Science.gov

Sample records for ratio ion exchange

  1. HIGH ASPECT RATIO ION EXCHANGE RESIN BED - HYDRAULIC RESULTS FOR SPERICAL RESIN BEADS

    SciTech Connect

    Duignan, M; Charles Nash, C; Timothy Punch, T

    2007-09-27

    A principal role of the DOE Savannah River Site is to safely dispose of a large volume of liquid nuclear waste held in many storage tanks. An in-tank ion exchange unit is being considered for cesium removal to accelerate waste processing. This unit is planned to have a relatively high bed height to diameter ratio (10:1). Complicating the design is the need to cool the ion exchange media; therefore, the ion exchange column will have a central cooling core making the flow path annular. To separate cesium from waste the media being considered is made of resorcinol formaldehyde resin deposited on spherical plastic beads and is a substitute for a previously tested resin made of crystalline silicotitanate. This spherical media not only has an advantage of being mechanically robust, but, unlike its predecessor, it is also reusable, that is, loaded cesium can be removed through elution and regeneration. Resin regeneration leads to more efficient operation and less spent resin waste, but its hydraulic performance in the planned ion exchange column was unknown. Moreover, the recycling process of this spherical resorcinol formaldehyde causes its volume to significantly shrink and swell. To determine the spherical media's hydraulic demand a linearly scaled column was designed and tested. The waste simulant used was prototypic of the wastes' viscosity and density. This paper discusses the hydraulic performance of the media that will be used to assist in the design of a full-scale unit.

  2. Composite ion exchange materials

    SciTech Connect

    Amarasinghe, S.; Zook, L.; Leddy, J.

    1994-12-31

    Composite ion exchange materials can be formed by sorbing ion exchange polymers on inert, high surface area substrates. In general, the flux of ions and molecules through these composites, as measured electrochemically, increases as the ratio of the surface area of the substrate increases relative to the volume of the ion exchanger. This suggests that fields and gradients established at the interface between the ion exchanger and substrate are important in determining the transport characteristics of the composites. Here, the authors will focus on composites formed with a cation exchange polymer, Nafion, and two different types of microbeads: polystyrene microspheres and polystyrene coated magnetic microbeads. For the polystyrene microbeads, scanning electron micrographs suggest the beads cluster in a self-similar manner, independent of the bead diameter. Flux of Ru(NH3)63+ through the composites was studied as a function of bead fraction, bead radii, and fixed surface area with mixed bead sizes. Flux was well modeled by surface diffusion along a fractal interface. Magnetic composites were formed with columns of magnetic microbeads normal to the electrode surface. Flux of Ru(NH3)63+ through these composites increased exponentially with bead fraction. For electrolyses, the difference in the molar magnetic susceptibility of the products and reactants, Dcm, tends to be non-zero. For seven redox reactions, the ratio of the flux through the magnetic composites to the flux through a Nafion film increases monotonically with {vert_bar}Dcm{vert_bar}, with enhancements as large as thirty-fold. For reversible species, the electrolysis potential through the magnetic composites is 35 mV positive of that for the Nafion films.

  3. Ion microprobe analysis of oxygen isotope ratios in granulite facies magnetites: diffusive exchange as a guide to cooling history

    NASA Astrophysics Data System (ADS)

    Valley, John W.; Graham, Colin M.

    1991-03-01

    Ion microprobe analysis of magnetites from the Adirondack Mountains, NY, yields oxygen isotope ratios with spatial resolution of 2 8 μm and precision in the range of 1‰ (1 sigma). These analyses represent 11 orders of magnitude reduction in sample size compared to conventional analyses on this material and they are the first report of routinely reproducible precision in the 1 per mil range for analysis of δ18O at this scale. High precision micro-analyses of this sort will permit wide-ranging new applications in stable isotope geochemistry. The analyzed magnetites form nearly spherical grains in a calcite matrix with diopside and monticellite. Textures are characteristic of granulite facies marbles and show no evidence for retrograde recrystallization of magnetite. Magnetites are near to Fe3O4 in composition, and optically and chemically homogeneous. A combination of ion probe plus conventional BrF5 analysis shows that individual grains are homogeneous with δ18O=8.9±1‰ SMOW from the core to near the rim of 0.1 1.2 mm diameter grains. Depth profiling into crystal growth faces of magnetites shows that rims are 9‰ depleted in δ18O. These low δ18O values increase in smooth gradients across the outer 10 μm of magnetite rims in contact with calcite. These are the sharpest intracrystalline gradients measured to date in geological materials. This discovery is confirmed by bulk analysis of 150 350 μm diameter magnetites which average 1.2‰ lower in δ18O than coarse magnetites due to low δ18O rims. Conventional analysis of coexisting calcite yields °18O=18.19, suggesting that bulk Δ18O (Cc-Mt)=9.3‰ and yielding an apparent equilibration “temperature” of 525° C, over 200° C below the temperature of regional metamorphism. Consideration of experimental diffusion data and grain size distribution for magnetite and calcite suggests two contrasting cooling histories. The data for oxygen in calcite under hydrothermal conditions at high P(H2O) indicates that

  4. Measurement of radial profiles of density ratio of helium to hydrogen ion using charge exchange spectroscopy with two-wavelength spectrometer

    NASA Astrophysics Data System (ADS)

    Ida, K.; Yoshinuma, M.; Wieland, B.; Goto, M.; Nakamura, Y.; Kobayashi, M.; Murakami, I.; Moon, C.

    2015-12-01

    Radial profiles of density ratio of helium to hydrogen ions are measured using the charge exchange spectroscopy technique with the two-wavelength spectrometer system in the large helical device. The two-wavelength spectrometer system consists of a dichroic mirror box, a spectrometer with two grating and two camera lenses, and one CCD detector. The dichroic mirror box is used to divide the light of one fiber from the plasma to two fibers, one for HeII (λ = 468.6 nm) and the other for Hα (λ = 656.3 nm), that are connected to the entrance slit of the spectrometer to eliminate the interference between the HeII and the Hα spectra on the CCD. This system provides a simultaneous measurement of helium and hydrogen ion density ratio at 8 exact same locations (8 spatial channels) with a time resolution of >40 ms in the wide range of the density ratio of 0.05-5.

  5. Ion exchange phenomena

    SciTech Connect

    Bourg, I.C.; Sposito, G.

    2011-05-01

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculation (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).

  6. The effects of aspect ratio of inorganic fillers on the structure and property of composite ion-exchange membranes.

    PubMed

    Klaysom, Chalida; Moon, Seung-Hyeon; Ladewig, Bradley P; Lu, G Q Max; Wang, Lianzhou

    2011-11-15

    A new type of nanocomposite ion-exchange membranes containing sulfonated polyethersulfone (sPES) polymer matrix and sulfonated surface-functionalized mesoporous silica (SS) inorganic fillers was prepared. Various characterizations revealed that the addition of inorganic fillers with different shapes had a significant influence on the membrane structure. The mesoporous inorganic fillers not only created extra pore and water channels, assisting the ionic migration and improving conductivity of the composites, but also provided additional fixed charge groups upon surface modification. This allows the Donnan exclusion to work effectively and thus improve the selectivity of membranes. It was proved that the incorporation of appropriate amount of SS additive could significantly improve the conductivity (up to 20 folds) and permselectivity (about 14%) of the sPES membranes. The performance of these newly developed membranes in desalination by electrodialysis was comparable with that of a commercial membrane (FKE). PMID:21872877

  7. Pharmaceutical Applications of Ion-Exchange Resins

    NASA Astrophysics Data System (ADS)

    Elder, David P.

    2005-04-01

    The historical uses of ion-exchange resins and a summary of the basic chemical principles involved in the ion-exchange process are discussed. Specific applications of ion-exchange resins are provided. The utility of these agents to stabilize drugs are evaluated. Commonly occurring chemical and physical incompatibilities are reviewed. Ion-exchange resins have found applicability as inactive pharmaceutical constituents, particularly as disintegrants (inactive tablet ingredient whose function is to rapidly disrupt the tablet matrix on contact with gastric fluid). One of the more elegant approaches to improving palatability of ionizable drugs is the use of ion-exchange resins as taste-masking agents. The selection, optimization of drug:resin ratio and particle size, together with a review of scaleup of typical manufacturing processes for taste-masked products are provided. Ion-exchange resins have been extensively utilized in oral sustained-release products. The selection, optimization of drug:resin ratio and particle size, together with a summary of commonly occurring commercial sustained-release products are discussed. Ion-exchange resins have also been used in topical products for local application to the skin, including those where drug flux is controlled by a differential electrical current (ionotophoretic delivery). General applicability of ion-exchange resins, including ophthalmic delivery, nasal delivery, use as drugs in their own right (e.g., colestyramine, formerly referred to as cholestyramine), as well as measuring gastrointestinal transit times, are discussed. Finally, pharmaceutical monographs for ion-exchange resins are reviewed.

  8. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  9. Measurement of radial profiles of density ratio of helium to hydrogen ion using charge exchange spectroscopy with two-wavelength spectrometer.

    PubMed

    Ida, K; Yoshinuma, M; Wieland, B; Goto, M; Nakamura, Y; Kobayashi, M; Murakami, I; Moon, C

    2015-12-01

    Radial profiles of density ratio of helium to hydrogen ions are measured using the charge exchange spectroscopy technique with the two-wavelength spectrometer system in the large helical device. The two-wavelength spectrometer system consists of a dichroic mirror box, a spectrometer with two grating and two camera lenses, and one CCD detector. The dichroic mirror box is used to divide the light of one fiber from the plasma to two fibers, one for HeII (λ = 468.6 nm) and the other for H(α) (λ = 656.3 nm), that are connected to the entrance slit of the spectrometer to eliminate the interference between the HeII and the H(α) spectra on the CCD. This system provides a simultaneous measurement of helium and hydrogen ion density ratio at 8 exact same locations (8 spatial channels) with a time resolution of >40 ms in the wide range of the density ratio of 0.05-5. PMID:26724034

  10. Biological Ion Exchanger Resins

    PubMed Central

    Damadian, Raymond; Goldsmith, Michael; Zaner, K. S.

    1971-01-01

    Biological selectivity is shown to vary with medium osmotic strength and temperature. Selectivity reversals occur at 4°C and at an external osmolality of 0.800 indicating that intracellular hydration and endosolvent (intracellular water) structure are important determinants in selectivity. Magnetic resonance measurements of line width by steady-state nuclear magnetic resonance (NMR) indicate a difference in the intracellular water signal of 16 Hz between the K form and Na form of Escherichia coli, providing additional evidence that changes in the ionic composition of cells are accompanied by changes in endosolvent structure. The changes were found to be consistent with the thermodynamic and magnetic resonance properties of aqueous electrolyte solutions. Calculation of the dependence of ion-pairing forces on medium dielectric reinforces the role of endosolvent structure in determining ion exchange selectivity. PMID:4943653

  11. Ion exchange technology assessment report

    SciTech Connect

    Duhn, E.F.

    1992-01-01

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW's. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  12. Ion exchange technology assessment report

    SciTech Connect

    Duhn, E.F.

    1992-12-31

    In the execution of its charter, the SRS Ion Exchange Technology Assessment Team has determined that ion exchange (IX) technology has evolved to the point where it should now be considered as a viable alternative to the SRS reference ITP/LW/PH process. The ion exchange media available today offer the ability to design ion exchange processing systems tailored to the unique physical and chemical properties of SRS soluble HLW`s. The technical assessment of IX technology and its applicability to the processing of SRS soluble HLW has demonstrated that IX is unquestionably a viable technology. A task team was chartered to evaluate the technology of ion exchange and its potential for replacing the present In-Tank Precipitation and proposed Late Wash processes to remove Cs, Sr, and Pu from soluble salt solutions at the Savannah River Site. This report documents the ion exchange technology assessment and conclusions of the task team.

  13. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Klein, E. (Inventor)

    1976-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  14. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1980-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  15. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1977-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  16. The Precise Determination of Cd Isotope Ratio in Geological Samples by MC-ICP-MS with Ion Exchange Separation

    NASA Astrophysics Data System (ADS)

    Du, C.; Hu, S.; Wang, D.; Jin, L.; Guo, W.

    2014-12-01

    Cadmium (Cd) is a trace element which occurs at μg g-1 level abundances in the crust. Cd isotopes have great prospects in the study of the cosmogony, the trace of anthropogenic sources, the micronutrient cycling and the ocean productivity. This study develops an optimized technique for the precise and accurate determination of Cd isotopic compositions. Cd was separated from the matrix by elution with AG-MP-1 anionic exchange chromatographic resin. The matrix elements (K, Na, Ca, Al, Fe, and Mg etc.), polyatomic interfered elements (Ge, Ga, Zr, Nb, Ru, and Mo), and isobaric interfered elements (In, Pd and most of Sn) were eluted using HCl with gradient descent concentrations (2, 0.3, 0.06, 0.012 and 0.0012 mol L-1). The same elution procedure was repeated to eliminate the residuel Sn (Sn/Cd < 0.018). The collected Cd was analyzed using MC-ICP-MS, in which the instrumental mass fractionation was controlled by a "sample-standard bracketing" technique. The recovery of Cd larger than 96.85%, and the δ114/110Cd are in the range of -1.43~+0.20‰ for ten geological reference materials (GSD-3a, GSD-5a, GSD-7a, GSD-6, GSD-9, GSD-10, GSD-11, GSD-12, GSD-23, and GSS-1). The δ114/110Cd obtained for GSS-1 soil sample relative to the NIST SRM 3108 Cd solution was 0.20, which was coherent with the literature values (0.08±0.23). This method had a precision of 0.001~0.002% (RSD), an error range of 0.06~0.14 (δ114/110Cd, 2σ), and a long-term reproducibility of 0.12 (δ114/110Cd, 2σ).

  17. Electrically switched ion exchange

    SciTech Connect

    Lilga, M.A.; Schwartz, D.T.; Genders, D.

    1997-10-01

    A variety of waste types containing radioactive {sup 137}Cs are found throughout the DOE complex. These waste types include water in reactor cooling basins, radioactive high-level waste (HLW) in underground storage tanks, and groundwater. Safety and regulatory requirements and economics require the removal of radiocesium before these wastes can be permanently disposed of. Electrically Switched Ion Exchange (ESIX) is an approach for radioactive cesium separation that combines IX and electrochemistry to provide a selective, reversible, and economic separation method that also produces little or no secondary waste. In the ESIX process, an electroactive IX film is deposited electrochemically onto a high-surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. For cesium, the electroactive films under investigation are ferrocyanides, which are well known to have high selectivities for cesium in concentrated sodium solutions. When a cathode potential is applied to the film, Fe{sup +3} is reduced to the Fe{sup +2} state, and a cation must be intercalated into the film to maintain charge neutrality (i.e., Cs{sup +} is loaded). Conversely, if an anodic potential is applied, a cation must be released from the film (i.e., Cs{sup +} is unloaded). Therefore, to load the film with cesium, the film is simply reduced; to unload cesium, the film is oxidized.

  18. Ion exchange - Simulation and experiment

    NASA Technical Reports Server (NTRS)

    Herrmann, Cal C.; Finn, John E.

    1991-01-01

    A FORTRAN program for simulating multicomponent adsorption by ion-exchange resins was adapted for use as both an ASPEN-callable module and as a free-standing simulator of the ion-exchange bed. Four polystyrene-divinylbenzene sulfonic acid resins have been characterized for three principal ions. It is concluded that a chelating resin appears appropriate as a heavy-metal trap. The same ASPEN-callable module is used to model this resin when Wilson parameters can be obtained.

  19. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  20. A Colorful Ion Exchange Experiment

    NASA Astrophysics Data System (ADS)

    Mendes, Adélio

    1999-11-01

    A colorful ion-exchange experiment is described. The use of a resin with an adsorbed acid-base indicator allows students to follow the progress of the ion-exchange front along the column. In parallel, students can follow the ion-exchange breakthrough curve using a continuous conductometric cell at the column outlet. In the present example, K+ (KCl) exchanges with H+ (HCl) in a strong cationic resin (Amberlite IR 120). The adsorbed indicator is methyl violet. Sorption equilibrium is favorable to the K+ ions. Monovalent ions, used in this experiment, have the disadvantage of usually being colorless (except perhaps permanganate, but this is an extremely strong oxidant which attacks the resin). On the other hand, many divalent ions are colorful but the shape of the concentration front is hard to explain qualitatively as well as quantitatively. That is because the shape of the front depends on the total ionic concentration. However, color can be introduced in a monovalent ion-exchange system by adding an appropriate acid-base indicator to the resin. The text describes this experiment qualitatively. A simplified quantitative description, using the solute movement theory, can be found online.

  1. Electrically Switched Cesium Ion Exchange

    SciTech Connect

    JPH Sukamto; ML Lilga; RK Orth

    1998-10-23

    This report discusses the results of work to develop Electrically Switched Ion Exchange (ESIX) for separations of ions from waste streams relevant to DOE site clean-up. ESIX combines ion exchange and electrochemistry to provide a selective, reversible method for radionuclide separation that lowers costs and minimizes secondary waste generation typically associated with conventional ion exchange. In the ESIX process, an electroactive ion exchange film is deposited onto. a high surface area electrode, and ion uptake and elution are controlled directly by modulating the potential of the film. As a result, the production of secondary waste is minimized, since the large volumes of solution associated with elution, wash, and regeneration cycles typical of standard ion exchange are not needed for the ESIX process. The document is presented in two parts: Part I, the Summary Report, discusses the objectives of the project, describes the ESIX concept and the approach taken, and summarizes the major results; Part II, the Technology Description, provides a technical description of the experimental procedures and in-depth discussions on modeling, case studies, and cost comparisons between ESIX and currently used technologies.

  2. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, Jane P.; Wallace, Richard M.

    1995-01-01

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio.

  3. Cesium-specific phenolic ion exchange resin

    DOEpatents

    Bibler, J.P.; Wallace, R.M.

    1995-08-15

    A phenolic, cesium-specific, cation exchange resin is prepared by neutralizing resorcinol with potassium hydroxide, condensing/polymerizing the resulting intermediate with formaldehyde, heat-curing the resulting polymer to effect cross-linking and grinding it to desired particle size for use. This resin will selectively and efficiently adsorb cesium ions in the presence of a high concentration of sodium ions with a low carbon to cesium ratio. 2 figs.

  4. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  5. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  6. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  7. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  8. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  9. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  10. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  11. Radiation Studies with Argentine Ion Exchange Material

    SciTech Connect

    Crawford, C.L.

    2002-06-28

    A recent technology exchange between Argentina Nuclear Energy Commission (CNEA) and the US Department of Energy involved vitrification studies of ion exchange resins. Details of the spent ion exchange resins currently stored at two Argentine nuclear power plants, Atucha I and Embalse, have been presented in earlier reports. The present study examines irradiation of simulant samples of ion exchange resins.

  12. Ion Exchange and Liquid Column Chromatography.

    ERIC Educational Resources Information Center

    Walton, Harold F.

    1980-01-01

    Emphasizes recent advances in principles and methodology in ion exchange and chromatography. Two tables list representative examples for inorganic ions and organic compounds. Cites 544 references. (CS)

  13. Ion exchange purification of scandium

    DOEpatents

    Herchenroeder, Laurie A.; Burkholder, Harvey R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity.

  14. Ion exchange purification of scandium

    DOEpatents

    Herchenroeder, L.A.; Burkholder, H.R.

    1990-10-23

    An improvement in purification of scandium through ion exchange chromatography is disclosed in which the oxidation potential of the eluting solution is altered by the addition of potassium chlorate or ammonium chloride so that removal of contaminants is encouraged. The temperature, pH and concentration of the eluent HEDTA are controlled in order to maintain the scandium in the column while minimizing dilution of the scandium band. Recovery of scandium is improved by pumping dilute scandium over the column prior to stripping the scandium and precipitation. This eliminates the HEDTA ion and other monovalent cations contaminating the scandium band. This method maximizes recovery of scandium while maintaining purity. 2 figs.

  15. Pharmaceutical Applications of Ion-Exchange Resins

    ERIC Educational Resources Information Center

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  16. Electrically controlled cesium ion exchange

    SciTech Connect

    Lilga, M.

    1996-10-01

    Several sites within the DOE complex (Savannah River, Idaho, Oak Ridge and Hanford) have underground storage tanks containing high-level waste resulting from nuclear engineering activities. To facilitate final disposal of the tank waste, it is advantageous to separate and concentrate the radionuclides for final immobilization in a vitrified glass matrix. This task proposes a new approach for radionuclide separation by combining ion exchange (IX) and electrochemistry to provide a selective and economic separation method.

  17. PRTR ion exchange vault column sampling

    SciTech Connect

    Cornwell, B.C.

    1995-03-14

    This report documents ion exchange column sampling and Non Destructive Assay (NDA) results from activities in 1994, for the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. The objective was to obtain sufficient information to prepare disposal documentation for the ion exchange columns found in the PRTR Ion exchange vault. This activity also allowed for the monitoring of the liquid level in the lower vault. The sampling activity contained five separate activities: (1) Sampling an ion exchange column and analyzing the ion exchange media for purpose of waste disposal; (2) Gamma and neutron NDA testing on ion exchange columns located in the upper vault; (3) Lower vault liquid level measurement; (4) Radiological survey of the upper vault; and (5) Secure the vault pending waste disposal.

  18. Facility produced charge-exchange ions

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1981-01-01

    These facility produced ions are created by charge-exchange collisions between neutral atoms and energetic thruster beam ions. The result of the electron transfer is an energetic neutral atom and an ion of only thermal energy. There are true charge-exchange ions produced by collisions with neutrals escaping from the ion thruster and being charge-exchange ionized before the neutral intercepts the tank wall. The facility produced charge-exchange ions will not exist in space and therefore, represent a source of error where measurements involving ion thruster plasmas and their density are involved. The quantity of facility produced ions in a test chamber with a 30 cm mercury ion thruster was determined.

  19. Solidification of ion exchange resin wastes

    SciTech Connect

    Not Available

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of /sup 137/Cs, /sup 85/Sr, and /sup 60/Co from resins modified in portland type III and high alumina cements. The cumulative /sup 137/Cs fraction release was at least an order of magnitude greater than that of either /sup 85/Sr or /sup 60/Co. Release rates of /sup 137/Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. /sup 137/Cs, /sup 85/Sr, and /sup 60/Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement.

  20. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    ERIC Educational Resources Information Center

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  1. Ion Exchange Formation via Sulfonated Bicomponent Nonwovens

    NASA Astrophysics Data System (ADS)

    Stoughton, Hannah L.

    For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.

  2. [Ion specificity during ion exchange equilibrium in natural clinoptilolite].

    PubMed

    He, Yun-Hua; Li, Hang; Liu, Xin-Min; Xiong, Hai-Ling

    2015-03-01

    Zeolites have been widely applied in soil improvement and environment protection. The study on ion specificity during ion exchange equilibrium is of important significance for better use of zeolites. The maximum adsorption capacities of alkali ions during ion exchange equilibrium in the clinoptilolite showed obvious specificity. For alkali metal ions with equivalent valence, the differences in adsorption capacity increased with the decrease of ionic concentration. These results cannot be well explained by the classical theories including coulomb force, ionic size, hydration, dispersion force, classic induction force and surface complexation. We found that the coupling of polarization effects resulted from the quantum fluctuation of diverse alkali metal ions and electric field near the zeolite surface should be the primary reason for specific ion effect during ion exchange in zeolite. The result of this coupling effect was that the difference in the ion dipole moment increased with the increase of surface potential, which further expanded the difference in the adsorption ability between zeolite surface and ions, resulting in different ion exchange adsorption ability at the solid/liquid interface. Due to the high surface charge density of zeolite, ionic size also played an important role in the distribution of ions in the double diffuse layer, which led to an interesting result that distinct differences in exchange adsorption ability of various alkali metal ions were only detected at high surface potential (the absolute value was greater than 0.2 V), which was different from the ion exchange equilibrium result on the surface with low charge density. PMID:25929073

  3. Ion exchange in the nuclear industry

    SciTech Connect

    Bibler, J.P.

    1990-12-31

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  4. Ion exchange in the nuclear industry

    SciTech Connect

    Bibler, J.P.

    1990-01-01

    Ion exchange is used in nearly every part of the nuclear fuel cycle -- from the purification of uranium from its ore to the final recovery of uranium and transmutation products. Ion exchange also plays a valuable role in the management of nuclear wastes generated in the fuel cycle.

  5. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  6. Titania bound sodium titanate ion exchanger

    DOEpatents

    DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph

    1999-03-23

    This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.

  7. Ion Exchange Membrane Influence on Ohmic Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Selection of the proper ion exchange membrane can have a significant influence on bioelectrochemical system (BES) power densities. Because ions move across the membrane to achieve electroneutrality, the ion transport resistance (ohmic loss) needs to be minimized to increase power densities. Ohmic ...

  8. Development of novel fuel ion ratio diagnostic techniques

    SciTech Connect

    Korsholm, S. B.; Stejner, M.; Bindslev, H.; Furtula, V.; Leipold, F.; Meo, F.; Michelsen, P. K.; Moseev, D.; Nielsen, S. K.; Salewski, M.; Conroy, S.; Ericsson, G.; Gorini, G.; Tardocchi, M.; Hellermann, M. von; Lischtschenko, O.; Delabie, E.; Jaspers, R. J. E.

    2010-10-15

    To overcome the challenge of measuring the fuel ion ratio in the core ({rho}<0.3) of ITER, a coordinated effort aiming at developing diagnostic techniques has been initiated. The investigated techniques are novel uses or further development of existing methods such as charge exchange recombination spectrometry, neutron spectrometry, and collective Thomson scattering. An overview of the work on the three diagnostic techniques is presented.

  9. Porous Ceramic Spheres from Ion Exchange Resin

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    A commercial cation ion exchange resin, cross-linked polystyrene, has been successfully used as a template to fabricate 20 to 50 micron porous ceramic spheres. Ion exchange resins have dual template capabilities. Pore architecture of the ceramic spheres can be altered by changing the template pattern. Templating can be achieved by utilizing the internal porous structure or the external surface of the resin beads. Synthesis methods and chemical/physical characteristics of the ceramic spheres will be reported.

  10. Solvent Extraction and Ion Exchange in Radiochemistry

    NASA Astrophysics Data System (ADS)

    Skarnemark, G.

    In 1805, Bucholz extracted uranium from a nitric acid solution into ether and back-extracted it into pure water. This is probably the first reported solvent-extraction investigation. During the following decades, the distribution of neutral compounds between aqueous phases and pure solvents was studied, e.g., by Peligot, Berthelot and Jungfleisch, and Nernst. Selective extractants for analytical purposes became available during the first decades of the twentieth century. From about 1940, extractants such as organophosphorous esters and amines were developed for use in the nuclear fuel cycle. This connection between radiochemistry and solvent-extraction chemistry made radiochemists heavily involved in the development of new solvent extraction processes, and eventually solvent extraction became a major separation technique in radiochemistry. About 160 years ago, Thompson and Way observed that soil can remove potassium and ammonium ions from an aqueous solution and release calcium ions. This is probably the first scientific report on an ion-exchange separation. The first synthesis of the type of organic ion exchangers that are used today was performed by Adams and Holmes in 1935. Since then, ion-exchange techniques have been used extensively for separations of various radionuclides in trace as well as macro amounts. During the last 4 decades, inorganic ion exchangers have also found a variety of applications. Today, solvent extraction as well as ion exchange are used extensively in the nuclear industry and for nuclear, chemical, and medical research. Some of these applications are discussed in the chapter.

  11. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    EPA Science Inventory

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  12. Inorganic ion exchangers for nuclear waste remediation

    SciTech Connect

    Clearfield, A.; Bortun, A.; Bortun, L.; Behrens, E.

    1997-10-01

    The objective of this work is to provide a broad spectrum of inorganic ion exchangers that can be used for a range of applications and separations involving remediation of groundwater and tank wastes. The authors intend to scale-up the most promising exchangers, through partnership with AlliedSignal Inc., to provide samples for testing at various DOE sites. While much of the focus is on exchangers for removal of Cs{sup +} and Sr{sup 2+} from highly alkaline tank wastes, especially at Hanford, the authors have also synthesized exchangers for acid wastes, alkaline wastes, groundwater, and mercury, cobalt, and chromium removal. These exchangers are now available for use at DOE sites. Many of the ion exchangers described here are new, and others are improved versions of previously known exchangers. They are generally one of three types: (1) layered compounds, (2) framework or tunnel compounds, and (3) amorphous exchangers in which a gel exchanger is used to bind a fine powder into a bead for column use. Most of these exchangers can be regenerated and used again.

  13. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange membranes may be safely used in the processing of food under the following prescribed conditions: (a) The ion-exchange membrane is prepared...

  14. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange... ion-exchange membrane is prepared by subjecting a polyethylene base conforming to § 177.1520 of...

  15. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange... ion-exchange membrane is prepared by subjecting a polyethylene base conforming to § 177.1520 of...

  16. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ion-exchange membranes. 173.20 Section 173.20 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange... ion-exchange membrane is prepared by subjecting a polyethylene base conforming to § 177.1520 of...

  17. 21 CFR 173.20 - Ion-exchange membranes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ion-exchange membranes. 173.20 Section 173.20 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.20 Ion-exchange membranes. Ion-exchange... ion-exchange membrane is prepared by subjecting a polyethylene base conforming to § 177.1520 of...

  18. Cesium Separation Using Electrically Switched Ion Exchange

    SciTech Connect

    Lilga, Michael A.); Orth, Rick J.); Sukamto, Johanes H.); Rassat, Scot D.); Genders, J D.; Gopal, R

    2001-09-01

    Electrically Switched Ion Exchange (ESIX) is a separation technology being developed at Pacific Northwest National Laboratory as an alternative to conventional ion exchange for removing metal ions from wastewater. In ESIX, which combines ion exchange and electro-chemistry, ion uptake and elution can be controlled directly by modulating the potential of an ion exchange film that has been electrochemically deposited onto an electrode. This paper presents the results of experiments on high surface area electrodes and the development of a flow system for cesium ion separation. Bench-scale flow system studies showed no change in capacity or performance of the ESIX films at a flow rate up to 113 BV/h, the maxi-mum flow rate tested, and breakthrough curves supported once-through waste processing. A comparison of results for a stacked 5-electrode cell versus a single-electrode cell showed enhanced breakthrough performance. In the stacked configuration, break-through began at about 120 BV for a feed containing 0.2 ppm cesium at a flow rate of 13 BV/h. A case study for the KE Basin (a spent nuclear fuel storage basin) on the Hanford Site demonstrated that KE Basin wastewater could be processed continuously with minimal waste generation, reduced disposal costs, and lower capital expenditures.

  19. Regeneration of spent powdered activated carbon saturated with inorganic ions by cavitation united with ion exchange method.

    PubMed

    Li, Gang; Gao, Hong; Li, Yansheng; Yang, Huixin

    2011-06-01

    Using ion exchange resin as transfer media, regenerate powdered activated carbon (PAC) adsorbed inorganic ions by cavitation to enhance the transfer; we studied how the regeneration time and the mass ratio of resin and PAC influence the regeneration rate respectively through re-adsorption. The result showed that the effective regeneration of PAC saturated with inorganic ions was above 90% using ion exchange resin as media and transfer carrier, the quantity of PAC did not reduced but activated in the process. PMID:25084579

  20. Effect of polyamine reagents on exchange capacity in ion exchangers

    NASA Astrophysics Data System (ADS)

    Petrova, T. I.; Dyachenko, F. V.; Bogatyreva, Yu. V.; Borodastov, A. K.; Ershova, I. S.

    2016-05-01

    Effect of compounds involved in complex reagents is described using Helamin 906H reagent as an example. The working exchange capacity of KU-2-8chs cation exchanger in hydrogen form and Amberlite IRA 900Cl anion exchanger in OH form remained almost unchanged when they were used repeatedly to purify water that contained Helamin 906H reagent; in addition, this capacity was the same upon filtration of water that did not contain this reagent. Leakage of total organic carbon was observed earlier than that of calcium ions upon filtration of the solution through the cation exchanger layer. The test results obtained in industrial conditions indicated that using H-OH filters to purify turbine condensate enables the decrease of the concentration of organic and other impurities therein.

  1. Ion thruster charge-exchange plasma flow

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Gabriel, S. B.; Kitamura, S.

    1982-01-01

    The electron bombardment ion thruster has been under development for a number of years and during this time, studies of the plasmas produced by the thrusters and their interactions with spacecraft have been evaluated, based on available data. Due to diagnostic techniques used and facility effects, there is uncertainty as to the reliability of data from these early studies. This paper presents data on the flow of the charge-exchange plasma produced just downstream of the thruster's ion optics. The 'end-effect' of a cylindrical Langmuir probe is used to determine ion density and directed ion velocity. Results are compared with data obtained from a retarding potential analyzer-Faraday cup.

  2. Modeling of Crystalline Silicotitanate Ion Exchange Columns

    SciTech Connect

    Walker, D.D.

    1999-03-09

    Non-elutable ion exchange is being considered as a potential replacement for the In-Tank Precipitation process for removing cesium from Savannah River Site (SRS) radioactive waste. Crystalline silicotitanate (CST) particles are the reference ion exchange medium for the process. A major factor in the construction cost of this process is the size of the ion exchange column required to meet product specifications for decontaminated waste. To validate SRS column sizing calculations, SRS subcontracted two reknowned experts in this field to perform similar calculations: Professor R. G. Anthony, Department of Chemical Engineering, Texas A&038;M University, and Professor S. W. Wang, Department of Chemical Engineering, Purdue University. The appendices of this document contain reports from the two subcontractors. Definition of the design problem came through several meetings and conference calls between the participants and SRS personnel over the past few months. This document summarizes the problem definition and results from the two reports.

  3. Organic ion exchange resin separation methods evaluation

    SciTech Connect

    Witwer, K.S.

    1998-05-27

    This document describes testing to find effective methods to separate Organic Ion Exchange Resin (OIER) from a sludge simulant. This task supports a comprehensive strategy for treatment and processing of K-Basin sludge. The simulant to be used resembles sludge that has accumulated in the 105KE and 105KW Basins in the 1OOK area of the Hanford Site. The sludge is an accumulation of fuel element corrosion products, organic and inorganic ion exchange materials, canister gasket materials, iron and aluminum corrosion products, sand, dirt, and other minor amounts of organic matter.

  4. Commercial Ion Exchange Resin Vitrification Studies

    SciTech Connect

    Cicero-Herman, C.A

    2002-06-28

    In the nuclear industry, ion exchange resins are used for purification of aqueous streams. The major contaminants of the resins are usually the radioactive materials that are removed from the aqueous streams. The use of the ion exchange resins creates a waste stream that can be very high in both organic and radioactive constituents. Therefore, disposal of the spent resin often becomes an economic problem because of the large volumes of resin produced and the relatively few technologies that are capable of economically stabilizing this waste. Vitrification of this waste stream presents a reasonable disposal alternative because of its inherent destruction capabilities, the volume reductions obtainable, and the durable product that it produces.

  5. Microspheres aided introduction of ionophore and ion-exchanger to the ion-selective membrane.

    PubMed

    Wojciechowski, Marcin; Kisiel, Anna; Bulska, Ewa; Michalska, Agata

    2012-01-15

    In this work a novel method for introduction of ionophore and ion-exchanger to the ion-selective polyacrylate based membrane is proposed. These compounds (and optionally primary ions) are introduced to polyacrylate microspheres, used to prepare ion-selective membrane. The approach proposed here can be used to prepare membranes containing primary ions equally distributed through the receptor phase, i.e. membranes that do not require conditioning in primary ions solution and are free from problems related to slow diffusion of primary ions. Thus obtained sensors were characterized with linear responses (also at relatively high activities) and high selectivities, despite considerable reduction of ionophore and ion-exchanger amount introduced to the membrane. To be able to prepare ion-selective membranes using this approach, a method for quantification of ionophore and ion-exchanger introduced into microspheres is required. In this work a novel method utilizing high performance liquid chromatography (HPLC) with DAD or FLD detection is proposed. Incorporation of ionophore and ion-exchanger into the microspheres was achieved either by absorption into ready spheres or in course of photopolymerization of polymeric beads. The obtained results have proven that both procedures led to incorporation of ionophore/ion-exchanger into polymeric spheres, however, the content of the compounds in the spheres post process is different from their ratio in solution from which they had been introduced. These effects need to be considered/compensated while preparing microspheres containing ion-selective membranes. As a model system poly(n-butyl acrylate) spheres, silver selective ionophore and sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate were chosen, resulting ultimately in silver-selective electrodes. PMID:22265471

  6. Thermal Analysis of LANL Ion Exchange Column

    SciTech Connect

    Laurinat, J.E.

    1999-06-16

    This document reports results from an ion exchange column heat transfer analysis requested by Los Alamos National Laboratory (LANL). The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades.

  7. Solidification of ion exchange resin wastes in hydraulic cement

    SciTech Connect

    Neilson, R.M. Jr.; Kalb, P.; Fuhrmann, M.; Colombo, P.

    1982-01-01

    Work has been conducted to investigate the solidification of ion exchange resin wastes with portland cements. These efforts have been directed toward the development of acceptable formulations for the solidification of ion exchange resin wastes and the characterization of the resultant waste forms. This paper describes formulation development work and defines acceptable formulations in terms of ternary phase compositional diagrams. The effects of cement type, resin type, resin loading, waste/cement ratio and water/cement ratio are described. The leachability of unsolidified and solidified resin waste forms and its relationship to full-scale waste form behavior is discussed. Gamma irradiation was found to improve waste form integrity, apparently as a result of increased resin crosslinking. Modifications to improve waste form integrity are described. 3 tables.

  8. Graphene/Ionic liquid composite films and ion exchange.

    PubMed

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-01-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602

  9. Graphene/Ionic Liquid Composite Films and Ion Exchange

    NASA Astrophysics Data System (ADS)

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-06-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force.

  10. Graphene/Ionic Liquid Composite Films and Ion Exchange

    PubMed Central

    Mo, Yufei; Wan, Yunfang; Chau, Alicia; Huang, Fuchuan

    2014-01-01

    Wettability of graphene is adjusted by the formation of various ionic surfaces combining ionic liquid (IL) self-assembly with ion exchange. The functionalized ILs were designed and synthesized with the goal of obtaining adjustable wettability. The wettability of the graphene surface bearing various anions was measured systematically. The effect of solvent systems on ion exchange ratios on the graphene surface has also been investigated. Meanwhile, the mechanical properties of the graphene/IL composite films were investigated on a nanometer scale. The elasticity and adhesion behavior of the thin film was determined with respected to the indentation deformation by colloid probe nanoindentation method. The results indicate that anions played an important role in determining graphene/IL composite film properties. In addition, surface wetting and mechanics can be quantitatively determined according to the counter-anions on the surface. This study might suggest an alternate way for quantity detection of surface ions by surface force. PMID:24970602

  11. SPEEDUP{trademark} ion exchange column model

    SciTech Connect

    Hang, T.

    2000-03-06

    A transient model to describe the process of loading a solute onto the granular fixed bed in an ion exchange (IX) column has been developed using the SpeedUp{trademark} software package. SpeedUp offers the advantage of smooth integration into other existing SpeedUp flowsheet models. The mathematical algorithm of a porous particle diffusion model was adopted to account for convection, axial dispersion, film mass transfer, and pore diffusion. The method of orthogonal collocation on finite elements was employed to solve the governing transport equations. The model allows the use of a non-linear Langmuir isotherm based on an effective binary ionic exchange process. The SpeedUp column model was tested by comparing to the analytical solutions of three transport problems from the ion exchange literature. In addition, a sample calculation of a train of three crystalline silicotitanate (CST) IX columns in series was made using both the SpeedUp model and Purdue University's VERSE-LC code. All test cases showed excellent agreement between the SpeedUp model results and the test data. The model can be readily used for SuperLig{trademark} ion exchange resins, once the experimental data are complete.

  12. Ion exchange in a zeolite-molten chloride system

    SciTech Connect

    Woodman, R.H.; Pereira, C.

    1997-07-01

    Electrometallurgical treatment of spent nuclear fuel results in a secondary waste stream of radioactive fission products dissolved in chloride salt. Disposal plans include a waste form that can incorporate chloride forms featuring one or more zeolites consolidated with sintered glass. A candidate method for incorporating fission products in the zeolites is passing the contaminated salt over a zeolite column for ion exchange. To date, the molten chloride ion-exchange properties of four zeolites have been investigated for this process: zeolite A, IE95{reg_sign}, clinoptilolite, and mordenite. Of these, zeolite A has been the most promising. Treating zeolite 4A, the sodium form of zeolite A , with the solvent salt for the waste stream-lithium-potassium chloride of eutectic melting composition, is expected to provide a material with favorable ion-exchange properties for the treatment of the waste salt. The authors constructed a pilot-plant system for the ion-exchange column. Initial results indicate that there is a direct relationship between the two operating variable of interest, temperature, and initial sodium concentration. Also, the mass ratio has been about 3--5 to bring the sodium concentration of the effluent below 1 mol%.

  13. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1989-01-01

    This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  14. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1988-01-01

    This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  15. An Empirical Formula From Ion Exchange Chromatography and Colorimetry.

    ERIC Educational Resources Information Center

    Johnson, Steven D.

    1996-01-01

    Presents a detailed procedure for finding an empirical formula from ion exchange chromatography and colorimetry. Introduces students to more varied techniques including volumetric manipulation, titration, ion-exchange, preparation of a calibration curve, and the use of colorimetry. (JRH)

  16. ION EXCHANGE ADSORPTION PROCESS FOR PLUTONIUM SEPARATION

    DOEpatents

    Boyd, G.E.; Russell, E.R.; Taylor, M.D.

    1961-07-11

    Ion exchange processes for the separation of plutonium from fission products are described. In accordance with these processes an aqueous solution containing plutonium and fission products is contacted with a cation exchange resin under conditions favoring adsorption of plutonium and fission products on the resin. A portion of the fission product is then eluted with a solution containing 0.05 to 1% by weight of a carboxylic acid. Plutonium is next eluted with a solution containing 2 to 8 per cent by weight of the same carboxylic acid, and the remaining fission products on the resin are eluted with an aqueous solution containing over 10 per cent by weight of sodium bisulfate.

  17. Porous solid ion exchange wafer for immobilizing biomolecules

    DOEpatents

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  18. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under...

  19. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under...

  20. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under...

  1. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Perfluorinated ion exchange membranes. 173.21... ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in the treatment of bulk quantities of liquid food under...

  2. 21 CFR 173.21 - Perfluorinated ion exchange membranes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Perfluorinated ion exchange membranes. 173.21... Polymer Adjuvants for Food Treatment § 173.21 Perfluorinated ion exchange membranes. Substances identified in paragraph (a) of this section may be safely used as ion exchange membranes intended for use in...

  3. Charge exchange lifetimes for ions in the magnetosphere

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Bewtra, N. K.

    1977-01-01

    Latest and best measurements of physical quantities involved in complete calculation of the charge exchange lifetime of mirroring magnetospheric ions are coalesced and summarized. It is critical that the charge exchange lifetimes for ions be known as accurately as possible in order to apply the charge exchange mechanism to ion phenomena within the earth's magnetosphere.

  4. Cesium and strontium ion specific exchangers

    SciTech Connect

    Yates, S.

    1996-10-01

    This work is one of two parallel projects that are part of an ESP task to develop high-capacity, selective, solid extractants for cesium, strontium, and technetium from nuclear wastes. In this subtask, Pacific Northwest National Laboratory (PNNL) is collaborating with AlliedSignal, Inc. (Des Plaines, Illinois) to develop inorganic ion exchangers that are selective for strontium and cesium from alkaline high-level waste and groundwater streams.

  5. PRTR ion exchange vault water removal

    SciTech Connect

    Ham, J.E.

    1995-11-01

    This report documents the removal of radiologically contaminated water from the Plutonium Recycle Test Reactor (PRTR) ion exchange vault. Approximately 57,000 liters (15,000 gallons) of water had accumulated in the vault due to the absence of a rain cover. The water was removed and the vault inspected for signs of leakage. No evidence of leakage was found. The removal and disposal of the radiologically contaminated water decreased the risk of environmental contamination.

  6. Ion Exchange Temperature Testing with SRF Resin

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Brown, Garrett N.; Peterson, Reid A.

    2012-03-01

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing 137Cs. Recent proposed changes to the WTP ion exchange process baseline indicate that higher temperatures (50°C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns may be required. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of elevated temperature on resin loading and resin degradation during extended solution flow using elevated temperature (45°, 50°, 55°, 60°, 65°, 75°C). Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45°C. Above 60°C the resin appears to not load at all.

  7. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  8. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  9. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  10. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  11. 10 CFR Appendix E to Part 110 - Illustrative List of Chemical Exchange or Ion Exchange Enrichment Plant Equipment and Components...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Illustrative List of Chemical Exchange or Ion Exchange.... 110, App. E Appendix E to Part 110—Illustrative List of Chemical Exchange or Ion Exchange Enrichment... chemical exchange and solid-liquid ion exchange. A. In the liquid-liquid chemical exchange...

  12. Novel silica-based ion exchange resin

    SciTech Connect

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  13. Ion exchange properties of humus acids

    NASA Astrophysics Data System (ADS)

    Shoba, V. N.; Chudnenko, K. V.

    2014-08-01

    Ion exchange equilibriums in a complex of brown humic acids (HAs) and related fulvic acids (FAs) with cations (H+, K+, Na+, Ca2+, Mg2+, Zn2+, Mn2+, Cu2+, Fe3+, and Al3+) have been studied, and the activity coefficients of the acid monoionic forms have been determined. The composition of the stoichiometric cell in the system of black and brown HAs and related FAs in a leached chernozem of the Ob' region has been calculated with consideration for the earlier studies of the ion exchange properties of black HAs and related FAs. It has been shown that hydrogen, calcium, magnesium, aluminum, and iron are the major components in the exchange complex of humus acids in the leached chernozem with the other cations being of subordinate importance. In spite of some differences between the analytical and calculated compositions of the humus acids, the results of the calculations can be considered satisfactory. They indicate that calculations are feasible for such complex objects as soils, and their accuracy will improve with the expansion of the experimental studies. The physicochemical simulation of the transformation of the humus acid composition under different acid-base conditions shows that the contents of most cations decrease under alkalization, and hydroxides or carbonates become the most stable forms of these cations. Under the acidification of solutions, the binding of alkaline and alkaline-earth elements by humus acids decreases and the adsorption of iron and aluminum by humus acids increases.

  14. Sorption of tellurium ion from aqueous solutions by anion-exchangers and amphoteric ion-exchangers

    SciTech Connect

    Dreipa, E.F.; Pakholkov, V.S.; Luk'yanov, S.A.

    1981-10-20

    Sorption of tellurium from solutions of telluric acid under dynamic and static conditions by anion-exchangers and amphoteric ion-exchangers containing various ionic groups was studied and the influence of the ion form, pH of the medium, presence of electrolytes, and the H/sub 6/TeO/sub 6/ concentration in the original solutions was determined. The mechanism of sorption of tellurium (VI) by anion-exchangers was deduced from sorption and IR-spectroscopic data. Differences in the behavior of tellurium and selenium were used for separating these elements in 0.05 N H/sub 2/SeO/sub 4/ + 0.05 N H/sub 6/TeO/sub 6/ solution of pH = 1.0 with the aid of EDE-10P anion-exchange resin.

  15. Anion exchangers with branched functional ion exchange layers of different hydrophilicity for ion chromatography.

    PubMed

    Shchukina, O I; Zatirakha, A V; Smolenkov, A D; Nesterenko, P N; Shpigun, O A

    2015-08-21

    Novel polystyrene-divinylbenzene (PS-DVB) based anion exchangers differing from each other in the structure of the branched functional ion exchange layer are prepared to investigate the role of linker and functional site on ion exchange selectivity. The proposed method of synthesis includes the obtaining of aminated PS-DVB particles by means of their acylation with following reductive amination with methylamine. Further modification of the obtained secondary aminogroups is provided by the alkylation with either 1,4-butanediol diglycidyl ether (1,4-BDDGE) or resorcinol diglycidyl ether (RDGE), which form the linkers of different hydrophobicity, and amination of terminal epoxide rings with trimethylamine (TMA), dimethylethanolamine (DMEA), methyldiethanolamine (MDEA) or triethanolamine (TEA). The variation of the structure and hydrophobicity of the linker and terminal quaternary ammonium sites in the functional layer allows the alteration of selectivity and separation efficiency of the obtained adsorbents. The ion exchange selectivity and separation efficiency of the anion exchangers are evaluated using the model mixtures of anions (F(-), HCOO(-), Cl(-), NO2(-), Br(-), NO3(-), HPO4(2-) and SO4(2-)) in potassium hydroxide eluents. The adsorbents show the decrease of selectivity with increasing the hydrophilicity of the terminal functional site. The anion exchangers having more flexible and hydrophilic 1,4-BDDGE linker provide smaller separation factors for most of the analytes as compared with RDGE-containing adsorbents with the same terminal ion exchange sites, but are characterized with higher column efficiencies and better peak symmetry for polarizable anions. In case of 1,4-BDDGE-modified anion exchangers of the particle size of 3.3μm functionalized with DMEA and MDEA the calculated values of column efficiencies for polarizable NO3(-) and Br(-) are up to 49,000 and 53,000N/m, respectively, which is almost twice higher than the values obtained for the RDGE

  16. Ion exchange materials, method of forming ion exchange materials, and methods of treating liquids

    DOEpatents

    Wertsching, Alan K.; Peterson, Eric S.; Wey, John E.

    2007-12-25

    The invention includes an ion affinity material having an organic component which is sulfonated and which is chemically bonded to an inorganic substrate component. The invention includes a method of forming a metal binding material. A solid support material comprising surface oxide groups is provided and an organic component having at least one alkyl halide is covalently linked to at least some of the surface oxide groups to form a modified support material. The at least one alkyl halide is subsequently converted into an alkyl sulfonate. The invention further includes a method and system for extracting ions from a liquid. An ion exchange material having a sulfonated alkyl silane component covalently bonded to a metal oxide support material is provided and a liquid is exposed to the ion exchange material.

  17. Biodegradation of ion-exchange media

    SciTech Connect

    Bowerman, B.S.; Clinton, J.H.; Cowdery, S.R.

    1988-01-01

    The purpose of this study was to investigate further the potential for ion-exchange media (resin beads or powdered filter media) to support biological growth. A mixed microbial culture was grown from resin wastes obtained from the BNL HFBR by mixing the resin with a nutrient salt solution containing peptone and yeast extract. Bacterial and fungal growths appeared in the solution and on the resins after 7 to 10 days incubation at 337)degree)C. The mixed microbial cultures were used to inoculate several resin types, both irradiated and unirradiated. 12 refs., 5 tabs.

  18. Ion exchange polymers and method for making

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H. (Inventor); Street, Kenneth W., Jr. (Inventor)

    1994-01-01

    An ion exchange polymer comprised of an alkali metal or alkaline earth metal salt of a poly(carboxylic acid) in a poly(vinyl acetal) matrix is described. The polymer is made by treating a mixture made of poly(vinyl alcohol) and poly(acrylic acid) with a suitable aldehyde and an acid catalyst to cause acetalization with some cross-linking. The material is then subjected to an alkaline aqueous solution of an alkali metal salt or an alkali earth metal salt. All of the film forming and cross-linking steps can be carried out simultaneously, if desired.

  19. Fixation of radioactive ions in porous media with ion exchange gels

    DOEpatents

    Mercer, Jr., Basil W.; Godfrey, Wesley L.

    1979-01-01

    A method is provided for fixing radioactive ions in porous media by injecting into the porous media water-soluble organic monomers which are polymerizable to gel structures with ion exchange sites and polymerizing the monomers to form ion exchange gels. The ions and the particles of the porous media are thereby physically fixed in place by the gel structure and, in addition, the ions are chemically fixed by the ion exchange properties of the resulting gel.

  20. Proton Ratio of HL-2A Bucket Ion Source

    NASA Astrophysics Data System (ADS)

    Yu, Li-Ming; Lei, Guang-Jiu; Cao, Jian-Yong; Yang, Li-Mei; Jiang, Shao-Feng; Han, Xiao-Yu; Zhang, Xian-Ming; Sun, Ping; Zou, Gui-Qing; Lu, Da-Lun; Liu, He; Jiang, Tao; Duan, Xu-Ru

    2010-04-01

    For heating the tokamak plasma effectively, the ion source must be capable of producing ions with high proton ratio. The proton ratio, which is found to be more than 65.6% at the ion current of 19.6 A with the extraction voltage of 39.6 kV, is measured with an image spectrograph by Doppler shift effect of Balmer-α-radiation spectrum emitted from fast hydrogen particles. The tendency of proton ratio with the ion density in experiment is almost the same as the mode devised by Zhang et al. Okumura et al. only gave the affection of the plasma volume and ion loss area on the proton ratio, but the relationship between the ion density in chamber and the proton ratio was not presented. We give the relationship.

  1. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  2. Ion Exchange Chromatography and Spectrophotometry: An Introductory Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foster, N.; And Others

    1985-01-01

    Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)

  3. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, D.; Babcock, W.C.; Tuttle, M.

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets. 5 figs.

  4. Multicomponent liquid ion exchange with chabazite zeolites

    SciTech Connect

    Robinson, S.M.; Arnold, W.D. Jr.; Byers, C.W.

    1993-10-01

    In spite of the increasing commercial use of zeolites for binary and multicomponent sorption, the understanding of the basic mass-transfer processes associated with multicomponent zeolite ion-exchange systems is quite limited. This study was undertaken to evaluate Na-Ca-Mg-Cs-Sr ion exchange from an aqueous solution using a chabazite zeolite. Mass-transfer coefficients and equilibrium equations were determined from experimental batch-reactor data for single and multicomponent systems. The Langmuir isotherm was used to represent the equilibrium relationship for binary systems, and a modified Dubinin-Polyani model was used for the multicomponent systems. The experimental data indicate that diffusion through the microporous zeolite crystals is the primary diffusional resistance. Macropore diffusion also significantly contributes to the mass-transfer resistance. Various mass-transfer models were compared to the experimental data to determine mass-transfer coefficients. Effective diffusivities were obtained which accurately predicted experimental data using a variety of models. Only the model which accounts for micropore and macropore diffusion occurring in series accurately predicted multicomponent data using single-component diffusivities. Liquid and surface diffusion both contribute to macropore diffusion. Surface and micropore diffusivities were determined to be concentration dependent.

  5. Radionuclide Leaching from Organic Ion Exchange Resin

    SciTech Connect

    Delegard, C.H.; Rinehart, D.E.

    1999-04-02

    Laboratory tests were performed to examine the efficacy of leach treatments for decontaminating organic ion exchange resins (OIER), which have been found in a number of samples retrieved from K East Basin sludge. Based on process records, the OIER found in the K Basins is a mixed-bet strong acid/strong base material marketed as Purolite{trademark} NRW-037. Radionuclides sorbed or associated with the OIER can restrict its disposal to the Environmental Restoration Disposal Facility (ERDF). The need for testing to support development of a treatment process for K Basin sludge has been described in Section 4.2 of ''Testing Strategy to Support the Development of K Basins Sludge Treatment Process'' (Flament 1998). To help understand the effects of anticipated OIER elutriation and washing, tests were performed with well-rinsed OIER material from K East Basin floor sludge (sample H-08 BEAD G) and with well-rinsed OIER having approximately 5% added K East canister composite sludge (sample KECOMP). The rinsed resin-bearing material also contained the inorganic ion exchanger Zeolon-900{trademark}, a zeolite primarily composed of the mineral mordenite. The zeolite was estimated to comprise 27 weight percent of the dry H-08 BEAD G material.

  6. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...,” February 4, 1998, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ion-exchange resins. 173.25 Section 173.25 Food and... Substances and Polymer Adjuvants for Food Treatment § 173.25 Ion-exchange resins. Ion-exchange resins may...

  7. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...,” February 4, 1998, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ion-exchange resins. 173.25 Section 173.25 Food... for Food Treatment § 173.25 Ion-exchange resins. Ion-exchange resins may be safely used in...

  8. Mineral Separation in a CELSS by Ion-exchange Chromatography

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1982-01-01

    Operational parameters pertinent to ion exchange chromatography separation were identified. The experiments were performed with 9 mm diameter ion exchange columns and conventional column accessories. The cation separation beds were packed with AG 50W-X2 strong acid cation exchange resin in H(+) form and 200-400 dry mesh particle size. The stripper beds used in some experiments were packed with AG 1-XB strong base cation exchange resin in OH(-) form and 200-400 dry mesh particle size.

  9. Effects of ionizing radiation on modern ion exchange materials

    SciTech Connect

    Marsh, S.F.; Pillay, K.K.S.

    1993-10-01

    We review published studies of the effects of ionizing radiation on ion exchange materials, emphasizing those published in recent years. A brief overview is followed by a more detailed examination of recent developments. Our review includes styrene/divinylbenzene copolymers with cation-exchange or anion-exchange functional groups, polyvinylpyridine anion exchangers, chelating resins, multifunctional resins, and inorganic exchangers. In general, strong-acid cation exchange resins are more resistant to radiation than are strong-base anion exchange resins, and polyvinylpyridine resins are more resistant than polystyrene resins. Cross-linkage, salt form, moisture content, and the surrounding medium all affect the radiation stability of a specific exchanger. Inorganic exchangers usually, but not always, exhibit high radiation resistance. Liquid ion exchangers, which have been used so extensively in nuclear processing applications, also are included.

  10. Scintillating 99Tc Selective Ion Exchange Resins

    SciTech Connect

    Mitchell Greenhalgh; Richard D. Tillotson

    2012-07-01

    Scintillating technetium (99Tc) selective ion exchange resins have been developed and evaluated for equilibrium capacities and detection efficiencies. These resins can be utilized for the in-situ concentration and detection of low levels of pertechnetate anions (99TcO4-) in natural waters. Three different polystyrene type resin support materials were impregnated with varying amounts of tricaprylmethylammonium chloride (Aliquat 336) extractant, several different scintillating fluors and wavelength shifters. The prepared resins were contacted batch-wise to equilibrium over a wide range of 99TcO4- concentrations in natural water. The measured capacities were used to develop Langmuir adsorption isotherms for each resin. 99Tc detection efficiencies were determined and up to 71.4 ± 2.6% was achieved with some resins. The results demonstrate that a low level detection limit for 99TcO4- in natural waters can be realized.

  11. Pyrolysis of Spent Ion Exchange Resins - 12210

    SciTech Connect

    Braehler, Georg; Slametschka, Rainer

    2012-07-01

    Organic ion exchangers (IEX) play a major and increasing role in the reactor coolant and other water purification processes. During their operation time they receive significant amounts of radioactivity, making their disposal, together with their organic nature, as medium active waste challenging. Processes applied so far do not eliminate the organic matter, which is unwanted in disposal facilities, or, if high temperatures are applied, raise problems with volatile radionuclides. NUKEM Technologies offers their well introduces process for the destruction of spent solvent (TBP), the pebble bed pyrolysis, now for the treatment of spent IEX (and other problematic waste), with the following benefits: the pyrolysis product is free of organic matter, and the operation temperature with approx. 500 deg. C keeps Cs radionuclides completely in the solid residue. (authors)

  12. Proton/calcium ion exchange behavior of calcite.

    PubMed

    Villegas-Jiménez, Adrián; Mucci, Alfonso; Paquette, Jeanne

    2009-10-21

    The characterization of the proton sorptive properties of calcite in aqueous solutions at 25 +/- 1 degrees C over a relatively wide range of chemical conditions (7.16 ratios (0.4 to 12.3 g L(-1)) was performed using a novel surface titration technique. A large net proton uptake, coupled with a significant release of Ca(2+) ions is consistently observed, greatly exceeding the theoretical number of reactive surface sites. These observations are interpreted as a fast proton/calcium exchange equilibrium between the solution and "exchangeable cation sites" (e.g., lattice positions) at and/or beneath the calcite surface (species identified by "(exc)"), , that leads to a transient, "apparent" incongruent dissolution regime and the formation of a stable calcium-deficient, proton-enriched layer within the calcite lattice under circum-neutral and alkaline regimes at standard conditions. The 2H(+)/Ca(2+) ion exchange is quantitatively described by the Langmuir-power exchange function under the Vanselow convention: where n = 1 and log(10)K(ex) = 13.0 +/- 0.3. This calcite behavior, never reported before, masks surface equilibria and directly impacts the aqueous speciation of carbonate-rock systems with poor CO(2)(g) ventilation (e.g., aquifers, pore and deep sea waters, industrial reactors) via the buffering of pH and calcite dissolution. In contrast, at fixed pCO(2) conditions, aqueous speciation remains unaffected upon CO(2)(g) sequestration resulting from ion exchange-induced calcite precipitation: ([triple bond]CaCO3)2(exc) + CO2(g) + H2O <==> [triple bond]Ca(HCO3)2(exc) + CaCO3(s). Accordingly, reliable predictions of aqueous speciation in natural or engineered calcite-containing systems at variable pCO(2) conditions must consider this exchange reaction and the associated K(ex). The postulated proton/calcium exchange may have far

  13. Waste treatment by selective mineral ion exchanger

    SciTech Connect

    Polito, Aurelie

    2007-07-01

    STMI, subsidiary company of the AREVA Group with over 40 years in the D and D business, has been continuously innovating and developing new decontamination techniques, with the objectives of achieving more efficient decontaminations on a growing spectrum of media. In the field of liquid waste treatment, STMI manufactures uses and commercialises selective inorganic ion exchangers (RAN). These are hydrated synthetic inorganic compounds prepared from very pure raw materials. Different types of RANs (POLYAN, OXTAIN, Fe-Cu, Fe-CoK, Si-Fe-CoK) can be used to trap a large number of radioactive elements in contaminated effluents. Different implementations could be applied depending on technical conditions. STMI's offers consist in building global solution and preliminary design of installation either in dispersed form (batch) or in column (cartridge filtration). Those products are used all over the world not only in the nuclear business (Canada, US, Belgium, France...) but also in other fields. Indeed, it provides competitive solutions to many domains of application especially water pollution control, liquid waste treatment in the nuclear business by decreasing the activity level of waste. The following paper will focus on the theoretical principle of the mineral exchanger, its implementation and the feed back collected by STMI. (author)

  14. TECHNICAL COMPARISON OF CANDIDATE ION EXCHANGE MEDIA FOR SMALL COLUMN ION EXCHANGE (SCIX) APPLICATIONS IN SUPPORT OF SUPPLEMENTAL LAW PRETREATMENT

    SciTech Connect

    RAMSEY AA; THORSON MR

    2010-12-28

    At-tank supplemental pretreatment including both filtration and small column ion exchange is currently under evaluation to facilitate salt waste retrieval and processing in the Hanford tank farms. Spherical resorcinol formaldehyde (sRF) resin is the baseline ion exchange resin for use in the Waste Treatment and Immobilization Plant (WTP). This document provides background and technical rationale to assist in determining whether spherical resorcinol formaldehyde (sRF) is also the appropriate ion exchange resin for supplemental LAW pretreatment processes and compares sRF with crystalline silicotitanate (CST) as potential supplemental pretreatment ion exchange media.

  15. Radiation testing of organic ion exchange resins

    SciTech Connect

    Carlson, C.D.; Bray, L.A.; Bryan, S.A.

    1995-09-01

    A number of ion exchange materials are being evaluated as part of the Tank Waste Remediation System (TWRS) Pacific Northwest Laboratory (PNL) Pretreatment Project for the removal of {sup 137}Cs from aqueous tank wastes. Two of these materials are organic resins; a phenol-formaldehyde resin (Duolite CS-100) produced by Rohm and Haas Co. (Philadelphia, Pennsylvania) and a resorcinol-formaldehyde (RF) resin produced by Boulder Scientific Co. (Mead, Colorado). One of the key parameters in the assessment of the organic based ion exchange materials is its useful lifetime in the radioactive and chemical environment that will be encountered during waste processing. The focus of the work presented in this report is the radiation stability of the CS-100 and the RF resins. The scope of the testing included one test with a sample of the CS-100 resin and testing of two batches of the RF resin (BSC-187 and BSC-210). Samples of the exchangers were irradiated with a {sup 60}Co source to a total absorbed dose of 10{sup 9} R over a period of 5 months in a static (no flow) and a flowing configuration with neutralized current acid waste (NCAW) simulant as a feed. Based on a maximum concentration of {sup 137}Cs on the resin that would result from processing NCAW, this dose represents an operational period of at least 150 days for the RF resin and at least 1260 days for the CS-100 resin. Gas generation in the static experiment was continuously monitored and G values (molecules of gas per 100 eV) were determined for each species. Resin samples were obtained periodically and the equilibrium behavior of the resins was assessed by determining the distribution coefficients (K{sub d}s). Structural information was also obtained by {sup 13}C cross polarization magic angle (CPMAS) nuclear magnetic resonance (NMR) spectrometry and Fourier Transform Infrared (FTIR) spectroscopy so that changes to the chemical structure could be correlated with changes in K{sub d}.

  16. Rupture Loop Annex (RLA) ion exchange vault entry and characterization

    SciTech Connect

    Ham, J.E.

    1996-01-04

    This engineering report documents the entry and characterization of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located near the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns were found in the vault. Some of which contained transuranics, Cs 137, and Co 60. The characterization information is necessary for future vault cleanout and column disposal.

  17. Ion exchange properties of novel hydrous metal oxide materials

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.

    1996-12-31

    Hydrous metal oxide (HMO) materials are inorganic ion exchangers which have many desirable characteristics for catalyst support applications, including high cation exchange capacity, anion exchange capability, high surface area, ease of adjustment of acidity and basicity, bulk or thin film preparation, and similar chemistry for preparation of various transition metal oxides. Cation exchange capacity is engineered into these materials through the uniform incorporation of alkali cations via manipulation of alkoxide chemistry. Specific examples of the effects of Na stoichiometry and the addition of SiO{sub 2} to hydrous titanium oxide (HTO) on ion exchange behavior will be given. Acid titration and cationic metal precursor complex exchange will be used to characterize the ion exchange behavior of these novel materials.

  18. Ion exchange defines the biological activity of titanate nanotubes.

    PubMed

    Rónavári, Andrea; Kovács, Dávid; Vágvölgyi, Csaba; Kónya, Zoltán; Kiricsi, Mónika; Pfeiffer, Ilona

    2016-05-01

    One-dimensional titanate nanotubes (TiONTs) were subjected to systematic ion exchange to determine the impact of these modifications on biological activities. Ion exchanged TiONTs (with Ag, Mg, Bi, Sb, Ca, K, Sr, Fe, and Cu ions) were successfully synthesized and the presence of the substituted ions was verified by energy dispersive X-ray spectroscopy (EDS). A complex screening was carried out to reveal differences in toxicity to human cells, as well as in antibacterial, antifungal, and antiviral activities between the various modified nanotubes. Our results demonstrated that Ag ion exchanged TiONTs exerted potent antibacterial and antifungal effects against all examined microbial species but were ineffective on viruses. Surprisingly, the antibacterial activity of Cu/TiONTs was restricted to Micrococcus luteus. Most ion exchanged TiONTs did not show antimicrobial activity against the tested bacterial and fungal species. Incorporation of various ions into nanotube architectures lead to mild, moderate, or even to a massive loss of human cell viability; therefore, this type of biological effect exerted by TiONTs can be greatly modulated by ion exchange. These findings further emphasize the contribution of ion exchange in determining not only the physical and chemical characteristics but also the bioactivity of TiONT against different types of living cells. PMID:26972521

  19. Closed system respirometry may underestimate tissue gas exchange and bias the respiratory exchange ratio (RER).

    PubMed

    Malte, Christian Lind; Nørgaard, Simon; Wang, Tobias

    2016-02-01

    Closed respirometry is a commonly used method to measure gas exchange in animals due to its apparent simplicity. Typically, the rates of O2 uptake and CO2 excretion (VO2 and VCO2, respectively) are assumed to be in steady state, such that the measured rates of gas exchange equal those at tissue level. In other words, the respiratory gas exchange ratio (RER) is assumed to equal the respiratory quotient (RQ). However, because the gas concentrations change progressively during closure, the animal inspires air with a progressively increasing CO2 concentration and decreasing O2 concentration. These changes will eventually affect gas exchange causing the O2 and CO2 stores within the animal to change. Because of the higher solubility/capacitance of CO2 in the tissues of the body, VCO2 will be more affected than VO2, and we hypothesize therefore that RER will become progressively underestimated as closure time is prolonged. This hypothesis was addressed by a combination of experimental studies involving closed respirometry on ball pythons (Python regius) as well as mathematical models of gas exchange. We show that increased closed duration of the respirometer reduces RER by up to 13%, and these findings may explain previous reports of RER values being below 0.7. Our model reveals that the maximally possible reduction in RER is determined by the storage capacity of the body for CO2 (product of size and specific capacitance) relative to the respirometer storage capacity. Furthermore, modeling also shows that pronounced ventilatory and circulatory response to hypercapnia can alleviate the reduction in RER. PMID:26523499

  20. Isotope exchange by Ion Cyclotron Wall Conditioning on JET

    NASA Astrophysics Data System (ADS)

    Wauters, T.; Douai, D.; Kogut, D.; Lyssoivan, A.; Brezinsek, S.; Belonohy, E.; Blackman, T.; Bobkov, V.; Crombé, K.; Drenik, A.; Graham, M.; Joffrin, E.; Lerche, E.; Loarer, T.; Lomas, P. L.; Mayoral, M.-L.; Monakhov, I.; Oberkofler, M.; Philipps, V.; Plyusnin, V.; Sergienko, G.; Van Eester, D.

    2015-08-01

    The isotopic exchange efficiencies of JET Ion Cyclotron Wall Conditioning (ICWC) discharges produced at ITER half and full field conditions are compared for JET carbon (C) and ITER like wall (ILW). Besides an improved isotope exchange rate on the ILW providing cleaner plasma faster, the main advantage compared to C-wall is a reduction of the ratio of retained discharge gas to removed fuel. Complementing experimental data with discharge modeling shows that long pulses with high (∼240 kW coupled) ICRF power maximizes the wall isotope removal per ICWC pulse. In the pressure range 1-7.5 × 10-3 Pa, this removal reduces with increasing discharge pressure. As most of the wall-released isotopes are evacuated by vacuum pumps in the post discharge phase, duty cycle optimization studies for ICWC on JET-ILW need further consideration. The accessible reservoir by H2-ICWC at ITER half field conditions on the JET-ILW preloaded by D2 tokamak operation is estimated to be 7.3 × 1022 hydrogenic atoms, and may be exchanged within 400 s of cumulated ICWC discharge time.

  1. Barcoded materials based on photoluminescent hybrid system of lanthanide ions-doped metal organic framework and silica via ion exchange.

    PubMed

    Shen, Xiang; Yan, Bing

    2016-04-15

    A multicolored photoluminescent hybrid system based on lanthanide ions-doped metal organic frameworks/silica composite host has potential in display and barcode applications. By controlling the stoichiometry of the lanthanides via cation exchange, proportional various lanthanide ions are successfully introduced into metal organic frameworks, whose emission intensity is correspondingly proportional to its amount. The resulting luminescent barcodes depend on the lanthanide ions ratios and compositions. Subsequently, the lanthanide ions located in the channels of metal organic frameworks are protected from any interaction with the environment after the modification of silica on the surface. The optical and thermal stability of the hybrid materials are improved for technological application. PMID:26852345

  2. Gadolinium-hydrogen ion exchange of zirconium phosphate

    NASA Technical Reports Server (NTRS)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  3. Hydrolyzed Poly(acrylonitrile) Electrospun Ion-Exchange Fibers

    PubMed Central

    Jassal, Manisha; Bhowmick, Sankha; Sengupta, Sukalyan; Patra, Prabir K.; Walker, Douglas I.

    2014-01-01

    Abstract A potential ion-exchange material was developed from poly(acrylonitrile) fibers that were prepared by electrospinning followed by alkaline hydrolysis (to convert the nitrile group to the carboxylate functional group). Characterization studies performed on this material using X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier-Transform infra-red spectroscopy, and ion chromatography confirmed the presence of ion-exchange functional group (carboxylate). Optimum hydrolysis conditions resulted in an ion-exchange capacity of 2.39 meq/g. Ion-exchange fibers were used in a packed-bed column to selectively remove heavy-metal cation from the background of a benign, competing cation at a much higher concentration. The material can be efficiently regenerated and used for multiple cycles of exhaustion and regeneration. PMID:24963270

  4. Ion exchange capacity of Nafion and Nafion composites

    SciTech Connect

    Chen, T.Y.; Leddy, J.

    2000-03-21

    The ion exchange capacity of recast Nafion films and composites of Nafion and polystyrene microbeads is determined by titration. Composite formation enhances exchange capacity; exchange capacity increases with the surface area microbeads in the composite. For recast films, an equivalent weight of 996 {+-} 24 is found, whereas the lowest equivalent weight (highest exchange capacity) found for composite is 878 {+-} 8. This suggests that {approx_gt} 13% of the exchange sites within recast films are inaccessible for ion exchange; for 1,100 equivalent weight material, {approx_gt} 25% of the sulfonates are inaccessible. Equivalent weight results are consistent with an ordered interfacial domain between Nafion and the microbeads. A fractal model based on microbead radii, microbead fraction, and interfacial domain thickness provides a predictive model for designing composites with increased exchange capacity and cation transport.

  5. Ion-exchange properties of strontium hydroxyapatite under acidic conditions

    SciTech Connect

    Sugiyama, Shigeru; Nishioka, Hitoshi; Moriga, Toshihiro; Hayashi, Hiromu; Moffat, J.B.

    1998-09-01

    The ion exchange of strontium hydroxyapatite (SrHAp) with Pb{sup 2+} has been investigated under acidic conditions at 293 K. The addition of various acids to the exchanging solution enhanced the exchange capacity in the order HCl > HBr > HF > HNO{sub 3} > no acid, corresponding to the formation of halogen apatites with the former three acids or hydrogen phosphate with HNO{sub 3}. Since the ion-exchange capacity of SrHAp under nonacidic conditions is higher than that of chlorapatite, the aforementioned observations can be attributed to the participation of the protons introduced by the acids.z

  6. Tc-99 Ion Exchange Resin Testing

    SciTech Connect

    Valenta, Michelle M.; Parker, Kent E.; Pierce, Eric M.

    2010-08-01

    Pacific Northwest National Laboratory was contracted by CHPRC to evaluate the release of 99Tc from spent resin used to treat water from well 299-W15-765 and stored for several years. The key questions to be answered are: 1) does 99Tc readily release from the spent ion exchange resin after being in storage for several years; 2) if hot water stripping is used to remove the co-contaminant carbon tetrachloride, will 99Tc that has been sequestered by the resin be released; and 3) can spent resin be encapsulated into a cementitious waste form; if so, how much 99Tc would be released from the weathering of the monolith waste form? The results from the long term stability leach test results confirm that the resin is not releasing a significant amount of the sequestered 99Tc, evident by the less than 0.02% of the total 99Tc loaded being identified in the solution. Furthermore, it is possible that the measured 99Tc concentration is the result of 99Tc contained in the pore spaces of the resin. In addition to these results, analyses conducted to examine the impact of hot water on the release of 99Tc suggest that only a small percentage of the total is being released. This suggest that hot water stripping to remove carbon tetrachloride will not have a significant affect on the resin’s ability to hold-on to sequestered 99Tc. Finally, encapsulation of spent resin in a cementitious material may be a viable disposal option, but additional tests are needed to examine the extent of physical degradation caused by moisture loss and the effect this degradation process can have on the release of 99Tc.

  7. Cesium Ion Exchange Loading Kinetics Testing with SRF Resin

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Brown, Garrett N.; Peterson, Reid A.

    2012-11-02

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing 137Cs. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (2 to 8 M) due to caustic leaching and higher temperatures (50°C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of linear load velocity (4, 6, 8 cm/min), initial sodium concentration (2, 5, 8 M), initial sodium-to-cesium ratio (1.4E+05, 2.1E+05, 2.8E+05 mol/mol), initial sodium-to-hydroxide ratio (2.0, 3.0, 4.0 mol/mol), and resin degradation during extended solution flow using elevated temperature (45°, 50°, 55°, 60°, 65°, 75°C). Testing was performed using a~2mL column packed with SRF resin with feed flowing through it in an up-flow pattern. Samples were taken at set intervals and the data analyzed to help understand the impact of these conditions on the SRF resin performance. It was found that the loading kinetics were not significantly impacted by the sodium concentration over the range tested. However, the loading kinetics were impacted by the linear load velocity. These results indicated that at the test temperature, the adsorption of cesium is strongly dependent on mass transfer through the film and not significantly impacted by interparticle diffusion. Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45°C. Above 60°C the resin appears to not load at all.

  8. Concept of advanced spent fuel reprocessing based on ion exchange

    SciTech Connect

    Suzuki, Tatsuya; Takahashi, Kazuyuki; Nogami, Masanobu; Nomura, Masao; Fujii, Yasuhiko; Ozawa, Masaki |; Koyama, Shinichi; Mimura, Hitosi; Fujita, Reiko

    2007-07-01

    Reprocessing based on ion exchange separation is proposed as a safe, proliferation-resistant technology. Tertiary pyridine resin was developed for ion exchange reprocessing. Working medium of the separation system is not nitric acid but hydrochloric acid aqueous solution. The system does not involve strong oxidizing reagent, such as nitric acid but involve chloride ions which works as the week neutron absorbers. The system can be operated at ambient temperatures and pressure. Thus the HCl-ion-exchange reprocessing is regarded as an inherently safe technology. Another advantage of HCl ion-exchange reprocessing is the proliferation-resistant nature. Both U(VI) and Pu(IV) ions are adsorbed in the pyridine type anion exchange resin at relatively high HCl concentration of 6 M. At this condition, the adsorption distribution coefficient of Pu(IV) is smaller than that of U(VI). When uranium is eluted from the resin in the column, plutonium is simultaneously eluted from the column; Pu is recovered with uranium in the front part of uranium adsorption band. Pu(IV) can not be left in the resin after elution of uranium. The use of HCl in the ion-exchange reprocessing causes the problem of the plant materials. Sophisticated material technology is necessary to realize the ion exchange reprocessing using HCl. The technology is so sophisticated that only highly developed countries can hold the technology, thus the technology holding countries will be limited. The plant, therefore, cannot be built under hidden state. In addition, another merit of the process would be the simplicity in operation. One phase, i.e., ion exchange resin is immobile, and the aqueous solution is the only mobile phase. Plant operation is made by the control of one aqueous solution phase. The plant simplicity would ease the international safeguard inspection efforts to be applicable to this kind of reprocessing plant. The present work shows the basic concept of ion exchange reprocessing using HCl medium

  9. Interpenetrating polymer network ion exchange membranes and method for preparing same

    DOEpatents

    Alexandratos, Spiro D.; Danesi, Pier R.; Horwitz, E. Philip

    1989-01-01

    Interpenetrating polymer network ion exchange membranes include a microporous polymeric support film interpenetrated by an ion exchange polymer and are produced by absorbing and polymerizing monomers within the support film. The ion exchange polymer provides ion exchange ligands at the surface of and throughout the support film which have sufficient ligand mobility to extract and transport ions across the membrane.

  10. Inorganic ion exchange evaluation and design: Silicotitanate ion exchange waste conversion

    SciTech Connect

    Balmer, M.L.; Bunker, B.C.

    1995-03-01

    Ion exchange materials are being evaluated for removing Cs, SR from tank waste. Thermal conversion of a variety of compositions within the Cs{sub 2}O-TiO{sub 2}-SiO{sub 2} phase diagram yielded both glass and crystalline materials, some of which show low leach rates and negligible Cs losses during heat treatment. A new material, CsTiSi{sub 2}0{sub 6}, with a structure isomorphous to pollucite (CsAlSi{sub 2}0{sub 6}) has been identified. This material represents a new class of crystalline zeolite materials which contain large amounts of titanium. Direct conversion of Cs loaded silicotitanate ion exchangers to CsTiSi{sub 2}O{sub 6} is an excellent alternative to dissolving the Cs-loaded or Cs-eluted exchangers in borosilicate glass because: CsTiSi{sub 2}O{sub 6} is formed using a simple, one step heat treatment. The unique crystalline pollucite-like structure of CsTiSi{sub 2}O{sub 6} traps Cs, and exhibits extremely low Cs leach rates. CsTiSi{sub 2}O{sub 6} is converted to solid waste at a low processing temperature of 700 to 800 C (nominal melter operating temperatures are 1150 C). CsTiSi{sub 2}0{sub 6} concentrates the waste, thus generating lower volumes of expensive HLW. Cs losses due to volatilization during processing of CsTiSi{sub 2}O{sub 6} are extremely low.

  11. FRACTIONATION OF COMPLEX MIXTURES USING AND ION-EXCHANGE METHODOLOGY

    EPA Science Inventory

    Fractionation of particle emission extracts captured from complex combustion mixtures gas performed upon environmental samples using an ion-exchange technique. aptured emissions from hazardous waste, municipal and medical/pathological incinerators along with urban air imputed by ...

  12. WASTEWATER DEMINERALIZATION BY CONTINUOUS COUNTER-CURRENT ION EXCHANGE PROCESS

    EPA Science Inventory

    A wastewater demineralization study employing a 38 lpm (10 gpm) continuous counter-current ion exchange pilot plant, manufactured by the Chemical Separations Corporation, Oak Ridge, Tennessee, has been conducted at the County Sanitation Districts, Pomona Research Facility, Pomona...

  13. Ion Exchange Separation of the Oxidation State of Vanadium.

    ERIC Educational Resources Information Center

    Cornelius, Richard

    1980-01-01

    Describes an experiment that emphasizes the discrete nature of the different oxidation states of vanadium by the separation of ammonium metavanadate into all four species by ion exchange chromatography. (CS)

  14. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...,” February 4, 1998, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ion-exchange resins. 173.25 Section 173.25 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.25 Ion-exchange resins....

  15. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...,” February 4, 1998, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ion-exchange resins. 173.25 Section 173.25 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.25 Ion-exchange resins....

  16. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...,” February 4, 1998, which is incorporated by reference in accordance with 5 U.S.C. 552(a) and 1 CFR part 51... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ion-exchange resins. 173.25 Section 173.25 Food... Polymer Substances and Polymer Adjuvants for Food Treatment § 173.25 Ion-exchange resins....

  17. MODELING RESULTS FROM CESIUM ION EXCHANGE PROCESSING WITH SPHERICAL RESINS

    SciTech Connect

    Nash, C.; Hang, T.; Aleman, S.

    2011-01-03

    Ion exchange modeling was conducted at the Savannah River National Laboratory to compare the performance of two organic resins in support of Small Column Ion Exchange (SCIX). In-tank ion exchange (IX) columns are being considered for cesium removal at Hanford and the Savannah River Site (SRS). The spherical forms of resorcinol formaldehyde ion exchange resin (sRF) as well as a hypothetical spherical SuperLig{reg_sign} 644 (SL644) are evaluated for decontamination of dissolved saltcake wastes (supernates). Both SuperLig{reg_sign} and resorcinol formaldehyde resin beds can exhibit hydraulic problems in their granular (nonspherical) forms. SRS waste is generally lower in potassium and organic components than Hanford waste. Using VERSE-LC Version 7.8 along with the cesium Freundlich/Langmuir isotherms to simulate the waste decontamination in ion exchange columns, spherical SL644 was found to reduce column cycling by 50% for high-potassium supernates, but sRF performed equally well for the lowest-potassium feeds. Reduced cycling results in reduction of nitric acid (resin elution) and sodium addition (resin regeneration), therefore, significantly reducing life-cycle operational costs. These findings motivate the development of a spherical form of SL644. This work demonstrates the versatility of the ion exchange modeling to study the effects of resin characteristics on processing cycles, rates, and cold chemical consumption. The value of a resin with increased selectivity for cesium over potassium can be assessed for further development.

  18. ELUTION OF URANIUM VALUES FROM ION EXCHANGE RESINS

    DOEpatents

    Kennedy, R.H.

    1959-11-24

    A process is described for eluting complex uranium ions absorbed on ion exchange resins. The resin is subjected to the action of an aqueous eluting solution contuining sulfuric acid and an alkali metal, ammonium, or magnesium chloride or nitrate, the elution being carried out until the desired amount of the uranium is removed from the resin.

  19. Ion momentum and energy transfer rates for charge exchange collisions

    NASA Technical Reports Server (NTRS)

    Horwitz, J.; Banks, P. M.

    1973-01-01

    The rates of momentum and energy transfer have been obtained for charge exchange collisions between ion and neutral gases having arbitrary Maxwellian temperatures and bulk transport velocities. The results are directly applicable to the F-region of the ionosphere where 0+ - 0 charge is the dominant mechanism affecting ion momentum and energy transfer.

  20. A zeolite ion exchange membrane for redox flow batteries.

    PubMed

    Xu, Zhi; Michos, Ioannis; Wang, Xuerui; Yang, Ruidong; Gu, Xuehong; Dong, Junhang

    2014-03-01

    The zeolite-T membrane was discovered to have high proton permselectivity against vanadium ions and exhibit low electrical resistance in acidic electrolyte solutions because of its enormous proton concentration and small thickness. The zeolite membrane was demonstrated to be an efficient ion exchange membrane in vanadium redox flow batteries. PMID:24396857

  1. Desalination of brackish waters using ion-exchange media

    SciTech Connect

    Pless, J.D.; Philips, M.L.F.; Voigt, J.A.; Moore, D.; Axness, M.; Krumhansl, J.L.; Nenoff, T.M.

    2006-06-21

    An environmentally friendly method and materials study for desalinating inland brackish waters (i.e., coal bed methane produced waters) using a set of ion-exchange materials is presented. This desalination process effectively removes anions and cations in separate steps with minimal caustic waste generation. The anion-exchange material, hydrotalcite (HTC), exhibits an ion-exchange capacity (IEC) of around 3 mequiv g{sup -1}. The cation-exchange material, an amorphous aluminosilicate permutite-like material, (Na{sub x}+2yAl{sub x}Si{sub 1}-xO{sub 2+y}), has an IEC of around to 2.5 mequiv g{sup -1}. These ion-exchange materials were studied and optimized because of their specific ion-exchange capacity for the ions of interest and their ability to function in the temperature and pH regions necessary for cost and energy effectiveness. Room temperature, minimum pressure column studies (once-pass through) on simulant brackish water (total dissolved solids (TDS) = 2222 ppm) resulted in water containing TDS = 25 ppm. A second once-pass through column study on actual produced water (TDS = similar to 11 000) with a high carbonate concentration used an additional lime softening step and resulted in a decreased TDS of 600 ppm.

  2. Desalination of brackish waters using ion exchange media.

    SciTech Connect

    Pless, Jason D.; Krumhansl, James Lee; Nenoff, Tina Maria; Voigt, James A.; Phillips, Mark L. F.; Axness, Marlene; Moore, Diana Lynn

    2005-01-01

    An environmentally friendly method and materials study for desalinating inland brackish waters (i.e., coal bed methane produced waters) using a set of ion-exchange materials is presented. This desalination process effectively removes anions and cations in separate steps with minimal caustic waste generation. The anion-exchange material, hydrotalcite (HTC), exhibits an ion-exchange capacity (IEC) of {approx} 3 mequiv g{sup -1}. The cation-exchange material, an amorphous aluminosilicate permutite-like material, (Na{sub x+2y}Al{sub x}Si{sub 1-x}O{sub 2+y}), has an IEC of {approx}2.5 mequiv g{sup -1}. These ion-exchange materials were studied and optimized because of their specific ion-exchange capacity for the ions of interest and their ability to function in the temperature and pH regions necessary for cost and energy effectiveness. Room temperature, minimum pressure column studies (once-pass through) on simulant brackish water (total dissolved solids (TDS) = 2222 ppm) resulted in water containing TDS = 25 ppm. A second once-pass through column study on actual produced water (TDS = {approx}11,000) with a high carbonate concentration used an additional lime softening step and resulted in a decreased TDS of 600 ppm.

  3. Microsecond pulsed hydrogen/deuterium exchange of electrosprayed ubiquitin ions stored in a linear ion trap.

    PubMed

    Rajabi, Khadijeh

    2015-02-01

    A pulse of D2O vapour on the order of microseconds is allowed to react with the +6 to +9 charge states of ubiquitin confined in a linear ion trap (LIT). Two envelopes of peaks are detected for the ions of ubiquitin, corresponding to the ions that exchange more quickly and more slowly. The deuterium uptake of the protonated sites on ubiquitin ions accounts for the ion population with the fast exchange. The hydrogen/deuterium exchange (HDX) kinetics of ubiquitin ions trapped in the LIT for 200 ms showed comparable structural transitions to those trapped for 300 ms. When ions are trapped for longer, i.e. up to 2000 ms, mainly the slow exchanging ion population is detected. In all experiments the +7 ions exchange the most, suggesting a short distance between the surface protonated sites and nearby charged sites, and concomitantly high accessibility of surface protonated sites towards D2O. The +6 ions are more compact than the +7 ions but have one fewer protonated site, therefore fewer surface availabilities for D2O attack. The data suggest that the +6 ions keep most of their solution-phase contacts intact while the hydrophobic core is slightly interrupted in the +7 ions, possibly due to the exposure of charged His68 that is normally buried in the hydrophobic pocket. The +8 and +9 ions have more protonated sites but are less compact than the +7 ions because of Coulombic repulsion, resulting in a larger distance between the protonated sites and the basic sites. The data indicate that the HDX mechanism of ions with the slower exchange corresponding to the second envelope of peaks is primarily governed via a relay mechanism. The results suggest that the pulsed HDX MS method is sampling a population of ubiquitin ions with a similar backbone fold to the solution. PMID:25553956

  4. Observations of solar wind ion charge exchange in the comet Halley coma

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Shelley, E. G.; Goldstein, B. E.; Goldstein, R.; Neugebauer, M.; Ip, W.-H.; Balsiger, H.; Reme, H.

    1991-01-01

    Giotto Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) observations of solar wind ions show charge exchange effects and solar wind compositional changes in the coma of comet Halley. As the comet was approached, the He(++) to proton density ratio increased until about 1 hour before closest approach after which time it decreased. Abrupt increases in this ratio were also observed in the beginning and near the end of the so-called Mystery Region (8.6 - 5.5(10)(exp 5) km from the comet along the spacecraft trajectory). These abrupt increases in the density ratio were well correlated with enhanced fluxes of keV electrons as measured by the Giotto plasma electron spectrometer. The general increase and then decrease of the He(++) to proton density ratio is quantitatively consistent with a combination of the addition of protons of cometary origin to the plasma and loss of plasma through charge exchange of protons and He(++). In general agreement with the solar wind proton and He(++) observations, solar wind oxygen and carbon ions were observed to charge exchange from higher to lower charge states with decreasing distance to the comet. The more abrupt increases in the He(++) to proton and the He(++) to O(6+) density ratios in the mystery region require a change in the solar wind ion composition in this region while the correlation with energetic electrons indicates processes associated with the comet.

  5. Quantitative ion-exchange separation of plutonium from impurities

    SciTech Connect

    Pietri, C.E.; Freeman, B.P.; Weiss, J.R.

    1981-09-01

    The methods used at the New Brunswick Laboratory for the quantitative ion exchange separation of plutonium from impurities prior to plutonium assay are described. Other ion exchange separation procedures for impurity determination and for isotopic abundance measurements are given. The primary technique used consists of sorption of plutonium(IV) in 8N HNO/sub 3/ on Dowex-1 anion exchange resin and elution of the purified plutonium with 0.3N HCl-0.01N HF. Other methods consist of the anion exchange separation of plutonium(IV) in 12N HCl and the cation exchange separation of plutonium(III) in 0.2 N HNO/sub 3/. The application of these procedures to the subsequent assay of plutonium, isotopic analysis, and impurity determination is described.

  6. Electrical and magnetic properties of ion-exchangeable layered ruthenates

    SciTech Connect

    Sugimoto, Wataru . E-mail: wsugi@shinshu-u.ac.jp; Omoto, Masashi; Yokoshima, Katsunori; Murakami, Yasushi; Takasu, Yoshio

    2004-12-01

    An ion-exchangeable ruthenate with a layered structure, K{sub 0.2}RuO{sub 2.1}, was prepared by solid-state reactions. The interlayer cation was exchanged with H{sup +}, C{sub 2}H{sub 5}NH{sub 3}{sup +}, and ((C{sub 4}H{sub 9}){sub 4}N{sup +}) through proton-exchange, ion-exchange, and guest-exchange reactions. The electrical and magnetic properties of the products were characterized by DC resistivity and susceptibility measurements. Layered K{sub 0.2}RuO{sub 2.1} exhibited metallic conduction between 300 and 13K. The products exhibited similar magnetic behavior despite the differences in the type of interlayer cation, suggesting that the ruthenate sheet in the protonated form and the intercalation compounds possesses metallic nature.

  7. Silicon Removal from Waste Simulants via Ion Exchange

    SciTech Connect

    Wilmarth, W.R.

    2002-09-23

    examine a number of silica removal technologies to assist the processing of DWPF recycle water. Ion exchange is used commercially to remove soluble silicate ions and colloidal silica from various process waters. Three candidate ion exchange resins were selected after a literature search showed a potential applicability for DWPF Recycle. The results of these scouting tests showed the resins to be chemically stable in the alkaline environment of DWPF recycle. However, the resins were not effective at removing silicon. Additionally, results of silica analyses showed the silicon solubility in these feed solutions for ion exchange were still high after further acidification with respect to the goal of silicon removal. This suggests very strongly that pH adjustment (from 14 to 9), as a silicon removal technology is not viable.

  8. ION EXCHANGE PERFORMANCE OF TITANOSILICATES, GERMANATES AND CARBON NANOTUBES

    SciTech Connect

    Alsobrook, A. N.; Hobbs, D. T.

    2013-04-24

    This report presents a summary of testing the affinity of titanosilicates (TSP), germanium-substituted titanosilicates (Ge-TSP) and multiwall carbon nanotubes (MWCNT) for lanthanide ions in dilute nitric acid solution. The K-TSP ion exchanger exhibited the highest affinity for lanthanides in dilute nitric acid solutions. The Ge-TSP ion exchanger shows promise as a material with high affinity, but additional tests are needed to confirm the preliminary results. The MWCNT exhibited much lower affinities than the K-TSP in dilute nitric acid solutions. However, the MWCNT are much more chemically stable to concentrated nitric acid solutions and, therefore, may candidates for ion exchange in more concentrated nitric acid solutions. This technical report serves as the deliverable documenting completion of the FY13 research milestone, M4FT-13SR0303061 – measure actinide and lanthanide distribution values in nitric acid solutions with sodium and potassium titanosilicate materials.

  9. Physical and Catalytic Properties of the Na-exchanged Y-Zeolites with Different Si/Al Ratios

    SciTech Connect

    Lee, Chang Seop; Noh, Sun Hye; Kim, Sung Soo; Suh, Soong-Hyuk; Peden, Charles HF.

    2005-01-01

    A series of sodium-exchanged Y-zeolites with different Si/Al ratios have been prepared from the proton and ammonium ion forms of Y-zeolite(faujasite) by means of a solution ion exchange. The prepared catalysts have been characterized by the various analytical techniques and the NOx conversion rates of the catalysts were measured with non-thermal plasma assisted catalytic system. Specific surface areas measured by the BET increased in the order of the NaY series 708, 712, 100, 720, 760. The results of the elemental analyses showed that the Si/Al ratio of the catalysts increased gradually in the order of NaY 100, NaY 712, NaY 720, NaY 760, NaY 780.

  10. Radioactive halos and ion microprobe measurement of Pb isotope ratios

    NASA Technical Reports Server (NTRS)

    Gentry, R. V.

    1974-01-01

    This investigation was to obtain, if possible, the Pb isotope ratios of both lunar and meteoritic troilite grains by utilizing ion microprobe techniques. Such direct in situ measurement of Pb isotope ratios would eliminate contamination problems inherent in wet chemistry separation procedures, and conceivably determine whether lunar troilite grains were of meteoritic origin. For comparison purposes two samples of meteoritic troilite were selected (one from Canyon Diablo) for analysis along with two very small lunar troilite grains (approximately 50-100 microns). It was concluded that the ion microprobe as presently operating, does not permit the in situ measurement of Pb isotope ratios in lunar or meteoritic troilite. On the basis of these experiments no conclusions could be drawn as to the origin of the lunar troilite grains.

  11. Coccolith B/Ca ratios using SIMS ion probe analysis

    NASA Astrophysics Data System (ADS)

    Stoll, H.; Shimizu, N.; Langer, G.

    2009-04-01

    B/Ca ratios are proposed as a paleo-carbonate ion or paleo-pH proxy due to the preferential incorporation of borate ion into the calcite lattice, relative to boric acid which is the dominant species of B at lower pH. The relative importance of cellular regulation vs external pH on the carbonate B/Ca remains to be characterized for most organisms. Here we describe initial results of B/Ca analyses of coccoliths produced in laboratory culture under variable carbonate ion concentrations. Due to the impossibility of physically separating the micron-sized coccoliths from non-coccolith sediment material in quantities large enough for TIMS or ICP-MS analysis of B/Ca, eventual analysis of coccolith B/Ca from the fossil record will need to be conducted on individually picked coccoliths on the ion probe as is currently done for other trace element (eg. Sr/Ca) ratios. Hence, we employ the CAMECA IMS 1280 ion probe at the Northeast National Ion Microprobe Facility at Woods Hole Oceanographic Institution to measure B/Ca in coccoliths from cultures. We evaluated cleaning methods using a synthetic cleaning target (crushed marble) contaminated with noncalcifying algae. Cleaning is crucial for obtaining accurate B/Ca ratios and precluding sample charging. B/Ca ratios of different genera of modern coccoliths range from 5 to 25 umol/mol, 3 to 10fold lower than planktic foraminifera or abiogenic calcite precipitated in seawater in the same pH range. These low ratios suggest much more restricted uptake of B into the algae cell in the vesicle calcification used by coccolithophores, compared with the seawater vacuole calcification typical of foraminifera. Different coccolith species grown at the same pH exhibit different B/Ca ratios. One species, Coccolithus pelagicus, cultured at a range of pH conditions from 7.7 to 8.4, exhibits no significant change in B/Ca ratios across the range of pH. One explanation is pH homeostasis at the calcification site. In possible support of pH homeostasis

  12. Activation product behavior on borated mixed-bed ion exchange resin

    SciTech Connect

    Kudera, D.E.

    1981-01-01

    The Loss-of-Fluid Test (LOFT) Facility uses two separate mixed-bed ion exchange systems to decontaminate solutions. The radioactive solutions to be decontaminated are demineralized water containing boric acid (500 to 3500 ppM B) and lithium hydroxide (approx. 1 ppM Li). Many activation products are formed during nuclear operation. This paper describes the capability of the mixed cation-anion (Li-OH) type resin to remove these activation products from solution. Problems in measuring decontamination factors (DF) are discussed. The tendency of certain isotopes to give early indication of resin exhaustion is shown. Typical DF (ratio of before-ion-exchange concentration to after-ion-exchange concentration) have been determined for 22 different isotopes in the LOFT purification systems.

  13. THERMODYNAMICS OF ION-EXCHANGED NATURAL CLINOPTILOLITE

    EPA Science Inventory

    Natural clinoptilolite from Castle Creek, Idaho, and its cation-exchanged variants (Na-Cpt, NaK-Cpt, K-Cpt, and Ca-Cpt) were studied by high-temperature calorimetry. The hydration enthalpy for all clinoptilolites is about -30 kJ/mol H2O (liquid water reference state) at 25 C. T...

  14. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, Gordon D.; Marsh, S. Fredric; Bartsch, Richard A.

    1997-01-01

    Anion exchange resins including at least two positively charged sites and a ell-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  15. Ion exchange polymers for anion separations

    DOEpatents

    Jarvinen, G.D.; Marsh, S.F.; Bartsch, R.A.

    1997-09-23

    Anion exchange resins including at least two positively charged sites and a well-defined spacing between the positive sites are provided together with a process of removing anions or anionic metal complexes from aqueous solutions by use of such resins. The resins can be substituted poly(vinylpyridine) and substituted polystyrene.

  16. Hydrous oxide ion-exchange compound catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1990-01-01

    A catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchange with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  17. Properties of a Novel Ion-Exchange Film

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Hill, Carol M.; Philipp, Warren H.; Tanner, Stephen P.; Gorse, Joseph; Lusk, Amy; Taylor, Jason; Dickens, Jason

    2002-01-01

    A new ion-exchange material (based on polyacrylic acid) and some of its analytical applications have been reported. This paper contains data on the ion-exchange properties of the film form of the material and its potential application to the decontamination of waste water and drinking water. The film has a high exchange capacity of 5 to 6 meq/g and a pK(sub a) of 5.7. The calcium form is the most effective for removing metal ions from solution, and the optimum pH range is between 5 and 7. The exchange rates are slower for the film than for bead and powder forms of the ion-exchange material; otherwise, the properties are similar. The film is effective when hard water solutions are employed and also when metal ions are in the complex matrix of waste water from electroplating. The film can be used in flow systems having a flow channel large enough to allow passage of turbid solutions.

  18. Properties of a Novel Ion-Exchange Film

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Hill, Carol M.; Philipp, Warren H.; Tanner, Stephen P.; Gorse, Joseph; Lusk, Amy; Taylor, Jason; Dickens, Jason

    2004-01-01

    A new ion-exchange material (based on polyacrylic acid) and some of its analytical applications have been reported. This paper contains data on the ion-exchange properties of the film form of the material and its potential application to the decontamination of waste water and drinking water. The film has a high exchange capacity of 5 to 6 meq/g and a pK(sub a) of 5.7. The calcium form is the most effective for removing metal ions from solution, and the optimum pH range is between 5 and 7. The exchange rates are slower for the film than for bead and powder forms of the ion-exchange material; otherwise, the properties are similar. The film is effective when hard water solutions are employed and also when metal ions are in the complex matrix of waste water from electroplating. The film can be used in flow systems having a flow channel large enough to allow passage of turbid solutions.

  19. MINOR ACTINIDE SEPARATIONS USING ION EXCHANGERS OR IONIC LIQUIDS

    SciTech Connect

    Hobbs, D.; Visser, A.; Bridges, N.

    2011-09-20

    This project seeks to determine if (1) inorganic-based ion exchange materials or (2) electrochemical methods in ionic liquids can be exploited to provide effective Am and Cm separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of inorganic-based ion-exchange materials for actinide and lanthanide ions. Furthermore, we seek to determine whether ionic liquids can serve as the electrolyte that would enable formation of higher oxidation states of Am and other actinides. Experiments indicated that pH, presence of complexants and Am oxidation state exhibit significant influence on the uptake of actinides and lanthanides by layered sodium titanate and hybrid zirconium and tin phosphonate ion exchangers. The affinity of the ion exchangers increased with increasing pH. Greater selectivity among Ln(III) ions with sodium titanate materials occurs at a pH close to the isoelectric potential of the ion exchanger. The addition of DTPA decreased uptake of Am and Ln, whereas the addition of TPEN generally increases uptake of Am and Ln ions by sodium titanate. Testing confirmed two different methods for producing Am(IV) by oxidation of Am(III) in ionic liquids (ILs). Experimental results suggest that the unique coordination environment of ionic liquids inhibits the direct electrochemical oxidation of Am(III). The non-coordinating environment increases the oxidation potential to a higher value, while making it difficult to remove the inner coordination of water. Both confirmed cases of Am(IV) were from the in-situ formation of strong chemical oxidizers.

  20. Heavy ion beam probe systems for tight aspect ratio tokamaks

    SciTech Connect

    Melnikov, A.V.; Zimeleva, L.G.; Krupnik, L.I.; Nedzelskij, I.S.; Trofimenko, Y.V.; Minaev, V.B.

    1997-01-01

    We discuss the specific features of the application of heavy ion beam probe (HIBP) systems to tight aspect ratio tokamaks. We present and compare the HIBP projects for the TUMAN-3, GLOBUS, and COMPASS, where the inner part of the plasma is not available for regular chord diagnostics, so the HIBP becomes very desirable. All existing tight aspect ratio facilities and projects have a low (less than 1.9 T) toroidal field that requires a comparatively low beam energy range. The natural elongation and triangularity in tight aspect ratio tokamaks require an accurate calculation of the three-dimensional magnetic field for probing optimization. In comparison with traditional tokamaks, the detector grids have a wider energy interval. In general, the trajectories and detector grids for tight aspect ratio tokamaks become similar to the stellarator ones. Traditional and new probing schemes are suggested and discussed. {copyright} {ital 1997 American Institute of Physics.}

  1. Catalysis using hydrous metal oxide ion exchangers

    DOEpatents

    Dosch, R.G.; Stephens, H.P.; Stohl, F.V.

    1983-07-21

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  2. Catalysis using hydrous metal oxide ion exchanges

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.; Stohl, Frances V.

    1985-01-01

    In a process which is catalyzed by a catalyst comprising an active metal on a carrier, said metal being active as a catalyst for the process, an improvement is provided wherein the catalyst is a hydrous, alkali metal or alkaline earth metal titanate, zirconate, niobate or tantalate wherein alkali or alkaline earth metal cations have been exchanged with a catalytically effective amount of cations of said metal.

  3. Recovery of boric acid from ion exchangers

    DOEpatents

    Pollock, Charles W.

    1976-01-01

    The recovery of boric acid from an anion exchange resin is improved by eluting the boric acid with an aqueous solution of ammonium bicarbonate. The boric acid can be readily purified and concentrated by distilling off the water and ammonium bicarbonate. This process is especially useful for the recovery of boric acid containing a high percentage of .sup.10 B which may be found in some nuclear reactor coolant solutions.

  4. Bend stresses arising from ion-exchange diffusion in glasses

    SciTech Connect

    Babukova, M.V.; Glebov, L.B.; Nikonorov, N.V.; Petrovskii, G.T.

    1985-11-01

    This paper demonstrates experimental confirmation of the presence of gigastresses arising under ion exchange, for the purpose of providing data relating to the magnitudes of stress greater than 1 GPa in these ion-exchange layers. To determine the stresses, a bend method was used on a specimen under nonuniform load. Small values of bend were determined on an IT-70 inferometer. With larger values of bend the radius of curvature of the surface was determined by measuring the focal distance in the beam of a He-Ne laser reflected from the specimen. Bending is observed in silicate glass subjected to unilateral ion-exchange diffusion of K/sup +/. It is shown that the bending of the specimens is caused by compressive stresses arising in the diffusion layer and having a value of greater than 1.5 GPa. The changes in the refractive index (RI) in the diffusion layer are determined primarily by the photoelastic effect.

  5. Evaluation of electrochemical ion exchange for cesium elution

    SciTech Connect

    Bontha, J.D.; Kurath, D.E.; Surma, J.E.; Buehler, M.F.

    1996-04-01

    Electrochemical elution was investigated as an alternative method to acid elution for the desorption of cesium from loaded ion exchange resins. The approach was found to have several potential advantages over existing technologies, in particular, electrochemical elution eliminates the need for addition of chemicals to elute cesium from the ion exchange resin. Also, since, in the electrochemical elution process the eluting solution is not in direct contact with the ion exchange material, very small volumes of the eluting solution can be used in a complete recycle mode in order to minimize the total volume of the cesium elute. In addition, the cesium is eluted as an alkaline solution that does not require neutralization with caustic to meet the tank farm specifications. Other advantages include easy incorporation of the electrochemical elution process into the present cesium recovery schemes.

  6. Development and evaluation of ion exchange hollow fibers. [vinyl copolymers

    NASA Technical Reports Server (NTRS)

    Smith, J. K.

    1975-01-01

    An ion exchange hollow fiber impregnated with a vinylpyridine base was developed. The basic exchange resin used to impart the necessary permselectivity to the hollow fiber is a copolymer of vinylpyridine and dibromoethane prepared according to Rembaum. A slight pressure was used to impregnate the exchange monomer mixture into the void structure of the fiber wall, and with maintenance of subambient temperatures, the rate of cross-linking is slow enough to allow the growing polymer to permeate the wall structure before significant increase in polymer molecular weight. These ion exchange fibers are produced from polyacrylonitrile hollow fibers with an appropriate wall structure that enables the impregnating vinylpyridine monomer mixture to form a truly semipermeable anion barrier after curing.

  7. Charge-exchange plasma generated by an ion thruster

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.

    1977-01-01

    The charge exchange plasma generated by an ion thruster was investigated experimentally using both 5 cm and 15 cm thrusters. Results are shown for wide ranges of radial distance from the thruster and angle from the beam direction. Considerations of test environment, as well as distance from the thruster, indicate that a valid simulation of a thruster on a spacecraft was obtained. A calculation procedure and a sample calculation of charge exchange plasma density and saturation electron current density are included.

  8. The many faces of ion-exchange resins

    SciTech Connect

    McNutty, J.T.

    1997-06-01

    Ion-exchange resins have been used commercially for over 60 years. Softening and demineralization of water for boiler feed and process use were then, and continue to be, the most familiar and widespread applications of ion-exchange resins throughout the chemical process industries (CPI). Several types of membrane-based technologies, such as electrodialysis, reverse osmosis and, more recently, electrodeionization are recognized as alternative methods for water treatment. Yet, modern versions of ion-exchange resins remain a major player in water treatment. In addition, these versatile materials can be found performing a wide range of tasks in both aqueous and nonaqueous environments. Some of these diverse applications include: acid or base catalysis; manufacture of high-purity solvents and reagent chemicals; separation of by-products of fermentation processes; deacidification of organic solvents; high-purity water production for semiconductor manufacture; recovery of valuable waste from dilute process effluents; controlled release of pharmaceutical products; and chromatography, both on the analytical and the industrial scale. The key to understanding the potential of ion-exchange resins is to look beyond their exchange and adsorptive characteristics, and to see their fundamental nature. In other words, it`s necessary to first consider them as spherical, particulate reactive polymers that perform chemical reactions.

  9. Rupture loop annex ion exchange RLAIX vault deactivation

    SciTech Connect

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    1996-08-01

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  10. Electrodialytic separation of alkali-element ions with the aid of ion-exchange membranes

    SciTech Connect

    Gurskii, V.S.; Moskvin, L.N.

    1988-03-20

    Electrodialytic separation of ions bearing charges of the same sign with the aid of ion-exchange membranes has been examined in the literature in relation to the so-called ideal membranes, which do not exhibit selectivity with respect to one ion type in ion exchange. It has been shown that separation on such membranes is effective only for counterions differing in size of charge. A matter of greater importance from the practical standpoint is the possibility of using electrodialysis for separating ions bearing like charges and having similar properties, including ionic forms of isotopes of the same element. In this paper they report a comparative study of ion separation, with reference to the Cs-Na pair, by electrodialysis through various types of cation-exchange membranes. Changes of the solution concentration in the cathode compartment were monitored by measurement of /sup 22/Na and /sup 137/Cs activities.

  11. Waste separation and pretreatment using crystalline silicotitanate ion exchangers

    SciTech Connect

    Tadros, M.E.; Miller, J.E.; Anthony, R.G.

    1997-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlled to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.

  12. Insoluble polyelectrolyte and ion-exchange hollow fiber impregnated therewith

    NASA Technical Reports Server (NTRS)

    Rembaum, A. (Inventor)

    1977-01-01

    The number of quaternary sites and ion exchange capacity of a polyquaternary, cross linked, insoluble copolymer of a vinyl pyridine and a dihalo organic compound is increased by about 15-35% by reaction of the polymer with an amine followed by quaternization, if required. The polymer forms spontaneously in the presence of a substrate such as within the pores of a hollow fiber. The improved resin impregnated fiber may be utilized to remove ions from waste or process steams.

  13. Alkaline Anion-Exchange Membranes Containing Mobile Ion Shuttles.

    PubMed

    Ge, Xiaolin; He, Yubin; Guiver, Michael D; Wu, Liang; Ran, Jin; Yang, Zhengjin; Xu, Tongwen

    2016-05-01

    A new class of alkaline anion-exchange membranes containing mobile ion shuttles is developed. It is achieved by threading ionic linear guests into poly(crown ether) hosts via host-guest molecular interaction. The thermal- and pH-triggered shuttling of ionic linear guests remarkably increases the solvation-shell fluctuations in inactive hydrated hydroxide ion complexes (OH(-) (H2 O)4 ) and accelerates the OH(-) transport. PMID:26972938

  14. ATPases, ion exchangers and human sperm motility.

    PubMed

    Peralta-Arias, Rubén D; Vívenes, Carmen Y; Camejo, María I; Piñero, Sandy; Proverbio, Teresa; Martínez, Elizabeth; Marín, Reinaldo; Proverbio, Fulgencio

    2015-05-01

    Human sperm has several mechanisms to control its ionic milieu, such as the Na,K-ATPase (NKA), the Ca-ATPase of the plasma membrane (PMCA), the Na(+)/Ca(2) (+)-exchanger (NCX) and the Na(+)/H(+)-exchanger (NHE). On the other hand, the dynein-ATPase is the intracellular motor for sperm motility. In this work, we evaluated NKA, PMCA, NHE, NCX and dynein-ATPase activities in human sperm and investigated their correlation with sperm motility. Sperm motility was measured by Computer Assisted Semen Analysis. It was found that the NKA activity is inhibited by ouabain with two Ki (7.9 × 10(-9) and 9.8 × 10(-5) M), which is consistent with the presence of two isoforms of α subunit of the NKA in the sperm plasma membranes (α1 and α4), being α4 more sensitive to ouabain. The decrease in NKA activity is associated with a reduction in sperm motility. In addition, sperm motility was evaluated in the presence of known inhibitors of NHE, PMCA and NCX, such as amiloride, eosin, and KB-R7943, respectively, as well as in the presence of nigericin after incubation with ouabain. Amiloride, eosin and KB-R7943 significantly reduced sperm motility. Nigericin reversed the effect of ouabain and amiloride on sperm motility. Dynein-ATPase activity was inhibited by acidic pH and micromolar concentrations of Ca(2) (+). We explain our results in terms of inhibition of the dynein-ATPase in the presence of higher cytosolic H(+) and Ca(2) (+), and therefore inhibition of sperm motility. PMID:25820902

  15. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    PubMed

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability

  16. Second-order schedules of token reinforcement with pigeons: effects of fixed- and variable-ratio exchange schedules.

    PubMed

    Foster, T A; Hackenberg, T D; Vaidya, M

    2001-09-01

    Pigeons' key pecks produced food under second-order schedules of token reinforcement, with light-emitting diodes serving as token reinforcers. In Experiment 1, tokens were earned according to a fixed-ratio 50 schedule and were exchanged for food according to either fixed-ratio or variable-ratio exchange schedules, with schedule type varied across conditions. In Experiment 2, schedule type was varied within sessions using a multiple schedule. In one component, tokens were earned according to a fixed-ratio 50 schedule and exchanged according to a variable-ratio schedule. In the other component, tokens were earned according to a variable-ratio 50 schedule and exchanged according to a fixed-ratio schedule. In both experiments, the number of responses per exchange was varied parametrically across conditions, ranging from 50 to 400 responses. Response rates decreased systematically with increases in the fixed-ratio exchange schedules, but were much less affected by changes in the variable-ratio exchange schedules. Response rates were consistently higher under variable-ratio exchange schedules than tinder comparable fixed-ratio exchange schedules, especially at higher exchange ratios. These response-rate differences were due both to greater pre-ratio pausing and to lower local rates tinder the fixed-ratio exchange schedules. Local response rates increased with proximity to food under the higher fixed-ratio exchange schedules, indicative of discriminative control by the tokens. PMID:11599637

  17. Second-order schedules of token reinforcement with pigeons: effects of fixed- and variable-ratio exchange schedules.

    PubMed Central

    Foster, T A; Hackenberg, T D; Vaidya, M

    2001-01-01

    Pigeons' key pecks produced food under second-order schedules of token reinforcement, with light-emitting diodes serving as token reinforcers. In Experiment 1, tokens were earned according to a fixed-ratio 50 schedule and were exchanged for food according to either fixed-ratio or variable-ratio exchange schedules, with schedule type varied across conditions. In Experiment 2, schedule type was varied within sessions using a multiple schedule. In one component, tokens were earned according to a fixed-ratio 50 schedule and exchanged according to a variable-ratio schedule. In the other component, tokens were earned according to a variable-ratio 50 schedule and exchanged according to a fixed-ratio schedule. In both experiments, the number of responses per exchange was varied parametrically across conditions, ranging from 50 to 400 responses. Response rates decreased systematically with increases in the fixed-ratio exchange schedules, but were much less affected by changes in the variable-ratio exchange schedules. Response rates were consistently higher under variable-ratio exchange schedules than tinder comparable fixed-ratio exchange schedules, especially at higher exchange ratios. These response-rate differences were due both to greater pre-ratio pausing and to lower local rates tinder the fixed-ratio exchange schedules. Local response rates increased with proximity to food under the higher fixed-ratio exchange schedules, indicative of discriminative control by the tokens. PMID:11599637

  18. Direct measurement of birefringence in ion-exchanged planar waveguides

    NASA Astrophysics Data System (ADS)

    Fazio, E.; Ramadan, W. A.; Bertolotti, M.; Righini, G. C.

    1996-08-01

    A direct measurement of the birefringence of a planar waveguide obtained by Na+ - K + ion exchange was performed with a double Lloyd interferometer. The results are compared with those obtained by a round-robin test involving the same sample. Birefringence of as much as Delta n=(2.0+/-0.2) \\times 10-3 was measured.

  19. Copper Removal from A-01 Outfall by Ion Exchange

    SciTech Connect

    Oji, L.N.

    1999-02-17

    Chelex100, a commercially available ion exchange resin, has been identified in this study as having a significant affinity for copper and zinc in the A-01 outfall water. Removal of copper and zinc from A-01 outfall water will ensure that the outfall meets the state of South Carolina's limit on these heavy metals.

  20. Cesium Ion Exchange Using Tank 241-AN-104 Supernate

    SciTech Connect

    Adu-Wusu, K.

    2003-12-22

    The River Protection Project is to design and build a high level nuclear waste treatment facility. The waste treatment plant is to process millions of gallons of radioactive waste stored in tanks at the Hanford Site. The high level nuclear waste treatment process includes various unit operations, such as ultrafiltration, precipitation, evaporation, ion exchange, and vitrification. Ion exchange is identified as the optimal treatment method for removal of cesium-137 and Tc-99 from the waste. Extensive ion exchange testing was performed using small-scale columns with actual waste samples. The objectives of this study were to: demonstrate SuperLig 644 ion exchange performance and process steps for the removal of cesium from actual AN-104 tank waste; pretreat actual AN-104 tank waste to reduce the concentration of cesium-137 in the waste below LAW vitrification limit; produce and characterize cesium eluate solutions for use in eluate evaporation tests. The experiments consisted of batch contact and small-scale column tests. The batch contact tests measured sorption partition coefficients Kds. The Kds were used to predict the effective resin capacity. The small-scale column tests, which closely mimic plant conditions, generated loading and elution profile data used to determine whether removal targets and design requirements were met.

  1. SELENIUM REMOVAL FROM DRINKING WATER BY ION EXCHANGE

    EPA Science Inventory

    Strong-base anion exchangers were shown to remove selenate and selenite ions from drinking water. Because selenium species are usually present at low concentrations, the efficiency of removal is controlled by the concentration of the common drinking water anions, the most importa...

  2. Determination of boron in silicates after ion exchange separation

    USGS Publications Warehouse

    Kramer, H.

    1955-01-01

    Existing methods for the determination of boron in silicates are not entirely satisfactory. Separation as the methyl ester is lengthy and frequently erratic. An accurate and rapid method applicable to glass, mineral, ore, and water samples uses ion exchange to remove interfering cations, and boron is determined titrimetrically in the presence of mannitol, using a pH meter to indicate the end point.

  3. Pyrolysis of ion exchange resins for volume reduction and inertisation

    SciTech Connect

    Holst, L.; Hesboel, R.

    1995-12-31

    Radioactive ion exchange resins are produced in water cleaning systems in nuclear power plants. Studsvik RadWaste AB and GNS have developed a pyrolysis process for the treatment of resins with the goal of an optimal volume reduction and a transformation of the ion exchange resins into a biological and chemical inert state. The degradation products arising from the pyrolysis are char, tar and gas. In the pyrolysis process used by Studsvik RadWaste and GNS about 1/3 char, 1/3 water and tar and 1/3 gas are produced. The char is supercompacted in order to receive a volume reduction of about 10:1 and a better product for final storage. Ion exchange resins with a specific {beta}/{gamma} activity of 1E12 Bq/m{sup 3} with 50% of Co-60 can be handled. The retention of the activity has been 0.5E6:1. By processing a total of 100 kg ion exchange resins with a total activity of IE9 Bq only some hundred becquerel have been monitored outside the pyrolyzing unit. This means that the products leaving the pyrolyzing unit, in this case tar, water and gas could be handled as non radioactive material in a conventional waste treatment facility.

  4. DEVELOPMENT OF INORGANIC ION EXCHANGERS FOR NUCLEAR WASTE REMEDIATION

    EPA Science Inventory

    This research is concerned with the development of highly selective inorganic ion exchangers for the removal of primarily Cs+ and Sr2+ from nuclear tank waste and from groundwater. In this study, we will probe the, origins of selectivity through detailed structural studies and th...

  5. Thermal Analysis for Ion-Exchange Column System

    SciTech Connect

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models were used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.

  6. EVALUATING ION EXCHANGE FOR REMOVING RADIUM FROM GROUNDWATER

    EPA Science Inventory

    This article focuses on the results of bench and pilot-scale studies of ion exchange processes for radium removal from groundwater in Lemont, Ill. atch and column studies indicated a very high resin selectivity for radium compared with common cations. xhaustion-regeneration studi...

  7. EVALUATING ION EXCHANGE FOR REMOVING RADIUM FROM GROUNDWATER

    EPA Science Inventory

    This article, the second in a series, focuses on the results of bench- and pilot-scale studies of ion exchange processes for radium removal from groundwater in Lemont, Ill. Batch and column studies indicated a very high resin selectivity for radium compared with common cations. E...

  8. Method and solvent composition for regenerating an ion exchange resin

    DOEpatents

    Even, William R.; Irvin, David J.; Irvin, Jennifer A.; Tarver, Edward E.; Brown, Gilbert M.; Wang, James C. F.

    2002-01-01

    A method and composition for removing perchlorate from a highly selective ion exchange resin is disclosed. The disclosed approach comprises treating the resin in a solution of super critical or liquid carbon dioxide and one or more quaternary ammonium chloride surfactant compounds.

  9. ION-EXCHANGE PROCESSES AND MECHANISMS IN GLASSES

    EPA Science Inventory

    Recent performance assessment calculations of a disposal system at Hanford, Washington for low activity waste glass show that a Na ion-exchange reaction can effectively increase the radionuclide release rate by over a factor of 1000 and so is a major factor that currently limits ...

  10. Dynamics of ion exchange between self-assembled redox polyelectrolyte multilayer modified electrode and liquid electrolyte.

    PubMed

    Grumelli, Doris E; Garay, Fernando; Barbero, Cesar A; Calvo, Ernesto J

    2006-08-10

    A probe beam deflection (PBD) study of ion exchange between an electroactive polymer poly(allylamine)-bipyridyl-pyridine osmium complex film and liquid electrolyte is reported. The PBD measurements were made simultaneously to chronoamperometric oxidation-reduction cycles, to be able to detect kinetic effects in the ion exchange. Layer-by-layer (LbL) self-assembled redox polyelectrolyte films with osmium bipyridyl complex covalently attached to poly(allylamine) (PAH-Os) and poly(styrene sulfonate) (PSS) have been built by alternate electrostatic adsorption from soluble polyelectrolytes. The ionic exchange during initial conditioning of the film ("break-in") undergoing oxidation-reduction cycles and recovery after equilibration in the reduced state have shown an exchange of anions and cations with time lag between them. The effect of the nature of cation on the ionic exchange has been investigated with dilute HCl, LiCl, NaCl, and CsCl electrolytes. The ratio of anion to cation exchanged at the film-electrolyte interface has a strong dependence on the nature of charge in the topmost layer, that is, when negatively charged PSS is the capping layer, a larger proportion of cation exchange is observed. This demonstrates that the electrical potential distribution at the redox polyelectrolyte multilayer (PEM)/electrolyte interface determines the ionic flux in response to charge injection in the film. PMID:16884254

  11. Separation of americium from curium by oxidation and ion exchange.

    PubMed

    Burns, Jonathan D; Shehee, Thomas C; Clearfield, Abraham; Hobbs, David T

    2012-08-21

    Nuclear energy has the potential to be a clean alternative to fossil fuels, but in order for it to play a major role in the US, many questions about the back end of the fuel cycle must be addressed. One of these questions is the difficult separation of americium from curium. Here, we report the oxidation of Am in two systems, perchloric acid and nitric acid and the affect of changing the acid has on the oxidation. K(d) values were observed and a direct separation factor was calculated and was seen to be as high as 20 for four metal(IV) pillared phosphate phosphonate inorganic organic hybrid ion exchange materials. These ion exchangers are characterized by very low selectivity for cations with low charge but extremely high uptake of ions of high charge. PMID:22827724

  12. Poisson-Fermi Modeling of the Ion Exchange Mechanism of the Sodium/Calcium Exchanger.

    PubMed

    Liu, Jinn-Liang; Hsieh, Hann-Jeng; Eisenberg, Bob

    2016-03-17

    The ion exchange mechanism of the sodium/calcium exchanger (NCX) crystallized by Liao et al. in 2012 is studied using the Poisson-Fermi theory developed by Liu and Eisenberg in 2014. A cycle of binding and unbinding is proposed to account for the Na(+)/Ca(2+) exchange function of the NCX molecule. Outputs of the theory include electric and steric fields of ions with different sizes, correlations of ions of different charges, and polarization of water, along with number densities of ions, water molecules, and interstitial voids. We calculate the electrostatic and steric potentials of the four binding sites in NCX, i.e., three Na(+) binding sites and one Ca(2+) binding site, with protein charges provided by the software PDB2PQR. The energy profiles of Na(+) and Ca(2+) ions along their respective Na(+) and Ca(2+) pathways in experimental conditions enable us to explain the fundamental mechanism of NCX that extrudes intracellular Ca(2+) across the cell membrane against its chemical gradient by using the downhill gradient of Na(+). Atomic and numerical details of the binding sites are given to illustrate the 3 Na(+):1 Ca(2+) stoichiometry of NCX. The protein NCX is a catalyst. It does not provide (free) energy for transport. All energy for transport in our model comes from the ions in surrounding baths. PMID:26906748

  13. Using ion exchange chromatography to purify a recombinantly expressed protein.

    PubMed

    Duong-Ly, Krisna C; Gabelli, Sandra B

    2014-01-01

    Ion exchange chromatography (IEX) separates molecules by their surface charge, a property that can vary vastly between different proteins. There are two types of IEX, cation exhange and anion exchange chromatography. The protocol that follows was designed by the authors for anion exchange chromatography of a recombinantly expressed protein having a pI of 4.9 and containing two cysteine residues and one tryptophan residue, using an FPLC system. Prior to anion exchange, the protein had been salted out using ammonium sulfate precipitation and partially purified via hydrophobic interaction chromatography (see Salting out of proteins using ammonium sulfate precipitation and Use and Application of Hydrophobic Interaction Chromatography for Protein Purification). Slight modifications to this protocol may be made to accommodate both the protein of interest and the availability of equipment. PMID:24674065

  14. Single Motional Quantum Exchange between Independently Trapped Ions

    NASA Astrophysics Data System (ADS)

    Brown, K. R.; Ospelkaus, C.; Colombe, Y.; Wilson, A. C.; Leibfried, D.; Wineland, D. J.

    2011-05-01

    The Coulomb coupling of ions in separate potential wells is a key feature of proposals to implement quantum simulation and could enable logic operations to be performed in a multi-zone quantum information processor without the requirement of bringing the ion qubits into the same trapping potential. It might also extend the capabilities of quantum logic spectroscopy to ions that cannot be trapped in the same potential well as the measurement ion, such as oppositely charged ions or even antimatter particles. We report recent results demonstrating tunable coupling of two 9Be+ ions held in trapping potentials separated by 40 μm. The ions are trapped 40 μm above the surface of a microfabricated planar trap with independently tunable axial frequencies of ~4 MHz. The trap is cooled to 4.2 K with a helium bath cryostat to suppress anomalous heating and to extend the lifetime of ions from minutes to days. By preparing approximate motional number states with n=0 and n=1 in the respective wells, and tuning the confining wells into resonance, a single quantum of motion is exchanged between the ions in ~200 μs. Work supported by IARPA, DARPA, ONR, and the NIST Quantum Information Program.

  15. Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger.

    PubMed

    Liao, Jun; Marinelli, Fabrizio; Lee, Changkeun; Huang, Yihe; Faraldo-Gómez, José D; Jiang, Youxing

    2016-06-01

    Na(+)/Ca(2+) exchangers use the Na(+) electrochemical gradient across the plasma membrane to extrude intracellular Ca(2+) and play a central role in Ca(2+) homeostasis. Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na(+), Ca(2+) or Sr(2+) in various occupancies and in an apo state. This analysis defines the binding mode and relative affinity of these ions, establishes the structural basis for the anticipated 3:1 Na(+)/Ca(2+)-exchange stoichiometry and reveals the conformational changes at the onset of the alternating-access transport mechanism. An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. These calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion occupancy, thereby explaining the emergence of strictly coupled Na(+)/Ca(2+) antiport. PMID:27183196

  16. Potentiometric sensors with ion-exchange Donnan exclusion membranes.

    PubMed

    Grygolowicz-Pawlak, Ewa; Crespo, Gastón A; Ghahraman Afshar, Majid; Mistlberger, Günter; Bakker, Eric

    2013-07-01

    Potentiometric sensors that exhibit a non-Hofmeister selectivity sequence are normally designed by selective chemical recognition elements in the membrane. In other situations, when used as detectors in separation science, for example, membranes that respond equally to most ions are preferred. With so-called liquid membranes, a low selectivity is difficult to accomplish since these membranes are intrinsically responsive to lipophilic species. Instead, the high solubility of sample lipids in an ionophore-free sensing matrix results in a deterioration of the response. We explore here potentiometric sensors on the basis of ion-exchange membranes commonly used in fuel cell applications and electrodialysis, which have so far not found their way into the field of ion-selective electrodes. These membranes act as Donnan exclusion membranes as the ions are not stripped of their hydration shell as they interact with the membrane. Because of this, lipophilic ions are no longer preferred over hydrophilic ones, making them promising candidates for the detection of abundant ions in the presence of lipophilic ones or as detectors in separation science. Two types of cation-exchanger membranes and one anion-exchange membrane were characterized, and potentiometric measuring ranges were found to be Nernstian over a wide range down to about 10 μM concentrations. Depending on the specific membrane, lipophilic ions gave equal response to hydrophilic ones or were even somewhat discriminated. The medium and long-term stability and reproducibility of the electrode signals were found to be promising when evaluated in synthetic and whole blood samples. PMID:23731350

  17. Highly sensitive determination of hydrazine ion by ion-exclusion chromatography with ion-exchange enhancement of conductivity detection.

    PubMed

    Mori, Masanobu; Tanaka, Kazuhiko; Xu, Qun; Ikedo, Mikaru; Taoda, Hiroshi; Hu, Wenzhi

    2004-06-11

    An ion-exclusion chromatography method with ion-exchange enhancement of conductivity was developed for the selective separation and sensitive determination of hydrazine ion from alkali/alkaline earth metal cations and ammonium ion. Hydrazine ion was separated by ion-exclusion/penetration effect from other cations on a weakly basic anion-exchange column in the OH- form (TSKgel DEAE-5PW). Moreover, two different ion-exchange resin columns were inserted between the separating column and conductimetric detector in order to improve the sensitivity of hydrazine ion. The first enhancement column packed with a strongly basic anion-exchange resin in the SO4(2-) form (TSKgel SAX) for hydrazine ion can convert from N2H5OH to (N2H5)2SO4. Moreover, the second enhancement column packed with a strongly acidic cation-change resin in the H+ form (TSKgel SCX) can convert to H2SO4. As a result, the sensitivity of hydrazine ion using two conductivity enhancement columns could be 26.8-times greater than using the separating column alone. This method was effectiveness also for the enhancement of ammonium ion (6.1-times) and sodium ion (1.2-times). The calibration graph of hydrazine ion detected as H2SO4 was linear over the concentration range of 0.001-100 ppm (r2 = 0.9988). The detection limit of hydrazine ion in this system was 0.64 ppb. Therefore, hydrazine ion in real boiler water sample could be accurately determined, avoiding the interference of other cations. PMID:15250415

  18. Ion exchange and surface charge on montmorillonite clay

    SciTech Connect

    Sperry, J.M.; Peirce, J.J.

    1999-05-01

    An ion-exchange model originally developed for pure oxides prepared in the laboratory is extended to study of ion exchange and surface charge on a naturally occurring montmorillonite clay. The range of surface charges measured for montmorillonite with various electrolyte solutions and clay pretreatments is within the range of those measured for a wide variety of oxides prepared in the laboratory, including MnO{sub 2}-IC1, MnO{sub 2}-IC12, MnO{sub 2}-IC22, titanium dioxide, ferric oxide, and aluminum oxide. In addition, fitted parameter values for lateral interaction constants and equilibrium constants for the acid sites that characterize ion exchange on montmorillonite are on the same order of magnitude as those obtained for pure oxides. Surface charge of montmorillonite in sodium nitrate solution is measured to be approximately 15 to 25% greater than that measured between a pH of 4 and 9 in calcium chloride solution. This difference is attributed to the greater charge on the calcium (2{sup +}) ion; thus, its stronger electrostatic attraction to the acid hydroxyl site. An order of magnitude change in solids concentration (C{sub p}) can lead to a difference in measured net surface charge density of the same oxide sample of several orders of magnitude. This difference increases at higher pH, indicating the importance of reporting the corresponding C{sub p} at which experiments are conducted.

  19. Demonstration of an Ion Exchange Resin Addition/Removal System with Superlig 659

    SciTech Connect

    Norato, M.A.

    2000-12-19

    A pilot facility was designed and built in the Thermal Fluids Laboratory at the Savannah River Technology Center to demonstrate the slurry transport of ion exchange resins in and out of ion exchange columns.

  20. Membrane consisting of polyquaternary amine ion exchange polymer network interpenetrating the chains of thermoplastic matrix polymer

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Wallace, C. J. (Inventor)

    1978-01-01

    An ion exchange membrane was formed from a solution containing dissolved matrix polymer and a set of monomers which are capable of reacting to form a polyquaternary ion exchange material; for example vinyl pyride and a dihalo hydrocarbon. After casting solution and evaporation of the volatile component's, a relatively strong ion exchange membrane was obtained which is capable of removing anions, such as nitrate or chromate from water. The ion exchange polymer forms an interpenetrating network with the chains of the matrix polymer.

  1. Ion exchange at the critical point of solution.

    PubMed

    Savoy, J D; Baird, J K; Lang, J R

    2016-03-11

    A mixture of isobutyric acid (IBA)+water has an upper critical point of solution at 26.7°C and an IBA concentration of 4.40M. We have determined the Langmuir isotherms for the hydroxide form of Amberlite IRN-78 resin in contact with mixtures of IBA+water at temperatures, 27.0, 29.0, 31.0 and 38.0°C, respectively. The Langmuir plot at 38.0°C forms a straight line. At the three lower temperatures, however, a peak in the Langmuir plot is observed for IBA concentrations in the vicinity of 4.40M. We regard this peak to be a critical effect not only because it is located close to 4.40M, but also because its height becomes more pronounced as the temperature of the isotherm approaches the critical temperature. For concentrations in the vicinity of the peak, the data indicate that the larger isobutyrate ion is rejected by the resin in favor of the smaller hydroxide ion. This reversal of the expected ion exchange reaction might be used to separate ions according to size. Using the Donnan theory of ion exchange equilibrium, we link the swelling pressure to the osmotic pressure. We show that the peak in the Langmuir plot is associated with a maximum in the "osmotic" energy. This maximum has its origin in the concentration derivative of the osmotic pressure, which goes to zero as the critical point is approached. PMID:26884137

  2. Enigmatic ion-exchange behavior of myo-inositol phosphates.

    PubMed

    Shelor, C Phillip; Liao, Hongzhu; Kadjo, Akinde Florence; Dasgupta, Purnendu K

    2015-05-01

    The separation of myo-inositol mono-, di-, tri-, tetra-, pentakis-, and hexakisphosphate (InsP1, InsP2, InsP3, InsP4, InsP5, InsP6) was carried out using hydroxide eluent ion chromatography. Acid hydrolysis of InsP6 (phytate) was used to prepare a distribution of InsPs, ranging from InsP1 to InsP5's and including unhydrolyzed InsP6. Counting all possible positional isomers (many of which have stereoisomers that will not be separable by conventional ion exchange), 40 chromatographically separable peaks are possible; up to 22 were separated and identified by mass spectrometry. InsPs show unusual ion-exchange behavior in two respects: (a) the retention order is not monotonically related with the charge on the ion and (b) at the same hydroxide eluent concentration, retention is greatly dependent on the eluent metal cation. The retention of InsP3-InsP6 was determined to be controlled by steric factors while elution was influenced by eluent cation complexation. These highly phosphorylated InsPs have a much greater affinity for alkali metals (Li(+) > Na(+) > K(+)) than quaternary ammonium ions. This difference in cation affinity was exploited to improve separation through the use of a tetramethylammonium hydroxide-sodium hydroxide gradient. PMID:25865157

  3. Detoxification of lignocellulose hydrolysates with ion-exchange resins.

    PubMed

    Nilvebrant, N O; Reimann, A; Larsson, S; Jönsson, L J

    2001-01-01

    Lignocellulose hydrolysates contain fermentation inhibitors causing decreased ethanol production. The inhibitors include phenolic compounds, furan aldehydes, and aliphatic acids. One of the most efficient methods for removing inhibiting compounds prior to fermentation is treatment of the hydrolysate with ion-exchange resins. The performance and detoxification mechanism of three different resins were examined: an anion exchanger, a cation exchanger, and a resin without charged groups (XAD-8). A dilute acid hydrolysate of spruce was treated with the resins at pH 5.5 and 10.0 prior to ethanolic fermentation with Saccharomyces cerevisiae. In addition to the experiments with hydrolysate, the effect of the resins on selected model compounds, three phenolics (vanillin, guaiacol, and coniferyl aldehyde) and two furan aldehydes (furfural and hydroxymethyl furfural), was determined. The cation exchanger increased ethanol production, but to a lesser extent than XAD-8, which in turn was less effective than the anion exchanger. Treatment at pH 10.0 was more effective than at pH 5.5. At pH 10.0, the anion exchanger efficiently removed both anionic and uncharged inhibitors, the latter by hydrophobic interactions. The importance of hydrophobic interactions was further indicated by a substantial decrease in the concentration of model compounds, such as guaiacol and furfural, after treatment with XAD-8. PMID:11963864

  4. Design software for ion-exchanged glass waveguide devices

    NASA Astrophysics Data System (ADS)

    Tervonen, Ari; Honkanen, Seppo; Poyhonen, Pekka; Tahkokorpi, Markku T.

    1993-04-01

    Software tools for design of passive integrated optical components based on ion-exchanged glass waveguides have been developed. All design programs have been implemented on personal computers. A general simulation program for ion exchange processes is used for optimization of waveguide fabrication. The optical propagation in the calculated channel waveguide profiles is modelled with various methods. A user-friendly user's interface has been included in this modelling software. On the basis of the calculated propagation properties, performance of channel waveguide circuits can be modelled and thus devices for different applications may be designed. From the design parameters, the lithography mask pattern to be used is generated for a commercial CAD program for final mask design. Examples of designed and manufactured guided-wave devices are described. These include 1- to-n splitters and asymmetric Mach-Zehnder interferometers for wavelength division multiplexing.

  5. Hybrid metallic ion-exchanged waveguides for SPR biological sensing

    NASA Astrophysics Data System (ADS)

    de Bonnault, S.; Bucci, D.; Zermatten, P.. J.; Charette, P. G.; Broquin, J. E.

    2015-02-01

    Glass substrates have been used for decades to create biosensors due to their biocompatibility, low thermal conductivity, and limited fluorescence. Among the different types of sensors, those based on surface plasmon resonance (SPR) allow exploitation of the sensing lightwave at the vicinity of the sensor surface where small entities such as DNA or proteins are located. In this paper, ion-exchanged waveguides and SPR are combined to create a multianalyte optical sensor integrated onto glass. First the principle of operation is introduced, then the theoretical analysis and design of the sensing element. Simulations have been carried out using the Aperiodic Fourier Modal Method (AFMM) and a custom software that handles ion-exchange index-profiles. Fabrication and characterization processes are also presented. Finally the first experimental spectra are displayed and discussed. The sensor presents a bulk sensibility of 5000nm/RIU.

  6. Radiation degradation in EPICOR-2 ion exchange resins

    SciTech Connect

    McConnell, J.W. Jr.; Johnson, D.A.; Sanders, R.D. Sr.

    1990-09-01

    The Low-Level Waste Data base Development -- EPICOR-II Resin/Liner Investigation Program funded by the US Nuclear Regulatory Commission is investigating chemical and physical conditions for organic ion exchange resins contained in several EPICOR-II prefilters. Those prefilters were used during cleanup of contaminated water from the Three Mile Island Nuclear Power Station after the March 1979 accident. The work was performed by EG G Idaho, Inc. at the Idaho Engineering Laboratory. This is the final report of this task and summarizes results and analyses of three samplings of ion exchange resins from prefilters PF-8 and -20. Results are compared with baseline data from tests performed on unirradiated resins supplied by Epicor, Inc. to determine the extent of degradation due to the high internal radiation dose received by the organic resins. Results also are compared with those of other researchers. 18 refs., 23 figs., 7 tabs.

  7. Diffusion kinetics of the ion exchange of benzocaine on sulfocationites

    NASA Astrophysics Data System (ADS)

    Al'tshuler, O. G.; Shkurenko, G. Yu.; Gorlov, A. A.; Al'tshuler, G. N.

    2016-06-01

    The theory of the ion exchange kinetics on strong acid cationites with the participation of weak electrolytes is discussed. The kinetics of desorption of benzocaine in the protonated and molecular forms from strong acid cationites, sulfonated polycalixarene, and KU-23 30/100 sulfocationite, is studied experimentally. It is shown that the flow of protonated benzocaine from cationite upon desorption proceeding by the ion-exchange mechanism is more intense than upon desorption of nonionized benzocaine molecules. It is established that the diffusion coefficient of benzocaine cations is (1.21 ± 0.23) × 10-12 m2/s in KU-23 30/100 sulfocation and (0.65 ± 0.06) × 10-13 m2/s in sulfonated polycalixarene, while the diffusion coefficient of benzocaine molecules is (0.65 ± 0.15) × 10-14 m2/s in sulfonated polycalixarene.

  8. ION EXCHANGE PROCESS FOR THE RECOVERY AND PURIFICATION OF MATERIALS

    DOEpatents

    Long, R.S.; Bailes, R.H.

    1958-04-15

    A process for the recovery of certain metallic ions from aqueous solutions by ion exchange techniques is described. It is applicable to elements such as vanadium, chromium, nnanganese, and the like, which are capable of forming lower valent cations soluble in aqueous solutions and which also form ldgher valent anions soluble in aqueous acidic solutions. For example, small amounts of vanadium occurring in phosphoric acid prepared from phosphate rock may be recovered by reducing the vanadium to a trivalent cation adsorbing; the vanadium in a cationic exchange resin, then treating the resin with a suitable oxidizing agent to convert the adsorbed vanadium to a higher valent state, and finally eluting; the vanadium as an anion from the resin by means of an aqueous acidic solution.

  9. RECENT ADVANCES IN ION EXCHANGE MATERIALS AND PROCESSES FOR POLLUTION PREVENTION

    EPA Science Inventory

    The goal of this article was to summarize the recent advances in ion exchange technology for the metal finishing industry. Even though the ion exchange technology is mature and is widely employed in the industry, new applications, approaches and ion exchange materials are emergi...

  10. Sorption properties of radiation-cross-linked polymer hydrogels containing ion-exchange fibers

    NASA Astrophysics Data System (ADS)

    Rezvova, M. A.; Zhevnyk, V. D.; Pak, V.; Borodin, Y. V.; Kachina, E. V.

    2016-02-01

    Polymer hydrogel modification for soft contact lenses by ion-exchange fibers was studied in this work. The obtained results showed that the ion-exchange fiber modifiers have a number of advantages as compared with ion-exchange resin modifiers.

  11. Thermodynamics of ion-exchange between Na{sup +}/Sr{sup 2+} solutions and the zeolite mineral clinoptilolite

    SciTech Connect

    Pabalan, R.T.; Bertetti, F.P.

    1994-12-31

    Ion-exchange experiments were conducted at 25{degrees}C between the zeolite mineral clinoptilolite and aqueous solutions of varying equivalent ratios of Na{sup +} and Sr{sup 2+} and total concentrations of 0.005, 0.05, and 0.5 N. The experiments were designed to investigate the effects of changes in total solution concentration and in the relative concentrations of exchangeable cations on the following ion-exchange equilibrium: Sr{sup 2+} + 2NaZ {r_reversible} SrZ{sub 2} + 2Na{sup +}. Using the isotherm data at 0.05 N solution concentration, a thermodynamic model for the ion-exchange reaction was derived using a Margules formulation for the activity coefficients of zeolite components and the Pitzer ion-interaction approach for activity coefficients of aqueous ions. The results of the forward experiments showed that the ion-exchange isotherm strongly depends on the total solution concentration. Additional experiments demonstrated that the above ion-exchange reaction is reversible. The derived equilibrium constant, K, and Gibbs energy of ion-exchange, {Delta}G{sup 0}, are equal to 0.321{+-}0.021 and 2,820 {+-} 170 J/mol, respectively. Using thermodynamic parameters derived from the 0.05 N isotherm experiment, the model was used to predict isotherm values at 0.005 and 0.5 N, which showed excellent agreement with measured data. Because the thermodynamic model used in this study can be easily extended to ternary and more complicated mixtures, it may be useful for modeling ion-exchange equilibria in multicomponent geochemical systems.

  12. Cyanide recycling using strong-base ion-exchange resins

    NASA Astrophysics Data System (ADS)

    Leão, Versiane Albis; Ciminelli, Virgínia S. T.; Costa, Renato De Souza

    1998-10-01

    Among the techniques available to recover cyanide and metal cyanocomplexes from diluted streams, ion-exchange resins seem attractive because of the possibility of treating either pulps or clear solutions with this process. This article discusses the results of adsorption and elution of metal cyanocomplexes obtained with industrial effluents and selected data from the literature. The behavior of iron and copper cyanocomplexes during elution is emphasized.

  13. Separation of organic ion exchange resins from sludge -- engineering study

    SciTech Connect

    Duncan, J.B.

    1998-08-25

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.

  14. Momentum transfer in relativistic heavy ion charge-exchange reactions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Khan, F.; Khandelwal, G. S.

    1991-01-01

    Relativistic heavy ion charge-exchange reactions yield fragments (Delta-Z = + 1) whose longitudinal momentum distributions are downshifted by larger values than those associated with the remaining fragments (Delta-Z = 1, -2,...). Kinematics alone cannot account for the observed downshifts; therefore, an additional contribution from collision dynamics must be included. In this work, an optical model description of collision momentum transfer is used to estimate the additional dynamical momentum downshift. Good agreement between theoretical estimates and experimental data is obtained.

  15. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  16. Radon (222Rn) in ground water of fractured rocks: a diffusion/ion exchange model.

    PubMed

    Wood, Warren W; Kraemer, Thomas F; Shapiro, Allen

    2004-01-01

    Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion-exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42 degrees 56'N, 71 degrees 43'W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model. PMID:15318778

  17. Radon (222Rn) in ground water of fractured rocks: A diffusion/ion exchange model

    USGS Publications Warehouse

    Wood, W.W.; Kraemer, T.F.; Shapiro, A.

    2004-01-01

    Ground waters from fractured igneous and high-grade sialic metamorphic rocks frequently have elevated activity of dissolved radon (222Rn). A chemically based model is proposed whereby radium (226Ra) from the decay of uranium (238U) diffuses through the primary porosity of the rock to the water-transmitting fracture where it is sorbed on weathering products. Sorption of 226Ra on the fracture surface maintains an activity gradient in the rock matrix, ensuring a continuous supply of 226Ra to fracture surfaces. As a result of the relatively long half-life of 226Ra (1601 years), significant activity can accumulate on fracture surfaces. The proximity of this sorbed 226Ra to the active ground water flow system allows its decay progeny 222Rn to enter directly into the water. Laboratory analyses of primary porosity and diffusion coefficients of the rock matrix, radon emanation, and ion exchange at fracture surfaces are consistent with the requirements of a diffusion/ion- exchange model. A dipole-brine injection/withdrawal experiment conducted between bedrock boreholes in the high-grade metamorphic and granite rocks at the Hubbard Brook Experimental Forest, Grafton County, New Hampshire, United States (42??56???N, 71??43???W) shows a large activity of 226Ra exchanged from fracture surfaces by a magnesium brine. The 226Ra activity removed by the exchange process is 34 times greater than that of 238U activity. These observations are consistent with the diffusion/ion-exchange model. Elutriate isotopic ratios of 223Ra/226Ra and 238U/226Ra are also consistent with the proposed chemically based diffusion/ion-exchange model.

  18. Evaluation of Elution Parameters for Cesium Ion Exchange Resins

    SciTech Connect

    Burgeson, Ingrid E.; Deschane, Jaquetta R.; Cook, Bryan J.; Blanchard, David L.; Weier, Dennis R.

    2006-08-28

    Cesium ion exchange is one of the planned processes for treating and disposing of waste at the U.S. Department of Energy Hanford Site. Radioactive supernatant liquids from the waste tanks will undergo ultrafiltration, followed by cesium ion exchange using a regenerable organic ion exchange resin. Two resins, SuperLig?644 and a Resorcinol-formaldehyde resin are being evaluated for cesium removal and cesium elution characteristics. The main purpose of this study is to optimize the cesium elution to provide a resin which after undergoing elution would meet the U.S. Department of Energy/Office of River Protection Project-Waste Treatment Plant processing and resin disposal criteria. Columns of each resin type were loaded to greater or equal to 90% breakthrough with a Hanford waste stimulant and eluted with nitric acid. The temperature, flow rate and nitric acid concentration were varied to determine the optimal elution conditions. Temperature and eluant flow rate were the most important elution parameters. As would be predicted based upon kinetic consideration alone, decreasing the eluant flow rate and increasing the temperature provided the optimal elution conditions. Varying the nitric acid concentration did not have a significant effect on the elution; however, elutions performed using both high acid concentration (1M) and elevated temperature (45 C) resulted in resin degradation, causing gas generation and resin bed disruption.

  19. Thermal analysis for ion-exchange column system

    SciTech Connect

    Lee, S. Y.; King, W. D.

    2012-07-01

    Models have been developed to simulate the thermal characteristics of Crystalline Silico-titanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed, inadvertent column drainage, and loss of active cooling in the column. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. (authors)

  20. The quantitative ion exchange separation of uranium from impurities

    SciTech Connect

    Narayanan, U.I.; Mason, P.B.; Zebrowski, J.P.; Rocca, M.; Frank, I.W.; Smith, M.M.; Johnson, K.D.; Orlowicz, G.J.; Dallmann, E.

    1995-03-01

    Two methods were tested for the quantitative separation of uranium from elemental impurities using commercially available resins. The sorption and elution behavior of uranium and the separation of it from a variety of other elements was studied. The first method utilized an anion exchange resin while the second method employed an extraction resin. The first method, the anion exchange of uranium (VI) in an acid chloride medium, was optimized and statistically tested for quantitative recovery of uranium. This procedure involved adsorption of uranium onto Blo-Rad AG 1-X8 or MP-1 ion exchange resins in 8 M HCl, separation of uncompleted or weakly complexed matrix ions with an 8 M HCI wash, and subsequent elution of uranium with 1 M HCl. Matrix ions more strongly adsorbed than uranium were left on the resin. Uranium recoveries with this procedure averaged greater than 99.9% with a standard deviation of 0.1%. In the second method, recovery of uranium on the extraction resin did not meet the criteria of this study and further examination was terminated.

  1. Ion Exchange Temperature Testing with SRF Resin - 12088

    SciTech Connect

    Russell, R.L.; Rinehart, D.E.; Brown, G.N.; Peterson, R.A.

    2012-07-01

    Ion exchange using the Spherical Resorcinol-Formaldehyde (SRF) resin has been selected by the U.S. Department of Energy's Office of River Protection for use in the Pretreatment Facility of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in an at-tank deployment for removing Cs-137. Recent proposed changes to the WTP ion exchange process baseline indicate that higher temperatures (50 deg. C) to alleviate post-filtration precipitation issues prior to reaching the ion exchange columns may be required. Therefore, it is important to understand the behavior of SRF resin performance under the conditions expected with the new equipment and process changes. This research examined the impact of elevated temperature on resin loading and resin degradation during extended solution flow at elevated temperature (45 deg., 50 deg., 55 deg., 60 deg., 65 deg., 75 deg. C). Testing for extended times at elevated temperatures showed that the resin does degrade and loading capacity is reduced at and above 45 deg. C. Above 60 deg. C the resin appears to not load at all. It was observed that the resin disintegrated at 75 deg. C until not much was left and partially disintegrated at 65 deg. C, which caused the column to plug in both tests after ∼336 hours. The results indicate that WTP will lose resin loading capacity if the ion exchange process is performed above 25 deg. C, and the resin will disintegrate above 65 deg. C. Therefore, WTP will have a restricted operating range of temperatures to perform the ion exchange process with this resin. PNNL and WTP are currently evaluating the operating limits of the resin in further detail. Aging in 0.5 M HNO{sub 3} also caused the resin to lose capacity above 25 deg. C and to completely dissolve at 55 deg. C. Again, WTP will have a restricted operating range of temperatures when eluting the resin with nitric acid in order to maintain resin loading capacity and avoid disintegration of the resin

  2. Exchange bias in polycrystalline magnetite films made by ion-beam assisted deposition

    SciTech Connect

    Kaur, Maninder; Jiang, Weilin; Qiang, You; Burks, Edward; Liu, Kai; Namavar, Fereydoon; Mccloy, John S.

    2014-11-03

    Iron oxide films were deposited onto Si substrates using ion-beam-assisted deposition. The films were ~300 nm thick polycrystalline magnetite with an average crystallite size of ~6 nm. Additionally, incorporation of significant fractions of argon in the films from ion bombardment is evident from chemical analysis, and Fe/O ratios are lower than expected from pure magnetite. However, Raman spectroscopy and x-ray diffraction both indicate that the films are single-phase magnetite. Since no direct evidence of a second phase could be found, exchange bias likely arises due to defects at grain boundaries, possibly amorphous, creating frustrated spins. Since these samples have such small grains, a large fraction of the material consists of grain boundaries, where spins are highly disordered and reverse independently with external field. The high energy deposition process results in an oxygen-rich, argon-containing magnetite film with low temperature exchange bias due to defects at the high concentration of grain boundaries.

  3. Transient ion exchange of anion exchange membranes exposed to carbon dioxide

    NASA Astrophysics Data System (ADS)

    Myles, Timothy D.; Grew, Kyle N.; Peracchio, Aldo A.; Chiu, Wilson K. S.

    2015-11-01

    A common issue with anion exchange membranes (AEMs) is carbon dioxide contamination which causes a conversion from the hydroxide form to a mixed carbonate/bicarbonate form. In the mixed ionic form the membrane suffers from lower conductivity due to the larger and heavier ions having a lower mobility. The purpose of this study is to develop a theoretical model of the transient ion exchange process and elucidate the nature of the conversion of the AEM from a hydroxide form to a carbonate/bicarbonate form. Experimental data available from the literature providing the anion concentrations versus time are used for comparison. The prevalent mechanisms are discussed and the governing equations are cast in a dimensionless form. Extensions are then made to conductivity predictions.

  4. Calculation of the exchange ratio for the Adaptive Maneuvering Logic program

    NASA Technical Reports Server (NTRS)

    Neuman, F.; Erzberger, H.

    1985-01-01

    Improvements were made to the Adaptive Maneuvering Logic (AML) computer program, a computer-generated, air-to-air combat opponent. The primary improvement was incorporating a measure of performance, the exchange ratio, defined as the statistical measure of number of enemy kills divided by number of friendly losses. This measure was used to test a new modification of the AML's combat tactics. When the new version of the AML competed against the old version, the new version won with an exchange ratio of 1.4.

  5. Ion time-of-flight determinations of doubly to singly ionized mercury ion ratios from a mercury electron bombardment discharge

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Kemp, R. F.; Hall, D. F.

    1973-01-01

    Doubly to singly charged mercury ion ratios in electron bombardment ion thruster exhaust beams have been determined as functions of bombardment discharge potential, thrust beam current, thrust beam radial position, acceleration-deceleration voltage ratio, and propellant utilization fraction. A mathematical model for two-step ionization processes has been derived, and calculated ion ratios are compared to observed ratios. Production of Hg(++) appears to result primarily from sequential ionization of Hg(+) in the discharge. Experimental and analytical results are presented, and design, construction, and operation features of an electrostatic deflection ion time-of-flight analyzer for the determination of the above-mentioned ratios are reviewed.

  6. Structural Insight into the Ion-Exchange Mechanism of the Sodium/Calcium Exchanger

    SciTech Connect

    Liao, Jun; Li, Hua; Zeng, Weizhong; Sauer, David B.; Belmares, Ricardo; Jiang, Youxing

    2012-06-19

    Sodium/calcium (Na{sup +}/Ca{sup 2+}) exchangers (NCX) are membrane transporters that play an essential role in maintaining the homeostasis of cytosolic Ca{sup 2+} for cell signaling. We demonstrated the Na{sup +}/Ca{sup 2+}-exchange function of an NCX from Methanococcus jannaschii (NCX{_}Mj) and report its 1.9 angstrom crystal structure in an outward-facing conformation. Containing 10 transmembrane helices, the two halves of NCX{_}Mj share a similar structure with opposite orientation. Four ion-binding sites cluster at the center of the protein: one specific for Ca{sup 2+} and three that likely bind Na{sup +}. Two passageways allow for Na{sup +} and Ca{sup 2+} access to the central ion-binding sites from the extracellular side. Based on the symmetry of NCX{_}Mj and its ability to catalyze bidirectional ion-exchange reactions, we propose a structure model for the inward-facing NCX{_}Mj.

  7. Donnan dialysis with ion-exchange membranes. 3: Diffusion coefficients using ions of different valence

    SciTech Connect

    Miyoshi, Hirofumi

    1999-01-01

    Donnan dialysis with ion-exchange membranes was studied under various kinds of experimental conditions using ions of different valences. The diffusion coefficients (D{sub d}) of various kinds of ions in the ion-exchange membrane were obtained by curve fitting an equation derived from the mass balance to three kinds of Donnan dialytic experiments. It was found that the value of D{sub d}/D{sub s} using D{sub d} of monovalent ions in Donnan dialysis with a set of monovalent feed ions and bivalent driving ions was 1/175, where D{sub s} represents a diffusion coefficient in solution. D{sub s} was calculated from the Nernst-Einstein equation substituted by the ionic conductance of ions at infinite dilution in water. Using D{sub d} of bivalent ions in Donnan dialysis with the same set led to a D{sub d}/D{sub s} value of 1/438. Moreover, using D{sub d} in Donnan dialysis with the same set, the value of D{sub d}/D{sub e} was kept constant at 0.4 (D{sub e} expresses the diffusion coefficient in the membrane when the valences of the feed and driving ions are equal). On the other hand, both D{sub d}/D{sub s} and D{sub d}/D{sub e} using D{sub d} in Donnan dialysis with a set of bivalent feed ions and monovalent driving ions were not constant.

  8. Continuous ion exchange separation of zirconium and hafnium

    SciTech Connect

    Begovich, J.M.; Sisson, W.G.

    1981-01-01

    A pressurized continuous annular chromatograph (CAC) has been developed for truly continuous ion exchange preparative separations. This device utilizes a slowly rotating annular bed of sorbent material, fixed multiple feed points, and fixed withdrawal locations. Most of our investigations have been performed with a 28-cm-diam by 60-cm-long CAC, but a larger model has recently been designed and constructed. A detailed study has been made of the separation of copper, nickel, and cobalt components from a simulated carbonate leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. Recent studies have investigated the ion exchange separation of zirconium and hafnium from a sulfate feed solution. Nuclear reactor-grade zirconium, containing < 0.01 wt % hafnium, and hafnium, containing < 1% zirconium, have been continuously prepared using cation exchange resin in the pressurized CAC. This device, because of its continuous feed and product withdrawal, its adaptability to largescale operations, and its ability to separate many components, is expected to make chromatography a more competitive process in the industrial sector.

  9. Epitactic ion-exchange reactions into vanadyl(IV) arsenate

    SciTech Connect

    Martinez-Lara, M.; Bruque, S.; Moreno, L.; Aranda, M.A.G. )

    1991-03-01

    The synthesis, structural characterization, thermal stability, and spectroscopic (IR, UV-vis-diffuse reflectance) properties of three vanadyl arsenates are described. Vanadyl(IV) bis(dihydrogenarsenate), (VO(H{sub 2}AsO{sub 4}){sub 2}) (1), lithium vanadyl arsenate, (Li{sub 4}VO(AsO{sub 4}){sub 2}{center dot}0.5H{sub 2}O) (2), and nickel(II) and lithium vanadyl arsenate, ((Li{sub 2.4}Ni){sub 0.8}VO(AsO{sub 4}){sub 2}{center dot}4H{sub 2}O) (3), have been prepared. (1) Tetragonal ({alpha} = 9.128 {angstrom}; c = 8.128 {angstrom}) is prepared by reduction with isobutanol or ethanol from vanadyl(V) arsenate. (2) Cubic (a = 9.024 {angstrom}) is obtained from (1) by lithium ion-exchange, and (3) tetragonal (a = 9.106 {angstrom}; c = 8.454 {angstrom}) is made from (2) by Ni{sup 2+} ion-exchange. These exchange reactions are epitactic and the overall result is a topotactic transformation.

  10. Cometary Solar Wind Charge Exchange Line Ratios: Source of X-rays in Comet C/2000 WM1 (linear)

    NASA Astrophysics Data System (ADS)

    Mullen, Patrick Dean; Cumbee, Renata; Lyons, David; Gu, Liyi; Kaastra, Jelle S.; Shelton, Robin L.; Stancil, Phillip C.

    2016-06-01

    Cometary solar wind charge exchange (C-SWCX) occurs when highly charged projectile ions present in solar wind capture an electron from a target neutral species present in the cometary atmosphere. The availability of atomic and molecular data necessary for the X-ray emission modeling due to C-SWCX is limited; therefore, we apply multi-channel Landau-Zener (MCLZ) theory (Mullen et al. 2016) to generate cross section data and theoretical X-ray line ratios for a variety of bare and non-bare ion single electron capture (SEC) collisions. Namely, we consider collisions between the solar wind constituent H-like and He-like ions of C, N, O, Ne, Na, Al, and Si and the cometary neutrals H, H2O, CO, CO2, OH, and O. To exemplify the application of this data, we model the X-ray emission of comet C/2000 WM1 (linear) using the charge exchange package in SPEX (Gu et al. 2015) and find excellent agreement with observations made with the XMM-RGS detector. Our analyses show that the X-ray intensity is dominated by C-SWCX with H.Work at UGA was partially funded by NASA grant NNX13AF31G.References:Gu et al. 2016, A&A, accepted 22 January 2016Mullen et al. 2016, ApJS, in press

  11. Observations of solar wind ion charge exchange in the Comet Halley coma

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Shelley, E. G.; Goldstein, B. E.; Goldstein, R.; Neugebauer, M.; Ip, W.-H.; Balsiger, H.; Reme, H.

    1991-01-01

    Giotto Ion Mass Spectrometer/High Energy Range Spectrometer (IMS/HERS) observations of solar wind ions show charge exchange effects and solar wind compositional changes in the coma of Comet Halley. As the comet was approached, the He(2+) to proton density ratio increased from 2.5 percent in the solar wind to about 4 percent about 1 hr before closest approach after which time it decreased to about 1 percent. Abrupt increases in this ratio from 2.5 to 4.5 percent were also observed in the beginning and near the end of the so-called Mystery Region. These abrupt increases in the density ratio were well correlated with enhanced fluxes of keV electrons as measured by the Giotto plasma electron spectrometer. The general increase and then decrease of the He(2+) to proton density ratio is quantitatively consistent with a combination of the addition of protons of Cometary origin to the plasma and loss of plasma through charge exchange of protons and He(2+).

  12. Calculation of stopping power ratios for carbon ion dosimetry

    NASA Astrophysics Data System (ADS)

    Geithner, Oksana; Andreo, P.; Sobolevsky, N.; Hartmann, G.; Jäkel, O.

    2006-05-01

    Water-to-air stopping power ratio calculations for the ionization chamber dosimetry of clinical carbon ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used, which is a newly developed version where substantial modifications were implemented on its predecessor SHIELD-HIT v1 (Gudowska et al 2004 Phys. Med. Biol. 49 1933-58). The code was completely rewritten replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe-Bloch formula, thus widening its range for medical dosimetry applications. In addition, the code includes optionally MSTAR and ICRU-73 stopping power data. The fragmentation model was verified and its parameters were also adjusted. The present code version shows excellent agreement with experimental data. It has been used to compute the physical quantities needed for the calculation of stopping power ratios, swater,air, of carbon beams. Compared with the recommended constant value given in the IAEA Code of Practice, the differences found in the present investigations varied between 0.5% and 1% at the plateau region, respectively for 400 MeV/u and 50 MeV/u beams, and up to 2.3% in the vicinity of the Bragg peak for 50 MeV/u.

  13. Calculation of stopping power ratios for carbon ion dosimetry.

    PubMed

    Geithner, Oksana; Andreo, P; Sobolevsky, N; Hartmann, G; Jäkel, O

    2006-05-01

    Water-to-air stopping power ratio calculations for the ionization chamber dosimetry of clinical carbon ion beams with initial energies from 50 to 450 MeV/u have been performed using the Monte Carlo technique. To simulate the transport of a particle in water the computer code SHIELD-HIT v2 was used, which is a newly developed version where substantial modifications were implemented on its predecessor SHIELD-HIT v1 (Gudowska et al 2004 Phys. Med. Biol. 49 1933-58). The code was completely rewritten replacing formerly used single precision variables with double precision variables. The lowest particle transport specific energy was decreased from 1 MeV/u down to 10 keV/u by modifying the Bethe-Bloch formula, thus widening its range for medical dosimetry applications. In addition, the code includes optionally MSTAR and ICRU-73 stopping power data. The fragmentation model was verified and its parameters were also adjusted. The present code version shows excellent agreement with experimental data. It has been used to compute the physical quantities needed for the calculation of stopping power ratios, s(water,air), of carbon beams. Compared with the recommended constant value given in the IAEA Code of Practice, the differences found in the present investigations varied between 0.5% and 1% at the plateau region, respectively for 400 MeV/u and 50 MeV/u beams, and up to 2.3% in the vicinity of the Bragg peak for 50 MeV/u. PMID:16625042

  14. Ion-exchangeable, electronically conducting layered perovskite oxyfluorides.

    PubMed

    Kobayashi, Yoji; Tian, Mingliang; Eguchi, Miharu; Mallouk, Thomas E

    2009-07-22

    Cation-exchangeable d(0) layered perovskites are amenable to intercalation, exfoliation, and a variety of topochemical reactions, but they lack the interesting electronic and magnetic functionalities of mixed-valent perovskites. Conversely, electronically and magnetically interesting layered perovskites lack scope in terms of interlayer chemistry. To bridge this gap, the insulating, cation-exchangeable layered perovskites RbLaNb(2)O(7), KCa(2)Nb(3)O(10), and NaYTiO(4) were reacted with poly(tetrafluoroethylene) under inert atmosphere conditions to yield layer perovskites in which some of the oxygen is substituted by fluorine. In the fluorinated materials, the B-site cations are reduced to a mixed-valent state without introducing oxygen vacancies into the anion sublattice. The resulting electronically conducting solids can be exposed to air and water and even ion-exchanged in acid without oxidation of the B-site cations. Electronic transport measurements on the air-stable RbLaNb(2)O(6)F reveal room-temperature conductivity (2-7 x 10(2) ohms x cm) via a variable-range hopping mechanism, which is not substantially changed after aqueous proton exchange to H(1-x)Rb(x)LaNb(2)O(6)F (x approximately = 0.2). PMID:19548670

  15. Space shuttle launch vehicle performance trajectory, exchange ratios, and dispersion analysis

    NASA Technical Reports Server (NTRS)

    Toelle, R. G.; Blackwell, D. L.; Lott, L. N.

    1973-01-01

    A baseline space shuttle performance trajectory for Mission 3A launched from WTR has been generated. Design constraints of maximum dynamic pressure, longitudinal acceleration, and delivered payload were satisfied. Payload exchange ratios are presented with explanation on use. Design envelopes of dynamic pressure, SRB staging point, aerodynamic heating and flight performance reserves are calculated and included.

  16. Vitrification of cesium-contaminated organic ion exchange resin

    SciTech Connect

    Sargent, T.N. Jr.

    1994-08-01

    Vitrification has been declared by the Environmental Protection Agency (USEPA) as the Best Demonstrated Available Technology (BDAT) for the permanent disposal of high-level radioactive waste. Savannah River Site currently uses a sodium tetraphenylborate (NaTPB) precipitation process to remove Cs-137 from a wastewater solution created from the processing of nuclear fuel. This process has several disadvantages such as the formation of a benzene waste stream. It has been proposed to replace the precipitation process with an ion exchange process using a new resorcinol-formaldehyde resin developed by Savannah River Technical Center (SRTC). Preliminary tests, however, showed that problems such as crust formation and a reduced final glass wasteform exist when the resin is placed in the melter environment. The newly developed stirred melter could be capable of overcoming these problems. This research explored the operational feasibility of using the stirred tank melter to vitrify an organic ion exchange resin. Preliminary tests included crucible studies to determine the reducing potential of the resin and the extent of oxygen consuming reactions and oxygen transfer tests to approximate the extent of oxygen transfer into the molten glass using an impeller and a combination of the impeller and an external oxygen transfer system. These preliminary studies were used as a basis for the final test which was using the stirred tank melter to vitrify nonradioactive cesium loaded organic ion exchange resin. Results from this test included a cesium mass balance, a characterization of the semi-volatile organic compounds present in the off gas as products of incomplete combustion (PIC), a qualitative analysis of other volatile metals, and observations relating to the effect the resin had on the final redox state of the glass.

  17. Ion Exchange Testing with SRF Resin FY2012

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2013-06-11

    Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.0 , which was prepared and approved in response to the Test Specification 24590 PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590 PTF TEF RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.

  18. HEAT TRANSFER ANALYSIS FOR ION-EXCHANGE COLUMN SYSTEM

    SciTech Connect

    Lee, S.; King, W.

    2011-05-23

    Models have been developed to simulate the thermal characteristics of Crystalline Silicotitanate (CST) ion exchange media fully loaded with radioactive cesium in a column configuration and distributed within a waste storage tank. This work was conducted to support the Small Column Ion Exchange (SCIX) program which is focused on processing dissolved, high-sodium salt waste for the removal of specific radionuclides (including Cs-137, Sr-90, and actinides) within a High Level Waste (HLW) storage tank at the Savannah River Site. The SCIX design includes CST columns inserted and supported in the tank top risers for cesium removal. Temperature distributions and maximum temperatures across the column were calculated with a focus on process upset conditions. A two-dimensional computational modeling approach for the in-column ion-exchange domain was taken to include conservative, bounding estimates for key parameters such that the results would provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on CST. The current full-scale design for the CST column includes one central cooling pipe and four outer cooling tubes. Most calculations assumed that the fluid within the column was stagnant (i.e. no buoyancy-induced flow) for a conservative estimate. A primary objective of these calculations was to estimate temperature distributions across packed CST beds immersed in waste supernate or filled with dry air under various accident scenarios. Accident scenarios evaluated included loss of salt solution flow through the bed, inadvertent column drainage, and loss of active cooling in the column. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature.

  19. MMI splitter by ion exchange on K9

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Luo, Fengguang; Cao, Mingcui; Chen, Wenmin

    2005-11-01

    A wavelength 0.85μm-based optical power splitter designed with Multi Mode Interference (MMI) by ion exchange on K9 glass was introduced. The waveguide material is K9 glass made in China and formed by K +-Na + pure melt salt ion exchange method. The grade index profile of planar ion-exchanged waveguide on K9 was studied and accorded with erfc function through compare of experimental and theoretic index profiles. The fabrication process of planar ionexchanged waveguide device was described. The basic theory of 1×8 MMI optical power splitter was illuminated by using guided-model propagation analysis. The working wavelength is 0.85μm, and the structure parameters of 1×8 MMI splitter were designed. The core pitch on this chip is chosen as 250μm to take the fiber connections into account, and the typical cladding diameter of optical fibers as 125μm. The critical parameters in the fabrication of the MMI power splitter are the multimode section width and length. In general the key performance specifications of the optical power splitter are insertion loss and uniformity. The output performances and the refractive index change's influence of the device were simulated by Bear Propagation Method (BPM). The uniformity was 0.93×10 -2dB, the average insertion loss was 9.12dB, and the maximal insertion loss was 9.14dB. The result shows that the advantages of the method include low loss, ease of fabrication, and low material cost.

  20. Removal of THM precursors by coagulation or ion exchange.

    PubMed

    Bolto, Brian; Dixon, David; Eldridge, Rob; King, Simon

    2002-12-01

    The removal of natural organic matter (NOM) from drinking water supplies can be achieved by different processes, among them coagulation and adsorption. Synthetic waters made from concentrates of humic substances from reservoir and river waters were tested in the laboratory for ease of removAl of NOM by coagulation with cationic organic polymers and with alum, and by adsorption on anion exchangers. For polymers such as high molecular weight polydiallyldimethylammonium chloride (polyDADMAC) and cationic polyacrylamides of high charge, performance was nearly as effective as alum, with colour removals 86-100% of those obtained for alum. Ion exchange using the best commercially available resins designed for this purpose, a gel polystyrene and a macroporous acrylic resin, was more effective than alum treatment for two of the natural waters studied, but inferior for a third. The resins were overall superior to cationic polymers. The NOM was separated into four fractions based on hydrophobic and hydrophilic properties. Alum was not as effective as ion exchange for the elimination of individual ionic NOM fractions. It was better than cationic polymers for removal of humic and fulvic acids, although polyDADMAC was as good for one water. For the removal of charged compounds alum then polyDADMAC were the best performers for that water. Unequivocal evidence was obtained that coagulants remove material that is not adsorbed by resins, and vice versa. A combination of coagulation with a cationic polymer and adsorption by an anion exchanger removed essentially all of the NOM. The preference of the coagulants was for the larger, more hydrophobic molecules, and of resins for smaller highly charged hydrophilic molecules. Each fraction had trihalomethane formation potentials in the range 11-24 microg/mg, except for one water that was more reactive. Hence, the actual amount of each fraction in the original water becomes a crucial factor. PMID:12448555

  1. Electrically switched cesium ion exchange. FY 1996 annual report

    SciTech Connect

    Lilga, M.A.; Orth, R.J.; Sukamto, J.P.H.; Schwartz, D.T.; Haight, S.M.; Genders, D.

    1996-12-01

    An electrochemical method for metal ion separations, called Electrically Switched Ion Exchange, is described. Direct oxidation and reduction of an electroactive film attached to an electrode surface is used to load and unload the film with alkali metal cations. The electroactive films under investigation are Ni hexacyanoferrates, which are deposited on the surface by applying an anodic potential to a Ni electrode in a solution containing the ferricyanide anion. Reported film preparation procedures were modified to produce films with improved capacity and stability. Electrochemical behavior of the derivatized electrodes were investigated using cyclic voltammetry and chronocoulometry. The films show selectivity for Cs in concentrated sodium solutions. Raman spectroscopy was used to monitor changes in oxidation state of the film and imaging experiments have demonstrated that the redox reactions are spatially homogenous across the film. Requirements for a bench scale unit were identified.

  2. Extraction and ion-exchange behavior of mendelevium (II)

    SciTech Connect

    Guseva, L.I.; Tikhomirova, G.S.; Buklanov, G.V.; Pkhar, Z.Z.; Lebedev, I.A.; Katargin, N.V.; Myasoedov, B.F.

    1988-09-01

    Medelevium-256 was obtained via multinucleon transfer reactions upon irradiation of /sup 249/Bk by /sup 22/Ne ions from the extracted beam of a U-300 cyclotron. In order to extract mendelevium and separate it from the products of nuclear reactions, an express ion-exchange method using one column with cationite and zinc amalgam in a solution of 1 mole/liter HCl as the eluent was developed. It was shown that under these conditions mendelevium is reduced and washes out as an alkaline earth element. On the basis of the location of the peaks of the elution curves of Sr/sup 2+/, Eu/sup 2+/, and Md/sup 2+/, the value of the ionic radium of Md/sup 2+/ is estimated and is used to estimate the heat of hydration.

  3. Separation of ammonia from wastewater using clinoptilolite as ion exchanger

    SciTech Connect

    Czaran, E.; Meszaros-Kis, A.; Domokos, E.; Papp, J.

    1988-01-01

    The cation exchange properties of a Hungarian clinoptilolite rock from the Tokaj mountains have been studied. The aim of this work has been to prepare suitable cation containing forms for NH/sub 4//sup +/-removal and regeneration of the NH/sub 4//sup +/-form. The process has been followed from the start with static laboratory experiments through laboratory dynamic measurements up to pilot plant. The static CEC of the clinoptilolite containing rock proved to be 1.2 meq/q. However, under dynamic conditions this value is only 0.2 - 0.3 depending on the circumstances, thus this material is capable of the elimination of 3 - 5 mg NH/sub 3/ per g rock. The exhausted clinoptilolite can be regenerated more efficiently by potassium ions than by the usually applied sodium ions.

  4. ION EXCHANGE SUBSTANCES BY SAPONIFICATION OF ALLYL PHOSPHATE POLYMERS

    DOEpatents

    Kennedy, J.

    1959-04-14

    An ion exchange resin having a relatively high adsorption capacity tor uranyl ion as compared with many common cations is reported. The resin comprises an alphyl-allyl hydrogen phosphate polymer, the alphyl group being either allyl or a lower alkyl group having up to 5 carbon atoins. The resin is prepared by polymerizing compounds such as alkyl-diallyl phosphate and triallyl phosphate in the presence of a free radical generating substance and then partially hydrolyzing the resulting polymer to cause partial replacement of organic radicals by cations. A preferred free radical gencrating agent is dibenzoyl peroxide. The partial hydrolysis is brought about by refluxing the polymer with concentrated aqueous NaOH for three or four hours.

  5. Truly incomplete and complex exchanges in prematurely condensed chromosomes of human fibroblasts exposed in vitro to energetic heavy ions

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Durante, Marco; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis A.

    2003-01-01

    Confluent human fibroblast cells (AG1522) were irradiated with gamma rays, 490 MeV/nucleon silicon ions, or iron ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 degrees C for 24 h after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Incomplete and complex exchanges were analyzed in the irradiated samples. To verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole-chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after irradiation with the heavy ions of high LET, and consequently the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/microm, the highest LET included in the present study. For samples exposed to 200 MeV/nucleon iron ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique, which allows identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy iron ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges; these ratios were higher than those obtained after exposure to 6 Gy gamma rays. After 0.7 Gy of iron ions, most complex aberrations were found to involve three or four chromosomes, which is a likely indication of the maximum number of chromosome domains traversed by a single iron-ion track.

  6. Solid Phase Luminescence of Several Rare Earth Ions on Ion-Exchange Films

    NASA Technical Reports Server (NTRS)

    Tanner, Stephen P.; Street, Kenneth W., Jr.

    1999-01-01

    The development and characterization of a novel ion-exchange film for solid-phase fluorometry and phosphorimetry is reported. This new cation-exchange material is suitable for spectroscopic applications in the ultraviolet and visible regions. It is advantageous because it, as a single entity, is easily recovered from solution and mounted in the spectrofluorometers. After preconcentration on the film, the luminescence intensity of lanthanide ions is several orders of magnitude greater than that of the corresponding solution, depending on the volume of solution and the amount of film. This procedure allows emission spectral measurements and determination of lanthanide ions at solution concentrations of < 5 (micro)g/L. The film may be stored for subsequent reuse or as a permanent record of the analysis. The major drawback to the use of the film is slow uptake of analyte due to diffusion limitations.

  7. Assessment of cadmium in aquatic sediment using dialysis samplers with ion-exchange-resin collection

    SciTech Connect

    Shi, B.; Allen, H.E.; Desnoyers, C.

    1998-05-01

    Simultaneously extracted metals (SEM) and acid volatile sulfide (AVS) show the potential for toxicity on the basis of their ratio. Accordingly, the authors spiked cadmium in a range for which Cd/AVS ratios were from 0.2 to 10 in the sediment with its weight about 8 kg in each batch. Dialysis samplers with a cation ion-exchange resin (Dowex 50W-X4) collection were used in a laboratory for the determination of free cadmium concentrations in pore water of the collected sediment. When equilibrium was reached among cadmium in pore water, sediment, and ion-exchange resin, cadmium exchanged onto resin phase was regenerated with 1 N hydrochloric acid (OPTIMA grade) and determined using an atomic absorption spectrophotometer (Zeeman 5000) with a graphite furnace accessory. Cadmium determined using the dialysis sampler is considered as free cadmium which is related to the metal bioavailability toward aquatic biota. The developed methodology provides a new technique for assessment of free metal in aquatic sediment systems.

  8. Anion selective membrane. [ion exchange resins and ion exchange membrane electrolytes for electrolytic cells

    NASA Technical Reports Server (NTRS)

    Alexander, S. S.; Geoffroy, R. R.; Hodgdon, R. B.

    1975-01-01

    Experimental anion permselective membranes were prepared and tested for their suitability as cell separators in a chemical redox power storage system being developed at NASA-Lewis Research Center. The goals of long-term (1000 hr) oxidative and thermal stability at 80 C in FeCl3 and CrCl3 electrolytes were met by most of the weak base and strong base amino exchange groups considered in the program. Good stability is exhibited by several of the membrane substrate resins. These are 'styrene' divinylbenzene copolymer and PVC film. At least four membrane systems produce strong flexible films with electrochemical properties (resistivity, cation transfer) superior to those of the 103QZL, the most promising commercial membrane. The physical and chemical properties of the resins are listed.

  9. THE ION-INDUCED CHARGE-EXCHANGE X-RAY EMISSION OF THE JOVIAN AURORAS: MAGNETOSPHERIC OR SOLAR WIND ORIGIN?

    SciTech Connect

    Hui Yawei; Schultz, David R.; Kharchenko, Vasili A.; Stancil, Phillip C.; Cravens, Thomas E.; Lisse, Carey M. E-mail: schultzd@ornl.gov E-mail: stancil@physast.uga.edu E-mail: carey.lisse@jhuapl.edu

    2009-09-10

    A new and more comprehensive model of charge-exchange induced X-ray emission, due to ions precipitating into the Jovian atmosphere near the poles, has been used to analyze spectral observations made by the Chandra X-ray Observatory. The model includes for the first time carbon ions, in addition to the oxygen and sulfur ions previously considered, in order to account for possible ion origins from both the solar wind and the Jovian magnetosphere. By comparing the model spectra with newly reprocessed Chandra observations, we conclude that carbon ion emission provides a negligible contribution, suggesting that solar wind ions are not responsible for the observed polar X-rays. In addition, results of the model fits to observations support the previously estimated seeding kinetic energies of the precipitating ions ({approx}0.7-2 MeV u{sup -1}), but infer a different relative sulfur-to-oxygen abundance ratio for these Chandra observations.

  10. The Ion-induced Charge-exchange X-ray Emission of the Jovian Auroras: Magnetospheric or Solar Wind Origin?

    SciTech Connect

    Hui, Yawei; Schultz, David Robert; Kharchenko, Vasili A; Stancil, Phillip C.; Cravens, Thomas E. E.; Lisse, Carey M.; Dalgarno, A.

    2009-01-01

    A new and more comprehensive model of charge-exchange induced X-ray emission, due to ions precipitating into the Jovian atmosphere near the poles, has been used to analyze spectral observations made by the Chandra X-ray Observatory. The model includes for the first time carbon ions, in addition to the oxygen and sulfur ions previously considered, in order to account for possible ion origins from both the solar wind and the Jovian magnetosphere. By comparing the model spectra with newly reprocessed Chandra observations, we conclude that carbon ion emission provides a negligible contribution, suggesting that solar wind ions are not responsible for the observed polar X-rays. In addition, results of the model fits to observations support the previously estimated seeding kinetic energies of the precipitating ions ( 0.7-2 MeV/u), but infer a different relative sulfur to oxygen abundance ratio for these Chandra observations.

  11. Evaluation of Ion Exchange Materials in K Basin Floor Sludge and Potential Solvents for PCB Extraction from Ion Exchange Materials

    SciTech Connect

    Schmidt, A.J.; Klinger, G.S.; Bredt, P.R.

    1999-04-10

    Approximately 73 m{sup 3} of heterogeneous solid material, ''sludge,'' (upper bound estimate, Packer 1997) have accumulated at the bottom of the K Basins in the 100 K Area of the Hanford Site. This sludge is a mixture of spent fuel element corrosion products, ion exchange materials (organic and inorganic), graphite-based gasket materials, iron and aluminum metal corrosion products, sand, and debris (Makenas et al. 1996, 1997). In addition, small amounts of polychlorinated biphenyls (PCBs) have been found. These small amounts are significant from a regulatory standpoint. Ultimately, it is planned to transfer the K Basins sludge to the Hanford double shell tanks (DSTs). Chemical pretreatment is required to address criticality issues and the destruction or removal of PCBs before the K Basin sludge can be transferred to the DSTs. Eleven technologies have been evaluated (Papp 1997) as potential pretreatment methods. Based on the evaluations and engineering studies and limited testing, Fluor Daniel Hanford recommended solvent washing of the K Basin sludge, followed by nitric acid dissolution and, potentially, peroxide addition (FDH 1997). The solvent washing (extraction) and peroxide addition would be used to facilitate PCB removal and destruction. Following solvent extraction, the PCBs could be distilled and concentrated for disposal as a low-level waste. The purpose of the work reported here was to continue investigating solvent extraction, first by better identifying the ion exchange materials in the actual sludge samples and then evaluating various solvents for removing the PCBs or possibly dissolving the resins. This report documents some of the process knowledge on ion exchange materials used and spilled in the K Basins and describes the materials identified from wet sieving KE Basin floor and canister sludge and the results of other analyses. Several photographs are included to compare materials and illustrate material behavior. A summary of previous tests on

  12. Position-specific measurement of oxygen isotope ratios in cellulose: Isotopic exchange during heterotrophic cellulose synthesis

    NASA Astrophysics Data System (ADS)

    Waterhouse, John S.; Cheng, Shuying; Juchelka, Dieter; Loader, Neil J.; McCarroll, Danny; Switsur, V. Roy; Gautam, Lata

    2013-07-01

    We describe the first reported method for the measurement of oxygen isotope ratios at each position in the glucose units of the cellulose molecule. The overall process comprises a series of synthetic organic sequences, by which α-cellulose is hydrolysed to glucose, and oxygen atoms at specific positions in the glucose molecule are removed in samples of benzoic acid for measurement of δ18O. Values of δ18O at specific positions in cellulose are calculated from these δ18O values and the overall δ18O value of the cellulose. We apply the method to determine the degree to which oxygen atoms at each position undergo isotopic exchange with water during heterotrophic cellulose synthesis, such as occurs in the cambium of trees. To do this we extract α-cellulose from wheat seedlings germinated in the dark in aqueous media of differing oxygen isotope ratios. Results indicate that oxygen atoms at positions 5 and 6 (O-5 and O-6 respectively) undergo around 80% exchange with medium water, O-3 undergoes around 50% exchange, and O-2 and O-4 do not undergo isotopic exchange. The results have important implications for extracting palaeoclimatic records from oxygen isotope time series obtained from tree ring cellulose. As O-5 and O-6 undergo significant exchange with medium water during heterotrophic cellulose synthesis, oxygen isotopes at these positions in tree ring cellulose should carry a predominantly trunk (source) water signal. On the other hand, O-2 and O-4 should retain the isotopic signature of leaf water in tree ring cellulose. Our method therefore potentially enables the separate reconstruction of past temperature and humidity data from oxygen isotope ratios of tree ring cellulose - something that has hitherto not been possible. The measured degrees of isotopic exchange are to some extent unexpected and cannot be fully explained using current biochemical mechanisms, suggesting that knowledge of these processes is incomplete.

  13. Formation of metallic nanostructures on the surface of ion- exchange glass by focused electron beam

    NASA Astrophysics Data System (ADS)

    Komissarenko, F. E.; Zhukov, M. V.; Mukhin, I. S.; Golubok, A. O.; Sidorov, A. I.

    2015-11-01

    This paper presents a new method for formation of metallic nanostructures on the surface of ion-exchange glass. The method is based on the interaction of a focused electron beam with ions in ion-exchange glass. In experiments nanostructures with different shapes were obtained, depending on the electrons irradiation conditions.

  14. Partitioning of mobile ions between ion exchange polymers and aqueous salt solutions: importance of counter-ion condensation.

    PubMed

    Kamcev, Jovan; Galizia, Michele; Benedetti, Francesco M; Jang, Eui-Soung; Paul, Donald R; Freeman, Benny D; Manning, Gerald S

    2016-02-17

    Equilibrium partitioning of ions between a membrane and a contiguous external solution strongly influences transport properties of polymeric membranes used for water purification and energy generation applications. This study presents a theoretical framework to quantitatively predict ion sorption from aqueous electrolytes (e.g., NaCl, MgCl2) into charged (i.e., ion exchange) polymers. The model was compared with experimental NaCl, MgCl2, and CaCl2 sorption data in commercial cation and anion exchange membranes. Ion sorption in charged polymers was modeled using a thermodynamic approach based on Donnan theory coupled with Manning's counter-ion condensation theory to describe non-ideal behavior of ions in the membrane. Ion activity coefficients in solution were calculated using the Pitzer model. The resulting model, with no adjustable parameters, provides remarkably good agreement with experimental values of membrane mobile salt concentration. The generality of the model was further demonstrated using literature data for ion sorption of various electrolytes in charged polymers, including HCl sorption in Nafion. PMID:26840776

  15. Small Column Ion Exchange Monitor System Final Report

    SciTech Connect

    CASELLA, VITO

    2004-09-30

    A Small Column Ion Exchange (SCIX) system has been designed by the Oak Ridge and Savannah River National Laboratories (ORNL and SRNL) as a potential way to reduce Cs-137 concentrations in high-level radioactive waste at the Savannah River Site. SRNL was asked to develop gamma-ray monitors at six locations within the SCIX system. Gamma-ray monitors are required to verify the proper operation of the ion exchange system, detect cesium breakthrough, and confirm presence of cesium before and after used resin is transferred to a grinder module. The only observable gamma ray in the decay of Cs-137 is from its short-lived Ba-137m daughter. Chemical processes, such as the SCIX, may disrupt the secular equilibrium between this parent-daughter pair; meaning that measurement of Ba-137m will not necessarily yield information about Cs-137 content. While this is a complicating factor that can not be ignored, it is controllable by either: allowing sufficient time for equilibrium to be reestablished (about 20 minutes), or by making multiple measurements with sufficient statistical precision to determine the extent of disequilibrium. The present work provides a means of measuring the Cs-137 and Ba-137m by taking multiple measurements in a process isolation loop that contains the process solution of interest.

  16. Data quality objectives for Ion Exchange Module (IXM) disposition

    SciTech Connect

    Choi, I.

    1995-01-31

    This Data Quality Objective (DQO) document presents the data needs and accuracy requirements for sampling ion exchange modules at the K Basins, 100 K Area, to determine if there is a hydrogen gas buildup within the modules. This document was produced by PNL, with the assistance of Neptune and Associates, and was partly funded (for facilitator) by DOE-HQ as a demonstration DQO for EM activities. PNL involved a number of PNL, WHC and support contract staff (including external technical consultants) in meetings to define the data needed, along with the necessary accuracy, to resolve issues associated with hydrogen accumulation in Ion Exchange Modules (IXMS) that were generated prior to July 1994 and only have one nuc-fil vent. IXMs generated after July 1994 have multiple nuc-fil vents and do not require sampling. PNL transmitted this DQO to WHC on January 31, 1995. This Supporting Document is to assure that the document is captured into the document retrieval system. WHC review focused on the acceptability of the technical conclusions such that the data collected will meet minimum operational, safety and environmental needs.

  17. Low-level liquid waste decontamination by ion exchange

    SciTech Connect

    Campbell, D.O.; Lee, D.D.; Dillow, T.A.

    1991-12-01

    Improved processes are being developed to treat contaminated liquid wastes that have been and continue to be generated at Oak Ridge National Laboratory. Both inorganic and organic ion-exchange methods have given promising results. Nickel and cobalt hexacyanoferrate(2) compounds are extremely selective for cesium removal, with distribution coefficients in excess of 10{sup 6} and remarkable insensitivity to competition from sodium and potassium. They tend to lose effectiveness at pH > {approximately}11, but some formulations are useful for limited periods of time up to pH {approximately}13. Sodium titanate is selective for strontium removal at high pH. The separations are so efficient that simple batch processes can yield large decontamination factors while generating small volumes of solid waste. A resorcinol-based resin developed at the Savannah River Site gave superior cesium removal, compared with other organic ion exchangers; the distribution coefficient was limited primarily by competition from potassium and was nearly independent of sodium. The optimum pH was {approximately}12.5. It was much less effective for strontium removal, which was limited by competition from sodium. 8 refs., 6 figs., 9 tabs.

  18. Ion Exchange Chromatography and Mass Spectrometric Methods for Analysis of Cadmium-Phytochelatin (II) Complexes

    PubMed Central

    Merlos Rodrigo, Miguel Angel; Cernei, Natalia; Kominkova, Marketa; Zitka, Ondrej; Beklova, Miroslava; Zehnalek, Josef; Kizek, Rene; Adam, Vojtech

    2013-01-01

    In this study, in vitro formed Cd-phytochelatin (PC2) complexes were characterized using ion exchange chromatography (IEC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The ratio of both studied compounds as well as experimental conditions were optimized. The highest yield of the complex was observed under an applied concentration of 100 µg·mL−1 PC2 and 100 µg·mL−1 of CdCl2. The data obtained show that IEC in combination with MALDI-TOF is a reliable and fast method for the determination of these complexes. PMID:23538727

  19. Ion exchange separation of chromium from natural water matrix for stable isotope mass spectrometric analysis

    USGS Publications Warehouse

    Ball, J.W.; Bassett, R.L.

    2000-01-01

    A method has been developed for separating the Cr dissolved in natural water from matrix elements and determination of its stable isotope ratios using solid-source thermal-ionization mass spectrometry (TIMS). The separation method takes advantage of the existence of the oxidized form of Cr as an oxyanion to separate it from interfering cations using anion-exchange chromatography, and of the reduced form of Cr as a positively charged ion to separate it from interfering anions such as sulfate. Subsequent processing of the separated sample eliminates residual organic material for application to a solid source filament. Ratios for 53Cr/52Cr for National Institute of Standards and Technology Standard Reference Material 979 can be measured using the silica gel-boric acid technique with a filament-to-filament standard deviation in the mean 53Cr/52Cr ratio for 50 replicates of 0.00005 or less. (C) 2000 Elsevier Science B.V. All rights reserved.

  20. Enhanced DOC removal using anion and cation ion exchange resins.

    PubMed

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. PMID:26624231

  1. Cu-Na ion exchange soda-lime glass planar waveguides and their photoluminescence

    NASA Astrophysics Data System (ADS)

    Ti, Yunqiang; He, Xin; Zhang, Jian; Zheng, Jie; Wang, Pengfei; Farrell, Gerald

    2009-11-01

    Copper ion exchange technique was used to fabricate soda-lime glass planar waveguides. Prism coupling method was applied to measure the effective indices, and the refractive index profiles were reconstructed through Inverse WKB (IWKB) method. Optical absorption and photoluminescence analysis were carried out as well. The emission spectra centered at 520nm are attributed to Cu+ located in distorted octahedral sites. It was found that the ion exchange time and temperature both play an important role in the waveguides luminescence properties. The emission spectra intensities decrease with the ion exchange time increasing. The emission peak wavelength slightly blue shifts as the ion-exchange time increasing as well. The emission band intensity nearly increases consistently with the ion-exchange temperature increasing within proper ion-exchange time. Different excitation wavelengths were tested as well in order to study the site effect on photoluminescence properties.

  2. Ion exchange resins. (Latest citations from the US Patent bibliographic file with exemplary claims). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning preparation, regeneration, and applications of ion exchange resins. Applications include water and waste treatment; food processing; chemical recovery, separation, purification, and catalysis; desalination; and ore treatment and recovery. Methods are included for the processing of spent ion exchange resins and for protecting ion exchange resins from oxidation and chemical degradation. (Contains 250 citations and includes a subject term index and title list.)

  3. Isotope yield ratios of fragments from heavy-ion reactions

    SciTech Connect

    Deak, F.; Kiss, A. ); Seres, Z. ); Galonsky, A.; Heilbronn, L. )

    1991-05-01

    Isotope yield ratios produced in collisions of 35 MeV/nucleon {sup 14}N with targets of C, Ni, Ag, and Ho have an exponential dependence on total neutron-to-proton ratio. A statistical multifragmentation model including particle emission from excited fragments predicted such behavior for yield ratios measured earlier at the higher energy of 84 MeV/nucleon.

  4. Sorption of uranyl ions from various acido systems by amphoteric epoxy amine ion-exchange resins

    SciTech Connect

    Rychkov, V.N.; Radionov, B.K.; Molochnikov, L.S.

    1995-03-01

    Sorption of uranyl ions by epoxy amine ampholytes with N-monomethylenephosphonic acid groups modified with pyridine or quaternary ammonium groups was studied under dynamic conditions. Heterocyclic nitrogen favors sorption of uranyl ion from fluoride, sulfate, and fluoride-sulfate solutions. The ESR studies of mono- and bimetallic forms of nitrogen-containing ampholytes with copper(II) as paramagnetic marker revealed the characteristics of uranium(VI) interaction with cation- and anion-exchange groups and its dependence on the fluoride content in solution.

  5. Planar optical waveguides fabricated by Ag+/K+-Na+ ion exchange in soda lime glass

    NASA Astrophysics Data System (ADS)

    Marzuki, Ahmad; Gregorius, Seran Daton; Widhianingsih, Ika; Lestari, Siti; Suryawan, Joko

    2015-12-01

    This paper reports the optical properties of the optical planar waveguides in a soda lime glass fabricated by ion exchange. Planar waveguide fabrication was carried out by immersing the soda lime glass in molten 100 % AgNO3 bath for different duration (ranging from 15 minutes to 735 minutes) and at temperature of 280°C. The results show that the surface refractive index values of the ion exchanged glasses are independent of both the ion exchange duration and temperature. The number of modes and the effective diffusion depth, however, increase with increasing the duration of ion exchange process.

  6. Small Column Ion Exchange Design and Safety Strategy

    SciTech Connect

    Huff, T.; Rios-Armstrong, M.; Edwards, R.; Herman, D.

    2011-02-07

    Small Column Ion Exchange (SCIX) is a transformational technology originally developed by the Department of Energy (DOE) Environmental Management (EM-30) office and is now being deployed at the Savannah River Site (SRS) to significantly increase overall salt processing capacity and accelerate the Liquid Waste System life-cycle. The process combines strontium and actinide removal using Monosodium Titanate (MST), Rotary Microfiltration, and cesium removal using Crystalline Silicotitanate (CST, specifically UOP IONSIV{reg_sign}IE-911 ion exchanger) to create a low level waste stream to be disposed in grout and a high level waste stream to be vitrified. The process also includes preparation of the streams for disposal, e.g., grinding of the loaded CST material. These waste processing components are technically mature and flowsheet integration studies are being performed including glass formulations studies, application specific thermal modeling, and mixing studies. The deployment program includes design and fabrication of the Rotary Microfilter (RMF) assembly, ion-exchange columns (IXCs), and grinder module, utilizing an integrated system safety design approach. The design concept is to install the process inside an existing waste tank, Tank 41H. The process consists of a feed pump with a set of four RMFs, two IXCs, a media grinder, three Submersible Mixer Pumps (SMPs), and all supporting infrastructure including media receipt and preparation facilities. The design addresses MST mixing to achieve the required strontium and actinide removal and to prevent future retrieval problems. CST achieves very high cesium loadings (up to 1,100 curies per gallon (Ci/gal) bed volume). The design addresses the hazards associated with this material including heat management (in column and in-tank), as detailed in the thermal modeling. The CST must be size reduced for compatibility with downstream processes. The design addresses material transport into and out of the grinder and

  7. Ion Exchange Testing with SRF Resin FY 2012

    SciTech Connect

    Russell, Renee L.; Rinehart, Donald E.; Peterson, Reid A.

    2014-07-02

    Ion exchange using spherical resorcinol-formaldehyde (SRF) resin has been selected by the U.S. Department of Energy’s Office of River Protection (DOE-ORP) for use in the Pretreatment Facility (PTF) of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) and for potential application in at-tank deployment. Numerous studies have shown SRF resin to be effective for removing 137Cs from a wide variety of actual and simulated tank waste supernatants (Adamson et al. 2006; Blanchard et al. 2008; Burgeson et al. 2004; Duignan and Nash 2009; Fiskum et al. 2006a; Fiskum et al. 2006b; Fiskum et al. 2006c; Fiskum et al. 2007; Hassan and Adu-Wusu 2003; King et al. 2004; Nash et al. 2006). Prior work at the Pacific Northwest National Laboratory (PNNL) has focused primarily on the loading behavior for 4 to 6 M Na solutions at 25 to 45°C. Recent proposed changes to the WTP ion exchange process baseline indicate that loading may include a broader range of sodium molarities (0.1 to 8 M) and higher temperatures (50°C) to alleviate post-filtration precipitation issues. This report discusses ion exchange loading kinetics testing activities performed in accordance with Test Plan TP-WTPSP-002, Rev. 3.01, which was prepared and approved in response to the Test Specification 24590-PTF-TSP-RT-09-002, Rev. 0 (Lehrman 2010) and Test Exception 24590-PTF-TEF-RT-11-00003, Rev. 0 (Meehan 2011). This testing focused on column tests evaluating the impact of elevated temperature on resin degradation over an extended period of time and batch contacts evaluating the impact on Cs loading over a broad range of sodium concentrations (0.1 to 5 M). These changes may be required to alleviate post-filtration precipitation issues and broaden the data range of SRF resin loading under the conditions expected with the new equipment and process changes.

  8. D/H ratios and hydrogen exchangeability of type-II kerogens with increasing thermal maturity

    USGS Publications Warehouse

    Lis, G.P.; Schimmelmann, A.; Mastalerz, Maria

    2006-01-01

    Stable isotope ratios of non-exchangeable hydrogen (??Dn) and of carbon were measured in type-II kerogens from two suites of Late Devonian to Early Mississippian black shale, one from the New Albany Shale (Illinois Basin) and the other from the Exshaw Formation (Alberta Basin). The largely marine-derived organic matter had similar original stable isotope ratios, but today the suites of kerogens express gradients in thermal maturity that have altered their chemical and isotopic compositions. In both suites, ??D n values increase with maturation up to a vitrinite reflectance of Ro 1.5%, then level out. Increasing ??Dn values suggest isotopic exchange of organic hydrogen with water-derived deuterium and/or preferential loss of 1H-enriched chemical moieties from kerogen during maturation. The resulting changes in ??Dn values are altering the original hydrogen isotopic paleoenvironmental signal in kerogen, albeit in a systematic fashion. The specific D/H response of each kerogen suite through maturation correlates with H/C elemental ratio and can therefore be corrected to yield paleoenvironmentally relevant information for a calibrated system. With increasing thermal maturity, the abundance of hydrogen in the kerogen that is isotopically exchangeable with water hydrogen (expressed as Hex, in % of total hydrogen) first decreases to reach a minimum at Ro ??? 0.8-1.1%, followed by a substantial increase at higher thermal maturity. ?? 2005 Elsevier Ltd. All rights reserved.

  9. Selective exchange of divalent transition metal ions in cryptomelane-type manganic acid with tunnel structure

    SciTech Connect

    Tsuji, M. ); Komarneni, S. )

    1993-03-01

    The ion-exchange selectivity of divalent transition metal ions on cryptomelane-type manganic acid (CMA) with tunnel structure has been studied using the distribution coefficients ([ital K][sub [ital d

  10. Electrodialysis-ion exchange for the separation of dissolved salts

    SciTech Connect

    Baroch, C.J.; Grant, P.J.

    1995-12-31

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. This report describes the process of electrodialysis-ion exchange (EDIX) for treating aqueous wastes streams consisting of nitrates, sodium, organics, heavy metals, and radioactive species.

  11. Advanced integrated solvent extraction and ion exchange systems

    SciTech Connect

    Horwitz, P.

    1996-10-01

    Advanced integrated solvent extraction (SX) and ion exchange (IX) systems are a series of novel SX and IX processes that extract and recover uranium and transuranics (TRUs) (neptunium, plutonium, americium) and fission products {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from acidic high-level liquid waste and that sorb and recover {sup 90}Sr, {sup 99}Tc, and {sup 137}Cs from alkaline supernatant high-level waste. Each system is based on the use of new selective liquid extractants or chromatographic materials. The purpose of the integrated SX and IX processes is to minimize the quantity of waste that must be vitrified and buried in a deep geologic repository by producing raffinates (from SX) and effluent streams (from IX) that will meet the specifications of Class A low-level waste.

  12. Copper ion-exchanged channel waveguides optimization for optical trapping.

    PubMed

    Reshak, A H; Khor, K N; Shahimin, M M; Murad, S A Z

    2013-08-01

    Optical trapping of particles has become a powerful non-mechanical and non-destructive technique for precise particle positioning. The manipulation of particles in the evanescent field of a channel waveguide potentially allows for sorting and trapping of several particles and cells simultaneously. Channel waveguide designs can be further optimized to increase evanescent field prior to the fabrication process. This is crucial in order to make sure that the surface intensity is sufficient for optical trapping. Simulation configurations are explained in detail with specific simulation flow. Discussion on parameters optimization; physical geometry, optical polarization and wavelength is included in this paper. The effect of physical, optical parameters and beam spot size on evanescent field has been thoroughly discussed. These studies will continue toward the development of a novel copper ion-exchanged waveguide as a method of particle sorting, with biological cell propulsion studies presently underway. PMID:23726859

  13. Electrodialysis-ion exchange for the separation of dissolved salts

    SciTech Connect

    Baroch, C.J.; Grant, P.J.

    1995-10-01

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. There is considerable interest in developing processes that remove or destroy the nitrate wastes. Electrodialysis-Ion Exchange (EDIX) is a possible process that should be more cost effective in treating aqueous waste steams. This report describes the EDIX process.

  14. Electrotransportation of aniline through a perfluorosulfonate ion-exchange membrane

    SciTech Connect

    Katakura, Katsumi . Dept. of Chemical Engineering); Inaba, Minoru; Toyama, Koji; Ogumi, Zempachi; Takehara, Zenichiro . Division of Energy and Hydrocarbon Chemistry)

    1994-07-01

    Transport phenomena of aniline through Na[sup +]-, K[sup +]-, and Cs[sup +]-form of a perfluorosulfonate ion-exchange membrane, Nafion 117, under a flow of dc current, electrotransportation, were investigated. In each form, an increase in transport number of anilinium cation was observed in the current density range from 0.3 to 1.3 mA cm[sup [minus]2]. The transport number of the anilinium cation in Cs[sup +]-form was larger than that expected from the concentration and diffusion coefficient of the anilinium cation in Cs[sup +]-form Nafion. These aniline transport phenomena may be attributable to a structural change of Nafion or a decrease in hydrophobic interaction between the anilinium cation and Nafion caused by the flow of dc current.

  15. Ion-exchange chromatography by dicarboxyl cellulose gel.

    PubMed

    Kim, U J; Kuga, S

    2001-06-01

    A new column packing material for ion-exchange chromatography was prepared from cellulose gel by periodate oxidation followed by chlorite oxidation to form spatially paired carboxyl groups (dicarboxyl cellulose, DCC). The carboxyl group was quantitatively introduced to spherical cellulose gel by controlling the extent of oxidation. The DCC gels were examined for their ion-exchange activity for various amines at pH of 2.5-5.5. In this pH range, aromatic amines with acid dissociation constant (pKa) below 2.7 showed no interaction with DCC gels as expected from their lack of protonation. The amines with pKa greater than 3.3, both aromatic and aliphatic, showed strong interaction corresponding to the amount of carboxyl introduced to the gel. However, these amines showed anomalous dependence on pH of the mobile phase, showing a maximum in retention factor at around pH 4. This is in contrast with the nearly constant retention factor of these amines on conventional carboxylated cellulose packing at pH greater than 4.0. The maximum retention factor at pH 4 of DCC gel was 4-5-times greater than that of conventional gel having a similar amount of carboxyls. Since pKa of dicarboxyl groups ranges 3-5 as determined by acid-base titration, the pH giving maximum retention corresponds to the pH at which one of paired carboxyls is dissociated. Possible cause of this anomaly is presented in terms of dissociation state of dicarboxyl groups and its interaction with amines. PMID:11459309

  16. Exchange bias in polycrystalline magnetite films made by ion-beam assisted deposition

    SciTech Connect

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Burks, Edward C.; Liu, Kai; Namavar, Fereydoon; McCloy, John S.

    2014-11-07

    Iron oxide films were produced using ion-beam-assisted deposition, and Raman spectroscopy and x-ray diffraction indicate single-phase magnetite. However, incorporation of significant fractions of argon in the films from ion bombardment is evident from chemical analysis, and Fe/O ratios are lower than expected from pure magnetite, suggesting greater than normal disorder. Low temperature magnetometry and first-order reversal curve measurements show strong exchange bias, which likely arises from defects at grain boundaries, possibly amorphous, creating frustrated spins. Since these samples contain grains ∼6 nm, a large fraction of the material consists of grain boundaries, where spins are highly disordered and reverse independently with external field.

  17. Immobilization of Acetobacter aceti on cellulose ion exchangers: adsorption isotherms

    SciTech Connect

    Bar, R.; Gainer, J.L.; Kirwan, D.J.

    1986-08-01

    The adsorptive behavior of cells of Acetobacter aceti, ATCC 23746, on DEAE-, TEAE-, and DEHPAE-cellulose ion exchangers in a modified Hoyer's medium at 30 degrees Centigrade was investigated. The maximum observed adsorption capacities varied from 46 to 64 mg dry wt/g resin. The Langmuir isotherm form was used to fit the data, since the cells formed a monolayer on the resin and exhibited saturation. The equilibrium constant in the Langmuir expression was qualitatively correlated with the surface charge density of the resin. The adsorption was also ''normalized'' by considering the ionic capacities of the resins. The exceptionally high normalized adsorption capacity of ECTEOLA-cellulose, 261 mg dry/meq, may be explained by an interaction between the cell wall and the polyglyceryl chains of the exchanging groups in addition to the electrostatic effects. The effect of pH on the bacterial adsorption capacity of ECTEOLA-, TEAE-, and phosphate-cellulose resins was studied and the pH of the bacteria was estimated to be 3.0. 17 references.

  18. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography

    SciTech Connect

    Alpert, Andrew J.; Petritis, Konstantinos; Kangas, Lars J.; Smith, Richard D.; Mechtler, Karl; Mitulovic, Goran; Mohammed, Shabaz; Heck, Albert J.

    2010-06-15

    Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of harged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide’s net charge rather than its sequence. These general observations could be of value in confirming a peptide’s identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same compositionbut different sequence.

  19. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography

    SciTech Connect

    Alpert, Andrew J.; Petritis, Konstantinos; Kangas, Lars J.; Smith, R. D.; Mechtler, Karl; Mitulovic, Goran; Mohammed, Shabaz; Heck, Albert J.

    2010-06-15

    Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/ Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of charged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide’s net charge rather than its sequence. These general observations could be of value in confirming a peptide’s identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same composition but different sequence.

  20. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography

    PubMed Central

    2010-01-01

    Here we demonstrate that separation of proteolytic peptides, having the same net charge and one basic residue, is affected by their specific orientation toward the stationary phase in ion-exchange chromatography. In electrostatic repulsion−hydrophilic interaction chromatography (ERLIC) with an anion-exchange material, the C-terminus of the peptides is, on average, oriented toward the stationary phase. In cation exchange, the average peptide orientation is the opposite. Data with synthetic peptides, serving as orientation probes, indicate that in tryptic/Lys-C peptides the C-terminal carboxyl group appears to be in a zwitterionic bond with the side chain of the C-terminal Lys/Arg residue. In effect, the side chain is then less basic than the N-terminus, accounting for the specific orientation of tryptic and Lys-C peptides. Analyses of larger sets of peptides, generated from lysates by either Lys-N, Lys-C, or trypsin, reveal that specific peptide orientation affects the ability of charged side chains, such as phosphate residues, to influence retention. Phosphorylated residues that are remote in the sequence from the binding site affect retention less than those that are closer. When a peptide contains multiple charged sites, then orientation is observed to be less rigid and retention tends to be governed by the peptide’s net charge rather than its sequence. These general observations could be of value in confirming a peptide’s identification and, in particular, phosphosite assignments in proteomics analyses. More generally, orientation accounts for the ability of chromatography to separate peptides of the same composition but different sequence. PMID:20481592

  1. Enhanced performance of anion exchange membranes via crosslinking of ion cluster regions for fuel cells

    NASA Astrophysics Data System (ADS)

    Lai, Ao Nan; Guo, Dong; Lin, Chen Xiao; Zhang, Qiu Gen; Zhu, Ai Mei; Ye, Mei Ling; Liu, Qing Lin

    2016-09-01

    Development of anion exchange membranes (AEMs) with high hydroxide conductivity, good dimensional and alkaline stabilities is still a challenge for the practical application of AEM fuel cells. In this study, we report a new strategy to prepare high-performance AEMs with crosslinked ionic regions. A series of phenolphthalein-containing poly(arylene ether sulfone)s crosslinked AEMs was synthesized by grafting ion groups selectively and densely on the phenolphthalein units to form ion clusters that are further crosslinked to generate the hydrophilic ionic regions. The crosslinking reaction not only improved the dimensional stability of the AEMs, but also increased the aggregation of the ion clusters leading to the formation of hydrophilic/hydrophobic phase-separated morphology and ion-conducting channels. As a result, enhancements in both ion conductivity and dimensional stability can be achieved. The crosslinked AEMs showed high hydroxide conductivities in the range of 52.2-143.4 mS cm-1 from 30 to 80 °C and a superb ratio of relative conductivity to relative swelling at 80 °C. Furthermore, the crosslinked AEMs also exhibited good mechanical properties, thermal and alkaline stabilities and desirable single cell performance. This work presents a promising strategy for the synthesis of high-performance AEMs for fuel cells.

  2. Materials for Electroactive Ion-Exchange (EaIX) Separations of Pertechnetate Ion

    SciTech Connect

    Stender, Matthias; Hubler, Timothy L.; Alhoshan, Mansour; Smyrl, William H.

    2004-03-29

    Many contaminants of interest to the U.S. Department of Energy (DOE) exist as anions (e.g. chromate, pertechnetate and nitrate). The objective of this study is to develop Electroactive Ion-Exchange (EaIX) materials. Such materials can be used to separate pertechnetate ion from radioactive wastes located at DOE sites while limiting the amount of secondary wastes generated. We have developed a synthetic strategy to prepare vinyl-bipyridyl and -terpyridyl ligands which allow incorporation of ion-selective architectures with a polymerizable handle. Fe complexes formed with these ligands provide the working core of the electroactive polymers. The polymers can be directly used as materials for EaIX or they can be incorporated into porous composite materials that are then used for EaIX.

  3. Magnetic ion exchange treatment of stabilized landfill leachate.

    PubMed

    Boyer, Treavor H; Graf, Katherine C; Comstock, Sarah E H; Townsend, Timothy G

    2011-05-01

    Stabilized landfill leachate is characterized by a high concentration of non-biodegradable organic matter, which is similar in chemistry to dissolved organic matter (DOM) in the natural aquatic environment. Magnetic ion exchange (MIEX) resin treatment is well-studied in drinking water for removal of DOM from natural waters. There are fewer studies evaluating MIEX treatment of waste waters, and there is no previous work evaluating MIEX treatment of landfill leachate. This work systematically evaluated MIEX treatment of stabilized landfill leachate and evaluated the results in the context of previous studies of MIEX treatment of natural and waste waters. Five leachates from four landfills were evaluated as a function of MIEX resin dose, mixing time, and regeneration efficiency. MIEX resin removed DOM from landfill leachate, even in the presence of a reported high background concentration of inorganic ions. MIEX resin that was exhausted with leachate DOM was effectively regenerated with a concentrated NaCl solution, and regenerated MIEX resin performed similarly to virgin resin. For a majority of the leachates, the removal trend for MIEX resin was color>UV-absorbing substances>dissolved organic carbon≈COD>total nitrogen. Finally, MIEX resin removed a wider range of DOM from leachate than coagulation. The most important contribution of this work is that MIEX treatment of leachate followed very similar trends as MIEX treatment of natural waters, which will allow previous MIEX data to be used to estimate the treatment efficiency of other waste waters. PMID:21497879

  4. Forbidden lines of np/q/ ions. I - Detailed balance and line intensity ratios

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Lynch, J. P.

    1980-01-01

    The detailed balance equations are solved in the ground state terms of 37 ions of C, N, O, Ne, Mg, Si, S and Fe; atomic data for 235 transitions of these ions are tabulated, and 14 line ratios of q = 2,4 ions and eight line ratios of q = 3 ions are graphed. Forbidden emission lines of these ions are in the far and near UV, visible, and near and far IR regions of the spectrum. In addition, detailed calculations of the relative populations of the levels of the ground state are presented as a function of temperature and density.

  5. Ion irradiation effects on the exchange bias in IrMn/Co films

    SciTech Connect

    Schafer, D.; Grande, P. L.; Pereira, L. G.; Geshev, J.

    2011-01-15

    The present work reports on the influence of ion irradiation in exchange-coupled bilayers. Magnetron-sputtered IrMn{sub 4}/Co films were irradiated with 40 keV He{sup +} ions and the dependence of their magnetic properties was studied as function of ion fluence and current used during the irradiations. The effects of ion damage and electronic excitation were also studied through additional irradiations with H{sup +} and Ne{sup +} ions. The results show a clear dependence of the exchange-bias field on the defects caused by the ion bombardment. No correlations with other irradiation effects were observed.

  6. REMOVAL OF URANIUM FROM DRINKING WATER BY ION EXCHANGE AND CHEMICAL CLARIFICATION

    EPA Science Inventory

    A pilot demonstration was conducted of ion exchange and chemical clarification equipment for removing uranium from drinking water. Four commercial-type ion exchange columns and a prefiltering and regeneration solution system were constructed along with a pilot-scale chemical clar...

  7. Ion exchange resins. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning preparation, properties, and applications of ion exchange resins. Applications include water and waste treatment, chemical recovery, separation, purification, catalysis, desalination, and ore treatment. Regeneration and disposal of ion exchange resins are also covered. (Contains 250 citations and includes a subject term index and title list.)

  8. Ion exchange resins. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning preparation, properties, and applications of ion exchange resins. Applications include water and waste treatment, chemical recovery, separation, purification, catalysis, desalination, and ore treatment. Regeneration and disposal of ion exchange resins are also covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  9. Ion Exchange Resins for Long-Term Spent Nuclear Fuel Storage

    SciTech Connect

    Rideaux, J.

    1999-03-08

    This paper will specifically address the use and life cycle of ion exchange resins as they relate to the SRS Spent Nuclear Fuel Storage Basins. This paper also chronicles the use of two types of ion exchange resins and their affect on basin water quality from the sixties until today.

  10. Nanomaterials-Enhanced Electrically Switched Ion Exchange Process for Water Treatment

    SciTech Connect

    Lin, Yuehe; Choi, Daiwon; Wang, Jun; Bontha, Jagannadha R.

    2009-01-01

    The objective of our work is to develop an electrically switched ion exchange (ESIX) system based on conducting polymer/carbon nanotube (CNT) nanocomposites as a new and cost-effective approach for removal of radioactive cesium, chromate, and perchlorate from contaminated groundwater. The ESIX technology combines ion exchange and electrochemistry to provide a selective, reversible method for the removal of target species from wastewater. In this technique, an electroactive ion exchange layer is deposited on a conducting substrate, and ion uptake and elution are controlled directly by modulation of the potential of the layer. ESIX offers the advantages of highly-efficient use of electrical energy combined with no secondary waste generation. Recently, we have improved upon the ESIX process by modifying the conducting substrate with carbon nanotubes prior to the deposition of the electroactive ion exchanger. The nanomaterial-based electroactive ion exchange technology will remove cesium-137, chromate, and perchlorate rapidly from wastewater. The high porosity and high surface area of the electroactive ion exchange nanocomposites results in high loading capacity and minimize interferences for non-target species. Since the ion adsorption/desorption is controlled electrically without generating a secondary waste, this electrically active ion exchange process is a green process technology that will greatly reduce operating costs.

  11. Electrical resistance and transport numbers of ion-exchange membranes used in electrodialytic soil remediation

    SciTech Connect

    Hansen, H.K.; Ottosen, L.M.; Villumsen, A.

    1999-08-01

    Electrodialytic soil remediation is a recently developed method to decontaminate heavy metal polluted soil using ion-exchange membranes. In this method one side of the ion-exchange membrane is in direct contact with the polluted soil. It is of great importance to known if this contact with the soil causes damage to the membrane. This work presents the result of transport number and electrical resistance measurements done on four sets of ion-exchange membranes (Ionics, Inc CR67 HMR412 cation-exchange membranes and Ionics, Inc AR204 SXZR anion-exchange membranes), which have been used in four different electrodialytic soil remediation experiments. The experiments showed that after the use in electrodialytic soil remediation, the ion-exchange membranes had transport numbers in the same magnitude as new membranes. The electrical resistance for six membranes did not differ from that of new membranes, whereas two membranes showed a slightly increased resistance.

  12. Intermediate-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102

    SciTech Connect

    King, W.D.

    2001-02-15

    Ion exchange tests have been completed at the Savannah River Technology Center for British Nuclear Fuels Limited, Inc. as part of the Hanford River Protection Project. Radioactive cesium and technetium (pertechnetate form only) were removed by ion exchange from a sample of Envelope C salt solution from Hanford Tank 241-AN-102 (sample volume: approximately 17 L at 4.8 M Na plus). The original sample was diluted and subjected to strontium/transuranics (Sr/TRU) precipitation and filtration processes before ion exchange processing was performed. Batch contact and column tests for the ion exchange removal of cesium and technetium were then completed on the Sr/TRU-decontaminated product. Previous ion exchange tests were conducted on a smaller portion (0.5 L) of the Tank 241-AN-102 supernate sample, which had been similarly pretreated, and the results were reported in a separate document.

  13. Intermediate-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102

    SciTech Connect

    King, W.D.

    2001-09-10

    Ion exchange tests have been completed at the Savannah River Technology Center for British Nuclear Fuels Limited, Inc. as part of the Hanford River Protection Project. Radioactive cesium and technetium (pertechnetate form only) were removed by ion exchange from a sample of Envelope C salt solution from Hanford Tank 241-AN-102 (sample volume: approximately 18 L at 4.8 M Na plus). The original sample was diluted and subjected to strontium/transuranics (Sr/TRU) precipitation and filtration processes before ion exchange processing was performed. Batch contact and column tests for the ion exchange removal of cesium and technetium were then completed on the Sr/TRU-decontaminated product. Previous ion exchange tests were conducted on a smaller portion (0.5 L) of the Tank 241-AN-102 supernate sample, which had been similarly pretreated, and the results were reported in a separate document.

  14. Ion-exchange selectivities of periderm and cuticular membranes toward alkali cations

    SciTech Connect

    Ersoz, M.; Duncan, H.J.

    1994-08-01

    The ion-exchange selectivities of lithium, sodium, potassium, and cesium on isolated potato periderm (Solanum tuberosum) and pear fruit cuticular membranes were investigated; the general order of preference both for cation selectivities and ion-exchange capacities was lithium > sodium > potassium > cesium. The potato periderm and pear fruit cuticular membranes exhibited a behavior typical of ion-exchange resins of the weak acid type. At constant pH 7, the ion-exchange capacities of periderm and cuticular membranes increased with hydrated ionic radius, and also with increasing pH and neutral salt concentration, and decreased with crystal ionic radius. Counterion selectivities also exhibited the same behavior. The ion-exchange properties are discussed in terms of the structure and function of potato periderm and pear fruit cuticular membranes.

  15. Ion Exchange Media for Reduction of Liquid Radwaste in Commercial Power Plants

    SciTech Connect

    Yarnell, P.A.; Tavares, A.

    2008-07-01

    Ion exchange resins currently make up as much as one-half of all radioactive waste generated by commercial nuclear power plants. A major challenge is reduction of the quantity of ion exchange media requiring disposal. Although the amount of spent ion exchange resins disposed has decreased year after year, a new urgency has arisen with the pending closure of a major disposal site in 2008. This paper explores whether ion exchange resins also can be used to potentially reduce radioactive liquid waste volumes and / or limit them to Class A wastes only. Source term reduction and minimization of manpower exposure to radioactivity are other important goals. Specialty ion exchange products may help to achieve source term reduction of certain radionuclides. Some established operations, data, and process concepts are presented to address these critical issues encountered in liquid radwaste management. (authors)

  16. Erbium doping of lithium niobate by the ion exchange process for high-gain optical amplifiers

    NASA Astrophysics Data System (ADS)

    Caccavale, Frederico; Fedorov, Vyacheslav A.; Korkishko, Yuri N.; Morozova, Tamara V.; Sada, Cinzia; Segato, Francesco

    2000-04-01

    The erbium-lithium ion exchange is presented as a method for the erbium local doping of lithium niobate crystals. Ion exchange process is performed immersing the LiNbO3 substrates in a liquid melt, containing erbium ions; due to their high mobility, the lithium ions migrate from the crystal to the melt, and are replaced by erbium ions. A systematic analysis of the doping process is performed, and the influence of the process parameters is investigated: exchange time and temperature, crystal cut direction, composition and chemical reactivity of the Er ions liquid source. By structural (X-Ray Diffraction and Rutherford Backscattering Spectrometry), compositional (Secondary Ion Mass Spectrometry) and spectroscopic techniques (optical spectroscopy and micro-luminescence), the formation of lithium deficient phases and the incorporation of the Er ions into the LiNbO3 matrix is studied.

  17. Determination of SrSO 04 ion pair formation using conductimetric and ion exchange techniques

    NASA Astrophysics Data System (ADS)

    Reardon, E. J.

    1983-11-01

    The dissociation constant for SrSO 04 ion pair was determined at 25°C using conductance and ion-exchange techniques. Both approaches yield values for pK of SrSO 04 at zero ionic strength in the range 2.28-2.31. Previously reported values range from 2.1 to 3.0. The refinement in the dissociation constant should allow more reliable appraisals of the extent of strontium mineral solubility controls on strontium concentrations in natural water systems. The Lee and Wheaton conductance model was used to interpret the results of the conductivity measurements in strontium sulphate solutions at 25°C. Because of the limitations imposed by the solubility of celestite, a sufficiently-wide concentration range to enable determination of all three of the parameters - dissociation constant, Λ0, and the distance parameter could not be made. Instead, values are reported for the dissociation constant and Λ0 using reasonable limiting values for the distance parameter. Dowex-50 was used in the ion-exchange technique to determine the dissociation constant for SrSO 04. This method was used to determine values at other temperatures as well. Although there is considerable scatter in the temperature data, a standard enthalpy for the dissociation reaction: SrSO04→ Sr2+ + SO2-4 is computed to be 8.7 ± 2 kJmole-1 at 25°C.

  18. Production of intense beams of polarized negative hydrogen ions by double charge exchange in alkali vapour

    NASA Astrophysics Data System (ADS)

    Gruëbler, W.; Schmelzbach, P. A.

    1983-07-01

    The intensity of the polarized negative hydrogen ion beam of the ETHZ atomic beam polarized ion source has been substantially improved by a new double charge exchange device. Increasing the diameter of the charge exchange canal to 1.4 cm results in a beam output of the source of 6 μA of polarized negative hydrogen ions. Further improvements of the charge exchanger are proposed and discussed. With an updated design of the atomic beam apparatus, beams of 0.5 mA polarized negative hydrogen ions may be obtained from such a source.

  19. Truly Incomplete and Complex Chromosomal Exchanges in Human Fibroblast Cells Exposed In Situ to Energetic Heavy Ions

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Durante, marco; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis A.

    2003-01-01

    Confluent human fibroblast cells (AG 1522) were irradiated with gamma rays, 490 MeV/nucleon Si, or with Fe ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 C for 24 hours after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Incomplete and complex exchanges were analyzed in the irradiated samples. In order to verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after high-LET radiation, and consequently, the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/micron, the highest LET value in the present study. For samples exposed to 200 MeV/nucleon Fe ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique that allow identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy dose of the Fe ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges, values for which were higher than those obtained after a 6 Gy gamma exposure. After 0.7 Gy of Fe ions, most complex aberrations were found to involve three or four chromosomes, which is a likely indication of the maximum number of chromosome domains traversed by a single Fe ion track.

  20. Revised Thermal Analysis of LANL Ion Exchange Column

    SciTech Connect

    Laurinat, J

    2006-04-11

    This document updates a previous calculation of the temperature distributions in a Los Alamos National Laboratory (LANL) ion exchange column.1 LANL operates two laboratory-scale anion exchange columns, in series, to extract Pu-238 from nitric acid solutions. The Defense Nuclear Facilities Safety Board has requested an updated analysis to calculate maximum temperatures for higher resin loading capacities obtained with a new formulation of the Reillex HPQ anion exchange resin. The increased resin loading capacity will not exceed 118 g plutonium per L of resin bed. Calculations were requested for normal operation of the resin bed at the minimum allowable solution feed rate of 30 mL/min and after an interruption of flow at the end of the feed stage, when one of the columns is fully loaded. The object of the analysis is to demonstrate that the decay heat from the Pu-238 will not cause resin bed temperatures to increase to a level where the resin significantly degrades. At low temperatures, resin bed temperatures increase primarily due to decay heat. At {approx}70 C a Low Temperature Exotherm (LTE) resulting from the reaction between 8-12 M HNO{sub 3} and the resin has been observed. The LTE has been attributed to an irreversible oxidation of pendant ethyl benzene groups at the termini of the resin polymer chains by nitric acid. The ethyl benzene groups are converted to benzoic acid moities. The resin can be treated to permanently remove the LTE by heating a resin suspension in 8M HNO{sub 3} for 30-45 minutes. No degradation of the resin performance is observed after the LTE removal treatment. In fact, heating the resin in boiling ({approx}115-120 C) 12 M HNO{sub 3} for 3 hr displays thermal stability analogous to resin that has been treated to remove the LTE. The analysis is based on a previous study of the SRS Frames Waste Recovery (FWR) column, performed in support of the Pu-238 production campaign for NASA's Cassini mission. In that study, temperature transients

  1. Application of the new thermodynamic approach to the description of superequivalent sorption by ion exchangers

    NASA Astrophysics Data System (ADS)

    Khokhlova, O. N.

    2014-08-01

    Using the example of sorption systems with the participation of amino acids, it is shown that the novel thermodynamic approach to describing superequivalent sorption as a combination of ion exchange and nonexchangeable absorption allows us to adequately describe such equilibria. Results from calculating the activity coefficients of components of a sorbent phase and the thermodynamic constants of ion exchange equilibrium and the superequivalent absorption of phenylalanine by AV-17-8 anion exchange resin are presented.

  2. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    NASA Astrophysics Data System (ADS)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  3. Ion chromatographic separation of inorganic ions using a combination of hydrophilic interaction chromatographic column and cation-exchange resin column.

    PubMed

    Arai, Kaori; Mori, Masanobu; Hironaga, Takahiro; Itabashi, Hideyuki; Tanaka, Kazuhiko

    2012-04-01

    A combination of hydrophilic interaction chromatographic (HILIC) column and a weakly acidic cation-exchange resin (WCX) column was used for simultaneous separation of inorganic anions and cations by ion chromatography (IC). Firstly, the capability of HILIC column for the separation of analyte ions was evaluated under acidic eluent conditions. The columns used were SeQuant ZIC-HILIC (ZIC-HILIC) with a sulfobetaine-zwitterion stationary phase (ZIC-HILIC) and Acclaim HILIC-10 with a diol stationary phase (HILIC-10). When using tartaric acid as the eluent, the HILIC columns indicated strong retentions for anions, based on ion-pair interaction. Especially, HILIC-10 could strongly retain anions compared with ZIC-HILIC. The selectivity for analyte anions of HILIC-10 with 5 mmol/L tartaric acid eluent was in the order of I(-) > NO3(-) > Br(-) > Cl(-) > H2PO4(-). However, since HILIC-10 could not separate analyte cations, a WCX column (TSKgel Super IC-A/C) was connected after the HILIC column in series. The combination column system of HILIC and WCX columns could successfully separate ten ions (Na+, NH4+, K+, Mg2+, Ca2+, H2PO4(-), Cl(-), Br(-), NO3(-) and I(-)) with elution of 4 mmol/L tartaric acid plus 8 mmol/L 18-crown-6. The relative standard deviations (RSDs) of analyte ions by the system were in the ranges of 0.02% - 0.05% in retention times and 0.18% - 5.3% in peak areas through three-time successive injections. The limits of detection at signal-to-noise ratio of 3 were 0.24 - 0.30 micromol/L for the cations and 0.31 - 1.2 micromol/L for the anions. This system was applied for the simultaneous determination of the cations and the anions in a vegetable juice sample with satisfactory results. PMID:22799200

  4. THERMAL MODELING OF ION EXCHANGE COLUMNS WITH SPHERICAL RF RESIN

    SciTech Connect

    Lee, S.; King, W.

    2009-12-30

    Models have been developed to simulate the thermal performance of RF columns fully loaded with radioactive cesium. Temperature distributions and maximum temperatures across the column were calculated during Small Column Ion Exchange (SCIX) process upset conditions with a focus on implementation at Hanford. A two-dimensional computational modeling approach was taken to include conservative, bounding estimates for key parameters such that the results will provide the maximum centerline temperatures achievable under the design configurations using a feed composition known to promote high cesium loading on RF. The current full-scale design for the SCIX system includes a central cooling tube, and one objective of these calculations was to examine its elimination to simplify the design. Results confirmed that a column design without a central cooling tube is feasible for RF, allowing for the possibility of significant design simplifications if it can be assumed that the columns are always filled with liquid. With active cooling through the four outer tubes, the maximum column diameter expected to maintain the temperature below the assumed media and safety limits is 26 inches, which is comparable to the current design diameter. Additional analysis was conducted to predict the maximum column temperatures for the previously unevaluated accident scenario involving inadvertent drainage of liquid from a cesium-saturated column, with retention of the ion exchange media and cesium in the column. As expected, much higher maximum temperatures are observed in this case due to the poor heat transfer properties of air versus liquid. For this hypothetical accident scenario involving inadvertent and complete drainage of liquid from a cesium-saturated column, the modeling results indicate that the maximum temperature within a 28 inch diameter RF column with external cooling is expected to exceed 250 C within 2 days, while the maximum temperature of a 12 inch column is maintained below

  5. The effect of electron beam irradiation on silver-sodium ion exchange in silicate glasses

    NASA Astrophysics Data System (ADS)

    Sidorov, Alexander I.; Prosnikov, Mikhail A.

    2016-04-01

    It is shown experimentally that electron irradiation of sodium-silicate glasses makes possible the control of the subsequent ion exchange Ag+ ↔ Na+ process in a salt melt. The reason of this effect is the negatively charged regions formation in a glass volume during electron irradiation. The electric field, produced by these regions in glass volume, results in positive Na+ ions field migration into them. The spatial redistribution of Na+ ions results in the decrease of the ion exchange efficiency, or the ion exchange can be even blocked. This led to the decrease of the luminescence intensity of neutral silver molecular clusters in the irradiated zone, and effect on the silver nanoparticles formation during the subsequent thermal treatment. The observed effects can be used for the control of ion exchange processes during integrated optics devices fabrication, and for the electron-beam recording of optical information.

  6. Ion Exchange Technology Development in Support of the Urine Processor Assembly

    NASA Technical Reports Server (NTRS)

    Mitchell, Julie; Broyan, James; Pickering, Karen

    2013-01-01

    exchange resins has demonstrated that the most effective implementation for an ion exchange resin is a cartridge, or column, in which the resin is contained. Based on the results of equilibrium and sub-scale dynamic column testing, a possible solution for mitigating the calcium precipitation issue on the ISS has been identified. From an original pool of 13 ion exchange resins, two candidates have been identified that demonstrate substantial calcium removal on the sub-scale. The dramatic reduction in resin performance from published calcium uptake demonstrates the need for thorough evaluation of resins at the low pH and strong oxidizing environment present in the UPA. Chemical variations in the influent (calcium concentrations and pretreatment dosing) appear to have a noticeable impact on the calcium capacity of the resin. Low calcium concentrations and high pretreatment dosing will likely result in a decrease in calcium capacity. Conversely, low pre trea t - ment dosing will likely result in an increase in calcium capacity. In contrast, investigations at a variety of flow rates, length-to-diameter ratios, resin volumes, and flow regimes (continuous versus pulsed) show that changes in physical parameters do not have substantial impacts on resin performance in the very low specific velocity ranges of interest. This result is particularly useful because most commercial applications at higher specific velocities do show a relatively strong relationship between flow and capacity. The lack of a strong relationship will allow more flexibility in the implementation of an ion exchange bed for flight. Verification of subscale tests with flight-scale resin beds is recommended prior to implementation in the on-orbit UPA.

  7. Lead Removal From Synthetic Leachate Matrices by a Novel Ion-Exchange Material

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W., Jr.; Hovanitz, Edward S.; Chi, Sulan

    2002-01-01

    This report discusses the application of a novel polyacrylate-based ion-exchange material (IEM) for the removal of lead (Pb) ions from water. Preliminary testing includes the establishment of the operating pH range, capacity information, and the effect of calcium and anions in the matrix. Batch testing with powder indicates slightly different optimal operational conditions from those used for column testing. The ion exchanger is excellent for removing lead from aqueous solutions.

  8. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    PubMed

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads. PMID:20462180

  9. Ion-exchange and hydrophobic interactions affecting selectivity for neutral and charged solutes on three structurally similar agglomerated ion-exchange and mixed-mode stationary phases.

    PubMed

    Kazarian, Artaches A; Taylor, Mark R; Haddad, Paul R; Nesterenko, Pavel N; Paull, Brett

    2013-11-25

    The nature and extent of mixed-mode retention mechanisms evident for three structurally related, agglomerated, particle-based stationary phases were evaluated. These three agglomerated phases were Thermo Fisher ScientificIon PacAS11-HC - strong anion exchange, Thermo Fisher Scientific IonPac CS10--strong cation-exchange PS-DVB, and the Thermo Fisher Scientific Acclaim Trinity P1silica-based substrate, which is commercially marketed as a mixed-mode stationary phase. All studied phases can exhibit zwitterionic and hydrophobic properties, which contribute to the retention of charged organic analytes. A systematic approach was devised to investigate the relative ion-exchange capacities and hydrophobicities for each of the three phases, together with the effect of eluent pH upon selectivity, using a specifically selected range of anionic, cationic and neutral aromatic compounds. Investigation of the strong anion-exchange column and the Trinity P1 mixed-mode substrate, in relation to ion-exchange capacity and pH effects, demonstrated similar retention behaviour for both the anionic and ampholytic solutes, as expected from the structurally related phases. Further evaluation revealed that the ion-exchange selectivity of the mixed-mode phase exhibited properties similar to that of the strong anion-exchange column, with secondary cation-exchange selectivity, albeit with medium to high anion-exchange and cation-exchange capacities, allowing selective retention for each of the anionic, cationic and ampholytic solutes. Observed mixed-mode retention upon the examined phases was found to be a sum of anion- and cation-exchange interactions, secondary ion-exchange and hydrophobic interactions, with possible additional hydrogen bonding. Hydrophobic evaluation of the three phases revealed logP values of 0.38-0.48, suggesting low to medium hydrophobicity. These stationary phases were also benchmarked against traditional reversed-phase substrates namely, octadecylsilica YMC-Pac Pro C18

  10. Multivariate analysis of Ion Beam Induced Luminescence spectra of irradiated silver ion-exchanged silicate glasses

    NASA Astrophysics Data System (ADS)

    Valotto, Gabrio; Quaranta, Alberto; Cattaruzza, Elti; Gonella, Francesco; Rampazzo, Giancarlo

    A multivariate analysis is used for the identification of the spectral features in Ion Beam Induced Luminescence (IBIL) spectra of soda-lime silicate glasses doped with silver by Ag+-Na+ ion exchange. Both Principal Component Analysis and multivariate analysis were used to characterize time-evolving IBIL spectra of Ag-doped glasses, by means of the identification of the number and of the wavelength positions of the main luminescent features and the study of their evolution during irradiation. This method helps to identify the spectral features of the samples spectra, even when partially overlapped or less intense. This analysis procedure does not require additional input such as the number of peaks.

  11. Multivariate analysis of Ion Beam Induced Luminescence spectra of irradiated silver ion-exchanged silicate glasses.

    PubMed

    Valotto, Gabrio; Quaranta, Alberto; Cattaruzza, Elti; Gonella, Francesco; Rampazzo, Giancarlo

    2012-09-01

    A multivariate analysis is used for the identification of the spectral features in Ion Beam Induced Luminescence (IBIL) spectra of soda-lime silicate glasses doped with silver by Ag(+)-Na(+) ion exchange. Both Principal Component Analysis and multivariate analysis were used to characterize time-evolving IBIL spectra of Ag-doped glasses, by means of the identification of the number and of the wavelength positions of the main luminescent features and the study of their evolution during irradiation. This method helps to identify the spectral features of the samples spectra, even when partially overlapped or less intense. This analysis procedure does not require additional input such as the number of peaks. PMID:22571943

  12. Ion Exchange Resin and Clay Vitrification by Plasma Discharges

    NASA Astrophysics Data System (ADS)

    Díaz A., Laura V.; Pacheco S., Joel O.; Pacheco P., Marquidia; Monroy G., Fabiola; Emeterio H., Miguel; Ramos F., Fidel

    2006-12-01

    The lack of treatment of a low and intermediate level radioactive waste (LILRW) lead us to propose a vitrification process based on a plasma discharge; this technique incorporates LILRW into a matrix glass composed of ceramic clays material. The Mexican Institute of Nuclear Research (ININ), uses an ion exchange resin IRN 150 (styrene-divinilbence copolymer) in the TRIGA MARK III nuclear reactor. The principal objective of this resin is to absorb particles containing heavy metals and low-level radioactive particles. Once the IRN 150 resin filter capacity has been exceeded, it should be replaced and treated as LILRW. In this work, a transferred plasma system was realized to vitrify this resin taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures. In order to characterize the morphological structure of these clay samples, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Thermogravimetric analysis (TGA) techniques were applied before and after the plasma treatment.

  13. Ion Exchange Resin and Clay Vitrification by Plasma Discharges

    SciTech Connect

    Diaz A, Laura V.

    2006-12-04

    The lack of treatment of a low and intermediate level radioactive waste (LILRW) lead us to propose a vitrification process based on a plasma discharge; this technique incorporates LILRW into a matrix glass composed of ceramic clays material. The Mexican Institute of Nuclear Research (ININ), uses an ion exchange resin IRN 150 (styrene-divinilbence copolymer) in the TRIGA MARK III nuclear reactor. The principal objective of this resin is to absorb particles containing heavy metals and low-level radioactive particles. Once the IRN 150 resin filter capacity has been exceeded, it should be replaced and treated as LILRW. In this work, a transferred plasma system was realized to vitrify this resin taking advantage of its high power density, enthalpy and chemical reactivity as well as its rapid quenching and high operation temperatures. In order to characterize the morphological structure of these clay samples, Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Thermogravimetric analysis (TGA) techniques were applied before and after the plasma treatment.

  14. Nondiffusive mechanisms enhance protein uptake rates in ion exchange particles

    PubMed Central

    Dziennik, S. R.; Belcher, E. B.; Barker, G. A.; DeBergalis, M. J.; Fernandez, S. E.; Lenhoff, A. M.

    2003-01-01

    Scanning confocal fluorescence microscopy and multiphoton fluorescence microscopy were used to image the uptake of the protein lysozyme into individual ion exchange chromatography particles in a packed bed in real time. Self-sharpening concentration fronts penetrating into the particles were observed at low salt concentrations in all of the adsorbents studied, but persisted to 100 mM ionic strength only in some materials. In other adsorbents, diffuse profiles were seen at these higher salt concentrations, with the transition region exhibiting a pronounced fluorescence peak at the front at intermediate salt concentrations. These patterns in the uptake profiles are accompanied by significant increases in protein uptake rates that are also seen macroscopically in batch uptake experiments. The fluorescence peak appears to be a concentration overshoot that may develop, in part, from an electrokinetic contribution to transport that also enhances the uptake rate. Further evidence for an electrokinetic origin is that the effect is correlated with high adsorbent surface charge densities. Predictions of a mathematical model incorporating the electrokinetic effect are in qualitative agreement with the observations. These findings indicate that mechanisms other than diffusion contribute to protein transport in oppositely charged porous materials and may be exploited to achieve rapid uptake in process chromatography. PMID:12522150

  15. Synthesis, properties and structure of ion exchanged hydrosodalite

    NASA Astrophysics Data System (ADS)

    Kendrick, Emma; Dann, Sandra

    2004-04-01

    Alkali metal and alkali-earth metal hydrosodalites with the formula M6[AlSiO 4] 6·8H 2O ( M=Li, Na, K, Mg, Ca, Sr) have been prepared by ion exchange of Na 6[AlSiO 4] 6·8H 2O using a solution of the appropriate metal nitrate solution under reflux for a period of 24 h. The starting materials and products were characterized using a combination of techniques including IR, DSC, TGA, ICP, AA, MASNMR and X-ray diffraction. The alkali metal and alkali-earth metal hydrosodalites crystallize with the primitive cubic sodalite unit cell and an ordered AlO 4/SiO 4 framework in the space group P 4¯3n with cell parameters lying between 8.8 and 9.2 Å. The structures of these materials have been refined using powder X-ray diffraction data in order to delineate structural changes as a function of the occluded cation. Temperature-dependent powder X-ray diffraction has been used to observe changes in the structure as a function of temperature. Results from the DSC and TGA analysis show that the temperature at which water is lost from the β cages is a two-stage process. In the second stage, the temperature rises as the size of occluded cation increases, implying that the presence of a larger cation in the six-ring window blocks the path of the exiting water molecules.

  16. Crystalline Silicotitanate Ion Exchange Support for Salt-Alternatives

    SciTech Connect

    Fondeur, F.F.

    2001-02-23

    The current version of crystalline silicotitanate (TAM5) is commercially available from UOP under the trade name IONSIV IE-911. TAM5 was extensively tested by several researchers and was determined as the best currently available material for removing radioisotopes from various types of nuclear wastes salt solutions stored at various DOE sites. The studies at Savannah River Technology Center (SRTC) indicated that the CST granules tend to leach into the nuclear waste simulants as it is processed by the ion exchange columns that is packed with CST granules from UOP. We, at Texas A and M University, agreed to conduct research to compliment the efforts at SRTC so that IONSIV IE-911 could be used for the treatment of nuclear waste stored at the DOE Savannah River facility. After consultation, we developed a Task Plan in January 2000. According to the agreement between Westinghouse Savannah River Company, Savannah River Technology Center, Aiken SC 29808 and, College Station, TX 77843, synthesis and the performance evaluations of crystalline silicotitanates (CST) were performed the during period of April 1 - September 30, 2000. Our main goals were delivery of a kilogram of CST (TAM5-4) synthesized at Texas A and M University in July to SRTC, performance evaluation of CST in nuclear waste simulants, and consultation mainly by telephone.

  17. Porous metal oxide microspheres from ion exchange resin

    NASA Astrophysics Data System (ADS)

    Picart, S.; Parant, P.; Caisso, M.; Remy, E.; Mokhtari, H.; Jobelin, I.; Bayle, J. P.; Martin, C. L.; Blanchart, P.; Ayral, A.; Delahaye, T.

    2015-07-01

    This study is devoted to the synthesis and the characterization of porous metal oxide microsphere from metal loaded ion exchange resin. Their application concerns the fabrication of uranium-americium oxide pellets using the powder-free process called Calcined Resin Microsphere Pelletization (CRMP). Those mixed oxide ceramics are one of the materials envisaged for americium transmutation in sodium fast neutron reactors. The advantage of such microsphere precursor compared to classical oxide powder is the diminution of the risk of fine dissemination which can be critical for the handling of highly radioactive powders such as americium based oxides and the improvement of flowability for the filling of compaction chamber. Those millimetric oxide microspheres incorporating uranium and americium were synthesized and characterizations showed a very porous microstructure very brittle in nature which occurred to be adapted to shaping by compaction. Studies allowed to determine an optimal heat treatment with calcination temperature comprised between 700-800 °C and temperature rate lower than 2 °C/min. Oxide Precursors were die-pressed into pellets and then sintered under air to form regular ceramic pellets of 95% of theoretical density (TD) and of homogeneous microstructure. This study validated thus the scientific feasibility of the CRMP process to prepare bearing americium target in a powder free manner.

  18. Fast ion charge exchange spectroscopy adapted for tangential viewing geometry in LHD

    SciTech Connect

    Ito, T.; Osakabe, M.; Ida, K.; Yoshinuma, M.; Kobayashi, M.; Goto, M.; Isobe, M.; Toi, K.; Takeiri, Y.; Okamura, S.; Murakami, S.; Kobayashi, S.; Ogawa, K.

    2010-10-15

    A tangential Fast Ion Charge eXchange Spectroscopy is newly applied on a Large Helical Device (LHD) for co/countercirculating fast ions, which are produced by high energy tangential negative-ion based neutral beam injection. With this new observation geometry, both the tangential-neutral beam (NB) and a low-energy radial-NB based on positive ions can be utilized as probe beams of the measurement. We have successfully observed Doppler-shifted H-alpha lights due to the charge exchange process between the probing NB and circulating hydrogen ions of around 100 keV in LHD plasmas.

  19. Selectivity of ion exchangers in extracting cesium and rubidium from alkaline solutions

    NASA Astrophysics Data System (ADS)

    Shelkovnikova, L. A.; Kargov, S. I.; Gavlina, O. T.; Ivanov, V. A.; Al'tshuler, G. N.

    2013-01-01

    We compare the ion exchange selectivity of phenol-type sorbents based on phenol formaldehyde resins, products of condensation of diatomic phenols with formaldehyde, and crosslinked polymer based on C-phenyl[4]resorcinarene resin, for cesium and rubidium ions. It is shown that phenol formaldehyde sorbents are the ones most selective. The interaction of alkali metal cations with the anion of calix[4]arene is investigated via quantum-chemical modeling. It is shown that the selectivity toward cesium and rubidium ions in ion exchangers of the phenolic type is not due to specific interactions of ions with phenolic groups.

  20. Simulation and Observation of Global Variations in Surface Exchange and Atmospheric Mixing Ratios of CO2

    NASA Astrophysics Data System (ADS)

    Denning, A.; Conner-Gausepohl, S.; Kawa, S.; Baker, I. T.; Zhu, Z.; Brown, M.; Vay, S.; Wofsy, S. C.; Philpott, A.; Collatz, G.; Schaefer, K.; Kleist, J.

    2005-12-01

    We have performed a simulation of hourly variations of terrestrial surface fluxes and the atmospheric mixing ratio of carbon dioxide from January 1, 2000 through December 31, 2004, and have evaluated the simulation by comparison to a number of observations. Terrestrial photosynthesis and ecosystem respiration were computed using the Simple Biosphere Model (SiB), driven by diurnally-varying weather analyzed by the NASA Goddard Earth Observing System (GEOS) Data Assimilation System (DAS), with vegetation parameters specified using imagery from the NOAA Advanced High Resolution Radiometer (AVHRR). CO2 emissions due to the combustion of fossil fuel and to air-sea gas exchange were also prescribed as boundary forcing to the atmospheric transport Parameterized Chemical Transport model (PCTM). Preliminary results showed reasonable agreement with spatial and synoptic variations, but suffered from a systematic offset with respect to the observed seasonal cycle of CO2 at many flask observing stations. Subsequent analysis showed that these problems were traceable to temporal interpolation of the satellite vegetation imagery and the treatment of leaf-to-canopy scaling in SiB, which have both been substantially revised as a result of these analyses. Comparisons to eddy covariance data at several sites, to tower-based continuous observations of CO2 mixing ratio, and to data collected by airborne sampling show that the coupled simulation successfully captures many features of the observed temporal and spatial variations of terrestrial surface exchange and atmospheric transport of CO2. The simulations demonstrate the sensitivity of both surface exchange and atmospheric transport of CO2 to synoptic weather events in middle latitudes, and suggest that high-frequency variations in continental [CO2] data can be interpreted in terms of surface flux anomalies.

  1. Stabilization of copper nanoparticles with volume- and surface-distribution inside ion-exchange matrices

    NASA Astrophysics Data System (ADS)

    Kravchenko, T. A.; Sakardina, E. A.; Kalinichev, A. I.; Zolotukhina, E. V.

    2015-09-01

    Nanocomposites characterized by the surface and volume distributions of deposited copper nanoparticles are obtained via the chemical deposition of copper onto sulfonic acid and carboxylic cation exchanger and strongly basic anion exchanger matrices. The electrode behavior of the synthesized composites in CuSO4 solution is studied by open-circuit chronopotentiometry. The effect the nature of the fixed centers of the ion-exchange matrix has on the initial state of metallic particles and the processes that occur in solutions of their metal ions is established from the deviation of the nanocomposites' electrode potential from the potential of a compact electrode and the nature of its change over time. It is shown that the mechanism behind the interaction of the matrix and metal ions (ion exchange, non-exchange absorption, complexation) determines not only the initial size and distribution of metal particles, but also the rate at which they achieve aggregative stability.

  2. Use of petroleum reside for production of ion exchangers

    SciTech Connect

    Pokonova, Y.V.

    1995-03-10

    Weakly acidic commercial cation exchangers with a static exchange capacity of 4.8-6.7 meq{center_dot}{sup -1} and a mechanical strength of 90% have been synthesized from petroleum asphaltites, resorcinol, and furfural.

  3. Treatment technology for transuranic waste streams: Cementation, vitrification, and incineration testing for the treatment of spent ion exchange media

    SciTech Connect

    Place, B.G.

    1992-04-01

    This document reports the results of testing of spent ion exchange media pretreatment technologies. Emphasis of the testing activities has been on screening pretreatment technologies, such as drying and emulsification, which are compatible with vitrification, cementation, and incineration. Ion exchange media tested for cementation and incineration pretreatment technologies were typical organic ion exchange resins and inorganic zeolites. The ion exchange medium tested for vitrification pretreatment technologies was inorganic zeolite. The results of testing activities are discussed in detail in this report.

  4. Charge-exchange plasma environment for an ion drive spacecraft

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Carruth, M. R., Jr.

    1981-01-01

    A model was reviewed which describes the propagation of the mercury charge-exchange plasma and extended to describe the flow of the molybdenum component of the charge-exchange plasma. The uncertainties in the models for various conditions are discussed. Such topics as current drain to the solar array, charge-exchange plasma material deposition, and the effects of space plasma on the charge-exchange plasma propagation are addressed.

  5. Cement waste-form development for ion-exchange resins at the Rocky Flats Plant

    SciTech Connect

    Veazey, G.W.; Ames, R.L.

    1997-03-01

    This report describes the development of a cement waste form to stabilize ion-exchange resins at Rocky Flats Environmental Technology Site (RFETS). These resins have an elevated potential for ignition due to inadequate wetness and contact with nitrates. The work focused on the preparation and performance evaluation of several Portland cement/resin formulations. The performance standards were chosen to address Waste Isolation Pilot Plant and Environmental Protection Agency Resource Conservation and Recovery Act requirements, compatibility with Rocky Flats equipment, and throughput efficiency. The work was performed with surrogate gel-type Dowex cation- and anion-exchange resins chosen to be representative of the resin inventory at RFETS. Work was initiated with nonactinide resins to establish formulation ranges that would meet performance standards. Results were then verified and refined with actinide-containing resins. The final recommended formulation that passed all performance standards was determined to be a cement/water/resin (C/W/R) wt % ratio of 63/27/10 at a pH of 9 to 12. The recommendations include the acceptable compositional ranges for each component of the C/W/R ratio. Also included in this report are a recommended procedure, an equipment list, and observations/suggestions for implementation at RFETS. In addition, information is included that explains why denitration of the resin is unnecessary for stabilizing its ignitability potential.

  6. Adsorbents/ion exchangers-PVA blend membranes: Preparation, characterization and performance for the removal of Zn2+ by electrodialysis

    NASA Astrophysics Data System (ADS)

    Caprarescu, Simona; Radu, Anita-Laura; Purcar, Violeta; Ianchis, Raluca; Sarbu, Andrei; Ghiurea, Marius; Nicolae, Cristian; Modrogan, Cristina; Vaireanu, Danut-Ionel; Périchaud, Alain; Ebrasu, Daniela-Ion

    2015-02-01

    The present paper was aimed at studying the possibility of zinc (Zn) removal from the wastewater discharged from zinc electroplating processes. In order to save industrial and environmental resources, the concentrated solution could be reused after electrodialysis process. A mini-electrodialysis system with three cylindrical compartments and different membranes containing various resins (Purolite A500 and Hypersol-Macronet MN500) was employed, which can be further applied for the treatment of synthetic effluent which contained zinc ions. The electrodialysis system was operated at constant voltage using different concentrations of synthetic solutions of zinc ions, without and with electrolyte recirculation for 1.5 h. The pH and conductivity of solutions were measured before and after the electrodialysis process occurs. Also the removal ratio (Rr) and mass flow (J) of zinc ions, energy consumption (EC) and current efficiency (CE) were determined. It was found that electrodialysis treatment generated a very low conductivity solution, enabling its reuse as rinse water. According to the obtained results when using a membrane pair with higher ion exchange capacity (IEC) the removal ratio is improved (over 80%). The physico-chemical, structural and mechanical properties of prepared membranes were registered, before and after electrodialysis process takes place, by means of complementary analytical techniques, namely, ion-exchange capacity, water content and thickness measurements. Furthermore analysis were also carried out by Fourier transform infrared spectroscopy (FT-IR), environmental scanning electron microscopy (ESEM), thermal gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS).

  7. Cation immobilization in pyrolyzed simulated spent ion exchange resins

    NASA Astrophysics Data System (ADS)

    Luca, Vittorio; Bianchi, Hugo L.; Manzini, Alberto C.

    2012-05-01

    Significant quantities of spent ion exchange resins that are contaminated by an assortment of radioactive elements are produced by the nuclear industry each year. The baseline technology for the conditioning of these spent resins is encapsulation in ordinary Portland cement which has various shortcomings none the least of which is the relatively low loading of resin in the cement and the poor immobilization of highly mobile elements such as cesium. The present study was conducted with cationic resin samples (Lewatit S100) loaded with Cs+, Sr2+, Co2+, Ni2+ in roughly equimolar proportions at levels at or below 30% of the total cation exchange capacity. Low temperature thermal treatment of the resins was conducted in inert (Ar), or reducing (CH4) gas atmospheres, or supercritical ethanol to convert the hydrated polymeric resin beads into carbonaceous materials that contained no water. This pyrolytic treatment resulted in at least a 50% volume reduction to give mechanically robust spherical materials. Scanning electron microscope investigations of cross-sections of the beads combined with energy dispersive analysis showed that initially all elements were uniformly distributed through the resin matrix but that at higher temperatures the distribution of Cs became inhomogeneous. Although Cs was found in the entire cross-section, a significant proportion of the Cs occurred within internal rings while a proportion migrated toward the outer surfaces to form a crustal deposit. Leaching experiments conducted in water at 25 °C showed that the divalent contaminant elements were very difficult to leach from the beads heated in inert atmospheres in the range 200-600 °C. Cumulative fractional loses of the order of 0.001 were observed for these divalent elements for temperatures below 500 °C. Regardless of the processing temperature, the cumulative fractional loss of Cs in water at 25 °C reached a plateau or steady-state within the first 24 h increasing only marginally up 120 h

  8. Modeling ion exchange in clinoptilolite using the EQ3/6 geochemical modeling code

    SciTech Connect

    Viani, B.E.; Bruton, C.J.

    1992-06-01

    Assessing the suitability of Yucca Mtn., NV as a potential repository for high-level nuclear waste requires the means to simulate ion-exchange behavior of zeolites. Vanselow and Gapon convention cation-exchange models have been added to geochemical modeling codes EQ3NR/EQ6, allowing exchange to be modeled for up to three exchangers or a single exchanger with three independent sites. Solid-solution models that are numerically equivalent to the ion-exchange models were derived and also implemented in the code. The Gapon model is inconsistent with experimental adsorption isotherms of trace components in clinoptilolite. A one-site Vanselow model can describe adsorption of Cs or Sr on clinoptilolite, but a two-site Vanselow exchange model is necessary to describe K contents of natural clinoptilolites.

  9. Ion exchange in the atomic energy industry with particular reference to actinide and fission product separation

    SciTech Connect

    Jenkins, I.L.

    1984-01-01

    Reviewed are some of the uses of ion exchange processes used by the nuclear industry for the period April, 1978 to April, 1983. The topics dealt with are: thorium, protactinium, uranium, neptunium, plutonium, americium, cesium and actinide-lanthanide separations; the higher actinides - Cm, Bk, Cf, Es and Fm; fission products; ion exchange in the geological disposal of radioactive waste. Consideration is given to safety in the use of ion exchangers and in safe methods of disposal of such materials. Full scale and pilot plant process descriptions are included as well as summaries of laboratory studies. 130 references.

  10. ION-EXCHANGE METHOD FOR SEPARATING RADIUM FROM RADIUM-BARIUM MIXTURES

    DOEpatents

    Fuentevilla, M.E.

    1959-06-30

    An improved process is presented for separating radium from an aqueous feed solution containing radium and barium values and a complexing agent for these metals. In this process a feed solutlon containing radium and barium ions and a complexing agent for said ions ls cycled through an exchange zone in resins. The radiumenriched resin is then stripped of radium values to form a regeneration liquid, a portion of which is collected as an enriched product, the remaining portion being recycled to the exchange zone to further enrich the ion exchange resin in radium.

  11. Separation of Molybdenum-Uranium by a Process Combining Ion Exchange Resin and Membranes

    NASA Astrophysics Data System (ADS)

    Lounis, A.; Setti, L.; Djennane, A.; Melikchi, R.

    The purpose of this study is to determine whether the electrodeionization with ion-exchange resin is suitable for removing uranium from a solution containing molybdenum. A hybrid process combining ion exchange (resins and membranes) using electric current. For this electroextraction process, the cation exchange resin is introduced into an electrodialysis cell and compressed between two cations exchange membranes. We have investigated a continuous electroextraction process. As important result we note that: The factor of selectivity,r, for molybdenum versus uranium is superior to 3; the concentration in radio active element (U3O8) is lower than 1.5 mg L-1 and small cell voltage is observed.

  12. Ion exhange and molecular sorption of oxalic acid with a highly basic anion exchanger

    NASA Astrophysics Data System (ADS)

    Krisilova, E. V.; Oros, G. Yu.; Krisilov, A. V.; Selemenev, V. F.

    2014-04-01

    Ab initio modeling of a matrix fragment of resin and geometry optimization of the molecular structure of oxalic acid were performed. The isotherm of oxalic acid sorption with AV-17-8 anion exchange resin was obtained by the variable concentrations technique. The ion-exchange and molecular components of sorbate fixation with the ion exchanger were determined. The hydration of the highly basic anion exchanger that absorbed different quantities of dicarboxylic acid was evaluated by the centrifuging method. The dependence of the amount of water and sorbate concentration in the resin was linear antibatic.

  13. Growth Rate of Calcite Steps as a Function of Aqueous Calcium-to-Carbonate Ratio: Independent Attachment and Detachment of Calcium and Carbonate Ions

    SciTech Connect

    Stack, Andrew G; Grantham, Ms. Meg

    2010-01-01

    Growth rates of monolayer-height steps on the {1014} calcite surface have been measured as a function of the aqueous calcium-to-carbonate ratio. The maximum growth rates of the two common crystallographic orientations were found to deviate from the ideal stoichiometric ratio of 1:1, and dissolution features were observed under supersaturated solutions containing high calcium-to-carbonate ratios. To explain these phenomena, a theory is applied that treats the rates of attachment and detachment of aqueous calcium and carbonate ions separately. The resultant attachment rate constants are 1-3 orders of magnitude smaller than the water exchange rate of the constituent aqueous ions, suggesting that ligand-exchange processes may directly drive attachment. The broader implication is that the saturation state alone is not adequate to fully describe the rates of the multiple, independent reactions that occur on mineral surfaces under these conditions.

  14. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  15. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato

    2001-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  16. Vitrification of ion exchange materials. Innovative technology summary report

    SciTech Connect

    Not Available

    1999-07-01

    Ion exchange is a process that safely and efficiently removes radionuclides from tank waste. Cesium and strontium account for a large portion of the radioactivity in waste streams from US Department of Energy (DOE) weapons production. Crystalline silicotitanate (CST) is an inorganic sorbent that strongly binds cesium, strontium, and several other radionuclides. Developed jointly by Sandia National Laboratory and Texas A and M University, CST was commercialized through a cooperative research and development agreement with an industrial partner. Both an engineered (mesh pellets) and powdered forms are commercially available. Cesium removal is a baseline in HLW treatment processing. CST is very effective at removing cesium from HLW streams and is being considered for adoption at several sites. However, CST is nonregenerable, and it presents a significant secondary waste problem. Treatment options include vitrification of the CST, vitrification of the CST coupled with HLW, direct disposal, and low-temperature processes such as grouting. The work presented in this report demonstrates that it is effective to immobilize CST using a baseline technology such as vitrification. Vitrification produces a durable waste form. CST vitrification was not demonstrated before 1996. In FY97, acceptable glass formulations were developed using cesium-loaded CST obtained from treating supernatants from Oak Ridge Reservation (ORR) tanks, and the CST was vitrified in a research melter at the Savannah River Technology Center (SRTC). In FY98, SRS decided to reevaluate the use of in-tank precipitation using tetraphenylborate to remove cesium from tank supernatant and to consider other options for cesium removal, including CST. Hanford and Idaho National Engineering and Environmental Laboratory also require radionuclide removal in their baseline flowsheets.

  17. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis.

    PubMed

    Guttman, Miklos; Wales, Thomas E; Whittington, Dale; Engen, John R; Brown, Jeffery M; Lee, Kelly K

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra. Graphical Abstract ᅟ. PMID:26810432

  18. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis

    NASA Astrophysics Data System (ADS)

    Guttman, Miklos; Wales, Thomas E.; Whittington, Dale; Engen, John R.; Brown, Jeffery M.; Lee, Kelly K.

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra.

  19. Changes of Respiratory Exchange Ratio in Children and Adolescents: A Longitudinal Study.

    PubMed

    Jelec, Zeljko; Matković, Branka R; Lebo, Ana; Jelec, Drazen; Matković, Andro

    2015-09-01

    We conducted a longitudinal study to examine changes in the respiratory exchange ratio (RER) during progressively increasing body exertion in children and adolescents of female sex. In this analysis we only included 23 examinees for which we had all yearly measurements from examinee's age 9 years until 18 years of age. The data were analyzed according to the chronological and biological age. According to both criteria, the highest RER values were recorded at moments of maximum exertion and they did not increase with age. We found the highest RER values were in the year of the menarche. We interpret these results as related to the effect of estrogen. The beginning of sexual development involves a gradual increase in estrogen plasma concentrations. At one point serum levels of estrogen reach a level high, enough to allow for maximum RER values, i.e. causing the optimum anaerobic capacity of the examinee. This threshold estrogen value varies between individuals. PMID:26898052

  20. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    SciTech Connect

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.; Mekky, W.

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active films (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)

  1. Salt Processing Through Ion Exchange at the Savannah River Site Selection of Exchange Media and Column Configuration - 9198

    SciTech Connect

    Spires, Renee; Punch, Timothy; McCabe, Daniel

    2009-02-11

    The Department of Energy (DOE) has developed, modeled, and tested several different ion exchange media and column designs for cesium removal. One elutable resin and one non-elutable resin were considered for this salt processing application. Deployment of non-elutable Crystalline Silicotitanate and elutable Resorcinol Formaldehyde in several different column configurations were assessed in a formal Systems Engineering Evaluation (SEE). Salt solutions were selected that would allow a grouping of non-compliant tanks to be closed. Tests were run with the elutable resin to determine compatibility with the resin configuration required for an in-tank ion exchange system. Models were run to estimate the ion exchange cycles required with the two resins in several column configurations. Material balance calculations were performed to estimate the impact on the High Level Waste (HLW) system at the Savannah River Site (SRS). Conceptual process diagrams were used to support the hazard analysis. Data from the hazard analysis was used to determine the relative impact on safety. This report will discuss the technical inputs, SEE methods, results and path forward to complete the technical maturation of ion exchange.

  2. Ion Exchange and Solvent Extraction: Supramolecular Aspects of Solvent Exchange Volume 21

    SciTech Connect

    Gloe, Karsten; Tasker, Peter A; Oshima, Tatsuya; Watarai, Hitoshi; Nilsson, Mikael

    2013-01-01

    Preface The theme of supramolecular chemistry (SC), entailing the organization of multiple species through noncovalent interactions, has permeated virtually all aspects of chemical endeavor over the past several decades. Given that the observed behavior of discrete molecular species depends upon their weak interactions with one another and with matrix components, one would have to conclude that SC must indeed form part of the fabric of chemistry itself. A vast literature now serves to categorize SC phenomena within a body of consistent terminology. The word supramolecular itself appears in the titles of dozens of books, several journals, and a dedicated encyclopedia. Not surprisingly, the theme of SC also permeates the field of solvent extraction (SX), inspiring the framework for this volume of Ion Exchange and Solvent Extraction. It is attempted in the six chapters of this volume to identify both how supramolecular behavior occurs and is studied in the context of SX and how SC is influencing the current direction of SX. Researchers and practitioners have long dealt with supramolecular interactions in SX. Indeed, the use of polar extractant molecules in nonpolar media virtually assures that aggregative interactions will dominate the solution behavior of SX. Analytical chemists working in the 1930s to the 1950s with simple mono- and bidentate chelating ligands as extractants noted that extraction of metal ions obeyed complicated mass-action equilibria involving complex stoichiometries. As chemists and engineers developed processes for nuclear and hydrometallurgical applications in the 1950s and 1960s, the preference for aliphatic diluents only enhanced the complexity and supramolecular nature of extraction chemistry. Use of physical techniques such as light scattering and vapor-pressure measurements together with various spectroscopic methods revealed organic-phase aggregates from well-defined dimers to small aggregates containing a few extractant molecules to large

  3. Experimental Findings On Minor Actinide And Lanthanide Separations Using Ion Exchange

    SciTech Connect

    Hobbs, D. T.; Shehee, T. C.; Clearfield, A.

    2013-09-17

    This project seeks to determine if inorganic or hybrid inorganic ion-exchange materials can be exploited to provide effective americium and curium separations. Specifically, we seek to understand the fundamental structural and chemical factors responsible for the selectivity of the tested ion-exchange materials for actinide and lanthanide ions. During FY13, experimental work focused in the following areas: (1) investigating methods to oxidize americium in dilute nitric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium and (2) synthesis, characterization and testing of ion-exchange materials. Ion-exchange materials tested included alkali titanates, alkali titanosilicates, carbon nanotubes and group(IV) metal phosphonates. Americium oxidation testing sought to determine the influence that other redox active components may have on the oxidation of Am(III). Experimental findings indicated that Pu(IV) is oxidized to Pu(VI) by peroxydisulfate, but there are no indications that the presence of plutonium affects the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used. Tests also explored the influence of nitrite on the oxidation of Am(III). Given the formation of Am(V) and Am(VI) in the presence of nitrite, it appears that nitrite is not a strong deterrent to the oxidation of Am(III), but may be limiting Am(VI) by quickly reducing Am(VI) to Am(V). Interestingly, additional absorbance peaks were observed in the UV-Vis spectra at 524 and 544 nm in both nitric acid and perchloric acid solutions when the peroxydisulfate was added as a solution. These peaks have not been previously observed and do not correspond to the expected peak locations for oxidized americium in solution. Additional studies are in progress to identify these unknown peaks. Three titanosilicate ion exchangers were synthesized using a microwave-accelerated reaction system (MARS�) and determined to have high

  4. Quantitative chemical exchange saturation transfer (qCEST) MRI--RF spillover effect-corrected omega plot for simultaneous determination of labile proton fraction ratio and exchange rate.

    PubMed

    Sun, Phillip Zhe; Wang, Yu; Dai, ZhuoZhi; Xiao, Gang; Wu, Renhua

    2014-01-01

    Chemical exchange saturation transfer (CEST) MRI is sensitive to dilute proteins and peptides as well as microenvironmental properties. However, the complexity of the CEST MRI effect, which varies with the labile proton content, exchange rate and experimental conditions, underscores the need for developing quantitative CEST (qCEST) analysis. Towards this goal, it has been shown that omega plot is capable of quantifying paramagnetic CEST MRI. However, the use of the omega plot is somewhat limited for diamagnetic CEST (DIACEST) MRI because it is more susceptible to direct radio frequency (RF) saturation (spillover) owing to the relatively small chemical shift. Recently, it has been found that, for dilute DIACEST agents that undergo slow to intermediate chemical exchange, the spillover effect varies little with the labile proton ratio and exchange rate. Therefore, we postulated that the omega plot analysis can be improved if RF spillover effect could be estimated and taken into account. Specifically, simulation showed that both labile proton ratio and exchange rate derived using the spillover effect-corrected omega plot were in good agreement with simulated values. In addition, the modified omega plot was confirmed experimentally, and we showed that the derived labile proton ratio increased linearly with creatine concentration (p < 0.01), with little difference in their exchange rate (p = 0.32). In summary, our study extends the conventional omega plot for quantitative analysis of DIACEST MRI. PMID:24706610

  5. Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI).

    PubMed

    Lee, Ju-Young; Seo, Seok-Jun; Yun, Sung-Hyun; Moon, Seung-Hyeon

    2011-11-01

    A noble electrode for capacitive deionization (CDI) was prepared by embedding ion exchanger onto the surface of a carbon electrode to practice membrane capacitive deionization (MCDI). Bromomethylated poly (2, 6-dimethyl-1, 4-phenylene oxide) (BPPO) was sprayed on carbon cloth followed by sulfonation and amination to form cation exchange and anion exchange layers, respectively. The ion exchange layers were examined by Scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FT-IR). The SEM image showed that the woven carbon cloth was well coated and connected with BPPO. The FT-IR spectrum revealed that sulfonic and amine functional groups were attached on the cationexchange and anionexchange electrodes, respectively. The advantages of the developed carbon electrodes have been successively demonstrated in a batch and a continuous mode CDI operations without ion exchange membranes for salt removal using 100 mg/L NaCl solution. PMID:21777933

  6. A novel electrochemical ion exchange system and its application in water treatment.

    PubMed

    Li, Yansheng; Li, Yongbin; Liu, Zhigang; Wu, Tao; Tian, Ying

    2011-06-01

    A novel electrochemical ion exchange system with porous cylinder electrodes is proposed for treatment of wastewater. This system can be used for desalination without the costly ion-exchange membrane and extra chemical reagents. Since the electrodes are completely uniform and no ion-exchange membrane was used in this system, it can be operated by switching anodes and cathodes flexibly for eliminating the scaling on the surface of electrodes. The strong base ion-exchange resin grains placed among the anode and cathode have played as supporting electrolyte, which is capable for the treatment of wastewater with low conductivity. The concentrated and neutralized anolyte containing chlorine is effective for disinfection and contaminants removal. Under the experimental conditions, the removal percentage of total dissolved salts was 83% and the removal percentage of chemical oxygen demand was 92% without consumption of extra chemical reagents. PMID:25084577

  7. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  8. Spatial distributions of scandium in granules of different ion-exchangers

    SciTech Connect

    Komarova, N.I.; Molchanova, T.V.; Rodionov, V.V.; Vodolazov, L.I.

    1992-01-20

    Scanning electron microscopy (SEM) and electron probe microanalysis (EPM) using an electron probe with high local sensitivity in nondestructive action on the sample, which is important in the analysis of ion-exchange materials, are efficient methods for physicochemical studies. SEM and EPM make it possible to study the spatial distribution of elements, characteristics of their absorption by ion-exchange materials, and establish the mechanisms of physicochemical transformations, the composition of microsections of granules, etc.. Effective ion-exchangers for extraction of scandium from sulfuric acid solutions were selected, and the characteristics of sorption absorption of scandium and the accompanying elements on these ion-exchangers were investigated by SEM and EPM. 11 refs., 2 figs.

  9. Free volume and gas permeation in ion-exchanged forms of the Nafion® membrane

    NASA Astrophysics Data System (ADS)

    Mohamed, Hamdy F. M.; Kobayashi, Y.; Kuroda, C. S.; Ohira, A.

    2010-04-01

    Variations of free volume and gas permeability of the Nafion® membrane upon ion-exchange of H+ with Cs+ or Pt2+ was studied as a function of temperature. Free volume was quantified using the positron annihilation lifetime technique. Our results showed that the free volume (VFV,Ps) of the dried membrane is enlarged by thermal expansion. It was found that the ion-exchange significantly expands the free volume and at the same time decreases the permeabilities of O2 and H2. Good linear correlations between the logarithm of permeabilities of O2 and H2 at different temperatures and 1/VFV,Ps for the ion-exchanged forms of Nafion® in the dried state suggest an important role played by the free volume in gas permeation. Considerable downward deviation of the correlations for the ion-exchanged ionomers from the H+-form suggested the importance of polymer stiffening in gas permeation.

  10. Removal of uranium, arsenic, and nitrate by continuously regenerated ion exchange process

    SciTech Connect

    Chang, D.; Awad, J.; Panahi, Z.

    1996-11-01

    Groundwater is the major source of water supply for the City of Riverside (the City). Groundwater from some of the local wells contains high levels of uranium, arsenic, and nitrate. The City is evaluating treatment technologies that can remove these contaminants, in order to be prepared to select appropriate treatment technologies when groundwater treatment is required. Treatment technologies identified by the USEPA as best available technology (BAT) for uranium and arsenic removal are coagulation/filtration, lime softening, ion exchange, and reverse osmosis. Among these technologies, ion exchange is the most cost-effective and suitable for wellhead treatment applications. Ion exchange is also effective for nitrate removal. An ion exchange pilot study was conducted for the removal of uranium, arsenic and nitrate from groundwater. This paper presents a summary of the tests results, conceptual design criteria, and preliminary cost estimate for a full-scale facility.

  11. Ion-exchange chromatography separation applied to mineral recycle in closed systems

    NASA Technical Reports Server (NTRS)

    Ballou, E.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1981-01-01

    As part of the controlled ecological life support system (CELSS) program, a study is being made of mineral separation on ion-exchange columns. The purpose of the mineral separation step is to allow minerals to be recycled from the oxidized waste products of plants, man, and animals for hydroponic food production. In the CELSS application, relatively large quantities of minerals in a broad concentration range must be recovered by the desired system, rather than the trace quantities and very low concentrations treated in analytical applications of ion-exchange chromatography. Experiments have been carried out to assess the parameters pertinent to the scale-up of ion-exchange chromatography and to determine feasibility. Preliminary conclusions are that the column scale-up is in a reasonable size range for the CELSS application. The recycling of a suitable eluent, however, remains a major challenge to the suitability of using ion exchange chromatography in closed systems.

  12. The Determination of Calcium in Dietary Supplement Tablets by Ion-Exchange.

    ERIC Educational Resources Information Center

    Dietz, Mark L.

    1986-01-01

    An experimental simple ion-exchange experiment in which the amount of calcium present in dietary supplement tablets has been developed is described and some typical student results for several brands of tablets are presented. (JN)

  13. Method of detecting defects in ion exchange membranes of electrochemical cells by chemochromic sensors

    DOEpatents

    Brooker, Robert Paul; Mohajeri, Nahid

    2016-01-05

    A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.

  14. Technology transfer: Ion exchange resins for Technetium-99 removal from X-705 raffinates

    SciTech Connect

    Deacon, L.E.; Greiner, M.J.

    1982-12-03

    An ion exchange process will be used at Portsmouth to remove Technetium-99 from uranium recovery waste solutions (raffinates). Subsequent treatment will then remove nitrates from the raffinates by a biodenitrification process prior to discharge to receiving streams to meet environmental standards for liquid wastes. Ion exchange process parameters affecting safe and efficient raffinate treatment have been examined in the laboratory, and results are described in this report. 4 refs., 3 figs., 6 tabs.

  15. Experimental Ion Exchange Column With SuperLig 639 And Simulant Formulation

    SciTech Connect

    Morse, Megan; Nash, C.

    2013-08-26

    SuperLig®639 ion exchange resin was tested as a retrieval mechanism for pertechnetate, through decontamination of a perrhenate spiked 5M Simple Average Na{sup +} Mass Based Simulant. Testing included batch contacts and a three-column ion exchange campaign. A decontamination of perrhenate exceeding 99% from the liquid feed was demonstrated. Analysis of the first formulation of a SBS/WESP simulant found unexpectedly low concentrations of soluble aluminum. Follow-on work will complete the formulation.

  16. Ion-exchange material and method of storing radioactive wastes

    DOEpatents

    Komarneni, S.; Roy, D.M.

    1983-10-31

    A new cation exchanger is a modified tobermorite containing aluminum isomorphously substituted for silicon and containing sodium or potassium. The exchanger is selective for lead, rubidium, cobalt, and cadmium and is selective for cesium over calcium or sodium. The tobermorites are compatible with cement and are useful for the long-term fixation and storage of radioactive nuclear wastes.

  17. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    SciTech Connect

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  18. Ion exchange selectivity for cross-linked polyacrylic acid

    NASA Technical Reports Server (NTRS)

    May, C. E.; Philipp, W. H.

    1983-01-01

    The ion separation factors for 21 common metal ions with cross-linked polyacrylic acid were determined as a function of pH and the percent of the cross-linked polyacrylic acid neutralized. The calcium ion was used as a reference. At a pH of 5 the decreasing order of affinity of the ions for the cross-linked polyacrylic acid was found to be: Hg++, Fe+++, Pb++, Cr+++, Cu++, Cd++, Al+++, Ag+, Zn++, Ni++, Mn++, Co++, Ca++, Sr++, Ba++, Mg++, K+, Rb+, Cs+, Na+, and Li+. Members of a chemical family exhibited similar selectivities. The Hg++ ion appeared to be about a million times more strongly bound than the alkali metal ions. The relative binding of most of the metal ions varied with pH; the very tightly and very weakly bound ions showed the largest variations with pH. The calcium ion-hydrogen ion equilibrium was perturbed very little by the presence of the other ions. The separation factors and selectivity coefficients are discussed in terms of equilibrium and thermodynamic significance.

  19. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers.

    PubMed

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar

    2016-01-01

    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials -trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems. PMID:27438837

  20. Influence of Ionic Liquids on the Selectivity of Ion Exchange-Based Polymer Membrane Sensing Layers

    PubMed Central

    Mendecki, Lukasz; Callan, Nicole; Ahern, Meghan; Schazmann, Benjamin; Radu, Aleksandar

    2016-01-01

    The applicability of ion exchange membranes is mainly defined by their permselectivity towards specific ions. For instance, the needed selectivity can be sought by modifying some of the components required for the preparation of such membranes. In this study, a new class of materials –trihexyl(tetradecyl)phosphonium based ionic liquids (ILs) were used to modify the properties of ion exchange membranes. We determined selectivity coefficients for iodide as model ion utilizing six phosphonium-based ILs and compared the selectivity with two classical plasticizers. The dielectric properties of membranes plasticized with ionic liquids and their response characteristics towards ten different anions were investigated using potentiometric and impedance measurements. In this large set of data, deviations of obtained selectivity coefficients from the well-established Hofmeister series were observed on many occasions thus indicating a multitude of applications for these ion-exchanging systems. PMID:27438837

  1. Ultrafine Na-4-mica: uptake of alkali and alkaline earth metal cations by ion exchange.

    PubMed

    Kodama, Tatsuya; Ueda, Masahito; Nakamuro, Yumiko; Shimizu, Ken-ichi; Komarneni, Sridhar

    2004-06-01

    The cation exchange properties of alkali and alkaline earth metal cations at room temperature were investigated on an ultrafine, highly charged Na-4-mica (with the ideal mica composition Na4Mg6Al4Si4O20F4.xH2O). Ultrafine mica crystallites of 200 nm in size led to faster Sr2+ uptake kinetics in comparison to larger mica crystallites. The alkali metal ion (K+, Cs+, and Li+) exchange uptake was rapid, and complete exchange occurred within 30 min. For the alkaline earth metal ions Ba2+, Ca2+, and Mg2+, however, the exchange uptake required lengthy periods from 3 days to 4 weeks to be completed, similar to its Sr uptake, as previously reported. Kinetic models of the modified Freundlich and parabolic diffusion were examined for the experimental data on the Ba2+, Ca2+, and Mg2+ uptakes. The modified Freundlich model described well the Ba2+ ion uptake kinetics as well as that for the Sr2+ ion, while for the Ca2+ and Mg2+ ions the parabolic diffusion model showed better fitting. The alkali and alkaline earth ion exchange isotherms were also determined in comparison to the Sr2+ exchange isotherm. The thermodynamic equilibria for these cations were compared by using Kielland plots evaluated from the isotherms. PMID:15984251

  2. ROTARY FILTER FINES TESTING FOR SMALL COLUMN ION EXCHANGE

    SciTech Connect

    Herman, D.

    2011-08-03

    SRNL was requested to quantify the amount of 'fines passage' through the 0.5 micron membranes currently used for the rotary microfilter (RMF). Testing was also completed to determine if there is any additional benefit to utilizing a 0.1 micron filter to reduce the amount of fines that could pass through the filter. Quantifying of the amount of fines that passed through the two sets of membranes that were tested was accomplished by analyzing the filtrate by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) for titanium. Even with preparations to isolate the titanium, all samples returned results of less than the instrument's detection limit of 0.184 mg/L. Test results show that the 0.5 micron filters produced a significantly higher flux while showing a negligible difference in filtrate clarity measured by turbidity. The first targeted deployment of the RMF is with the Small Column Ion Exchange (SCIX) at the Savannah River Site (SRS). SCIX uses crystalline silicotitanate (CST) to sorb cesium to decontaminate a clarified salt solution. The passage of fine particles through the filter membranes in sufficient quantities has the potential to impact the downstream facilities. To determine the amount of fines passage, a contract was established with SpinTek Filtration to operate a 3-disk pilot scale unit with prototypic filter disk and various feeds and two different filter disk membranes. SpinTek evaluated a set of the baseline 0.5 micron filter disks as well as a set of 0.1 micron filter disks to determine the amount of fine particles that would pass the membrane and to determine the flux each set produced. The membrane on both disk sets is manufactured by the Pall Corporation (PMM 050). Each set of disks was run with three feed combinations: prototypically ground CST, CST plus monosodium titanate (MST), and CST, MST, plus Sludge Batch 6 (SB6) simulant. Throughout the testing, samples of the filtrate were collected, measured for turbidity, and sent back

  3. CHARACTERIZATION OF CYCLED SPHERICAL RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN

    SciTech Connect

    Nash, C.; Duignan, M.

    2010-02-23

    This report presents characterization data for two spherical resorcinol-formaldehyde (sRF) resin beds that had processed cesium in non-radioactive and radioactive cycles. All column cycle operations for the resin beds including loading, displacements, elution, regeneration, breakthroughs, and solution analyses are reported in Nash and Duignan, 2009a. That report covered four ion exchange (IX) campaigns using the two {approx}11 mL beds in columns in a lead-lag arrangement. The first two campaigns used Savannah River Site (SRS) Tank 2F nonradioactive simulant while the latter two were fed with actual dissolved salt in the Savannah River National Laboratory (SRNL) Shielded Cells. Both radioactive cycles ran to cesium breakthrough of the lead column. The resin beds saw in excess of 400 bed volumes of feed in each cycle. Resin disposal plans in tank farm processing depend on characterizations of resin used with actual tank feed. Following a final 30 bed volume (BV) elution with nitric acid, the resin beds were found to contain detectable chromium, barium, boron, aluminum, iron, sodium, sulfur, plutonium, cesium, and mercury. Resin affinity for plutonium is important in criticality safety considerations. Cesium-137 was found to be less than 10E+7 dpm/g of resin, similar to past work with sRF resin. Sulfur levels are reasonably consistent with other work and are expected to represent sulfur chemistry used in the resin manufacture. There were low but detectable levels of technetium, americium, and curium. Toxicity Characteristic Leaching Procedure (TCLP) work on the used (eluted) resin samples showed significant contents of mercury, barium, and chromium. One resin sample exceeded the TCLP level for mercury while the other metals were below TCLP levels. TCLP organics measurements indicated measurable benzene in one case, though the source was unknown. Results of this work were compared with other work on similar sRF resin characterizations in this report. This is the first

  4. Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation.

    PubMed

    Shkolnikov, Viktor; Bahga, Supreet S; Santiago, Juan G

    2012-08-28

    We demonstrate and analyze a novel desalination method which works by electrophoretically replacing sodium and chloride in feed salt water with a pair of ions, calcium and carbonate, that react and precipitate out. The resulting calcium carbonate precipitate is benign to health, and can be filtered or settled out, yielding low ionic strength product water. The ion exchange and precipitation employs self-sharpening interfaces induced by movement of multiple ions in an electric field to prevent contamination of the product water. Simultaneously, the electrolysis associated with the electromigration produces hydrogen gas, chlorine gas, and sodium hydroxide. We conducted an experimental study of this method's basic efficacy to desalinate salt water from 100 to 600 mol m(-3) sodium chloride. We also present physicochemical models of the process, and analyze replacement reagents consumption, permeate recovery ratio, and energy consumption. We hypothesize that the precipitate can be recycled back to replacement reagents using the well-known, commercially implemented Solvay process. We show that the method's permeate recovery ratio is 58% to 46%, which is on par with that of reverse osmosis. We show that the method's energy consumption requirement over and above that necessary to generate electrolysis is 3 to 10 W h l(-1), which is on par with the energy consumed by state-of-the-art desalination methods. Furthermore, the method operates at ambient temperature and pressure, and uses no specialized membranes. The process may be feasible as a part of a desalination-co-generation facility: generating fresh water, hydrogen and chlorine gas, and sodium hydroxide. PMID:22806549

  5. A review of studies on ion thruster beam and charge-exchange plasmas

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1982-01-01

    Various experimental and analytical studies of the primary beam and charge-exchange plasmas of ion thrusters are reviewed. The history of plasma beam research is recounted, emphasizing experiments on beam neutralization, expansion of the beam, and determination of beam parameters such as electron temperature, plasma density, and plasma potential. The development of modern electron bombardment ion thrusters is treated, detailing experimental results. Studies on charge-exchange plasma are discussed, showing results such as the relationship between neutralizer emission current and plasma beam potential, ion energies as a function of neutralizer bias, charge-exchange ion current collected by an axially moving Faraday cup-RPA for 8-cm and 30-cm ion thrusters, beam density and potential data from a 15-cm ion thruster, and charge-exchange ion flow around a 30-cm thruster. A 20-cm thruster electrical configuration is depicted and facility effects are discussed. Finally, plasma modeling is covered in detail for plasma beam and charge-exchange plasma.

  6. Neutral atomic oxygen beam produced by ion charge exchange for Low Earth Orbital (LEO) simulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Rutledge, Sharon; Brdar, Marko; Olen, Carl; Stidham, Curt

    1987-01-01

    A low energy neutral atomic oxygen beam system was designed and is currently being assembled at the Lewis Research Center. The system utilizes a 15 cm diameter Kaufman ion source to produce positive oxygen ions which are charge exchange neutralized to produce low energy (variable from 5 to 150 eV) oxygen atoms at a flux simulating real time low Earth orbital conditions. An electromagnet is used to direct only the singly charged oxygen ions from the ion source into the charge exchange cell. A retarding potential grid is used to slow down the oxygen ions to desired energies prior to their charge exchange. Cryogenically cooled diatomic oxygen gas in the charge exchange cell is then used to transfer charge to the oxygen ions to produce a neutral atomic oxygen beam. Remaining non-charge exchanged oxygen ions are then swept from the beam by electromagnetic or electrostatic deflection depending upon the desired experiment configuration. The resulting neutral oxygen beam of 5 to 10 cm in diameter impinges upon target materials within a sample holder fixture that can also provide for simultaneous heating and UV exposure during the atomic oxygen bombardment.

  7. Influence of ion bombardment induced patterning of exchange bias in pinned artificial ferrimagnets on the interlayer exchange coupling

    SciTech Connect

    Hoeink, V.; Schmalhorst, J.; Reiss, G.; Weis, T.; Lengemann, D.; Engel, D.; Ehresmann, A.

    2008-06-15

    Artificial ferrimagnets have many applications as, e.g., pinned reference electrodes in magnetic tunnel junctions. It is known that the application of ion bombardment (IB) induced patterning of the exchange bias coupling of a single layer reference electrode in magnetic tunnel junctions with He ions is possible. For applications as, e.g., special types of magnetic logic, a combination of the IB induced patterning of the exchange bias coupling and the implementation of an artificial ferrimagnet as reference electrode is desirable. Here, investigations for a pinned artificial ferrimagnet with a Ru interlayer, which is frequently used in magnetic tunnel junctions, are presented. It is shown that in this kind of samples the exchange bias can be increased or rotated by IB induced magnetic patterning with 10 keV He ions without a destruction of the antiferromagnetic interlayer exchange coupling. An IrMn/Py/Co/Cu/Co stack turned out to be more sensitive to the influence of IB than the Ru based artificial ferrimagnet.

  8. Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns.

    PubMed

    Almutairi, Azel; Weatherley, Laurence R

    2015-09-01

    The use of nitrification filters for the removal of ammonium ion from waste-water is an established technology deployed extensively in municipal water treatment, in industrial water treatment and in applications such as fish farming. The process involves the development of immobilized bacterial films on a solid packing support, which is designed to provide a suitable host for the film, and allow supply of oxygen to promote aerobic action. Removal of ammonia and nitrite is increasingly necessary to meet drinking water and discharge standards being applied in the US, Europe and other places. Ion-exchange techniques are also effective for removal of ammonia (as the ammonium ion) from waste water and have the advantage of fast start-up times compared to biological filtration which in some cases may take several weeks to be fully operational. Here we explore the performance of ion exchange columns in which nitrifying bacteria are cultivated, with the goal of a "combined" process involving simultaneous ion-exchange and nitrification, intensified by in-situ aeration with a novel membrane module. There were three experimental goals. Firstly, ion exchange zeolites were characterized and prepared for comparative column breakthrough studies for ammonia removal. Secondly effective in-situ aeration for promotion of nitrifying bacterial growth was studied using a number of different membranes including polyethersulfone (PES), polypropylene (PP), nylon, and polytetra-fluoroethylene (PTFE). Thirdly the breakthrough performance of ion exchange columns filled with zeolite in the presence of aeration and in the presence of nitrifying bacteria was determined to establish the influence of biomass, and aeration upon breakthrough during ammonium ion uptake. The methodology adopted included screening of two types of the naturally occuring zeolite clinoptilolite for effective ammonia removal in continuous ion-exchange columns. Next, the performance of fixed beds of clinoptilolite in the

  9. Increasing RO efficiency by chemical-free ion-exchange and Donnan dialysis: Principles and practical implications.

    PubMed

    Vanoppen, Marjolein; Stoffels, Griet; Demuytere, Célestin; Bleyaert, Wouter; Verliefde, Arne R D

    2015-09-01

    Ion-exchange (IEX) and Donnan dialysis (DD) are techniques which can selectively remove cations, limiting scaling in reverse osmosis (RO). If the RO concentrate could be recycled for regeneration of these pre-treatment techniques, RO recovery could be largely increased without the need for chemical addition or additional technologies. In this study, two different RO feed streams (treated industrial waste water and simple tap water) were tested in the envisioned IEX-RO and DD-RO hybrids including RO concentrate recycling. The efficiency of multivalent cation removal depends mainly on the ratio of monovalent to multivalent cations in the feed stream, influencing the ion-exchange efficiency in both IEX and DD. Since the mono-to-multivalent ratio was very high in the waste water, the RO recovery could potentially be increased to 92%. For the tap water, these high RO recoveries could only be reached by adding additional NaCl, because of the low initial monovalent to multivalent ratio in the feed. In both cases, the IEX-RO hybrid proved to be most cost-efficient, due to the high current cost of the membranes used in DD. The membrane cost would have to decrease from ±300 €/m² to 10-30 €/m² - comparable to current reverse osmosis membranes - to achieve a comparable cost. In conclusion, the recycling of RO concentrate to regenerate ion exchange pre-treatment techniques for RO is an interesting option to increase RO recovery without addition of chemicals, but only at high monovalent/multivalent cation-ratios in the feed stream. PMID:25996753

  10. Water exchange dynamics around H3O+ and OH- ions

    NASA Astrophysics Data System (ADS)

    Roy, Santanu; Dang, Liem X.

    2015-05-01

    In this letter, we report the first computer simulation of the dynamics of water exchanging between the first and second solvation shells of H3O+. Employing different rate theories for chemical reactions such as the transition state theory, the Grote-Hynes theory, the reactive flux method, and the Impey-Madden-McDonald method, we calculate the solvent exchange rates from molecular dynamics simulations that account for explicit polarization effects. In addition, we also study water exchanges around OH- and find that the corresponding time scale is much smaller than that for H3O+.

  11. Electrodialysis heterogeneous ion exchange membranes modified by SiO2 nanoparticles: fabrication and electrochemical characterization.

    PubMed

    Hosseini, S M; Ahmadi, Z; Nemati, M; Parvizian, F; Madaeni, S S

    2016-01-01

    In the current study mixed matrix heterogeneous cation exchange membranes were prepared by solution casting technique. The effect of SiO(2) nanoparticles in the polymeric solution on the physicochemical properties of prepared membranes was studied. Scanning optical microscope images showed uniform particle distribution and relatively uniform surfaces for the prepared membranes. The membrane water content was reduced by silica nanoparticles in the membranes' matrix. The membrane ion exchange capacity, membrane potential, transport number and selectivity were improved initially by an increase of SiO(2) nanoparticles concentration up to 1%wt in prepared membranes and then showed a decreasing trend with a further increase in additive ratio from 1 to 4%wt. The ionic permeability and flux were also decreased initially by an increase of silica nanoparticles concentration up to 0.5%wt in the membrane matrix and then increased again with a further increase in nanoparticles concentration from 0.5 to 4%wt. Moreover, the results exhibited that using silica nanoparticles in the membrane matrix caused an obvious decrease in areal electrical resistance. The opposite trend was found for membrane mechanical strength using SiO(2) nanoparticles. PMID:27148708

  12. Quantifying exchange coupling in f-ion pairs using the diamagnetic substitution method

    SciTech Connect

    Lukens, Wayne W.; Walter, Marc D.

    2010-04-01

    One of the challenges in the chemistry of actinide and lanthanide (f-ion) is quantifying exchange coupling between f-ions. While qualitative information about exchange coupling may be readily obtained using the diamagnetic substitution approach, obtaining quantitative information is much more difficult. This article describes how exchange coupling may be quantified using the susceptibility of a magnetically isolated analog, as in the diamagnetic substitution approach, along with the anisotropy of the ground state as determined by EPR spectroscopy. Several examples are used to illustrate and test this approach.

  13. Donnan dialysis of transition metal ions using anion exchange membrane modified with Xylenol Orange

    SciTech Connect

    Sawicka, B.; Brajter, K.; Trojanowicz, M.; Kado, B. )

    1991-01-01

    A chelating ion-exchange membrane was obtained by modification of a PTFE-based anion-exchange membrane with Xylenol Orange. Its utility for dialysis of Cu(II), Ni(II), Mn(II), and Zn(II) was investigated by using receiver solutions without and with iminodiacetate. 1,2-diaminocyclohexanetetraacetic acid, and tetraethylenepentamine. In comparison to commercial PTFE cation-exchange membranes, modified chelating membranes exhibit for the metal ions investigated a larger differentiation of retention in the membrane phase and transport-to-receiver solution depending on the modifier used and the composition of the receiver solution.

  14. Determination of fluoride in potable waters by ion-exchange and potentiometric titration.

    PubMed

    Light, T S; Mannion, R F; Fletcher, K S

    1969-10-01

    A procedure is described for the accurate titration of fluoride at the 1 mg l . level in potable water. The procedure employs an ion-exchange step for concentration of fluoride and removal of interfering ions, and Tb(IV) as titrant. Precision and relative error of the method are both 1%. PMID:18960653

  15. Development of a transparent, non-cytotoxic, silver ion-exchanged glass with antimicrobial activity and low ion elution.

    PubMed

    Shim, Gyu-In; Kim, Seong-Hwan; Eom, Hyung-Woo; Kim, Kwang-Mahn; Choi, Se-Young

    2015-05-01

    We investigated the antimicrobial, cytotoxicity, skin irritation, and ion elution behaviors of glass doped with silver ions with respect to its application to electronic equipment such as phones and tablet screens. The microbes tested were Escherichia coli, Staphylococcus aureus, and Penicillium funiculosum. AgNO3 powder was spread on both sides of aluminosilicate glass, and it was heated to 250-280°C for 10min. Under optimized heating conditions (260°C, 10min), the antimicrobial activity of ion-exchanged glass against bacteria and fungi was over 99.9% after 24 weeks. The glass failed to irritate the skin of experimental animals and was considered non-cytotoxic. The maximum amount of Ag ions that were eluted from the ion-exchanged glass into drinking water was measured at 0.037±0.003μgL(-1), an amount which is several orders of magnitude below the standard limit of 0.1mgL(-1) in drinking water. Ag ion-exchanged glass had characteristics suitable for use as a display screen, such as a light transmittance of 90% and a surface roughness of 0.704nm. Our findings suggest that glass doped with silver ions is more hygienic than non-doped glass is, and should be applied to display screens and glassware. PMID:25837509

  16. Metal-air cell with ion exchange material

    SciTech Connect

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2015-08-25

    Embodiments of the invention are related to anion exchange membranes used in electrochemical metal-air cells in which the membranes function as the electrolyte material, or are used in conjunction with electrolytes such as ionic liquid electrolytes.

  17. Radium-thorium disequilibrium and zeolite-water ion exchange in a Yellowstone hydrothermal environment

    NASA Astrophysics Data System (ADS)

    Sturchio, N. C.; Bohlke, J. K.; Binz, C. M.

    1989-05-01

    Whole rock samples of hydrothermally altered Biscuit Basin rhyolite from Yellowstone drill cores Y-7 and Y-8 were analyzed for 226Ra and 230Th to determine the extent of radioactive disequilibrium and its relation to the rates and mechanisms of element transport in the shallow portion of an active hydrothermal system. The ( 226Ra/230Th) activity ratios range from 0.73 to 1.46 and are generally correlated with Th-normalized Ba concentrations (Ba N). Values of ( 226Ra/230Th) and Ba N > 1 were found in samples containing large modal fractions of clinoptilolite; whereas values of ( 226Ra/230Th) and Ba N < 1 were found in samples containing large modal fractions of mordenite. Composition clinoptilolite and mordenite in these samples are consistent with ion exchange equilibrium between zeolites and coexisting thermal waters. Average K d mineral-waterBa values are 1.0·10 5 mL/g for clinoptilolite and 1.4·10 4 mL/g for mordenite. Apparent diffustvities through matrix porosity estimated for Ra and Ba range from ˜10 -12 to ˜10 -10 cm 2s -1 in thoroughly zeolitic rhyolite; these rates of diffusion are too low to account for the observed distance scale of ( 226Ra/230Th) disequilibrium. The correlated values of ( 226Ra /230Th) disequilibrium and Ba N represent zeolite-water ion exchange equilibrium that is caused by porous flow of water through the rock matrix and by the relatively rapid diffusion of cations within the zeolite lattices. A water flux of at least ˜2.5 ( cm water3/cm rock3) yr -1 is required to produce measurable ( 226Ra/230Th) disequilibrium, whereas at least ˜23 ( cm water3/cm rock3) yr -1 is r for the sample exhibiting the most extreme ( 226Ra/230Th) disequilibrium; these fluxes are much higher than those that can be inferred from net mass transfers of stable species. The zeolite-water ion exchange process appears to have been operating for at least 8000 yr in the environment of the Y-7 and Y-8 drill holes.

  18. Desalination by electrodialysis with the ion-exchange membrane prepared by radiation-induced graft polymerization

    NASA Astrophysics Data System (ADS)

    Choi, Seong-Ho; Han Jeong, Young; Jeong Ryoo, Jae; Lee, Kwang-Pill

    2001-01-01

    Ion-exchange membranes modified with the triethylamine [-N(CH 2CH 3) 3] and phosphoric acid (-PO 3 H) groups were prepared by radiation-induced grafting of glycidyl methacrylate (GMA) onto the polyolefin nonwavon fabric (PNF) and subsequent chemical modification of poly(GMA) graft chains. The physical and chemical properties of the GMA-grafted PNF and the PNF modified with ion-exchange groups were investigated by SEM, XPS, TGA, and DSC. Furthermore, electrochemical properties such as specific electric resistance, transport number of K +, and desalination were examined. The grafting yield increased with increasing reaction time and reaction temperature. The maximum grafting yield was obtained with 40% (vol.%) monomer concentration in dioxane at 60°C. The content of the cation- and anion-exchange group increased with increasing grafting yield. Electrical resistance of the PNF modified with TEA and -PO 3 H group decreased, while the water uptake (%) increased with increasing ion-exchange group capacities. Transport number of the PNF modified with ion-exchange group were the range of ca. 0.82-0.92. The graft-type ion-exchange membranes prepared by radiation-induced graft copolymerization were successfully applied as separators for electrodialysis.

  19. Electron and energy transfer as probes of interparticle ion-exchange reactions in zeolite Y

    SciTech Connect

    Brigham, E.S.; Snowden, P.T.; Kim, Y.I.; Mallouk, T.E. )

    1993-08-19

    Photoinduced electron transfer and energy transfer reactions of tris(2,2[prime]-bipyridyl)ruthenium(II) (Ru(bpy)[sub 3][sup 2+]) with methylviologen (MV[sup 2+]) and tris(2,2[prime]-bipyridyl)osmium(II) (Os(bpy)[sub 3][sup 2+]) ion-exchanged onto/into separate zeolite Y particles were studied by emission spectroscopy. The kinetics of interparticle exchange were probed by observing the quenching of the MLCT excited state of-Ru(bpy)[sub 3][sup 2+] by mobile MV[sup 2+] or OS(bpy)[sub 3][sup 2+] ions. The exchange reactions occur on time scales of seconds to hours, depending on the ionic strength of the surrounding medium. The time-dependent luminescence data were fitted to a dispersed kinetics model, from which average rate constants for the exchange reactions could be extracted. Time constants for interparticle exchange of MV[sup 2+] and Os(bpy)[sub 3][sup 2+] ions, in the range 10[sup 3]-10[sup 5] s at electrolyte concentrations of 0.1-3 mM, are significantly longer than the time scales (10[sup [minus]7]-10[sup 1] s) of most electrochemical and photochemical intrazeolitic reactions involving these and similar electroactive ions. These results argue for reaction mechanisms that invoke intrazeolite electron transfer, rather than exchange of electroactive ions followed by solution-phase electron transfer, in these systems. 25 refs., 6 figs., 1 tab.

  20. Separation of hemicellulose-derived saccharides from wood hydrolysate by lime and ion exchange resin.

    PubMed

    Wang, Xiaojun; Zhuang, Jingshun; Fu, Yingjuan; Tian, Guoyu; Wang, Zhaojiang; Qin, Menghua

    2016-04-01

    A combined process of lime treatment and mixed bed ion exchange was proposed to separate hemicellulose-derived saccharides (HDS) from prehydrolysis liquor (PHL) of lignocellulose as value added products. The optimization of lime treatment achieved up to 44.2% removal of non-saccharide organic compounds (NSOC), mainly colloidal substances, with negligible HDS degradation at 0.5% lime level and subsequent neutralization by phosphoric acid. The residual NSOC and calcium ions in lime-treated PHL were eliminated by mixed bed ion exchange. The breakthrough curves of HDS and NSOC showed selective retention toward NSOC, leading to 75% HDS recovery with 95% purity at 17 bed volumes of exchange capacity. In addition, macroporous resin showed higher exchange capacity than gel resin as indicated by the triple processing volume. The remarkable selectivity of the combined process suggested the feasibility for HDS separation from PHL. PMID:26859331

  1. Improvement in both giant magnetoresistance and exchange bias through hydrogen ion irradiation at low energy

    SciTech Connect

    Shim, Jaechul; Han, Yoonsung; Lee, Jinwon; Hong, Jongill

    2008-09-01

    Irradiation of IrMn-based spin valves with 550 eV hydrogen ions increased their giant magnetoresistance and exchange bias by 20% and 60%, respectively. This significant enhancement stems from the strong (111) texture and small mosaic spread of the IrMn antiferromagnet that resulted from the microstructural reconstruction caused by the energy transfer during the bombardment by hydrogen ions, as well as by the narrow dispersion in the exchange bias. Irradiation with the hydrogen ion at low energy can improve the properties of spin valves without resulting in undue degradation in the performance or the microstructure.

  2. Charge exchange of laser-produced ions in a pulsed gas jet

    NASA Astrophysics Data System (ADS)

    Shaikhislamov, I. F.; Ponomarenko, A. G.; Antonov, V. M.; Boyarintsev, E. L.; Posukh, V. G.; Melekhov, A. V.

    2007-10-01

    Results of an experiment on the interaction of laser-produced plasma with a pulsed gas jet are reported. A resonant charge-exchange pumping of the n=3 level of the C3+ ion was observed. A spatial structure of the region of intensive interaction was obtained by a short time imaging of filtered plasma radiation. According to independent probe measurements, the interaction was realized at densities of ions and gas particles in excess of 1016 cm-3. The obtained data provide a prospect for future experiments on laser gain in the EUV spectral range based on charge-exchange pumping of the C5+ ion.

  3. Automated resource-saving technology of ion-exchange water treatment

    NASA Astrophysics Data System (ADS)

    Livshits, M.

    2015-01-01

    Stable high quality of the purified water can be provided by adaptive control of water-treatment installations with the observer in a loop of the control system on the basis of observer of ion exchange processes. To obtain this goal the following problems have been solved: the hierarchic structure of water treatment system is developed; the system of water treatment quality criteria for ion exchange processes is developed; the created mathematical model of ionic exchange processes is functionally oriented to application in control system as an observer; methodologies of identification of a mathematical model of ionic exchange processes is developed; verification of the mathematical model of ionic exchange is performed on experimental-industrial basis; automatic control system of water treatment with observer in the loop is developed for low-waste installation of a heat supply system.

  4. Novel ion-exchange membranes for electrodialysis prepared by radiation-induced graft polymerization

    SciTech Connect

    Tsuneda, Satoshi; Saito, Kyoichi; Misuhara, Hisashi; Sugo, Takanobu

    1995-11-01

    Ion-exchange membranes have been used to concentrate seawater to produce salt as well as to desalinate brackish water to render it potable. Also, the interest in applications of ion-exchange membranes as separators for electrodialytic desalination of bioproducts and separators in hydrogen-oxygen fuel cells has been growing. Novel ion-exchange membranes containing sulfonic acid (SO{sub 3}H) and trimethyl ammonium [N(CH{sub 3}){sub 3}] groups were prepared by a simple method of radiation-induced cografting of sodium styrene sulfonate (SSS) with acrylic acid (AAc) and vinyl benzyl trimethyl ammonium chloride (VBTAC) with 2-hydroxyethyl methacrylate (HEMA), onto a polyethylene film with a thickness of 50 {micro}m. The high density graft chain was introduced throughout the polyethylene film. The maximum cation- and anion-exchange capacities of the resultant membranes were 2.5 and 1.3 mol/kg, receptively. These membranes exhibited an electrical resistance one order lower than commercially available ion-exchange membranes; for example, 12 h cografting provided cation- and anion-exchange membranes whose electrical resistances in a 0.5 M NaCl solution were 0.25 and 0.85 {Omega} cm{sup 2}, respectively. From the evaluation of electrodialytic desalination in a batch mode, using a pair of the graft-type ion-exchange membranes, the time required to achieve 99.5% desalination of the initial 0.5 M NaCl solutions was reduced to 85% comparing with that of the commercial ion-exchange membranes.

  5. Ion temperatures in HIP-1 and SUMMA from charge-exchange neutral optical emission spectra

    NASA Technical Reports Server (NTRS)

    Patch, R. W.; Lauver, M. R.

    1976-01-01

    Ion temperatures were obtained from observations of the H sub alpha, D sub alpha, and He 587.6 nm lines emitted from hydrogen, deuterium, and helium plasmas in the SUMMA and HIP-1 mirror devices at Lewis Research Center. Steady state discharges were formed by applying a radially inward dc electric field between cylindrical or annular anodes and hollow cathodes located at the peaks of the mirrors. The ion temperatures were found from the Doppler broadening of the charge-exchange components of spectral lines. A statistical method was developed for obtaining scaling relations of ion temperature as a function of current, voltage, and magnetic flux density. Derivations are given that take into account triangular monochromator slit functions, loss cones, and superimposed charge-exchange processes. In addition, the Doppler broadening was found to be sensitive to the influence of drift on charge-exchange cross section. The effects of finite ion-cyclotron radius, cascading, and delayed emission are reviewed.

  6. Semi-aerobic stabilized landfill leachate treatment by ion exchange resin: isotherm and kinetic study

    NASA Astrophysics Data System (ADS)

    Zamri, Mohd Faiz Muaz Ahmad; Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Aziz, Hamidi Abdul; Foo, Keng Yuen

    2015-03-01

    This study was carried out to investigate the treatability of ion exchange resin (Indion MB 6 SR) for the removal of chromium (VI), aluminium (III), zinc (II), copper (II), iron (II), and phosphate (PO4)3-, chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and colour from semi-aerobic stabilized leachate by batch test. A range of ion exchange resin dosage was tested towards the removal efficiency of leachate parameters. It was observed that equilibrium data were best represented by the Langmuir model for metal ions and Freundlich was ideally fit for COD, NH3-N and colour. Intra particle diffusion model, pseudo first-order and pseudo second-order isotherm models were found ideally fit with correlation of the experimental data. The findings revealed that the models could describe the ion exchange kinetic behaviour efficiently, which further suggests comprehensive outlook for the future research in this field.

  7. Ion-exchange sorption and preparative chromatography of biologically active materials

    SciTech Connect

    Samsonov, G.V.

    1986-01-01

    This book presents information on the following topics: the problems of fine physico-chemical biotechnology; types of highly permeable network polyelectrolytes; methods for studying the permeability and porosity of network polyelectrolytes; the conformation state and flexibility of the structural elements of network polyelectrolytes; ion-exchange processes without the sorption of physiologically active substances; ion exchange, hydration, and swelling; nucleosides, nucleotides, alkaloids, sulfonamides, and miscellaneous physiologically active subtances; sharp front formation for the exchange of ions with the same valences; standard quasi-equilibrium frontal chromatography on ionites; sorption kinetics in ionites with structural heterogeneity; experimental investigations of the diffusivities of organic and physiologically active ions in ionite beads; and increasing the efficiency of low-pressure chromatography by using surface-layer and bidispersed ionites.

  8. Orthogonal test design for optimization of synthesis of MTX/LDHs hybrids by ion-exchange method

    NASA Astrophysics Data System (ADS)

    Liu, Su-Qing; Dai, Chao-Fan; Wang, Lin; Li, Shu-Ping; Li, Xiao-Dong

    2015-04-01

    Based on orthogonal test design, the factors influencing the synthesis of methotrexate intercalated magnesium-aluminum layered double hydroxides (MTX/LDHs for short) by ion-exchange method, such as weight ratio of pristine LDHs to MTX (R for short), exchange temperature, time and pH value were investigated. Of the four controllable independent variables, R had the strongest effect on the crystallinity and the drug-loading capacity and the optimum synthesis conditions considered from the crystallinity and the drug-loading capacity both pointed to the same values, i.e., R=2:1, pH=9.5, temperature of 80 °C and exchange time of 3 day. The XRD diffractions indicated that high MTX content was in favor of the formation of intercalated hybrids, while low content lead to the failure of it. TEM photos indicated that the intercalated hybrids all exhibited aggregated hexagonal plates. In order to improve the morphology, two different states of pristine LDHs, i.e., powder and colloid, were chosen to prepare MTX/LDHs hybrids and the results indicated that colloid state of pristine was advantageous to obtain regular particles. The study also revealed that the properties of hybrids obtained at optimum conditions by ion-exchange were superior to that obtained from standard methods, such as co-precipitation method.

  9. Measuring ion velocity distribution functions through high-aspect ratio holes in inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Cunge, G.; Darnon, M.; Dubois, J.; Bezard, P.; Mourey, O.; Petit-Etienne, C.; Vallier, L.; Despiau-Pujo, E.; Sadeghi, N.

    2016-02-01

    Several issues associated with plasma etching of high aspect ratio structures originate from the ions' bombardment of the sidewalls of the feature. The off normal angle incident ions are primarily due to their temperature at the sheath edge and possibly to charging effects. We have measured the ion velocity distribution function (IVDF) at the wafer surface in an industrial inductively coupled plasma reactor by using multigrid retarding field analyzers (RFA) in front of which we place 400 μm thick capillary plates with holes of 25, 50, and 100 μm diameters. The RFA then probes IVDF at the exit of the holes with Aspect Ratios (AR) of 16, 8, and 4, respectively. The results show that the ion flux dramatically drops with the increase in AR. By comparing the measured IVDF with an analytical model, we concluded that the ion temperature is 0.27 eV in our plasma conditions. The charging effects are also observed and are shown to significantly reduce the ion energy at the bottom of the feature but only with a "minor" effect on the ion flux and the shape of the IVDF.

  10. Selective separation of sodium ions from a mixture with phenylalanine by Donnan dialysis with a profiled sulfogroup cation exchange membrane

    NASA Astrophysics Data System (ADS)

    Vasil'eva, V. I.; Goleva, E. A.

    2013-11-01

    The possibility of separating ions of metal from a mixture with ampholyte (an amino acid) by Donnan dialysis with an MK-40 sulfogroup cation exchange membrane is demonstrated. Conditions ensuring the selectivity and intensity of the mass transfer of sodium ions from a mixture with bipolar phenylalanine ions into a diffusate containing hydrochloric acid through a cation exchange membrane are found.

  11. Ion exchange determines iodine-131 concentration in aqueous samples

    NASA Technical Reports Server (NTRS)

    Fairman, W. D.; Sedlet, J.

    1967-01-01

    Inorganic radioiodide in aqueous media is analyzed by separating the radioactive iodine-131 as the iodide ion on a silver chloride column. The activity in the final precipitate may be determined by beta or gamma counting.

  12. The chemical precipitation of nickel on ion exchangers and active carbons

    NASA Astrophysics Data System (ADS)

    Khorol'Skaya, S. V.; Zolotukhina, E. V.; Polyanskii, L. N.; Peshkov, S. V.; Kravchenko, T. A.; Krysanov, V. A.

    2010-12-01

    The chemical precipitation of nickel in the form of poorly soluble precipitates in ion exchanger matrices and on active carbons from solutions of nickel chloride and chemical nickel plating electrolytes was studied. The sorption of nickel ions from a solution of nickel chloride occurs most effectively on Purolite D24002 macroporous chelate forming ion exchanger, KU-23-15/100 sulfo cation exchanger, and KU-2-8 gel sulfo cation exchanger. Nickel enters sulfo cation exchangers in the form of counterions, and is adsorbed on Purolite D24002 largely because of complex formation. The subsequent precipitation of nickel in the solid state in matrix pores liberates ionogenic centers, which allows repeated sorption cycles to be performed. After three chemical precipitation cycles under static conditions, the amount of nickel is higher by 170-250% than the ion exchange capacity of the sorbents. The electrolyte of chemical nickel plating contains nickel predominantly in the form of negatively charged and neutral complexes with glycine, which cannot form bonds with the matrices under study. It is therefore reasonable to perform sorption at decreased solution pH values.

  13. NITRATE REMOVAL FROM WATER SUPPLIES BY ION EXCHANGE

    EPA Science Inventory

    Anion exchange using synthetic organic resins is a proven and practical technology for the removal of nitrate from water supplies. However, disposal of the spent regenerant brine solution containing nitrate is a potential problem. Two processes were examined in detail in this rep...

  14. NITRATE REMOVAL FROM WATER SUPPLIES BY ION EXCHANGE - EXECUTIVE SUMMARY

    EPA Science Inventory

    Anion exchange using synthetic organic resins is a proven and practical technology for the removal of nitrate from water supplies. However, disposal of the spent regenerant brime solution containing nitrate is a potential problem. Two processes were examined in detail in this rep...

  15. BARIUM AND RADIUM REMOVAL FROM GROUNDWATER BY ION EXCHANGE

    EPA Science Inventory

    The primary objective of this study was to determine the applicability of weak acid exchange resin in the hydrogen form for removal of hardness, barium and radium from groundwater. Weak acid resin in the hydrogen form eliminates the addition of sodium to drinking water. The capac...

  16. Preparation of catalysts via ion-exchangeable coatings on supports

    DOEpatents

    Dosch, R.G.; Stephens, H.P.

    1986-04-09

    Disclosed are: new catalytic compositions which comprise an inert support coated with a hydrous alkali metal, alkaline earth metal, or quaternary ammonium titanate, niobate, zirconate, or tantalate, in which the alkali or alkaline earth metal or quaternary ammonium cations have been exchanged for a catalytically effective quantity of a catalytically effective metal.

  17. Improved hydrous oxide ion-exchange compound catalysts

    DOEpatents

    Dosch, R.G.; Stephens, H.P.

    1986-04-09

    Disclosed is a catalytic material of improved activity which comprises a hydrous, alkali metal or alkaline earth metal or quaternary ammonium titanate, zirconate, niobate, or tantalate, in which the metal or ammonium cations have been exchanged with a catalytically effective quantity of a catalyst metal, and which has been subsequently treated with a solution of a Bronsted acid.

  18. Properties of nickel-cadmium separators. [ion exchange membrances

    NASA Technical Reports Server (NTRS)

    Lee, J.

    1977-01-01

    The thickness, moisture content, exchange capacity, tensile strength, diffusion characteristics, stability, and electrical properties are discussed for the 2291 radiation-grafted separator used in military vented nickel cadmium aircraft batteries. A regression analysis of separator resistance as a function of temperature and KOH concentration is included.

  19. Adsorption of three pharmaceuticals on two magnetic ion-exchange resins.

    PubMed

    Jiang, Miao; Yang, Weiben; Zhang, Ziwei; Yang, Zhen; Wang, Yuping

    2015-05-01

    The presence of pharmaceuticals in aquatic environments poses potential risks to the ecology and human health. This study investigated the removal of three widely detected and abundant pharmaceuticals, namely, ibuprofen (IBU), diclofenac (DC), and sulfadiazine (SDZ), by two magnetic ion-exchange resins. The adsorption kinetics of the three adsorbates onto both resins was relatively fast and followed pseudo-second-order kinetics. Despite the different pore structures of the two resins, similar adsorption patterns of DC and SDZ were observed, implying the existence of an ion-exchange mechanism. IBU demonstrated a combination of interactions during the adsorption process. These interactions were dependent on the specific surface area and functional groups of the resin. The adsorption isotherm fittings verified the differences in the behavior of the three pharmaceuticals on the two magnetic ion-exchange resins. The presence of Cl- and SO4(2-) suppressed the adsorption amount, but with different inhibition levels for different adsorbates. This work facilitates the understanding of the adsorption behavior and mechanism of pharmaceuticals on magnetic ion-exchange resins. The results will expand the application of magnetic ion-exchange resins to the removal of pharmaceuticals in waters. PMID:25968278

  20. Partition Coefficients of Selected Compounds Using Ion Exchange Separation of Cesium From High Level Waste

    SciTech Connect

    Toth, James J.; Blanchard, David L.; Arm, Stuart T.; Urie, Michael W.

    2004-04-24

    The removal of cesium radioisotope (137Cs) from the High Level Waste stored in underground storage tanks at the Hanford site is a formidable chemical separations challenge for the Waste Treatment Plant. An eluatable organic-based ion exchange resin was selected as the baseline technology (1). The baseline technology design employs a proprietary macrocyclic weak-acid ion exchange resin to adsorb the cesium (137Cs) during the process loading cycle in a fixed bed column design. Following loading, the cesium is eluted from the resin using a nitric acid eluant. Previous work provided limited understanding of the performance of the resin, processed with actual wastes, and under multiple load and elute conditions, which are required for the ion exchange technology to be underpinned sufficiently for resolution of all process-related design issues before flowsheet and construction drawings can be released. By performing multiple ion exchange column tests with waste feeds, and measuring the chemical and radionuclide compositions of the waste feeds, column effluents and column eluants, ion exchange stream composition information can be provided for supporting resolution of selected design issues.

  1. Dual drug load and release behavior on ion-exchange fiber: influencing factors and prediction method for precise control of the loading amount.

    PubMed

    Yuan, Jing; Gao, Yanan; Liu, Tiaotiao; Wang, Xinyu; Liu, Hongzhuo; Li, Sanming

    2015-01-01

    Ion-exchange fiber undergoes a stoichiometric exchange reaction and has large exchange capability, which makes it a promising candidate as a multiple drug carrier. Because combinatorial effects can act synergistically, additively or antagonistically depending on the ratio of the agents being combined, the objective of this study was to learn the dual drug loading of ion-exchange fiber and develop a mathematical method for precisely control of the loading amount. Atenolol and Gatifloxacin, with different loading behaviors into strong cationic ion-exchange fiber ZB-1, were used to build a representative of dual loading. Not suitable pH value of drug solutions could make simultaneous loading fail, while the change of drug solution volume hardly affected the equilibrium. Ion-exchange groups occupied by the drug which owned lower affinity to fiber could be grabbed by the higher affinity drug, indicating the existence of competition between drugs. Thermodynamic model was introduced to guide the loading prediction and a favorable relevance had been shown between determined and predicted data. The release behaviors of each drug from dual drug-fiber complex were similar to those from single drug-fiber complexes. PMID:24841046

  2. Cerium doped soda-lime-silicate glasses: effects of silver ion-exchange on optical properties

    NASA Astrophysics Data System (ADS)

    Paje, S. E.; García, M. A.; Villegas, M. A.; Llopis, J.

    2001-09-01

    Effects of silver ion-exchange on optical absorption (OA) and photoluminescence (PL) spectra of a cerium doped soda-lime-silicate glass at room temperature are investigated. The optical spectra are described in terms of the characteristic transitions 4f↔5d originated in Ce 3+ ions placed mainly in two different sites of the glass network. As Ag + ions are introduced into the cerium doped glass, they are reduced to elementary silver (Ag 0) which are favoured by the reaction Ce 3++Ag +→Ce 4++Ag 0. Then, the number of Ce 3+ ions decrease inversely with depth from the surface contrarily to Ce 4+ ions does, and elementary silver diffuses and aggregates to form nanoparticles. As a consequence of these changes, the OA spectra of exchanged samples increase substantially in the UV range and the luminescence decreases significantly. The high sensitivity of PL together with deconvolution analysis of spectra, however, allows us to detect changes in the excitation and emission spectra from the earlier stages of ion-exchange. This indicates that during the ion-exchange we deal with fast processes (much shorter than 1 min). In fact, transmission electron microscopy observations of samples from the glass exchanged for a short time as 1 min at 325°C show the presence of a scanty number of silver nanoparticles, which confirms this point. Furthermore, with increasing the length of time of ion-exchange, PL spectra exhibit a progressive red shift indicative in part of a covalence increment in the oxygen-cerium coordinated bonding. We observe no luminescence from Ag + ions and other silver molecular species in contrast with other preliminary PL studies on silver ion-exchange in soda-lime-silicate glasses free of cerium. The effect is discussed on the basis of a supplementary increase in the number of Ce 4+ ions mainly due to the reaction Ce 3++Ag +→Ce 4++Ag 0, which prevents efficiently the luminescence of the silver centers.

  3. Monte Carlo simulations on the water-to-air stopping power ratio for carbon ion dosimetry

    SciTech Connect

    Henkner, Katrin; Bassler, Niels; Sobolevsky, Nikolai; Jaekel, Oliver

    2009-04-15

    Many papers discussed the I value for water given by the ICRU, concluding that a value of about 80{+-}2 eV instead of 67.2 eV would reproduce measured ion depth-dose curves. A change in the I value for water would have an effect on the stopping power and, hence, on the water-to-air stopping power ratio, which is important in clinical dosimetry of proton and ion beams. For energies ranging from 50 to 330 MeV/u and for one spread out Bragg peak, the authors compare the impact of the I value on the water-to-air stopping power ratio. The authors calculate ratios from different ICRU stopping power tables and ICRU reports. The stopping power ratio is calculated via track-length dose calculation with SHIELD-HIT07. In the calculations, the stopping power ratio is reduced to a value of 1.119 in the plateau region as compared to the cited value of 1.13 in IAEA TRS-398. At low energies the stopping power ratio increases by up to 6% in the last few tenths of a mm toward the Bragg peak. For a spread out Bragg peak of 13.5 mm width at 130 mm depth, the stopping power ratio increases by about 1% toward the distal end.

  4. Sorption of beryllium from fluorine-containing solutions by amino-phosphonate amphoteric ion-exchange resins

    SciTech Connect

    Pakholkov, V.S.; Rychkov, V.N.

    1981-10-20

    Sorption of beryllium ions by a series of amino-phosphonate amphoteric ion-exchange resins from BeF/sub 2/ solutions containing HF, NH/sub 4/F.HF, and NH/sub 4/F has been studied. The influence of the salt form of the resin, concentration of fluoride ions, and beryllium content in the original solutions was demonstrated. The mechanism of ion exchange on amphoteric ion-exchangers was postulated on the basis of chemical analysis and sorption and IR-spectroscopic data. Conclusions are drawn regarding the participation of phosphorus-containing groups of the resins in exchange. Data are presented on desorption of complex fluoride ions and beryllium from amphoteric ion-exchange resins by solutions of hydrofluoric, hydrochloric, and sulfuric acids, ammonium fluoride, and ammonium hydrogenfluoride.

  5. METHOD OF SEPARATING RARE EARTHS BY ION EXCHANGE

    DOEpatents

    Spedding, F.H.; Powell, J.E.

    1960-10-18

    A process is given for separating yttrium and rare earth values having atomic numbers of from 57 through 60 and 68 through 71 from an aqueous solution whose pH value can range from 1 to 9. All rare earths and yttrium are first adsorbed on a cation exchange resin, and they are then eluted with a solution of N-hydroxyethylethylenediaminetriacetic acid (HEDTA) in the order of decreasing atomic number, yttrium behaving like element 61; the effluents are collected in fractions. The HEDTA is recovered by elution with ammonia solution and the resin is regenerated with sulfuric acid. Rare earths are precipitated from the various effluents with oxalic acid, and each supernatant is passed over cation exchange resin for adsorption of HEDTA and nonprecipitated rare earths: the oxalic acid is not retained by the resin.

  6. Building 579 waste ion exchange facility characterization report

    SciTech Connect

    Sholeen, C.M.; Geraghty, D.C.

    1997-03-01

    External direct surveys were performed for elevated {gamma} levels with a PG2 portable detector connected to a PRM 5-3 meter and for elevated {alpha} and {beta} levels with an NE portable detector. No {gamma} activity above background was detected. Several locations, the floor and west wall of building 579 and the manhole, had low levels of {beta} activity, up to 87 {+-} 49 dis/min. These values are below the allowable residual surface contamination limits for removable beta activity. There is water in the Mixed Bed Exchange Vessel, the Cation Exchange Vessel, the Closed Drain Tank, the manhole and some of the pipes. The accessible internal surfaces of the pipes, tanks and columns had higher levels of {beta} activity up to 172 {+-} 52 dis/min and some {alpha} activity up to 106 {+-} 29 dis/min. After the water is removed from the vessels, tanks, and lines, they should be surveyed to determine whether the areas accessible for smear surveys are representative of the general inside contamination levels. There are elevated levels of radionuclides in the resin from the Cation Exchange Vessel and in the water from the manhole. Since the radionuclide concentrations in the manhole water are less than ten times the site release criteria, it does not need any processing before it is released to the onsite drains. Although there are RCRA metals on the resin in the Cation Exchange Vessel, the amount that is removed during a leaching analysis is below the toxicity Characteristic level. Therefore, the resin is a radioactive waste not a mixed waste.

  7. SEPARATION OF PLUTONIUM FROM AQUEOUS SOLUTIONS BY ION-EXCHANGE

    DOEpatents

    Schubert, J.

    1958-06-01

    A process is described for the separation of plutonium from an aqueous solution of a plutonium salt, which comprises adding to the solution an acid of the group consisting of sulfuric acid, phosphoric acid, and oxalic acid, and mixtures thereof to provide an acid concentration between 0.0001 and 1 M, contacting the resultant solution with a synthetic organic anion exchange resin, and separating the aqueous phase and the resin which contains the plutonium.

  8. Advance workflow in lipoproteomics via polymeric ion exchanger.

    PubMed

    Javeed, Rabia; Jabeen, Fahmida; Saeed, Hira; Najam-ul-Haq, Muhammad

    2015-03-17

    A workflow is designed for the analysis of lipoproteins, high density lipoproteins (HDL), apoproteins, and lipid fraction, employing an organic polymeric anion exchanger through the enrichment of lipoproteins/peptides from serum. Polymeric separation media are chemically stable over the wide pH range. Poly(GMA/DVB), poly(GMA/EGDMA), and poly(GPE/DVB) are synthesized by radical polymerization, derivatized as strong anion exchangers, and used for lipoproteins enrichment. Lipoprotein's surface is covered by phospholipids, having phosphate groups, therefore lipoproteins are enriched by the interaction of anion exchanger with the phosphate groups and eluted at the pH of 7.5. HDL are further isolated by precipitating the very low-density lipoproteins (VLDL) and low-density lipoproteins (LDL) with phosphotungstic acid as precipitating reagent, followed by delipidation via liquid/liquid extraction. Apolipoproteins profiling is done by MALDI-MS, and lipids are analyzed using gold nanoparticles in the LDI-MS process. This study introduces a lipoproteomics work flow in separation science which analyses the intact lipoproteins. Furthermore, solid phase extraction (SPE)-based methodology is reported for the first time in lipoproteomics. Use of organic polymers, high reproducibility, detailed analysis of lipoproteins, apoproteins/peptides, and lipids from the single serum sample are the distinctive features of this workflow. Being biomarkers of numerous diseases, lipoproteins have clinical significance, and this workflow can be used at diagnostic and therapeutic levels. PMID:25674923

  9. Determining Clumped Isotope (Δ47) Signatures of CO2 During Ion-Molecule Isotopic Exchange Reactions

    NASA Astrophysics Data System (ADS)

    Sarna, J.; Priyadarshi, A.; Pourmorady, P.; Tripati, A.; Estaris, J.

    2015-12-01

    The abundance of multiply-substituted isotopologues such as 13C16O18O can be used to understand fundamental mechanisms that controls isotopic fractionation in chemical reactions. Knowledge of the energy-dependent ion-molecule isotopic exchange rate for 13C16O18O may also provide important insights into the CO2 ion-molecular exchange that occurs in the source of the mass spectrometer. It may offer an explanation for the recently observed nonlinearities associated with clumped isotope measurements. We designed a controlled set of laboratory experiments to investigate variations in the abundance of 13C16O18O associated with different ion-molecular isotopic exchange reactions. In our experiments, we characterize the effects of changing ionization energy, reaction time, CO2 amount, the presence of different compounds, and reaction chamber temperature on the clumped isotopic composition of CO2.

  10. Ignition calculations using a reduced coupled-mode electron- ion energy exchange model*

    NASA Astrophysics Data System (ADS)

    Garbett, W. J.; Chapman, D. A.

    2016-03-01

    Coupled-mode models for electron-ion energy exchange can predict large deviations from standard binary collision models in some regimes. A recently developed reduced coupled-mode model for electron-ion energy exchange, which accurately reproduces full numerical results over a wide range of density and temperature space, has been implemented in the Nym hydrocode and used to assess the impact on ICF capsule fuel assembly and performance. Simulations show a lack of sensitivity to the model, consistent with results from a range of simpler alternative models. Since the coupled-mode model is conceptually distinct to models based on binary collision theory, this result provides increased confidence that uncertainty in electron-ion energy exchange will not impact ignition attempts.

  11. Ion-exchange and selectivity behavior of thermally treated and. gamma. -irradiated phases of zirconium(IV) arsenophosphate cation exchanger: separation of Al(III) from some metal ions and removal of cations from water

    SciTech Connect

    Varshney, K.G.; Varshney, K.; Agrawal, S.

    1983-01-01

    Ion-exchange and selectivity behavior of zirconium(IV) arsenophosphate (ZAP) has been studied systematically after thermal and irradiation treatments. As a result, an increase in the ion-exchange capacity and a complete reversal in the selectivity sequence for some common metal ions has been observed on heating. The modified phase of ZAP has been utilized successfully for the quantitative separation of aluminum from numerous metal ions and for the removal of cations from water. 5 figures, 3 tables.

  12. Electrochemical Ion-Exchange Regeneration and Fluidized Bed Crystallization for Zero-Liquid-Discharge Water Softening.

    PubMed

    Chen, Yingying; Davis, Jake R; Nguyen, Chi H; Baygents, James C; Farrell, James

    2016-06-01

    This research investigated the use of an electrochemical system for regenerating ion-exchange media and for promoting the crystallization of hardness minerals in a fluidized bed crystallization reactor (FBCR). The closed-loop process eliminates the creation of waste brine solutions that are normally produced when regenerating ion-exchange media. A bipolar membrane electrodialysis stack was used to generate acids and bases from 100 mM salt solutions. The acid was used to regenerate weak acid cation (WAC) ion-exchange media used for water softening. The base solutions were used to absorb CO2 gas and to provide a source of alkalinity for removing noncarbonate hardness by WAC media operated in H(+) form. The base solutions were also used to promote the crystallization of CaCO3 and Mg(OH)2 in a FBCR. The overall process removes hardness ions from the water being softened and replaces them with H(+) ions, slightly decreasing the pH value of the softened water. The current utilization efficiency for acid and base production was ∼75% over the operational range of interest, and the energy costs for producing acids and bases were an order of magnitude lower than the costs for purchasing acid and base in bulk quantities. Ion balances indicate that the closed-loop system will accumulate SO4(2-), Cl(-), and alkali metal ions. Acid and base balances indicate that for a typical water, small amounts of base will be accumulated. PMID:27161852

  13. Development and Evaluation of Sustained Release Tablet of Betahistine Hydrochloride Using Ion Exchange Resin Tulsion T344

    PubMed Central

    Wagh, Vijay D.; Pawar, Nilesh

    2012-01-01

    An attempt was made to sustain the release of Betahistine hydrochloride by complexation technique using strong cation-exchange resin, Tulsion T344. The drug loading onto ion-exchange resin was optimized for mixing time, activation, effect of pH, swelling time, ratio of drug : resin, and temperature. The resinate was evaluated for micromeritic properties and characterized using XRPD and IR. For resinate sustained release tablets were formulated using hydoxypropyl methylcellulose K100M. The tablets were evaluated for hardness, thickness, friability, drug content, weight variation, and in vitro drug release. Tablets thus formulated (Batch T-3) provided sustained release of drug over a period of 12 h. The release of Betahistine HCl from resinate controls the diffusion of drug molecules through the polymeric material into aqueous medium. Results showed that Betahistine HCl was formulated into a sustained dosage form as an alternative to the conventional tablet. PMID:22779010

  14. Variations in K{sup +}-Na{sup +} ion exchange depth in commercial and experimental float glass compositions

    SciTech Connect

    Sinton, C.W.; LaCourse, W.C.; O'Connell, M.J.

    1999-12-01

    The authors report the results of ion-exchange experiments conducted on 17 commercial soda-lime-silicate (SLS) float glass and 8 experimental SLS glass compositions. A significant variation in the depth of K{sup +} penetration with relatively small changes in composition was observed. The data were fit to a multiple regression model in which the major oxides are the independent variables and depth of K{sup +} is the dependent variable. The model indicates that increased depth of exchange (increased interdiffusion coefficient) correlates predominantly with increased K{sub 2}O and/or Na{sub 2}O content of the glass, with a decreased total alkaline earth content and with the ratio of CaO/MgO.

  15. Development and evaluation of sustained release tablet of betahistine hydrochloride using ion exchange resin tulsion t344.

    PubMed

    Wagh, Vijay D; Pawar, Nilesh

    2012-01-01

    An attempt was made to sustain the release of Betahistine hydrochloride by complexation technique using strong cation-exchange resin, Tulsion T344. The drug loading onto ion-exchange resin was optimized for mixing time, activation, effect of pH, swelling time, ratio of drug : resin, and temperature. The resinate was evaluated for micromeritic properties and characterized using XRPD and IR. For resinate sustained release tablets were formulated using hydoxypropyl methylcellulose K100M. The tablets were evaluated for hardness, thickness, friability, drug content, weight variation, and in vitro drug release. Tablets thus formulated (Batch T-3) provided sustained release of drug over a period of 12 h. The release of Betahistine HCl from resinate controls the diffusion of drug molecules through the polymeric material into aqueous medium. Results showed that Betahistine HCl was formulated into a sustained dosage form as an alternative to the conventional tablet. PMID:22779010

  16. Use of multi-transition-metal-ion-exchanged zeolite 13X catalysts in methane emissions abatement

    SciTech Connect

    Hui, K.S.; Chao, C.Y.H.; Kwong, C.W.; Wan, M.P.

    2008-04-15

    Methane is a potent greenhouse gas. It has a global warming potential (GWP) 23 times greater than carbon dioxide. Reducing methane emissions would lead to substantial economic and environmental benefits. This study investigated the performance of multi-transition-metal-(Cu, Cr, Ni, and Co)-ion-exchanged zeolite 13X catalysts in methane emissions abatement. The catalytic activity in methane combustion using multi-ion-exchanged catalysts was studied with different parameters including the molar percentage of metal loading, the space velocity, and the inlet methane concentration under atmospheric pressure and at a relatively low reaction temperature of 500 C. The performance of the catalysts was determined in terms of the apparent activation energy, the number of active sites of the catalyst, and the BET surface area of the catalyst. This study showed that multi-ion-exchanged catalysts outperformed single-ion-exchanged and acidified 13X catalysts and that lengthening the residence time led to a higher methane conversion percentage. The enhanced catalytic activity in the multi-ion-exchanged catalysts was attributed to the presence of exchanged transition ions instead of acid sites in the catalyst. The catalytic activity of the catalysts was influenced by the metal loading amount, which played an important role in affecting the apparent activation energy for methane combustion, the active sites, and the BET surface area of the catalyst. Increasing the amount of metal loading in the catalyst decreased the apparent activation energy for methane combustion and also the BET surface area of the catalyst. An optimized metal loading amount at which the highest catalytic activity was observed due to the combined effects of the various factors was determined. (author)

  17. Sorption of iron(III) from chromate solution by the aminocarboxylic ion exchanger ANKB-2

    SciTech Connect

    Stoyanova, O.F.; Izmailova, D.R.; Kurolap, N.S.; Uglyanskaya, V.A.

    1986-12-20

    The possibility of iron(III) sorption by the amphoteric ion exchanger ANKB-2 from chromate solution and its superiority over the cation exchanger KU-23 (10/60) have been demonstrated. By means of IR spectroscopy it has been shown that iron(III) sorption from chromate solution by ANKB-2 proceeds via both ionic and coordination reactions. The proportion of these kinds of reaction does not depend on the Cr(VI) content of the initial solution.

  18. Influence of ion/atom arrival ratio on structure and optical properties of AlN films by ion beam assisted deposition

    NASA Astrophysics Data System (ADS)

    Meng, Jian-ping; Fu, Zhi-qiang; Liu, Xiao-peng; Yue, Wen; Wang, Cheng-biao

    2014-10-01

    In order to improve the optical properties of AlN films, the influence of the ion/atom arrival ratio on the structure and optical characteristics of AlN films deposited by dual ion beam sputtering was studied by using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, spectroscopic ellipsometry and UV-vis spectroscopy. The films prepared at the ion/atom arrival ratio of 1.4 are amorphous while the crystalline quality is improved with the increase of the ion/atom arrival ratio. The films deposited at the ion/atom arrival ratio of no less than 1.8 have an approximately stoichiometric ratio and mainly consist of aluminum nitride with little aluminum oxynitride, while metallic aluminum component appears in the films deposited at the ion/atom arrival ratio of 1.4. When the ion/atom arrival ratio is not less than 1.8, films are smooth, high transmitting and dense. The films prepared with high ion/atom arrival ratio (≥1.8) display the characteristic of a dielectric. The films deposited at the ion/atom arrival ratio of 1.4 are coarse, opaque and show characteristic of cermet.

  19. Self-consistent Equilibrium Model of Low-aspect-ratio Toroidal Plasma with Energetic Beam Ions

    SciTech Connect

    E.V. Belova; N.N. Gorelenkov; C.Z. Cheng

    2003-04-09

    A theoretical model is developed which allows the self-consistent inclusion of the effects of energetic beam ions in equilibrium calculations of low-aspect-ratio toroidal devices. A two-component plasma is considered, where the energetic ions are treated using a kinetic Vlasov description, while a one-fluid magnetohydrodynamic description is used to represent the thermal plasma. The model allows for an anisotropic distribution function and a large Larmor radius of the beam ions. Numerical results are obtained for neutral-beam-heated plasmas in the National Spherical Torus Experiment (NSTX). Self-consistent equilibria with an anisotropic fast-ion distribution have been calculated for NSTX. It is shown for typical experimental parameters that the contribution of the energetic neutral-beam ions to the total current can be comparable to that of the background plasma, and that the kinetic modifications of the equilibrium can be significant. The range of validity of the finite-Larmor-radius expansion and of the reduced kinetic descriptions for the beam ions in NSTX is discussed. The calculated kinetic equilibria can be used for self-consistent numerical studies of beam-ion-driven instabilities in NSTX.

  20. Studies of negative ions by collision-induced decomposition and hydrogen-deuterium exchange techniques.

    PubMed Central

    Hunt, D F; Sethi, S K; Shabanowitz, J

    1980-01-01

    Development of two new techniques for studying the gas phase chemistry of negative ions is reported. Collision induced dissociation (CID) of (M-1)- ions has been accomplished in a newly constructed triple stage quadrupole mass spectrometer. This instrument was assembled by adding two additional Finnigan quadrupole mass filters to a Finnigan Model 3200 CI mass spectrometer. Generation of (M-1)- ions is accomplished by allowing OH- and sample to react under CI conditions in the ion source. The first quadrupole mass filter, Q1, is then employed to selectively pass the (M-1)- ion into a second quadrupole filter containing argon or neon at 10(-3) torr. On collision with the inert gas the (M-1)- ions dissociate into fragments which are then mass analyzed in the third quadrupole filter, CID spectra of (M-1)- ions from twelve carbonyl compounds are presented in this paper. Ion molecule isotope exchange reactions in the CI ion source can be used to count the number of hydrogen atoms in many different chemical environments. Collisions between sample (M-1)- ions and deuterium-labeled reagent gases (ND3, D2O, EtOD) facilitate incorporation of deuterium into the negative ion if the basicities of the sample and reagent anions are similar. Thus it is possible to selectively incorporate deuterium into many organic samples by controlling the exothermicity of the acid base, ion-molecule chemistry. PMID:7428745

  1. Ligand-exchange chromatography of aromatic amines on resin-bound cobalt ion

    SciTech Connect

    Pehlivan, E.; Vural, U.S.; Ayar, A.; Yildiz, S.

    1996-06-01

    The use of cobalt metal for the selective separation of aromatic amines is completed with a chemically bonded diamine and glyoxime functional groups onto Lycopodium clavatum. Oximes and amines are excellent complexing agents for transition metal ions. Cobalt(II) metal ions can easily be immobilized on bis-diaminoethyl-glyoximated sporopollenin (bDAEG-sporopollenin). The ligand-exchange behavior of modified Lycopodium clavatum with respect to aromatic amines was investigated. This will permit the evaluation of bDAEG-sporopollenin ligand exchangers for their utilization as sorbents in the recovery, pollution control, and elimination of amines from wastewater.

  2. RESORCINOL-FORMALDEHYDE ION EXCHANGE RESIN CHEMISTRY FOR HIGH LEVEL WASTE TREATMENT

    SciTech Connect

    Nash, C.; Duignan, M.

    2010-01-14

    A principal goal at the Savannah River Site is to safely dispose of the large volume of liquid nuclear waste held in many storage tanks. In-tank ion exchange technology is being considered for cesium removal using a polymer resin made of resorcinol formaldehyde that has been engineered into microspheres. The waste under study is generally lower in potassium and organic components than Hanford waste; therefore, the resin performance was evaluated with actual dissolved salt waste. The ion exchange performance and resin chemistry results are discussed.

  3. Summary of Testing of SuperLig 639 at the TFL Ion Exchange Facility

    SciTech Connect

    Steimke, J.L.

    2000-12-19

    A pilot scale facility was designed and built in the Thermal Fluids Laboratory at the Savannah River Technology Center to test ion exchange resins for removing technetium and cesium from simulated Hanford Low Activity Waste (LAW). The facility supports the design of the Hanford River Protection Project for BNFL, Inc. The pilot scale system mimics the full-length of the columns and the operational scenario of the planned ion exchange system. Purposes of the testing include confirmation of the design, evaluation of methods for process optimization and developing methods for waste volume minimization. This report documents the performance of the technetium removal resin.

  4. Fractionation of Aspergillus niger cellulases by combined ion exchange affinity chromatography

    SciTech Connect

    Boyer, R.F.; Allen, T.L.; Dykema, P.A.

    1987-02-05

    Eight chemically modified cellulose supports were tested for their ability to adsorb components of the Aspergillus niger cellulase system. At least two of the most effective adsorbents, aminoethyl cellulose and carboxymethyl cellulose, were shown to be useful for the fractionation of cellulases. These supports apparently owe their resolving capacity to both ion exchange and biospecific binding effects; however, the relative importance of each effect is unknown. These observations form the basis for a new cellulase fractionation technique, combined ion exchange-affinity chromatography. 22 references.

  5. Simulation of charge exchange plasma propagation near an ion thruster propelled spacecraft

    NASA Technical Reports Server (NTRS)

    Robinson, R. S.; Kaufman, H. R.; Winder, D. R.

    1981-01-01

    A model describing the charge exchange plasma and its propagation is discussed, along with a computer code based on the model. The geometry of an idealized spacecraft having an ion thruster is outlined, with attention given to the assumptions used in modeling the ion beam. Also presented is the distribution function describing charge exchange production. The barometric equation is used in relating the variation in plasma potential to the variation in plasma density. The numerical methods and approximations employed in the calculations are discussed, and comparisons are made between the computer simulation and experimental data. An analytical solution of a simple configuration is also used in verifying the model.

  6. Corrosion of steel drums containing cemented ion-exchange resins as intermediate level nuclear waste

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Farina, S. B.; Schulz, F. M.

    2013-07-01

    Exhausted ion-exchange resins used in nuclear reactors are immobilized by cementation before being stored. They are contained in steel drums that may undergo internal corrosion depending on the presence of certain contaminants. The objective of this work is to evaluate the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different aggressive species. The corrosion potential and the corrosion rate of the steel, and the electrical resistivity of the matrix were monitored for 900 days. Results show that the cementation of ion-exchange resins seems not to pose special risks regarding the corrosion of the steel drums. The corrosion rate of the steel in contact with cemented ion-exchange resins in the absence of contaminants or in the presence of 2.3 wt.% sulphate content remains low (less than 0.1 μm/year) during the whole period of the study (900 days). The presence of chloride ions increases the corrosion rate of the steel at the beginning of the exposure but, after 1 year, the corrosion rate drops abruptly reaching a value close to 0.1 μm/year. This is probably due to the lack of water to sustain the corrosion process. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years, it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. Cementation of ion-exchange resins does not seem to pose special risks regarding the corrosion of the steel drums that contained them; even in the case the matrix is highly contaminated with chloride ions.

  7. Effect of Mono- and Poly-CH/P Exchange(s) on the Aromaticity of the Tropylium Ion.

    PubMed

    Puri, Ankita; Gupta, Raakhi

    2016-01-01

    In view of the fact that the phosphorus atom in its low co-ordination state (coordination numbers 1 and 2) has been termed as the carbon copy, there have been attempts to investigate, theoretically as well as experimentally, the effect of the exchange(s) of CH- moiety with phosphorus atom(s) (CH/P) on the structural and other aspects of the classical carbocyclic and heterocyclic systems. Tropylium ion is a well-known non-benzenoid aromatic system and has been studied extensively for its aromatic character. We have now investigated the effect of mono- and poly-CH/P exchange(s) on the aromaticity of the tropylium ion. For this purpose, the parameters based on the geometry and magnetic properties, namely bond equalization, aromatic stabilization energies (ASE), Nucleus-Independent Chemical Shift (NICS) values, (NICS(0), NICS(1), NICS(1)zz), proton nucleus magnetic resonance (¹H-NMR) chemical shifts, magnetic susceptibility exaltation and magnetic anisotropic values of mono-, di-, tri- and tetra-phosphatropylium ions have been determined at the Density Functional Theory (DFT) (B3LYP/6-31+G(d)) level. Geometry optimization reveals bond length equalization. ASEs range from -46.3 kcal/mol to -6.2 kcal/mol in mono- and diphospha-analogues which are planar. However, the ions having three and four phosphorus atoms lose planarity and their ASE values approach the values typical for non-aromatic structures. Of the three NICS values, the NICS(1)zz is consistently negative showing aromatic character of all the systems studied. It is also supported by the magnetic susceptibility exaltations and magnetic anisotropic values. Furthermore, ¹H-NMR chemical shifts also fall in the aromatic region. The conclusion that mono-, di-, tri- and tetra-phosphatropylium ions are aromatic in nature has been further corroborated by determining the energy gap between the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) (HOMO - LUMO gap), which falls in the

  8. Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-103

    SciTech Connect

    Hassan, N.M.

    2000-07-27

    The pretreatment process for BNFL, Inc.'s Hanford River Protection Project is to provide decontaminated low activity waste and concentrated eluate streams for vitrification into low activity and high level waste glass, respectively. The pretreatment includes sludge washing, filtration, precipitation, and ion exchange processes to remove entrained solids, cesium, transuranics, technetium, and strontium. The ion exchange removal of cesium (Cs) and technetium (Tc) ions is accomplished by using SuperLig 644, and 639 resins from IBC Advanced Technologies, American Fork, Utah. The resins were shown to selectively remove cesium and technetium (as pertechnetate), from alkaline salt solutions. The efficiency of ion exchange column loading and elution is a complex function involving feed compositions, equilibrium and kinetic behavior of ion exchange resins, diffusion, and the ionic strength and pH of the aqueous solution. A previous experimental program completed at the Savannah River Technology Center demonstrated the conceptualized flow sheet parameters with a similar Hanford tank sample (241-AW-101). Those experiments included determination of Cs and Tc batch distribution coefficients by SuperLig 644 and 639 resins and demonstration of small-scale column breakthrough and elution. The experimental findings were used in support of preliminary design bases and pretreatment flow sheet development by BNFL, Inc.

  9. Ratio

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Studer, Andrew J.; Manuel, James R.; Kimpton, Justin A.

    2014-12-01

    Effects of basicity, B (CaO:SiO2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B = 2.48 to 25 wt pct for the B = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.

  10. Denitration of Rocky Flats Ion-Exchange Resins: Recommendation of Denitration Processes, October 19, 1995

    SciTech Connect

    Jacob Espinoza; Mary Barr; Wayne Smith

    1998-12-01

    Resin denitration via anion-exchange is an implementable process that can effectively mitigate the hazards associated with stored resins in which the bulk of the nitrate consists of an "exchangeable nitrate" ionically bound to the cationic sites of the anion-exchange resins. Salicylate has been selected as the exchange anion of choice because of its superior selectivity for the Rocky Flats resins and its unique potential for comprehensive recovery and recycle. This report outlines a single recommended resin denigration procedure that is reasonably independent of the resin composition and the current stored form. This procedure is not optimized but rather seeks to `over-treat' the resins so that a single procedure works for the variety of stored resins. The recommended treatment with sodium salicylate reduces resins by 95-99+% the measured exothermic behavior of the ion-exchange.

  11. Formation of nonlinear optical waveguides by using ion-exchange and implantation techniques

    NASA Astrophysics Data System (ADS)

    Arnold, G. W.; de Marchi, G.; Gonella, F.; Mazzoldi, P.; Quaranta, A.; Battaglin, G.; Catalano, M.; Garrido, F.; Haglund, R. F., Jr.

    1996-08-01

    Composite materials consisting of metal nanoclusters embedded in glass matrices have been obtained by the combined use of ion-exchange and ion implantation processes, with possible application in the design of nonlinear all-optical switching devices. Optical waveguides containing either silver or copper clusters have been fabricated. Optical absorption and electron microscopy have been performed to detect the presence of metal clusters. Preliminary measurements have been also performed of the optical nonlinear response on both silver- and copper-containing glasses.

  12. Effect of diffusion potential, osmosis and ion-exchange on transdermal drug delivery: theory and experiments.

    PubMed

    Hirvonen, J; Murtomäki, L; Kontturi, K

    1998-12-01

    Equations expressing the effect of the diffusion potential on the trace ion transfer across a porous charged membrane have been derived. These equations have been tested with experiments with human cadaver skin. The transfer of sotalol and salicylate was measured varying the salt (NaCl) concentration in the donor and receiver compartments. It appears that osmotic pressure and ion-exchange make a significant contribution to the flux enhancement by the diffusion potential. PMID:9801427

  13. Sorption of beryllium from sulfate solutions by amino-carboxylic amphoteric ion-exchange resins (polyampholytes)

    SciTech Connect

    Pakholkov, V.S.; Tsevin, A.P.; Rychkov, V.N.

    1986-05-10

    In studies of sorption of beryllium ions from BeSO4 solutions by a series of aminocarboxylic polyampholytes the influence of pH and of the H2SO4, (NH4)2SO4, and BeSO4 concentrations was demonstrated. The mechanism of the process is postulated on the basis of sorption data and the results of IR-spectroscopic studies. It is concluded that carboxyl groups of polyampholytes take part in ion exchange.

  14. Nanometer scale high-aspect-ratio trench etching at controllable angles using ballistic reactive ion etching

    SciTech Connect

    Cybart, Shane; Roediger, Peter; Ulin-Avila, Erick; Wu, Stephen; Wong, Travis; Dynes, Robert

    2012-11-30

    We demonstrate a low pressure reactive ion etching process capable of patterning nanometer scale angled sidewalls and three dimensional structures in photoresist. At low pressure the plasma has a large dark space region where the etchant ions have very large highly-directional mean free paths. Mounting the sample entirely within this dark space allows for etching at angles relative to the cathode with minimal undercutting, resulting in high-aspect ratio nanometer scale angled features. By reversing the initial angle and performing a second etch we create three-dimensional mask profiles.

  15. Investigation of phosphate removal using sulphate-coated zeolite for ion exchange.

    PubMed

    Choi, Jae-Woo; Hong, Seok-Won; Kim, Dong-Ju; Lee, Sang-Hyup

    2012-01-01

    Sulphate-coated zeolite (SCZ) was characterized and employed for the removal of phosphate from aqueous solutions using both batch and column tests. Batch experiments were conducted to assess the sulphate dilution ratio, reaction time for coating, surface washing and calcination temperature during the synthesis of SCZ. Langmuir isotherm and pseudo-first-order models were suitable to explain the sorption characteristics of phosphate onto the SCZ. Equilibrium tests showed that SCZ was capable of removing phosphate, with a maximum binding energy beta = 30.2 mg g(-1), compared to other adsorbents, such as activated alumina and ion exchange resin. The Thomas model was applied to the adsorption of phosphate to predict the breakthrough curves and the parameters of a column test. The model was found to be suitable for describing the adsorption process of the dynamic behaviour of the SCZ column. The total adsorbed quantity and equilibrium uptake ofphosphate related to the effluent volumes were determined by evaluating the breakthrough curves obtained under the allowed conditions. The results of batch and column experiments, as well as the low cost of the adsorbent, suggested that SCZ could be used as an adsorbent for the efficient and cost-effective removal of phosphate from aqueous solution. PMID:23393974

  16. Oxidation-labile subfraction of human plasma low density lipoprotein isolated by ion-exchange chromatography.

    PubMed

    Shimano, H; Yamada, N; Ishibashi, S; Mokuno, H; Mori, N; Gotoda, T; Harada, K; Akanuma, Y; Murase, T; Yazaki, Y

    1991-05-01

    We isolated subfractions of human plasma low density lipoprotein (LDL) using ion-exchange chromatography. Plasma LDL from normolipidemic subjects were applied to a DEAE Sepharose 6B column. After elution of the bulk of LDL at 150 mM NaCl (the major fraction), the residual LDL was eluted at 500 mM NaCl and designated as the minor fraction. The minor fraction, only less than 1% of total LDL, tended to be somewhat similar in certain properties to oxidized LDL, e.g., an increased negative charge, higher protein/cholesterol ratio, and a higher flotation density than native LDL. These results were consistent with data reported by Avogaro et al. (1988. Arteriosclerosis. 8: 79-87). However, assays of 125I-labeled LDL binding activity for LDL receptors equal to that of the major fraction. Incorporation of [14C]oleate into cholesteryl ester [acyl-CoA:cholesterol acyltransferase (ACAT) activity] in mouse peritoneal macrophages incubated with the minor fraction was only slightly greater than that with the major fraction. Incubation of the minor fraction with 0.5 microM Cu2+ caused a remarkable stimulation of ACAT activity, while stimulation by the major fraction required incubation with 5 microM Cu2+, suggesting that the minor fraction was relatively labile to oxidation. The minor but definite presence of a plasma LDL subfraction more negative and susceptible to oxidation implicates the possibility of its association with atherogenesis. PMID:2072039

  17. Electron Terms and Resonant Charge Exchange Involving Oxygen Atoms and Ions

    SciTech Connect

    Kosarim, A.V.; Smirnov, B.M.

    2005-10-01

    The electron terms are constructed for oxygen dimer ions at large ion-atom distances taking into account a certain scheme of summation of electron momenta on the basis of a hierarchy of various ion-atom interactions. Because the number of interaction types exceeds that in the Hund scheme, a realistic hierarchy of interactions and corresponding quantum numbers of the diatomic ion are outside the Hund coupling scheme. Electron terms are evaluated for the oxygen dimer ion in the case where the ground and first excited states of an atom and an ion belong to the respective valence electron shells p{sup 4} and p{sup 3} and correspond to the range of separations that determine the cross sections of resonant charge exchange in plasma. These electron terms allow us to calculate the partial and average cross sections for resonant charge exchange involving an oxygen ion and atom in the ground and first excited states in the range of collision energies of interest for oxygen plasmas. The specific features of electron terms of the oxygen ion dimer and the cross section of electron transfer are analyzed.

  18. Ion exchanger in the brain: Quantitative analysis of perineuronally fixed anionic binding sites suggests diffusion barriers with ion sorting properties

    NASA Astrophysics Data System (ADS)

    Morawski, Markus; Reinert, Tilo; Meyer-Klaucke, Wolfram; Wagner, Friedrich E.; Tröger, Wolfgang; Reinert, Anja; Jäger, Carsten; Brückner, Gert; Arendt, Thomas

    2015-12-01

    Perineuronal nets (PNs) are a specialized form of brain extracellular matrix, consisting of negatively charged glycosaminoglycans, glycoproteins and proteoglycans in the direct microenvironment of neurons. Still, locally immobilized charges in the tissue have not been accessible so far to direct observations and quantifications. Here, we present a new approach to visualize and quantify fixed charge-densities on brain slices using a focused proton-beam microprobe in combination with ionic metallic probes. For the first time, we can provide quantitative data on the distribution and net amount of pericellularly fixed charge-densities, which, determined at 0.4-0.5 M, is much higher than previously assumed. PNs, thus, represent an immobilized ion exchanger with ion sorting properties high enough to partition mobile ions in accord with Donnan-equilibrium. We propose that fixed charge-densities in the brain are involved in regulating ion mobility, the volume fraction of extracellular space and the viscosity of matrix components.

  19. Commercial Ion Exchange Resin Vitrification in Borosilicate Glass

    SciTech Connect

    Cicero-Herman, C.A.; Workman, P.; Poole, K.; Erich, D.; Harden, J.

    1998-05-01

    Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification process utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper.

  20. Study of Flux Ratio of C60 to Ar Cluster Ion for Hard DLC Film deposition

    SciTech Connect

    Miyauchi, K.; Toyoda, N.; Kanda, K.; Matsui, S.; Kitagawa, T.; Yamada, I.

    2003-08-26

    To study the influence of the flux ratio of C60 molecule to Ar cluster ion on (diamond like carbon) DLC film characteristics, DLC films deposited under various flux ratios were characterized with Raman spectrometry and Near Edge X-ray Absorption Fine Structure (NEXAFS). From results of these measurements, hard DLC films were deposited when the flux ratio of C60 to Ar cluster ion was between 0.7 and 4. Furthermore the DLC film with constant sp2 content was obtained in the range of the ratio from 0.7 to 4, which contents are lower values than that of conventional films such as RF plasma. DLC films deposited under the ratio from 1 to 4 had hardness from 40 to 45GPa. It was shown that DLC films with stable properties of low sp2 content and high hardness were formed even when the fluxes were varied from 1 to 4 during deposition. It was indicated that this process was useful in the view of industrial application.

  1. The branching ratio in the infrared predissociation of aniline-water-methanol + ion

    NASA Astrophysics Data System (ADS)

    Alauddin, Md.; Song, Jae Kyu; Park, Seung Min

    2010-09-01

    The infrared (IR) photodissociation of aniline-water-methanol cluster ion was investigated in the 2600-3900 cm -1 region to examine the factors which play key roles in determining the branching ratio of a concurrent predissociation reaction. The dominant channel in the IR predissociation of AWM + (A: aniline, W: water, M: methanol) was AWM + → AM + at all vibrational modes although the calculated binding energies of water and methanol were nearly the same. Also, the branching ratio was slightly dependent on the specific excited mode, ranging from 0.036 to 0.074; the most effective mode to kick out methanol was OH vibration of methanol.

  2. Design of a Carousel Process for Removing Cesium from SRS Waste Using Crystalline Silicotitanate Ion Exchanger

    SciTech Connect

    Walker, D.D.

    1999-01-15

    Designs of a three-column carousel process based on crystalline silicotitanate (CST) ion exchanger have been developed for removing radioactive 137Cs+ from Savannah River Site's (SRS) nuclear wastes. A multicomponent ion exchange equilibrium model (Zheng et al., 1997) from Texas A&M University, which is based on batch data obtained from CST powder, is used to generate cesium loading data at different cesium concentrations for various types of SRS wastes. These loading data are fit to the Langmuir equation to obtain effective single-component cesium isotherm parameters. The predictions are in reasonable agreement with batch test data obtained from CST powder, an early CST pellet batch (38B), and a later batch (IE911) using two SRS waste simulants. The ratios between experimental cesium distribution coefficients and predicted values are between 0.56 and 1.0. The variation appears to be due to inadequate equilibration time in some of the batches. Mass transfer parameters are estimated by analyzing column data of a simulated SRS waste and Melton Valley Storage Tank W29 (MVST-W29) waste. The intraparticle diffusivity estimated for the two wastes can be well correlated by means of the Stokes-Einstein equation.Simulations are performed to determine the length of the mass transfer zone for given feed compositions, Cs+ concentrations, and linear velocities. In order to ensure high column utilization during both the transient and cyclic steady state periods, the length of a single segment in the carousel process is chosen to be the mass transfer zone length after the concentration wave achieves a constant pattern. Analysis of the dimensionless groups in the differential mass balance equations reveals that the normalized mass transfer zone length is linearly proportional to the particle Peclet number. The proportionality constant is a function of the waste composition and the Cs+ concentration in the waste. The higher the effective Cs+ capacity and the higher the Cs

  3. Radium-thorium disequilibrium and zeolite-water ion exchange in a Yellowstone hydrothermal environment

    SciTech Connect

    Sturchio, N.C.; Bohlke, J.K. ); Binz, C.M. )

    1989-05-01

    Whole rock samples of hydrothermally altered Biscuit Basin rhyolite from Yellowstone drill cores Y-7 and Y-8 were analyzed for {sup 226}Ra and {sup 230}Th to determine the extent of radioactive disequilibrium and its relation to the rates and mechanisms of element transport in the shallow portion of an active hydrothermal system. The ({sup 226}Ra/{sup 230}Th) activity ratios range from 0.73 to 1.46 and are generally correlated with Th-normalized Ba concentrations (Ba{sub N}). Compositions of clinoptilolite and mordenite in these samples are consistent with ion exchange equilibrium between zeolites and coexisting thermal waters. Average K{sup Ba}{sub d mineral-water} values are 1.0 {center dot} 10{sup 5} mL/g for clinoptilolite and 1.4 {center dot} 10{sup 4} mL/g for mordenite. Apparent diffusivities through matrix porosity estimated for R and Ba range from {approximately}10{sup {minus}12} to {approximately}10{sup {minus}10} cm{sup 2} s{sup {minus}1} in thoroughly zeolitic rhyolite; these rates of diffusion are too low to account for the observed distance scale of ({sup 226}Ra/{sup 230}Th) disequilibrium. The correlated values of ({sup 226}Ra/{sup 230}Th) disequilibrium and Ba{sub N} represent zeolite-water ion exchange equilibrium that is caused by porous flow of water through the rock matrix and by the relatively rapid diffusion of cations within the zeolite lattices. A water flux of at least {approximately}2.5 (cm{sup 3}{sub water}/cm{sup 3}{sub rock}) yr{sup {minus}1} is required to produce measurable ({sup 226}Ra/{sup 230}Th) disequilibrium, whereas at least {approximately}23 (cm{sup 3}{sub water}/cm{sup 3}{sub rock}) yr{sup {minus}1} is required for the sample exhibiting the most extreme ({sup 226}Ra/{sup 230}Th) disequilibrium; these fluxes are much higher than those that can be inferred from net mass transfers of stable species.

  4. Development of a Waste Water Regenerative System - Using Sphagnum Moss Ion-exchange

    NASA Astrophysics Data System (ADS)

    McKeon, M.; Wheeler, R.; Leahy, Jj

    The use of inexpensive, light weight and regenerative systems in an enclosed environment is of great importance to sustained existence in such habitats as the International Space Station, Moon or even Mars. Many systems exist which utilise various synthetic ion exchangers to complete the process of waste water clean-up. These systems do have a very good exchange rate for cations but a very low exchange rate for anions. They also have a maximum capacity before they need regeneration. This research proposes a natural alternative to these synthetic ion-exchangers that utilises one of natures greatest ion-exchangers, that of Sphagnum Moss. Sphagna can be predominantly found in the nutrient poor environment of Raised Bogs, a type of isolated wetland with characteristic low pH and little interaction with the surrounding water table. All nutrients come from precipitation. The sphagna have developed as the bog's sponges, soaking up all available nutrients (both cation & anion) from the precipitation and eventually distributing them to the surrounding flora and fauna, through the water. The goal of this research is to use this ability in the processing of waste water from systems similar to isolated microgravity environments, to produce clean water for reuse in these environments. The nutrients taken up by the sphagna will also be utilised as a growth medium for cultivar growth, such as those selected for hydroponics' systems.

  5. Exploring the favorable ion-exchange ability of phthalylated cellulose biopolymer using thermodynamic data.

    PubMed

    de Melo, Júlio C P; da Silva Filho, Edson C; Santana, Sirlane A A; Airoldi, Claudio

    2010-09-01

    A phthalylated ion-exchange biopolymer was obtained by adding cellulose to molten phthalic anhydride in a quasi solvent-free procedure. Through this route 2.99+/-0.07 mmolg(-1) of pendant groups containing ester and carboxylic acid moieties were incorporated into the polymeric structure that was characterized by elemental analysis, solid-state carbon nuclear magnetic resonance (CP/MAS), infrared spectroscopy, X-ray diffraction, and thermogravimetry. The chemically modified polysaccharide is able to exchange cations from aqueous solution as demonstrated by batchwise methodology. The data were adjusted to a modified Langmuir equation to give 2.43+/-0.12 and 2.26+/-0.11 mmolg(-1) for divalent cobalt and nickel cations, respectively. The net thermal effects obtained from calorimetric titration measurements were also adjusted to a modified Langmuir equation, and the enthalpy of the interaction was calculated to give endothermic values of 2.11+/-0.28 and 2.50+/-0.31kJmol(-1) for these cations, respectively. The spontaneity of this ion-exchange process is reflected in negative Gibbs energy and with a contribution of positive entropic values. This set of thermodynamic data at the solid-liquid interface suggests a favorable ion-exchange process for this anchored biopolymer for cation exchange from the environment. PMID:20673881

  6. Copper doping of silicate glasses by the ion-exchange technique: A photoluminescence spectroscopy study

    NASA Astrophysics Data System (ADS)

    Borsella, E.; Dal Vecchio, A.; Garcı̀a, M. A.; Sada, C.; Gonella, F.; Polloni, R.; Quaranta, A.; van Wilderen, L. J. G. W.

    2002-01-01

    Copper-alkali ion exchange is used for doping superficial layers of different silicate glasses (commercial soda-lime and BK7) with copper ions. Spectroscopic and time-resolved photoluminescence properties of the obtained systems are studied in the range of 80-294 K. Analysis indicates the presence of Cu+ ions located in distorted octahedral sites, and a different position of the triplet electronic levels for the two glass matrices. The luminescence decay-time signal is simulated by a biexponential behavior, interpreted on the basis of a four-level scheme.

  7. Ion exchange with the solar wind for planets with negligible intrinsic magnetic fields

    NASA Technical Reports Server (NTRS)

    Nisbet, J. S.

    1979-01-01

    The exchange of ions between the ionosphere of a planet with negligible intrinsic magnetic field, and the solar wind is examined. It is suggested that a balance exists between the outflow of ionospheric ions at the plasmapause and ions from the solar wind in a restricted region close to the subsolar point. This results in a current system towards the subsolar point on the surface of the ionopause and a toroidal magnetic field. Simple calculations are made of the current and field configuration that might result from the system for conditions similar to those encountered on the Viking 1 and 2 transits of the Mars ionosphere.

  8. Development and testing of ion exchangers for treatment of liquid wastes at Oak Ridge National Laboratory

    SciTech Connect

    Collins, J.L.; Davidson, D.J.; Chase, C.W.; Egan, B.Z.; Ensor, D.D.; Bright, R.M.; Glasgow, D.C.

    1993-03-01

    This report addresses three areas of waste treatment: (1) treatment of newly generated low-level liquid waste and Melton Valley Storage Tank (MVST) supernate using inorganic ion exchangers; (2) treatment of processing streams at the Radiochemical Engineering Development Center (REDC); and (3) removal of radionuclides from organic solutions. Distribution of various radionuclides between simulated waste solutions and several sorbents was determined in batch tests. Inorganic ion exchangers were prepared in the form of microspheres by an intemal gelation process. Microspheres of hydrous titania, hydrous zirconia, hydrous titania containing embedded sodium cobalt hexacyanoferrate, and the corresponding phosphate forms of these materials were prepared. Several zeolites (PDZ-140, PDZ-300, EE-96, CBV-10A) and inorganic ion exchangers (hydrous titania, hydrous zirconia, polyantimanic acid, sodium cobalt hexacyanoferrate) were tested for the removal of cesium and strontium from the acidic simulated Cleanex raffinate generated at REDC. A resorcinol-based ion-exchange resin and three types of sodium titanate were tested for removal of cesium and strontium from the REDC caustic dissolver solution. Hydrous titania, hydrous zirconia, and their corresponding phosphates were tested for the removal of Eu{sup 3+} from various solutions of di-2-ethylbexyl phosphoric acid (HDEHP) in toluene or dodecane.

  9. SUMMARY REPORT: CONTROL AND TREATMENT TECHNOLOGY FOR THE METAL FINISHING INDUSTRY: ION EXCHANGE

    EPA Science Inventory

    This Technology Transfer ummary Report is one of a series of reports that summarizes a pollution control technology for the metal finishing industry. he 45-page report is intended to promote an understanding of the use of ion exchange in the metal finishing industry. The sections...

  10. Conceptual study of in-tank cesium removal using an inorganic ion exchange material

    SciTech Connect

    Goheen, R.S.; Kurath, D.E.

    1996-04-01

    Presently, the Hanford Site contains approximately 230,000 m{sup 3} of mixed waste stored in 177 underground tanks. Approximately 55,000 m{sup 3} of this waste is sludge, 90,000 m{sup 3} is salt cake, and 80,000 m{sup 3} is supernate. Although the pretreatment and final disposal requirements for the waste have not been entirely defined, it is likely that some supernatant pretreatment will be required to remove {sup 137}Cs and possibly {sup 90}Sr and the transuranic components. The objective of this study was to estimate the number of HLW glass canisters resulting from the use of inorganic ion exchanger materials as in-tank pretreatment technology. The variables in the study were: number of contacts between waste and ion exchange material; ion exchange material; and decontamination requirement. This conceptual study investigates a generic in-tank Cs removal flowsheet using crystalline silico-titanates and IE-96 zeolites, and the impact of each ion exchanger on the number of glass canisters produced. In determining glass formulation, data based on current reference technology was used. Sample calculations from the worksheets and summaries of final calculated results are included at the end of this report.

  11. Improvement of technology for treatment of spent radioactive ion-exchange resins at nuclear power stations

    NASA Astrophysics Data System (ADS)

    Korchagin, Yu. P.; Aref'ev, E. K.; Korchagin, E. Yu.

    2010-07-01

    Results from tests of technology for decontaminating spent radioactive ion-exchange resins at the Balakovo and Kalinin nuclear power stations are presented. Versions of technological schemes with cleaning and repeated use of decontaminating solution are considered. The possibility of considerably reducing the volume of radioactive wastes is demonstrated.

  12. Ion exchange using poorly activated supports, an easy way for purification of large proteins.

    PubMed

    Pessela, Benevides C C; Munilla, Roberto; Betancor, Lorena; Fuentes, Manuel; Carrascosa, Alfonso V; Vian, Alejandro; Fernandez-Lafuente, Roberto; Guisán, Jose M

    2004-04-23

    Ion-exchange chromatography using commercial ionic supports is a commonly used technique for protein purification. However, selective adsorption of a target protein from a given extract onto commercial ion exchangers seems to be quite complex since they are designed to adsorb the maximum percentage of proteins with the opposite charge. In this paper, ion-exchanger supports with different activation degrees (from 1 to 40 micromol of amino groups per g of agarose) have been prepared and used for the purification of large proteins. These kinds of proteins have large surfaces to interact by many points with the support. Therefore, it was possible to purify large proteins as beta-galactosidase from Thermus sp. strain T2 from a crude extract from Escherichia coli or bovine liver catalase from a commercial preparation, with tailor-made ion-exchanger supports. A simple step of adsorption/desorption on lowly activated supports rendered both enzymes rather pure as confirmed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Moreover, this strategy makes also easy the desorption step that requires rather low NaCl concentrations, which may become a serious problem for desorption of large proteins when using conventional supports, due to their ability of generating a very strong adsorption. PMID:15116925

  13. The development and characterization of ion exchange membranes for selected electrochemical power sources

    NASA Astrophysics Data System (ADS)

    Arnold, C., Jr.; Assink, R. A.

    The work is reviewed on the development and characterization of ion exchange membranes in an effort to improve the efficiency of three flowing electrolyte batteries. The batteries are: (1) NASA's iron chromium redox battery; (2) Lockheed's zinc ferricyanide battery; and (3) Johnson Control's zinc bromine battery. These batteries were developed for solar photovoltaic, utility load leveling, and electric vehicle applications, respectively.

  14. Synthesis of Anomeric Methyl Fructofuranosides and Their Separation on an Ion-Exchange Resin

    ERIC Educational Resources Information Center

    Nurminen, Erkki; Poijarvi, Paivi; Koskua, Katja; Hovinen, Jari

    2007-01-01

    Treatment of d-fructose with methanol in the presence of acid as a catalyst gives a mixture of methyl-[beta]-d-fructopyranoside, methyl-[alpha]-D-fructofuranoside, and methyl-[beta]-d-fructofuranoside, which were separated on an ion exchange column and characterized polarimetrically.

  15. Integrated optics Bragg filters made by ion exchange and wafer bonding

    NASA Astrophysics Data System (ADS)

    Gardillou, F.; Bastard, L.; Broquin, J.-E.

    2006-09-01

    A polarization-insensitive Bragg filter has been realized on a glass substrate thanks to the epoxy-free wafer bonding technique. This device is based on the combined embedding of a corrugated grating and a surface ion-exchanged waveguide, both realized on a silicate glass. With this configuration, the grating patterns are also protected from external degradation of the environment.

  16. Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102

    SciTech Connect

    Hassan, N.M.

    2000-07-27

    The pretreatment process for BNFL, Inc.'s Hanford River Protection Project is to provide decontaminated low activity waste and concentrated eluate streams for vitrification into low and high activity waste glass, respectively. The pretreatment includes sludge washing, filtration, precipitation, and ion exchange processes to remove entrained solids, cesium, transuranics, technetium, and strontium. The cesium (Cs-137) and technetium (Tc-99) ion exchange removal is accomplished by using SuperLig 644, and 639 resins from IBC Advanced Technologies, American Fork, Utah. The resins were shown to selectively remove cesium and technetium (as anionic pertechnetate ) from alkaline salt solutions. The efficiency of ion exchange column loading and elution is a complex function involving feed compositions, equilibrium and kinetic behavior of ion exchange resins, diffusion, and the ionic strength and pH of the aqueous solution. A previous experimental program completed at the Savannah River Tech nology Center2 demonstrated the conceptualized flow sheet parameters with an Envelope C sample from Hanford Tank 241-AN-107. Those experiments also included determination of Cs and Tc batch distribution coefficients by SuperLig 644 and 639 resins and demonstration of small-scale column breakthrough and elution. The experimental findings were used in support of preliminary design bases and pretreatment flow sheet development by BNFL, Inc.

  17. Controlled transdermal delivery of leuprorelin by pulsed iontophoresis and ion-exchange fiber.

    PubMed

    Malinovskaja, Kristina; Laaksonen, Timo; Hirvonen, Jouni

    2014-11-01

    Poor transport efficacy and issues related to biological variation are major concerns in the development of novel iontophoretic devices for the transdermal delivery of therapeutic peptides. The objective of this study was to examine the impact of constant and pulsed current on the transport of nonapeptide leuprorelin acetate across porcine epidermis. Also, the potential of drug delivery system combining iontophoresis and ion-exchange fibers as drug matrices for the delivery of the same peptide was tested. The present study demonstrated the benefit of pulsed current (Tn=2.59×10(-4)) over constant current (Tn=1.7×10(-4)) in terms of more efficient transdermal peptide transport. An increase in the delivery of electroosmotic marker by pulsed current was due to the combined effect of more pronounced electroosmotic transport and reduced inhibition of passive transport. We also showed a promising approach using ion-exchange fibers for controlling the release and iontophoretic transdermal delivery of peptides. Positively charged leuprorelin acetate was bound to the ion-exchange groups of cation-exchange fibers until it was gradually released by mobile counter ions in the external solution. Transdermal flux from acrylic acid grafted Smopex®-102 fibers remained higher (Jss=0.71μg/hcm(2)) than from sulfonic acid grafted Smopex®-101 fibers (Jss=0.31μg/hcm(2)) due to better drug release. PMID:25173088

  18. EVALUATION OF ION EXCHANGE SOFTENING ON THE LEACHING OF METALS FROM HOUSEHOLD PLUMBING SYSTEMS

    EPA Science Inventory

    A 16 month pilot plant study was conducted to determine the effect of ion exchange softening on the leaching of metals from household plumbing materials. wo pipe loop pilot plant systems were assembled. ach system consisted of duplicate loops of lead pipe, copper pipe with 50:50 ...

  19. Updating of sewage - purification facilities of electroplating enterprises with counterflow ion-exchange filters

    NASA Astrophysics Data System (ADS)

    Torosyan, V. F.; Torosyan, E. S.; Sorokin, P. D.; Telitsyn, A. A.

    2015-09-01

    The paper focuses on work of electroplating sewage-purification facilities of mechanical engineering production; drawbacks caused by specific features of physical and chemical processes of coagulation and technological malfunctions have been revealed. Additional equipment - ion-exchanging filters have been selected on the basis of designed methods, they make it possible for enterprises of mechanical engineering to implement conversion to water rotation systems.

  20. Second harmonic generation in ion-exchanged waveguides of semiconductor microcrystallite-doped glasses

    NASA Astrophysics Data System (ADS)

    MacDonald, R. L.; Driscoll, T. J.; Lawandy, N. M.

    1991-09-01

    The first observations of optically encoded secondary harmonic generation in waveguides written in semiconductor doped glasses (SDGs) is reported. This new property should extend the usefulness of SDG to integrated optical systems where switching as well as frequency doubling may be required. The first ion-exchanged waveguide fabrication in potassium-based glasses is also reported.

  1. Vitrification of Cesium-Laden Organic Ion Exchange Resin in a Stirred Melter

    SciTech Connect

    Cicero-Herman, C.A; Sargent, T.N.; Overcamp, T.J.; Bickford, D.F.

    1997-07-09

    The goal of this research was a feasibility study for vitrifying the organic ion exchange resin in a stirred-tank melter. Tests were conducted to determine the fate of cesium including the feed, exit glass, and offgas streams and to assess any impact of feeding the resin on the melter or its performance.

  2. Highly-selective and Regenerable Ion Exchange for Perchlorate Remediation, Recovery, and Environmental Forensics

    NASA Astrophysics Data System (ADS)

    Gu, B.; Brown, G.

    2007-12-01

    Perchlorate (ClO4-) has recently emerged as a widespread contaminant found in drinking water and groundwater supplies in the United States and is known to disrupt thyroid function by inhibiting iodide uptake. Among various treatment technologies, the highly-selective and regenerable ion-exchange technology has recently been developed at ORNL for removing ClO4- from contaminated water. The selective ion exchange technology relies on a unique, highly specific resin to trap ClO4- from contaminated water. The treatment system is then regenerated and perchlorate is destroyed. The reaction that destroys ClO4- produces Cl- and Fe(III) that are used to regenerate the resin, resulting in practically zero secondary waste production. In comparison with conventional non-selective ion-exchange technology, this new treatment process is expected to result in not only a reduced O&M cost but also the elimination of the disposal of hazardous wastes containing perchlorate. Additionally, the selective and regenerable ion exchange technology has allowed the quantitative recovery of perchlorate from contaminated water for reuse, or from other environmental matrices such as sediment, groundwater, and salt deposits for perchlorate isotopic and source identification. Naturally-forming perchlorate has been found to contain distinct oxygen and chlorine isotope signatures or anomalies as compared with anthropogenic perchlorate and can thus provide unambiguous identification of the sources of perchlorate contamination as a powerful tool for the forensics of perchlorate in the environment.

  3. ARSENIC REMOVAL FROM DRINKING WATER BY ION EXCHANGE AND ACTIVATED ALUMINA PLANTS

    EPA Science Inventory

    This report documents a long term performance study of two ion exchange (IE) and two activated alumina (AA) treatment plants to remove arsenic from drinking water. Performance information was collected on these systems that are located in the northeast for one full year. The stud...

  4. High-resolution determination of {sup 147}Pm in urine using dynamic ion-exchange chromatography

    SciTech Connect

    Elchuk, S.; Lucy, C.A.; Burns, K.I.

    1992-10-15

    Ion exchange preconcentration followed by HPLC purification prior to scintillation counting was used to measure the concentration of {sup 147}Pm in urine. the detection limit for this method was found to be 0.1 Bq (3 fg) of {sup 147}Pm in 500 ml of urine.

  5. ONE MGD ION EXCHANGE PLANT FOR REMOVAL OF NITRATE FROM WELL WATER

    EPA Science Inventory

    A full scale 1 mgd demonstration plant, using ion exchange, for removal of nitrate from well water was built at McFarland, California. The plant has been performing satisfactorily in the semi-automatic mode since October 1983. Full automation of the plant was completed in June 19...

  6. Development and testing of ion exchangers for treatment of liquid wastes at Oak Ridge National Laboratory

    SciTech Connect

    Collins, J.L.; Davidson, D.J.; Chase, C.W.; Egan, B.Z. ); Ensor, D.D.; Bright, R.M.; Glasgow, D.C. )

    1993-03-01

    This report addresses three areas of waste treatment: (1) treatment of newly generated low-level liquid waste and Melton Valley Storage Tank (MVST) supernate using inorganic ion exchangers; (2) treatment of processing streams at the Radiochemical Engineering Development Center (REDC); and (3) removal of radionuclides from organic solutions. Distribution of various radionuclides between simulated waste solutions and several sorbents was determined in batch tests. Inorganic ion exchangers were prepared in the form of microspheres by an intemal gelation process. Microspheres of hydrous titania, hydrous zirconia, hydrous titania containing embedded sodium cobalt hexacyanoferrate, and the corresponding phosphate forms of these materials were prepared. Several zeolites (PDZ-140, PDZ-300, EE-96, CBV-10A) and inorganic ion exchangers (hydrous titania, hydrous zirconia, polyantimanic acid, sodium cobalt hexacyanoferrate) were tested for the removal of cesium and strontium from the acidic simulated Cleanex raffinate generated at REDC. A resorcinol-based ion-exchange resin and three types of sodium titanate were tested for removal of cesium and strontium from the REDC caustic dissolver solution. Hydrous titania, hydrous zirconia, and their corresponding phosphates were tested for the removal of Eu[sup 3+] from various solutions of di-2-ethylbexyl phosphoric acid (HDEHP) in toluene or dodecane.

  7. Basic Ion Exchange Softening. Training Module 2.210.2.77.

    ERIC Educational Resources Information Center

    McMullen, L. D.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with ion exchange softening. It includes objectives, an instructor guide, student handouts, and transparency masters. This is the first level of a three module series. The module considers the principles, components, operation,…

  8. Intermediate Ion Exchange Softening. Training Module 2.211.3.77.

    ERIC Educational Resources Information Center

    McMullen, L. D.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the operation of an ion exchange softening system. It includes objectives, an instructor guide, student handouts, and transparency masters. This is the second level of a three module series. The module considers operation and…

  9. Advanced Ion Exchange Softening. Training Module 2.212.4.77.

    ERIC Educational Resources Information Center

    McMullen, L. D.

    This document is an instructional module package prepared in objective form for use by an instructor familiar with the operation of an ion exchange softening system. It includes objectives, an instructor guide, student handouts and transparency masters. This is the third level of a three module series. This module considers the theory of ion…

  10. Bi-functional ion exchangers for enhanced performance of dye-sensitized solar cells.

    PubMed

    Kong, Eui-Hyun; Chang, Yong-June; Lim, Jongchul; Kim, Back-Hyun; Lee, Jung-Hoon; Kwon, Do-Kyun; Park, Taiho; Jang, Hyun Myung

    2013-07-28

    Ion exchange using aerosol OT (AOT) offers dye adsorption twice as fast as known methods. Moreover, it suppresses the dye-agglomeration that may cause insufficient dye-coverage on the photoelectrode surface. Consequently, its dual function of fast dye-loading and higher dye-coverage significantly improves the power conversion efficiency of dye-sensitized solar cells. PMID:23775416

  11. Ion exchange substrates for plant cultivation in extraterrestrial stations and space crafts

    NASA Astrophysics Data System (ADS)

    Soldatov, Vladimir

    2012-07-01

    Ion exchange substrates Biona were specially designed at the Belarus Academy of Sciences for plants cultivation in spacecrafts and extraterrestrial stations. The first versions of such substrates have been successfully used in several space experiments and in a long-term experiment in which three soviet test-spacemen spent a full year in hermetic cabin imitating a lunar station cabin (1067-1968). In this experiment the life support system included a section with about one ton of the ion exchange substrate, which was used to grow ten vegetations of different green cultures used in the food of the test persons. Due to failure of a number of Soviet space experiments, decay of the Soviet Union and the following economic crisis the research in this field carried out in Belarus were re-directed to the needs of usual agriculture, such as adaptation of cell cultures, growing seedlings, rootage of cuttings etc. At present ion exchange substrate Biona are produced in limited amounts at the experimental production plant of the Institute of Physical Organic Chemistry and used in a number of agricultural enterprises. New advanced substrates and technologies for their production have been developed during that time. In the presentation scientific principles of preparation and functioning of ion exchange substrates as well as results of their application for cultivation different plants are described. The ion exchange substrate is a mixture of cation and anion exchangers saturated in a certain proportions with all ions of macro and micro elements. These chemically bound ions are not released to water and become available for plants in exchange to their root metabolites. The substrates contain about 5% mass of nutrient elements far exceeding any other nutrient media for plants. They allow generating 3-5 kg of green biomass per kilogram of substrate without adding any fertilizers; they are sterile by the way of production and can be sterilized by usual methods; allow regeneration

  12. Planar Waveguides Formed by Ag Na Ion Exchange in Nonlinear Optical Glasses: Diffusion and Optical Properties

    NASA Astrophysics Data System (ADS)

    Martin, Marc; Videau, Jean J.; Canioni, Lionel; Adamietz, Frédéric; Sarger, Laurent; Le Flem, Gilles

    2000-01-01

    All-optical communication systems are the subject of intense research related to the integration of nonlinear optical materials. In sodiocalcic borophosphate glasses that contain niobium oxide and exhibit high nonlinear optical indices, planar waveguides have been formed by a Ag Na ion-exchange technique. WKB analysis has been used to characterize the diffusion profiles of silver ions exchanged in glass substrate samples chemically by an electron microprobe technique and optically by an M -line technique. These methods permit the Ag penetration depth and diffusion profile shape and index profiles to be determined. The results are analyzed and discussed in relation to Ca 2 concentration and exchange conditions in glasses. The Ag diffusion in these glasses can be almost entirely controlled for index-profile engineering.

  13. Atomic hydrogen escape rate due to charge exchange with hot plasmaspheric ions

    NASA Technical Reports Server (NTRS)

    Maher, L. J.; Tinsley, B. A.

    1977-01-01

    Data on ion and electron temperatures and concentrations to several thousand kilometers of altitude were obtained from the Atmosphere Explorer C satellite for 1974 and to 850 km from Arecibo incoherent scatter radar measurements. These data were used to normalize diffusive equilibrium profiles. From these profiles and by using the neutral atmospheric model of Jacchia (1971) and a new hydrogen model, the charge-exchange-induced neutral hydrogen escape fluxes for equatorial and middle latitudes were calculated. The data confirm earlier estimates that the charge exchange loss is more important than Jeans escape for the earth. It is also found that inside the plasmapause this charge exchange process with hot plasmapheric ions is the major production and loss process for the satellite population in the hydrogen geocorona.

  14. Basis document for PFP plutonium nitrate ion exchange process in Room 228A

    SciTech Connect

    Risenmay, H.R.

    1997-04-23

    The PFP facility currently has approximately 4300 liters of plutonium nitrate solution in storage. This material will be calcined by the Vertical Denigration Calciner (VDC) located in room 230C. However, part of the material needs to be purified to remove constituents that will interfere with the calcination process. An Ion Exchange process using Reillex{trademark} HPQ anion exchange resin was tested by the Plutonium Process Support Laboratories (PPSL) (I). The Ion exchange process is to be installed in glovebox HC-7 in room 228A/234-5Z. The plutonium separated from the interfering constituents will be in a concentrated condition ready to be calcined by the VDC in room 230C. The oxide product of the VDC will be placed into the 2736-Z vaults for long term storage.

  15. Synthesis and Characterization of Templated Ion Exchange Resins for the Selective Complexation of Actinide Ions

    SciTech Connect

    Uy, O. Manual

    2001-03-01

    The purpose of this research is to develop a polymeric extractant for the selective complexation of uranyl ions (and subsequently other actinyl and actinide ions) from aqueous solutions (lakes, streams, waste tanks and even body fluids). Chemical insights into what makes a good complexation site will be used to synthesize reagents tailor-made for the complexation of uranyl and other actinide ions. These insights, derived from studies of molecular recognition include ion coordination number and geometry, ionic size and ionic shape, as well as ion to ligand thermodynamic affinity. Selectivity for a specific actinide ion will be obtained by providing the polymers with cavities lined with complexing ligands so arranged as to match the charge, coordination number, coordination geometry, and size of the actinide metal ion. These cavity-containing polymers will be produced by using a specific ion (or surrogate) as a template around which monomeric complexing ligands will be polymerized. The complexing ligands will be ones containing functional groups known to form stable complexes with a specific ion and less stable complexes with other cations. Prior investigator's approaches for making templated resins for metal ions have had marginal success. We have extended and amended these methodologies in our work with Pb(II) and uranyl ion, by changing the order of the steps, by the inclusion of sonication, by using higher complex loading, and the selection of functional groups with better complexation constants. This has resulted in significant improvements to selectivity. The unusual shape of the uranyl ion suggests that this approach will result in even greater selectivities than already observed for Pb(II). Preliminary data obtained for uranyl templated polymers shows unprecedented selectivity and has resulted in the first ion selective electrode for uranyl ion.

  16. Adsorption of hexane isomers on ion-exchanged mordenite

    SciTech Connect

    Huddersman, K.

    1996-10-01

    To remove lead from petrol and thereby promote a cleaner environment, other means must be found to keep the octane number or anti-knock qualities of the petrol high. It is found that this can be accomplished by increasing the proportion of highly branched chain hydrocarbon isomers in the fuel. This in turn promotes processes for the separation of the hydrocarbon isomers and in the case of hexane, it is an easy matter to separate out n-hexane from the more substituted isomers but it is difficult to separate out the mono- from the di-branched isomers. This work addresses itself to such challenging separations using modified zeolites as the separating agent, and by studying the heats of sorption of these isomers on zeolites using gas chromatographic techniques to find a trend in the potential abilities of these modified zeolites to effect a good separation. In this work mordenite zeolite was modified by a range of double cation exchanges and the resulting modified zeolites were investigated for their ability to sorb the hexane isomers 3-methylpentane and 2,3-dimethylbutane. These two isomers are closely related in size as they both have the same kinetic diameter of 0.56 nm. In this work only heats of sorption have been investigated and measurement of the diffusion coefficients, which also affect the ability of the modified zeolites to act as good separating agents, is currently under investigation.

  17. Evaluation of Selective Ion Exchange Resins for Removal of Mercury from the H-Area Water Treatment Unit

    SciTech Connect

    Serkiz, S.M.

    2000-09-05

    This study investigated the ability of seven ion exchange (IX) resins, some of which were mercury specific, to remove mercury in H-Area WTU waters from three sources (Reverse Osmosis (RO) Feed, RO Permeate from Train A, and a mercury ''hot spot'' extraction well HEX 18). Seven ion exchange resins, including ResinTech CG8 and Dowex 21K (the cation and anion exchange resins currently used at the H-Area WTU) were screened against five alternative ion exchange materials plus an experimental blank. Mercury decontamination factors (DFs), mercury breakthrough, and post-test contaminant concentrations of IX resins were determined for each IX material tested.

  18. Reverse electrodialysis using bipolar ion-exchange membranes as a source of electric energy

    SciTech Connect

    Pivovarov, N.Ya.; Greben`, V.P.; Kovarskii, N.Ya.

    1994-06-01

    It is established that, in the regime of the H{sup +} and OH{sup {minus}} ions recombination, voltage on the bipolar membranes and the efficiency of the latter, as a transformer of chemical energy into electric, increases in the series of ionogen groups contained in the bipolar region. This is due to an increase in the recombination rate constants in the bipolar contact for the H{sup +} and OH{sup {minus}} ions. As the sodium and chlorine ions penetrate the bipolar transition region, they sharply decrease the membrane potential and the voltage drop on the bipolar membranes, because the ionogen groups turn into salt form, which is catalytically inactive in the H{sup +} and OH{sup {minus}} ions recombination reaction. It is shown that the source of current, containing the MB-24 (bipolar), MF-4sk (cation-exchange), and AMV (anion-exchange) ion-exchange membranes, has a specific power of 0.11 W/dm{sup 2} (calculated in terms of one bipolar membrane) and efficiency of 29% for 0.5 M solution of hydrochloric acid and sodium hydroxide, and 0.5 A/dm{sup 2} current density.

  19. Propagation of charge-exchange plasma produced by an ion thruster

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.; Brady, M. E.

    1981-01-01

    Under the proper conditions there is an end-effect of a long, cylindrical Langmuir probe which allows a significant increase in collected ion current when the probe is aligned with a flowing plasma. This effect was used to determine the charge-exchange plasma flow direction at various locations relative to the ion thruster. The ion current collected by the probe as a function of its angle with respect to the plasma flow allows determination of the plasma density and plasma flow velocity at the probe's location upstream of the ion thruster optics. The density values obtained from the ion current agreed to within a factor of two of density values obtained by typical voltage-current Langmuir probe characteristics.

  20. Structure-Property Relationships in Hydroxide-Exchange Membranes with Cation Strings and High Ion-Exchange Capacity.

    PubMed

    Wang, Junhua; Gu, Shuang; Xiong, Ruichang; Zhang, Bingzi; Xu, Bingjun; Yan, Yushan

    2015-12-21

    A series of poly(2,4-dimethyl-1,4-phenylene oxide) hydroxide-exchange membranes (HEMs) with cation strings containing a well-defined number of cations (CS-n) and similar, high ion-exchange capacities are synthesized to investigate the effect of cation distribution on key HEM properties. As the number of cations on each string grows, the size of the ionic clusters increases from 10 to 55 nm. Well-connected ion pathways and a hydrophobic framework are observed for n≥4. The enhanced phase segregation increases the hydroxide conductivity from CS-1 to CS-6 (30 to 65 mS cm(-1) ) and suppresses the water uptake (from 143 % to 62 %). Moreover, molar hydroxide conductivities for CS-n membranes show two distinctive stages as n increases: ∼23 S cm(2)  mol(-1) for n≤3; and ∼34 cm(2)  mol(-1) for n≥4. PMID:26630241

  1. Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes.

    PubMed

    Li, Haibo; Gao, Yang; Pan, Likun; Zhang, Yanping; Chen, Yiwei; Sun, Zhuo

    2008-12-01

    A novel membrane capacitive deionization (MCDI) device, integrating both the advantages of carbon nanotubes and carbon nanofibers (CNTs-CNFs) composite film and ion-exchange membrane, was proposed with high removal efficiency, low energy consumption and low cost. The CNTs-CNFs film was synthesized by low pressure and low temperature thermal chemical vapor deposition. Several experiments were conducted to compare desalination performance of MCDI with capacitive deionization (CDI), showing that salt removal of the MCDI system was 49.2% higher than that of the CDI system. The electrosorption isotherms of MCDI and CDI show both of them follow Langmuir adsorption, indicating no change in adsorption behavior when ion-exchange membranes are introduced into CDI system. The better desalination performance of MCDI than that of CDI is due to the minimized ion desorption during electrosorption. PMID:18929385

  2. Charge exchange and ionization in hydrogen atom-fully stripped ion collisions in Debye plasmas

    SciTech Connect

    Zhang, H.; Wang, J. G.; He, B.; Qiu, Y. B.; Janev, R. K.

    2007-05-15

    The processes of charge exchange and ionization in collisions of ground state hydrogen atom with fully stripped ions in a weakly coupled plasma are studied by the classical trajectory Monte Carlo method in the collision energy range 10-900 keV/amu. The interparticle interactions are described by the Debye-Hueckel model with inclusion of dynamical effects associated with the projectile velocity. The microcanonical distribution of initial state electronic coordinates and momenta has been determined by inclusion of plasma screening effects. The cross section dependencies on plasma parameters and ion charge and velocity are investigated. It is shown that plasma effects on charge exchange and ionization cross sections are significant and particularly pronounced at low collision velocities. The results of systematic cross section calculations for different values of Debye screening length (in the range 1-50a{sub 0}) and ion charges (in the range 1-14) are presented.

  3. Chaotic behavior of ion exchange phenomena in polymer gel electrolytes through irradiated polymeric membrane

    NASA Astrophysics Data System (ADS)

    Rawat, Sangeeta; Saha, Barnamala; Prasad, Awadhesh; Chandra, Amita

    2012-05-01

    A desktop experiment has been done to show the nonlinearity in the I-V characteristics of an ion conducting electrochemical micro-system. Its chaotic dynamics is being reported for the first time which has been captured by an electronic circuit. Polyvinylidene fluoride-co-hexafluoropropene (PVdF-HFP) gel electrolyte comprising of a combination of plasticizers (ethylene carbonate and propylene carbonate) and salts have been prepared to study the exchange of ions through porous polyethylene terephthalate (PET) membranes. The nonlinearity of this system is due to the ion exchange of the polymer gel electrolytes (PGEs) through a porous membrane. The different regimes of spiking and non-spiking chaotic motions are being presented. The possible applications are highlighted.

  4. Direct assay of thymidine kinase bound to ion-exchange paper for dot spotting and enzyme blotting analysis

    SciTech Connect

    van den Berg, K.J.

    1986-05-15

    The direct assay of thymidine kinase (Tk) bound to ion-exchange paper was investigated as a means to further simplify the analytical procedure. Thymidine kinase bound firmly and quantitatively to ion-exchange paper at near neutral pH. The enzymatic properties of Tk did not change while bound to the ion-exchange paper. The amount of phosphorylated /sup 12//sub 5/IdU or /sup 125/IdC formed on ion-exchange paper was proportional to the amount of applied Tk. Enzymatic activity could be determined visually by autoradiography or by gamma counting. This method was relatively independent of the protein concentration or volume of the sample and which allows the assay from dilute solutions. A simplified dot spot method that can be used for the assay of thymidine kinase activity in cell extracts is described. Thymidine kinase could also be visualized after electrophoresis and blotting on ion-exchange paper.

  5. Ion Exchange Equilibrium and Kinetic Properties of Polyacrylate Films and Applications to Chemical Analysis and Environmental Decontamination

    NASA Technical Reports Server (NTRS)

    Tanner, Stephen P.

    1997-01-01

    One of the goals of the original proposal was to study how cross-linking affects the properties of an ion exchange material(IEM) developed at Lewis Research Center. However, prior to the start of this work, other workers at LERC investigated the effect of cross-linking on the properties of this material. Other than variation in the ion exchange capacity, the chemical characteristics were shown to be independent of the cross-linking agent, and the degree of cross-linking. New physical forms of the film were developed (film, supported film, various sizes of beads, and powder). All showed similar properties with respect to ion exchange equilibria but the kinetics of ion exchange depended on the surface area per unit mass; the powder form of the IEM exchanging much more rapidly than the other forms. The research performed under this grant was directed towards the application of the IEM to the analysis of metal ions at environmental concentrations.

  6. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    NASA Astrophysics Data System (ADS)

    Spjeldvik, W. N.

    1981-11-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  7. Kinetic electron and ion instability of the lunar wake simulated at physical mass ratio

    NASA Astrophysics Data System (ADS)

    Haakonsen, Christian Bernt; Hutchinson, Ian H.; Zhou, Chuteng

    2015-03-01

    The solar wind wake behind the moon is studied with 1D electrostatic particle-in-cell (PIC) simulations using a physical ion to electron mass ratio (unlike prior investigations); the simulations also apply more generally to supersonic flow of dense magnetized plasma past non-magnetic objects. A hybrid electrostatic Boltzmann electron treatment is first used to investigate the ion stability in the absence of kinetic electron effects, showing that the ions are two-stream unstable for downstream wake distances (in lunar radii) greater than about three times the solar wind Mach number. Simulations with PIC electrons are then used to show that kinetic electron effects can lead to disruption of the ion beams at least three times closer to the moon than in the hybrid simulations. This disruption occurs as the result of a novel wake phenomenon: the non-linear growth of electron holes spawned from a narrow dimple in the electron velocity distribution. Most of the holes arising from the dimple are small and quickly leave the wake, approximately following the unperturbed electron phase-space trajectories, but some holes originating near the center of the wake remain and grow large enough to trigger disruption of the ion beams. Non-linear kinetic-electron effects are therefore essential to a comprehensive understanding of the 1D electrostatic stability of such wakes, and possible observational signatures in ARTEMIS data from the lunar wake are discussed.

  8. Kinetic electron and ion instability of the lunar wake simulated at physical mass ratio

    SciTech Connect

    Haakonsen, Christian Bernt Hutchinson, Ian H. Zhou, Chuteng

    2015-03-15

    The solar wind wake behind the moon is studied with 1D electrostatic particle-in-cell (PIC) simulations using a physical ion to electron mass ratio (unlike prior investigations); the simulations also apply more generally to supersonic flow of dense magnetized plasma past non-magnetic objects. A hybrid electrostatic Boltzmann electron treatment is first used to investigate the ion stability in the absence of kinetic electron effects, showing that the ions are two-stream unstable for downstream wake distances (in lunar radii) greater than about three times the solar wind Mach number. Simulations with PIC electrons are then used to show that kinetic electron effects can lead to disruption of the ion beams at least three times closer to the moon than in the hybrid simulations. This disruption occurs as the result of a novel wake phenomenon: the non-linear growth of electron holes spawned from a narrow dimple in the electron velocity distribution. Most of the holes arising from the dimple are small and quickly leave the wake, approximately following the unperturbed electron phase-space trajectories, but some holes originating near the center of the wake remain and grow large enough to trigger disruption of the ion beams. Non-linear kinetic-electron effects are therefore essential to a comprehensive understanding of the 1D electrostatic stability of such wakes, and possible observational signatures in ARTEMIS data from the lunar wake are discussed.

  9. Cholesterol exchange as a function of cholesterol/phospholipid mole ratios.

    PubMed Central

    Poznansky, M J; Czekanski, S

    1979-01-01

    The activation energy (Ea) for cholesterol exchange between dioleoyl phosphatidylcholine vesicles and erythrocyte 'ghosts' is measured as a function of molar percentage of cholesterol in both donor and acceptor membranes. A sharp increase in Ea occurs (from 39.9kJ/mol to 84kJ/mol) when the molar percentage of cholesterol decreases from 30 to 20%. PMID:444215

  10. Removal of charged micropollutants from water by ion-exchange polymers -- effects of competing electrolytes.

    PubMed

    Bäuerlein, Patrick S; Ter Laak, Thomas L; Hofman-Caris, Roberta C H M; de Voogt, Pim; Droge, Steven T J

    2012-10-15

    A wide variety of environmental compounds of concern, e.g. pharmaceuticals or illicit drugs, are acids or bases that may predominantly be present as charged species in drinking water sources. These charged micropollutants may prove difficult to remove by currently used water treatment steps (e.g. UV/H(2)O(2), activated carbon (AC) or membranes). We studied the sorption affinity of some ionic organic compounds to both AC and different charged polymeric materials. Ion-exchange polymers may be effective as additional extraction phases in water treatment, because sorption of all charged compounds to oppositely charged polymers was stronger than to AC, especially for the double-charged cation metformin. Tested below 1% of the polymer ion-exchange capacity, the sorption affinity of charged micropollutants is nonlinear and depends on the composition of the aqueous medium. Whereas oppositely charged electrolytes do not impact sorption of organic ions, equally charged electrolytes do influence sorption indicating ion-exchange (IE) to be the main sorption mechanism. For the tested polymers, a tenfold increased salt concentration lowered the IE-sorption affinity by a factor two. Different electrolytes affect IE with organic ions in a similar way as inorganic ions on IE-resins, and no clear differences in this trend were observed between the sulphonated and the carboxylated cation-exchanger. Sorption of organic cations is five fold less in Ca(2+) solutions compared to similar concentrations of Na(+), while that of anionic compounds is three fold weaker in SO(4)(2-) solutions compared to equal concentrations of Cl(-). PMID:22818952

  11. Tracing isospin with the {pi}{sup -}/{pi}{sup +} ratio in central heavy ion collisions

    SciTech Connect

    Zhang Ming; Xiao Zhigang; Zhu Shengjiang

    2010-10-15

    Within an isospin- and momentum-dependent hadronic transport model, we have investigated the isospin mixing with the probe of the {pi}{sup -}/{pi}{sup +} ratio in central isospin asymmetric {sup 96}Ru+{sup 96}Zr collision at an incident energy of 400 MeV/u. The isospin equilibrium is not reached according to the asymmetrical distribution of the {pi}{sup -}/{pi}{sup +} ratio with rapidity. In comparison with the nucleon observable, it suggests that the pion ratio {pi}{sup -}/{pi}{sup +} is a promising observable to probe the relaxation of isospin degree of freedom in central heavy ion collisions without being strongly affected by the surface effect. Because of the small system size and rather strong effect of rescattering on pions, the isospin mixing shows insignificant dependence on the stiffness of the symmetry energy in the relevant colliding system.

  12. U/Th dating by SHRIMP RG ion-microprobe mass spectrometry using single ion-exchange beads

    USGS Publications Warehouse

    Bischoff, J.L.; Wooden, J.; Murphy, F.; Williams, Ross W.

    2005-01-01

    We present a new analytical method for U-series isotopes using the SHRIMP RG (Sensitive High mass Resolution Ion MicroProbe) mass spectrometer that utilizes the preconcentration of the U-series isotopes from a sample onto a single ion-exchange bead. Ion-microprobe mass spectrometry is capable of producing Th ionization efficiencies in excess of 2%. Analytical precision is typically better than alpha spectroscopy, but not as good as thermal ionization mass spectroscopy (TIMS) and inductively coupled plasma multicollector mass spectrometry (ICP-MS). Like TIMS and ICP-MS the method allows analysis of small samples sizes, but also adds the advantage of rapidity of analysis. A major advantage of ion-microprobe analysis is that U and Th isotopes are analyzed in the same bead, simplifying the process of chemical separation. Analytical time on the instrument is ???60 min per sample, and a single instrument-loading can accommodate 15-20 samples to be analyzed in a 24-h day. An additional advantage is that the method allows multiple reanalyses of the same bead and that samples can be archived for reanalysis at a later time. Because the ion beam excavates a pit only a few ??m deep, the mount can later be repolished and reanalyzed numerous times. The method described of preconcentrating a low concentration sample onto a small conductive substrate to allow ion-microprobe mass spectrometry is potentially applicable to many other systems. Copyright ?? 2005 Elsevier Ltd.

  13. Forward and reverse ion-exchange kinetics for some alkali and alkaline earth metal ions on amorphous zirconium(IV) aluminophosphate

    SciTech Connect

    Varshney, K.G.; Pandith, A.H.

    1999-10-26

    The Nernst-Planck equations are applied to study the ion-exchange kinetics on the surface of zirconium(IV) aluminophosphate for Li{sup +}/H{sup +}, Na{sup +}/H{sup +}, K{sup +}/H{sup +}, Mg{sup 2+}/H{sup +}, Ca{sup 2+}/H{sup +}, and Sr{sup 2+}/H{sup +} exchanges in the forward and reverse directions under the conditions favoring particle diffusion. On the basis of these studies, various physical parameters such as the self-diffusion coefficient (D{sub 0}), the energy of activation (E{sub a}), and the entropy of activation ({Delta}S*) have been determined and a correlation has been made of these parameters with the ion-exchange characteristics of the material. The study gives an insight into the ion-exchange processes going on in the exchanger phase and its potential use in metal ion separations.

  14. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).

    PubMed

    Pawlowski, Sylwin; Galinha, Claudia F; Crespo, João G; Velizarov, Svetlozar

    2016-01-01

    Reverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation. In the present study, two-dimensional (2D) fluorescence spectroscopy was used, for the first time, as a tool for fouling monitoring in RED. Fluorescence excitation-emission matrices (EEMs) of ion-exchange membrane surfaces and of natural aqueous streams were acquired during one month of a RED stack operation. Fouling evolvement on the ion-exchange membrane surfaces was successfully followed by 2D fluorescence spectroscopy and quantified using principal components analysis (PCA). Additionally, the efficiency of cleaning strategy was assessed by measuring the membrane fluorescence emission intensity before and after cleaning. The anion-exchange membrane (AEM) surface in contact with river water showed to be significantly affected due to fouling by humic compounds, which were found to cross through the membrane from the lower salinity (river water) to higher salinity (sea water) stream. The results obtained show that the combined approach of using 2D fluorescence spectroscopy and PCA has a high potential for studying fouling development and membrane cleaning efficiency in ion exchange membrane processes. PMID:26497936

  15. Cast and 3D printed ion exchange membranes for monolithic microbial fuel cell fabrication

    NASA Astrophysics Data System (ADS)

    Philamore, Hemma; Rossiter, Jonathan; Walters, Peter; Winfield, Jonathan; Ieropoulos, Ioannis

    2015-09-01

    We present novel solutions to a key challenge in microbial fuel cell (MFC) technology; greater power density through increased relative surface area of the ion exchange membrane that separates the anode and cathode electrodes. The first use of a 3D printed polymer and a cast latex membrane are compared to a conventionally used cation exchange membrane. These new techniques significantly expand the geometric versatility available to ion exchange membranes in MFCs, which may be instrumental in answering challenges in the design of MFCs including miniaturisation, cost and ease of fabrication. Under electrical load conditions selected for optimal power transfer, peak power production (mean 10 batch feeds) was 11.39 μW (CEM), 10.51 μW (latex) and 0.92 μW (Tangoplus). Change in conductivity and pH of anolyte were correlated with MFC power production. Digital and environmental scanning electron microscopy show structural changes to and biological precipitation on membrane materials following long term use in an MFC. The cost of the novel membranes was lower than the conventional CEM. The efficacy of two novel membranes for ion exchange indicates that further characterisation of these materials and their fabrication techniques, shows great potential to significantly increase the range and type of MFCs that can be produced.

  16. Preparation of Ion Exchange Films for Solid-Phase Spectrophotometry and Solid-Phase Fluorometry

    NASA Technical Reports Server (NTRS)

    Hill, Carol M.; Street, Kenneth W.; Tanner, Stephen P.; Philipp, Warren H.

    2000-01-01

    Atomic spectroscopy has dominated the field of trace inorganic analysis because of its high sensitivity and selectivity. The advantages gained by the atomic spectroscopies come with the disadvantage of expensive and often complicated instrumentation. Solid-phase spectroscopy, in which the analyte is preconcentrated on a solid medium followed by conventional spectrophotometry or fluorometry, requires less expensive instrumentation and has considerable sensitivity and selectivity. The sensitivity gains come from preconcentration and the use of chromophore (or fluorophore) developers and the selectivity is achieved by use of ion exchange conditions that favor the analyte in combination with speciative chromophores. Little work has been done to optimize the ion exchange medium (IEM) associated with these techniques. In this report we present a method for making ion exchange polymer films, which considerably simplify the solid-phase spectroscopic techniques. The polymer consists of formaldehyde-crosslinked polyvinyl alcohol with polyacrylic acid entrapped therein. The films are a carboxylate weak cation exchanger in the calcium form. They are mechanically sturdy and optically transparent in the ultraviolet and visible portion of the spectrum, which makes them suitable for spectrophotometry and fluorometry.

  17. Characterization of cross-linked cellulosic ion-exchange adsorbents: 2. Protein sorption and transport.

    PubMed

    Angelo, James M; Cvetkovic, Aleksandar; Gantier, Rene; Lenhoff, Abraham M

    2016-03-18

    Adsorption behavior in the HyperCel family of cellulosic ion-exchange materials (Pall Corporation) was characterized using methods to assess, quantitatively and qualitatively, the dynamics of protein uptake as well as static adsorption as a function of ionic strength and protein concentration using several model proteins. The three exchangers studied all presented relatively high adsorptive capacities under low ionic strength conditions, comparable to commercially available resins containing polymer functionalization aimed at increasing that particular characteristic. The strong cation- and anion-exchange moieties showed higher sensitivity to increasing salt concentrations, but protein affinity on the salt-tolerant STAR AX HyperCel exchanger remained strong at ionic strengths normally used in downstream processing to elute material fully during ion-exchange chromatography. Very high uptake rates were observed in both batch kinetics experiments and time-series confocal laser scanning microscopy, suggesting low intraparticle transport resistances relative to external film resistance, even at higher bulk protein concentrations where the opposite is typically observed. Electron microscopy imaging of protein adsorbed phases provided additional insight into particle structure that could not be resolved in previous work on the bare resins. PMID:26905881

  18. Dark electrochemistry and photoelectrochemistry of molecularly doped ion-exchange polymer blends

    SciTech Connect

    Crouch, A.M.; Ordonez, I.; Langford, C.H.; Lawrence, M.F.

    1988-10-20

    Ion-exchange polymer blends have been shown to produce modified electrode surfaces with high affinities for ionic reactants. The main feature of these blends is their spontaneous tendency to segregate into hydrophilic and hydrophobic domains. It is now believed that, when appropriate dye molecules are incorporated into such films and then illuminated, these systems operate under both ionic and dry electronic conduction mechanisms. The dark electrochemical measurements performed on an ion-exchange polymer containing ZnTPPS/sup 4 -/, ZnTPP, ZnPc(OPh)/sub 4/, or CuPcTS/sub 4-/, in contact with a Fe(CN)/sub 6//sup 3-/4-/ redox solution, show that the dye molecules within the film are immobile and that the high ion-exchange capability is maintained. The photoelectrochemical results obtained with the dye-loaded films indicate that electrons may be transferred from the photoexcited dyes to the polymer matrix and transported to the SnO/sub 2/ substrate electrode. The oxidized dye molecules are reduced by accepting electrons from the Fe(CN)/sub 6//sup 4 -/ species. The electronic conduction following charge separation is assumed to be intimately related to the ion-exchange polymer's tendency to segregate into hydrophilic and hydrophobic domains and also the excited-state energetics of the dye. A model which invokes the existence of large distributions of molecular ion states is proposed to explain the conduction of electrons through the hydrophobic domains of the polymer film and a detailed energy level diagram is presented to summarize the overall situation.

  19. Ion-to-Neutral Ratios and Thermal Proton Transfer in Matrix-Assisted Laser Desorption/Ionization.

    PubMed

    Lu, I-Chung; Chu, Kuan Yu; Lin, Chih-Yuan; Wu, Shang-Yun; Dyakov, Yuri A; Chen, Jien-Lian; Gray-Weale, Angus; Lee, Yuan-Tseh; Ni, Chi-Kung

    2015-07-01

    The ion-to-neutral ratios of four commonly used solid matrices, α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (2,5-DHB), sinapinic acid (SA), and ferulic acid (FA) in matrix-assisted laser desorption/ionization (MALDI) at 355 nm are reported. Ions are measured using a time-of-flight mass spectrometer combined with a time-sliced ion imaging detector. Neutrals are measured using a rotatable quadrupole mass spectrometer. The ion-to-neutral ratios of CHCA are three orders of magnitude larger than those of the other matrices at the same laser fluence. The ion-to-neutral ratios predicted using the thermal proton transfer model are similar to the experimental measurements, indicating that thermal proton transfer reactions play a major role in generating ions in ultraviolet-MALDI. PMID:25851654

  20. Ion-to-Neutral Ratios and Thermal Proton Transfer in Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Lu, I.-Chung; Chu, Kuan Yu; Lin, Chih-Yuan; Wu, Shang-Yun; Dyakov, Yuri A.; Chen, Jien-Lian; Gray-Weale, Angus; Lee, Yuan-Tseh; Ni, Chi-Kung

    2015-07-01

    The ion-to-neutral ratios of four commonly used solid matrices, α-cyano-4-hydroxycinnamic acid (CHCA), 2,5-dihydroxybenzoic acid (2,5-DHB), sinapinic acid (SA), and ferulic acid (FA) in matrix-assisted laser desorption/ionization (MALDI) at 355 nm are reported. Ions are measured using a time-of-flight mass spectrometer combined with a time-sliced ion imaging detector. Neutrals are measured using a rotatable quadrupole mass spectrometer. The ion-to-neutral ratios of CHCA are three orders of magnitude larger than those of the other matrices at the same laser fluence. The ion-to-neutral ratios predicted using the thermal proton transfer model are similar to the experimental measurements, indicating that thermal proton transfer reactions play a major role in generating ions in ultraviolet-MALDI.