Science.gov

Sample records for ratio pyrometer system

  1. Pyrometer

    NASA Technical Reports Server (NTRS)

    Quince, Asia N. (Inventor); Stein, Alexander (Inventor)

    2015-01-01

    A non-contact pyrometer and method for calibrating the same are provided. The pyrometer includes a radiation sensor configured to measure at least a portion of a radiance signal emitted from a target medium and output a voltage that is a function of an average of the absorbed radiance signal, and an optical window disposed proximate the radiation sensor and configured to control a wavelength range of the radiance signal that reaches the radiation sensor. The pyrometer may further include a reflective enclosure configured to receive the target medium therein, wherein the radiation sensor and the optical window are disposed within the reflective enclosure, an amplifier in communication with an output of the radiation sensor, and a data acquisition system in communication with an output of the amplifier.

  2. DESIGN, FABRICATION, ASSEMBLY AND BENCH TESTING OF A TEXACO INFRARED RATIO PYROMETER SYSTEM FOR THE MEASUREMENT OF REACTION CHAMBER TEMPERATURE

    SciTech Connect

    Tom Leininger

    2001-03-31

    Reliable measurement of gasifier reaction chamber temperature is important for the proper operation of slagging, entrained-flow gasification processes. Historically, thermocouples have been used as the main measurement technique, with the temperature inferred from syngas methane concentration being used as a backup measurement. While these have been sufficient for plant operation in many cases, both techniques suffer from limitations. The response time of methane measurements is too slow to detect rapid upset conditions, and thermocouples are subject to long-term drift, as well as slag attack, which eventually leads to failure of the thermocouple. Texaco's Montebello Technology Center (MTC) has developed an infrared ratio pyrometer system for measuring gasifier reaction chamber temperature. This system has a faster response time than both methane and thermocouples, and has been demonstrated to provide reliable temperature measurements for longer periods of time when compared to thermocouples installed in the same MTC gasifier. In addition, the system can be applied to commercial gasifiers without any significant scale-up issues. The major equipment items, the purge system, and the safety shutdown system in a commercial plant are essentially identical to the prototypes at MTC. The desired result of this DOE program is ''a bench-scale prototype, either assembled or with critical components (laboratory) tested in a convincing manner.'' The prototype of the pyrometer system (including gasifier optical access port) that was designed, assembled and tested for this program, has had previous prototypes that have been built and successfully tested under actual coal and coke gasification conditions in three pilot units at MTC. It was the intent of the work performed under the auspices of this program to review and update the existing design, and to fabricate and bench test an updated system that can be field tested in one or more commercial gasifiers during a follow on phase

  3. PYROLASER - PYROLASER OPTICAL PYROMETER OPERATING SYSTEM

    NASA Technical Reports Server (NTRS)

    Roberts, F. E.

    1994-01-01

    The PYROLASER package is an operating system for the Pyrometer Instrument Company's Pyrolaser. There are 6 individual programs in the PYROLASER package: two main programs, two lower level subprograms, and two programs which, although independent, function predominantly as macros. The package provides a quick and easy way to setup, control, and program a standard Pyrolaser. Temperature and emissivity measurements may be either collected as if the Pyrolaser were in the manual operations mode, or displayed on real time strip charts and stored in standard spreadsheet format for post-test analysis. A shell is supplied to allow macros, which are test-specific, to be easily added to the system. The Pyrolaser Simple Operation program provides full on-screen remote operation capabilities, thus allowing the user to operate the Pyrolaser from the computer just as it would be operated manually. The Pyrolaser Simple Operation program also allows the use of "quick starts". Quick starts provide an easy way to permit routines to be used as setup macros for specific applications or tests. The specific procedures required for a test may be ordered in a sequence structure and then the sequence structure can be started with a simple button in the cluster structure provided. One quick start macro is provided for continuous Pyrolaser operation. A subprogram, Display Continuous Pyr Data, is used to display and store the resulting data output. Using this macro, the system is set up for continuous operation and the subprogram is called to display the data in real time on strip charts. The data is simultaneously stored in a spreadsheet format. The resulting spreadsheet file can be opened in any one of a number of commercially available spreadsheet programs. The Read Continuous Pyrometer program is provided as a continuously run subprogram for incorporation of the Pyrolaser software into a process control or feedback control scheme in a multi-component system. The program requires the

  4. Optical pyrometer system for collisionless shock experiments in high-power laser-produced plasmas

    SciTech Connect

    Morita, T.; Sakawa, Y.; Kuramitsu, Y.; Sano, T.; Takabe, H.; Dono, S.; Ide, T.; Tanji, H.; Shiroshita, A.; Shibata, S.; Aoki, H.; Waugh, J. N.; Woolsey, N. C.; Gregory, C. D.

    2012-10-15

    A temporally and spatially resolved optical pyrometer system has been fielded on Gekko XII experiments. The system is based on the self-emission measurements with a gated optical imager (GOI) and a streaked optical pyrometer (SOP). Both detectors measure the intensity of the self-emission from laser-produced plasmas at the wavelength of 450 nm with a bandpass filter with a width of {approx}10 nm in FWHM. The measurements were calibrated with different methods, and both results agreed with each other within 30% as previously reported [T. Morita et al., Astrophys. Space Sci. 336, 283 (2011)]. As a tool for measuring the properties of low-density plasmas, the system is applicable for the measurements of the electron temperature and density in collisionless shock experiments [Y. Kuramitsu et al., Phys. Rev. Lett. 106, 175002 (2011)].

  5. The use of optical pyrometers in axial flow turbines

    NASA Astrophysics Data System (ADS)

    Sellers, R. R.; Przirembel, H. R.; Clevenger, D. H.; Lang, J. L.

    1989-07-01

    An optical pyrometer system that can be used to measure metal temperatures over an extended range of temperature has been developed. Real-time flame discrimination permits accurate operation in the gas turbine environment with high flame content. This versatile capability has been used in a number of ways. In experimental engines, a fixed angle pyrometer has been used for turbine health monitoring for the automatic test stand abort system. Turbine blade creep capability has been improved by tailoring the burner profile based on measured blade temperatures. Fixed and traversing pyrometers were used extensively during engine development to map blade surface temperatures in order to assess cooling effectiveness and identify optimum configurations. Portable units have been used in turbine field inspections. A new low temperature pyrometer is being used as a diagnostic tool in the alternate turbopump design for the Space Shuttle main engine. Advanced engine designs will incorporate pyrometers in the engine control system to limit operation to safe temperatures.

  6. A multicolor imaging pyrometer

    NASA Technical Reports Server (NTRS)

    Frish, Michael B.; Frank, Jonathan H.

    1989-01-01

    A multicolor imaging pyrometer was designed for accurately and precisely measuring the temperature distribution histories of small moving samples. The device projects six different color images of the sample onto a single charge coupled device array that provides an RS-170 video signal to a computerized frame grabber. The computer automatically selects which one of the six images provides useful data, and converts that information to a temperature map. By measuring the temperature of molten aluminum heated in a kiln, a breadboard version of the device was shown to provide high accuracy in difficult measurement situations. It is expected that this pyrometer will ultimately find application in measuring the temperature of materials undergoing radiant heating in a microgravity acoustic levitation furnace.

  7. Fast fiber-optic multi-wavelength pyrometer

    NASA Astrophysics Data System (ADS)

    Fu, Tairan; Tan, Peng; Pang, Chuanhe; Zhao, Huan; Shen, Yi

    2011-06-01

    A fast fiber-optic multi-wavelength pyrometer was developed for the ultraviolet-visible-near infrared spectra from 200 nm to 1700 nm using a CCD detector and an InGaAs detector. The pyrometer system conveniently and quickly provides the sufficient choices of multiple measurement wavelengths using optical diffraction, which avoids the use of narrow-band filters. Flexible optical fibers are used to transmit the radiation so the pyrometer can be used for temperature measurements in harsh environments. The setup and calibrations (wavelength calibration, nonlinearity calibration, and radiation response calibration) of this pyrometer system were described. Development of the multi-wavelength pyrometer involved optimization of the bandwidth and temperature discrimination of the multiple spectra data. The analysis results showed that the wavelength intervals, ΔλCCD = 30 nm and ΔλInGaAs = 50 nm, are the suitable choices as a tradeoff between the simple emissivity model assumption and the multiple signal discrimination. The temperature discrimination was also quantificationally evaluated for various wavelengths and temperatures. The measurement performance of the fiber-optic multi-wavelength pyrometer was partially verified through measurements with a high-temperature blackbody and actual hot metals. This multi-wavelength pyrometer can be used for remote high-temperature measurements.

  8. A method for influence correction of radiation emitted by the filters on MIR dualspectral pyrometers accuracy

    NASA Astrophysics Data System (ADS)

    Chrzanowski, K.; Jankiewicz, Z.

    1996-03-01

    The influence of the radiation emitted by filters on the measured ratio between two radiometric signals can cause significant errors of the temperature measurement with MIR dualspectral pyrometers. A method for correction of this influence has been presented in this paper. Its implementation enables to design simple, low-cost MIR dualspectral pyrometers with a construction similar to those of the NIR.

  9. Multicolor pyrometer for materials processing in space

    NASA Technical Reports Server (NTRS)

    Frish, M. B.; Frank, J.; Baker, J. E.; Foutter, R. R.; Beerman, H.; Allen, M. G.

    1990-01-01

    This report documents the work performed by Physical Sciences Inc. (PSI), under contract to NASA JPL, during a 2.5-year SBIR Phase 2 Program. The program goals were to design, construct, and program a prototype passive imaging pyrometer capable of measuring, as accurately as possible, and controlling the temperature distribution across the surface of a moving object suspended in space. These goals were achieved and the instrument was delivered to JPL in November 1989. The pyrometer utilizes an optical system which operates at short wavelengths compared to the peak of the black-body spectrum for the temperature range of interest, thus minimizing errors associated with a lack of knowledge about the heated sample's emissivity. To cover temperatures from 900 to 2500 K, six wavelengths are available. The preferred wavelength for measurement of a particular temperature decreases as the temperature increases. Images at all six wavelengths are projected onto a single CCD camera concurrently. The camera and optical system have been calibrated to relate the measured intensity at each pixel to the temperature of the heated object. The output of the camera is digitized by a frame grabber installed in a personal computer and analyzed automatically to yield temperature information. The data can be used in a feedback loop to alter the status of computer-activated switches and thereby control a heating system.

  10. Laser Pyrometer For Spot Temperature Measurements

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Allen, J. L.; Lee, M. C.

    1988-01-01

    Laser pyrometer makes temperature map by scanning measuring spot across target. Scanning laser pyrometer passively measures radiation emitted by scanned spot on target and calibrated by similar passive measurement on blackbody of known temperature. Laser beam turned on for active measurements of reflectances of target spot and reflectance standard. From measurements, temperature of target spot inferred. Pyrometer useful for non-contact measurement of temperature distributions in processing of materials.

  11. Uncertainty of Pyrometers in a Casting Facility

    SciTech Connect

    Mee, D.K.; Elkins, J.E.; Fleenor, R.M.; Morrision, J.M.; Sherrill, M.W.; Seiber, L.E.

    2001-12-07

    This work has established uncertainty limits for the EUO filament pyrometers, digital pyrometers, two-color automatic pyrometers, and the standards used to certify these instruments (Table 1). If symmetrical limits are used, filament pyrometers calibrated in Production have certification uncertainties of not more than {+-}20.5 C traceable to NIST over the certification period. Uncertainties of these pyrometers were roughly {+-}14.7 C before introduction of the working standard that allowed certification in the field. Digital pyrometers addressed in this report have symmetrical uncertainties of not more than {+-}12.7 C or {+-}18.1 C when certified on a Y-12 Standards Laboratory strip lamp or in a production area tube furnace, respectively. Uncertainty estimates for automatic two-color pyrometers certified in Production are {+-}16.7 C. Additional uncertainty and bias are introduced when measuring production melt temperatures. A -19.4 C bias was measured in a large 1987 data set which is believed to be caused primarily by use of Pyrex{trademark} windows (not present in current configuration) and window fogging. Large variability (2{sigma} = 28.6 C) exists in the first 10 m of the hold period. This variability is attributed to emissivity variation across the melt and reflection from hot surfaces. For runs with hold periods extending to 20 m, the uncertainty approaches the calibration uncertainty of the pyrometers. When certifying pyrometers on a strip lamp at the Y-12 Standards Laboratory, it is important to limit ambient temperature variation (23{+-}4 C), to order calibration points from high to low temperatures, to allow 6 m for the lamp to reach thermal equilibrium (12 m for certifications below 1200 C) to minimize pyrometer bias, and to calibrate the pyrometer if error exceeds vendor specifications. A procedure has been written to assure conformance.

  12. IR optical fiber-based noncontact pyrometer for drop tube instrumentation

    NASA Technical Reports Server (NTRS)

    May, R. G.; Moneyhun, S.; Saleh, W.; Sudeora, S.; Claus, R. O.; Buoncristiani, A. M.

    1989-01-01

    The design of a two color pyrometer with infrared optical fiber bundles for collection of the infrared radiation is described. The pyrometer design is engineered to facilitate its use for measurement of the temperature of small, falling samples in a microgravity materials processing experiment using a 100 meter long drop tube. Because the samples are small and move rapidly through the field of view of the pyrometer, the optical power budget of the detection system is severly limited. Strategies for overcoming this limitation are discussed.

  13. A Self Calibrating Emissivity and/or Transmissivity Independent Multiwavelength Pyrometer

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1996-01-01

    Pyrometer is a favorite method to do remote temperature measurement in research and development. One-color, two-color and the disappearing filament pyrometers are most common, multicolor and multiwavelength pyrometers are being introduced recently. All these pyrometers invariably require, in one form or another, information concerning emissivity, the medium transmissivity, their ratio at some two spectral regions, the instrument's calibration constant, etc. for their operation. This information can come from hand books, from the manufacturer or in some instances, from results of dedicated separate experiments. Often this information is sample or instrument specific. Sometimes this information, though obtained from a special experiment, is obtained using a separate sample rather than the one pursued for temperature measurement. Then, there would be the question of variability from sample to sample and variability from batch to batch in the sample used. Also, previously determined calibrations can change with time, and the only way to reduce uncertainty is to perform the calibration more frequently or even immediately before the experiment. We have developed a multiwavelength pyrometer, which eliminates the need to supply the necessary emissivity and/or transmissivity information and the instrument calibration constants ahead of time. The pyrometer calibrates itself from its first cycle data.

  14. Self-calibrated active pyrometer for furnace temperature measurements

    DOEpatents

    Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.

    1998-01-01

    Pyrometer with a probe beam superimposed on its field-of-view for furnace temperature measurements. The pyrometer includes a heterodyne millimeter/sub-millimeter-wave or microwave receiver including a millimeter/sub-millimeter-wave or microwave source for probing. The receiver is adapted to receive radiation from a surface whose temperature is to be measured. The radiation includes a surface emission portion and a surface reflection portion which includes the probe beam energy reflected from the surface. The surface emission portion is related to the surface temperature and the surface reflection portion is related to the emissivity of the surface. The simultaneous measurement of surface emissivity serves as a real time calibration of the temperature measurement. In an alternative embodiment, a translatable base plate and a visible laser beam allow slow mapping out of interference patterns and obtaining peak values therefor. The invention also includes a waveguide having a replaceable end portion, an insulating refractory sleeve and/or a source of inert gas flow. The pyrometer may be used in conjunction with a waveguide to form a system for temperature measurements in a furnace. The system may employ a chopper or alternatively, be constructed without a chopper. The system may also include an auxiliary reflector for surface emissivity measurements.

  15. A sensitive optical pyrometer for shock-temperature measurements

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Ahrens, T. J.

    1984-01-01

    A new optical system was used to determine temperatures above 2400 K in shocked materials by measuring the spectral radiance of sub-microsecond pulses of light emitted from initially transparent solid samples in the visible and near infrared (450 to 900 nm). The high sensitivity of this optical pyrometer is attributed to the small number of channels, large aperture (0.03 steradian), the large bandwidth per channel (40 nm), and large photodiode detection area (0.2 sq cm). Improved calibration techniques reduce systematic errors encountered in previous shock-temperature experiments.

  16. Optical-fiber pyrometer positioning accuracy analysis

    NASA Astrophysics Data System (ADS)

    Tapetado, A.; García, E.; Díaz-Álvarez, J.; Miguélez, M. H.; Vazquez, C.

    2016-05-01

    The influence of the distance between the fiber end and the machined surface on temperature measurements in a two-color fiber-optic pyrometer is analyzed. The propose fiber-optic pyrometer is capable of measuring highly localized temperatures, while avoiding the use of lenses or fiber bundles, by using a standard graded index glass fiber OM1 with 62.5/125 core and cladding diameters. The fiber is placed very close to the target and below the tool insert. The output optical power at both wavelength bands is theoretically and experimentally analyzed for a temperature of 650°C at different fiber positions in a range of 2mm. The results show that there is no influence of the fiber position on the measured optical power and therefore, on the measured temperature.

  17. Temperature Measurement of a Glass Material Using a Multiwavelength Pyrometer

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1997-01-01

    Temperature measurement of a substance that is transparent using the traditional 1-color, 2-color and other pyrometers has been difficult. The radiation detected by pyrometers do not come from a well defined location in the transparent body. The multiwavelength pyrometer developed at the NASA Lewis Research Center can measure the surface temperature of many materials. We show in this paper that it also measures the surface and a bulk subsurface temperature of transparent materials like glass.

  18. Two-Band Pyrometers Detect Hydrogen Fires

    NASA Technical Reports Server (NTRS)

    Collins, J. David; Youngquist, Robert C.; Simmons, Stephen M.

    1993-01-01

    Two-band infrared pyrometers detect small hydrogen fires at greater distances in full daylight being developed. Detectors utilize part of infrared spectrum in which signals from hydrogen flames 10 to the 3rd power to 10 to the 4th power times as intense as ultraviolet region of current detectors. Utilize low-loss infrared lenses for focusing and for limiting fields of view to screen out spurious signals from nearby sources. Working distances of as much as 100 meters possible. Portable, battery-powered unit gives audible alarm, in form of increase in frequency of tone, when aimed at hydrogen fire.

  19. Noncontact true temperature measurement. [of levitated sample using laser pyrometer

    NASA Technical Reports Server (NTRS)

    Lee, Mark C.; Allen, James L.

    1987-01-01

    A laser pyrometer has been developed for acquiring the true temperature of a levitated sample. The laser beam is first expanded to cover the entire cross-sectional surface of the target. For calibration of such a system, the reflectivity signal of an ideal 0.95 cm diameter gold-coated sphere (reflectivity = 0.99) is used as the reference for any other real targets. The emissivity of the real target can then be calculated. The overall system constant is obtained by passively measuring the radiance of a blackbody furnace (emissivity = 1.0) at a known, arbitrary temperature. Since the photo sensor used is highly linear over the entire operating temperature range, the true temperature of the target can then be computed. Preliminary results indicate that true temperatures thus obtained are in excellent correlation with thermocouple measured temperatures.

  20. Development of three-wavelength CCD image pyrometer used for the temperature field measurements of continuous casting billets.

    PubMed

    Xie, Zhi; Bai, Haicheng

    2014-02-01

    This paper develops an imaging based three-color pyrometer for the monitoring of temperature distribution in a continuous casting billet. A novel optical device, together with an embedded electronic system, is designed to sequentially collect a dark image and three thermal images with specified wavelengths on a same monochromatic charge-coupled-device (CCD). The three thermal images provide the basis for the determination of target temperature, while the dark image is used to online eliminate the dark noise of CCD with a differential method. This image pyrometer is not only independent of target emissivity but also overcomes the dissimilarity of measuring accuracy between the micro-sensors of CCD resulted from the non-uniformity of pixels' intensity response and the vignetting of optical system. Furthermore, a precise two-color temperature field measuring model on the CCD pyrometer is established, based on which a self-adaptive light-integration mechanism is presented. Compared with the traditional fixed light-integration method, the measuring range of the pyrometer is greatly extended and its sensitivity in low temperature segment is improved. The test results in a steel factory demonstrate that the pyrometer is capable of meeting the requirement of surface temperature measurements about casting billets. Reliability and accuracy of measurement results are also discussed herein. PMID:24593387

  1. Development of three-wavelength CCD image pyrometer used for the temperature field measurements of continuous casting billets

    SciTech Connect

    Xie, Zhi; Bai, Haicheng

    2014-02-15

    This paper develops an imaging based three-color pyrometer for the monitoring of temperature distribution in a continuous casting billet. A novel optical device, together with an embedded electronic system, is designed to sequentially collect a dark image and three thermal images with specified wavelengths on a same monochromatic charge-coupled-device (CCD). The three thermal images provide the basis for the determination of target temperature, while the dark image is used to online eliminate the dark noise of CCD with a differential method. This image pyrometer is not only independent of target emissivity but also overcomes the dissimilarity of measuring accuracy between the micro-sensors of CCD resulted from the non-uniformity of pixels’ intensity response and the vignetting of optical system. Furthermore, a precise two-color temperature field measuring model on the CCD pyrometer is established, based on which a self-adaptive light-integration mechanism is presented. Compared with the traditional fixed light-integration method, the measuring range of the pyrometer is greatly extended and its sensitivity in low temperature segment is improved. The test results in a steel factory demonstrate that the pyrometer is capable of meeting the requirement of surface temperature measurements about casting billets. Reliability and accuracy of measurement results are also discussed herein.

  2. Temperature Measurement of Ceramic Materials Using a Multiwavelength Pyrometer

    NASA Technical Reports Server (NTRS)

    Ng, Daniel; Fralick, Gustave

    1999-01-01

    The surface temperatures of several pure ceramic materials (alumina, beryllia, magnesia, yittria and spinel) in the shape of pellets were measured using a multiwavelength pyrometer. In one of the measurements, radiation signal collection is provided simply by an optical fiber. In the other experiments, a 4.75 inch (12 cm) parabolic mirror collects the signal for the spectrometer. Temperature measurement using the traditional one- and two-color pyrometer for these ceramic materials is difficult because of their complex optical properties, such as low emissivity which varies with both temperature and wavelength. In at least one of the materials, yittria, the detected optical emission increased as the temperature was decreased due to such emissivity variation. The reasons for such changes are not known. The multiwavelength pyrometer has demonstrated its ability to measure surface temperatures under such conditions. Platinum electrodes were embedded in the ceramic pellets for resistance measurements as the temperature changed.

  3. System for controlling air-fuel ratio

    SciTech Connect

    Morozumi, T.

    1982-09-14

    A system for controlling the air-fuel ratio for an internal combustion engine having an induction passage, an exhaust passage , a choke valve in the induction passage, an automatic choke device comprising a positive temperature coefficient (Ptc) heater and a bimetal element connected to the choke valve, a detector for detecting the concentration of a constituent of exhaust gases passing through the exhaust passage, an electronic control circuit, an on-off type electromagnetic valve actuated by the output signal from the electronic control circuit for correcting the air-fuel ratio of the air-fuel mixture supplied by an airfuel mixture supplier, and means for actuating the on-off type electromagnetic valve at a fixed duty ratio during cold engine operation. The electronic control circuit comprises a vacuum sensor for converting the amount of the induced air to an electric quantity, an engine temperature detector for converting the engine temperature to an electric quantity, a first calculating circuit for producing a proper desired air-fuel mixture ratio signal from the output signals of the vacuum sensor and of the engine temperature detector, and a second calculation circuit for producing an actual air-fuel ratio signal from output signals of the vacuum sensor and of the ptc heater. A summing circuit for summing the proper air-fuel ratio signal and the actual air-fuel ratio signal produces a pulse duty ratio correcting signal which is applied to the electronic control circuit for correcting the fixed duty ratio.

  4. Application of the Self Calibrating Emissivity and/or Transmissivity Independent Multiwavelength Pyrometer in an Intense Ambient Radiation Environment

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1996-01-01

    The NASA self calibrating multiwavelength pyrometer is a recent addition to the list of pyrometers used in remote temperature measurement in research and development. The older one-color, two-color, and the disappearing filament pyrometers, as well as the multicolor and early multiwavelength pyrometers, all do not operate successfully in situations in which strong ambient radiation coexists with radiation originating from the measured surface. In such situations radiation departing from the target surface arrives at the pyrometer together with radiation coming from another source either directly or through reflection. Unlike the other pyrometers, the self calibrating multiwavelength pyrometer can still calibrate itself and measure the temperatures in this adverse environment.

  5. Direct emissivity measurements on liquids and corrections to multi-color pyrometers

    NASA Technical Reports Server (NTRS)

    Nordine, Paul C.; Schiffman, Robert A.

    1988-01-01

    Optical pyrometry provides a means for non-contact temperature measurements whose accuracy depends on the accuracy with which specimen emittance is known. Two methods for obtaining the required emittance data are discussed in which the emittance is determined from measurements of the wavelength or polarization dependence of light emitted by the specimen. The spectral technique, multi-color pyrometry, yields apparent values for specimen emittance and temperature from emitted intensity measurements at two or more wavelengths. Emittance corrections cannot be eliminated by increasing the number of spectral intensity measurements required by an n-color pyrometer. Even if this were possible, the accuracy of temperature measurements by n-color pyrometry decreases with n such that pyrometers that require four intensity measurements would be impractical. In contrast, emittance values and corrections for one-color pyrometers can be accurately measured by the polarized light technique. The polarized light technique involves measurement of the degree of polarization for light emitted at an angle of 45 deg to the specimen normal. The reflectivities (r) for light polarized parallel (p) and normal (n) to the plane of emission are related by r(p) = r(n) squared. This leads to a simple relation between the intensity ratio for light emitted in the two polarized states and the emittance, i.e., e(n) = 2 - I(p)/I(n). The true specimen temperature is also obtained if absolute intensities are measured. Delvelopment of the polarized light technique in combination with one-color optical pyrometry is recommended to achieve accurate non-contact temperature measurements on liquids.

  6. Temperature measurement in WTE boilers using suction pyrometers.

    PubMed

    Rinaldi, Fabio; Najafi, Behzad

    2013-01-01

    The temperature of the flue-gas in the post combustion zone of a waste to energy (WTE) plant has to be maintained within a fairly narrow range of values, the minimum of which is prescribed by the European Waste Directive 2000/76/CE, whereas the maximum value must be such as to ensure the preservation of the materials and the energy efficiency of the plant. A high degree of accuracy in measuring and controlling the aforementioned temperature is therefore required. In almost the totality of WTE plants this measurement process is carried out by using practical industrial thermometers, such as bare thermocouples and infrared radiation (IR) pyrometers, even if affected by different physical contributions which can make the gas temperature measurements incorrect. The objective of this paper is to analyze errors and uncertainties that can arise when using a bare thermocouple or an IR pyrometer in a WTE plant and to provide a method for the in situ calibration of these industrial sensors through the use of suction pyrometers. The paper describes principle of operation, design, and uncertainty contributions of suction pyrometers, it also provides the best estimation of the flue-gas temperature in the post combustion zone of a WTE plant and the estimation of its expanded uncertainty. PMID:24248279

  7. Temperature Measurement in WTE Boilers Using Suction Pyrometers

    PubMed Central

    Rinaldi, Fabio; Najafi, Behzad

    2013-01-01

    The temperature of the flue-gas in the post combustion zone of a waste to energy (WTE) plant has to be maintained within a fairly narrow range of values, the minimum of which is prescribed by the European Waste Directive 2000/76/CE, whereas the maximum value must be such as to ensure the preservation of the materials and the energy efficiency of the plant. A high degree of accuracy in measuring and controlling the aforementioned temperature is therefore required. In almost the totality of WTE plants this measurement process is carried out by using practical industrial thermometers, such as bare thermocouples and infrared radiation (IR) pyrometers, even if affected by different physical contributions which can make the gas temperature measurements incorrect. The objective of this paper is to analyze errors and uncertainties that can arise when using a bare thermocouple or an IR pyrometer in a WTE plant and to provide a method for the in situ calibration of these industrial sensors through the use of suction pyrometers. The paper describes principle of operation, design, and uncertainty contributions of suction pyrometers, it also provides the best estimation of the flue-gas temperature in the post combustion zone of a WTE plant and the estimation of its expanded uncertainty. PMID:24248279

  8. A low aspect ratio tokamak transmutation system

    NASA Astrophysics Data System (ADS)

    Qiu, L. J.; Wu, Y. C.; Xiao, B. J.; Xu, Q.; Huang, Q. Y.; Wu, B.; Chen, Y. X.; Xu, W. N.; Chen, Y. P.; Liu, X. P.

    2000-03-01

    A low aspect ratio tokamak transmutation system is proposed as an alternative application of fusion energy on the basis of a review of previous studies. This system includes: (1) a low aspect ratio tokamak as fusion neutron driver, (2) a radioactivity-clean nuclear power system as blanket, and (3) a novel concept of liquid metal centre conductor post as part of the toroidal field coils. In the conceptual design, a driver of 100 MW fusion power under 1 MW/m2 neutron wall loading can transmute the amount of high level waste (including minor actinides and fission products) produced by ten standard pressurized water reactors of 1 GW electrical power output. Meanwhile, the system can produce tritium on a self-sustaining basis and an output of about 2 GW of electrical energy. After 30 years of operation, the biological hazard potential level of the whole system will decrease by two orders of magnitude.

  9. Measuring Isotope Ratios Across the Solar System

    NASA Technical Reports Server (NTRS)

    Webster, Chris R.; Mahaffy, Paul R.

    2012-01-01

    Stable isotope ratios in C, H, N, O and S are powerful indicators of a wide variety of planetary geophysical processes that can identify origin, transport, temperature history, radiation exposure, atmospheric escape, environmental habitability and biology [1]. For the Allan Hills 84001 meteorite, for example, the (sup 1)(sup 3)C/(sup 1)(sup 2)C ratio identifies it as a Mars (SNC) meteorite; the ??K/??Ar ratio tells us the last time the rock cooled to solid, namely 4 Gya; isotope ratios in (sup 3)He, (sup 2)(sup 1)Ne and (sup 3)?Ar show it was in space (cosmic ray exposure) for 10-20 million years; (sup 1)?C dating that it sat in Antarctica for 13,000 years before discovery; and clumped isotope analysis of (sup 1)?O(sup 1)(sup 3)C(sup 1)?O in its carbonate that it was formed at 18+/-4 ?C in a near-surface aqueous environment [2]. Solar System Formation

  10. CO (Carbon Monoxide Mixing Ratio System) Handbook

    SciTech Connect

    Biraud, S

    2011-02-23

    The main function of the CO instrument is to provide continuous accurate measurements of carbon monoxide mixing ratio at the ARM SGP Central Facility (CF) 60-meter tower (36.607 °N, 97.489 °W, 314 meters above sea level). The essential feature of the control and data acquisition system is to record signals from a Thermo Electron 48C and periodically calibrate out zero and span drifts in the instrument using the combination of a CO scrubber and two concentrations of span gas (100 and 300 ppb CO in air). The system was deployed on May 25, 2005.

  11. Multi-color pyrometer for materials processing in space

    NASA Technical Reports Server (NTRS)

    Frish, Michael B.; Spencer, Mark N.; Wolk, Nancy E.; Werner, Jennifer S.; Miranda, Henry A., Jr.

    1988-01-01

    The design, construction and calibration of a computer-linked multicolor pyrometer is described. The device was constructed for ready adaptation to a spacecraft and for use in the control of thermal processes for manufacturing materials in space. The pyrometer actually uses only one color at a time, and is relatively insensitive to uncertainties in the heated object's emissivity because the product of the color and the temperature has been selected to be within a regime where the radiant energy emitted from the body increases very rapidly with temperature. The instrument was calibrated and shown to exceed its design goal of temperature measurements between 300 and 2000 C, and its accuracy in the face of imprecise knowledge of the hot object's emissivity was demonstrated.

  12. Flexible Conversion Ratio Fast Reactor Systems Evaluation

    SciTech Connect

    Neil Todreas; Pavel Hejzlar

    2008-06-30

    Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

  13. Hydraulic system for a ratio change transmission

    DOEpatents

    Kalns, Ilmars

    1981-01-01

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  14. Use of a multiwavelength pyrometer in several elevated temperature aerospace applications

    NASA Astrophysics Data System (ADS)

    Ng, Daniel; Fralick, Gustave

    2001-02-01

    A multiwavelength pyrometer was developed for applications unique to aerospace environments. It was shown to be a useful and versatile technique for measuring temperature, even when the emissivity is unknown. It has also been used to measure the surface temperatures of ceramic zircornia thermal barrier coatings and alumina. The close agreement between pyrometer and thin film thermocouple temperatures provided an independent check. Other applications of the multiwavelength pyrometer are simultaneous surface and bulk temperature measurements of a transparent material, and combustion gas temperature measurement using a special probe interfaced to the multiwavelength pyrometer via an optical fiber. The multiwavelength pyrometer determined temperature by transforming the radiation spectrum in a broad wavelength region to produce a straight line (in a certain spectral region), whose intercept in the vertical axis gives the temperature. Implicit in a two-color pyrometer is the assumption of wavelength independent emissivity. Though the two data points of a two-color pyrometer similarly processed would result immediately in a similar straight line to give the unknown temperature, the two-color pyrometer lacks the greater data redundancy of the multiwavelength pyrometer, which enables it to do so with improved accuracy. It also confirms that emissivity is indeed wavelength independent, as evidenced by a multitude of the data lying on a simple straight line. The multiwavelength pyrometer was also used to study the optical transmission properties of a nanostructured material from which a quadratic exponential functional frequency dependence of its spectral transmission was determined. Finally, by operating the multiwavelength pyrometer in a very wide field of view mode, the surface temperature distribution of a large hot surface was obtained through measurement of just a single radiation spectrum.

  15. Use of a Multiwavelength Pyrometer in Several Elevated Temperature Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Ng, Daniel; Fralick, Gustave

    2001-01-01

    A multiwavelength pyrometer was developed for applications unique to aerospace environments. It was shown to be a useful and versatile technique for measuring temperature, even when the emissivity is unknown. It has also been used to measure the surface temperatures of ceramic zircomia thermal barrier coatings and alumina. The close agreement between pyrometer and thin film thermocouple temperatures provided an independent check. Other applications of the multiwavelength pyrometer are simultaneous surface and bulk temperature measurements of a transparent material, and combustion gas temperature measurement using a special probe interfaced to the multiwavelength pyrometer via an optical fiber. The multiwavelength pyrometer determined temperature by transforming the radiation spectrum in a broad wavelength region to produce a straight line (in a certain spectral region), whose intercept in the vertical axis gives the temperature. Implicit in a two-color pyrometer is the assumption of wavelength independent emissivity. Though the two data points of a two-color pyrometer similarly processed would result immediately in a similar straight line to give the unknown temperature, the two-color pyrometer lacks the greater data redundancy of the multiwavelength pyrometer, which enables it to do so with improved accuracy. It also confirms that emissivity is indeed wavelength independent, as evidenced by a multitude of the data lying on a simple straight line. The multiwavelength pyrometer was also used to study the optical transmission properties of a nanostructured material from which a quadratic exponential functional frequency dependence of its spectral transmission was determined. Finally, by operating the multiwavelength pyrometer in a very wide field of view mode, the surface temperature distribution of a large hot surface was obtained through measurement of just a single radiation spectrum.

  16. Evaluation of Raytek infrared pyrometer for continuous propellant temperature measurement

    NASA Technical Reports Server (NTRS)

    Dykstra, Mark D.

    1990-01-01

    The primary purpose of this evaluation was to determine if the Raytek IR pyrometer that was installed in the 600 gallon propellant mixers could be used to provide a continuous, accurate, reliable measurement of the propellant temperature during mixing. The Raytek infrared sensor is not recommended to be used for controlling propellant temperature nor for inspection buy-off. The first part of the evaluation was to determine the accuracy of the sensor in measuring the propellant temperature. The second part was to determine the reliability of the air purge design in preventing contamination of the IR window.

  17. The Rover Environmental Monitoring Station Ground Temperature Sensor: A Pyrometer for Measuring Ground Temperature on Mars

    PubMed Central

    Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; Zorzano, María P.; Martinez-Frias, Jesus; Esteban, Blanca; Ramos, Miguel

    2010-01-01

    We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA’s Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor’s main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment. PMID:22163405

  18. The Rover Environmental Monitoring Station Ground Temperature Sensor: a pyrometer for measuring ground temperature on Mars.

    PubMed

    Sebastián, Eduardo; Armiens, Carlos; Gómez-Elvira, Javier; Zorzano, María P; Martinez-Frias, Jesus; Esteban, Blanca; Ramos, Miguel

    2010-01-01

    We describe the parameters that drive the design and modeling of the Rover Environmental Monitoring Station (REMS) Ground Temperature Sensor (GTS), an instrument aboard NASA's Mars Science Laboratory, and report preliminary test results. REMS GTS is a lightweight, low-power, and low cost pyrometer for measuring the Martian surface kinematic temperature. The sensor's main feature is its innovative design, based on a simple mechanical structure with no moving parts. It includes an in-flight calibration system that permits sensor recalibration when sensor sensitivity has been degraded by deposition of dust over the optics. This paper provides the first results of a GTS engineering model working in a Martian-like, extreme environment. PMID:22163405

  19. Solving Systems of Linear Equations by Ratio and Proportion

    ERIC Educational Resources Information Center

    Katsaras, Vasilios J.

    1978-01-01

    The author describes and gives two illustrations of a method for solving a system of two linear equations. The ratio of left members is equated to the ratio of right members, the ratio of the two variables is solved for, and the resultant ratio is substituted into an original equation. (MN)

  20. Optical pyrometer based on the gas phase photoacoustic effect.

    PubMed

    Meng, Xiangling; Diebold, Gerald J

    2016-05-15

    A photoacoustic cell containing an infrared active gas and equipped with a pair of infrared transmitting windows that alternately views two bodies at different temperatures through a pair of chopping wheels acts as a differential detector of the radiation emitted by the two bodies. A theory for the photoacoustic signal shows that the device acts to monitor the difference in the incidances between the two bodies integrated over the absorptions of the gas in the cell. Experiments are reported showing that the response of the pyrometer depends on the relative temperatures of heated bodies, the absorption coefficient of the gas in the cell, and the modulation frequency of the chopping wheels. The instrument is shown to be a sensitive detector of a null in the integrated incidance of the two bodies. PMID:27176967

  1. Emissivity range constraints algorithm for multi-wavelength pyrometer (MWP).

    PubMed

    Xing, Jian; Rana, R S; Gu, Weihong

    2016-08-22

    In order to realize rapid and real temperature measurement for high temperature targets by multi-wavelength pyrometer (MWP), emissivity range constraints to optimize data processing algorithm without effect from emissivity has been developed. Through exploring the relation between emissivity deviation and true temperature by fitting of large number of data from different emissivity distribution target models, the effective search range of emissivity for every time iteration is obtained, so data processing time is greatly reduced. Simulation and experimental results indicate that calculation time is less by 0.2 seconds with 25K absolute error at 1800K true temperature, and the efficiency is improved by more than 90% compared with the previous algorithm. The method has advantages of simplicity, rapidity, and suitability for in-line high temperature measurement. PMID:27557198

  2. Evaluation and comparison of three IR detectors and three amplifier designs for a new, high-speed IR pyrometer

    SciTech Connect

    J.A. Young, S. Borrora, A.W. Obst, J.R. Payton, A. Seifter

    2005-01-01

    At Los Alamos National Laboratory (LANL), a high-speed, four-wavelength, infrared (IR) pyrometer has been used for surface temperature measurements in shock-physics experiments for several years. The pyrometer uses solid state detectors and a single fiber-optic cable for transmission of light from the target surface to the detectors. This instrument has recently been redesigned for an upcoming experiment at the Nevada Test Site (NTS). Three different IR detectors (two HgCdTe variants as well as the existing InSb chip) were compared for sensitivity, signal-to-noise ratio, and bandwidth. Of major concern was detector amplifier recovery time from overload saturation. In shock physics experiments, a short but very bright precursor frequently accompanies shock breakout (often from trapped air). This precursor can saturate the amplifier and may ''swamp-out'' the signal of interest before the amplifier recovers. With this in mind, we evaluated two new amplifier designs by the Perry Amplifier Company for linearity, signal-to-noise characteristics, gain, and saturation recovery time. This paper describes experimental setup for detector comparison and results obtained. Furthermore, we discuss new amplifier design and suitability for highspeed infrared pyrometry in shock physics experiments.

  3. Evaluation and comparison of three IR detectors and three amplifier designs for a new high-speed IR pyrometer

    NASA Astrophysics Data System (ADS)

    Young, J. A.; Borror, S.; Obst, A. W.; Payton, J. R.; Seifter, A.

    2005-08-01

    At Los Alamos National Laboratory (LANL), a high-speed, four-wavelength, infrared (IR) pyrometer has been used for surface temperature measurements in shock-physics experiments for several years. The pyrometer uses solid-state detectors and a single fiber-optic cable for transmission of light from the target surface to the detectors. This instrument has recently been redesigned for an upcoming experiment at the Nevada Test Site (NTS). Three different IR detectors (two HgCdTe variants as well as the existing InSb chip) were compared for sensitivity, signal-to-noise ratio, and bandwidth. Of major concern was detector amplifier recovery time from overload saturation. In shock-physics experiments, a short but very bright precursor frequently accompanies shock breakout (often from trapped air). This precursor can saturate the amplifier and may "swamp-out" the signal of interest before the amplifier recovers. With this in mind, we evaluated two new amplifier designs by the Perry Amplifier Company for linearity, signal-to-noise characteristics, gain, and saturation recovery time. This paper describes experimental setup for detector comparison and results obtained. Furthermore, we discuss new amplifier design and suitability for high-speed infrared pyrometry in shock physics experiments.

  4. Elevated sacroilac joint uptake ratios in systemic lupus erythematosus

    SciTech Connect

    De Smet, A.A.; Mahmood, T.; Robinson, R.G.; Lindsley, H.B.

    1984-08-01

    Sacroiliac joint radiographs and radionuclide sacroiliac joint uptake ratios were obtained on 14 patients with active systemic lupus erythematosus. Elevated joint ratios were found unilaterally in two patients and bilaterally in seven patients when their lupus was active. In patients whose disease became quiescent, the uptake ratios returned to normal. Two patients had persistently elevated ratios with continued clinical and laboratory evidence of active lupus. Mild sacroiliac joint sclerosis and erosions were detected on pelvic radiographs in these same two patients. Elevated quantitative sacroiliac joint uptake ratios may occur as a manifestation of active systemic lupus erythematosus.

  5. Ratio

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Studer, Andrew J.; Manuel, James R.; Kimpton, Justin A.

    2014-12-01

    Effects of basicity, B (CaO:SiO2 ratio) on the thermal range, concentration, and formation mechanisms of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter bonding phases have been investigated using an in situ synchrotron X-ray diffraction-based methodology with subsequent Rietveld refinement-based quantitative phase analysis. SFCA and SFCA-I phases are the key bonding materials in iron ore sinter, and improved understanding of the effects of processing parameters such as basicity on their formation and decomposition may assist in improving efficiency of industrial iron ore sintering operations. Increasing basicity significantly increased the thermal range of SFCA-I, from 1363 K to 1533 K (1090 °C to 1260 °C) for a mixture with B = 2.48, to ~1339 K to 1535 K (1066 °C to 1262 °C) for a mixture with B = 3.96, and to ~1323 K to 1593 K (1050 °C to 1320 °C) at B = 4.94. Increasing basicity also increased the amount of SFCA-I formed, from 18 wt pct for the mixture with B = 2.48 to 25 wt pct for the B = 4.94 mixture. Higher basicity of the starting sinter mixture will, therefore, increase the amount of SFCA-I, considered to be more desirable of the two phases. Basicity did not appear to significantly influence the formation mechanism of SFCA-I. It did, however, affect the formation mechanism of SFCA, with the decomposition of SFCA-I coinciding with the formation of a significant amount of additional SFCA in the B = 2.48 and 3.96 mixtures but only a minor amount in the highest basicity mixture. In situ neutron diffraction enabled characterization of the behavior of magnetite after melting of SFCA produced a magnetite plus melt phase assemblage.

  6. Methodology on high ratio multiple configuration systems in image sensor

    NASA Astrophysics Data System (ADS)

    Liu, Hua; Ding, Quanxin; Zhou, Liwei

    2014-12-01

    The method of a multiple configuration on high ratio systems in image sensor is an important subject. In such an experimental configuration, for aim to break through to large ratio multiple configuration systems bottlenecks, achieve the field of continuous transformation, effect system close to the theoretical limit and configuration dexterity, such as the purpose, method in the design of the integrated sensor system process, the core technology of such a system are thoroughly analyzed and the factors important to the compromise. Theory is studied based on the theory of Gaussian optical system error distribution and comprehensive balancing algorithm; Global optimization method, developed at a system design thought and the optimization model. Results solved the MTF matching problem, research and evaluations shows that the zoom ratio of more than one hundred results in system MTF and so on as qualitative criterion to achieve requirements.

  7. Four-color imaging pyrometer for mapping temperatures of laser-based metal processes

    NASA Astrophysics Data System (ADS)

    Dagel, Daryl J.; Grossetete, Grant D.; MacCallum, Danny O.; Korey, Scott P.

    2016-05-01

    A 4-color imaging pyrometer was developed to investigate the thermal behavior of laser-based metal processes, specifically laser welding and laser additive manufacturing of stainless steel. The new instrument, coined a 2x pyrometer, consists of four, high-sensitivity silicon CMOS cameras configured as two independent 2-color pyrometers combined in a common hardware assembly. This coupling of pyrometers permitted low and high temperature regions to be targeted within the silicon response curve, thereby broadening the useable temperature range of the instrument. Also, by utilizing the high dynamic range features of the CMOS cameras, the response gap between the two wavelength bands can be bridged. Together these hardware and software enhancements are predicted to expand the real-time (60 fps) temperature response of the 2x pyrometer from 600 °C to 3500 °C. Initial results from a calibrated tungsten lamp confirm this increased response, thus making it attractive for measuring absolute temperatures of steel forming processes.

  8. Deep, Low Mass Ratio Overcontact Binary Systems. V. The Lowest Mass Ratio Binary V857 Herculis

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Zhu, L.-Y.; Soonthornthum, B.; Yuan, J.-Z.; Yang, Y.-G.; He, J.-J.

    2005-09-01

    Charge-coupled device (CCD) photometric light curves in the B, V, and R bands of the complete eclipsing binary star V857 Her are presented. It is shown that the light curves of the W UMa-type binary are symmetric and of A type according to Binnendijk's classification. Our four epochs of light minimum along with others compiled from the literature were used to revise the period and study the period change. Weak evidence indicates that the orbital period of V857 Her may show a continuous increase at a rate of dP/dt=+2.90×10-7 days yr-1. The photometric parameters of the system were determined with the 2003 version of the Wilson-Devinney code. It is shown that V857 Her is a deep overcontact binary system with f=83.8%+/-5.1%. The derived mass ratio of q=0.06532+/-0.0002 suggests that it has the lowest mass ratio among overcontact binary systems. As the orbital period increases, the decrease of the mass ratio will cause it to evolve into a single rapidly rotating star when it meets the more familiar criterion that the orbital angular momentum be less than 3 times the total spin angular momentum. To understand the evolutionary state of the system, long-term photometric monitoring and spectroscopic observations will be required.

  9. Use of a variable exposure photographic pyrometer to measure surface temperatures on a hemispherical-face model

    NASA Technical Reports Server (NTRS)

    Kantsios, A. G.; Henley, W. C., Jr.; Snow, W. L.

    1982-01-01

    The use of a photographic pyrometer for nonintrusive measurement of high temperature surfaces in a wind tunnel test is described. The advantages of the pyrometer for measuring surfaces whose unique shape makes use of thermocouples difficult are pointed out. The use of computer operated densitometers or optical processors for the data reduction is recommended.

  10. Video imaging system and thermal mapping of the molten hearth in an electron beam melting furnace

    SciTech Connect

    Miszkiel, M.E.; Davis, R.A.; Van Den Avyle, J.A.

    1995-12-31

    This project was initiated to develop an enhanced video imaging system for the Liquid Metal Processing Laboratory Electron Beam Melting (EB) Furnace at Sandia and to use color video images to map the temperature distribution of the surface of the molten hearth. In a series of test melts, the color output of the video image was calibrated against temperatures measured by an optical pyrometer and CCD camera viewing port above the molten pool. To prevent potential metal vapor deposition onto line-of-sight optical surfaces above the pool, argon backfill was used along with a pinhole aperture to obtain the vide image. The geometry of the optical port to the hearth set the limits for the focus lens and CCD camera`s field of view. Initial melts were completed with the pyrometer and pinhole aperture port in a fixed position. Using commercially available vacuum components, a second flange assembly was constructed to provide flexibility in choosing pyrometer target sights on the hearth and to adjust the field of view for the focus lens/CCD combination. RGB video images processed from the melts verified that red wavelength light captured with the video camera could be calibrated with the optical pyrometer target temperatures and used to generate temperature maps of the hearth surface. Two color ratio thermal mapping using red and green video images, which has theoretical advantages, was less successful due to probable camera non-linearities in the red and green image intensities.

  11. Multi-channel optical pyrometer for sub-nanosecond temperature measurements at NDCX-I/II

    SciTech Connect

    Ni, P.A.; Bieniosek, F.M.; Waldron, W.L.

    2011-04-13

    We present a detailed technical description of a fast multi-channel pyrometer designed for warm-dense-matter (WDM) experiments with intense heavy ion beams at the neutralized-drift-compression-experiment linear accelerator (NDCX-I/II) at Lawrence Berkeley National Laboratory (LBNL). The unique features of the described instrument are its sub-nanosecond temporal resolution (100 ps rise-time) and a broad range, 1,500 K - 12,000 K of measurable brightness temperatures in the visible and near-infrared regions of the spectrum. The working scheme, calibration procedure, experimental data obtained with the pyrometer and future applications are presented.

  12. In-flight particle pyrometer for thermal spray processes. Final report, October 1, 1992--December 31, 1994

    SciTech Connect

    1995-02-20

    The objective of the project was to produce an industrial hardened particle temperature sensor. In general the thermal spray community believes that the particle temperature and velocity prior to impact on the substrate are two of the predominant parameters which effect coating quality. Prior to the full scale prototyping of such an instrument it was necessary to firmly establish the relationship between operating parameters, particle temperature and coating characteristics. It was shown in the first year of this project that the characteristics and consistency of the coatings formed are directly determined by particle velocity and temperature at impact. For the HVOF spray process the authors have also shown that the particle velocity is determined primarily by chamber pressure, while stoichiometry (the ratio of oxygen to fuel) has a minor influence. Hence, particle velocity can be controlled by maintaining the chamber pressure at a set point. Particle temperature, on the other hand is primarily a function of stoichiometry. Therefore particle velocity and temperature can be independently controlled. In the second year (FY-94), an industrial hardened prototype particle temperature sensor (In-flight Particle Pyrometer) was produced. The IPP is a two-color radiation pyrometer incorporating improvements which make the device applicable to the measurement of in-flight temperature of particles over a wide range of operating conditions in thermal spray processes. The device is insensitive to particulate loading (particle feed rate), particle composition, particle size distribution, and provides an ensemble average particle temperature. The sensor head is compact and coupled to the electronics via a fiber optic cable. Fiber optic coupling allows maximum flexibility of deployment while providing isolation of the electronics from electromagnetic interference and the hot, particulate laden environment of a typical spray booth. The device is applicable to all thermal spray

  13. The distribution of period ratios in Kepler planetary systems

    NASA Astrophysics Data System (ADS)

    Steffen, Jason H.; Hwang, Jason A.

    2015-01-01

    Kepler's multi-planet systems are a valuable tool to understand the architectures and dynamics of the inner parts of planetary systems. I present an analysis of the distribution of orbital period ratios from candidate systems identified in the Quarter 8 catalog (Burke et al. 2014). This distribution is corrected for the effects of geometric transit probabilities and the completeness of the data reduction pipeline. We find that the distribution of period ratios falls as a power law with exponent -1.26 ± 0.05. We also identify a new, statistically significant feature near a period ratio of 2.2. These observations may provide insights into the formation and evolution of these systems.

  14. System and method for high precision isotope ratio destructive analysis

    DOEpatents

    Bushaw, Bruce A; Anheier, Norman C; Phillips, Jon R

    2013-07-02

    A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).

  15. Heavy ion beam probe systems for tight aspect ratio tokamaks

    SciTech Connect

    Melnikov, A.V.; Zimeleva, L.G.; Krupnik, L.I.; Nedzelskij, I.S.; Trofimenko, Y.V.; Minaev, V.B.

    1997-01-01

    We discuss the specific features of the application of heavy ion beam probe (HIBP) systems to tight aspect ratio tokamaks. We present and compare the HIBP projects for the TUMAN-3, GLOBUS, and COMPASS, where the inner part of the plasma is not available for regular chord diagnostics, so the HIBP becomes very desirable. All existing tight aspect ratio facilities and projects have a low (less than 1.9 T) toroidal field that requires a comparatively low beam energy range. The natural elongation and triangularity in tight aspect ratio tokamaks require an accurate calculation of the three-dimensional magnetic field for probing optimization. In comparison with traditional tokamaks, the detector grids have a wider energy interval. In general, the trajectories and detector grids for tight aspect ratio tokamaks become similar to the stellarator ones. Traditional and new probing schemes are suggested and discussed. {copyright} {ital 1997 American Institute of Physics.}

  16. The period ratio distribution of Kepler's candidate multiplanet systems

    NASA Astrophysics Data System (ADS)

    Steffen, Jason H.; Hwang, Jason A.

    2015-04-01

    We calculate and analyse the distribution of period ratios observed in systems of Kepler exoplanet candidates including studies of both adjacent planet pairs and all planet pairs. These distributions account for both the geometrical bias against detecting more distant planets and the effects of incompleteness due to planets missed by the data reduction pipeline. In addition to some of the known features near first-order mean-motion resonances (MMRs), there is a significant excess of planet pairs with period ratios near 2.2. The statistical significance of this feature is assessed using Monte Carlo simulation. We also investigate the distribution of period ratios near first-order MMR and compare different quantities used to measure this distribution. We find that beyond period ratios of ˜2.5, the distribution of all period ratios follows a power law with an exponent -1.26 ± 0.05. We discuss implications that these results may have on the formation and dynamical evolution of Kepler-like planetary systems-systems of sub-Neptune/super-Earth planets with relatively short orbital periods.

  17. Seven-wavelength pyrometer for determining surface temperature of ablation materials

    NASA Technical Reports Server (NTRS)

    Yi, H.

    1985-01-01

    Results which were achieved by a seven-wavelength pyrometer last year are reported in this paper. These studies are directed toward the development of a method for determining the real surface temperature of thermal protection materials and for evaluating its emittance under varieties of reentry environment. A description of the data processing method and apparatus is also included.

  18. A cooled-gas pyrometer for use in hypersonic engine testing

    NASA Technical Reports Server (NTRS)

    Glawe, G. E.

    1973-01-01

    A cooled-gas pyrometer designed for application in a hypersonic research engine program was fabricated and tested. Design and operational considerations and calibration data are presented. The probe was tested in a rocket-engine exhaust stream operating at Mach 2 and 2300 K. Test temperature measurements agreed to within 2 percent with a radiation shielded thermocouple probe.

  19. High ratio long-wave infrared continuous zoom system

    NASA Astrophysics Data System (ADS)

    Yan, Jing; Sun, Quan; Liu, Ying; Zhou, Hao; Huan, Kewei; Shi, Xiao-guang

    2013-09-01

    As infrared zoom systems change the focal length continuously, remain images stability and keep good image quality during the process of zoom, it is widely applied to infrared navigation, infrared detection, infrared-guided etc vehicular and airborne area. In order to satisfy the growing demand of infrared continuous zoom system, a zoom ratio of ten times long-wave infrared continuous zoom optical system that based on an uncooled detector was designed. System guided by the zoom theory of positive groups of compensation, calculated the initial structure of the system and according to the system of optical parameters with using ZEMAX software for optical design did an aberration balance and optimized, then the optical system image quality was systematically analyzed and evaluated. The result showed that the modulation transfer function (MTF) was above 0.4 within the whole focal range at spatial frequency 16 lp/mm, the root mean square radius of maximum dispersion spot was smaller than a pixel dimension and it met the requirements of the system imaging quality when F/# was 2, continuous zoom range was from 40 mm to 400 mm and the image size was 12 mm. The design of the system realized the requirements of compact structure, large zoom ratio, easily assembled and excellent image quality to optical system for infrared imaging.

  20. Log-ratio technique for beam position monitor systems

    SciTech Connect

    Roberto Aiello, G.; Mills, M.R. )

    1992-07-10

    Recent progress in the development of a beam position monitor system (BPM), based on the log-ratio technique, is described in this paper. A complete electronic analysis is presented, showing linearity, dynamic range, noise, RF burst response, and temperature dependence. A calibration technique has been developed, which corrects the errors due to mismatched channels and electronics drift. This technique is particularly effective because of the log-ratio property for beam position monitoring. This circuit is the most likely candidate for beam position monitor electronics at the SSC.

  1. A Time-Measurement System Based on Isotopic Ratios.

    SciTech Connect

    Vo, Duc T.; Karpius, P. J.; MacArthur, D. W.; Thron, J. L.

    2007-01-01

    A time-measurement system can be built based on the ratio of gamma-ray peak intensities from two radioactive isotopes. The ideal system would use a parent isotope with a short half-life decaying to a long half-life daughter. The activities of the parent-daughter isotopes would be measured using a gamma-ray detector system. The time can then be determined from the ratio of the activities. The best-known candidate for such a system is the {sup 241}Pu-{sup 241}Am parent-daughter pair. However, this {sup 241}Pu-{sup 241}Am system would require a high-purity germanium detector system and sophisticated software to separate and distinguish between the many gamma-ray peaks produced by the decays of the two isotopes. An alternate system would use two different isotopes, again one with a short half-life and one with a half-life that is long relative to the other. The pair of isotopes {sup 210}Pb and {sup 241}Am (with half-lives of 22 and 432 years, respectively) appears suitable for such a system. This time-measurement system operates by measuring the change in the ratio of the 47-keV peak of {sup 210}Pb to the 60-keV peak of {sup 241}Am. For the system to work reasonably well, the resolution of the detector would need to be such that the two gamma-ray peaks are well separated so that their peak areas can be accurately determined using a simple region-of-interest (ROI) method. A variety of detectors were tested to find a suitable system for this application. The results of these tests are presented here.

  2. Fast six-channel pyrometer for warm-dense-matter experiments with intense heavy-ion beams

    SciTech Connect

    Ni, P.A.; Kulish, M.I.; Mintsev, V.; Nikolaev, D.N.; Ternovoi, V.Ya.; Hoffmann, D.H.H.; Udrea, S.; Tahir, N.A.; Varentsov, D.; Hug, A.

    2008-12-01

    This paper describes a fast multi-channel radiation pyrometer that was developed for warmdense-matter experiments with intense heavy ion beams at Gesellschaft fur Schwerionenforschung mbH (GSI). The pyrometer is capable of measuring of brightness temperatures from 2000 K to 50000 K, at 6 wavelengths in visible and near-infrared parts of spectrum, with 5 nanosecond temporal resolution and several micrometers spatial resolution. The pyrometer's spectral discrimination technique is based on interference filters, which act as filters and mirrors to allow for simultaneous spectral discrimination of the same ray at multiple wavelengths.

  3. Short wavelengths active bichromatic pulsed pyrometer for solids and liquids designed for measurements in harsh environments

    NASA Astrophysics Data System (ADS)

    Navello, L.; Lebedinsky, J.; Offret, J. P.; Serio, B.; Davin, T.; Bailly, Y.; Hervé, P.

    2015-05-01

    Optical passive methods for temperature measurements such as thermography or optical pyrometry are very interesting because they allow a non-intrusive measurement when the emissivity is known. The knowledge of this coefficient is critical for determining the actual temperature of a surface from the thermal radiation emitted in a wavelength band. The bichromatic pulsed pyrometer allows to overcome the knowledge of this parameter provided that precautions are taken in the choice of the values of wavelengths. When the object to be measured is placed in harsh environments, such passive optical methods are greatly disturbed by the presence of an optically absorbing medium. They are also distorted when the measured objects are located in very hot environments emitting intense disturbing radiation. In this study, we present an active bichromatic radiometric method for measuring the temperature of a surface in harsh environments. The method is based on a localized excitation by a modulated laser source in the infrared range. Detecting the temperature modulation, which is correlated with the excitation, is performed using a lock-in amplifier able to extract the signal embedded in a noise up to a million times superior. Working at short wavelengths (visible range and near infrared range) offers a large dynamic range and minimizes the error due to variations in emissivity with the wavelength. This system collects the radiation emitted by the object at a distance from a few meters up to dozens of meters depending on the configuration of the optical system. Both the principle and the design of the active bichromatic optical surface thermometer are presented and discussed. To demonstrate the method, results obtained on a molten ceramic stream are presented.

  4. Calibration of an intensity ratio system for 3D imaging

    NASA Astrophysics Data System (ADS)

    Tsui, H. T.; Tang, K. C.

    1989-03-01

    An intensity ratio method for 3D imaging is proposed with error analysis given for assessment and future improvements. The method is cheap and reasonably fast as it requires no mechanical scanning or laborious correspondence computation. One drawback of the intensity ratio methods which hamper their widespread use is the undesirable change of image intensity. This is usually caused by the difference in reflection from different parts of an object surface and the automatic iris or gain control of the camera. In our method, gray-level patterns used include an uniform pattern, a staircase pattern and a sawtooth pattern to make the system more robust against errors in intensity ratio. 3D information of the surface points of an object can be derived from the intensity ratios of the images by triangulation. A reference back plane is put behind the object to monitor the change in image intensity. Errors due to camera calibration, projector calibration, variations in intensity, imperfection of the slides etc. are analyzed. Early experiments of the system using a newvicon CCTV camera with back plane intensity correction gives a mean-square range error of about 0.5 percent. Extensive analysis of various errors is expected to yield methods for improving the accuracy.

  5. Air-fuel ratio control system for an automotive engine

    SciTech Connect

    Ohishi, H.

    1988-04-19

    An air-fuel ratio control system for an automotive engine is described comprising: a first lookup table storing basic fuel injection pulse widths from which one of pulse widths is derived in accordance with engine operating conditions; a second lookup table storing maximum correcting quantities for correcting a derived basic fuel injection pulse width in order to correct deviation of air-fuel ratio due to change of a characteristic of a device used in the engine; first means for producing a necessary correcting quantity by multiplying a learning coefficient and a maximum correcting quantity derived from the second lookup table; second means for producing a desired fuel injection pulse width in accordance with the necessary correcting quantity and the derived basic fuel injection pulse width.

  6. Pyrometer mount for a closed-circuit thermal medium cooled gas turbine

    DOEpatents

    Jones, Raymond Joseph; Kirkpatrick, Francis Lawrence; Burns, James Lee; Fulton, John Robert

    2002-01-01

    A steam-cooled second-stage nozzle segment has an outer band and an outer cover defining a plenum therebetween for receiving cooling steam for flow through the nozzles to the inner band and cover therefor and return flow through the nozzles. To measure the temperature of the buckets of the stage forwardly of the nozzle stage, a pyrometer boss is electron beam-welded in an opening through the outer band and TIG-welded to the outer cover plate. By machining a hole through the boss and seating a linearly extending tube in the boss, a line of sight between a pyrometer mounted on the turbine frame and the buckets is provided whereby the temperature of the buckets can be ascertained. The welding of the boss to the outer band and outer cover enables steam flow through the plenum without leakage, while providing a line of sight through the outer cover and outer band to measure bucket temperature.

  7. 75 FR 42330 - Elemental Mercury Used in Flow Meters, Natural Gas Manometers, and Pyrometers; Significant New...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-21

    ...EPA is promulgating a significant new use rule (SNUR) under section 5(a)(2) of the Toxic Substances Control Act (TSCA) for elemental mercury (CAS No. 7439-97-6) for use in flow meters, natural gas manometers, and pyrometers, except for use in these articles when they are in service as of September 11, 2009. This action will require persons who intend to manufacture (including import) or......

  8. Characterizing the Period Ratio Distribution of Kepler Exoplanetary Systems

    NASA Astrophysics Data System (ADS)

    Conaway, James L.; Ragozzine, Darin

    2016-01-01

    Many of the exoplanetary systems discovered by the Kepler space telescope demonstrate unusual properties which need to be explored in order to better understand planetary system formation and evolution. Among these interesting properties is an excess in the number of planets orbiting in resonance or near-resonance with their neighbors. The prevailing assumption in the planetary sciences community is that these are real features of the exoplanet population, but many theories developed on this assumption produce a resonance structure quite different from what we see. In our work we explore the possibility that the actual resonances may not be as we observe them, and may instead be explained by a combination of real resonance features and/or observational bias resulting from geometric effects. In particular, if the near-resonant systems have a different inclination distribution than other systems, then it is possible for them to be over or under-represented.We analyze the existing Kepler data and generate models which approximately represent the empirical period ratio distribution. The 2:1 and 3:2 just-wide-of-resonance excesses are included in the model, along with the deficit of period ratios just short of the 2:1 resonance. We test the Kepler data set against these models using the Python emcee package in order to determine the best-fit parameters for each model. We then address the inclination distribution question by generating two-planet systems with different inclination distributions for the near-resonant systems. We use the CORBITS package (https://github.com/jbrakensiek/CORBITS, Brakensiek & Ragozzine, submitted) to determine the probability of detecting both planets in transit. These tests adjust the relative sizes of the resonance excesses as well as orbital parameters (primarily inclination and nodal alignments) in order to determine which combinations of parameters would create in an observational bias resulting in the resonance excesses seen in the

  9. Evaluation and improvement in the accuracy of a charge-coupled-device-based pyrometer for temperature field measurements of continuous casting billets

    NASA Astrophysics Data System (ADS)

    Bai, Haicheng; Xie, Zhi; Zhang, Yuzhong; Hu, Zhenwei

    2013-06-01

    This paper presents a radiometric high-temperature field measurement model based on a charge-coupled-device (CCD). According to the model, an intelligent CCD pyrometer with a digital signal processor as the core is developed and its non-uniformity correction algorithm for reducing the differences in accuracy between individual pixel sensors is established. By means of self-adaptive adjustment for the light-integration time, the dynamic range of the CCD is extended and its accuracy in low-temperature range is improved. The non-uniformity correction algorithm effectively reduces the accuracy differences between different pixel sensors. The performance of the system is evaluated through a blackbody furnace and an integrating sphere, the results of which show that the dynamic range of 400 K is obtained and the accuracy in low temperature range is increased by 7 times compared with the traditional method based on the fixed light-integration time. In addition, the differences of accuracy between the on-axis pixel and the most peripheral pixels are decreased from 19.1 K to 2.8 K. Therefore, this CCD pyrometer ensures that the measuring results of all pixels tend to be equal-accuracy distribution across the entire measuring ranges. This pyrometric system has been successfully applied to the temperature field measurements in continuous casting billets.

  10. Temperature measurement involving nanostructured thermal barrier coating using a multiwavelength pyrometer

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1996-01-01

    It has been reported that erroneous results were obtained when a conventional pyrometer was used to measure the surface temperature of turbine engine components. Temperatures discrepancies were observed in components which were identical, except that one had its measured surface covered by a nanostructured thermal barrier coating (TBC) whereas the other component's surface was not so coated. These components were placed in an identical environment, receiving identical heat fluxes. A pyrometer measured the TBC covered surface hundreds degrees lower. These coatings were about 25 (mu)m thick, consisting of hundreds of layers of finer structures. The TBC's had very low thermal conductivity, heat flux calculations indicated that the temperatures of the coated surface should exhibit much higher temperature than the uncoated surface. Because these coatings were transparent to radiation from the visible to the infrared region, the temperatures measured by the pyrometer should be the temperature of the covered surface. Turbo components' performance and service life depend critically on the temperatures that it would experience; it is therefore important to know accurately and confidently the real surface temperature. Out of these concerns, an investigation into the measurement of nanostructured material surface temperature was carried out.

  11. Two-Step Calibration of a Multiwavelength Pyrometer for High Temperature Measurement Using a Quartz Lamp

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    2001-01-01

    There is no theoretical upper temperature limit for pyrometer application in temperature measurements. NASA Glenn's multiwavelength pyrometer can make measurements over wide temperature ranges. However, the radiation spectral response of the pyrometer's detector must be calibrated before any temperature measurement is attempted, and it is recommended that calibration be done at temperatures close to those for which measurements will be made. Calibration is a determination of the constants of proportionality at all wavelengths between the detector's output (voltage) and its input signals (usually from a blackbody radiation source) in order to convert detector output into radiation intensity. To measure high temperatures, the detectors are chosen to be sensitive in the spectral range from 0.4 to 2.5 micrometers. A blackbody furnace equilibrated at around 1000 C is often used for this calibration. Though the detector may respond sensitively to short wavelengths radiation, a blackbody furnace at 1000 C emits only feebly at very short wavelengths. As a consequence, the calibration constants that result may not be the most accurate. For pyrometry calibration, a radiation source emitting strongly at the short wavelengths is preferred. We have chosen a quartz halogen lamp for this purpose.

  12. Streaked optical pyrometer for measuring surface temperature of ion heated plasma

    NASA Astrophysics Data System (ADS)

    Roycroft, R.; Dyer, G. M.; Wagner, C.; Bernstein, A.; Ditmire, T.; Hegelich, B. M.; Albright, B. J.; Fernandez, J. C.; Bang, W.; Bradley, P. A.; Gautier, D. C.; Hamilton, C. E.; Palaniyappan, S.; Santiago Cordoba, M. A.; Vold, E. L.; Yin, L.

    2015-11-01

    The evolution of the interface between a light and heavy material isochorically heated to warm dense matter conditions is important to the understanding of electrostatic effects on the usual hydrodynamic understanding of fluid mixing. In recent experiments at the Trident laser facility in Los Alamos National Laboratory, the target, containing a high Z and a low Z material, is heated to several eV by laser accelerated aluminum ions. We fielded a streaked optical pyrometer to measure surface temperature. The pyrometer images the back surface of a heated target on a sub-nanosecond timescale with 400nm light from the plasma. This poster presents the details of the experimental setup and pyrometer design, as well as initial results of ion heating of aluminum targets. The interface between heated diamond and gold is also observed. Work supported by NNSA cooperative agreement DE-NA0002008 and the Los Alamos National Laboratory Directed Research and Development Program under the auspices of the U.S. DOE NNSAS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

  13. The low mass ratio contact binary system V728 Herculis

    NASA Astrophysics Data System (ADS)

    Erkan, N.; Ulaş, B.

    2016-07-01

    We present the orbital period study and the photometric analysis of the contact binary system V728 Her. Our orbital period analysis shows that the period of the system increases (dP / dt = 1.92 ×10-7 dyr-1) and the mass transfer rate from the less massive component to more massive one is 2.51 ×10-8 M⊙y-1 . In addition, an advanced sinusoidal variation in period can be attributed to the light-time effect by a tertiary component or the Applegate mechanism triggered by the secondary component. The simultaneous multicolor BVR light and radial velocity curves solution indicates that the physical parameters of the system are M1 = 1.8M⊙ , M2 = 0.28M⊙ , R1 = 1.87R⊙ , R2 = 0.82R⊙ , L1 = 5.9L⊙ , and L2 = 1.2L⊙ . We discuss the evolutionary status and conclude that V728 Her is a deep (f = 81%), low mass ratio (q = 0.16) contact binary system.

  14. Failsafe device for air/fuel ratio feedback control system

    SciTech Connect

    Otsuka, K.; Hasegawa, S.; Narasaka, S.

    1983-11-15

    A fail safe device is disclosed, comprising means for detecting a failure in an air/fuel ratio feedback control system and generating a fault signal when such failure is detected, and means responsive to the fault signal to drive an actuator for driving an air/fuel ratio control valve and also responsive to a reference position signal supplied thereto during the above driving, which is generated when the actuator passes its reference position, to stop the actuator at the reference position. The actuator driving/stopping means may comprise means for repeatedly driving the actuator over a predetermined operating range inclusive of the reference position a plurality of times when it is not supplied with the reference position signal upon the actuator passing the reference position, and means for driving the actuator from its extreme operating position to a predetermined position and holding the same there when it is not supplied with the reference position signal even after a predetermined number of times of the above repeated driving of the actuator.

  15. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly proposed for embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side ('bevel') did produce up to 3dB more noise in all directions, while extending the lip on the narrow side ('slant') produced up to 2dB more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron ('notch') produced up to 2dB increase in the noise. Having internal walls ('septae') within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  16. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly found in embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side (bevel) did produce up to 3 decibels more noise in all directions, while extending the lip on the narrow side (slant) produced up to 2 decibels more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron (notch) produced up to 2decibels increase in the noise. Having internal walls (septae) within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed electric propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  17. Radiation pyrometer for gas turbine blades. [in LOX turbopump engine

    NASA Technical Reports Server (NTRS)

    Rohy, D. A.; Compton, W. A.

    1973-01-01

    A turbine blade temperature measuring system for liquid oxygen turbopumps is reported. The system includes a three mode, two-input optical signal processor, interconnecting cable, and four sensor heads. Two of the heads are aperture type, while the other two are lens type. This system is applicable to a temperature range of 1400 to 2200 F.

  18. Design and fabrication of an infrared optical pyrometer ASIC as a diagnostic for shock physics experiments

    NASA Astrophysics Data System (ADS)

    Gordon, Jared

    Optical pyrometry is the sensing of thermal radiation emitted from an object using a photoconductive device to convert photons into electrons, and is an important diagnostic tool in shock physics experiments. Data obtained from an optical pyrometer can be used to generate a blackbody curve of the material prior to and after being shocked by a high speed projectile. The sensing element consists of an InGaAs photodiode array, biasing circuitry, and multiple transimpedance amplifiers to boost the weak photocurrent from the noisy dark current into a signal that can eventually be digitized. Once the circuit elements have been defined, more often than not commercial-off-the-shelf (COTS) components are inadequate to satisfy every requirement for the diagnostic, and therefore a custom application specific design has to be considered. This thesis outlines the initial challenges with integrating the photodiode array block with multiple COTS transimpedance amplifiers onto a single chip, and offers a solution to a comparable optical pyrometer that uses the same type of photodiodes in conjunction with a re-designed transimpedance amplifier integrated onto a single chip. The final design includes a thorough analysis of the transimpedance amplifier along with modeling the circuit behavior which entails schematics, simulations, and layout. An alternative circuit is also investigated that incorporates an approach to multiplex the signals from each photodiode onto one data line and not only increases the viable real estate on the chip, but also improves the behavior of the photodiodes as they are subjected to less thermal load. The optical pyrometer application specific integrated circuit (ASIC) for shock physic experiments includes a transimpedance amplifier (TIA) with a 100 kΩ gain operating at bandwidth of 30 MHz, and an input-referred noise RMS current of 50 nA that is capable of driving a 50 Ω load.

  19. Remote Heat Flux Using a Self Calibration Multiwavelength Pyrometer and a Transparent Material

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1998-01-01

    A self calibrating multiwavelength pyrometer was used to conduct remote heat flux measurements using a transparent sapphire disk by determining the sapphire disk's front and back surface temperatures. Front surface temperature (Tfs) was obtained from detection of surface emitted radiation at long wavelengths (k = 6 gm). Back surface temperature (Tbs) was obtained from short wavelength (1 to 5 gm) radiation transmitted through the sapphire disk. The thermal conductivity of the sapphire disk and the heat transfer coefficients h, and h2 of its surfaces are determined experimentally. An analysis of the heat flux measurement is presented.

  20. Remote Heat Flux Measurement Using a Self Calibration Multiwavelength Pyrometer and a Transparent Material

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1998-01-01

    A self calibrating multiwavelength pyrometer was used to conduct remote heat flux measurements using a transparent sapphire disk by determining the sapphire disk's front and back surface temperatures. Front surface temperature (Tfs) was obtained from detection of surface emitted radiation at long wavelengths (lambda > 6 micrometers). Back surface temperature (Tbs) was obtained from short wavelength (1 to 5 micrometers) radiation transmitted through the sapphire disk. The thermal conductivity k of the sapphire disk and the heat transfer coefficients h(sub 1) and h(sub 2) of its surfaces are determined experimentally. An analysis of the heat flux measurement is presented.

  1. Inversion of H/V ratio in layered systems

    NASA Astrophysics Data System (ADS)

    Pina Flores, J.; García-Jerez, A.; Luzon, F.; Perton, M.; Sanchez-Sesma, F. J.

    2014-12-01

    Both coda of earthquakes and microtremors are assumed to be diffuse fields resulting from multiple scattering. From the diffuse field theory, the average of the autocorrelation of displacement components at a given receiver measures the directional energy densities that are proportional to the imaginary parts of the Green's function for source and receiver at the same point. The directional energies have been recently related to the calculation of microtremor H/V spectral ratio (MHVSR). These ratios are widely used in the assessment of the dominant frequency of soil sites and their measurements are relatively simple as only one station is required. The H/V spectral ratios have also been interpreted as representing either directly the S wave amplification or the Rayleigh wave ellipticity. Moreover, the H/V ratios can be also used for a finer characterization of the site assuming horizontally layered media without lateral heterogeneities. In that case and for an appropriate noise normalization the experimental spectral ratios H2/V2 should correspond to their theoretical counterpart: the ratio 2 ImG11 / ImG33, where ImG11 and ImG33 are the imaginary parts of Green functions at the load point for horizontal and vertical components, respectively and for horizontally layered media. In order to guarantee a viable inversion, the imaginary part of the theoretical Green's functions must be efficiently computed using both an integral in the complex k plane (in terms of homogeneous plane waves) and the pole contributions due to Rayleigh and Love normal modes, which result from the (application of the) Cauchy residue theorem. ACKNOWLEDGEMENTS. This research has been partially supported by DGAPA-UNAM under Project IN104712 and the AXA Research Fund.

  2. Calibration of fiber-optic shock pyrometer using high-power coiled tungsten lamp

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Asimow, P. D.

    2015-06-01

    Comparison of all known calibration sources indicates that coiled standards of spectral irradiance, despite their very non-uniform brightness, are currently the best practical choice for accurate shock temperature measurements above 3000 K by optical pyrometry. We review all three documented methods of shock pyrometer calibration to a coiled lamp and show that only one technique, with no fiber-optics employed, is free of major radiometric errors. We report the development of a new, accurate to 5% and precise to 1-1.5% calibration procedure for the modified Caltech 6-channel, 3-ns temporal resolution combined open beam and fiber-coupled instrument. A designated central area of an 0.7x demagnified image of 900 W coiled-coil lamp filament is used, cross-calibrated against a NIST-traceable tungsten ribbon lamp. The results of two slightly different cross-calibrations are reported and the procedure to characterize the difference between the static and dynamic response of NewFocus 1801 amplified photodetectors. The most essential requirements for error-free calibration of a fiber-optic pyrometer using a coiled irradiance standard lamp are discussed. All these conditions are validated in actual radiometric tests and shock temperature experiments on single-crystal NaCl and MgO.

  3. Design and Construction of a New Primary Standard Pyrometer at NPL

    NASA Astrophysics Data System (ADS)

    Lowe, D.; McEvoy, H. C.; Machin, G.

    2003-09-01

    For many years the temperature scale at NPL has been realized and maintained using the NPL primary pyrometer. This instrument has reached the end of its useful life, and a replacement instrument has been built and is currently being validated. This new instrument will give reduced uncertainties in disseminating the temperature scale. The new pyrometer uses lens optics, designed to be achromatic at the two operating wavelengths of 650 nm and 900 nm. The wavelengths are defined by interference filters. The target size of 0.75 mm has been chosen to allow for calibration of tungsten ribbon lamps. The filters, stops, detector and amplifier are all temperature stabilised. The following tests have been carried out: linearity of the detector and amplifier, the temperature coefficient of the instrument, size-of-source effect measurement, determination of the effective wavelength of each interference filter and the short-term stability. This paper gives a detailed description of the instrument design and the results of the validation tests carried out so far.

  4. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...

  5. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...

  6. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...

  7. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...

  8. 21 CFR 862.1455 - Lecithin/sphingomyelin ratio in amniotic fluid test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Lecithin/sphingomyelin ratio in amniotic fluid... Clinical Chemistry Test Systems § 862.1455 Lecithin/sphingomyelin ratio in amniotic fluid test system. (a) Identification. A lecithin/sphingomyelin ratio in amniotic fluid test system is a device intended to measure...

  9. Pitch attitude stabilization system utilizing engine pressure ratio feedback signals

    NASA Technical Reports Server (NTRS)

    Kelley, W. W. (Inventor)

    1981-01-01

    The changes in the engine pressure ratio signals which result from thrust changes are used to generate a pitch stabilization signal. The signal is combined with other pitch control signals to automatically counteract pitching moments resulting from the changes in engine thrust.

  10. Surface heat flux data from energy balance Bowen ratio systems

    SciTech Connect

    Wesely, M.L.; Cook, D.R.; Coulter, R.L.

    1995-06-01

    The 350 {times} 400 km domain of the Atmospheric Radiation Measurement (ARM) Program`s Clouds and Radiation Testbed (CART) site in the southern Great Plains is equipped with 10 energy balance Bowen ratio (EBBR) stations at grassland sites; they measure the net radiation, ground heat flux, and temperature/humidity differences between 1.0 and 2.0 m heights. The latter differences provide estimates of the geometric Bowen ratio ({beta}), which are used to estimate sensible and latent heat fluxes. This paper addresses the problem that occurs when the value of {beta} is near {minus}1 and to demonstrate the effectiveness of the EBBR stations in collecting energy flux data at the CART site.

  11. Control system and method for a power delivery system having a continuously variable ratio transmission

    DOEpatents

    Frank, A.A.

    1984-07-10

    A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine. 4 figs.

  12. Control system and method for a power delivery system having a continuously variable ratio transmission

    DOEpatents

    Frank, Andrew A.

    1984-01-01

    A control system and method for a power delivery system, such as in an automotive vehicle, having an engine coupled to a continuously variable ratio transmission (CVT). Totally independent control of engine and transmission enable the engine to precisely follow a desired operating characteristic, such as the ideal operating line for minimum fuel consumption. CVT ratio is controlled as a function of commanded power or torque and measured load, while engine fuel requirements (e.g., throttle position) are strictly a function of measured engine speed. Fuel requirements are therefore precisely adjusted in accordance with the ideal characteristic for any load placed on the engine.

  13. An identification method for damping ratio in rotor systems

    NASA Astrophysics Data System (ADS)

    Wang, Weimin; Li, Qihang; Gao, Jinji; Yao, Jianfei; Allaire, Paul

    2016-02-01

    Centrifugal compressor testing with magnetic bearing excitations is the last step to assure the compressor rotordynamic stability in the designed operating conditions. To meet the challenges of stability evaluation, a new method combining the rational polynomials method (RPM) with the weighted instrumental variables (WIV) estimator to fit the directional frequency response function (dFRF) is presented. Numerical simulation results show that the method suggested in this paper can identify the damping ratio of the first forward and backward modes with high accuracy, even in a severe noise environment. Experimental tests were conducted to study the effect of different bearing configurations on the stability of rotor. Furthermore, two example centrifugal compressors (a nine-stage straight-through and a six-stage back-to-back) were employed to verify the feasibility of identification method in industrial configurations as well.

  14. A high-speed, four-wavelength infrared pyrometer for low temperature shock physics experiments

    SciTech Connect

    Seifter, A.; Boboridis, K.; Payton, J. R.; Obst, A. W.

    2004-01-01

    In addition to the standard problems associated with contactless temperature measurements, pyrometry in shock physics experiments has many additional concerns. These include background temperatures which are often higher than the substrate temperature, non-uniform sample temperature due to hotspots and ejecta, fast sample motion up to several km s{sup -1}, fast-changing sample emissivity at shock breakout, and very short measurement times. We have designed a four channel, high speed near-infrared (NIR) pyrometer for measurements in the 400 to 1000K blackbody temperature regime. The front end optics are specific to each experiment, utilizing preferably reflective optics in order to mitigate spectral dispersion. Next-generation instruments under development are also discussed.

  15. [Development of multi-target multi-spectral high-speed pyrometer].

    PubMed

    Xiao, Peng; Dai, Jing-Min; Wang, Qing-Wei

    2008-11-01

    The plume temperature of a solid propellant rocket engine (SPRE) is a fundamental parameter in denoting combustion status. It is necessary to measure the temperature along both the axis and the radius of the engine. In order to measure the plume temperature distribution of a solid propellant rocket engine, the multi-spectral thermometry has been approved. Previously the pyrometer was developed in the Harbin Institute of Technology of China in 1999, which completed the measurement of SPRE plume temperature and its distribution with multi-spectral technique in aerospace model development for the first time. Following this experience, a new type of multi-target multi-spectral high-speed pyrometer used in the ground experiments of SPRE plume temperature measurement was developed. The main features of the instrument include the use of a dispersing prism and a photo-diode array to cover the entire spectral band of 0.4 to 1.1 microm. The optic fibers are used in order to collect and transmit the thermal radiation fluxes. The instrument can measure simultaneously the temperature and emissivity of eight spectra for six uniformly distributed points on the target surface, which are well defined by the hole on the field stop lens. A specially designed S/H (Sample/Hold) circuit, with 48 sample and hold units that were triggered with a signal, measures the multi-spectral and multi-target outputs. It can sample 48 signals with a less than 10ns time difference which is most important for the temperature calculation. PMID:19271529

  16. Design of high ratio middle infrared continuous zoom optical system

    NASA Astrophysics Data System (ADS)

    Fan, Zheyuan; Cao, Jianzhong; Yang, Hongtao; Qu, Enshi; Wu, Dengshan

    2011-08-01

    In recent years, the demand for infrared zoom systems is increasing in proportion with the development of infrared technology and its applications. To meet this demand a variety of zoom lenses have been designed. Infrared cameras operating in the 3-5μm spectral band are used in a wide variety of applications such as targeting, rescue, guidance and surveillance systems as well as other equipment. This paper using cool 320×240 detector with staring focal plane array and secondary imaging, a mid-wave optical system using mechanical-compensated with large-aperture and a zoom range of 10:1 is designed. The Pixel Dimensions of the detector is 30μm, and the wavelength between 3.7μm ~4.8μm.The system adopts negative group variable times and positive group of compensation which can realize 33mm~330mm continuous zoom and FOV =20.61°~2.08° ,it consists of 7 lenses including 3 aspheric surface. The length of the system is 262mm with the reflection mirror multipass optical path. The results show that the modulation transfer function(MTF)are above 0.4 within the whole focal range at spatial frequency of 17 lp/mm, and Root Mean Square (RMS) value of spot diameter were smaller than the Pixel Dimensions. After the image quality being optimized, the narcissus analysis is done and 100% cold shield efficiency is obtained. Finallythe monotonic and smooth Cam curve is given. The curve shows that the imaging plane is stable and the cam is easy to process. The system has advantages of simple structure, high image quality and short zoom path etc.

  17. Mechanically compensated type for midwave infrared zoom system with a large zoom ratio

    NASA Astrophysics Data System (ADS)

    Hao, Zhou; Ying, Liu; Qiang, Sun; Chun, Li; Xiaolong, Zhang; Jianbo, Huang

    2013-01-01

    In some circumstances, there is a need for a midwave infrared (MWIR) zoom system with a large zoom ratio. Using traditional four-component mechanically compensated types of MWIR zoom systems cannot achieve a large zoom ratio. To meet this demand, we describe a six-component mechanically compensated type. The thin-lens theory of this type is developed and equations are presented. Using the six-component mechanically compensated type, a MWIR continuous zoom system with a zoom ratio of 45 is designed, and it has high image quality over the entire zoom range.

  18. Mating system and sex ratios of a pollinating fig wasp with dispersing males.

    PubMed Central

    Greeff, Jaco M

    2002-01-01

    Recent studies have used sex ratios to quantify the mating systems of organisms, the argument behind it being that more female-biased sex ratios are an indication of higher local mate competition, which goes hand-in-hand with higher levels of inbreeding. Although qualitative tests of the effects of mating systems on sex ratios abound, there is a dearth of studies that quantify both the mating system and the sex ratio. I use a colour dimorphism with a simple Mendelian inheritance to quantify the mating system of an unusual fig-pollinating wasp in which males disperse to obtain matings on non-natal mating patches. In qualitative agreement with initial expectations, the sex ratios of single foundresses are found to be higher than those of regular species. However, by quantifying the mating system, it is shown that the initial expectation is incorrect and this species' sex ratio is a poor predictor of its mating system (it underestimates the frequency of sib-mating). The species has a very high variance in sex ratio suggesting that excess males can simply avoid local mate competition (and hence a lowered fitness to their mother) by dispersing to other patches. PMID:12495498

  19. Influence of Ventilation Ratio on Desiccant Air Conditioning System's Efficiency Performance

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Akisawa, Atsushi; Kashiwagi, Takao; Hamamoto, Yoshinori

    Ventilation air is a concern for engineers since ventilated air controls indoor air contamination; additional ventilation, however, increases the energy consumption of buildings. The study investigates the energy efficiency performance of the desiccant dehumidification air conditioning system in the context of ventilation for a hot-humid climate such as summer in Japan. The investigation focuses on the variable ratio of ventilation air as required by the application of air conditioning system. The COP of the desiccant air conditioning system is determined. The evaluation is subsequently performed by comparing the desiccant based system with the conventional absorption cooling system and the vapor compression cooling system. Based on 12 desiccant rotor simulations, it is found that the desiccant regeneration temperature required varies between 47°C to 85°C as ventilation ratio increases from 0. 0 to 100%, and up to 52. 5°C as the ventilation ratio achieves 14%. The heat required for regenerating desiccant accounts for 55% and higher of the system's total heat consumption; the system is expected to be energy efficient by using wasted heat from the absorption chiller for desiccant regeneration; and its energy efficiency expands as the ratio of ventilation air rises above 15% compared with the conventional absorption cooling system. The energy efficiency also benefits as the ratio rises beyond 70% against the conventional vapor compression cooling system.

  20. Temporal trends in nitrogen isotope ratios of winter flounder collected from Rhode Island coastal systems

    EPA Science Inventory

    Nitrogen isotope ratios (15N) were measured in muscle tissue of juvenile winter flounder, Pseudopleuronectes americanus, collected from several estuarine systems along the coast of Rhode Island, USA, including Narragansett Bay, Narrow River and three coastal lagoons. Fish collect...

  1. Distribution over pore radii in random and isotropic systems of polydisperse rods with finite aspect ratios

    NASA Astrophysics Data System (ADS)

    Chatterjee, Avik P.

    2016-06-01

    Excluded-volume arguments are applied toward modeling the pore-size distribution in systems of randomly arranged cylindrical rods with finite and nonuniform aspect ratios. An explicit expression for the pore-size distribution is obtained by way of an analogy to a hypothetical system of fully penetrable objects, through a mapping that is designed to preserve the volume fraction occupied by the particle cores and the specific surface area. Results are presented for the mean value and standard deviation of the pore radius as functions of the rod aspect ratio, volume fraction, and polydispersity (degree of nonuniformity in the aspect ratios of the particles).

  2. Performance of the Bowen ratio systems on a 22 deg slope

    NASA Technical Reports Server (NTRS)

    Nie, D.; Flitcroft, I.; Kanemasu, E. T.

    1990-01-01

    The Bowen ratio energy balance technique was used to assess the energy fluxes on inclined surfaces during the First ISLSCP Field Experiment (FIFE). Since air flow over sloping surface may differ from that over flat terrain, it is important to examine whether Bowen ratio measurements taken on sloping surfaces are valid. In this study, the suitability of using the Bowen ratio technique on sloping surfaces was tested by examining the assumptions that the technique requires for valid measurements. This was accomplished by studying the variation of Bowen ratio measurements along a selected slope at the FIFE site. In September 1988, four Bowen ratio systems were set up in a line along the 22 degree north-facing slope with northerly air flow (wind went up the slope). In July of 1989, six Bowen ratio systems were similarly installed with southerly air flow (the wind went down slope). Results indicated that, at distances between 10 to 40 meters from the top of the slope, no temperature or vapor pressure gradient parallel to the slope was detected. Uniform Bowen ratio values were obtained on the slope, and thus the sensible or latent heat flux should be similar along the slope. This indicates that the assumptions for valid flux measurements are reasonably met at the slope. The Bowen ratio technique should give the best estimates of the energy fluxes on slopes similar to that in this study.

  3. Quantum statistical thermodynamics of hot finite nuclear systems: Temperatures and isotopic yield ratios

    SciTech Connect

    Majka, Z.; Staszel, P.; Cibor, J.; Natowitz, J.B.; Hagel, K.; Li, J.; Mdeiwayeh, N.; Wada, R.; Zhao, Y.

    1997-06-01

    We investigate the importance of the quantum statistics and deexcitation of primary fragments on the isotope yield ratio temperature determination. A phenomenological formula is presented which allows derivation of the temperature of the decaying nuclear system at the freeze-out time from the measured double yield ratios of two isotope pairs. This prescription is applied to the recent ALADIN and EOS Collaboration data. {copyright} {ital 1997} {ital The American Physical Society}

  4. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp.

    PubMed

    Fat'yanov, O V; Asimow, P D

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30,000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  5. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    SciTech Connect

    Fat’yanov, O. V. Asimow, P. D.

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  6. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    NASA Astrophysics Data System (ADS)

    Fat'yanov, O. V.; Asimow, P. D.

    2015-10-01

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documented methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten halogen

  7. The Determination of Heat Capacity Ratios in a Simple Open System

    ERIC Educational Resources Information Center

    Holden, Glen L.

    2007-01-01

    A virtually closed system is treated as open and compared to known results. The classic experiment of Clement and Desormes provides the conceptual framework for this open system approach in determining the molar heat capacity ratios, lambda. This alternate view, extends the theoretical treatment beyond the first law of thermodynamics for closed…

  8. A system for estimating bowen ratio And evaporation from waste lagoons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A low cost system was deployed above a swine waste lagoon to obtain estimates of Bowen ratios and characterize lagoon temperatures. The system consisted of humidity and temperature sensors and anemometers deployed above the lagoon, water temperature sensors, and a meteorological station located by t...

  9. The ratio initial mass/payload mass - How good are launch systems?

    NASA Astrophysics Data System (ADS)

    Hornik, Alexander

    1992-04-01

    The growth factor G, defined as the ratio of initial mass/payload mass, is used here to evaluate various rocket launch systems. The qualities of the propulsion, structure, environmental loading, and costs of the Saturn 5, Space Shuttle, Titan III, Saenger Horus C and M, and various Ariane rockets are assessed. The results are used to evaluate the reusability of these propulsion systems.

  10. Carbon and nitrogen isotope ratios of juvenile winter flounder as indicators of inputs to estuarine systems

    EPA Science Inventory

    Stable carbon and nitrogen isotope ratios were measured in the muscle tissues of young-of-the-year (YOY) winter flounder, Pseudopleuronectes americanus, collected from several estuarine systems along the coast of Rhode Island, USA. These systems included three coastal lagoons (Ni...

  11. Temperature Measurement of a Miniature Ceramic Heater in the Presence of an Extended Interfering Background Radiation Source Using a Multiwavelength Pyrometer

    NASA Technical Reports Server (NTRS)

    Ng, Daniel

    1999-01-01

    Temperature measurement of small (millimeter size) objects is generally difficult and demanding. Measurement involving ceramic materials using the traditional one- and two-color pyrometer is difficult because of their complex optical properties, such as low emissivity which may vary with both temperature and wavelength. Pyrometry applications in an environment with an interfering radiation source of extended dimension adds extra complexity to the process. We show that the multiwavelength pyrometer successfully measured the temperatures of a millimeter (mm) size ceramic heater under these demanding conditions.

  12. Development of a System to Measure Recrystallization Ratio of Plate Steel Using Laser-Based Ultrasonics

    SciTech Connect

    Nagata, Y.; Yamada, H.; Hamada, N.; Lim, C. S.; Yi, J. K.; Hong, S. T.; Choi, S. G.; Oh, K. J.

    2007-03-21

    In this study, a material property measurement system of plate steel using laser-based ultrasonics has been developed. The system consists of pulsed Nd:YAG laser for ultrasonic generation, CW single frequency laser and Fabry-Perot interferometer for ultrasonic detection. The system generates and detects shear waves and precisely calculates anisotropy parameter values of shear wave velocities of test samples. At first, the relationship between anisotropy parameter and recrystallization ratio was investigated in the laboratory experiments. Quenching the test samples just after the ultrasonic measurement, recrystallization ratio values were measured by the conventional microscopic method. According to the experimental results, the anisotropy parameter values showed a good correlation with actual recrystallization ratio values. To evaluate the applicability of the system to real steel production line, the system was installed in hot rolling pilot plant of plate steel. As the results, it was demonstrated that the system could measure the recrystallization ratio using the anisotropy parameter values of shear wave velocities, even in the environment of hot rolling pilot plant.

  13. Immune system-tumour efficiency ratio as a new oncological index for radiotherapy treatment optimization.

    PubMed

    Sotolongo-Grau, O; Rodríguez-Pérez, D; Santos-Miranda, J A; Sotolongo-Costa, O; Antoranz, J C

    2009-12-01

    A dynamical system model for tumour-immune system interaction together with a method to mimic radiation therapy are proposed. A large population of virtual patients is simulated following an ideal radiation treatment. A characteristic parameter, the immune system-tumor efficiency ratio (ISTER) is introduced. ISTER dependence of treatment success and other features are studied. Radiotherapy treatment dose optimization, following ALARA (As Low As Reasonably Achievable) criterion, as well as a patient classification are drawn from the statistics results. PMID:19584118

  14. Disturbance rejection performance analyses of closed loop control systems by reference to disturbance ratio.

    PubMed

    Alagoz, Baris Baykant; Deniz, Furkan Nur; Keles, Cemal; Tan, Nusret

    2015-03-01

    This study investigates disturbance rejection capacity of closed loop control systems by means of reference to disturbance ratio (RDR). The RDR analysis calculates the ratio of reference signal energy to disturbance signal energy at the system output and provides a quantitative evaluation of disturbance rejection performance of control systems on the bases of communication channel limitations. Essentially, RDR provides a straightforward analytical method for the comparison and improvement of implicit disturbance rejection capacity of closed loop control systems. Theoretical analyses demonstrate us that RDR of the negative feedback closed loop control systems are determined by energy spectral density of controller transfer function. In this manner, authors derived design criteria for specifications of disturbance rejection performances of PID and fractional order PID (FOPID) controller structures. RDR spectra are calculated for investigation of frequency dependence of disturbance rejection capacity and spectral RDR analyses are carried out for PID and FOPID controllers. For the validation of theoretical results, simulation examples are presented. PMID:25311160

  15. Optimal uniform-damping ratio controller for sequential design of multivariable systems

    NASA Technical Reports Server (NTRS)

    Shieh, Leang G.; Liu, Zhen; Sunkel, John W.

    1991-01-01

    An optimal uniform-damping ratio controller is developed for the sequential design of a multivariable control system so that the designed closed-loop poles of the respective multivariable system and reduced-order observer are exactly placed on the negative real axis and/or the boundaries of desired sectors with constant-damping ratios. The functions in the quadratic performance index to be minimized are chosen as a combination of the weighted outputs, reduced states and inputs. Also, the optimal uniform-damping ratio controller is a combination of optimal output-feedback and optimal reduced-order state-feedback controllers. A numerical example is given to demonstrate the design procedure.

  16. An experimental system for spectral line ratio measurements in the TJ-II stellarator

    SciTech Connect

    Zurro, B.; Baciero, A.; Fontdecaba, J. M.; Jimenez-Rey, D.; Pelaez, R.

    2008-10-15

    The chord-integrated emissions of spectral lines have been monitored in the TJ-II stellarator by using a spectral system with time and space scanning capabilities and relative calibration over the entire UV-visible spectral range. This system has been used to study the line ratio of lines of different ionization stages of carbon (C{sup 5+} 5290 A and C{sup 4+} 2271 A) for plasma diagnostic purposes. The local emissivity of these ions has been reconstructed, for quasistationary profiles, by means of the inversion Fisher method described previously. The experimental line ratio is being empirically studied and in parallel a simple spectroscopic model has been developed to account for that ratio. We are investigating whether the role played by charge exchange processes with neutrals and the existence of non-Maxwellian electrons, intrinsic to Electron Cyclotron Resonance Heating (ECRH) heating, leave any distinguishable mark on this diagnostic method.

  17. DISK-PLANETS INTERACTIONS AND THE DIVERSITY OF PERIOD RATIOS IN KEPLER'S MULTI-PLANETARY SYSTEMS

    SciTech Connect

    Baruteau, Clement; Papaloizou, John C. B. E-mail: J.C.B.Papaloizou@damtp.cam.ac.uk

    2013-11-20

    The Kepler mission is dramatically increasing the number of planets known in multi-planetary systems. Many adjacent planets have orbital period ratios near resonant values, with a tendency to be larger than required for exact first-order mean-motion resonances. This feature has been shown to be a natural outcome of orbital circularization of resonant planetary pairs due to star-planet tidal interactions. However, this feature holds in multi-planetary systems with periods longer than 10 days, in which tidal circularization is unlikely to provide efficient divergent evolution of the planets' orbits to explain these orbital period ratios. Gravitational interactions between planets and their parent protoplanetary disk may instead provide efficient divergent evolution. For a planet pair embedded in a disk, we show that interactions between a planet and the wake of its companion can reverse convergent migration and significantly increase the period ratio from a near-resonant value. Divergent evolution due to wake-planet interactions is particularly efficient when at least one of the planets opens a partial gap around its orbit. This mechanism could help account for the diversity of period ratios in Kepler's multiple systems from super-Earth to sub-Jovian planets with periods greater than about 10 days. Diversity is also expected for pairs of planets massive enough to merge their gap. The efficiency of wake-planet interactions is then much reduced, but convergent migration may stall with a variety of period ratios depending on the density structure in the common gap. This is illustrated for the Kepler-46 system, for which we reproduce the period ratio of Kepler-46b and c.

  18. Bionomic Exploitation of a Ratio-Dependent Predator-Prey System

    ERIC Educational Resources Information Center

    Maiti, Alakes; Patra, Bibek; Samanta, G. P.

    2008-01-01

    The present article deals with the problem of combined harvesting of a Michaelis-Menten-type ratio-dependent predator-prey system. The problem of determining the optimal harvest policy is solved by invoking Pontryagin's Maximum Principle. Dynamic optimization of the harvest policy is studied by taking the combined harvest effort as a dynamic…

  19. Assessment of systemic inflammation with neutrophil-lymphocyte ratio in lichen planus

    PubMed Central

    Cemil, Bengü Çevirgen; Kurmuş, Gökçe Işıl; Gönül, Müzeyyen

    2016-01-01

    Introduction Lichen planus (LP) is a papulosquamous eruption of the skin and mucous membranes. Although the exact pathogenesis of the disease remains unclear, it is believed that LP represents an inflammatory disorder. Neutrophil-lymphocyte (N/L) ratio is considered a systemic inflammatory marker that correlated with severity of the diseases. Aim To investigate whether N/L ratio increases in LP and may be an independent severity marker for LP lesions. Material and methods White blood cell (WBC), neutrophil and lymphocyte counts, N/L ratio, erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were statistically compared between the patient (n = 55) and the control group (n = 48). The relationship of N/L ratio and the body surface area (BSA) was assessed. Results Erythrocyte sedimentation rate and CRP were statistically higher in patients with LP than in controls (p < 0.0001). Our analysis revealed a significantly higher level of N/L ratio in patients with LP compared with controls, respectively (2.5 ±1.1 (1.2–7.3) vs. 1.4 ±0.4 (0.8–2.7), p < 0.0001). Body surface area (p = 0.001), CRP (p = 0.006), and ESR (p = 0.003) were identified as possible predictors of N/L ratio, but only BSA (p = 0.002) and ESR (p = 0.003) were found as significant independent predictors in a multiple linear regression model. Conclusions The inflammatory process in LP was supported by our results. N/L ratio may have an impact to show the inflammatory status in patients with LP as an inexpensive, simple and effective predictor. It may be used for the severity and treatment option of LP. But, N/L ratio and LP relationship could be confirmed by other large prospective studies. PMID:27512353

  20. Optimization of Gear Ratio in the Tidal Current Generation System based on Generated Energy

    NASA Astrophysics Data System (ADS)

    Naoi, Kazuhisa; Shiono, Mitsuhiro; Suzuki, Katsuyuki

    It is possible to predict generating power of the tidal current generation, because of the tidal current's periodicity. Tidal current generation is more advantageous than other renewable energy sources, when the tidal current generation system is connected to the power system and operated. In this paper, we propose a method used to optimize the gear ratio and generator capacity, that is fundamental design items in the tidal current generation system which is composed of Darrieus type water turbine and squirrel-cage induction generator coupled with gear. The proposed method is applied to the tidal current generation system including the most large-sized turbine that we have developed and studied. This paper shows optimum gear ratio and generator capacity that make generated energy maximum, and verify effectiveness of the proposed method. The paper also proposes a method of selecting maximum generating current velocity in order to reduce the generator capacity, from the viewpoint of economics.

  1. Multicanonical Determination of the Symbol Error Ratio of WDM Polarization Multiplexed QPSK Systems

    NASA Astrophysics Data System (ADS)

    Soliman, George; Yevick, David

    2014-12-01

    The multicanonical method is applied to the calculation of the symbol error ratio (SER) as a function of the optical signal to noise ratio (OSNR) at the receiver for a polarization multiplexed quadrature phase shift keying (PM-QPSK) wavelength division multiplexed (WDM) system. We improve upon previous calculations by including polarization mode dispersion (PMD) and subsequently verifying the numerical accuracy of our calculations. Our numerical studies demonstrate that acceptable accuracy can be achieved even when advancing the polarization through the fiber with relatively large propagation step lengths.

  2. Evaluation of denitrification-nitrification biofilter systems in treating wastewater with low carbon: nitrogen ratios.

    PubMed

    Kim, Seungjin; Bae, Wookeun; Kim, Moonil; Kim, Jong-Oh; Chung, Jinwook

    2015-01-01

    A two-stage biological aerated/anoxic filter (BAF) system for denitrification-nitrification was developed to increase nitrogen removal in the treatment of municipal wastewater with low carbon:nitrogen (C/N) ratio [Formula: see text]. This system exhibited a high denitrification efficiency (67%), despite the low C/N ratio, and the ratio of reduced nitrate to consumed organic compounds was greater than the theoretical value due to the minimization of the conversion of organic carbon to biomass growth, the maintenance of low levels of dissolved oxygen in recycled water, and the maximization of use of organic carbon biosorbed inside biomass in the denitrification BAF. The maximum rate of nitrogen removal was achieved at a recycle ratio of 170%, and the headloss in two BAFs was maintained after a 24-h backwash. Biological nitrogen removal in a two-stage BAF system was possible in a short hydraulic retention time (1.2 h) because the maximum reaction rates of nitrifiers and denitrifiers in each column were achieved. PMID:25287910

  3. Influence of tire dynamics on slip ratio estimation of independent driving wheel system

    NASA Astrophysics Data System (ADS)

    Li, Jianqiu; Song, Ziyou; Wei, Yintao; Ouyang, Minggao

    2014-11-01

    The independent driving wheel system, which is composed of in-wheel permanent magnet synchronous motor(I-PMSM) and tire, is more convenient to estimate the slip ratio because the rotary speed of the rotor can be accurately measured. However, the ring speed of the tire ring doesn't equal to the rotor speed considering the tire deformation. For this reason, a deformable tire and a detailed I-PMSM are modeled by using Matlab/Simulink. Moreover, the tire/road contact interface(a slippery road) is accurately described by the non-linear relaxation length-based model and the Magic Formula pragmatic model. Based on the relatively accurate model, the error of slip ratio estimated by the rotor rotary speed is analyzed in both time and frequency domains when a quarter car is started by the I-PMSM with a definite target torque input curve. In addition, the natural frequencies(NFs) of the driving wheel system with variable parameters are illustrated to present the relationship between the slip ratio estimation error and the NF. According to this relationship, a low-pass filter, whose cut-off frequency corresponds to the NF, is proposed to eliminate the error in the estimated slip ratio. The analysis, concerning the effect of the driving wheel parameters and road conditions on slip ratio estimation, shows that the peak estimation error can be reduced up to 75% when the LPF is adopted. The robustness and effectiveness of the LPF are therefore validated. This paper builds up the deformable tire model and the detailed I-PMSM models, and analyzes the effect of the driving wheel parameters and road conditions on slip ratio estimation.

  4. Low molecular weight chitosan nanoparticulate system at low N:P ratio for nontoxic polynucleotide delivery.

    PubMed

    Alameh, Mohamad; Dejesus, Diogo; Jean, Myriam; Darras, Vincent; Thibault, Marc; Lavertu, Marc; Buschmann, Michael D; Merzouki, Abderrazzak

    2012-01-01

    Chitosan, a natural polymer, is a promising system for the therapeutic delivery of both plasmid DNA and synthetic small interfering RNA. Reports attempting to identify the optimal parameters of chitosan for synthetic small interfering RNA delivery were inconclusive with high molecular weight at high amine-to-phosphate (N:P) ratios apparently required for efficient transfection. Here we show, for the first time, that low molecular weight chitosan (LMW-CS) formulations at low N:P ratios are suitable for the in vitro delivery of small interfering RNA. LMW-CS nanoparticles at low N:P ratios were positively charged (ζ-potential ~20 mV) with an average size below 100 nm as demonstrated by dynamic light scattering and environmental scanning electron microscopy, respectively. Nanoparticles were spherical, a shape promoting decreased cytotoxicity and enhanced cellular uptake. Nanoparticle stability was effective for at least 20 hours at N:P ratios above two in a slightly acidic pH of 6.5. At a higher basic pH of 8, these nanoparticles were unravelled due to chitosan neutralization, exposing their polynucleotide cargo. Cellular uptake ranged from 50% to 95% in six different cell lines as measured by cytometry. Increasing chitosan molecular weight improved nanoparticle stability as well as the ability of nanoparticles to protect the oligonucleotide cargo from nucleases at supraphysiological concentrations. The highest knockdown efficiency was obtained with the specific formulation 92-10-5 that combines sufficient nuclease protection with effective intracellular release. This system attained >70% knockdown of the messenger RNA, similar to commercially available lipoplexes, without apparent cytotoxicity. Contrary to previous reports, our data demonstrate that LMW-CS at low N:P ratios are efficient and nontoxic polynucleotide delivery systems capable of transfecting a plethora of cell lines. PMID:22457597

  5. Use of polarization to improve signal to clutter ratio in an outdoor active imaging system

    NASA Astrophysics Data System (ADS)

    Fontoura, Patrick F.; Giles, Michael K.; Padilla, Denise D.

    2005-08-01

    This paper describes the methodology and presents the results of the design of a polarization-sensitive system used to increase the signal-to-clutter ratio in a robust outdoor structured lighting sensor that uses standard CCD camera technology. This lighting sensor is intended to be used on an autonomous vehicle, looking down to the ground and horizontal to obstacles in an 8 foot range. The kinds of surfaces to be imaged are natural and man-made, such as asphalt, concrete, dirt and grass. The main problem for an outdoor eye-safe laser imaging system is that the reflected energy from background clutter tends to be brighter than the reflected laser energy. A narrow-band optical filter does not reduce significantly the background clutter in bright sunlight, and problems also occur when the surface is highly absorptive, like asphalt. Therefore, most of applications are limited to indoor and controlled outdoor conditions. A series of measurements was made for each of the materials studied in order to find the best configuration for the polarizing system and also to find out the potential improvement in the signal-to-clutter ratio (STC). This process was divided into three parts: characterization of the reflected sunlight, characterization of the reflected laser light, and measurement of the improvement in the STC. The results show that by using polarization properties it is possible to design an optical system that is able to increase the signal-to-clutter ratio from approximately 30% to 100% in the imaging system, depending on the kind of surface and on the incidence angle of the sunlight. The technique was also analyzed for indoor use, with the background clutter being the room illumination. For this specific case, polarization did not improve the signal-to-clutter ratio.

  6. Air-fuel ratio control system for internal combustion engines capable of controlling air-fuel ratio in accordance with degree of warming-up of the engines

    SciTech Connect

    Hibino, Y.; Fukuzawa, T.

    1988-06-28

    This patent describes an air-fuel ratio control system for an internal combustion engine, the system having an automatic choke valve arranged in an intake passage of the engine, and exhaust gas sensor arranged in an exhaust passage of the engine and having an output characteristic linear with respect to the concentration of a specific component in exhaust gases from the engine, an air passage bypassing a throttle valve in the intake passage, an air-fuel ratio control valve arranged in the air passage, and disposed to be driven in response to an output from the exhaust gas sensor for controlling the air-fuel ratio of a mixture supplied to the engine, and temperature sensing means for sensing the degree of warming-up of the engine, the combination comprising; determining means for determining whether the exhaust gas has been activated; means for controlling the opening of the automatic choke valve in response to the degree of warming-up of the engine sensed by the temperature sensing means while the determining means determines that the exhaust gas sensor is inactive; means for determining the difference between a desired value of the air-fuel ratio and an actual value thereof sensed by the exhaust gas sensor, and for driving the automatic choke valve when the determined difference is larger than a predetermined value, and the air-fuel ratio control valve when the determined difference is smaller than the predetermined value, respectively, from the time the determining means determines for the first time that the exhaust gas sensor has become activated to the time the temperature sensing means detects completion of warming up of the engine; and means for driving the air-fuel ratio control valve in response to operating conditions of the engine so as to achieve a desired value of the air-fuel ratio, after the temperature sensing means detects completion of warming-up of the engine.

  7. Design method of planar vibration system for specified ratio of energy peaks

    NASA Astrophysics Data System (ADS)

    Kim, Jun Woo; Lee, Sungon; Choi, Yong Je

    2015-05-01

    The magnitudes of the resonant peaks should be considered in the design stage of any bandwidth-relevant applications to widen the working bandwidth. This paper presents a new design method for a planar vibration system that satisfies any desired ratio of peak magnitudes at target resonant frequencies. An important geometric property of a modal triangle formed from three vibration centers representing vibration modes is found. Utilizing the property, the analytical expressions for the vibration energy generated by external forces are derived in terms of the geometrical data of vibration centers. When any desired ratio of peak magnitudes is specified, the locations of the vibration centers are found from their analytical relations. The corresponding stiffness matrix can be determined and realized accordingly. The systematic design methods for direct- and base-excitation systems are developed, and one numerical example is presented to illustrate the proposed design method.

  8. First measurement of electron temperature from signal ratios in a double-pass Thomson scattering system

    SciTech Connect

    Tojo, H.; Itami, K.; Hatae, T.; Ejiri, A.; Yamaguchi, T.; Takase, Y.; Hiratsuka, J.

    2012-02-15

    This paper presents an experimental demonstration to determine electron temperature (T{sub e}) with unknown spectral sensitivity (transmissivity) in a Thomson scattering system. In this method, a double-pass scattering configuration is used and the scattered lights from each pass (with different scattering angles) are measured separately. T{sub e} can be determined from the ratio of the signal intensities without knowing a real chromatic dependence in the sensitivity. Note that the wavelength range for each spectral channel must be known. This method was applied to the TST-2 Thomson scattering system. As a result, T{sub e} measured from the ratio (T{sub e,r}) and T{sub e} measured from a standard method (T{sub e,s}) showed a good agreement with <|T{sub e,r}-T{sub e,s}|/T{sub e,s}>= 7.3%.

  9. On the origin of the flux ratio anomaly in quadruple lens systems

    NASA Astrophysics Data System (ADS)

    Inoue, Kaiki Taro

    2016-09-01

    We explore the origin of the flux ratio anomaly in quadruple lens systems. Using a semi-analytic method based on N-body simulations, we estimate the effect of a possible magnification perturbation caused by subhaloes with a mass scale of ≲109 h-1 M⊙ in lensing galaxy haloes. Taking into account astrometric shifts and assuming that the primary lens is described by a singular isothermal ellipsoid, the expected change to the flux ratios for a multiply lensed image is just a few per cent and the mean of the expected convergence perturbation at the effective Einstein radius of the lensing galaxy halo is <δκsub> = 0.003, corresponding to the mean of the ratio of a projected dark matter mass fraction in subhaloes at the effective Einstein radius = 0.006. In contrast, the expected change to the flux ratio caused by line-of-sight structures is typically ˜10 per cent and the mean of the convergence perturbation is <|δκlos|> = 0.008, corresponding to = 0.017. The contribution of the magnification perturbation caused by subhaloes is ˜40 per cent of the total at a source redshift zS = 0.7 and decreases monotonically in zS to ˜20 per cent at zS = 3.6. Assuming statistical isotropy, the convergence perturbation estimated from 11 observed quadruple lens systems has a positive correlation with the source redshift zS, which is much stronger than that with the lens redshift zL. This feature also supports that the flux ratio anomaly is caused mainly by line-of-sight structures rather than subhaloes. We also discuss a possible imprint of line-of-sight structures in the demagnification of minimum images due to locally underdense structures in the line of sight.

  10. ASAS J083241+2332.4: A New Extreme Low Mass Ratio Overcontact Binary System

    NASA Astrophysics Data System (ADS)

    Sriram, K.; Malu, S.; Choi, C. S.; Vivekananda Rao, P.

    2016-03-01

    We present the R- and V-band CCD photometry and Hα line studies of an overcontact binary ASAS J083241+2332.4. The light curves exhibit totality along with a trace of the O’Connell effect. The photometric solution indicates that this system falls into the category of extreme low-mass ratio overcontact binaries with a mass ratio, q ˜ 0.06. Although a trace of the O’ Connell effect is observed, constancy of the Hα line along various phases suggest that a relatively higher magnetic activity is needed for it to show a prominent fill-in effect. The study of O-C variations reveals that the period of the binary shows a secular increase at the rate of dP/dt ˜ 0.0765 s years-1, which is superimposed by a low, but significant, sinusoidal modulation with a period of ˜8.25 years. Assuming that the sinusoidal variation is due to the presence of a third body, orbital elements have been derived. There exist three other similar systems, SX Crv, V857 Her, and E53, which have extremely low mass ratios and we conclude that ASAS J083241+2332.4 resembles SX Crv in many respects. Theoretical studies indicate that at a critical mass ratio range, qcritical = 0.07-0.09, overcontact binaries should merge and form a fast rotating star, but it has been suggested that qcritical can continue to fall up to 0.05 depending on the primary's mass and structure. Moreover, the obtained fill-out factors (50%-70%) indicate that mass loss is considerable and hydrodynamical simulations advocate that mass loss from L2 is mandatory for a successful merging process. Comprehensively, the results indicate that ASAS J083241+2332.4 is at a stage of merger. The pivotal role played by the subtle nature of the derived mass ratio in forming a rapidly rotating star has been discussed.

  11. On the Origin of Flux Ratio Anomaly in Quadruple Lens Systems

    NASA Astrophysics Data System (ADS)

    Inoue, Kaiki Taro

    2016-05-01

    We explore the origin of flux ratio anomaly in quadruple lens systems. Using a semi-analytic method based on N-body simulations, we estimate the effect of possible magnification perturbation caused by subhaloes with a mass scale of ≲ 109 h-1M⊙ in lensing galaxy haloes. Taking into account astrometric shifts, assuming that the primary lens is described by a singular isothermal ellipsoid, the expected change to the flux ratios per a multiply lensed image is just a few percent and the mean of the expected convergence perturbation at the effective Einstein radius of the lensing galaxy halo is <δκsub> = 0.003, corresponding to the mean of the ratio of a projected dark matter mass fraction in subhaloes at the effective Einstein radius = 0.006. In contrast, the expected change to the flux ratio caused by line-of-sight structures is typically ˜10 percent and the mean of the convergence perturbation is <|δκlos|> = 0.008, corresponding to = 0.017. The contribution of magnification perturbation caused by subhaloes is ˜40 percent of the total at a source redshift zS = 0.7 and decreases monotonically in zS to ˜20 percent at zS = 3.6. Assuming statistical isotropy, the convergence perturbation estimated from observed 11 quadruple lens systems has a positive correlation with the source redshift zS, which is much stronger than that with the lens redshift zL. This feature also supports an idea that the flux ratio anomaly is caused mainly by line-of-sight structures rather than subhaloes. We also discuss about a possible imprint of line-of-sight structures in demagnification of minimum images due to locally underdense structures in the line of sight.

  12. Two-colour pyrometer for the statistical measurement of the surface temperature of particles under thermal plasma conditions

    NASA Astrophysics Data System (ADS)

    Mishin, J.; Vardelle, M.; Lesinski, J.; Fauchais, P.

    1987-06-01

    A two-color pyrometer was developed for the measurement of the surface temperature of particles in flight in a DC plasma-spraying jet, which is characterized by high temperatures (up to 10,000 K), high velocities (more than 500 m/s), and very steep radial temperature gradients (3000 K/mm) and velocity gradients (300 m/s mm). Measurements of surface temperature have been made on metallic (Ni) or ceramic powders (ZrO2, Al2O3) with mean diameter of 10-100 microns. The surface temperatures of the particles range from 2000-4000 K, and their velocities (measured simultaneously by laser anemometry) are from 50-300 m/s. One of the major difficulties of pyrometry in such flows is the plasma radiation, especially in the jet core.

  13. Simulation of signal-to-noise ratio for the laser range-gated imaging system

    NASA Astrophysics Data System (ADS)

    Liang, Weiwei; Chen, Qianrong; Hao, Yongwang; Guo, Hao; Zhang, Wenpan

    2015-10-01

    The laser active imaging system is widely used in night vision, underwater imaging, three-dimension scene imaging and other civilian applications, and the system's detected range increase greatly comparing with the passive imaging system. In recent years, with rapid development of sensor and laser source technique, the laser range-gated imaging system is achieved based on high peak power pulsed laser and gated intensified CCD(ICCD), and it is well known for its properties such as high suppression of backscatter noise from fog and other obscurants, high resolution, long detection range and direct visualization. However, the performance of the laser range-gated imaging system is seriously affected by many factors, and the relationships between system's Signal-to-Noise Ratio (SNR) and influence factors are not further elaborated. In this paper, the simulation of SNR for the laser range-gated imaging system is studied. The principle of the laser range-gated imaging system is shown firstly, and the range equation is derived by means of deducing laser illuminating model according to the principle of laser radar and the characters of objects and the detectors. And then, the sources of noise are analyzed by accurately modeling all noise sources in the detection system, the model of SNR for laser range-gated imaging system is established. Finally, the relationships between SNR of system and influence factors such as gating time, laser pulse width and repetition frequency are discussed, and correspondingly the solutions are proposed.

  14. The Minimum Mass Ratio for Contact Close Binary Systems of W Ursae Majoris-Type

    NASA Astrophysics Data System (ADS)

    Arbutina, B.

    2012-12-01

    The main research topic of this dissertation are extreme mass ratio contact close binary systems, q ≲ 0.1, of W Ursae Majoris (W UMa) type. These close binaries (CBs) represent an interesting class of objects in which "normal", approximately one solar mass main-sequence star is in contact with a significantly less massive companion, M_2 ˜ 0.1 M_⊙. Earlier theoretical investigations of these systems found that there is a minimum mass ratio q_{min} = M_2/M_1 = 0.085 - 0.095 (obtained for n = 3 polytrope - fully radiative primary) above which these CBs are stable and could be observed. If the mass ratio is lower than q_{min}, or, equivalently, if orbital angular momentum is only about three times larger than the spin angular momentum of a massive primary, a tidal instability develops (Darwin's instability) forcing eventually the stars to merge into a single, rapidly rotating object (such as FK Com-type stars or blue stragglers). However, there appear to be some W UMa-type CBs with empirically obtained values for the mass ratio below the theoretical limit for stability. The aim of this dissertation is to try to resolve the discrepancy between theory and observations by considering rotating polytropes. By including in theory the effects of higher central condensation due to rotation we were able to reduce qmin to the new theoretical value q_{min} = 0.070-0.074, for the overcontact degree f = 0 - 1, which is more consistent with the observed population. Other candidate systems for stellar mergers such as AM CVn-type stars have also been discussed in the dissertation.

  15. Binary star statistics - The mass ratio distribution for very wide systems

    NASA Astrophysics Data System (ADS)

    Trimble, V.

    Published observational data on a common-proper-motion sample (CPMS) of 326 pairs of AGK 3 stars (Halbwachs, 1986) with proper motion greater than 50 marcsec/yr and separation/proper-motion ratios less than 1000 yr are analyzed statistically to determine the frequency distribution of mass ratios (q = M2/M1). The results are presented in tables and graphs and compared with those for a sample of 798 visual binaries (VBs) studied by Worley and Heintz (1983). Both samples are found to have distributions with a peak at q = about 1, but this tendency is more pronounced in the VBs than in the CPMS. The q distribution of the VB sample, unlike that of the CPMS, cannot be explained by assuming that it is a random sample of normal initial mass functions; from this it is inferred that a binary formation mechanism which favors systems with q = about 1 may be involved.

  16. Carbon and nitrogen isotope ratios of juvenile winter flounder as indicators of inputs to estuarine systems.

    PubMed

    Pruell, Richard J; Taplin, Bryan K

    2015-12-30

    Stable carbon and nitrogen isotope ratios were measured in young-of-the-year (YOY) winter flounder, Pseudopleuronectes americanus, collected from several Rhode Island, USA estuarine systems. These included three coastal lagoons, an estuarine river and Narragansett Bay. The δ(13)C trends observed along transects in several systems showed isotopically depleted terrestrial signals in the upper reaches of the estuaries. Significant differences (P<0.05) in δ(15)N were observed among all estuarine systems and these differences correlated (P<0.01) with human population densities in the watersheds. Although Narragansett Bay has a strong north-south gradient in nutrient concentrations this trend was not reflected in flounder δ(15)N. The northernmost station with the highest nutrient concentrations unexpectedly had significantly lower δ(15)N values. Depleted δ(15)N values at this nutrient-rich station may indicate that concentration-dependent fractionation needs to be considered when using nitrogen isotope ratios in biota to monitor anthropogenic nitrogen inputs in systems with high nitrogen loadings. PMID:26541984

  17. Estimation of Theaflavins (TF) and Thearubigins (TR) Ratio in Black Tea Liquor Using Electronic Vision System

    NASA Astrophysics Data System (ADS)

    Akuli, Amitava; Pal, Abhra; Ghosh, Arunangshu; Bhattacharyya, Nabarun; Bandhopadhyya, Rajib; Tamuly, Pradip; Gogoi, Nagen

    2011-09-01

    Quality of black tea is generally assessed using organoleptic tests by professional tea tasters. They determine the quality of black tea based on its appearance (in dry condition and during liquor formation), aroma and taste. Variation in the above parameters is actually contributed by a number of chemical compounds like, Theaflavins (TF), Thearubigins (TR), Caffeine, Linalool, Geraniol etc. Among the above, TF and TR are the most important chemical compounds, which actually contribute to the formation of taste, colour and brightness in tea liquor. Estimation of TF and TR in black tea is generally done using a spectrophotometer instrument. But, the analysis technique undergoes a rigorous and time consuming effort for sample preparation; also the operation of costly spectrophotometer requires expert manpower. To overcome above problems an Electronic Vision System based on digital image processing technique has been developed. The system is faster, low cost, repeatable and can estimate the amount of TF and TR ratio for black tea liquor with accuracy. The data analysis is done using Principal Component Analysis (PCA), Multiple Linear Regression (MLR) and Multiple Discriminate Analysis (MDA). A correlation has been established between colour of tea liquor images and TF, TR ratio. This paper describes the newly developed E-Vision system, experimental methods, data analysis algorithms and finally, the performance of the E-Vision System as compared to the results of traditional spectrophotometer.

  18. Decentralized PID controller for TITO systems using characteristic ratio assignment with an experimental application.

    PubMed

    Hajare, V D; Patre, B M

    2015-11-01

    This paper presents a decentralized PID controller design method for two input two output (TITO) systems with time delay using characteristic ratio assignment (CRA) method. The ability of CRA method to design controller for desired transient response has been explored for TITO systems. The design methodology uses an ideal decoupler to reduce the interaction. Each decoupled subsystem is reduced to first order plus dead time (FOPDT) model to design independent diagonal controllers. Based on specified overshoot and settling time, the controller parameters are computed using CRA method. To verify performance of the proposed controller, two benchmark simulation examples are presented. To demonstrate applicability of the proposed controller, experimentation is performed on real life interacting coupled tank level system. PMID:26521724

  19. Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system.

    PubMed

    Fourmaux, S; Payeur, S; Buffechoux, S; Lassonde, P; St-Pierre, C; Martin, F; Kieffer, J C

    2011-04-25

    Laser matter interaction at relativistic intensities using 100 TW class laser systems or higher is becoming more and more widespread. One of the critical issues of such laser systems is to let the laser pulse interact at high intensity with the solid target and avoid any pre-plasma. Thus, a high Laser Pulse Contrast Ratio (LPCR) parameter is of prime importance. We present the LPCR characterization of a high repetition 100 TW class laser system. We demonstrate that the generated Amplified Spontaneous Emission (ASE) degrades the overall LPCR performance. We propose a simple way to clean the pulse after the first amplification stage by introducing a solid state saturable absorber which results in a LPCR improvement to better than 10(10) with only a 30% energy loss at a 10 Hz repetition rate. We finally correlated this cleaning method with experimental results. PMID:21643098

  20. Performance enhancement for long distance BOTDR sensing system based on high extinction ratio probe pulse generator

    NASA Astrophysics Data System (ADS)

    Zhang, Yixin; Xia, Lan; Wu, Xuelin; Zhang, Xuping; Wang, Guanghui

    2014-10-01

    The leakage light of an electro-optic modulator (EOM) induced by its finite extinction ratio (ER) may degrade the performance of Brillouin optical time domain reflectometer sensing system, especially for long distance measurement. In this letter, the configuration of a high ER probe pulse generator assisted by synchronous optical switch has been presented. A dual pulses interferometric method was also proposed to determine the dynamic ER value (DER) of the generated probe pulse. Contrast experiments have been performed to verify the effect of the proposed method in a BOTDR system and the results have shown that the performance of a long distance BOTDR sensing system can be improved observably with the proposed high ER probe pulse generator. At the end of a 48.5km sensing fiber, the maximum uncertainty of temperature measurement has been reduced from 5.2° to 0.8° with 25m spatial resolution after we improved the extinction ratio of probe pulse from 35dB to 65dB.

  1. Calculation of signal-to-noise ratio (SNR) of infrared detection system based on MODTRAN model

    NASA Astrophysics Data System (ADS)

    Lu, Xue; Li, Chuang; Fan, Xuewu

    2013-09-01

    Signal-to-noise ratio (SNR) is an important parameter of infrared detection system. SNR of infrared detection system is determined by the target infrared radiation, atmospheric transmittance, background infrared radiation and the detector noise. The infrared radiation flux in the atmosphere is determined by the selective absorption of the gas molecules, the atmospheric environment, and the transmission distance of the radiation, etc, so the atmospheric transmittance and infrared radiance flux are intricate parameters. A radiometric model for the calculation of SNR of infrared detection system is developed and used to evaluate the effects of various parameters on signal-to-noise ratio (SNR). An atmospheric modeling tool, MODTRAN, is used to model wavelength-dependent atmospheric transmission and sky background radiance. Then a new expression of SNR is deduced. Instead of using constants such as average atmospheric transmission and average wavelength in traditional method, it uses discrete values for atmospheric transmission and sky background radiance. The integrals in general expression of SNR are converted to summations. The accuracy of SNR obtained from the new method can be improved. By adopting atmospheric condition of the 1976 US standard, no clouds urban aerosols, fall-winter aerosol profiles, the typical spectrum characters of sky background radiance and transmittance are computed by MODTRON. Then the operating ranges corresponding to the threshold quantity of SNR are calculated with the new method. The calculated operating ranges are more close to the measured operating range than those calculated with the traditional method.

  2. Radiation detection method and system using the sequential probability ratio test

    DOEpatents

    Nelson, Karl E.; Valentine, John D.; Beauchamp, Brock R.

    2007-07-17

    A method and system using the Sequential Probability Ratio Test to enhance the detection of an elevated level of radiation, by determining whether a set of observations are consistent with a specified model within a given bounds of statistical significance. In particular, the SPRT is used in the present invention to maximize the range of detection, by providing processing mechanisms for estimating the dynamic background radiation, adjusting the models to reflect the amount of background knowledge at the current point in time, analyzing the current sample using the models to determine statistical significance, and determining when the sample has returned to the expected background conditions.

  3. Molecular branching ratio method for intensity calibration of optical systems in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1972-01-01

    A state-of-the-art review is given of the molecular branching ratio method for intensity calibration in the vacuum ultraviolet. Ways are described for determining both relative and quantitative responses in the wavelength range 1000 A to 3000 A. The molecular band systems which are discussed are the following: H2(B 1 Sigma u +)-(X 1 Sigma g +), H2(C 1 Pi u)-(X 1 Sigma g +), N2(A 1 Pi g)-(X 1 Sigma g +), CO(A 1 Pi)-(X 1 Sigma +), NO(A 2 Sigma +)-(X 2 Pi r), and NO(+) (A 1 Pi)-(X 1 Sigma +).

  4. System-specific spare rail vehicle ratios: A synthesis of transit practice. Final report

    SciTech Connect

    Pierce, J.T.

    1995-12-31

    This synthesis addresses the system-specific variables that directly impact fleet size, and the spare ratios that are maintained by individual transit agencies. From the information obtained, it appears that most rail transit agencies closely monitor the spare vehicles they maintain to maximize efficiency and thereby reduce operating costs. This report of the Transportation Research Board describes operating environments at 21 selected rail transit agencies of various sizes in key geographical locations in North America. It contains survey information about operating practices, impediments, and strategies used to appropriately size fleets within each agency`s operating context.

  5. A CRISPR-Cas9 sex-ratio distortion system for genetic control.

    PubMed

    Galizi, Roberto; Hammond, Andrew; Kyrou, Kyros; Taxiarchi, Chrysanthi; Bernardini, Federica; O'Loughlin, Samantha M; Papathanos, Philippos-Aris; Nolan, Tony; Windbichler, Nikolai; Crisanti, Andrea

    2016-01-01

    Genetic control aims to reduce the ability of insect pest populations to cause harm via the release of modified insects. One strategy is to bias the reproductive sex ratio towards males so that a population decreases in size or is eliminated altogether due to a lack of females. We have shown previously that sex ratio distortion can be generated synthetically in the main human malaria vector Anopheles gambiae, by selectively destroying the X-chromosome during spermatogenesis, through the activity of a naturally-occurring endonuclease that targets a repetitive rDNA sequence highly-conserved in a wide range of organisms. Here we describe a CRISPR-Cas9 sex distortion system that targets ribosomal sequences restricted to the member species of the Anopheles gambiae complex. Expression of Cas9 during spermatogenesis resulted in RNA-guided shredding of the X-chromosome during male meiosis and produced extreme male bias among progeny in the absence of any significant reduction in fertility. The flexibility of CRISPR-Cas9 combined with the availability of genomic data for a range of insects renders this strategy broadly applicable for the species-specific control of any pest or vector species with an XY sex-determination system by targeting sequences exclusive to the female sex chromosome. PMID:27484623

  6. Earliest rooting system and root : shoot ratio from a new Zosterophyllum plant.

    PubMed

    Hao, Shougang; Xue, Jinzhuang; Guo, Dali; Wang, Deming

    2010-01-01

    The enhanced chemical weathering by rooted vascular plants during the Silurian-Devonian period played a crucial role in altering global biogeochemical cycles and atmospheric environments; however, the documentation of early root morphology and physiology is scarce because the existing fossils are mostly incomplete. Here, we report an entire, uprooted specimen of a new Zosterophyllum Penhallow, named as Z. shengfengense, from the Early Devonian Xitun Formation (Lochkovian, c. 413 Myr old) of Yunnan, south China. This plant has the most ancient known record of a rooting system. The plant consists of aerial axes of 98 mm in height, showing a tufted habit, and a rhizome bearing a fibrous-like rooting system, c. 20 mm in length. The rhizome shows masses of branchings, which produce upwardly directed aerial axes and downwardly directed root-like axes. The completeness of Z. shengfengense made it possible to estimate the biomass allocation and root : shoot ratio. The root : shoot ratio of this early plant is estimated at a mean value of 0.028, and the root-like axes constitute only c. 3% of the total biomass. Zosterophyllum shengfengense was probably a semi-aquatic plant with efficient water use or a strong uptake capacity of the root-like axes. PMID:19825018

  7. A CRISPR-Cas9 sex-ratio distortion system for genetic control

    PubMed Central

    Galizi, Roberto; Hammond, Andrew; Kyrou, Kyros; Taxiarchi, Chrysanthi; Bernardini, Federica; O’Loughlin, Samantha M.; Papathanos, Philippos-Aris; Nolan, Tony; Windbichler, Nikolai; Crisanti, Andrea

    2016-01-01

    Genetic control aims to reduce the ability of insect pest populations to cause harm via the release of modified insects. One strategy is to bias the reproductive sex ratio towards males so that a population decreases in size or is eliminated altogether due to a lack of females. We have shown previously that sex ratio distortion can be generated synthetically in the main human malaria vector Anopheles gambiae, by selectively destroying the X-chromosome during spermatogenesis, through the activity of a naturally-occurring endonuclease that targets a repetitive rDNA sequence highly-conserved in a wide range of organisms. Here we describe a CRISPR-Cas9 sex distortion system that targets ribosomal sequences restricted to the member species of the Anopheles gambiae complex. Expression of Cas9 during spermatogenesis resulted in RNA-guided shredding of the X-chromosome during male meiosis and produced extreme male bias among progeny in the absence of any significant reduction in fertility. The flexibility of CRISPR-Cas9 combined with the availability of genomic data for a range of insects renders this strategy broadly applicable for the species-specific control of any pest or vector species with an XY sex-determination system by targeting sequences exclusive to the female sex chromosome. PMID:27484623

  8. The genetic sex-determination system predicts adult sex ratios in tetrapods.

    PubMed

    Pipoly, Ivett; Bókony, Veronika; Kirkpatrick, Mark; Donald, Paul F; Székely, Tamás; Liker, András

    2015-11-01

    The adult sex ratio (ASR) has critical effects on behaviour, ecology and population dynamics, but the causes of variation in ASRs are unclear. Here we assess whether the type of genetic sex determination influences the ASR using data from 344 species in 117 families of tetrapods. We show that taxa with female heterogamety have a significantly more male-biased ASR (proportion of males: 0.55 ± 0.01 (mean ± s.e.m.)) than taxa with male heterogamety (0.43 ± 0.01). The genetic sex-determination system explains 24% of interspecific variation in ASRs in amphibians and 36% in reptiles. We consider several genetic factors that could contribute to this pattern, including meiotic drive and sex-linked deleterious mutations, but further work is needed to quantify their effects. Regardless of the mechanism, the effects of the genetic sex-determination system on the adult sex ratio are likely to have profound effects on the demography and social behaviour of tetrapods. PMID:26444239

  9. Branching ratio measurement of a Λ system in Tm3+:YAG under a magnetic field

    NASA Astrophysics Data System (ADS)

    Louchet, A.; Habib, J. S.; Crozatier, V.; Lorgeré, I.; Goldfarb, F.; Bretenaker, F.; Gouët, J.-L. Le; Guillot-Noël, O.; Goldner, Ph.

    2007-01-01

    A three-level Λ system in Tm3+ doped YAG crystal is experimentally investigated in the prospect of quantum information processing. Zeeman effect is used to lift the nuclear spin degeneracy of this ion. In a previous paper [de Seze , Phys. Rev. B 73, 085112 (2006)] we measured the gyromagnetic tensor components and concluded that adequate magnetic field orientation could optimize the optical connection of both ground state sublevels to each one of the excited state sublevels, thus generating Λ systems. Here we report on the direct measurement of the transition probability ratio along the two legs of the Λ . Measurement techniques combine frequency selective optical pumping with optical nutation or photon echo processes.

  10. Copy number ratios determined by two digital polymerase chain reaction systems in genetically modified grains

    NASA Astrophysics Data System (ADS)

    Pérez Urquiza, M.; Acatzi Silva, A. I.

    2014-02-01

    Three certified reference materials produced from powdered seeds to measure the copy number ratio sequences of p35S/hmgA in maize containing MON 810 event, p35S/Le1 in soybeans containing GTS 40-3-2 event and DREB1A/acc1 in wheat were produced according to the ISO Guides 34 and 35. In this paper, we report digital polymerase chain reaction (dPCR) protocols, performance parameters and results of copy number ratio content of genetically modified organisms (GMOs) in these materials using two new dPCR systems to detect and quantify molecular deoxyribonucleic acid: the BioMark® (Fluidigm) and the OpenArray® (Life Technologies) systems. These technologies were implemented at the National Institute of Metrology in Mexico (CENAM) and in the Reference Center for GMO Detection from the Ministry of Agriculture (CNRDOGM), respectively. The main advantage of this technique against the more-used quantitative polymerase chain reaction (qPCR) is that it generates an absolute number of target molecules in the sample, without reference to standards or an endogenous control, which is very useful when not much information is available for new developments or there are no standard reference materials in the market as in the wheat case presented, or when it was not possible to test the purity of seeds as in the maize case presented here. Both systems reported enhanced productivity, increased reliability and reduced instrument footprint. In this paper, the performance parameters and uncertainty of measurement obtained with both systems are presented and compared.

  11. Performance and limits of liquid chromatography isotope ratio mass spectrometry system for halogenated compounds

    NASA Astrophysics Data System (ADS)

    Gilevska, Tetyana; Gehre, Matthias; Richnow, Hans

    2014-05-01

    Compound Specific Isotope Analysis (CSIA) has been an important step for the assessment of the origin and fate of compounds in environmental science.[1] Biologically or pharmaceutically important compounds often are not amenable for gas chromatographic separation because of high polarity and lacking volatility, thermostability. In 2004 liquid chromatography isotope ratio mass spectrometry (LC-IRMS) became commercially available. LC-IRMS system intent a quantitative conversion of analytes separation into CO2 via wet oxidation with sodium persulfate in the presence of phosphoric acid while analytes are still dissolved in the aqueous liquid phase.[2] The aim of this study is to analyze the oxidation capacity of the interface of the LC-IRMS system and determine which parameters could improve oxidation of compounds which are resistant to persulfate oxidation. Oxidation capacity of the liquid chromatography isotope ratio mass spectrometry system was tested with halogenated acetic acid and a set of aromatic compounds with different substitutes. Acetic acid (AA) was taken as a model compound for complete oxidation and compared to the oxidation of other analytes on a molar basis. Correct values were obtained for di- and mono chlorinated and fluorinated and also for tribrominated acetic acid and for all studied aromatic compounds. Incomplete oxidation for trichloroacetic (TCAA) and trifluoroacetic (TFAA) acid was revealed with lower recovery compared to acetic acid and isotope fractionation leading to depleted carbon isotope composition compared to values obtained with an elementary analyzer connected to an isotope mass spectrometer Several optimization steps were tried in order to improve the oxidation of TCAA and TFAA: (i) increasing the concentration of the oxidizing agent, (ii) variation of flow rate of the oxidizing and acid solution, (iii) variation of flow rate of liquid chromatography pump (iv) addition of a catalyzer. These modifications lead to longer reaction time

  12. Benefit/Cost Ratio in Systems Engineering: Integrated Models, Tests, Design, and Production

    SciTech Connect

    Nitta, C; Logan, R; Chidester, S; Foltz, M F

    2004-10-27

    We have previously described our methodology for quantification of risk and risk reduction, and the use of risk, quantified as a dollar value, in the Value Engineering and decision tradeoff process. In this work we extend our example theme of the safety of reactive materials during accidental impacts. We have begun to place the validation of our impact safety model into a systems engineering context. In that sense, we have made connections between the data and the trends in the data, our models of the impact safety process, and the implications regarding confidence levels and reliability based on given impact safety requirements. We have folded this information into a quantitative risk assessment, and shown the assessed risk reduction value of developing an even better model, with more model work or more experimental data or both. Since there is a cost incurred for either model improvement or testing, we have used a Benefit/Cost Ratio metric to quantify this, where Benefit is our quantification of assessed risk reduction, and cost is the cost of the new test data, code development, and model validation. This has left us with further questions posed for our evolving system engineering representation for impact safety and its implications. We had concluded that the Benefit/Cost Ratio for more model validation was high, but such improvement could take several paths. We show our progress along two such paths; simple and high fidelity modeling of the impact safety process, and the implications of our knowledge and assumptions of the probability distribution functions involved. At the other end of the systems engineering scale, we discuss the implications of our linkage from model validation to risk on our production plant operations. Naturally, the nature of most such methodologies is still evolving, and this work represents the views of the authors and not necessarily the views of Lawrence Livermore National Laboratory.

  13. DEEP, LOW MASS RATIO OVERCONTACT BINARY SYSTEMS. XI. V1191 CYGNI

    SciTech Connect

    Zhu, L. Y.; Qian, S. B.; He, J. J.; Liu, L.

    2011-10-15

    Complete CCD photometric light curves in BV(RI){sub c} bands obtained on one night in 2009 for the short-period close-binary system V1191 Cygni are presented. A new photometric analysis with the 2003 version of the Wilson-Van Hamme code shows that V1191 Cyg is a W-type overcontact binary system and suggests that it has a high degree of overcontact (f = 68.6%) with very low mass ratio, implying that it is at the late stage of overcontact evolution. The absolute parameters of V1191 Cyg are derived using spectroscopic and photometric solutions. Combining new determined times of light minimum with others published in the literature, the period change of the binary star is investigated. A periodic variation, with a period of 26.7 years and an amplitude of 0.023 days, was discovered to be superimposed on a long-term period increase (dP/dt = +4.5({+-} 0.1) x 10{sup -7} days yr{sup -1}). The cyclic period oscillation may be caused by the magnetic activity cycles of either of the components or the light-time effect due to the presence of a third body with a mass of m{sub 3} = 0.77 M{sub sun} and an orbital radius of a{sub 3} = 7.6 AU, when this body is coplanar to the orbit of the eclipsing pair. The secular orbital period increase can be interpreted as a mass transfer from the less massive component to the more massive one. With the period increases, V1191 Cyg will evolve from its present low mass ratio, high filled overcontact state to a rapidly rotating single star when its orbital angular momentum is less than three times the total spin angular momentum. V1191 Cyg is too blue for its orbital period and it is an unusual W-type overcontact system with such a low mass ratio and high fill-out overcontact configuration, which is worth monitoring continuously in the future.

  14. A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system.

    PubMed

    Endut, Azizah; Jusoh, A; Ali, N; Wan Nik, W B; Hassan, A

    2010-03-01

    The growths of the African catfish (Clarias gariepinus) and water spinach (Ipomoea aquatica) were evaluated in recirculation aquaponic system (RAS). Fish production performance, plant growth and nutrient removal were measured and their dependence on hydraulic loading rate (HLR) was assessed. Fish production did not differ significantly between hydraulic loading rates. In contrast to the fish production, the water spinach yield was significantly higher in the lower hydraulic loading rate. Fish production, plant growth and percentage nutrient removal were highest at hydraulic loading rate of 1.28 m/day. The ratio of fish to plant production has been calculated to balance nutrient generation from fish with nutrient removal by plants and the optimum ratio was 15-42 gram of fish feed/m(2) of plant growing area. Each unit in RAS was evaluated in terms of oxygen demand. Using specified feeding regime, mass balance equations were applied to quantify the waste discharges from rearing tanks and treatment units. The waste discharged was found to be strongly dependent on hydraulic loading rate. PMID:19819130

  15. Amplitude ratios for critical systems in the c=-2 universality class

    NASA Astrophysics Data System (ADS)

    Izmailian, N. Sh.; Hu, Chin-Kun

    2013-01-01

    We study the finite-size corrections of the critical dense polymer (CDP) and the dimer models on ∞×N rectangular lattice. We find that the finite-size corrections in the CDP and dimer models depend in a crucial way on the parity of N, and a change of the parity of N is equivalent to the change of boundary conditions. We present a set of universal amplitude ratios for amplitudes in finite-size correction terms of critical systems in the universality class with central charge c=-2. The results are in perfect agreement with a perturbated conformal field theory under the assumption that all analytical corrections coming from the operators which belongs to the tower of the identity. Our results inspire many interesting problems for further studies.

  16. Distribution function for the system of galaxies for any ratio of gravitational potential to kinetic energies

    NASA Astrophysics Data System (ADS)

    Ahmad, Farooq; Malik, Manzoor A.; Mir, Hameeda

    2014-02-01

    We evaluate a distribution function for the system of galaxies clustering gravitationally in an expanding universe on the basis of statistical mechanics. We extend our previous work to incorporate the effect of any ratio of gravitational potential to kinetic energies. We determine the cosmological many-body partition function inclusive of higher order terms and calculate all thermodynamic quantities and the distribution function from it. We find that our new results are consistent with the previous ones, particularly in the large bar{N} (average number of galaxies) limit. We also investigate the effect on clustering parameter b and find our new results in very good agreement with the previous ones in the small b limit. We find that for large b, the departure from the original distribution function is greater. We also observe that the effect of softening on the distribution function is consistent with our previous work.

  17. Air-fuel ratio control system for an internal combustion engine

    SciTech Connect

    Nishimura, T.; Suzuki, M.

    1981-09-29

    The air-fuel ratio for an internal combustion engine is controlled at the three stages: (A) when the engine temperature is lower than a first predetermined value, the air-fuel ratio is controlled only by a choke valve, (B) when the engine is at a temperature of the first predetermined value to a second predetermined value, the air-fuel ratio is controlled according to the output signals of engine temperature detecting means, and (C) when the engine temperature is higher than the second predetermined value, the air-fuel ratio is controlled according to the signals from air-fuel ratio detecting means.

  18. Control system for a multiple ratio transmission having a lockup clutch torque converter

    SciTech Connect

    Van Selous, J.S.

    1987-05-19

    This patent describes a power transmission mechanism for a driveline for a vehicle powered by an internal combustion engine. The process comprises: a hydrokinetic torque converter having a bladed impeller housing driven by the engine, a bladed turbine in the housing, a bladed stator and a turbine shaft connected to the turbine; multiple ratio gearing having a torque input member and a torque output member with plural torque flow paths defined by gear elements between the input and output members and having clutch and brake servo means for establishing selectively four forward driving speed ratios and a reverse ratio; and the highest speed ratio being an overdrive, the second highest speed ratio being a direct one-to-one speed ratio and the third highest speed ratio being an underdrive.

  19. Design of LED freeform optical system for road lighting with high luminance/illuminance ratio.

    PubMed

    Feng, Zexin; Luo, Yi; Han, Yanjun

    2010-10-11

    A systematic method is proposed for designing an optical system for road lighting using an LED and a freeform lens that is optimized to produce a certain luminance distribution on the road surface. The proposed design method takes account of the luminance characteristics of the road surface, the energy efficiency of the system, the glare problem of the luminaire and the effects of four adjacent luminaries illuminating a single road surface. Firstly, the road surface illuminance with a polynomial of cosine functions along the road is optimized to maximize Q (the ratio of the average luminance to the average illuminance) as well as satisfying the lighting requirements provided by CIE. Then, a smooth freeform lens with this optimized illuminance is designed based on the variable separation method and the feedback modification method. Results show that, from two typical observer positions on the 2-lane C2 class road, luminaires with these freeform lenses can provide Q values of 7.90 × 10(-2) and 8.69 × 10(-2), the overall road surface luminance uniformity of 0.55 and 0.56, the longitudinal road surface luminance uniformity of 0.72 and 0.79, and the glare factors of 10.06% and 6.73% . PMID:20941103

  20. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system

    SciTech Connect

    Liu, Jinzhen; Li, Gang; Lin, Ling; Qiao, Xiaoyan; Wang, Mengjun; Zhang, Weibo

    2014-05-15

    The stability and signal to noise ratio (SNR) of the current source circuit are the important factors contributing to enhance the accuracy and sensitivity in bioimpedance measurement system. In this paper we propose a new differential Howland topology current source and evaluate its output characters by simulation and actual measurement. The results include (1) the output current and impedance in high frequencies are stabilized after compensation methods. And the stability of output current in the differential current source circuit (DCSC) is 0.2%. (2) The output impedance of two current circuits below the frequency of 200 KHz is above 1 MΩ, and below 1 MHz the output impedance can arrive to 200 KΩ. Then in total the output impedance of the DCSC is higher than that of the Howland current source circuit (HCSC). (3) The SNR of the DCSC are 85.64 dB and 65 dB in the simulation and actual measurement with 10 KHz, which illustrates that the DCSC effectively eliminates the common mode interference. (4) The maximum load in the DCSC is twice as much as that of the HCSC. Lastly a two-dimensional phantom electrical impedance tomography is well reconstructed with the proposed HCSC. Therefore, the measured performance shows that the DCSC can significantly improve the output impedance, the stability, the maximum load, and the SNR of the measurement system.

  1. The differential Howland current source with high signal to noise ratio for bioimpedance measurement system

    NASA Astrophysics Data System (ADS)

    Liu, Jinzhen; Qiao, Xiaoyan; Wang, Mengjun; Zhang, Weibo; Li, Gang; Lin, Ling

    2014-05-01

    The stability and signal to noise ratio (SNR) of the current source circuit are the important factors contributing to enhance the accuracy and sensitivity in bioimpedance measurement system. In this paper we propose a new differential Howland topology current source and evaluate its output characters by simulation and actual measurement. The results include (1) the output current and impedance in high frequencies are stabilized after compensation methods. And the stability of output current in the differential current source circuit (DCSC) is 0.2%. (2) The output impedance of two current circuits below the frequency of 200 KHz is above 1 MΩ, and below 1 MHz the output impedance can arrive to 200 KΩ. Then in total the output impedance of the DCSC is higher than that of the Howland current source circuit (HCSC). (3) The SNR of the DCSC are 85.64 dB and 65 dB in the simulation and actual measurement with 10 KHz, which illustrates that the DCSC effectively eliminates the common mode interference. (4) The maximum load in the DCSC is twice as much as that of the HCSC. Lastly a two-dimensional phantom electrical impedance tomography is well reconstructed with the proposed HCSC. Therefore, the measured performance shows that the DCSC can significantly improve the output impedance, the stability, the maximum load, and the SNR of the measurement system.

  2. Between-year variation in population sex ratio increases with complexity of the breeding system in Hymenoptera.

    PubMed

    Kümmerli, Rolf; Keller, Laurent

    2011-06-01

    While adaptive adjustment of sex ratio in the function of colony kin structure and food availability commonly occurs in social Hymenoptera, long-term studies have revealed substantial unexplained between-year variation in sex ratio at the population level. In order to identify factors that contribute to increased between-year variation in population sex ratio, we conducted a comparative analysis across 47 Hymenoptera species differing in their breeding system. We found that between-year variation in population sex ratio steadily increased as one moved from solitary species, to primitively eusocial species, to single-queen eusocial species, to multiple-queen eusocial species. Specifically, between-year variation in population sex ratio was low (6.6% of total possible variation) in solitary species, which is consistent with the view that in solitary species, sex ratio can vary only in response to fluctuations in ecological factors such as food availability. In contrast, we found significantly higher (19.5%) between-year variation in population sex ratio in multiple-queen eusocial species, which supports the view that in these species, sex ratio can also fluctuate in response to temporal changes in social factors such as queen number and queen-worker control over sex ratio, as well as factors influencing caste determination. The simultaneous adjustment of sex ratio in response to temporal fluctuations in ecological and social factors seems to preclude the existence of a single sex ratio optimum. The absence of such an optimum may reflect an additional cost associated with the evolution of complex breeding systems in Hymenoptera societies. PMID:21597259

  3. A synthetic sex ratio distortion system for the control of the human malaria mosquito.

    PubMed

    Galizi, Roberto; Doyle, Lindsey A; Menichelli, Miriam; Bernardini, Federica; Deredec, Anne; Burt, Austin; Stoddard, Barry L; Windbichler, Nikolai; Crisanti, Andrea

    2014-01-01

    It has been theorized that inducing extreme reproductive sex ratios could be a method to suppress or eliminate pest populations. Limited knowledge about the genetic makeup and mode of action of naturally occurring sex distorters and the prevalence of co-evolving suppressors has hampered their use for control. Here we generate a synthetic sex distortion system by exploiting the specificity of the homing endonuclease I-PpoI, which is able to selectively cleave ribosomal gene sequences of the malaria vector Anopheles gambiae that are located exclusively on the mosquito's X chromosome. We combine structure-based protein engineering and molecular genetics to restrict the activity of the potentially toxic endonuclease to spermatogenesis. Shredding of the paternal X chromosome prevents it from being transmitted to the next generation, resulting in fully fertile mosquito strains that produce >95% male offspring. We demonstrate that distorter male mosquitoes can efficiently suppress caged wild-type mosquito populations, providing the foundation for a new class of genetic vector control strategies. PMID:24915045

  4. A synthetic sex ratio distortion system for the control of the human malaria mosquito

    PubMed Central

    Galizi, Roberto; Doyle, Lindsey A.; Menichelli, Miriam; Bernardini, Federica; Deredec, Anne; Burt, Austin; Stoddard, Barry L.; Windbichler, Nikolai; Crisanti, Andrea

    2014-01-01

    It has been theorized that inducing extreme reproductive sex ratios could be a method to suppress or eliminate pest populations. Limited knowledge about the genetic makeup and mode of action of naturally occurring sex distorters and the prevalence of co-evolving suppressors has hampered their use for control. Here we generate a synthetic sex distortion system by exploiting the specificity of the homing endonuclease I-PpoI, which is able to selectively cleave ribosomal gene sequences of the malaria vector Anopheles gambiae that are located exclusively on the mosquito’s X chromosome. We combine structure-based protein engineering and molecular genetics to restrict the activity of the potentially toxic endonuclease to spermatogenesis. Shredding of the paternal X chromosome prevents it from being transmitted to the next generation, resulting in fully fertile mosquito strains that produce >95% male offspring. We demonstrate that distorter male mosquitoes can efficiently suppress caged wild-type mosquito populations, providing the foundation for a new class of genetic vector control strategies. PMID:24915045

  5. Mobile lidar system for measurement of water vapor mixing ratio and ozone number density

    NASA Technical Reports Server (NTRS)

    Whiteman, D.

    1988-01-01

    The Water Vapor Lidar was modified and extended to make differential absorption measurements of ozone. Water vapor measurements make use of a weak molecular scattering process known as Raman scattering. It is characterized by a shift in wavelength of the scattered beam of light relative to the incident one. Some of the energy of the incident photon is converted to vibrational or rotational energy within the molecule leaving the scattered photon shifted to a slightly longer wavelength. When performing water vapor measurements, profiles are acquired of water vapor mixing ratio from near the ground to beyond 7 km every 2 minutes. By forming a color composite image of the individual profiles, the spatial and temporal evolution of water vapor is visible with vertical resolution of 75 to 150m and temporal resolution of 2 minutes. The ozone lidar is intended for use as a cross calibration facility for other stationary ozone lidar systems. The ozone measurement employs the technique known as differential absorption. The backscattered laser radiation from two different wavelengths is measured. Successful measurements of 308 nm returns were made from 80 km with an averaging period of 6 hours. Using these data and a standard atmosphere density curve, an ozone number density profile was made which agrees very well with the standard ozone curve between 20 and 40 km.

  6. Performance evaluation of optically-preamplified hybrid QPSK M-ary PPM systems with finite extinction ratios

    NASA Astrophysics Data System (ADS)

    Landolsi, Taha; Hassan, Mohamed S.; Elrefaie, Aly F.; Hamid, Sanaa

    2015-10-01

    In this paper, we investigate the impact of finite extinction ratios on the error performance of optically-preamplified homodyne hybrid PDM-QPSK M-ary PPM (PQ-mPPM) systems. The study is carried for symbol sizes M ∈ { 2, 4, …, 1024 } and extinction ratios r ∈ { 10, 15, 20, 25, 30 }dB for probabilities of bit error down to Pb =3-9 , which covers systems with or without forward error correction (FEC). We demonstrate that the probability of slot correct location within a symbol in a PQ-mPPM homodyne system with finite extinction ratios is equal to the probability of symbol correct detection in a direct-detection system with dual polarized noise, with the same extinction ratio and symbol size M. This result is leveraged to compute the probabilities of bit error for the homodyne system using an accurate numerical approach. We show that when the extinction ratio is finite, the probability of slot correct location is decreased which not only increases the probability of bit error in the PPM demodulator subsystem but also leads to an increased probability of bit error in the QPSK demodulator. This results in a situation where systems with higher values of M lose their advantage. For example, at Pb =10-4 , M = 128 and M = 16 require the least signal to noise ratio for the case of r = 30 dB and 20 dB, respectively. The power penalty due to a finite extinction ratio depends on the symbol size M. For instance, at Pb =10-9 , M = 1024, and r = 20 dB, the penalty is δ = 10.6dB . It increases drastically to 22.1 dB for r = 10 dB. For M = 16, it is 0.6 dB and 5 dB for r = 20 dB and r = 10 dB, respectively.

  7. Effects of Different Eddy Covariance Correction Schemes on Energy Balance Closure and Comparisons with the Modified Bowen Ratio System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eddy covariance (EC) and modified Bowen ratio (MBR) systems typically yield subtly different estimates of H, LE, and Fc. Our study analyzed the discrepancies between EC and MBR systems by first considering the role of the data processing algorithm used to estimate fluxes using EC and later examinin...

  8. 40 CFR 141.536 - My system has developed an inactivation ratio; what must we do now?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false My system has developed an inactivation ratio; what must we do now? 141.536 Section 141.536 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Filtration and Disinfection-Systems...

  9. Computer experiments on periodic systems identification using rotor blade transient flapping-torsion responses at high advance ratio

    NASA Technical Reports Server (NTRS)

    Hohenemser, K. H.; Prelewicz, D. A.

    1974-01-01

    Systems identification methods have recently been applied to rotorcraft to estimate stability derivatives from transient flight control response data. While these applications assumed a linear constant coefficient representation of the rotorcraft, the computer experiments described in this paper used transient responses in flap-bending and torsion of a rotor blade at high advance ratio which is a rapidly time varying periodic system.

  10. Online process monitoring at quasi-simultaneous laser transmission welding using a 3D-scanner with integrated pyrometer

    NASA Astrophysics Data System (ADS)

    Schmailzl, A.; Steger, S.; Dostalek, M.; Hierl, S.

    2016-03-01

    Quasi-simultaneous laser transmission welding is a well-known joining technique for thermoplastics and mainly used in the automotive as well as in the medical industry. For process control usually the so called set-path monitoring is used, where the weld is specified as "good" if the irradiation time is inside a defined confidence interval. However, the detection of small-sized gaps or thermal damaged zones is not possible with this technique. The analyzation of the weld seam temperature during welding offers the possibility to overcome this problem. In this approach a 3D-scanner is used instead of a scanner with flat-field optic. By using a pyrometer in combination with a 3D-scanner no color-corrected optic is needed in order to provide that laser- and detection-spot are concentric. Experimental studies on polyethylene T-joints have shown that the quality of the signal is adequate, despite the use of an optical setup with a long working distance and a small optical aperture. The effects on temperature are studied for defects like a gap in the joining zone. Therefore a notch was milled into the absorbent polymer. In case of producing housings for electronic parts the effect of an electrical wire between the joining partners is also investigated. Both defects can be identified by a local temperature deviation even at a feed rate of four meters per second. Furthermore a strategy for signal-processing is demonstrated. By this, remaining defects can be identified. Consequently an online detection of local defects is possible, which makes a dynamic process control feasible.

  11. Chondrites - Initial strontium-87/strontium-86 ratios and the early history of the solar system.

    NASA Technical Reports Server (NTRS)

    Wetherill, G. W.; Mark, R.; Lee-Hu, C.

    1973-01-01

    A sodium-poor, calcium-rich inclusion in the carbonaceous chondrite Allende had a Sr-87/Sr-86 ratio at the time of its formation of 0.69880, as low a value as that found in any other meteorite. The higher Sr-87/Sr-86 ratios found in ordinary chondrites indicate that their formation or isotopic equilibration occurred tens of millions of years later.

  12. Carrier: Interference ratios for frequency sharing between satellite systems transmitting frequency modulated and digital television signals

    NASA Technical Reports Server (NTRS)

    Barnes, S. P.

    1979-01-01

    Results are presented of subjective and quantitative tests describing the results of interference to a particular digital television system from a frequency modulated (FM) television system, and for interference to an FM television system from a digital television system.

  13. Influence of COD/sulfate ratios on the integrated reactor system for simultaneous removal of carbon, sulfur and nitrogen.

    PubMed

    Yuan, Ye; Chen, Chuan; Zhao, Youkang; Wang, Aijie; Sun, Dezhi; Huang, Cong; Liang, Bin; Tan, Wenbo; Xu, Xijun; Zhou, Xu; Lee, Duu-Jung; Ren, Nanqi

    2015-01-01

    An integrated reactor system was developed for the simultaneous removal of carbon, sulfur and nitrogen from sulfate-laden wastewater and for elemental sulfur (S°) reclamation. The system mainly consisted of an expanded granular sludge bed (EGSB) for sulfate reduction and organic carbon removal (SR-CR), an EGSB for denitrifying sulfide removal (DSR), a biological aerated filter for nitrification and a sedimentation tank for sulfur reclamation. This work investigated the influence of chemical oxygen demand (COD)/sulfate ratios on the performance of the system. Influent sulfate and ammonium were fixed to the level of 600 mg SO(4)(2-) L⁻¹ and 120 mg NH(4)(+) L⁻¹, respectively. Lactate was introduced to generate COD/SO(4)(2-) = 0.5:1, 1:1, 1.5:1, 2:1, 3:1, 3.5:1 and 4:1. The experimental results indicated that sulfate could be efficiently reduced in the SR-CR unit when the COD/SO(4)(2-) ratio was between 1:1 and 3:1, and sulfate reduction was inhibited by the growth of methanogenic bacteria when the COD/SO(4)(2-) ratio was between 3.5:1 and 4:1. Meanwhile, the Org-C/S²⁻/NO(3)(-) ratios affected the S(0) reclamation efficiency in the DSR unit. When the influent COD/SO(4)(2-) ratio was between 1:1 and 3:1, appropriate Org-C/S²⁻/NO(3)(-) ratios could be achieved to obtain a maximum S° recovery in the DSR unit. For the microbial community of the SR-CR unit at different COD/SO(4)(2-) ratios, 16S rRNA gene-based high throughput Illumina MiSeq sequencing was used to analyze the diversity and potential function of the dominant species. PMID:25768217

  14. 40 CFR 141.534 - How does my system use this data to calculate an inactivation ratio?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false How does my system use this data to calculate an inactivation ratio? 141.534 Section 141.534 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS...

  15. Nitrogen Isotope Ratios of Juvenile Winter Flounder as an Indicator of Anthropogenic Nitrogen Inputs to Estuarine Systems

    EPA Science Inventory

    Nitrogen isotope ratios (15N) were measured in muscle tissue of juvenile winter flounder, Pseudopleuronectes americanus, collected from several estuarine systems (lagoons, river, bay) along the coast of Rhode Island, USA over a three-year period. Significant differences i...

  16. A new infrared pyrometer for polymer temperature measurement during extrusion moulding

    NASA Astrophysics Data System (ADS)

    Bendada, A.; Lamontagne, M.

    2004-12-01

    We describe a novel two-wavelength infrared system that we have developed for the on-line measurement of the temperature profiles of extruded polyethylene terephthalate (PET) microfibres. The key feature of the developed system is the use of two specific wavelengths that correspond to fundamental absorption bands of PET. The two wavelengths are located in the far infrared region, which allows accurate measurements even in the low-temperature range. Moreover, they are quite spaced out apart, which allows the achievement of a very good temperature resolution. A particular characteristic of the new infrared device is the use of mirror reflectors as collection optics to overcome problems of optical chromatic aberrations. On-line experimental data obtained from trials carried out on an industrial-scale extrusion die are presented and discussed

  17. Efficiency of tandem solar cell systems as function of temperature and solar energy concentration ratio

    NASA Technical Reports Server (NTRS)

    Gokcen, N. A.; Loferski, J. J.

    1979-01-01

    The results of a comprehensive theoretical analysis of tandem photovoltaic solar cells as a function of temperature and solar concentration ratio are presented. The overall efficiencies of tandem cell stacks consisting of as many as 24 cells having gaps in the 0.7 to 3.6 eV range were calculated for temperatures of 200, 300, 400, and 500 K and for illumination by an AMO solar spectrum having concentration ratios of 1, 100, 500, and 1000 suns. For ideal diodes (A = B = 1), the calculations show that the optimized overall efficiency has a limiting value eta sub opt of approximately 70 percent for T = 200 K and C = 1000; for T = 300 K and C = 1000, this limiting efficiency approaches 60 percent.

  18. C/O Ratios In Exoplanetary Atmospheres: A New Classification System And Implications For Planet Formation.

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku

    2011-09-01

    Recent observations are allowing unprecedented constraints on the carbon-to-oxygen (C/O) ratios of exoplanetary atmospheres. C/O ratios place important constraints on planet formation scenarios, planetary interiors, and on the atmospheric temperature profiles. In this talk, we will present observational constraints on atmospheric C/O ratios for an ensemble of transiting exoplanets, along with corresponding constraints on their formation conditions in the protoplanetary disks. Based on these observational inferences and new theoretical work, we introduce a new classification scheme for strongly irradiated exoplanets. In the past, giant exoplanets were classified solely on the basis of the degree of irradiation received from the host star - the so called TiO/VO hypothesis, in which the hotter class is expected to host thermal inversions, and the cooler class to not host thermal inversions. Observations in recent years have revealed several anomalies to this one-dimensional hypothesis; irradiation being the single dimension. In this work, we demonstrate that almost all the extreme anomalies reported in the literature, can be explained based on a new two-dimensional classification scheme, in which irradiation and the atmospheric C/O ratio are the two dimensions. One of the four quadrants in this 2-D phase space corresponds to the exotic new class of high-temperature carbon-rich atmospheres, such as that of WASP-12b, which are readily observable with existing and forthcoming instruments. We will report several candidate carbon-rich exoplanets along with ongoing efforts towards confirming these candidates. We will discuss the atmospheric chemistry and temperature structure of planets in the four quadrants, their formation scenarios, and the chemistry and apportionment of ices, rock, and volatiles in their interiors.

  19. New theoretical models and ratio imaging techniques associated with the NASA earth resources spectral information system

    NASA Technical Reports Server (NTRS)

    Vincent, R. K.

    1974-01-01

    Four independent investigations are reported; in general these are concerned with improving and utilizing the correlation between the physical properties of natural materials as evidenced in laboratory spectra and spectral data collected by multispectral scanners. In one investigation, two theoretical models were devised that permit the calculation of spectral emittance spectra for rock and mineral surfaces of various particle sizes. The simpler of the two models can be used to qualitatively predict the effect of texture on the spectral emittance of rocks and minerals; it is also potentially useful as an aid in predicting the identification of natural atmospheric aerosol constituents. The second investigation determined, via an infrared ratio imaging technique, the best pair of infrared filters for silicate rock-type discrimination. In a third investigation, laboratory spectra of natural materials were compressed into 11-digit ratio codes for use in feature selection, in searches for false alarm candidates, and eventually for use as training sets in completely automatic data processors. In the fourth investigation, general outlines of a ratio preprocessor and an automatic recognition map processor are developed for on-board data processing in the space shuttle era.

  20. An Application Of Optimization Based Expert System: Analysis Of Financial Ratios

    NASA Astrophysics Data System (ADS)

    Narasimhamurthi, N.; Dechen, R.

    1988-03-01

    This paper describes an application of rule-based expert system to the financial analysis of companies. The system was implemented on the Opine/Rubex system which uses ideas from optimization theory to drawing inferences. The paper provides a description of the expert system and the nature of the rule base. Typical analysis of two corporations is also presented.

  1. Evaluation of carbonate pore system under texture control for prediction of microporosity aspect ratio and shear wave velocity

    NASA Astrophysics Data System (ADS)

    Lima Neto, Irineu A.; Misságia, Roseane M.; Ceia, Marco A.; Archilha, Nathaly L.; Hollis, Cathy

    2015-06-01

    This work evaluates a suite of carbonate rocks from Albian age in the Campos Basin - Brazil, complemented by data from the literature, totaling 472 samples with detailed description of diagenetic features, quantitative mineralogy analyses, and P- and S-wave velocities (Vp and Vs) measured at three ranges of effective pressure loading: low (5-7.5 MPa), moderate (20 MPa) and high (40-50 MPa) values. Digital image analysis (DIA) was applied on microtomography (μCT) images to quantitatively describe the macro-mesopore system of the Albian carbonates, and was extended to characterize different textures from literature data to estimate reference values for carbonates. The methodology utilized to predict the aspect ratio of microporosity assumes three pore-space scales in two representative scenarios: 1) measured macro-mesopore aspect ratio from DIA, and 2) predicted microporosity aspect ratio, using Vp measurement as the main input parameter. The differential effective medium model (DEMM) is combined with analytical theories of data analysis to characterize microporosity. Shear modulus and microporosity aspect ratio calibrated by this methodology were used to predict Vs, which was compared to experimental data, resulting in a good match for all samples. Polynomial curves are fitted with a variety of carbonate textures by velocities at effective pressure and bulk porosity crossplots, establishing important relationships for velocity prediction. The effects of effective pressure on the pore system within dry plugs of Albian samples were evaluated by combining triaxial measurements at 0-10 MPa, relative pore volume reduction (RPVR) and microporosity aspect ratio prediction. According to the results, micropores that exhibit low aspect ratio tend to close with stress and cause an increase on Vp and Vs. A wide textural heterogeneity of data base and different digital image analysis and resolutions were employed successfully, combining rock physics methodologies and concepts

  2. Aripiprazole-Cyclodextrin Binary Systems for Dissolution Enhancement: Effect of Preparation Technique, Cyclodextrin Type and Molar Ratio

    PubMed Central

    M. Badr-Eldin, Shaimaa; A. Ahmed, Tarek; R Ismail, Hatem

    2013-01-01

    Objective(s): The aim of this work was to investigate the effect of the natural and the chemically modified form of cyclodextrins namely; β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) respectively on the solubility and dissolution rate of aripiprazole; an antipsychotic medication showing poor aqueous solubility. Materials and Methods: Phase solubility of aripiprazole with the studied CDs and the complexation efficiency values (CE) which reflect the solubilizing power of the CDs towards the drug was performed. Solid binary systems of aripiprazole with CDs were prepared by kneading, microwave irradiation and freeze-drying techniques at 1:1 and 1:2 (drug to CD) molar ratios. Drug-CD physical mixtures were also prepared in the same molar ratios for comparison. The dissolution of aripiprazole-binary systems was carried out to select the most appropriate CD type, molar ratio and preparation technique. Results: Phase solubility study indicated formation of higher order complexes and the complexation efficiency values was higher for HP-β-CD compared to β-CD. Drug dissolution study revealed that aripiprazole dissolution was increased upon increasing the CD molar ratio and, the freeze-drying technique was superior to the other studied methods especially when combined with the HP-β-CD. The cyclodextrin type, preparation technique and molar ratio exhibited statistically significant effect on the drug dissolution at P≤ 0.05. Conclusion: The freeze-dried system prepared at molar ratio 1:2 (drug: CD) can be considered as efficient tool for enhancing aripiprazole dissolution with the possibility of improving its bioavailability. PMID:24570827

  3. Real-Time Measurement of Oil Circulation Ratio in CO2 Heat Pump System Using Optical Method

    NASA Astrophysics Data System (ADS)

    Takigawa, Ryusuke; Shimizu, Takao; Matsusaka, Yukio; Gao, Lei; Honda, Tomohiro

    The lubricating oil in the refrigerant flow in a CO2 heat pump system has a great influence on cycle performance. In order to measure the OCR (Oil circulation ratio), a mixing chamber and a visual vessel were installed at the outlet of the gas-cooler. By mixing the oil and refrigerant, the liquid mixture of oil and refrigerant becomes cloudy at the outlet of the gas-cooler. By measuring the infrared ray transmittance of the oil-refrigerant liquid mixture, it was found that the transmittance decreases with an increase in the oil circulation ratio. For this reason, it is found that, in spite of immiscible refrigerant and oil, the measurement of the oil circulation ratio is possible by measuring the transmittance of infrared ray at the outlet of the gas-cooler.

  4. [Development of transient pyrometer based on multi-spectral radiation technology].

    PubMed

    Zhai, Yang; Shen, Hua; Zhu, Ri-hong; Ma, Suo-dong; Li, Jian-xin; Chen, Lei; Gu, Jin-liang

    2010-11-01

    In modern dynamics system, the radiant temperature of the flame, which caused by the transient plasma stimulated by high-energy-level electromagnetism field, takes an important role in the description of the flying object's status as well as cauterization of the trajectory. Due to its extremely high temperature and transient process, the radiant temperature of the flame can hardly be measured through contracted ways, either static ways such as traditional pyrophotometer or CCD arrays. In the present paper, the authors bring forward a novel pyrophotometer based on classical theory of Planck's law (blackbody radiation law) and multi-channel spectrums radiation method. With this new type pyrophotometer, any spectrum can be selected out from the wavelength of 300 to 860 nm within 2 ns. Also, the application of high-definition diffraction grating and fibers can'ensure the accuracy of selected spectrum. The results through a serial of experiments by using this theory as well as high-speed photodetector indicate that this method is valid and accurate for the measurement of the object's surface's radiant temperature. PMID:21284205

  5. The 87Sr/86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake system

    USGS Publications Warehouse

    Hart, W.S.; Quade, Jay; Madsen, D.B.; Kaufman, D.S.; Oviatt, Charles G.

    2004-01-01

    Lakes in the Bonneville basin have fluctuated dramatically in response to changes in rainfall, temperature, and drainage diversion during the Quaternary. We analyzed tufas and shells from shorelines of known ages in order to develop a relation between 87Sr/86Sr ratio of carbonates and lake level, which then can be used as a basis for constraining lake level from similar analyses on carbonates in cores. Carbonates from the late Quaternary shorelines yield the following average 87Sr/86Sr ratios: 0.71173 for the Stansbury shoreline (22-20 14C ka; 1350 m), 0.71153 for the Bonneville shoreline (15.5-14.5 14C ka; 1550 m), 0.71175 for the Provo shoreline (14.4-14.0 14C ka; 1450 m), 0.71244 for the Gilbert shoreline (???10.3-10.9 14C ka; 1300 m), and 0.71469 for the modern Great Salt Lake (1280 m). These analyses show that the 87Sr/86Sr ratio of lacustrine carbonates changes substantially at low- to mid-lake levels but is invariant at mid- to high-lake levels. Sr-isotope mixing models of Great Salt Lake and the Bonneville paleolake system were constructed to explain these variations in 87Sr/86Sr ratios with change in lake level. Our model of the Bonneville system produced a 87Sr/86Sr ratio of 0.71193, very close to the observed ratios from high-shoreline tufa and shell. The model verifies that the integration of the southern Sevier and Beaver rivers with the Bear and others rivers in the north is responsible for the lower 87Sr/86Sr ratios in Lake Bonneville compared to the modern Great Salt Lake. We also modeled the 87Sr/86Sr ratio of Lake Bonneville with the upper Bear River diverted into the Snake River basin and obtained an 87Sr/86Sr ratio of 0.71414. Coincidentally, this ratio is close to the observed ratio for Great Salt Lake of 0.71469. This means that 87Sr/86Sr ratios of >0.714 for carbonate can be produced by climatically induced low-lake conditions or by diversion of the upper Bear River out of the Bonneville basin. This model result also demonstrates that the

  6. The effect of expansion-ratio limitations on positive-displacement, total-flow geothermal power systems

    SciTech Connect

    DiPippo, R.

    1982-02-01

    Combined steam-turbine/positive-displacement engine (PDE) geothermal power systems are analyzed thermodynamically and compared with optimized reference flash-steam plants. Three different configurations of combined systems are considered. Treated separately are the cases of self-flowing and pumped wells. Two strategies are investigated that help overcome the inherent expansion-ratio limitation of PDE's: pre-flashing and pre-mixing. Parametrically-obtained results show the required minimum PDE efficiency for the combined system to match the reference plant for various sets of design conditions.

  7. Moment ratios and dynamic critical behavior of a reactive system with several absorbing configurations.

    PubMed

    de Andrade, M F; Figueiredo, W

    2011-03-01

    We determine the critical behavior of a reactive model with many absorbing configurations. Monomers A and B land on the sites of a linear lattice and can react depending on the state of their nearest-neighbor sites. The probability of a reaction depends on temperature of the catalyst as well as on the energy coupling between pairs of nearest-neighbor monomers. We employ Monte Carlo simulations to calculate the moments of the order parameter of the model as a function of temperature. Some ratios between pairs of moments are independent of temperature and are in the same universality class of the contact process. We also find the dynamical critical exponents of the model and we show that they are in the directed percolation universality class whatever the values of temperature. PMID:21517455

  8. Micro-Bowen ratio system for measuring evapotranspiration in a vineyard interrow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sparse canopy systems such as vineyards are comprised of multiple components (e.g., vines, interrow soil and/or groundcover) that each contribute to system water and energy balance. Understanding component water and energy fluxes is critical for informing management decisions aimed at improving prod...

  9. The molecular branching ratio method for calibration of optical systems in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Mumma, M. J.

    1972-01-01

    The intensity distribution of bands belonging to six molecular band systems is discussed with special emphasis on their usefulness for intensity calibration of optical systems in the vacuum ultraviolet (1000A Lambda 3000A). The theory of molecular band intensities is outlined and the technique of measuring the spectral response curve is described. Several methods for establishing an absolute intensity calibration are discussed.

  10. Martian Post-Impact Hydrothermal Systems: Effects of Permeability and Freezing on Surface Discharge and Water:Rock Ratios

    NASA Astrophysics Data System (ADS)

    Barnhart, C. J.; Nimmo, F.; Travis, B. J.

    2008-12-01

    A km-scale bolide delivers enough energy to heat subsurface water, and drive hydrothermal circulation (Abramov and Kring, 2005). This post-impact hydrothermal (PIH) circulation can lead to surface discharge of water, and chemical alteration - both are potentially detectable. We present the effects that permeability and freezing have on discharge and water:rock (W/R) ratios. We simulate the evolution of PIH systems using MAGHNUM (detailed in Travis et al., 2003). MAGHNUM solves the time-dependent transport of water and heat through a porous medium, incorporating phase transitions between ice (applicable to Mars), vapor and water. PIH evolution depends on heat sources and permeability (k); these, in turn, control discharge and chemical alteration which depends on both the peak temperatures and the W/R ratio (Schwenzer and Kring, 2008). Recently, CRISM detected phyllosilicate-rich material within ~45 km craters (Mustard et al., 2008) and the HiRISE camera imaged gullies, some emanating from central peaks, within many high latitude craters. We model a 45 km crater created by a 3.9 km dia., 7 km/s impactor. Simulations run for 100,000 yrs in a 2D axisymmetric domain with a heat flux of 32.5 mW m-2. Thus far we have tested systems with a range of surface k's (10-4 to 1 darcys) that decay exponentially with depth and are exposed to two surface temperatures (5°C and -53°C). In general W/R ratios increase with increased k. Focusing in on the upper 200 m at the center of the crater, fluid temperatures remain > 100°C for 9000 yrs and flow yields W/R ratios of 10 when exposed to a surface temperature of 5°C. Dropping the surface temperature below freezing to a Mars-like - 53°C maintains upper 200 m temperatures > 100°C for only 600 yrs and W/R ratios are reduced to 1. Higher permeabilities yield higher W/R ratios but reduced time exposure to high temperatures. When surface temperatures are below freezing total system discharge is roughly independent of k for modest

  11. Improving signal-to-noise ratio by use of a cross-shaped aperture in the holographic data storage system.

    PubMed

    Gu, Huarong; Yin, Songfeng; Tan, Qiaofeng; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2009-11-10

    A cross-shaped aperture is proposed to improve signal-to-noise ratio (SNR) in the holographic data storage system (HDSS). Both simulated and experimental results show that higher SNR can be achieved by the cross-shaped aperture than traditional square or circular apertures with the same area. A maximum gain of 20% in SNR is obtained for the optimized cross-shaped aperture. The sensitivities to pixel misalignment and magnification error are also numerically compared. PMID:19904322

  12. Sensitivity of children's behavior to probabilistic reward: effects of a decreasing-ratio lottery system on math performance.

    PubMed

    Martens, Brian K; Ardoin, Scott P; Hilt, Alexandra M; Lannie, Amanda L; Panahon, Carlos J; Wolfe, Laurie A

    2002-01-01

    Probabilistic reward has been shown to affect children's choice behavior in game-like activities. We examined the effects of a lottery system containing progressively lower exchange ratios on children's completion of math problems. Two of the 3 children completed problems above baseline levels until the chance of exchange dropped to 25%. This study describes a potentially useful method for examining reinforcement schedules in applied settings and extends previous research on probabilities of reinforcement. PMID:12555911

  13. Wind tunnel tests of high-lift systems for advanced transports using high-aspect-ratio supercritical wings

    NASA Technical Reports Server (NTRS)

    Allen, J. B.; Oliver, W. R.; Spacht, L. A.

    1982-01-01

    The wind tunnel testing of an advanced technology high lift system for a wide body and a narrow body transport incorporating high aspect ratio supercritical wings is described. This testing has added to the very limited low speed high Reynolds number data base for this class or aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, ailerons, and spoilers, and the effects of Mach and Reynolds numbers.

  14. The Role of Boron-Chloride and Noble Gas Isotope Ratios in TVZ Geothermal Systems

    SciTech Connect

    Hulston, J.R.

    1995-01-01

    The model of the geothermal system in which deep circulating groundwater containing noble gases, at air saturated water concentrations, mixes with hot fluids of mantle origin at depth, is extended to include the effect of interaction of the ascending fluid with both solid and gaseous phases of basement (or other) rocks en route to the surface. It is demonstrated that this interaction is responsible for most of the CO{sub 2} in the Taupo Volcanic Zone (TVZ) geothermal systems. It is proposed that the modeling of this interaction might be accomplished by techniques similar to those used for the understanding of the oxygen isotope shift found in geothermal systems. The water rock interaction experiments of Ellis and Mahon (1964, 1967) provides some data on the kinetic rates for B and Cl dissolution from rocks likely to be encountered in the geothermal system, but further information on the behavior of B may be needed. If these problems can be overcome this modeling technique has promise for the estimation of the recharge of geothermal systems and hence the sustainability of these systems.

  15. DEEP, LOW MASS RATIO OVERCONTACT BINARY SYSTEMS. XIII. DZ PISCIUM WITH INTRINSIC LIGHT VARIABILITY

    SciTech Connect

    Yang, Y.-G.; Dai, H.-F.; Qian, S.-B.; Soonthornthum, B. E-mail: qsb@ynao.ac.cn

    2013-08-01

    New multi-color photometry for the eclipsing binary DZ Psc was performed in 2011 and 2012 using the 85 cm telescope at the Xinglong Station of the National Astronomical Observatories of China. Using the updated Wilson-Devinney (W-D) code, we deduced two sets of photometric solutions. The overcontact degree is f = 89.7({+-} 1.0)%, identifying DZ Psc as a deep, low mass ratio overcontact binary. The asymmetric light curves (i.e., LC{sub 2} in 2012) were modeled by a hot spot on the primary star. Based on all of the available light minimum times, we discovered that the orbital period of DZ Psc may be undergoing a secular period increase with a cyclic variation. The modulated period and semi-amplitude of this oscillation are P{sub mod} = 11.89({+-} 0.19) yr and A = 0.0064({+-} 0.0006) days, which may be possibly attributed to either cyclic magnetic activity or light-time effect due to the third body. The long-term period increases at a rate of dP/dt=+7.43({+-}0.17) Multiplication-Sign 10{sup -7} days yr{sup -1}, which may be interpreted as conserved mass transfer from the less massive component to the more massive one. With mass transferring, DZ Psc will finally merge into a rapid-rotation single star when J{sub spin}/J{sub orb} > 1/3.

  16. Deep, Low Mass Ratio Overcontact Binary Systems. XIII. DZ Piscium with Intrinsic Light Variability

    NASA Astrophysics Data System (ADS)

    Yang, Y.-G.; Qian, S.-B.; Zhang, L.-Y.; Dai, H.-F.; Soonthornthum, B.

    2013-08-01

    New multi-color photometry for the eclipsing binary DZ Psc was performed in 2011 and 2012 using the 85 cm telescope at the Xinglong Station of the National Astronomical Observatories of China. Using the updated Wilson-Devinney (W-D) code, we deduced two sets of photometric solutions. The overcontact degree is f = 89.7(± 1.0)%, identifying DZ Psc as a deep, low mass ratio overcontact binary. The asymmetric light curves (i.e., LC2 in 2012) were modeled by a hot spot on the primary star. Based on all of the available light minimum times, we discovered that the orbital period of DZ Psc may be undergoing a secular period increase with a cyclic variation. The modulated period and semi-amplitude of this oscillation are P mod = 11.89(± 0.19) yr and A = 0.0064(± 0.0006) days, which may be possibly attributed to either cyclic magnetic activity or light-time effect due to the third body. The long-term period increases at a rate of dP/dt=+7.43(+/- 0.17)\\times 10^{-7}{\\,days\\, yr^{-1}}, which may be interpreted as conserved mass transfer from the less massive component to the more massive one. With mass transferring, DZ Psc will finally merge into a rapid-rotation single star when J spin/J orb > 1/3.

  17. California bearing ratio behavior of soil-stabilized class F fly ash systems

    SciTech Connect

    Leelavathamma, B.; Mini, K.M.; Pandian, N.S.

    2005-11-01

    Fly ash is a finely divided mineral residue resulting from the combustion of coal in power plants that occupies large extents of land and also causes environmental problems. Hence, concerted attempts are being made to effectively use fly ash in an environmentally friendly way instead of dumping. Several studies have been carried out for its bulk utilization, such as its addition to improve the California bearing ratio (CBR) of soil in roads and embankments. But a thorough mixing of fly ash with soil may not be possible in the field. Hence a study has been carried out on the CBR behavior of black cotton soil and Raichur fly ash (which is class F) in layers and compared with the same in mixes. The results show that the CBR values of soil-fly ash mixes are better than layers, as expected. To improve the strength of layers, cement is used as an additive to fly ash. The results show that black cotton soil can be improved with stabilized fly ash, solving its strength problem as well as the disposal problem of fly ash.

  18. Observed solar radio burst effects on GPS/Wide Area Augmentation System carrier-to-noise ratio

    NASA Astrophysics Data System (ADS)

    Cerruti, Alessandro P.; Kintner, Paul M.; Gary, Dale E.; Lanzerotti, Louis J.; de Paula, Eurico R.; Vo, Hien B.

    2006-10-01

    The first direct observations of Global Positioning System (GPS) L1 (1.57542 GHz) carrier-to-noise ratio degradation due to a solar radio burst are presented for an event that occurred on 7 September 2005. Concurrent carrier-to-noise ratio data from GPS satellites are available from receivers at Arecibo Observatory, Puerto Rico; San Juan, Puerto Rico; and also from Anderson, South Carolina, United States. The right-hand circularly polarized (RHCP) signals from this solar radio burst caused a corresponding decrease in the carrier-to-noise ratio of about 2.3 dB across all visible satellites. The maximum solar radio burst power associated with this event was 8700 solar flux units (1 SFU = 10-22 W/m2/Hz) RHCP at 1600 MHz. Direct observations of GPS semicodeless L2 carrier-to-noise ratio degradation from receivers in Brazil are also presented for a solar radio burst that occurred on 28 October 2003. The maximum degradation at GPS L1 was about 3.0 dB, and a degradation of 10.0 dB was observed on the semicodeless L2 signal. Scaling to historic solar radio burst records suggests that GPS L1 receivers could fail to produce a navigation solution and that semicodeless L1/L2 receivers will fail.

  19. Selenium stable isotope ratios in California agricultural drainage water management systems

    USGS Publications Warehouse

    Herbel, M.J.; Johnson, T.M.; Tanji, K.K.; Gao, S.; Bullen, T.D.

    2002-01-01

    Selenium stable isotope ratios are known to shift in predictable ways during various microbial, chemical, and biological processes, and can be used to better understand Se cycling in contaminated environments. In this study we used Se stable isotopes to discern the mechanisms controlling the transformation of oxidized, aqueous forms of Se to reduced, insoluble forms in sediments of Se-affected environments. We measured 80Se/76Se in surface waters, shallow ground waters, evaporites, digested plants and sediments, and sequential extracts from several sites where agricultural drainage water is processed in the San Joaquin Valley of California. Selenium isotope analyses of samples obtained from the Tulare Lake Drainage District flow-through wetland reveal small isotopic contrasts (mean difference 0.7%o) between surface water and reduced Se species in the underlying sediments. Selenium in aquatic macrophytes was very similar isotopically to the NaOH and Na2SO3 sediment extracts designed to recover soluble organic Se and Se(O), respectively. For the integrated on-farm drainage management sites, evaporite salts were slightly (approximately 0.6%o) enriched in the heavier isotope relative to the inferred parent waters, whereas surface soils were slightly (approximately 1.4%o) depleted. Bacterial or chemical reduction of Se(VI) or Se(IV) may be occurring at these sites, but the small isotopic contrasts suggest that other, less isotopically fractionating mechanisms are responsible for accumulation of reduced forms in the sediments. These findings provide evidence that Se assimilation by plants and algae followed by deposition and mineralization is the dominant transformation pathway responsible for accumulation of reduced forms of Se in the wetland sediments.

  20. Closed system respirometry may underestimate tissue gas exchange and bias the respiratory exchange ratio (RER).

    PubMed

    Malte, Christian Lind; Nørgaard, Simon; Wang, Tobias

    2016-02-01

    Closed respirometry is a commonly used method to measure gas exchange in animals due to its apparent simplicity. Typically, the rates of O2 uptake and CO2 excretion (VO2 and VCO2, respectively) are assumed to be in steady state, such that the measured rates of gas exchange equal those at tissue level. In other words, the respiratory gas exchange ratio (RER) is assumed to equal the respiratory quotient (RQ). However, because the gas concentrations change progressively during closure, the animal inspires air with a progressively increasing CO2 concentration and decreasing O2 concentration. These changes will eventually affect gas exchange causing the O2 and CO2 stores within the animal to change. Because of the higher solubility/capacitance of CO2 in the tissues of the body, VCO2 will be more affected than VO2, and we hypothesize therefore that RER will become progressively underestimated as closure time is prolonged. This hypothesis was addressed by a combination of experimental studies involving closed respirometry on ball pythons (Python regius) as well as mathematical models of gas exchange. We show that increased closed duration of the respirometer reduces RER by up to 13%, and these findings may explain previous reports of RER values being below 0.7. Our model reveals that the maximally possible reduction in RER is determined by the storage capacity of the body for CO2 (product of size and specific capacitance) relative to the respirometer storage capacity. Furthermore, modeling also shows that pronounced ventilatory and circulatory response to hypercapnia can alleviate the reduction in RER. PMID:26523499

  1. Sedimentary Sulphur:Iron Ratio Indicates Vivianite Occurrence: A Study from Two Contrasting Freshwater Systems

    PubMed Central

    Rothe, Matthias; Kleeberg, Andreas; Grüneberg, Björn; Friese, Kurt; Pérez-Mayo, Manuel; Hupfer, Michael

    2015-01-01

    An increasing number of studies constrain the importance of iron for the long-term retention of phosphorus (P) under anoxic conditions, i.e. the formation of reduced iron phosphate minerals such as vivianite (Fe3(PO4)2⋅8H2O). Much remains unknown about vivianite formation, the factors controlling its occurrence, and its relevance for P burial during early sediment diagenesis. To study the occurrence of vivianite and to assess its relevance for P binding, surface sediments of two hydrologically contrasting waters were analysed by heavy-liquid separation and subsequent powder X-ray diffraction. In Lake Arendsee, vivianite was present in deeper sediment horizons and not in the uppermost layers with a sharp transition between vivianite and non-vivianite bearing layers. In contrast, in lowland river Lower Havel vivianite was present in the upper sediment layers and not in deeper horizons with a gradual transition between non-vivianite and vivianite bearing layers. In both waters, vivianite occurrence was accompanied by the presence of pyrite (FeS2). Vivianite formation was favoured by an elevated iron availability through a lower degree of sulphidisation and was present at a molar ratio of total sulphur to reactive iron smaller than 1.1, only. A longer lasting burden of sediments by organic matter, i.e. due to eutrophication, favours the release of sulphides, and the formation of insoluble iron sulphides leading to a lack of available iron and to less or no vivianite formation. This weakening in sedimentary P retention, representing a negative feedback mechanism (P release) in terms of water quality, could be partly compensated by harmless Fe amendments. PMID:26599406

  2. Sedimentary Sulphur:Iron Ratio Indicates Vivianite Occurrence: A Study from Two Contrasting Freshwater Systems.

    PubMed

    Rothe, Matthias; Kleeberg, Andreas; Grüneberg, Björn; Friese, Kurt; Pérez-Mayo, Manuel; Hupfer, Michael

    2015-01-01

    An increasing number of studies constrain the importance of iron for the long-term retention of phosphorus (P) under anoxic conditions, i.e. the formation of reduced iron phosphate minerals such as vivianite (Fe3(PO4)2⋅8H2O). Much remains unknown about vivianite formation, the factors controlling its occurrence, and its relevance for P burial during early sediment diagenesis. To study the occurrence of vivianite and to assess its relevance for P binding, surface sediments of two hydrologically contrasting waters were analysed by heavy-liquid separation and subsequent powder X-ray diffraction. In Lake Arendsee, vivianite was present in deeper sediment horizons and not in the uppermost layers with a sharp transition between vivianite and non-vivianite bearing layers. In contrast, in lowland river Lower Havel vivianite was present in the upper sediment layers and not in deeper horizons with a gradual transition between non-vivianite and vivianite bearing layers. In both waters, vivianite occurrence was accompanied by the presence of pyrite (FeS2). Vivianite formation was favoured by an elevated iron availability through a lower degree of sulphidisation and was present at a molar ratio of total sulphur to reactive iron smaller than 1.1, only. A longer lasting burden of sediments by organic matter, i.e. due to eutrophication, favours the release of sulphides, and the formation of insoluble iron sulphides leading to a lack of available iron and to less or no vivianite formation. This weakening in sedimentary P retention, representing a negative feedback mechanism (P release) in terms of water quality, could be partly compensated by harmless Fe amendments. PMID:26599406

  3. Row Ratios of Intercropping Maize and Soybean Can Affect Agronomic Efficiency of the System and Subsequent Wheat

    PubMed Central

    Zhang, Yitao; Liu, Jian; Zhang, Jizong; Liu, Hongbin; Liu, Shen; Zhai, Limei; Wang, Hongyuan; Lei, Qiuliang; Ren, Tianzhi; Yin, Changbin

    2015-01-01

    Intercropping is regarded as an important agricultural practice to improve crop production and environmental quality in the regions with intensive agricultural production, e.g., northern China. To optimize agronomic advantage of maize (Zea mays L.) and soybean (Glycine max L.) intercropping system compared to monoculture of maize, two sequential experiments were conducted. Experiment 1 was to screening the optimal cropping system in summer that had the highest yields and economic benefits, and Experiment 2 was to identify the optimum row ratio of the intercrops selected from Experiment 1. Results of Experiment 1 showed that maize intercropping with soybean (maize || soybean) was the optimal cropping system in summer. Compared to conventional monoculture of maize, maize || soybean had significant advantage in yield, economy, land utilization ratio and reducing soil nitrate nitrogen (N) accumulation, as well as better residual effect on the subsequent wheat (Triticum aestivum L.) crop. Experiment 2 showed that intercropping systems reduced use of N fertilizer per unit land area and increased relative biomass of intercropped maize, due to promoted photosynthetic efficiency of border rows and N utilization during symbiotic period. Intercropping advantage began to emerge at tasseling stage after N topdressing for maize. Among all treatments with different row ratios, alternating four maize rows with six soybean rows (4M:6S) had the largest land equivalent ratio (1.30), total N accumulation in crops (258 kg ha-1), and economic benefit (3,408 USD ha-1). Compared to maize monoculture, 4M:6S had significantly lower nitrate-N accumulation in soil both after harvest of maize and after harvest of the subsequent wheat, but it did not decrease yield of wheat. The most important advantage of 4M:6S was to increase biomass of intercropped maize and soybean, which further led to the increase of total N accumulation by crops as well as economic benefit. In conclusion, alternating

  4. Row Ratios of Intercropping Maize and Soybean Can Affect Agronomic Efficiency of the System and Subsequent Wheat.

    PubMed

    Zhang, Yitao; Liu, Jian; Zhang, Jizong; Liu, Hongbin; Liu, Shen; Zhai, Limei; Wang, Hongyuan; Lei, Qiuliang; Ren, Tianzhi; Yin, Changbin

    2015-01-01

    Intercropping is regarded as an important agricultural practice to improve crop production and environmental quality in the regions with intensive agricultural production, e.g., northern China. To optimize agronomic advantage of maize (Zea mays L.) and soybean (Glycine max L.) intercropping system compared to monoculture of maize, two sequential experiments were conducted. Experiment 1 was to screening the optimal cropping system in summer that had the highest yields and economic benefits, and Experiment 2 was to identify the optimum row ratio of the intercrops selected from Experiment 1. Results of Experiment 1 showed that maize intercropping with soybean (maize || soybean) was the optimal cropping system in summer. Compared to conventional monoculture of maize, maize || soybean had significant advantage in yield, economy, land utilization ratio and reducing soil nitrate nitrogen (N) accumulation, as well as better residual effect on the subsequent wheat (Triticum aestivum L.) crop. Experiment 2 showed that intercropping systems reduced use of N fertilizer per unit land area and increased relative biomass of intercropped maize, due to promoted photosynthetic efficiency of border rows and N utilization during symbiotic period. Intercropping advantage began to emerge at tasseling stage after N topdressing for maize. Among all treatments with different row ratios, alternating four maize rows with six soybean rows (4M:6S) had the largest land equivalent ratio (1.30), total N accumulation in crops (258 kg ha(-1)), and economic benefit (3,408 USD ha(-1)). Compared to maize monoculture, 4M:6S had significantly lower nitrate-N accumulation in soil both after harvest of maize and after harvest of the subsequent wheat, but it did not decrease yield of wheat. The most important advantage of 4M:6S was to increase biomass of intercropped maize and soybean, which further led to the increase of total N accumulation by crops as well as economic benefit. In conclusion, alternating

  5. RELATIONSHIP BETWEEN HVAC SYSTEM OPERATION, AIR EXCHANGE RATE, AND INDOOR-OUTDOOR PARTICULATE MATTER RATIOS

    EPA Science Inventory

    Measurements of duty cycle , the fraction of time the heating and cooling (HVAC) system was operating, were made in each participant's home during the spring season of the RTP Particulate Matter Panel Study. A miniature temperature sensor/data logger combination placed on the ...

  6. Sensitivity of N/Z ratio in projectile break-up of isobaric systems

    NASA Astrophysics Data System (ADS)

    De Filippo, E.; Pagano, A.; Russotto, P.; Acosta, L.; Auditore, L.; Baran, V.; Cap, T.; Cardella, G.; Colonna, M.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Marquínez-Durán, G.; Maiolino, C.; Minniti, T.; Norella, S.; Pagano, E. V.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Rosato, E.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Siwek-Wilczyńska, K.; Wilczyński, J.

    2016-05-01

    The binary break-up of projectile-like fragments in non central heavy-ion collisions follows different decay patterns, from equilibrated emission towards dynamical (prompt) fission. Recently, comparing two systems with different N/Z in the entrance channel, it has been shown that the dynamical emission cross-section is enhanced for the most neutron rich system while the statistical emission cross-section is independent from the isotopic composition. In order to understand this dependence and disentangle it from the initial size of the nuclei, we have studied the two isobaric systems 124Xe+64 Zn and 124Xe+64 Ni at 35 A MeV (InKiIsSy experiment), in comparison with the previous studied reactions (124Sn +64 Ni and 112Sn +58 Ni) at the same bombarding energy. We present the first results evidencing a striking similar effect in the dynamical decay as a function of the N/Z of the target for equal size systems.

  7. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    SciTech Connect

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-07-01

    The {sub 36}Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The {sub 36}Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field.

  8. Peak-to-average power ratio reduction in all-optical orthogonal frequency division multiplexing system using rotated constellation approach

    NASA Astrophysics Data System (ADS)

    Hmood, Jassim K.; Noordin, Kamarul A.; Arof, Hamzah; Harun, Sulaiman W.

    2015-10-01

    In this paper, a new approach for reducing peak-to-average power ratio (PAPR) based on modulated half subcarriers in all-optical OFDM systems with rotated QAM constellation is presented. To reduce the PAPR, the odd subcarriers are modulated with rotated QAM constellation, while the even subcarriers are modulated with standard QAM constellation. The impact of the rotation angle on the PAPR is mathematically modeled. The effect of PAPR reduction on the system performance is investigated by simulating the all-optical OFDM system, which uses optical coupler-based inverse fast Fourier transform (IFFT)/fast Fourier transform (FFT). The all-optical system is numerically demonstrated with 29 subcarriers. Each subcarrier is modulated by a QAM modulator at a symbol rate of 25 Gsymbol/s. The results reveal that PAPR is reduced with increasing the angle of rotation. The PAPR reduction can reach about 0.8 dB when the complementary cumulative distribution function (CCDF) is 1 × 10-3. Furthermore, both the nonlinear phase noise and the optical signal-to-noise ratio (OSNR) of the system are improved in comparison with the original all-optical OFDM without PAPR reduction.

  9. A multi-wavelength streak-optical-pyrometer for warm-dense matter experiments at NDCX-I and NDCX-II

    NASA Astrophysics Data System (ADS)

    Ni, P. A.; Bieniosek, F. M.; Henestroza, E.; Lidia, S. M.

    2014-01-01

    We report on a multi-wavelength streak-optical-pyrometer (SOP) developed the for warm-dense-matter (WDM) experiments at the existing NDCX-I facility and the NDCX-II facility currently being commissioned at LBNL. The SOP served as the primary temperature diagnostic in the recent NDCX-I experiments, in which an intense K+ beam was used to heat different metal samples into WDM states. The SOP consists of a spectral grating (visible and near-infrared spectral range) and a fast, high-dynamic-range optical streak camera. The instrument is calibrated absolutely with a NIST-traceable tungsten ribbon lamp and can itself be considered as an absolutely calibrated, time-resolving spectrometer. The sample temperature is determined from fitting the recorded thermal spectrum into the Planck formula multiplied by a model of emissivity.

  10. USGS-NoGaDat - A global dataset of noble gas concentrations and their isotopic ratios in volcanic systems

    USGS Publications Warehouse

    Abedini, Atosa A.; Hurwitz, S.; Evans, William C.

    2006-01-01

    The database (Version 1.0) is a MS-Excel file that contains close to 5,000 entries of published information on noble gas concentrations and isotopic ratios from volcanic systems in Mid-Ocean ridges, ocean islands, seamounts, and oceanic and continental arcs (location map). Where they were available we also included the isotopic ratios of strontium, neodymium, and carbon. The database is sub-divided both into material sampled (e.g., volcanic glass, different minerals, fumarole, spring), and into different tectonic settings (MOR, ocean islands, volcanic arcs). Included is also a reference list in MS-Word and pdf from which the data was derived. The database extends previous compilations by Ozima (1994), Farley and Neroda (1998), and Graham (2002). The extended database allows scientists to test competing hypotheses, and it provides a framework for analysis of noble gas data during periods of volcanic unrest.

  11. High aspect ratio CdS nanowires synthesized in microemulsion system

    SciTech Connect

    Fu Xun . E-mail: fuxun@qust.edu.cn; Wang Debao; Wang Jing; Shi Huaqiang; Song Caixia

    2004-10-04

    CdS nanowires with typical length more than 8 {mu}m and width of 30 nm on average have been successfully synthesized through Cd(NO{sub 3}){sub 2} reacting with CS{sub 2} and ethylenediamine in microemulsion system of sodium dodecylbenzene sulfonate (SBDS). The microstructures of the as-synthesized CdS nanowires were characterized using XRD, transmission electron microscopy (TEM) and HRTEM. The possible formation mechanism was discussed. The morphologies of CdS sample strongly depend on the concentration of surfactant in solutions.

  12. Pretreatment Lymphocyte Monocyte Ratio Predicts Long-Term Outcomes in Patients with Digestive System Tumor: A Meta-Analysis.

    PubMed

    Zhang, Jingwen; Chen, Lishan; Zhou, Rui; Sun, Huiying; Liao, Yulin; Liao, Wangjun

    2016-01-01

    Purpose. The prognostic value of pretreatment lymphocyte monocyte ratio (LMR) in digestive system cancer patients remains controversial. The aim of this study was to quantify the prognostic impact of this biomarker and assess its consistency in digestive system tumors. Methods. We searched "PubMed," "Embase," and "CBM" for published eligible studies before June 2016 and conducted a meta-analysis to estimate the pooled hazard ratios (HRs) for disease recurrence and mortality focusing on LMR. Subgroup analyses, meta-regression, and sensitivity analyses were also performed. Results. A total of 22 cohort studies enrolling 12829 patients with digestive system cancer were included. The summary results showed that lower LMR was significantly associated with worse overall survival (OS), cancer-specific survival (CSS), and tumor disease or recurrence-free survival (DFS/RFS) in analyses using the studies reporting HRs either by the univariate analyses (HR = 1.32, HR = 1.35, and HR = 1.26 for OS, CSS, and DFS/RFS, resp.) or by multivariate analyses (HR = 1.21, HR = 1.18, and HR = 1.26 for OS, CSS, and DFS/RFS, resp.). Conclusion. Our results support the fact that decreased LMR indicates worse prognosis in multiple digestive system tumors. PMID:27594882

  13. Pretreatment Lymphocyte Monocyte Ratio Predicts Long-Term Outcomes in Patients with Digestive System Tumor: A Meta-Analysis

    PubMed Central

    Zhang, Jingwen; Chen, Lishan; Zhou, Rui; Sun, Huiying; Liao, Yulin

    2016-01-01

    Purpose. The prognostic value of pretreatment lymphocyte monocyte ratio (LMR) in digestive system cancer patients remains controversial. The aim of this study was to quantify the prognostic impact of this biomarker and assess its consistency in digestive system tumors. Methods. We searched “PubMed,” “Embase,” and “CBM” for published eligible studies before June 2016 and conducted a meta-analysis to estimate the pooled hazard ratios (HRs) for disease recurrence and mortality focusing on LMR. Subgroup analyses, meta-regression, and sensitivity analyses were also performed. Results. A total of 22 cohort studies enrolling 12829 patients with digestive system cancer were included. The summary results showed that lower LMR was significantly associated with worse overall survival (OS), cancer-specific survival (CSS), and tumor disease or recurrence-free survival (DFS/RFS) in analyses using the studies reporting HRs either by the univariate analyses (HR = 1.32, HR = 1.35, and HR = 1.26 for OS, CSS, and DFS/RFS, resp.) or by multivariate analyses (HR = 1.21, HR = 1.18, and HR = 1.26 for OS, CSS, and DFS/RFS, resp.). Conclusion. Our results support the fact that decreased LMR indicates worse prognosis in multiple digestive system tumors. PMID:27594882

  14. Vasopressin decreases pulmonary-to-systemic vascular resistance ratio in a porcine model of severe hemorrhagic shock.

    PubMed

    Sarkar, Joy; Golden, Patrick J; Kajiura, Lauren N; Murata, Lee-Ann M; Uyehara, Catherine F T

    2015-05-01

    Vasopressors are gaining renewed interest as treatment adjuncts in hemorrhagic shock. The ideal vasoconstrictor will increase systemic blood pressure without increasing pulmonary vascular resistance (PVR), which hinders pulmonary perfusion and exacerbates hypoxemia. However, the selectivity of pressors for pulmonary versus systemic vasoconstriction during hemorrhage has not been characterized. The purpose of this study was to test the hypothesis that vasopressin (VP) has distinct effects on pulmonary versus systemic hemodynamics, unlike the catecholamine vasopressors norepinephrine (NE) and phenylephrine (PE). Anesthetized and ventilated pigs were assigned to resuscitation with saline only (n = 7) or saline with VP (n = 6), NE (n = 6), or PE (n = 6). Animals were hemorrhaged to a target volume of 30 mL/kg and a mean arterial pressure of 35 mmHg. One hour after the start of hemorrhage, animals were resuscitated with saline up to one shed blood volume, followed by either additional saline or a vasopressor. Hemodynamics and oxygenation were measured hourly for 4 h after the start of hemorrhage. Vasopressin increased systemic vascular resistance (SVR) while sparing the pulmonary vasculature, leading to a 45% decrease in the PVR/SVR ratio compared with treatment with PE. Conversely, NE induced pulmonary hypertension and led to an increased PVR/SVR ratio associated with decreased oxygen saturation. Phenylephrine and crystalloid had no significant effect on the PVR/SVR ratio. Sparing of pulmonary vasoconstriction occurs only with VP, not with administration of crystalloid or catecholamine pressors. The ability of VP to maintain blood oxygenation indicates that VP may prevent hypoxemia in the management of hemorrhagic shock. PMID:25565637

  15. CONSTRAINING MASS RATIO AND EXTINCTION IN THE FU ORIONIS BINARY SYSTEM WITH INFRARED INTEGRAL FIELD SPECTROSCOPY

    SciTech Connect

    Pueyo, Laurent; Hillenbrand, Lynne; Hinkley, Sasha; Dekany, Richard; Roberts, Jenny; Vasisht, Gautam; Roberts, Lewis C. Jr.; Shao, Mike; Burruss, Rick; Cady, Eric; Oppenheimer, Ben R.; Brenner, Douglas; Zimmerman, Neil; Monnier, John D.; Crepp, Justin; Parry, Ian; Beichman, Charles; Soummer, Remi

    2012-09-20

    We report low-resolution near-infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph (IFS) Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0.''5 south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J- and H-band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low-resolution near-infrared spectrum in conjunction with 10.2 {mu}m interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. Our models lead to estimates of an object heavily reddened, A{sub V} = 8-12, with an effective temperature of {approx}4000-6500 K. Finally, we put these results in the context of the FU Ori N-S system and argue that our analysis provides evidence that FU Ori S might be the more massive component of this binary system.

  16. Constraining Mass Ratio and Extinction in the FU Orionis Binary System with Infrared Integral Field Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pueyo, Laurent; Hillenbrand, Lynne; Vasisht, Gautam; Oppenheimer, Ben R.; Monnier, John D.; Hinkley, Sasha; Crepp, Justin; Roberts, Lewis C., Jr.; Brenner, Douglas; Zimmerman, Neil; Parry, Ian; Beichman, Charles; Dekany, Richard; Shao, Mike; Burruss, Rick; Cady, Eric; Roberts, Jenny; Soummer, Rémi

    2012-09-01

    We report low-resolution near-infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph (IFS) Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0farcs5 south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J- and H-band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low-resolution near-infrared spectrum in conjunction with 10.2 μm interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. Our models lead to estimates of an object heavily reddened, AV = 8-12, with an effective temperature of ~4000-6500 K. Finally, we put these results in the context of the FU Ori N-S system and argue that our analysis provides evidence that FU Ori S might be the more massive component of this binary system.

  17. Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios

    SciTech Connect

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

    2005-04-03

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of the third year of a 42 month research program that is aimed at an understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work focused on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A mathematical model that describes uptake and crosslinking reactions as a function of time was derived. The model was probability based and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. A liquid chromatography apparatus to experimentally measure the size and molecular weight distributions of polymer samples was developed. The method worked well for polymer samples without the chromium crosslinker. Sample retention observed during measurements of gelant samples during the gelation process compromised the results. Other methods will be tested to measure size distributions of the pre-gel aggregates. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results.

  18. Mechanical Design of High Lift Systems for High Aspect Ratio Swept Wings

    NASA Technical Reports Server (NTRS)

    Rudolph, Peter K. C.

    1998-01-01

    The NASA Ames Research Center is working to develop a methodology for the optimization and design of the high lift system for future subsonic airliners with the involvement of two partners. Aerodynamic analysis methods for two dimensional and three dimensional wing performance with flaps and slats deployed are being developed through a grant with the aeronautical department of the University of California Davis, and a flap and slat mechanism design procedure is being developed through a contract with PKCR, Inc., of Seattle, WA. This report documents the work that has been completed in the contract with PKCR on mechanism design. Flap mechanism designs have been completed for seven (7) different mechanisms with a total of twelve (12) different layouts all for a common single slotted flap configuration. The seven mechanisms are as follows: Simple Hinge, Upside Down/Upright Four Bar Linkage (two layouts), Upside Down Four Bar Linkages (three versions), Airbus A330/340 Link/Track Mechanism, Airbus A320 Link/Track Mechanism (two layouts), Boeing Link/Track Mechanism (two layouts), and Boeing 767 Hinged Beam Four Bar Linkage. In addition, a single layout has been made to investigate the growth potential from a single slotted flap to a vane/main double slotted flap using the Boeing Link/Track Mechanism. All layouts show Fowler motion and gap progression of the flap from stowed to a fully deployed position, and evaluations based on spanwise continuity, fairing size and number, complexity, reliability and maintainability and weight as well as Fowler motion and gap progression are presented. For slat design, the options have been limited to mechanisms for a shallow leading edge slat. Three (3) different layouts are presented for maximum slat angles of 20 deg, 15 deg and 1O deg all mechanized with a rack and pinion drive similar to that on the Boeing 757 airplane. Based on the work of Ljungstroem in Sweden, this type of slat design appears to shift the lift curve so that

  19. A five-collector system for the simultaneous measurement of argon isotope ratios in a static mass spectrometer

    USGS Publications Warehouse

    Stacey, J.S.; Sherrill, N.D.; Dalrymple, G.B.; Lanphere, M.A.; Carpenter, N.V.

    1981-01-01

    A system is described that utilizes five separate Faraday-cup collector assemblies, aligned along the focal plane of a mass spectrometer, to collect simultaneous argon ion beams at masses 36-40. Each collector has its own electrometer amplifier and analog-to-digital measuring channel, the outputs of which are processed by a minicomputer that also controls the mass spectrometer. The mass spectrometer utilizes a 90?? sector magnetic analyzer with a radius of 23 cm, in which some degree of z-direction focussing is provided for all the ion beams by the fringe field of the magnet. Simultaneous measurement of the ion beams helps to eliminate mass-spectrometer memory as a significant source of measurement error during an analysis. Isotope ratios stabilize between 7 and 9 s after sample admission into the spectrometer, and thereafter changes in the measured ratios are linear, typically to within ??0.02%. Thus the multi-collector arrangement permits very short extrapolation times for computation of initial ratios, and also provides the advantages of simultaneous measurement of the ion currents in that errors due to variations in ion beam intensity are minimized. A complete analysis takes less than 10 min, so that sample throughput can be greatly enhanced. In this instrument, the factor limiting analytical precision now lies in short-term apparent variations in the interchannel calibration factors. ?? 1981.

  20. Pollutants removal in subsurface infiltration systems by shunt distributing wastewater with/without intermittent aeration under different shunt ratios.

    PubMed

    Pan, Jing; Yuan, Fang; Zhang, Yang; Huang, Linli; Yu, Long; Zheng, Fanping; Cheng, Fan; Zhang, Jiadi

    2016-10-01

    Matrix dissolved oxygen (DO), removal of COD, TP and nitrogen in subsurface infiltration systems (SISs), named SIS A (without intermittent aeration and shunt distributing wastewater), SIS B (with shunt distributing wastewater) and SIS C (with intermittent aeration and shunt distributing wastewater) were investigated. Aerobic conditions were developed in 50cm depth and anoxic or anaerobic conditions were not changed in 80 and 110cm depth by intermittent aeration. Under appropriate shunt ratios, shunt distributing wastewater improved denitrification and had little influence on COD, TP and NH3-N removal. Under the optimal shunt ratio of 1:2 for SIS C, high average removal rates of COD (90.06%), TP (93.17%), NH3-N (88.20%) and TN (85.79%) were obtained, which were higher than those in SIS A (COD: 82.56%, TP: 92.76%, NH3-N: 71.08%, TN: 49.24%) and SIS B (COD: 81.12%, TP: 92.58%, NH3-N: 69.14%, TN: 58.73%) under the optimal shunt ratio of 1:3. PMID:27347804

  1. Strontium concentrations and isotope ratios in a forest-river system in the South Qinling Mts., China.

    PubMed

    Bu, Hongmei; Song, Xianfang; Zhang, Quanfa; Burford, Michele A

    2016-04-15

    The concentrations of dissolved strontium (Sr) and isotope ratios ((87)Sr/(86)Sr) in rainwater, river water, and water from forest soil are measured to investigate the contributions of these sources to a river during base flow conditions in the relatively pristine South Qinling Mountains, China. Dissolved Sr concentrations and (87)Sr/(86)Sr ratios vary significantly between different water types (p < 0.01) suggesting that it is suitable for differentiating sources. Dissolved Sr is also positively correlated with most ions and a range of physicochemical parameters (p < 0.01 and p < 0.05 respectively) in water samples including Ca(2+), Mg(2+), EC, and TDS (p < 0.001) indicating their similarities in the drivers of biogeochemical processes and common origins. The correlations between Sr isotopes and Ca/Na, Ca/K, and 1000/Sr ratios suggest that three end-members of atmospheric inputs, carbonate and silicate weathering control the Sr water chemistry in the river water. Using the three-source mixing model, atmospheric inputs, carbonate, and silicate weathering contribute 74%, 20%, and 6% respectively to the dissolved Sr in the river water. This research has provided new insights into the contribution of sources of Sr to a river system in a mountainous catchment. PMID:26900970

  2. Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics

    PubMed Central

    Liu, Quan; Grant, Gerald; Li, Jianjun; Zhang, Yan; Hu, Fangyao; Li, Shuqin; Wilson, Christy; Chen, Kui; Bigner, Darell; Vo-Dinh, Tuan

    2011-01-01

    We report the development of a compact point-detection fluorescence spectroscopy system and two data analysis methods to quantify the intrinsic fluorescence redox ratio and diagnose brain cancer in an orthotopic brain tumor rat model. Our system employs one compact cw diode laser (407 nm) to excite two primary endogenous fluorophores, reduced nicotinamide adenine dinucleotide, and flavin adenine dinucleotide. The spectra were first analyzed using a spectral filtering modulation method developed previously to derive the intrinsic fluorescence redox ratio, which has the advantages of insensitivty to optical coupling and rapid data acquisition and analysis. This method represents a convenient and rapid alternative for achieving intrinsic fluorescence-based redox measurements as compared to those complicated model-based methods. It is worth noting that the method can also extract total hemoglobin concentration at the same time but only if the emission path length of fluorescence light, which depends on the illumination and collection geometry of the optical probe, is long enough so that the effect of absorption on fluorescence intensity due to hemoglobin is significant. Then a multivariate method was used to statistically classify normal tissues and tumors. Although the first method offers quantitative tissue metabolism information, the second method provides high overall classification accuracy. The two methods provide complementary capabilities for understanding cancer development and noninvasively diagnosing brain cancer. The results of our study suggest that this portable system can be potentially used to demarcate the elusive boundary between a brain tumor and the surrounding normal tissue during surgical resection. PMID:21456877

  3. Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics

    NASA Astrophysics Data System (ADS)

    Liu, Quan; Grant, Gerald; Li, Jianjun; Zhang, Yan; Hu, Fangyao; Li, Shuqin; Wilson, Christy; Chen, Kui; Bigner, Darell; Vo-Dinh, Tuan

    2011-03-01

    We report the development of a compact point-detection fluorescence spectroscopy system and two data analysis methods to quantify the intrinsic fluorescence redox ratio and diagnose brain cancer in an orthotopic brain tumor rat model. Our system employs one compact cw diode laser (407 nm) to excite two primary endogenous fluorophores, reduced nicotinamide adenine dinucleotide, and flavin adenine dinucleotide. The spectra were first analyzed using a spectral filtering modulation method developed previously to derive the intrinsic fluorescence redox ratio, which has the advantages of insensitivty to optical coupling and rapid data acquisition and analysis. This method represents a convenient and rapid alternative for achieving intrinsic fluorescence-based redox measurements as compared to those complicated model-based methods. It is worth noting that the method can also extract total hemoglobin concentration at the same time but only if the emission path length of fluorescence light, which depends on the illumination and collection geometry of the optical probe, is long enough so that the effect of absorption on fluorescence intensity due to hemoglobin is significant. Then a multivariate method was used to statistically classify normal tissues and tumors. Although the first method offers quantitative tissue metabolism information, the second method provides high overall classification accuracy. The two methods provide complementary capabilities for understanding cancer development and noninvasively diagnosing brain cancer. The results of our study suggest that this portable system can be potentially used to demarcate the elusive boundary between a brain tumor and the surrounding normal tissue during surgical resection.

  4. Compact point-detection fluorescence spectroscopy system for quantifying intrinsic fluorescence redox ratio in brain cancer diagnostics.

    PubMed

    Liu, Quan; Grant, Gerald; Li, Jianjun; Zhang, Yan; Hu, Fangyao; Li, Shuqin; Wilson, Christy; Chen, Kui; Bigner, Darell; Vo-Dinh, Tuan

    2011-03-01

    We report the development of a compact point-detection fluorescence spectroscopy system and two data analysis methods to quantify the intrinsic fluorescence redox ratio and diagnose brain cancer in an orthotopic brain tumor rat model. Our system employs one compact cw diode laser (407 nm) to excite two primary endogenous fluorophores, reduced nicotinamide adenine dinucleotide, and flavin adenine dinucleotide. The spectra were first analyzed using a spectral filtering modulation method developed previously to derive the intrinsic fluorescence redox ratio, which has the advantages of insensitivity to optical coupling and rapid data acquisition and analysis. This method represents a convenient and rapid alternative for achieving intrinsic fluorescence-based redox measurements as compared to those complicated model-based methods. It is worth noting that the method can also extract total hemoglobin concentration at the same time but only if the emission path length of fluorescence light, which depends on the illumination and collection geometry of the optical probe, is long enough so that the effect of absorption on fluorescence intensity due to hemoglobin is significant. Then a multivariate method was used to statistically classify normal tissues and tumors. Although the first method offers quantitative tissue metabolism information, the second method provides high overall classification accuracy. The two methods provide complementary capabilities for understanding cancer development and noninvasively diagnosing brain cancer. The results of our study suggest that this portable system can be potentially used to demarcate the elusive boundary between a brain tumor and the surrounding normal tissue during surgical resection. PMID:21456877

  5. Identifying non-normal and lognormal characteristics of temperature, mixing ratio, surface pressure, and wind for data assimilation systems

    NASA Astrophysics Data System (ADS)

    Kliewer, A. J.; Fletcher, S. J.; Jones, A. S.; Forsythe, J. M.

    2015-09-01

    Data assimilation systems and retrieval systems that are based upon a maximum likelihood estimation, many of which are in operational use, rely on the assumption that all of the errors and variables involved follow a normal distribution. This work develops a series of statistical tests to show that mixing ratio, temperature, wind and surface pressure follow non-normal, or in fact, lognormal distributions thus impacting the design-basis of many operational data assimilation and retrieval systems. For this study one year of Global Forecast System 00:00 UTC 6 h forecast were analyzed using statistical hypothesis tests. The motivation of this work is to identify the need to resolve whether or not the assumption of normality is valid and to give guidance for where and when a data assimilation system or a retrieval system needs to adapt its cost function to the mixed normal-lognormal distribution-based Bayesian model. The statistical methods of detection are based upon Shapiro-Wilk, Jarque-Bera and a χ2 test, and a new composite indicator using all three measures. Another method of detection fits distributions to the temporal-based histograms of temperature, mixing ratio, and wind. The conclusion of this work is that there are persistent areas, times, and vertical levels where the normal assumption is not valid, and that the lognormal distribution-based Bayesian model is observationally justified to minimize the error for these conditions. The results herein suggest that comprehensive statistical climatologies may need to be developed to capture the non-normal traits of the 6 h forecast.

  6. Development of Polymer Gel Systems to Improve Volumetric Sweep and Reduce Producing Water/Oil Ratios

    SciTech Connect

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Feiyan Chen

    2005-12-31

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of a 42-month research program that focused on the understanding of gelation chemistry and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work was conducted on a widely applied system in the field, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. Pre-gel aggregates form and grow as reactions between chromium acetate and polyacrylamide proceed. A rate equation that describes the reaction between chromium acetate and polymer molecules was regressed from experimental data. A mathematical model that describes the crosslinking reaction between two polymer molecules as a function of time was derived. The model was based on probability concepts and provides molecular-weight averages and molecular-weight distributions of the pre-gel aggregates as a function of time and initial system conditions. Average molecular weights of pre-gel aggregates were measured as a function of time and were comparable to model simulations. Experimental methods to determine molecular weight distributions of pre-gel aggregates were unsuccessful. Dissolution of carbonate minerals during the injection of gelants causes the pH of the gelant to increase. Chromium precipitates from solution at the higher pH values robbing the gelant of crosslinker. Experimental data on the transport of chromium acetate solutions through dolomite cores were obtained. A mathematical model that describes the transport of brine and chromium acetate solutions through rocks containing carbonate minerals was used to simulate the experimental results and data from literature. Gel treatments usually reduce the permeability

  7. Wich Parameter of the Carbonate System Influences the Boron Isotopic Composition and the Boron Calcium Ratio in Foraminiferal Tests?

    NASA Astrophysics Data System (ADS)

    Kaczmarek, K.; Nehrke, G.; Horn, I.; Langer, G.; Misra, S.; Bijma, J.

    2013-12-01

    We performed culture experiments with the benthic symbiont bearing foraminifer Amphistegina lessonii in order to determine which parameter of the marine carbonate system influences the boron isotopic composition (δ11B) and the boron calcium ratio (B/Ca) in the test. A. lessonii grew for two months in treatments of culture media with decoupled pH-carbonate chemistry. We measured δ11B and B/Ca simultaneously on single tests using a recently new developed mass spectrometric technique. Our results show a clear pH dependence on δ11B. The B/Ca in the shell show a positive correlation with aqueous B(OH)4-/HCO3-.

  8. A Neuro-Fuzzy Inference System Combining Wavelet Denoising, Principal Component Analysis, and Sequential Probability Ratio Test for Sensor Monitoring

    SciTech Connect

    Na, Man Gyun; Oh, Seungrohk

    2002-11-15

    A neuro-fuzzy inference system combined with the wavelet denoising, principal component analysis (PCA), and sequential probability ratio test (SPRT) methods has been developed to monitor the relevant sensor using the information of other sensors. The parameters of the neuro-fuzzy inference system that estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The wavelet denoising technique was applied to remove noise components in input signals into the neuro-fuzzy system. By reducing the dimension of an input space into the neuro-fuzzy system without losing a significant amount of information, the PCA was used to reduce the time necessary to train the neuro-fuzzy system, simplify the structure of the neuro-fuzzy inference system, and also, make easy the selection of the input signals into the neuro-fuzzy system. By using the residual signals between the estimated signals and the measured signals, the SPRT is applied to detect whether the sensors are degraded or not. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level, the pressurizer pressure, and the hot-leg temperature sensors in pressurized water reactors.

  9. DEVELOPMENT OF POLYMER GEL SYSTEMS TO IMPROVE VOLUMETRIC SWEEP AND REDUCE PRODUCING WATER/OIL RATIOS

    SciTech Connect

    G. Paul Willhite; Stan McCool; Don W. Green; Min Cheng; Rajeev Jain; Tuan Nguyen

    2003-11-01

    Gelled polymer treatments are applied to oil reservoirs to increase oil production and to reduce water production by altering the fluid movement within the reservoir. This report describes the results of the first year of a three-year research program that is aimed at the understanding of the chemistry of gelation and the fundamental mechanisms that alter the flows of oil and water in reservoir rocks after a gel treatment. Work has focused on a widely-applied system in field applications, the partially hydrolyzed polyacrylamide-chromium acetate gel. Gelation occurs by network formation through the crosslinking of polyacrylamide molecules as a result of reaction with chromium acetate. The initial reaction between chromium acetate and one polymer is referred to as the uptake reaction. The uptake reaction was studied as functions of chromium and polymer concentrations and pH values. Experimental data were regressed to determine a rate equation that describes the uptake reaction of chromium by polyacrylamide. Pre-gel aggregates form and grow as the reactions between chromium acetate and polyacrylamide proceed. A statistical model that describes the growth of pre-gel aggregates was developed using the theory of branching processes. The model gives molecular weight averages that are expressed as functions of the conversion of the reactive sites on chromium acetate or on the polymer molecule. Results of the application of the model correlate well with experimental data of viscosity and weight-average molecular weight and gives insights into the gelation process. A third study addresses the flow of water and oil in rock material after a gel treatment. Previous works have shown that gel treatments usually reduce the permeability to water to a greater extent than the permeability to oil is reduced. This phenomenon is referred to as disproportionate permeability reduction (DPR). Flow experiments were conducted to determine the effect of polymer and chromium concentrations on

  10. Digit ratio 2D:4D in relation to autism spectrum disorders, empathizing, and systemizing: a quantitative review.

    PubMed

    Hönekopp, Johannes

    2012-08-01

    Prenatal testosterone (PT) effects have been proposed to increase systemizing (the drive to understand lawful input-output relationships), to decrease empathizing (the drive to understand others), and to cause autism via hypermasculinization of the brain. Digit ratio 2D:4D is a putative marker of PT effects in humans. An online study (n = 1896) into the relationship between the Reading the Mind in the Eyes Test (a widely used measure of empathizing) and self-measured 2D:4D in a nonclinical sample is reported. No evidence for a link between empathizing and 2D:4D in either females or males emerged. Further, three meta-analyses are presented that look into the relationships of 2D:4D with autism spectrum disorder (ASD), systemizing, and empathizing. 2D:4D was substantially lower (more masculine) in ASD-affected individuals than in normal controls (d = -0.58, P < 0.001). However, 2D:4D was found to be virtually unrelated to systemizing and empathizing in normal adults. The results support the idea that high PT is a risk factor for autism, but they challenge the view that PT substantially contributes to sex differences in systemizing and empathizing. Possibly, this pattern reflects an interaction effect, whereby PT drives ASD characteristic changes only in brains with a specific damage. PMID:22674640

  11. Plant lighting system with five wavelength-band light-emitting diodes providing photon flux density and mixing ratio control

    PubMed Central

    2012-01-01

    Background Plant growth and development depend on the availability of light. Lighting systems therefore play crucial roles in plant studies. Recent advancements of light-emitting diode (LED) technologies provide abundant opportunities to study various plant light responses. The LED merits include solidity, longevity, small element volume, radiant flux controllability, and monochromaticity. To apply these merits in plant light response studies, a lighting system must provide precisely controlled light spectra that are useful for inducing various plant responses. Results We have developed a plant lighting system that irradiated a 0.18 m2 area with a highly uniform distribution of photon flux density (PFD). The average photosynthetic PFD (PPFD) in the irradiated area was 438 micro-mol m–2 s–1 (coefficient of variation 9.6%), which is appropriate for growing leafy vegetables. The irradiated light includes violet, blue, orange-red, red, and far-red wavelength bands created by LEDs of five types. The PFD and mixing ratio of the five wavelength-band lights are controllable using a computer and drive circuits. The phototropic response of oat coleoptiles was investigated to evaluate plant sensitivity to the light control quality of the lighting system. Oat coleoptiles irradiated for 23 h with a uniformly distributed spectral PFD (SPFD) of 1 micro-mol m–2 s–1 nm–1 at every peak wavelength (405, 460, 630, 660, and 735 nm) grew almost straight upwards. When they were irradiated with an SPFD gradient of blue light (460 nm peak wavelength), the coleoptiles showed a phototropic curvature in the direction of the greater SPFD of blue light. The greater SPFD gradient induced the greater curvature of coleoptiles. The relation between the phototropic curvature (deg) and the blue-light SPFD gradient (micro-mol m–2 s–1 nm–1 m–1) was 2 deg per 1 micro-mol m–2 s–1 nm–1 m–1. Conclusions The plant lighting system, with a computer with a graphical user interface

  12. HIGH FILL-OUT, EXTREME MASS RATIO OVERCONTACT BINARY SYSTEMS. X. THE NEWLY DISCOVERED BINARY XY LEONIS MINORIS

    SciTech Connect

    Qian, S.-B.; Liu, L.; Zhu, L.-Y.; He, J.-J.; Bernasconi, L. E-mail: yygcn@163.com

    2011-05-15

    The newly discovered short-period close binary star, XY LMi, has been monitored photometrically since 2006. Its light curves are typical EW-type light curves and show complete eclipses with durations of about 80 minutes. Photometric solutions were determined through an analysis of the complete B, V, R, and I light curves using the 2003 version of the Wilson-Devinney code. XY LMi is a high fill-out, extreme mass ratio overcontact binary system with a mass ratio of q = 0.148 and a fill-out factor of f = 74.1%, suggesting that it is in the late evolutionary stage of late-type tidal-locked binary stars. As observed in other overcontact binary stars, evidence for the presence of two dark spots on both components is given. Based on our 19 epochs of eclipse times, we found that the orbital period of the overcontact binary is decreasing continuously at a rate of dP/dt = -1.67 x 10{sup -7} days yr{sup -1}, which may be caused by mass transfer from the primary to the secondary and/or angular momentum loss via magnetic stellar wind. The decrease of the orbital period may result in the increase of the fill-out, and finally, it will evolve into a single rapid-rotation star when the fluid surface reaches the outer critical Roche lobe.

  13. Disentangling community functional components in a litter-macrodetritivore model system reveals the predominance of the mass ratio hypothesis

    PubMed Central

    Bílá, Karolína; Moretti, Marco; Bello, Francesco; Dias, André TC; Pezzatti, Gianni B; Van Oosten, Arend Raoul; Berg, Matty P

    2014-01-01

    Recent investigations have shown that two components of community trait composition are important for key ecosystem processes: (i) the community-weighted mean trait value (CWM), related to the mass ratio hypothesis and dominant trait values in the community, and (ii) functional diversity (FD), related to the complementarity hypothesis and the divergence of trait values. However, no experiments controlling for the inherent dependence between CWM and FD have been conducted so far. We used a novel experimental framework to disentangle the unique and shared effects of CWM and FD in a leaf litter-macrodetritivore model system. We manipulated isopod assemblages varying in species number, CWM and FD of litter consumption rate to test the relative contribution of these community parameters in the decomposition process. We showed that CWM, but also the combination of CWM and FD, is a main factor controlling litter decomposition. When we tested individual biodiversity components separately, CWM of litter consumption rate showed a significant effect on decomposition, while FD and species richness alone did not. Our study demonstrated that (i) trait composition rather than species diversity drives litter decomposition, (ii) dominant trait values in the community (CWM) play a chief role in driving ecosystem processes, corroborating the mass ratio hypothesis, and (iii) trait dissimilarity can contribute in modulating the overall biodiversity effects. Future challenge is to assess whether the generality of our finding, that is, that dominant trait values (CWM) predominate over trait dissimilarity (FD), holds for other ecosystem processes, environmental conditions and different spatial and temporal scales. PMID:24634725

  14. Characterization Of High-Stroke High-Aspect Ratio Micro Electro Mechanical Systems Deformable Mirrors For Adaptive Optics

    NASA Astrophysics Data System (ADS)

    Bouchti, Mohamed Amine

    Adaptive optics MEMS deformable mirror, in conjunction with Shack Hartman wave front sensor and real-time controller, is capable of correcting time-varying aberrations in imaging applications through manipulating its mirror surface. Adaptive optics systems in astronomy for next generation large telescopes (30 meter primary mirrors) require a high stroke of 10microm of mechanical displacement. This required stroke would be achieved by MEMS deformable mirrors fabricated with high aspect ratio techniques. This thesis will review the designs of various types of high aspect actuators consisting of folded springs with rectangular and circular membranes as well as X-beam actuators. Finite element analysis (FEA) simulations of these designs have shown the ability of each design to achieve a stroke of approximately 9.4 microm. Also, FEA simulations proved that the X-beam actuators provide the best spring support while preventing tilting. In addition, this thesis will discuss device characterization and voltage vs. displacement test results for the high aspect ratio gold MEMS 16 x 16 X-beam actuators deformable mirror that has been bonded and packaged. The results have shown that the device is capable of achieving approximately 5.5 microm in individual actuator testing and 7microm in dual actuator testing.

  15. The effects of different seeding ratios on nitrification performance and biofilm formation in marine recirculating aquaculture system biofilter.

    PubMed

    Zhu, Songming; Shen, Jiazheng; Ruan, Yunjie; Guo, Xishan; Ye, Zhangying; Deng, Yale; Shi, Mingming

    2016-07-01

    Rapid start-up of biofilter is essential for intensive marine recirculating aquaculture system (RAS) production. This study evaluated the nitrifying biofilm formation using mature biofilm as an inoculum to accelerate the process in RAS practice. The effects of inoculation ratios (0-15 %) on the reactor performance and biofilm structure were investigated. Complete nitrification was achieved rapidly in reactors with inoculated mature biofilm (even in 32 days when 15 % seeding ratio was applied). However, the growth of target biofilm on blank carrier was affected by the mature biofilm inoculated through substrate competition. The analysis of extracellular polymeric substance (EPS) and nitrification rates confirmed the divergence of biofilm cultivation among reactors. Besides, three N-acyl-homoserine lactones (AHLs) were found in the process, which might regulate the activities of biofilm. Multivariate analysis based on non-metric multidimensional scaling (nMDS) also indicated the great roles of AHLs and substrate supply which might fundamentally determine varied cultivation performance on target biofilm. PMID:27068911

  16. Design of a high voltage input - output ratio dc-dc converter dedicated to small power fuel cell systems

    NASA Astrophysics Data System (ADS)

    Béthoux, O.; Cathelin, J.

    2010-12-01

    Consuming chemical energy, fuel cells produce simultaneously heat, water and useful electrical power [J.M. Andújar, F. Segura, Renew. Sust. Energy Rev. 13, 2309 (2009)], [J. Larminie, A. Dicks, Fuel Cell Systems Explained, 2nd edn. (John Wiley & Sons, 2003)]. As a matter of fact, the voltage generated by a fuel cell strongly depends on both the load power demand and the operating conditions. Besides, as a result of many design aspects, fuel cells are low voltage and high current electric generators. On the contrary, electric loads are commonly designed for small voltage swing and a high V/I ratio in order to minimize Joule losses. Therefore, electric loads supplied by fuel cells are typically fed by means of an intermediate power voltage regulator. The specifications of such a power converter are to be able to step up the input voltage with a high ratio (a ratio of 10 is a classic situation) and also to work with an excellent efficiency (in order to minimize its size, its weight and its losses) [A. Shahin, B. Huang, J.P. Martin, S. Pierfederici, B. Davat, Energy Conv. Manag. 51, 56 (2010)]. This paper deals with the design of this essential ancillary device. It intends to bring out the best structure for fulfilling this function. Several dc-dc converters with large voltage step-up ratios are introduced. A topology based on a coupled inductor or tapped inductor is closely studied. A detailed modelling is performed with the purpose of providing designing rules. This model is validated with both simulation and implementation. The experimental prototype is based on the following specifications: the fuel cell output voltage ranges from a 50 V open-voltage to a 25 V rated voltage while the load requires a constant 250 V voltage. The studied coupled inductor converter is compared with a classic boost converter commonly used in this voltage elevating application. Even though the voltage regulator faces severe FC specifications, the measured efficiency reaches 96% at the

  17. A heuristic approach to worst-case carrier-to-interference ratio maximization in satellite system synthesis

    NASA Technical Reports Server (NTRS)

    Reilly, Charles H.; Walton, Eric K.; Mata, Fernando; Mount-Campbell, Clark A.; Olen, Carl A.

    1990-01-01

    Consideration is given to the problem of allotting GEO locations to communication satellites so as to maximize the smallest aggregate carrier-to-interference (C/I) ratio calculated at any test point (assumed earth station). The location allotted to each satellite must be within the satellite's service arc, and angular separation constraints are enforced for each pair of satellites to control single-entry EMI. Solutions to this satellite system synthesis problem (SSSP) are found by embedding two heuristic procedures for the satellite location problem (SLP), in a binary search routine to find an estimate of the largest increment to the angular separation values that permits a feasible solution to SLP and SSSP. Numerical results for a 183-satellite, 208-beam example problem are presented.

  18. Peak-to-Average-Power-Ratio (PAPR) reduction in WiMAX and OFDM/A systems

    NASA Astrophysics Data System (ADS)

    Khademi, Seyran; Svantesson, Thomas; Viberg, Mats; Eriksson, Thomas

    2011-12-01

    A peak to average power ratio (PAPR) reduction method is proposed that exploits the precoding or beamforming mode in WiMAX. The method is applicable to any OFDM/A systems that implements beamforming using dedicated pilots which use the same beamforming antenna weights for both pilots and data. Beamforming performance depends on the relative phase shift between antennas, but is unaffected by a phase shift common to all antennas. PAPR, on the other hand, changes with a common phase shift and this paper exploits that property. An effective optimization technique based on sequential quadratic programming is proposed to compute the common phase shift. The proposed technique has several advantages compared with traditional PAPR reduction techniques in that it does not require any side-information and has no effect on power and bit-error-rate while providing better PAPR reduction performance than most other methods.

  19. Systemic Inflammatory Response Based on Neutrophil-to-Lymphocyte Ratio as a Prognostic Marker in Bladder Cancer

    PubMed Central

    Kim, Hyung Suk; Ku, Ja Hyeon

    2016-01-01

    A growing body of evidence suggests that systemic inflammatory response (SIR) in the tumor microenvironment is closely related to poor oncologic outcomes in cancer patients. Over the past decade, several SIR-related hematological factors have been extensively investigated in an effort to risk-stratify cancer patients to improve treatment selection and to predict posttreatment survival outcomes in various types of cancers. In particular, one readily available marker of SIR is neutrophil-to-lymphocyte ratio (NLR), which can easily be measured on the basis of absolute neutrophils and absolute lymphocytes in a differential white blood cell count performed in the clinical setting. Many investigators have vigorously assessed NLR as a potential prognostic biomarker predicting pathological and survival outcomes in patients with urothelial carcinoma (UC) of the bladder. In this paper, we aim to present the prognostic role of NLR in patients with UC of the bladder through a thorough review of the literature. PMID:26880857

  20. Systemic Inflammatory Response Based on Neutrophil-to-Lymphocyte Ratio as a Prognostic Marker in Bladder Cancer.

    PubMed

    Kim, Hyung Suk; Ku, Ja Hyeon

    2016-01-01

    A growing body of evidence suggests that systemic inflammatory response (SIR) in the tumor microenvironment is closely related to poor oncologic outcomes in cancer patients. Over the past decade, several SIR-related hematological factors have been extensively investigated in an effort to risk-stratify cancer patients to improve treatment selection and to predict posttreatment survival outcomes in various types of cancers. In particular, one readily available marker of SIR is neutrophil-to-lymphocyte ratio (NLR), which can easily be measured on the basis of absolute neutrophils and absolute lymphocytes in a differential white blood cell count performed in the clinical setting. Many investigators have vigorously assessed NLR as a potential prognostic biomarker predicting pathological and survival outcomes in patients with urothelial carcinoma (UC) of the bladder. In this paper, we aim to present the prognostic role of NLR in patients with UC of the bladder through a thorough review of the literature. PMID:26880857

  1. Deep, Low Mass Ratio Overcontact Binary Systems. VI. AH Cancri in the Old Open Cluster M67

    NASA Astrophysics Data System (ADS)

    Qian, S.-B.; Liu, L.; Soonthornthum, B.; Zhu, L.-Y.; He, J.-J.

    2006-06-01

    CCD photometric light curves in the B and V bands obtained in 2001 and in the V band obtained in 2002 of AH Cnc in the old open cluster M67 are presented. It is shown that AH Cnc is a total-eclipsing binary and its light curves correspond to a typical A type according to Binnendijk's classification. The variations of the light curve around the primary minimum and second maximum were found. Our nine epochs of light minimum monitored from 2001 to 2005, including others collected from the literature, were used to create the first study of the period changes of the binary system. A cyclic oscillation with a period of 36.5 yr and an amplitude of 0.0237 days was discovered to be superposed on a continuous period increase (dP/dt=3.99×10-7 days yr-1). Weak evidence indicates that there exists another small-amplitude period oscillation (A4=0.0035 days, P4=7.75 yr). The symmetric light curves in the B and V bands obtained in 2001 were analyzed with the 2003 version of the Wilson-Devinney code. It is confirmed that AH Cnc is a deep overcontact binary system with a high degree of overcontact f=58.5%+/-4.5% and a low mass ratio of q=0.1682+/-0.0012. The existence of the third light and the cyclic period oscillation both may suggest that AH Cnc is a triple system containing an unseen third body. The tertiary component may have played an important role in the origin of the overcontact binary star by removing angular momentum from the central system, which would cause it to have a short initial orbital period and thus evolve into an overcontact configuration by angular momentum loss. The long-term period increase can be interpreted as a mass transfer from the less massive component to the more massive one. As the orbital period increases, the decrease of the mass ratio will cause it finally to evolve into a single rapid-rotating star when the system meets the more familiar criterion that the orbital angular momentum be less than 3 times the total spin angular momentum. Therefore

  2. Scaling of volume to surface ratio and doubling time in growing unicellular organisms: Do cells appear quantum-mechanical systems?

    NASA Astrophysics Data System (ADS)

    Atanasov, Atanas Todorov

    2014-10-01

    The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio V×S-1 (m) of organisms is proportional to their generation time Tgt(s) via growth rate v (m s-1): V×S-1 = vgr×Tr. The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps, the cells are quantum-mechanical systems. The data for body mass M (kg), density ρ (kg/m3), minimum and maximum doubling time Tdt (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program `Statistics' is used for calculations. In result i) the analytical relationship from type: V×S-1 = 4.46ṡ10-11×Tdt was found, where vgr = 4.46×10-11 m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate vgr satisfied the Heisenberg uncertainty principle i.e. the inequalities V/S×M×vgr>h/2π and Tdt×M×vgr2>h/2π are valid, where h= 6.626×10-34 Jṡs is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?

  3. Scaling of volume to surface ratio and doubling time in growing unicellular organisms: Do cells appear quantum-mechanical systems?

    SciTech Connect

    Atanasov, Atanas Todorov

    2014-10-06

    The scaling of physical and biological characteristics of the living organisms is a basic method for searching of new biophysical laws. In series of previous studies the author showed that in Poikilotherms, Mammals and Aves, the volume to surface ratio V×S{sup −1} (m) of organisms is proportional to their generation time T{sub gt}(s) via growth rate v (m s{sup −1}): V×S{sup −1} = v{sub gr}×T{sup r}. The power and the correlation coefficients are near to 1.0. Aim of this study is: i) to prove with experimental data the validity of the above equation for Unicellular organisms and ii) to show that perhaps, the cells are quantum-mechanical systems. The data for body mass M (kg), density ρ (kg/m{sup 3}), minimum and maximum doubling time T{sub dt} (s) for 50 unicellular organisms are assembled from scientific sources, and the computer program ‘Statistics’ is used for calculations. In result i) the analytical relationship from type: V×S{sup −1} = 4.46⋅10{sup −11}×T{sub dt} was found, where v{sub gr} = 4.46×10{sup −11} m/s and ii) it is shown that the products between cell mass M, cell length expressed by V/S ratio and growth rate v{sub gr} satisfied the Heisenberg uncertainty principle i.e. the inequalities V/S×M×v{sub gr}>h/2π and T{sub dt}×M×v{sub gr}{sup 2}>h/2π are valid, where h= 6.626×10{sup −34} J⋅s is the Planck constant. This rise the question: do cells appear quantum-mechanical systems?.

  4. Signal-to-noise ratio estimation in digital computer simulation of lowpass and bandpass systems with applications to analog and digital communications, volume 3

    NASA Technical Reports Server (NTRS)

    Tranter, W. H.; Turner, M. D.

    1977-01-01

    Techniques are developed to estimate power gain, delay, signal-to-noise ratio, and mean square error in digital computer simulations of lowpass and bandpass systems. The techniques are applied to analog and digital communications. The signal-to-noise ratio estimates are shown to be maximum likelihood estimates in additive white Gaussian noise. The methods are seen to be especially useful for digital communication systems where the mapping from the signal-to-noise ratio to the error probability can be obtained. Simulation results show the techniques developed to be accurate and quite versatile in evaluating the performance of many systems through digital computer simulation.

  5. Improvement of signal-to-noise ratio by stochastic resonance in sigmoid function threshold systems, demonstrated using a CMOS inverter

    NASA Astrophysics Data System (ADS)

    Ueda, Michihito

    2010-05-01

    Stochastic resonance (SR) has become a well-known phenomenon that can enhance weak periodic signals with the help of noise. SR is an interesting phenomenon when applied to signal processing. Although it has been proven that SR does not always improve the signal-to-noise ratio (SNR), in a strongly nonlinear system such as simple threshold system, SR does in fact improve SNR for noisy pulsed signals at appropriate noise strength. However, even in such cases, when noise is weak, the SNR is degraded. Since the noise strength cannot be known in advance, it is difficult to apply SR to real signal processing. In this paper, we focused on the shape of the threshold at which SR did not degrade the SNR when noise was weak. To achieve output change when noise was weak, we numerically analyzed a sigmoid function threshold system. When the slope around the threshold was appropriate, SNR did not degrade when noise was weak and instead was improved at suitable noise strength. We also demonstrated SNR improvement for noisy pulsed voltages using a CMOS inverter, a very common threshold device. The input-output property of a CMOS inverter resembles the sigmoid function. By inputting the noisy signal voltage to a CMOS inverter, we measured the input and output voltages and analyzed the SNRs. The results showed that SNR was effectively improved over a wide range of noise strengths.

  6. Behavior of aircraft antiskid breaking systems on dry and wet runway surfaces: A slip-ratio-controlled system with ground speed reference from unbraked nose wheel

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.

    1977-01-01

    An experimental investigation was conducted at the Langley aircraft landing loads and traction facility to study the braking and cornering response of a slip ratio controlled aircraft antiskid braking system with ground speed reference derived from an unbraked nose wheel. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a DC-9 series 10 airplane. During maximum braking, the average ratio of the drag force friction coefficient developed by the antiskid system to the maximum drag force friction coefficient available was higher on the dry surface than on damp and flooded surfaces, and was reduced with lighter vertical loads, higher yaw angles, and when new tire treads were replaced by worn treads. Similarly, the average ratio of side force friction coefficient developed by the tire under antiskid control to the maximum side force friction coefficient available to a freely rolling yawed tire decreased with increasing yaw angle, generally increased with ground speed, and decreased when tires with new treads were replaced by those with worn treads.

  7. A Tropical Lake Breeze System : The Effect on Surface NO, NO2, O3, and CO2 Mixing Ratios

    NASA Astrophysics Data System (ADS)

    Lima Moura, M. A.; Eça D'Almeida Rocha, C. H.; Trebs, I.; Andreae, M. O.; Meixner, F. X.

    2003-04-01

    During the Cooperative LBA Airborne Regional Experiment 2001 (CLAIRE2001, July 2001), we investigated diel variations of nitric oxide (NO), nitrogen dioxide (NO_2), ozone (O_3) and carbon dioxide (CO_2) mixing ratios at Balbina Limnological Station (01^o55'994''S, 59^o28'071''W, Amazonia,Brazil). We applied sensitive and species-specific chemiluminescence (NO, NO_2, O_3) and NDIR (CO_2) analysers to record ambient mixing ratios on 1 min intervals. Simultaneously, we extensively monitored (micro-)meteorological qauntities (air temperature, relative humidity, wind speed and -direction, thermal stratification, rainfall intensity, soil temperatures and moisture, as well as radiation fluxes (global, net, short wave, NO_2 photolysis, and photosynthetic active)). Balbina Limnological Station is located just a few hundred meters south of a 2.360 km^2 hydroelectric power dam (Usina Hidrelétrica de Balbina) and about 100m north from the edge of a primary rainforest. Marked differences in surface albedo and heat storage capacity generate a local wind system, the lake breeze, which advects air from the dam (09:00 to 15:00 local) and from the rainforest (18:00 to 06:00 local), respectively. Generally, we observed marked diel variations of NO, NO_2, O_3, and CO_2 (high/low levels during night/day) and O_3 (low/high levels during night/day). Especially in the tropics, this behaviour is usually related to (a) accumulation of soil emissions (NO, CO_2), chemical reactions (NO, from NO_2-O_3 reaction) and surface destruction (O_3) in a shallow and strong nocturnal boundary layer inversion, and (b) to soil emission (NO), photochemical reactions (NO-NO_2-O_3), dry deposition/plant uptake (NO_2, O_3, and CO_2) and strong turbulent vertical mixing in the daytime mixed layer. However, under the specific conditions of the lake breeze soil emission and dry deposition/ plant uptake can be neglected during daytime. Consequently, the investigation of daytime mixing ratios can be confined to

  8. Effects of doping concentration ratio on electrical characterization in pseudomorphic HEMT-based MMIC switches for ICT system

    NASA Astrophysics Data System (ADS)

    Mun, Jae-Kyoung; Oh, Jung-Hun; Sung, Ho-Kun; Wang, Cong

    2015-12-01

    The effects of the doping concentration ratios between upper and lower silicon planar-doping layers on the DC and RF characteristics of the double planar doped pseudomorphic high electron mobility transistors (pHEMTs) are investigated. From the device simulation, an increase of maximum extrinsic transconductance and a decrease of total on- and off-state capacitances are observed, as well as an increase of the upper to lower planar-doping concentration ratios (UTLPDR), which give rise to an enhancement of the switching speed and isolation characteristics. On the basis of simulation results, two types of pHEMTs are fabricated with two different UTLPDRs of 4:1 and 1:2. After applying these two types' pHEMTs, single-pole-double-throw (SPDT) transmitter/receiver monolithic microwave integrated circuit (MMIC) switches are also designed and fabricated. The SPDT MMIC switch with a 4:1 UTLPDR shows an insertion loss of 0.58 dB, isolation of 40.2 dB, and switching speed of 100 ns, respectively, which correspondingly indicate a 0.23 dB lower insertion loss, 2.90 dB higher isolation and 2.5 times faster switching speed than those of 1:2 UTLPDR at frequency range of 2-6 GHz. From the simulation results and comparative studies, we propose that the UTLPDR must be greater than 4:1 for the best switching performance. With the abovementioned excellent performances, the proposed switch would be quite promising in the application of information and communications technology system.

  9. Evaluating adaptation options of microcirculatory-tissue systems based on the physiological link of nutritive blood flow and redox ratio

    NASA Astrophysics Data System (ADS)

    Krupatkin, Alexander I.; Sidorov, Victor V.; Dremin, Victor V.; Dunaev, Andrey V.; Novikova, Irina N.; Zhu, Simian; Nabi, Ghulam; Litvinova, Karina S.; Baklanova, Anastasia P.; Bakshaliev, Ruslan M.; Ravcheev, Sergey A.

    2015-03-01

    Fluorescent spectroscopy (FS) is becoming more widely used in chemistry, biology, in various fields of medical technology and medicine in general. Many purulent wounds, burns and other destructive inflammatory processes are accompanied by changes in the fluorescent activity of the tissues, which occurs due to a misbalance in accumulation of natural fluorophores: FAD, NADH, lipofuscin, porphyrins, structural proteins, etc. The study of redox ratio (RR), characterizing the metabolic processes, is important in the assessment of the metabolic activity ofmicrocirculatory-tissue systems (MTS). However, one of the big problems of the FS method is still the correct interpretation of the data and the development of practical methods for its application in clinical medicine. To solve this problem and create new diagnostic criteria, we propose to evaluate the adaptive capacity of MTS using indicators of links between nutritive blood flow and redox ratio during a physiological rest and functional load (occlusion test). As is known, these parameters (RR and nutritive blood flow) characterize the metabolic activity of tissues.We have performedan experimental study of the relationship between the RR, defined by FS, and nutritive blood flow, defined by the methods of laser Doppler flowmetry. Preliminary results in the study of a complex approach to diagnosis of the state of biological tissue were obtained. A positive relationship between the nutritive blood flow in the microcirculatory channel and RR of skin tissue is observed.The speed of change of metabolism in the phase of occlusion and reperfusion and duration of phase of recovery may be the criteria for adaptive capabilities of MTS, which has practical significance for physiology and medicine.

  10. An analytical system for stable isotope analysis on carbon monoxide using continuous-flow isotope-ratio mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pathirana, S. L.; van der Veen, C.; Popa, M. E.; Röckmann, T.

    2015-12-01

    A fully automated system for the determination of δ13C and δ18O in atmospheric CO has been developed. CO is extracted from an air sample and converted into carbon dioxide (CO2) using the Schütze reagent. The isotopic composition is determined with an isotope-ratio mass spectrometer (IRMS) technique. The entire system is continuously flushed with high-purity helium (He), the carrier gas. The blank signal of the Schütze reagent is ~ 4 nmol mol-1, or 1-3 % of the typical sample size. The repeatability is 0.1 ‰ for δ13C and 0.2 ‰ for δ18O. The peak area allows for simultaneous determination of the mole fraction with an analytical repeatability of ~ 0.7 nmol mol-1 for 100 mL of ambient air (185.4 nmol mol-1 of CO). An automated single measurement is performed in only 18 min, and the achieved time efficiency (and small volume of sample air) allows for repetitive measurements practically.