic protein (GFAP)-immunoreactive cells in the SCN. Male Wistar rats were used: the MSG group was subcutaneously treated from 3 to 10 days of age with 3.5 mg/g/day. Locomotor activity was evaluated at 90 days of age using 'open-field' test, and the brains were processed for immunohistochemical studies. MSG exposure induced a significant decrease in locomotor activity. VP- and VIP-immunoreactive neuronal densities showed a significant decrease, while the somatic OD showed an increase. Major axes and somatic area were significantly increased in VIP neurons. The cellular and optical densities of GFAP-immunoreactive sections of SCN were significantly increased. These results demonstrated that newborn exposure to MSG induced morphological alterations in SCN cells, an alteration that could be the basis for behavioural disorders observed in the animals. PMID:26799547

  20. Synergistic activation of astrocytes by ATP and norepinephrine in the rat supraoptic nucleus.

    PubMed

    Espallergues, J; Solovieva, O; Técher, V; Bauer, K; Alonso, G; Vincent, A; Hussy, N

    2007-09-01

    Supraoptic nucleus (SON) neurons receive a dense innervation from noradrenergic fibers, the activity of which stimulates vasopressin (VP) and oxytocin (OT) release, notably during homeostatic regulation of blood pressure and volume. This regulation is known to involve the co-release of norepinephrine (NE) and ATP, which act in synergy to stimulate Ca(2+) increase in SON neurons and to enhance release of VP and OT from hypothalamo-neurohypophysial explants. We here demonstrate that both ATP and NE also trigger transient intracellular Ca(2+) rise in rat SON astrocytes, the two agonists showing a synergistic action similarly to what has been reported in SON neurons. The responses to both agonists are not or are only moderately affected after blockade of neuronal activity by tetrodotoxin, or of neurotransmitter release by removal of extracellular Ca(2+), suggesting that the receptors involved are located on the astrocytes themselves. ATP acts via P2Y(1) receptors, as indicated by the pharmacological profile of Ca(2+) responses and the strong immunolabeling for this receptor in SON astrocytes. Responses to NE involve both alpha and beta adrenergic receptors, the latter showing a permissive role on the former. These results point to further implication of SON astrocytes in the regulation of VP and OT secretion, and suggest that they are potentially important elements participating in all regulatory processes of hypothalamo-neurohypophysial function that involve activation of noradrenergic pathways. PMID:17693027

  1. Allyl isothiocyanates and cinnamaldehyde potentiate miniature excitatory postsynaptic inputs in the supraoptic nucleus in rats.

    PubMed

    Yokoyama, Toru; Ohbuchi, Toyoaki; Saito, Takeshi; Sudo, Yuka; Fujihara, Hiroaki; Minami, Kouichiro; Nagatomo, Toshihisa; Uezono, Yasuhito; Ueta, Yoichi

    2011-03-25

    Allyl isothiocyanates (AITC) and cinnamaldehyde are pungent compounds present in mustard oil and cinnamon oil, respectively. These compounds are well known as transient receptor potential ankyrin 1 (TRPA1) agonists. TRPA1 is activated by low temperature stimuli, mechanosensation and pungent irritants such as AITC and cinnamaldehyde. TRPA1 is often co-expressed in TRPV1. Recent study showed that hypertonic solution activated TRPA1 as well as TRPV1. TRPV1 is involved in excitatory synaptic inputs to the magnocellular neurosecretory cells (MNCs) that produce vasopressin in the supraoptic nucleus (SON). However, it remains unclear whether TRPA1 may be involved in this activation. In the present study, we examined the role of TRPA1 on the synaptic inputs to the MNCs in in vitro rat brain slice preparations, using whole-cell patch-clamp recordings. In the presence of tetrodotoxin, AITC (50μM) and cinnamaldehyde (30μM) increased the frequency of miniature excitatory postsynaptic currents without affecting the amplitude. This effect was significantly attenuated by previous exposure to ruthenium red (10μM), non-specific TRP channels blocker, high concentration of menthol (300μM) and HC-030031 (10μM), which are known to antagonize the effects of TRPA1 agonists. These results suggest that TRPA1 may exist at presynaptic terminals to the MNCs and enhance glutamate release in the SON. PMID:21266172

  2. Intrinsic properties of nucleus reticularis thalami neurones of the rat studied in vitro.

    PubMed Central

    Avanzini, G; de Curtis, M; Panzica, F; Spreafico, R

    1989-01-01

    1. Neurones of the nucleus reticularis thalami of the rat were studied by intracellular recordings from in vitro slices. The resting membrane potential was -56.28 +/- 5.86 mV (mean value +/- S.D.); input resistance was 43.09 +/- 9.74 M omega; the time constant tau was 16.51 +/- 3.99 ms. At the resting membrane potential tonic firing is present, while at membrane potentials more negative than -60 mV a burst firing mode gradually prevails. 2. Prolonged depolarizing current pulses superimposed on a steady hyperpolarization consistently activated sequences of burst-after-hyperpolarization complexes. The all-or-none burst response consisted of Na+-mediated, TTX-sensitive fast action potentials superimposed on a low threshold spike (LTS). The burst was followed by a stereotyped after-hyperpolarization lasting 100-120 ms (BAHP), with a maxima -85 mV. The BAHP was blocked by Cd2+ and apamine but not by 8-Br cyclic AMP. The early component of BAHP was significantly attenuated by TEA. The oscillatory rhythmic discharges were abolished by agents which blocked the BAHP. 3. The presence of strong after-hyperpolarizing potentials (SAHP and BAHP) in RTN neurones plays a significant role in determining two different functional states, defined as tonic and oscillatory burst firing modes, respectively. PMID:2558172

  3. Effects of antiepileptics on lateral geniculate nucleus-kindled seizures in rats.

    PubMed

    Ishikawa, Takashi; Fujiwara, Akinori; Takechi, Kenshi; Kamei, Chiaki

    2009-04-01

    The present study was undertaken to clarify the characteristics of lateral geniculate nucleus (LGN) kindling in rats, especially the efficacies of antiepileptics, in comparison with those of amygdala (AMG) kindling. Daily electrical stimulation of the LGN led to the development of a generalized convulsion (kangaroo posture and falling back) in all subjects, similar to AMG kindling. The kindling response of the LGN differed from that of the AMG in a number of respects, that is, a high after-discharge (AD) threshold, a large number of stimulations for completion of kindling, and a different pattern of electroencephalogram (EEG) development. On the other hand, the oral administration of sodium valproate, carbamazepine, clobazam, or zonisamide caused dose-dependent inhibitions of both seizure stage and AD duration of LGN-kindled seizures, whereas ethosuximide had no significant effects. In addition, seizure stage was more potently inhibited than AD duration by these antiepileptics, particularly with clobazam. In conclusion, LGN kindling possesses characteristics that are different from AMG kindling. In addition, it was demonstrated that LGN kindling is a useful model, similar to other types of limbic system kindling, for the evaluation of antiepileptics. PMID:19346673

  4. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens.

    PubMed

    Albaugh, Daniel L; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action. PMID:27601003

  5. Activation of 5-hyrdoxytryptamine 7 receptors within the rat nucleus tractus solitarii modulates synaptic properties.

    PubMed

    Matott, Michael P; Kline, David D

    2016-03-15

    Serotonin (5-HT) is a potent neuromodulator with multiple receptor types within the cardiorespiratory system, including the nucleus tractus solitarii (nTS) - the central termination site of visceral afferent fibers. The 5-HT7 receptor facilitates cardiorespiratory reflexes through its action in the brainstem and likely in the nTS. However, the mechanism and site of action for these effects is not clear. In this study, we examined the expression and function of 5-HT7 receptors in the nTS of Sprague-Dawley rats. 5-HT7 receptor mRNA and protein were identified across the rostrocaudal extent of the nTS. To determine 5-HT7 receptor function, we examined nTS synaptic properties following 5-HT7 receptor activation in monosynaptic nTS neurons in the in vitro brainstem slice preparation. Application of 5-HT7 receptor agonists altered tractus solitarii evoked and spontaneous excitatory postsynaptic currents which were attenuated with a selective 5-HT7 receptor antagonist. 5-HT7 receptor-mediated changes in excitatory postsynaptic currents were also altered by block of 5-HT1A and GABAA receptors. Interestingly, 5-HT7 receptor activation also reduced the amplitude but not frequency of GABAA-mediated inhibitory currents. Together these results indicate a complex role for 5-HT7 receptors in the nTS that mediate its diverse effects on cardiorespiratory parameters. PMID:26779891

  6. GABAergic transmission in the rat paraventricular nucleus of the hypothalamus is suppressed by corticosterone and stress.

    PubMed

    Verkuyl, J Martin; Karst, Henk; Joëls, Marian

    2005-01-01

    Parvocellular neurons in the hypothalamic paraventricular nucleus receive hormonal inputs mediated by corticosterone as well as neuronal inputs, prominent among which is a GABAergic inhibitory projection. In the present study we examined the functional properties of this GABAergic innervation when corticosteroid levels fluctuate. Frequency, amplitude and kinetic properties of miniature inhibitory postsynaptic potentials (mIPSCs), mediated by gamma amino butyric acid (GABA) were studied with whole cell recording in parvocellular neurons. Injection of a high dose of corticosterone in vivo suppressed the frequency but did not change the amplitude and kinetic properties of mIPSCs recorded 1-5 h later in vitro. Similar effects were observed after restraint stress. The corticosteroid actions do not require involvement of extrahypothalamic brain regions, because in vitro administration of 100 nM corticosterone (20 min) directly to a hypothalamic slice also suppressed the frequency of mIPSCs recorded several hours later. Corticosterone administration to hypothalamic slices from restraint rats did not result in stronger reduction of mIPSC frequency than either treatment alone, pointing to a common underlying mechanism. Paired pulse response inhibition was reduced by corticosterone, suggesting that the hormone decreases the release probability of GABA-containing vesicles. Unlike neurosteroids, corticosterone induced no rapid effects on mIPSC properties. These results indicate that increases in glucocorticoid level due to stress can slowly but persistently inhibit the GABAergic tone on parvocellular hypothalamic neurons via a hitherto unknown local mechanism independent of limbic projections. PMID:15654848

  7. Functional Magnetic Resonance Imaging of Electrical and Optogenetic Deep Brain Stimulation at the Rat Nucleus Accumbens

    PubMed Central

    Albaugh, Daniel L.; Salzwedel, Andrew; Van Den Berge, Nathalie; Gao, Wei; Stuber, Garret D.; Shih, Yen-Yu Ian

    2016-01-01

    Deep brain stimulation of the nucleus accumbens (NAc-DBS) is an emerging therapy for diverse, refractory neuropsychiatric diseases. Although DBS therapy is broadly hypothesized to work through large-scale neural modulation, little is known regarding the neural circuits and networks affected by NAc-DBS. Using a healthy, sedated rat model of NAc-DBS, we employed both evoked- and functional connectivity (fc) MRI to examine the functional circuit and network changes achieved by electrical NAc stimulation. Optogenetic-fMRI experiments were also undertaken to evaluate the circuit modulation profile achieved by selective stimulation of NAc neurons. NAc-DBS directly modulated neural activity within prefrontal cortex and a large number of subcortical limbic areas (e.g., amygdala, lateral hypothalamus), and influenced functional connectivity among sensorimotor, executive, and limbic networks. The pattern and extent of circuit modulation measured by evoked-fMRI was relatively insensitive to DBS frequency. Optogenetic stimulation of NAc cell bodies induced a positive fMRI signal in the NAc, but no other detectable downstream responses, indicating that therapeutic NAc-DBS might exert its effect through antidromic stimulation. Our study provides a comprehensive mapping of circuit and network-level neuromodulation by NAc-DBS, which should facilitate our developing understanding of its therapeutic mechanisms of action. PMID:27601003

  8. Paraventricular nucleus is involved in the central pathway of adipose afferent reflex in rats.

    PubMed

    Shi, Zhen; Wang, Yuan-Fang; Wang, Gui-Hua; Wu, Yu-Long; Ma, Chun-Lei

    2016-05-01

    Increasing evidence indicates a link between sympathetic nervous system activation and obesity, but the underlying mechanisms remain elusive. The adipose afferent reflex (AAR) is a sympathoexcitatory reflex that is activated by afferent neurotransmission from the white adipose tissue (WAT). This study aimed to investigate whether the hypothalamic paraventricular nucleus (PVH) is an important component of the central neurocircuitry of the AAR. In anesthetized rats, the discharge activity of individual PVH neurons was recorded in vivo. Activation of WAT afferents was initiated by capsaicin injection, and the AAR was evaluated by monitoring renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses. The responses of PVH neurons to activation of WAT afferents were evaluated by c-fos immunoreactivity and the discharge activity of individual PVH neurons, which was recorded using extracellular single-unit recording. After activation of WAT afferents, both individual PVH neuron discharge activity and c-fos immunoreactivity increased. Bilateral selective lesions of the neurons in the PVH with kainic acid abolished the AAR. These results indicate that PVH is an important component of the central neurocircuitry of the AAR. PMID:26963333

  9. Neuroanatomical and physiological evidence that the retrotrapezoid nucleus/parafacial region regulates expiration in adult rats.

    PubMed

    Silva, Josiane N; Tanabe, Fabiola M; Moreira, Thiago S; Takakura, Ana C

    2016-06-15

    The rostroventrolateral medulla contains two functional neuronal populations: (1) the parafacial respiratory group (pFRG) neurons and (2) the chemosensitive retrotrapezoid nucleus (RTN) neurons. Using anatomical and physiological techniques, we investigated the role of the RTN/pFRG in CO2-induced active expiration (AE) in urethane-anesthetized rats. Anterograde tracing using biotinylated dextran amine (BDA) revealed dense neuronal projections emanating from the RTN/pFRG to the caudal ventral respiratory group (cVRG), 60% of which contained vesicular glutamate transporter-2. The minority (16%) of the RTN projections to the cVRG emanated from Phox2b positive neurons. Hypercapnia (10% CO2) increased DiaEMG and elicited AbdEMG activity. Bilateral injections of muscimol (2mM) into the RTN/pFRG reduced the activation of DiaEMG (23±4%) and abolished AE-induced by chemoreflex stimulation. Taken together, these results support the presence of direct excitatory projections from RTN/pFRG neurons to cVRG expiratory premotor neurons, playing a role in the generation/modulation of AE. PMID:26900003

  10. Postnatal development of GABAergic signalling in the rat lateral geniculate nucleus: presynaptic dendritic mechanisms

    PubMed Central

    Perreault, Marie-Claude; Qin, Yi; Heggelund, Paul; Zhu, J Julius

    2003-01-01

    Diverse forms of GABAergic inhibition are found in the mature brain. To understand how this diversity develops, we studied the changes in morphology of inhibitory interneurons and changes in interneuron-mediated synaptic transmission in the rat dorsal lateral geniculate nucleus (dLGN). We found a steady expansion of the dendritic tree of interneurons over the first three postnatal weeks. During this period, the area around a thalamocortical cell from which GABAA inhibition could be elicited also expanded. Dendritic branching and burst firing in interneurons evolved more slowly. The distal dendrites of interneurons began to branch extensively after the third week, and at the same time burst firing appeared. The appearance of burst firing and an elaborated dendritic tree were accompanied by a pronounced GABAB inhibition of thalamocortical cells. Thus, GABA inhibition of thalamocortical cells developed from one type of GABAA inhibition (spatially restricted) in the young animal into two distinct types of GABAA inhibition (short- and long-range) and GABAB inhibition in the adult animal. The close temporal relationships between the development of the diverse forms of inhibition and the postnatal changes in morphology of local GABAergic interneurons in the dLGN suggest that postnatal dendritic maturation is an important presynaptic factor for the developmental time course of the various types of feedforward inhibition in thalamus. PMID:12509484

  11. Tonic GABAA Receptor-Mediated Inhibition in the Rat Dorsal Motor Nucleus of the Vagus

    PubMed Central

    Gao, Hong

    2010-01-01

    Type A γ-aminobutyric acid (GABAA) receptors expressed in the dorsal motor nucleus of vagus (DMV) critically regulate the activity of vagal motor neurons and, by inference, the gastrointestinal (GI) tract. Two types of GABAA receptor-mediated inhibition have been identified in the brain, represented by phasic (Iphasic) and tonic (Itonic) inhibitory currents. The hypothesis that Itonic regulates neuron activity was tested in the DMV using whole cell patch-clamp recordings in transverse brain stem slices from rats. An Itonic was present in a subset of DMV neurons, which was determined to be mediated by different receptors than those mediating fast, synaptic currents. Preapplication of tetrodotoxin significantly decreased the resting Itonic amplitude in DMV neurons, suggesting that most of the current was due to action potential (AP)–dependent GABA release. Blocking GABA transport enhanced Itonic and multiple GABA transporters cooperated to regulate Itonic. The Itonic was composed of both a gabazine-insensitive component that was nearly saturated under basal conditions and a gabazine-sensitive component that was activated when extracellular GABA concentration was elevated. Perfusion of THIP (10 μM) significantly increased Itonic amplitude without increasing Iphasic amplitude. The Itonic played a major role in determining the overall excitability of DMV neurons by contributing to resting membrane potential and AP frequency. Our results indicate that Itonic contributes to DMV neuron membrane potential and activity and is thus an important regulator of vagally mediated GI function. PMID:20018836

  12. Vasopressin-immunoreactive cells in the dorsomedial hypothalamic region, medial amygdaloid nucleus and locus coeruleus of the rat.

    PubMed

    Caffé, A R; van Leeuwen, F W

    1983-01-01

    Recently, the existence of a vasopressin-immunoreactive cell group was described in the bed nucleus of the stria terminalis (van Leeuwen and Caffé 1983). In the present investigation additional nuclei containing vasopressin-immunoreactive cells were found, after colchicine pretreatment, in the dorsomedial hypothalamus, medial amygdaloid nucleus and the locus coeruleus. Vasopressin-immunoreactive cells in the dorsomedial hypothalamus and medial amygdaloid nucleus are small (8--14 micrometers and 10--14 micrometers, respectively), while those in the locus coeruleus are medium-sized (20--25 micrometers). Incubation with anti-bovine neurophysin II and anti-rat neurophysin revealed staining of the same cell group in the above-mentioned areas. None of these cell groups show stained cells after incubation with anti-oxytocin and anti-bovine neurophysin I. When sections of the homozygous Brattleboro rat, which shows a deficiency in vasopressin synthesis, are incubated with anti-vasopressin, anti-bovine neurophysin II, or anti-rat neurophysin, no immunoreactivity can be observed in these brain regions. The above-mentioned cell groups may contribute to the vasopressinergic innervation of brain sites that have been reported to persist after lesioning of the suprachiasmatic, paraventricular and bed nuclei of the stria terminalis. PMID:6616564

  13. Oxytocin in the nucleus accumbens core reduces reinstatement of methamphetamine-seeking behaviour in rats.

    PubMed

    Baracz, Sarah J; Everett, Nicholas A; McGregor, Iain S; Cornish, Jennifer L

    2016-03-01

    The psychostimulant methamphetamine (METH) is an addictive illicit drug. Systemic administration of the neuropeptide oxytocin modulates METH-related reward and METH-seeking behaviour. Recent findings demonstrated a reduction in METH-induced reward by oxytocin administration into the nucleus accumbens (NAc) core. It is not known, however, if oxytocin acts in this region to reduce relapse to METH-seeking behaviour. Using the drug reinstatement paradigm in rats experienced at METH self-administration, we aimed to determine whether oxytocin pre-treatment within the NAc core would reduce relapse to METH use and if this could be reversed by the co-administration of the oxytocin receptor (OTR) antagonist desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT. Male Sprague-Dawley rats underwent surgery to implant an intravenous jugular vein catheter and bilateral microinjection cannulae in the NAc core. Rats were then trained to self-administer intravenous METH (0.1 mg/kg/infusion) by lever press during 2-hour fixed ratio 1 scheduled sessions for 20 days. Following extinction of lever press activity, the effect of microinjecting saline, oxytocin (0.5 pmol, 1.5 pmol, 4.5 pmol) or co-administration of oxytocin (1.5 pmol) and desGly-NH2,d(CH2)5[D-Tyr2,Thr4]OVT (1 nmol, 3 nmol) in the NAc core (500 nl/side) was examined on METH-primed (1 mg/kg, i.p.) reinstatement of drug-seeking behaviour. Our results showed oxytocin directly administered into the NAc core decreased METH-primed reinstatement in a dose-dependent manner. Co-administration of the selective OTR antagonist did not specifically reverse the inhibitory effects of oxytocin on METH priming, suggesting mediation by receptors other than the OTR. These findings highlight an important modulatory effect of oxytocin in the NAc core on relapse to METH seeking. PMID:25399704

  14. Thalamic damage in periventricular leukomalacia: novel pathologic observations relevant to cognitive deficits in survivors of prematurity.

    PubMed

    Ligam, Poonam; Haynes, Robin L; Folkerth, Rebecca D; Liu, Lena; Yang, May; Volpe, Joseph J; Kinney, Hannah C

    2009-05-01

    Despite major advances in the long-term survival of premature infants, cognitive deficits occur in 30-50% of very preterm (<32 gestational weeks) survivors. Impaired working memory and attention despite average global intelligence are central to the academic difficulties of the survivors. Periventricular leukomalacia (PVL), characterized by periventricular necrosis and diffuse gliosis in the cerebral white matter, is the major brain pathology in preterm infants. We tested the novel hypothesis that pathology in thalamic nuclei critical for working memory and attention, i.e. mediodorsal nucleus and reticular nucleus, respectively, occurs in PVL. In 22 PVL cases (gestational age 32.5 +/- 4.8 wk) and 16 non-PVL controls (36.7 +/- 5.2 wk) who died within infancy, the incidence of thalamic pathology was significantly higher in PVL cases (59%; 13/22) compared with controls (19%; 3/16) (p = 0.01), with substantial involvement of the mediodorsal, and reticular nuclei in PVL. The prevention of thalamic damage may be required for the eradication of defects in survivors with PVL. PMID:19127204

  15. Low-frequency stimulation of the pedunculopontine nucleus affects gait and the neurotransmitter level in the ventrolateral thalamic nucleus in 6-OHDA Parkinsonian rats.

    PubMed

    Wen, Peng; Li, Min; Xiao, Hu; Ding, Rui; Chen, Huan; Chang, Jingyu; Zhou, Ming; Yang, Yong; Wang, Jun; Zheng, Weixin; Zhang, Wangming

    2015-07-23

    The pedunculopontine nucleus (PPN) is connected to spinal, cerebellar and cerebral motor control structures and can be activated with external electrodes. Intrinsic cholinergic neuronal degeneration in the PPN is associated with postural instabilities and gait disturbances (PIGD) in advanced Parkinson's disease (PD). Clinical studies have demonstrated that PPN stimulation may improve PIGD. We investigated this claim and the underlying mechanisms using the 6-hydroxydopamine (6-OHDA) hemilesion model of PD. In this study, gait-related parameters, including the base of support (BOS), stride length, and maximum contact area, were analyzed via CatWalk gait analysis following PPN-low frequency stimulation (LFS) of rats with unilateral 6-OHDA lesions. Additionally, neurotransmitter concentrations in the ventrolateral thalamic nucleus (VL) were measured by microdialysis and liquid chromatography-mass spectrometry (LC-MS). Our data revealed that unilateral 6-OHDA lesions of the medial forebrain bundle (MFB) induced significant gait deficits. PPN-LFS significantly improved the BOS (hindlimb) and maximum contact area (impaired forelimb) scores, whereas no other gait parameters were significantly affected. Unilateral 6-OHDA MFB lesions significantly decreased acetylcholine (ACh) and moderately decreased noradrenaline (NA) concentrations in the VL. PPN-LFS mildly reversed the ACh loss in the VL in the lesioned rats but did not alter the NA levels. Taken together, our data indicate that PPN-LFS is useful for treating gait deficits of PD and that these effects are probably mediated by a rebalancing of ACh levels in the PPN-VL pathway. Thus, our findings provide possible insight into the mechanisms underlying PIGD in PD. PMID:26054938

  16. The network of causal interactions for beta oscillations in the pedunculopontine nucleus, primary motor cortex, and subthalamic nucleus of walking parkinsonian rats.

    PubMed

    Li, Min; Zhou, Ming; Wen, Peng; Wang, Qiang; Yang, Yong; Xiao, Hu; Xie, Zhengyuan; Li, Xing; Wang, Ning; Wang, Jinyan; Luo, Fei; Chang, Jingyu; Zhang, Wangming

    2016-08-01

    Oscillatory activity has been well-studied in many structures within cortico-basal ganglia circuits, but it is not well understood within the pedunculopontine nucleus (PPN), which was recently introduced as a potential target for the treatment of gait and postural impairments in advanced stages of Parkinson's disease (PD). To investigate oscillatory activity in the PPN and its relationship with oscillatory activity in cortico-basal ganglia circuits, we simultaneously recorded local field potentials in the PPN, primary motor cortex (M1), and subthalamic nucleus (STN) of 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats during resting and walking. After analysis of power spectral density, coherence, and partial Granger causality, three major findings emerged: 1) after 6-OHDA lesions, beta band oscillations were enhanced in all three regions during walking; 2) the direction of information flow for beta oscillations among the three structures was STN→M1, STN→PPN, and PPN→M1; 3) after the treatment of levodopa, beta activity in the three regions was reduced significantly and the flow of beta band was also abrogated. Our results suggest that beta activity in the PPN is transmitted from the basal ganglia and probably comes from the STN, and the STN plays a dominant role in the network of causal interactions for beta activity. Thus, the STN may be a potential source of aberrant beta band oscillations in PD. Levodopa can inhibit beta activity in the PPN of parkinsonian rats but cannot relieve parkinsonian patients' axial symptoms clinically. Therefore, beta oscillations may not be the major cause of axial symptoms. PMID:27163550

  17. Autoradiographic localization of angiotensin II receptors in rat brain.

    PubMed Central

    Mendelsohn, F A; Quirion, R; Saavedra, J M; Aguilera, G; Catt, K J

    1984-01-01

    The 125I-labeled agonist analog [1-sarcosine]-angiotensin II ( [Sar1]AII) bound with high specificity and affinity (Ka = 2 X 10(9) M-1) to a single class of receptor sites in rat brain. This ligand was used to analyze the distribution of AII receptors in rat brain by in vitro autoradiography followed by computerized densitometry and color coding. A very high density of AII receptors was found in the subfornical organ, paraventricular and periventricular nuclei of the hypothalamus, nucleus of the tractus solitarius, and area postrema. A high concentration of receptors was found in the suprachiasmatic nucleus of the hypothalamus, lateral olfactory tracts, nuclei of the accessory and lateral olfactory tracts, triangular septal nucleus, subthalamic nucleus, locus coeruleus, and inferior olivary nuclei. Moderate receptor concentrations were found in the organum vasculosum of the lamina terminalis, median preoptic nucleus, medial habenular nucleus, lateral septum, ventroposterior thalamic nucleus, median eminence, medial geniculate nucleus, superior colliculus, subiculum, pre- and parasubiculum, and spinal trigeminal tract. Low concentrations of sites were seen in caudate-putamen, nucleus accumbens, amygdala, and gray matter of the spinal cord. These studies have demonstrated that AII receptors are distributed in a highly characteristic anatomical pattern in the brain. The high concentrations of AII receptors at numerous physiologically relevant sites are consistent with the emerging evidence for multiple roles of AII as a neuropeptide in the central nervous system. Images PMID:6324205

  18. Autoradiographic localization of angiotensin II receptors in rat brain

    SciTech Connect

    Mendelsohn, F.A.O.; Quirion, R.; Saavedra, J.M.; Aguilera, G.; Catt, K.J.

    1984-03-01

    The /sup 125/I-labeled agonist analog (1-sarcosine)-angiotensin II ((Sar/sup 1/)AII) bound with high specificity and affinity (K/sub a/ = 2 x 10/sup 9/ M/sup -1/) to a single class of receptor sites in rat brain. This ligand was used to analyze the distribution of AII receptors in rat brain by in vitro autoradiography followed by computerized densitometry and color coding. A very high density of AII receptors was found in the subfornical organ, paraventricular and periventricular nuclei of the hypothalamus, nucleus of the tractus solitarius, and area postrema. A high concentration of receptors was found in the suprachiasmatic nucleus of the hypothalamus, lateral olfactory tracts, nuclei of the accessory and lateral olfactory tracts, triangular septal nucleus, subthalamic nucleus, locus coeruleus, and inferior olivary nuclei. Moderate receptor concentrations were found in the organum vasculosum of the lamina terminalis, median preoptic nucleus, medial habenular nucleus, lateral septum, ventroposterior thalamic nucleus, median eminence, medial geniculate nucleus, superior colliculus, subiculum, pre- and parasubiculum, and spinal trigeminal tract. Low concentrations of sites were seen in caudate-putamen, nucleus accumbens, amygdala, and gray matter of the spinal cord. These studies have demonstrated that AII receptors are distributed in a highly characteristic anatomical pattern in the brain. The high concentrations of AII receptors at numerous physiologically relevant sites are consistent with the emerging evidence for multiple roles of AII as a neuropeptide in the central nervous system. 75 references, 2 figures.

  19. Serotonin in the solitary tract nucleus shortens the laryngeal chemoreflex in anaesthetized neonatal rats.

    PubMed

    Donnelly, William T; Bartlett, Donald; Leiter, J C

    2016-07-01

    What is the central question of this study? Failure to terminate apnoea and arouse is likely to contribute to sudden infant death syndrome (SIDS). Serotonin is deficient in the brainstems of babies who died of SIDS. Therefore, we tested the hypothesis that serotonin in the nucleus of the solitary tract (NTS) would shorten reflex apnoea. What is the main finding and its importance? Serotonin microinjected into the NTS shortened the apnoea and respiratory inhibition associated with the laryngeal chemoreflex. Moreover, this effect was achieved through a 5-HT3 receptor. This is a new insight that is likely to be relevant to the pathogenesis of SIDS. The laryngeal chemoreflex (LCR), an airway-protective reflex that causes apnoea and bradycardia, has long been suspected as an initiating event in the sudden infant death syndrome. Serotonin (5-HT) and 5-HT receptors may be deficient in the brainstems of babies who die of sudden infant death syndrome, and 5-HT seems to be important in terminating apnoeas directly or in causing arousals or as part of the process of autoresuscitation. We hypothesized that 5-HT in the brainstem would limit the duration of the LCR. We studied anaesthetized rat pups between 7 and 21 days of age and made microinjections into the cisterna magna or into the nucleus of the solitary tract (NTS). Focal, bilateral microinjections of 5-HT into the caudal NTS significantly shortened the LCR. The 5-HT1a receptor antagonist, WAY 100635, did not affect the LCR consistently, nor did a 5-HT2 receptor antagonist, ketanserin, alter the duration of the LCR. The 5-HT3 specific agonist, 1-(3-chlorophenyl)-biguanide, microinjected bilaterally into the caudal NTS significantly shortened the LCR. Thus, endogenous 5-HT released within the NTS may curtail the respiratory depression that is part of the LCR, and serotonergic shortening of the LCR may be attributed to activation of 5-HT3 receptors within the NTS. 5-HT3 receptors are expressed presynaptically on C

  20. Factors associated with periventricular haemorrhage in very low birthweight infants.

    PubMed Central

    Cooke, R W

    1981-01-01

    Periventricular haemorrhage was diagnosed in vivo in 20 of 29 consecutively admitted infants of birthweight below 1500 g using an ultrasound scanner. Ten (51%) infants with haemorrhages survived. Mortality was related to the extent of the bleeding. Statistically significant associations with respiratory distress, ventilator therapy, metabolic acidosis, and hypercapnia were observed, lending support to their role in the pathogenesis of periventricular haemorrhage. Images Fig. 1 Fig. 2 Fig. 3a Fig. 4a Fig. 5a PMID:7259272

  1. Ginkgo biloba extract enhances noncontact erection in rats: the role of dopamine in the paraventricular nucleus and the mesolimbic system.

    PubMed

    Yeh, K-Y; Wu, C-H; Tai, M-Y; Tsai, Y-F

    2011-08-25

    Penile erection is essential for successful copulation in males. Dopaminergic projections from the paraventricular nucleus (PVN) to the ventral tegmental area (VTA) and from the VTA to the nucleus accumbens (NAc) are thought to exert a facilitatory effect on penile erection. Our previous study showed that treatment with an extract of Ginkgo biloba leaves (EGb 761) enhances noncontact erection (NCE) in male rats. However, the relationship between NCE and dopaminergic activity in the PVN, VTA, and NAc remains unknown. The present study examined the relationship between NCE and central dopaminergic activity following EGb 761 treatment. We report here that, in comparison with the controls, there was a significant increase in the number of NCEs in rats after treatment with 50 mg/kg of EGb 761 for 14 days. EGb 761-treated rats also showed more NCEs than the same group before EGb 761 treatment. A significant increase in the expression of catecholaminergic neurons in the PVN and the VTA was seen by means of tyrosine hydroxylase immunohistochemistry, and tissue levels of dopamine and 3,4-dihydroxyphenylacetic acid in the NAc were also markedly increased in the EGb 761-treated animals. However, the norepinephrine tissue levels in the PVN and the NAc in the EGb 761-treated group were not significantly different from those in the controls. Together, these results suggest that administration of EGb 761 increases dopaminergic activity in the PVN and the mesolimbic system to facilitate NCE in male rats. PMID:21640798

  2. High-Frequency Stimulation of the Rat Entopeduncular Nucleus Does Not Provide Functional or Morphological Neuroprotection from 6-Hydroxydopamine

    PubMed Central

    Fischer, D. Luke; Collier, Timothy J.; Cole-Strauss, Allyson; Wohlgenant, Susan L.; Lipton, Jack W.; Steece-Collier, Kathy; Manfredsson, Fredric P.; Kemp, Christopher J.; Sortwell, Caryl E.

    2015-01-01

    Deep brain stimulation (DBS) is the most common neurosurgical treatment for Parkinson’s disease (PD). Whereas the globus pallidus interna (GPi) has been less commonly targeted than the subthalamic nucleus (STN), a recent clinical trial suggests that GPi DBS may provide better outcomes for patients with psychiatric comorbidities. Several laboratories have demonstrated that DBS of the STN provides neuroprotection of substantia nigra pars compacta (SNpc) dopamine neurons in preclinical neurotoxin models of PD and increases brain-derived neurotrophic factor (BDNF). However, whether DBS of the entopeduncular nucleus (EP), the homologous structure to the GPi in the rat, has similar neuroprotective potential in preclinical models has not been investigated. We investigated the impact of EP DBS on forelimb use asymmetry and SNpc degeneration induced by 6-hydroxydopamine (6-OHDA) and on BDNF levels. EP DBS in male rats received unilateral, intrastriatal 6-OHDA and ACTIVE or INACTIVE stimulation continuously for two weeks. Outcome measures included quantification of contralateral forelimb use, stereological assessment of SNpc neurons and BDNF levels. EP DBS 1) did not ameliorate forelimb impairments induced by 6-OHDA, 2) did not provide neuroprotection for SNpc neurons and 3) did not significantly increase BDNF levels in any of the structures examined. These results are in sharp contrast to the functional improvement, neuroprotection and BDNF-enhancing effects of STN DBS under identical experimental parameters in the rat. The lack of functional response to EP DBS suggests that stimulation of the rat EP may not represent an accurate model of clinical GPi stimulation. PMID:26222442

  3. The monoamine stabilizer (-)-OSU6162 counteracts downregulated dopamine output in the nucleus accumbens of long-term drinking Wistar rats.

    PubMed

    Feltmann, Kristin; Fredriksson, Ida; Wirf, Malin; Schilström, Björn; Steensland, Pia

    2016-03-01

    We recently established that the monoamine stabilizer (-)-OSU6162 (OSU6162) decreased voluntary alcohol-mediated behaviors, including alcohol intake and cue/priming-induced reinstatement, in long-term drinking rats, while blunting alcohol-induced dopamine output in the nucleus accumbens (NAc) of alcohol-naïve rats. Therefore, we hypothesized that OSU6162 attenuates alcohol-mediated behaviors by blunting alcohol's rewarding effects. Here, we evaluated the effects of long-term drinking and OSU6162 treatment (30 mg/kg, sc) on basal and alcohol-induced (2.5 g/kg, ip) NAc dopamine outputs in Wistar rats after 10 months of intermittent access to 20% alcohol. The results showed that basal and alcohol-induced NAc dopamine outputs were significantly lower in long-term drinking rats, compared with alcohol-naïve rats. In the long-term drinking rats, OSU6162 slowly increased and maintained the dopamine output significantly elevated compared with baseline for at least 4 hours. Furthermore, OSU6162 pre-treatment did not blunt the alcohol-induced output in the long-term drinking rats, a finding that contrasted with our previous results in alcohol-naïve rats. Finally, OSU6162 did not induce conditioned place preference (CPP) in either long-term drinking or alcohol-naïve rats, indicating that OSU6162 has no reinforcing properties. To verify that the CPP results were not due to memory acquisition impairment, we demonstrated that OSU6162 did not affect novel object recognition. In conclusion, these results indicate that OSU6162 attenuates alcohol-mediated behaviors by counteracting NAc dopamine deficits in long-term drinking rats and that OSU6162 is not rewarding on its own. Together with OSU6162's beneficial side-effect profile, the present study merits evaluation of OSU6162's clinical efficacy to attenuate alcohol use in alcohol-dependent patients. PMID:26464265

  4. Ultrasound and necropsy study of periventricular haemorrhage in preterm infants.

    PubMed Central

    Szymonowicz, W; Schafler, K; Cussen, L J; Yu, V Y

    1984-01-01

    The diagnostic accuracy of cerebral ultrasound for periventricular haemorrhage was determined by comparing this with necropsy findings in 30 preterm neonates of 30 weeks' gestation or less and birthweight under 1500 g. Ultrasound gave an accurate diagnosis of 85% in infants with germinal layer haemorrhage, 92% in intraventricular haemorrhage, and 97% in intracerebral haemorrhage. False positive errors were caused by vascular congestion; false negative errors occurred when the maximum dimension of haemorrhage was less than 3 mm. Cerebral ultrasound gave a diagnostic accuracy of 63% for periventricular leucomalacia. False negative errors occurred when periventricular leucomalacia was microscopic or when it was out of range of the scanner. The maximum width of the germinal layer was measured in 77 neonates of gestational age 23 to 36 weeks who died and had no periventricular haemorrhage at necropsy. The progressive involution of the germinal layer with increasing gestational age paralleled the steady decrease in incidence of periventricular haemorrhage diagnosed over the same gestational age range. Neonates of the youngest gestational age who had the most extensive germinal layers also had the highest risk for periventricular haemorrhage. Images Fig. 1 Fig. 2 Fig. 3 p640-b Fig. 4 PMID:6465933

  5. Ultrasound and necropsy study of periventricular haemorrhage in preterm infants.

    PubMed

    Szymonowicz, W; Schafler, K; Cussen, L J; Yu, V Y

    1984-07-01

    The diagnostic accuracy of cerebral ultrasound for periventricular haemorrhage was determined by comparing this with necropsy findings in 30 preterm neonates of 30 weeks' gestation or less and birthweight under 1500 g. Ultrasound gave an accurate diagnosis of 85% in infants with germinal layer haemorrhage, 92% in intraventricular haemorrhage, and 97% in intracerebral haemorrhage. False positive errors were caused by vascular congestion; false negative errors occurred when the maximum dimension of haemorrhage was less than 3 mm. Cerebral ultrasound gave a diagnostic accuracy of 63% for periventricular leucomalacia. False negative errors occurred when periventricular leucomalacia was microscopic or when it was out of range of the scanner. The maximum width of the germinal layer was measured in 77 neonates of gestational age 23 to 36 weeks who died and had no periventricular haemorrhage at necropsy. The progressive involution of the germinal layer with increasing gestational age paralleled the steady decrease in incidence of periventricular haemorrhage diagnosed over the same gestational age range. Neonates of the youngest gestational age who had the most extensive germinal layers also had the highest risk for periventricular haemorrhage. PMID:6465933

  6. Chronic Methamphetamine Self-Administration Dysregulates Oxytocin Plasma Levels and Oxytocin Receptor Fibre Density in the Nucleus Accumbens Core and Subthalamic Nucleus of the Rat.

    PubMed

    Baracz, S J; Parker, L M; Suraev, A S; Everett, N A; Goodchild, A K; McGregor, I S; Cornish, J L

    2016-04-01

    The neuropeptide oxytocin attenuates reward and abuse for the psychostimulant methamphetamine (METH). Recent findings have implicated the nucleus accumbens (NAc) core and subthalamic nucleus (STh) in oxytocin modulation of acute METH reward and relapse to METH-seeking behaviour. Surprisingly, the oxytocin receptor (OTR) is only modestly involved in both regions in oxytocin attenuation of METH-primed reinstatement. Coupled with the limited investigation of the role of the OTR in psychostimulant-induced behaviours, we primarily investigated whether there are cellular changes to the OTR in the NAc core and STh, as well as changes to oxytocin plasma levels, after chronic METH i.v. self-administration (IVSA) and after extinction of drug-taking. An additional aim was to examine whether changes to central corticotrophin-releasing factor (CRF) and plasma corticosterone levels were also apparent because of the interaction of oxytocin with stress-regulatory mechanisms. Male Sprague-Dawley rats were trained to lever press for i.v. METH (0.1 mg/kg/infusion) under a fixed-ratio 1 schedule or received yoked saline infusions during 2-h sessions for 20 days. An additional cohort of rats underwent behavioural extinction for 15 days after METH IVSA. Subsequent to the last day of IVSA or extinction, blood plasma was collected for enzyme immunoassay, and immunofluorescence was conducted on NAc core and STh coronal sections. Rats that self-administered METH had higher oxytocin plasma levels, and decreased OTR-immunoreactive (-IR) fibres in the NAc core than yoked controls. In animals that self-administered METH and underwent extinction, oxytocin plasma levels remained elevated, OTR-IR fibre density increased in the STh, and a trend towards normalisation of OTR-IR fibre density was evident in the NAc core. CRF-IR fibre density in both brain regions and corticosterone plasma levels did not change across treatment groups. These findings demonstrate that oxytocin systems, both centrally

  7. FLNA genomic rearrangements cause periventricular nodular heterotopia

    PubMed Central

    Clapham, K.R.; Yu, T.W.; Ganesh, V.S.; Barry, B.; Chan, Y.; Mei, D.; Parrini, E.; Funalot, B.; Dupuis, L.; Nezarati, M.M.; du Souich, C.; van Karnebeek, C.

    2012-01-01

    Objective: To identify copy number variant (CNV) causes of periventricular nodular heterotopia (PNH) in patients for whom FLNA sequencing is negative. Methods: Screening of 35 patients from 33 pedigrees on an Affymetrix 6.0 microarray led to the identification of one individual bearing a CNV that disrupted FLNA. FLNA-disrupting CNVs were also isolated in 2 other individuals by multiplex ligation probe amplification. These 3 cases were further characterized by high-resolution oligo array comparative genomic hybridization (CGH), and the precise junctional breakpoints of the rearrangements were identified by PCR amplification and sequencing. Results: We report 3 cases of PNH caused by nonrecurrent genomic rearrangements that disrupt one copy of FLNA. The first individual carried a 113-kb deletion that removes all but the first exon of FLNA. A second patient harbored a complex rearrangement including a deletion of the 3′ end of FLNA accompanied by a partial duplication event. A third patient bore a 39-kb deletion encompassing all of FLNA and the neighboring gene EMD. High-resolution oligo array CGH of the FLNA locus suggests distinct molecular mechanisms for each of these rearrangements, and implicates nearby low copy repeats in their pathogenesis. Conclusions: These results demonstrate that FLNA is prone to pathogenic rearrangements, and highlight the importance of screening for CNVs in individuals with PNH lacking FLNA point mutations. Neurology® 2012;78:269–278 PMID:22238415

  8. Dopaminergic Neurotransmission in the Nucleus Accumbens Modulates Social Play Behavior in Rats.

    PubMed

    Manduca, Antonia; Servadio, Michela; Damsteegt, Ruth; Campolongo, Patrizia; Vanderschuren, Louk Jmj; Trezza, Viviana

    2016-08-01

    Social play behavior is a highly rewarding form of social interaction displayed by young mammals. Social play is important for neurobehavioral development and it has been found to be impaired in several developmental psychiatric disorders. In line with the rewarding properties of social play, we have previously identified the nucleus accumbens (NAc) as an important site of action for endocannabinoid and opioid modulation of this behavior. NAc dopamine has a well-known role in certain components of reward processes, such as incentive motivation. However, its contribution to the positive emotional aspects of social interactions is less clear. Therefore, we investigated the role of dopaminergic neurotransmission in the NAc in social play behavior in rats. We found that intra-NAc infusion of the dopamine releaser/reuptake inhibitor amphetamine increased social play behavior that was dependent on activation of both D1 and D2 dopamine receptors. This increase in social play behavior was mimicked by intra-NAc infusion of the dopamine receptor agonist apomorphine, but not of the dopamine reuptake inhibitor GBR-12909. Blockade of either D1 or D2 NAc dopamine receptors reduced social play in animals highly motivated to play as a result of longer social isolation before testing. Last, blockade of NAc dopamine receptors prevented the play-enhancing effects of endocannabinoid and opioid receptor stimulation. These findings demonstrate an important modulatory role of NAc dopaminergic neurotransmission in social play. Thus, functional activity in the mesolimbic dopamine pathway plays an important role in adaptive social development, whereas abnormal NAc dopamine function may underlie the social impairments observed in developmental psychiatric disorders such as autism, attention deficit hyperactivity disorder or early-onset schizophrenia. PMID:26860202

  9. The Good and Bad Differentially Encoded within the Subthalamic Nucleus in Rats

    PubMed Central

    Breysse, Emmanuel; Pelloux, Yann

    2015-01-01

    Abstract The subthalamic nucleus (STN) has only recently been added into the reward circuit. It has been shown to encode information regarding rewards (4% sucrose, 32% cocaine). To investigate the encoding of negative value, STN neurons were recorded in rats performing a task using discriminative stimuli predicting various rewards and especially during the replacement of a positive reinforcer (4% sucrose) by an aversive reinforcer (quinine). The results show that STN neurons encode information relative to both positive and aversive reinforcers via specialized subpopulations. The specialization is reset when the context is modified (change from a favorable context (4% vs 32% sucrose) to an unfavorable context (quinine vs 32% sucrose). An excitatory response to the cue light predicting the reward seems to be associated with the preferred situation, suggesting that STN plays a role in encoding the relative value of rewards. STN also seems to play a critical role in the encoding of execution error. Indeed, various subpopulations of neurons responding exclusively at early (i.e., “oops neurons”) or at correct lever release were identified. The oops neurons respond mostly when the preferred reward (32% sucrose) is missed. Furthermore, STN neurons respond to reward omission, suggesting a role in reward prediction error. These properties of STN neurons strengthen its position in the reward circuit as a key cerebral structure through which reward-related processes are mediated. It is particularly important given the fact that STN is the target of surgical treatment for Parkinson’s disease and obsessive compulsive disorders, and has been suggested for the treatment of addiction as well. PMID:26478913

  10. Orexin A (hypocretin 1) injected into hypothalamic paraventricular nucleus and spontaneous physical activity in rats.

    PubMed

    Kiwaki, Kohji; Kotz, Catherine M; Wang, Chuanfeng; Lanningham-Foster, Lorraine; Levine, James A

    2004-04-01

    In humans, nonexercise activity thermogenesis (NEAT) increases with positive energy balance. The mediator of the interaction between positive energy balance and physical activity is unknown. In this study, we address the hypothesis that orexin A acts in the hypothalamic paraventricular nucleus (PVN) to increase nonfeeding-associated physical activity. PVN-cannulated rats were injected with either orexin A or vehicle during the light and dark cycle. Spontaneous physical activity (SPA) was measured using arrays of infrared activity sensors and night vision videotaped recording (VTR). O(2) consumption and CO(2) production were measured by indirect calorimetry. Feeding behavior was assessed by VTR. Regardless of the time point of injection, orexin A (1 nmol) was associated with dramatic increases in SPA for 2 h after injection (orexin A: 6.27 +/- 1.95 x 10(3) beam break count, n = 24; vehicle: 1.85 +/- 1.13 x 10(3), n = 38). This increase in SPA was accompanied by compatible increase in O(2) consumption. Duration of feeding was increased only when orexin A was injected in the early light phase and accounted for only 3.5 +/- 2.5% of the increased physical activity. In a dose-response experiment, increases in SPA were correlated with dose of orexin A linearly up to 2 nmol. PVN injections of orexin receptor antagonist SB-334867 were associated with decreases in SPA and attenuated the effects of PVN-injected orexin A. Thus orexin A can act in PVN to increase nonfeeding-associated physical activity, suggesting that this neuropeptide might be a mediator of NEAT. PMID:14656716

  11. Subthalamic nucleus activity in the awake hemiparkinsonian rat: relationships with motor and cognitive networks.

    PubMed

    Delaville, Claire; McCoy, Alex J; Gerber, Colin M; Cruz, Ana V; Walters, Judith R

    2015-04-29

    Oscillatory activity in both beta and gamma ranges has been recorded in the subthalamic nucleus (STN) of Parkinson's disease (PD) patients and linked to motor function, with beta activity considered antikinetic, and gamma activity, prokinetic. However, the extent to which nonmotor networks contribute to this activity is unclear. This study uses hemiparkinsonian rats performing a treadmill walking task to compare synchronized STN local field potential (LFP) activity with activity in motor cortex (MCx) and medial prefrontal cortex (mPFC), areas involved in motor and cognitive processes, respectively. Data show increases in STN and MCx 29-36 Hz LFP spectral power and coherence after dopamine depletion, which are reduced by apomorphine and levodopa treatments. In contrast, recordings from mPFC 3 weeks after dopamine depletion failed to show peaks in 29-36 Hz LFP power. However, mPFC and STN both showed peaks in the 45-55 Hz frequency range in LFP power and coherence during walking before and 21 days after dopamine depletion. Interestingly, power in this low gamma range was transiently reduced in both mPFC and STN after dopamine depletion but recovered by day 21. In contrast to the 45-55 Hz activity, the amplitude of the exaggerated 29-36 Hz rhythm in the STN was modulated by paw movement. Furthermore, as in PD patients, after dopamine treatment a third band (high gamma) emerged in the lesioned hemisphere. The results suggest that STN integrates activity from both motor and cognitive networks in a manner that varies with frequency, behavioral state, and the integrity of the dopamine system. PMID:25926466

  12. Subthalamic Nucleus Activity in the Awake Hemiparkinsonian Rat: Relationships with Motor and Cognitive Networks

    PubMed Central

    Delaville, Claire; McCoy, Alex J.; Gerber, Colin M.; Cruz, Ana V.

    2015-01-01

    Oscillatory activity in both beta and gamma ranges has been recorded in the subthalamic nucleus (STN) of Parkinson's disease (PD) patients and linked to motor function, with beta activity considered antikinetic, and gamma activity, prokinetic. However, the extent to which nonmotor networks contribute to this activity is unclear. This study uses hemiparkinsonian rats performing a treadmill walking task to compare synchronized STN local field potential (LFP) activity with activity in motor cortex (MCx) and medial prefrontal cortex (mPFC), areas involved in motor and cognitive processes, respectively. Data show increases in STN and MCx 29–36 Hz LFP spectral power and coherence after dopamine depletion, which are reduced by apomorphine and levodopa treatments. In contrast, recordings from mPFC 3 weeks after dopamine depletion failed to show peaks in 29–36 Hz LFP power. However, mPFC and STN both showed peaks in the 45–55 Hz frequency range in LFP power and coherence during walking before and 21 days after dopamine depletion. Interestingly, power in this low gamma range was transiently reduced in both mPFC and STN after dopamine depletion but recovered by day 21. In contrast to the 45–55 Hz activity, the amplitude of the exaggerated 29–36 Hz rhythm in the STN was modulated by paw movement. Furthermore, as in PD patients, after dopamine treatment a third band (high gamma) emerged in the lesioned hemisphere. The results suggest that STN integrates activity from both motor and cognitive networks in a manner that varies with frequency, behavioral state, and the integrity of the dopamine system. PMID:25926466

  13. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro

    NASA Technical Reports Server (NTRS)

    Phelan, K. D.; Gallagher, J. P.

    1992-01-01

    We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.

  14. Mechanisms involved in the pressor response to noradrenaline microinjection into the supraoptic nucleus of unanesthetized rats.

    PubMed

    Busnardo, Cristiane; Tavares, Rodrigo Fiacadori; Corrêa, Fernando Morgan Aguiar

    2009-01-28

    We report on the cardiovascular effects of noradrenaline (NA) microinjection into the hypothalamic supraoptic nucleus (SON) as well as the central and peripheral mechanisms involved in their mediation. Microinjections of NA 1, 3, 10, 30 or 45 nmol/100 nL into the SON caused dose-related pressor and bradycardiac response in unanesthetized rats. The response to NA 10 nmol was blocked by SON pretreatment with 15 nmol of the alpha(2)-adrenoceptor antagonist RX821002 and not affected by pretreatment with equimolar dose of the selective alpha(1)-adrenoceptor antagonist WB4101, suggesting that local alpha(2)-adrenoceptors mediate these responses. Pretreatment of the SON with the nonselective beta-adrenoceptor antagonist propranolol 15 nmol did not affect the pressor response to NA microinjection of into the SON. Moreover, the microinjection of the 100 nmol of the selective alpha(1)-adrenoceptor agonist methoxamine (MET) into the SON did not cause cardiovascular response while the microinjection of the selective alpha(2)-adrenoceptor agonists BHT920 (BHT, 100 nmol) or clonidine (CLO, 5 nmol) caused pressor and bradycardiac responses, similar to that observed after the microinjection of NA. The pressor response to NA was potentiated by intravenous pretreatment with the ganglion blocker pentolinium and was blocked by intravenous pretreatment with the V(1)-vasopressin receptor antagonist dTyr(CH2)5(Me)AVP, suggesting an involvement of circulating vasopressin in this response. In conclusion, our results suggest that pressor responses caused by microinjections of NA into the SON involve activation of local alpha(2)-adrenoceptor receptors and are mediated by vasopressin release into circulation. PMID:19059010

  15. Nucleus accumbens neuronal activity in freely behaving rats is modulated following acute and chronic methylphenidate administration.

    PubMed

    Chong, Samuel L; Claussen, Catherine M; Dafny, Nachum

    2012-03-10

    Methylphenidate (MPD) is a psychostimulant that enhances dopaminergic neurotransmission in the central nervous system by using mechanisms similar to cocaine and amphetamine. The mode of action of brain circuitry responsible for an animal's neuronal response to MPD is not fully understood. The nucleus accumbens (NAc) has been implicated in regulating the rewarding effects of psychostimulants. The present study used permanently implanted microelectrodes to investigate the acute and chronic effects of MPD on the firing rates of NAc neuronal units in freely behaving rats. On experimental day 1 (ED1), following a saline injection (control), a 30 min baseline neuronal recording was obtained immediately followed by a 2.5 mg/kg i.p. MPD injection and subsequent 60 min neuronal recording. Daily 2.5 mg/kg MPD injections were given on ED2 through ED6 followed by 3 washout days (ED7 to ED9). On ED10, neuronal recordings were resumed from the same animal after a saline and MPD (rechallenge) injection exactly as obtained on ED1. Sixty-seven NAc neuronal units exhibited similar wave shape, form and amplitude on ED1 and ED10 and their firing rates were used for analysis. MPD administration on ED1 elicited firing rate increases and decreases in 54% of NAc units when compared to their baselines. Six consecutive MPD administrations altered the neuronal baseline firing rates of 85% of NAc units. MPD rechallenge on ED10 elicited significant changes in 63% of NAc units. These alterations in firing rates are hypothesized to be through mechanisms that include D1 and D2-like DA receptor induced cellular adaptation and homeostatic adaptations/deregulation caused by acute and chronic MPD administration. PMID:22248440

  16. Delayed synchronization of activity in cortex and subthalamic nucleus following cortical stimulation in the rat

    PubMed Central

    Magill, Peter J; Sharott, Andrew; Bolam, J Paul; Brown, Peter

    2006-01-01

    Oscillations may play a role in the functional organization of cortico-basal ganglia-thalamocortical circuits, and it is important to understand their underlying mechanisms. The cortex often drives basal ganglia (BG) activity, and particularly, oscillatory activity in the subthalamic nucleus (STN). However, the STN may also indirectly influence cortex. The aim of this study was to characterize the delayed (>200 ms) responses of STN neurons to synchronized cortical inputs, focusing on their relationship with oscillatory cortical activity. We recorded the short-latency and delayed responses of STN units and frontal electrocorticogram (ECoG) to cortical stimulation in anaesthetized rats. Similar to previous studies, stimulation of ipsilateral frontal cortex, but not temporal cortex, evoked a short-latency triphasic response, followed by a sustained reduction or pause in firing, in rostral STN units. Caudal STN units did not show the short-latency triphasic response but often displayed a prolonged firing reduction. Oscillations in STN unit activity and ECoG were common after this sustained firing reduction, particularly between 200 and 600 ms after frontal cortical stimulation. These delayed oscillations were significantly coherent in a broad frequency band of 5–30 Hz. Coherence with ECoG at 5–15 Hz was observed throughout STN, though coherence at 15–30 Hz was largely restricted to rostral STN. Furthermore, oscillatory responses at 5–30 Hz in rostral STN predominantly led those in cortex (mean latency of 29 ms) after frontal cortical stimulation. These findings suggest that STN neurons responding to corticosubthalamic inputs may provide a delayed input to cortex, via BG output nuclei, and thence, thalamocortical pathways. PMID:16709634

  17. Remodeling of glial coverage of glutamatergic synapses in the rat nucleus tractus solitarii after ozone inhalation.

    PubMed

    Chounlamountry, Keodavanh; Boyer, Bénédicte; Penalba, Virginie; François-Bellan, Anne-Marie; Bosler, Olivier; Kessler, Jean-Pierre; Strube, Caroline

    2015-09-01

    Besides the well-described inflammatory and dysfunction effects on the respiratory tract, accumulating evidence indicates that ozone (O3 ) exposure also affects central nervous system functions. However, the mechanisms through which O3 exerts toxic effects on the brain remain poorly understood. We previously showed that O3 exposure caused a neuronal activation in regions of the rat nucleus tractus solitarii (NTS) overlapping terminal fields of vagal lung afferents. Knowing that O3 exposure can impact astrocytic protein expression, we decided to investigate whether it may induce astroglial cellular alterations in the NTS. Using electron microscopy and immunoblot techniques, we showed that in O3 -exposed animals, the astrocytic coverage of NTS glutamatergic synapses was 19% increased while the astrocyte volume fraction and membrane density were not modified. Moreover, the expression of glial fibrillary acidic protein and S100β, which are known to be increased in reactive astroglia, did not change. These results indicate that O3 inhalation induces a glial plasticity that is restricted to the peri-synaptic coverage without overall astroglial activation. Taken together, these findings, along with our previous observations, support the conclusion that O3 -induced pulmonary inflammation results in a specific activation of vagal lung afferents rather than non-specific overall brain alterations mediated by blood-borne agents. Exposure to ozone, a major atmospheric pollutant, induces an increase in the glial coverage of neurons that is restricted to peri-synaptic compartments. This observation does not support the view that the ozone-induced neuronal disorders are related to non-specific overall brain alterations. It rather argues for a specific activation of the vagus nerve in response to pulmonary inflammation. PMID:26083406

  18. Decreased Zn(2+) Influx Underlies the Protective Role of Hypoxia in Rat Nucleus Pulposus Cells.

    PubMed

    Yin, Xiao-Fan; Jiang, Li-Bo; Ma, Yi-Qun; Xu, Jun; Gu, Hui-Jie; Wu, Xu-Hua; Li, Xi-Lei; Dong, Jian

    2015-11-01

    Zn(2+) is an essential component of metalloproteinases, and is required for their activity in cartilage; however, the effect of Zn(2+) on nucleus pulposus (NP) cells has not been widely investigated. The aim of this paper was to investigate the effect of intracellular Zn(2+) concentration ([Zn(2+)]i) in hypoxia-induced regulation of metalloproteinases (MMPs) and extracellular matrix (ECM) production in NP cells. NP cells from Sprague-Dawley (SD) rats were cultured as monolayers or in alginate beads. [Zn(2+)]i was assayed by FluoZin-3 AM staining. Alcian Blue staining, immunochemistry, 1,9-dimethylmethylene blue (DMMB) assay, and real-time PCR were used to assay collagen II, proteoglycan, and COL2A1, MMP-13, and ADAMTS-5 mRNA expression. ZIP8, a main Zn(2+) transporter in chondrocytes, was assayed by immunochemistry and in Western blotting. Interleukin (IL)-1β- and ZnCl2-induced increases of [Zn(2+)]i were significantly inhibited by hypoxia. Hypoxia did not reverse a decline of ECM expression caused by IL-1β and ZnCl2 in monolayer cultures, but did significantly attenuate the decreases of proteoglycan, glycosaminoglycan (GAG), and COL2A1 mRNA expression following IL-1β and ZnCl2 treatment in alginate bead cultures. However, ZnCl2 inhibited the protective effect of hypoxia. Both an intracellular Zn(2+) chelator and hypoxia prevented the increase in MMP-13 mRNA expression. IL-1β and ZnCl2 treatment increased ZIP8 expression in NP cells, and hypoxia inhibited ZIP8 expression. In conclusion, decrease of Zn(2+) influx mediates the protective role of hypoxia on ECM and MMP-13 expression. Consequently, changes in intracellular Zn(2+) concentration maybe involved in intervertebral disc degeneration. PMID:25910898

  19. Protective effect of histamine microinjected into cerebellar fastigial nucleus on stress gastric mucosal damage in rats.

    PubMed

    Qiao, Xiao; Yang, Jun; Fei, Su-Juan; Zhu, Jin-Zhou; Zhu, Sheng-Ping; Liu, Zhang-Bo; Li, Ting-Ting; Zhang, Jian-Fu

    2015-12-10

    In the study, we investigated the effect of histamine microinjected into cerebellar fastigial nucleus (FN) on stress gastric mucosal damage (SGMD), and its mechanisms in rats. The model of SGMD was established by restraining and water (21±1°C)-immersion for 3h. The gastric mucosal damage index (GMDI) indicated the severity of gastric mucosal damage. Histamine or receptor antagonist was microinjected into the FN. The decussation of superior cerebellar peduncle (DSCP) and the lateral hypothalamic area (LHA) were destroyed, respectively. The pathological changes of gastric mucosa were evaluated using biological signal acquisition system, Laser-Doppler flowmeter, and western blotting. We found that the microinjection of histamine (0.05, 0.5, and 5μg) into FN significantly attenuated the SGMD, in a dose-dependent manner, whereas, the microinjection of histamine H2 receptor antagonist, ranitidine, and glutamic acid decarboxylase antagonist, 3-mercaptopropionic acid (3-MPA) exacerbated the SGMD. The protective effect of histamine on SGMD was abolished by electrical lesion of DSCP or chemical ablation of LHA. The microinjection of histamine decreased the discharge frequency of the greater splanchnic nerve, and the gastric mucosal blood flow was increased. In addition, the cellular proliferation was enhanced, but the cellular apoptosis was reduced in the gastric mucosa. Also the pro-apoptosis protein, Bax, and caspase-3 were down-regulated, and the anti-apoptosis protein, Bcl-2 was up-regulated following microinjection of histamine. In conclusion, the FN participated in the regulation of SGMD after histamine microinjected into FN, and cerebellar-hypothalamic circuits (include: DSCP, LHA) contribute to the process, which may provide a new therapeutic strategy for SGMD. PMID:26474912

  20. Esmolol modulates inhibitory neurotransmission in the substantia gelatinosa of the spinal trigeminal nucleus of the rat

    PubMed Central

    2011-01-01

    Background β1-adrenaline receptor antagonists are often used to avoid circulatory complications during anesthesia in patients with cardiovascular diseases. Of these drugs, esmolol, a short-acting β antagonist, is also reported to exert antinociceptive and anesthetic sparing effects. This study was designed to identify the central mechanism underlying the antinociceptive effect of esmolol. Methods Wistar rats (7-21 d, 17-50 g) were anesthetized with ketamine (100-150 mg/kg) or isoflurane (5%) and decapitated. Horizontal slices (400-μm thick) of the lower brainstem containing the substantia gelatinosa (SG) of the caudal part of the spinal trigeminal nucleus (Sp5c), in which the nociceptive primary afferents form the first intracranial synapses, were made with a vibrating slicer. The miniature inhibitory and excitatory postsynaptic currents (mIPSCs and mEPSCs, respectively) were simultaneously recorded from visually identified SG neurons of the Sp5c in the presence of tetrodotoxin (1 μM). Additionally, mIPSCs were recorded during pharmacological isolation of GABA- and glycine-mediated mIPSCs with kynurenic acid (1 mM). Results Esmolol (500 μM) significantly and selectively increased the mIPSC frequency (to 214.2% ± 34.2% of the control, mean ± SEM, n = 35; P < 0.001), but not that of mEPSCs, without changing their amplitude. The increase in mIPSC frequency with esmolol was not affected by prior activation of β receptors with isoproterenol (100 μM) but it was significantly attenuated by removal of extracellular Ca2+. Conclusions These data suggest that esmolol modulates inhibitory transmitter release in the Sp5c through a mechanism involving Ca2+-entry but in a β1-adrenoceptor-independent manner. The present results suggest that the facilitation of inhibitory transmitter release in the central nociceptive network underlies, at least in part, the antinociceptive effect of esmolol. PMID:21888677

  1. Evidence for Role of Acid-Sensing Ion Channels in Nucleus Ambiguus Neurons: Essential Differences in Anesthetized versus Awake Rats

    PubMed Central

    Brailoiu, G. Cristina; Deliu, Elena; Altmann, Joseph B.; Chitravanshi, Vineet; Brailoiu, Eugen

    2014-01-01

    Acid-sensing ion channels (ASIC) are widely expressed in several brain regions including medulla; their role in physiology and pathophysiology is incompletely understood. We examined the effect of acidic pH of 6.2 on the medullary neurons involved in parasympathetic cardiac control. Our results indicate that retrogradely-labeled cardiac vagal neurons of nucleus ambiguus are depolarized by acidic pH. In addition, acidic saline of pH 6.2 increases cytosolic Ca2+ concentration by promoting Ca2+ influx in nucleus ambiguus neurons. In vivo studies indicate that microinjection of acidic artificial cerebrospinal fluid (pH 6.2) into the nucleus ambiguus decreases the heart rate in conscious rats, whereas it has no effect in anesthetized animals. Pretreatment with either amiloride or benzamil, two widely used ASIC blockers, abolishes both the in vitro and in vivo effects elicited by pH 6.2. Our findings support a critical role for ASIC in modulation of cardiac vagal tone and provide a potential mechanism for acidosis-induced bradycardia, while identifying important differences in the response to acidic pH between anesthetized and conscious rats. PMID:24752669

  2. Absolute number of parvicellular and magnocellular neurons in the red nucleus of the rat midbrain: a stereological study.

    PubMed

    Aghoghovwia, Benjamin E; Oorschot, Dorothy E

    2016-09-01

    The absolute number of parvicellular and magnocellular neurons in the red nucleus was estimated using design-based stereological counting methods and systematic random sampling techniques. Six young adult male rats, and a complete set of serial 40-μm glycolmethacrylate sections for each rat, were used to quantify neuronal numbers. After a random start, a systematic subset (i.e. every third) of the serial sections was used to estimate the total volume of the red nucleus using Cavalieri's method. The same set of sampled sections was used to estimate the number of neurons in a known subvolume (i.e. the numerical density Nv ) by the optical disector method. Multiplication of the total volume by Nv yielded the absolute number of neurons. It was found that the right red nucleus consisted, on average, of 8400 parvicellular neurons (with a coefficient of variation of 0.16) and 7000 magnocellular neurons (0.12). These total neuronal numbers provide important data for the transfer of information through these nuclei and for species comparisons. PMID:27257130

  3. Ca(2+) in the dorsal raphe nucleus promotes wakefulness via endogenous sleep-wake regulating pathway in the rats.

    PubMed

    Cui, Su-Ying; Li, Sheng-Jie; Cui, Xiang-Yu; Zhang, Xue-Qiong; Yu, Bin; Huang, Yuan-Li; Cao, Qing; Xu, Ya-Ping; Yang, Guang; Ding, Hui; Song, Jin-Zhi; Ye, Hui; Sheng, Zhao-Fu; Wang, Zi-Jun; Zhang, Yong-He

    2016-01-01

    Serotonergic neurons in the dorsal raphe nucleus (DRN) are involved in the control of sleep-wake states. Our previous studies have indicated that calcium (Ca(2+)) modulation in the DRN plays an important role in rapid-eye-movement sleep (REMS) and non-REMS (NREMS) regulation during pentobarbital hypnosis. The present study investigated the effects of Ca(2+) in the DRN on sleep-wake regulation and the related neuronal mechanism in freely moving rats. Our results showed that microinjection of CaCl2 (25 or 50 nmol) in the DRN promoted wakefulness and suppressed NREMS including slow wave sleep and REMS in freely moving rats. Application of CaCl2 (25 or 50 nmol) in the DRN significantly increased serotonin in the DRN and hypothalamus, and noradrenaline in the locus coeruleus and hypothalamus. Immunohistochemistry study indicated that application of CaCl2 (25 or 50 nmol) in the DRN significantly increased c-Fos expression ratio in wake-promoting neurons including serotonergic neurons in the DRN, noradrenergic neurons in the locus coeruleus, and orxinergic neurons in the perifornical nucleus, but decreased c-Fos expression ratio of GABAergic sleep-promoting neurons in the ventrolateral preoptic nucleus. These results suggest that Ca(2+) in the DRN exert arousal effects via up-regulating serotonergic functions in the endogenous sleep-wake regulating pathways. PMID:27456222

  4. A novel turning behavior control method for rat-robot through the stimulation of ventral posteromedial thalamic nucleus.

    PubMed

    Xu, Kedi; Zhang, Jiacheng; Zhou, Hong; Lee, Ji Chao Tristan; Zheng, Xiaoxiang

    2016-02-01

    The concept of a rat-robot was initially introduced in 2002, bringing to the field, a novel area of research using modern research into neuroscience and robotics. This paper brings to the table, a study into the method best used for navigation systems in a rat-robot. Current research is epitomized by the use of reward-based spatial navigation, combining the concept of an induced reward sensation as well as a 'virtual touch' sensation to control the movement of the rat-robot. However, such methods are plagued by limitations affecting the success rate as well as preparation procedures which may have varying effects on different rats, even under similar conditions. Hence, this paper studies the stimulation of two different portions of the brain to induce a turning motion within the rat, namely the Ventral Posteromedial (VPM) thalamic nucleus as well as the Barrel-Field (BF) cortex and demonstrates the preferential usage of VPM as the choice use of navigational control in a rat-robot. PMID:26546880

  5. Altered neuronal activity in the pedunculopontine nucleus: An electrophysiological study in a rat model of Parkinson's disease.

    PubMed

    Geng, Xiwen; Xie, Jinlu; Wang, Xuenan; Wang, Xiusong; Zhang, Xiao; Hou, Yabing; Lei, Chengdong; Li, Min; Qu, Qingyang; He, Tingting; Han, Hongyu; Yao, Xiaomeng; Wang, Min

    2016-05-15

    The pedunculopontine nucleus (PPN) is a new deep brain stimulation target for treating Parkinson's disease (PD). But the alterations of the PPN electrophysiological activities in PD are still debated. To investigate these potential alterations, extracellular single unit and local field potential (LFP) activities in the PPN were recorded in unilateral hemispheric 6-hydroxydopamine (6-OHDA) lesioned rats and in control rats, respectively. The spike activity results revealed two types of neurons (Type I and Type II) with distinct electrophysiological characteristics in the PPN. Both types of neurons had increased firing rate and changed firing pattern in lesioned rats when compared to control rats. Specifically, Type II neurons showed an increased firing rate when the rat state was switched from rest to locomotion. The LFP results demonstrated that lesioned rats had lower LFP power at 0.7-12Hz and higher power at 12-30Hz than did control animals in either resting or locomotor state. These findings provide a better understanding of the effects of 6-OHDA lesion on neuronal activities in the PPN and also provide a proof of the link between this structure and locomotion, which contributes to better understanding the mechanisms of the PPN functioning in the pathophysiology of PD. PMID:26924016

  6. Acute Effects of Capsaicin on Proopioimelanocortin mRNA Levels in the Arcuate Nucleus of Sprague-Dawley Rats

    PubMed Central

    Lee, Jin-Seong; Kim, Hyeun-Kyeung; Baek, Sun-Yong; Kim, Cheol-Min

    2012-01-01

    Objective Capsaicin, a noxious stimulant and main component of the hot flavor of red peppers, has an analgesic effect when administered to humans. We investigated the expression of proopioimelanocortin (POMC) mRNA in the arcuate nucleus of Sprague-Dawley (SD) rats after administering capsaicin, hypothesizing that administering capsaicin activates the central opioid system. Methods SD rats were divided randomly into two groups; one group received a saline injection and the other received a capsaicin injection. The POMC mRNA level in the arcuate nucleus of the hypothalamus was measured by the reverse transcription-polymerase chain reaction at 0, 20, 40, 60, and 120 minutes after capsaicin administration. Results Capsaicin administration resulted in a significantly increased POMC mRNA level, compared to that in saline-treated rats at the 20-minute time point (t=-4.445, p=0.001). However, no significant group differences were observed at other times (t=-1.886, p=0.089; t= -0.973, p=0.353; t=-2.193, p=0.053 for 40, 60, and 120 minutes, respectively). Conclusion The analgesic effect of capsaicin might be associated with increased activity of the cerebral opioid system. This finding suggests that capsaicin acted for nociception and analgesia and could affect alcohol-intake behavior, which might further imply that a food culture could affect drinking behavior. PMID:22707971

  7. Cadmium-induced apoptosis is mediated by the translocation of AIF to the nucleus in rat testes.

    PubMed

    Kim, Jisun; Soh, Jaemog

    2009-07-10

    Cadmium (Cd) is a highly toxic metal that affects a variety of cellular events, such as cell proliferation, differentiation and survival. Cd generates reactive oxygen species (ROS) that induce apoptosis. We previously demonstrated that Cd induces apoptosis in testicular germ cells and that apoptosis was prevented by the administration of ascorbic acid (AA), an ROS scavenger. However, little is known about the signaling pathways underlying Cd-induced apoptosis in rat testes. Here, we report that Cd-induced apoptosis in rat testes was associated with the translocation of apoptosis inducing factor (AIF) from mitochondria to the nucleus, and that this was prevented by treatment with AA. Cd-induced cleavage of poly ADP-ribose polymerase-1 (PARP-1), and this was also inhibited by treatment with AA. Taken together, these results suggest that Cd-induced ROS was responsible for the upregulation of PARP-1, the translocation of AIF to the nucleus, and apoptosis of testicular cells in rat testes. PMID:19433269

  8. Phenotypic characteristics of expressed tyrosine hydroxylase protein in the adult rat nucleus tractus solitarius: plasticity revealed by RU24722 treatment.

    PubMed

    Garcia, C; Marcel, D; Le Cavorsin, M; Pujol, J F; Weissmann, D

    1994-10-01

    The phenotypic characteristics of expressed tyrosine hydroxylase protein have been precisely analysed in the rat nucleus tractus solitarius, which contains the majority of A2 noradrenergic and C2 adrenergic neurons of the medulla oblongata. This study was based upon quantitative analysis of immunohistochemical and immunoradioautographic staining of tyrosine hydroxylase protein in serial coronal sections. In control rats, there were few tyrosine hydroxylase-expressing cell bodies which express less than 2% of the immunoradiolabeled tyrosine hydroxylase protein measured in the structure. These cell bodies were scattered throughout an extensive immunopositive neuropile, which precisely delimited the topological space of the nucleus tractus solitarius quantiatively reconstructed using a polar coordinate system. The quantification of tyrosine hydroxylase tissue concentration from immunoradioautograms allowed us to subdivide the structure into two distinct regions. The posterior region of the nucleus tractus solitarius, which mainly corresponds to the A2 cell group, contains a relatively high tissue concentration of tyrosine hydroxylase protein (18.56 +/- 0.154 units per mg of tissue). The anterior region, which mainly corresponds to the C2 cell group, exhibits a relatively low concentration (12.09 +/- 0.81) of this protein. Three days after an intraperitoneal injection of RU24722, there was a strong increase (90 +/- 17%) in tyrosine hydroxylase protein content only in the anterior region of the nucleus tractus solitarius. This increase was associated with a dramatic elevation (142 +/- 20%) in the number of tyrosine hydroxylase-expressing cell bodies. The additional cell bodies were mainly located inside the initial perikarya-containing area.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7845594

  9. Suprachiasmatic Nucleus and Subparaventricular Zone Lesions Disrupt Circadian Rhythmicity but Not Light-Induced Masking Behavior in Nile Grass Rats.

    PubMed

    Gall, Andrew J; Shuboni, Dorela D; Yan, Lily; Nunez, Antonio A; Smale, Laura

    2016-04-01

    The ventral subparaventricular zone (vSPVZ) receives direct retinal input and influences the daily patterning of activity in rodents, making it a likely candidate for the mediation of acute behavioral responses to light (i.e., masking). We performed chemical lesions aimed at the vSPVZ of diurnal grass rats (Arvicanthis niloticus) using N-methyl-D,L-aspartic acid (NMA), a glutamate agonist. Following NMA lesions, we placed grass rats in various lighting conditions (e.g., 12:12 light-dark, constant dark, constant light); presented a series of light pulses at circadian times (CT) 6, 14, 18, and 22; and placed them in a 7-h ultradian cycle to assess behavioral masking. Extensive bilateral lesions of the vSPVZ disrupted the expression of circadian rhythms of activity and abolished the circadian modulation of masking responses to light, without affecting light-induced masking behavior per se. We also found that in diurnal grass rats, NMA was capable of destroying not only neurons of the vSPVZ but also those of the suprachiasmatic nucleus (SCN), even though excitotoxins have been ineffective at destroying cells within the SCN of nocturnal rodents. The vulnerability of the grass rat's SCN to NMA toxicity raises the possibility of a difference in density of receptors for glutamate between nocturnal and diurnal species. In cases in which damage extended to the SCN, masking responses to light were present and similar to those displayed by animals with damage restricted to the vSPVZ. Thus, extensive bilateral lesions of the SCN and vSPVZ disrupted the expression of circadian rhythms without affecting acute responses to light in a diurnal species. Our present and previous results suggest that retinorecipient brain areas other than the SCN or vSPVZ, such as the intergeniculate leaflet or olivary pretectal nucleus, may be responsible for the mediation of masking responses to light in the diurnal grass rat. PMID:26801650

  10. Bradycardic effects mediated by activation of G protein-coupled estrogen receptor in rat nucleus ambiguus.

    PubMed

    Brailoiu, G Cristina; Arterburn, Jeffrey B; Oprea, Tudor I; Chitravanshi, Vineet C; Brailoiu, Eugen

    2013-03-01

    The G protein-coupled estrogen receptor (GPER) has been identified in several brain regions, including cholinergic neurons of the nucleus ambiguus, which are critical for parasympathetic cardiac regulation. Using calcium imaging and electrophysiological techniques, microinjection into the nucleus ambiguus and blood pressure measurement, we examined the in vitro and in vivo effects of GPER activation in nucleus ambiguus neurons. A GPER selective agonist, G-1, produced a sustained increase in cytosolic Ca(2+) concentration in a concentration-dependent manner in retrogradely labelled cardiac vagal neurons of nucleus ambiguus. The increase in cytosolic Ca(2+) produced by G-1 was abolished by pretreatment with G36, a GPER antagonist. G-1 depolarized cultured cardiac vagal neurons of the nucleus ambiguus. The excitatory effect of G-1 was also identified by whole-cell visual patch-clamp recordings in nucleus ambiguus neurons, in medullary slices. To validate the physiological relevance of our in vitro studies, we carried out in vivo experiments. Microinjection of G-1 into the nucleus ambiguus elicited a decrease in heart rate; the effect was blocked by prior microinjection of G36. Systemic injection of G-1, in addition to a previously reported decrease in blood pressure, also reduced the heart rate. The G-1-induced bradycardia was prevented by systemic injection of atropine, a muscarinic antagonist, or by bilateral microinjection of G36 into the nucleus ambiguus. Our results indicate that GPER-mediated bradycardia occurs via activation of cardiac parasympathetic neurons of the nucleus ambiguus and support the involvement of the GPER in the modulation of cardiac vagal tone. PMID:23104934

  11. Chronic electrical stimulation of the contralesional lateral cerebellar nucleus enhances recovery of motor function after cerebral ischemia in rats.

    PubMed

    Machado, Andre G; Baker, Kenneth B; Schuster, Daniel; Butler, Robert S; Rezai, Ali

    2009-07-14

    Novel neurorehabilitative strategies are needed to improve motor outcomes following stroke. Based on the disynaptic excitatory projections of the dentatothalamocortical pathway to the motor cortex as well as to anterior and posterior cortical areas, we hypothesize that chronic electrical stimulation of the contralesional dentate (lateral cerebellar) nucleus output can enhance motor recovery after ischemia via augmentation of perilesional cortical excitability. Seventy-five Wistar rats were pre-trained in the Montoya staircase task and subsequently underwent left cerebral ischemia with the 3-vessel occlusion model. All survivors underwent stereotactic right lateral cerebellar nucleus (LCN) implantation of bipolar electrodes. Rats were then randomized to 4 groups: LCN stimulation at 10 pps, 20 pps, 50 pps or sham stimulation, which was delivered for a period of 6 weeks. Performance on the Montoya staircase task was re-assessed over the last 4 weeks of the stimulation period. On the right (contralesional) side, motor performance of the groups undergoing sham, 10 pps, 20 pps and 50 pps stimulation was, respectively, 2.5+/-2.7; 2.1+/-2.5; 6.0+/-3.9 (p<0.01) and 4.5+/-3.5 pellets. There was no difference on the left (ipsilesional) side motor performance among the sham or stimulation groups, varying from 15.9+/-6.7 to 17.2+/-2.1 pellets. We conclude that contralesional chronic electrical stimulation of the lateral cerebellar nucleus at 20 pps but not at 10 or 50 pps improves motor recovery in rats following ischemic strokes. This effect is likely to be mediated by increased perilesional cortical excitability via chronic activation of the dentatothalamocortical pathway. PMID:19445910

  12. Variable effects of parabrachial nucleus lesions on salt appetite in rats depending upon experimental paradigm and saline concentration

    PubMed Central

    Stricker, Edward M.; Grigson, Patricia S.; Norgren, Ralph

    2014-01-01

    Previous studies have demonstrated that bilateral lesions of the gustatory (medial) zone of the parabrachial nucleus (PBN) in the pons eliminate the salt appetite induced in rats by treatment with the diuretic drug, furosemide. The present studies re-examined NaCl intake of rats with PBN lesions induced by ibotenic acid, using multiple models of salt appetite. The impairment of a conditioned taste aversion, an established consequence of PBN damage, was used as an initial screen with which to assess the effectiveness of the lesions. Rats with PBN lesions did not drink either 0.3 M NaCl or 0.5 M NaCl in response to daily treatment with desoxycorticosterone acetate. These findings suggest that the excitatory stimulus of salt appetite mediated by mineralocorticoids is abolished by PBN lesions. In contrast, rats with PBN lesions drank some 0.5 M NaCl, and more 0.3 M NaCl, in addition to water in response to hypovolemia induced by subcutaneous injection of 30% polyethylene glycol solution. Those findings suggest that an excitatory stimulus of salt appetite, presumably mediated by angiotensin II, is not abolished by PBN lesions. These and other observations indicate that lesions of the gustatory PBN in rats may or may not eliminate salt appetite, depending on which model is used and which concentration of NaCl solution is available. PMID:23398436

  13. Differential Gene Expression in the Nucleus Accumbens and Frontal Cortex of Lewis and Fischer 344 Rats Relevant to Drug Addiction

    PubMed Central

    Higuera-Matas, A; Montoya, G. L; Coria, S.M; Miguéns, M; García-Lecumberri, C; Ambrosio, E

    2011-01-01

    Drug addiction results from the interplay between social and biological factors. Among these, genetic variables play a major role. The use of genetically related inbred rat strains that differ in their preference for drugs of abuse is one approach of great importance to explore genetic determinants. Lewis and Fischer 344 rats have been extensively studied and it has been shown that the Lewis strain is especially vulnerable to the addictive properties of several drugs when compared with the Fischer 344 strain. Here, we have used microarrays to analyze gene expression profiles in the frontal cortex and nucleus accumbens of Lewis and Fischer 344 rats. Our results show that only a very limited group of genes were differentially expressed in Lewis rats when compared with the Fischer 344 strain. The genes that were induced in the Lewis strain were related to oxygen transport, neurotransmitter processing and fatty acid metabolism. On the contrary genes that were repressed in Lewis rats were involved in physiological functions such as drug and proton transport, oligodendrocyte survival and lipid catabolism. These data might be useful for the identification of genes which could be potential markers of the vulnerability to the addictive properties of drugs of abuse. PMID:21886580

  14. The medial prefrontal cortex and nucleus accumbens mediate the motivation for voluntary wheel running in the rat.

    PubMed

    Basso, Julia C; Morrell, Joan I

    2015-08-01

    Voluntary wheel running in rats provides a preclinical model of exercise motivation in humans. We hypothesized that rats run because this activity has positive incentive salience in both the acquisition and habitual stages of wheel running and that gender differences might be present. Additionally, we sought to determine which forebrain regions are essential for the motivational processes underlying wheel running in rats. The motivation for voluntary wheel running in male and female Sprague-Dawley rats was investigated during the acquisition (Days 1-7) and habitual phases (after Day 21) of running using conditioned place preference (CPP) and the reinstatement (rebound) response after forced abstinence, respectively. Both genders displayed a strong CPP for the acquisition phase and a strong rebound response to wheel deprivation during the habitual phase, suggesting that both phases of wheel running are rewarding for both sexes. Female rats showed a 1.5 times greater rebound response than males to wheel deprivation in the habitual phase of running, while during the acquisition phase, no gender differences in CPP were found. We transiently inactivated the medial prefrontal cortex (mPFC) or the nucleus accumbens (NA), hypothesizing that because these regions are involved in the acquisition and reinstatement of self-administration of both natural and pharmacological stimuli, they might also serve a role in the motivation to wheel run. Inactivation of either structure decreased the rebound response in the habitual phase of running, demonstrating that these structures are involved in the motivation for this behavior. PMID:26052795

  15. Microinjection of the melanin-concentrating hormone into the sublaterodorsal tegmental nucleus inhibits REM sleep in the rat.

    PubMed

    Monti, Jaime M; Torterolo, Pablo; Jantos, Héctor; Lagos, Patricia

    2016-09-01

    A study was performed on the effects of local microinjection of melanin-concentrating hormone (MCH) into the right sublaterodorsal tegmental nucleus (SLD) on sleep and wakefulness in rats prepared for chronic sleep recordings. MCH 200ng significantly decreased rapid-eye-movement sleep (REMS) time during the first and second 2-h of the recording period which was related to the reduction of the number of REMS periods and the increase of REMS latency. It is proposed that REMS inhibition was related to the direct deactivation of SLD glutamatergic neurons by the peptide. PMID:27461793

  16. Postsynaptic mechanisms underlying the excitatory action of histamine on medial vestibular nucleus neurons in rats

    PubMed Central

    Zhang, Xiao-Yang; Yu, Lei; Zhuang, Qian-Xing; Peng, Shi-Yu; Zhu, Jing-Ning; Wang, Jian-Jun

    2013-01-01

    Background and Purpose Anti-histaminergic drugs have been widely used in the clinical treatment of vestibular disorders and most studies concentrate on their presynaptic actions. The present study investigated the postsynaptic effect of histamine on medial vestibular nucleus (MVN) neurons and the underlying mechanisms. Experimental Approach Histamine-induced postsynaptic actions on MVN neurons and the corresponding receptor and ionic mechanisms were detected by whole-cell patch-clamp recordings on rat brain slices. The distribution of postsynaptic histamine H1, H2 and H4 receptors was mapped by double and single immunostaining. Furthermore, the expression of mRNAs for H1, H2 and H4 receptors and for subtypes of Na+–Ca2+ exchangers (NCXs) and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels was assessed by quantitative real-time RT-PCR. Key Results A marked postsynaptic excitatory effect, co-mediated by histamine H1 and H2 receptors, was involved in the histamine-induced depolarization of MVN neurons. Postsynaptic H1 and H2 rather than H4 receptors were co-localized in the same MVN neurons. NCXs contributed to the inward current mediated by H1 receptors, whereas HCN channels were responsible for excitation induced by activation of H2 receptors. Moreover, NCX1 and NCX3 rather than NCX2, and HCN1 rather than HCN2-4 mRNAs, were abundantly expressed in MVN. Conclusion and Implications NCXs coupled to H1 receptors and HCN channels linked to H2 receptors co-mediate the strong postsynaptic excitatory action of histamine on MVN neurons. These results highlight an active role of postsynaptic mechanisms in the modulation by central histaminergic systems of vestibular functions and suggest potential targets for clinical treatment of vestibular disorders. Linked Articles This article is part of a themed issue on Histamine Pharmacology Update. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2013.170.issue-1 PMID:23713466

  17. Gray matter injury associated with periventricular leukomalacia in the premature infant

    PubMed Central

    Folkerth, Rebecca D.; Billiards, Saraid S.; Trachtenberg, Felicia L.; Drinkwater, Mark E.; Volpe, Joseph J.; Kinney, Hannah C.

    2007-01-01

    Neuroimaging studies indicate reduced volumes of certain gray matter regions in survivors of prematurity with periventricular leukomalacia (PVL). We hypothesized that subacute and/or chronic gray matter lesions are increased in incidence and severity in PVL cases compared to non-PVL cases at autopsy. Forty-one cases of premature infants were divided based on cerebral white matter histology: PVL (n = 17) with cerebral white matter gliosis and focal periventricular necrosis; diffuse white matter gliosis (DWMG) (n = 17) without necrosis; and “ Negative” group (n = 7) with no abnormalities. Neuronal loss was found almost exclusively in PVL, with significantly increased incidence and severity in the thalamus (38%), globus pallidus (33%), and cerebellar dentate nucleus (29%) compared to DWMG cases. The incidence of gliosis was significantly increased in PVL compared to DWMG cases in the deep gray nuclei (thalamus/basal ganglia; 50–60% of PVL cases), and basis pontis (100% of PVL cases). Thalamic and basal ganglionic lesions occur almost exclusively in infants with PVL. Gray matter lesions occur in a third or more of PVL cases suggesting that white matter injury generally does not occur in isolation, and that the term “perinatal panencephalopathy” may better describe the scope of the neuropathology. PMID:17912538

  18. Environmental enrichment alters protein expression as well as the proteomic response to cocaine in rat nucleus accumbens

    PubMed Central

    Lichti, Cheryl F.; Fan, Xiuzhen; English, Robert D.; Zhang, Yafang; Li, Dingge; Kong, Fanping; Sinha, Mala; Andersen, Clark R.; Spratt, Heidi; Luxon, Bruce A.; Green, Thomas A.

    2014-01-01

    Prior research demonstrated that environmental enrichment creates individual differences in behavior leading to a protective addiction phenotype in rats. Understanding the mechanisms underlying this phenotype will guide selection of targets for much-needed novel pharmacotherapeutics. The current study investigates differences in proteome expression in the nucleus accumbens of enriched and isolated rats and the proteomic response to cocaine self-administration using a liquid chromatography mass spectrometry (LCMS) technique to quantify 1917 proteins. Results of complementary Ingenuity Pathways Analyses (IPA) and gene set enrichment analyses (GSEA), both performed using protein quantitative data, demonstrate that cocaine increases vesicular transporters for dopamine and glutamate as well as increasing proteins in the RhoA pathway. Further, cocaine regulates proteins related to ERK, CREB and AKT signaling. Environmental enrichment altered expression of a large number of proteins implicated in a diverse number of neuronal functions (e.g., energy production, mRNA splicing, and ubiquitination), molecular cascades (e.g., protein kinases), psychiatric disorders (e.g., mood disorders), and neurodegenerative diseases (e.g., Huntington's and Alzheimer's diseases). Upregulation of energy metabolism components in EC rats was verified using RNA sequencing. Most of the biological functions and pathways listed above were also identified in the Cocaine X Enrichment interaction analysis, providing clear evidence that enriched and isolated rats respond quite differently to cocaine exposure. The overall impression of the current results is that enriched saline-administering rats have a unique proteomic complement compared to enriched cocaine-administering rats as well as saline and cocaine-taking isolated rats. These results identify possible mechanisms of the protective phenotype and provide fertile soil for developing novel pharmacotherapeutics. Proteomics data are available via

  19. The Physiological Role of Arcuate Kisspeptin Neurons in the Control of Reproductive Function in Female Rats

    PubMed Central

    Beale, K.E.; Kinsey-Jones, J.S.; Gardiner, J.V.; Harrison, E.K.; Thompson, E.L.; Hu, M.H.; Sleeth, M.L.; Sam, A.H.; Greenwood, H.C.; McGavigan, A.K.; Dhillo, W.S.; Mora, J.M.; Li, X.F.; Franks, S.; Bloom, S.R.; O'Byrne, K.T.

    2014-01-01

    Kisspeptin plays a pivotal role in pubertal onset and reproductive function. In rodents, kisspeptin perikarya are located in 2 major populations: the anteroventral periventricular nucleus and the hypothalamic arcuate nucleus (ARC). These nuclei are believed to play functionally distinct roles in the control of reproduction. The anteroventral periventricular nucleus population is thought to be critical in the generation of the LH surge. However, the physiological role played by the ARC kisspeptin neurons remains to be fully elucidated. We used bilateral stereotactic injection of recombinant adeno-associated virus encoding kisspeptin antisense into the ARC of adult female rats to investigate the physiological role of kisspeptin neurons in this nucleus. Female rats with kisspeptin knockdown in the ARC displayed a significantly reduced number of both regular and complete oestrous cycles and significantly longer cycles over the 100-day period of the study. Further, kisspeptin knockdown in the ARC resulted in a decrease in LH pulse frequency. These data suggest that maintenance of ARC-kisspeptin levels is essential for normal pulsatile LH release and oestrous cyclicity. PMID:24424033

  20. Reticular nucleus-specific changes in alpha3 subunit protein at GABA synapses in genetically epilepsy-prone rats.

    PubMed

    Liu, Xiao-Bo; Coble, Jeffrey; van Luijtelaar, Gilles; Jones, Edward G

    2007-07-24

    Differential composition of GABA(A) receptor (GABA(A)R) subunits underlies the variability of fast inhibitory synaptic transmission; alteration of specific GABA(A)R subunits in localized brain regions may contribute to abnormal brain states such as absence epilepsy. We combined immunocytochemistry and high-resolution ImmunoGold electron microscopy to study cellular and subcellular localization of GABA(A)R alpha1, alpha3, and beta2/beta3 subunits in ventral posterior nucleus (VP) and reticular nucleus (RTN) of control rats and WAG/Rij rats, a genetic model of absence epilepsy. In control rats, alpha1 subunits were prominent at inhibitory synapses in VP and much less prominent in RTN; in contrast, the alpha3 subunit was highly evident at inhibitory synapses in RTN. beta2/beta3 subunits were evenly distributed at inhibitory synapses in both VP and RTN. ImmunoGold particles representing all subunits were concentrated at postsynaptic densities with no extrasynaptic localization. Calculated mean number of particles for alpha1 subunit per postsynaptic density in nonepileptic VP was 6.1 +/- 3.7, for alpha3 subunit in RTN it was 6.6 +/- 3.4, and for beta2/beta3 subunits in VP and RTN the mean numbers were 3.7 +/- 1.3 and 3.5 +/- 1.2, respectively. In WAG/Rij rats, there was a specific loss of alpha3 subunit immunoreactivity at inhibitory synapses in RTN, without reduction in alpha3 subunit mRNA or significant change in immunostaining for other markers of RTN cell identity such as GABA or parvalbumin. alpha3 immunostaining in cortex was unchanged. Subtle, localized changes in GABA(A)R expression acting at highly specific points in the interconnected thalamocortical network lie at the heart of idiopathic generalized epilepsy. PMID:17630284

  1. Spinal direct current stimulation modulates the activity of gracile nucleus and primary somatosensory cortex in anaesthetized rats

    PubMed Central

    Aguilar, J; Pulecchi, F; Dilena, R; Oliviero, A; Priori, A; Foffani, G

    2011-01-01

    Abstract Afferent somatosensory activity from the spinal cord has a profound impact on the activity of the brain. Here we investigated the effects of spinal stimulation using direct current, delivered at the thoracic level, on the spontaneous activity and on the somatosensory evoked potentials of the gracile nucleus, which is the main entry point for hindpaw somatosensory signals reaching the brain from the dorsal columns, and of the primary somatosensory cortex in anaesthetized rats. Anodal spinal direct current stimulation (sDCS) increased the spontaneous activity and decreased the amplitude of evoked responses in the gracile nucleus, whereas cathodal sDCS produced the opposite effects. At the level of the primary somatosensory cortex, the changes in spontaneous activity induced by sDCS were consistent with the effects observed in the gracile nucleus, but the changes in cortical evoked responses were more variable and state dependent. Therefore, sDCS can modulate in a polarity-specific manner the supraspinal activity of the somatosensory system, offering a versatile bottom-up neuromodulation technique that could potentially be useful in a number of clinical applications. PMID:21825031

  2. Distribution of immunoreactive GABA and glutamate receptors in the gustatory portion of the nucleus of the solitary tract in rat.

    PubMed

    King, Michael S

    2003-05-15

    The distribution of glutamate (GLU) and gamma-aminobutyric acid (GABA) receptors within the gustatory portion of the rat nucleus of the solitary tract (gNST) was investigated using immunohistochemical, histological and neural tract tracing techniques. Numerous somata throughout the gNST were immunoreactive for alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and N-methyl-D-aspartate (NMDA) receptors, while few were labeled for kainate receptors. AMPA and NMDA receptors were particularly abundant in the rostral central (RC) subdivision of the gNST, which receives most of the primary afferent input from the oral cavity and contains most of the gNST neurons that project to the parabrachial nuclei (PBN). This finding supports electrophysiological evidence that AMPA and NMDA receptors are involved in responses to orosensory input and indicates that their action may influence ascending taste signals as well. Compared to the ionotropic GLU receptors, few cell bodies were immunoreactive for metabotropic GLU receptors. Somata immunoreactive for GABA(A) and GABA(B) receptors were located throughout the nucleus. The densest neuropil labeling was for GABA(A) receptors in the ventral (V) subnucleus, the gNST subdivision that sends output to brainstem oromotor centers. The distributions of immunolabeling for GLU and GABA receptors imply that different functional roles may exist for specific receptors within this nucleus. PMID:12754086

  3. Discharge properties of neurons recorded in the parvalbumin-positive (PV1) nucleus of the rat lateral hypothalamus.

    PubMed

    Lintas, Alessandra

    2014-06-13

    This study reports for the first time the extracellular activity recorded, in anesthetized rats, from cells located in an identified cluster of parvalbumin (PV)-positive neurons of the lateral hypothalamus forming the PV1-nucleus. Random-like firing characterized the majority (21/30) of the cells, termed regular cells, with a median firing rate of 1.7 spikes/s, Fano factor equal to 1, and evenly distributed along the rostro-caudal axis. Four cells exhibiting an oscillatory activity in the range 1.6-2.1Hz were observed only in the posterior part of the PV1-nucleus. The asynchronous activity of PV1 neurons is likely to produce a "network-driven" effect on their main target within the periaqueductal gray matter. The hypothesis is raised that background random-like firing of PV1-nucleus is associated with functional network activity likely to contribute dynamic information related to condition transitions of awareness and non-conscious perception. PMID:24780564

  4. Unilateral lesion increases oestrogen receptor α expression in the intact side of the ventromedial hypothalamic nucleus in ovariectomised rats.

    PubMed

    Shimogawa, Y; Maekawa, F; Yamanouchi, K

    2014-04-01

    To determine the relationship between the right and left sides of the ventrolateral ventromedial hypothalamic nucleus (vlVMN) in regulating the expression of oestrogen receptor (ER)α, the unilateral vlVMN was lesioned and the number of ERα-immunoreactive cells and the ERα mRNA level in the intact side of the vlVMN and arcuate nucleus (ARC) were measured in ovariectomised rats. Twenty-four hours after lesioning, brain samples were collected for analysis of ERα expression by immunohistochemistry and the real-time reverse transcriptase-polymerase chain reaction. The number of ERα-immunoreactive cells in the intact side of the vlVMN but not the ARC in the unilateral lesioned group was significantly higher than that in the control or sham-lesioned group. Expression levels of ERα mRNA in the intact side of the vlVMN but not the ARC in unilateral lesioned rats were significantly higher than those in the sham-lesioned group. Of transcript variants with alternative 5'-untranslated regions (0S, 0N, 0, 0T and E1), the ERα 0 transcript level was significantly increased. These results indicate that unilateral damage of vlVMN induces an increase in ERα in the intact side by increasing ERα transcription in a promoter-specific manner. The findings also suggest the existence of new neuroendocrine control system between the right and left sides for the expression of ERα in the vlVMN. PMID:24629021

  5. Deep brain stimulation of the posterior hypothalamic nucleus reverses akinesia in bilaterally 6-hydroxydopamine-lesioned rats.

    PubMed

    Young, C K; Koke, S J; Kiss, Z H; Bland, B H

    2009-08-01

    Deep brain stimulation (DBS) of the basal ganglia motor circuitry is a highly effective treatment for the debilitating motor symptoms of Parkinson's disease (PD). However, recent findings have indicated promising potential for PD therapy with DBS in brain structures outside the basal ganglia. For example, high frequency stimulation of the posterior hypothalamic nucleus (PH) can reverse haloperidol-induced akinesia in rats [Jackson J, Young CK, Hu B, Bland BH (2008) High frequency stimulation of the posterior hypothalamic nucleus restores movement and reinstates hippocampal-striatal theta coherence following haloperidol-induced catalepsy. Exp Neurol 213:210-219]. In the current study, we used the bilateral 6-hydroxydopamine lesion model of Parkinsonian akinesia in male Long-Evans rats to further explore the efficacy of PH DBS. The application of PH DBS in lesioned animals reversed akinesia in an active avoidance paradigm with increased latency compared to pre-lesion performance. The dramatic reversal of akinesia in two models of rodent Parkinsonism by PH DBS warrants further exploration of its therapeutic potential. PMID:19401216

  6. Expression of NPY Y1 and Y5 receptors in the hypothalamic paraventricular nucleus of aged Fischer 344 rats.

    PubMed

    Coppola, Jessica D; Horwitz, Barbara A; Hamilton, Jock; McDonald, Roger B

    2004-07-01

    Many mammals, nearing the end of life, spontaneously decrease their food intake and body weight, a stage we refer to as senescence. The spontaneous decrease in food intake and body weight is associated with attenuated responses to intracerebroventricular injections of neuropeptide Y (NPY) compared with old presenescent or with young adult rats. In the present study, we tested the hypothesis that this blunted responsiveness involves the number and expression of hypothalamic paraventricular nucleus (PVN) Y(1) and/or Y(5) NPY receptors, both of which are thought to mediate NPY-induced food intake. We found no significant difference in mRNA levels, via quantitative PCR, for Y(1) and Y(5) receptors in the PVN of senescent vs. presenescent rats. In contrast, immunohistochemistry indicated that the number of PVN neurons staining for Y(1) receptor protein was greater in presenescent compared with senescent rats. We conclude that a decreased expression and number of Y(1) or Y(5) receptors in the PVN cannot explain the attenuated responsiveness of the senescent rats to exogenous NPY. PMID:15044185

  7. Chronic Deep Brain Stimulation of the Hypothalamic Nucleus in Wistar Rats Alters Circulatory Levels of Corticosterone and Proinflammatory Cytokines

    PubMed Central

    Calleja-Castillo, Juan Manuel; De La Cruz-Aguilera, Dora Luz; Manjarrez, Joaquín; Velasco-Velázquez, Marco Antonio; Morales-Espinoza, Gabriel; Moreno-Aguilar, Julia; Hernández, Maria Eugenia; Aguirre-Cruz, Lucinda

    2013-01-01

    Deep brain stimulation (DBS) is a therapeutic option for several diseases, but its effects on HPA axis activity and systemic inflammation are unknown. This study aimed to detect circulatory variations of corticosterone and cytokines levels in Wistar rats, after 21 days of DBS-at the ventrolateral part of the ventromedial hypothalamic nucleus (VMHvl), unilateral cervical vagotomy (UCVgX), or UCVgX plus DBS. We included the respective control (C) and sham (S) groups (n = 6 rats per group). DBS treated rats had higher levels of TNF-α (120%; P < 0.01) and IFN-γ (305%; P < 0.001) but lower corticosterone concentration (48%; P < 0.001) than C and S. UCVgX animals showed increased corticosterone levels (154%; P < 0.001) versus C and S. UCVgX plus DBS increased IL-1β (402%; P < 0.001), IL-6 (160%; P < 0.001), and corsticosterone (178%; P < 0.001 versus 48%; P < 0.001) compared with the C and S groups. Chronic DBS at VMHvl induced a systemic inflammatory response accompanied by a decrease of HPA axis function. UCVgX rats experienced HPA axis hyperactivity as result of vagus nerve injury; however, DBS was unable to block the HPA axis hyperactivity induced by unilateral cervical vagotomy. Further studies are necessary to explore these findings and their clinical implication. PMID:24235973

  8. Morphine differentially regulates hsp90beta expression in the nucleus accumbens of Lewis and Fischer 344 rats.

    PubMed

    Salas, Elisabet; Alonso, Elba; Sevillano, Julio; Herradon, Gonzalo; Bocos, Carlos; Morales, Lidia; Ramos, Maria Pilar; Alguacil, Luis Fernando

    2007-07-12

    We have comparatively studied hsp90beta gene and protein expression in the nucleus accumbens of Lewis and Fischer 344 (F344) rats, two inbred strains that exhibit prominent behavioural differences in drug-seeking behaviours. Phenotypical studies confirmed that Lewis rats developed a higher preference for morphine-paired environments after conditioning. RT-PCR assays did not reveal strain-related differences in hsp90beta gene expression in basal conditions; however, acute morphine treatment provoked an increase of hsp90beta mRNA 2h after injection only in the case of Lewis rats. We also found a significant upregulation of the Hsp90beta protein in both strains 8h after morphine injection, this increase being significantly higher in Lewis rats. Taking into account the suggested roles for Hsp90 in the brain, the data suggest that Lewis and F344 strain differences concerning opioid-seeking behaviours could be related to differential sensitivity to opioid-induced neuronal plasticity within the brain reward system, an effect that could be mediated (at least partially) by stress proteins. PMID:17562399

  9. Underweight rats have enhanced dopamine release and blunted acetylcholine response in the nucleus accumbens while bingeing on sucrose.

    PubMed

    Avena, N M; Rada, P; Hoebel, B G

    2008-10-28

    The present study tested whether rats release more accumbens dopamine (DA) during a sugar binge when they are underweight vs. normal weight. Since acetylcholine (ACh) in the nucleus accumbens (NAc) normally increases as a meal progresses and satiety ensues, we also tested whether ACh release is altered when an animal has lost weight. Rats were maintained on daily 8-h access to chow, with 10% sucrose solution available for the first 2 h. Microdialysis performed on day 21, at normal body weight, revealed an increase in extracellular DA to 122% of baseline in response to drinking sucrose. Extracellular ACh peaked at the end of the meal. Next, the rats were food and sucrose restricted so that by day 28 they were at 85% body weight. When retested, these animals released significantly more DA when drinking sucrose (179%), but ACh release failed to rise. A control group was tested in the same manner but given sugar only on days 1, 21 and 28. At normal body weight, control animals showed a non-significant rise in DA when drinking sucrose on day 21. On day 28, at 85% body weight, the controls showed a small increase (124%) in DA release; however, this was significantly lower than the 179% observed in the underweight rats with daily sugar access. These findings suggest that when an animal binges on sugar and then loses weight, the binge releases significantly more DA and less ACh than when animals are at a normal body weight. PMID:18790017

  10. UNDERWEIGHT RATS HAVE ENHANCED DOPAMINE RELEASE AND BLUNTED ACETYLCHOLINE RESPONSE IN THE NUCLEUS ACCUMBENS WHILE BINGEING ON SUCROSE

    PubMed Central

    AVENA, N. M.; RADA, P.; HOEBEL, B. G.

    2015-01-01

    The present study tested whether rats release more accumbens dopamine (DA) during a sugar binge when they are underweight vs. normal weight. Since acetylcholine (ACh) in the nucleus accumbens (NAc) normally increases as a meal progresses and satiety ensues, we also tested whether ACh release is altered when an animal has lost weight. Rats were maintained on daily 8-h access to chow, with 10% sucrose solution available for the first 2 h. Microdialysis performed on day 21, at normal body weight, revealed an increase in extracellular DA to 122% of baseline in response to drinking sucrose. Extracellular ACh peaked at the end of the meal. Next, the rats were food and sucrose restricted so that by day 28 they were at 85% body weight. When retested, these animals released significantly more DA when drinking sucrose (179%), but ACh release failed to rise. A control group was tested in the same manner but given sugar only on days 1, 21 and 28. At normal body weight, control animals showed a non-significant rise in DA when drinking sucrose on day 21. On day 28, at 85% body weight, the controls showed a small increase (124%) in DA release; however, this was significantly lower than the 179% observed in the underweight rats with daily sugar access. These findings suggest that when an animal binges on sugar and then loses weight, the binge releases significantly more DA and less ACh than when animals are at a normal body weight. PMID:18790017

  11. Influence of intraventricular application of baclofen on arterial blood pressure and neurotransmitter concentrations in the hypothalamic paraventricular nucleus of rats.

    PubMed

    Czell, David; Efe, Turgay; Preuss, Matthias; Schofer, Markus D; Becker, Ralf

    2012-02-01

    The hypothalamic paraventricular nucleus (PVN) is a key site for regulating neuroendocrine functions in the magnocellular part and autonomic activities in the parvocellular part. Its anatomical proximity to the third ventricle could be a good target for intrathecal injection of baclofen. We investigated the correlation of intrathecal application of baclofen (a specific GABAB receptor agonist) and the release of epinephrine, norepinephrine, dopac, homovanillinic acid (HVA), glutamate and aspartate from the PVN. The decomposition products HVA, dopa and dopac of norepinephrine, epinephrine and dopamine, respectively, were used as parameters for the secretion of dopamine. We implanted a microdialysis probe in the PVN of 25 Wistar rats. In 13 rats, 1.5 μg baclofen was injected in the lateral ventricle and the equivalent quantity of Ringer's lactate solution injected in the remaining 12 rats as a control group. Neurotransmitters and amino acids were quantified by high-performance liquid chromatography. There was a conspicuous but not significant effect of baclofen concerning the secretion of epinephrine, norepinephrine, dopac, glutamate and aspartate from the PVN. A significant increase in HVA concentration was observed only in rats treated with baclofen compared with the control group. These findings suggest that baclofen influences the secretion of neurotransmitters and amino acids involved in autonomic activities mediated by GABAB receptors. PMID:21984200

  12. Ventilatory effects of substance P-saporin lesions in the nucleus tractus solitarii of chronically hypoxic rats

    PubMed Central

    Fu, Zhenxing; Powell, Frank L.

    2011-01-01

    During ventilatory acclimatization to hypoxia (VAH), time-dependent increases in ventilation lower Pco2 levels, and this persists on return to normoxia. We hypothesized that plasticity in the caudal nucleus tractus solitarii (NTS) contributes to VAH, as the NTS receives the first synapse from the carotid body chemoreceptor afferents and also contains CO2-sensitive neurons. We lesioned cells in the caudal NTS containing the neurokinin-1 receptor by microinjecting the neurotoxin saporin conjugated to substance P and measured ventilatory responses in awake, unrestrained rats 18 days later. Lesions did not affect hypoxic or hypercapnic ventilatory responses in normoxic control rats, in contrast to published reports for similar lesions in other central chemosensitive areas. Also, lesions did not affect the hypercapnic ventilatory response in chronically hypoxic rats (inspired Po2 = 90 Torr for 7 days). These results suggest functional differences between central chemoreceptor sites. However, lesions significantly increased ventilation in normoxia or acute hypoxia in chronically hypoxic rats. Hence, chronic hypoxia increases an inhibitory effect of neurokinin-1 receptor neurons in the NTS on ventilatory drive, indicating that these neurons contribute to plasticity during chronic hypoxia, although such plasticity does not explain VAH. PMID:21593425

  13. The anterior pretectal nucleus participates as a relay station in the glutamate-, but not morphine-induced antinociception from the dorsal raphe nucleus in rats.

    PubMed

    Prado, W A; Faganello, F A

    2000-11-01

    The anterior pretectal nucleus (APtN) and the dorsal raphe nucleus (DRN) are involved in descending pathways that control noxious inputs to the spinal cord and participate in the normal physiological response to noxious stimulation. Evidence has also been provided for the involvement of the APtN acting as a relay station through which the DRN partly modulates spinal nociceptive messages. In the present study, the effects of microinjecting glutamate or morphine into the DRN on the latency for the tail withdrawal reflex after noxious heating of the skin were examined in rats in which hyperbaric lidocaine (5%), naloxone (a non-selective opioid antagonist) or methiothepin (a non-selective 5-HT(1) antagonist) was previously microinjected into the APtN. Microinjection of glutamate (38 nmol/0.25 microl) into the DRN evoked strong but short-lasting antinociception that was fully inhibited by the previous administration of lidocaine (0.25 microl), naloxone (2.7 nmol/0.25 microl), or methiothepin (1 nmol/0.25 microl). A smaller dose of methiothepin (0.5 nmol/0.25 microl) significantly reduced the effect of glutamate. Microinjection of morphine (7.5 nmol/0.25 microl) into the DRN evoked strong and long-lasting antinociception that was not significantly changed by previous microinjection of lidocaine into the APtN. These results confirm that APtN integrity is at least in part necessary for the antinociceptive effects of stimulating the DRN, and that at least opioid and 5-HT1 mechanisms in the APtN participate as neuromodulators in the DRN-APtN connection. The results demonstrate that the antinociceptive effects of stimulating the DRN-APtN path depend on the activation of cell bodies in the DRN that can be excited by the local administration of glutamate, but not morphine. The study also further supports the notion that the DRN is involved in both descending and ascending pain inhibitory systems. PMID:11050372

  14. Mu opioid receptor modulation in the nucleus accumbens lowers voluntary wheel running in rats bred for high running motivation.

    PubMed

    Ruegsegger, Gregory N; Toedebusch, Ryan G; Will, Matthew J; Booth, Frank W

    2015-10-01

    The exact role of opioid receptor signaling in mediating voluntary wheel running is unclear. To provide additional understanding, female rats selectively bred for motivation of low (LVR) versus high voluntary running (HVR) behaviors were used. Aims of this study were 1) to identify intrinsic differences in nucleus accumbens (NAc) mRNA expression of opioid-related transcripts and 2) to determine if nightly wheel running is differently influenced by bilateral NAc injections of either the mu-opioid receptor agonist D-Ala2, NMe-Phe4, Glyo5-enkephalin (DAMGO) (0.25, 2.5 μg/side), or its antagonist, naltrexone (5, 10, 20 μg/side). In Experiment 1, intrinsic expression of Oprm1 and Pdyn mRNAs were higher in HVR compared to LVR. Thus, the data imply that line differences in opioidergic mRNA in the NAc could partially contribute to differences in wheel running behavior. In Experiment 2, a significant decrease in running distance was present in HVR rats treated with 2.5 μg DAMGO, or with 10 μg and 20 μg naltrexone between hours 0-1 of the dark cycle. Neither DAMGO nor naltrexone had a significant effect on running distance in LVR rats. Taken together, the data suggest that the high nightly voluntary running distance expressed by HVR rats is mediated by increased endogenous mu-opioid receptor signaling in the NAc, that is disturbed by either agonism or antagonism. In summary, our findings on NAc opioidergic mRNA expression and mu-opioid receptor modulations suggest HVR rats, compared to LVR rats, express higher running levels mediated by an increase in motivation driven, in part, by elevated NAc opioidergic signaling. PMID:26044640

  15. Pain Behavior Changes Following Disc Puncture Relate to Nucleus Pulposus Rather than to the Disc Injury Per Se: An Experimental Study in Rats

    PubMed Central

    Nilsson, Elin; Nakamae, Toshio; Olmarker, Kjell

    2011-01-01

    It has previously been demonstrated that disc puncture in the rat induced changes in grooming and wet dog shakes, two behavioral changes that may be linked to discomfort and neuropathic pain. In this study the aim was to separate the effects of disc injury and the epidural presence of nucleus pulposus. Following anesthesia, the L4-5 disc was exposed using a dorsal approach. Ten rats received a superficial disc injury without nucleus pulposus leakage and ten rats received nucleus pulposus from a donor rat without disc injury. In ten animals the L4-5 disc was punctured using a ventral approach, with 10 corresponding controls. Spontaneous behavior was assessed after surgery. The data was matched to historical control of dorsal sham surgery and disc puncture. The study showed that the effects of nucleus pulposus were more pronounced than the effects induced by the disc injury. Ventral disc puncture did not induce any behavioral changes different from sham exposure. In conclusion, the data from the study indicate that behavioral changes induced by disc puncture are more likely to relate to the epidural presence of nucleus pulposus than the disc injury per se. PMID:21566734

  16. Heterogeneous expression of extracellular matrix molecules in the red nucleus of the rat.

    PubMed

    Rácz, É; Gaál, B; Matesz, C

    2016-05-13

    Previous studies in our laboratory showed that the organization and heterogeneous molecular composition of extracellular matrix is associated with the variable cytoarchitecture, connections and specific functions of the vestibular nuclei and two related areas of the vestibular neural circuits, the inferior olive and prepositus hypoglossi nucleus. The aim of the present study is to reveal the organization and distribution of various molecular components of extracellular matrix in the red nucleus, a midbrain premotor center. Morphologically and functionally the red nucleus is comprised of the magno- and parvocellular parts, with overlapping neuronal population. By using histochemical and immunohistochemical methods, the extracellular matrix appeared as perineuronal net, axonal coat, perisynaptic matrix or diffuse network in the neuropil. In both parts of the red nucleus we have observed positive hyaluronan, tenascin-R, link protein, and lectican (aggrecan, brevican, versican, neurocan) reactions. Perineuronal nets were detected with each of the reactions and the aggrecan showed the most intense staining in the pericellular area. The two parts were clearly distinguished on the basis of neurocan and HAPLN1 expression as they have lower intensity in the perineuronal nets of large cells and in the neuropil of the magnocellular part. Additionally, in contrast to this pattern, the aggrecan was heavily labeled in the magnocellular region sharply delineating from the faintly stained parvocellular area. The most characteristic finding was that the appearance of perineuronal nets was related with the neuronal size independently from its position within the two subdivisions of red nucleus. In line with these statements none of the extracellular matrix molecules were restricted exclusively to the magno- or parvocellular division. The chemical heterogeneity of the perineuronal nets may support the recently accepted view that the red nucleus comprises more different populations of

  17. Gustatory responses of neurons in the nucleus of the solitary tract of behaving rats.

    PubMed

    Nakamura, K; Norgren, R

    1991-10-01

    1. The activity of 117 single neurons was recorded in the rostral nucleus of the solitary tract (NST) and tested with each of four standard chemical stimuli [sucrose, NaCl, citric acid, and quinine HCl (QHCl)] and distilled water in awake, behaving rats. In 101 of these neurons, at least one sapid stimulus elicited a significant taste response. The mean spontaneous rate of the taste neurons was 4.1 +/- 5.8 (SD) spike/s. The mean response magnitudes were as follows: sucrose, 10.6 +/- 11.7; NaCl, 8.6 +/- 14.6; citric acid, 6.2 +/- 7.8; and QHCl, 2.4 +/- 6.6 spikes/s. 2. On the basis of their largest response, 42 taste neurons were classified as sucrose-best, 25 as NaCl-best, 30 as citric acid-best, and 4 as QHCl-best. The mean spontaneous rates for these categories were 4.9 +/- 6.2 for sucrose-best cells, 5.8 +/- 7.4 for NaCl-best, 1.6 +/- 2.0 for citric acid-best, and 5.8 +/- 6.0 spikes/s for QHCl-best. The spontaneous rate of the citric acid-best neurons was significantly lower than that of the other categories. 3. At the standard concentrations, 45 taste cells (44.6%) responded significantly to only one of the gustatory stimuli. Of the 30 acid-best neurons, 23 (76.7%) responded only to citric acid. For sucrose-best cells, specific sensitivity was less common (18/42, 42.9%), and for NaCl-best neurons, it was relatively uncommon (3/25, 12%). One of the 4 QHCl-best neurons was specific. In a concentration series, more than one-half of the 19 specific neurons tested responded to only one chemical at any strength. 4. The mean entropy for the excitatory responses of all gustatory neurons was 0.60. Citric acid-best cells showed the least breadth of responsiveness (0.49), sucrose-best cells were somewhat broader (0.56), but NaCl-best and QHCl-best cells were considerably less selective (0.77 and 0.79, respectively). Inhibition was observed infrequently and never reached the criterion for significance. 5. In the hierarchical cluster analysis, the four largest clusters

  18. Membrane properties of rat suprachiasmatic nucleus neurons receiving optic nerve input.

    PubMed Central

    Kim, Y I; Dudek, F E

    1993-01-01

    1. The electrophysiological properties of suprachiasmatic nucleus (SCN) neurons (n = 33) receiving optic nerve input were studied with intracellular recordings in rat hypothalamic slices maintained in vitro. Our major goal was to provide baseline data concerning the intrinsic membrane properties of these neurons and to test the hypothesis that the neurons are homogeneous electrophysiologically. 2. Action potentials were short in duration and followed by a pronounced hyperpolarizing after-potential. Spike amplitude (58.2 +/- 1.1 mV, mean +/- S.E.M.; measured from threshold), spike duration (0.83 +/- 0.03 ms; measured at half amplitude) and hyperpolarizing after-potential amplitude (23.9 +/- 1.0 mV; measured from threshold) appeared unimodally distributed and did not co-vary. 3. Intracellular injection of depolarizing current pulses evoked spike trains, and spike inactivation, spike broadening and frequency accommodation were always present. An after-hyperpolarization followed the spike train in all but one neuron. 4. Membrane time constant ranged from 7.5 to 21.1 ms (11.4 +/- 0.7 ms, n = 27), and its distribution appeared to be unimodal with the peak at approximately 10 ms. Input resistance ranged from 105 to 626 M omega (301 +/- 23 M omega, n = 33); the distribution also appeared unimodal with its peak at approximately 250 M omega. 5. A subpopulation (16 of 33, 48%) of the neurons exhibited slight (6-29%) time-dependent inward rectification in their voltage responses to hyperpolarizing current injection. Of the neurons lacking the time-dependent rectification, some (n = 5) exhibited time-independent inward rectification of 6-20% and others showed no (or < 3%) such rectification. The degree of inward rectification was correlated with neuronal excitability (r = 0.60, P < 0.002; assessed by measuring the steepness of the primary slope of the frequency-current plot) and with the spontaneous firing rate (r = 0.49, P < 0.007). Furthermore, the neurons with > 6% inward

  19. Reduced outward K+ conductances generate depolarizing after-potentials in rat supraoptic nucleus neurones.

    PubMed Central

    Li, Z; Hatton, G I

    1997-01-01

    1. Whole-cell patch clamp recordings were obtained from sixty-five rat supraoptic nucleus (SON) neurones in brain slices to investigate ionic mechanisms underlying depolarizing after-potentials (DAPs). When cells were voltage clamped around -58 mV, slow inward currents mediating DAPs (IDAP), evoked by three brief depolarizing pulses, had a peak of 17 +/- 1 pA (mean +/- S.E.M.) and lasted for 2.8 +/- 0.1 s. 2. No significant differences in the amplitude and duration were observed when one to three preceding depolarizing pulses were applied, although there was a tendency for twin pulses to evoke larger IDAP than a single pulse. The IDAP was absent when membrane potentials were more negative than -70 mV. In the range -70 to -50 mV, IDAP amplitudes and durations increased as the membrane became more depolarized, with an activation threshold of -65.7 +/- 0.7 mV. 3. IDAP with normal amplitude and duration could be evoked during the decay of a preceding IDAP. As frequencies of depolarizing pulses rose from 2 to 20 Hz, the times to peak IDAP amplitude were reduced but the amplitudes and durations did not change. 4. A consistent reduction in membrane conductance during the IDAP was observed in all SON neurones tested, and averaged 34.6 +/- 3.3%. Small hyperpolarizing pulses used to measure membrane conductances appeared not to disturb major ionic mechanisms underlying IDAP, since the slope and duration of IDAP with and without test pulses were similar. 5. The IDAP had an averaged reversal potential of -87.4 +/- 1.6 mV, which was close to the K+ equilibrium potential. An elevation in [K+]o reduced or abolished the IDAP, and shifted its reversal potential toward more positive levels. Perifusion of slices with 7.5-10 mM TEA, a K+ channel blocker, reversibly suppressed the IDAP. 6. Both Na+ and Ca2+ currents failed to induce an IDAP-like current during perifusion of slices with media containing high [K+]o or TEA. However, the IDAP was abolished by replacing external Ca2+ with

  20. Phosphorylation of CaMKII in the rat dorsal raphe nucleus plays an important role in sleep-wake regulation.

    PubMed

    Cui, Su-Ying; Li, Sheng-Jie; Cui, Xiang-Yu; Zhang, Xue-Qiong; Yu, Bin; Sheng, Zhao-Fu; Huang, Yuan-Li; Cao, Qing; Xu, Ya-Ping; Lin, Zhi-Ge; Yang, Guang; Song, Jin-Zhi; Ding, Hui; Wang, Zi-Jun; Zhang, Yong-He

    2016-02-01

    The Ca(2+) modulation in the dorsal raphe nucleus (DRN) plays an important role in sleep-wake regulation. Calmodulin-dependent kinase II (CaMKII) is an important signal-transducing molecule that is activated by Ca(2+) . This study investigated the effects of intracellular Ca(2+) /CaMKII signaling in the DRN on sleep-wake states in rats. Maximum and minimum CaMKII phosphorylation was detected at Zeitgeber time 21 (ZT 21; wakefulness state) and ZT 3 (sleep state), respectively, across the light-dark rhythm in the DRN in rats. Six-hour sleep deprivation significantly reduced CaMKII phosphorylation in the DRN. Microinjection of the CAMKII activation inhibitor KN-93 (5 or 10 nmol) into the DRN suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REM sleep (NREMS). Application of a high dose of KN-93 (10 nmol) increased slow-wave sleep (SWS) time, SWS bouts, the mean duration of SWS, the percentage of SWS relative to total sleep, and delta power density during NREMS. Microinjection of CaCl2 (50 nmol) in the DRN increased CaMKII phosphorylation and decreased NREMS, SWS, and REMS. KN-93 abolished the inhibitory effects of CaCl2 on NREMS, SWS, and REMS. These data indicate a novel wake-promoting and sleep-suppressing role for the Ca(2+) /CaMKII signaling pathway in DRN neurons. We propose that the intracellular Ca(2+) /CaMKII signaling in the dorsal raphe nucleus (DRN) plays wake-promoting and sleep-suppressing role in rats. Intra-DRN application of KN-93 (CaMKII activation inhibitor) suppressed wakefulness and enhanced rapid-eye-movement sleep (REMS) and non-REMS (NREMS). Intra-DRN application of CaCl2 attenuated REMS and NREMS. We think these findings should provide a novel cellular and molecular mechanism of sleep-wake regulation. PMID:26558357

  1. Autoradiographic distribution of cerebral blood flow increases elicited by stimulation of the nucleus basalis magnocellularis in the unanesthetized rat.

    PubMed

    Vaucher, E; Borredon, J; Seylaz, J; Lacombe, P

    1995-09-11

    The nucleus basalis magnocellularis (NBM) of the rat, equivalent of Meynert's nucleus in the primate, is the origin of the main cholinergic innervation of the cerebral cortex. Stimulation of this area has been previously shown to induced marked, cholinergically mediated, blood flow increases in the frontal and parietal cortices. However, the complete distribution of the cerebrovascular effects of NBM stimulation within the whole brain has not been determined. In the present study, we used the [14C]iodoantipyrine autoradiographic method to measure local cerebral blood flow (CBF) in the unanesthetized rat, chronically implanted with a stimulation electrode. We performed unilateral electrical stimulation of the NBM in order to compare both the interhemispheric differences in blood flow and the differences with a group of sham-stimulated rats. Considerable blood flow increases were found in most neocortical areas, exceeding 400% in the frontal area, compared to the control group. Marked responses also appeared in discrete subcortical regions such as the zona incerta, some thalamic nuclei and structures of the extrapyramidal system. These responses were mostly ipsilateral to the stimulation. The significance and the distribution of these blood flow increases are related first, to anatomical and functional data on mainly the cholinergic projections from the NBM, but also non-cholinergic pathways connected with the NBM, second, to biochemical data on the basalocortical system, and third, to the limited ultrastructural data on the innervation of microvascular elements. This cerebrovascular study represents a step in the elucidation of the function of the basalocortical system and provides data which may be related to certain deficits of degenerative disorders such as Alzheimer's disease in which this system is consistently affected. PMID:8590065

  2. Dual effects of limbic seizures on psychosis-relevant behaviors shown by nucleus accumbens kindling in rats

    PubMed Central

    Ma, Jingyi; Leung, L. Stan

    2016-01-01

    Background A paradox in epilepsy and psychiatry is that temporal lobe epilepsy is often predisposed to schizophrenic-like psychosis, whereas convulsive therapy can relieve schizophrenic symptoms. We have previously demonstrated that the nucleus accumbens is a key structure in mediating postictal psychosis induced by a hippocampal electrographic seizure. Objective/Hypothesis The purpose of this study is to test a hypothesis that accumbens kindling cumulating in a single (1-time) or repeated (5-times) convulsive seizures have different effects on animal models of psychosis. Methods Electrical stimulation at 60 Hz was applied to nucleus accumbens to evoke afterdischarges until one, or five, convulsive seizures that involved the hind limbs (stage 5 seizures) were attained. Behavioral tests, performed at 3 days after the last seizure, included gating of hippocampal auditory evoked potentials (AEP) and prepulse inhibition to an acoustic startle response (PPI), tested without drug injection or after ketamine (3 mg/kg s.c.) injection, as well as locomotion induced by ketamine or methamphetamine (1 mg/kg i.p.). Results Compared to non-kindled control rats, 1-time, but not 5-times, convulsive seizures induced PPI deficit and decreased gating of hippocampal AEP, without drug injection. Compared to non-kindled rats, 5-times, but not 1-time, convulsive seizures antagonized ketamine-induced hyperlocomotion, ketamine-induced PPI deficit and AEP gating decrease. However, both 1- and 5-times convulsive seizures, significantly enhanced methamphetamine-induced locomotion as compared to non-kindled rats. Conclusions Accumbens kindling ending with 1 convulsive seizure may induce schizophrenic-like behaviors, while repeated (≥ 5) convulsive seizures induced by accumbens kindling may have therapeutic effects on dopamine independent psychosis. PMID:27267861

  3. Brainstem Origins of Glutamatergic Innervation of the Rat Hypothalamic Paraventricular Nucleus

    PubMed Central

    Ziegler, Dana R.; Edwards, Monica R.; Ulrich-Lai, Yvonne M.; Herman, James P.; Cullinan, William E.

    2015-01-01

    Multiple lines of evidence document a role for glutamatergic input to the hypothalamic paraventricular nucleus (PVH) in stress-induced activation of the hypothalamic-pituitary-adrenocortical (HPA) axis. However, the neuro-anatomical origins of the glutamatergic input have yet to be definitively determined. We have previously shown that vesicular glutamate transporter 2 (VGLUT2) is the predominant VGLUT isoform expressed in the basal forebrain and brainstem, including PVH-projecting regions, and that the PVH is preferentially innervated by VGLUT2-immunoreactive terminals/boutons. The present study employed a dual-labeling approach, combining immunolabeling for a retrograde tract tracer, Fluoro-Gold (FG), with in situ hybridization for VGLUT2 mRNA, to map the brainstem and caudal forebrain distribution of glutamatergic PVH-projecting neurons. The present report presents evidence for substantial dual labeling in the periaqueductal gray, caudal portions of the zona incerta and subparafascicular nucleus, and the lateral parabrachial nucleus. The current data also suggest that relatively few PVH-projecting neurons in ascending raphe nuclei, nucleus of the solitary tract, or ventrolateral medulla are VGLUT2 positive. The data reveal multiple brainstem origins of glutamatergic input to PVH that are positioned to play a role in transducing a diverse range of stressful stimuli. PMID:22247025

  4. Projections of the sensory trigeminal nucleus in a percomorph teleost, tilapia (Oreochromis niloticus).

    PubMed

    Xue, Hao-Gang; Yamamoto, Naoyuki; Yang, Chun-Ying; Kerem, Gulnisa; Yoshimoto, Masami; Sawai, Nobuhiko; Ito, Hironobu; Ozawa, Hitoshi

    2006-03-20

    The sensory trigeminal nucleus of teleosts is the rostralmost nucleus among the trigeminal sensory nuclear group in the rhombencephalon. The sensory trigeminal nucleus is known to receive the somatosensory afferents of the ophthalmic, maxillar, and mandibular nerves. However, the central connections of the sensory trigeminal nucleus remain unclear. Efferents of the sensory trigeminal nucleus were examined by means of tract-tracing methods, in a percomorph teleost, tilapia. After tracer injections to the sensory trigeminal nucleus, labeled terminals were seen bilaterally in the ventromedial thalamic nucleus, periventricular pretectal nucleus, medial part of preglomerular nucleus, stratum album centrale of the optic tectum, ventrolateral nucleus of the semicircular torus, lateral valvular nucleus, prethalamic nucleus, tegmentoterminal nucleus, and superior and inferior reticular formation, with preference for the contralateral side. Labeled terminals were also found bilaterally in the oculomotor nucleus, trochlear nucleus, trigeminal motor nucleus, facial motor nucleus, facial lobe, descending trigeminal nucleus, medial funicular nucleus, and contralateral sensory trigeminal nucleus and inferior olive. Labeled terminals in the oculomotor nucleus and trochlear nucleus showed similar densities on both sides of the brain. However, labelings in the trigeminal motor nucleus, facial motor nucleus, facial lobe, descending trigeminal nucleus, and medial funicular nucleus showed a clear ipsilateral dominance. Reciprocal tracer injection experiments to the ventromedial thalamic nucleus, optic tectum, and semicircular torus resulted in labeled cell bodies in the sensory trigeminal nucleus, with a few also in the descending trigeminal nucleus. PMID:16440296

  5. AMPA receptor upregulation in the nucleus accumbens shell of cocaine-sensitized rats depends upon S-nitrosylation of stargazin

    PubMed Central

    Milovanovic, Mike; Park, Diana J.; West, Anthony R.; Snyder, Solomon H.; Wolf, Marina E.

    2014-01-01

    Behavioral sensitization to cocaine is associated with increased AMPA receptor (AMPAR) surface expression in the nucleus accumbens (NAc). This upregulation is withdrawal-dependent, as it is not detected on withdrawal day (WD) 1, but is observed on WD7–21. Its underlying mechanisms have not been clearly established. Nitric oxide (NO) regulates AMPAR trafficking in the brain by S-nitrosylation of the AMPAR auxiliary subunit, stargazin, leading to increased AMPAR surface expression. Our goal was to determine if stargazin S-nitrosylation contributes to AMPAR upregulation during sensitization. First, we measured stargazin S-nitrosylation in NAc core and shell subregions on WD14 after 8 daily injections of saline or 15mg/kg cocaine. Stargazin S-nitrosylation was markedly increased in NAc shell but not core. To determine if this is associated with AMPAR upregulation, rats received 8 cocaine or saline injections followed by twice-daily treatments with vehicle or the nitric oxide synthase inhibitor L-NAME (50mg/kg) on WD1–6, the time when AMPAR upregulation is developing in cocaine-exposed rats. Cocaine/vehicle rats showed elevated stargazin and GluA1 surface expression on WD7 compared to saline/vehicle rats; the GluA1 increase was more robust in core, while stargazin increased more robustly in shell. These effects of cocaine were attenuated in shell but not core when cocaine injections were followed by L-NAME treatment on WD1–6. Together, these results indicate that elevated S-nitrosylation of stargazin contributes to AMPAR upregulation during sensitization selectively in the NAc shell. It is possible that AMPAR upregulation in core involves a different TARP, γ4, which also upregulates in the NAc of sensitized rats. PMID:24035918

  6. Enhanced Endocannabinoid-Mediated Modulation of Rostromedial Tegmental Nucleus Drive onto Dopamine Neurons in Sardinian Alcohol-Preferring Rats

    PubMed Central

    Sagheddu, Claudia; De Felice, Marta; Casti, Alberto; Madeddu, Camilla; Spiga, Saturnino; Muntoni, Anna Lisa; Mackie, Kenneth; Marsicano, Giovanni; Colombo, Giancarlo; Castelli, Maria Paola; Pistis, Marco

    2014-01-01

    The progressive predominance of rewarding effects of addictive drugs over their aversive properties likely contributes to the transition from drug use to drug dependence. By inhibiting the activity of DA neurons in the VTA, GABA projections from the rostromedial tegmental nucleus (RMTg) are well suited to shift the balance between drug-induced reward and aversion. Since cannabinoids suppress RMTg inputs to DA cells and CB1 receptors affect alcohol intake in rodents, we hypothesized that the endocannabinoid system, by modulating this pathway, might contribute to alcohol preference. Here we found that RMTg afferents onto VTA DA neurons express CB1 receptors and display a 2-arachidonoylglycerol (2-AG)-dependent form of short-term plasticity, that is, depolarization-induced suppression of inhibition (DSI). Next, we compared rodents with innate opposite alcohol preference, the Sardinian alcohol-preferring (sP) and alcohol-nonpreferring (sNP) rats. We found that DA cells from alcohol-naive sP rats displayed a decreased probability of GABA release and a larger DSI. This difference was due to the rate of 2-AG degradation. In vivo, we found a reduced RMTg-induced inhibition of putative DA neurons in sP rats that negatively correlated with an increased firing. Finally, alcohol failed to enhance RMTg spontaneous activity and to prolong RMTg-induced silencing of putative DA neurons in sP rats. Our results indicate functional modifications of RMTg projections to DA neurons that might impact the reward/aversion balance of alcohol attributes, which may contribute to the innate preference observed in sP rats and to their elevated alcohol intake. PMID:25232109

  7. Targeting Interleukin-1 beta to Suppress Sympathoexcitation in Hypothalamic Paraventricular Nucleus in Dahl Salt-Sensitive Hypertensive Rats.

    PubMed

    Qi, Jie; Zhao, Xiu-Fang; Yu, Xiao-Jing; Yi, Qiu-Yue; Shi, Xiao-Lian; Tan, Hong; Fan, Xiao-Yan; Gao, Hong-Li; Yue, Li-Ying; Feng, Zhi-Peng; Kang, Yu-Ming

    2016-07-01

    Findings from our laboratory indicate that expressions of some proinflammatory cytokines such as tumor necrosis factor, interleukin-6 and oxidative stress responses are increased in the hypothalamic paraventricular nucleus (PVN) and contribute to the progression of salt-sensitive hypertension. In this study, we determined whether interleukin-1 beta (IL-1β) activation within the PVN contributes to sympathoexcitation during development of salt-dependent hypertension. Eight-week-old male Dahl salt-sensitive (S) rats received a high-salt diet (HS, 8 % NaCl) or a normal-salt diet (NS, 0.3 % NaCl) for 6 weeks, and all rats were treated with bilateral PVN injection of gevokizumab (IL-1β inhibitor, 1 μL of 10 μg) or vehicle once a week. The mean arterial pressure (MAP), heart rate (HR) and plasma norepinephrine (NE) were significantly increased in high-salt-fed rats. In addition, rats with high-salt diet had higher levels of NOX-2, NOX-4 [subunits of NAD (P) H oxidase], IL-1β, NLRP3 (NOD-like receptor family pyrin domain containing 3), Fra-LI (an indicator of chronic neuronal activation) and lower levels of IL-10 in the PVN than normal-diet rats. Bilateral PVN injection of gevokizumab decreased MAP, HR and NE, attenuated the levels of oxidative stress and restored the balance of cytokines. These findings suggest that IL-1β activation in the PVN plays a role in salt-sensitive hypertension. PMID:26304161

  8. Cocaine-induced locomotor sensitization in rats correlates with nucleus accumbens activity on manganese-enhanced MRI.

    PubMed

    Perrine, Shane A; Ghoddoussi, Farhad; Desai, Kirtan; Kohler, Robert J; Eapen, Ajay T; Lisieski, Michael J; Angoa-Perez, Mariana; Kuhn, Donald M; Bosse, Kelly E; Conti, Alana C; Bissig, David; Berkowitz, Bruce A

    2015-11-01

    A long-standing goal of substance abuse research has been to link drug-induced behavioral outcomes with the activity of specific brain regions to understand the neurobiology of addiction behaviors and to search for drug-able targets. Here, we tested the hypothesis that cocaine produces locomotor (behavioral) sensitization that correlates with increased calcium channel-mediated neuroactivity in brain regions linked with drug addiction, such as the nucleus accumbens (NAC), anterior striatum (AST) and hippocampus, as measured using manganese-enhanced MRI (MEMRI). Rats were treated with cocaine for 5 days, followed by a 2-day drug-free period. The following day, locomotor sensitization was quantified as a metric of cocaine-induced neuroplasticity in the presence of manganese. Immediately following behavioral testing, rats were examined for changes in calcium channel-mediated neuronal activity in the NAC, AST, hippocampus and temporalis muscle, which was associated with behavioral sensitization using MEMRI. Cocaine significantly increased locomotor activity and produced behavioral sensitization compared with saline treatment of control rats. A significant increase in MEMRI signal intensity was determined in the NAC, but not AST or hippocampus, of cocaine-treated rats compared with saline-treated control rats. Cocaine did not increase signal intensity in the temporalis muscle. Notably, in support of our hypothesis, behavior was significantly and positively correlated with MEMRI signal intensity in the NAC. As neuronal uptake of manganese is regulated by calcium channels, these results indicate that MEMRI is a powerful research tool to study neuronal activity in freely behaving animals and to guide new calcium channel-based therapies for the treatment of cocaine abuse and dependence. PMID:26411897

  9. Automated localization of periventricular and subcortical white matter lesions

    NASA Astrophysics Data System (ADS)

    van der Lijn, Fedde; Vernooij, Meike W.; Ikram, M. Arfan; Vrooman, Henri A.; Rueckert, Daniel; Hammers, Alexander; Breteler, Monique M. B.; Niessen, Wiro J.

    2007-03-01

    It is still unclear whether periventricular and subcortical white matter lesions (WMLs) differ in etiology or clinical consequences. Studies addressing this issue would benefit from automated segmentation and localization of WMLs. Several papers have been published on WML segmentation in MR images. Automated localization however, has not been investigated as much. This work presents and evaluates a novel method to label segmented WMLs as periventricular and subcortical. The proposed technique combines tissue classification and registration-based segmentation to outline the ventricles in MRI brain data. The segmented lesions can then be labeled into periventricular WMLs and subcortical WMLs by applying region growing and morphological operations. The technique was tested on scans of 20 elderly subjects in which neuro-anatomy experts manually segmented WMLs. Localization accuracy was evaluated by comparing the results of the automated method with a manual localization. Similarity indices and volumetric intraclass correlations between the automated and the manual localization were 0.89 and 0.95 for periventricular WMLs and 0.64 and 0.89 for subcortical WMLs, respectively. We conclude that this automated method for WML localization performs well to excellent in comparison to the gold standard.

  10. Blunted endogenous GABA-mediated inhibition in the hypothalamic paraventricular nucleus of rats with streptozotocin-induced diabetes.

    PubMed

    Hassan, Zurina; Sattar, Munavvar Zubaid Abdul; Suhaimi, Farah Wahida; Yusoff, Nurul Hasnida Mohammed; Abdulla, Mohammed H; Yusof, Ahmad Pauzi M; Johns, Edward J

    2013-09-01

    The hypothalamic paraventricular nucleus (PVN) is involved in the regulation of sympathetic outflow and particularly affects the heart. This study sets out to determine the role of GABA of the paraventricular nucleus (PVN) in cardiovascular regulation in streptozotocin-induced diabetic rats. Pharmacological stimulation of glutamatergic receptors with DL-Homocysteic acid (200 mM in 100 nL) in the PVN region showed a significant depression in both mean arterial pressure (MAP) and heart rate (HR) of diabetic rats (Diabetic vs. non-diabetic: MAP 15.0 ± 1.5 vs. 35.8 ± 2.8 mmHg; HR 3.0 ± 2.0 vs. 30.0 ± 6.0 bpm, P < 0.05). Microinjection of bicuculline methiodide (1 mM in 100 nL), a GABAA receptor antagonist, produced an increase in baseline MAP and HR in both non-diabetic and diabetic rats. In the diabetic rats, bicuculline injection into the PVN reduced the pressor and HR responses (Diabetic vs. non-diabetic: MAP 6.2 ± 0.8 vs. 25.1 ± 2.2 mmHg; HR 1.8 ± 1.1 vs. 25.4 ± 6.2 bpm, P < 0.05). A microinjection of muscimol (2 mM in 100 nL), which is a GABAA receptor agonist, in the PVN elicited decreases in MAP and HR in both groups. The diabetic group showed a significantly blunted reduction in HR, but not MAP (Diabetic vs. non-diabetic: MAP -15.7 ± 4.0 vs. -25.0 ± 3.8 mmHg; HR -5.2 ± 2.1 vs. -39.1 ± 7.9 bpm). The blunted vasopressor and tachycardic responses to bicuculline microinjection in the diabetic rats are likely to result from decreased GABAergic inputs, attenuated release of endogenous GABA or alterations in GABAA receptors within the PVN. PMID:23242937

  11. The effect of continuous ELF-MFs on the level of 5-HIAA in the raphe nucleus of the rat

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Shiri, Leila; Alaei, Hojjatollah; Naghdi, Naser

    2016-01-01

    The aim of this study was to investigate the effect of continuous extremely low frequency magnetic fields (ELF-MFs) with a frequency of 10 Hz and an intensity of 690–720 μT on the level of 5-hydroxyindolacetic acid (5-HIAA) in adult male Wistar rats. A total of 24 adult Wistar male rats were used, and after exposure with an ELF-MF for 15 successive days, all rats in each test were anesthetized with chloral hydrate. Then, they were placed in a stereotaxic frame for surgery and a microdialysis process. Dialysate samples were analyzed to measure the amount of 5-HIAA by high performance liquid chromatography (HPLC) using electrochemical detection. Results showed that ELF-MF exposure for 15 days, 1 h daily, was not effective in altering the level of 5-HIAA. However, ELF-MF exposure for 15 days, 3 h daily, decreased the level of the 5-HIAA in the raphe nucleus. It can be concluded that ELF-MFs affect the serotonergic system and may be used to treat nervous system diseases. This study is an initial step towards helping cure depression using ELF-MFs. PMID:26811259

  12. Gene expression analysis of heat shock proteins in the nucleus accumbens of rats with different morphine seeking behaviours.

    PubMed

    Salas, Elisabet; Bocos, Carlos; Del Castillo, Carmen; Pérez-García, Carmen; Morales, Lidia; Alguacil, Luis F

    2011-11-20

    Heat-shock proteins play functional roles on brain regulatory processes which are deeply involved in drug addiction, such as synaptic plasticity. However, few studies have been focused on gene expression of heat-shock proteins (Hsp) as potential diagnostic tools for addiction risk. This work tries to provide new knowledge on this field by using two rat models of differential vulnerability to morphine addiction in order to study differential gene expression of a selected group of Hsp genes in the nucleus accumbens (NAc). Hsp70-1A, 84, 86 and 105 genes were similarly regulated by an acute injection of morphine in two subpopulations of Sprague Dawley (SD) rats showing different rates of extinction of morphine conditioned preference. However, Lewis and Fischer rats, two strains that differ in many aspects of drug seeking behaviours, exhibited marked differences in their expression patterns of Hsp84, 86 and 105. These results suggest that differential Hsp gene expression could be related to addiction vulnerability and recommend further work to validate these proteins as potential markers for drug addiction risk. PMID:21763353

  13. Replacing dietary glucose with fructose increases ChREBP activity and SREBP-1 protein in rat liver nucleus

    SciTech Connect

    Koo, Hyun-Young; Miyashita, Michio; Simon Cho, B.H.; Nakamura, Manabu T.

    2009-12-11

    Diets high in fructose cause hypertriglyceridemia and insulin resistance in part due to simultaneous induction of gluconeogenic and lipogenic genes in liver. We investigated the mechanism underlying the unique pattern of gene induction by dietary fructose. Male Sprague-Dawley rats (n = 6 per group) were meal-fed (4 h/d) either 63% (w/w) glucose or 63% fructose diet. After two weeks, animals were killed at the end of the last meal. Nuclear SREBP-1 was 2.2 times higher in fructose-fed rats than glucose-fed rats. Nuclear FoxO1 was elevated 1.7 times in fructose group, but did not reach significance (P = 0.08). Unexpectedly, no difference was observed in nuclear ChREBP between two groups. However, ChREBP DNA binding was 3.9x higher in fructose-fed animals without an increase in xylulose-5-phospate, a proposed ChREBP activator. In conclusion, the gene induction by dietary fructose is likely to be mediated in part by simultaneously increased ChREBP activity, SREBP-1 and possibly FoxO1 protein in nucleus.

  14. Decreased approach behavior and nucleus accumbens immediate early gene expression in response to Parkinsonian ultrasonic vocalizations in rats.

    PubMed

    Pultorak, Joshua D; Kelm-Nelson, Cynthia A; Holt, Lauren R; Blue, Katherine V; Ciucci, Michelle R; Johnson, Aaron M

    2016-08-01

    Many individuals with Parkinson disease (PD) have difficulty producing normal speech and voice, resulting in problems with interpersonal communication and reduced quality of life. Translational animal models of communicative dysfunction have been developed to assess disease pathology. However, it is unknown whether acoustic feature changes associated with vocal production deficits in these animal models lead to compromised communication. In rodents, male ultrasonic vocalizations (USVs) have a well-established role in functional inter-sexual communication. To test whether acoustic deficits in USVs observed in a PTEN-induced putative kinase 1 (PINK1) knockout (KO) PD rat model compromise communication, we presented recordings of male PINK1 KO USVs and normal wild-type (WT) USVs to female rat listeners. We measured approached behavior and immediate early gene expression (c-Fos) in brain regions implicated in auditory processing and sexual motivation. Our results suggest that females show reduced approach in response to PINK1 KO USVs compared with WT. Moreover, females exposed to PINK1 KO USVs had lower c-Fos immunolabeling in the nucleus accumbens, a region implicated in sexual motivation. These results are the first to demonstrate that vocalization deficits in a rat PD model result in compromised communication. Thus, the PINK1 KO PD model may be valuable for assessing treatments aimed at restoring vocal communicative function. PMID:26313334

  15. ¹H NMR-based metabonomics in brain nucleus accumbens and striatum following repeated cocaine treatment in rats.

    PubMed

    Li, Y; Yan, G-Y; Zhou, J-Q; Bu, Q; Deng, P-C; Yang, Y-Z; Lv, L; Deng, Y; Zhao, J-X; Shao, X; Zhu, R-M; Huang, Y-N; Zhao, Y-L; Cen, X-B

    2012-08-30

    Studies have shown a few cerebral metabolites modified by cocaine in brain regions; however, endogenous metabolic profiling has been lacking. Ex vivo (1)H NMR (hydrogen-1 nuclear magnetic resonance) spectroscopy-based metabonomic approach coupled with partial least squares was applied to investigate the changes of cerebral metabolites in nucleus accumbens (NAc) and striatum of rats subjected to cocaine treatment. Our results showed that both single and repeated cocaine treatment can induce significant changes in a couple of cerebral metabolites. The increase of neurotransmitters glutamate and gamma-amino butyric acid (GABA) were observed in NAc and striatum from the rats repeatedly treated with cocaine. Creatine and taurine increased in NAc whereas taurine increased and creatine decreased in striatum after repeated cocaine treatment. Elevation of N-acetylaspartate in NAc and striatum and decrease of lactate in striatum were observed, which may reflect the mitochondria dysregulation caused by cocaine; moreover, alterations of choline, phosphocholine and glycerol in NAc and striatum could be related to membrane disruption. Moreover, groups of rats with and without conditioned place preference (CPP) apparatus are presenting difference in metabolites. Collectively, our results provide the first evidence of metabonomic profiling of NAc and striatum in response to cocaine, exhibiting a regionally-specific alteration patterns. We find that repeated cocaine administration leads to significant metabolite alterations, which are involved in neurotransmitter disturbance, oxidative stress, mitochondria dysregulation and membrane disruption in brain. PMID:22609933

  16. Changes in mRNA expression of arcuate nucleus appetite-regulating peptides during lactation in rats

    PubMed Central

    Suzuki, Yoshihiro; Nakahara, Keiko; Maruyama, Keisuke; Okame, Rieko; Ensho, Takuya; Inoue, Yoshiyuki; Murakami, Noboru

    2014-01-01

    The contribution of hypothalamic appetite-regulating peptides to further hyperphagia accompanying the course of lactation in rats was investigated by using PCR array and real-time PCR. Furthermore, changes in the mRNA expression for appetite-regulating peptides in the hypothalamic arcuate nucleus (ARC) were analyzed at all stages of pregnancy and lactation, and also after weaning. Food intake was significantly higher during pregnancy, lactation, and after weaning than during non-lactation periods. During lactation, ARC expression of mRNAs for agouti-related protein (AgRP) and peptide YY was increased, whereas that of mRNAs for proopiomelanocortin (POMC) and cholecystokinin (CCK) was decreased, in comparison with non-lactation periods. The increase in AgRP mRNA expression during lactation was especially marked. The plasma level of leptin was significantly decreased during the course of lactation, whereas that of acyl-ghrelin was unchanged. In addition, food intake was negatively correlated with the plasma leptin level during lactation. This study has clarified synchronous changes in the expression of many appetite-regulating peptides in ARC of rats during lactation. Our results suggest that hyperphagia during lactation in rats is caused by decreases in POMC and CCK expression and increases in AgRP expression in ARC, the latter being most notable. Together with the decrease in the blood leptin level, such changes in mRNA expression may explain the further hyperphagia accompanying the course of lactation. PMID:24299740

  17. Characterization of the effects of serotonin on the release of (/sup 3/H)dopamine from rat nucleus accumbens and striatal slices

    SciTech Connect

    Nurse, B.; Russell, V.A.; Taljaard, J.J.

    1988-05-01

    The effect of serotonin agonists on the depolarization (K+)-induced, calcium-dependent, release of (/sup 3/H)dopamine (DA) from rat nucleus accumbens and striatal slices was investigated. Serotonin enhanced basal /sup 3/H overflow and reduced K+-induced release of (/sup 3/H)DA from nucleus accumbens slices. The effect of serotonin on basal /sup 3/H overflow was not altered by the serotonin antagonist, methysergide, or the serotonin re-uptake blocker, chlorimipramine, but was reversed by the DA re-uptake carrier inhibitors nomifensine and benztropine. With the effect on basal overflow blocked, serotonin did not modulate K+-induced release of (/sup 3/H)DA in the nucleus accumbens or striatum. The serotonin agonists, quipazine (in the presence of nomifensine) and 5-methoxytryptamine, did not significantly affect K+-induced release of (/sup 3/H)DA in the nucleus accumbens. This study does not support suggestions that serotonin receptors inhibit the depolarization-induced release of dopamine in the nucleus accumbens or striatum of the rat brain. The present results do not preclude the possibility that serotonin may affect the mesolimbic reward system at a site which is post-synaptic to dopaminergic terminals in the nucleus accumbens.

  18. Subcellular and subsynaptic localization of group I metabotropic glutamate receptors in the nucleus accumbens of cocaine-treated rats

    PubMed Central

    Mitrano, D.A.; Arnold, C.; Smith, Y.

    2008-01-01

    There is significant pharmacological and behavioral evidence that group I metabotropic glutamate receptors (mGluR1a and mGluR5) in the nucleus accumbens play an important role in the neurochemical and pathophysiological mechanisms that underlie addiction to psychostimulants. To further address this issue, we undertook a detailed ultrastructural analysis to characterize changes in the subcellular and subsynaptic localization of mGluR1a and mGluR5 in the core and shell of nucleus accumbens following acute or chronic cocaine administration in rats. After a single cocaine injection (30mg/kg) and 45 minutes withdrawal, there was a significant decrease in the proportion of plasma membrane-bound mGluR1a in accumbens shell dendrites. Similarly, the proportion of plasma membrane-bound mGluR1a was decreased in large dendrites of accumbens core neurons following chronic cocaine exposure (i.e. 1 week treatment followed by three weeks withdrawal). However, neither acute nor chronic cocaine treatments induced significant change in the localization of mGluR5 in accumbens core and shell, which is in contrast with the significant reduction of plasma membrane-bound mGluR1a and mGluR5 induced by local intra-accumbens administration of the group I mGluR agonist, DHPG. In conclusion, these findings demonstrate that cocaine-induced glutamate imbalance (Smith et al., 1995; Pierce et al., 1996; Reid et al., 1997) has modest effects on the trafficking of group I mGluRs in the nucleus accumbens. These results provide valuable information on the neuroadaptive mechanisms of accumbens group I mGluRs in response to cocaine administration. PMID:18479833

  19. Effect of vardenafil on nitric oxide synthase expression in the paraventricular nucleus of rats without sexual stimulation.

    PubMed

    Shin, M-S; Ko, I-G; Kim, S-E; Kim, B-K; Kim, C-J; Kim, D-H; Yoon, S-J; Kim, K-H

    2012-05-01

    Vardenafil hydrochloride (HCl) is a potent and selective phosphodiesterase type-5 (PDE-5) inhibitor that enhances nitric oxide (NO)-mediated relaxation of human corpus cavernosum and NO-induced rabbit penile erection, and enhances erectile function in patients. In the present study, the effect of vardenafil on nitric oxide synthase (NOS) and neuronal NOS expressions in the paraventricular nucleus (PVN) of rats without sexual stimulation was investigated using nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) histochemistry and neuronal NOS (nNOS) immunohistochemistry and western blot analysis. The present results showed that NOS and nNOS expression in the PVN was increased by vardenafil treatment as the dose- and duration-dependently without sexual stimulation. The phosphodiesterase type-5 inhibitor, vardenafil, augmented NOS expression in the brain without sexual stimulation. The present study suggests that sexual behaviour can be directly modulated by neurotransmitters such as nitric oxide. PMID:21950284

  20. Oxytocin injected into the ventral subiculum or the posteromedial cortical nucleus of the amygdala induces penile erection and increases extracellular dopamine levels in the nucleus accumbens of male rats.

    PubMed

    Melis, Maria Rosaria; Succu, Salvatora; Sanna, Fabrizio; Boi, Antonio; Argiolas, Antonio

    2009-10-01

    Oxytocin (20-100 ng) was found to be able to induce penile erection when injected unilaterally into the ventral subiculum or the posteromedial cortical nucleus of the amygdala of male rats. The pro-erectile effect started mostly 30 min after treatment and was abolished by the prior injection of d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin (1-2 microg), an oxytocin receptor antagonist, into the ventral subiculum or posteromedial cortical nucleus. Oxytocin-induced penile erection occurred 15 min after the increase in the concentration of extracellular dopamine and its metabolite 3,4-dihydroxyphenylacetic acid in the dialysate obtained from the nucleus accumbens, which was also abolished by d(CH(2))(5)Tyr(Me)(2)-Orn(8)-vasotocin. The pro-erectile effect of oxytocin was also reduced by cis-flupentixol (2 and 5 microg), a dopamine receptor antagonist, injected into the nucleus accumbens, and by (+)MK-801 (5 microg), a noncompetitive N-methyl-d-aspartate receptor antagonist, injected into the ventral tegmental area, but not into the nucleus accumbens. Together with studies showing that glutamatergic efferents from the ventral subiculum/posteromedial cortical nucleus of the amygdala to other areas of the limbic system modulate the activity of mesolimbic dopaminergic neurons, these findings suggest that oxytocin injected into these areas increases glutamatergic neurotransmission in the ventral tegmental area. This, in turn, activates mesolimbic dopaminergic neurons, leading to penile erection. These results provide evidence that the ventral subiculum and the posteromedial cortical nucleus of the amygdala participate in a neural circuit that controls not only the consummatory aspects of sexual behaviour (e.g. penile erection and copulatory performance), but also its motivational/reward aspects, confirming a key role of oxytocin and dopamine in these processes. PMID:19769589

  1. Rapid adenosine release in the nucleus tractus solitarii during defence response in rats: real-time measurement in vivo

    PubMed Central

    Dale, Nicholas; Gourine, Alexander V; Llaudet, Enrique; Bulmer, David; Thomas, Teresa; Spyer, K Michael

    2002-01-01

    We have measured the release of adenosine and inosine from the dorsal surface of the brainstem and from within the nucleus tractus solitarii (NTS) during the defence response evoked by hypothalamic stimulation in the anaesthetised rat. At the surface of the brainstem, only release of inosine was detected on hypothalamic defence area stimulation. This inosine signal was greatly reduced by addition of the ecto-5′-nucleotidase inhibitor α,β-methylene ADP (200 μM), suggesting that the inosine arose from adenosine that was produced in the extracellular space by the prior release of ATP. By placing a microelectrode biosensor into the NTS under stereotaxic control we have recorded release of adenosine within this nucleus. By contrast to the brainstem surface, a fast increase in adenosine, accompanied only by a much smaller change in inosine levels, was seen following stimulation of the hypothalamic defence area. The release of adenosine following hypothalamic stimulation was mainly confined to a narrow region of the NTS some 500 μm in length around the level of the obex. Interestingly the release of adenosine was depletable: when the defence reaction was evoked at short time intervals, much less adenosine was released on the second stimulus. Our novel techniques have given unprecedented real-time measurement and localisation of adenosine release in vivo and demonstrate that adenosine is released at the right time and in sufficient quantities to contribute to the cardiovascular components of the defence reaction. PMID:12356888

  2. Central connectivity of the chorda tympani afferent terminals in the rat rostral nucleus of the solitary tract.

    PubMed

    Park, Sook Kyung; Lee, Dae Seop; Bae, Jin Young; Bae, Yong Chul

    2016-03-01

    The rostral nucleus of the solitary tract (rNST) receives gustatory input via chorda tympani (CT) afferents from the anterior two-thirds of the tongue and transmits it to higher brain regions. To help understand how the gustatory information is processed at the 1st relay nucleus of the brain stem, we investigated the central connectivity of the CT afferent terminals in the central subdivision of the rat rNST through retrograde labeling with horseradish peroxidase, immunogold staining for GABA, glycine, and glutamate, and quantitative ultrastructural analysis. Most CT afferents were small myelinated fibers (<5 µm(2) in cross-sectional area) and made simple synaptic arrangements with 1-2 postsynaptic dendrites. It suggests that the gustatory signal is relayed to a specific group of neurons with a small degree of synaptic divergence. The volume of the identified synaptic boutons was positively correlated with their mitochondrial volume and active zone area, and also with the number of their postsynaptic dendrites. One-fourth of the boutons received synapses from GABA-immunopositive presynaptic profiles, 27 % of which were also glycine-immunopositive. These results suggest that the gustatory information mediated by CT afferents to the rNST is processed in a simple and specific manner. They also suggest that the minority of CT afferents are presynaptically modulated by GABA- and/or glycine-mediated mechanism. PMID:25503820

  3. Inhibitory short-term plasticity modulates neuronal activity in the rat entopeduncular nucleus in vitro.

    PubMed

    Lavian, Hagar; Korngreen, Alon

    2016-04-01

    The entopeduncular nucleus (EP) is one of the basal ganglia output nuclei integrating synaptic information from several pathways within the basal ganglia. The firing of EP neurons is modulated by two streams of inhibitory synaptic transmission, the direct pathway from the striatum and the indirect pathway from the globus pallidus. These two inhibitory pathways continuously modulate the firing of EP neurons. However, the link between these synaptic inputs to neuronal firing in the EP is unclear. To investigate this input-output transformation we performed whole-cell and perforated-patch recordings from single neurons in the entopeduncular nucleus in rat brain slices during repetitive stimulation of the striatum and the globus pallidus at frequencies within the in vivo activity range of these neurons. These recordings, supplemented by compartmental modelling, showed that GABAergic synapses from the striatum, converging on EP dendrites, display short-term facilitation and that somatic or proximal GABAergic synapses from the globus pallidus show short-term depression. Activation of striatal synapses during low presynaptic activity decreased postsynaptic firing rate by continuously increasing the inter-spike interval. Conversely, activation of pallidal synapses significantly affected postsynaptic firing during high presynaptic activity. Our data thus suggest that low-frequency striatal output may be encoded as progressive phase shifts in downstream nuclei of the basal ganglia while high-frequency pallidal output may continuously modulate EP firing. PMID:26013247

  4. Opioid antagonist diprenorphine microinjected into parabrachial nucleus selectively inhibits vasopressin response to hypovolemic stimuli in the rat.

    PubMed Central

    Iwasaki, Y; Gaskill, M B; Fu, R; Saper, C B; Robertson, G L

    1993-01-01

    Subcutaneous injection of the potent, nonselective opioid antagonist diprenorphine inhibits the vasopressin response to acute hypovolemia. To determine if this inhibition is due to antagonism of opioid receptors in brain pathways that mediate volume control, we determined the vasopressin response to different stimuli when diprenorphine or other opiates were injected into the cerebral ventricles, the nucleus tractus solitarius (NTS), or the lateral parabrachial nucleus (PBN) of rats. We found that the vasopressin response to hypovolemia was inhibited by injection of diprenorphine into the cerebral ventricles at a dose too low to be effective when given subcutaneously. This response also was inhibited when a 20-fold lower dose of diprenorphine was injected into the PBN but not when it was injected into the NTS. The inhibitory effect of diprenorphine in the PBN was not attributable to a decrease in osmotic or hypovolemic stimulation and did not occur with osmotic or hypotensive stimuli. Injecting the PBN with equimolar doses of the mu antagonist naloxone, the delta antagonist ICI-154,129 or the kappa-1 agonist U-50,488H had no effect on basal or volume-stimulated vasopressin. We conclude that the inhibition of vasopressin by diprenorphine is due partially to action at a novel class of opioid receptors that transmit volume stimuli through the PBN. Images PMID:8227338

  5. Effect of ethanol on (/sup 3/H)dopamine release in rat nucleus accumbens and striatal slices

    SciTech Connect

    Russell, V.A.; Lamm, M.C.; Taljaard, J.J.

    1988-05-01

    Ethanol (10-200 mM) transiently increased tritium overflow from superfused rat nucleus accumbens slices previously incubated with (/sup 3/H)dopamine (DA) and (/sup 14/C)choline. The effect was greater in striatal tissue and did not appear to be a non-specific membrane effect since (/sup 14/C)acetylcholine (ACh) release was not affected. Lack of antagonism by picrotoxin suggested that gamma-aminobutyric acid (GABA) receptors were not involved. Calcium was not a requirement and the DA uptake blocker, nomifensine, was without effect. Ethanol appeared to be causing (/sup 3/H)DA release into the cytoplasm. K+ -stimulated release of (/sup 3/H)DA and (/sup 14/C)ACh from nucleus accumbens and striatal slices was not affected. Clonidine-mediated inhibition of the K+-evoked release of (/sup 3/H)DA remained unaltered. Ethanol attenuated the isoproterenol-induced enhancement of (/sup 3/H)DA release. Ethanol therefore appeared to interact with components of the DA terminal causing a transient increase in the release of neurotransmitter without impairing K+-evoked release but apparently interfering with the isoproterenol-induced effect.

  6. Long-term effects of cocaine experience on neuroplasticity in the nucleus accumbens core of addiction-prone rats.

    PubMed

    Waselus, M; Flagel, S B; Jedynak, J P; Akil, H; Robinson, T E; Watson, S J

    2013-09-17

    Repeated exposure to drugs of abuse is associated with structural plasticity in brain reward pathways. Rats selectively bred for locomotor response to novelty differ on a number of neurobehavioral dimensions relevant to addiction. This unique genetic animal model was used here to examine both pre-existing differences and long-term consequences of repeated cocaine treatment on structural plasticity. Selectively bred high-responder (bHR) and low-responder (bLR) rats received repeated saline or cocaine injections for 9 consecutive days. Escalating doses of cocaine (7.5, 15 and 30 mg/kg) were administered on the first (day 1) and last (day 9) days of treatment and a single injection of the intermediate dose (15 mg/kg) was given on days 2-8. Motor activity in response to escalating doses of cocaine was compared on the first and last days of treatment to assess the acute and sensitized response to the drug. Following prolonged cocaine abstinence (28 days), spine density was examined on terminal dendrites of medium spiny neurons in the nucleus accumbens core. Relative to bLRs, bHRs exhibited increased psychomotor activation in response to both the acute and repeated effects of cocaine. There were no differences in spine density between bHR and bLR rats under basal conditions or following repeated saline treatment. However, spine density differed markedly between these two lines following prolonged cocaine abstinence. All spine types were decreased in cocaine-treated bHRs, while only mushroom spines were decreased in bLRs that received cocaine. Changes in spine density occurred specifically near the branch point of terminal dendrites. These findings indicate that structural plasticity associated with prolonged cocaine abstinence varies markedly in two selected strains of rats that vary on numerous traits relevant to addiction. Thus, genetic factors that contribute to individual variation in the behavioral response to cocaine also influence cocaine-induced structural

  7. LONG-TERM EFFECTS OF COCAINE EXPERIENCE ON NEUROPLASTICITY IN THE NUCLEUS ACCUMBENS CORE OF ADDICTION-PRONE RATS

    PubMed Central

    Waselus, Maria; Flagel, Shelly B.; Jedynak, Jakub P.; Akil, Huda; Robinson, Terry E.; Watson, Stanley J.

    2013-01-01

    Repeated exposure to drugs of abuse is associated with structural plasticity in brain reward pathways. Rats selectively bred for locomotor response to novelty differ on a number of neurobehavioral dimensions relevant to addiction. This unique genetic animal model was used here to examine both pre-existing differences and long-term consequences of repeated cocaine treatment on structural plasticity. Selectively bred high-responder (bHR) and low-responder (bLR) rats received repeated saline or cocaine injections for 9 consecutive days. Escalating doses of cocaine (7.5, 15 and 30 mg/kg) were administered on the first (day 1) and last (day 9) days of treatment and a single injection of the intermediate dose (15 mg/kg) was given on days 2-8. Motor activity in response to escalating doses of cocaine was compared on the first and last days of treatment to assess the acute and sensitized response to the drug. Following prolonged cocaine abstinence (28 days), spine density was examined on terminal dendrites of medium spiny neurons in the nucleus accumbens core. Relative to bLRs, bHRs exhibited increased psychomotor activation in response to both the acute and repeated effects of cocaine. There were no differences in spine density between bHR and bLR rats under basal conditions or following repeated saline treatment. However, spine density differed markedly between these two lines following prolonged cocaine abstinence. All spine types were decreased in cocaine-treated bHRs, while only mushroom spines were decreased in bLRs that received cocaine. Changes in spine density occurred specifically near the branch point of terminal dendrites. These findings indicate that structural plasticity associated with prolonged cocaine abstinence varies markedly in two selected strains of rats that vary on numerous traits relevant to addiction. Thus, genetic factors that contribute to individual variation in the behavioral response to cocaine also influence cocaine-induced structural

  8. BOLD responses in the superior colliculus and lateral geniculate nucleus of the rat viewing an apparent motion stimulus.

    PubMed

    Lau, Condon; Zhang, Jevin W; Xing, Kyle K; Zhou, Iris Y; Cheung, Matthew M; Chan, Kevin C; Wu, Ed X

    2011-10-01

    In rats, the superior colliculus (SC) is a main destination for retinal ganglion cells and is an important subcortical structure for vision. Electrophysiology studies have observed that many SC neurons are highly sensitive to moving objects, but complementary non-invasive functional imaging studies with larger fields of view have been rarely conducted. In this study, BOLD fMRI is used to measure the SC and nearby lateral geniculate nucleus' (LGN) hemodynamic responses, in normal adult Sprague Dawley (SD) rats, during a dynamic visual stimulus similar to those used in long-range apparent motion studies. The stimulation paradigm consists of four light spots arranged in a linear array and turned on and off sequentially at different rates to create five effective speeds of motion (7, 14, 41, 82, and 164°/s across the visual field). Stationary periods (same light spot always on) are interleaved between the moving periods. The speed response function (SRF), the hemodynamic response amplitude at each speed tested, is measured. Significant responses are observed in the SC and LGN at all speeds. In the SC, the SRF increases monotonically from 7 to 82°/s. The minimum response amplitude occurs at 164°/s. The results suggest that the SC is sensitive to slow moving visual stimuli but the hemodynamic response is reduced at higher speeds. In the LGN, the SRF exhibits a similar trend to that of the SC, but response amplitude during 7°/s stimulation is comparable to that during 164°/s stimulation. These findings are in good agreement with previous electrophysiology studies conducted on albino rats like the SD strain. This work represents the first fMRI study of stimulus speed dependence in the SC and is also the first fMRI study of motion responsiveness in the rat. PMID:21741483

  9. The testosterone metabolite 3α-Diol enhances female rat sexual motivation when infused in the nucleus accumbens shell

    PubMed Central

    Hernández, Lizaida; Barreto Estrada, Jennifer L; Ortiz, José G; Carlos Jorge, Juan

    2010-01-01

    Aim The purpose of this study was to provide a quantitative assessment of female rat sexual behaviors after acute exposure to the A-ring reduced testosterone metabolite, androstanediol (3α-Diol), through the nucleus accumbens (NA) shell. Main outcome measures Quantitative analyses of female rat sexual behaviors and assessment of protein levels for the enzyme glutamic acid decarboxylase isoform 67 (GAD67) and gephyrin, a protein that participates in the clustering of GABA-A receptors in postsynaptic cells, were accomplished. Methods Female rats were ovariectomized and primed with estrogen and progesterone to induce sexual behaviors. Females received a 3α-Diol infusion via guided cannula that aimed to the NA shell five minutes prior to a sexual encounter with a stud male. The following parameters were videotaped and measured in a frame by frame analysis: lordosis quotient (LQ), Lordosis rating (LR), frequency and duration of proceptive behaviors (hopping/darting and ear wiggling). Levels of GAD67 and gephyrin were obtained by Western blot analysis two or twenty-four hours after the sexual encounter. Results Acute exposure to 3α-Diol in the NA shell enhanced LR, ear wiggling, and hopping/darting but not LQ. Some of these behavioral effects were counteracted by co-infusion of 3α-Diol plus the GABAA-receptor antagonist GABAzine. A transient reduction of GAD67 levels in the NA shell was detected. Conclusions The testosterone metabolite 3α-Diol enhances sexual proceptivity, but not receptivity, when infused into the NA shell directly. The GABAergic system may participate in the androgen-mediated enhancement of female rat sexual motivation. PMID:20646182

  10. Reduction in 50-kHz call-numbers and suppression of tickling-associated positive affective behaviour after lesioning of the lateral hypothalamic parvafox nucleus in rats.

    PubMed

    Roccaro-Waldmeyer, Diana M; Babalian, Alexandre; Müller, Annelies; Celio, Marco R

    2016-02-01

    The parvafox nucleus is located ventrolaterally in the lateral hypothalamic area (LHA). Its core and shell are composed of neurons expressing the calcium-binding protein parvalbumin (PV) and the transcription factor Foxb1, respectively. Given the known functions of the LHA and that the parvafox nucleus receives afferents from the lateral orbitofrontal cortex and projects to the periaqueductal gray matter, a functional role of this entity in the expression of positive emotions has been postulated. The purpose of the present study was to ascertain whether the deletion of neurons in the parvafox nucleus influenced the tickling-induced 50-kHz calls, which are thought to reflect positive affective states, in rats. To this end, tickling of the animals (heterospecific play) was combined with intracerebral injections of the excitotoxin kainic acid into the parvafox nucleus. The most pronounced surgery-associated reduction in 50-kHz call-numbers was observed in the group of rats in which, on the basis of PV-immunoreactive-cell counts in the parvafox nucleus, bilateral lesions had been successfully produced. Two other parameters that were implemented to quantify positive affective behaviour, namely, an approach towards and a following of the hand of the tickling experimenter, were likewise most markedly suppressed in the group of rats with bilaterally successful lesions. Furthermore, positive correlations were found between each of the investigated parameters. Our data afford evidence that the parvafox nucleus plays a role in the production of 50-kHz calls in rats, and, more generally, in the expression of positive emotions. PMID:26554726