Science.gov

Sample records for rate transition radiation

  1. Energy levels and radiative transition rates for Ba XLVIII

    NASA Astrophysics Data System (ADS)

    Khatri, Indu; Goyal, Arun; Aggarwal, Sunny; Singh, A. K.; Mohan, Man

    2016-01-01

    Energy levels and radiative rates are reported for transitions in F-like Ba XLVIII. Configuration interaction has been included among 27 configurations (generating 431 levels) over a wide energy range up to 618 Rydbergs, and the fully relativistic multi-configurational Dirac-Fock method adopted for the calculations. To assess the accuracy, calculations have also been performed with the flexible atomic code, FAC. Radiative rates, oscillator strengths and line strengths are reported for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions from the lowest 3 levels, although calculations have been performed for a much larger number of levels. We have made comparisons of our results with existing available results and a good agreement has been achieved. Additionally, lifetimes for all 431 levels are listed.

  2. Energy levels and radiative rates for transitions in Ti VI

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti; Keenan, Francis; Msezane, Alfred Z.

    2012-06-01

    Energies for 568 levels among the n=3+3p^64l+3s3p^54l configurations of Ti VI are calculated using the GRASP (General-purpose Relativistic Atomic Structure Program) code, which is based on the multi-configuration Dirac-Fock (MCDF) method. Additionally, radiative rates are calculated for all types of transitions, namely electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2). Lifetimes are also calculated for all the levels and extensive comparisons are made with the earlier available data as well as with other parallel calculations from the FAC (Flexible Atomic Code). Discrepancies for several levels with the earlier calculations of Mohan et al, (ADNDT 93 105 (2007)) are highlighted.

  3. Energy levels, radiative rates and electron impact excitation rates for transitions in Si II

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2014-07-01

    Energies for the lowest 56 levels, belonging to the 3s2 3p, 3s 3p2, 3p3, 3s2 3d, 3s 3p 3d, 3s2 4ℓ and 3s2 5ℓ configurations of Si II, are calculated using the General-purpose Relativistic Atomic Structure Package (GRASP) code. Analogous calculations have also been performed (for up to 175 levels) using the Flexible Atomic Code (FAC). Furthermore, radiative rates are calculated for all E1, E2, M1 and M2 transitions. Extensive comparisons are made with available theoretical and experimental energy levels, and the accuracy of the present results is assessed to be better than 0.1 Ryd. Similarly, the accuracy for radiative rates (and subsequently lifetimes) is estimated to be better than 20 per cent for most of the (strong) transitions. Electron impact excitation collision strengths are also calculated, with the Dirac Atomic R-matrix Code (DARC), over a wide energy range up to 13 Ryd. Finally, to determine effective collision strengths, resonances are resolved in a fine energy mesh in the thresholds region. These collision strengths are averaged over a Maxwellian velocity distribution and results listed over a wide range of temperatures, up to 105.5 K. Our data are compared with earlier R-matrix calculations and differences noted, up to a factor of 2, for several transitions. Although scope remains for improvement, the accuracy for our results of collision strengths and effective collision strengths is assessed to be about 20 per cent for a majority of transitions.

  4. Energy levels, radiative rates and electron impact excitation rates for transitions in C III

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2015-06-01

    We report energy levels, radiative rates (A-values) and lifetimes for the astrophysically important Be-like ion C III. For the calculations, 166 levels belonging to the n ≤ 5 configurations are considered and the GRASP (General-purpose Relativistic Atomic Structure Package) is adopted. Einstein A-coefficients are provided for all E1, E2, M1 and M2 transitions, while lifetimes are compared with available measurements as well as theoretical results, and no large discrepancies noted. Our energy levels are assessed to be accurate to better than 1 per cent for a majority of levels, and A-values to better than 20 per cent for most transitions. Collision strengths are also calculated, for which the Dirac Atomic R-matrix Code (DARC) is used. A wide energy range, up to 21 Ryd, is considered and resonances resolved in a fine energy mesh in the thresholds region. The collision strengths are subsequently averaged over a Maxwellian velocity distribution to determine effective collision strengths up to a temperature of 8.0 × 105 K, sufficient for most astrophysical applications. Our data are compared with the recent R-matrix calculations of Fernández-Menchero et al., and significant differences (up to over an order of magnitude) are noted for several transitions over the complete temperature range of the results.

  5. Energy levels and radiative rates for transitions in Cr-like Co IV and Ni V

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Karpuškienė, R.; Keenan, F. P.; Kisielius, R.; Stancalie, V.

    2016-01-01

    We report calculations of energy levels and radiative rates (A-values) for transitions in Cr-like Co IV and Ni V. The quasi-relativistic Hartree-Fock (QRHF) code is adopted for calculating the data although GRASP (general-purpose relativistic atomic structure package) and flexible atomic code (FAC) have also been employed for comparison purposes. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST for a majority of the levels. However, there are discrepancies for a few levels of up to 3%. The A-values are listed for all significantly contributing E1, E2 and M1 transitions, and the corresponding lifetimes reported, although unfortunately no previous theoretical or experimental results exist to compare with our data.

  6. Energy levels, radiative rates, and lifetimes for transitions in W LVIII

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2014-11-01

    Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package (GRASP) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code (FAC), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to ˜98 Ryd), which mainly belong to the 3s23p5, 3s3p6, 3s23p43d, 3s23p33d2, 3s3p43d2, 3s23p23d3, and 3p63d configurations, and radiative rates are provided for four types of transitions, i.e. E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

  7. Energy levels, radiative rates, and lifetimes for transitions in W LVIII

    SciTech Connect

    Aggarwal, Kanti M. Keenan, Francis P.

    2014-11-15

    Energy levels and radiative rates are reported for transitions in Cl-like W LVIII. Configuration interaction (CI) has been included among 44 configurations (generating 4978 levels) over a wide energy range up to 363 Ryd, and the general-purpose relativistic atomic structure package (GRASP) adopted for the calculations. Since no other results of comparable complexity are available, calculations have also been performed with the flexible atomic code (FAC), which help in assessing the accuracy of our results. Energies are listed for the lowest 400 levels (with energies up to ∼98 Ryd), which mainly belong to the 3s{sup 2}3p{sup 5}, 3s3p{sup 6}, 3s{sup 2}3p{sup 4}3d, 3s{sup 2}3p{sup 3}3d{sup 2}, 3s3p{sup 4}3d{sup 2}, 3s{sup 2}3p{sup 2}3d{sup 3}, and 3p{sup 6}3d configurations, and radiative rates are provided for four types of transitions, i.e. E1, E2, M1, and M2. Our energy levels are assessed to be accurate to better than 0.5%, whereas radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

  8. Energy levels and radiative transition rates for Ge XXXI, As XXXII, and Se XXXIII

    SciTech Connect

    Aggarwal, Sunny Singh, J.; Jha, A.K.S.; Mohan, Man

    2014-07-15

    Fine-structure energies of the 67 levels belonging to the 1s{sup 2}, 1s 2l, 1s3l, 1s4l, 1s5l, and 1s6l configurations of Ge XXXI, As XXXII, and Se XXXIII have been calculated using the General-Purpose Relativistic Atomic Structure Package. In addition, radiative rates, oscillator strengths, transition wavelengths, and line strengths have been calculated for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among these levels. Lifetimes are also presented for all excited levels of these three ions. We have compared our results with the results available in the literature and the accuracy of the data is assessed. We predict new energy levels, oscillator strengths, and transition probabilities where no other theoretical or experimental results are available, which will form the basis for future experimental work.

  9. K-shell energy levels and radiative rates for transitions in Si ix

    NASA Astrophysics Data System (ADS)

    Wei, H. G.; Shi, J. R.; Wang, F. L.; Zhong, J. Y.; Liang, G. Y.; Zhao, G.

    2014-06-01

    Context. Accurate atomic data are needed to analyze the Si ix K-shell features in astrophysical X-ray spectra. Relative large discrepancies in the existing atomic data have impeded this progress. Aims: We present the accurate Si ix K-shell transition data, including K-shell energy levels, wavelengths, radiative rates, and oscillator strengths. Methods: The flexible atomic code (FAC), which is a fully relativistic atomic code with configuration interaction (CI) included, was employed to calculate these data. To investigate the CI effects, calculations with different configurations included were carried out. Results: The K-shell atomic data of Si ix transitions between 1s22s22p2, 1s22s2p3, 1s22p4, 1s2s22p3, 1s2s2p4, and 1s2p5 are reported. The accuracy of our data is demonstrated by comparing them with the available experimental measurements and theoretical calculations. The energy levels are accurate to 3.5 eV, the wavelengths to within 15 mÅ. For most transitions, the radiative rates an accuracy of 20%. The effects of CI from high-energy configurations were investigated as well. Full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/566/A105

  10. Energy levels, radiative rates, and lifetimes for transitions in W XL

    SciTech Connect

    Aggarwal, Kanti M. Keenan, Francis P.

    2014-11-15

    Energy levels and radiative rates are reported for transitions in Br-like tungsten, W XL, calculated with the general-purpose relativistic atomic structure package (GRASP). Configuration interaction (CI) has been included among 46 configurations (generating 4215 levels) over a wide energy range up to 213 Ryd. However, for conciseness results are only listed for the lowest 360 levels (with energies up to ∼43 Ryd), which mainly belong to the 4s{sup 2}4p{sup 5},4s{sup 2}4p{sup 4}4d,4s{sup 2}4p{sup 4}4f,4s4p{sup 6},4p{sup 6}4d,4s4p{sup 5}4d,4s{sup 2}4p{sup 3}4d{sup 2}, and 4s{sup 2}4p{sup 3}4d4f configurations, and provided for four types of transitions, E1, E2, M1, and M2. Comparisons are made with existing (but limited) results. However, to fully assess the accuracy of our data, analogous calculations have been performed with the flexible atomic code, including an even larger CI than in GRASP. Our energy levels are estimated to be accurate to better than 0.02 Ryd, whereas results for radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.

  11. Radiative Rates for Forbidden Transitions in Doubly-Ionized Fe-Peak Elements

    NASA Astrophysics Data System (ADS)

    Fivet, Vanessa; Quinet, P.; Bautista, M.

    2012-05-01

    Accurate and reliable atomic data for lowly-ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, Ni and Cu) are of paramount importance for the analysis of the high resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly-ionized iron-peak ions have been very little investigated so far and radiative rates for those lines remain sparse or inexistent. We are carrying out a systematic study of the electronic structure of doubly-ionized iron-peak elements. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities are computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allows for consistency checks and intercomparison and has proven very successful in the study of the complex Fe-peak species where many different effects contribute [5]. References [1] A. Mesa-Delgado et al., MNRAS 395 (2009) 855 [2] S. Johansson et al., A&A 361 (2000) 977 [3] R.D. Cowan, The Theory of Atomic Structure and Spectra, Berkeley: Univ. California Press (1981) [4] N.R. Badnell, J. Phys. B: At. Mol. Opt. Phys. 30 (1997) 1 [5] M. Bautista et al., ApJ 718 (2010) L189

  12. Energy levels, radiative rates and electron impact excitation rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2013-04-01

    We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 108 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions.

  13. Radiative rates for forbidden M1 and E2 transitions of astrophysical interest in doubly ionized iron-peak elements

    NASA Astrophysics Data System (ADS)

    Fivet, V.; Quinet, P.; Bautista, M. A.

    2016-01-01

    Aims: Accurate and reliable atomic data for lowly ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, and Ni) are of paramount importance for analyzing the high-resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources, such as Herbig-Haro objects in the Orion Nebula and stars like Eta Carinae. However, forbidden M1 and E2 transitions between low-lying metastable levels of doubly charged iron-peak ions have been investigated very little so far, and radiative rates for those lines remain sparse or nonexistent. We attempt to fill that gap and provide transition probabilities for the most important forbidden lines of all doubly ionized iron-peak elements. Methods: We carried out a systematic study of the electronic structure of doubly ionized Fe-peak species. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities were computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan and the central Thomas-Fermi-Dirac-Amaldi potential approximation implemented in AUTOSTRUCTURE. This multiplatform approach allowed for consistency checks and intercomparison and has proven very useful in many previous works for estimating the uncertainties affecting the radiative data. Results: We present transition probabilities for the M1 and E2 forbidden lines depopulating the metastable even levels belonging to the 3dk and 3dk-14s configurations in Sc III (k = 1), Ti III (k = 2), V III (k = 3), Cr III (k = 4), Mn III (k = 5), Fe III (k = 6), Co III (k = 7), and Ni III (k = 8).

  14. Stimulated coherent transition radiation

    SciTech Connect

    Hung-chi Lihn

    1996-03-01

    Coherent radiation emitted from a relativistic electron bunch consists of wavelengths longer than or comparable to the bunch length. The intensity of this radiation out-numbers that of its incoherent counterpart, which extends to wavelengths shorter than the bunch length, by a factor equal to the number of electrons in the bunch. In typical accelerators, this factor is about 8 to 11 orders of magnitude. The spectrum of the coherent radiation is determined by the Fourier transform of the electron bunch distribution and, therefore, contains information of the bunch distribution. Coherent transition radiation emitted from subpicosecond electron bunches at the Stanford SUNSHINE facility is observed in the far-infrared regime through a room-temperature pyroelectric bolometer and characterized through the electron bunch-length study. To measure the bunch length, a new frequency-resolved subpicosecond bunch-length measuring system is developed. This system uses a far-infrared Michelson interferometer to measure the spectrum of coherent transition radiation through optical autocorrelation with resolution far better than existing time-resolved methods. Hence, the radiation spectrum and the bunch length are deduced from the autocorrelation measurement. To study the stimulation of coherent transition radiation, a special cavity named BRAICER is invented. Far-infrared light pulses of coherent transition radiation emitted from electron bunches are delayed and circulated in the cavity to coincide with subsequent incoming electron bunches. This coincidence of light pulses with electron bunches enables the light to do work on electrons, and thus stimulates more radiated energy. The possibilities of extending the bunch-length measuring system to measure the three-dimensional bunch distribution and making the BRAICER cavity a broadband, high-intensity, coherent, far-infrared light source are also discussed.

  15. A systematic and detailed investigation of radiative rates for forbidden transitions of astrophysical interest in doubly ionized iron peak elements

    NASA Astrophysics Data System (ADS)

    Quinet, Pascal; Fivet, Vanessa; Bautista, Manuel

    2015-08-01

    The knowledge of accurate and reliable atomic data for lowly ionized iron peak elements, from scandium to copper, is of paramount importance for the analysis of the high resolution spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly ionized species have been little investigated so far and radiative rates for those lines remain sparse or inexistent.In the present contribution, we report on the recent study we have performed concerning the determination of magnetic dipole (M1) and electric quadrupole (E2) transition probabilities in those ions. For the calculations, we have extensively used the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allowed us to check the consistency and to assess the accuracy of the results obtained.[1] Mesa-Delgado A. et al., MNRAS 395, 855 (2009)[2] Johansson S. et al., A&A 361, 977 (2000)[3] Cowan R.D., The Theory of Atomic Structure and Spectra, Univ. California Press, Berkeley (1981)[4] Badnell N.R., J. Phys. B: At. Mol. Opt. Phys. 30, 1 (1997)

  16. Radiative Transitions in Charmonium

    SciTech Connect

    Jozef Dudek; Robert Edwards; David Richards

    2005-10-01

    The form factors for the radiative transitions between charmonium mesons are investigated. We employ an anisotropic lattice using a Wilson gauge action, and domain-wall fermion action. We extrapolate the form factors to Q{sup 2} = 0, corresponding to a real photon, using quark-model-inspired functions. Finally, comparison is made with photocouplings extracted from the measured radiative widths, where known. Our preliminary results find photocouplings commensurate with these experimentally extracted values.

  17. An evaluation of the rate of absorption of solar radiation in the O2(X3Sigma-g - b1Sigma-g) transition

    NASA Astrophysics Data System (ADS)

    Mlynczak, Martin G.

    1993-07-01

    The rate at which molecular oxygen absorbs radiation in the O2(X3Sigma-g - b1Sigma-g) transition is calculated using a line-by-line radiative transfer model. This rate is critical to the determination of the population of the O2(b1Sigma-g) state required for studies of the O2(b1Sigma-g - X3Sigma-g) dayglow, the O2(a1Delta-g - X3Sigma-g) dayglow, and possibly the rates of oxidation of H2 and N2O. Previous evaluations of this rate (which is sometimes called the g-factor) have significantly overestimated its value. The rate is tabulated as a function of altitude, pressure, and solar zenith angle.

  18. An evaluation of the rate of absorption of solar radiation in the O2(X3Sigma-g - b1Sigma-g) transition

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.

    1993-01-01

    The rate at which molecular oxygen absorbs radiation in the O2(X3Sigma-g - b1Sigma-g) transition is calculated using a line-by-line radiative transfer model. This rate is critical to the determination of the population of the O2(b1Sigma-g) state required for studies of the O2(b1Sigma-g - X3Sigma-g) dayglow, the O2(a1Delta-g - X3Sigma-g) dayglow, and possibly the rates of oxidation of H2 and N2O. Previous evaluations of this rate (which is sometimes called the g-factor) have significantly overestimated its value. The rate is tabulated as a function of altitude, pressure, and solar zenith angle.

  19. Energy levels and radiative rates for transitions in B-like to F-like Xe ions (Xe L-XLVI)

    SciTech Connect

    Aggarwal, K.M. Keenan, F.P.; Lawson, K.D.

    2010-03-15

    Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Xe ions, Xe L-XLVI. For the calculations, a fully relativistic GRASP code has been adopted, and results are reported for all electric dipole, electric quadrupole, magnetic dipole, and magnetic quadrupole transitions among the lowest 125, 236, 272, 226, and 113 levels of Xe L, Xe XLIX, Xe XLVIII, Xe XLVII, and Xe XLVI, respectively, belonging to the n {<=} 3 configurations.

  20. Energy levels and radiative rates for transitions in B-like to F-like Kr ions (Kr XXXII-XXVIII)

    SciTech Connect

    Aggarwal, K.M. Keenan, F.P.; Lawson, K.D.

    2008-05-15

    Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Kr ions, Kr XXXIII-XXVIII. For the calculations, the fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 125, 236, 272, 226, and 113 levels of Kr XXXII, Kr XXXI, Kr XXX, Kr XXIX, and Kr XXVIII, respectively, belonging to the n {<=} 3 configurations. Comparisons are made with earlier available theoretical and experimental results, and some discrepancies have been noted and explained.

  1. Atmospheric radiation flight dose rates

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.

    2015-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. Of the domains that are affected by space weather, the coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has been conducting space weather observations of the atmospheric radiation environment at aviation altitudes that will eventually be transitioned into air traffic management operations. The Automated Radiation Measurements for Aerospace Safety (ARMAS) system and Upper-atmospheric Space and Earth Weather eXperiment (USEWX) both are providing dose rate measurements. Both activities are under the ARMAS goal of providing the "weather" of the radiation environment to improve aircraft crew and passenger safety. Over 5-dozen ARMAS and USEWX flights have successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. Flight altitudes now exceed 60,000 ft. and extend above commercial aviation altitudes into the stratosphere. In this presentation we describe recent ARMAS and USEWX results.

  2. Oscillator strengths and radiative decay rates for spin-changing S-P transitions in helium: finite nuclear mass effects

    NASA Astrophysics Data System (ADS)

    Morton, Donald C.; Schulhoff, Eva E.; Drake, G. W. F.

    2015-12-01

    We have calculated the electric dipole (E1) and magnetic quadrupole (M2) oscillator strengths and spontaneous decay rates for 24 spin-changing transitions of atomic helium. We included the effects of the finite nuclear mass and the anomalous magnetic moment of the electron augmented by the recently derived Pachucki term. The specific transitions for 4He are n{ }1{{{S}}}0-{n}\\prime { }3{{{P}}}{1,2} and n{ }3{{{S}}}1-{n}\\prime { }1{{{P}}}1 with n,{n}\\prime ≤slant 3 and n≤slant 10 for {n}\\prime =n. For the E1 calculations we used the Breit approximation and pseudostate expansions to perform the perturbation sums over intermediate states in both the length and velocity gauge as a check on both numerical accuracy and validity of the transition operators. The corrections for the nuclear mass and the electron anomaly tend to cancel, indicating that if one is included, then so should be the other. The tables give mass- and anomaly-dependent coefficients permitting the easy generation of results for the other isotopes of helium.

  3. Radiative transitions of heavy quarkonium states

    SciTech Connect

    De Fazio, Fulvia

    2009-03-01

    We study radiative decays of heavy QQ states, both for Q=c and Q=b, using an effective Lagrangian approach which exploits spin symmetry for such states. We use existing data on radiative quarkonium transitions to predict some unmeasured decay rates. We also discuss how these modes can be useful to understand the structure of X(3872)

  4. Radiative rates for E1, E2, M1, and M2 transitions in F-like ions with 37 ≤ Z ≤ 53

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2016-05-01

    Calculations of energy levels, radiative rates and lifetimes are reported for 17 F-like ions with 37≤Z≤53. For brevity, results are only presented among the lowest 113 levels of the 2s22p5, 2s2p6, 2s22p43 ℓ, 2s2p53 ℓ, and 2p63 ℓ configurations, although the calculations have been performed for up to 501 levels in each ion. The general-purpose relativistic atomic structure package (GRASP) has been adopted for the calculations, and radiative rates (along with oscillator strengths and line strengths) are listed for all E1, E2, M1, and M2 transitions of the ions. Comparisons are made with earlier available experimental and theoretical energies, although these are limited to only a few levels for most ions. Therefore for additional accuracy assessments, particularly for energy levels, analogous calculations have been performed with the Flexible Atomic Code (FAC), for up to 72 259 levels. Limited previous results are available for radiative rates for comparison purposes, and no large discrepancy is observed for any transition and/or ion.

  5. On Comparing Transition Rate Gains.

    ERIC Educational Resources Information Center

    Reuterberg, Sven-Eric

    This report is about the problem of making transition or enrollment rate gains comparable. It is shown that measures based on the proportions themselves, i.e. the difference between proportions, the proportion ratio and the residual gain ratio do not make the gains comparable. Instead a non-linear transformation has to be done. Two such…

  6. Radiative rates for E1, E2, M1, and M2 transitions in Br-like ions with 43 ≤ Z ≤ 50

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2016-01-01

    Energies and lifetimes are reported for the eight Br-like ions with 43 ≤ Z ≤ 50, namely Tc IX, Ru X, Rh XI, Pd XII, Ag XIII, Cd XIV, In XV, and Sn XVI. Results are listed for the lowest 375 levels, which mostly belong to the 4s24p5, 4s24p44ℓ, 4s4p6,4s24p45ℓ, 4s24p34d2, 4s4p54ℓ, and 4s4p55ℓ configurations. Extensive configuration interaction among 39 configurations (generating 3990 levels) has been considered and the general-purpose relativistic atomic structure package (GRASP) has been adopted for the calculations. Radiative rates are listed for all E1, E2, M1, and M2 transitions involving the lowest 375 levels. Previous experimental and theoretical energies are available for only a few levels of three, namely Ru X, Rh XI and Pd XII. Differences with the measured energies are up to 4% but the present results are an improvement (by up to 0.3 Ryd) in comparison to other recently reported theoretical data. Similarly for radiative rates and lifetimes, prior results are limited to those involving only 31 levels of the 4s24p5, 4s24p44d, and 4s4p6 configurations for the last four ions. Moreover, there are generally no discrepancies with our results, although the larger calculations reported here differ by up to two orders of magnitude for a few transitions.

  7. Radiation rate meter development

    SciTech Connect

    Thacker, L.H.

    1989-01-01

    We are still in a very preliminary stage of examining the potentials of a new series of instruments which may be inexpensive and versatile enough to complement, or conceivably even replace, electroscope dosimeters in Civil Defense and other situations requiring radiation monitoring by the general public. These instruments were developed to provide a qualitative signal so simple to interpret that anyone can tell immediately whether they are in a dangerous radiation field, and whether they are moving into a hotter area or a cooler area. A second goal in the development has been to produce the simplest possible device at minimum cost, without compromise in effectiveness. In the simplest implementation the device is essentially a very inexpensive version of the much older Personal Radiation Monitor (PRM).

  8. Radiation dose rate meter

    SciTech Connect

    Kronenberg, S.; Siebentritt, C.R.

    1981-07-28

    A combined dose rate meter and charger unit therefor which does not require the use of batteries but on the other hand produces a charging potential by means of a piezoelectric cylinder which is struck by a manually triggered hammer mechanism. A tubular type electrometer is mounted in a portable housing which additionally includes a geiger-muller (Gm) counter tube and electronic circuitry coupled to the electrometer for providing multi-mode operation. In one mode of operation, an rc circuit of predetermined time constant is connected to a storage capacitor which serves as a timed power source for the gm tube, providing a measurement in terms of dose rate which is indicated by the electrometer. In another mode, the electrometer indicates individual counts.

  9. Transition rates and transition rate diagrams in atomic emission spectroscopy: A review

    NASA Astrophysics Data System (ADS)

    Weiss, Zdeněk; Steers, Edward B. M.; Pickering, Juliet C.

    2015-08-01

    In low pressure plasmas with low electron densities, such as glow discharges, radiative de-excitation is a major de-excitation process of most excited states. Their relative de-excitation rates can be determined by emission spectroscopy, making it possible to study excitation processes in these discharges. This is in contrast to denser plasmas, in which such considerations are usually based on relative populations of excited states and concepts related to thermodynamic equilibrium. In the approach using reaction rates rather than populations, a convenient tool is the recently introduced formalism of transition rate diagrams. This formalism is reviewed, its relevance to different plasmas is discussed and some recent results on glow discharge excitation of manganese, copper and iron ions are presented. The prospects for the use of this formalism for the comparison of rate constants and cross sections for charge transfer reactions with argon ions of elements of interest in analytical glow discharge spectroscopy are discussed.

  10. Radiative Transitions in Charmonium from Lattice QCD

    SciTech Connect

    Jozef Dudek; Robert Edwards; David Richards

    2006-01-17

    Radiative transitions between charmonium states offer an insight into the internal structure of heavy-quark bound states within QCD. We compute, for the first time within lattice QCD, the transition form-factors of various multipolarities between the lightest few charmonium states. In addition, we compute the experimentally unobservable, but physically interesting vector form-factors of the {eta}{sub c}, J/{psi} and {chi}{sub c0}. To this end we apply an ambitious combination of lattice techniques, computing three-point functions with heavy domain wall fermions on an anisotropic lattice within the quenched approximation. With an anisotropy {xi} = 3 at a{sub s} {approx} 0.1 fm we find a reasonable gross spectrum and a hyperfine splitting {approx}90 MeV, which compares favorably with other improved actions. In general, after extrapolation of lattice data at non-zero Q{sup 2} to the photopoint, our results agree within errors with all well measured experimental values. Furthermore, results are compared with the expectations of simple quark models where we find that many features are in agreement; beyond this we propose the possibility of constraining such models using our extracted values of physically unobservable quantities such as the J/{psi} quadrupole moment. We conclude that our methods are successful and propose to apply them to the problem of radiative transitions involving hybrid mesons, with the eventual goal of predicting hybrid meson photoproduction rates at the GlueX experiment.

  11. Transition undulator radiation as bright infrared sources

    SciTech Connect

    Kim, K.J.

    1995-02-01

    Undulator radiation contains, in addition to the usual component with narrow spectral features, a broad-band component in the low frequency region emitted in the near forward direction, peaked at an angle 1/{gamma}, where {gamma} is the relativistic factor. This component is referred to as the transition undulator radiation, as it is caused by the sudden change in the electron`s longitudinal velocity as it enters and leaves the undulator. The characteristic of the transition undulator radiation are analyzed and compared with the infrared radiation from the usual undulator harmonics and from bending magnets.

  12. Effects of new rate constants of transitions from vibrational levels on non-LTE radiation in ro-vibrational bands used for H2O retrieval in the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Manuilova, Rada; Kutepov, Alexander; Feofilov, Artem; Yankovsky, Valentine A.

    In this work, we investigate the sensitivity of the H _{2}O vibrational level populations and ro-vibrational spectra in the mesosphere and lower thermosphere (MLT) to new values of rate constants for the collision-induced transitions from the upper vibrational levels of H _{2}O molecule. This study contributes to the development of the H _{2}O non-equilibrium radiation model used for water vapor altitude distribution retrieval from the MLT radiation measurements. Our model accounts for 13 excited vibrational states up to energies 7445 cm-1 (the upper levels are 002, 101, 200) [Feofilov et al., 2009]. The model takes into account 54 vibrational-translational (V-T) and vibrational-vibrational (V-V) energy exchange processes at collisions of H _{2}O with N _{2}, O _{2} and O. The 32 ro-vibrational transitions forming 1.4, 1.9, 2.7, 3.2, 4.7 and 6.3 mum water vapor radiation bands are considered. Currently, the rate constants of intermolecular transitions between vibrational levels at collisions with N _{2} and O _{2} are known only for the transitions (010-000) and (001,100-020). In our model of H _{2}O vibrational level kinetics [Feofilov et al., 2009], we assumed that for all collisional transitions, at which the bending mode quantum number, v _{2}, increases by 2: H _{2}O(v _{1},v _{2},v _{3}) + M = H _{2}O(v _{1}-1,v _{2}+2,v _{3}) + M H _{2}O(v _{1},v _{2},v _{3}) + M = H _{2}O(v _{1},v _{2}+2,v _{3}-1) + M (1) the rate constants are equal to that of the process H _{2}O(001, 100) + M = H _{2}O(020) + M. Based on the analysis of currently available experimental and theoretical data, we have updated k, the rate constant of transitions (002, 101) -> 021 and (101, 200) -> 120, and estimated the effect of a new rate on the H _{2}O vibrational levels populations and limb radiation spectra. The “upper limit” of the effect was estimated using the same rate constant k for all processes of type (1), excluding process (001, 100) -> 020. The H _{2}O vibrational levels

  13. Radiative rates for E1, E2, M1, and M2 transitions in S-like to F-like tungsten ions (W LIX to W LXVI)

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2016-09-01

    Calculations of energy levels, radiative rates and lifetimes are reported for eight ions of tungsten, i.e. S-like (W LIX) to F-like (W LXVI). A large number of levels have been considered for each ion and extensive configuration interaction has been included among a range of configurations. For the calculations, the general-purpose relativistic atomic structure package (GRASP) has been adopted, and radiative rates (as well as oscillator strengths and line strengths) are listed for all E1, E2, M1, and M2 transitions of the ions. Comparisons have been made with earlier available experimental and theoretical energies, although these are limited to only a few levels for most ions. Therefore for additional accuracy assessments, particularly for energy levels, analogous calculations have been performed with the flexible atomic code (FAC).

  14. Radiative rates for E1, E2, M1, and M2 transitions in S-like to F-like tungsten ions (W LIX to W LXVI)

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2016-09-01

    Calculations of energy levels, radiative rates and lifetimes are reported for eight ions of tungsten, i.e. S-like (W LIX) to F-like (W LXVI). A large number of levels have been considered for each ion and extensive configuration interaction has been included among a range of configurations. For the calculations, the general-purpose relativistic atomic structure package (GRASP) has been adopted, and radiative rates (as well as oscillator strengths and line strengths) are listed for all E1, E2, M1, and M2 transitions of the ions. Comparisons have been made with earlier available experimental and theoretical energies, although these are limited to only a few levels for most ions. Therefore for additional accuracy assessments, particularly for energy levels, analogous calculations have been performed with the flexible atomic code (FAC).

  15. Energy, fine structure, hyperfine structure, and radiative transition rates of the high-lying multi-excited states for B-like neon

    NASA Astrophysics Data System (ADS)

    Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin

    2015-04-01

    The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.

  16. Calculation of radiative transition probabilities and lifetimes

    NASA Technical Reports Server (NTRS)

    Zemke, W. T.; Verma, K. K.; Stwalley, W. C.

    1982-01-01

    Procedures for calculating bound-bound and bound-continuum (free) radiative transition probabilities and radiative lifetimes are summarized. Calculations include rotational dependence and R-dependent electronic transition moments (no Franck-Condon or R-centroid approximation). Detailed comparisons of theoretical results with experimental measurements are made for bound-bound transitions in the A-X systems of LiH and Na2. New bound-free results are presented for LiH. New bound-free results and comparisons with very recent fluorescence experiments are presented for Na2.

  17. Estimation of transition probabilities of credit ratings

    NASA Astrophysics Data System (ADS)

    Peng, Gan Chew; Hin, Pooi Ah

    2015-12-01

    The present research is based on the quarterly credit ratings of ten companies over 15 years taken from the database of the Taiwan Economic Journal. The components in the vector mi (mi1, mi2,⋯, mi10) may first be used to denote the credit ratings of the ten companies in the i-th quarter. The vector mi+1 in the next quarter is modelled to be dependent on the vector mi via a conditional distribution which is derived from a 20-dimensional power-normal mixture distribution. The transition probability Pkl (i ,j ) for getting mi+1,j = l given that mi, j = k is then computed from the conditional distribution. It is found that the variation of the transition probability Pkl (i ,j ) as i varies is able to give indication for the possible transition of the credit rating of the j-th company in the near future.

  18. On transition rates in surface hopping

    NASA Astrophysics Data System (ADS)

    Escartín, J. M.; Romaniello, P.; Stella, L.; Reinhard, P.-G.; Suraud, E.

    2012-12-01

    Trajectory surface hopping (TSH) is one of the most widely used quantum-classical algorithms for nonadiabatic molecular dynamics. Despite its empirical effectiveness and popularity, a rigorous derivation of TSH as the classical limit of a combined quantum electron-nuclear dynamics is still missing. In this work, we aim to elucidate the theoretical basis for the widely used hopping rules. Naturally, we concentrate thereby on the formal aspects of the TSH. Using a Gaussian wave packet limit, we derive the transition rates governing the hopping process at a simple avoided level crossing. In this derivation, which gives insight into the physics underlying the hopping process, some essential features of the standard TSH algorithm are retrieved, namely (i) non-zero electronic transition rate ("hopping probability") at avoided crossings; (ii) rescaling of the nuclear velocities to conserve total energy; (iii) electronic transition rates linear in the nonadiabatic coupling vectors. The well-known Landau-Zener model is then used for illustration.

  19. The Multi Optical Transition Radiation System

    SciTech Connect

    Faus-Golfe, A.; Alabau-Gonzalvo, J.; Blanch Gutierrez, C.; McCormick, D.; Cruz, J.; Woodley, M.; White, G.; /SLAC

    2012-04-19

    The determination and monitoring of the transverse phase space in ATF2 is crucial in order to meet their performances specifications. Since the beam sizes at the Interaction Point (IP) depend strongly on the aberrations in the Final Focus System (FFS), accurate measurement upstream of the FFS is required to tune the beam sizes at the IP. The beam sizes as well as the emittance are measured in several locations in the beam diagnostic section of the Extraction Line (EXT line) of ATF2. The vertical beam sizes in the diagnostic section are of the order of 10 {mu}m this means that the devices have to image spot sizes as small as 5 {mu}m, with 10% accuracy a 2 {mu}m resolution device is necessary. The ATF2 EXT line is a beam line with low power and low repetition rate that make usable devices using solid targets. In contrast to a ring machine, where an individual bunch can be measured many times as it passes around the ring, the beam size and the emittance measurement in the LC or in the beam lines have to be performed in a single pass. This requires that the wire scan device types (laser or solid) sample across successive bunches within a train, often with an over-estimation of the beam size due to beam position and intensity jitter, and can take up to half a minute to complete the measurement. Although some of these effects could be corrected, as the jitter effect could be subtracted by using the nearby BPMs signals, this can be avoided by using Optical Transition Radiation (OTR) Monitors. These monitors are based on the transition radiation effect, a light cone emitted when the charged particle crosses a metallic interface. This light is emitted in a specular fashion so it can be focused on to a CCD and produces an image of the beam. OTRs are able to take many fast measurements and therefore to measure the emittance with high statistics, giving a low error and a good understanding of the emittance jitter. In this article, simulations of the expected beam sizes and

  20. The use of radiative transition rates to study the changes in the excitation of Cu ions in a Ne glow discharge caused by small additions of H2, O2 and N2

    NASA Astrophysics Data System (ADS)

    Weiss, Z.; Steers, E. B. M.; Mushtaq, S.; Hoffmann, V.; Pickering, J. C.

    2016-04-01

    The excitation of Cu+ ions in a Ne glow discharge with small additions of H2, O2 and N2 was studied. Ratios of radiative transition rates between different Cu II levels in a discharge in neon, with and without the molecular gas added, were calculated, and the formalism of transition rate ratio (TRR) diagrams was developed and used to study the changing excitation conditions. Virtually no changes in the excitation of Cu+ ions occur in a neon discharge if nitrogen is added. Additions of hydrogen and oxygen to neon as the discharge gas affect excitation of the 4d, 5s and some other Cu II levels in the vicinity of the ionization energy of neon (21.56 eV). Also some lower Cu II levels, excited by radiative decay of those higher energy levels, are affected. The 4p 3P2 level at 15.96 eV is enhanced by additions of hydrogen. It was suggested that this enhancement is caused by the asymmetric charge transfer reaction between neutral copper atoms and the H2+ molecular ions.

  1. Radiative transitions in metallic nanoclusters

    NASA Astrophysics Data System (ADS)

    Shalin, A. S.

    2008-02-01

    In this article, a new theoretical approach to studying light-scattering characteristics of nanosized objects based on the solution to the Thomas-Fermi equation and quasi-classical approximation is considered. It is shown that the distribution of valence electrons in the volume of metallic clusters exhibits a specific structure of "spatial zones." With the aid of quasi-classical wave functions, expressions for the appropriate dipole moments of the transitions between the ground and excited states are obtained; the behavior of the spectrum of gold clusters depending on their sizes is studied; a comparison with existing experimental data is carried out.

  2. Transition Flow Effects On Plume Radiation

    NASA Astrophysics Data System (ADS)

    Elgin, James B.

    1983-07-01

    A calculational comparison of a free molecular plume code (HAPAIR: High Altitude Plume-Atmosphere Interaction Radiation) and a Monte-Carlo Plume Code (TRAMP: Transitional and Rarefied Axisymmetric Monte-carlo Plume) is made for a selected sequence of cases going from a free molecular (Kn = 15) to a highl transitional (Kn = 0.07) flow regime. Results are presented which document the breakdown of free molecular flow assumptions in the transition regime and show the effect on the critical physical processes responsible for plume emission.

  3. Radiative lifetimes and transition probabilities for electric-dipole delta n equals zero transitions in highly stripped sulfur ions

    NASA Technical Reports Server (NTRS)

    Pegg, D. J.; Elston, S. B.; Griffin, P. M.; Forester, J. P.; Thoe, R. S.; Peterson, R. S.; Sellin, I. A.; Hayden, H. C.

    1976-01-01

    The beam-foil time-of-flight method has been used to investigate radiative lifetimes and transition rates involving allowed intrashell transitions within the L shell of highly ionized sulfur. The results for these transitions, which can be particularly correlation-sensitive, are compared with current calculations based upon multiconfigurational models.

  4. Transition radiation from relativistic electrons in periodic radiators

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Mueller, D.; Prince, T. A.; Hartmann, G.

    1974-01-01

    The generation and detection of transition radiation have been studied in a series of experiments with electrons from 1 to 15 GeV at SLAC and at the Cornell Synchrotron. Periodic radiators, consisting of thin plastic foils stretched in air at constant spacings, were used, and proportional chambers filled with krypton or xenon served as detectors. A detailed discussion of the theoretical predictions is given, and the measurements are systematically compared with the predictions by varying the most critical parameters, such as configuration of radiators and detectors, and energy of the electrons. In general, good agreement between theory and experiment has been found. On the basis of these results, the criteria are summarized under which transition radiation can readily be observed.

  5. Charmonium meson and hybrid radiative transitions

    SciTech Connect

    Guo, Peng; Yépez-Martínez, Tochtli; Szczepaniak, Adam P.

    2014-06-01

    We consider the non-relativistic limit of the QCD Hamiltonian in the Coulomb gauge, to describe radiative transitions between conventional charmonium states and from the lowest multiplet of cc¯ hybrids to charmonium mesons. The results are compared to potential quark models and lattices calculations.

  6. Transition radiation on a dynamic periodic interface

    NASA Astrophysics Data System (ADS)

    Mkrtchyan, A. R.; Potylitsyn, A. P.; Kocharyan, V. R.; Saharian, A. A.

    2016-02-01

    We investigate the transition radiation on a periodically deformed interface between two dielectric media. Under the assumption that the dielectric permittivities of the media are close, a formula is derived for the spectral-angular distribution of the radiated energy in the general case of a nonstatic profile function for the separating boundary. In particular, the latter includes the case of surface waves propagating along the boundary. The numerical examples are given for triangular grating and for sinusoidal profile. We show that instead of a single peak in the backward transition radiation on a flat interface, for periodic interface one has a set of peaks. The number and the locations of the peaks depend on the incidence angle of the charge and on the period of the interface. The conditions are specified for their appearance.

  7. On transition rates in surface hopping.

    PubMed

    Escartín, J M; Romaniello, P; Stella, L; Reinhard, P-G; Suraud, E

    2012-12-21

    Trajectory surface hopping (TSH) is one of the most widely used quantum-classical algorithms for nonadiabatic molecular dynamics. Despite its empirical effectiveness and popularity, a rigorous derivation of TSH as the classical limit of a combined quantum electron-nuclear dynamics is still missing. In this work, we aim to elucidate the theoretical basis for the widely used hopping rules. Naturally, we concentrate thereby on the formal aspects of the TSH. Using a Gaussian wave packet limit, we derive the transition rates governing the hopping process at a simple avoided level crossing. In this derivation, which gives insight into the physics underlying the hopping process, some essential features of the standard TSH algorithm are retrieved, namely (i) non-zero electronic transition rate ("hopping probability") at avoided crossings; (ii) rescaling of the nuclear velocities to conserve total energy; (iii) electronic transition rates linear in the nonadiabatic coupling vectors. The well-known Landau-Zener model is then used for illustration. PMID:23267477

  8. A Program for Calculating Radiation Dose Rates.

    Energy Science and Technology Software Center (ESTSC)

    1986-01-27

    Version 00 SMART calculates radiation dose rate at the center of the outer cask surface. It can be applied to determine the radiation dose rate on each cask if source conditions, characteristic function, and material conditions in the bottle regions are given. MANYCASK calculates radiation dose rate distribution in a space surrounded by many casks. If the dose rate on each cask surface can be measured, MANYCASK can be applied to predict dose spatial dosemore » rate distribution for any case of cask configuration.« less

  9. Radiative rates for E1, E2, M1, and M2 transitions in the Br-like ions Sr IV, Y V, Zr VI, Nb VII, and Mo VIII

    SciTech Connect

    Aggarwal, Kanti M. Keenan, Francis P.

    2015-09-15

    Energies and lifetimes are reported for the lowest 375 levels of five Br-like ions, namely Sr IV, Y V, Zr VI, Nb VII, and Mo VIII, mostly belonging to the 4s{sup 2}4p{sup 5}, 4s{sup 2}4p{sup 4}4ℓ, 4s4p{sup 6}, 4s{sup 2}4p{sup 4}5ℓ, 4s{sup 2}4p{sup 3}4d{sup 2}, 4s4p{sup 5}4ℓ, and 4s4p{sup 5}5ℓ configurations. Extensive configuration interaction has been included and the general-purpose relativistic atomic structure package (GRASP) has been adopted for the calculations. Additionally, radiative rates are listed among these levels for all E1, E2, M1, and M2 transitions. From a comparison with the measurements, the majority of our energy levels are assessed to be accurate to better than 2%, although discrepancies between theory and experiment for a few are up to 6%. An accuracy assessment of the calculated radiative rates (and lifetimes) is more difficult, because no prior results exist for these ions.

  10. HIGH-ACCURACY MR-MP PERTURBATION THEORY ENERGY AND RADIATIVE RATES CALCULATIONS FOR CORE-EXCITED TRANSITIONS IN Fe XVI

    SciTech Connect

    Diaz, F.; Vilkas, M. J.; Ishikawa, Y.; Beiersdorfer, P.

    2013-07-01

    Accurate theoretical energy level, lifetime, and transition probability calculations of core-excited Fe XVI were performed employing the relativistic Multireference Moller-Plesset perturbation theory. In these computations the term energies of the highly excited n {<=} 5 states arising from the configuration 1s {sup 2}2s{sup k} 2p{sup m} 3l {sup p} nl' {sup q}, where k + m + p + q = 9, l {<=} 3 and p + q {<=} 2 are considered, including those of the autoionizing levels with a hole-state in the L-shell. All even and odd parity states of sodium-like iron ion were included for a total of 1784 levels. Comparison of the calculated L-shell transition wavelengths with those from laboratory measurements shows excellent agreement. Therefore, our calculation may be used to predict the wavelengths of as of yet unobserved Fe XVI, such as the second strongest 2p-3d Fe XVI line, which has not been directly observed in the laboratory and which blends with one of the prominent Fe XVII lines.

  11. Resonant Transition Radiation and Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Yasnov, L. V.; Karlický, M.; Modin, E. V.

    2008-02-01

    This paper presents general relations for the intensity of the resonant transition radiation (RTR) and their detailed analysis. This analysis shows that the spectrum amplitude of the x-mode at some frequencies for high-energy electrons can grow with the magnetic field increase in some interval from zero value; it can even dominate over that for the o-mode. With further magnetic field increase, the intensity of the RTR x-mode decreases in comparison with the intensity of the o-mode and this decrease is higher for higher velocities of energetic electrons. The polarization of the RTR depends on the velocity of energetic electrons, too. For velocities lower than some velocity limit v< v i the RTR emission is unpolarized in a broad interval of magnetic field intensities in the radio source. For reasonable values of indices of the power-law distribution functions of energetic electrons, the RTR is broadband in frequencies ( df/ f≈0.2-0.4). Furthermore, we show various dependencies of the RTR and its spectral characteristics. Assuming the same radio flux of the transition radiation and the gyro-synchrotron one at the Razin frequency, we estimate the limit magnetic field in the radio source of the transition radiation. Then, we analyze possible sources of small-scale inhomogeneities (thermal density fluctuations, Langmuir and ion-sound waves), which are necessary for the transition radiation. Although the small-scale inhomogeneities connected with the Langmuir waves lead to the plasma radiation, which is essentially stronger than RTR, the inhomogeneities of the ion-sound waves are suitable for the RTR without any other radiation. We present the relations describing the RTR for anisotropic distribution functions of fast electrons. We consider the distribution functions of fast electrons in the form of the Legendre polynomials which depend on the pitch-angle. We analyze the influence of the degree of the anisotropy (an increase of the number of terms in the Legendre

  12. Radiation damage of transition metal carbides

    SciTech Connect

    Dixon, G.

    1991-01-01

    In this grant period we have investigated electrical properties of transition metal carbides and radiation-induced defects produced by low-temperature electron irradiation in them. Special attention has been given to the composition VC[sub 0.88] in which the vacancies on the carbon sublattice of this fcc crystal order to produce a V[sub 8]C[sub 7] superlattice. The existence of this superlattice structure was found to make the crystal somewhat resistant to radiation damage at low doses and/or at ambient temperature. At larger doses significant changes in the resistivity are produced. Annealing effects were observed which we believe to be connected with the reconstitution of the superlattice structure.

  13. A new transition radiation detector for cosmic ray nuclei

    NASA Technical Reports Server (NTRS)

    Lheureux, J.; Meyer, P.; Muller, D.; Swordy, S.

    1981-01-01

    Test measurements on materials for transition radiation detectors at a low Lorentz factor are reported. The materials will be based on board Spacelab-2 for determining the composition and energy spectra of nuclear cosmic rays in the 1 TeV/nucleon range. The transition radiation detectors consist of a sandwich of radiator-photon detector combinations. The radiators emit X-rays and are composed of polyolefin fibers used with Xe filled multiwired proportional chamber (MWPC) detectors capable of detecting particle Lorentz factors of several hundred. The sizing of the detectors is outlined, noting the requirement of a thickness which provides a maximum ratio of transition radiation to total signal in the chambers. The fiber radiator-MWPC responses were tested at Fermilab and in an electron cyclotron. An increase in transition radiation detection was found as a square power law of Z, and the use of six radiator-MWPC on board the Spacelab-2 is outlined.

  14. Rates of Return to Educational Qualifications in the Transitional Economies.

    ERIC Educational Resources Information Center

    Newell, Andrew; Reilly, Barry

    1999-01-01

    Provides cross-country estimates on private rates of return to higher-education qualifications across various transitional economies spanning Central and Eastern Europe, Russia, and the former Soviet Union. Rates tend to rise in most transitional economies over the period considered. Rate variabilities help explain variabilities in wage…

  15. Surface forcing of the infrared cooling profile over the Tibetan Plateau. I - Influence of relative longwave radiative heating at high altitude. II - Cooling-rate variation over large-scale plateau domain during summer monsoon transition

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Shi, Lei

    1992-01-01

    The role of the Tibetan Plateau on the behavior of the surface longwave radiation budget is investigated, and the behavior of the vertical profile of longwave cooling over the plateau, including its diurnal variation, is quantified. A medium spectral-resolution IR radiative transfer model utilizing a simple modification for applications in idealized complex (valley) terrain is developed for the investigation. An understanding of how surface and elevation biophysical factors, which are highly variable over the large-scale plateau domain, regulate the spatial distribution of clear-sky IR cooling during the transition phase of the summer monsoon, is described.

  16. Radiative transitions of excited ions moving slowly in plasmas

    SciTech Connect

    Hu, Hongwei Chen, Wencong; Li, Peng; Zhao, Yongtao; Zhou, Xianming; Li, Zhen; Li, Fuli; Dong, Chenzhong

    2014-12-15

    The electric dipole transitions of excited ions moving slowly in plasmas are studied. The results show that some transitions forbidden for excited ions at rest become allowed for moving excited ions. The transition rates change with varying speed of the ions. Forbidden transitions are strongly influenced by the speed, non-forbidden transitions are weakly influenced.

  17. Radiative heating rates near the stratospheric fountain

    NASA Technical Reports Server (NTRS)

    Doherty, G. M.; Newell, R. E.; Danielsen, E. F.

    1984-01-01

    Radiative heating rates are computed for various sets of conditions thought to be appropriate to the stratospheric fountain region: with and without a layer of cirrus cloud between 100 and 150 mbar; with standard ozone and with decreased ozone in the lower stratosphere, again with and without the cirrus cloud; and with different temperatures in the tropopause region. The presence of the cloud decreases the radiative cooling below the cloud in the upper troposphere and increases the cooling above it in the lower stratosphere. The cloud is heated at the base and cooled at the top and thus radiatively destabilized; overall it gains energy by radiation. Decreasing ozone above the cloud also tends to cool the lower stratosphere. The net effect is a tendency for vertical convergence and horizontal divergence in the cloud region. High resolution profiles of temperature, ozone, and cloudiness within the fountain region are required in order to assess the final balance of the various processes.

  18. Radiative rates and electron impact excitation rate coefficients for Ne-like selenium, Se XXV

    SciTech Connect

    Wang, K.; Chen, C.Y. Huang, M.; Wang, Y.S.; Zou, Y.M.

    2011-07-15

    In this article we report calculations of energy levels, radiative rates, electron impact collision strengths, and effective collision strengths for transitions among the 241 fine-structure levels arising from 2l{sup 8} and 2l{sup 7}n{sup '}l{sup '} (n{sup '{<=}}6 and l{sup '{<=}}n{sup '}-1) configurations of Ne-like Se XXV using the Flexible Atomic Code. Energy levels and radiative rates are calculated within the relativistic configuration-interaction method. Direct excitation collision strengths are calculated using the relativistic distorted-wave approximation and high-energy collision strengths are obtained in the relativistic plane-wave approximation. Resonance contributions through the relevant Na-like doubly-excited configurations 2l{sup 7}n'l'n''l'' (3{<=}n'{<=}7, l'{<=}n'-1, n'{<=}n''{<=}50, and l''{<=}8) are explicitly taken into account via the independent-process and isolated-resonance approximation using distorted waves. Resonant stabilizing transitions and possibly important radiative decays from the resonances toward low-lying autoionizing levels are considered. In addition, the resonance contributions from Na-like 2l{sup 6}3l'3l'''n''' (n'''=3-6) configurations are included and found to be predominant for many transitions among the singly-excited states in Ne-like Se XXV. We present the radiative rates, oscillator strengths, and line strengths for all electric dipole, magnetic dipole, electric quadrupole, magnetic quadrupole, electric octopole, and magnetic octopole transitions among the 241 levels. The effective collision strengths are reported for all 28920 transitions among the 241 levels over a wide temperature range up to 10 keV. To assess the reliability and accuracy of the present collisional data, we have performed a 27-state close-coupling calculation, employing the Dirac R-matrix theory. The results from the close-coupling calculation and the independent-process calculation for the identical target states are found to be in good agreement

  19. Radiation Leukemogenesis at Low Dose Rates

    SciTech Connect

    Weil, Michael; Ullrich, Robert

    2013-09-25

    The major goals of this program were to study the efficacy of low dose rate radiation exposures for the induction of acute myeloid leukemia (AML) and to characterize the leukemias that are caused by radiation exposures at low dose rate. An irradiator facility was designed and constructed that allows large numbers of mice to be irradiated at low dose rates for protracted periods (up to their life span). To the best of our knowledge this facility is unique in the US and it was subsequently used to study radioprotectors being developed for radiological defense (PLoS One. 7(3), e33044, 2012) and is currently being used to study the role of genetic background in susceptibility to radiation-induced lung cancer. One result of the irradiation was expected; low dose rate exposures are ineffective in inducing AML. However, another result was completely unexpected; the irradiated mice had a very high incidence of hepatocellular carcinoma (HCC), approximately 50%. It was unexpected because acute exposures are ineffective in increasing HCC incidence above background. This is a potential important finding for setting exposure limits because it supports the concept of an 'inverse dose rate effect' for some tumor types. That is, for the development of some tumor types low dose rate exposures carry greater risks than acute exposures.

  20. Radiative transition probabilities in the O-like sequence

    NASA Astrophysics Data System (ADS)

    Landi, E.

    2005-04-01

    In the present work a complete set of radiative transition rates is calculated for all for the O-like ions with Z=11{-}30. Energy levels, oscillator strengths and A values are computed for all transitions within the n=2 complex and are compared with previous calculations, where available. Calculations are carried out using the Superstructure code. The present work provides for the first time a self-consistent, complete set of A values necessary for the calculation of line emissivities and synthetic spectra for all the ions considered, filling several gaps in the existing literature. The present data are especially suited for the analysis of spectral lines emitted by the less-abundant elements in the universe, for which few if any data were available in the literature.

  1. Transition rates in proton - Rydberg atom collisions

    NASA Astrophysics Data System (ADS)

    Vrinceanu, Daniel

    2016-05-01

    Monte Carlo simulations for energy and angular momentum transfer processes in proton - Ryderg atom collisions were performed and the corresponding rates are reported.The relevance of these rates in the context of cosmological recombination is discussed. The rates are contrasted with the similar rates in electron - Rydberg atom collisions. This work has been supported by National Science Foundation through grants for the Center for Research on Complex Networks (HRD-1137732) and Research Infrastructure for Science and Engineering (RISE) (HRD-1345173).

  2. Resonance transition radiation X-ray laser

    NASA Technical Reports Server (NTRS)

    Reid, Max B.; Piestrup, Melvin A.

    1991-01-01

    A free electron laser is proposed using a periodic dielectric and helical magnetic field. Periodic synchronism between the electrons and the optical wave is obtained at the period of the dielectric and not at the period of the helical magnetic field. The synchronism condition and the gain of the new device are derived. The effects on the gain from dephasing and beam expansion due to elastic scattering of the electrons in the periodic medium are included in the gain calculation. Examples of the resonance transition radiation laser and klystron are given. Operation at photon energies between 2.5 and 3.5 keV with net gain up to 12 percent is feasible using high electron-beam energies of 3 and 5 GeV. Moderate (300-MeV) beam energy allows operation between 80 to 110 eV with up to 57 percent net gain using a klystron design. In both cases, rapid foil heating may limit operation to a single electron-beam pulse.

  3. Extended range radiation dose-rate monitor

    DOEpatents

    Valentine, Kenneth H.

    1988-01-01

    An extended range dose-rate monitor is provided which utilizes the pulse pileup phenomenon that occurs in conventional counting systems to alter the dynamic response of the system to extend the dose-rate counting range. The current pulses from a solid-state detector generated by radiation events are amplified and shaped prior to applying the pulses to the input of a comparator. The comparator generates one logic pulse for each input pulse which exceeds the comparator reference threshold. These pulses are integrated and applied to a meter calibrated to indicate the measured dose-rate in response to the integrator output. A portion of the output signal from the integrator is fed back to vary the comparator reference threshold in proportion to the output count rate to extend the sensitive dynamic detection range by delaying the asymptotic approach of the integrator output toward full scale as measured by the meter.

  4. Transition radiation as a source of cosmic X-rays.

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Bleach, R. D.

    1972-01-01

    It is shown that transition radiation generated during the passage of relativistic charged particles through interstellar grains can be an important source of cosmic X-rays. In order to account for recent X-ray observations below 300 eV by transition radiation, an energy density in interstellar space of about 10 eV per cu cm in 10 MeV electrons is required. This seems to rule out transition radiation as an important source of diffuse cosmic X-rays in any energy region.

  5. Random transition-rate matrices for the master equation.

    PubMed

    Timm, Carsten

    2009-08-01

    Random-matrix theory is applied to transition-rate matrices in the Pauli master equation. We study the distribution and correlations of eigenvalues, which govern the dynamics of complex stochastic systems. Both the cases of identical and of independent rates of forward and backward transitions are considered. The first case leads to symmetric transition-rate matrices, whereas the second corresponds to general asymmetric matrices. The resulting matrix ensembles are different from the standard ensembles and show different eigenvalue distributions. For example, the fraction of real eigenvalues scales anomalously with matrix dimension in the asymmetric case. PMID:19792110

  6. Coherent multiple-foil x-ray transition radiation

    SciTech Connect

    Moran, M.J.; Chang, B.; Schneider, M.B.

    1993-08-25

    Intense x-ray transition radiation can be generated when relativistic electrons pass through a multiple-foil target. When the foil spacing is periodic, the transition radiation can be spatially coherent with respect to the target period. The spatial coherence can be evident in the spectra and angular distributions of transition radiation from such targets. A series of experiments has measured coherent transition radiation distributions from multiple-foil targets (up to six foils) with spacings of 50 {mu}m and 100 {mu}m. The electron energy was about 75 MeV and the photon energies were about 200 eV. Agreement between calculation and experimental data is excellent.

  7. Transition rates between specialization and generalization in phytophagous insects.

    PubMed

    Nosil, P

    2002-08-01

    Although most species of animals exhibit specialized patterns of resource use, it is unclear whether specialization evolves at a faster rate than generalization. To test this hypothesis, transition rates toward specialization and toward generalization were estimated using phylogenies from 15 groups of phytophagous insects. Among the groups studied, maximum-likelihood analyses showed that the forward transition rate from generalization to specialization was significantly higher than the reverse transition rate from specialization to generalization (mean ratio of forward to reverse transition rate = 1.47 using uniform branch lengths and 1.76 using Grafen branch lengths). Although phylogenetic conservatism of host-plant use is common, the results suggest that the evolution of specialization is a highly dynamic process. For example, higher transitions rates both toward and away from specialization as well as equal transition rates were inferred. Collectively, the results reveal a tendency for directional evolution toward increased specialization but also indicate that specialization does not always represent an evolutionary dead-end that strongly limits further evolution. PMID:12353763

  8. Gravitational radiation from first-order phase transitions

    SciTech Connect

    Child, Hillary L.; Giblin, John T. Jr. E-mail: giblinj@kenyon.edu

    2012-10-01

    It is believed that first-order phase transitions at or around the GUT scale will produce high-frequency gravitational radiation. This radiation is a consequence of the collisions and coalescence of multiple bubbles during the transition. We employ high-resolution lattice simulations to numerically evolve a system of bubbles using only scalar fields, track the anisotropic stress during the process and evolve the metric perturbations associated with gravitational radiation. Although the radiation produced during the bubble collisions has previously been estimated, we find that the coalescence phase enhances this radiation even in the absence of a coupled fluid or turbulence. We comment on how these simulations scale and propose that the same enhancement should be found at the Electroweak scale; this modification should make direct detection of a first-order electroweak phase transition easier.

  9. Prototype Operational Advances for Atmospheric Radiation Dose Rate Specification

    NASA Astrophysics Data System (ADS)

    Tobiska, W. K.; Bouwer, D.; Bailey, J. J.; Didkovsky, L. V.; Judge, K.; Garrett, H. B.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R. W.; Bell, D.; Mertens, C. J.; Xu, X.; Crowley, G.; Reynolds, A.; Azeem, I.; Wiltberger, M. J.; Wiley, S.; Bacon, S.; Teets, E.; Sim, A.; Dominik, L.

    2014-12-01

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the energy transfer processes from the Sun's photons, particles, and fields. The coupling between the solar and galactic high-energy particles, the magnetosphere, and atmospheric regions can significantly affect humans and our technology as a result of radiation exposure. Space Environment Technologies (SET) has developed innovative, new space weather observations that will become part of the toolset that is transitioned into operational use. One prototype operational system for providing timely information about the effects of space weather is SET's Automated Radiation Measurements for Aerospace Safety (ARMAS) system. ARMAS will provide the "weather" of the radiation environment to improve aircraft crew and passenger safety. Through several dozen flights the ARMAS project has successfully demonstrated the operation of a micro dosimeter on commercial aviation altitude aircraft that captures the real-time radiation environment resulting from Galactic Cosmic Rays and Solar Energetic Particles. The real-time radiation exposure is computed as an effective dose rate (body-averaged over the radiative-sensitive organs and tissues in units of microsieverts per hour); total ionizing dose is captured on the aircraft, downlinked in real-time via Iridium satellites, processed on the ground into effective dose rates, compared with NASA's Langley Research Center (LaRC) most recent Nowcast of Atmospheric Ionizing Radiation System (NAIRAS) global radiation climatology model runs, and then made available to end users via the web and smart phone apps. We are extending the dose measurement domain above commercial aviation altitudes into the stratosphere with a collaborative project organized by NASA's Armstrong Flight Research Center (AFRC) called Upper-atmospheric Space and Earth Weather eXperiment (USEWX). In USEWX we will be flying on the ER-2 high altitude aircraft a micro dosimeter for

  10. Recent progress in the development of transition radiation detectors

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Hartmann, G.; Prince, T.; Mueller, D.

    1978-01-01

    Transition-radiation detectors have been used in several recent cosmic-ray experiments for particle identification at energies E/mc-squared of at least about 1000. In order to optimize the design of such detectors and to use them for energy measurements over a broad energy range, it is necessary to study the details of the transition-radiation process. Experimental results are presented which test the theoretical predictions more precisely and at higher energies than in previous experiments. The dependence of the interference pattern in the frequency spectrum on the radiator dimensions is studied, and the total transition-radiation yield generated by electrons in various radiators is measured over a very wide energy range, from 5 to 300 GeV. The significance of the individual experimental parameters in the design of transition radiation detectors is reviewed, and the characteristics of transition-radiation detectors capable of measuring particle energies over the range E/mc-squared from about 300 to 100,000 are discussed.

  11. Chern-Simons diffusion rate across different phase transitions

    NASA Astrophysics Data System (ADS)

    Rougemont, Romulo; Finazzo, Stefano Ivo

    2016-05-01

    We investigate how the dimensionless ratio given by the Chern-Simons diffusion rate ΓCS divided by the product of the entropy density s and temperature T behaves across different kinds of phase transitions in the class of bottom-up nonconformal Einstein-dilaton holographic models originally proposed by Gubser and Nellore. By tuning the dilaton potential, one is able to holographically mimic a first order, a second order, or a crossover transition. In a first order phase transition, ΓCS/s T jumps at the critical temperature (as previously found in the holographic literature), while in a second order phase transition it develops an infinite slope. On the other hand, in a crossover, ΓCS/s T behaves smoothly, although displaying a fast variation around the pseudo-critical temperature. In all the cases, ΓCS/s T increases with decreasing T . The behavior of the Chern-Simons diffusion rate across different phase transitions is expected to play a relevant role for the chiral magnetic effect around the QCD critical end point, which is a second order phase transition point connecting a crossover band to a line of first order phase transition. Our findings in the present work add to the literature the first predictions for the Chern-Simons diffusion rate across second order and crossover transitions in strongly coupled nonconformal, non-Abelian gauge theories.

  12. Design of a transition radiation detector for cosmic rays

    NASA Technical Reports Server (NTRS)

    Hartmann, G.; Mueller, D.; Prince, T.

    1975-01-01

    Transition radiation detectors consisting of sandwiches of plastic foam radiators and multiwire proportional chambers can be used to identify cosmic ray particles with energies gamma ? E/mc-squared is greater than 10 to the 3rd and to measure their energy in the region gamma is roughly equal to 10 to the 3rd

  13. Measurements of the frequency spectrum of transition radiation

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Mueller, D.

    1977-01-01

    We report a measurement of the frequency spectrum of X-ray transition radiation. X rays were generated by electrons of 5 and 9 GeV in radiators of multiple polypropylene foils, and detected in the range 4 to 30 keV with a calibrated single-crystal Bragg spectrometer. The experimental results closely reproduce the features of the theoretically predicted spectrum. In particular, the pronounced interference pattern of multifoil radiators and the expected hardening of the radiation with increasing foil thickness are clearly observed. The overall intensity of the radiation is somewhat lower than predicted by calculations.

  14. Relativistic Radiative and Auger Rates for Fe XXIV

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Mendoza, C.; Kallman, T. R.; Palmeri, P.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    As part of a project to compute improved atomic data for the spectral modeling of iron K lines, we report extensive calculations and comparisons of radiative and Auger rates for transitions involving the K-vacancy states in Fe XXIV. By making use of several computational codes, a detailed study is carried out of orbital representation, configuration interaction, relativistic corrections, cancellation effects, and fine tuning. It is shown that a formal treatment of the Breit interaction is essential to render the important magnetic correlations that take part in the decay pathways of this ion. As a result, the accuracy of the present A-values is firmly ranked at better than 10% while that of the Auger rates at only 15%.

  15. Control of atomic transition rates via laser-light shaping

    NASA Astrophysics Data System (ADS)

    Jáuregui, R.

    2015-04-01

    A modular systematic analysis of the feasibility of modifying atomic transition rates by tailoring the electromagnetic field of an external coherent light source is presented. The formalism considers both the center of mass and internal degrees of freedom of the atom, and all properties of the field: frequency, angular spectrum, and polarization. General features of recoil effects for internal forbidden transitions are discussed. A comparative analysis of different structured light sources is explicitly worked out. It includes spherical waves, Gaussian beams, Laguerre-Gaussian beams, and propagation invariant beams with closed analytical expressions. It is shown that increments in the order of magnitude of the transition rates for Gaussian and Laguerre-Gaussian beams, with respect to those obtained in the paraxial limit, require waists of the order of the wavelength, while propagation invariant modes may considerably enhance transition rates under more favorable conditions. For transitions that can be naturally described as modifications of the atomic angular momentum, this enhancement is maximal (within propagation invariant beams) for Bessel modes, Mathieu modes can be used to entangle the internal and center-of-mass involved states, and Weber beams suppress this kind of transition unless they have a significant component of odd modes. However, if a recoil effect of the transition with an adequate symmetry is allowed, the global transition rate (center of mass and internal motion) can also be enhanced using Weber modes. The global analysis presented reinforces the idea that a better control of the transitions between internal atomic states requires both a proper control of the available states of the atomic center of mass, and shaping of the background electromagnetic field.

  16. Phase Transition in a Healthy Human Heart Rate

    NASA Astrophysics Data System (ADS)

    Kiyono, Ken; Struzik, Zbigniew R.; Aoyagi, Naoko; Togo, Fumiharu; Yamamoto, Yoshiharu

    2005-07-01

    A healthy human heart rate displays complex fluctuations which share characteristics of physical systems in a critical state. We demonstrate that the human heart rate in healthy individuals undergoes a dramatic breakdown of criticality characteristics, reminiscent of continuous second order phase transitions. By studying the germane determinants, we show that the hallmark of criticality—highly correlated fluctuations—is observed only during usual daily activity, and a breakdown of these characteristics occurs in prolonged, strenuous exercise and sleep. This finding is the first reported discovery of the dynamical phase transition phenomenon in a biological control system and will be a key to understanding the heart rate control system in health and disease.

  17. Sound radiation due to boundary layer transition

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1993-01-01

    This report describes progress made to date towards calculations of noise produced by the laminar-turbulence transition process in a low Mach number boundary layer formed on a rigid wall. The primary objectives of the study are to elucidate the physical mechanisms by which acoustic waves are generated, to clarify the roles of the fluctuating Reynolds stress and the viscous stress in the presence of a solid surface, and to determine the relative efficiency as a noise source of the various transition stages. In particular, we will examine the acoustic characteristics and directivity associated with three-dimensional instability waves, the detached high-shear layer, and turbulent spots following a laminar breakdown. Additionally, attention will be paid to the unsteady surface pressures during the transition, which provide a source of flow noise as well as a forcing function for wall vibration in both aeronautical and marine applications.

  18. The generation of transition radiation by relativistic particles in plastic foam radiators

    NASA Technical Reports Server (NTRS)

    Prince, T. A.; Mueller, D.; Cherry, M. L.; Hartmann, G.

    1975-01-01

    The design of large area transition radiation detectors for highly relativistic particles can be greatly simplified if plastic foam radiators are employed. Using electron beams with energies 1-9 GeV at the Cornell synchrotron, we have studied the properties of a large variety of transition radiators consisting of commercially available foam materials. In most cases, a measurable transition radiation signal has been observed, but only a few materials have been found to be suitable for practical purposes. The observed radiation yield is in these cases very similar to that of equivalent multifoil radiators. A detailed discussion is given of the particle detection efficiency that can be obtained with high yield foam radiators.

  19. Radiative dominated cooling of the flare corona and transition region

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.

    1979-01-01

    Models in which radiation dominates cooling flare loops are investigated. The radiative models are found to predict a differential emission measure (Q) proportional to T to the (l+1) power, where l measures the dependence of the radiative loss coefficient on temperature, lamda (T) approximately T to the (-l) power. It is concluded that the radiative models are incapable of explaining the observed temperature dependence of Q for flare coronal and transitional plasma. The models suggest that large mass motions (velocities of the order of the sound speed) may be required.

  20. E1-forbidden transition rates in ions of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Träbert, E.

    2014-11-01

    Transition rates in atomic systems may appear to be of little importance in steady-state plasmas that are observed at great distances from Earth. However, some of the transition rates compete with collision rates, and in these cases certain line intensity ratios are affected and can serve as remote indicators of density. In the low-density environments of stellar coronae and planetary nebulae, the transition rates of interest are mostly spin-forbidden E1 decays, higher-multipole order transitions (M1, E2, M2, M3), and hyperfine-induced transitions. On Earth, measurements of the long upper level lifetimes of these atomic systems require the use of ion traps. A fair number of test cases with lifetimes in the range from nanoseconds to many seconds have been treated successfully, and the evolution of calculations along with the experimental progress is notable. A new generation of cold ion traps is expected to extend the atomic lifetime measurements on multiply charged ions into the range of many minutes.

  1. Transition rates for a Rydberg atom surrounded by a plasma

    NASA Astrophysics Data System (ADS)

    Lin, Chengliang; Gocke, Christian; Röpke, Gerd; Reinholz, Heidi

    2016-04-01

    We derive a quantum master equation for an atom coupled to a heat bath represented by a charged particle many-body environment. In the Born-Markov approximation, the influence of the plasma environment on the reduced system is described by the dynamical structure factor. Expressions for the profiles of spectral lines are obtained. Wave packets are introduced as robust states allowing for a quasiclassical description of Rydberg electrons. Transition rates for highly excited Rydberg levels are investigated. A circular-orbit wave-packet approach has been applied in order to describe the localization of electrons within Rydberg states. The calculated transition rates are in a good agreement with experimental data.

  2. Decay rates and electromagnetic transitions of heavy quarkonia

    NASA Astrophysics Data System (ADS)

    Pandya, J. N.; Soni, N. R.; Devlani, N.; Rai, A. K.

    2015-12-01

    The electromagnetic radiative transition widths for heavy quarkonia, as well as digamma and digluon decay widths, are computed in the framework of the extended harmonic confinement model (ERHM) and Coulomb plus power potential (CPPν) with varying potential index ν. The outcome is compared with the values obtained from other theoretical models and experimental results. While the mass spectra, digamma and digluon widths from ERHM as well as CPPν=1 are in good agreement with experimental data, the electromagnetic transition widths span over a wide range for the potential models considered here making it difficult to prefer a particular model over the others because of the lack of experimental data for most transition widths. Supported by University Grants Commission, India for Major Research Project F. No.42-775/2013(SR) (J N Pandya) and Dept. of Science and Technology, India, under SERC fast track scheme SR/FTP/PS-152/2012 (A K Rai)

  3. Transition-radiation-Compton-scattering detector for very relativistic nuclei

    NASA Technical Reports Server (NTRS)

    Osborne, W. Z.; Mack, J. E.

    1975-01-01

    The paper presents the design and predicted performance of a large acceptance (2 sq m sr) transition-radiation-Compton-scattering detector system which can be used to measure energy spectra up to several thousand Gev/nucleon for nuclei with Z between 6 and 28, as well as up to 40,000 GeV/nucleon for He. The following circumstances made such a detector system practicable: (1) transition radiation output is proportional to the square of particle charge; (2) output varies at least as rapidly as the square of Lorentz factor over the range from several hundred to several thousand.

  4. Transitional flow in thin tubes for space station freedom radiator

    NASA Technical Reports Server (NTRS)

    Loney, Patrick; Ibrahim, Mounir

    1995-01-01

    A two dimensional finite volume method is used to predict the film coefficients in the transitional flow region (laminar or turbulent) for the radiator panel tubes. The code used to perform this analysis is CAST (Computer Aided Simulation of Turbulent Flows). The information gathered from this code is then used to augment a Sinda85 model that predicts overall performance of the radiator. A final comparison is drawn between the results generated with a Sinda85 model using the Sinda85 provided transition region heat transfer correlations and the Sinda85 model using the CAST generated data.

  5. Recent progress in the transition radiation detector techniques

    NASA Technical Reports Server (NTRS)

    Yuan, L. C. L.

    1973-01-01

    A list of some of the major experimental achievements involving charged particles in the relativistic region are presented. With the emphasis mainly directed to the X-ray region, certain modes of application of the transition radiation for the identification and separation of relativistic charged particles are discussed. Some recent developments in detection techniques and improvements in detector performances are presented. Experiments were also carried out to detect the dynamic radiation, but no evidence of such an effect was observed.

  6. Accurate transition rates for intercombination lines of singly ionized nitrogen

    SciTech Connect

    Tayal, S. S.

    2011-01-15

    The transition energies and rates for the 2s{sup 2}2p{sup 2} {sup 3}P{sub 1,2}-2s2p{sup 3} {sup 5}S{sub 2}{sup o} and 2s{sup 2}2p3s-2s{sup 2}2p3p intercombination transitions have been calculated using term-dependent nonorthogonal orbitals in the multiconfiguration Hartree-Fock approach. Several sets of spectroscopic and correlation nonorthogonal functions have been chosen to describe adequately term dependence of wave functions and various correlation corrections. Special attention has been focused on the accurate representation of strong interactions between the 2s2p{sup 3} {sup 1,3}P{sub 1}{sup o} and 2s{sup 2}2p3s {sup 1,3}P{sub 1}{sup o}levels. The relativistic corrections are included through the one-body mass correction, Darwin, and spin-orbit operators and two-body spin-other-orbit and spin-spin operators in the Breit-Pauli Hamiltonian. The importance of core-valence correlation effects has been examined. The accuracy of present transition rates is evaluated by the agreement between the length and velocity formulations combined with the agreement between the calculated and measured transition energies. The present results for transition probabilities, branching fraction, and lifetimes have been compared with previous calculations and experiments.

  7. Coulomb gauge approach for charmonium meson and hybrid radiative transitions

    NASA Astrophysics Data System (ADS)

    Gou, Peng; Yépez-Martínez, Tochtli; Szczepaniak, Adam P.

    2015-01-01

    We consider the lowest order interaction of the Foldy-Wouthuysen QED and QCD Hamiltonian in the Coulomb gauge approach, to describe radiative transitions between conventional and hybrids charmonium mesons. The results are compared to potential quark models and lattices calculations.

  8. Coulomb gauge approach for charmonium meson and hybrid radiative transitions

    DOE PAGESBeta

    Gou, Peng; Yepez-Martínez, Tochtli; Szczepaniak, Adam P.

    2015-01-22

    We consider the lowest order interaction of the Foldy-Wouthuysen QED and QCD Hamiltonian in the Coulomb gauge approach, to describe radiative transitions between conventional and hybrids charmonium mesons. The results are compared to potential quark models and lattices calculations.

  9. The efficient identification of relativistic particles by transition radiation

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.; Mueller, D.; Prince, T. A.

    1974-01-01

    A system of transition radiation detectors has been constructed and exposed to beams of electrons and pions in the energy range of 3 to 15 GeV at SLAC. Transition radiation was generated in a variety of stacks of mylar foils (radiators), and its intensity was detected with 7 multiwire proportional chambers. The raw data demonstrate a good separation between electron and pion induced signals. A more detailed analysis shows that a very efficient identification of individual particles is possible. Typically, a detection efficiency for electrons above 90%, combined with a pion-electron discrimination ratio of .001, has been achieved. Some conclusions with respect to the design of a practical detector for relativistic particles are drawn.

  10. Modifications to population rate equations resulting from correlations between collisional and radiative processes

    NASA Technical Reports Server (NTRS)

    Ballagh, R. J.; Cooper, J.

    1984-01-01

    There are many systems of physical interest for which a set of rate equations for level populations can provide insight. If the system has two (or more) different mechanisms for effecting transition between levels, total rates of transfer are usually taken as the sum of rates that the individual mechanisms would cause acting alone. Using the example of a hydrogen atom subjected to (ionic and electronic) collisions and external radiation, it is shown that when these individual mechanisms overlap, the total transfer rates must be modified to account for correlations between collisional and radiative processes. For a broad-band radiation field the modified rates have a simple physical interpretation. In the case of a narrow-band field the overlapping events may cause new coherences to appear and interpretation of the modified 'rates' is more complicated.

  11. Full-counting statistics of random transition-rate matrices.

    PubMed

    Mordovina, Uliana; Emary, Clive

    2013-12-01

    We study the full-counting statistics of current of large open systems through the application of random-matrix theory to transition-rate matrices. We develop a method for calculating the ensemble-averaged current-cumulant generating functions based on an expansion in terms of the inverse system size. We investigate how different symmetry properties and different counting schemes affect the results. PMID:24483426

  12. High power beam profile monitor with optical transition radiation

    SciTech Connect

    Denard, J.C.; Piot, P.; Capek, K.; Feldl, E.

    1997-06-01

    A simple monitor has been built to measure the profile of the high power beam (800 kW) delivered by the CEBAF accelerator at Jefferson Lab. The monitor uses the optical part of the forward transition radiation emitted from a thin carbon foil. The small beam size to be measured, about 100 {mu}m, is challenging not only for the power density involved but also for the resolution the instrument must achieve. An important part of the beam instrumentation community believes the radiation being emitted into a cone of characteristic angle 1/{gamma} is originated from a region of transverse dimension roughly {lambda}{gamma}; thus the apparent size of the source of transition radiation would become very large for highly relativistic particles. This monitor measures 100 {mu}m beam sizes that are much smaller than the 3.2 mm {lambda}{gamma} limit; it confirms the statement of Rule and Fiorito that optical transition radiation can be used to image small beams at high energy. The present paper describes the instrument and its performance. The authors tested the foil in, up to 180 {mu}A of CW beam without causing noticeable beam loss, even at 800 MeV, the lowest CEBAF energy.

  13. Radiative Transfer and Absorbing Structures in the Transition Region

    NASA Astrophysics Data System (ADS)

    Plovanic, Jacob; Kankelborg, C. C.

    2012-05-01

    A fully satisfactory explanation for the anomalous He II 304 Å intensity in the solar transition region has yet to be offered. As an extension of previous work, we use a full radiative transfer code to build a more consistent model of the transition region that allows the He II line to form with low filling factor and low opacity. Our results are constrained by the quiet sun center-to-limb profile of He II 304 Å obtained from the MOSES sounding rocket mission and by AIA full-disk data.

  14. Reducing sojourn points from recurrence plots to improve transition detection: Application to fetal heart rate transitions.

    PubMed

    Zaylaa, Amira; Charara, Jamal; Girault, Jean-Marc

    2015-08-01

    The analysis of biomedical signals demonstrating complexity through recurrence plots is challenging. Quantification of recurrences is often biased by sojourn points that hide dynamic transitions. To overcome this problem, time series have previously been embedded at high dimensions. However, no one has quantified the elimination of sojourn points and rate of detection, nor the enhancement of transition detection has been investigated. This paper reports our on-going efforts to improve the detection of dynamic transitions from logistic maps and fetal hearts by reducing sojourn points. Three signal-based recurrence plots were developed, i.e. embedded with specific settings, derivative-based and m-time pattern. Determinism, cross-determinism and percentage of reduced sojourn points were computed to detect transitions. For logistic maps, an increase of 50% and 34.3% in sensitivity of detection over alternatives was achieved by m-time pattern and embedded recurrence plots with specific settings, respectively, and with a 100% specificity. For fetal heart rates, embedded recurrence plots with specific settings provided the best performance, followed by derivative-based recurrence plot, then unembedded recurrence plot using the determinism parameter. The relative errors between healthy and distressed fetuses were 153%, 95% and 91%. More than 50% of sojourn points were eliminated, allowing better detection of heart transitions triggered by gaseous exchange factors. This could be significant in improving the diagnosis of fetal state. PMID:25308517

  15. Radiation dose rates from UF{sub 6} cylinders

    SciTech Connect

    Friend, P.J.

    1991-12-31

    This paper describes the results of many studies, both theoretical and experimental, which have been carried out by Urenco over the last 15 years into radiation dose rates from uranium hexafluoride (UF{sub 6}) cylinders. The contents of the cylinder, its history, and the geometry all affect the radiation dose rate. These factors are all examined in detail. Actual and predicted dose rates are compared with levels permitted by IAEA transport regulations.

  16. Medium-to-medium transition radiation and the detection of ultrarelativistic charged particles

    NASA Technical Reports Server (NTRS)

    Robbins, D. E.; Mack, J. E.

    1972-01-01

    The use of X-ray transition radiation to distinguish between protons and positrons of equal rigidity was investigated. A formula for the transition radiation spectrum from a medium-to-medium boundary was derived. The formation zone effect was found to limit the detection of transition radiation from ultrarelativistic particles. Curves showing the results of the spectrum calculations are presented.

  17. Energy levels and radiative rates for Cr-like Cu VI and Zn VII

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Bogdanovich, P.; Keenan, F. P.; Kisielius, R.

    2016-09-01

    Energy levels and radiative rates (A-values) for transitions in Cr-like Cu VI and Zn VII are reported. These data are determined in the quasi-relativistic approach (QR), by employing a very large configuration interaction (CI) expansion which is highly important for these ions. No radiative rates are available in the literature to compare with our results, but our calculated energies are in close agreement with those compiled by NIST and other available theoretical data, for a majority of the levels. The A-values (and resultant lifetimes) are listed for all significantly contributing E1, E2 and M1 radiative transitions among the energetically lowest 322 levels of each ion.

  18. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides.

    PubMed

    Palummo, Maurizia; Bernardi, Marco; Grossman, Jeffrey C

    2015-05-13

    Light emission in two-dimensional (2D) transition metal dichalcogenides (TMDs) changes significantly with the number of layers and stacking sequence. While the electronic structure and optical absorption are well understood in 2D-TMDs, much less is known about exciton dynamics and radiative recombination. Here, we show first-principles calculations of intrinsic exciton radiative lifetimes at low temperature (4 K) and room temperature (300 K) in TMD monolayers with the chemical formula MX2 (X = Mo, W, and X = S, Se), as well as in bilayer and bulk MoS2 and in two MX2 heterobilayers. Our results elucidate the time scale and microscopic origin of light emission in TMDs. We find radiative lifetimes of a few picoseconds at low temperature and a few nanoseconds at room temperature in the monolayers and slower radiative recombination in bulk and bilayer than in monolayer MoS2. The MoS2/WS2 and MoSe2/WSe2 heterobilayers exhibit very long-lived (∼20-30 ns at room temperature) interlayer excitons constituted by electrons localized on the Mo-based and holes on the W-based monolayer. The wide radiative lifetime tunability, together with the ability shown here to predict radiative lifetimes from computations, hold unique potential to manipulate excitons in TMDs and their heterostructures for application in optoelectronics and solar energy conversion. PMID:25798735

  19. Sub GV/cm terahertz radiation from relativistic laser-solid interactions via coherent transition radiation

    NASA Astrophysics Data System (ADS)

    Ding, W. J.; Sheng, Z. M.

    2016-06-01

    Broadband terahertz (THz) radiation with extremely high peak power, generated by the interaction of a femtosecond laser with a thin solid target, has been investigated via particle-in-cell simulations. The spatial (angular) and temporal profiles of the THz radiation reveal that it is caused by the coherent transition radiation emitted when laser-produced hot electrons pass through the front or rear surface of the target. Dependence of the THz radiation on laser and target parameters is studied; it is shown to have a strong correlation with hot electron production. The THz radiation conversion efficiency can be as high as a few times 10-3. This radiation is not only a potentially high power THz source, but may also be used as a unique diagnostic of hot electron generation and transport in relativistic laser-solid interactions.

  20. Radiative lifetimes and transition probabilities of neutral lanthanum

    NASA Astrophysics Data System (ADS)

    Den Hartog, E. A.; Palmer, A. J.; Lawler, J. E.

    2015-08-01

    The radiative lifetimes of 72 odd-parity levels of neutral lanthanum are measured to ±5% accuracy using time-resolved laser-induced fluorescence on a slow atomic beam. The levels range in energy from 15031 to 32140 cm-1. Branching fraction measurements using Fourier-transform spectroscopy are attempted and completed for all of the 72 levels. The branching fractions, when combined with the radiative lifetimes, yield new transition probabilities for 315 lines of the first spectrum of lanthanum (La i ). This study is part of a larger body of work on the radiative properties of rare earth neutral atoms, and is motivated by research needs in lighting science and astrophysics.

  1. Excitation rate coefficients and line ratios for the optical and ultraviolet transitions in S II

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Pradhan, Anil K.

    1993-01-01

    New calculations are reported for electron excitation collision strengths, rate coefficients, transition probabilities, and line ratios for the astrophysically important optical and UV lines in S II. The collision strengths are calculated in the close coupling approximation using the R-matrix method. The present calculations are more extensive than previous ones, including all transitions among the 12 lowest LS terms and the corresponding 28 fine-structure levels in the collisional-radiative model for S II. While the present rate coefficients for electron impact excitation are within 10-30 percent of the previous values for the low-lying optical transitions employed as density diagnostics of H II regions and nebulae, the excitation rates for the UV transitions 4S super 0 sub 3/2 - 4Psub 1/2,3/2,5/2 differ significantly from earlier calculations, by up to factor of 2. We describe temperature and density sensitive flux ratios for a number of UV lines. The present UV results are likely to be of interest in a more accurate interpretation of S II emission from the Io plasma torus in the magnetosphere of Jupiter, as well as other UV sources observed from the IUE, ASTRO 1, and the HST.

  2. Transition to the radiative phase in supernova remnant evolution

    NASA Astrophysics Data System (ADS)

    Wright, Eric Boyd

    1999-11-01

    The evolution of a supernova remnant (SNR) through the transition from an adiabatic Sedov-Taylor blastwave to a radiative pressure-driven snowplow phase is studied through a series of one-, two- and three-dimensional hydrodynamic (HD) and magnetohydrodynamic (MHD) simulations. This transition is marked by a catastrophic collapse of the postshock gas, forming a thin, dense shell behind the forward shock. Previous studies have shown that the thin, dense shell of gas present during this transition is susceptible to both radiative and dynamical instabilities. One-dimensional HD studies indicate the presence of a radial oscillation between the forward shock and the thin shell, due to the rapid cooling of the gas in the immediate postshock region. Two-dynamical HD simulations of this transition indicate the presence of violent dynamical instabilities that alter the initially spherical morphology of the blastwave, specifically, the Pressure-driven Thin Shell Overstability (PDTSO) and the Non-linear Thin Shell Instability (NTSI). Hydrodynamical simulations, by their very nature, ignore the effects of magnetic forces on moving fluids. In general, interstellar magnetic fields will be weak enough that their effects may be safely ignored. However, the transition to the radiative phase in SNR evolution is often triggered when the blastwave interacts with dense clouds of gas in the interstellar medium (ISM). The resulting compression of the gas during the transition also compresses the magnetic fields in the cloud, possibly enhancing the field sufficiently to play a role in the further evolution of the SNR. To better understand the role of the NTSI during the transition, and to study the effects of magnetic fields on the instability itself, we performed idealized two- and three-dimensional MHD simulations. The results of the two-dimensional simulations were found to depend strongly on the orientation of the ambient magnetic field when the postshock field is dynamically

  3. ISFSI site boundary radiation dose rate analyses.

    PubMed

    Hagler, R J; Fero, A H

    2005-01-01

    Across the globe nuclear utilities are in the process of designing and analysing Independent Spent Fuel Storage Installations (ISFSI) for the purpose of above ground spent-fuel storage primarily to mitigate the filling of spent-fuel pools. Using a conjoining of discrete ordinates transport theory (DORT) and Monte Carlo (MCNP) techniques, an ISFSI was analysed to determine neutron and photon dose rates for a generic overpack, and ISFSI pad configuration and design at distances ranging from 1 to -1700 m from the ISFSI array. The calculated dose rates are used to address the requirements of 10CFR72.104, which provides limits to be enforced for the protection of the public by the NRC in regard to ISFSI facilities. For this overpack, dose rates decrease by three orders of magnitude through the first 200 m moving away from the ISFSI. In addition, the contributions from different source terms changes over distance. It can be observed that although side photons provide the majority of dose rate in this calculation, scattered photons and side neutrons take on more importance as the distance from the ISFSI is increased. PMID:16604670

  4. Radiative Heat Transfer in a Hydrous Transition Zone

    NASA Astrophysics Data System (ADS)

    Thomas, S.; Bina, C. R.; Jacobsen, S. D.; Goncharov, A. F.

    2012-12-01

    The structure and dynamics of Earth's interior depend crucially upon heat flow and thus upon the thermal conductivity of its constituents. The bulk thermal conductivity has two components: lattice conductivity (klat) and radiative conductivity (krad) [1,2]. Whereas lattice conductivity is governed by phonon propagation, radiative conductivity arises from heat transport by emission and absorption of photons. The latter, therefore, can be indirectly measured by analyzing the visible and infrared (VIS-IR) regions of a material's optical absorption spectrum. Thermal conductivity in the mantle is controlled by temperature, pressure, the electronic structure and concentration of transition metal ions (such as iron), and the water content of the material [1,3]. The radiative component has generally been assumed to be negligible, as most ferromagnesian minerals become opaque in the VIS-IR range at high pressures due to intensification and red-shift of electronic charge-transfer bands [4, 5]. However, more recent studies have suggested that mantle minerals may, in fact, remain relatively transparent at high pressures, thereby allowing for a potentially significant contribution to thermal conductivity from the radiative component [6]. We measured optical absorbance spectra of hydrous wadsleyite and hydrous ringwoodite at simultaneous high-pressure and high-temperature conditions up to 26 GPa and 823 K in order to determine their radiative conductivities and to study the potential influence of hydration in the transition zone on thermal conductivity of the mantle. We report radiative thermal conductivities of 1.5 ± 0.2 Wm-1K-1 for hydrous wadsleyite and 1.2 ± 0.1 Wm-1K-1 for hydrous ringwoodite at transition zone conditions. The analytically derived radiative thermal conductivities of anhydrous wadsleyite and ringwoodite are 2.1 ± 0.2 Wm-1K-1 and 1.6 ± 0.2 Wm-1K-1, respectively. Our results imply that a water content of ~1 wt% H2O lowers the thermal radiative conductivity

  5. Transition probabilities and radiative lifetimes of Mg III

    NASA Astrophysics Data System (ADS)

    Alonso-Medina, A.; Colón, C.; Moreno-Díaz, C.

    2015-03-01

    There have been calculated transition probabilities for 365 lines arising from 2p5 n s(n = 3 , 4 , 5) , 2p5 n p(n = 3 , 4) , 2p5 n d(n = 3 , 4) , 2p5 n f(n = 4 , 5) and 2p5 5g configurations of Mg III and radiative lifetimes corresponding to 89 levels. These values were obtained in intermediate coupling (IC) by using ab initio relativistic Hartree-Fock (HFR) calculations. Later, we use the standard method of least square fitting of experimental energy levels for the IC calculations by means of Cowan's computer codes. The vast majority of the calculated transition probabilities correspond to lines lying in the ultraviolet range (UV) which are of high interest in astrophysics. Our results are compared to those previously reported in the literature. Furthermore, the values of transition probabilities of configuration levels 2p5 4d, 2p5 n f(n = 4 , 5) and 2p5 5g are presented for the first time. In light of these findings, it is possible to extend the range of wavelengths which allows us to estimate the temperature in plasma diagnostic. In addition, our results for radiative lifetimes have been compared to the available experimental values.

  6. A neural network for positron identification by transition radiation detector

    NASA Astrophysics Data System (ADS)

    Bellotti, R.; Castellano, M.; De Marzo, C.; Pasquariello, G.; Satalino, G.; Spinelli, P.

    1994-11-01

    A neural network algorithm has been applied in order to distinguish positrons from protons by a transition radiation detector (TRD). New variables are introduced, that simultaneously take into account spatial and energy TRD information. This method is found to be better than the one based on classical analysis: the results improve the detector performance in particle identification for efficiency higher than 90%. The high accuracy achieved with this method is used to identify positrons versus protons with 3 × 10 -3 contamination, as required by TRAMP-SI cosmic ray space experiment on the NASA Balloon-Borne Magnet Facility.

  7. A Study of Radiative Bottomonium Transitions using Converted Photons

    SciTech Connect

    Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D.A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D.J.; Hearty, C.; /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /Indian Inst. Tech., Guwahati /Harvard U. /Harvey Mudd Coll. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Paris U., VI-VII /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas Nuclear Corp., Austin /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2011-08-15

    The authors use (111 {+-} 1) million {Upsilon}(3S) and (89 {+-} 1) million {Upsilon}(2S) events recorded by the BABAR detector at the PEP-II B-factory at SLAC to perform a study of radiative transitions betwen bottomonium states using photons that have been converted to e{sup +}e{sup -} pairs by the detector material. They observe {Upsilon}(3S) {yields} {gamma}{chi}{sub b0,2}(1P) decay, make precise measurements of the branching fractions for {chi}{sub b1,2}(1P, 2P) {yields} {gamma}{Upsilon}(1S) and {chi}{sub b1,2}(2P) {yields} {gamma}{Upsilon}(2S) decays, and search for radiative decay to the {eta}{sub b}(1S) and {eta}{sub b}(2S) states.

  8. Advanced simulations of optical transition and diffraction radiation

    NASA Astrophysics Data System (ADS)

    Aumeyr, T.; Billing, M. G.; Bobb, L. M.; Bolzon, B.; Bravin, E.; Karataev, P.; Kruchinin, K.; Lefevre, T.; Mazzoni, S.

    2015-04-01

    Charged particle beam diagnostics is a key task in modern and future accelerator installations. The diagnostic tools are practically the "eyes" of the operators. The precision and resolution of the diagnostic equipment are crucial to define the performance of the accelerator. Transition and diffraction radiation (TR and DR) are widely used for electron beam parameter monitoring. However, the precision and resolution of those devices are determined by how well the production, transport and detection of these radiation types are understood. This paper reports on simulations of TR and DR spatial-spectral characteristics using the physical optics propagation (POP) mode of the Zemax advanced optics simulation software. A good consistency with theory is demonstrated. Also, realistic optical system alignment issues are discussed.

  9. Effects Of Dose Rates On Radiation Damage In CMOS Parts

    NASA Technical Reports Server (NTRS)

    Goben, Charles A.; Coss, James R.; Price, William E.

    1990-01-01

    Report describes measurements of effects of ionizing-radiation dose rate on consequent damage to complementary metal oxide/semiconductor (CMOS) electronic devices. Depending on irradiation time and degree of annealing, survivability of devices in outer space, or after explosion of nuclear weapons, enhanced. Annealing involving recovery beyond pre-irradiation conditions (rebound) detrimental. Damage more severe at lower dose rates.

  10. Exotic and excited-state meson spectroscopy and radiative transitions from lattice QCD

    SciTech Connect

    Christopher Thomas

    2010-09-01

    We discuss recent progress in extracting the excited meson spectrum and radiative transition form factors using lattice QCD. We mention results in the charmonium sector, including the first lattice QCD calculation of radiative transition rates involving excited charmonium states, highlighting results for high spin and exotic states. We present recent results on a highly excited isovector meson spectrum from dynamical anisotropic lattices. Using carefully constructed operators we show how the continuum spin of extracted states can be reliably identified and confidently extract excited states, states with exotic quantum numbers and states of high spin. This spectrum includes the first spin-four state extracted from lattice QCD. We conclude with some comments on future prospects.

  11. Collisional rates for rotational transitions in H2CO and their application

    NASA Astrophysics Data System (ADS)

    Sharma, Monika; Sharma, M. K.; Verma, U. P.; Chandra, Suresh

    2014-07-01

    Formaldehyde (H2CO) has always been of great importance for physicists. To analyze its spectrum collisional rate coefficients are required. Their computation is quite tedious job. We have calculated collisional rate coefficients for rotational transitions between 23 levels of each of the ortho and para species of H2CO for kinetic temperatures 10, 20, 30, 40, and 50 K. The scattering problem is analyzed with the help of the computer code MOLSCAT where the colliding partner is taken as the He atom. The required potential for interaction between H2CO and He is calculated with the help of the software GAUSSIAN 2003 where the coupled-cluster CCSD(T) method and cc-pVTZ basis set are used. The Basis Set Superposition Errors (BSSE) are accounted for. The wave functions for the asymmetric top molecule H2CO are expressed in terms of the Wigner D-functions and the expansion coefficients gJτK are obtained. For the interaction potential obtained with the help of GAUSSIAN 2003, MOLSCAT is used to derive the parameters q(L,M,M‧|E) as a function of energy E of the colliding partner. After averaging the parameters q(L,M,M‧|E) over the Maxwellian distribution, the parameters Q(L,M,M‧|T) as a function of the kinetic temperature T in the cloud are obtained. The results are compared with the available data. We have also calculated radiative transition probabilities (Einstein A-coefficients) for transitions between 23 rotational levels for each of the ortho and para species of H2CO. Finally, for ortho-H2CO, we have solved a set of 23 statistical equilibrium equations coupled with 39 equations of radiative transfer and discussed anomalous absorption of the 111-110 transition of H2CO at 4.830 GHz.

  12. Exciton radiative lifetime in transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Robert, C.; Lagarde, D.; Cadiz, F.; Wang, G.; Lassagne, B.; Amand, T.; Balocchi, A.; Renucci, P.; Tongay, S.; Urbaszek, B.; Marie, X.

    2016-05-01

    We have investigated the exciton dynamics in transition metal dichalcogenide monolayers using time-resolved photoluminescence experiments performed with optimized time resolution. For MoS e2 monolayer, we measure τrad0=1.8 ±0.2 ps at T =7 K that we interpret as the intrinsic radiative recombination time. Similar values are found for WS e2 monolayers. Our detailed analysis suggests the following scenario: at low temperature (T ≲50 K ), the exciton oscillator strength is so large that the entire light can be emitted before the time required for the establishment of a thermalized exciton distribution. For higher lattice temperatures, the photoluminescence dynamics is characterized by two regimes with very different characteristic times. First the photoluminescence intensity drops drastically with a decay time in the range of the picosecond driven by the escape of excitons from the radiative window due to exciton-phonon interactions. Following this first nonthermal regime, a thermalized exciton population is established gradually yielding longer photoluminescence decay times in the nanosecond range. Both the exciton effective radiative recombination and nonradiative recombination channels including exciton-exciton annihilation control the latter. Finally the temperature dependence of the measured exciton and trion dynamics indicates that the two populations are not in thermodynamical equilibrium.

  13. Transition radiation very soft X-ray source

    NASA Astrophysics Data System (ADS)

    Umiastowski, K.; Nguyen, A.

    1994-05-01

    There is a growing interest in the transition radiation (TR), as a soft X-ray source, in the last few years. Many papers have been published on calculations or experiments in the 1-10 keV X-ray energy range using 50-200 MeV electron accelerators. We investigate the possibility to generate very soft X-rays (λ = 12 nm) with low-energy electron accelerator (5-20 MeV). Very little information is available on TR in this range of photon wavelength and electron energy. A stack of 20 foils of beryllium placed in vacuum was used in our computer simulation. Calculation shows that for 1 mA electron beam current, radiation with few mW intensity can be produced. Emitted photons are quasi-monoenergetic (FWHM less than 5%), and well collimated. The aim of our study is to investigate the possibility of fabricate a soft X-ray source, much more compact than synchrotron source and producing an intense and quasi-coherent radiation, for industrial applications.

  14. Sublethal radiation injury uncovers a functional transition during erythroid maturation

    PubMed Central

    Peslak, Scott A.; Wenger, Jesse; Bemis, Jeffrey C.; Kingsley, Paul D.; Frame, Jenna M.; Koniski, Anne D.; Chen, Yuhchyau; Williams, Jacqueline P.; McGrath, Kathleen E.; Dertinger, Stephen D.; Palis, James

    2012-01-01

    Objective Clastogenic injury of the erythroid lineage results in anemia, reticulocytopenia, and transient appearance of micronucleated reticulocytes (MN-RET). However, the MN-RET dose-response in murine models is only linear to 2 Gy total body irradiation (TBI) and paradoxically decreases at higher exposures, suggesting complex radiation effects on erythroid intermediates. To better understand this phenomenon, we investigated the kinetics and apoptotic response of the erythron to sublethal radiation injury. Materials and Methods We analyzed the response to 1 and 4 Gy TBI of erythroid progenitors and precursors using colony assays and imaging flow cytometry (IFC), respectively. We also investigated cell cycling and apoptotic gene expression of the steady-state erythron. Results Following 1 Gy TBI, erythroid progenitors and precursors were partially depleted. In contrast, essentially all bone marrow erythroid progenitors and precursors were lost within two days following 4 Gy irradiation. IFC analysis revealed preferential loss of phenotypic erythroid colony-forming units (CFU-E) and proerythroblasts immediately following sublethal irradiation. Furthermore, these populations underwent radiation-induced apoptosis, without changes in steady-state cellular proliferation, at much higher frequencies than later-stage erythroid precursors. Primary erythroid precursor maturation is associated with marked Bcl-xL upregulation and Bax and Bid down-regulation. Conclusions MN-RET loss following higher sublethal radiation exposures results from rapid depletion of erythroid progenitors and precursors. This injury reveals that CFU-E and proerythroblasts constitute a particularly proapoptotic compartment within the erythron. We conclude that the functional transition of primary proerythroblasts to later-stage erythroid precursors is characterized by a shift from a pro-apoptotic to an anti-apoptotic phenotype. PMID:21291953

  15. Exotic and excited-state radiative transitions in charmonium from lattice QCD

    DOE PAGESBeta

    Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2009-05-01

    We compute, for the first time using lattice QCD methods, radiative transition rates involving excited charmonium states, states of high spin and exotics. Utilizing a large basis of interpolating fields we are able to project out various excited state contributions to three-point correlators computed on quenched anisotropic lattices. In the first lattice QCD calculation of the exoticmore » $$1^{-+}$$ $$\\eta_{c1}$$ radiative decay, we find a large partial width $$\\Gamma(\\eta_{c1} \\to J/\\psi \\gamma) \\sim 100 \\,\\mathrm{keV}$$. We find clear signals for electric dipole and magnetic quadrupole transition form factors in $$\\chi_{c2} \\to J/\\psi \\gamma$$, calculated for the first time in this framework, and study transitions involving excited $$\\psi$$ and $$\\chi_{c1,2}$$ states. We calculate hindered magnetic dipole transition widths without the sensitivity to assumptions made in model studies and find statistically significant signals, including a non-exotic vector hybrid candidate $Y_{\\mathrm{hyb?}} \\to \\et« less

  16. Exotic and excited-state radiative transitions in charmonium from lattice QCD

    SciTech Connect

    Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.

    2009-05-01

    We compute, for the first time using lattice QCD methods, radiative transition rates involving excited charmonium states, states of high spin and exotics. Utilizing a large basis of interpolating fields we are able to project out various excited state contributions to three-point correlators computed on quenched anisotropic lattices. In the first lattice QCD calculation of the exotic $1^{-+}$ $\\eta_{c1}$ radiative decay, we find a large partial width $\\Gamma(\\eta_{c1} \\to J/\\psi \\gamma) \\sim 100 \\,\\mathrm{keV}$. We find clear signals for electric dipole and magnetic quadrupole transition form factors in $\\chi_{c2} \\to J/\\psi \\gamma$, calculated for the first time in this framework, and study transitions involving excited $\\psi$ and $\\chi_{c1,2}$ states. We calculate hindered magnetic dipole transition widths without the sensitivity to assumptions made in model studies and find statistically significant signals, including a non-exotic vector hybrid candidate $Y_{\\mathrm{hyb?}} \\to \\et

  17. Energy levels and transition rates for helium-like ions with Z = 10-36

    NASA Astrophysics Data System (ADS)

    Si, R.; Guo, X. L.; Wang, K.; Li, S.; Yan, J.; Chen, C. Y.; Brage, T.; Zou, Y. M.

    2016-08-01

    Aims: Helium-like ions provide an important X-ray spectral diagnostics in astrophysical and high-temperature fusion plasmas. An interpretation of the observed spectra provides information on temperature, density, and chemical compositions of the plasma. Such an analysis requires information for a wide range of atomic parameters, including energy levels and transition rates. Our aim is to provide a set of accurate energy levels and transition rates for helium-like ions with Z = 10-36. Methods: The second-order many-body perturbation theory (MBPT) was adopted in this paper. To support our MBPT results, we performed an independent calculation using the multiconfiguration Dirac-Hartree-Fock (MCDHF) method. Results: We provide accurate energies for the lowest singly excited 70 levels among 1snl(n ≤ 6,l ≤ (n-1)) configurations and the lowest doubly excited 250 levels arising from the K-vacancy 2ln'l'(n' ≤ 6,l' ≤ (n'-1)) configurations of helium-like ions with Z = 10-36. Wavelengths, transition rates, oscillator strengths, and line strengths are calculated for the E1, M1, E2, and M2 transitions among these levels. The radiative lifetimes are reported for all the calculated levels. Conclusions: Our MBPT results for singly excited n ≤ 2 levels show excellent agreement with other elaborate calculations, while those for singly excited n ≥ 3 and doubly excited levels show significant improvements over previous theoretical results. Our results will be very helpful for astrophysical line identification and plasma diagnostics. Full Tables 1 and 2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A141

  18. Resolution of Transverse Electron Beam Measurements using Optical Transition Radiation

    SciTech Connect

    Ischebeck, Rasmus; Decker, Franz-Josef; Hogan, Mark; Iverson, Richard H.; Krejcik, Patrick; Lincoln, Melissa; Siemann, Robert H.; Walz, Dieter; Clayton, Chris E.; Huang, Chengkun; Lu, Wei; Deng, Suzhi; Oz, Erdem; /Southern California U.

    2005-06-22

    In the plasma wakefield acceleration experiment E-167, optical transition radiation is used to measure the transverse profile of the electron bunches before and after the plasma acceleration. The distribution of the electric field from a single electron does not give a point-like distribution on the detector, but has a certain extension. Additionally, the resolution of the imaging system is affected by aberrations. The transverse profile of the bunch is thus convolved with a point spread function (PSF). Algorithms that deconvolve the image can help to improve the resolution. Imaged test patterns are used to determine the modulation transfer function of the lens. From this, the PSF can be reconstructed. The Lucy-Richardson algorithm is used to deconvolute this PSF from test images.

  19. Frequency shift of hyperfine transitions due to blackbody radiation

    SciTech Connect

    Angstmann, E. J.; Dzuba, V. A.; Flambaum, V. V.

    2006-08-15

    We have performed calculations of the size of the frequency shift induced by a static electric field on the clock transition frequencies of the hyperfine splitting in Yb{sup +}, Rb, Cs, Ba{sup +}, and Hg{sup +}. The calculations are used to find the frequency shifts due to blackbody radiation which are needed for accurate frequency measurements and improvements of the limits on variation of the fine-structure constant {alpha}. Our result for Cs [{delta}{nu}/E{sup 2}=-2.26(2)x10{sup -10}Hz/(V/m){sup 2}] is in good agreement with early measurements and ab initio calculations. We present arguments against recent claims that the actual value might be smaller. The difference ({approx}10%) is due to the contribution of the continuum spectrum in the sum over intermediate states.

  20. Optical transition radiation interferometry for the A0 photoinjector

    SciTech Connect

    Kazakevich, G.; Edwards, H.; Fliller, R.; Nagaitsev, S.; Ruan, J.; Thurman-Keup, R.; /Fermilab

    2008-06-01

    Optical Transition Radiation Interferometry (OTRI) is a promising diagnostic technique and has been successfully developed and used for investigation of relativistic beams. For mid-energy accelerators the technique is traditionally based on thin polymer films (the first one is being transparent for visible light), which causes beam multiple scattering of about 1 mrad. A disadvantage of those films is unacceptable vacuum properties for photoinjectors and accelerators using superconducting cavities. We have studied the application of thin mica sheets for the OTRI diagnostics at the A0 Photoinjector in comparison with 2.5 {micro}m thick Mylar films. This diagnostic is also applicable for the ILCTA-NML accelerator test facility that is planned at Fermilab. This report discusses the experimental setups of the OTR interferometer for the A0 Photoinjector and presents comparisons of simulations and measurements obtained using Mylar and mica-based interferometers.

  1. Transition radiation in metal-metal multilayer nanostructures as a medical source of hard x-ray radiation

    SciTech Connect

    Pokrovsky, A. L.; Kaplan, A. E.; Shkolnikov, P. L.

    2006-08-15

    We show that a periodic metal-metal multilayer nanostructure can serve as an efficient source of hard x-ray transition radiation. Our research effort is aimed at developing an x-ray source for medical applications, which is based on using low-energy relativistic electrons. The approach toward choosing radiator-spacer couples for the generation of hard x-ray resonant transition radiation by few-MeV electrons traversing solid multilayer structures for the energies of interest to medicine (30-50 keV) changes dramatically compared with that for soft x-ray radiation. We show that one of the main factors in achieving the required resonant line is the absence of the contrast of the refractive indices between the spacer and the radiator at the far wings of the radiation line; for that purpose, the optimal spacer, as a rule, should have a higher atomic number than the radiator. Having experimental goals in mind, we have considered also the unwanted effects due to bremsstrahlung radiation, absorption and scattering of radiated photons, detector-related issues, and inhibited coherence of transition radiation due to random deviation of spacing between the layers. Choosing as a model example a Mo-Ag radiator-spacer pair of materials, we demonstrate that the x-ray transition radiation line can be well resolved with the use of spatial and frequency filtering.

  2. Investigation concerning the radiation behaviour of an elementary dipole transition

    NASA Astrophysics Data System (ADS)

    Berloffa, E. H.

    2011-09-01

    The irradiance of an atomic dipole transition -screened at microscopic distances from its origin- reveals interesting details not always evident when dealing with light phenomena. The basis of this investigations are pure classical. The HERTZ vector- formalism was used (BORN & WOLF). The special features of the electrodynamics radiation behaviour of such an atomic transition solely became evident when generally made disregards were suspended. However, the complexity of the originating equations forced one to treat the problem numerically. All computations were done due to a dipole elongation of 0,1Å with an oscillation frequency corresponding to the YAG-laser wavelength, λY = 1,064 μm. Strikingly a Fourier analysis of the irradiance (Poynting vector) doesn't replicate this frequency, moreover, it reveals harmonics. Up to ~ 0,1 μm the fourth harmonic dominates, second harmonic is also appearing albeit at a minor amount. Beyond 0,1 μm fourth and second harmonic exchange their appearance. Up to 100nm from the dipole centre sixth and eighth harmonics are also present but at minor strengths. Outside the source centre the optical field is perceived as light wave and practically, instead of the presumed YAG wavelength, we measure double this frequency, namely green light. At distances below 0,1 μm the fourth harmonic prevails being capable of performing a two photon absorption.

  3. The rate constant for radiative association of HF: Comparing quantum and classical dynamics

    SciTech Connect

    Gustafsson, Magnus Monge-Palacios, M.; Nyman, Gunnar

    2014-05-14

    Radiative association for the formation of hydrogen fluoride through the A{sup 1}Π → X{sup 1}Σ{sup +} and X{sup 1}Σ{sup +} → X{sup 1}Σ{sup +} transitions is studied using quantum and classical dynamics. The total thermal rate constant is obtained for temperatures from 10 K to 20 000 K. Agreement between semiclassical and quantum approaches is observed for the A{sup 1}Π → X{sup 1}Σ{sup +} rate constant above 2000 K. The agreement is explained by the fact that the corresponding cross section is free of resonances for this system. At temperatures below 2000 K we improve the agreement by implementing a simplified semiclassical expression for the rate constant, which includes a quantum corrected pair distribution. The rate coefficient for the X{sup 1}Σ{sup +} → X{sup 1}Σ{sup +} transition is calculated using Breit–Wigner theory and a classical formula for the resonance and direct contributions, respectively. In comparison with quantum calculations the classical formula appears to overestimate the direct contribution to the rate constant by about 12% for this transition. Below about 450 K the resonance contribution is larger than the direct, and above that temperature the opposite holds. The biggest contribution from resonances is at the lowest temperature in the study, 10 K, where it is more than four times larger than the direct. Below 1800 K the radiative association rate constant due to X{sup 1}Σ{sup +} → X{sup 1}Σ{sup +} transitions dominates over A{sup 1}Π → X{sup 1}Σ{sup +}, while above that temperature the situation is the opposite.

  4. The influence of gamma radiation on the molecular weight and glass transition of PLLA and HAp/PLLA nanocomposite

    NASA Astrophysics Data System (ADS)

    Milicevic, D.; Trifunovic, S.; Dojcilovic, J.; Ignjatovic, N.; Suljovrujic, E.

    2010-09-01

    The influence of gamma radiation on the molecular weight and glass transition behaviour of poly- L-lactide (PLLA) and hydroxyapatite/poly- L-lactide (HAp/PLLA) nanocomposite has been studied. Since PLLA exposed to high-energy radiation in the presence of air is prone to chain scission reactions and large degradation, changes in molecular weight were obtained by gel permeation chromatography (GPC). Alterations in the glass transition behaviour were investigated by differential scanning calorimetry (DSC). The apparent activation energy (Δ H∗) for glass transition was determined on the basis of the heating rate dependence of the glass transition temperature ( T g). Our findings support the fact that chain scission is the main reason for the decrease of T g and Δ H∗ with the absorbed dose. Furthermore, more intensive chain scission degradation of PLLA was observed in HAp/PLLA and can only be ascribed to the presence of HAp nanoparticles. Consequently, initial differences in the glass transition temperature and/or apparent activation energy of PLLA and HAp/PLLA became more pronounced with absorbed dose. This study reveals that radiation-induced changes in molecular weight and glass transition temperature occur in a predictable and fairly accurate manner. Therefore, gamma radiation can be used not only for sterilization but also for tailoring desirable end-use properties of these biomaterials.

  5. Radiological mapping of Kelantan, Malaysia, using terrestrial radiation dose rate.

    PubMed

    Garba, Nuraddeen Nasiru; Ramli, Ahmad Termizi; Saleh, Muneer Aziz; Sanusi, Syazwan Mohd; Gabdo, Hamman Tukur

    2016-06-01

    Measurements of the environmental terrestrial gamma radiation dose rate (TGRD) in each district of Kelantan state, Malaysia, were carried out using a portable hand-held radiation survey meter and global positioning system. The measurements were done based on geology and soil types of the area. The mean TGRD was found to be 209 nGy h(-1). Few areas of relatively enhanced activity were observed in Pasir Mas, Tanah Merah and Jeli districts, which have a mean TGRD between 300 and 500 nGy h(-1). An isodose map of the area was produced using ArcGIS software version 9.3. PMID:26540360

  6. VizieR Online Data Catalog: Energy levels & transition rates of Be-like ions (Wang+, 2015)

    NASA Astrophysics Data System (ADS)

    Wang, K.; Guo, X. L.; Liu, H. T.; Li, D. F.; Long, F. Y.; Han, X. Y.; Duan, B.; Li, J. G.; Huang, M.; Wang, Y. S.; Hutton, R.; Zou, Y. M.; Zeng, J. L.; Chen, C. Y.; Yan, J.

    2015-08-01

    We report calculations of energy levels and radiative rates for transitions among the lowest 116 fine-structure levels arising from the n<=5 configurations in Be-like ions with Z=10-30. The wavelengths, oscillator strengths, line strengths, and radiative rates for all possible electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among the 116 levels have been calculated using the combined configuration interaction and many-body perturbation method. The accuracy of the results is determined through extensive comparisons with existing laboratory measurements and theoretical results. The present complete set of results should be of great help in line identification and the interpretation of spectra, as well as in the modeling and diagnostics of astrophysical and fusion plasmas. (2 data files).

  7. Compensated count-rate circuit for radiation survey meter

    DOEpatents

    Todd, R.A.

    1980-05-12

    A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for couting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensation circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

  8. Compensated count-rate circuit for radiation survey meter

    DOEpatents

    Todd, Richard A.

    1981-01-01

    A count-rate compensating circuit is provided which may be used in a portable Geiger-Mueller (G-M) survey meter to ideally compensate for counting loss errors in the G-M tube detector. In a G-M survey meter, wherein the pulse rate from the G-M tube is converted into a pulse rate current applied to a current meter calibrated to indicate dose rate, the compensated circuit generates and controls a reference voltage in response to the rate of pulses from the detector. This reference voltage is gated to the current-generating circuit at a rate identical to the rate of pulses coming from the detector so that the current flowing through the meter is varied in accordance with both the frequency and amplitude of the reference voltage pulses applied thereto so that the count rate is compensated ideally to indicate a true count rate within 1% up to a 50% duty cycle for the detector. A positive feedback circuit is used to control the reference voltage so that the meter output tracks true count rate indicative of the radiation dose rate.

  9. Photonic effects on the radiative decay rate and luminescence quantum yield of doped nanocrystals.

    PubMed

    Senden, Tim; Rabouw, Freddy T; Meijerink, Andries

    2015-02-24

    Nanocrystals (NCs) doped with luminescent ions form an emerging class of materials. In contrast to excitonic transitions in semiconductor NCs, the optical transitions are localized and not affected by quantum confinement. The radiative decay rates of the dopant emission in NCs are nevertheless different from their bulk analogues due to photonic effects, and also the luminescence quantum yield (QY, important for applications) is affected. In the past, different theoretical models have been proposed to describe the photonic effects for dopant emission in NCs, with little experimental validation. In this work we investigate the photonic effects on the radiative decay rate of luminescent doped NCs using 4 nm LaPO4 NCs doped with Ce(3+) or Tb(3+) ions in different refractive index solvents and bulk crystals. We demonstrate that the measured influence of the refractive index on the radiative decay rate of the Ce(3+) emission, having near unity QY, is in excellent agreement with the theoretical nanocrystal-cavity model. Furthermore, we show how the nanocrystal-cavity model can be used to quantify the nonunity QY of Tb(3+)-doped LaPO4 NCs and demonstrate that, as a general rule, the QY is higher in media with higher refractive index. PMID:25584627

  10. Theoretical study on K, L, and M X-ray transition energies and rates of neptunium and its ions

    NASA Astrophysics Data System (ADS)

    Ismail Abdalla, Saber; Dong, Chen-Zhong; Wang, Xiang-Li; Zhou, Wei-Dong; Wu, Zhong-Wen

    2014-02-01

    The transition energies and electric dipole (E1) transition rates of the K, L, and M lines in neutral Np have been theoretically determined from the MultiConfiguration Dirac—Fock (MCDF) method. In the calculations, the contributions from Breit interaction and quantum electrodynamics (QED) effects (vacuum polarization and self-energy), as well as nuclear finite mass and volume effects, are taken into account. The calculated transition energies and rates are found to be in good agreement with other experimental and theoretical results. The accuracy of the results is estimated and discussed. Furthermore, we calculated the transition energies of the same lines radiating from the decaying transitions of the K-, L-, and M-shell hole states of Np ions with the charge states Np1+ to Np6+ for the first time. We found that for a specific line, the corresponding transition energies relating to all the Np ions are almost the same; it means the outermost electrons have a very small influence on the inner-shell transition processes.

  11. VizieR Online Data Catalog: Helium-like ions with Z=10-36 transition rates (Si+, 2016)

    NASA Astrophysics Data System (ADS)

    Si, R.; Guo, X. L.; Wang, K.; Li, S.; Yan, J.; Chen, C. Y.; Brage, T.; Zou, Y. M.

    2016-08-01

    We provide accurate energies for the lowest singly excited 70 levels among 1snl(n<=6,l<=(n-1)) configurations and the lowest doubly excited 250 levels arising from the K-vacancy 2ln'l(n'<=6,l<=(n'-1)) configurations of helium-like ions with Z=10-36. Wavelengths, transition rates, oscillator strengths, and line strengths are calculated for the E1, M1, E2, and M2 transitions among these levels. The radiative lifetimes are reported for all the calculated levels. (4 data files).

  12. Circuits and methods for determination and control of signal transition rates in electrochemical cells

    DOEpatents

    Jamison, David Kay

    2016-04-12

    A charge/discharge input is for respectively supplying charge to, or drawing charge from, an electrochemical cell. A transition modifying circuit is coupled between the charge/discharge input and a terminal of the electrochemical cell and includes at least one of an inductive constituent, a capacitive constituent and a resistive constituent selected to generate an adjusted transition rate on the terminal sufficient to reduce degradation of a charge capacity characteristic of the electrochemical cell. A method determines characteristics of the transition modifying circuit. A degradation characteristic of the electrochemical cell is analyzed relative to a transition rate of the charge/discharge input applied to the electrochemical cell. An adjusted transition rate is determined for a signal to be applied to the electrochemical cell that will reduce the degradation characteristic. At least one of an inductance, a capacitance, and a resistance is selected for the transition modifying circuit to achieve the adjusted transition rate.

  13. Strong effects of ionizing radiation from Chernobyl on mutation rates.

    PubMed

    Møller, Anders Pape; Mousseau, Timothy A

    2015-01-01

    In this paper we use a meta-analysis to examine the relationship between radiation and mutation rates in Chernobyl across 45 published studies, covering 30 species. Overall effect size of radiation on mutation rates estimated as Pearson's product-moment correlation coefficient was very large (E = 0.67; 95% confidence intervals (CI) 0.59 to 0.73), accounting for 44.3% of the total variance in an unstructured random-effects model. Fail-safe calculations reflecting the number of unpublished null results needed to eliminate this average effect size showed the extreme robustness of this finding (Rosenberg's method: 4135 at p = 0.05). Indirect tests did not provide any evidence of publication bias. The effect of radiation on mutations varied among taxa, with plants showing a larger effect than animals. Humans were shown to have intermediate sensitivity of mutations to radiation compared to other species. Effect size did not decrease over time, providing no evidence for an improvement in environmental conditions. The surprisingly high mean effect size suggests a strong impact of radioactive contamination on individual fitness in current and future generations, with potentially significant population-level consequences, even beyond the area contaminated with radioactive material. PMID:25666381

  14. Strong effects of ionizing radiation from Chernobyl on mutation rates

    PubMed Central

    Møller, Anders Pape; Mousseau, Timothy A.

    2015-01-01

    In this paper we use a meta-analysis to examine the relationship between radiation and mutation rates in Chernobyl across 45 published studies, covering 30 species. Overall effect size of radiation on mutation rates estimated as Pearson's product-moment correlation coefficient was very large (E = 0.67; 95% confidence intervals (CI) 0.59 to 0.73), accounting for 44.3% of the total variance in an unstructured random-effects model. Fail-safe calculations reflecting the number of unpublished null results needed to eliminate this average effect size showed the extreme robustness of this finding (Rosenberg's method: 4135 at p = 0.05). Indirect tests did not provide any evidence of publication bias. The effect of radiation on mutations varied among taxa, with plants showing a larger effect than animals. Humans were shown to have intermediate sensitivity of mutations to radiation compared to other species. Effect size did not decrease over time, providing no evidence for an improvement in environmental conditions. The surprisingly high mean effect size suggests a strong impact of radioactive contamination on individual fitness in current and future generations, with potentially significant population-level consequences, even beyond the area contaminated with radioactive material. PMID:25666381

  15. Strong effects of ionizing radiation from Chernobyl on mutation rates

    NASA Astrophysics Data System (ADS)

    Møller, Anders Pape; Mousseau, Timothy A.

    2015-02-01

    In this paper we use a meta-analysis to examine the relationship between radiation and mutation rates in Chernobyl across 45 published studies, covering 30 species. Overall effect size of radiation on mutation rates estimated as Pearson's product-moment correlation coefficient was very large (E = 0.67; 95% confidence intervals (CI) 0.59 to 0.73), accounting for 44.3% of the total variance in an unstructured random-effects model. Fail-safe calculations reflecting the number of unpublished null results needed to eliminate this average effect size showed the extreme robustness of this finding (Rosenberg's method: 4135 at p = 0.05). Indirect tests did not provide any evidence of publication bias. The effect of radiation on mutations varied among taxa, with plants showing a larger effect than animals. Humans were shown to have intermediate sensitivity of mutations to radiation compared to other species. Effect size did not decrease over time, providing no evidence for an improvement in environmental conditions. The surprisingly high mean effect size suggests a strong impact of radioactive contamination on individual fitness in current and future generations, with potentially significant population-level consequences, even beyond the area contaminated with radioactive material.

  16. Exclusive Measurements of the b to s gamma Transition Rate and Photon Energy Spectrum

    SciTech Connect

    Lees, J.P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, David Nathan; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D.J.; Hearty, C.; Mattison, T.S.; McKenna, J.A.; Khan, A.; Blinov, V.E.; Buzykaev, A.R.; /more authors..

    2012-08-30

    We use 429 fb{sup -1} of e{sup +}e{sup -} collision data collected at the {Upsilon}(4S) resonance with the BABAR detector to measure the radiative transition rate of b {yields} s{gamma} with a sum of 38 exclusive final states. The inclusive branching fraction with a minimum photon energy of 1.9 GeV is found to be {Beta}({bar B} {yields} Xs{gamma}) = (3.29 {+-} 0.19 {+-} 0.48) x 10{sup -4} where the first uncertainty is statistical and the second is systematic. We also measure the first and second moments of the photon energy spectrum and extract the best fit values for the heavy-quark parameters, m{sub b} and {mu}{sub {pi}}{sup 2}, in the kinetic and shape function models.

  17. Radiative transitions in InGaN quantum-well structures

    SciTech Connect

    Shapiro, Noad Asaf

    2002-06-27

    energy is interpreted in terms of a newly introduced parameter L{sub r}, which can be regarded as the effective separation of electrons and holes participating in the luminescence transition. Strong carrier separation due to the built-in electric field usually results in a blueshift and L{sub r} close to the QW width, L{sub w}, whereas weak carrier separation usually can be a redshift. The carrier lifetime decreases with applied strain, indicating a reduction of the effective electron-hole (e-h) separation achieved by the strain-induced field-reduction in the well. This method is used to evaluate the effective e-h separation in several structures with varying QW thickness, indium concentration, and doping. L{sub r} increases with QW thickness, decreases with indium content, and decreases with heavy doping in the active region. The decrease associated with indium content might be due either to an increase of ''carrier trapping'' in indium-rich nano-clusters or to an effective reduction of the QW thickness due to interface diffusion. The decrease of L{sub r} associated with heavy doping is probably due to quenching of the electric field by the free carriers. The results also show that despite the reduced radiative transition rate associated with the carrier separation, the structures still exhibit efficient luminescence behavior and a low non-radiative recombination rate. This suggests that while the carriers are separated along the direction of the electric field, they are localized in the perpendicular direction such that they are not interacting with non-radiative centers associated with the high density of threading dislocations in the structure.

  18. Higher-order multipole amplitudes in charmonium radiative transitions

    NASA Astrophysics Data System (ADS)

    Artuso, M.; Blusk, S.; Khalil, S.; Mountain, R.; Randrianarivony, K.; Skwarnicki, T.; Stone, S.; Wang, J. C.; Zhang, L. M.; Bonvicini, G.; Cinabro, D.; Lincoln, A.; Smith, M. J.; Zhou, P.; Zhu, J.; Naik, P.; Rademacker, J.; Asner, D. M.; Edwards, K. W.; Reed, J.; Robichaud, A. N.; Tatishvili, G.; White, E. J.; Briere, R. A.; Vogel, H.; Onyisi, P. U. E.; Rosner, J. L.; Alexander, J. P.; Cassel, D. G.; Ehrlich, R.; Fields, L.; Galik, R. S.; Gibbons, L.; Gray, S. W.; Hartill, D. L.; Heltsley, B. K.; Hunt, J. M.; Kreinick, D. L.; Kuznetsov, V. E.; Ledoux, J.; Mahlke-Krüger, H.; Patterson, J. R.; Peterson, D.; Riley, D.; Ryd, A.; Sadoff, A. J.; Shi, X.; Stroiney, S.; Sun, W. M.; Yelton, J.; Rubin, P.; Lowrey, N.; Mehrabyan, S.; Selen, M.; Wiss, J.; Kornicer, M.; Mitchell, R. E.; Shepherd, M. R.; Tarbert, C. M.; Besson, D.; Pedlar, T. K.; Xavier, J.; Cronin-Hennessy, D.; Gao, K. Y.; Hietala, J.; Poling, R.; Zweber, P.; Dobbs, S.; Metreveli, Z.; Seth, K. K.; Tan, B. J. Y.; Tomaradze, A.; Brisbane, S.; Libby, J.; Martin, L.; Powell, A.; Spradlin, P.; Thomas, C.; Wilkinson, G.; Mendez, H.; Ge, J. Y.; Miller, D. H.; Shipsey, I. P. J.; Xin, B.; Adams, G. S.; Hu, D.; Moziak, B.; Napolitano, J.; Ecklund, K. M.; Insler, J.; Muramatsu, H.; Park, C. S.; Thorndike, E. H.; Yang, F.

    2009-12-01

    Using 24×106 ψ'≡ψ(2S) decays in CLEO-c, we have searched for higher multipole admixtures in electric-dipole-dominated radiative transitions in charmonia. We find good agreement between our data and theoretical predictions for magnetic quadrupole (M2) amplitudes in the transitions ψ'→γχc1,c2 and χc1,c2→γJ/ψ, in striking contrast to some previous measurements. Let b2J and a2J denote the normalized M2 amplitudes in the respective aforementioned decays, where the superscript J refers to the angular momentum of the χcJ. By performing unbinned maximum likelihood fits to full five-parameter angular distributions, we found the following values of M2 admixtures for Jχ=1: a2J=1=(-6.26±0.63±0.24)×10-2 and b2J=1=(2.76±0.73±0.23)×10-2, which agree well with theoretical expectations for a vanishing anomalous magnetic moment of the charm quark. For Jχ=2, if we fix the electric octupole (E3) amplitudes to zero as theory predicts for transitions between charmonium S states and P states, we find a2J=2=(-9.3±1.6±0.3)×10-2 and b2J=2=(1.0±1.3±0.3)×10-2. If we allow for E3 amplitudes we find, with a four-parameter fit, a2J=2=(-7.9±1.9±0.3)×10-2, b2J=2=(0.2±1.4±0.4)×10-2, a3J=2=(1.7±1.4±0.3)×10-2, and b3J=2=(-0.8±1.2±0.2)×10-2. We determine the ratios a2J=1/a2J=2=0.67-0.13+0.19 and a2J=1/b2J=1=-2.27-0.99+0.57, where the theoretical predictions are independent of the charmed quark magnetic moment and are a2J=1/a2J=2=0.676±0.071 and a2J=1/b2J=1=-2.27±0.16.

  19. Radiative lifetimes, branching rations, and absolute transition probabilities in Cr II and Zn II

    NASA Technical Reports Server (NTRS)

    Bergeson, S. D.; Lawler, J. E.

    1993-01-01

    New absolute atomic transition probability measurements are reported for 12 transitions in Cr II and two transitions in Zn II. These transition probabilities are determined by combining branching ratios measured by classical techniques and radiative lifetimes measured by time-resolved laser-induced fluorescence. The measurements are compared with branching fractions, radiative lifetimes, and transition probabilities in the literature. The 206 nm resonance multiplets in Cr II and Zn II are included in this work. These multiplets are very useful in determining the distribution of the elements in the gas versus grain phases in the interstellar medium.

  20. SEAC4RS Aerosol Radiative Effects and Heating Rates

    NASA Astrophysics Data System (ADS)

    Cochrane, S.; Schmidt, S.; Redemann, J.; Hair, J. W.; Ferrare, R. A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2015-12-01

    We will present (a) aerosol optical properties, (b) aerosol radiative forcing, (c) aerosol and gas absorption and heating rates, and (d) spectral surface albedo for cases from August 19th and 26th of the SEAC4RS mission. This analysis is based on irradiance data from the Solar Spectral Flux Radiometer (SSFR), spectral aerosol optical depth from the Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), and extinction profiles from the DIAL/High Spectral Resolution Lidar (HSRL). We derive spectrally resolved values of single scattering albedo, asymmetry parameter, and surface albedo from the data, and determine profiles of absorption and heating rate segregated by absorber (aerosol and gas).

  1. Cloud Properties and Radiative Heating Rates for TWP

    SciTech Connect

    Comstock, Jennifer

    2013-11-07

    A cloud properties and radiative heating rates dataset is presented where cloud properties retrieved using lidar and radar observations are input into a radiative transfer model to compute radiative fluxes and heating rates at three ARM sites located in the Tropical Western Pacific (TWP) region. The cloud properties retrieval is a conditional retrieval that applies various retrieval techniques depending on the available data, that is if lidar, radar or both instruments detect cloud. This Combined Remote Sensor Retrieval Algorithm (CombRet) produces vertical profiles of liquid or ice water content (LWC or IWC), droplet effective radius (re), ice crystal generalized effective size (Dge), cloud phase, and cloud boundaries. The algorithm was compared with 3 other independent algorithms to help estimate the uncertainty in the cloud properties, fluxes, and heating rates (Comstock et al. 2013). The dataset is provided at 2 min temporal and 90 m vertical resolution. The current dataset is applied to time periods when the MMCR (Millimeter Cloud Radar) version of the ARSCL (Active Remotely-Sensed Cloud Locations) Value Added Product (VAP) is available. The MERGESONDE VAP is utilized where temperature and humidity profiles are required. Future additions to this dataset will utilize the new KAZR instrument and its associated VAPs.

  2. Radiative heating and cooling rates in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Gille, John C.; Lyjak, Lawrence V.

    1986-01-01

    One of the limitations to the accurate calculation of radiative heating and cooling rates in the stratosphere and mesosphere has been the lack of accurate data on the atmospheric temperature and composition. Data from the LIMS experiment on Nimbus-7 has been extended to the South Pole with the aid of other observations. The data have been used as input to codes developed by Ramanathan and Dickinson to calculate the individual components and the net radiative heating rates from 100-0.1 mb. Solar heating due to ozone, nitrogen dioxide, carbon dioxide, water vapor and oxygen is shown to be nearly balanced by cooling in the thermal infrared spectral region due to carbon dioxide, ozone and water vapor. In the lower stratosphere, infrared transfer by ozone leads to heating that is sensitive to the distribution of tropospheric ozone, clouds and water vapor. The heating and cooling rates are adjusted slightly in order to satisfy the global mass balance. The results are in qualitative agreement with earlier calculations, but show additional detail. There is as strong temporal and vertical variation of cooling in the tropics. Radiative relaxation times are as short as 7 days or less at the stratopause.

  3. 49 CFR 1302.43 - Applicable rates on shipments in transit when statute becomes effective.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 9 2013-10-01 2013-10-01 false Applicable rates on shipments in transit when... shipments in transit when statute becomes effective. The following conditions are hereby prescribed as... during the time when export or import shipments are in transit to or from the ports of export or...

  4. Multi Optical Transition Radiation System for ATF2

    SciTech Connect

    Alabau-Gonzalvo, Javier; Blanch Gutierrez, Cesar; Civera, Jose Vicente; Faus-Golfe, Angeles; Garcia-Garrigos, Juan; Cruz, Juan; McCormick, Douglas; White, Glen; /SLAC

    2012-07-13

    In this paper we describe the design, installation and first calibration tests of a Multi Optical Transition Radiation System in the beam diagnostic section of the Extraction (EXT) line of ATF2, close to the multi wire scanner system. This system will be a valuable tool for measuring beam sizes and emittances coming from the ATF Damping Ring. With an optical resolution of about 2 {micro}m an original OTR design (OTR1X) located after the septum at the entrance of the EXT line demonstrated the ability to measure a 5.5 {micro}m beam size in one beam pulse and to take many fast measurements. This gives the OTR the ability to measure the beam emittance with high statistics, giving a low error and a good understanding of emittance jitter. Furthermore the nearby wire scanners will be a definitive test of the OTR as a beam emittance diagnostic device. The multi-OTR system design proposed here is based on the existing OTR1X.

  5. Experimental diagnostics using optical transition radiation at CEBAF

    NASA Astrophysics Data System (ADS)

    Denard, J.-C.; Rule, D.; Fiorito, R.; Adderley, P.; Jordan, K.; Capek, K.

    1995-05-01

    Optical Transition Radiation (OTR) devices have unique properties that allow them to complement the diagnostic tools more commonly used in particle accelerators. CEBAF is designed to produce a continuous electron beam accelerated up to 4 GeV by recirculating it five times through two 400 MeV superconducting linacs. We present two OTR applications that cannot be performed with standard fluorescent screens. The goal of the first one is to provide a multiturn ``viewer'' using the backward OTR emitted from a 0.8 μm thick aluminum foil. The foil must be thin enough to keep most of the beam in the machine after each passage. Looking at the successive turns in the linacs on the same screen will provide a new diagnostic device to help tune the machine. Replacing the ceramic of the present viewers with an Al foil is relatively simple and inexpensive. The preliminary results in single pass are encouraging. The goal of the second OTR application is to measure the emittance of high current continuous beams (≊200 μA) of low emittance (5 10-9 mrad) and size (≤50 μm rms). Standard fluorescent screens or wire scanners cannot withstand such an intense beam.

  6. Parameterization of radiative heating and cooling rates in the stratosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Kuroda, Takeshi; Medvedev, Alexander S.; Hartogh, Paul

    2014-11-01

    We present a newly developed parameterization of radiative heating and cooling for Jupiter's upper troposphere and stratosphere (103 to 10-3hPa ) suitable for general circulation models. The scheme is based on the correlated k-distribution approach, and accounts for all the major radiative mechanisms in the jovian atmosphere: heating due to absorption of solar radiation by methane, cooling in the infrared by methane, acetylene, ethane, and collisionally-induced molecular hydrogen-hydrogen, and molecular hydrogen-helium transitions. The results with the scheme are compared with line-by-line calculations to demonstrate that the accuracy of the scheme is within 10%. The parameterization was applied to study the sensitivity of the heating/cooling rates due to variations of mixing ratios of hydrocarbon molecules. It was also used for calculating the radiative-convective equilibrium temperature, which is in agreement with observations in the equatorial region. In midlatitudes, the equilibrium temperature is approximately 10 K colder. Our results suggest that the radiative forcing in the upper stratosphere is much stronger than it was thought before. In particular, the characteristic radiative relaxation time decreases exponentially with height from 108s near the tropopause to 105s in the upper stratosphere.

  7. Extension of a generalized state-vector model of radiation carcinogenesis to consideration of dose rate

    SciTech Connect

    Crawford-Brown, D.J. ); Hofmann, W. )

    1993-06-01

    Mathematical models for radiation carcinogenesis typically employ transition rates that either are a function of the dose to specific cells or are purely empirical constructs unrelated to biophysical theory. These functions either ignore or do not explicitly model interactions between the fates of cells in a community. This paper extends a model of mitosis, cell transformation, promotion, and progression to cases in which interacting cellular communities are irradiated at specified dose rates. The model predicts that lower dose rates are less effective at producing cancer when irradiation is by X- or gamma rays but are generally more effective in instances of irradiation by alpha particles up to a dose rate in excess of 0.01 Gy/day. The resulting predictions are compared with existing experimental data. 39 refs., 9 figs., 1 tab.

  8. Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wu, Mao-Chun; Xie, Fu-Guo; Yuan, Ye-Fei; Gan, Zhaoming

    2016-06-01

    We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron self-Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value dot{M} ˜ 3α dot{M}_Edd, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down on to the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary, our results are consistent with the truncated accretion scenario for the state transition.

  9. Transition radiation at radio frequencies from ultrahigh-energy neutrino-induced showers

    NASA Astrophysics Data System (ADS)

    Motloch, Pavel; Alvarez-Muñiz, Jaime; Privitera, Paolo; Zas, Enrique

    2016-02-01

    Coherent radiation at radio frequencies from high-energy showers fully contained in a dense radio-transparent medium—like ice, salt, soil, or regolith—has been extensively investigated as a promising technique to search for ultrahigh-energy neutrinos. Additional emission in the form of transition radiation may occur when a neutrino-induced shower produced close to the Earth's surface emerges from the ground into atmospheric air. We present the first detailed evaluation of transition radiation from high-energy showers crossing the boundary between two different media. We found that transition radiation is sizable over a wide solid angle and coherent up to ˜1 GHz . These properties encourage further work to evaluate the potential of a large-aperture ultrahigh-energy neutrino experiment based on the detection of transition radiation.

  10. Extracting transition rates from zero-polarizability spectroscopy

    NASA Astrophysics Data System (ADS)

    Zuhrianda, Zuhrianda; Safronova, Marianna S.; Safronova, Ulyana I.; Clark, Charles W.

    2016-05-01

    Accurate knowledge of atomic properties has been critical for the design and interpretation of experiments, quantifying and reducing uncertainties and decoherence, and development of concepts for next-generation experiments and precision measurement techniques. We predict a sequence of magic-zero wavelengths for which ac Stark shift vanishes for the Sr excited 5 s 5p3P0 state, and provide a general roadmap for extracting transition matrix elements using precise frequency measurements. We demonstrate that such measurements can serve as a best global benchmark of the spectroscopic accuracy that is required for the development of high-precision predictive methods. These magic-zero wavelengths are also needed for state-selective atom manipulation for implementation of quantum logic operations. We also identify five magic wavelengths of the 5s21S0 - 5 s 5 p3P0 Sr clock transition between 350 nm and 500 nm which can also serve as precision benchmarks.

  11. Search for New Physics with AMS-02 Transition Radiation Detector

    NASA Astrophysics Data System (ADS)

    Chung, Chanhoon

    Today the universe consists of 4.6% of ordinary matter, 23.3% of dark matter and 72.1% of dark energy. The dark matter is generally assumed be stable, non-relativistic and only weakly interacting. But we do not know what the dark matter is made of and how it is distributed within our Galaxy. In general, the cosmic antiparticles are expected as secondary products of interactions of the primary cosmic-rays (CRs) with the interstellar medium during propagation. While the measurements of CR positrons have become more precise, the results still do not match with the pure secondary origins. AMS-02 is a large acceptance precision particle spectrometer approved for installation on the International Space Station (ISS). A key feature of AMS-02 is precise particle identification for measurements of primary cosmic ray anti-particle spectra with negligible background up to a momentum of 500 GeV/c to allow indirect searches for dark matter. To efficiently separate positrons/electrons from protons/anti-protons, AMS-02 will be equipped with a Transition Radiation Detector (TRD) with 5248 straw tube proportional counters filled with a Xe/CO2 (80/20) mixture. The AMS-02 TRD was fully assembled and integrated into AMS-02 in 2007. In 2008 AMS-02 had recorded cosmic ray particles on ground to demonstrate full functionality of the device. For the AMS-02 TRD it will be shown that the detector response is as expected and the gas tightness will allow operation in space for 20 years with a gas supply of 25 kg.

  12. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds.

    PubMed

    Benson, Roger B J; Choiniere, Jonah N

    2013-10-01

    Birds are the most diverse living tetrapod group and are a model of large-scale adaptive radiation. Neontological studies suggest a radiation within the avian crown group, long after the origin of flight. However, deep time patterns of bird evolution remain obscure because only limited fossil data have been considered. We analyse cladogenesis and limb evolution on the entire tree of Mesozoic theropods, documenting the dinosaur-bird transition and immediate origins of powered flight. Mesozoic birds inherited constraints on forelimb evolution from non-flying ancestors, and species diversification rates did not accelerate in the earliest flying taxa. However, Early Cretaceous short-tailed birds exhibit both phenotypic release of the hindlimb and increased diversification rates, unparalleled in magnitude at any other time in the first 155 Myr of theropod evolution. Thus, a Cretaceous adaptive radiation of stem-group birds was enabled by restructuring of the terrestrial locomotor module, which represents a key innovation. Our results suggest two phases of radiation in Avialae: with the Cretaceous diversification overwritten by extinctions of stem-group birds at the Cretaceous-Palaeogene boundary, and subsequent diversification of the crown group. Our findings illustrate the importance of fossil data for understanding the macroevolutionary processes generating modern biodiversity. PMID:23945695

  13. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds

    PubMed Central

    Benson, Roger B. J.; Choiniere, Jonah N.

    2013-01-01

    Birds are the most diverse living tetrapod group and are a model of large-scale adaptive radiation. Neontological studies suggest a radiation within the avian crown group, long after the origin of flight. However, deep time patterns of bird evolution remain obscure because only limited fossil data have been considered. We analyse cladogenesis and limb evolution on the entire tree of Mesozoic theropods, documenting the dinosaur–bird transition and immediate origins of powered flight. Mesozoic birds inherited constraints on forelimb evolution from non-flying ancestors, and species diversification rates did not accelerate in the earliest flying taxa. However, Early Cretaceous short-tailed birds exhibit both phenotypic release of the hindlimb and increased diversification rates, unparalleled in magnitude at any other time in the first 155 Myr of theropod evolution. Thus, a Cretaceous adaptive radiation of stem-group birds was enabled by restructuring of the terrestrial locomotor module, which represents a key innovation. Our results suggest two phases of radiation in Avialae: with the Cretaceous diversification overwritten by extinctions of stem-group birds at the Cretaceous–Palaeogene boundary, and subsequent diversification of the crown group. Our findings illustrate the importance of fossil data for understanding the macroevolutionary processes generating modern biodiversity. PMID:23945695

  14. Octupole deformation in sup 221 Fr; E1 transition rates

    SciTech Connect

    Liang, C.F.; Peghaire, A. ); Sheline, R.K. )

    1990-07-10

    Experimental data following the alpha decay of{sup 225}Ac are interpreted in terms of a spectroscopy in {sup 221}Fr consistent with octupole deformation. However, the measured E1 transition probabilities suggest that the low lying bands in {sup 221}Fr are considerably more mixed than in nuclei with slightly higher mass number. It is suggested that this mixing of states in {sup 221}Fr is indicative of the partial collapse of Nilsson-like orbitals into more degenerate shell model orbitals.

  15. Spin–flip processes and radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers

    NASA Astrophysics Data System (ADS)

    Slobodeniuk, A. O.; Basko, D. M.

    2016-09-01

    We perform a theoretical study of radiative decay of dark intravalley excitons in transition metal dichalcogenide monolayers. This decay necessarily involves an electronic spin flip. The intrinsic decay mechanism due to interband spin–flip dipole moment perpendicular to the monolayer plane, gives a rate about 100–1000 times smaller than that of bright excitons. However, we find that this mechanism also introduces an energy splitting due to a local field effect, and the whole oscillator strength is contained in the higher-energy component, while the lowest-energy state remains dark and needs an extrinsic spin–flip mechanism for the decay. Rashba effect due to a perpendicular electric field or a dielectric substrate, gives a negligible radiative decay rate (about 107 times slower than that of bright excitons). Spin flip due to Zeeman effect in a sufficiently strong in-plane magnetic field can give a decay rate comparable to that due to the intrinsic interband spin–flip dipole.

  16. Solar radiation in Saturn's atmosphere: maximum penetration and heating rates

    NASA Astrophysics Data System (ADS)

    Pérez-Hoyos, S.; Sánchez-Lavega, A.

    2005-08-01

    We use our previous long-term study (1994-2004) of Saturn's upper clouds and hazes vertical structure (Pérez-Hoyos et al., Icarus, 176, 155, 2005), to retrieve the internal fields and penetration levels of optical radiation in the atmosphere (wavelengths from 250 nm to 950 nm). We have used a doubling adding radiative transfer code and assumed different vertical cloud structure models, as bounded by our previous photometric analysis and other works. We analyze the levels between 1 mbar to 6 bar taking into account the seasonal and ring-shadowing effects on insolation. The main result is that the expected maximum penetration level of the visual radiation on the upper hazes along Saturn's year is ˜ 0.3 bar. Maps of the temporal and latitudinal distribution of the atmospheric heating rates are also presented. Our results provide realistic constraints on the available energy and vertical extent for general circulation -shallow- models for the giant planets based on the terrestrial circulation analogy. Acknowledgments: S.P.-H and A.S.-L. are supported by MCYT AYA2003-03216, fondos FEDER, and Grupos UPV 15946/2004. S.P.-H. acknowledges a PhD fellowship from the Spanish MEC.

  17. Radiative decay rates of impurity states in semiconductor nanocrystals

    SciTech Connect

    Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2015-10-15

    Doped semiconductor nanocrystals is a versatile material base for contemporary photonics and optoelectronics devices. Here, for the first time to the best of our knowledge, we theoretically calculate the radiative decay rates of the lowest-energy states of donor impurity in spherical nanocrystals made of four widely used semiconductors: ZnS, CdSe, Ge, and GaAs. The decay rates were shown to vary significantly with the nanocrystal radius, increasing by almost three orders of magnitude when the radius is reduced from 15 to 5 nm. Our results suggest that spontaneous emission may dominate the decay of impurity states at low temperatures, and should be taken into account in the design of advanced materials and devices based on doped semiconductor nanocrystals.

  18. Reversed Cherenkov-Transition Radiation by a Charge Crossing a Left-Handed Medium Boundary

    SciTech Connect

    Galyamin, Sergey N.; Tyukhtin, Andrey V.; Kanareykin, Alexey; Schoessow, Paul

    2009-11-06

    We analyze the radiation from a charged particle crossing the boundary between an ordinary medium and a 'left-handed' metamaterial. We obtain exact and approximate expressions for the field components and develop algorithms for their computation. The spatial radiation in this system can be separated into three distinct components, corresponding to ordinary transition radiation having a relatively large magnitude, Cherenkov radiation, and reversed Cherenkov-transition radiation (RCTR). The last one is explained by reflection and refraction of reversed Cherenkov radiation at the interface. Conditions for generating of RCTR are obtained. We note properties of this radiation that have potential applications in the detection of charged particles and accelerator beams and for the characterization of metamaterial macroscopic parameters (epsilon, mu).

  19. Theory of coherent transition radiation generated at a plasma-vacuum interface

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim P.

    2003-06-26

    Transition radiation generated by an electron beam, produced by a laser wakefield accelerator operating in the self-modulated regime, crossing the plasma-vacuum boundary is considered. The angular distributions and spectra are calculated for both the incoherent and coherent radiation. The effects of the longitudinal and transverse momentum distributions on the differential energy spectra are examined. Diffraction radiation from the finite transverse extent of the plasma is considered and shown to strongly modify the spectra and energy radiated for long wavelength radiation. This method of transition radiation generation has the capability of producing high peak power THz radiation, of order 100 (mu)J/pulse at the plasma-vacuum interface, which is several orders of magnitude beyond current state-of-the-art THz sources.

  20. Theory of coherent transition radiation generated at a plasma-vacuum interface.

    PubMed

    Schroeder, C B; Esarey, E; Van Tilborg, J; Leemans, W P

    2004-01-01

    Transition radiation generated by an electron beam, produced by a laser wakefield accelerator operating in the self-modulated regime, crossing the plasma-vacuum boundary is considered. The angular distributions and spectra are calculated for both the incoherent and the coherent radiation. The effects of the longitudinal and transverse momentum distributions on the differential energy spectra are examined. Diffraction radiation from the finite transverse extent of the plasma is considered and shown to strongly modify the spectra and energy radiated for long-wavelength radiation. This method of transition radiation generation has the capability of producing high peak power terahertz radiation, of order 100 microJ/pulse at the plasma-vacuum interface, which is several orders of magnitude beyond current state-of-the-art terahertz sources. PMID:14995729

  1. Growth rate and transition to turbulence of a gas curtain

    SciTech Connect

    Vorobieff, P.; Rightley, P.; Benjamin, R.

    1997-09-01

    The authors conduct shock-tube experiments to investigate Richtmyer-Meshkov (RM) instability of a narrow curtain of heavy gas (SF{sub 6}) embedded in lighter gas (air). Initial perturbations of the curtain can be varied, producing different flow patterns in the subsequent evolution of the curtain. Multiple-exposure video flow visualization provides images of the growth of the instability and its transition to turbulence, making it possible to extract quantitative information such as the width of the perturbed curtain. They demonstrate that the width of the curtain with initial perturbation on the downstream side is non-monotonic. As the initial perturbation undergoes phase inversion, the width of the curtain actually decreases before beginning to grow as the RM instability evolves.

  2. Energy levels and transition rates for the boron isoelectronic sequence: Si X, Ti XVIII - Cu XXV

    NASA Astrophysics Data System (ADS)

    Jönsson, P.; Ekman, J.; Gustafsson, S.; Hartman, H.; Karlsson, L. B.; du Rietz, R.; Gaigalas, G.; Godefroid, M. R.; Froese Fischer, C.

    2013-11-01

    Relativistic configuration interaction (RCI) calculations are performed for 291 states belonging to the configurations 1s22s22p, 1s22s2p2, 1s22p3, 1s22s23l, 1s22s2p3l, 1s22p23l, 1s22s24l', 1s22s2p4l', and 1s22p24l' (l = 0,1,2 and l' = 0,1,2,3) in boron-like ions Si X and Ti XVIII to Cu XXV. Electron correlation effects are represented in the wave functions by large configuration state function (CSF) expansions. States are transformed from jj-coupling to LS-coupling, and the LS-percentage compositions are used for labeling the levels. Radiative electric dipole transition rates are given for all ions, leading to massive data sets. Calculated energy levels are compared with other theoretical predictions and crosschecked against the Chianti database, NIST recommended values, and other observations. The accuracy of the calculations are high enough to facilitate the identification of observed spectral lines. Research supported in part by the Swedish Research council and the Swedish Institute. Part of this work was supported by the Communauté française of Belgium, the Belgian National Fund for Scientific Research (FRFC/IISN Convention) and by the IUAP-Belgian State Science Policy (BriX network P7/12).Tables of energy levels and transition rates (Tables 3-19) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/559/A100

  3. Ratio of forbidden transition rates in the ground-state configuration of O ii

    NASA Astrophysics Data System (ADS)

    Han, Xiao-Ying; Gao, Xiang; Zeng, De-Ling; Yan, Jun; Li, Jia-Ming

    2012-06-01

    Based on a set of “quasicomplete bases,” using the large-scale multiconfiguration Dirac-Fock (MCDF) method, we calculate the forbidden electric quadrupole (E2) and magnetic dipole (M1) transition rates of the transitions 2D5/2,3/2o→4S3/2o of the O ii ground state considering the quantum electrodynamics (QED) corrections. Our calculations demonstrate that the Breit interactions are most important among all the QED corrections. The calculated E2 and M1 transition rates converge in a systematical and uniform manner with the extending orbital basis and the calculation uncertainty of 2.5% is achieved by considering the valence- and core-excitation correlations totally. With the converged transition rates, a value of the intensity ratio between the two transitions in high-electron-density limit in planetary nebulas is given, that is, r(∞)=0.363±0.009, which is within the overlap of the different observations and with the least uncertainty up to now. In addition, the E2 and M1 transition rates of two transitions 2P3/2,1/2o→4S3/2o of O ii ground state and the ratio between the two transition rates in high-electron-density limit are calculated and compared with the previous results.

  4. Characteristics of transition radiation in the x-ray spectral region

    SciTech Connect

    Moran, M.J.

    1986-06-06

    Measurements of soft x-ray production by transition radiation have been performed in a series of experiments at the Lawrence Livermore National Laboratory. The results have shown that transition radiation is an intense and predictable source of photons in the soft x-ray energy range. This paper will give a brief review of the general properties of the x-ray distributions generated by these sources. 9 refs., 9 figs.

  5. Kinetics of the iron α -ɛ phase transition at high-strain rates: Experiment and model

    NASA Astrophysics Data System (ADS)

    Amadou, N.; de Resseguier, T.; Brambrink, E.; Vinci, T.; Benuzzi-Mounaix, A.; Huser, G.; Morard, G.; Guyot, F.; Miyanishi, K.; Ozaki, N.; Kodama, R.; Koenig, M.

    2016-06-01

    In this article, we investigate the kinetics of the iron α -ɛ transition under laser-driven ramp compression for deformation rates ranging from 3 to 9 ×107s-1 . As in previous work, we observe a plateau in the rear surface velocity profile at the transition. With increasing deformation rate the transition onset pressure raises from 11 to 25 GPa, while the plateau duration decreases. These kinetic effects are well reproduced by an Avrami-type kinetics model of nucleation and growth with a constant, nanosecond scale completion time, which suggests an isokinetic regime over the explored range of strain rates.

  6. Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions

    NASA Astrophysics Data System (ADS)

    Liao, Guo-Qian; Li, Yu-Tong; Zhang, Yi-Hang; Liu, Hao; Ge, Xu-Lei; Yang, Su; Wei, Wen-Qing; Yuan, Xiao-Hui; Deng, Yan-Qing; Zhu, Bao-Jun; Zhang, Zhe; Wang, Wei-Min; Sheng, Zheng-Ming; Chen, Li-Ming; Lu, Xin; Ma, Jing-Long; Wang, Xuan; Zhang, Jie

    2016-05-01

    Coherent transition radiation in the terahertz (THz) region with energies of sub-mJ/pulse has been demonstrated by relativistic laser-driven electron beams crossing the solid-vacuum boundary. Targets including mass-limited foils and layered metal-plastic targets are used to verify the radiation mechanism and characterize the radiation properties. Observations of THz emissions as a function of target parameters agree well with the formation-zone and diffraction model of transition radiation. Particle-in-cell simulations also well reproduce the observed characteristics of THz emissions. The present THz transition radiation enables not only a potential tabletop brilliant THz source, but also a novel noninvasive diagnostic for fast electron generation and transport in laser-plasma interactions.

  7. Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions.

    PubMed

    Liao, Guo-Qian; Li, Yu-Tong; Zhang, Yi-Hang; Liu, Hao; Ge, Xu-Lei; Yang, Su; Wei, Wen-Qing; Yuan, Xiao-Hui; Deng, Yan-Qing; Zhu, Bao-Jun; Zhang, Zhe; Wang, Wei-Min; Sheng, Zheng-Ming; Chen, Li-Ming; Lu, Xin; Ma, Jing-Long; Wang, Xuan; Zhang, Jie

    2016-05-20

    Coherent transition radiation in the terahertz (THz) region with energies of sub-mJ/pulse has been demonstrated by relativistic laser-driven electron beams crossing the solid-vacuum boundary. Targets including mass-limited foils and layered metal-plastic targets are used to verify the radiation mechanism and characterize the radiation properties. Observations of THz emissions as a function of target parameters agree well with the formation-zone and diffraction model of transition radiation. Particle-in-cell simulations also well reproduce the observed characteristics of THz emissions. The present THz transition radiation enables not only a potential tabletop brilliant THz source, but also a novel noninvasive diagnostic for fast electron generation and transport in laser-plasma interactions. PMID:27258873

  8. 49 CFR 1302.43 - Applicable rates on shipments in transit when statute becomes effective.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 9 2012-10-01 2012-10-01 false Applicable rates on shipments in transit when... AND SERVICE TERMS EXPORT AND IMPORT SHIPMENTS; RAILROADS Charges for Rail Transportation When Water... shipments in transit when statute becomes effective. The following conditions are hereby prescribed...

  9. Radiation dose-rate meter using an energy-sensitive counter

    DOEpatents

    Kopp, Manfred K.

    1988-01-01

    A radiation dose-rate meter is provided which uses an energy-sensitive detector and combines charge quantization and pulse-rate measurement to monitor radiation dose rates. The charge from each detected photon is quantized by level-sensitive comparators so that the resulting total output pulse rate is proportional to the dose-rate.

  10. Importance of level mixing on accurate [Fe II] transition rates

    NASA Astrophysics Data System (ADS)

    Deb, N. C.; Hibbert, A.

    2010-12-01

    Context. In a very recent measurement Gurell et al. (2009, A&A, 508, 525) commented that while the theoretical lifetime of a 4G5.5 is approximately one tenth of the lifetime of b 2H5.5 the corresponding measurement shows this to be close to one fifth. This large discrepancy is attributed to the effect of inadequate level mixing in the theoretical calculations. Aims: The aim of this work is to make a detailed analysis of these level mixing effects on transitions from various lower levels to the a 4G5.5 and b 2H5.5 levels given in three previous calculations and in the present more extensive CI calculation. Methods: The CIV3 structure codes of Hibbert (1975, Comput. Phys. Commun., 9, 141) and Hibbert et al. (1991, Comput. Phys. Commun., 64, 455) are used in the present work, combined with our “fine-tuning” extrapolation process. Results: The calculated mixing between the upper levels, obtained in previous calculations, is shown to be too weak. The stronger mixing determined in our work gives rise to a calculated lifetime for b 2H5.5 within 3% of the measured value. On the other hand our calculated lifetime for a 4G5.5 is around 20% lower than the measured value, which has fairly wide error bars. Conclusions: Our enhanced calculations explain the difference between previous calculations of the b 2H5.5 lifetime and the recent measured value and confirm the latter. We also suggest a somewhat higher value than experiment for the lifetime of a 4G5.5.

  11. Radiative transition probabilities and recombination coefficients of the ion C IV.

    NASA Technical Reports Server (NTRS)

    Leibowitz, E. M.

    1972-01-01

    Bound-bound and bound-free radiative transition probabilities, as well as radiative recombination coefficients of the ion C IV, are computed with a semi-empirical polarization potential method. The nonhydrogenic probabilities and coefficients are given for all bound states of the ion up to the principal quantum number n = 7.

  12. Measurements of the spectrum and energy dependence of X-ray transition radiation

    NASA Technical Reports Server (NTRS)

    Cherry, M. L.

    1978-01-01

    The results of experiments designed to test the theory of X-ray transition radiation and to verify the predicted dependence of the characteristic features of the radiation on the radiator dimensions are presented. The X-ray frequency spectrum produced by 5- to 9-GeV electrons over the range 4 to 30 keV was measured with a calibrated single-crystal Bragg spectrometer, and at frequencies up to 100 keV with an NaI scintillator. The interference pattern in the spectrum and the hardening of the radiation with increasing foil thickness are clearly observed. The energy dependence of the total transition-radiation intensity was studied using a radiator with large dimensions designed to yield energy-dependent signals at very high particle energies, up to E/mc-squared approximately equal to 100,000. The results are in good agreement with the theoretical predictions.

  13. Effect of step edge transition rates and anisotropy in simulations of epitaxial growth

    SciTech Connect

    Chason, E.; Dodson, B.W.

    1990-01-01

    We present the results of a hybrid rate equation/Monte Carlo simulation of epitaxial growth on vicinal surfaces. We have studied the effect on surface morphology of changing transition rates at step edges, of changing detachment rates from step edges and clusters, and of adding anisotropy to the diffusion and incorporation kinetics at step edges and islands. The effect of the transition rates on surface morphology are discussed in terms of a balance between growth by nucleation and coalescence of islands and by the propagation of steps. 11 refs., 6 figs., 1 tab.

  14. Rate limiting mechanism of transition metal gettering in multicrystalline silicon

    SciTech Connect

    McHugo, S.A.; Thompson, A.C.; Imaizumi, M.; Hieslmair, H.; Weberr, E.R.

    1997-07-01

    The authors have performed studies on multicrystalline silicon used for solar cells in the as-grown state and after a series of processing and gettering steps. The principal goal of this work is to determine the rate limiting step for metal impurity gettering from multicrystalline silicon with an emphasis on the release of impurities from structural defects. Synchrotron-based x-ray fluorescence mapping was used to monitor the release process. Copper and nickel impurities were found to reside primarily at dislocations in the as-grown state of the material. Short annealing treatments rapidly dissolved the impurity agglomerates. Based on these results and modeling of the dissolution process, copper and nickel is in the form of small agglomerates (< 10 nm) clustered together over micron-scale regions in the as-grown material. Aluminum gettering further disintegrated the agglomerates to below the sensitivity of the system, 2--5 nm in radii. No significant barrier to release of copper or nickel from dislocations was observed.

  15. Interpreting impedance spectra of organic photovoltaic cells—Extracting charge transit and recombination rates

    SciTech Connect

    Mullenbach, Tyler K.; Zou, Yunlong; Holmes, Russell J.; Holst, James

    2014-09-28

    Impedance spectroscopy has been widely used to extract the electron-hole recombination rate constant in organic photovoltaic cells (OPVs). This technique is typically performed on OPVs held at open-circuit. Under these conditions, the analysis is simplified with recombination as the only pathway for the decay of excess charge carriers; transit provides no net change in the charge density. In this work, we generalize the application and interpretation of impedance spectroscopy for bulk heterojunction OPVs at any operating voltage. This, in conjunction with reverse bias external quantum efficiency measurements, permits the extraction of both recombination and transit rate constants. Using this approach, the transit and recombination rate constants are determined for OPVs with a variety of electron donor-acceptor pairings and compositions. It is found that neither rate constant individually is sufficient to characterize the efficiency of charge collection in an OPV. It is demonstrated that a large recombination rate constant can be accompanied by a large transit rate constant, thus fast recombination is not necessarily detrimental to OPV performance. Extracting the transit and recombination rate constants permits a detailed understanding of how OPV architecture and processing conditions impact the transient behavior of charge carriers, elucidating the origin of optimum device configurations.

  16. Contribution of Vacuum-Ultraviolet Transitions of Molecular Nitrogen to Radiative Heat Flux During Atmospheric Reentry

    NASA Astrophysics Data System (ADS)

    Liebhart, Heiko; Fertig, Markus; Herdrich, Georg; Fasoulas, Stefanos; Roser, Hans-Peter

    2011-02-01

    Within this work we investigate the radiative properties of molecular nitrogen with respect to the highly excited electronic states giving rise to radiative transitions occurring in the spectral range of Vacuum-Ultraviolet (VUV) radiation. This is done in order to shed light on the role of VUV radiation of molecular nitrogen in the radiative heat load encountered by a vessel during highspeed atmospheric reentry. The considered transitions bands are the Lyman - Birge - Hopfield (a1IIg - X1Σ+g ), Birge - Hopfield I (b1Πu - X1Σ+g ), Birge-Hopfield II(b Σu -X Σg ), Caroll - Yoshino (c'41Σ+u - X1Σ+g ), Worley - Jenkins (c31IIu - X1Σ+g ), Worley (o31IIu - X1Σ+g ), and e Σu - X Σg band. The approach to retrieve the relevant parameters for the line by line radiation simulation follows common methods of calculation, which are the re- construction of the potential energy function via the Rydberg-Klein-Rees (RKR) method and subsequently solving the correspond- ing radial Schrodinger equation. Absorption and emission spectra are then calculated for a known equilibrium test condition of air plasma to illustrate the contribution of the VUV transitions to the radiation. The influence of the VUV radiation on the heat load experienced by a reentry vehicle is illustrated with an exemplary CFD calculation.

  17. Bunch Length Measurements at the JLab FEL Using Coherent Transition and Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Evtushenko, P.; Coleman, J.; Jordan, K.; Klopf, J. Michael; Neil, G.; Williams, G. P.

    2006-11-01

    The JLab FEL is routinely operated with sub-picosecond bunches. The short bunch length is important for high gain of the FEL. Coherent transition radiation has been used for the bunch length measurements for many years. This diagnostic can be used only in the pulsed beam mode. It is our goal to run the FEL with CW beam and a 74.85 MHz micropulse repetition rate, which, with the 135 pC nominal bunch charge corresponds to the beam average current of 10 mA, Hence it is very desirable to have the possibility of making bunch length measurements when running CW beam with any micropulse frequency. We use a Fourier transform infrared (FTIR) interferometer, which is essentially a Michelson interferometer, to measure the spectrum of the coherent synchrotron radiation generated in the last dipole of the magnetic bunch compressor upstream of the FEL wiggler. This noninvasive diagnostic provides bunch length measurements for CW beam operation at any micropulse frequency. We also compare the measurements made with the help of the FTIR interferometer with data obtained using the Martin-Puplett interferometer. Results of the two diagnostics agree within 15 %. Here we present a description of the experimental setup, data evaluation procedure and results of the beam measurements.

  18. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by Part 20 of this chapter, a licensee shall survey with a radiation detection survey instrument at...

  19. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by Part 20 of this chapter, a licensee shall survey with a radiation detection survey instrument at...

  20. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by Part 20 of this chapter, a licensee shall survey with a radiation detection survey instrument at...

  1. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section... Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by Part 20 of this chapter, a licensee shall survey with a radiation detection survey instrument at...

  2. 49 CFR 1302.43 - Applicable rates on shipments in transit when statute becomes effective.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 9 2010-10-01 2010-10-01 false Applicable rates on shipments in transit when statute becomes effective. 1302.43 Section 1302.43 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION (CONTINUED) CARRIER RATES AND SERVICE TERMS EXPORT AND IMPORT...

  3. Radiative corrections to 0+-0+ β transitions

    NASA Astrophysics Data System (ADS)

    Jaus, W.; Rasche, G.

    1987-06-01

    We reexamine and refine our former analysis of electromagnetic corrections to 0+-0+ β transitions. The disagreement with a recent approximate calculation of Sirlin and Zucchini is due to an error in our earlier numerical computation. The new results lead to much better agreement between the Ft values of the eight accurately studied decays. We find an average value of Ft =3072.4+/-1.6 s. .AE

  4. Radiative corrections to 0/sup +/-0/sup +/. beta. transitions

    SciTech Connect

    Jaus, W.; Rasche, G.

    1987-06-01

    We reexamine and refine our former analysis of electromagnetic corrections to 0/sup +/-0/sup +/ ..beta.. transitions. The disagreement with a recent approximate calculation of Sirlin and Zucchini is due to an error in our earlier numerical computation. The new results lead to much better agreement between the Ft values of the eight accurately studied decays. We find an average value of Ft = 3072.4 +- 1.6 s. .AE

  5. Radiation Hardened, Modulator ASIC for High Data Rate Communications

    NASA Technical Reports Server (NTRS)

    McCallister, Ron; Putnam, Robert; Andro, Monty; Fujikawa, Gene

    2000-01-01

    Satellite-based telecommunication services are challenged by the need to generate down-link power levels adequate to support high quality (BER approx. equals 10(exp 12)) links required for modem broadband data services. Bandwidth-efficient Nyquist signaling, using low values of excess bandwidth (alpha), can exhibit large peak-to-average-power ratio (PAPR) values. High PAPR values necessitate high-power amplifier (HPA) backoff greater than the PAPR, resulting in unacceptably low HPA efficiency. Given the high cost of on-board prime power, this inefficiency represents both an economical burden, and a constraint on the rates and quality of data services supportable from satellite platforms. Constant-envelope signals offer improved power-efficiency, but only by imposing a severe bandwidth-efficiency penalty. This paper describes a radiation- hardened modulator which can improve satellite-based broadband data services by combining the bandwidth-efficiency of low-alpha Nyquist signals with high power-efficiency (negligible HPA backoff).

  6. Determination of hyperfine-induced transition rates from observations of a planetary nebula.

    PubMed

    Brage, Tomas; Judge, Philip G; Proffitt, Charles R

    2002-12-31

    Observations of the planetary nebula NGC3918 made with the STIS instrument on the Hubble Space Telescope reveal the first unambiguous detection of a hyperfine-induced transition 2s2p 3P(o)(0)-->2s2 1S0 in the berylliumlike emission line spectrum of N IV at 1487.89 A. A nebular model allows us to confirm a transition rate of 4x10(-4) sec(-1)+/-33% for this line. The measurement represents the first independent confirmation of the transition rate of hyperfine-induced lines in low ionization stages, and it provides support for the techniques used to compute these transitions for the determination of very low densities and isotope ratios. PMID:12513129

  7. Estimation of the critical glass transition rate and the inorganic glass thickness

    NASA Astrophysics Data System (ADS)

    Belousov, O. K.

    2009-12-01

    Procedures are described for calculating the components of a new equation obtained to estimate critical glass transition rate R c . Reported data on R c are used to calculate critical shear frequency ν t, g( m), and a technique of its calculation using absolute entropy and elastic constants is presented. Procedures for calculating the energy of defect formation in amorphous substances H ν and for estimating glass transition temperature T g are described. It is shown that the ratio H ν / q (where q = N A k BΔ T m-g , N A is Avogadro’s number, k B is the Boltzmann constant, and Δ T m-g is the difference between the melting and glass transition temperatures) can be used to estimate critical glass transition rate R c and critical glass thickness h c .

  8. The phase transition in VO2 probed using x-ray, visible and infrared radiations

    NASA Astrophysics Data System (ADS)

    Kumar, Suhas; Strachan, John Paul; Kilcoyne, A. L. David; Tyliszczak, Tolek; Pickett, Matthew D.; Santori, Charles; Gibson, Gary; Williams, R. Stanley

    2016-02-01

    Vanadium dioxide (VO2) is a model system that has been used to understand closely occurring multiband electronic (Mott) and structural (Peierls) transitions for over half a century due to continued scientific and technological interests. Among the many techniques used to study VO2, the most frequently used involve electromagnetic radiation as a probe. Understanding of the distinct physical information provided by different probing radiations is incomplete, mostly owing to the complicated nature of the phase transitions. Here, we use transmission of spatially averaged infrared (λ = 1.5 μm) and visible (λ = 500 nm) radiations followed by spectroscopy and nanoscale imaging using x-rays (λ = 2.25-2.38 nm) to probe the same VO2 sample while controlling the ambient temperature across its hysteretic phase transitions and monitoring its electrical resistance. We directly observed nanoscale puddles of distinct electronic and structural compositions during the transition. The two main results are that, during both heating and cooling, the transition of infrared and visible transmission occurs at significantly lower temperatures than the Mott transition, and the electronic (Mott) transition occurs before the structural (Peierls) transition in temperature. We use our data to provide insights into possible microphysical origins of the different transition characteristics. We highlight that it is important to understand these effects because small changes in the nature of the probe can yield quantitatively, and even qualitatively, different results when applied to a non-trivial multiband phase transition. Our results guide more judicious use of probe type and interpretation of the resulting data.

  9. Measurement of Sub-Picosecond Electron Bunches via Electro-Optic Sampling of Coherent Transition Radiation

    SciTech Connect

    Maxwell, Timothy John

    2012-01-01

    Future collider applications as well as present high-gradient laser plasma wakefield accelerators and free-electron lasers operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. We present results on the single-shot electro-optic spectral decoding of coherent transition radiation from bunches generated at the Fermilab A0 photoinjector laboratory. A longitudinal double-pulse modulation of the electron beam is also realized by transverse beam masking followed by a transverse-to-longitudinal phase-space exchange beamline. Live profile tuning is demonstrated by upstream beam focusing in conjunction with downstream monitoring of single-shot electro-optic spectral decoding of the coherent transition radiation.

  10. A transition radiation detector for RHIC featuring accurate tracking and dE/dx particle identification

    SciTech Connect

    O`Brien, E.; Lissauer, D.; McCorkle, S.; Polychronakos, V.; Takai, H.; Chi, C.Y.; Nagamiya, S.; Sippach, W.; Toy, M.; Wang, D.; Wang, Y.F.; Wiggins, C.; Willis, W.; Cherniatin, V.; Dolgoshein, B.; Bennett, M.; Chikanian, A.; Kumar, S.; Mitchell, J.T.; Pope, K.

    1991-12-31

    We describe the results of a test ran involving a Transition Radiation Detector that can both distinguish electrons from pions which momenta greater titan 0.7 GeV/c and simultaneously track particles passing through the detector. The particle identification is accomplished through a combination of the detection of Transition Radiation from the electron and the differences in electron and pion energy loss (dE/dx) in the detector. The dE/dx particle separation is most, efficient below 2 GeV/c while particle ID utilizing Transition Radiation effective above 1.5 GeV/c. Combined, the electron-pion separation is-better than 5 {times} 10{sup 2}. The single-wire, track-position resolution for the TRD is {approximately}230 {mu}m.

  11. Storage-ring measurements of hyperfine induced transition rates in berylliumlike ions

    SciTech Connect

    Schippers, Stefan

    2013-07-11

    The status of experimental measurements and theoretical calculations of the hyperfine induced 2s2p{sup 3}P{sub 0}{yields}2s{sup 21}S{sub 0} transition rate in Be-like ions is reviewed. Possible reasons, such as external electromagnetic fields and competing E1M1 two-photon transitions, for presently existing significant discrepancies between experiment and theory are discussed. Finally, directions for future research are outlined.

  12. Transition to turbulence and noise radiation in heated coaxial jet flows

    NASA Astrophysics Data System (ADS)

    Gloor, Michael; Bühler, Stefan; Kleiser, Leonhard

    2016-04-01

    Laminar-turbulent transition and noise radiation of a parametrized set of subsonic coaxial jet flows with a hot primary (core) stream are investigated numerically by Large-Eddy Simulation (LES) and direct noise computation. This study extends our previous research on local linear stability of heated coaxial jet flows by analyzing the nonlinear evolution of initially laminar flows disturbed by a superposition of small-amplitude unstable eigenmodes. First, a baseline configuration is studied to shed light on the flow dynamics of coaxial jet flows. Subsequently, LESs are performed for a range of Mach and Reynolds numbers to systematically analyze the influences of the temperature and the velocity ratios between the primary and the secondary (bypass) stream. The results provide a basis for a detailed analysis of fundamental flow-acoustic phenomena in the considered heated coaxial jet flows. Increasing the primary-jet temperature leads to an increase of fluctuation levels and to an amplification of far-field noise, especially at low frequencies. Strong mixing between the cold bypass stream and the hot primary stream as well as the intermittent character of the flow field at the end of the potential core lead to a pronounced noise radiation at an aft angle of approximately 35∘. The velocity ratio strongly affects the shear-layer development and therefore also the noise generation mechanisms. Increasing the secondary-stream velocity amplifies the dominance of outer shear-layer perturbations while the disturbance growth rates in the inner shear layer decrease. Already for rmic > 40R1, where rmic is the distance from the end of the potential core and R1 is the core-jet radius, a perfect 1/rmic decay of the sound pressure amplitudes is observed. The potential-core length increases for higher secondary-stream velocities which leads to a shift of the center of the dominant acoustic radiation in the downstream direction.

  13. Radiation shielding in transit to Mars and on the surface

    NASA Technical Reports Server (NTRS)

    Conway, Edmund J.; Townsend, Lawrence W.

    1992-01-01

    An evaluation is presented of the current understanding of the space radiation environment and the primary considerations of spacecrew exposure effects and limits. By using a two-solar particle event scenario for a 'sprint' mission to Mars, estimates are developed for the requisite shielding of the transfer vehicle and Martian surface habitat. Many uncertainties, however, are noted to have gone into these mission dose estimates; the combination of these uncertainties into an error-bar on shield mass lies beyond current capabilities.

  14. Radiation shielding in transit to Mars and on the surface

    NASA Astrophysics Data System (ADS)

    Conway, Edmund J.; Townsend, Lawrence W.

    An evaluation is presented of the current understanding of the space radiation environment and the primary considerations of spacecrew exposure effects and limits. By using a two-solar particle event scenario for a 'sprint' mission to Mars, estimates are developed for the requisite shielding of the transfer vehicle and Martian surface habitat. Many uncertainties, however, are noted to have gone into these mission dose estimates; the combination of these uncertainties into an error-bar on shield mass lies beyond current capabilities.

  15. Titan-like exoplanets: Variations in geometric albedo and effective transit height with haze production rate

    NASA Astrophysics Data System (ADS)

    Checlair, Jade; McKay, Christopher P.; Imanaka, Hiroshi

    2016-09-01

    Extensive studies characterizing Titan present an opportunity to study the atmospheric properties of Titan-like exoplanets. Using an existing model of Titan's atmospheric haze, we computed geometric albedo spectra and effective transit height spectra for six values of the haze production rate (zero haze to twice present) over a wide range of wavelengths (0.2-2 μm). In the geometric albedo spectra, the slope in the UV-visible changes from blue to red when varying the haze production rate values from zero to twice the current Titan value. This spectral feature is the most effective way to characterize the haze production rates. Methane absorption bands in the visible-NIR compete with the absorbing haze, being more prominent for smaller haze production rates. The effective transit heights probe a region of the atmosphere where the haze and gas are optically thin and that is thus not effectively probed by the geometric albedo. The effective transit height decreases smoothly with increasing wavelength, from 376 km to 123 km at 0.2 and 2 μm, respectively. When decreasing the haze production rate, the methane absorption bands become more prominent, and the effective transit height decreases with a steeper slope with increasing wavelength. The slope of the geometric albedo in the UV-visible increases smoothly with increasing haze production rate, while the slope of the effective transit height spectra is not sensitive to the haze production rate other than showing a sharp rise when the haze production rate increases from zero. We conclude that geometric albedo spectra provide the most sensitive indicator of the haze production rate and the background Rayleigh gas. Our results suggest that important and complementary information can be obtained from the geometric albedo and motivates improvements in the technology for direct imaging of nearby exoplanets.

  16. Radiative strength functions for dipole transitions in {sup 90}Zr

    SciTech Connect

    Fedorets, I. D. Ratkevich, S. S.

    2013-01-15

    Partial cross sections for the (p, {gamma}) reaction on the {sup 89}Y nucleus that were measured previously at proton energies between 2.17 and 5.00 MeV and which were averaged over resonances were used to determine the absolute values and the energy distribution of the strength of dipole transitions from compound-nucleus states to low-lying levels of the {sup 90}Zr nucleus. The data obtained in this way were compared with the predictions of various models.

  17. Radiative and Nonradiative Transitions of the Rare-Earth Ions Tm(3+) and Ho(3+) in Y3AI5O12 and LiYF4

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Armagan, Guzin; Dibartolo, Baldassare; Modlin, Edward A.

    1995-01-01

    The optical spectra of rare earth ions in solids arise primarily from electric and magnetic dipole transitions between stark split multiplets of the 4f(sup N) electronic configuration. Electric dipole transitions are parity forbidden between levels of the 4f(sup N) configuration, while those of magnetic dipole origin are allowed. It is known from experiment, however, that the significant contributions to the intensities of most transitions are electric dipole in nature. Judd and Ofelt developed the theory of forced electric dipole transitions of rare-earth ions. This study is devoted to determining electric dipole transition probabilities and branching ratios for Tm(3+) and Ho(3+) ions in Yttrium Aluminum Garnet (YAG) and Yttrium Lithium Fluoride (YLF) using the theory of Judd and Ofelt. The radiative rates determined from the Judd-Ofelt analysis are used with measured lifetimes to find nonradiative rates of relaxation.

  18. Polarity and Excursion Transitions: Can they be Adequately Recorded in High-Sedimentation-Rate Marine Sediments?

    NASA Astrophysics Data System (ADS)

    Channell, J. E. T.

    2014-12-01

    Polarity transitions and magnetic excursions have durations of a few thousand years, or less. Transition/excursion records in volcanic sequences are, at best, partial snap-shots of the transition/excursion field. Records from high-sedimentation-rate marine sediments may be more continuous but they are always smoothed by progressive acquisition of detrital remanent magnetization (DRM), and by sampling/measurement limitations. North Atlantic records of the Matuyama-Brunhes (M-B) polarity transition are compared with records of the Iceland Basin excursion (190 ka). Virtual geomagnetic polar (VGP) paths are used to map characteristic magnetization directions during the transition/excursion. Relative paleointensity (RPI) proxies indicate partial recovery of field intensity during the transition/excursion, with RPI minima coinciding with abrupt VGP shifts at the onset and end of the transition/excursion. Discrepancies in VGP paths among holes at the same site, among sites, and a comparison of u-channel and discrete sample measurements, reveal limitations in resolution of the transition/excursion fields. During the M-B polarity transition, VGP clusters appear in the NW Pacific, NE Asia and in the South Atlantic. Similarities in VGP clustering for the M-B boundary and the Iceland Basin excursion imply that the polarity transition and excursion fields had common characteristics. Similarities with the modern non-axial dipole (NAD) field imply that polarity transitions and excursions involve the demise of the Earth's axial dipole relative to the NAD field, and that the NAD field has long-lasting features locked in place by the lowermost mantle.

  19. A Design Report for the Optical Transition Radiation Imager for the LCLS Undulator

    SciTech Connect

    Yang, Bingxin

    2010-12-13

    The Linac Coherent Light Source (LCLS), a free-electron x-ray laser, is under design and construction. Its high-intensity electron beam, 3400 A in peak current and 46 TW in peak power, is concentrated in a small area (37 micrometer in rms radius) inside its undulator. Ten optical transition radiation (OTR) imagers are planned between the undulator segments for characterizing the transverse profiles of the electron beam. In this note, we report on the optical and mechanical design of the OTR imager. Through a unique optical arrangement, using a near-normal-incidence screen and a multi-layer coated mirror, this imager will achieve a fine resolution (12 micrometer or better) over the entire field of view (8 mm x 5 mm), with a high efficiency for single-shot imaging. A digital camera will be used to read out the beam images in a programmable region (5 mm x 0.5 mm) at the full beam repetition rate (120 Hz), or over the entire field at a lower rate (10 Hz). Its built-in programmable amplifier will be used as an electronic intensity control.

  20. Whistler wave emission by a modulated electron beam through transition radiation

    NASA Astrophysics Data System (ADS)

    Starodubtsev, M.; Krafft, C.; Thévenet, P.; Kostrov, A.

    1999-05-01

    Measurements have been performed in a laboratory experiment modeling the interaction of a modulated electron beam with a magnetized plasma under conditions relevant to space experiments involving beam injection. Both whistler emission through Cherenkov resonance and a nonresonant mechanism of transition radiation from the point of beam injection into the plasma have been observed. Electrons injected from the gun into the plasma pass from one medium (gun chamber) into another (plasma volume) and electromagnetic fields change as charges cross the metallic interface between both media, giving rise to transition radiation. This type of beam radiation, observed separately from the resonant Cherenkov emission owing to adequate choices of the physical conditions, has been characterized as a function of the beam and plasma parameters. Moreover, in the case of beams injected from satellites in the ionospheric and magnetospheric plasmas, this nonresonant emission, mainly located in the near gun region, can be governed by an adequate control of the radiator parameters and separated from resonant emissions.

  1. Coherent transition radiation from a laser wakefield accelerator as an electron bunch diagnostic

    SciTech Connect

    van Tilborg, J.; Geddes, C.G.R.; Toth, C.; Esarey, E.; Schroeder, C.B.; Martin, M.C.; Hao, Z.; Leemans, W.P.

    2004-10-22

    The observation and modeling of coherent transition radiation from femtosecond laser accelerated electron bunches is discussed. The coherent transition radiation, scaling quadratically with bunch charge, is generated as the electrons transit the plasma-vacuum boundary. Due to the limited transverse radius of the plasma boundary, diffraction effects will strongly modify the angular distribution and the total energy radiated is reduced compared to an infinite transverse boundary. The multi-nC electron bunches, concentrated in a length of a few plasma periods (several tens of microns), experience partial charge neutralization while propagating inside the plasma towards the boundary. This reduces the space-charge blowout of the beam, allowing for coherent radiation at relatively high frequencies (several THz). The charge distribution of the electron bunch at the plasma-vacuum boundary can be derived from Fourier analysis of the coherent part of the transition radiation spectrum. A Michelson interferometer was used to measure the coherent spectrum, and electron bunches with duration on the order of 50 fs (rms) were observed.

  2. Transition in AlGalnP heterostructures with multiple quantum wells during fast neutron radiation

    NASA Astrophysics Data System (ADS)

    Gradoboev, A. V.; Orlova, K. N.

    2015-04-01

    Radiation exposure causes degradation of semiconductors' structures as well as different semiconductors based on these structures. The purpose of the research work is to study transitions in AlGaInP heterostructures with multiple quantum wells during fast neutron radiation. Objects of the research are 590 nm and 630 nm LEDs based on AlGaInP heterostructures. It is proved that LEDs' radiant power decrease occurs within three periods: during the first period radiant power decrease is caused by radiation stimulated structural adjustment of a primary defect structure; during the second period the decrease is results from radiative defects introduction; with further enhancement of radiation exposure the second period develops into the third period, where LEDs evolves into the mode of electrons low injection into an active region. Empirical relations explain radiant power changes within each period are presented. Region of transitions between the first and the second periods that cause radiant power partial recovery are specified. Transitions occur both directly and indirectly for heterostructures. Potential causes of transitions occurrence are being discussed.

  3. New delay-dependent stability of Markovian jump neutral stochastic systems with general unknown transition rates

    NASA Astrophysics Data System (ADS)

    Kao, Yonggui; Wang, Changhong; Xie, Jing; Karimi, Hamid Reza

    2016-08-01

    This paper investigates the delay-dependent stability problem for neutral Markovian jump systems with generally unknown transition rates (GUTRs). In this neutral GUTR model, each transition rate is completely unknown or only its estimate value is known. Based on the study of expectations of the stochastic cross-terms containing the ? integral, a new stability criterion is derived in terms of linear matrix inequalities. In the mathematical derivation process, bounding stochastic cross-terms, model transformation and free-weighting matrix are not employed for less conservatism. Finally, an example is provided to demonstrate the effectiveness of the proposed results.

  4. Energy levels, transition rates, oscillator strengths and lifetimes in Ne-like, Ni-like, and Cu-like uranium ions

    NASA Astrophysics Data System (ADS)

    Bari, M. A.; Nazir, R. T.; Nasim, M. H.; Duan, B.; Azeem, M.; Shabbir Naz, G.; Salahuddin, M.

    2015-01-01

    We present the fine-structure energy levels, wavelengths, oscillator strengths, transition energies, and transition rates of optically allowed inner-shell transitions of Ne-, Ni-, and Cu-like uranium ions by using the multiconfiguration Dirac-Fock method with the fully relativistic GRASP2 code (partly improved by us). In order to compare these results, we have performed other independent calculations with a fully relativistic Flexible Atomic Code (FAC). We have determined extensive configuration interaction wavefunctions to calculate the level energies of the inner-shell excited states of these three uranium ionic states. Overall, our calculated energy levels, wavelengths, transition rates, and oscillator strengths within the levels of selected configurations show better agreement with the available experimental and other theoretical results. Furthermore, we report radiative lifetimes of all the excited states of these three uranium ions. We also present many unpublished data about energy values, wavelengths, transitions rates, and oscillator strengths for inner-shell transitions. We believe that our calculated inner shell transition energies are of interest for the analysis of uranium x-ray spectra.

  5. Transition Path Sampling of Water Exchange Rates and Mechanisms around Aqueous Ions

    SciTech Connect

    Kerisit, Sebastien N; Rosso, Kevin M

    2009-09-21

    The rates and mechanisms of water exchange around two aqueous ions, namely, Na+ and Fe2+, have been determined using transition path sampling. In particular, the pressure dependence of the water exchange rates was computed to determine activation volumes. A common approach for calculating water exchange rates, the reactive flux method, was also employed and the two methods were compared. The water exchange rate around Na+ is fast enough to be calculated by direct molecular dynamics simulations, thus providing a reference for comparison. The transition path sampling approach yielded more accurate rates, although both approaches predicted activation volumes of +2.6 cm3·mol-1, in agreement with the direct simulation results. The only previously determined activation volume for Na+ is from a theoretical estimation (Spångberg, D.; Wojcik, M.; Hermansson, K. Chem. Phys. Lett. 1997, 276, 114-121) and differs in sign and magnitude from that calculated in this work. We show that this is due to an overestimation of the sodium hydration energy in the previous model. For water exchange around Fe2+, transition path sampling predicts an activation volume of +3.8 cm3mol-1, in excellent agreement with available experimental data. The reactive flux approach, however, failed to identify the transition state and predicted the opposite pressure dependence of the rate as a result. Analysis of the reactive trajectories obtained with the transition path sampling approach suggests that the Fe2+ exchange reaction takes place via an associative interchange mechanism, which goes against the conventional mechanistic interpretation of a positive activation volume. Collectively, considerable insight obtains not only for the exchange rates and mechanisms for Na+ and Fe2+, but also for identifying the most robust modeling strategy for these purposes.

  6. Transitions between Andean and Amazonian centers of endemism in the radiation of some arboreal rodents

    PubMed Central

    2013-01-01

    Background The tropical Andes and Amazon are among the richest regions of endemism for mammals, and each has given rise to extensive in situ radiations. Various animal lineages have radiated ex situ after colonizing one of these regions from the other: Amazonian clades of dendrobatid frogs and passerine birds may have Andean ancestry, and transitions from the Amazon to Andes may be even more common. To examine biogeographic transitions between these regions, we investigated the evolutionary history of three clades of rodents in the family Echimyidae: bamboo rats (Dactylomys-Olallamys-Kannabateomys), spiny tree-rats (Mesomys-Lonchothrix), and brush-tailed rats (Isothrix). Each clade is distributed in both the Andes and Amazonia, and is more diverse in the lowlands. We used two mitochondrial (cyt-b and 12S) and three nuclear (GHR, vWF, and RAG1) markers to reconstruct their phylogenetic relationships. Tree topologies and ancestral geographic ranges were then used to determine whether Andean forms were basal to or derived from lowland radiations. Results Four biogeographic transitions are identified among the generic radiations. The bamboo rat clade unambiguously originated in the Amazon ca. 9 Ma, followed by either one early transition to the Andes (Olallamys) and a later move to the Amazon (Dactylomys), or two later shifts to the Andes (one in each genus). The Andean species of both Dactylomys and Isothrix are sister to their lowland species, raising the possibility that highland forms colonized the Amazon Basin. However, uncertainty in their reconstructed ancestral ranges obscures the origin of these transitions. The lone Andean species of Mesomys is confidently nested within the lowland radiation, thereby indicating an Amazon-to-Andes transition ca. 2 Ma. Conclusions Differences in the timing of these biogeographic transitions do not appear to explain the different polarities of these trees. Instead, even within the radiation of a single family, both Andean and

  7. Inferring Transition Rates of Networks from Populations in Continuous-Time Markov Processes.

    PubMed

    Dixit, Purushottam D; Jain, Abhinav; Stock, Gerhard; Dill, Ken A

    2015-11-10

    We are interested inferring rate processes on networks. In particular, given a network's topology, the stationary populations on its nodes, and a few global dynamical observables, can we infer all the transition rates between nodes? We draw inferences using the principle of maximum caliber (maximum path entropy). We have previously derived results for discrete-time Markov processes. Here, we treat continuous-time processes, such as dynamics among metastable states of proteins. The present work leads to a particularly important analytical result: namely, that when the network is constrained only by a mean jump rate, the rate matrix is given by a square-root dependence of the rate, kab ∝ (πb/πa)(1/2), on πa and πb, the stationary-state populations at nodes a and b. This leads to a fast way to estimate all of the microscopic rates in the system. As an illustration, we show that the method accurately predicts the nonequilibrium transition rates in an in silico gene expression network and transition probabilities among the metastable states of a small peptide at equilibrium. We note also that the method makes sensible predictions for so-called extra-thermodynamic relationships, such as those of Bronsted, Hammond, and others. PMID:26574334

  8. Scaling of the hysteresis in the glass transition of glycerol with the temperature scanning rate

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Zhen; Li, Ying; Zhang, Jin-Xiu

    2011-03-01

    By measuring the dependences of the temperature-dependent primary ("alpha") dielectric relaxation time behavior on the temperature scanning rate for the glass-forming glycerol, we study the scaling of hysteresis at the glass transition in glycerol. Based on the Vogel-Fulcher-Tammann (VFT) expression and the Angell's fragility concept, notable correlations of the systematic kinetic fragility, and of the hysteresis effect in the vitrification/fusion "alpha"-relaxation process of glycerol, with the temperature scanning rate, were reasonably analyzed and discussed. It was observed that the kinetic fragility m and the apparent glass-transition temperature hysteresis width Δ T_g^a, respectively, scaled the temperature scanning rate q as m ≈ αmq-γ and Δ T_g^a ≈ A0 + αqβ, at which the exponents, γ and β, were suggested to be characteristic of the resistance to the structure change or fragility change of the system during the glass transition. The observed scaling laws are quite similar to the scaling power law for the thermal hysteresis in the first-order phase transition (FOPT) of solids, providing a significant insight into the hysteresis effect in the glass transition of the glass-forming liquids.

  9. Using Kepler transit observations to measure stellar spot belt migration rates

    NASA Astrophysics Data System (ADS)

    Llama, J.; Jardine, M.; Mackay, D. H.; Fares, R.

    2012-05-01

    Planetary transits provide a unique opportunity to investigate the surface distributions of star spots. Our aim is to determine if, with continuous observation (such as the data that will be provided by the Kepler mission), we can in addition measure the rate of drift of the spot belts. We begin by simulating magnetic cycles suitable for the Sun and more active stars, incorporating both flux emergence and surface transport. This provides the radial magnetic field distribution on the stellar surface as a function of time. We then model the transit of a planet whose orbital axis is misaligned with the stellar rotation axis. Such a planet could occult spots at a range of latitudes. This allows us to complete the forward modelling of the shape of the transit light curve. We then attempt the inverse problem of recovering spot locations from the transit alone. From this we determine if transit light curves can be used to measure spot belt locations as a function of time. We find that for low-activity stars such as the Sun, the 3.5-year Kepler window is insufficient to determine this drift rate. For more active stars, it may be difficult to distinguish subtle differences in the nature of flux emergence, such as the degree of overlap of the 'butterfly wings'. The rate and direction of drift of the spot belts can however be determined for these stars. This would provide a critical test of dynamo theory.

  10. Deformation mechanism transition caused by strain rate in a pulse electric brush-plated nanocrystalline Cu

    NASA Astrophysics Data System (ADS)

    Jiang, Zhonghao; Zhang, Hanzhuo; Gu, Changdong; Jiang, Qing; Lian, Jianshe

    2008-09-01

    Bulk nanocrystalline Cu was synthesized by a pulse electric brush-plating technique. A very large strength (at 2% plastic strain) increase from 644 to 1451 MPa was obtained by compression tests at room temperature and strain rates from 1×10-5 to 3×100 s-1. A transition in plastic deformation mechanism with strain rate from a combination of the thermally activated grain boundary sliding and the dislocation emission-absorption in grain boundaries to one dominated by the dislocation activity has been revealed by the significant changes in strain rate sensitivity and apparent activation volume with strain rate.

  11. Measurement of x-ray dielectric constants with coherent transition radiation

    SciTech Connect

    Moran, M.J.; Dahling, B.A.; Piestrup, M.A.; Berman, B.L.; Kephart, J.O.

    1986-06-06

    A technique for measuring the energy-resolved angular distribution of longitudinally coherent transition radiation generated in multiple-foil targets has been developed. This paper will demonstrate how data generated by these measurements can be used to determine the dielectric constants of materials in the soft x-ray spectral region.

  12. False vacuum transitions —Analytical solutions and decay rate values

    NASA Astrophysics Data System (ADS)

    Correa, R. A. C.; Moraes, P. H. R. S.; da Rocha, Roldão

    2015-08-01

    In this work we show a class of oscillating configurations for the evolution of the domain walls in Euclidean space. The solutions are obtained analytically. Phase transitions are achieved from the associated fluctuation determinant, by the decay rates of the false vacuum.

  13. 49 CFR 1302.43 - Applicable rates on shipments in transit when statute becomes effective.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 9 2011-10-01 2011-10-01 false Applicable rates on shipments in transit when statute becomes effective. 1302.43 Section 1302.43 Transportation Other Regulations Relating to Transportation (Continued) SURFACE TRANSPORTATION BOARD, DEPARTMENT OF TRANSPORTATION (CONTINUED) CARRIER...

  14. A Peer-Led High School Transition Program Increases Graduation Rates among Latino Males

    ERIC Educational Resources Information Center

    Johnson, Valerie L.; Simon, Patricia; Mun, Eun-Young

    2014-01-01

    The authors investigated the impact of a manualized high school transition program, the Peer Group Connection (PGC) program, on the graduation rate at a low-income, Mid-Atlantic high school. The program utilized 12th-grade student peer leaders to create a supportive environment for incoming ninth-grade students. Results of a randomized control…

  15. Diffraction effects in coherent transition radiation diagnostics for sub-mm bunch length measurement

    SciTech Connect

    Maxwell, T.J.; Mihalcea, D.; Piot, P.; /Northern Illinois U. /Fermilab

    2008-09-01

    Electrons crossing the boundary between different media generate bursts of transition radiation. In the case of bunches of N electrons, the radiation is coherent and has an N-squared enhancement at wavelengths related to the longitudinal bunch distribution. This coherent transition radiation has therefore attracted attention as an interceptive charged particle beam diagnostic technique. Many analytical descriptions have been devised describing the spectral distribution generated by electron bunches colliding with thin metallic foils making different simplifying assumptions. For typical bunches having lengths in the sub-millimeter range, measurable spectra are generated up into the millimeter range. Analysis of this THz radiation is performed using optical equipment tens of millimeters in size. This gives rise to concern that optical diffraction effects may spread the wavefront of interest into regions larger than the optical elements and partially escape detection, generating a wavelength-dependent instrument response. In this paper we present a model implementing vector diffraction theory to analyze these effects in bunch length diagnostics based on coherent transition radiation.

  16. Simulation of the transition radiation detection conditions in the ATLAS TRT detector filled with argon and krypton gas mixtures

    SciTech Connect

    Boldyrev, A. S.; Maevskiy, A. S.

    2015-12-15

    Performance of the Transition Radiation Tracker (TRT) at the ATLAS experiment with argon and krypton gas mixtures was simulated. The efficiency of transition radiation registration, which is necessary for electron identification, was estimated along with the electron identification capabilities under such conditions.

  17. Plasma cutoff and enhancement of radiative transitions in dense stellar matter

    NASA Astrophysics Data System (ADS)

    Shternin, P. S.; Yakovlev, D. G.

    2009-06-01

    We study plasma effects on radiative transitions (e.g., decay of excited states of atoms or atomic nuclei) in a dense plasma at the transition frequencies ω≲ωp (where ωp is the electron plasma frequency). The decay goes through four channels—the emission of real transverse and longitudinal plasmons as well as the emission of virtual transverse and longitudinal plasmons with subsequent absorption of such plasmons by the plasma. The emission of real plasmons dies out at ω≤ωp, but the processes with virtual plasmons strongly enhance the radiative decay. Applications of these results to radiative processes in white dwarf cores and neutron star envelopes are discussed.

  18. OBSERVATIONAL CONSTRAINTS ON THE STELLAR RADIATION FIELD IMPINGING ON TRANSITIONAL DISK ATMOSPHERES

    SciTech Connect

    Szulagyi, Judit; Pascucci, Ilaria; Abraham, Peter; Moor, Attila; Apai, Daniel; Bouwman, Jeroen

    2012-11-01

    Mid-infrared atomic and ionic line ratios measured in spectra of pre-main-sequence stars are sensitive indicators of the hardness of the radiation field impinging on the disk surface. We present a low-resolution Spitzer IRS search for [Ar II] at 6.98 {mu}m, [Ne II] at 12.81 {mu}m, and [Ne III] 15.55 {mu}m lines in 56 transitional disks. These objects, characterized by reduced near-infrared but strong far-infrared excess emission, are ideal targets to set constraints on the stellar radiation field onto the disk, because their spectra are not contaminated by shock emission from jets/outflows or by molecular emission lines. After demonstrating that we can detect [Ne II] lines and recover their fluxes from the low-resolution spectra, here we report the first detections of [Ar II] lines toward protoplanetary disks. We did not detect [Ne III] emission in any of our sources. Our [Ne II]/[Ne III] line flux ratios combined with literature data suggest that a soft-EUV or X-ray spectrum produces these gas lines. Furthermore, the [Ar II]/[Ne II] line flux ratios point to a soft X-ray and/or soft-EUV stellar spectrum as the ionization source of the [Ar II] and [Ne II] emitting layer of the disk. If the soft X-ray component dominates over the EUV, then we would expect larger photoevaporation rates and, hence, a reduction of the time available to form planets.

  19. Effect of a finite ionization rate on the radiative heating of outer planet atmospheric entry probes

    NASA Technical Reports Server (NTRS)

    Nelson, H. F.

    1981-01-01

    The influence of finite rate ionization in the inviscid gas just behind the stagnation shock wave on the radiation heating of probes entering the hydrogen helium atmospere of the major planets was investigated. At the present time, there is disagreement as to whether the radiative flux increases or decreases relative to its equilibrium value when finite rate ionization is considered. Leibowitz and Kuo content that the finite rate ionization in the hydrogen gas just behind the shock wave reduces the radiative flux to the probe, whereas Tiwari and Szema predict that it increases the radiative flux. The radiation modeling used in the calculations of both pairs of these investigators was reviewed. It is concluded that finite rate ionization in the inviscid region of the shock layer should reduce the cold wall radiative heating below the values predicted by equilibrium chemistry assumptions.

  20. Solar Modulation of Inner Trapped Belt Radiation Dose Rate

    NASA Astrophysics Data System (ADS)

    Diaz, Abel

    2002-03-01

    The two steady sources of radiation in low Earth orbit are the inner trapped-belt and galactic cosmic radiation (GCR), which present a very significant hazard to the astronauts and flight equipment electronics. The fluxes of GCR and inner trapped-belt particles at a fixed altitude are modulated by solar activity. They decrease with increasing solar activity in general. The mechanism of these two sources of radiation are, however, very different. In this project we shall be concerned with modeling the inner trapped-belt protons. The existing trapped-belt models, namely AP-8 is based on data acquired prior to 1970 during solar cycle 20 with relatively low solar flux. These models describe the environment at solar minimum and solar maximum only. Cycles 21 and 22 were much larger, but no valid radiation model exists for such large values. Moreover, the existing models like AP-8, CRRESPRO, and GOST describe the flux to an accuracy of a factor of two to five. There is clear need to accurately predict radiation exposure of astronauts and equipment at all times between the solar minimum and solar maximum, not only on the short duration Space Shuttle flights, but also the longer term stay onboard the International Space Station. In our approach we are taking into account some important parameters, which are responsible for energy losses of protons within the belts. These energy losses are primarily to electrons and by collisions to atmospheric nuclei. Accordingly the atmospheric density dependence at a certain altitude during a specific solar activity is an important parameter that needs to be accurately incorporated into a realistic model. We are involved in developing such a model, which would enable us to predict the radiation exposure for all occasions.

  1. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record...

  2. 10 CFR 35.70 - Surveys of ambient radiation exposure rate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Surveys of ambient radiation exposure rate. 35.70 Section 35.70 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL General Technical Requirements § 35.70 Surveys of ambient radiation exposure rate. (a) In addition to the surveys required by Part 20 of this chapter, a licensee...

  3. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record...

  4. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record...

  5. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record...

  6. Configuration splitting and gamma-decay transition rates in the two-group shell model

    SciTech Connect

    Isakov, V. I.

    2015-09-15

    Expressions for reduced gamma-decay transition rates were obtained on the basis of the twogroup configuration model for the case of transitions between particles belonging to identical groups of nucleons. In practical applications, the present treatment is the most appropriate for describing decays for odd–odd nuclei in the vicinity of magic nuclei or for nuclei where the corresponding subshells stand out in energy. Also, a simple approximation is applicable to describing configuration splitting in those cases. The present calculations were performed for nuclei whose mass numbers are close to A ∼ 90, including N = 51 odd—odd isotones.

  7. Lifetime measurements and dipole transition rates for superdeformed states in {sup 190}Hg.

    SciTech Connect

    Amro, H.

    1999-03-24

    The Doppler-shift attenuation method was used to measure life-times of superdeformed (SD) states for both the yrast and the first excited superdeformed band of {sup 190}Hg. Intrinsic quadruple moments Q{sub 0} were extracted. For the first time, the dipole transition rates have been extracted for the inter-band transitions which connect the excited SD band to the yrast states in the second minimum. The results support the interpretation of the excited SD band as a rotational band built on an octupole vibration.

  8. Gravity waves as a probe of the Hubble expansion rate during an electroweak scale phase transition

    SciTech Connect

    Chung, Daniel J. H.; Zhou Peng

    2010-07-15

    Just as big bang nucleosynthesis allows us to probe the expansion rate when the temperature of the Universe was around 1 MeV, the measurement of gravity waves from electroweak scale first order phase transitions may allow us to probe the expansion rate when the temperature of the Universe was at the electroweak scale. We compute the simple transformation rule for the gravity wave spectrum under the scaling transformation of the Hubble expansion rate. We then apply this directly to the scenario of quintessence kination domination and show how gravity wave spectra would shift relative to Laser Interferometer Space Antenna and Big Bang Observer projected sensitivities.

  9. Relativistic many-body calculations of lifetimes, rates, and line strengths of multipole transitions between 3l-1 4l' states in Ni-like ions

    SciTech Connect

    Safronova, U I; Safronova, A S; Beiersdorfer, P

    2007-10-08

    Transition rates and line strengths are calculated for electric-multipole (E2 and E3) and magnetic-multipole (M1, M2, and M3) transitions between 3s{sup 2}3p{sup 6}3d{sup 10}, 3s{sup 2}3p{sup 6}3d{sup 9}4l, 3s{sup 2}3p{sup 5}3d{sup 10}4l, and 3s3p{sup 6}3d{sup 10}4l states (with 4l = 4s, 4p, 4d, and 4f) in Ni-like ions with the nuclear charges ranging from Z = 34 to 100. Relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate retarded multipole matrix elements. Transition energies used in the calculation of line strengths and transition rates are from second-order RMBPT. Lifetimes of the 3s{sup 2}3p{sup 6}3d{sup 9}4s levels are given for Z = 34-100. Taking into account that calculations were performed in a very broad range of Z, most of the data are presented in graphs as Z-dependencies. The full set of data is given only for Ni-like W ion. In addition, we also give complete results for the 3d4s{sup 3}D{sub 2}-3d4s {sup 3}D{sub 1} magnetic-dipole transition, as the transition may be observed in future experiments, which measure both transition energies and radiative rates. These atomic data are important in the modeling of radiation spectra from Ni-like multiply-charged ions generated in electron beam ion trap experiments as well as for laboratory plasma diagnostics including fusion research.

  10. Performance of the Time Expansion Chamber / Transition Radiation Detector in PHENIX Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Luiz Silva, Cesar

    2004-10-01

    The Time Expansion Chamber / Transition Radiation Detector (TEC/TRD) in the PHENIX Experiment at RHIC measures ionization losses (dE/dX) and transition radiation from charged particles produced by beam collisions. It is designed to perform tracking and identification for charged particles on very high particle multiplicity environment. The TEC/TRD consists of 24 wire chambers readout on both sides filled with recycled Xe-based gas mixture. This wire chamber configuration, besides providing measurements of ionization losses for charged particles, can absorb X-Ray photons generated by transition radiation from incident particles with γ>1000 crossing fiber radiators placed at the entrance of the chambers. This allows TEC/TRD to distinguish electrons from the huge pion signal produced over a broad momentum range (1GeV/c

  11. Revisiting radiative deep-level transitions in CuGaSe2 by photoluminescence

    NASA Astrophysics Data System (ADS)

    Spindler, Conrad; Regesch, David; Siebentritt, Susanne

    2016-07-01

    Recent defect calculations suggest that the open circuit voltage of CuGaSe2 solar cells can be limited by deep intrinsic electron traps by GaCu antisites and their complexes with Cu-vacancies. To gain experimental evidence, two radiative defect transitions at 1.10 eV and 1.24 eV are characterized by steady-state photoluminescence on epitaxial-grown CuGaSe2 thin films. Cu-rich samples are studied, since they show highest crystal quality, exciton luminescence, and no potential fluctuations. Variations of the laser intensity and temperature dependent measurements suggest that emission occurs from two deep donor-like levels into the same shallow acceptor. At 10 K, power-law exponents of 1 (low excitation regime) and 1/2 (high excitation regime) are observed identically for both transitions. The theory and a fitting function for the double power law is derived. It is concluded that the acceptor becomes saturated by excess carriers which changes the exponent of all transitions. Activation energies determined from the temperature quenching depend on the excitation level and show unexpected values of 600 meV and higher. The thermal activation of non-radiative processes can explain the distortion of the ionization energies. Both the deep levels play a major role as radiative and non-radiative recombination centers for electrons and can be detrimental for photovoltaic applications.

  12. Methodology for estimating radiation dose rates to freshwater biota exposed to radionuclides in the environment

    SciTech Connect

    Blaylock, B.G.; Frank, M.L.; O`Neal, B.R.

    1993-08-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy`s (DOE`s) recommended dose rate limit of 0.4 mGy h{sup {minus}1} (1 rad d{sup {minus}1}). A dose rate no greater than 0.4 mGy h{sup {minus}1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE`s recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0. 1 mGy h{sup {minus}1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be conducted.

  13. On the transition rates of the Fe X and Fe XIV corona lines

    SciTech Connect

    Trabert, E

    2003-11-20

    Despite a considerable scatter of the theoretical predictions of the M1/E2 transition rate of the ''red iron line'' (FeX) in the solar corona, there is disagreement of all the results with the single measurement that used an electrostatic ion trap. Employing a heavy-ion storage ring for measuring the same transition in isoelectronic ions of Co, Ni, and Cu, the situation has been clarified, and a new data point for FeX can be determined by extrapolation. This result agrees with the basic atomic structure prediction for the line strength in combination with the experimental transition energy. For the ''green iron line'' (FeXIV), a recent measurement with an electron beam ion trap has resolved similar discrepancies.

  14. A transition in the spatially integrated reaction rate of bimolecular reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Arshadi, Masoud; Rajaram, Harihar

    2015-09-01

    Numerical simulations of diffusion with bimolecular reaction demonstrate a transition in the spatially integrated reaction rate—increasing with time initially, and transitioning to a decrease with time. In previous work, this reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), leading to predictions that front motion scales as √t, and correspondingly the spatially integrated reaction rate decreases as the square root of time 1/√t. We present a general nondimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the spatially integrated reaction rate scales as √t rather than 1/√t. The duration of this early time regime (where the spatially integrated reaction rate is kinetically rather than diffusion controlled) is shown to depend on the kinetic rate parameters, diffusion coefficients, and initial concentrations of the two species. Numerical simulation results confirm the theoretical estimates of the transition time. We present illustrative calculations in the context of in situ chemical oxidation for remediation of fractured rock systems where contaminants are largely dissolved in the rock matrix. We consider different contaminants of concern (COCs), including TCE, PCE, MTBE, and RDX. While the early time regime is very short lived for TCE, it can persist over months to years for MTBE and RDX, due to slow oxidation kinetics.

  15. Critical desertification transition in semi-arid ecosystems: The role of local facilitation and colonization rate

    NASA Astrophysics Data System (ADS)

    Corrado, Raffaele; Cherubini, Anna Maria; Pennetta, Cecilia

    2015-05-01

    In this work we study the effect of two different ecological mechanisms on the desertification transition in arid or semi-arid ecosystems, modeled by a stochastic cellular automaton. Namely we consider the role of the facilitation mechanism, i.e. the local positive effects of plants on their neighborhood and of colonization factors, such as seed production, survival and germination probabilities. Within the model, the strength of these two mechanisms is determined by the parameters f and b, respectively controlling the rates of the recovery and colonization processes. In particular we focus on the full desertification transition occurring at increasing value of the mortality rate m and we discuss how the values of f and b affect the critical mortality mc , the critical exponents β and γσ‧, determining the power-law scaling of the average vegetation density and of the root-mean-square deviation of the density fluctuations, and the character of the transition: continuous or abrupt. We show that mc strongly depends on both f and b, a dependence which accounts for the higher resilience of the ecosystems to external stresses as a consequence of an increased effectiveness of positive feedback effects. On the other hand, concerning the value of the exponents and the character of the transition, our results point out that both these features are unaffected by changes in the strength of the local facilitation. Viceversa, we show that an increase of the colonization factor b significantly modifies the values of the exponents and the order of the transition, changing a continuous transition into an abrupt one. We explain these results in terms of the different range of the interactions characterizing facilitation and colonization mechanisms.

  16. Why heavy and light quarks radiate energy with similar rates

    SciTech Connect

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan

    2010-09-15

    The dead-cone effect has been predicted to reduce the magnitude of energy loss and jet quenching for heavy flavors produced with large p{sub T} in heavy-ion collisions. On the contrary, data from the Relativistic Heavy Ion Collider demonstrate a strong suppression of high-p{sub T} electrons from charm and bottom decays. We show that vacuum radiation of a highly virtual quark produced at high p{sub T} with a stripped-off color field develops a much wider dead cone, which screens the one related to the quark mass. Lacking the field, gluons cannot be radiated within this cone until the color field is regenerated and the quark virtuality cools down to the scale of the order of the quark mass. However, this takes longer than is essential for the observed jet quenching, leading to similar nuclear effects for the light and charm quark jets. Open beauty is expected to radiate much less within the p{sub T} range studied so far in heavy-ion collisions.

  17. Why heavy and light quarks radiate energy with similar rates

    NASA Astrophysics Data System (ADS)

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Iván

    2010-09-01

    The dead-cone effect has been predicted to reduce the magnitude of energy loss and jet quenching for heavy flavors produced with large pT in heavy-ion collisions. On the contrary, data from the Relativistic Heavy Ion Collider demonstrate a strong suppression of high-pT electrons from charm and bottom decays. We show that vacuum radiation of a highly virtual quark produced at high pT with a stripped-off color field develops a much wider dead cone, which screens the one related to the quark mass. Lacking the field, gluons cannot be radiated within this cone until the color field is regenerated and the quark virtuality cools down to the scale of the order of the quark mass. However, this takes longer than is essential for the observed jet quenching, leading to similar nuclear effects for the light and charm quark jets. Open beauty is expected to radiate much less within the pT range studied so far in heavy-ion collisions.

  18. New fine structure cooling rate. [electron impact transitions in the ionosphere

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.

    1976-01-01

    One of the dominant electron cooling processes in the ionosphere is caused by electron impact induced fine structure transitions among the ground state levels of atomic oxygen. This fine structure cooling rate is based on theoretical cross sections. Recent advances in the numerical cross section determinations to include polarization effects and more accurate representations of the atomic target result in new lower values. These cross sections are employed in this paper to derive a new fine structure cooling rate which is between 40% and 60% of the currently used rate. A new generalized formula is presented for the cooling rate (from which the fine structure cooling rate is derived), valid for arbitrary mass and temperature difference of the colliding particles and arbitrary inelastic energy difference.

  19. Quantum Calculation of Inelastic CO Collisions with H. III. Rate Coefficients for Ro-vibrational Transitions

    NASA Astrophysics Data System (ADS)

    Song, L.; Balakrishnan, N.; Walker, K. M.; Stancil, P. C.; Thi, W. F.; Kamp, I.; van der Avoird, A.; Groenenboom, G. C.

    2015-11-01

    We present calculated rate coefficients for ro-vibrational transitions of CO in collisions with H atoms for a gas temperature range of 10 K ≤ T ≤ 3000 K, based on the recent three-dimensional ab initio H-CO interaction potential of Song et al. Rate coefficients for ro-vibrational v=1,j=0-30\\to v\\prime =0,j\\prime transitions were obtained from scattering cross sections previously computed with the close-coupling (CC) method by Song et al. Combining these with the rate coefficients for vibrational v=1-5\\to v\\prime \\lt v quenching obtained with the infinite-order sudden approximation, we propose a new extrapolation scheme that yields the rate coefficients for ro-vibrational v=2-5,j=0-30\\to v\\prime ,j\\prime de-excitation. Cross sections and rate coefficients for ro-vibrational v=2,j=0-30\\to v\\prime =1,j\\prime transitions calculated with the CC method confirm the effectiveness of this extrapolation scheme. Our calculated and extrapolated rates are very different from those that have been adopted in the modeling of many astrophysical environments. The current work provides the most comprehensive and accurate set of ro-vibrational de-excitation rate coefficients for the astrophysical modeling of the H-CO collision system. The application of the previously available and new data sets in astrophysical slab models shows that the line fluxes typically change by 20%-70% in high temperature environments (800 K) with an H/H2 ratio of 1; larger changes occur for lower temperatures.

  20. Comparative investigation of three dose rate meters for their viability in pulsed radiation fields.

    PubMed

    Gotz, M; Karsch, L; Pawelke, J

    2015-06-01

    Pulsed radiation fields, characterized by microsecond pulse duration and correspondingly high pulse dose rates, are increasingly used in therapeutic, diagnostic and research applications. Yet, dose rate meters which are used to monitor radiation protection areas or to inspect radiation shielding are mostly designed, characterized and tested for continuous fields and show severe deficiencies in highly pulsed fields. Despite general awareness of the problem, knowledge of the specific limitations of individual instruments is very limited, complicating reliable measurements. We present here the results of testing three commercial dose rate meters, the RamION ionization chamber, the LB 1236-H proportional counter and the 6150AD-b scintillation counter, for their response in pulsed radiation fields of varied pulse dose and duration. Of these three the RamION proved reliable, operating in a pulsed radiation field within its specifications, while the other two instruments were only able to measure very limited pulse doses and pulse dose rates reliably. PMID:25978117

  1. Image Formation by Incoherent and Coherent Transition Radiation from Flat and Rough Surfaces

    SciTech Connect

    Stupakov, Gennady; /SLAC

    2012-03-01

    In this paper we derive equations for the image formation of transverse profile of a relativistic beam obtained by means of optical transition radiation (OTR) from flat and rough metal surfaces. The motivation behind this study lies in the desire to suppress coherent transition radiation (COTR) observed in experiments at modern free electron lasers. The physical mechanism behind the problem of COTR is that the OTR is predominantly radiated at small angles of order of 1/{gamma} where {gamma} is the relativistic factor of the beam. This means that the transverse formation size of the image is of order of {bar {lambda}}{gamma} where {bar {lambda}} = {lambda}/2{pi} with {lambda} the radiation wavelength. For relativistic beams this can be comparable or even exceed the transverse size of the beam, which would mean that the image of the beam has very little to do with its transverse profile. It is fortuitous, however, that the incoherent image is formed by adding radiation energy of electrons and results in the transverse formation size being of order of {bar {lambda}}/{theta}{sub a}, with {theta}{sub a} is the aperture angle of the optical system. The COTR image, in contrast, is formed by adding electromagnetic field of electrons, and leads to the formation size {bar {lambda}}{gamma}. In situations when the COTR intensity exceeds that of OTR the COTR imaging makes the diagnostic incapable of measuring the beam profile.

  2. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Ito, Kota; Nishikawa, Kazutaka; Iizuka, Hideo

    2016-02-01

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO2) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO2 film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.

  3. Radiative transitions in charm-strange meson from Nf = 2 twisted mass lattice QCD

    NASA Astrophysics Data System (ADS)

    Li, Ning; Wu, Ya-Jie

    2016-07-01

    We present an exploratory study on the radiative transition for the charm-strange meson: Ds∗→ D sγ using Nf = 2 twisted mass lattice quantum chromodynamics gauge configurations. The form factor for Ds meson is also determined. The simulation is performed on lattices with lattice spacings a = 0.067 fm and lattice size 323 × 64, and a = 0.085 fm and lattice size 243 × 48, respectively. Our numerical results for radiative decay width and the experimental data overlap within the margin of error.

  4. Transition from the incoherent to the coherent regime for propagative-wave based thermal radiation

    NASA Astrophysics Data System (ADS)

    Tsurimaki, Y.; Chapuis, P.-O.; Okajima, J.; Komiya, A.; Maruyama, S.; Vaillon, R.

    2016-01-01

    The transition from the incoherent to the coherent regime for thermal radiation between bodies trough a transparent medium is discussed. The canonical case of two parallel semi-infinite planar media is used as a basis to provide an insight into the physics and quantities ruling the distance at which coherent effects have an impact on the propagative component of the net heat flux exchanged. A practical criterion is proposed to define the distance below which radiation intensity framework should not be used, but instead fluctuational electrodynamics.

  5. Origins of Deviations from Transition-State Theory: Formulating a New Kinetic Rate Law for Dissolution of Silicates

    SciTech Connect

    Andreas Luttge; Jonathan Icenhower

    2005-12-20

    Present models for dissolution of silicate minerals and glasses, based on Transition-State Theory (TST), overestimate the reaction rate as solution compositions approach saturation with respect to the rate-governing solid.

  6. Dissolution rate and radiation dosimetry of metal tritides

    SciTech Connect

    Jow, Hong-Nian; Cheng, Yung-Sung

    1993-06-01

    Metal tritides including titanium tritide (Ti{sup 3}H{sub x}) and erbium tritide (Er{sup 3}H{sub x}) have been used as components of neutron generators. These compounds can be released to the air as aerosols during fabrication, assembling and testing of components or in accidental or fugitive releases. As a result, workers could be exposed to these compounds by inhalation. A joint research project between SNL and ITRI (Inhalation Toxicology Research Institute) was initiated last fall to investigate the solubility of metal tritides, retention and translocation of inhaled particles and internal dosimetry of metal tritides. The current understanding of metal tritides and their radiation dosimetry for internal exposure are very limited. There is no provision in the ICRP-30 for tritium dosimetry in metal tritide form. However, a few papers in the literature suggested that the solubility of metal tritide could be low. The current radiation protection guidelines for metal tritide particles are based on the assumption that the biological behavior is similar to tritiated water which behaves like body fluid with a relative short biological half life (10 days). If the solubility of metal tritide is low, the biological half life of metal tritide particles and the dosimetry of inhalation exposure to these particles could be quite different from tritiated water. This would have major implications in current radiation protection guidelines for metal tritides Including annual limits of intakes and derived air concentrations. The preliminary results of metal tritide dissolution study at ITRI indicate that the solubility of titanium tritide is low. The outlines of the project, the preliminary results and future work will be discussed in presentation.

  7. Stability and Occurrence Rate Constraints on the Planetary Sculpting Hypothesis for “Transitional Disks“

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Dawson, Rebekah

    2016-07-01

    Transitional disks, protoplanetary disks with deep and wide central gaps, may be the result of planetary sculpting. By comparing numerical planet-opening-gap models with observed gaps, we find systems of 3–6 giant planets are needed in order to open gaps with the observed depths and widths. We explore the dynamical stability of such multi-planet systems using N-body simulations that incorporate prescriptions for gas effects. We find they can be stable over a typical disk lifetime, with the help of eccentricity damping from the residual gap gas that facilitates planets locking into mean motion resonances. However, in order to account for the occurrence rate of transitional disks, the planet sculpting scenario demands gap-opening-friendly disk conditions, in particular, a disk viscosity α ≲ 0.001. In addition, the demography of giant planets at ˜3–30 au separations, poorly constrained by current data, has to largely follow occurrence rates extrapolated outward from radial velocity surveys, not the lower occurrence rates extrapolated inward from direct imaging surveys. Even with the most optimistic occurrence rates, transitional disks cannot be a common phase that most gas disks experience at the end of their life, as popularly assumed, simply because there are not enough planets to open these gaps. Finally, as consequences of demanding almost all giant planets at large separations participate in transitional disk sculpting, the majority of such planets must form early and end up in a chain of mean motion resonances at the end of disk lifetime.

  8. Optimal Control of Markov Processes with Age-Dependent Transition Rates

    SciTech Connect

    Ghosh, Mrinal K. Saha, Subhamay

    2012-10-15

    We study optimal control of Markov processes with age-dependent transition rates. The control policy is chosen continuously over time based on the state of the process and its age. We study infinite horizon discounted cost and infinite horizon average cost problems. Our approach is via the construction of an equivalent semi-Markov decision process. We characterise the value function and optimal controls for both discounted and average cost cases.

  9. Stability and Occurrence Rate Constraints on the Planetary Sculpting Hypothesis for “Transitional Disks“

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Dawson, Rebekah

    2016-07-01

    Transitional disks, protoplanetary disks with deep and wide central gaps, may be the result of planetary sculpting. By comparing numerical planet-opening-gap models with observed gaps, we find systems of 3–6 giant planets are needed in order to open gaps with the observed depths and widths. We explore the dynamical stability of such multi-planet systems using N-body simulations that incorporate prescriptions for gas effects. We find they can be stable over a typical disk lifetime, with the help of eccentricity damping from the residual gap gas that facilitates planets locking into mean motion resonances. However, in order to account for the occurrence rate of transitional disks, the planet sculpting scenario demands gap-opening-friendly disk conditions, in particular, a disk viscosity α ≲ 0.001. In addition, the demography of giant planets at ∼3–30 au separations, poorly constrained by current data, has to largely follow occurrence rates extrapolated outward from radial velocity surveys, not the lower occurrence rates extrapolated inward from direct imaging surveys. Even with the most optimistic occurrence rates, transitional disks cannot be a common phase that most gas disks experience at the end of their life, as popularly assumed, simply because there are not enough planets to open these gaps. Finally, as consequences of demanding almost all giant planets at large separations participate in transitional disk sculpting, the majority of such planets must form early and end up in a chain of mean motion resonances at the end of disk lifetime.

  10. Single-shot electro-optic sampling of coherent transition radiation at the A0 Photoinjector

    SciTech Connect

    Maxwell, T.J.; Ruan, J.; Piot, P.; Thurman-Keup, R.; /Fermilab

    2011-08-01

    Future collider applications and present high-gradient laser plasma wakefield accelerators operating with picosecond bunch durations place a higher demand on the time resolution of bunch distribution diagnostics. This demand has led to significant advancements in the field of electro-optic sampling over the past ten years. These methods allow the probing of diagnostic light such as coherent transition radiation or the bunch wakefields with sub-picosecond time resolution. Potential applications in shot-to-shot, non-interceptive diagnostics continue to be pursued for live beam monitoring of collider and pump-probe experiments. Related to our developing work with electro-optic imaging, we present results on single-shot electro-optic sampling of the coherent transition radiation from bunches generated at the A0 photoinjector.

  11. Dissolution rate and radiation dosimetry of metal tritides

    SciTech Connect

    Cheng, Y.

    1993-12-31

    Metal tritides including titanium tritide (Ti{sup 3}H{sub x}) and erbium tritide (Er{sup 3}H{sub x}) have been used as components of neutron generators. These compounds can be released to the air as aerosols during fabrication, assembling, and testing of components or in accidental or fugitive releases; as a result, workers may be exposed to these compounds by inhalation. A joint research project between Sandia National Laboratories and the Inhalation Toxicology Research Institute was initiated to investigate the solubility of metal tritide particles, to determine retention and translocation of inhaled particles in animals, and to develop an internal dosimetry model. The current understanding of metal tritides and their radiation dosimetry for internal exposure is very limited. The ICRP Report 30 does not provide for tritium dosimetry in metal tritide form. The current radiation protection guidelines for metal tritide particles are based on the assumption that the biological behavior is similar to tritiated water which could be easily absorbed into body fluid, and therefore, a relatively short biological half life (10 days). If the solubility is low, the biological half life of metal tritide particles and the dosimetry of inhalation exposure to these particles could be quite different from tritiated water. This would have significant implications in the current health protection guidelines including annual limits of intakes and derived air concentrations. The preliminary results of our metal tritide dissolution study indicated that the solubility of titanium tritide is low.

  12. Developments in on-line, electron-beam emittance measurements using optical transition radiation techniques

    SciTech Connect

    Feldman, R.B.; Lumpkin, A.H. ); Rule, D.W.; Fiorito, R.B. )

    1989-01-01

    We have developed image analysis software to facilitate the analysis of optical transition radiation (OTR) patterns generated by the electron beam from the Los Alamos free-electron laser facility. The software can be used for beam alignment, beam profile and angular divergence measurements, and the programs run on an IBM AT microcomputer. The programs and their use are described and some results shown. 2 refs., 17 figs.

  13. Transition Radiation Detector in the D0 colliding beam experiment at Fermilab

    SciTech Connect

    Piekarz, H.

    1995-04-01

    The construction, operation and response of the Transition Radiation Detector (TRD) at DO colliding beam experiment at Fermilab are presented. The use of the TRD signal to enhance electron identification and hadronic rejection in the multiparticle background characteristic for the antiproton-proton interactions at the center-of-mass energy of 1.8 TeV is also described and results are discussed.

  14. Room temperature broadband terahertz gains in graphene heterostructures based on inter-layer radiative transitions

    SciTech Connect

    Tang, Linlong; Du, Jinglei; Shi, Haofei Wei, Dongshan; Du, Chunlei

    2014-10-15

    We exploit inter-layer radiative transitions to provide gains to amplify terahertz waves in graphene heterostructures. This is achieved by properly doping graphene sheets and aligning their energy bands so that the processes of stimulated emissions can overwhelm absorptions. We derive an expression for the gain estimation and show the gain is insensitive to temperature variation. Moreover, the gain is broadband and can be strong enough to compensate the free carrier loss, indicating graphene based room temperature terahertz lasers are feasible.

  15. Reaction rate modeling in the deflagration to detonation transition of granular energetic materials

    SciTech Connect

    Son, S.F.; Asay, B.W.; Bdzil, J.B.; Kober, E.M.

    1996-07-01

    The problem of accidental initiation of detonation in granular material has been the initial focus of the Los Alamos explosives safety program. Preexisting models of deflagration-to-detonation transition (DDT) in granular explosives, especially the Baer and Nunziato (BN) model, have been examined. The main focus of this paper is the reaction rate model. Comparison with experiments are made using the BN rate model. Many features are replicated by the simulations. However, some qualitative features, such as inert plug formation in DDT tube-test experiments and other trends, are not produced in the simulations. By modifying the reaction rate model the authors show inert plug formation that more closely replicates the qualitative features of experimental observations. Additional improvements to the rate modeling are suggested.

  16. Formation and phase transitions of methane hydrates under dynamic loadings: Compression rate dependent kinetics

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Yin; Yoo, Choong-Shik

    2012-03-01

    We describe high-pressure kinetic studies of the formation and phase transitions of methane hydrates (MH) under dynamic loading conditions, using a dynamic-diamond anvil cell (d-DAC) coupled with time-resolved confocal micro-Raman spectroscopy and high-speed microphotography. The time-resolved spectra and dynamic pressure responses exhibit profound compression-rate dependences associated with both the formation and the solid-solid phase transitions of MH-I to II and MH-II to III. Under dynamic loading conditions, MH forms only from super-compressed water and liquid methane in a narrow pressure range between 0.9 and 1.6 GPa at the one-dimensional (1D) growth rate of 42 μm/s. MH-I to II phase transition occurs at the onset of water solidification 0.9 GPa, following a diffusion controlled mechanism. We estimated the activation volume to be -109 ± 29 Å3, primarily associated with relatively slow methane diffusion which follows the rapid interfacial reconstruction, or martensitic displacements of atomic positions and hydrogen bonds, of 51262 water cages in MH-I to 4351263 cages in MH-II. MH-II to III transition, on the other hand, occurs over a broad pressure range between 1.5 and 2.2 GPa, following a reconstructive mechanism from super-compressed MH-II clathrates to a broken ice-filled viscoelastic solid of MH-III. It is found that the profound dynamic effects observed in the MH formation and phase transitions are primarily governed by the stability of water and ice phases at the relevant pressures.

  17. Formation and phase transitions of methane hydrates under dynamic loadings: compression rate dependent kinetics.

    PubMed

    Chen, Jing-Yin; Yoo, Choong-Shik

    2012-03-21

    We describe high-pressure kinetic studies of the formation and phase transitions of methane hydrates (MH) under dynamic loading conditions, using a dynamic-diamond anvil cell (d-DAC) coupled with time-resolved confocal micro-Raman spectroscopy and high-speed microphotography. The time-resolved spectra and dynamic pressure responses exhibit profound compression-rate dependences associated with both the formation and the solid-solid phase transitions of MH-I to II and MH-II to III. Under dynamic loading conditions, MH forms only from super-compressed water and liquid methane in a narrow pressure range between 0.9 and 1.6 GPa at the one-dimensional (1D) growth rate of 42 μm/s. MH-I to II phase transition occurs at the onset of water solidification 0.9 GPa, following a diffusion controlled mechanism. We estimated the activation volume to be -109±29 Å(3), primarily associated with relatively slow methane diffusion which follows the rapid interfacial reconstruction, or martensitic displacements of atomic positions and hydrogen bonds, of 5(12)6(2) water cages in MH-I to 4(3)5(12)6(3) cages in MH-II. MH-II to III transition, on the other hand, occurs over a broad pressure range between 1.5 and 2.2 GPa, following a reconstructive mechanism from super-compressed MH-II clathrates to a broken ice-filled viscoelastic solid of MH-III. It is found that the profound dynamic effects observed in the MH formation and phase transitions are primarily governed by the stability of water and ice phases at the relevant pressures. PMID:22443783

  18. Determination of electron bunch shape using transition radiation and phase-energy measurements

    SciTech Connect

    Crosson, E.R.; Berryman, K.W.; Richman, B.A.

    1995-12-31

    We present data comparing microbunch temporal information obtained from electron beam phase-energy measurements with that obtained from transition radiation auto-correlation measurements. The data was taken to resolve some of the ambiguities in previous transition radiation results. By measuring the energy spectrum of the electron beam as a function of its phase relative to the accelerating field, phase-energy information was extracted. This data was analyzed using tomographic techniques to reconstruct the phase-space distribution assuming an electron energy dependence of E({var_phi}) = E{sub o} + E{sub acc}cos({var_phi}), where E{sub o} is the energy of an electron entering the field, E{sub acc} is the peak energy gain, and {var_phi} is the phase between the crest of the RF wave and an electron. Temporal information about the beam was obtained from the phase space distribution by taking the one dimensional projection along the time axis. We discuss the use of this technique to verify other transition radiation analysis methods.

  19. Laminar and turbulent flow solutions with radiation and ablation injection for Jovian entry. [radiative heating rates for the Galileo probe

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Tiwari, S. N.

    1980-01-01

    Laminar and turbulent flow-field solutions with coupled carbon-phenolic mass injection are presented for the forebody of a probe entering a nominal Jupiter atmosphere. Solutions are obtained for a 35-degree hyperboloid and for a 45-degree spherically blunted cone using a time-dependent, finite-difference method. The radiative heating rates for the coupled laminar flow are significantly reduced as compared to the corresponding no-blowing case; however, for the coupled turbulent flow, it is found that the surface radiative heating rates are substantially increased and often exceed the corresponding no-blowing values. Turbulence is found to have no effect on the surface radiative heating rates for the no-blowing solutions. The present results are compared with the other available solutions, and some additional solutions are presented.

  20. High-rate deposition of MgO by reactive ac pulsed magnetron sputtering in the transition mode

    SciTech Connect

    Kupfer, H.; Kleinhempel, R.; Richter, F.; Peters, C.; Krause, U.; Kopte, T.; Cheng, Y.

    2006-01-15

    A reactive ac pulsed dual magnetron sputtering process for MgO thin-film deposition was equipped with a closed-loop control of the oxygen flow rate (F{sub O2}) using the 285 nm magnesium radiation as input. Owing to this control, most of the unstable part of the partial pressure versus flowrate curve became accessible. The process worked steadily and reproducible without arcing. A dynamic deposition rate of up to 35 nm m/min could be achieved, which was higher than in the oxide mode by about a factor of 18. Both process characteristics and film properties were investigated in this work in dependence on the oxygen flow, i.e., in dependence on the particular point within the transition region where the process is operated. The films had very low extinction coefficients (<5x10{sup -5}) and refractive indices close to the bulk value. They were nearly stoichiometric with a slight oxygen surplus (Mg/O=48/52) which was independent of the oxygen flow. X-ray diffraction revealed a prevailing (111) orientation. Provided that appropriate rf plasma etching was performed prior to deposition, no other than the (111) peak could be detected. The intensity of this peak increased with increasing F{sub O{sub 2}}, indicating an even more pronounced (111) texture. The ion-induced secondary electron emission coefficient (iSEEC) was distinctly correlated with the markedness of the (111) preferential orientation. Both refractive index and (111) preferred orientation (which determines the iSEEC) were found to be improved in comparison with the MgO growth in the fully oxide mode. Consequently, working in the transition mode is superior to the oxide mode not only with respect to the growth rate, but also to most important film properties.

  1. Effect of radiator position and mass flux on the dryer room heat transfer rate

    NASA Astrophysics Data System (ADS)

    Mirmanto, M.; Sulistyowati, E. D.; Okariawan, I. D. K.

    A room radiator as usually used in cold countries, is actually able to be used as a heat source to dry goods, especially in the rainy season where the sun seldom shines due to much rain and cloud. Experiments to investigate effects of radiator position and mass flux on heat transfer rate were performed. This study is to determine the best position of the radiator and the optimum mass flux. The radiator used was a finned radiator made of copper pipes and aluminum fins with an overall dimension of 220 mm × 50 mm × 310 mm. The prototype room was constructed using plywood and wood frame with an overall size of 1000 mm × 1000 mm × 1000 mm. The working fluid was heated water flowing inside the radiator and air circulating naturally inside the prototype room. The nominal mass fluxes employed were 800, 900 and 1000 kg/m2 s. The water was kept at 80 °C at the radiator entrance, while the initial air temperature inside the prototype room was 30 °C. Three positions of the radiator were examined. The results show that the effect of the mass flux on the forced and free convection heat transfer rate is insignificant but the radiator position strongly affects the heat transfer rate for both forced and free convection.

  2. Transitions in genetic toggle switches driven by dynamic disorder in rate coefficients

    NASA Astrophysics Data System (ADS)

    Chen, Hang; Thill, Peter; Cao, Jianshu

    2016-05-01

    In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes with the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.

  3. Transitions in genetic toggle switches driven by dynamic disorder in rate coefficients.

    PubMed

    Chen, Hang; Thill, Peter; Cao, Jianshu

    2016-05-01

    In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes with the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network. PMID:27155656

  4. Excitation energies, polarizabilities, multipole transition rates, and lifetimes of ions along the francium isoelectronic sequence

    SciTech Connect

    Safronova, U. I.; Johnson, W. R.; Safronova, M. S.

    2007-10-15

    Relativistic many-body perturbation theory is applied to study properties of ions of the francium isoelectronic sequence. Specifically, energies of the 7s, 7p, 6d, and 5f states of Fr-like ions with nuclear charges Z=87-100 are calculated through third order; reduced matrix elements, oscillator strengths, transition rates, and lifetimes are determined for 7s-7p, 7p-6d, and 6d-5f electric-dipole transitions; and 7s-6d, 7s-5f, and 5f{sub 5/2}-5f{sub 7/2} multipole matrix elements are evaluated to obtain the lifetimes of low-lying excited states. Moreover, for the ions Z=87-92 calculations are also carried out using the relativistic all-order single-double method, in which single and double excitations of Dirac-Fock wave functions are included to all orders in perturbation theory. With the aid of the single-double wave functions, we obtain accurate values of energies, transition rates, oscillator strengths, and the lifetimes of these six ions. Ground state scalar polarizabilities in Fr I, Ra II, Ac III, and Th IV are calculated using relativistic third-order and all-order methods. Ground state scalar polarizabilities for other Fr-like ions are calculated using a relativistic second-order method. These calculations provide a theoretical benchmark for comparison with experiment and theory.

  5. Efficient dynamical correction of the transition state theory rate estimate for a flat energy barrier.

    PubMed

    Mökkönen, Harri; Ala-Nissila, Tapio; Jónsson, Hannes

    2016-09-01

    The recrossing correction to the transition state theory estimate of a thermal rate can be difficult to calculate when the energy barrier is flat. This problem arises, for example, in polymer escape if the polymer is long enough to stretch between the initial and final state energy wells while the polymer beads undergo diffusive motion back and forth over the barrier. We present an efficient method for evaluating the correction factor by constructing a sequence of hyperplanes starting at the transition state and calculating the probability that the system advances from one hyperplane to another towards the product. This is analogous to what is done in forward flux sampling except that there the hyperplane sequence starts at the initial state. The method is applied to the escape of polymers with up to 64 beads from a potential well. For high temperature, the results are compared with direct Langevin dynamics simulations as well as forward flux sampling and excellent agreement between the three rate estimates is found. The use of a sequence of hyperplanes in the evaluation of the recrossing correction speeds up the calculation by an order of magnitude as compared with the traditional approach. As the temperature is lowered, the direct Langevin dynamics simulations as well as the forward flux simulations become computationally too demanding, while the harmonic transition state theory estimate corrected for recrossings can be calculated without significant increase in the computational effort. PMID:27609008

  6. Methodology for Estimating Radiation Dose Rates to Freshwater Biota Exposed to Radionuclides in the Environment

    SciTech Connect

    Blaylock, B.G.

    1993-01-01

    The purpose of this report is to present a methodology for evaluating the potential for aquatic biota to incur effects from exposure to chronic low-level radiation in the environment. Aquatic organisms inhabiting an environment contaminated with radioactivity receive external radiation from radionuclides in water, sediment, and from other biota such as vegetation. Aquatic organisms receive internal radiation from radionuclides ingested via food and water and, in some cases, from radionuclides absorbed through the skin and respiratory organs. Dose rate equations, which have been developed previously, are presented for estimating the radiation dose rate to representative aquatic organisms from alpha, beta, and gamma irradiation from external and internal sources. Tables containing parameter values for calculating radiation doses from selected alpha, beta, and gamma emitters are presented in the appendix to facilitate dose rate calculations. The risk of detrimental effects to aquatic biota from radiation exposure is evaluated by comparing the calculated radiation dose rate to biota to the U.S. Department of Energy's (DOE's) recommended dose rate limit of 0.4 mGy h{sup -1} (1 rad d{sup -1}). A dose rate no greater than 0.4 mGy h{sup -1} to the most sensitive organisms should ensure the protection of populations of aquatic organisms. DOE's recommended dose rate is based on a number of published reviews on the effects of radiation on aquatic organisms that are summarized in the National Council on Radiation Protection and Measurements Report No. 109 (NCRP 1991). The literature identifies the developing eggs and young of some species of teleost fish as the most radiosensitive organisms. DOE recommends that if the results of radiological models or dosimetric measurements indicate that a radiation dose rate of 0.1 mGy h{sup -1} will be exceeded, then a more detailed evaluation of the potential ecological consequences of radiation exposure to endemic populations should be

  7. Shear Rate Dependence of the Pāhoehoe to `A`ā Transition

    NASA Astrophysics Data System (ADS)

    Soule, A.; Cashman, K.

    2003-12-01

    The surface morphology transition from pāhoehoe-to-`a`ā on basaltic lava flows can be used to interpret the emplacement conditions of solidified flows and predict the behavior of active flows. Investigations of this phenomenon have emphasized either the mechanical properties of the solidified crust (e.g., Kilburn, 1981), or the rheologic properties of the liquid interior (e.g., Peterson and Tilling, 1980). In the latter, the boundary separating pāhoehoe and `a`ā is represented qualitatively by an inverse relationship between apparent viscosity and shear rate. Recent investigations of the rheology dependence of the transition have revealed a critical crystallinity range at which pāhoehoe transforms to `a`ā of φ = 0.18 to 0.35 that can vary between flows. Here, we extend this approach to investigate the shear rate dependence of the pāhoehoe-to-`a`ā transition. We use a suspension of corn syrup and rice to represent lava with crystals. Suspensions of varying particle concentration (φ = 0.15 to 0.40) are sheared in a Couette rheometer over a range of constant shear rates (0.1 to 2.0 s-1). We describe three deformation regimes, clumping, shear zone formation, and fluid failure that produce changes in the suspension microstructure and lead to shear localization. The deformation mechanisms are imaged with digital video and quantified by tracking individual particle paths. In the presence of cooling, these shear localization may be the mechanism by which `a`ā flow surfaces form. We find that the onset of each regime follows the expected inverse relationship between shear rate and suspension viscosity. We expect that the results of these experiments apply to the thermal boundary layer of a flow and thus bridge the distinct approaches taken to investigate this phenomenon. The results of these experiments can contribute to more detailed lava flow modeling and better assessment of flow dynamics from solidified lava flows.

  8. Effect of a finite ionization rate on the radiative heating of outer planet atmospheric entry probes

    NASA Technical Reports Server (NTRS)

    Nelson, H. F.

    1982-01-01

    The influence of finite rate ionization in the inviscid gas just behind the stagnation shock wave on the radiative heating of probes entering the hydrogen-helium atmosphere of the major plants was investigated. Two opposing conclusions were reached as to how the ionization rate assumption affects the radiative transfer. Hydrogen-helium shock waves with a cold nonblowing wall boundary condition at the probe heat shield are emphasized. The study is limited to the stagnation shock layer.

  9. 10 CFR 35.2070 - Records of surveys for ambient radiation exposure rate.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of surveys for ambient radiation exposure rate. 35.2070 Section 35.2070 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2070 Records of surveys for ambient radiation exposure rate. A licensee shall retain a record of each survey required by § 35.70 for 3...

  10. Transitions.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1993-01-01

    This theme issue on transitions for individuals with disabilities contains nine papers discussing transition programs and issues. "Transition Issues for the 1990s," by Michael J. Ward and William D. Halloran, discusses self-determination, school responsibility for transition, continued educational engagement of at-risk students, and service…

  11. Artificial accelerators of the molecular chaperone Hsp90 facilitate rate-limiting conformational transitions.

    PubMed

    Zierer, Bettina K; Weiwad, Matthias; Rübbelke, Martin; Freiburger, Lee; Fischer, Gunter; Lorenz, Oliver R; Sattler, Michael; Richter, Klaus; Buchner, Johannes

    2014-11-01

    The molecular chaperone Hsp90 undergoes an ATP-driven cycle of conformational changes in which large structural rearrangements precede ATP hydrolysis. Well-established small-molecule inhibitors of Hsp90 compete with ATP-binding. We wondered whether compounds exist that can accelerate the conformational cycle. In a FRET-based screen reporting on conformational rearrangements in Hsp90 we identified compounds. We elucidated their mode of action and showed that they can overcome the intrinsic inhibition in Hsp90 which prevents these rearrangements. The mode of action is similar to that of the co-chaperone Aha1 which accelerates the Hsp90 ATPase. However, while the two identified compounds influence conformational changes, they target different aspects of the structural transitions. Also, the binding site determined by NMR spectroscopy is distinct. This study demonstrates that small molecules are capable of triggering specific rate-limiting transitions in Hsp90 by mechanisms similar to those in protein cofactors. PMID:25244159

  12. Phase transition of dynamical herd behaviors for Yen Dollar exchange rates

    NASA Astrophysics Data System (ADS)

    Yoon, Seong-Min; Choi, J. S.; Kim, Y.; Kim, Kyungsik

    2006-01-01

    We study the herd behavior and the phase transition for the yen-dollar exchange rate in the Japanese financial market. It is obtained that the probability distribution of returns satisfies the power-law behavior P(R)≃R with scaling exponents β=3.11, 2.81, and 2.29 at time intervals τ=1min, 30min, and 1 h. The crash region in which the probability density increases with the increasing return appears, when the herding parameter h satisfies h⩾2.33 for the case of τ<30min. We especially obtain that no crash occurs τ>30min and that the probability distribution of price returns occurs in the phase transition at τ=30min.

  13. An Efficient Model of DSSS System Using Multirate and Data Rate Transition Techniques

    NASA Astrophysics Data System (ADS)

    David, Rajiv Mohan; Shama, Kumara; Nayak, K. Prabhakar

    2014-12-01

    In this paper, an analytical and simulated approach has been developed for evaluating the performance of Bit Error Rate (BER) of Direct Sequence Spread Spectrum (DSSS). It is also demonstrated in this paper that how BER can be minimised using Rate Transition techniques. The work uses effective spreading sequence to achieve variable data rate transmission. In this research work, blind detection of the user signal has been considered assuming the receiver has prior knowledge of the user's spreading code and is synchronised by using increased matched filter gain. Thus, it is not required to control the information to be transmitted along with the user signal. An attempt has also been made to show that how bandwidth utilisation has been halved using multirate techniques. This innovative research findings make use of implementing an efficient DSSS with reduced BER.

  14. Zeeman Tuning Rate for Q Branch Transitions in the v3 Band of NO2

    NASA Technical Reports Server (NTRS)

    Mahon, C. R.; Chackerian, C., Jr.; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    Zeeman tuning rates have bee a measured for Q branch transitions in the v3 band of NO2(approx.1610/cm) for magnetic fields of up to 564 Gauss. The average measured tuning rate is 0.1815(53) x 10(exp -3)/cm/Gauss with no dependence on Ka within the approx. equal to 3% standard deviation. Despite significant ,pin-rotation interaction between several of the observed levels the result agrees with the simple linear model for Honda case (be molecules (tuning rate = 2muogs = 0.18696 x 10(exp -3)/cm/Gauss) which neglects the spin-rotation interaction between different J states. The Zeeman effect is analyzed in a full treatment of the Hamiltonian, including spin-rotation interaction, in order to account for the agreement with 2muogs and to explore the onset of spin-rotation effects in the spectra as the magnetic field is increased.

  15. Study of the effect of dose-rate on radiation-induced damage to human erythrocytes

    NASA Astrophysics Data System (ADS)

    Krokosz, Anita; Koziczak, Renata; Gonciarz, Marta; Szweda-Lewandowska, Zofia

    2006-01-01

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%) were irradiated with γ-rays at three dose-rates of 66.7, 36.7, 25 Gy min -1 in order to investigate the influence of the dose-rate on radiation-induced membrane damage, hemoglobin oxidation and loss of reduced glutathione. The obtained results showed that such processes as erythrocyte hemolysis, lipid and protein destruction depend on the radiation dose-rate. The parameter values describing these processes showed an inverse dose-rate effect.

  16. Study of Photoionization Processes of 3d Transition Metal Compound CoCl2 Using Synchrotron Radiation

    SciTech Connect

    Goerguelueer, Oe.; Tutay, A.; Al-Hada, M.; Richter, T.; Zimmermann, P.; Martins, M.

    2007-04-23

    In this work, the photoionization processes of 3d transition metal compound CoCl2 have been investigated using monochromatized synchrotron radiation of the storage ring BESSY II and the atomic-molecular beam technique.

  17. Radiative and nonradiative exciton energy transfer in monolayers of two-dimensional group-VI transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Manolatou, Christina; Wang, Haining; Chan, Weimin; Tiwari, Sandip; Rana, Farhan

    2016-04-01

    We present results on the rates of interlayer energy transfer between excitons in monolayers of two-dimensional group-VI transition metal dichalcogenides (TMDs). We consider both radiative (mediated by real photons) and nonradiative (mediated by virtual photons) mechanisms of energy transfer using a unified Green's function approach that takes into account modification of the exciton energy dispersions as a result of interactions. The large optical oscillator strengths associated with excitons in TMDs result in very fast energy transfer rates. The energy transfer times depend on the exciton momentum, exciton linewidth, and the interlayer separation and can range from values less than 100 femtoseconds to more than tens of picoseconds. Whereas inside the light cone the energy transfer rates of longitudinal and transverse excitons are comparable, outside the light cone the energy transfer rates of longitudinal excitons far exceed those of transverse excitons. Average energy transfer times for a thermal ensemble of longitudinal and transverse excitons is temperature dependent and can be smaller than a picosecond at room temperature for interlayer separations smaller than 10 nm. Energy transfer times of localized excitons range from values less than a picosecond to several tens of picoseconds. When the exciton scattering and dephasing rates are small, energy transfer dynamics exhibit coherent oscillations. Our results show that electromagnetic interlayer energy transfer can be an efficient mechanism for energy exchange between TMD monolayers.

  18. Ensemble Monte Carlo calculation of the hole initiated impact ionization rate in bulk GaAs and silicon using a k-dependent, numerical transition rate formulation

    NASA Technical Reports Server (NTRS)

    Oguzman, Ismail H.; Wang, Yang; Kolnik, Jan; Brennan, Kevin F.

    1995-01-01

    The hole initiated impact ionization rate in bulk silicon and GaAs is calculated using a numerical formulation of the impact ionization transition rate incorporated into an ensemble Monte Carlo simulation. The transition rate is calculated from Fermi's golden rule using a two-body screened Coulomb interaction including a wavevector dependent dielectric function. It is found that the effective threshold for hole initiated ionization is relatively soft in both materials, that the split-off band dominates the ionization process in GaAs. and that no clear dominance by any one band is observed in silicon, though the rate out of the light hole band is greatest.

  19. Monitoring of radiation dose rates around a clinical nuclear medicine site

    NASA Astrophysics Data System (ADS)

    Shao, Chia-Ho; Lu, Cheng-Chang; Chen, Tou-Rong; Weng, Jui-Hung; Kao, Pan-Fu; Dong, Shang-Lung; Chou, Ming-Jen

    2014-11-01

    The monitoring of radiation dose around the nuclear medicine site is an important study issue. In this study, TLD-100H radiation dosimeters were used to measure the ambient radiation dose rates around a clinical nuclear medicine site in order to investigate the latent hot zones of radiation exposure. Results of this study showed that the radiation doses measured from all piping and storage systems were comparable to the background dose. A relatively high dose was observed at the single bend point of waste water piping of the PET/CT. Another important finding was the unexpected high dose rates observed at the non-restricted waiting area (NRWA) of SPECT. To conclude, this study provides useful information for further determination of an appropriate dose reduction strategy to achieve the ALARA principle in a clinical nuclear medicine site.

  20. Cloud properties and associated radiative heating rates in the tropical western Pacific

    SciTech Connect

    Mather, Jim H.; McFarlane, Sally A.; Miller, Mark A.; Johnson, Karen L.

    2007-03-01

    Radiative heating of the atmosphere affects cloud evolution on the cloud scale and it influences large-scale vertical motion. Obtaining good estimates of radiative heating rate profiles has been difficult due to a lack of cloud profile observations. The Atmospheric Radiation Measurement (ARM) program has been measuring cloud property distributions at sites around the globe including three in the tropical western Pacific (TWP) region. We have analyzed a month of these remote sensing observations at Manus and Nauru to calculate time series of vertical cloud property profiles and radiative heating rates. This data set will be an important tool for describing radiative processes in the tropics and assessing the simulation of these processes in dynamical models.

  1. β+ Gamow-Teller transition strengths from 46Ti and stellar electron-capture rates.

    PubMed

    Noji, S; Zegers, R G T; Austin, Sam M; Baugher, T; Bazin, D; Brown, B A; Campbell, C M; Cole, A L; Doster, H J; Gade, A; Guess, C J; Gupta, S; Hitt, G W; Langer, C; Lipschutz, S; Lunderberg, E; Meharchand, R; Meisel, Z; Perdikakis, G; Pereira, J; Recchia, F; Schatz, H; Scott, M; Stroberg, S R; Sullivan, C; Valdez, L; Walz, C; Weisshaar, D; Williams, S J; Wimmer, K

    2014-06-27

    The Gamow-Teller strength in the β(+) direction to (46)Sc was extracted via the (46)Ti(t,(3)He + γ) reaction at 115  MeV/u. The γ-ray coincidences served to precisely measure the very weak Gamow-Teller transition to a final state at 991 keV. Although this transition is weak, it is crucial for accurately estimating electron-capture rates in astrophysical scenarios with relatively low stellar densities and temperatures, such as presupernova stellar evolution. Shell-model calculations with different effective interactions in the pf shell-model space do not reproduce the experimental Gamow-Teller strengths, which is likely due to sd-shell admixtures. Calculations in the quasiparticle random phase approximation that are often used in astrophysical simulations also fail to reproduce the experimental Gamow-Teller strength distribution, leading to strongly overestimated electron-capture rates. Because reliable theoretical predictions of Gamow-Teller strengths are important for providing astrophysical electron-capture reaction rates for a broad set of nuclei in the lower pf shell, we conclude that further theoretical improvements are required to match astrophysical needs. PMID:25014806

  2. Calculating infinite-medium {alpha}-eigenvalue spectra with a transition rate matrix method

    SciTech Connect

    Betzler, B. R.; Kiedrowski, B. C.; Brown, F. B.; Martin, W. R.

    2013-07-01

    The time-dependent behavior of the energy spectrum in neutron transport was investigated with a formulation, based on continuous-time Markov processes, for computing {alpha}-eigenvalues and eigenvectors in an infinite medium. For this, a research Monte Carlo code called TORTE was created and used to estimate elements of a transition rate matrix. TORTE is capable of using both multigroup and continuous-energy nuclear data, and verification was performed. Eigenvalue spectra for infinite homogeneous mixtures were obtained and an eigenfunction expansion was used to investigate transient behavior of the neutron energy spectrum. (authors)

  3. Photonuclear and radiative capture reaction rates for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Beard, Mary; Frauendorf, S.; Kaempfer, B.; Scwengner, R.; Wiescher, M.

    2011-10-01

    The vast majority of nuclei heavier than iron are synthesisized via the capture of neutrons. There are however 35 naturally occurring nuclei, including isotopes of Mo and La, located on the neutron-deficient size of the valley of stability. It has been proposed that these nuclei, referred to as p-nuclei, are produced via sequential photo-dissociation reactions in the oxygen-neon shell burning regions of a pre-supernova star. As such, cross sections for p-nuclei production are particularly sensitive to the gamma-ray strength function, which, though dominated by the giant dipole resonance, may contain extra strength contributions near to the neutron threshold. Recently new (γ, γ') cross section measurements have been performed at the ELBE facility at Helmholtz-Zentrum Dresden-Rossendorf for the nuclei ^92-100Mo, ^88Sr, ^90Zr and ^139La probing the photo-absorption cross section over an energy range 4.5 - 6 MeV, up to the neutron separation threshold. The use of these measurements as a test of existing gamma-ray strength function models, and the consequent impact on p-nuclei production rates, will be discussed.

  4. Quantum-Classical Phase Transition of the Escape Rate of Two-Sublattice Antiferromagnetic Large Spins

    NASA Astrophysics Data System (ADS)

    Owerre, Solomon Akaraka; Paranjape, M. B.

    2014-11-01

    The Hamiltonian of a two-sublattice antiferromagnetic spins, with single (hard-axis) and double ion anisotropies described by H = J {\\hat S}1...\\hatS 2-2Jz \\hat {S}1z\\hat {S}2z+K(\\hat {S}1z2 +\\hat {S}2z2) is investigated using the method of effective potential. The problem is mapped to a single particle quantum-mechanical Hamiltonian in terms of the relative coordinate and reduced mass. We study the quantum-classical phase transition of the escape rate of this model. We show that the first-order phase transition for this model sets in at the critical value Jc = (Kc+Jz, c)/2 while for the anisotropic Heisenberg coupling H = J(S1xS2x +S1yS2y) + JzS1zS2z + K(S1z2+ S2z2) we obtain Jc = (2Kc-Jz, c)/3. The phase diagrams of the transition are also studied.

  5. Rates of E1, E2, M1, and M2 transitions in Ni II

    NASA Astrophysics Data System (ADS)

    Cassidy, C. M.; Hibbert, A.; Ramsbottom, C. A.

    2016-03-01

    Aims: We present rates for all E1, E2, M1, and M2 transitions among the 295 fine-structure levels of the configurations 3d9, 3d84s, 3d74s2, 3d84p, and 3d74s4p, determined through an extensive configuration interaction calculation. Methods: The CIV3 code developed by Hibbert and coworkers is used to determine for these levels configuration interaction wave functions with relativistic effects introduced through the Breit-Pauli approximation. Results: Two different sets of calculations have been undertaken with different 3d and 4d functions to ascertain the effect of such variation. The main body of the text includes a representative selection of data, chosen so that key points can be discussed. Some analysis to assess the accuracy of the present data has been undertaken, including comparison with earlier calculations and the more limited range of experimental determinations. The full set of transition data is given in the supplementary material as it is very extensive. Conclusions: We believe that the present transition data are the best currently available. Full Table 4 and Tables 5-8 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A107

  6. Conditionally-Sampled Turbulent and Non-turbulent Measurements of Entropy Generation Rate in the Transition Region of Boundary Layers

    SciTech Connect

    Edmond J. Walsh; Kevin P. Nolan; Donald M. McEligot; Ralph J. Volino; Adrian Bejan

    2007-05-01

    Conditionally-sampled boundary layer data for an accelerating transitional boundary layer have been analyzed to calculate the entropy generation rate in the transition region. By weighing the nondimensional dissipation coefficient for the laminar-conditioned-data and turbulent-conditioned-data with the intermittency factor the average entropy generation rate in the transition region can be determined and hence be compared to the time averaged data and correlations for steady laminar and turbulent flows. It is demonstrated that this method provides, for the first time, an accurate and detailed picture of the entropy generation rate during transition. The data used in this paper have been taken from detailed boundary layer measurements available in the literature. This paper provides, using an intermittency weighted approach, a methodology for predicting entropy generation in a transitional boundary layer.

  7. Transitions.

    ERIC Educational Resources Information Center

    Field, David; And Others

    1992-01-01

    Includes four articles: "Career Aspirations" (Field); "Making the Transition to a New Curriculum" (Baker, Householder); "How about a 'Work to School' Transition?" (Glasberg); and "Technological Improvisation: Bringing CNC to Woodworking" (Charles, McDuffie). (SK)

  8. Effects of low sampling rate in the digital data-transition tracking loop

    NASA Technical Reports Server (NTRS)

    Mileant, A.; Million, S.; Hinedi, S.

    1994-01-01

    This article describes the performance of the all-digital data-transition tracking loop (DTTL) with coherent and noncoherent sampling using nonlinear theory. The effects of few samples per symbol and of noncommensurate sampling and symbol rates are addressed and analyzed. Their impact on the probability density and variance of the phase error are quantified through computer simulations. It is shown that the performance of the all-digital DTTL approaches its analog counterpart when the sampling and symbol rates are noncommensurate (i.e., the number of samples per symbol is an irrational number). The loop signal-to-noise ratio (SNR) (inverse of phase error variance) degrades when the number of samples per symbol is an odd integer but degrades even further for even integers.

  9. A cloud model-radiative model combination for determining microwave TB-rain rate relations

    NASA Technical Reports Server (NTRS)

    Szejwach, Gerard; Adler, Robert F.; Jobard, Esabelle; Mack, Robert A.

    1986-01-01

    The development of a cloud model-radiative transfer model combination for computing average brightness temperature, T(B), is discussed. The cloud model and radiative transfer model used in this study are described. The relations between rain rate, cloud and rain water, cloud and precipitation ice, and upwelling radiance are investigated. The effects of the rain rate relations on T(B) under different climatological conditions are examined. The model-derived T(B) results are compared to the 92 and 183 GHz aircraft observations of Hakkarinen and Adler (1984, 1986) and the radar-estimated rain rate of Hakkarinen and Adler (1986); good correlation between the data is detected.

  10. Thermal radiative near field transport between vanadium dioxide and silicon oxide across the metal insulator transition

    NASA Astrophysics Data System (ADS)

    Menges, F.; Dittberner, M.; Novotny, L.; Passarello, D.; Parkin, S. S. P.; Spieser, M.; Riel, H.; Gotsmann, B.

    2016-04-01

    The thermal radiative near field transport between vanadium dioxide and silicon oxide at submicron distances is expected to exhibit a strong dependence on the state of vanadium dioxide which undergoes a metal-insulator transition near room temperature. We report the measurement of near field thermal transport between a heated silicon oxide micro-sphere and a vanadium dioxide thin film on a titanium oxide (rutile) substrate. The temperatures of the 15 nm vanadium dioxide thin film varied to be below and above the metal-insulator-transition, and the sphere temperatures were varied in a range between 100 and 200 °C. The measurements were performed using a vacuum-based scanning thermal microscope with a cantilevered resistive thermal sensor. We observe a thermal conductivity per unit area between the sphere and the film with a distance dependence following a power law trend and a conductance contrast larger than 2 for the two different phase states of the film.

  11. Transition.

    ERIC Educational Resources Information Center

    Thompson, Sandy, Ed.; And Others

    1990-01-01

    This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition Issues for the 1990s" (William Halloran…

  12. M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome

  13. High-energy cosmic-ray electrons - A new measurement using transition-radiation detectors

    NASA Technical Reports Server (NTRS)

    Hartmann, G.; Mueller, D.; Prince, T.

    1977-01-01

    A new detector for cosmic-ray electrons, consisting of a combination of a transition-radiation detector and a shower detector, has been constructed, calibrated at accelerator beams, and exposed in a balloon flight under 5 g/sq cm of atmosphere. The design of this instrument and the methods of data analysis are described. Preliminary results in the energy range 9-300 GeV are presented. The energy spectrum of electrons is found to be significantly steeper than that of protons, consistent with a long escape lifetime of cosmic rays in the galaxy.

  14. Progress on the Flash X-Ray Optical Transition Radiation Diagnostic

    SciTech Connect

    Tang, V; Houck, T; Brown, C

    2008-03-30

    This document summarizes the Flash X-Ray accelerator (FXR) optical transition radiation (OTR) spot-size diagnostics efforts in FY07. During this year, new analysis, simulation, and experimental approaches were utilized to interpret OTR spot data from both dielectric foils such as Kapton (VN type) and metal coated foils. Significant new findings of the intricacies involved in the diagnostic and of FXR operational issues were achieved. Geometry and temperature based effects were found to affect the beam image profiles from the OTR foils. These effects must be taken into account in order to deduce accurately the beam current density profile.

  15. Modelling radiation emission in the transition from the classical to the quantum regime

    NASA Astrophysics Data System (ADS)

    Martins, J. L.; Vranic, M.; Grismayer, T.; Vieira, J.; Fonseca, R. A.; Silva, L. O.

    2016-01-01

    An emissivity formula is derived using the generalised Fermi-Weizäcker-Williams method of virtual photons, which accounts for the recoil the charged particle experiences as it emits radiation. It is found that through this derivation the result obtained by Sokolov et al using QED perturbation theory is recovered. The corrected emissivity formula is applied to nonlinear Thomson scattering scenarios in the transition from the classical to the quantum regime for small values of the nonlinear quantum parameter χ. In addition, signatures of the quantum corrections are identified and explored.

  16. Transverse beam shape measurements of intense proton beams using optical transition radiation

    SciTech Connect

    Scarpine, Victor E.; /Fermilab

    2012-03-01

    A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

  17. Radiative transition probabilities for all vibrational levels in the X 1Sigma(+) state of HF

    NASA Technical Reports Server (NTRS)

    Zemke, Warren T.; Stwalley, William C.; Langhoff, Stephen R.; Valderrama, Giuseppe L.; Berry, Michael J.

    1991-01-01

    Recent analyses have led to an experimentally-based potential energy curve for the ground state of HF which includes nonadiabatic corrections and which joins smoothly to the long-range potential at an accurately determined dissociation limit. Using this potential curve and a new ab initio dipole moment function, accurate radiative transition probabilities among all vibrational levels of the ground state of HF have been calculated for selected rotational quantum numbers. Comparisons of Einstein A spontaneous emission coefficients, dipole moment absorption matrix elements, and Herman-Wallis factors for absorption bands are presented.

  18. Sub-micrometer transverse beam size diagnostics using optical transition radiation

    NASA Astrophysics Data System (ADS)

    Kruchinin, K.; Aryshev, A.; Karataev, P.; Bolzon, B.; Lefevre, T.; Mazzoni, S.; Shevelev, M.; Boogert, S. T.; Nevay, L. J.; Terunuma, N.; Urakawa, J.

    2014-05-01

    Optical transition radiation (OTR) arising when a relativistic charged particle crosses a boundary between two media with different optical properties is widely used as a tool for diagnostics of particle beams in modern accelerator facilities. The resolution of the beam profile monitors based on OTR depends on different effects of the optical system such as spherical and chromatic aberrations and diffraction. In this paper we present a systematic study of the different optical effects influencing the OTR beam profile monitor resolution. Obtained results have shown that such monitors can be used for sub-micrometer beam profile diagnostics. Further improvements and studies of the monitor are discussed.

  19. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    SciTech Connect

    Piot, P.; Sun, Y. -E; Maxwell, T. J.; Ruan, J.; Lumpkin, A. H.; Rihaoui, M. M.; Thurman-Keup, R.

    2011-06-27

    We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  20. Geranylgeranylacetone alleviates radiation-induced lung injury by inhibiting epithelial-to-mesenchymal transition signaling.

    PubMed

    Kim, Joong-Sun; Son, Yeonghoon; Jung, Myung-Gu; Jeong, Ye Ji; Kim, Sung-Ho; Lee, Su-Jae; Lee, Yoon-Jin; Lee, Hae-June

    2016-06-01

    Radiation-induced lung injury (RILI) involves pneumonitis and fibrosis, and results in pulmonary dysfunction. Moreover, RILI can be a fatal complication of thoracic radiotherapy. The present study investigated the protective effect of geranylgeranlyacetone (GGA), an inducer of heat shock protein (HSP)70, on RILI using a C57BL/6 mouse model of RILI developing 6 months subsequent to exposure to 12.5 Gy thoracic radiation. GGA was administered 5 times orally prior and subsequent to radiation exposure, and the results were assessed by histological analysis and western blotting. The results show that late RILI was alleviated by GGA treatment, possibly through the suppression of epithelial‑to‑mesenchymal transition (EMT) marker expression. Based on histological examination, orally administered GGA during the acute phase of radiation injury not only significantly inhibited pro‑surfactant protein C (pro‑SPC) and vimentin expression, but also preserved E‑cadherin expression 6 months after irradiation‑induced injury of the lungs. GGA induced HSP70 and inhibited EMT marker expression in L132 human lung epithelial cells following IR. These data suggest that the prevention of EMT signaling is a key cytoprotective effect in the context of RILI. Thus, HSP70‑inducing drugs, such as GGA, could be beneficial for protection against RILI. PMID:27082939

  1. Energetic Particle Radiation in Transit to and on the Surface of Mars

    NASA Astrophysics Data System (ADS)

    Reitz, Guenther

    The radiation exposure in space and on planetary surfaces can be calculated with numerical simulations applying different models for the galactic cosmic rays (GCR) and a code that combines radiation transport into the spacecraft or through the atmosphere and finally in the human body. The Mars Science Lab Radiation assessment detector (MSL-RAD) has provided, for the first time, measurements from inside a spacecraft on its way to Mars and, since the landing of the curiosity rover in August 2012, from the surface of Mars. Through MSL-RAD, a unique data set has become available which allows us validating model calculations with respect to their applicability in future mission planning. Commonly used GCR models, such as Badhwar-O'Neill2010, Burger-Usoskin, CREME2009/CREME96, Badhwar-O’Neill 2011 and a model developed by DLR already show considerable differences in calculated particle fluences. The differences arising in the calculated radiation exposure by applying these models were quantified in terms of particle fluence, absorbed dose and dose equivalent rate using different codes for different shielding thicknesses and the cumulative shielding distribution of the MSL transfer vehicle. The calculations are compared with measurement of the Radiation Assessment detector (RAD) of the Mars Science Lab (MSL) on its cruise towards Mars and on the surface. From the dose equivalents measured and calculated estimates of the upper and lower limits for the risks for a human flight to Mars assuming the radiation environment experienced by MSL-RAD are given and discussed.

  2. Dielectronic recombination rates, ionization equilibrium, and radiative emission rates for Mn ions in low-density high-temperature plasmas

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.; Davis, J.

    1983-01-01

    The analysis of optically-thin far-ultraviolet and X-ray emission lines of multiply-charged ions is one of the basic methods for determining the temperatures and densities of laboratory and astrophysical plasmas. In addition, the energy balance in these plasmas can be significantly influenced by the emission of radiation from relatively low concentrations of multiple-charged atomic ions. Because the populations of the excited levels are expected to depart substantially from their local thermodynamic equilibrium values a detailed treatment of the elementary collisional and radiative processes must be employed in order to predict the emission line intensities. In this investigation the authors present the results of calculations based on a corona equilibrium model in which a detailed evaluation is made of the dielectronic recombination rate coefficients. The ionization and autoionization following inner-shell electron excitation from each ground state are balanced by direct radiative and dielectronic recombination. The spectral line intensities emitted by the low-lying excited states, which are assumed to undergo spontaneous radiative decay in times that are short compared with the collision time, are evaluated in terms of the corona ionization equilibrium distributions of the ground states and their electron-impact excitation states.

  3. Transitional regimes of natural convection in a differentially heated cubical cavity under the effects of wall and molecular gas radiation

    SciTech Connect

    Soucasse, L.; Rivière, Ph.; Soufiani, A.; Xin, S.

    2014-02-15

    The transition to unsteadiness and the dynamics of weakly turbulent natural convection, coupled to wall or gas radiation in a differentially heated cubical cavity with adiabatic lateral walls, are studied numerically. The working fluid is air with small contents of water vapor and carbon dioxide whose infrared spectral radiative properties are modelled by the absorption distribution function model. A pseudo spectral Chebyshev collocation method is used to solve the flow field equations and is coupled to a direct ray tracing method for radiation transport. Flow structures are identified by means of either the proper orthogonal decomposition or the dynamic mode decomposition methods. We first retrieve the classical mechanism of transition to unsteadiness without radiation, characterized by counter-rotating streamwise-oriented vortices generated at the exit of the vertical boundary layers. Wall radiation through a transparent medium leads to a homogenization of lateral wall temperatures and the resulting transition mechanism is similar to that obtained with perfectly conducting lateral walls. The transition is due to an unstable stratification upstream the vertical boundary layers and is characterized by periodically oscillating transverse rolls of axis perpendicular to the main flow. When molecular gas radiation is accounted for, no periodic solution is found and the transition to unsteadiness displays complex structures with chimneys-like rolls whose axes are again parallel to the main flow. The origin of this instability is probably due to centrifugal forces, as suggested previously for the case without radiation. Above the transition to unsteadiness, at Ra = 3 × 10{sup 8}, it is shown that both wall and gas radiation significantly intensify turbulent fluctuations, decrease the thermal stratification in the core of the cavity, and increase the global circulation.

  4. Ambient dose and dose rate measurements in the vicinity of Elekta Precise accelerators for radiation therapy.

    PubMed

    Zutz, H; Hupe, O

    2014-12-01

    In radiation therapy, commercially available medical linear accelerators (LINACs) are used. At high primary beam energies in the 10-MeV range, the leakage dose of the accelerator head and the backscatter from the room walls, the air and the patient become more important. Therefore, radiation protection measurements of photon dose rates in the treatment room and in the maze are performed to quantify the radiation field. Since the radiation of the LINACs is usually pulsed with short radiation pulse durations in the microsecond range, there are problems with electronic dose (rate) meters commonly used in radiation protection. In this paper measurements with ionisation chambers are presented and electronic dosemeters are used for testing at selected positions. The measured time-averaged dose rate ranges from a few microsieverts per hour in the maze to some millisieverts per hour in the vicinity of the accelerator head and up to some sieverts per hour in the blanked primary beam and several hundred sieverts per hour in the direct primary beam. PMID:24379437

  5. A comparison of trends in caesarean section rates in former communist (transition) countries and other European countries

    PubMed Central

    Katikireddi, Srinivasa V.; Gorman, Dermot R.; Leyland, Alastair H.

    2013-01-01

    Caesarean section rates are rising across Europe, and concerns exist that increases are not clinically indicated. Societal, cultural and health system factors have been identified as influential. Former communist (transition) countries have experienced radical changes in these potential determinants, and we, therefore, hypothesized they may exhibit differing trends to non-transition countries. By analysing data from the WHO Europe Health for All Database, we find transition countries had a relatively low caesarean section rate in 2000 but have since experienced more rapid increases than other countries (average annual percentage change 7.9 vs. 2.4). PMID:23204216

  6. A comparison of trends in caesarean section rates in former communist (transition) countries and other European countries.

    PubMed

    Katikireddi, Srinivasa V; Gorman, Dermot R; Leyland, Alastair H

    2013-06-01

    Caesarean section rates are rising across Europe, and concerns exist that increases are not clinically indicated. Societal, cultural and health system factors have been identified as influential. Former communist (transition) countries have experienced radical changes in these potential determinants, and we, therefore, hypothesized they may exhibit differing trends to non-transition countries. By analysing data from the WHO Europe Health for All Database, we find transition countries had a relatively low caesarean section rate in 2000 but have since experienced more rapid increases than other countries (average annual percentage change 7.9 vs. 2.4). PMID:23204216

  7. Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia.

    PubMed

    Sanusi, M S M; Ramli, A T; Gabdo, H T; Garba, N N; Heryanshah, A; Wagiran, H; Said, M N

    2014-09-01

    A terrestrial gamma radiation survey for the state of Selangor, Kuala Lumpur and Putrajaya was conducted to obtain baseline data for environmental radiological health practices. Based on soil type, geological background and information from airborne survey maps, 95 survey points statistically representing the study area were determined. The measured doses varied according to geological background and soil types. They ranged from 17 nGy h(-1) to 500 nGy h(-1). The mean terrestrial gamma dose rate in air above the ground was 182 ± 81 nGy h(-1). This is two times higher than the average dose rate of terrestrial gamma radiation in Malaysia which is 92 nGy h(-1) (UNSCEAR 2000). An isodose map was produced to represent exposure rate from natural sources of terrestrial gamma radiation. PMID:24787672

  8. Blackbody radiation shift of the {sup 133}Cs hyperfine transition frequency

    SciTech Connect

    Micalizio, Salvatore; Godone, Aldo; Calonico, Davide; Levi, Filippo; Lorini, Luca

    2004-05-01

    We report the theoretical evaluations of the static scalar polarizability of the {sup 133}Cs ground state and of the blackbody radiation shift induced on the transition frequency between the two hyperfine levels with m{sub F}=0. This shift is of fundamental importance in the evaluation of the accuracy of the primary frequency standards based on atomic fountains and is employed in the realization of the SI second in the International Atomic Time scale at the level of 1x10{sup -15}. Our computed value for the polarizability is {alpha}{sub 0}=(6.600{+-}0.016)x10{sup -39}C m{sup 2}/V in agreement at the level of 1x10{sup -3} with recent theoretical and experimental values. As regards the blackbody radiation shift we find for the relative hyperfine transition frequency {beta}=(-1.49{+-}0.07)x10{sup -14} at T=300 K in agreement with frequency measurements reported by our group and by Bauch and Schroeder [Phys. Rev. Lett. 78, 622 (1997)]. This value is lower by 2x10{sup -15} than that obtained with measurements based on the dc Stark shift and than the value commonly accepted up to now.

  9. Windowless transition between atmospheric pressure and high vacuum via differential pumping for synchrotron radiation applications.

    PubMed

    Gog, T; Casa, D M; Kuzmenko, I; Krakora, R J; Bolin, T B

    2007-07-01

    A differential pump assembly is introduced which can provide a windowless transition between the full atmospheric pressure of an in-air sample environment and the high-vacuum region of a synchrotron radiation beamline, while providing a clear aperture of approximately 1 mm to pass through the X-ray beam from a modern third-generation synchrotron radiation source. This novel pump assembly is meant to be used as a substitute for an exit vacuum window on synchrotron beamlines, where the existence of such a window would negatively impact the coherent nature of the X-ray beam or would introduce parasitic scattering, distorting weak scattering signals from samples under study. It is found that the length of beam pipe necessary to reduce atmospheric pressure to below 10 mbar is only about 130 mm, making the expected photon transmission for hard X-rays through this pipe competitive with that of a regular Be beamline window. This result is due to turbulent flow dominating the first pumping stage, providing a mechanism of strong gas conductance limitation, which is further enhanced by introducing artificial surface roughness in the pipe. Successive reduction of pressure through the transitional flow regime into the high-vacuum region is accomplished over a length of several meters, using beam pipes of increasing diameter. While the pump assembly has not been tested with X-rays, possible applications are discussed in the context of coherent and small-angle scattering. PMID:17587659

  10. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2

    NASA Astrophysics Data System (ADS)

    Poellmann, C.; Steinleitner, P.; Leierseder, U.; Nagler, P.; Plechinger, G.; Porer, M.; Bratschitsch, R.; Schüller, C.; Korn, T.; Huber, R.

    2015-09-01

    Atomically thin two-dimensional crystals have revolutionized materials science. In particular, monolayer transition metal dichalcogenides promise novel optoelectronic applications, owing to their direct energy gaps in the optical range. Their electronic and optical properties are dominated by Coulomb-bound electron-hole pairs called excitons, whose unusual internal structure, symmetry, many-body effects and dynamics have been vividly discussed. Here we report the first direct experimental access to all 1s A excitons, regardless of momentum--inside and outside the radiative cone--in single-layer WSe2. Phase-locked mid-infrared pulses reveal the internal orbital 1s-2p resonance, which is highly sensitive to the shape of the excitonic envelope functions and provides accurate transition energies, oscillator strengths, densities and linewidths. Remarkably, the observed decay dynamics indicates an ultrafast radiative annihilation of small-momentum excitons within 150 fs, whereas Auger recombination prevails for optically dark states. The results provide a comprehensive view of excitons and introduce a new degree of freedom for quantum control, optoelectronics and valleytronics of dichalcogenide monolayers.

  11. Theoretical transition probabilities, oscillator strengths, and radiative lifetimes of levels in Pb IV

    SciTech Connect

    Alonso-Medina, A.; Colon, C.; Porcher, P.

    2011-01-15

    Transition probabilities and oscillator strengths of 176 spectral lines with astrophysical interest arising from 5d{sup 10}ns (n = 7,8), 5d{sup 10}np (n = 6,7), 5d{sup 10}nd (n = 6,7), 5d{sup 10}5f, 5d{sup 10}5g, 5d{sup 10}nh (n = 6,7,8), 5d{sup 9}6s{sup 2}, and 5d{sup 9}6s6p configurations, and radiative lifetimes for 43 levels of Pb IV, have been calculated. These values were obtained in intermediate coupling (IC) and using relativistic Hartree-Fock calculations including core-polarization effects. For the IC calculations, we use the standard method of least-square fitting from experimental energy levels by means of the Cowan computer code. The inclusion in these calculations of the 5d{sup 10}7p and 5d{sup 10}5f configurations has facilitated a complete assignment of the energy levels in the Pb IV. Transition probabilities, oscillator strengths, and radiative lifetimes obtained are generally in good agreement with the experimental data.

  12. A high-resolution coherent transition radiation diagnostic for laser-produced electron transport studies (invited)

    SciTech Connect

    Storm, M.; Begishev, I. A.; Brown, R. J.; Mileham, C.; Myatt, J. F.; Nilson, P. M.; Sangster, T. C.; Stoeckl, C.; Theobald, W.; Zuegel, J. D.; Guo, C.; Meyerhofer, D. D.

    2008-10-15

    High-resolution images of the rear-surface optical emission from high-intensity (I{approx}10{sup 19} W/cm{sup 2}) laser illuminated metal foils have been recorded using coherent transition radiation (CTR). CTR is generated as relativistic electrons, generated in high-intensity laser-plasma interactions, exit the target's rear surface and move into vacuum. A transition radiation diagnostic (TRD) records time-integrated images in a 24 nm bandwidth window around {lambda}=529 nm. The optical transmission at {lambda}=1053 nm, the laser wavelength, is 15 orders of magnitude lower than the transmission at the wavelength of interest, {lambda}=527 nm. The detector is a scientific grade charge-coupled device (CCD) camera that operates with a signal-to-noise ratio of 10{sup 3} and has a dynamic range of 10{sup 4}. The TRD has demonstrated a spatial resolution of 1.4 {mu}m over a 1 mm field of view, limited only by the CCD pixel size.

  13. Application of transition radiation to non-invasive angiography. Final report

    SciTech Connect

    Piestrup, M.A.

    1985-08-01

    The investigators studied the use of transition radiation from high-density foils as a method for the production of hard x rays for the non-invasive assessment of coronary artery disease in humans. The high brightness and laser-like collimation of transition radiation make it an ideal source of x rays for medical applications. Two successful experiments were performed that demonstrated feasibility of x-ray production from high-density foils. In the first experiment, ten 1-micrometer gold foils were used at the Naval Postgraduate School 105-MeV linac to generate x-rays from 10 to 35 KeV. In the second experiment, both 400- and 500-MeV electrons from the Stanford Linear Accelerator Center's (SLAC) test beamline were used to produce x rays of 20 to 60 KeV. Two foilstacks were used in the experiment: 40 foils of 8.5 micrometer stainless steel and 20 foils of 7.8-micrometer copper. Theoretical calculations, which include photon attenuation in the foil material, agree well with these data.

  14. Macroscopic quantum tunneling and quantum - classical phase transitions of the escape rate in large spin systems

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.; Paranjape, M. B.

    2015-01-01

    This article presents a review on the theoretical and the experimental developments on macroscopic quantum tunneling and quantum-classical phase transitions of the escape rate in large spin systems. A substantial amount of research work has been done in this area of research over the years, so this article does not cover all the research areas that have been studied, for instance the effect of dissipation is not discussed and can be found in other review articles. We present the basic ideas with simplified calculations so that it is readable to both specialists and nonspecialists in this area of research. A brief derivation of the path integral formulation of quantum mechanics in its original form using the orthonormal position and momentum basis is reviewed. For tunneling of a particle into the classically forbidden region, the imaginary time (Euclidean) formulation of path integral is useful, we review this formulation and apply it to the problem of tunneling in a double well potential. For spin systems such as single molecule magnets, the formulation of path integral requires the use of non-orthonormal spin coherent states in (2 s + 1) dimensional Hilbert space, the coordinate independent and the coordinate dependent form of the spin coherent state path integral are derived. These two (equivalent) forms of spin coherent state path integral are applied to the tunneling of single molecule magnets through a magnetic anisotropy barrier. Most experimental and numerical results are presented. The suppression of tunneling for half-odd integer spin (spin-parity effect) at zero magnetic field is derived using both forms of spin coherent state path integral, which shows that this result (spin-parity effect) is independent of the choice of coordinate. At nonzero magnetic field we present both the experimental and the theoretical results of the oscillation of tunneling splitting as a function of the applied magnetic field applied along the spin hard anisotropy axis

  15. Pretreatment Growth Rate Predicts Radiation Response in Vestibular Schwannomas

    SciTech Connect

    Niu, Nina N.; Niemierko, Andrzej; Larvie, Mykol; Curtin, Hugh; Loeffler, Jay S.; McKenna, Michael J.; Shih, Helen A.

    2014-05-01

    Purpose: Vestibular schwannomas (VS) are often followed without initial therapeutic intervention because many tumors do not grow and radiation therapy is associated with potential adverse effects. In an effort to determine whether maximizing initial surveillance predicts for later treatment response, the predictive value of preirradiation growth rate of VS on response to radiation therapy was assessed. Methods and Materials: Sixty-four patients with 65 VS were treated with single-fraction stereotactic radiation surgery or fractionated stereotactic radiation therapy. Pre- and postirradiation linear expansion rates were estimated using volumetric measurements on sequential magnetic resonance images (MRIs). In addition, postirradiation tumor volume change was classified as demonstrating shrinkage (ratio of volume on last follow-up MRI to MRI immediately preceding irradiation <80%), stability (ratio 80%-120%), or expansion (ratio >120%). The median pre- and postirradiation follow-up was 20.0 and 27.5 months, respectively. Seven tumors from neurofibromatosis type 2 (NF2) patients were excluded from statistical analyses. Results: In the 58 non-NF2 patients, there was a trend of correlation between pre- and postirradiation volume change rates (slope on linear regression, 0.29; P=.06). Tumors demonstrating postirradiation expansion had a median preirradiation growth rate of 89%/year, and those without postirradiation expansion had a median preirradiation growth rate of 41%/year (P=.02). As the preirradiation growth rate increased, the probability of postirradiation expansion also increased. Overall, 24.1% of tumors were stable, 53.4% experienced shrinkage, and 22.5% experienced expansion. Predictors of no postirradiation tumor expansion included no prior surgery (P=.01) and slower tumor growth rate (P=.02). The control of tumors in NF2 patients was only 43%. Conclusions: Radiation therapy is an effective treatment for VS, but tumors that grow quickly preirradiation may be

  16. Radiative Transfer Modeling of Warm Transition Region Winds in F- and G-type Supergiants

    NASA Astrophysics Data System (ADS)

    Lobel, A.; Avrett, E. H.; Aufdenberg, J. P.

    2004-12-01

    We present FUSE spectra of upper transition region emission lines of O VI in the dynamic atmosphere of the short-period classic Cepheid Beta Dor (F-G Ia). The far-UV O VI 1032 & 1037 Å lines indicate a heating mechanism in the outer atmospheres of strongly pulsating F- and G-type supergiants sustaining hot plasmas at kinetic gas temperatures between 100 kK and 300 kK. Our observation of prominent upper transition region emission lines in Beta Dor contrasts with the very low X-ray luminosities of Cepheid variables that signal only weak coronal plasmas. On the other hand, FUSE and HST-STIS observations of the non-variable yellow (hybrid) supergiants Alpha Aqr (G2 Ib) and Beta Aqr (G0 Ib), having large X-ray fluxes, reveal supersonic warm wind velocities of 140 km/s and 90 km/s, respectively, in lower transition region emission lines of C III 977 Å and Si III 1206 Å. Our semi-empiric radiative transfer models show that these optically thick winds occur at kinetic gas temperatures well above 70 kK, much larger than assumed for the chromospheres of cool supergiants. Remarkably, these emission lines reveal peculiar shapes reminiscent of P-Cygni type line profiles observed in UV spectra of hot supergiants. Both hybrid supergiants lack the strongly oscillating photospheres of Cepheids, suggesting that their transition region wind acceleration and heating do not result from a pure mechanical driving mechanism due to atmospheric pulsations. We present detailed semi-empiric radiative transfer models of the thermal and dynamic structures of the outer atmospheres of these luminous F- and G-type supergiants based on the FUSE and HST-STIS spectra. We investigate if warm accelerating winds observed in high ions of cool supergiants can (partly) be driven by radiation pressure. This research is based on data obtained with the NASA/ESA Hubble Space Telescope, collected at the STScI, operated by AURA Inc., under contract NAS5-26555. Financial support has been provided by STSc

  17. The screened hydrogenic model: Analytic formulae for matrix elements of radiative and collisional rates in complex ions

    NASA Astrophysics Data System (ADS)

    Upcraft, L. M.

    2010-09-01

    There is an ongoing need for numerically efficient algorithms that are capable of calculating the radiative and collisional rates of arbitrarily complex ions that are present in hot plasmas to a level of accuracy that surpasses that available in many existing approximations. Hydrogen-like solutions for determining these rates in more general ions by use of an effective (and generally non-integer) atomic number frequently give poor results and are of limited validity. This paper illustrates that results accurate to of order 20% can be obtained for matrix elements of both rates for arbitrarily complex ions by use of hydrogenic wavefunctions that use different effective atomic numbers for the initial and final sub-shells. Not only does this allow for the realistic modelling of inner shell transitions, it naturally allows for the physical effect of orbital relaxation. It is shown that the integral of the generalised oscillator strength used by the Plane-wave Born approximation has an analytic solution that can be reduced to a form suitable for efficient numerical integration over an arbitrary electron distribution. Extensive use of the computer algebra package Mathematica ® has generated a unique formula for each transition and the results have been transformed to efficient fortran 90 code for all transitions between non-relativistic sub-shells with principal quantum numbers n ≤ 10. In the case of the collisional matrix elements these are typically two to three orders of magnitude faster to calculate than by direct numerical evaluation. The fortran code is available upon request from the author.

  18. Progression Rates of Carotid Intima-media Thickness and Adventitial Diameter during the Menopausal Transition

    PubMed Central

    El Khoudary, Samar R.; Wildman, Rachel P.; Matthews, Karen; Thurston, Rebecca C.; Bromberger, Joyce T.; Sutton-Tyrrell, Kim

    2012-01-01

    Objectives The authors assessed whether the levels and progression rates of carotid intima-media thickness (IMT) and adventitial diameter (AD) vary by menopausal stage. Methods 249 Women (42–57 years old, premenopausal (49%) or early peri-menopausal (46%)) from the Study of Women’s Health Across the Nation were included in the current analysis. Participants were followed for up to 9 years (median=3.7 years) and had up to 5 carotid scans. Linear mixed models were used for analysis. Results The overall rate of change in IMT was 0.007 mm/year. Independent of age and race, progression rate of IMT increased substantially in late peri-menopausal stage (0.017 mm/year) compared to both premenopausal (0.007 mm/year) and early peri-menopausal (0.005 mm/year) stages; (P≤0.05). For AD, while the overall rate of change was negative (−0.009 mm/year), significant positive increases in the rate of change were observed in late peri-menopausal (0.024 mm/year) and postmenopausal (0.018 mm/year) stages compared to premenopausal stage (−0.032 mm/year); (P<0.05). In final models, postmenopausal stage was independently associated with higher levels of IMT and AD (P<0.05) compared to premenopausal stage. Conclusions During the menopausal transition, the carotid artery undergoes an adaptation that is reflected in adverse changes in IMT and AD. These changes may impact the vulnerability of the vessel to disease in older women. PMID:22990755

  19. Excited meson radiative transitions from lattice QCD using variationally optimized operators

    SciTech Connect

    Shultz, Christian J.; Dudek, Jozef J.; Edwards, Robert G.

    2015-06-02

    We explore the use of 'optimized' operators, designed to interpolate only a single meson eigenstate, in three-point correlation functions with a vector-current insertion. These operators are constructed as linear combinations in a large basis of meson interpolating fields using a variational analysis of matrices of two-point correlation functions. After performing such a determination at both zero and non-zero momentum, we compute three-point functions and are able to study radiative transition matrix elements featuring excited state mesons. The required two- and three-point correlation functions are efficiently computed using the distillation framework in which there is a factorization between quark propagation and operator construction, allowing for a large number of meson operators of definite momentum to be considered. We illustrate the method with a calculation using anisotopic lattices having three flavors of dynamical quark all tuned to the physical strange quark mass, considering form-factors and transitions of pseudoscalar and vector meson excitations. In conclusion, the dependence on photon virtuality for a number of form-factors and transitions is extracted and some discussion of excited-state phenomenology is presented.

  20. Calculations with Spectroscopic Accuracy: Energies and Transition Rates in the Nitrogen Isoelectronic Sequence from Ar XII to Zn XXIV

    NASA Astrophysics Data System (ADS)

    Wang, K.; Si, R.; Dang, W.; Jönsson, P.; Guo, X. L.; Li, S.; Chen, Z. B.; Zhang, H.; Long, F. Y.; Liu, H. T.; Li, D. F.; Hutton, R.; Chen, C. Y.; Yan, J.

    2016-03-01

    Combined relativistic configuration interaction and many-body perturbation calculations are performed for the 359 fine-structure levels of the 2s2 2p3, 2 s2p4, 2p5, 2s2 2p2 3l, 2 s2p3 3l, 2p4 3l, and 2s2 2p2 4l configurations in N-like ions from Ar xii to Zn xxiv. Complete and consistent data sets of energies, wavelengths, radiative rates, oscillator strengths, and line strengths for all possible electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among the 359 levels are given for each ion. The present work significantly increases the amount of accurate data for ions in the nitrogen-like sequence, and the accuracy of the energy levels is high enough to enable the identification and interpretation of observed spectra involving the n = 3, 4 levels, for which experimental values are largely scarce. Meanwhile, the results should be of great help for modeling and diagnosing astrophysical and fusion plasmas.

  1. Theoretical estimation of the radiative cooling rate in the Jovian troposphere

    NASA Astrophysics Data System (ADS)

    Takahashi, Yasuto; Hashimoto, George L.; Ishiwatari, Masaki; Takahashi, Yoshiyuki O.; Sugiyama, Ko-ichiro; Onishi, Masanori; Kuramoto, Kiyoshi

    2015-11-01

    Jupiter exhibits characteristic cloud activities but their physical mechanism remains poorly understood. Recently, Sugiyama et al. (2014) demonstrated that the Jovian cloud convection may have a significant intermittency in the generation of cumulonimbus clouds with the typical interval length controlled by the radiative cooling rate in the upper troposphere. In spite of such importance as a controlling factor of cloud activity, the tropospheric radiative cooling rate profile has never been systematically quantified for the Jovian system. In the Jovian troposphere, condensable species (NH3, H2S, H2O) and their condensates might significantly contribute to radiative transfer.Here we show numerical estimates of radiative cooling rate profile under Jovian troposphere condition by using our non-gray radiative transfer model that contains optical properties of gas species (H2, He, H2O, CH4, NH3, H2S, and PH3) and cloud layers made of H2O, NH4SH, and NH3 ice particles. The temperature profile is determined by the radiative-convective equilibrium state satisfying an observed potential temperature of Jovian troposphere. The mean vertical distributions of gas and cloud are given on the basis of the latest hydrodynamic simulation of Jovian cloud convection (Sugiyama et al., 2014) and cosmochemical consideration.The modeled atmosphere has the tropopause at ~0.38 bar level. The radiative cooling rate reaches the maximum 15 x 10-3 K/Jovian day at ~0.5 bar level, then decreases with depth and approaches zero below 5 bar level. This profile is largely determined by the thermal absorption and emission due to gaseous NH3 and H2 with a slight modification by solar heating due to CH4. The cloud layers are found to have only a weak effect on either radiative cooling or heating because their opacities in the longwave radiation are estimated to be very small, which agrees with the observed 5-micron spectrum with high brightness temperatures. The uncertainty in H2O abundance in deep

  2. Crossover behavior of the thermal conductance and Kramers' transition rate theory

    NASA Astrophysics Data System (ADS)

    Sahu, Subin; Velizhanin, Kirill; Chien, Chih-Chun; Dubi, Yonatan; Zwolak, Michael

    2015-03-01

    Heat transport plays opposing roles in nanotechnology, hindering the miniaturization of electronics on one hand and forming the core of novel heattronic devices on the other. Moreover, heat transport in one-dimensional nanostructures has become a central tool in studying the onset of Fourier's law of heat conduction, a yet unresolved puzzle in theoretical physics. We study the paradigmatic setting of heat transport in one-dimensional systems, a lattice coupled to two heat baths held at different temperatures. Using both numerical and analytical tools, we demonstrate that the heat conductance displays a crossover behavior as the coupling to the thermal reservoirs is tuned. We provide evidence that this behavior is universal by examining harmonic, anharmonic, and disordered systems, and discuss the origin of this effect using an analogy with Kramers' transition state theory for chemical reaction rates. This crossover behavior has important implications in the analysis of numerical results, and suggests a novel way to tune the conductance in nanoscale devices.

  3. Surface hopping, transition state theory, and decoherence. II. Thermal rate constants and detailed balance

    SciTech Connect

    Jain, Amber; Subotnik, Joseph E.

    2015-10-07

    We investigate a simple approach to compute a non-adiabatic thermal rate constant using the fewest switches surface hopping (FSSH) dynamics. We study the effects of both decoherence (using our augmented-FSSH (A-FSSH) algorithm) and forbidden hops over a large range of parameters, including high and low friction regimes, and weak and strong electronic coupling regimes. Furthermore, when possible, we benchmark our results against exact hierarchy equations of motion results, where we usually find a maximum error of roughly a factor of two (at reasonably large temperatures). In agreement with Hammes-Schiffer and Tully, we find that a merger of transition state theory and surface hopping can be both accurate and efficient when performed correctly. We further show that detailed balance is followed approximately by A-FSSH dynamics.

  4. Development and Transition of the Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) Toolset

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Zank, G.

    2014-01-01

    We outline a plan to develop and transition a physics based predictive toolset called The Radiation, Interplanetary Shocks, and Coronal Sources (RISCS) to describe the interplanetary energetic particle and radiation environment throughout the inner heliosphere, including at the Earth. To forecast and "nowcast" the radiation environment requires the fusing of three components: 1) the ability to provide probabilities for incipient solar activity; 2) the use of these probabilities and daily coronal and solar wind observations to model the 3D spatial and temporal heliosphere, including magnetic field structure and transients, within 10 Astronomical Units; and 3) the ability to model the acceleration and transport of energetic particles based on current and anticipated coronal and heliospheric conditions. We describe how to address 1) - 3) based on our existing, well developed, and validated codes and models. The goal of RISCS toolset is to provide an operational forecast and "nowcast" capability that will a) predict solar energetic particle (SEP) intensities; b) spectra for protons and heavy ions; c) predict maximum energies and their duration; d) SEP composition; e) cosmic ray intensities, and f) plasma parameters, including shock arrival times, strength and obliquity at any given heliospheric location and time. The toolset would have a 72 hour predicative capability, with associated probabilistic bounds, that would be updated hourly thereafter to improve the predicted event(s) and reduce the associated probability bounds. The RISCS toolset would be highly adaptable and portable, capable of running on a variety of platforms to accommodate various operational needs and requirements. The described transition plan is based on a well established approach developed in the Earth Science discipline that ensures that the customer has a tool that meets their needs

  5. Distribution of terrestrial gamma radiation dose rate in the eastern coastal area of Odisha, India.

    PubMed

    Gusain, G S; Rautela, B S; Sahoo, S K; Ishikawa, T; Prasad, G; Omori, Y; Sorimachi, A; Tokonami, S; Ramola, R C

    2012-11-01

    Terrestrial gamma radiation is one of the important radiation exposures on the earth's surface that results from the three primordial radionuclides (226)Ra, (232)Th and (40)K. The elemental concentration of these elements in the earth's crust could result in the anomalous variation of the terrestrial gamma radiation in the environment. The geology of the local area plays an important role in distribution of these radioactive elements. Environmental terrestrial gamma radiation dose rates were measured around the eastern coastal area of Odisha with the objective of establishing baseline data on the background radiation level. The values of the terrestrial gamma radiation dose rate vary significantly at different locations in the study area. The values of the terrestrial gamma dose rate ranged from 77 to 1651 nGy h(-1), with an average of 230 nGy h(-1). During the measurement of the terrestrial gamma dose rate, sand and soil samples were also collected for the assessment of natural radionuclides. The activities of (226)Ra, (232)Th and (40)K from these samples were measured using a gamma-ray spectrometry with a NaI(Tl) detector. Activity concentrations of (226)Ra, (232)Th and (40)K ranged from 15.6 to 69 Bq kg(-1) with an average of 46.7 Bq kg(-1), from 28.9 to 973 Bq kg(-1) with an average of 250 Bq kg(-1) and from 139 to 952 Bq kg(-1) with an average of 429, respectively. The detailed significance of these studies has been discussed from the radiation protection point of view. PMID:22874894

  6. Transition from image intensifier to flat panel detector in interventional cardiology: Impact of radiation dose

    PubMed Central

    Livingstone, Roshan S.; Chase, David; Varghese, Anna; George, Paul V.; George, Oommen K.

    2015-01-01

    Flat panel detector (FPD) technology in interventional cardiology is on the increase due to its varied advantages compared to the conventional image intensifier (II) systems. It is not clear whether FPD imparts lower radiation doses compared to II systems though a few studies support this finding. This study intends to compare radiation doses from II and FPD systems for coronaryangiography (CAG) and Percutaneous Transluminal Coronary Angioplasty (PTCA) performed in a tertiary referral center. Radiation doses were measured using dose area product (DAP) meter from patients who underwent CAG (n = 222) and PTCA (n = 75) performed using FPD angiography system. The DAP values from FPD were compared with earlier reported data using II systems from the same referral center where the study was conducted. The mean DAP values from FPD system for CAG and PTCA were 24.35 and 63.64 Gycm2 and those from II system were 27.71 and 65.44 Gycm2. Transition from II to FPD system requires stringent dose optimization strategies right from the initial period of installation. PMID:26150684

  7. Results of a Direct Search Using Synchrotron Radiation for the Low-Energy (229)Th Nuclear Isomeric Transition.

    PubMed

    Jeet, Justin; Schneider, Christian; Sullivan, Scott T; Rellergert, Wade G; Mirzadeh, Saed; Cassanho, A; Jenssen, H P; Tkalya, Eugene V; Hudson, Eric R

    2015-06-26

    We report the results of a direct search for the (229)Th (I(π)=3/2(+)←5/2(+)) nuclear isomeric transition, performed by exposing (229)Th-doped LiSrAlF(6) crystals to tunable vacuum-ultraviolet synchrotron radiation and observing any resulting fluorescence. We also use existing nuclear physics data to establish a range of possible transition strengths for the isomeric transition. We find no evidence for the thorium nuclear transition between 7.3 eV and 8.8 eV with transition lifetime (1-2) s≲τ≲(2000-5600)  s. This measurement excludes roughly half of the favored transition search area and can be used to direct future searches. PMID:26197124

  8. A reinvestigation of the rate of the C/+/ + H2 radiative association reaction. [interstellar chemistry

    NASA Technical Reports Server (NTRS)

    Herbst, E.

    1982-01-01

    It is noted that new experimental results and statistical theories have prompted a reinvestigation of the rate coefficient of the interstellar reaction in which C(+) + H2 yields CH2(+) + h(nu) in the 10-100 K temperature range. The results presented here indicate a rate coefficient between 10 to the -16 and 10 to the -15 cu cm/s at all temperatures studied. In applying the modified thermal and phase space theories, it is expected that they will be as accurate as for radiative association as for three-body association, provided the ab initio value for the radiative decay rate is correct. It is expected that the calculated values of the rate coefficient will be accurate to within an order of magnitude and will have the correct temperature dependence.

  9. Radiation Dose-Rate Effects on Gene Expression in a Mouse Biodosimetry Model

    PubMed Central

    Paul, Sunirmal; Smilenov, Lubomir B.; Elliston, Carl D.; Amundson, Sally A.

    2015-01-01

    In the event of a nuclear accident or radiological terrorist attack, there will be a pressing need for biodosimetry to triage a large, potentially exposed population and to assign individuals to appropriate treatment. Exposures from fallout are likely, resulting in protracted dose delivery that would, in turn, impact the extent of injury. Biodosimetry approaches that can distinguish such low-dose-rate (LDR) exposures from acute exposures have not yet been developed. In this study, we used the C57BL/6 mouse model in an initial investigation of the impact of low-dose-rate delivery on the transcriptomic response in blood. While a large number of the same genes responded to LDR and acute radiation exposures, for many genes the magnitude of response was lower after LDR exposures. Some genes, however, were differentially expressed (P < 0.001, false discovery rate < 5%) in mice exposed to LDR compared with mice exposed to acute radiation. We identified a set of 164 genes that correctly classified 97% of the samples in this experiment as exposed to acute or LDR radiation using a support vector machine algorithm. Gene expression is a promising approach to radiation biodosimetry, enhanced greatly by this first demonstration of its potential for distinguishing between acute and LDR exposures. Further development of this aspect of radiation biodosimetry, either as part of a complete gene expression biodosimetry test or as an adjunct to other methods, could provide vital triage information in a mass radiological casualty event. PMID:26114327

  10. Radiation Dose-Rate Effects on Gene Expression in a Mouse Biodosimetry Model.

    PubMed

    Paul, Sunirmal; Smilenov, Lubomir B; Elliston, Carl D; Amundson, Sally A

    2015-07-01

    In the event of a nuclear accident or radiological terrorist attack, there will be a pressing need for biodosimetry to triage a large, potentially exposed population and to assign individuals to appropriate treatment. Exposures from fallout are likely, resulting in protracted dose delivery that would, in turn, impact the extent of injury. Biodosimetry approaches that can distinguish such low-dose-rate (LDR) exposures from acute exposures have not yet been developed. In this study, we used the C57BL/6 mouse model in an initial investigation of the impact of low-dose-rate delivery on the transcriptomic response in blood. While a large number of the same genes responded to LDR and acute radiation exposures, for many genes the magnitude of response was lower after LDR exposures. Some genes, however, were differentially expressed (P < 0.001, false discovery rate <5%) in mice exposed to LDR compared with mice exposed to acute radiation. We identified a set of 164 genes that correctly classified 97% of the samples in this experiment as exposed to acute or LDR radiation using a support vector machine algorithm. Gene expression is a promising approach to radiation biodosimetry, enhanced greatly by this first demonstration of its potential for distinguishing between acute and LDR exposures. Further development of this aspect of radiation biodosimetry, either as part of a complete gene expression biodosimetry test or as an adjunct to other methods, could provide vital triage information in a mass radiological casualty event. PMID:26114327

  11. ORIGINS OF DEVIATIONS FROM TRANSITION-STATE THEORY: FORMULATING A NEW KINETIC RATE LAW FOR DISSOLUTION OF SILICATES

    EPA Science Inventory

    Present models for dissolution of silicate minerals and glasses, based on transition-state theory TST), overestimate the reaction rate as solution compositions approach saturation with respect to the rate-governing solid. Therefore, the reactivity of key materials in the environm...

  12. Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, Anaxyrus [Bufo] terrestris.

    PubMed

    Stark, Karolina; Scott, David E; Tsyusko, Olga; Coughlin, Daniel P; Hinton, Thomas G

    2015-01-01

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development -embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae. PMID:25927361

  13. Multi-level effects of low dose rate ionizing radiation on southern toad, Anaxyrus [Bufo] terrestris

    DOE PAGESBeta

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.; Amendola, Roberto

    2015-04-30

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of ¹³⁷Cs at 0.13, 2.4, 21, and 222 mGy d⁻¹, resulting in total doses up to 15.8 Gy. Radiation treatments did notmore » affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21mGy d⁻¹ and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae.« less

  14. Multi-Level Effects of Low Dose Rate Ionizing Radiation on Southern Toad, Anaxyrus [Bufo] terrestris

    PubMed Central

    Stark, Karolina; Scott, David E.; Tsyusko, Olga; Coughlin, Daniel P.; Hinton, Thomas G.

    2015-01-01

    Despite their potential vulnerability to contaminants from exposure at multiple life stages, amphibians are one of the least studied groups of vertebrates in ecotoxicology, and research on radiation effects in amphibians is scarce. We used multiple endpoints to assess the radiosensitivity of the southern toad (Anaxyrus [Bufo] terrestris) during its pre-terrestrial stages of development –embryonic, larval, and metamorphic. Toads were exposed, from several hours after oviposition through metamorphosis (up to 77 days later), to four low dose rates of 137Cs at 0.13, 2.4, 21, and 222 mGy d-1, resulting in total doses up to 15.8 Gy. Radiation treatments did not affect hatching success of embryos, larval survival, or the length of the larval period. The individual family variation in hatching success of embryos was larger than the radiation response. In contrast, newly metamorphosed individuals from the higher dose-rate treatments had higher mass and mass/length body indices, a measure which may relate to higher post-metamorphic survival. The increased mass and index at higher dose rates may indicate that the chronic, low dose rate radiation exposures triggered secondary responses. Additionally, the increases in growth were linked to a decrease in DNA damage (as measured by the Comet Assay) in red blood cells at a dose rate of 21 mGy d-1 and a total dose of 1.1 Gy. In conclusion, the complex effects of low dose rates of ionizing radiation may trigger growth and cellular repair mechanisms in amphibian larvae. PMID:25927361

  15. O2 Plasma Etch Rate Reduction on Synchrotron Radiation Exposed PMMA Film

    NASA Astrophysics Data System (ADS)

    Saito, Kunio; Yoshikawa, Akira

    1987-09-01

    The etch rate of PMMA film in O2 plasma is found to be reduced by synchrotron radiation (SR) exposure. This phenomenon is accompanied by a reduction in film thickness. IR and XPS analyses reveal that this thickness reduction is caused by scission and removal of the ester side chain. Etch rate of the SR-exposed film decreases to about 1/3 of the unexposed film. This characteristic makes dry-development possible.

  16. Space Radiation Quality Factors and the Delta Ray Dose and Dose-Rate Reduction Effectiveness Factor.

    PubMed

    Cucinotta, Francis A; Cacao, Eliedonna; Alp, Murat

    2016-03-01

    In this paper, the authors recommend that the dose and dose-rate effectiveness factor used for space radiation risk assessments should be based on a comparison of the biological effects of energetic electrons produced along a cosmic ray particles path in low fluence exposures to high dose-rate gamma-ray exposures of doses of about 1 Gy. Methods to implement this approach are described. PMID:26808878

  17. Terrestrial gamma radiation dose rate in Ryukyu Islands, subtropical region of Japan.

    PubMed

    Furukawa, M; Kina, S; Shiroma, M; Shiroma, Y; Masuda, N; Motomura, D; Hiraoka, H; Fujioka, S; Kawakami, T; Yasuda, Y; Arakawa, K; Fukahori, K; Jyunicho, M; Ishikawa, S; Ohomoto, T; Shingaki, R; Akata, N; Zhuo, W; Tokonami, S

    2015-11-01

    In order to explain the distribution of natural radiation level in the Asia, in situ measurements of dose rate in air due to terrestrial gamma radiation have been conducted in a total of 21 islands that belong to Ryukyu Islands (Ryukyu Archipelago), subtropical rejoin of southwest Japan. Car-borne surveys have also been carried out in Okinawa-jima, the biggest island of the archipelago. Based on the results for these measurements, arithmetic mean, the maximum and the minimum of the dose rates at 1 m in height from the unpaved soil ground in the archipelago were estimated to be 47, 165 and 8 nGy h(-1), respectively. A comparative study of car-borne data obtained prior to and subsequent to the 2011 Fukushima nuclear accident, as for Okinawa-jima, indicated that the nuclear accident has no impact on the environmental radiation at the present time. PMID:26065703

  18. Dose Rate Effects on Damage and Recovery of Radiation Hard Glass Under Gamma Irradiation

    NASA Astrophysics Data System (ADS)

    Menchini, Francesca; Baccaro, Stefania; Cemmi, Alessia; di Sarcina, Ilaria; Fiore, Salvatore; Piegari, Angela

    2014-06-01

    Optical systems employed in space missions are subjected to high fluxes of energetic particles. Their optical properties should be stable throughout the whole mission, to avoid a possible failure of the experiments. Radiation hard glasses are widely used as substrates or windows in high-energy applications, due to their resistance in hostile environments where energetic particles and γ rays are present. In this work we have irradiated radiation resistant glass windows by γ rays from a 60Co source at several doses, from 50 to 3×l05 Gy, and at two different dose rates. The optical properties of the samples have been monitored and the effects of radiations have been measured. Moreover, a partial recovery of the damage has been observed after the end of irradiation. The effects depend on the irradiation dose rate.

  19. Impact of subgrid-scale radiative heating variability on the stratocumulus-to-trade cumulus transition in climate models

    SciTech Connect

    Xiao, Heng; Gustafson, William I.; Wang, Hailong

    2014-04-29

    Subgrid-scale interactions between turbulence and radiation are potentially important for accurately reproducing marine low clouds in climate models. To better understand the impact of these interactions, the Weather Research and Forecasting (WRF) model is configured for large eddy simulation (LES) to study the stratocumulus-to-trade cumulus (Sc-to-Cu) transition. Using the GEWEX Atmospheric System Studies (GASS) composite Lagrangian transition case and the Atlantic Trade Wind Experiment (ATEX) case, it is shown that the lack of subgrid-scale turbulence-radiation interaction, as is the case in current generation climate models, accelerates the Sc-to-Cu transition. Our analysis suggests that in cloud-topped boundary layers subgrid-scale turbulence-radiation interactions contribute to stronger production of temperature variance, which in turn leads to stronger buoyancy production of turbulent kinetic energy and helps to maintain the Sc cover.

  20. Energy exchange between a laser beam and charged particles using inverse transition radiation and method for its use

    DOEpatents

    Kimura, Wayne D.; Romea, Richard D.; Steinhauer, Loren C.

    1998-01-01

    A method and apparatus for exchanging energy between relativistic charged particles and laser radiation using inverse diffraction radiation or inverse transition radiation. The beam of laser light is directed onto a particle beam by means of two optical elements which have apertures or foils through which the particle beam passes. The two apertures or foils are spaced by a predetermined distance of separation and the angle of interaction between the laser beam and the particle beam is set at a specific angle. The separation and angle are a function of the wavelength of the laser light and the relativistic energy of the particle beam. In a diffraction embodiment, the interaction between the laser and particle beams is determined by the diffraction effect due to the apertures in the optical elements. In a transition embodiment, the interaction between the laser and particle beams is determined by the transition effect due to pieces of foil placed in the particle beam path.

  1. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension

    NASA Astrophysics Data System (ADS)

    Greene, Samuel M.; Shan, Xiao; Clary, David C.

    2016-06-01

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods.

  2. Rate constants of chemical reactions from semiclassical transition state theory in full and one dimension.

    PubMed

    Greene, Samuel M; Shan, Xiao; Clary, David C

    2016-06-28

    Semiclassical Transition State Theory (SCTST), a method for calculating rate constants of chemical reactions, offers gains in computational efficiency relative to more accurate quantum scattering methods. In full-dimensional (FD) SCTST, reaction probabilities are calculated from third and fourth potential derivatives along all vibrational degrees of freedom. However, the computational cost of FD SCTST scales unfavorably with system size, which prohibits its application to larger systems. In this study, the accuracy and efficiency of 1-D SCTST, in which only third and fourth derivatives along the reaction mode are used, are investigated in comparison to those of FD SCTST. Potential derivatives are obtained from numerical ab initio Hessian matrix calculations at the MP2/cc-pVTZ level of theory, and Richardson extrapolation is applied to improve the accuracy of these derivatives. Reaction barriers are calculated at the CCSD(T)/cc-pVTZ level. Results from FD SCTST agree with results from previous theoretical and experimental studies when Richardson extrapolation is applied. Results from our implementation of 1-D SCTST, which uses only 4 single-point MP2/cc-pVTZ energy calculations in addition to those for conventional TST, agree with FD results to within a factor of 5 at 250 K. This degree of agreement and the efficiency of the 1-D method suggest its potential as a means of approximating rate constants for systems too large for existing quantum scattering methods. PMID:27369506

  3. Granular-flow rheology: Role of shear-rate number in transition regime

    USGS Publications Warehouse

    Chen, C.-L.; Ling, C.-H.

    1996-01-01

    This paper examines the rationale behind the semiempirical formulation of a generalized viscoplastic fluid (GVF) model in the light of the Reiner-Rivlin constitutive theory and the viscoplastic theory, thereby identifying the parameters that control the rheology of granular flow. The shear-rate number (N) proves to be among the most significant parameters identified from the GVF model. As N ??? 0 and N ??? ???, the GVF model can reduce asymptotically to the theoretical stress versus shear-rate relations in the macroviscous and graininertia regimes, respectively, where the grain concentration (C) also plays a major role in the rheology of granular flow. Using available data obtained from the rotating-cylinder experiments of neutrally buoyant solid spheres dispersing in an interstitial fluid, the shear stress for granular flow in transition between the two regimes proves dependent on N and C in addition to some material constants, such as the coefficient of restitution. The insufficiency of data on rotating-cylinder experiments cannot presently allow the GVF model to predict how a granular flow may behave in the entire range of N; however, the analyzed data provide an insight on the interrelation among the relevant dimensionless parameters.

  4. A Complete Set of Radiative and Auger Rates for K-vacancy States in Fe XVIII-Fe-XXV

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Mendoza, C.; Kallman, T. R.; Bautista, M. A.

    2003-01-01

    A complete set of level energies, wavelengths, A-values, and total and partial Auger rates have been computed for transitions involving the K-vacancy states within the n = 2 complex of Fe XVIII-Fe XXV. Three different standard numerical packages are used for this purpose, namel y AUTOSTRUCTURE, the Breit-Pauli R-matrix suite (BPRM) and HFR, which allow reliable estimates of the physical effects involved and of the accuracy of the resulting data sets. The Breit interaction is taken i nto account because its contributions to the small A-values and partial Auger rates cannot be neglected with increasing electron occupancy. Semiempirical adjustments can also lead to large differences in both the radiative and Auger decay data of strongly mixed levels. Several experimental level energies and wavelengths are questioned, and significant discrepancies are found with previously computed decay rates th at are attributed to numerical problems. The statistical accuracy of the present level energies and wavelengths is ranked at +/-3 eV and +/ -2 mA, respectively, and that for A-values and partial Auger rates greater than lO(exp 13)/s at better than 20%.

  5. A Complete Set of Radiative and Auger Rates for K-vacancy States in Fe XVIII-Fe XXV

    NASA Technical Reports Server (NTRS)

    Palmeri, P.; Mendoza, C.; Kallman, T. R.; Bautista, M. A.

    2002-01-01

    A complete set of level energies, wavelengths, A-values, and total and partial Auger rates have been computed for transitions involving the K-vacancy states within the n = 2 complex of Fe XVIII-Fe XXV. Three different standard numerical packages are used for this purpose, namely AUTOSTRUCTURE, the Breit-Pauli R-matrix suite (BPRM) and HFR, which allow reliable estimates of the physical effects involved and of the accuracy of the resulting data sets. It is found that the Breit interaction must be always taken into account as the contributions to the small A-values and partial Auger rates does not decrease with electron occupancy. Semi-empirical adjustments can also lead to large differences in both the radiative and Auger decay data of strongly mixed levels. Several experimental energy levels and wavelengths are questioned, and significant discrepancies are found with previously computed decay rates that are attributed to numerical problems. The statistical accuracy of the present level energies and wavelengths is ranked at plus or minus 3 eV and plus or minus 2 mAngstroms, respectively, whereas that for A-values and partial Auger rates greater than 10(exp 13) per second is estimated at better than 20%.

  6. Influence of Space Radiation on the Outgassing Rate of a Patterned Polymeric Composite in Vacuum

    SciTech Connect

    Khasanshin, R. H.; Timofeev, A. N.; Ivanov, M. F.

    2009-01-05

    Experimental results on outgassing rates of patterned polymeric composites preliminary subjected to separate and combined radiation have been analyzed and presented. Mathematical models describing the outgassing processes in these materials were used for interpretation of the experimental data. Numerical results found using the models are presented.

  7. Interference effects in angular and spectral distributions of X-ray Transition Radiation from Relativistic Heavy Ions crossing a radiator: Influence of absorption and slowing-down

    NASA Astrophysics Data System (ADS)

    Fiks, E. I.; Pivovarov, Yu. L.

    2015-07-01

    Theoretical analysis and representative calculations of angular and spectral distributions of X-ray Transition Radiation (XTR) by Relativistic Heavy Ions (RHI) crossing a radiator are presented taking into account both XTR absorption and RHI slowing-down. The calculations are performed for RHI energies of GSI, FAIR, CERN SPS and LHC and demonstrate the influence of XTR photon absorption as well as RHI slowing-down in a radiator on the appearance/disappearance of interference effects in both angular and spectral distributions of XTR.

  8. Radiosensitization of Human Cervical Cancer Cells by Inhibiting Ribonucleotide Reductase: Enhanced Radiation Response at Low-Dose Rates

    SciTech Connect

    Kunos, Charles A.; Colussi, Valdir C.; Pink, John; Radivoyevitch, Tomas; Oleinick, Nancy L.

    2011-07-15

    Purpose: To test whether pharmacologic inhibition of ribonucleotide reductase (RNR) by 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC no. 663249) enhances radiation sensitivity during low-dose-rate ionizing radiation provided by a novel purpose-built iridium-192 cell irradiator. Methods and Materials: The cells were exposed to low-dose-rate radiation (11, 23, 37, 67 cGy/h) using a custom-fabricated cell irradiator or to high-dose-rate radiation (330 cGy/min) using a conventional cell irradiator. The radiation sensitivity of human cervical (CaSki, C33-a) cancer cells with or without RNR inhibition by 3-AP was evaluated using a clonogenic survival and an RNR activity assay. Alteration in the cell cycle distribution was monitored using flow cytometry. Results: Increasing radiation sensitivity of both CaSki and C33-a cells was observed with the incremental increase in radiation dose rates. 3-AP treatment led to enhanced radiation sensitivity in both cell lines, eliminating differences in cell cytotoxicity from the radiation dose rate. RNR blockade by 3-AP during low-dose-rate irradiation was associated with low RNR activity and extended G{sub 1}-phase cell cycle arrest. Conclusions: We conclude that RNR inhibition by 3-AP impedes DNA damage repair mechanisms that rely on deoxyribonucleotide production and thereby increases radiation sensitivity of human cervical cancers to low-dose-rate radiation.

  9. Brief report: cross-informant ratings of self- and other-regulation at career transitions in adolescence.

    PubMed

    Dietrich, Julia; Kracke, Bärbel

    2011-10-01

    Individual initiative is required to successfully master career transitions in adolescence, and also parents play an important role in this process. Past research largely omitted co-agency in transition-related activities between adolescents and their parents, which could be described in terms of self- and other-regulation. The present pilot study examined adolescents' and mothers' career-specific regulatory behaviors as perceived from both agents' perspectives. 38 German adolescents rated importance and engagement in one transition-related personal goal and reported on intensity of career exploration activities. Furthermore, they reported on their perceptions of mothers' career-related behaviors and confidence in their offspring's transition management. All measures were also assessed from the mothers' point of view. Results revealed associations within and across family members' ratings that showed similarities as well as differences in perceptions of how behaviors associate. Partial correlation analyses showed that specific maternal behavior not contingent upon her general warmth associated with child behavior. PMID:20646755

  10. Radiation response of industrial materials: Dose-rate and morphology implications

    NASA Astrophysics Data System (ADS)

    Berejka, Anthony J.

    2007-08-01

    Industrial uses of ionizing radiation mostly rely upon high current, high dose-rate (100 kGy/s) electron beam (EB) accelerators. To a lesser extent, industry uses low dose-rate (2.8 × 10-3 kGy/s) radioactive Cobalt-60 as a gamma source, generally for some rather specific purposes, as medical device sterilization and the treatment of food and foodstuffs. There are nearly nine times as many (∼1400) high current EB units in commercial operation than gamma sources (∼160). However, gamma sources can be easily scaled-down so that much research on materials effects is conducted using gamma radiation. Likewise, laboratories are more likely to have very low beam current and consequently low dose-rate accelerators such as Van de Graaff generators and linear accelerators. With the advent of very high current EB accelerators, X-ray processing has become an industrially viable option. With X-rays from high power sources, dose-rates can be modulated based upon accelerator power and the attenuation of the X-ray by the distance of the material from the X-ray target. Dose and dose-rate dependence has been found to be of consequence in several commercial applications which can employ the use of ionizing radiation. The combination of dose and dose-rate dependence of the polymerization and crosslinking of wood impregnants and of fiber composite matrix materials can yield more economically viable results which have promising commercial potential. Monomer and oligomer structure also play an important role in attaining these desirable results. The influence of morphology is shown on the radiation response of olefin polymers, such as ethylene, propylene and isobutylene polymers and their copolymers. Both controlled morphology and controlled dose-rate have commercial consequences. These are also impacted both by the adroit selection of materials and through the possible use of X-ray processing.

  11. Non-Condon equilibrium Fermi's golden rule electronic transition rate constants via the linearized semiclassical method.

    PubMed

    Sun, Xiang; Geva, Eitan

    2016-06-28

    In this paper, we test the accuracy of the linearized semiclassical (LSC) expression for the equilibrium Fermi's golden rule rate constant for electronic transitions in the presence of non-Condon effects. We do so by performing a comparison with the exact quantum-mechanical result for a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions. The comparison is performed over a wide range of frictions and temperatures for model (1) and over a wide range of temperatures for model (2). The linearized semiclassical method is found to reproduce the exact quantum-mechanical result remarkably well for both models over the entire range of parameters under consideration. In contrast, more approximate expressions are observed to deviate considerably from the exact result in some regions of parameter space. PMID:27369495

  12. Non-Condon equilibrium Fermi's golden rule electronic transition rate constants via the linearized semiclassical method

    NASA Astrophysics Data System (ADS)

    Sun, Xiang; Geva, Eitan

    2016-06-01

    In this paper, we test the accuracy of the linearized semiclassical (LSC) expression for the equilibrium Fermi's golden rule rate constant for electronic transitions in the presence of non-Condon effects. We do so by performing a comparison with the exact quantum-mechanical result for a model where the donor and acceptor potential energy surfaces are parabolic and identical except for shifts in the equilibrium energy and geometry, and the coupling between them is linear in the nuclear coordinates. Since non-Condon effects may or may not give rise to conical intersections, both possibilities are examined by considering: (1) A modified Garg-Onuchic-Ambegaokar model for charge transfer in the condensed phase, where the donor-acceptor coupling is linear in the primary mode coordinate, and for which non-Condon effects do not give rise to a conical intersection; (2) the linear vibronic coupling model for electronic transitions in gas phase molecules, where non-Condon effects give rise to conical intersections. We also present a comprehensive comparison between the linearized semiclassical expression and a progression of more approximate expressions. The comparison is performed over a wide range of frictions and temperatures for model (1) and over a wide range of temperatures for model (2). The linearized semiclassical method is found to reproduce the exact quantum-mechanical result remarkably well for both models over the entire range of parameters under consideration. In contrast, more approximate expressions are observed to deviate considerably from the exact result in some regions of parameter space.

  13. Generation of widely tunable intense far-infrared radiation pulses by stimulated Raman transitions in methylfluoride gas

    SciTech Connect

    Lang, P.T.; Sessler, F.; Werling, U.; Renk, K.F. )

    1989-12-18

    We report on the generation of widely tunable intense far-infrared radiation pulses by stimulated Raman transitions in methylfluoride gas. Using a tunable high-pressure CO{sub 2} laser we achieved, by {ital P}-branch tuning of stimulated Raman transitions in {sup 12}CH{sub 3}F and {sup 13}CH{sub 3}F gases, tunable generation of radiation in a series of intervals in the spectral range from 37 to 72 cm{sup {minus}1} covering 20% of this range. Possibilities of further extension of the tuning regions are also discussed.

  14. Multicomponent measurements of the Jefferson Lab energy recovery linac electron beam using optical transition and diffraction radiation

    NASA Astrophysics Data System (ADS)

    Holloway, M. A.; Fiorito, R. B.; Shkvarunets, A. G.; O'Shea, P. G.; Benson, S. V.; Douglas, D.; Evtushenko, P.; Jordan, K.

    2008-08-01

    High brightness electron accelerators, such as energy recovery linacs (ERL), often have complex particle distributions that can create difficulties in beam transport as well as matching to devices such as wigglers used to generate radiation from the beam. Optical transition radiation (OTR), OTR interferometry (OTRI), and optical diffraction-transition radiation interferometry (ODTRI) have proven to be effective tools for diagnosing both the spatial and angular distributions of charged particle beams. OTRI and ODTRI have been used to measure rms divergences, and optical transverse phase space mapping has been demonstrated using OTRI. In this work we present the results of diagnostic experiments using OTR and optical diffraction radiation conducted at the Jefferson Laboratory’s 115 MeV ERL which show the presence of two separate components within the beam’s spatial and angular distributions. By assuming a correlation between the spatial and angular features, we estimate an rms emittance value for each of the two components.

  15. Time-resolved electron-beam characterizations with optical transition radiation

    SciTech Connect

    Lumpkin, A.H.; Wilke, M.D.

    1992-09-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  16. Time-resolved electron-beam characterizations with optical transition radiation

    SciTech Connect

    Lumpkin, A.H. ); Wilke, M.D. )

    1992-01-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  17. Radiative and pionic transitions from the Ds 1(2460 ) to the Ds0 *(2317 )

    NASA Astrophysics Data System (ADS)

    Xiao, Cheng-Jian; Chen, Dian-Yong; Ma, Yong-Liang

    2016-05-01

    We estimate the partial widths for the radiative and pionic transitions from the Ds 1(2460 ) to the Ds 0(2317 ) in a molecular scenario, in which the Ds 1(2460 ) and Ds0 *(2317 ) are considered as hadronic molecular states of D K and D*K , respectively. The partial widths for the Ds 1(2460 )→Ds0 *(2317 )π0 and Ds 1(2460 )→Ds0 *(2317 )γ are evaluated to be about 0.19-0.22 and 3.0-3.1 keV, respectively. In addition, the ratio of the Ds 1(2460 )→Ds 0(2317 )γ and Ds 1(2460 )→Ds*π0 is estimated to be about (6.6 - 10.6 )×1 0-2 , which is safely under the measured upper limit.

  18. Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps.

    PubMed

    Chiloyan, Vazrik; Garg, Jivtesh; Esfarjani, Keivan; Chen, Gang

    2015-01-01

    When the separation of two surfaces approaches sub-nanometre scale, the boundary between the two most fundamental heat transfer modes, heat conduction by phonons and radiation by photons, is blurred. Here we develop an atomistic framework based on microscopic Maxwell's equations and lattice dynamics to describe the convergence of these heat transfer modes and the transition from one to the other. For gaps >1 nm, the predicted conductance values are in excellent agreement with the continuum theory of fluctuating electrodynamics. However, for sub-nanometre gaps we find the conductance is enhanced up to four times compared with the continuum approach, while avoiding its prediction of divergent conductance at contact. Furthermore, low-frequency acoustic phonons tunnel through the vacuum gap by coupling to evanescent electric fields, providing additional channels for energy transfer and leading to the observed enhancement. When the two surfaces are in or near contact, acoustic phonons become dominant heat carriers. PMID:25849305

  19. Effects of the cosmological expansion on the bubble nucleation rate for relativistic first-order phase transitions

    NASA Astrophysics Data System (ADS)

    Metaxas, Dimitrios

    2008-09-01

    I calculate the first corrections to the dynamical preexponential factor of the bubble nucleation rate for a relativistic first-order phase transition in an expanding cosmological background by estimating the effects of the Hubble expansion rate on the critical bubbles of Langer’s statistical theory of metastability. I also comment on possible applications and problems that arise when one considers the field theoretical extensions of these results (the Coleman De Luccia and Hawking-Moss instantons and decay rates).

  20. Radiation bronchitis and stenosis secondary to high dose rate endobronchial irradiation

    SciTech Connect

    Speiser, B.L. ); Spratling, L.

    1993-03-15

    The purpose of the study was to describe a new clinical entity observed in follow-up bronchoscopies in patients who were treated with high dose rate and medium dose rate remote afterloading brachytherapy of the tracheobronchial tree. Patients were treated by protocol with medium dose rate, 47 patients receiving 1000 cGy at a 5 mm depth times three fractions, high dose rate 144 patients receiving 1000 cGy at a 10 mm depth for three fractions and high dose rate 151 patients receiving cGy at a 10 mm depth for three fractions followed by bronchoscopy. Incidence of this entity was 9% for the first group, 12% for the second, and 13% for the third group. Reactions were grade 1 consisting of mild inflammatory response with a partial whitish circumferential membrane in an asymptomatic patient; grade 2, thicker complete white circumferential membrane with cough and/or obstructive problems requiring intervention; grade 3, severe inflammatory response with marked membranous exudate and mild fibrotic reaction; and grade 4 a predominant fibrotic reaction with progressive stenosis. Variables associated with a slightly increased incidence of radiation bronchitis and stenosis included: large cell carcinoma histology, curative intent, prior laser photoresection, and/or concurrent external radiation. Survival was the strongest predictor of the reaction. Radiation bronchitis and stenosis is a new clinical entity that must be identified in bronchial brachytherapy patients and treated appropriately. 23 refs., 3 figs., 7 tabs.

  1. Correlation between indoor radon concentration and dose rate in air from terrestrial gamma radiation in Japan.

    PubMed

    Fujimoto, K

    1998-09-01

    A correlation between the indoor radon concentration and dose rate in air from terrestrial gamma radiation is studied using the results of nationwide indoor radon and external exposure surveys, although the surveys were not conducted at the same time nor at the same location. The radon concentration shows a log-normal-like distribution, whereas the terrestrial gamma radiation dose rate in air shows a normal-like distribution. A log-linear scatterplot for each pair of the indoor radon concentration and gamma-ray dose rate in air in each city reveals a clear relationship. The average, maximum, and minimum as well as regression line of radon concentration were found to increase with the gamma-ray dose rate in air. The group in higher quantile of radon concentration shows larger dependence on the gamma-ray dose rate. The rate of increase of radon concentration with the gamma-ray dose rate in air depends on the house structure. The wooden house has a larger rate of increase than the concrete house, and the regression lines cross at high air dose rate. Based on the finding in the present study a certain criterion level of air dose rate could be established and used for an effective survey to find out which houses might require a remedial action in conjunction with other screening tools. The criterion level of air dose rate might be more effective if the level is set for each house structure since the rate of increase of radon concentration depends on house structure. PMID:9721838

  2. Gamma radiation at a human relevant low dose rate is genotoxic in mice

    PubMed Central

    Graupner, Anne; Eide, Dag M.; Instanes, Christine; Andersen, Jill M.; Brede, Dag A.; Dertinger, Stephen D.; Lind, Ole C.; Brandt-Kjelsen, Anicke; Bjerke, Hans; Salbu, Brit; Oughton, Deborah; Brunborg, Gunnar; Olsen, Ann K.

    2016-01-01

    Even today, 70 years after Hiroshima and accidents like in Chernobyl and Fukushima, we still have limited knowledge about the health effects of low dose rate (LDR) radiation. Despite their human relevance after occupational and accidental exposure, only few animal studies on the genotoxic effects of chronic LDR radiation have been performed. Selenium (Se) is involved in oxidative stress defence, protecting DNA and other biomolecules from reactive oxygen species (ROS). It is hypothesised that Se deficiency, as it occurs in several parts of the world, may aggravate harmful effects of ROS-inducing stressors such as ionising radiation. We performed a study in the newly established LDR-facility Figaro on the combined effects of Se deprivation and LDR γ exposure in DNA repair knockout mice (Ogg1−/−) and control animals (Ogg1+/−). Genotoxic effects were seen after continuous radiation (1.4 mGy/h) for 45 days. Chromosomal damage (micronucleus), phenotypic mutations (Pig-a gene mutation of RBCCD24−) and DNA lesions (single strand breaks/alkali labile sites) were significantly increased in blood cells of irradiated animals, covering three types of genotoxic activity. This study demonstrates that chronic LDR γ radiation is genotoxic in an exposure scenario realistic for humans, supporting the hypothesis that even LDR γ radiation may induce cancer. PMID:27596356

  3. Gamma radiation at a human relevant low dose rate is genotoxic in mice.

    PubMed

    Graupner, Anne; Eide, Dag M; Instanes, Christine; Andersen, Jill M; Brede, Dag A; Dertinger, Stephen D; Lind, Ole C; Brandt-Kjelsen, Anicke; Bjerke, Hans; Salbu, Brit; Oughton, Deborah; Brunborg, Gunnar; Olsen, Ann K

    2016-01-01

    Even today, 70 years after Hiroshima and accidents like in Chernobyl and Fukushima, we still have limited knowledge about the health effects of low dose rate (LDR) radiation. Despite their human relevance after occupational and accidental exposure, only few animal studies on the genotoxic effects of chronic LDR radiation have been performed. Selenium (Se) is involved in oxidative stress defence, protecting DNA and other biomolecules from reactive oxygen species (ROS). It is hypothesised that Se deficiency, as it occurs in several parts of the world, may aggravate harmful effects of ROS-inducing stressors such as ionising radiation. We performed a study in the newly established LDR-facility Figaro on the combined effects of Se deprivation and LDR γ exposure in DNA repair knockout mice (Ogg1(-/-)) and control animals (Ogg1(+/-)). Genotoxic effects were seen after continuous radiation (1.4 mGy/h) for 45 days. Chromosomal damage (micronucleus), phenotypic mutations (Pig-a gene mutation of RBC(CD24-)) and DNA lesions (single strand breaks/alkali labile sites) were significantly increased in blood cells of irradiated animals, covering three types of genotoxic activity. This study demonstrates that chronic LDR γ radiation is genotoxic in an exposure scenario realistic for humans, supporting the hypothesis that even LDR γ radiation may induce cancer. PMID:27596356

  4. Remote Sensing of Radiation Dose Rate by a Robot for Outdoor Usage

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Doi, K.; Kanematsu, H.; Utsumi, Y.; Hashimoto, R.; Takashina, T.

    2013-04-01

    In the present paper, the design and prototyping of a telemetry system, in which GPS, camera, and scintillation counter were mounted on a crawler type traveling vehicle, were conducted for targeting outdoor usage such as school playground. As a result, the crawler type traveling vehicle can be operated smoothly in the school grounds of brick and asphalt. The results were as follows: (1) It was confirmed that the crawler type traveling vehicle can be operated smoothly in the school grounds of brick and asphalt (running speed: 17[m/min]). (2) It was confirmed that the location information captured by GPS is visible on the Google map, and that the incorporation of video information is also possible to play. (3)A radiation dose rate of 0.09[μSv / h] was obtained in the ground. The value is less than the 1/40 ([3.8μSv / h]) allowable radiation dose rate for children in Fukushima Prefecture.(4)As a further work, modifying to program traveling, the measurement of the distribution of the radiation dose rate in a school of Fukushima Prefecture, and class delivery on radiation measurement will be carried out.

  5. Theory of molecular rate processes in the presence of intense laser radiation

    NASA Technical Reports Server (NTRS)

    George, T. F.; Zimmerman, I. H.; Devries, P. L.; Yuan, J.-M.; Lam, K.-S.; Bellum, J. C.; Lee, H.-W.; Slutsky, M. S.; Lin, J.-T.

    1979-01-01

    The present paper deals with the influence of intense laser radiation on gas-phase molecular rate processes. Representations of the radiation field, the particle system, and the interaction involving these two entities are discussed from a general rather than abstract point of view. The theoretical methods applied are outlined, and the formalism employed is illustrated by application to a variety of specific processes. Quantum mechanical and semiclassical treatments of representative atom-atom and atom-diatom collision processes in the presence of a field are examined, and examples of bound-continuum processes and heterogeneous catalysis are discussed within the framework of both quantum-mechanical and semiclassical theories.

  6. A new theoretical approach to thermonuclear radiative-capture reaction rate

    SciTech Connect

    Funaki, Yasuro; Yabana, Kazuhiro; Akahori, Takahiko

    2012-11-12

    We propose a new computational method for astrophysical reaction rate of radiative capture process, which does not require any solution of scattering problem. It is tested for twobody radiative caputure reaction {sup 16}O({alpha},{gamma}){sup 20}Ne and a comparison is made with an ordinary method solving two-body scattering problem. The method is shown to work well in practice and thus will be useful for problems in which an explicit construction of scattering solution is difficult such as the triple-alpha capture process.

  7. Transition from Ignition to Flame Growth under External Radiation in Three Dimensions (TIGER-3D)

    NASA Technical Reports Server (NTRS)

    Kashiwagi, Takashi; Nakamura, Yuji; Olson, Sandra L.; Mell, William

    2004-01-01

    This study focuses on localized ignition by external radiant flux and subsequent flame growth over thin polymeric materials (plastic and paper) in microgravity. Two transition stages were observed. The first transition stage covers the period from the onset of ignition to the formation of stabilized flame near the ignited area. This is followed by the second transition of the flame growth stage from the initial stabilized flame to sustained fire growth away from the ignited area. For the first stage, ignition experiments of thin PMMA sheets were conducted using a CO2 laser as an external source in the 10 s drop tower. The results of front side surface ignition and of backside surface ignition were observed. The effects of imposed flow velocity, sample thickness, and ambient oxygen concentration on ignition are obtained. Numerical study was conducted to investigate to understand and predict ignition behavior observed in the experiments. For the second stage, numerical study is being conducted to describe the effects of gravity on heat release rate of a PMMA sheet. The gravity level was varied from zero to normal gravity. The preliminary results show that the maximum heat release occurs at around 0.02 g.

  8. Do Case Rates Affect Physicians' Clinical Practice in Radiation Oncology?: An Observational Study

    PubMed Central

    Loy, Bryan A.; Shkedy, Clive I.; Powell, Adam C.; Happe, Laura E.; Royalty, Julie A.; Miao, Michael T.; Smith, Gary L.; Long, James W.; Gupta, Amit K.

    2016-01-01

    Case rate payments combined with utilization monitoring may have the potential to improve the quality of care by reducing over and under-treatment. Thus, a national managed care organization introduced case rate payments at one multi-site radiation oncology provider while maintaining only fee-for-service payments at others. This study examined whether the introduction of the payment method had an effect on radiation fractions administered when compared to clinical guidelines. The number of fractions of radiation therapy delivered to patients with bone metastases, breast, lung, prostate, and skin cancer was assessed for concordance with clinical guidelines. The proportion of guideline-based care ascertained from the payer's claims database was compared before (2011) and after (2013) the payment method introduction using relative risks (RR). After the introduction of case rates, there were no significant changes in guideline-based care in breast, lung, and skin cancer; however, patients with bone metastases and prostate cancer were significantly more likely to have received guideline-based care (RR = 2.0 and 1.1, respectively, p<0.05). For the aggregate of all cancers, the under-treatment rate significantly declined (p = 0.008) from 4% to 0% after the introduction of case rate payments, while the over-treatment rate remained steady at 9%, with no significant change (p = 0.20). These findings suggest that the introduction of case rate payments did not adversely affect the rate of guideline-based care at the provider examined. Additional research is needed to isolate the effect of the payment model and assess implications in other populations. PMID:26870963

  9. Do Case Rates Affect Physicians' Clinical Practice in Radiation Oncology?: An Observational Study.

    PubMed

    Loy, Bryan A; Shkedy, Clive I; Powell, Adam C; Happe, Laura E; Royalty, Julie A; Miao, Michael T; Smith, Gary L; Long, James W; Gupta, Amit K

    2016-01-01

    Case rate payments combined with utilization monitoring may have the potential to improve the quality of care by reducing over and under-treatment. Thus, a national managed care organization introduced case rate payments at one multi-site radiation oncology provider while maintaining only fee-for-service payments at others. This study examined whether the introduction of the payment method had an effect on radiation fractions administered when compared to clinical guidelines. The number of fractions of radiation therapy delivered to patients with bone metastases, breast, lung, prostate, and skin cancer was assessed for concordance with clinical guidelines. The proportion of guideline-based care ascertained from the payer's claims database was compared before (2011) and after (2013) the payment method introduction using relative risks (RR). After the introduction of case rates, there were no significant changes in guideline-based care in breast, lung, and skin cancer; however, patients with bone metastases and prostate cancer were significantly more likely to have received guideline-based care (RR = 2.0 and 1.1, respectively, p<0.05). For the aggregate of all cancers, the under-treatment rate significantly declined (p = 0.008) from 4% to 0% after the introduction of case rate payments, while the over-treatment rate remained steady at 9%, with no significant change (p = 0.20). These findings suggest that the introduction of case rate payments did not adversely affect the rate of guideline-based care at the provider examined. Additional research is needed to isolate the effect of the payment model and assess implications in other populations. PMID:26870963

  10. Cuff-Free Blood Pressure Estimation Using Pulse Transit Time and Heart Rate

    PubMed Central

    Wang, Ruiping; Jia, Wenyan; Mao, Zhi-Hong; Sclabassi, Robert J.

    2015-01-01

    It has been reported that the pulse transit time (PTT), the interval between the peak of the R-wave in electrocardiogram (ECG) and the fingertip photoplethysmogram (PPG), is related to arterial stiffness, and can be used to estimate the systolic blood pressure (SBP) and diastolic blood pressure (DBP). This phenomenon has been used as the basis to design portable systems for continuously cuff-less blood pressure measurement, benefiting numerous people with heart conditions. However, the PTT-based blood pressure estimation may not be sufficiently accurate because the regulation of blood pressure within the human body is a complex, multivariate physiological process. Considering the negative feedback mechanism in the blood pressure control, we introduce the heart rate (HR) and the blood pressure estimate in the previous step to obtain the current estimate. We validate this method using a clinical database. Our results show that the PTT, HR and previous estimate reduce the estimated error significantly when compared to the conventional PTT estimation approach (p<0.05). PMID:26213717

  11. High Broadband Spectral Resolving Transition-Edge Sensors for High Count-Rate Astrophysical Applications

    NASA Technical Reports Server (NTRS)

    Smith, Stephen

    2011-01-01

    We are developing arrays of transition-edge sensor (TES) X-ray detectors optimized for high count-rate solar astronomy applications where characterizing the high velocity motions of X-ray jets in solar flares is of particular interest. These devices are fabricated on thick Si substrates and consist of 35x35micron^2 TESs with 4.5micron thick, 60micron pitch, electroplated absorbers. We have tested devices fabricated with different geometric stem contact areas with the TES and surrounding substrate area, which allows us to investigate the loss of athermal phonons to the substrate. Results show a correlation between the stem contact area and a non-Gaussian broadening in the spectral line shape consistent with athermal phonon loss. When the contact area is minimized we have obtained remarkable board-band spectral resolving capabilities of 1.3 plus or minus 0.leV at an energy of 1.5 keV, 1.6 plus or minus 0.1 eV at 5.9 keV and 2.0 plus or minus 0.1 eV at 8 keV. This, coupled with a capability of accommodating 100's of counts per second per pixel makes these devices an exciting prospect of future x-ray astronomy applications.

  12. Impact of gamma radiation on the eruption rate of rat incisors

    NASA Astrophysics Data System (ADS)

    El-Faramawy, Nabil; El-Haddad, Khaled; Ali, Mohamed; Talaat, Mona

    2015-09-01

    The present work aims to test the effect of gamma radiation on the rate of eruption of rat incisors. One hundred and five adult male albino rats were used and irradiated at different gamma doses. The effects of irradiation were investigated by numerical measurements of eruption rate, histological investigation using light microscope and spectral analysis using Fourier Transform Infra-Red (FTIR). No detectable changes were observed in the groups with smaller radiation doses. There was a significant decrease in the eruption rate starting from the 4 Gy radiation dose. The observation of histological sections revealed disturbance in cellular elements responsible for eruption as well as periodontal disturbance in the samples irradiated with 4 and 6 Gy. FTIR Spectroscopy of control group and the group irradiated by 0.5 Gy showed similar absorption bands with minor differences. However, samples irradiated by 1 Gy showed significant changes in both molecular structure and conformation related to carbonates and hydroxyl groups. From the previous results, it could be concluded that gamma irradiation negatively affects the eruption rate of the rat incisors especially with higher doses.

  13. Ion production rate in a boreal forest based on ion, particle and radiation measurements

    NASA Astrophysics Data System (ADS)

    Laakso, L.; Petäjä, T.; Lehtinen, K. E. J.; Kulmala, M.; Paatero, J.; Hõrrak, U.; Tammet, H.; Joutsensaari, J.

    2004-07-01

    In this study the ion production rates in a boreal forest are studied based on two different methods: 1) cluster ion and particle concentration measurements, 2) external radiation and radon concentration measurements. Both methods produce reasonable estimates for ion production rates. The average ion production rate calculated from aerosol particle size distribution and air ion mobility distribution measurements was 2.6 cm-3s-1 and based on external radiation and radon measurements 4.5 cm-3s-1. The first method based on ion and particle measurements gave lower values for the ion production rates especially during the day. A possible reason for this is that particle measurements started only from 3 nm, so the sink of small ions during the nucleation events was underestimated. Another reason is that the possible fogs, which caused an extra sink of small ions are not taken into account in the calculations. It may also be possible that the hygroscopic growth factors of aerosol particles were underestimated. A fourth possible reason for the discrepancy is the nucleation mechanism itself. If the ions were somehow present in the nucleation process, there could have been an additional ion sink during the nucleation days. On the other hand, not all the radiation energy is converted to ions and the possible effect of alpha recoil is also omitted.

  14. Initial optical transition radiation measurements of the electron beam for the Boeing Free-Electron Laser experiment

    SciTech Connect

    Lumpkin, A.H.; Fiorito, R.B.; Rule, D.W.; Dowell, D.H.; Sellyey, W.; Lowrey, A.R.; Naval Surface Warfare Center, Silver Spring, MD; Boeing Aerospace and Electronics, Seattle, WA )

    1989-01-01

    The potential for characterization of electron beams at {approximately}100 MeV at the Boeing Free-Electron Laser (FEL) facility by optical transition radiation (OTR) techniques has been demonstrated as an important complement to other diagnostic means. Electron beam properties such as spatial profile and position, current intensity, emittance, and energy were made accessible in an on-line manner. Initial examples including transport through the 5-m wiggler and the resolution of Cerenkov radiation and spontaneous emission radiation competitive sources are discussed. 11 refs., 13 figs.

  15. Predicted Rates of Secondary Malignancies From Proton Versus Photon Radiation Therapy for Stage I Seminoma

    SciTech Connect

    Simone, Charles B.; Kramer, Kevin; O'Meara, William P.; Bekelman, Justin E.; Belard, Arnaud; McDonough, James; O'Connell, John

    2012-01-01

    Purpose: Photon radiotherapy has been the standard adjuvant treatment for stage I seminoma. Single-dose carboplatin therapy and observation have emerged as alternative options due to concerns for acute toxicities and secondary malignancies from radiation. In this institutional review board-approved study, we compared photon and proton radiotherapy for stage I seminoma and the predicted rates of excess secondary malignancies for both treatment modalities. Methods and Material: Computed tomography images from 10 consecutive patients with stage I seminoma were used to quantify dosimetric differences between photon and proton therapies. Structures reported to be at increased risk for secondary malignancies and in-field critical structures were contoured. Reported models of organ-specific radiation-induced cancer incidence rates based on organ equivalent dose were used to determine the excess absolute risk of secondary malignancies. Calculated values were compared with tumor registry reports of excess secondary malignancies among testicular cancer survivors. Results: Photon and proton plans provided comparable target volume coverage. Proton plans delivered significantly lower mean doses to all examined normal tissues, except for the kidneys. The greatest absolute reduction in mean dose was observed for the stomach (119 cGy for proton plans vs. 768 cGy for photon plans; p < 0.0001). Significantly more excess secondary cancers per 10,000 patients/year were predicted for photon radiation than for proton radiation to the stomach (4.11; 95% confidence interval [CI], 3.22-5.01), large bowel (0.81; 95% CI, 0.39-1.01), and bladder (0.03; 95% CI, 0.01-0.58), while no difference was demonstrated for radiation to the pancreas (0.02; 95% CI, -0.01-0.06). Conclusions: For patients with stage I seminoma, proton radiation therapy reduced the predicted secondary cancer risk compared with photon therapy. We predict a reduction of one additional secondary cancer for every 50 patients

  16. Communication: Transition state trajectory stability determines barrier crossing rates in chemical reactions induced by time-dependent oscillating fields

    NASA Astrophysics Data System (ADS)

    Craven, Galen T.; Bartsch, Thomas; Hernandez, Rigoberto

    2014-07-01

    When a chemical reaction is driven by an external field, the transition state that the system must pass through as it changes from reactant to product—for example, an energy barrier—becomes time-dependent. We show that for periodic forcing the rate of barrier crossing can be determined through stability analysis of the non-autonomous transition state. Specifically, strong agreement is observed between the difference in the Floquet exponents describing stability of the transition state trajectory, which defines a recrossing-free dividing surface [G. T. Craven, T. Bartsch, and R. Hernandez, "Persistence of transition state structure in chemical reactions driven by fields oscillating in time," Phys. Rev. E 89, 040801(R) (2014)], and the rates calculated by simulation of ensembles of trajectories. This result opens the possibility to extract rates directly from the intrinsic stability of the transition state, even when it is time-dependent, without requiring a numerically expensive simulation of the long-time dynamics of a large ensemble of trajectories.

  17. Estimation of the fragility index of indomethacin by DSC using the heating and cooling rate dependency of the glass transition.

    PubMed

    Ramos, Joaquim J Moura; Taveira-Marques, Raquel; Diogo, Hermínio P

    2004-06-01

    In this study we have investigated the features of the glass transition relaxation of indomethacin using Differential Scanning Calorimetry (DSC). The purpose of this work is to provide an estimation of the activation energy at the glass transition temperature, as well as of the fragility index, of amorphous indomethacin from DSC data. To do so, the glass transition temperature region of amorphous indomethacin was characterized in both cooling and heating regimes. The activation energy for structural relaxation (directly related to glass fragility) was estimated from the heating and cooling rate dependence of the location of the DSC profile of the glass transition. The obtained results were similar in the heating and in the cooling modes. The results on the fragility index of indomethacin obtained in the present study, m = 60 in the cooling mode and m = 56 in the heating mode, are compared with other values previously published in the literature. PMID:15124208

  18. Total radiative capture rates for three- and four-nucleon pionic atoms

    SciTech Connect

    Werntz, C.; Valk, H.S.

    1988-02-01

    A corrected closure approximation is used to calculate the reduced rates for radiative capture of negative pions from 1s and 2p orbitals in /sup 3/H, /sup 3/He, and /sup 4/He. For /sup 3/He and /sup 4/He the calculated rates are in good agreement with experimental data. In the case of /sup 3/H, the calculated value for 1s capture is combined with the measured radiative capture branching ratio to obtain a value of GAMMA/sub tot//sup 1//sup s/ = 2.2 +- 0.4 eV for the total width of the 1s level in the /sup 3/H pionic atom. This value when compared to the measured total width of the 1s level in pionic /sup 3/He implies a small but definite contribution of singlet spin nucleon pairs to absorption of s-wave pions.

  19. Emesis as a Screening Diagnostic for Low Dose Rate (LDR) Total Body Radiation Exposure.

    PubMed

    Camarata, Andrew S; Switchenko, Jeffrey M; Demidenko, Eugene; Flood, Ann B; Swartz, Harold M; Ali, Arif N

    2016-04-01

    Current radiation disaster manuals list the time-to-emesis (TE) as the key triage indicator of radiation dose. The data used to support TE recommendations were derived primarily from nearly instantaneous, high dose-rate exposures as part of variable condition accident databases. To date, there has not been a systematic differentiation between triage dose estimates associated with high and low dose rate (LDR) exposures, even though it is likely that after a nuclear detonation or radiologic disaster, many surviving casualties would have received a significant portion of their total exposure from fallout (LDR exposure) rather than from the initial nuclear detonation or criticality event (high dose rate exposure). This commentary discusses the issues surrounding the use of emesis as a screening diagnostic for radiation dose after LDR exposure. As part of this discussion, previously published clinical data on emesis after LDR total body irradiation (TBI) is statistically re-analyzed as an illustration of the complexity of the issue and confounding factors. This previously published data includes 107 patients who underwent TBI up to 10.5 Gy in a single fraction delivered over several hours at 0.02 to 0.04 Gy min. Estimates based on these data for the sensitivity of emesis as a screening diagnostic for the low dose rate radiation exposure range from 57.1% to 76.6%, and the estimates for specificity range from 87.5% to 99.4%. Though the original data contain multiple confounding factors, the evidence regarding sensitivity suggests that emesis appears to be quite poor as a medical screening diagnostic for LDR exposures. PMID:26910032

  20. Radiative decay rate of excitons in square quantum wells: Microscopic modeling and experiment

    NASA Astrophysics Data System (ADS)

    Khramtsov, E. S.; Belov, P. A.; Grigoryev, P. S.; Ignatiev, I. V.; Verbin, S. Yu.; Efimov, Yu. P.; Eliseev, S. A.; Lovtcius, V. A.; Petrov, V. V.; Yakovlev, S. L.

    2016-05-01

    The binding energy and the corresponding wave function of excitons in GaAs-based finite square quantum wells (QWs) are calculated by the direct numerical solution of the three-dimensional Schrödinger equation. The precise results for the lowest exciton state are obtained by the Hamiltonian discretization using the high-order finite-difference scheme. The microscopic calculations are compared with the results obtained by the standard variational approach. The exciton binding energies found by two methods coincide within 0.1 meV for the wide range of QW widths. The radiative decay rate is calculated for QWs of various widths using the exciton wave functions obtained by direct and variational methods. The radiative decay rates are confronted with the experimental data measured for high-quality GaAs/AlGaAs and InGaAs/GaAs QW heterostructures grown by molecular beam epitaxy. The calculated and measured values are in good agreement, though slight differences with earlier calculations of the radiative decay rate are observed.

  1. Dose rate effects in radiation degradation of polymer-based cable materials

    NASA Astrophysics Data System (ADS)

    Plaček, V.; Bartoníček, B.; Hnát, V.; Otáhal, B.

    2003-08-01

    Cable ageing under the nuclear power plant (NPP) conditions must be effectively managed to ensure that the required plant safety and reliability are maintained throughout the plant service life. Ionizing radiation is one of the main stressors causing age-related degradation of polymer-based cable materials in air. For a given absorbed dose, radiation-induced damage to a polymer in air environment usually depends on the dose rate of the exposure. In this work, the effect of dose rate on the degradation rate has been studied. Three types of NPP cables (with jacket/insulation combinations PVC/PVC, PVC/PE, XPE/XPE) were irradiated at room temperature using 60Co gamma ray source at average dose rates of 7, 30 and 100 Gy/h with the doses up to 590 kGy. The irradiated samples have been tested for their mechanical properties, thermo-oxidative stability (using differential scanning calorimetry, DSC), and density. In the case of PVC and PE samples, the tested properties have shown evident dose rate effects, while the XPE material has shown no noticeable ones. The values of elongation at break and the thermo-oxidative stability decrease with the advanced degradation, density tends to increase with the absorbed dose. For XPE samples this effect can be partially explained by the increase of crystallinity. It was tested by the DSC determination of the crystalline phase amount.

  2. Radiative forcing of the stratosphere of Jupiter, Part I: Atmospheric cooling rates from Voyager to Cassini

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Nixon, C. A.; Shia, R. L.; West, R. A.; Irwin, P. G. J.; Yelle, R. V.; Allen, M. A.; Yung, Y. L.

    2013-11-01

    We developed a line-by-line heating and cooling rate model for the stratosphere of Jupiter, based on two complete sets of global maps of temperature, C2H2 and C2H6, retrieved from the Cassini and Voyager observations in the latitude and vertical plane, with a careful error analysis. The non-LTE effect is found unimportant on the thermal cooling rate below the 0.01 mbar pressure level. The most important coolants are molecular hydrogen between 10 and 100 mbar, and hydrocarbons, including ethane (C2H6), acetylene (C2H2) and methane (CH4), in the region above. The two-dimensional cooling rate maps are influenced primarily by the temperature structure, and also by the meridional distributions of C2H2 and C2H6. The temperature anomalies at the 1 mbar pressure level in the Cassini data and the strong C2H6 latitudinal contrast in the Voyager epoch are the two most prominent features influencing the cooling rate patterns, with the effect from the 'quasi-quadrennial oscillation (QQO)' thermal structures at ~20 mbar. The globally averaged CH4 heating and cooling rates are not balanced, clearly in the lower stratosphere under 10 mbar, and possibly in the upper stratosphere above the 1 mbar pressure level. Possible heating sources from the gravity wave breaking and aerosols are discussed. The radiative relaxation timescale in the lower stratosphere implies that the temperature profile might not be purely radiatively controlled.

  3. Determining astrophysical three-body radiative capture reaction rates from inclusive Coulomb break-up measurements

    NASA Astrophysics Data System (ADS)

    Casal, J.; Rodríguez-Gallardo, M.; Arias, J. M.; Gómez-Camacho, J.

    2016-04-01

    A relationship between the Coulomb inclusive break-up probability and the radiative capture reaction rate for weakly bound three-body systems is established. This direct link provides a robust procedure to estimate the reaction rate for nuclei of astrophysical interest by measuring inclusive break-up processes at different energies and angles. This might be an advantageous alternative to the determination of reaction rates from the measurement of B (E 1 ) distributions through exclusive Coulomb break-up experiments. In addition, it provides a reference to assess the validity of different theoretical approaches that have been used to calculate reaction rates. The procedure is applied to 11Li (9Li+n +n ) and 6He (4He+n +n ) three-body systems for which some data exist.

  4. Chloroquine Improves Survival and Hematopoietic Recovery After Lethal Low-Dose-Rate Radiation

    SciTech Connect

    Lim Yiting; Hedayati, Mohammad; Merchant, Akil A.; Zhang Yonggang; Yu, Hsiang-Hsuan M.; Kastan, Michael B.; Matsui, William; DeWeese, Theodore L.

    2012-11-01

    Purpose: We have previously shown that the antimalarial agent chloroquine can abrogate the lethal cellular effects of low-dose-rate (LDR) radiation in vitro, most likely by activating the ataxia-telangiectasia mutated (ATM) protein. Here, we demonstrate that chloroquine treatment also protects against lethal doses of LDR radiation in vivo. Methods and Materials: C57BL/6 mice were irradiated with a total of 12.8 Gy delivered at 9.4 cGy/hour. ATM null mice from the same background were used to determine the influence of ATM. Chloroquine was administered by two intraperitoneal injections of 59.4 {mu}g per 17 g of body weight, 24 hours and 4 hours before irradiation. Bone marrow cells isolated from tibia, fibula, and vertebral bones were transplanted into lethally irradiated CD45 congenic recipient mice by retroorbital injection. Chimerism was assessed by flow cytometry. In vitro methylcellulose colony-forming assay of whole bone marrow cells and fluorescence activated cell sorting analysis of lineage depleted cells were used to assess the effect of chloroquine on progenitor cells. Results: Mice pretreated with chloroquine before radiation exhibited a significantly higher survival rate than did mice treated with radiation alone (80% vs. 31%, p = 0.0026). Chloroquine administration before radiation did not affect the survival of ATM null mice (p = 0.86). Chloroquine also had a significant effect on the early engraftment of bone marrow cells from the irradiated donor mice 6 weeks after transplantation (4.2% vs. 0.4%, p = 0.015). Conclusion: Chloroquine administration before radiation had a significant effect on the survival of normal but not ATM null mice, strongly suggesting that the in vivo effect, like the in vitro effect, is also ATM dependent. Chloroquine improved the early engraftment of bone marrow cells from LDR-irradiated mice, presumably by protecting the progenitor cells from radiation injury. Chloroquine thus could serve as a very useful drug for protection

  5. Chloroquine improves survival and hematopoietic recovery following lethal low dose- rate radiation

    PubMed Central

    Lim, Yiting; Hedayati, Mohammad; Merchant, Akil A.; Zhang, Yonggang; Yu, Hsiang-Hsuan M; Kastan, Michael B.; Matsui, William; DeWeese, Theodore L.

    2012-01-01

    Purpose We have previously shown that the anti-malarial agent chloroquine can abrogate the lethal cellular effects of low dose-rate (LDR) radiation in vitro, most likely by activating the ataxia-telangiectasia mutated (ATM) protein. Here, we demonstrate that chloroquine treatment also protects against lethal doses of LDR radiation in vivo. Methods and Materials C57BL/6 mice were irradiated with total of 12.8 Gy delivered at 9.4 cGy/hr. ATM null mice from the same background were used to determine the influence of ATM. Chloroquine was administered by two intraperitoneal injections of 59.4 μg per 17 g of body weight, 24 hrs and 4 hrs before irradiation. Bone marrow cells isolated from tibia, fibula and vertebral bones were transplanted into lethally irradiated CD45 congenic recipient mice by retro orbital injection. Chimerism was assessed by flow cytometry. In vitro methyl cellulose colony forming assay of whole bone marrow cells as well as FACS analysis of lineage depleted cells was used to assess the effect of chloroquine on progenitor cells. Results Mice pretreated with chloroquine prior to radiation exhibited a significantly higher survival rate compared to mice treated with radiation alone (80 vs.31 percent, p=0.0026). Chloroquine administration prior to radiation did not impact the survival of ATM null mice (p=0.86). Chloroquine also had a significant effect on the early engraftment of bone marrow cells from the irradiated donor mice 6 weeks after the transplantation (4.2 percent vs. 0.4 percent, p=0.015). Conclusion Chloroquine administration prior to radiation had a significant effect on the survival of normal but not ATM null mice strongly suggesting that the in vivo effect like the in vitro effect is also ATM dependent. Chloroquine improved the early engraftment of bone marrow cells from LDR irradiated mice, presumably by protecting the progenitor cells from radiation injury. Chloroquine thus could serve as a very useful drug for protection against the

  6. VizieR Online Data Catalog: Energies & radiative transition from ArXII to ZnXXIV (Wang+, 2016)

    NASA Astrophysics Data System (ADS)

    Wang, K.; Si, R.; Dang, W.; Jonsson, P.; Guo, X. L.; Li, S.; Chen, Z. B.; Zhang, H.; Long, F. Y.; Liu, H. T.; Li, D. F.; Hutton, R.; Chen, C. Y.; Yan, J.

    2016-04-01

    Combined relativistic configuration interaction and many-body perturbation calculations are performed for the 359 fine-structure levels of the 2s22p3, 2s2p4, 2p5, 2s22p23l, 2s2p33l, 2p43l, and 2s22p24l configurations in N-like ions from Ar XII to Zn XXIV. Complete and consistent data sets of energies, wavelengths, radiative rates, oscillator strengths, and line strengths for all possible electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among the 359 levels are given for each ion. The present work significantly increases the amount of accurate data for ions in the nitrogen-like sequence, and the accuracy of the energy levels is high enough to enable the identification and interpretation of observed spectra involving the n=3, 4 levels, for which experimental values are largely scarce. Meanwhile, the results should be of great help for modeling and diagnosing astrophysical and fusion plasmas. (2 data files).

  7. DROPOUT AND RETENTION RATE METHODOLOGY USED TO ESTIMATE FIRST-STAGE ELEMENTS OF THE TRANSITION PROBABILITY MATRICES FOR DYNAMOD II.

    ERIC Educational Resources Information Center

    HUDMAN, JOHN T.; ZABROWSKI, EDWARD K.

    EQUATIONS FOR SYSTEM INTAKE, DROPOUT, AND RETENTION RATE CALCULATIONS ARE DERIVED FOR ELEMENTARY SCHOOLS, SECONDARY SCHOOLS, AND COLLEGES. THE PROCEDURES DESCRIBED WERE FOLLOWED IN DEVELOPING ESTIMATES OF SELECTED ELEMENTS OF THE TRANSITION PROBABILITY MATRICES USED IN DYNAMOD II. THE PROBABILITY MATRIX CELLS ESTIMATED BY THE PROCEDURES DESCRIBED…

  8. Stated Briefly: Participation and Pass Rates for College Preparatory Transition Courses in Kentucky. REL 2015-060

    ERIC Educational Resources Information Center

    Cramer, Eric; Mokher, Christine

    2015-01-01

    This study examines Kentucky high school students' participation and pass rates in college preparatory transition courses, voluntary remedial courses in math and reading offered to grade 12 students. These courses are targeted to students scoring just below the state's college readiness benchmarks on the ACT in grade 11. The study found…

  9. Financial Distress Prediction Using Discrete-time Hazard Model and Rating Transition Matrix Approach

    NASA Astrophysics Data System (ADS)

    Tsai, Bi-Huei; Chang, Chih-Huei

    2009-08-01

    Previous studies used constant cut-off indicator to distinguish distressed firms from non-distressed ones in the one-stage prediction models. However, distressed cut-off indicator must shift according to economic prosperity, rather than remains fixed all the time. This study focuses on Taiwanese listed firms and develops financial distress prediction models based upon the two-stage method. First, this study employs the firm-specific financial ratio and market factors to measure the probability of financial distress based on the discrete-time hazard models. Second, this paper further focuses on macroeconomic factors and applies rating transition matrix approach to determine the distressed cut-off indicator. The prediction models are developed by using the training sample from 1987 to 2004, and their levels of accuracy are compared with the test sample from 2005 to 2007. As for the one-stage prediction model, the model in incorporation with macroeconomic factors does not perform better than that without macroeconomic factors. This suggests that the accuracy is not improved for one-stage models which pool the firm-specific and macroeconomic factors together. In regards to the two stage models, the negative credit cycle index implies the worse economic status during the test period, so the distressed cut-off point is adjusted to increase based on such negative credit cycle index. After the two-stage models employ such adjusted cut-off point to discriminate the distressed firms from non-distressed ones, their error of misclassification becomes lower than that of one-stage ones. The two-stage models presented in this paper have incremental usefulness in predicting financial distress.

  10. The rate-limiting mechanism of transition metal gettering in multicrystalline silicon

    SciTech Connect

    McHugo, S.A.; Thompson, A.C.; Imaizumi, M.

    1997-04-01

    Multicrystalline silicon is a very interesting material for terrestrial solar cells. Its low cost and respectable energy conversion efficiency (12-15%) makes it arguably the most cost competitive material for large-volume solar power generation. However, the solar cell efficiency of this material is severely degraded by regions of high minority carrier recombination which have been shown to possess both dislocations and microdefects. These structural defects are known to increase in recombination activity with transition metal decoration. Therefore, gettering of metal impurities from the material would be expected to greatly enhance solar cell performance. Contrary to this rationale, experiments using frontside phosphorus and/or backside aluminum treatments have been found to improve regions with low recombination activity while having little or no effect on the high recombination regions and in turn only slightly improving the overall cell performance. The goal of this research is to determine the mechanism by which gettering is ineffectual on these high recombination regions. The authors have performed studies on integrated circuit (IC) quality single crystal and multicrystalline solar cell silicon (mc-silicon) in the as-grown state and after a variety of processing/gettering steps. With Surface Photovoltage measurements of the minority carrier diffusion length which is inversely proportional to carrier recombination, they have seen that aluminum gettering is effective for improving IC quality material but ineffective for improving the regions of initially low diffusion lengths (high recombination rates) in mc-silicon. Of particular interest is the great increase in diffusion length for IC material as compared to the mc-silicon. Clearly the IC material has benefited to a greater extent from the gettering procedure than the mc-silicon.

  11. The Effects of Electron Radiation on the Glass Transition Temperature of a Polyetherimide.

    NASA Astrophysics Data System (ADS)

    Kern, Kristen Tulloch

    The effects of electron radiation on a polyetherimide (PEI), Ultem^{cdot}, were investigated. In particular, the changes in the glass transition temperature (T_{g} ) with absorbed radiation dose were studied. The polymer was exposed to mono-energetic beams of 100-keV electrons and 1.0-MeV electrons for doses up to 100 megagray (MGy). Dosimetry for the exposures was based on Monte -Carlo simulations of the transfer of energy from an energetic electron to the polymer and on comparison to Nylon standards. Dynamic mechanical analysis was used to determine the T _{g} for non-exposed PEI and the changes in T_{g} resulting from irradiation. The T_{g} did not change significantly for doses up to and including 75 MGy, while a significant increase in T_ {g} occurred for a dose of 100 MGy. The cross-link and chain scission densities in the irradiated PEI were determined using infrared spectroscopy. The cross -link density increased with dose for all doses investigated. The chain scission density increased with dose for doses up to 75 MGy, but was lower for a dose of 100 MGy than for a dose of 75 MGy. Radical population kinetics, based in part on data from an electron paramagnetic resonance study, were correlated with the cross-link density and chain scission density to investigate the mechanism for the observed density variations with dose. The radical population simulations suggest that chain scissioning occurs less readily when the average radical separation during the exposure is less than three molecular radii. Finally, a model for the combined effects of cross-linking and chain scissioning is proposed which combines a statistical-mechanical model for the change in T_{g} with cross-link density and a free-volume model for the change in T _{g} with chain scission density.

  12. Influence of Preoperative Radiation Field on Postoperative Leak Rates in Esophageal Cancer Patients after Trimodality Therapy

    PubMed Central

    Juloori, Aditya; Tucker, Susan L.; Komaki, Ritsuko; Liao, Zhongxing; Correa, Arlene M.; Swisher, Stephen G.; Hofstetter, Wayne L.; Lin, Steven H.

    2014-01-01

    Introduction Postoperative morbidities, such as anastomotic leaks, are common after trimodality therapy (chemoradiation followed by surgery) for esophageal cancer. We investigated for factors associated with an increased incidence of anastomotic leaks. Methods Data from 285 esophageal cancer patients treated from 2000–2011 with trimodality therapy was analyzed. Anastomotic location relative to preoperative radiation field was assessed using postoperative computed tomographic imaging. Logistic regression was used to evaluate for factors associated with any or clinically relevant (CR) (≥ grade 2) leaks. Results Overall anastomotic leak rate was 11% (31/285), and CR leak rate was 6% (17/285). Multivariable analysis identified body mass index (BMI) (OR 1.09, 95%CI 1.00–1.17; OR 1.11, 95%CI 1.01–1.22), three-field surgery (OR 10.01, 95%CI 3.83–26.21; OR 4.83, 95%CI 1.39–16.71), and within radiation field (“in-field”) anastomosis (OR 5.37, 95%CI 2.21–13.04; OR 8.63, 95%CI 2.90–25.65) as independent predictors of both all grade and CR leaks, respectively. While patients with distal esophageal tumors and Ivor-Lewis surgery had the lowest incidence of all grade (6.5%) and CR leaks (4.2%), most of the leaks were associated with the anastomosis constructed within the field of radiation (in-field: 39% and 30% versus out-of-field: 2.6% and 1.0%, respectively, for total and CR leaks, p<0.0001, Fisher’s Exact test). Conclusions Esophagogastric anastomosis placed within the preoperative radiation field was a very strong predictor for anastomotic leaks in esophageal cancer patients treated with trimodality therapy, among other factors. Surgical planning should include a critical evaluation of the preoperative radiation fields to ensure proper anastomotic placement after chemoradiation therapy. PMID:24736077

  13. High-Dose-Rate Intraoperative Radiation Therapy for Recurrent Head-and-Neck Cancer

    SciTech Connect

    Perry, David J.; Chan, Kelvin; Wolden, Suzanne; Zelefsky, Michael J.; Chiu, Johnny; Cohen, Gilad; Zaider, Marco; Kraus, Dennis; Shah, Jatin; Lee, Nancy

    2010-03-15

    Purpose: To report the use of high-dose-rate intraoperative radiation therapy (HDR-IORT) for recurrent head-and-neck cancer (HNC) at a single institution. Methods and Materials: Between July 1998 and February 2007, 34 patients with recurrent HNC received 38 HDR-IORT treatments using a Harrison-Anderson-Mick applicator with Iridium-192. A single fraction (median, 15 Gy; range, 10-20 Gy) was delivered intraoperatively after surgical resection to the region considered at risk for close or positive margins. In all patients, the target region was previously treated with external beam radiation therapy (median dose, 63 Gy; range, 24-74 Gy). The 1- and 2-year estimates for in-field local progression-free survival (LPFS), locoregional progression-free survival (LRPFS), distant metastases-free survival (DMFS), and overall survival (OS) were calculated. Results: With a median follow-up for surviving patients of 23 months (range, 6-54 months), 8 patients (24%) are alive and without evidence of disease. The 1- and 2-year LPFS rates are 66% and 56%, respectively, with 13 (34%) in-field recurrences. The 1- and 2-year DMFS rates are 81% and 62%, respectively, with 10 patients (29%) developing distant failure. The 1- and 2-year OS rates are 73% and 55%, respectively, with a median time to OS of 24 months. Severe complications included cellulitis (5 patients), fistula or wound complications (3 patients), osteoradionecrosis (1 patient), and radiation-induced trigeminal neuralgia (1 patient). Conclusions: HDR-IORT has shown encouraging local control outcomes in patients with recurrent HNC with acceptable rates of treatment-related morbidity. Longer follow-up with a larger cohort of patients is needed to fully assess the benefit of this procedure.

  14. Comparison of radon fluxes with gamma-radiation exposure rates and soil /sup 226/Ra concentrations

    SciTech Connect

    Young, J.A.; Thomas, V.W.

    1984-04-01

    Radon fluxes and contact gamma-radiation-exposure rates were measured at the grid points of rectangular grids on three properties in Edgemont, South Dakota that were known to have deposits of residual radioactivity relatively near to the surface. The coefficient of determination, r/sup 2/, between the radon fluxes and the contact gamma-radiation-exposure rates varied from 0.89 to 0.31 for the three properties. The property having the highest fluxes and residual radioactivity of relatively uniform depth showed the highest correlation between fluxes and exposure rates, and the property having residual radioactivity that varied considerably in depth showed the lowest. Correlations between fluxes and /sup 226/Ra concentrations measured in boreholes that varied in depth from 60 to 195 cm were lower than those between fluxes and exposure rates, indicating that exposure rates are better than /sup 226/Ra measurements for detecting elevated radon fluxes from near-surface deposits. Measurements made on one property at two different times indicated that if the average flux were determined from a large number (40) of measurements at one time, the average flux at a later time could be estimated from a few measurements using the assumption that the change in the flux at individual locations will be equal to the change in the average flux. Flux measurements around two buildings showing elevated indoor radon-daughter concentrations, but around which no residual radioactivity had been discovered by /sup 226/Ra and gamma-radiation measurements, provided no clear indication of the presence of such material, possibly because none was present.

  15. A Global Model Simulation of Aerosol Effects of Surface Radiation Budget- Toward Understanding of the "Dimming to Brightening" Transition

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Bian, Huisheng; Yu, Hongbin

    2008-01-01

    We present a global model study on the role aerosols play in the change of solar radiation at Earth's surface that transitioned from a decreasing (dimming) trend to an increasing (brightening) trend. Our primary objective is to understand the relationship between the long-term trends of aerosol emission, atmospheric burden, and surface solar radiation. More specifically, we use the recently compiled comprehensive global emission datasets of aerosols and precursors from fuel combustion, biomass burning, volcanic eruptions and other sources from 1980 to 2006 to simulate long-term variations of aerosol distributions and optical properties, and then calculate the multi-decadal changes of short-wave radiative fluxes at the surface and at the top of the atmosphere by coupling the GOCART model simulated aerosols with the Goddard radiative transfer model. The model results are compared with long-term observational records from ground-based networks and satellite data. We will address the following critical questions: To what extent can the observed surface solar radiation trends, known as the transition from dimming to brightening, be explained by the changes of anthropogenic and natural aerosol loading on global and regional scales? What are the relative contributions of local emission and long-range transport to the surface radiation budget and how do these contributions change with time?

  16. Radiative transitions involving the (2p2)(3 Pe) metastable autodetaching of H(-)

    NASA Technical Reports Server (NTRS)

    Jacobs, V. L.; Bhatia, A. K.; Temkin, A.

    1974-01-01

    The absorption coefficient for the free-bound transition H (ls) + e(-)+ h omega yields H(-)(2 sq p,(3)P(e)) is calculated (together with the differential emission rate for the inverse process) using ls - 2s - 2p close coupling continuum wave functions and a Hylleraas bound state wave function. A maximum in the absorption and emission spectra is found to occur at a photon wavelength of 1219.5 A, which is 2 A closer to the Lyman alpha line than predicted by the calculations of Drake, and is in closer agreement with the stellar absorption feature identified by Heap and Stecher. The free-bound absorption process appears to be a significant source of continuous ultraviolet opacity.

  17. Shortwave radiative heating rate profiles in hazy and clear atmosphere: a sensitivity study

    NASA Astrophysics Data System (ADS)

    Doppler, Lionel; Fischer, Jürgen; Ravetta, François; Pelon, Jacques; Preusker, René

    2010-05-01

    Aerosols have an impact on shortwave heating rate profiles (additional heating or cooling). In this survey, we quantify the impact of several key-parameters on the heating rate profiles of the atmosphere with and without aerosols. These key-parameters are: (1) the atmospheric model (tropical, midlatitude summer or winter, US Standard), (2) the integrated water vapor amount (IWV ), (3) the ground surface (flat and rough ocean, isotropic surface albedo for land), (4) the aerosol composition (dusts, soots or maritimes mixtures with respect to the OPAC-database classification), (5) the aerosol optical depth and (6) vertical postion, and (7) the single-scattering albedo (?o) of the aerosol mixture. This study enables us to evaluate which parameters are most important to take into account in a radiative energy budget of the atmosphere and will be useful for a future study: the retrieval of heating rates profiles from satellite data (CALIPSO, MODIS, MERIS) over the Mediterranean Sea. All the heating rates are computed by using the vector irradiances computed at each pressure level in the spectral interval 0.2 - 3.6μm (shortwave) by the 1D radiative transfer model for atmosphere and ocean: MOMO (Matrix-Operator MOdel) of the Institute for Space Science, FU Berlin 1

  18. Ion production rate in a boreal forest based on ion, particle and radiation measurements

    NASA Astrophysics Data System (ADS)

    Laakso, L.; Petäjä, T.; Lehtinen, K. E. J.; Kulmala, M.; Paatero, J.; Hõrrak, U.; Tammet, H.; Joutsensaari, J.

    2004-09-01

    In this study the ion production rates in a boreal forest were studied based on two different methods: 1) cluster ion and particle concentration measurements, 2) external radiation and radon concentration measurements. Both methods produced reasonable estimates for ion production rates. The average ion production rate calculated from aerosol particle size distribution and air ion mobility distribution measurements was 2.6 ion pairs cm-3s-1, and based on external radiation and radon measurements, 4.5 ion pairs cm-3s-1. The first method based on ion and particle measurements gave lower values for the ion production rates especially during the day. A possible reason for this is that particle measurements started only from 3nm, so the sink of small ions during the nucleation events was underestimated. It may also be possible that the hygroscopic growth factors of aerosol particles were underestimated. Another reason for the discrepancy is the nucleation mechanism itself. If the ions are somehow present in the nucleation process, there could have been an additional ion sink during the nucleation days.

  19. Radiation-induced 1/f noise degradation of PNP bipolar junction transistors at different dose rates

    NASA Astrophysics Data System (ADS)

    Qi-Feng, Zhao; Yi-Qi, Zhuang; Jun-Lin, Bao; Wei, Hu

    2016-04-01

    It is found that ionizing-radiation can lead to the base current and the 1/f noise degradations in PNP bipolar junction transistors. In this paper, it is suggested that the surface of the space charge region of the emitter-base junction is the main source of the base surface 1/f noise. A model is developed which identifies the parameters and describes their interactive contributions to the recombination current at the surface of the space charge region. Based on the theory of carrier number fluctuation and the model of surface recombination current, a 1/f noise model is developed. This model suggests that 1/f noise degradations are the result of the accumulation of oxide-trapped charges and interface states. Combining models of ELDRS, this model can explain the reason why the 1/f noise degradation is more severe at a low dose rate than at a high dose rate. The radiations were performed in a Co60 source up to a total dose of 700 Gy(Si). The low dose rate was 0.001 Gy(Si)/s and the high dose rate was 0.1 Gy(Si)/s. The model accords well with the experimental results. Project supported by the National Natural Science Foundation of China (Grant Nos. 61076101 and 61204092).

  20. Detector control system for the ATLAS Transition Radiation Tracker: architecture and development techniques

    NASA Astrophysics Data System (ADS)

    Banaś, ElŻbieta; Hajduk, Zbigniew; Olszowska, Jolanta

    2012-05-01

    The ATLAS Transition Radiation Tracker (TRT) is the outermost of the three sub-systems of the ATLAS Inner Detector at the Large Hadron Collider at CERN. With ~300000 drift tube proportional counters (straws) filled with stable gas mixture and high voltage biased it provides precise quasi-continuous tracking and particles identification. Safe, coherent and efficient operation of the TRT is fulfilled with the help of the Detector Control System (DCS) running on 11 computers as PVSS (industrial SCADA) projects. Standard industrial and custom developed server applications and protocols are used for reading hardware parameters. Higher level control system layers based on the CERN JCOP framework allow for automatic control procedures, efficient error recognition and handling and provide a synchronization mechanism with the ATLAS data acquisition system. Different data bases are used to store the detector online parameters, the configuration parameters and replicate a subset of them used to flag data quality for physics reconstruction. The TRT DCS is fully integrated with the ATLAS Detector Control System.

  1. A novel coaxial Ku-band transit radiation oscillator without external guiding magnetic field

    SciTech Connect

    Ling, Junpu Zhang, Jiande; He, Juntao; Jiang, Tao

    2014-02-15

    A novel coaxial transit radiation oscillator without external guiding magnetic field is designed to generate high power microwave at Ku-band. By using a coaxial structure, the space-charge potential energy is suppressed significantly, that is good for enhancing efficient beam-wave interaction. In order to improve the transmission stability of the unmagnetized intense relativistic electron beam, a Pierce-like cathode is employed in the novel device. By contrast with conventional relativistic microwave generators, this kind of device has the advantages of high stability, non-guiding magnetic field, and high efficiency. Moreover, with the coaxial design, it is possible to improve the power-handing capacity by increasing the radial dimension of the Ku-band device. With a 550 keV and 7.5 kA electron beam, a 1.25 GW microwave pulse at 12.08 GHz has been obtained in the simulation. The power conversion efficiency is about 30%.

  2. Instantaneous electron beam emittance measurement system based on the optical transition radiation principle

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Guo; Wang, Yuan; Zhang, Kai-Zhi; Yang, Guo-Jun; Shi, Jin-Shui; Deng, Jian-Jun; Li, Jin

    2014-01-01

    One kind of instantaneous electron beam emittance measurement system based on the optical transition radiation principle and double imaging optical method has been set up. It is mainly adopted in the test for the intense electron-beam produced by a linear induction accelerator. The system features two characteristics. The first one concerns the system synchronization signal triggered by the following edge of the main output waveform from a Blumlein switch. The synchronous precision of about 1 ns between the electron beam and the image capture time can be reached in this way so that the electron beam emittance at the desired time point can be obtained. The other advantage of the system is the ability to obtain the beam spot and beam divergence in one measurement so that the calculated result is the true beam emittance at that time, which can explain the electron beam condition. It provides to be a powerful beam diagnostic method for a 2.5 kA, 18.5 MeV, 90 ns (FWHM) electron beam pulse produced by Dragon I. The ability of the instantaneous measurement is about 3 ns and it can measure the beam emittance at any time point during one beam pulse. A series of beam emittances have been obtained for Dragon I. The typical beam spot is 9.0 mm (FWHM) in diameter and the corresponding beam divergence is about 10.5 mrad.

  3. Branching ratios, radiative lifetimes, and transition dipole moments for tantalum nitride, TaN

    NASA Astrophysics Data System (ADS)

    Bouchard, Jacob L.; Steimle, Timothy; Kokkin, Damian L.; Sharfi, David J.; Mawhorter, Richard J.

    2016-07-01

    The dispersed laser induced fluorescence resulting from excitation in the regions of the [17.58]0+ - X1Σ+ (0, 0), [18.42]0+ - X1Σ+ (0, 0), [19.22]1 - X1Σ+ (0, 0), and [19.40]1 - X1Σ+ (0, 0) bands of tantalum nitride, 181TaN, have been recorded and analyzed. The branching ratios and radiative lifetimes for the [17.58]0+(v = 0), [18.42]0+(v = 0), [19.22]1+(v = 0), and [19.40]1(v = 0) states have been determined. From these values the transition dipole moments for visible bands are determined. Vibrational spacing in the X1Σ+ state and the spin-orbit splitting of the a3Δ state are measured and compared with predicted values. The dispersed fluorescence spectra and determined branching ratios reveal that the most effective mechanism for populating the a3Δ1 (J = 1, v = 0) state, which will be used in future P- and T-violation measurements, is via excitation of the [18.42]0+ - X1Σ+ (0, 0) band followed by subsequent spontaneous or stimulated emission.

  4. The role of transition radiation in cathodoluminescence imaging and spectroscopy of thin-foils.

    PubMed

    Mendis, B G; Howkins, A; Stowe, D; Major, J D; Durose, K

    2016-08-01

    There is renewed interest in cathodoluminescence (CL) in the transmission electron microscope, since it can be combined with low energy loss spectroscopy measurements and can also be used to probe defects, such as grain boundaries and dislocations, at high spatial resolution. Transition radiation (TR), which is emitted when the incident electron crosses the vacuum-specimen interface, is however an important artefact that has received very little attention. The importance of TR is demonstrated on a wedge shaped CdTe specimen of varying thickness. For small specimen thicknesses (<250nm) grain boundaries are not visible in the panchromatic CL image. Grain boundary contrast is produced by electron-hole recombination within the foil, and a large fraction of that light is lost to multiple-beam interference, so that thicker specimens are required before the grain boundary signal is above the TR background. This is undesirable for high spatial resolution. Furthermore, the CL spectrum contains additional features due to TR which are not part of the 'bulk' specimen. Strategies to minimise the effects of TR are also discussed. PMID:27163963

  5. Influence of Dose Rate on the Cellular Response to Low- and High-LET Radiations

    PubMed Central

    Wozny, Anne-Sophie; Alphonse, Gersende; Battiston-Montagne, Priscillia; Simonet, Stéphanie; Poncet, Delphine; Testa, Etienne; Guy, Jean-Baptiste; Rancoule, Chloé; Magné, Nicolas; Beuve, Michael; Rodriguez-Lafrasse, Claire

    2016-01-01

    Nowadays, head and neck squamous cell carcinoma (HNSCC) treatment failure is mostly explained by locoregional progression or intrinsic radioresistance. Radiotherapy (RT) has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy, which modify the dose rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a dose rate variation during conventional RT or carbon ion hadrontherapy treatment in order to improve the therapeutic care of patient. In this regard, two HNSCC cell lines were irradiated with photons or 72 MeV/n carbon ions at a dose rate of 0.5, 2, or 10 Gy/min. For both radiosensitive and radioresistant cells, the change in dose rate significantly affected cell survival in response to photon exposure. This variation of radiosensitivity was associated with the number of initial and residual DNA double-strand breaks (DSBs). By contrast, the dose rate change did not affect neither cell survival nor the residual DNA DSBs after carbon ion irradiation. As a result, the relative biological efficiency at 10% survival increased when the dose rate decreased. In conclusion, in the RT treatment of HNSCC, it is advised to remain very careful when modifying the classical schemes toward altered fractionation. At the opposite, as the dose rate does not seem to have any effects after carbon ion exposure, there is less need to adapt hadrontherapy treatment planning during active system irradiation. PMID:27014633

  6. Performance of an LPD prototype detector at MHz frame rates under Synchrotron and FEL radiation

    NASA Astrophysics Data System (ADS)

    Koch, A.; Hart, M.; Nicholls, T.; Angelsen, C.; Coughlan, J.; French, M.; Hauf, S.; Kuster, M.; Sztuk-Dambietz, J.; Turcato, M.; Carini, G. A.; Chollet, M.; Herrmann, S. C.; Lemke, H. T.; Nelson, S.; Song, S.; Weaver, M.; Zhu, D.; Meents, A.; Fischer, P.

    2013-11-01

    A MHz frame rate X-ray area detector (LPD — Large Pixel Detector) is under development by the Rutherford Appleton Laboratory for the European XFEL. The detector will have 1 million pixels and allows analogue storage of 512 images taken at 4.5 MHz in the detector front end. The LPD detector has 500 μm thick silicon sensor tiles that are bump bonded to a readout ASIC. The ASIC's preamplifier provides relatively low noise at high speed which results in a high dynamic range of 105 photons over an energy range of 5-20 keV. Small scale prototypes of 32 × 256 pixels (LPD 2-Tile detector) and 256 × 256 pixels (LPD supermodule detector) are now available for X-ray tests. The performance of prototypes of the detector is reported for first tests under synchrotron radiation (PETRA III at DESY) and Free-Electron-Laser radiation (LCLS at SLAC). The initial performance of the detector in terms of signal range and noise, radiation hardness and spatial and temporal response are reported. The main result is that the 4.5 MHz sampling detection chain is reliably working, including the analogue on-chip memory concept. The detector is at least radiation hard up to 5 MGy at 12 keV. In addition the multiple gain concept has been demonstrated over a dynamic range to 104 at 12 keV with a readout noise equivalent to < 1 photon rms in its most sensitive mode.

  7. Dependence of diode sensitivity on the pulse rate of delivered radiation

    SciTech Connect

    Jursinic, Paul A.

    2013-02-15

    Purpose: It has been reported that diode sensitivity decreases by as much as 2% when the average dose rate set at the accelerator console was decreased from 600 to 40 MU/min. No explanation was given for this effect in earlier publications. This work is a detailed investigation of this phenomenon: the change of diode sensitivity versus the rate of delivery of dose pulses in the milliseconds and seconds range. Methods: X-ray beams used in this work had nominal energies of 6 and 15 MV and were generated by linear accelerators. The average dose rate was varied from 25 to 600 MU/min, which corresponded to time between microsecond-long dose pulses of 60-2.7 ms, respectively. The dose-per-pulse, dpp, was changed by positioning the detector at different source-to-detector distance. A variety of diodes fabricated by a number of manufacturers were tested in this work. Also, diodes in three different MapCHECKs (Sun Nuclear, Melbourne, FL) were tested. Results: For all diodes tested, the diode sensitivity decreases as the average dose rate is decreased, which corresponds to an increase in the pulse period, the time between radiation pulses. A sensitivity decrease as large as 5% is observed for a 60-ms pulse period. The diode sensitivity versus the pulse period is modeled by an empirical exponential function. This function has a fitting parameter, t{sub eff}, defined as the effective lifetime. The values of t{sub eff} were found to be 1.0-14 s, among the various diodes. For all diodes tested, t{sub eff} decreases as the dpp decreases and is greater for 15 MV than for 6 MV x rays. The decrease in diode sensitivity after 20 s without radiation can be reversed by as few as 60 radiation pulses. Conclusions: A decrease in diode sensitivity occurs with a decrease in the average dose rate, which corresponds to an increase in the pulse period of radiation. The sensitivity decrease is modeled by an empirical exponential function that decreases with an effective lifetime, t{sub eff}, of

  8. Transition dipole function and radiative lifetimes for the A and C 1Σ+ states of the LiH molecule

    NASA Astrophysics Data System (ADS)

    Berriche, Hamid; Gadéa, Florent Xavier

    2016-01-01

    The transition dipole moments of the first eight 1Σ+ states of the LiH molecule have been calculated using ab initio approach based on the pseudopotential technique. Such transition dipole moments have been used to determine the radiative lifetimes for all vibrational levels of the first and the second excited states, A and C 1Σ+, using accurate adiabatic potential energy curves. In addition to the bound-bound transitions, we have included the bound-free emissions probabilities. The latter was calculated exactly and using the Franck-Condon approximation and then included in the total radiative lifetime. A significant change in these lifetimes has been observed, particularly for the higher excited vibrational levels for which the approximate evaluation breaks down. The radiative lifetimes of the vibrational levels of the A1Σ+ exited sate are in very good agreement with the few available theoretical and experimental results. However, the radiative lifetimes associated to the C1Σ+ state are presented here for the first time.

  9. Delayed Workforce Entry and High Emigration Rates for Recent Canadian Radiation Oncology Graduates

    SciTech Connect

    Loewen, Shaun K.; Halperin, Ross; Lefresne, Shilo; Trotter, Theresa; Stuckless, Teri; Brundage, Michael

    2015-10-01

    Purpose: To determine the employment status and location of recent Canadian radiation oncology (RO) graduates and to identify current workforce entry trends. Methods and Materials: A fill-in-the-blank spreadsheet was distributed to all RO program directors in December 2013 and June 2014, requesting the employment status and location of their graduates over the last 3 years. Visa trainee graduates were excluded. Results: Response rate from program directors was 100% for both survey administrations. Of 101 graduates identified, 99 (98%) had known employment status and location. In the December survey, 5 2013 graduates (16%), 17 2012 graduates (59%), and 18 2011 graduates (75%) had permanent staff employment. Six months later, 5 2014 graduates (29%), 15 2013 graduates (48%), 24 2012 graduates (83%), and 21 2011 graduates (88%) had secured staff positions. Fellowships and temporary locums were common for those without staff employment. The proportion of graduates with staff positions abroad increased from 22% to 26% 6 months later. Conclusions: Workforce entry for most RO graduates was delayed but showed steady improvement with longer time after graduation. High emigration rates for jobs abroad signify domestic employment challenges for newly certified, Canadian-trained radiation oncologists. Coordination on a national level is required to address and regulate radiation oncologist supply and demand disequilibrium in Canada.

  10. Reaction Rate Theory of Radiation Exposure and Scaling Hypothesis in Mutation Frequency

    NASA Astrophysics Data System (ADS)

    Manabe, Yuichiro; Nakamura, Issei; Bando, Masako

    2014-11-01

    We have developed a kinetic reaction model for cells with irradiated DNA molecules due to ionizing radiation exposure. Our theory simultaneously accounts for the time-dependent reactions of DNA damage, DNA mutation and DNA repair, and the proliferation and apoptosis of cells in a tissue with a minimal set of model parameters. In contrast to existing theories of radiation exposition, we do not assume the relationships between the total dose and the induced mutation frequency. Our theory provides a universal scaling function that reasonably explains the mega-mouse experiments by Russell and Kelly [Proc. Natl. Acad. Sci. U.S.A. 79, 542 (1982)] with different dose rates. Furthermore, we have estimated the effective dose rate, which is biologically equivalent to the ionizing effects other than those caused by artificial irradiation. This value is 1.11 × 10-3 Gy/h, which is significantly larger than the effect caused by natural background radiation.

  11. Laboratory-based maximum slip rates in earthquake rupture zones and radiated energy

    USGS Publications Warehouse

    McGarr, A.; Fletcher, Joe B.; Boettcher, M.; Beeler, N.; Boatwright, J.

    2010-01-01

    Laboratory stick-slip friction experiments indicate that peak slip rates increase with the stresses loading the fault to cause rupture. If this applies also to earthquake fault zones, then the analysis of rupture processes is simplified inasmuch as the slip rates depend only on the local yield stress and are independent of factors specific to a particular event, including the distribution of slip in space and time. We test this hypothesis by first using it to develop an expression for radiated energy that depends primarily on the seismic moment and the maximum slip rate. From laboratory results, the maximum slip rate for any crustal earthquake, as well as various stress parameters including the yield stress, can be determined based on its seismic moment and the maximum slip within its rupture zone. After finding that our new equation for radiated energy works well for laboratory stick-slip friction experiments, we used it to estimate radiated energies for five earthquakes with magnitudes near 2 that were induced in a deep gold mine, an M 2.1 repeating earthquake near the San Andreas Fault Observatory at Depth (SAFOD) site and seven major earthquakes in California and found good agreement with energies estimated independently from spectra of local and regional ground-motion data. Estimates of yield stress for the earthquakes in our study range from 12 MPa to 122 MPa with a median of 64 MPa. The lowest value was estimated for the 2004 M 6 Parkfield, California, earthquake whereas the nearby M 2.1 repeating earthquake, as recorded in the SAFOD pilot hole, showed a more typical yield stress of 64 MPa.

  12. Temperature Dependence of Radiative and Nonradiative Rates from Time-Dependent Correlation Function Methods.

    PubMed

    Banerjee, Shiladitya; Baiardi, Alberto; Bloino, Julien; Barone, Vincenzo

    2016-02-01

    The temperature dependence of the rate constants in radiative and nonradiative decays from excited electronic states has been studied using a time-dependent correlation function approach in the framework of the adiabatic representation and the harmonic oscillator approximation. The present work analyzes the vibrational aspect of the processes, which gives rise to the temperature dependence, with the inclusion of mode-mixing, as well as of frequency change effects. The temperature dependence of the rate constants shows a contrasting nature, depending on whether the process has been addressed within the Franck-Condon approximation or beyond it. The calculation of the Duschinsky matrix and the shift vector between the normal modes of the two states can be done in Cartesian and/or internal coordinates, depending on the flexibility of the investigated molecule. A new computational code has been developed to calculate the rates of intersystem crossing, internal conversion, and fluorescence for selected molecules as functions of temperature. PMID:26683207

  13. Calculations with spectroscopic accuracy: energies, transition rates, and Landé gJ-factors in the carbon isoelectronic sequence from Ar XIII to Zn XXV

    NASA Astrophysics Data System (ADS)

    Ekman, J.; Jönsson, P.; Gustafsson, S.; Hartman, H.; Gaigalas, G.; Godefroid, M. R.; Froese Fischer, C.

    2014-04-01

    Extensive self-consistent multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations and subsequent relativistic configuration interaction calculations are performed for 262 states belonging to the 15 configurations 2s22p2, 2s2p3, 2p4, 2s22p3l, 2s2p23l, 2p33l and 2s22p4l(l = 0,1,2) in selected carbon-like ions from Ar XIII to Zn XXV. Electron correlation effects are accounted for through large configuration state function expansions. Calculated energy levels are compared with existing theoretical calculations and data from the Chianti and NIST databases. In addition, Landé gJ-factors and radiative electric dipole transition rates are given for all ions. The accuracy of the calculations are high enough to facilitate the identification of observed spectral lines. Research supported in part by the Swedish Research council, Swedish Institute and by the IUAP-Belgian State Science Policy (BriX network P7/12).Tables of energy levels and transition rates (Tables 3-22) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A24

  14. Code System to Calculate Radiation Dose Rates Relative to Spent Fuel Shipping Casks.

    Energy Science and Technology Software Center (ESTSC)

    1993-05-20

    Version 00 QBF calculates and plots in a short running time, three dimensional radiation dose rate distributions in the form of contour maps on specified planes resulting from cylindrical sources loaded into vehicles or ships. Shielding effects by steel walls and shielding material layers are taken into account in addition to the shadow effect among casks. This code system identifies the critical points on which to focus when designing the radiation shielding structure and wheremore » each of the spent fuel shipping casks should be stored. The code GRAPH reads the output data file of QBF and plots it using the HGX graphics library. QBF unifies the functions of the SMART and MANYCASK codes included in CCC-482.« less

  15. Ultraviolet radiation effects on the infrared damage rate of a thermal control coating

    NASA Technical Reports Server (NTRS)

    Bass, J. A.

    1972-01-01

    The effects of ultraviolet radiation on the infrared reflectance of ZnO silicone white thermal coatings were investigated. Narrow band ultraviolet radiation for wavelengths in the 2200A to 3500A range by a monochromator and a high pressure, 150-W Eimac xenon lamp. The sample was irradiated while in a vacuum of at least 0.000001 torr, and infrared reflectance was measured in situ with a spectroreflectometer at 19,500A. Reflectance degradation was studied as a function of wavelength, time, intensity, and dose. Damage was wavelength dependent at constant exposure, but no maximum was evident above the shortest wavelength investigated here. The degradation rate at constant intensity was an exponential function of time and varies with intensity.

  16. Dosimetry in steep dose-rate gradient radiation fields: A challenge in clinical applications

    SciTech Connect

    Massillon-JL, G.

    2010-12-07

    The fundamental goal of radiotherapy is to reduce the damage to normal tissue and optimize the dose to the tumor with an associated high probability of cure. Because of this, an accurate and precise knowledge of the radiation dose distribution delivered around the tumor volume during radiotherapy treatments such as stereotactic radiosurgery, intensity modulated radiotherapy or brachytherapy with low-energy X-ray and beta particle sources is of great importance. However, in each of these radiation fields, there exists a steep dose-rate gradient which makes it very difficult to perform accurate dose measurements. In this work, the physics phenomena involved in the energy absorption for each of these situations are discussed, and a brief revision of what the Medical Physics community is doing is presented.

  17. Dosimetry in steep dose-rate gradient radiation fields: A challenge in clinical applications

    NASA Astrophysics Data System (ADS)

    Massillon-JL, G.

    2010-12-01

    The fundamental goal of radiotherapy is to reduce the damage to normal tissue and optimize the dose to the tumor with an associated high probability of cure. Because of this, an accurate and precise knowledge of the radiation dose distribution delivered around the tumor volume during radiotherapy treatments such as stereotactic radiosurgery, intensity modulated radiotherapy or brachytherapy with low-energy X-ray and beta particle sources is of great importance. However, in each of these radiation fields, there exists a steep dose-rate gradient which makes it very difficult to perform accurate dose measurements. In this work, the physics phenomena involved in the energy absorption for each of these situations are discussed, and a brief revision of what the Medical Physics community is doing is presented.

  18. Cloud radiative forcing induced by layered clouds and associated impact on the atmospheric heating rate

    NASA Astrophysics Data System (ADS)

    Lü, Qiaoyi; Li, Jiming; Wang, Tianhe; Huang, Jianping

    2015-10-01

    A quantitative analysis of cloud fraction, cloud radiative forcing, and cloud radiative heating rate (CRH) of the single-layered cloud (SLC) and the multi-layered cloud (MLC), and their differences is presented, based on the 2B-CLDCLASS-LIDAR and 2B-FLXHR-LIDAR products on the global scale. The CRH at a given atmospheric level is defined as the cloudy minus clear-sky radiative heating rate. The statistical results show that the globally averaged cloud fraction of the MLC (24.9%), which is primarily prevalent in equatorial regions, is smaller than that of the SLC (46.6%). The globally averaged net radiative forcings (NET CRFs) induced by the SLC (MLC) at the top and bottom of the atmosphere (TOA and BOA) and in the atmosphere (ATM) are-60.8 (-40.9),-67.5 (-49.6), and 6.6 (8.7) W m-2, respectively, where the MLC contributes approximately 40.2%, 42.4%, and 57% to the NET CRF at the TOA, BOA, and in the ATM, respectively. The MLC exhibits distinct differences to the SLC in terms of CRH. The shortwave CRH of the SLC (MLC) reaches a heating peak at 9.75 (7.5) km, with a value of 0.35 (0.60) K day-1, and the differences between SLC and MLC transform from positive to negative with increasing altitude. However, the longwave CRH of the SLC (MLC) reaches a cooling peak at 2 (8) km, with a value of-0.45 (-0.42) K day-1, and the differences transform from negative to positive with increasing altitude. In general, the NET CRH differences between SLC and MLC are negative below 7.5 km. These results provide an observational basis for the assessment and improvement of the cloud parameterization schemes in global models.

  19. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes

    PubMed Central

    Hughes, Colin; Eastwood, Ruth

    2006-01-01

    Species radiations provide unique insights into evolutionary processes underlying species diversification and patterns of biodiversity. To compare plant diversification over a similar time period to the recent cichlid fish radiations, which are an order of magnitude faster than documented bird, arthropod, and plant radiations, we focus on the high-altitude flora of the Andes, which is the most species-rich of any tropical mountains. Because of the recent uplift of the northern Andes, the upland environments where much of this rich endemic flora is found have been available for colonization only since the late Pliocene or Pleistocene, 2–4 million years (Myr) ago. Using DNA sequence data we identify a monophyletic group within the genus Lupinus representing 81 species endemic to the Andes. The age of this clade is estimated to be 1.18–1.76 Myr, implying a diversification rate of 2.49–3.72 species per Myr. This exceeds previous estimates for plants, providing the most spectacular example of explosive plant species diversification documented to date. Furthermore, it suggests that the high cichlid diversification rates are not unique. Lack of key innovations associated with the Andean Lupinus clade suggests that diversification was driven by ecological opportunities afforded by the emergence of island-like habitats after Andean uplift. Data from other genera indicate that lupines are one of a set of similarly rapid Andean plant radiations, continental in scale and island-like in stimulus, suggesting that the high-elevation Andean flora provides a system that rivals other groups, including cichlids, for understanding rapid species diversification. PMID:16801546

  20. Project on the superposition of beamlines for parametric X-ray radiation and coherent transition radiation in the THz region at LEBRA

    NASA Astrophysics Data System (ADS)

    Hayakawa, Y.; Hayakawa, K.; Inagaki, M.; Kaneda, T.; Nakao, K.; Nogami, K.; Sakae, T.; Sakai, T.; Sei, N.; Takahashi, Y.; Tanaka, T.

    2016-07-01

    A new project to develop a terahertz (THz)-wave light source is in progress at the parametric X-ray (PXR) beamline of the Laboratory for Electron Beam Research and Application (LEBRA) at Nihon University. The THz-wave source is based on coherent transition radiation (CTR) emitted from a metal foil inserted downstream from a crystal target that is the PXR radiator. Beryllium or titanium foil is the most promising candidate for a THz-wave radiator. Since the electron linac of LEBRA was developed for a free electron laser (FEL), electron beam with bunch length of 1 ps (rms) can be provided by magnetic bunching at the bending magnet section. Thus, very intense coherent transition radiation (CTR) can be obtained in the frequency region around 1 THz. The results of preliminary experiments for CTR production suggested that sufficiently intense THz-CTR can be obtained using the LEBRA linac. In order to realize a THz-wave source for practical application studies, we have a plan to add the extraction feature for THz waves to the PXR beamline.

  1. 47 CFR 51.909 - Transition of rate-of-return carrier access charges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Access Rate. In the alternative, any Rate-of-Return Carrier may elect to implement a single per minute... elect to implement a single per minute rate element for terminating End Office Access Service no greater.... In the alternative, any Rate-of-Return Carrier may elect to implement a single per minute...

  2. 47 CFR 51.909 - Transition of rate-of-return carrier access charges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Composite Terminating End Office Access Rate. (2) (f) Step 5. Beginning July 1, 2016, notwithstanding any... Access Service Rate as of July 1, 2016 and $0.0007 per minute. (ii) Beginning July 1, 2017, no Rate-of... Access Service Rate as of July 1, 2016 and $0.0007 per minute. (ii) Beginning July 1, 2018, no...

  3. Distributed optical fibre temperature measurements in a low dose rate radiation environment based on Rayleigh backscattering

    NASA Astrophysics Data System (ADS)

    Faustov, A.; Gussarov, A.; Wuilpart, M.; Fotiadi, A. A.; Liokumovich, L. B.; Kotov, O. I.; Zolotovskiy, I. O.; Tomashuk, A. L.; Deschoutheete, T.; Mégret, P.

    2012-04-01

    On-line monitoring of environmental conditions in nuclear facilities is becoming a more and more important problem. Standard electronic sensors are not the ideal solution due to radiation sensitivity and difficulties in installation of multiple sensors. In contrast, radiation-hard optical fibres can sustain very high radiation doses and also naturally offer multi-point or distributed monitoring of external perturbations. Multiple local electro-mechanical sensors can be replaced by just one measuring fibre. At present, there are over four hundred operational nuclear power plants (NPPs) in the world 1. Operating experience has shown that ineffective control of the ageing degradation of major NPP components can threaten plant safety and also plant life. Among those elements, cables are vital components of I&C systems in NPPs. To ensure their safe operation and predict remaining life, environmental monitoring is necessary. In particular, temperature and radiation dose are considered to be the two most important parameters. The aim of this paper is to assess experimentally the feasibility of optical fibre temperature measurements in a low doserate radiation environment, using a commercially available reflectometer based on Rayleigh backscattering. Four different fibres were installed in the Sub-Pile Room of the BR2 Material testing nuclear reactor in Mol, Belgium. This place is man-accessible during the reactor shut-down, allowing easy fibre installation. When the reactor operates, the dose-rates in the room are in a range 0.005-5 Gy/h with temperatures of 40-60 °C, depending on the location. Such a surrounding is not much different to some "hot" environments in NPPs, where I&C cables are located.

  4. A generalized adsorption-phase transition model to describe adsorption rates in flexible metal organic framework RPM3-Zn.

    PubMed

    Lueking, Angela D; Wang, Cheng-Yu; Sircar, Sarmishtha; Malencia, Christopher; Wang, Hao; Li, Jing

    2016-03-14

    Flexible gate-opening metal organic frameworks (GO-MOFs) expand or contract to minimize the overall free energy of the system upon accommodation of an adsorbate. The thermodynamics of the GO process are well described by a number of models, but the kinetics of the process are relatively unexplored. A flexible GO-MOF, RPM3-Zn, exhibits a significant induction period for opening by N2 and Ar at low temperatures, both above and below the GO pressure. A similar induction period is not observed for H2 or O2 at comparable pressures and temperatures, suggesting the rate of opening is strongly influenced by the gas-surface interaction rather than an external stress. The induction period leads to severe mass transfer limitations for adsorption and over-prediction of the gate-opening pressure. After review of a number of existing adsorption rate models, we find that none adequately describe the experimental rate data and similar timescales for diffusion and opening invalidate prior reaction-diffusion models. Statistically, the rate data are best described by a compressed exponential function. The resulting fitted parameters exceed the expectations for adsorption but fall within those expected for phase transition. By treating adsorption as a phase transition, we generalize the Avrami theory of phase transition kinetics to describe adsorption in both rigid and flexible hosts. The generalized theory is consistent with observed experimental trends relating to induction period, temperature, pressure, and gas-substrate interaction. PMID:26563399

  5. Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Knight, Sharon L.; Mitchell, Cary A.

    1988-01-01

    Effects of different ratios of incandescent (ln) to fluorescent (Fl) radiation were tested on growth of 'Waldmann's Green' leaf lettuce in a controlled environment. After 4 days of treatment, dry weight, leaf area, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic rate (Pn) were greater for plants grown at 84 rather than 16 percent of total irradiance (82 W/sq m) from ln lamps. Although leaf dry weight and area were 12-17 percent greater at 84 percent ln after the first 8 days of treatment, there were no differences in RGR or Pn between treatments during the last 4 days. If 84 percent ln was compared with 50 percent ln, all cumulative growth parameters, RGR, NAR and Pn were greater for 84 percent ln during the first 4 days of treatment. However, during the second 4 days, RGR was greater for the 50 percent ln treatment, resulting in no net difference in leaf dry weight or area between treatments. Shifting from 84 to 50 percent ln radiation between the first and second 4 days of treatment increased plant dry weight, leaf area, RGR and NAR relative to those under 84 percent ln for 8 days continuously.

  6. Effects of incandescent radiation on photosynthesis, growth rate and yield of 'Waldmann's Green' leaf lettuce

    NASA Technical Reports Server (NTRS)

    Knight, S. L.; Mitchell, C. A.

    1989-01-01

    Effects of different ratios incandescent (ln) to fluorescent (Fl) radiation were tested on growth of 'Waldmann's Green' leaf lettuce (Lactuca sativa L.) in a controlled environment. After 4 days of treatment, dry weight, leaf area, relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR) and photosynthetic rate (Pn) were greater for plants grown at 84 rather than 16% of total irradiance (82 W m-2) from ln lamps. Although leaf dry weight and area were 12-17% greater at 84% ln after the first 8 days of treatment, there were no differences in RGR or Pn between treatments during the last 4 days. If 84% ln was compared with 50% ln, all cumulative growth parameters, RGR, NAR and Pn were greater for 84% ln during the first 4 days of treatment. However, during the second 4 days, RGR was greater for the 50% ln treatment, resulting in no net difference in leaf dry weight or area between treatments. Shifting from 84 to 50% ln radiation between the first and second 4 days of treatment increased plant dry weight, leaf area, RGR and NAR relative to those under 84% ln for 8 days continuously.

  7. Single-cycle Terahertz Pulses with >0.2 V/A Field Amplitudes via Coherent Transition Radiation

    SciTech Connect

    Daranciang, Dan; Goodfellow, John; Fuchs, Matthias; Wen, Haidan; Ghimire, Shambhu; Reis, David A.; Loos, Henrik; Fisher, Alan S.; Lindenberg, Aaron M.; /Stanford U. Materials Sci. Dept. /SIMES, Stanford /SLAC, PULSE

    2012-02-15

    We demonstrate terahertz pulses with field amplitudes exceeding 0.2 V/{angstrom} generated by coherent transition radiation. Femtosecond, relativistic electron bunches generated at the Linac Coherent Light Source are passed through a beryllium foil, and the emitted radiation is characterized as a function of the bunch duration and charge. Broadband pulses centered at a frequency of 10 THz with energies of 140 {mu}J are measured. These far-below-bandgap pulses drive a nonlinear optical response in a silicon photodiode, with which we perform nonlinear autocorrelations that yield information regarding the terahertz temporal profile. Simulations of the spatiotemporal profile agree well with experimental results.

  8. Terrestrial gamma radiation dose rates (TGRD) from surface soil in Negeri Sembilan, Malaysia

    NASA Astrophysics Data System (ADS)

    Norbani, Nor Eliana; Abdullah Salim, Nazaratul Ashifa; Saat, Ahmad; Hamzah, Zaini; Ramli, Ahmad Termizi; Wan Idris, Wan Mohd Rizlan; Jaafar, Mohd Zuli; Bradley, David A.; Abdul Rahman, Ahmad Taufek

    2014-11-01

    Baseline data on background radiation levels allows for future assessment of possible changes in natural radionuclide concentrations, either as a result of geological processes or radioactive contamination. We have measured terrestrial gamma radiation dose-rates (TGRD) from surface soils throughout accessible areas in the Peninsular Malaysia state of Negeri Sembilan (NS). Dose rate measurements were carried out using a NaI (TI) scintillation survey meter, encompassing 1708 locations, covering about 73% of the 6645 km2 of the land area in NS. This has allowed development of a TGRD contour map, plotted using WinSurf software. The range of measured TGRD was from 71±3 nGy/h up to 1000±11 nGy/h. The greatest measured TGRD was obtained in an area covered by soil types originating from igneous rock of granitic formations, while the least value of TGRD was observed in an area covered by limestone composed of calcite mineral, mostly found near river and coastal areas. Mean values of TGRD across the seven districts of NS ranged from 244±7 nGy/h to 458±13 nGy/h, the global mean being 330±8 nGy/h compared to a mean value of 92 nGy/h and 59 nGy/h for Malaysia and the world, respectively. The average annual dose from such terrestrial gamma radiation dose-rates to an individual residing in NS, assuming a tropical rural setting, is estimated to be 0.96 mSv per year.

  9. External beam radiation therapy followed by high-dose-rate brachytherapy for inoperable superficial esophageal carcinoma

    SciTech Connect

    Pasquier, David . E-mail: d-pasquier@o-lambret.fr; Mirabel, Xavier; Adenis, Antoine; Rezvoy, Nicolas; Hecquet, Genevieve; Fournier, Charles; Coche-Dequeant, Bernard; Prevost, Bernard; Castelain, Bernard; Lartigau, Eric

    2006-08-01

    Purpose: The aim of this study was to retrospectively evaluate the feasibility, efficacy, and tolerance of external beam radiotherapy followed by high-dose-rate brachytherapy in inoperable patients with superficial esophageal cancer. Patients and Methods: From November 1992 to May 1999, 66 patients with superficial esophageal cancer were treated with exclusive radiotherapy. The median age was 60 years (range, 41-85). Fifty-three percent of them were ineligible for surgery owing to synchronous or previously treated head-and-neck cancer. Most of the patients (n = 49) were evaluated with endoscopic ultrasonography (EUS) or computed tomography (CT). The mean doses of external beam radiotherapy and high-dose rate brachytherapy were 57.1 Gy ({+-}4.83) and 8.82 Gy ({+-}3.98), respectively. The most frequently used regimen was 60 Gy followed by 7 Gy at 5 mm depth in two applications. Results: Among patients evaluated with EUS or CT, the complete response rate was 98%. The 3-, 5-, and 7-year survival rates were 57.9%, 35.6%, and 26.6%, respectively. Median overall survival was 3.8 years. The 5-year relapse-free survival and cause-specific survival were 54.6% and 76.9%. The 5-year overall, relapse-free, and cause-specific survival of the whole population of 66 patients was 33%, 53%, and 77%, respectively. Local failure occurred in 15 of 66 patients; 6 were treated with brachytherapy. Severe late toxicity (mostly esophageal stenosis) rated according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer scale occurred in 6 of 66 patients (9%). Conclusion: This well tolerated regimen may be a therapeutic alternative for inoperable patients with superficial esophageal cancer. Only a randomized study could be able to check the potential benefit of brachytherapy after external beam radiation in superficial esophageal cancer.

  10. Energy Levels and Transition Rates for GA-Like Ions (Xe XXIV-Pr XXIX)

    NASA Astrophysics Data System (ADS)

    El-Sayed, F.

    2015-07-01

    Energy levels, wavelengths, transition probabilities, oscillator strengths, and line strengths have been calculated for allowed electric dipole 4s 2 4p-4s4p 2 and 4s 2 4p-4s 2 4d transitions of Gallium-like ions from Z = 54 to 59, Xe XXIV, Cs XXV, Ba XXVI, La XXVII, Ce XXVIII, and Pr XXIX. The fully relativistic multiconfiguration Dirac-Fock method, taking into account both correlations within the n = 4 complex and the quantum electrodynamic effects, has been used in the calculations. The results have been compared with the available experimental and other theoretical results.

  11. Energies, Wavelengths, and Transition Rates for Ga-Like Ions (Nd XXX-Tb XXXV)

    NASA Astrophysics Data System (ADS)

    El-Sayed, Fatma; Attia, S. M.

    2016-03-01

    Energies, wavelengths, transition probabilities, oscillator strengths, and line strengths have been calculated for 4s24p-4s4p2 and 4s24p-4s24d transitions in gallium-like ions from Z = 60 to 65, for Nd XXX, Pm XXXI, Sm XXXII, Eu XXXIII, Gd XXXIV, and Tb XXXV using the fully relativistic multiconfi guration Dirac-Fock method. The correlation with the n = 4 complex and the quantum electrodynamic effects have been considered in the calculations. The obtained results have been compared with the available experimental and other theoretical results.

  12. Precise Calculation of a Bond Percolation Transition and Survival Rates of Nodes in a Complex Network

    PubMed Central

    Kawamoto, Hirokazu; Takayasu, Hideki; Jensen, Henrik Jeldtoft; Takayasu, Misako

    2015-01-01

    Through precise numerical analysis, we reveal a new type of universal loopless percolation transition in randomly removed complex networks. As an example of a real-world network, we apply our analysis to a business relation network consisting of approximately 3,000,000 links among 300,000 firms and observe the transition with critical exponents close to the mean-field values taking into account the finite size effect. We focus on the largest cluster at the critical point, and introduce survival probability as a new measure characterizing the robustness of each node. We also discuss the relation between survival probability and k-shell decomposition. PMID:25885791

  13. Photodissociation rates of OH, OD, and CN by the interstellar radiation field

    NASA Technical Reports Server (NTRS)

    Nee, J. B.; Lee, L. C.

    1985-01-01

    The photoabsorption cross sections for OH, OD, and CN in the vacuum ultraviolet region are measured. The cross sections for the hydroxyl radicals are of the order of 10 to the -17th sq cm, but the photoabsorption for CN is so low that only an upper limit of 2 x 10 to the -18th sq cm is obtained. The molecular photodissociative processes are discussed. The photodissociation cross sections are inferred from the photoabsorption cross sections. On the basis of the measured data, the photodissociation rates by the interstellar radiation field are computed and discussed.

  14. Photodissociation rates of OH, OD, and CN by the interstellar radiation field

    SciTech Connect

    Nee, J.B.; Lee, L.C.

    1985-04-01

    The photoabsorption cross sections for OH, OD, and CN in the vacuum ultraviolet region are measured. The cross sections for the hydroxyl radicals are of the order of 10/sup -17/ cm/sup -2/, but the photoabsorption for CN is so low that only an upper limit of 2 x 10/sup -18/ is obtained. The molecular photodissociative processes are discussed. The photodissociation cross sections are inferred from the photoabsorption cross sections. On the basis of the measured data, the photodissociation rates by the interstellar radiation field are computed and discussed.

  15. Effects of 2. 45-GHz microwave and 100-MHz radiofrequency radiation on liposome permeability at the phase transition temperature

    SciTech Connect

    Liu, L.M.; Cleary, S.F.

    1988-01-01

    Large unilamellar dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) liposomes loaded with an aqueous chemotherapeutic drug, cytosine arabinofuranoside (ARA-C), were exposed for 30 min to 60 W/kg continuous-wave (CW) 100-MHz or 2.45-GHz radiation in vitro at temperatures between 37 degrees C and 43 degrees C. Liposomes were exposed in HEPES buffer or in HEPES buffer supplemented with 44% by volume fetal calf serum (FCS). Characteristic phase transition responses were detected in the range of 39 degrees C to 40 degrees C with the presence of FCS, increasing maximum % release of /sup 3/H-ARA-C by 20% relative to HEPES suspension. Neither frequency of electromagnetic radiation had any detectable effect on liposome permeability or the location of the phase transition in the presence or absence of FCS.

  16. Energy levels, wavelengths, and transition rates of multipole transitions (E1, E2, M1, M2) in Au{sup 67+} and Au{sup 66+} ions

    SciTech Connect

    Hamasha, Safeia

    2013-11-15

    The fully relativistic configuration interaction method of the FAC code is used to calculate atomic data for multipole transitions in Mg-like Au (Au{sup 67+}) and Al-like Au (Au{sup 66+}) ions. Generated atomic data are important in the modeling of M-shell spectra for heavy Au ions and Au plasma diagnostics. Energy levels, oscillator strengths and transition rates are calculated for electric-dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) for transitions between excited and ground states 3l−nl{sup ′}, such that n=4,5,6,7. The local central potential is derived using the Dirac–Fock–Slater method. Correlation effects to all orders are considered by the configuration interaction expansion. All relativistic effects are included in the calculations. Calculated energy levels are compared against published values that were calculated using the multi-reference many body perturbation theory, which includes higher order QED effects. Favorable agreement was observed, with less than 0.15% difference.

  17. Feshbach resonances and transition rates for cold homonuclear collisions between {sup 39}K and {sup 41}K atoms

    SciTech Connect

    Lysebo, M.; Veseth, L.

    2010-03-15

    We report results from close-coupling calculations for homonuclear ultracold collisions between potassium atoms, using the most up-to-date Born-Oppenheimer potential curves. The present study includes both of the bosonic isotopes {sup 39}K and {sup 41}K. The s-wave scattering lengths as functions of the magnetic field strength for collisions between atoms in identical and different hyperfine states are obtained. Several Feshbach resonances are located and characterized for both isotopes. Comparison with experiments, where such data are available, show excellent agreement. We also study weakly bound molecular states of the K{sub 2} molecule in close relation to the calculated Feshbach resonances. Another objective of the present work is to study inelastic collisions in which the hyperfine states of the colliding atoms are changed. From this type of calculation we obtain transition rates as functions of the magnetic field strength. Finally, we discuss how such transition rates might be of importance for experimental work.

  18. Transition rates of selected metals determined in various types of teas (Camellia sinensis L. Kuntze) and herbal/fruit infusions.

    PubMed

    Schulzki, Grit; Nüßlein, Birgit; Sievers, Hartwig

    2017-01-15

    Teas and raw materials used as ingredients of herbal and fruit infusions (HFI) were analysed by means of ICP-MS for their content of aluminium, arsenic, cadmium, copper, lead and mercury in the dry product and in the infusion. Samples of tea (Camellia sinensis L. Kuntze) were selected to include different origins, types (black, green), leaf grades (whole leaf, broken, fannings, dust) and manufacturing techniques (orthodox, "crush, tear, curl"). The selected HFI raw materials (chamomile, elderberries, fennel, hibiscus, mate, peppermint, rooibos and rose hip) cover the most important matrices (flower, fruit, seed, herb, leaf) and reflect the economic significance of these HFI materials in trade. Infusions were prepared under standardised conditions representing typical household brewing. Transition rates for the investigated metals vary significantly but are mostly well below 100%. We propose default transition rates for metals to avoid overestimation of exposure levels from tea/HFI consumption. PMID:27542446

  19. A MONOLITHIC PREAMPLIFIER-SHAPER FOR MEASUREMENT LOSS AND TRANSITION RADIATION.

    SciTech Connect

    KANDASAMY,A.

    1999-11-08

    A custom monolithic circuit has been developed for the Time Expansion Chamber (TEC) of the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). This detector identifies particles by sampling their ionization energy loss (dE/dx) over a 3 cm drift space and by detecting associated transition radiation (TR) photons. The requirement of being simultaneously sensitive to dE/dx and TR events requires a dual-gain system. We have developed a compact solution featuring an octal preamplifier/shaper (P/S) IC with a split gain stage. The circuit, fabricated in 1.2 {micro}m CMOS process, incorporates a trans-impedance preamplifier and a 70 ns unipolar CR-RC{sup 4} shaper with ion tail compensation and active DC offset cancellation. Digitally selectable gain, peaking time, and tail cancellation as well as channel-by-channel charge injection and disable can be configured in the system via a 3-wire interface. The 3.5 x 5 mm{sup 2} die is packaged in a fine-pitch 64-pin PQFP. Equivalent input noise is less than 1500 rms electrons at a power dissipation of 30 mW per channel. On a sample of 2400 chips, the DC offset was 2.3 {+-} 3 mV rms without trimming. A chamber-mounted TEC-PS Printed Circuit Board (PCB) houses four PIS chips, on-board calibration circuit, and 64 analog differential line drivers which transmit the shaped pulses to crate-mounted flash ADC's. 7 m apart An RS-422 link provides digital configuration downloading and read back, and supplies the calibration strobe. The 24.6 cm x 9.5 cm board dissipates 8.5 W.

  20. Image quality, tissue heating, and frame rate trade-offs in acoustic radiation force impulse imaging.

    PubMed

    Bouchard, Richard R; Dahl, Jeremy J; Hsu, Stephen J; Palmeri, Mark L; Trahey, Gregg E

    2009-01-01

    The real-time application of acoustic radiation force impulse (ARFI) imaging requires both short acquisition times for a single ARFI image and repeated acquisition of these frames. Due to the high energy of pulses required to generate appreciable radiation force, however, repeated acquisitions could result in substantial transducer face and tissue heating. We describe and evaluate several novel beam sequencing schemes which, along with parallel-receive acquisition, are designed to reduce acquisition time and heating. These techniques reduce the total number of radiation force impulses needed to generate an image and minimize the time between successive impulses. We present qualitative and quantitative analyses of the trade-offs in image quality resulting from the acquisition schemes. Results indicate that these techniques yield a significant improvement in frame rate with only moderate decreases in image quality. Tissue and transducer face heating resulting from these schemes is assessed through finite element method modeling and thermocouple measurements. Results indicate that heating issues can be mitigated by employing ARFI acquisition sequences that utilize the highest track-to-excitation ratio possible. PMID:19213633

  1. Influence of clouds on the cosmic radiation dose rate on aircraft.

    PubMed

    Pazianotto, Maurício T; Federico, Claudio A; Cortés-Giraldo, Miguel A; Pinto, Marcos Luiz de A; Gonçalez, Odair L; Quesada, José Manuel M; Carlson, Brett V; Palomo, Francisco R

    2014-10-01

    Flight missions were made in Brazilian territory in 2009 and 2011 with the aim of measuring the cosmic radiation dose rate incident on aircraft in the South Atlantic Magnetic Anomaly and to compare it with Monte Carlo simulations. During one of these flights, small fluctuations were observed in the vicinity of the aircraft with formation of Cumulonimbus clouds. Motivated by these observations, in this work, the authors investigated the relationship between the presence of clouds and the neutron flux and dose rate incident on aircraft using computational simulation. The Monte Carlo simulations were made using the MCNPX and Geant4 codes, considering the incident proton flux at the top of the atmosphere and its propagation and neutron production through several vertically arranged slabs, which were modelled according to the ISO specifications. PMID:24925902

  2. Electromagnetic Radiation From The High Strain Rate Fracture Of Mild Carbon-Steel

    NASA Astrophysics Data System (ADS)

    Brown, William; Calahan, Kenneth

    2005-07-01

    We present results of an experimental study of the back surface emission of electromagnetic radiation resulting from the impact fracture of mild carbon-steel at strain rates of approximates 10^6/s. We obtained time-domain measurements of two perpendicular components of the electric displacement vector at distances of up to 20 m from the targets. Spectral analysis of these data provides results that are consistent with theoretical predictions of the strain-rate dependence of the Misra Effect. We provide evidence that this phenomenon, that has only been reported previously during quasi-static measurements, is also present during explosive and impact fracture conditions. This work supported by the Defense Threat Reduction Agency under contract DTRA01-01-C-0033.

  3. 47 CFR 51.909 - Transition of rate-of-return carrier access charges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Return Carrier may elect to implement a single per minute rate element for both interstate and intrastate... implement a single per minute rate element for both interstate and intrastate terminating End Office Access.... In the alternative, any Rate-of-Return Carrier may elect to implement a single per minute...

  4. Charged particle spectra measured during the transit to Mars with the Mars Science Laboratory Radiation Assessment Detector (MSL/RAD)

    NASA Astrophysics Data System (ADS)

    Ehresmann, Bent; Hassler, Donald M.; Zeitlin, Cary; Guo, Jingnan; Köhler, Jan; Wimmer-Schweingruber, Robert F.; Appel, Jan K.; Brinza, David E.; Rafkin, Scot C. R.; Böttcher, Stephan I.; Burmeister, Sönke; Lohf, Henning; Martin, Cesar; Böhm, Eckart; Matthiä, Daniel; Reitz, Günther

    2016-08-01

    The Mars Science Laboratory (MSL) started its 253-day cruise to Mars on November 26, 2011. During cruise the Radiation Assessment Detector (RAD), situated on board the Curiosity rover, conducted measurements of the energetic-particle radiation environment inside the spacecraft. This environment consists mainly of galactic cosmic rays (GCRs), as well as secondary particles created by interactions of these GCRs with the spacecraft. The RAD measurements can serve as a proxy for the radiation environment a human crew would encounter during a transit to Mars, for a given part of the solar cycle, assuming that a crewed vehicle would have comparable shielding. The measurements of radiological quantities made by RAD are important in themselves, and, the same data set allow for detailed analysis of GCR-induced particle spectra inside the spacecraft. This provides important inputs for the evaluation of current transport models used to model the free-space (and spacecraft) radiation environment for different spacecraft shielding and different times in the solar cycle. Changes in these conditions can lead to significantly different radiation fields and, thus, potential health risks, emphasizing the need for validated transport codes. Here, we present the first measurements of charged particle fluxes inside a spacecraft during the transit from Earth to Mars. Using data obtained during the last two month of the cruise to Mars (June 11-July 14, 2012), we have derived detailed energy spectra for low-Z particles stopping in the instrument's detectors, as well as integral fluxes for penetrating particles with higher energies. Furthermore, we analyze the temporal changes in measured proton fluxes during quiet solar periods (i.e., when no solar energetic particle events occurred) over the duration of the transit (December 9, 2011-July 14, 2012) and correlate them with changing heliospheric conditions.

  5. Conservation laws, radiative decay rates, and excited state localization in organometallic complexes with strong spin-orbit coupling.

    PubMed

    Powell, B J

    2015-01-01

    There is longstanding fundamental interest in 6-fold coordinated d(6) (t(2g)(6)) transition metal complexes such as [Ru(bpy)3](2+) and Ir(ppy)3, particularly their phosphorescence. This interest has increased with the growing realisation that many of these complexes have potential uses in applications including photovoltaics, imaging, sensing, and light-emitting diodes. In order to design new complexes with properties tailored for specific applications a detailed understanding of the low-energy excited states, particularly the lowest energy triplet state, T1, is required. Here we describe a model of pseudo-octahedral complexes based on a pseudo-angular momentum representation and show that the predictions of this model are in excellent agreement with experiment - even when the deviations from octahedral symmetry are large. This model gives a natural explanation of zero-field splitting of T1 and of the relative radiative rates of the three sublevels in terms of the conservation of time-reversal parity and total angular momentum modulo two. We show that the broad parameter regime consistent with the experimental data implies significant localization of the excited state. PMID:26123864

  6. Conservation laws, radiative decay rates, and excited state localization in organometallic complexes with strong spin-orbit coupling

    PubMed Central

    Powell, B. J.

    2015-01-01

    There is longstanding fundamental interest in 6-fold coordinated d6 () transition metal complexes such as [Ru(bpy)3]2+ and Ir(ppy)3, particularly their phosphorescence. This interest has increased with the growing realisation that many of these complexes have potential uses in applications including photovoltaics, imaging, sensing, and light-emitting diodes. In order to design new complexes with properties tailored for specific applications a detailed understanding of the low-energy excited states, particularly the lowest energy triplet state, T1, is required. Here we describe a model of pseudo-octahedral complexes based on a pseudo-angular momentum representation and show that the predictions of this model are in excellent agreement with experiment - even when the deviations from octahedral symmetry are large. This model gives a natural explanation of zero-field splitting of T1 and of the relative radiative rates of the three sublevels in terms of the conservation of time-reversal parity and total angular momentum modulo two. We show that the broad parameter regime consistent with the experimental data implies significant localization of the excited state. PMID:26123864

  7. Radiative rates and electron-impact excitation for the n ≤ 6 fine-structure levels in H-like ions with 13 ≤ Z ≤ 42

    NASA Astrophysics Data System (ADS)

    Li, S.; Yan, J.; Li, C. Y.; Si, R.; Guo, X. L.; Huang, M.; Chen, C. Y.; Zou, Y. M.

    2015-11-01

    Context. Many observed emission lines from space missions are due to highly charged H-like ions. An analysis of the lines provides information on the temperature, density, and chemical composition of plasmas. A wide range of atomic parameters, such as energy levels, radiative rates, and excitation rate coefficients are needed to achieve this goal. Aims: In this paper we report on calculations for energy levels, radiative rates, collision strengths, and effective collision strengths for transitions among the 36 lowest levels of the n ≤ 6 configurations of highly charged H-like ions with 13 ≤ Z ≤ 42. Methods: The widely used Flexible Atomic Code (FAC) is adopted for the calculation. Energy levels and radiative rates are calculated within the relativistic configuration-interaction method. Employing relativistic distorted-wave approximation, direct excitation collision strengths are calculated at eleven scattered electron energies E'f = 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0, and 2.5, where E'f is in units of Z2 rydbergs. Collision strengths at higher energies are estimated by interpolation/extrapolation using relativistic Bethe form. Resonance contributions through the relevant He-like doubly excited n'l'n''l'' configurations with n' ≤ 7 and n'' ≤ 75 are explicitly taken into account using the independent-process isolated-resonance approximation. Radiation damping effects are taken into account. Results: We present the radiative rates, oscillator strengths, and line strengths for all electric dipole (E1), magnetic dipole (M1), electric quadrupole (E2), magnetic quadrupole (M2), electric octupole (E3), and magnetic octupole (M3) transitions. Assuming a Maxwellian electron velocity distribution, we report effective collision strengths over a wide temperature range between 2 × 103 × Z2 and 2 × 106 × Z2 K. We believe that the present results are the most extensive and definitive atomic dataset to date for highly charged H-like ions. Full

  8. Vertical distribution of radiation dose rates in the water of a brackish lake in Aomori Prefecture, Japan.

    PubMed

    Ohtsuka, Yoshihito; Iyogi, Takashi; Ueda, Shinji; Hisamatsu, Shun'ichi

    2015-11-01

    Seasonal radiation dose rates were measured with glass dosemeters housed in watertight cases at various depths in the water of Lake Obuchi, a brackish lake in Aomori Prefecture, Japan, during fiscal years 2011-2013 to assess the background external radiation dose to aquatic biota in the lake. The mean radiation dose in the surface water of the lake was found to be 27 nGy h(-1), which is almost the same as the absorption dose rate due to cosmic ray reported in the literature. Radiation dose rates decreased exponentially with water depth down to a depth of 1 m above the bottom sediment. In the water near the sediment, the dose rate increased with depth owing to the emission of γ-rays from natural radionuclides in the sediment. PMID:25944958

  9. A high frame rate, 16 million pixels, radiation hard CMOS sensor

    NASA Astrophysics Data System (ADS)

    Guerrini, N.; Turchetta, R.; Van Hoften, G.; Henderson, R.; McMullan, G.; Faruqi, A. R.

    2011-03-01

    CMOS sensors provide the possibility of designing detectors for a large variety of applications with all the benefits and flexibility of the widely used CMOS process. In this paper we describe a novel CMOS sensor designed for transmission electron microscopy. The overall design consists of a large 61 × 63 mm2 silicon area containing 16 million pixels arranged in a 4K × 4K array, with radiation hard geometry. All this is combined with a very fast readout, the possibility of region of interest (ROI) readout, pixel binning with consequent frame rate increase and a dynamic range close to 12 bits. The high frame rate has been achieved using 32 parallel analogue outputs each one operating at up to 20 MHz. Binning of pixels can be controlled externally and the flexibility of the design allows several possibilities, such as 2 × 2 or 4 × 4 binning. Other binning configurations where the number of rows and the number of columns are not equal, such as 2 × 1 or 2 × 4, are also possible. Having control of the CMOS design allowed us to optimise the pixel design, in particular with regard to its radiation hardness, and to make optimum choices in the design of other regions of the final sensor. An early prototype was also designed with a variety of geometries in order to optimise the readout structure and these are presented. The sensor was manufactured in a 0.35 μm standard CMOS process.

  10. Health Risks From Low Doses and Low Dose-Rates of Ionizing Radiation. Session 5: Future of Radiation Protection Regulations.

    PubMed

    Cool, Donald A

    2016-03-01

    The system of radiological protection is a prospective approach to protection of individuals in all exposure situations. It must be applied equitably across all age groups and all populations. This is a very different circumstance from dose assessment for a particular individual where the unique characteristics of the individual and the exposure can be taken into account. Notwithstanding the ongoing discussions on the possible shape of the dose response at low doses and dose rates, the prospective system of protection has therefore historically used a linear assumption as a pragmatic, prudent and protective approach. These radiation protection criteria are not intended to be a demarcation between "safe" and "unsafe" and are the product of a risk-informed judgement that includes inputs from science, ethics, and experience. There are significant implications for different dose response relationships. A linear model allows for equal treatment of an exposure, irrespective of the previously accumulated exposure. In contrast, other models would predict different implications. Great care is therefore needed in separating the thinking around risk assessment from risk management, and prospective protection for all age groups and genders from retrospective assessment for a particular individual. In the United States, the prospective regulatory structure functions effectively because of assumptions that facilitate independent treatment of different types of exposures, and which provide pragmatic and prudent protection. While the a linear assumption may, in fact, not be consistent with the biological reality, the implications of a different regulatory model must be considered carefully. PMID:26808877

  11. Emittance measurement of the Naval Postgraduate School linear accelerator using optical-transition-radiation techniques. Master's thesis

    SciTech Connect

    Hellstern, M.J.

    1991-09-01

    Using Optical Transition Radiation (OTR) beam diagnostics and Dr. Rule's clear foil interferometer analytic code, the normalized emittance of the Naval Postgraduate School (NPS) Linear Accelerator (linac) has been measured: the normalized horizontal emittance of 97 pi +/- 10 pi mm-mrad and the normalized vertical emittance of 54 pi +/- 8 pi mm-mrad. The experiment was performed independently twice using a Kapton foil/silicon mirror and a nitrocellulose foil/aluminum mirror Wartski interferometer. The Kapton foil provided an initial measurement of the emittance, and provided lessons learned for the nitrocellulose foil measurement. The emittance measurement of the NPS linac indicate that the value maybe too high for most free electron laser applications, but is very useful for radiation effect studies in high temperature superconductors, hardening, beam diagnostics, and for the production of x-rays through novel mechanisms such as transition radiation and parametric x-radiation generation. The beam divergence was determined by comparing theoretically calculated OTR patterns with the experimental data OTR patterns.

  12. A concept for Z-dependent microbunching measurements with coherent X-ray transition radiation in a sase FEL

    SciTech Connect

    Lumpkin, A.H.; Fawley, W.M.; Rule, D.W.

    2004-09-10

    We present an adaptation of the measurements performed in the visible-to-VUV regime of the z-dependent microbunching in a self-amplified spontaneous emission (SASE) free-electron laser (FEL). In these experiments a thin metal foil was used to block the more intense SASE radiation and to generate coherent optical transition radiation (COTR) as one source in a two-foil interferometer. However, for the proposed x-ray SASE FELs, the intense SASE emission is either too strongly transmitted at 1.5 Angstrom or the needed foil thickness for blocking scatters the electron beam too much. Since x-ray transition radiation (XTR) is emitted in an annulus with opening angle 1/g = 36 mrad for 14.09-GeV electrons, we propose using a thin foil or foil stack to generate the XTR and coherent XTR (CXTR) and an annular crystal to wavelength sort the radiation. The combined selectivity in angle and wavelength will favor the CXTR over SASE by about eight orders of magnitude. Time-dependent GINGER simulations support the z-dependent gain evaluation plan.

  13. Impact of Drug Therapy, Radiation Dose, and Dose Rate on Renal Toxicity Following Bone Marrow Transplantation

    SciTech Connect

    Cheng, Jonathan C.; Schultheiss, Timothy E. Wong, Jeffrey Y.C.

    2008-08-01

    Purpose: To demonstrate a radiation dose response and to determine the dosimetric and chemotherapeutic factors that influence the incidence of late renal toxicity following total body irradiation (TBI). Methods and Materials: A comprehensive retrospective review was performed of articles reporting late renal toxicity, along with renal dose, fractionation, dose rate, chemotherapy regimens, and potential nephrotoxic agents. In the final analysis, 12 articles (n = 1,108 patients), consisting of 24 distinct TBI/chemotherapy conditioning regimens were included. Regimens were divided into three subgroups: adults (age {>=}18 years), children (age <18 years), and mixed population (both adults and children). Multivariate logistic regression was performed to identify dosimetric and chemotherapeutic factors significantly associated with late renal complications. Results: Individual analysis was performed on each population subgroup. For the purely adult population, the only significant variable was total dose. For the mixed population, the significant variables included total dose, dose rate, and the use of fludarabine. For the pediatric population, only the use of cyclosporin or teniposide was significant; no dose response was noted. A logistic model was generated with the exclusion of the pediatric population because of its lack of dose response. This model yielded the following significant variables: total dose, dose rate, and number of fractions. Conclusion: A dose response for renal damage after TBI was identified. Fractionation and low dose rates are factors to consider when delivering TBI to patients undergoing bone marrow transplantation. Drug therapy also has a major impact on kidney function and can modify the dose-response function.

  14. Observer-based robust finite time H∞ sliding mode control for Markovian switching systems with mode-dependent time-varying delay and incomplete transition rate.

    PubMed

    Gao, Lijun; Jiang, Xiaoxiao; Wang, Dandan

    2016-03-01

    This paper investigates the problem of robust finite time H∞ sliding mode control for a class of Markovian switching systems. The system is subjected to the mode-dependent time-varying delay, partly unknown transition rate and unmeasurable state. The main difficulty is that, a sliding mode surface cannot be designed based on the unknown transition rate and unmeasurable state directly. To overcome this obstacle, the set of modes is firstly divided into two subsets standing for known transition rate subset and unknown one, based on which a state observer is established. A component robust finite-time sliding mode controller is also designed to cope with the effect of partially unknown transition rate. It is illustrated that the reachability, finite-time stability, finite-time boundedness, finite-time H∞ state feedback stabilization of sliding mode dynamics can be ensured despite the unknown transition rate. Finally, the simulation results verify the effectiveness of robust finite time control problem. PMID:26777336

  15. Verification of difference of ion-induced nucleation rate for kinds of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Masuda, K.; Takeuchi, Y.; Itow, Y.; Sako, T.; Matsumi, Y.; Nakayama, T.; Ueda, S.; Miura, K.; Kusano, K.

    2014-12-01

    Correlation between the global cloud cover and the galactic cosmic rays intensity has been pointed out. So as one of hypotheses, the promotion of creation of cloud condensation nuclei by cosmic rays can be considered. In this study, we have carried out verification experiment of this hypothesis using an atmospheric reaction chamber at room temperature focusing on the kind of ionizing radiation. We introduced pure air, a trace of water vapor, ozone and sulfur dioxide gas in a chamber with a volume of 75[L]. The sulfur dioxide reacts chemically in the chamber to form sulfate aerosol. After introducing the mixed gas into the chamber, it was irradiated with ultraviolet light, which simulate solar ultraviolet radiation and with anthropogenic ionizing radiation for cosmic rays, particles and new particle formation due to ion-induced nucleation was observed by measuring and recording the densities of ions and aerosol particles, the particle size distribution, the concentrations of ozone and sulfur dioxide, the temperature and the relative humidity. Here, the experimental results of aerosol nucleation rate for different types of radiation are reported. In this experiment, we conducted experiments of irradiation with heavy ions and β-rays. For ionizing radiation Sr-90 β-rays with an average energy of about 1[MeV] and a heavy ion beam from a particle accelerator facility of HIMAC at NIRS (Heavy Ion Medical Accelerator in Chiba, National Institute of Radiological Sciences) were used. The utilized heavy ion was 14N ions of 180[MeV/n] with intensities from 200[particles/spill] to 10000[particles/spill]. In this experimental run the chamber was irradiated for 10 hours and, the relationship between aerosol particle density for the particle size of > of 2.5[nm] and the generated ion density was verified. In the middle, the chamber was irradiated with β-rays for comparison. Increases in the ion density with the increase of the beam intensity were confirmed. Also, a rise in the

  16. Gradual assembly of avian body plan culminated in rapid rates of evolution across the dinosaur-bird transition.

    PubMed

    Brusatte, Stephen L; Lloyd, Graeme T; Wang, Steve C; Norell, Mark A

    2014-10-20

    The evolution of birds from theropod dinosaurs was one of the great evolutionary transitions in the history of life. The macroevolutionary tempo and mode of this transition is poorly studied, which is surprising because it may offer key insight into major questions in evolutionary biology, particularly whether the origins of evolutionary novelties or new ecological opportunities are associated with unusually elevated "bursts" of evolution. We present a comprehensive phylogeny placing birds within the context of theropod evolution and quantify rates of morphological evolution and changes in overall morphological disparity across the dinosaur-bird transition. Birds evolved significantly faster than other theropods, but they are indistinguishable from their closest relatives in morphospace. Our results demonstrate that the rise of birds was a complex process: birds are a continuum of millions of years of theropod evolution, and there was no great jump between nonbirds and birds in morphospace, but once the avian body plan was gradually assembled, birds experienced an early burst of rapid anatomical evolution. This suggests that high rates of morphological evolution after the development of a novel body plan may be a common feature of macroevolution, as first hypothesized by G.G. Simpson more than 60 years ago. PMID:25264248

  17. Does immunotherapy increase the rate of radiation necrosis after radiosurgical treatment of brain metastases?

    PubMed

    Colaco, Rovel J; Martin, Pierre; Kluger, Harriet M; Yu, James B; Chiang, Veronica L

    2016-07-01

    OBJECT Radiation necrosis (RN), or its imaging equivalent, treatment-related imaging changes (TRIC), is an inflammatory reaction to high-dose radiation in the brain. The authors sought to investigate the hypothesis that immunotherapy increases the risk of developing RN/TRIC after stereotactic Gamma Knife (GK) radiosurgery for brain metastases. METHODS A total of 180 patients who underwent GK surgery for brain metastases between 2006 and 2012 were studied. The systemic therapy they received was classified as cytotoxic chemotherapy (CT), targeted therapy (TT), or immunotherapy (IT). The timing of systemic therapy in relation to GK treatment was also recorded. Logistic regression was used to calculate the odds of developing RN according to type of systemic therapy received. RESULTS The median follow-up time was 11.7 months. Of 180 patients, 39 (21.7%) developed RN/TRIC. RN/TRIC rates were 37.5% (12 of 32) in patients who received IT alone, 16.9% (14 of 83) in those who received CT only, and 25.0% (5 of 20) in those who received TT only. Median overall survival was significantly longer in patients who developed RN/TRIC (23.7 vs 9.9 months, respectively). The RN/TRIC rate was increased significantly in patients who received IT alone (OR 2.40 [95% CI 1.06-5.44]; p = 0.03), whereas receipt of any CT was associated with a lower risk of RN/TRIC (OR 0.38 [95% CI 0.18-0.78]; p = 0.01). The timing of development of RN/TRIC was not different between patients who received IT and those who received CT. CONCLUSIONS Patients who receive IT alone may have an increased rate of RN/TRIC compared with those who receive CT or TT alone after stereotactic radiosurgery, whereas receiving any CT may in fact be protective against RN/TRIC. As the use of immunotherapies increases, the rate of RN/TRIC may be expected to increase compared with rates in the chemotherapy era. PMID:26544782

  18. Effects of UV-A Radiation on Desmodesmus armatus: Changes in Growth Rate, Pigment Content and Morphological Appearance

    NASA Astrophysics Data System (ADS)

    Pálffy, Károly; Vörös, Lajos

    2006-10-01

    Laboratory cultures of Desmodesmus armatus (R. Chod.) Hegew. were grown under different levels of photosynthetically active radiation (PAR) supplemented with 3.75 mW . cm-2 UV-A radiation. Growth rate was monitored daily, chlorophyl-a concentration, total carotenoid content, cell number and the relative abundance of different coenobial forms was determined at the end of each experiment. Exposure to UV-A radiation resulted in an increasing inhibition of growth towards higher PAR levels, reaching 100% at 400 μmol . m-2 . s-1. Cellular carotenoid content was higher in the presence of UV-A radiation, on the other hand no differences were observed in cellular chlorophyll-a concentration. UV-A radiation also induced changes in coenobium formation with a decreasing proportion of 4-celled coenobia and an increase in the abundance of 2-celled and teratologic coenobia, suggesting that high intensity UV-A radiation may influence cell cycle events or morphology development.

  19. Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation

    SciTech Connect

    Cavallo, Dario; Portale, Giuseppe; Androsch, René

    2015-12-17

    Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process is followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.

  20. Quantum-classical transition of the escape rate of a biaxial ferromagnetic spin with an external magnetic field

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.; Paranjape, M. B.

    2014-05-01

    We study the model of a biaxial single ferromagnetic spin Hamiltonian with an external magnetic field applied along the medium axis. The phase transition of the escape rate is investigated. Two different but equivalent methods are implemented. Firstly, we derive the semi-classical description of the model which yields a potential and a coordinate dependent mass. Secondly, we employ the method of spin-particle mapping which yields a similar potential to that of semi-classical description but with a constant mass. The exact instanton trajectory and its corresponding action, which have not been reported in any literature is being derived. Also, the analytical expressions for the first- and second-order crossover temperatures at the phase boundary are derived. We show that the boundary between the first-and the second-order phase transitions is greatly influenced by the magnetic field.

  1. ACOUSTIC RADIATION FORCE-DRIVEN ASSESSMENT OF MYOCARDIAL ELASTICITY USING THE DISPLACEMENT RATIO RATE (DRR) METHOD

    PubMed Central

    Bouchard, Richard R.; Hsu, Stephen J.; Palmeri, Mark L.; Rouze, Ned C.; Nightingale, Kathryn R.; Trahey, Gregg E.

    2011-01-01

    A noninvasive method of characterizing myocardial stiffness could have significant implications in diagnosing cardiac disease. Acoustic radiation force (ARF)–driven techniques have demonstrated their ability to discern elastic properties of soft tissue. For the purpose of myocardial elasticity imaging, a novel ARF-based imaging technique, the displacement ratio rate (DRR) method, was developed to rank the relative stiffnesses of dynamically varying tissue. The basis and performance of this technique was demonstrated through numerical and phantom imaging results. This new method requires a relatively small temporal (<1 ms) and spatial (tenths of mm2) sampling window and appears to be independent of applied ARF magnitude. The DRR method was implemented in two in vivo canine studies, during which data were acquired through the full cardiac cycle by imaging directly on the exposed epicardium. These data were then compared with results obtained by acoustic radiation force impulse (ARFI) imaging and shear wave velocimetry, with the latter being used as the gold standard. Through the cardiac cycle, velocimetry results portray a range of shear wave velocities from 0.76–1.97 m/s, with the highest velocities observed during systole and the lowest observed during diastole. If a basic shear wave elasticity model is assumed, such a velocity result would suggest a period of increased stiffness during systole (when compared with diastole). Despite drawbacks of the DRR method (i.e., sensitivity to noise and limited stiffness range), its results predicted a similar cyclic stiffness variation to that offered by velocimetry while being insensitive to variations in applied radiation force. PMID:21645966

  2. Radiation Exposure Promotes Hepatocarcinoma Cell Invasion through Epithelial Mesenchymal Transition Mediated by H2S/CSE Pathway.

    PubMed

    Pan, Yan; Zhou, Cuiping; Yuan, Dexiao; Zhang, Jianghong; Shao, Chunlin

    2016-01-01

    There is growing evidence to suggest that radiotherapy can paradoxically promote tumor invasion and metastatic processes, however, the underlying molecular mechanisms remain obscure. In this study, we found that exposure to X rays promoted cell invasion by triggering the epithelial mesenchymal transition (EMT) in two hepatocellular carcinoma (HCC) cell lines, HepG2 and PLC/PRF/5. This was made evident by a reduced expression of E-cadherin and enhanced expressions of N-cadherin, Vimentin and Snail. Moreover, exposure to radiation stimulated the signaling of hydrogen sulfide (H2S), a newly found gas transmitter, by upregulating the expressions of H2S-producing proteins of cysthionine-γ-lyase (CSE), cystathionine-β-synthase (CBS). Inhibition of CSE by siRNA or inhibitor not only increased the radiosensitivity but also strongly suppressed radiation-enhanced invasive properties of HCC cells. Interestingly, we found that H2S/CSE inhibition attenuated radiation-enhanced EMT, and the above effect was an end result of blockage of the radiation-activated pathway of p38 mitogen-activated protein kinase (p38MAPK). Collectively, our findings indicate that radiation could promote HCC cell invasion through EMT mediated by endogenous H2S/CSE signaling via the p38MAPK pathway. PMID:26727544

  3. Comprehensive rate coefficients for electron-collision-induced transitions in hydrogen

    SciTech Connect

    Vrinceanu, D.; Onofrio, R.; Sadeghpour, H. R. E-mail: onofrior@gmail.com

    2014-01-01

    Energy-changing electron-hydrogen atom collisions are crucial to regulating the energy balance in astrophysical and laboratory plasmas and are relevant to the formation of stellar atmospheres, recombination in H II clouds, primordial recombination, three-body recombination, and heating in ultracold and fusion plasmas. Computational modeling of electron-hydrogen collision has been attempted through quantum mechanical scattering state-to-state calculations of transitions involving low-lying energy levels in hydrogen (with principal quantum number n < 7) and at large principal quantum numbers using classical trajectory techniques. Analytical expressions are proposed that interpolate the current quantum mechanical and classical trajectory results for electron-hydrogen scattering in the entire range of energy levels for nearly the entire temperature range of interest in astrophysical environments. An asymptotic expression for the Born cross section is interpolated with a modified expression previously derived for electron-hydrogen scattering in the Rydberg regime using classical trajectory Monte Carlo simulations. The derived formula is compared to existing numerical data for transitions involving low principal quantum numbers, and the dependence of the deviations on temperature is discussed.

  4. Transition rates for lithium-like ions, sodium-like ions, and neutral alkali-metal atoms

    SciTech Connect

    Johnson, W.R.; Liu, Z.W.; Sapirstein, J.

    1996-11-01

    Third-order many-body perturbation theory is used to obtain E1 transition amplitudes for ions of the lithium and sodium isoelectronic sequences and for the neutral alkali-metal atoms potassium, rubidium, cesium, and francium. Complete angular reductions of the first, second, and third-order amplitudes are given. Tables of transition energies and rates are given for the 2p{sub {1/2}} {yields} 2s{sub {1/2}}, 2p{sub 3/2} {yields} 2s{sub {1/2}}, 3s{sub {1/2}} {yields} 2p{sub {1/2}}, and 3s{sub {1/2}} {yields} 2p{sub 3/2} transitions in the lithium isoelectronic sequence and for the corresponding 3p{sub 1/2} {yields} 3s{sub 1/2}, 3p{sub 3/2} {yields} 3s{sub {1/2}}, 4s{sub {1/2}} {yields} 3p{sub 1/2}, and 4s{sub {1/2}} {yields} 3p{sub 3/2} transitions in the sodium sequence. For neutral alkali atoms, amplitudes of np{sub {1/2}} {yields} ns{sub {1/2}}, np{sub 3/2} {yields} ns{sub {1/2}}, (n + 1)s{sub {1/2}} {yields} np{sub {1/2}}, and (n + 1)s{sub {1/2}} {yields} np{sub 3/2} transitions are evaluated, where n is the principal quantum number of the valence electron in the atomic ground state, Semi-empirical corrections for the omitted fourth- and higher-order terms in perturbation theory are given for the neutral alkali-metal atoms. Comparisons with previous high-precision calculations and with experiment are made. 42 refs., 1 fig., 12 tabs.

  5. Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory.

    PubMed

    Zeitlin, C; Hassler, D M; Cucinotta, F A; Ehresmann, B; Wimmer-Schweingruber, R F; Brinza, D E; Kang, S; Weigle, G; Böttcher, S; Böhm, E; Burmeister, S; Guo, J; Köhler, J; Martin, C; Posner, A; Rafkin, S; Reitz, G

    2013-05-31

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert. PMID:23723233

  6. Measurements of Energetic Particle Radiation in Transit to Mars on the Mars Science Laboratory

    NASA Astrophysics Data System (ADS)

    Zeitlin, C.; Hassler, D. M.; Cucinotta, F. A.; Ehresmann, B.; Wimmer-Schweingruber, R. F.; Brinza, D. E.; Kang, S.; Weigle, G.; Böttcher, S.; Böhm, E.; Burmeister, S.; Guo, J.; Köhler, J.; Martin, C.; Posner, A.; Rafkin, S.; Reitz, G.

    2013-05-01

    The Mars Science Laboratory spacecraft, containing the Curiosity rover, was launched to Mars on 26 November 2011, and for most of the 253-day, 560-million-kilometer cruise to Mars, the Radiation Assessment Detector made detailed measurements of the energetic particle radiation environment inside the spacecraft. These data provide insights into the radiation hazards that would be associated with a human mission to Mars. We report measurements of the radiation dose, dose equivalent, and linear energy transfer spectra. The dose equivalent for even the shortest round-trip with current propulsion systems and comparable shielding is found to be 0.66 ± 0.12 sievert.

  7. Incorporating solar radiation into the litter moisture model in the Canadian Forest Fire Danger Rating System

    NASA Astrophysics Data System (ADS)

    Wotton, Mike; Gibos, Kelsy

    2010-05-01

    The Canadian Forest Fire Danger Rating System (CFFDRS) is used throughout Canada, and in a number of countries throughout the world, for estimating fire potential in wildland fuels. The standard fuel moisture models in the CFFDRS are representative of moisture in closed canopy jack pine or lodge pole pine stands. These models assume full canopy closure and do not therefore account for the influence of solar radiation and thus cannot readily be adapted to more open environments. Recent research has seen the adaptation of the CFFDRS's hourly Fine Fuel Moisture Code (FFMC) model (which represents litter moisture) to open grasslands, through the incorporation of an explicit solar radiation term. This current study describes more recent extension of this modelling effort to forested stand situations. The development and structure of this new model is described and outputs of this new model, along with outputs from the existing FFMC model, are compared with field observations. Results show that the model tracks the diurnal variation in actual litter moisture content more accurately than the existing model for diurnal calculation of the FFMC in the CFFDRS. Practical examples of the application of this system for operational estimation of litter moisture are provided for stands of varying densities and types.

  8. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    PubMed

    He, Wei; Wang, Yueke; Xing, Kefei; Deng, Wei; Zhang, Zelong

    2016-01-01

    A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF) for space instruments. A model for the system functional error rate (SFER) is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA) is presented. Based on experimental results of different ions (O, Si, Cl, Ti) under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2), while the MTTF is approximately 110.7 h. PMID:27583533

  9. Radiative rate modification in CdSe quantum dot-coated microcavity

    NASA Astrophysics Data System (ADS)

    Veluthandath, Aneesh V.; Bisht, Prem B.

    2015-12-01

    Whispering gallery modes (WGMs) of the microparticles with spherical or cylindrical symmetry have exceptionally high quality factors and small mode volume. Quantum dots (QDs) are zero dimensional systems with variable band gap as well as luminescent properties with applications in photonics. In this paper, the WGMs have been observed in the luminescence spectra of CdSe QD-coated single silica microspheres. Theoretical estimations of variation of resonance frequency, electric field, and Q-values have been done for a multilayer coating of QDs on silica microspheres. Observed WGMs have been identified for their mode number and polarization using Mie theory. Broadening of modes due to material absorption has been observed. Splitting of WGMs has also been observed due to coherent coupling of counter propagating waves in the microcavity due to the presence of QDs. At room temperature, the time-resolved study indicates the modification of the radiative rate due to coupling of WGMs of the microcavity-QD hybrid system.

  10. Radiative rate modification in CdSe quantum dot-coated microcavity

    SciTech Connect

    Veluthandath, Aneesh V.; Bisht, Prem B.

    2015-12-21

    Whispering gallery modes (WGMs) of the microparticles with spherical or cylindrical symmetry have exceptionally high quality factors and small mode volume. Quantum dots (QDs) are zero dimensional systems with variable band gap as well as luminescent properties with applications in photonics. In this paper, the WGMs have been observed in the luminescence spectra of CdSe QD-coated single silica microspheres. Theoretical estimations of variation of resonance frequency, electric field, and Q-values have been done for a multilayer coating of QDs on silica microspheres. Observed WGMs have been identified for their mode number and polarization using Mie theory. Broadening of modes due to material absorption has been observed. Splitting of WGMs has also been observed due to coherent coupling of counter propagating waves in the microcavity due to the presence of QDs. At room temperature, the time-resolved study indicates the modification of the radiative rate due to coupling of WGMs of the microcavity-QD hybrid system.

  11. Parametric study of radiation dose rates from rail and truck spent fuel transport casks

    SciTech Connect

    Parks, C.V.; Hermann, O.W.; Knight, J.R.

    1985-08-01

    Neutron and gamma dose rates from typical rail and truck spent fuel transport casks are reported for a variety of spent PWR fuel sources and cask conditions. The IF 300 rail cask and NLI 1/2 truck cask were selected for use as appropriate cask models. All calculations (cross section preparation, generation of spent fuel source terms, radiation transport calculations, and dose evaluation) were performed using various modules of the SCALE computational system. Conditions or parameters for which there were variations between cases include: detector distance from cask, spent fuel cooling time, the setting of fuel or neutron shielding cavities to either wet or dry, the cobalt content of assembly materials, normal fuel assemblies and consolidated cannisters, the geometry mesh interval size, and the order of the angular quadrature set. 13 refs., 6 figs., 9 tabs.

  12. Linearly polarized radiation from astrophysical masers due to magnetic fields when the rate for stimulated emission exceeds the Zeeman frequency

    NASA Technical Reports Server (NTRS)

    Deguchi, Shuji; Watson, William D.

    1990-01-01

    The results are presented of reformulating the treatment of polarized maser radiation in the presence of magnetic fields in a way that seems somewhat more convenient for calculations with masing states having angular momenta greater than J = 1 and 0. Calculations are then performed for the case of small Zeeman splitting using idealizations which are equivalant to those made previously in calculations for a J = 1-0 transition. The results provide a complete, general description of the polarization characteristics of astrophysical maser radiation involving states of higher angular momentum of closed-shell molecules.

  13. Radiation damage and associated phase change effect on photodesorption rates from ices—Lyα studies of the surface behavior of CO{sub 2}(ice)

    SciTech Connect

    Yuan, Chunqing; Yates, John T. Jr.

    2014-01-01

    Photodesorption from a crystalline film of CO{sub 2}(ice) at 75 K has been studied using Lyα (10.2 eV) radiation. We combine quantitative mass spectrometric studies of gases evolved and transmission IR studies of species trapped in the ice. Direct CO desorption is observed from the primary CO{sub 2} photodissociation process, which occurs promptly for CO{sub 2} molecules located on the outermost surface of the ice (Process I). As the fluence of Lyα radiation increases to ∼5.5 × 10{sup 17} photons cm{sup –2}, extensive damage to the crystalline ice occurs and photo-produced CO molecules from deeper regions (Process II) are found to desorb at a rapidly increasing rate, which becomes two orders of magnitude greater than Process I. It is postulated that deep radiation damage to produce an extensive amorphous phase of CO{sub 2} occurs in the 50 nm ice film and that CO (and CO{sub 2}) diffusive transport is strongly enhanced in the amorphous phase. Photodesorption in Process II is a combination of electronic and thermally activated processes. Radiation damage in crystalline CO{sub 2} ice has been monitored by its effects on the vibrational line shapes of CO{sub 2}(ice). Here the crystalline-to-amorphous phase transition has been correlated with the occurrence of efficient molecular transport over long distances through the amorphous phase of CO{sub 2}(ice). Future studies of the composition of the interstellar region, generated by photodesorption from ice layers on grains, will have to consider the significant effects of radiation damage on photodesorption rates.

  14. Radio-frequency measurements of coherent transition and Cherenkov radiation: Implications for high-energy neutrino detection

    SciTech Connect

    Gorham, Peter W.; Saltzberg, David P.; Schoessow, Paul; Gai, Wei; Power, John G.; Konecny, Richard; Conde, M. E.

    2000-12-01

    We report on measurements of (11--18)-cm wavelength radio emission from interactions of 15.2 MeV pulsed electron bunches at the Argonne Wakefield Accelerator. The electrons were observed both in a configuration where they produced primarily transition radiation from an aluminum foil, and in a configuration designed for the electrons to produce Cherenkov radiation in a silica sand target. Our aim was to emulate the large electron excess expected to develop during an electromagnetic cascade initiated by an ultrahigh-energy particle. Such charge asymmetries are predicted to produce strong coherent radio pulses, which are the basis for several experiments to detect high-energy neutrinos from the showers they induce in Antarctic ice and in the lunar regolith. We detected coherent emission which we attribute both to transition and possibly Cherenkov radiation at different levels depending on the experimental conditions. We discuss implications for experiments relying on radio emission for detection of electromagnetic cascades produced by ultrahigh-energy neutrinos.

  15. Radio-frequency measurements of coherent transition and cherenkov radiation: implications for high-energy neutrino detection

    PubMed

    Gorham; Saltzberg; Schoessow; Gai; Power; Konecny; Conde

    2000-12-01

    We report on measurements of (11-18)-cm wavelength radio emission from interactions of 15.2 MeV pulsed electron bunches at the Argonne Wakefield Accelerator. The electrons were observed both in a configuration where they produced primarily transition radiation from an aluminum foil, and in a configuration designed for the electrons to produce Cherenkov radiation in a silica sand target. Our aim was to emulate the large electron excess expected to develop during an electromagnetic cascade initiated by an ultrahigh-energy particle. Such charge asymmetries are predicted to produce strong coherent radio pulses, which are the basis for several experiments to detect high-energy neutrinos from the showers they induce in Antarctic ice and in the lunar regolith. We detected coherent emission which we attribute both to transition and possibly Cherenkov radiation at different levels depending on the experimental conditions. We discuss implications for experiments relying on radio emission for detection of electromagnetic cascades produced by ultrahigh-energy neutrinos. PMID:11138159

  16. Magnitude of Solar Radiation Torque in the Transition Region from the Umbra to the Dark Shadow of the Earth

    NASA Astrophysics Data System (ADS)

    Cabette, R. E. S.; Zanardi, M. C.; Kolesnikov, I.

    2015-10-01

    The analysis of solar radiation pressure force and its influence on the motion of artificial satellites has been developed by researchers. Accurate models to describe the influence of the Earth's shadow on the torque and force due to solar radiation pressure have been presented. In this work the solar radiation torque (SRT) and its influence on the attitude of an artificial satellite are taken into account by the introduction of the Earth's shadow function in the equations of motion. This function assumes a unitary value when the satellite is in the fully illuminated region of its orbit, and the value zero for the full shade region. The main objective of this study is to analyze the magnitude of SRT using the equations described by quaternions during a 35 day period and to compare the results with the satellite transition through the shadow region and the time interval in this region. The duration and transition through the shadow region were obtained using the software "Shadow Conditions of Earth Satellites". The formulation is applied to the Brazilian Data Collection Satellites SCD1 and SCD2, and the torque model is presented in terms of the satellite attitude quaternion, distance of the satellite to the Sun, orbital elements, right ascension and declination of the Sun.

  17. Radiative Ignition and the Transition to Flame Spread Investigated in the Japan Microgravity Center's 10-sec Drop Shaft

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Radiative Ignition and Transition to Spread Investigation (RITSI) is a shuttle middeck Glovebox combustion experiment developed by the NASA Lewis Research Center, the National Institute for Standards and Technology (NIST), and Aerospace Design and Fabrication (ADF). It is scheduled to fly on the third United States Microgravity Payload (USMP-3) mission in February 1996. The objective of RITSI is to experimentally study radiative ignition and the subsequent transition to flame spread in low gravity in the presence of very low speed air flows in two- and three-dimensional configurations. Toward this objective, a unique collaboration between NASA, NIST, and the University of Hokkaido was established to conduct 15 science and engineering tests in Japan's 10-sec drop shaft. For these tests, the RITSI engineering hardware was mounted in a sealed chamber with a variable oxygen atmosphere. Ashless filter paper was ignited during each drop by a tungsten-halogen heat lamp focused on a small spot in the center of the paper. The flame spread outward from that point. Data recorded included fan voltage (a measure of air flow), radiant heater voltage (a measure of radiative ignition energy), and surface temperatures (measured by up to three surface thermocouples) during ignition and flame spread.

  18. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    SciTech Connect

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua; Guo, Renfeng; Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun; Zhu, Maoxiang

    2015-10-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.

  19. Pressure broadening and shift rates for Ar (s-p) transitions observed in an Ar-He discharge

    NASA Astrophysics Data System (ADS)

    Eshel, Ben; Rice, Christopher A.; Perram, Glen P.

    2016-08-01

    The pressure broadening and shift rates have been measured for the 801.699 nm (s5 →p8), 800.836 nm (s4 →p6) and 795.036 nm (s3 →p4) transitions in argon perturbed by 10-200 Torr of helium and argon at a temperature of 440 ± 20 K using a radio-frequency, capacitively coupled discharge. For a 10% Ar in He plasma the pressure broadening and shift rates were measured as 14.18 ± 0.65 and 1.81 ± 0.30 MHz / Torr, 17.85 ± 0.78 and 0.72 ± 0.32 MHz / Torr, and 16.59 ± 1.22 and 2.94 ± 0.48 MHz / Torr for the 801.699 nm, 800.836 nm and 795.036 nm transitions, respectively. The influence of the slightly varying gas temperature on the broadening and shift rates is less than 1%. Stark broadening and shifting by electrons in the discharge are not measurable due to low electron densities and temperatures. Phase-changing collisional cross-sections in the literature decrease with temperature, in good agreement with the Lindholm-Foley T-0.2 trend based on the Lennard-Jones potential. Further investigation of the Ar*-Ar and Ar*-He interaction potentials is necessary to understand the behavior of the cross sections.

  20. Transition State in DNA Polymerase β Catalysis: Rate-Limiting Chemistry Altered by Base-Pair Configuration

    PubMed Central

    2015-01-01

    Kinetics studies of dNTP analogues having pyrophosphate-mimicking β,γ-pCXYp leaving groups with variable X and Y substitution reveal striking differences in the chemical transition-state energy for DNA polymerase β that depend on all aspects of base-pairing configurations, including whether the incoming dNTP is a purine or pyrimidine and if base-pairings are right (T•A and G•C) or wrong (T•G and G•T). Brønsted plots of the catalytic rate constant (log(kpol)) versus pKa4 for the leaving group exhibit linear free energy relationships (LFERs) with negative slopes ranging from −0.6 to −2.0, consistent with chemical rate-determining transition-states in which the active-site adjusts to charge-stabilization demand during chemistry depending on base-pair configuration. The Brønsted slopes as well as the intercepts differ dramatically and provide the first direct evidence that dNTP base recognition by the enzyme–primer–template complex triggers a conformational change in the catalytic region of the active-site that significantly modifies the rate-determining chemical step. PMID:24580380

  1. ON THE TRANSITION RATE OF THE Fe X RED CORONAL LINE

    SciTech Connect

    Brenner, G.; Crespo Lopez-Urrutia, J. R.; Bernitt, S.; Fischer, D.; Ginzel, R.; Kubicek, K.; Maeckel, V.; Mokler, P. H.; Simon, M. C.; Ullrich, J.

    2009-09-20

    We present a lifetime measurement of the 3s {sup 2}3p {sup 52} P{sup o} {sub 1/2} first excited fine-structure level of the ground state configuration in chlorine-like Fe X, which relaxes to the ground state through a magnetic dipole (M1) transition (the so-called red coronal line) with a wavelength accurately determined to 637.454(1) nm. Moreover, the Zeeman splitting of line was observed. The lifetime of 14.2(2) ms is the most precise one measured in the red wavelength region and agrees well with advanced theoretical predictions and an empirically scaled interpolation based on experimental values from the same isoelectronic sequence.

  2. Chromosomal Aberrations in DNA Repair Defective Cell Lines: Comparisons of Dose Rate and Radiation Quality

    NASA Technical Reports Server (NTRS)

    George, K. A.; Hada, M.; Patel, Z.; Huff, J.; Pluth, J. M.; Cucinotta, F. A.

    2009-01-01

    Chromosome aberration yields were assessed in DNA double-strand break repair (DSB) deficient cells after acute doses of gamma-rays or high-LET iron nuclei, or low dose-rate (0.018 Gy/hr) gamma-rays. We studied several cell lines including fibroblasts deficient in ATM (product of the gene that is mutated in ataxia telangiectasia patients) or NBS (product of the gene mutated in the Nijmegen breakage syndrome), and gliomablastoma cells that are proficient or lacking in DNA-dependent protein kinase, DNA-PK activity. Chromosomes were analyzed using the fluorescence in-situ hybridization (FISH) chromosome painting method in cells at the first division post-irradiation and chromosome aberrations were identified as either simple exchanges (translocations and dicentrics) or complex exchanges (involving >2 breaks in 2 or more chromosomes). Gamma radiation induced higher yields of both simple and complex exchanges in the DSB repair defective cells than in the normal cells. The quadratic dose-response terms for both chromosome exchange types were significantly higher for the ATM and NBS defective lines than for normal fibroblasts. However, the linear dose-response term was significantly higher only for simple exchanges in the NBS cells. Large increases in the quadratic dose response terms indicate the important roles of ATM and NBS in chromatin modifications that facilitate correct DSB repair and minimize aberration formation. Differences in the response of AT and NBS deficient cells at lower doses suggests important questions about the applicability of observations of radiation sensitivity at high dose to low dose exposures. For all iron nuclei irradiated cells, regression models preferred purely linear and quadratic dose responses for simple and complex exchanges, respectively. All the DNA repair defective cell lines had lower Relative biological effectiveness (RBE) values than normal cells, the lowest being for the DNA-PK-deficient cells, which was near unity. To further

  3. Global radiation damage at 300 and 260 K with dose rates approaching 1 MGy s{sup −1}

    SciTech Connect

    Warkentin, Matthew; Badeau, Ryan; Hopkins, Jesse B.; Mulichak, Anne M.; Keefe, Lisa J.; Thorne, Robert E.

    2012-02-01

    Approximately half of global radiation damage to thaumatin crystals can be outrun at 260 K if data are collected in less than 1 s. Global radiation damage to 19 thaumatin crystals has been measured using dose rates from 3 to 680 kGy s{sup −1}. At room temperature damage per unit dose appears to be roughly independent of dose rate, suggesting that the timescales for important damage processes are less than ∼1 s. However, at T = 260 K approximately half of the global damage manifested at dose rates of ∼10 kGy s{sup −1} can be outrun by collecting data at 680 kGy s{sup −1}. Appreciable sample-to-sample variability in global radiation sensitivity at fixed dose rate is observed. This variability cannot be accounted for by errors in dose calculation, crystal slippage or the size of the data sets in the assay.

  4. Reaction of lymphoid organs to laser radiation with different pulsation rates

    NASA Astrophysics Data System (ADS)

    Kapinosov, Ivan K.; Bugaeva, Irine O.; Kolokolov, George R.; Provozina, Helen J.

    1996-05-01

    Experimental studies were performed on 220 male rats of Wistar line to reveal optimal parameters of laser radiation causing positive changes in biotissues and to select methods of laser therapy. Irradiation of the ventral abdominal wall performed by arsenide-gallium injector (710 - 890 nm, exposure - 128 sec) in pulse rate: 3000 Hz, 1500 Hz, 80 Hz. Content of lymphoblasts, medium and small lymphocytes, plasmocytes, T-lymphocytes and T-helpers as well as the activity of chromatin and lysosomal enzymes were determined in the dynamics of thymus, spleen and lymph nodes. During irradiation with the rate of 3000 Hz prevailing inhibiting influence on the immumocytopoesis and functional activity of lymphocytes in all organs studied was state, the effect being manifested by the decrease in the number of all forms of lymphocytes particular on the 3rd-5th-7th day followed by normalization on the 15th- 21st-30th day. Irradiation with the rate of 1500 Hz produced stimulating effect on the immune organs accompanied by reliable excess of control indices of lymphocyte content particularly of poorly differentiated forms (blasts and medium ones), as well as by the increase of the number of plasmocytes, T-lymphocytes, T-helpers with maximum manifestation on the 7th day. On the 15th day there is a decrease, and on the 21st-30th day--there is normalization. Irradiation with the rate of 80 Hz produced the smallest but most marked effect, particularly on the number of lymphoblasts. Peculiarities in kinetics of cellular elements studied were revealed in different lymphoid organs and in different functional zones of these organs.

  5. Exploring Rotations Due to Radiation Pressure: 2-D to 3-D Transition Is Interesting!

    ERIC Educational Resources Information Center

    Waxman, Michael A.

    2010-01-01

    Radiation pressure is an important topic within a standard physics course (see, in particular, Refs. 1 and 2). The physics of radiation pressure is described, the magnitude of it is derived, both for the case of a perfectly absorbing surface and of a perfect reflector, and various applications of this interesting effect are discussed, such as…

  6. Analytical description of spin-Rabi oscillation controlled electronic transitions rates between weakly coupled pairs of paramagnetic states with S=(1)/(2)

    NASA Astrophysics Data System (ADS)

    Glenn, R.; Baker, W. J.; Boehme, C.; Raikh, M. E.

    2013-04-01

    We report on the theoretical and experimental study of spin-dependent electronic transition rates which are controlled by a radiation-induced spin-Rabi oscillation of weakly spin-exchange and spin-dipolar coupled paramagnetic states (S=(1)/(2)). The oscillation components [the Fourier content, F(s)] of the net transition rates within spin-pair ensembles are derived for randomly distributed spin resonances, with an account of a possible correlation between the two distributions corresponding to individual pair partners. Our study shows that when electrically detected Rabi spectroscopy is conducted under an increasing driving field B1, the Rabi spectrum, F(s), evolves from a single peak at s=ΩR, where ΩR=γB1 is the Rabi frequency (γ is the gyromagnetic ratio), to three peaks at s=ΩR, s=2ΩR, and low s≪ΩR. The crossover between the two regimes takes place when ΩR exceeds the expectation value δ0 of the difference in the Zeeman energies within the pairs, which corresponds to the broadening of the magnetic resonance by disorder caused by a hyperfine field or distributions of Landé g factors. We capture this crossover by analytically calculating the shapes of all three peaks at an arbitrary relation between ΩR and δ0. When the peaks are well developed their widths are Δs˜δ02/ΩR. We find a good quantitative agreement between the theory and experiment.

  7. Accumulation rates of Th-230, Pa-231, and some transition metals on the Bermuda Rise

    USGS Publications Warehouse

    Bacon, M.P.; Rosholt, J.N.

    1982-01-01

    Measurements of 238U, 234U, 230Th, 232Th, 231Pa, Mn, Fe, Co, Ni, Cu, and Zn were made on 23 samples from core GPC-5, a 29-m giant piston core from a water depth of 4583 m on the northeastern Bermuda Rise (33??41.2???N, 57??36.9???W). This area is characterized by rapid deposition of sediment transported by abyssal currents. Unsupported 230Th and 231Pa are present throughout the core but, because of large variations in the sedimentation rate, show marked departures from exponential decay with depth. The trend with depth of the 231Paex 230Thex ratio is consistent with the average accumulation rate of 36 cm/1000 y reported earlier on the basis of radiocarbon dating and CaCO3 stratigraphy. When expressed on a carbonate-free basis, concentrations of Mn, Co, Ni, Cu, Zn, 230Thex, and 231Paex all show cyclic variations positively correlated with those of CaCO3. The correlations can be explained by a model in which all of these constituents, including CaCO3, are supplied to the sediments from the water column at a constant rate. Concentration variations are controlled mainly by varying inputs of terrigenous detritus, with low inputs occurring during interglacials and high inputs during glacials. Relationships between the metal and 230Thex concentrations permit estimates of the rates at which the metals are removed to the sediment by scavenging from the water column. The results, in ??g/cm2-1000 y, are: 4300 ?? 1100 for Mn, 46 ?? 16 for Ni and 76 ?? 26 for Cu. These rates are somewhat larger than ocean-wide averages estimated by other methods, and the absolute rate of 230Th accumulation in GPC-5 averages about nine times higher than production in the overlying water column. This part of the Bermuda Rise and similar bottom-current deposits may act as important accumulators of elements scavenged from seawater. ?? 1982.

  8. Driving Rate Dependence of Avalanche Statistics and Shapes at the Yielding Transition.

    PubMed

    Liu, Chen; Ferrero, Ezequiel E; Puosi, Francesco; Barrat, Jean-Louis; Martens, Kirsten

    2016-02-12

    We study stress time series caused by plastic avalanches in athermally sheared disordered materials. Using particle-based simulations and a mesoscopic elastoplastic model, we analyze system size and shear-rate dependence of the stress-drop duration and size distributions together with their average temporal shape. We find critical exponents different from mean-field predictions, and a clear asymmetry for individual avalanches. We probe scaling relations for the rate dependency of the dynamics and we report a crossover towards mean-field results for strong driving. PMID:26918998

  9. Driving Rate Dependence of Avalanche Statistics and Shapes at the Yielding Transition

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Ferrero, Ezequiel E.; Puosi, Francesco; Barrat, Jean-Louis; Martens, Kirsten

    2016-02-01

    We study stress time series caused by plastic avalanches in athermally sheared disordered materials. Using particle-based simulations and a mesoscopic elastoplastic model, we analyze system size and shear-rate dependence of the stress-drop duration and size distributions together with their average temporal shape. We find critical exponents different from mean-field predictions, and a clear asymmetry for individual avalanches. We probe scaling relations for the rate dependency of the dynamics and we report a crossover towards mean-field results for strong driving.

  10. High Count-Rate Studies of Small-Pitch Transition-Edge Sensor X-ray Microcalorimeters

    NASA Astrophysics Data System (ADS)

    Lee, S. J.; Bandler, S. R.; Busch, S. E.; Adams, J. S.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Porst, J.-P.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Wassel, E. J.

    2014-08-01

    We are developing kilo-pixel arrays of small-pitch transition-edge sensors for high spectral-resolving, high count-rate applications in astrophysics and solar physics measurements. We have fabricated and tested pixels that are m in size on a silicon substrate with an X-ray flux of counts per second (cps) per pixel. The X-ray pulses were recorded and analyzed in various ways to obtain high throughput with good energy resolution. We have demonstrated 2.3 eV FWHM resolution with 99.6 % throughput for a 6-keV X-ray flux of 100 cps.

  11. Calculating infinite-medium α-eigenvalue spectra with Monte Carlo using a transition rate matrix method

    DOE PAGESBeta

    Betzler, Benjamin R.; Kiedrowski, Brian C.; Brown, Forrest B.; Martin, William R.

    2015-01-01

    The time-dependent behavior of the energy spectrum in neutron transport was investigated with a formulation, based on continuous-time Markov processes, for computing α eigenvalues and eigenvectors in an infinite medium. In this study, a research Monte Carlo code called “TORTE” (To Obtain Real Time Eigenvalues) was created and used to estimate elements of a transition rate matrix. TORTE is capable of using both multigroup and continuous-energy nuclear data, and verification was performed. Eigenvalue spectra for infinite homogeneous mixtures were obtained, and an eigenfunction expansion was used to investigate transient behavior of the neutron energy spectrum.

  12. Large-scale evaluation of β -decay rates of r -process nuclei with the inclusion of first-forbidden transitions

    NASA Astrophysics Data System (ADS)

    Marketin, T.; Huther, L.; Martínez-Pinedo, G.

    2016-02-01

    Background: r -process nucleosynthesis models rely, by necessity, on nuclear structure models for input. Particularly important are β -decay half-lives of neutron-rich nuclei. At present only a single systematic calculation exists that provides values for all relevant nuclei making it difficult to test the sensitivity of nucleosynthesis models to this input. Additionally, even though there are indications that their contribution may be significant, the impact of first-forbidden transitions on decay rates has not been systematically studied within a consistent model. Purpose: Our goal is to provide a table of β -decay half-lives and β -delayed neutron emission probabilities, including first-forbidden transitions, calculated within a fully self-consistent microscopic theoretical framework. The results are used in an r -process nucleosynthesis calculation to asses the sensitivity of heavy element nucleosynthesis to weak interaction reaction rates. Method: We use a fully self-consistent covariant density functional theory (CDFT) framework. The ground state of all nuclei is calculated with the relativistic Hartree-Bogoliubov (RHB) model, and excited states are obtained within the proton-neutron relativistic quasiparticle random phase approximation (p n -RQRPA). Results: The β -decay half-lives, β -delayed neutron emission probabilities, and the average number of emitted neutrons have been calculated for 5409 nuclei in the neutron-rich region of the nuclear chart. We observe a significant contribution of the first-forbidden transitions to the total decay rate in nuclei far from the valley of stability. The experimental half-lives are in general well reproduced for even-even, odd-A , and odd-odd nuclei, in particular for short-lived nuclei. The resulting data table is included with the article as Supplemental Material. Conclusions: In certain regions of the nuclear chart, first-forbidden transitions constitute a large fraction of the total decay rate and must be

  13. Effects of dose rates on radiation-induced replenishment of intestinal stem cells determined by Lgr5 lineage tracing

    PubMed Central

    Otsuka, Kensuke; Iwasaki, Toshiyasu

    2015-01-01

    An understanding of the dynamics of intestinal Lgr5+ stem cells is important for elucidating the mechanism of colonic cancer development. We previously established a method for evaluating Lgr5+ stem cells by tamoxifen-dependent Lgr5-lineage tracing and showed that high-dose-rate radiation stimulated replenishment of colonic stem cells. In this study, we evaluated the effects of low-dose-rate radiation on stem cell maintenance. Tamoxifen (4OHT)-injected Lgr5-EGFP-IRES-CreERT2 × ROSA-LSL-LacZ mice were used, LacZ-labeled colonic crypts were enumerated, and the loss of LacZ+ crypts under low-dose-rate radiation was estimated. After 4OHT treatment, the number of LacZ-labeled Lgr5+ stem cells was higher in the colon of infant mice than in adult mice. The percentage of LacZ-labeled crypts in infant mice rapidly decreased after 4OHT treatment. However, the percentage of labeled crypts plateaued at ∼2% at 4 weeks post-treatment and remained unchanged for up to 7 months. Thus, it will be advantageous to evaluate the long-term effects of low-dose-rate radiation. Next, we determined the percentages of LacZ-labeled crypts irradiated with 1 Gy administered at different dose rates. As reported in our previous study, mice exposed to high-dose-rate radiation (30 Gy/h) showed a marked replenishment (P = 0.04). However, mice exposed to low-dose-rate radiation (0.003 Gy/h) did not exhibit accelerated stem-cell replenishment (P = 0.47). These findings suggest the percentage of labeled crypts can serve as a useful indicator of the effects of dose rate on the stem cell pool. PMID:25832104

  14. Effects of dose rates on radiation-induced replenishment of intestinal stem cells determined by Lgr5 lineage tracing.

    PubMed

    Otsuka, Kensuke; Iwasaki, Toshiyasu

    2015-07-01

    An understanding of the dynamics of intestinal Lgr5(+) stem cells is important for elucidating the mechanism of colonic cancer development. We previously established a method for evaluating Lgr5(+) stem cells by tamoxifen-dependent Lgr5-lineage tracing and showed that high-dose-rate radiation stimulated replenishment of colonic stem cells. In this study, we evaluated the effects of low-dose-rate radiation on stem cell maintenance. Tamoxifen (4OHT)-injected Lgr5-EGFP-IRES-Cre(ERT2) × ROSA-LSL-LacZ mice were used, LacZ-labeled colonic crypts were enumerated, and the loss of LacZ(+) crypts under low-dose-rate radiation was estimated. After 4OHT treatment, the number of LacZ-labeled Lgr5(+) stem cells was higher in the colon of infant mice than in adult mice. The percentage of LacZ-labeled crypts in infant mice rapidly decreased after 4OHT treatment. However, the percentage of labeled crypts plateaued at ∼2% at 4 weeks post-treatment and remained unchanged for up to 7 months. Thus, it will be advantageous to evaluate the long-term effects of low-dose-rate radiation. Next, we determined the percentages of LacZ-labeled crypts irradiated with 1 Gy administered at different dose rates. As reported in our previous study, mice exposed to high-dose-rate radiation (30 Gy/h) showed a marked replenishment (P = 0.04). However, mice exposed to low-dose-rate radiation (0.003 Gy/h) did not exhibit accelerated stem-cell replenishment (P = 0.47). These findings suggest the percentage of labeled crypts can serve as a useful indicator of the effects of dose rate on the stem cell pool. PMID:25832104

  15. A Transition in the Cumulative Reaction Rate of Two Species Diffusion with Bimolecular Reaction

    NASA Astrophysics Data System (ADS)

    Rajaram, Harihar; Arshadi, Masoud

    2015-04-01

    Diffusion and bimolecular reaction between two initially separated reacting species is a prototypical small-scale description of reaction induced by transverse mixing. It is also relevant to diffusion controlled transport regimes as encountered in low-permeability matrix blocks in fractured media. In previous work, the reaction-diffusion problem has been analyzed as a Stefan problem involving a distinct moving boundary (reaction front), which predicts that front motion scales as √t, and the cumulative reaction rate scales as 1/√t-. We present a general non-dimensionalization of the problem and a perturbation analysis to show that there is an early time regime where the cumulative reaction rate scales as √t- rather than 1/√t. The duration of this early time regime (where the cumulative rate is kinetically rather than diffusion controlled) depends on the rate parameter, in a manner that is consistently predicted by our non-dimensionalization. We also present results on the scaling of the reaction front width. We present numerical simulations in homogeneous and heterogeneous porous media to demonstrate the limited influence of heterogeneity on the behavior of the reaction-diffusion system. We illustrate applications to the practical problem of in-situ chemical oxidation of TCE and PCE by permanganate, which is employed to remediate contaminated sites where the DNAPLs are largely dissolved in the rock matrix.

  16. Stellar parameters and accretion rate of the transition disk star HD 142527 from X-shooter

    SciTech Connect

    Mendigutía, I.; Fairlamb, J.; Oudmaijer, R. D.; Montesinos, B.; Najita, J. R.; Brittain, S. D.; Van den Ancker, M. E.

    2014-07-20

    HD 142527 is a young pre-main-sequence star with properties indicative of the presence of a giant planet and/or a low-mass stellar companion. We have analyzed an X-Shooter/Very Large Telescope spectrum to provide accurate stellar parameters and accretion rate. The analysis of the spectrum, together with constraints provided by the spectral energy distribution fitting, the distance to the star (140 ± 20 pc), and the use of evolutionary tracks and isochrones, led to the following set of parameters: T{sub eff} = 6550 ± 100 K, log g = 3.75 ± 0.10, L{sub *}/L{sub ☉} = 16.3 ± 4.5, M{sub *}/M{sub ☉} = 2.0 ± 0.3, and an age of 5.0 ± 1.5 Myr. This stellar age provides further constraints to the mass of the possible companion estimated by Biller et al., being between 0.20 and 0.35 M{sub ☉}. Stellar accretion rates obtained from UV Balmer excess modeling and optical photospheric line veiling, and from the correlations with several emission lines spanning from the UV to the near-IR, are consistent with each other. The mean value from all previous tracers is 2 (±1) × 10{sup –7} M{sub ☉} yr{sup –1}, which is within the upper limit gas flow rate from the outer to the inner disk recently provided by Cassasus et al.. This suggests that almost all gas transferred between both components of the disk is not trapped by the possible planet(s) in between but fall onto the central star, although it is discussed how the gap flow rate could be larger than previously suggested. In addition, we provide evidence showing that the stellar accretion rate of HD 142527 has increased by a factor ∼7 on a timescale of 2 to 5 yr.

  17. Stellar Parameters and Accretion Rate of the Transition Disk Star HD 142527 from X-Shooter

    NASA Astrophysics Data System (ADS)

    Mendigutía, I.; Fairlamb, J.; Montesinos, B.; Oudmaijer, R. D.; Najita, J. R.; Brittain, S. D.; van den Ancker, M. E.

    2014-07-01

    HD 142527 is a young pre-main-sequence star with properties indicative of the presence of a giant planet and/or a low-mass stellar companion. We have analyzed an X-Shooter/Very Large Telescope spectrum to provide accurate stellar parameters and accretion rate. The analysis of the spectrum, together with constraints provided by the spectral energy distribution fitting, the distance to the star (140 ± 20 pc), and the use of evolutionary tracks and isochrones, led to the following set of parameters: T eff = 6550 ± 100 K, log g = 3.75 ± 0.10, L */L ⊙ = 16.3 ± 4.5, M */M ⊙ = 2.0 ± 0.3, and an age of 5.0 ± 1.5 Myr. This stellar age provides further constraints to the mass of the possible companion estimated by Biller et al., being between 0.20 and 0.35 M ⊙. Stellar accretion rates obtained from UV Balmer excess modeling and optical photospheric line veiling, and from the correlations with several emission lines spanning from the UV to the near-IR, are consistent with each other. The mean value from all previous tracers is 2 (±1) × 10-7 M ⊙ yr-1, which is within the upper limit gas flow rate from the outer to the inner disk recently provided by Cassasus et al.. This suggests that almost all gas transferred between both components of the disk is not trapped by the possible planet(s) in between but fall onto the central star, although it is discussed how the gap flow rate could be larger than previously suggested. In addition, we provide evidence showing that the stellar accretion rate of HD 142527 has increased by a factor ~7 on a timescale of 2 to 5 yr.

  18. The effect of cumulus cloud field anisotropy on solar radiative fluxes and atmospheric heating rates

    NASA Astrophysics Data System (ADS)

    Hinkelman, Laura M.

    The effect of fair-weather cumulus cloud field anisotropy on domain average surface fluxes and atmospheric heating profiles was studied. Causes of anisotropy were investigated using a large-eddy simulation (LES) model. Cloud formation under a variety of environmental conditions was simulated and the degree of anisotropy in the output fields was calculated. Wind shear was found to be the single greatest factor in the development of both vertically tilted and horizontally stretched cloud structures. A stochastic field generation algorithm was used to produce twenty three-dimensional liquid water content fields based on the statistical properties of the LES cloud scenes. Progressively greater degrees of tilt and stretching were imposed on each of these scenes, so that an ensemble of scenes were produced for each level of distortion. The resulting scenes were used as input to a three-dimensional Monte Carlo model. Domain-average transmission, reflection, and absorption of broadband solar radiation were computed for each scene along with the average heating rate profile. Both tilt and horizontal stretching were found to significantly affect calculated fluxes, with the amount and sign of flux differences depending strongly on sun position relative to cloud distortion geometry. For nearly all solar geometries, domain-averaged fluxes and atmospheric heating rate profiles calculated using the Independent Pixel Approximation differed substantially from the corresponding three-dimensional Monte Carlo results.

  19. Phase transition between quantum and classical regimes for the escape rate of dimeric molecular nanomagnets in a staggered magnetic field

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.; Paranjape, M. B.

    2014-04-01

    We study the phase transition of the escape rate of exchange-coupled dimer of single-molecule magnets which are coupled either ferromagnetically or antiferromagnetically in a staggered magnetic field and an easy z-axis anisotropy. The Hamiltonian for this system has been used to study dimeric molecular nanomagnet [Mn4]2 which is comprised of two single molecule magnets coupled antiferromagnetically. We generalize the method of mapping a single-molecule magnetic spin problem onto a quantum-mechanical particle to dimeric molecular nanomagnets. The problem is mapped to a single particle quantum-mechanical Hamiltonian in terms of the relative coordinate and a coordinate dependent reduced mass. It is shown that the presence of the external staggered magnetic field creates a phase boundary separating the first- from the second-order transition. With the set of parameters used by R. Tiron et al. (2003) [25] and S. Hill et al. (2003) [20] to fit experimental data for [Mn4]2 dimer we find that the critical temperature at the phase boundary is T0(c)=0.29K. Therefore, thermally activated transitions should occur for temperatures greater than T0(c).

  20. Recent Progress at LBNL on Characterization of Laser WakefieldAccelerated Electron Bunches using Coherent Transition Radiation

    SciTech Connect

    Plateau, Guillaume R.; Esarey, Eric H.; Geddes, Cameron G.R.; Leemans, Wim P.; Matlis, Nicholas H.; Schroeder, Carl B.; van Tilborg,Jeroen; Toth, Csaba

    2007-06-25

    At LBNL, laser wakefield accelerators (LWFA) can now produce ultra-short electron bunches with energies up to 1 GeV [1]. As femtosecond electron bunches exit the plasma they radiate an intense burst in the terahertz range [2,3] via coherent transition radiation (CTR). Measuring the CTR properties allows non-invasive bunchlength diagnostics [4], a key to continuing rapid advance in LWFA technology. Experimental bunch length characterization for two different energy regimes through bolometric analysis and electro-optic (EO) sampling are presented. Measurements demonstrate both shot-to-shot stability of bunch parameters, and femtosecond synchronization between the bunch, the THz pulse, and the laser beam. In addition, this method of CTR generation provides THz pulses of very high peak power suitable for applications. Recent results reveal LWFA to be a promising intense ultrafast THz source.