Science.gov

Sample records for reacteur phenix bilan

  1. PHENIX REPORTS

    SciTech Connect

    TIMOTHY C. THOMPSON - HYTEC, INC.

    1998-12-10

    This report contains individual progress reports for the months of December 1997 through May 1998 on the Phenix program at Hytec. Topics include the Phenix muon detector chamber flow analysis; the Phenix Muon detector deformation and motion/tolerance study of Stations 1, 2, and 3; finite element mount/electron shield structural analysis; South Station 3 muon detector deformation analysis; and Station 1 muon detector panel assembly and fabrication sequences.

  2. Introduction to Phenix

    SciTech Connect

    Terwilliger, Thomas C.

    2012-06-04

    PHENIX is a software package that automates nearly all aspects of macromolecular structure determination. This talk will describe the main features of PHENIX, including automated structure solution by MIR, MAD and SAD methods, refinement, molecular replacement, and validation. The PHENIX GUI and command line interfaces will be described as well.

  3. PHENIX Collaboration

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta'ani, H.; Alexander, J.; Alfred, M.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Bing, X.; Black, D.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Caringi, A.; Castera, P.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Conesa del Valle, Z.; Connors, M.; Constantin, P.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deaton, M. B.; DeBlasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; d'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Harper, C.; Hartouni, E. P.; Haruna, K.; Hasegawa, S.; Hashimoto, K.; Haslum, E.; Hayano, R.; Hayashi, S.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isinhue, A.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Javani, M.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; John, D.; Johnson, B. M.; Jones, T.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H.-J.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Kofarago, M.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Ma, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.

    2014-12-01

    We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China, (People's Republic of China), Ministry of Science, Education, and Sports (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), OTKA NK 101 428 grant and the Ch. Simonyi Fund (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Republic of Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, and the US-Israel Binational Science Foundation.

  4. PHENIX Collaboration

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Al-Ta'ani, H.; Alexander, J.; Alfred, M.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Bing, X.; Black, D.; Blau, D. S.; Boissevain, J. G.; Bok, J.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Caringi, A.; Castera, P.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Conesa del Valle, Z.; Connors, M.; Constantin, P.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deaton, M. B.; DeBlasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; d'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Ding, L.; Dion, A.; Do, J. H.; Donadelli, M.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; D'Orazio, L.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Guragain, H.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Harper, C.; Hartouni, E. P.; Haruna, K.; Hasegawa, S.; Hashimoto, K.; Haslum, E.; Hayano, R.; Hayashi, S.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Ide, J.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isinhue, A.; Isobe, T.; Issah, M.; Isupov, A.; Ivanischev, D.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Javani, M.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; John, D.; Johnson, B. M.; Jones, T.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, H.-J.; Kim, H. J.; Kim, K.-B.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Kofarago, M.; Komatsu, Y.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Krizek, F.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Lee, B.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Leitner, E.; Lenzi, B.; Lewis, B.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Luechtenborg, R.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Maai, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.

    2014-11-01

    We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Laboratory and the staff of the other PHENIX participating institutions for their vital contributions. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, a sponsored research grant from Renaissance Technologies LLC, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (USA), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundaç ao de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Ministry of Science, Education, and Sports (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), OTKA NK 101 428 grant and the Ch. Simonyi Fund (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), National Research Foundation and WCU program of the Ministry Education Science and Technology (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the US Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, and the US-Israel Binational Science Foundation.

  5. THE PHENIX EXPERIMENT

    SciTech Connect

    READ,K.F. FOR THE PHENIX COLLABORATIO.

    1999-01-09

    The PHENIX experiment at RHIC is currently under construction with data collection planned to start in 1999. The heavy ion and spin physics goals of PHENIX are described. The authors discuss the experiment's capabilities to address these physics goals. Highlights of the present status of construction and installation are presented.

  6. PHENIX Conceptual Design Report

    SciTech Connect

    Nagamiya, Shoji; Aronson, Samuel H.; Young, Glenn R.; Paffrath, Leo

    1993-01-29

    The PHENIX Conceptual Design Report (CDR) describes the detector design of the PHENIX experiment for Day-1 operation at the Relativistic Heavy Ion Collider (RHIC). The CDR presents the physics capabilities, technical details, cost estimate, construction schedule, funding profile, management structure, and possible upgrade paths of the PHENIX experiment. The primary goals of the PHENIX experiment are to detect the quark-gluon plasma (QGP) and to measure its properties. Many of the potential signatures for the QGP are measured as a function of a well-defined common variable to see if any or all of these signatures show a simultaneous anomaly due to the formation of the QGP. In addition, basic quantum chromodynamics phenomena, collision dynamics, and thermodynamic features of the initial states of the collision are studied. To achieve these goals, the PHENIX experiment measures lepton pairs (dielectrons and dimuons) to study various properties of vector mesons, such as the mass, the width, and the degree of yield suppression due to the formation of the QGP. The effect of thermal radiation on the continuum is studied in different regions of rapidity and mass. The e[mu] coincidence is measured to study charm production, and aids in understanding the shape of the continuum dilepton spectrum. Photons are measured to study direct emission of single photons and to study [pi][sup 0] and [eta] production. Charged hadrons are identified to study the spectrum shape, production of antinuclei, the [phi] meson (via K[sup +]K[sup [minus

  7. Electron measurement in PHENIX

    SciTech Connect

    Akiba, Y.

    1995-07-15

    Electron Measurement in PHENIX detector at RHIC is discussed. The yield and S/N ratio at vector meson peaks ({phi}, {omega}, {rho}{sup o}, and J/{psi}) are evaluated. The electrons from open charm decay, and its consequence to the di-electron measurements is discussed.

  8. Photon physics with PHENIX

    SciTech Connect

    White, S.

    1995-07-15

    In this Paper the author discusses briefly the physics motivation for extending measurements of particle production with high granularity and particle id capabilities to neutrals in PHENIX. The author then discusses the technique of direct photon measurement in the presence of copious background photons from {pi}{sup o} decays. The experiment will measure relatively low p{sub t} photons near y=0 in the lab frame. This new experimental environment of high multiplicity and low {gamma} momenta will affect both the techniques used and the type of analysis which can be performed. The Phenix Electromagnetic calorimeter is described and its capabilities illustrated with results from simulation and beam tests of the first production array.

  9. Photon physics with PHENIX

    SciTech Connect

    White, S.

    1995-07-01

    In this Paper the author discusses briefly the physics motivation for extending measurements of particle production with high granularity and particle id capabilities to neutrals in PHENIX. He then discusses the technique of direct photon measurement in the presence of copious background photons from {pi}{sup o} decays. Relatively low p{sub t} photons will be measured near y=O in the lab frame. This new experimental environment of high multiplicity and low {gamma} momenta will affect both the techniques used and the type of analysis which can be performed. The Phenix Electromagnetic calorimeter is described and its capabilities illustrated with results from simulation and beam tests of the first production array.

  10. PHENIX Fast TOF

    SciTech Connect

    Soha, Aria; Chiu, Mickey; Mannel, Eric; Stoll, Sean; Lynch, Don; Boose, Steve; Northacker, Dave; Alfred, Marcus; Lindesay, James; Chujo, Tatsuya; Inaba, Motoi; Nonaka, Toshihiro; Sato, Wataru; Sakatani, Ikumi; Hirano, Masahiro; Choi, Ihnjea

    2014-01-15

    This is a technical scope of work (TSW) between the Fermi National Accelerator Laboratory (Fermilab) and the experimenters of PHENIX Fast TOF group who have committed to participate in beam tests to be carried out during the FY2014 Fermilab Test Beam Facility program. The goals for this test beam experiment are to verify the timing performance of the two types of time-of-flight detector prototypes.

  11. PHENIX RPC Production Database

    NASA Astrophysics Data System (ADS)

    Jones, Timothy

    2008-10-01

    The Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) is located on the Relativistic Heavy Ion Collider (RHIC) ring at Brookhaven National Laboratory. A primary physics goal that can be studied by PHENIX is the origin of the proton spin. One of the types of rare events looked for in the moun arms at PHENIX are single high transverse momentum mouns, which tend to result from the decay of a W bozon. Resistive Plate Chambers (RPCs) will be used as a level 1 trigger to select these events from a large background of low transverse momentum muons. As these RPCs are assembled it is necessary to keep track of the individual parts of each RPC as well as data from various quality assurance tests in a way that will allow the information to be easily accessible years to come as the RPCs are being used. This is done through the use of a database and web page interface that can be used to enter data about the RPCs or to look up information from tests. I will be presenting on how we keep track of the RPCs, their parts, and data from quality assurance tests as they are being assembled as well as how we can retrieve this data after it has been stored in the database.

  12. The PHENIX experiment at RHIC

    SciTech Connect

    Morrison, D.P.; Akiba, Y.; Alford, O.; PHENIX Collaboration

    1997-12-01

    The primary goals of the heavy-ion program of the PHENIX collaboration are the detection of the quark-gluon plasma and the subsequent characterization of its physical properties. To address these aims, PHENIX will pursue a wide range of high energy heavy-ion physics topics. The breadth of the physics program represents the expectation that it will require the synthesis of a number of measurements to investigate the physics of the quark-gluon plasma. The broad physics agenda of the collaboration is also reflected in the design of the PHENIX detector itself, which is capable of measuring hadrons, leptons and photons with excellent momentum and energy resolution. PHENIX has chosen to instrument a selective acceptance with multiple detector technologies to provide very discriminating particle identification abilities. Additionally, PHENIX will take advantage of RHIC`s capability to collide beams of polarized protons with a vigorous spin physics program, a subject covered in a separable contribution to these proceedings.

  13. The PHENIX electromagnetic calorimeter

    SciTech Connect

    Kistenev, E.; White, S.; Belikov, S.; Kochetkov, V.

    1993-12-31

    The main features of the Phenix EM calorimeter are presented. This a Pb/scintillator calorimeter with ``shish-kebab`` fiber readout, designed for low energy electron and photon measurements. Prototype calorimeters have been built with longitudinal segmentation, {approximately} 100 psec time of flight resolution and 8% energy resolution at 1GeV/c. The laser based monitoring system which has been incorporated into large scale prototypes is described. The dependence of light yield on fiber choice and scintillator surface preparation has been studied.

  14. Draft of the PHENIX Management Plan

    SciTech Connect

    Not Available

    1994-03-10

    The PHENIX Management Plan provides the baselines and controls that the PHENIX and RHIC Projects will follow to meet the technical, cost, and schedule goals for the PHENIX detector at RHIC. This plan will be reviewed and updated as required, with revisions made by agreement among the signed participants.

  15. PHENIX Collaboration: First results from RHIC-PHENIX

    NASA Astrophysics Data System (ADS)

    Kanti Ghosh, Tarun; Adcox, K.; Adler, S.S.; Ajitanand, N.; Akiba, Y.; Alexander, J.; Aphecetche, L.; Arai, Y.; Aronson, S.H.; Averbeck, R.; Awes, T.C.; Barish, K.N.; Barnes, P.D.; Barrette, J.; Bassalleck, B.; Bathe, S.; Baublis, V.; Bazilevsky, A.; Belikov, S.; Bellaiche, F.G.; Belyaev, S.T.; Bennett, M.J.; Berdnikov, Y.; Botelho, S.; Brooks, M.L.; Brown, D.S.; Bruner, N.; Bucher, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Burward-Hoy, J.; Butsyk, S.; Carey, T.A.; Chand, P.; Chang, J.; Chang, W.C.; Chavez, L.L.; Chernichenko, S.; Chi, C.Y.; Chiba, J.; Chiu, M.; Choudhury, R.K.; Christ, T.; Chujo, T.; Chung, M.S.; Chung, P.; Cianciolo, V.; Cole, B.A.; D'Enterria, D.G.; David, G.; Delagrange, H.; Denisov, A.; Deshpande, A.; Desmond, E.J.; Dietzsch, O.; Dinesh, B.V.; Drees, A.; Durum, A.; Dutta, D.; Ebisu, K.; Efremenko, Y.V.; El Chenawi, K.; En'yo, H.; Esumi, S.; Ewell, L.; Ferdousi, T.; Fields, D.E.; Fokin, S.L.; Fraenkel, Z.; Franz, A.; Frawley, A.D.; Fung, S.-Y.; Garpman, S.; Ghosh, T.K.; Glenn, A.; Godoi, A.L.; Goto, Y.; Greene, S.V.; Grosse Perdekamp, M.; Gupta, S.K.; Guryn, W.; Gustafsson, H.-Å.; Haggerty, J.S.; Hamagaki, H.; Hansen, A.G.; Hara, H.; Hartouni, E.P.; Hayano, R.; Hayashi, N.; He, X.; Hemmick, T.K.; Heuser, J.; Hill, J.C.; Ho, D.S.; Homma, K.; Hong, B.; Hoover, A.; Ichihara, T.; Imai, K.; Ippolitov, M.S.; Ishihara, M.; Jacak, B.V.; Jang, W.Y.; Jia, J.; Johnson, B.M.; Johnson, S.C.; Joo, K.S.; Kametani, S.; Kang, J.H.; Kann, M.; Kapoor, S.S.; Kelly, S.; Khachaturov, B.; Khanzadeev, A.; Kikuchi, J.; Kim, D.J.; Kim, H.J.; Kim, S.Y.; Kim, Y.G.; Kinnison, W.W.; Kistenev, E.; Kiyomichi, A.; Klein-Boesing, C.; Klinksiek, S.; Konchenda, L.; Kochetkov, D.; Kochetkov, V.; Koehler, D.; Kohama, T.; Kozlov, a.; Kroon, P.J.; Kurita, K.; Kweon, M.J.; Kwon, Y.; Kyle, G.S.; Lacey, R.; Lajoie, J.G.; Lauret, J.; Lebedev, A.; Lee, D.M.; Leitch, M.J.; Li, X.H.; Li, Z.; Lim, D.J.; Liu, M.X.; Liu, X.; Liu, Z.; Maguire, C.F.; Mahon, J.; Makdisi, A.; Matathias, F.; Mao, Y.; Mark, S.K.; Markacs, S.; Martinez, G.; Marx, M.D.; Masaike, A.; Matathias, F.; Matsumoto, T.; McGaughey, P.L.; Melnikov, E.; Merschmeier, M.; Messer, F.; Messer, M.; Miake, Y.; Miller, T.E.; Milov, A.; Mioduszewski, S.; Mischke, R.E.; Mishra, G.C.; Mitchell, J.T.; Mohanty, A.K.; Morrison, D.P.; Moss, J.M.; Mühlbacher, F.; Muniruzzaman, M.; Murata, J.; Nagamiya, S.; Nagasaka, Y.; Nagle, J.L.; Nakada, Y.; Nandi, B.K.; Newby, J.; Nikkinen, L.; Nilsson, P.; Nishimura, S.; Nyanin, A.S.; Nystrand, J.; O'Brien, E.; Ogilvie, C.A.; Ohnìshì, H.; Ojha, I.D.; Ono, M.; Onuchìn, V.; Oskarsson, A.; Österman, L.; Otterlund, I.; Oyama, K.; Paffrath, L.; Palounek, A.P.T.; Pantuev, V.S.; Papavassiliou, V.; Pate, S.F.; Peitzmann, T.; Petridis, A.N.; Pinkenburg, C.; Pisani, R.P.; Pitukhin, P.; Plasil, F.; Pollack, M.; Pope, K.; Purschke, M.L.; Ravinovich, I.; Read, K.F.; Reygers, K.; Raibov, V.; Raibov, Y.; Rosati, M.; Rose, A.A.; Ryu, S.S.; Saito, N.; Sakaguchi, A.

    2001-08-01

    The PHENIX experiment consists of a large detector system located at the newly commissioned relativistic heavy ion collider (RHIC) at the Brookhaven National Laboratory. The primary goal of the PHENIX experiment is to look for signatures of the QCD prediction of a deconfined high-energy-density phase of nuclear matter quark gluon plasma. PHENIX started data taking for Au+Au collisions at Ö s NN =130 GeV in June 2000. The signals from the beam-beam counter (BBC) and zero degree calorimeter (ZDC) are used to determine the centrality of the collision. A Glauber model reproduces the ZDC spectrum reasonably well to determine the participants in a collision. Charged particle multiplicity distribution from the first PHENIX paper is compared with the other RHIC experiment and the CERN, SPS results. Transverse momentum of photons are measured in the electro-magnetic calorimeter (EMCal) and preliminary results are presented. Particle identification is made by a time of flight (TOF) detector and the results show clear separation of the charged hadrons from each other.

  16. PHENIX (Pioneering High Energy Nuclear Interaction eXperiment) Data Plots from the PHENIX Plot Database

    DOE Data Explorer

    The PHENIX Experiment is the largest of the four experiments currently taking data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons.The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma.[From http://www.phenix.bnl.gov/phenix/WWW/intro/] The PHENIX plot database allows searching by collision species, energies of the X and Y axis, and specific runs. Figures and data plots from published PHENIX papers are also available at http://www.phenix.bnl.gov//WWW/talk/pub_papers.php. (Specialized Interface)

  17. Spin physics with the PHENIX detector system

    SciTech Connect

    Saito, N.; PHENIX Collaboration

    1997-12-31

    The PHENIX experiment at RHIC has extended its scope to cover spin physics using polarized proton beams. The major goals of the spin physics at RHIC are elucidation of the spin structure of the nucleon and precision tests of the symmetries. Sensitivities of the spin physics measurements with the PHENIX detector system are reviewed.

  18. MEASURING GLOBAL OBSERVABLES WITH PHENIX.

    SciTech Connect

    BENNETT,M.J. FOR THE PHENIX COLLABORATION

    1998-06-12

    When the Relativistic Heavy-Ion Collider (RHIC) begins operations, it will be capable of colliding nuclei of various sizes, from protons up to Au, at center-of-mass energies of 200 to 500 GeV per nucleon pair. Some of these collisions are expected to produce a new state of matter, the quark-gluon plasma (QGP), in which quarks are no longer confined to individual hadrons and in which chiral symmetry has been restored. Numerous predictions have been made as to how a phase transition to a QGP would affect the particle spectra produced in these collisions (see, for example, a recent review by Harris and Mueller). The PHENIX physics philosophy is to detect and systematically study the QGP via a simultaneous measurement of many different probes/signatures of the plasma, as a function of the energy density achieved in the nucleus-nucleus collision. To achieve this goal, the PHENIX detector has been designed as a multi-purpose spectrometer, capable of concurrently measuring hadrons, leptons and photons, as well as global properties of the collision, e.g. energy density, as will be detailed below.

  19. The PHENIX Hadron Blind Detector

    SciTech Connect

    Durham, J. M.

    2009-03-10

    Dielectron measurements by the PHENIX Experiment at RHIC are limited by the combinatorial background from electrons and positrons which are not produced in the same pair. The Hadron Blind Detector will allow a substantial reduction of this background by correctly identifying dielectrons from photon conversions and pion Dalitz decays which dominate the signal in the low mass region of the spectrum. Triple GEM stacks, with a CsI photocathode deposited on the uppermost GEM, detect Cherenkov light produced by electrons in a CF{sub 4} radiator. The transparency of CF{sub 4}, high quantum efficiency of CsI in the UV, and absence of a window between the gas radiator and the GEMs allow a large photoelectron yield, while minimizing the hadron signal. Results from the HBD in RHIC's Run-7 and preparations for upcoming runs are discussed.

  20. Strangeness production in PHENIX experiment

    NASA Astrophysics Data System (ADS)

    Kotov, D. O.

    2016-01-01

    The PHENIX experiment at RHIC has measured production of K±, Ks, K* and ϕmesons in p+p, d+Au, Cu+Cu and Au+Au collisions at √sNN = 62.4 and 200 GeV. While p+p collisions provide a baseline and are used for precision tests of pQCD calculations, for heavier colliding systems such as d+Au, Cu+Cu and Au+Au nuclear modification factors are studied at different centralities. These systematic studies enrich current understanding of the strange meson production and its difference from light quark hadrons. The role of radial flow and coalescence in particle production is discussed.

  1. PHENIX: Beyond 15 years of discovery

    DOE PAGESBeta

    Morrison, David; Nagle, James L.

    2015-01-12

    The PHENIX experiment at BNL’s Relativistic Heavy Ion Collider (RHIC) was designed to uncover properties of the quark–gluon plasma (QGP) via rare penetrating probes. Over the past 15 years, the collaboration has delivered on its promised measurements, often with exciting results beyond those originally foreseen. That the QGP behaves as a nearly perfect fluid and that non-photonic electrons are substantially suppressed has led to the use of heavy quarks as probes of the medium. The PHENIX silicon vertex detectors are opening a new arena for QGP studies, and the MPC-EX, a novel forward calorimeter with silicon readout, accesses low-x physicsmore » via direct photons with unprecedented precision. PHENIX has proposed sPHENIX, a major upgrade using the recently acquired BaBar solenoid and full calorimetric coverage and high rate capabilities. sPHENIX will reconstruct jets and extend observables to higher transverse momentum, where comparisons to results from the Large Hadron Collider (LHC) heavy-ion program will provide the most insightful. Following the RHIC program, the nuclear physics community has identified an electron ion collider (EIC) as crucial to the next generation of QCD investigations. The BaBar magnet and sPHENIX calorimetry will be an excellent foundation for a new collaborative pursuit of discovery.« less

  2. PHENIX: Beyond 15 years of discovery

    SciTech Connect

    Morrison, David; Nagle, James L.

    2015-01-12

    The PHENIX experiment at BNL’s Relativistic Heavy Ion Collider (RHIC) was designed to uncover properties of the quark–gluon plasma (QGP) via rare penetrating probes. Over the past 15 years, the collaboration has delivered on its promised measurements, often with exciting results beyond those originally foreseen. That the QGP behaves as a nearly perfect fluid and that non-photonic electrons are substantially suppressed has led to the use of heavy quarks as probes of the medium. The PHENIX silicon vertex detectors are opening a new arena for QGP studies, and the MPC-EX, a novel forward calorimeter with silicon readout, accesses low-x physics via direct photons with unprecedented precision. PHENIX has proposed sPHENIX, a major upgrade using the recently acquired BaBar solenoid and full calorimetric coverage and high rate capabilities. sPHENIX will reconstruct jets and extend observables to higher transverse momentum, where comparisons to results from the Large Hadron Collider (LHC) heavy-ion program will provide the most insightful. Following the RHIC program, the nuclear physics community has identified an electron ion collider (EIC) as crucial to the next generation of QCD investigations. The BaBar magnet and sPHENIX calorimetry will be an excellent foundation for a new collaborative pursuit of discovery.

  3. PHENIX: Beyond 15 years of discovery

    NASA Astrophysics Data System (ADS)

    Morrison, David; Nagle, James L.

    2015-03-01

    The PHENIX experiment at BNL's Relativistic Heavy Ion Collider (RHIC) was designed to uncover properties of the quark-gluon plasma (QGP) via rare penetrating probes. Over the past 15 years, the collaboration has delivered on its promised measurements, often with exciting results beyond those originally foreseen. That the QGP behaves as a nearly perfect fluid and that non-photonic electrons are substantially suppressed has led to the use of heavy quarks as probes of the medium. The PHENIX silicon vertex detectors are opening a new arena for QGP studies, and the MPC-EX, a novel forward calorimeter with silicon readout, accesses low-x physics via direct photons with unprecedented precision. PHENIX has proposed sPHENIX, a major upgrade using the recently acquired BaBar solenoid and full calorimetric coverage and high rate capabilities. sPHENIX will reconstruct jets and extend observables to higher transverse momentum, where comparisons to results from the Large Hadron Collider (LHC) heavy-ion program will provide the most insightful. Following the RHIC program, the nuclear physics community has identified an electron ion collider (EIC) as crucial to the next generation of QCD investigations. The BaBar magnet and sPHENIX calorimetry will be an excellent foundation for a new collaborative pursuit of discovery.

  4. The future of PHENIX: upgrading to sPHENIX and beyond

    NASA Astrophysics Data System (ADS)

    Mannel, E. J.

    2015-05-01

    sPHENIX is a major upgrade to the PHENIX detector enabling high-rate, large acceptance measurements of upsilons, direct photons and fully reconstructed jets in p-p, p-A and A-A collisions at the Relativistic Heavy Ion Collider (RHIC). These detailed measurements will probe the Quark Gluon Plasma near its transition temperature, in a region of strongest coupling. The sPHENIX detector consists of hadronic and electromagnetic calorimetry, and charged particle tracking in conjunction with the recently acquired 1.5 tesla BaBar super-conducting solenoid. The sPHENIX acceptance of 2π in azimuth and |η| < 1.1 in pseudo-rapidity provides a factor of six improvement over the present PHENIX central spectrometer. Beyond being an excellent RHIC detector, sPHENIX provides an outstanding foundation for a detector focused on the physics of a possible future electron-ion collider at RHIC (eRHIC). In this talk we will discuss the physics potential of the sPHENIX detector, the design and technology choices for the sPHENIX calorimeters, and the conceptual design of a day-one detector for eRHIC.

  5. Automated structure solution with the PHENIX suite

    SciTech Connect

    Terwilliger, Thomas C; Zwart, Peter H; Afonine, Pavel V; Grosse - Kunstleve, Ralf W

    2008-01-01

    Significant time and effort are often required to solve and complete a macromolecular crystal structure. The development of automated computational methods for the analysis, solution, and completion of crystallographic structures has the potential to produce minimally biased models in a short time without the need for manual intervention. The PHENIX software suite is a highly automated system for macromolecular structure determination that can rapidly arrive at an initial partial model of a structure without significant human intervention, given moderate resolution, and good quality data. This achievement has been made possible by the development of new algorithms for structure determination, maximum-likelihood molecular replacement (PHASER), heavy-atom search (HySS), template- and pattern-based automated model-building (RESOLVE, TEXTAL), automated macromolecular refinement (phenix. refine), and iterative model-building, density modification and refinement that can operate at moderate resolution (RESOLVE, AutoBuild). These algorithms are based on a highly integrated and comprehensive set of crystallographic libraries that have been built and made available to the community. The algorithms are tightly linked and made easily accessible to users through the PHENIX Wizards and the PHENIX GUI.

  6. Automated Structure Solution with the PHENIX Suite

    SciTech Connect

    Zwart, Peter H.; Zwart, Peter H.; Afonine, Pavel; Grosse-Kunstleve, Ralf W.; Hung, Li-Wei; Ioerger, Tom R.; McCoy, A.J.; McKee, Eric; Moriarty, Nigel; Read, Randy J.; Sacchettini, James C.; Sauter, Nicholas K.; Storoni, L.C.; Terwilliger, Tomas C.; Adams, Paul D.

    2008-06-09

    Significant time and effort are often required to solve and complete a macromolecular crystal structure. The development of automated computational methods for the analysis, solution and completion of crystallographic structures has the potential to produce minimally biased models in a short time without the need for manual intervention. The PHENIX software suite is a highly automated system for macromolecular structure determination that can rapidly arrive at an initial partial model of a structure without significant human intervention, given moderate resolution and good quality data. This achievement has been made possible by the development of new algorithms for structure determination, maximum-likelihood molecular replacement (PHASER), heavy-atom search (HySS), template and pattern-based automated model-building (RESOLVE, TEXTAL), automated macromolecular refinement (phenix.refine), and iterative model-building, density modification and refinement that can operate at moderate resolution (RESOLVE, AutoBuild). These algorithms are based on a highly integrated and comprehensive set of crystallographic libraries that have been built and made available to the community. The algorithms are tightly linked and made easily accessible to users through the PHENIX Wizards and the PHENIX GUI.

  7. PHENIX Measurements of Correlations at RHIC

    NASA Astrophysics Data System (ADS)

    Taranenko, Arkadiy

    2016-01-01

    Relativistic heavy-ion collisions provide a unique opportunity to study the expansion dynamics and the transport properties of the produced strongly interacting quark gluon plasma (QGP). This article reviews the recent soft physics results obtained via correlation measurements from the PHENIX experiment at RHIC: space-time extent of the pion emission source and azimuthal anisotropy of the particle production.

  8. The Phenix ultimate natural convection test

    SciTech Connect

    Gauthe, P.; Pialla, D.; Tenchine, D.; Vasile, A.; Rochwerger, D.

    2012-07-01

    The French sodium cooled fast reactor Phenix was shut down in 2009 after 35 years of operation. Before decommissioning, a final set of tests were performed by the CEA during 9 months. Several topics were involved such as thermal hydraulics, core physics and fuel behaviour. Among these ultimate experiments, two thermal hydraulic tests were performed: an asymmetrical test consisting in a trip of one secondary pump and a natural convection test in the primary circuit. Recognizing the unique opportunity offered by these Phenix ultimate tests, IAEA decided in 2007 to launch a Coordinated Research Project (CRP) devoted to benchmarking analyses with system codes on the Phenix natural convection test. One objective of the natural convection test in Phenix reactor is the assessment of the CATHARE system code for safety studies on future and advanced sodium cooled fast reactors. The aim of this paper is to describe this test, which was performed on June 22-23, 2009, and the associated benchmark specifications for the CRP work. The paper reminds briefly the Phenix reactor with the main physical parameters and the instrumentation used during the natural convection test. After that, the test scenario is described: - initial state at a power of 120 MWth, - test beginning resulting from a manual dry out of the two steam generators, - manual scram, - manual trip on the three primary pumps without back-up by pony motors, - setting and development of natural convection in the primary circuit, in a first phase without significant heat sink in the secondary circuits and in a second phase with significant heat sink in the secondary circuits, by opening the casing of steam generators to create an efficient heat sink, by air natural circulation in the steam generators casing. The benchmark case ends after this second phase, which corresponds to the experimental test duration of nearly 7 hours. The paper presents also the benchmark specifications data supplied by the CEA to all

  9. Trigger circuits for the PHENIX electromagnetic calorimeter

    SciTech Connect

    Frank, S.S.; Britton, C.L. Jr.; Winterberg, A.L.; Young, G.R.

    1997-11-01

    Monolithic and discrete circuits have been developed to provide trigger signals for the PHENIX electromagnetic calorimeter detector. These trigger circuits are deadtimeless and create overlapping 4 by 4 energy sums, a cosmic muon trigger, and a 144 channel energy sum. The front end electronics of the PHENIX system sample the energy and timing channels at each bunch crossing (BC) but it is not known immediately if this data is of interest. The information from the trigger circuits is used to determine if the data collected is of interest and should be digitized and stored or discarded. This paper presents details of the design, issues affecting circuit performance, characterization of prototypes fabricated in 1.2 {micro}m Orbit CMOS, and integration of the circuits into the EMCal electronics system.

  10. Particle Correlations with the PHENIX Experiment

    SciTech Connect

    Johnson, S C

    2002-01-20

    Results of identical pion correlations from the first year of data collection with the PHENIX detector at RHIC ({radical}S{sub NN} = 130 GeV) are presented. PHENIX has good particle identification using an electromagnetic calorimeter for timing, leading to identified pions from .2 to 1 GeV/c. This extends the range of previously measured correlation radii at this energy to (k{sub T}) = 633MeV/c. The beam energy dependence of the HBT radii are studied in depth and no significant dependence of the transverse radii is present. The longitudinal correlation length has a moderate energy dependence. Furthermore, theoretical predictions of R{sub out}/R{sub side} severely underpredict the measured ratio, which is consistent with unity for all k{sub T}. The implications of these results are considered.

  11. Phase Transition Signature Results from PHENIX

    SciTech Connect

    Mitchell, J.e.; PHENIX Collaboration

    2009-06-08

    The PHENIX experiment has conducted searches for the QCD critical point with measurements of multiplicity fluctuations, transverse momentum fluctuations, event-by-event kaon-to-pion ratios, elliptic flow, and correlations. Measurements have been made in several collision systems as a function of centrality and transverse momentum. The results do not show significant evidence of critical behavior in the collision systems and energies studied, although several interesting features are discussed.

  12. Graphical tools for macromolecular crystallography in PHENIX

    PubMed Central

    Echols, Nathaniel; Grosse-Kunstleve, Ralf W.; Afonine, Pavel V.; Bunkóczi, Gábor; Chen, Vincent B.; Headd, Jeffrey J.; McCoy, Airlie J.; Moriarty, Nigel W.; Read, Randy J.; Richardson, David C.; Richardson, Jane S.; Terwilliger, Thomas C.; Adams, Paul D.

    2012-01-01

    A new Python-based graphical user interface for the PHENIX suite of crystallography software is described. This interface unifies the command-line programs and their graphical displays, simplifying the development of new interfaces and avoiding duplication of function. With careful design, graphical interfaces can be displayed automatically, instead of being manually constructed. The resulting package is easily maintained and extended as new programs are added or modified. PMID:22675231

  13. PHENIX Spinfest School 2009 at BNL

    SciTech Connect

    Foster,S.P.; Foster,S.; Seidl, R.; Goto, Y.; Okada, K.

    2009-08-07

    Since 2005, the PHENIX Spin Physics Working Group has set aside several weeks each summer for the purposes of training and integrating recent members of the working group as well as coordinating and making rapid progress on support tasks and data analysis. One week is dedicated to more formal didactic lectures by outside speakers. The location has so far alternated between BNL and the RIKEN campus in Wako, Japan, with support provided by RBRC and LANL.

  14. sPHENIX Hadronic Calorimeter Scintillator Studies

    NASA Astrophysics Data System (ADS)

    Byrd, Reuben; Sphenix Collaboration

    2015-10-01

    A new form of matter called the Quark-Gluon Plasma (QGP) was discovered with the Relativistic Heavy Ion Collider (RHIC). PHENIX is an experiment at RHIC that helped with this discovery, but plans are being made to replace it with a new spectrometer with different capabilities. The sPHENIX detector will consist of a superconducting solenoid magnet, hadronic and electromagnetic calorimetry and charged particle tracking. sPHENIX will enable a rich jet physics program that will address fundamental questions about of the nature of the QGP. The new detector will provide full azimuthal coverage and +/- 1.1 in pseudorapidity. The Hadronic Calorimeter is a major subsystem in this detector. It is made of alternating layers of scintillating tiles and steel plates. In the current prototype the tiles are covered with a reflective coating and contain wavelength shifting fibers. As the second round of prototypes are developed for an upcoming beam test, special care is being taken to provide uniform light collection efficiency across the detector. Studies are being conducted to ensure this by careful alignment of the silicon photomultipliers to the fibers and varying coatings on the tiles. The effects of the coating will be presented along with the current status and ongoing plans.

  15. RNA Structure Refinement using the ERRASER-Phenix pipeline

    PubMed Central

    Chou, Fang-Chieh; Echols, Nathaniel; Terwilliger, Thomas C.; Das, Rhiju

    2015-01-01

    Summary The final step of RNA crystallography involves the fitting of coordinates into electron density maps. The large number of backbone atoms in RNA presents a difficult and tedious challenge, particularly when experimental density is poor. The ERRASER-Phenix pipeline can improve an initial set of RNA coordinates automatically based on a physically realistic model of atomic-level RNA interactions. The pipeline couples diffraction-based refinement in Phenix with the Rosetta-based real-space refinement protocol ERRASER (Enumerative Real-Space Refinement ASsisted by Electron density under Rosetta). The combination of ERRASER and Phenix can improve the geometrical quality of RNA crystallographic models while maintaining or improving the fit to the diffraction data (as measured by Rfree). Here we present a complete tutorial for running ERRASER-Phenix through the Phenix GUI, from the command-line, and via an application in the Rosetta On-line Server that Includes Everyone (ROSIE). PMID:26227049

  16. Containment Safety Of Super Phenix : Essai Mars

    NASA Astrophysics Data System (ADS)

    Falgayrettes, M. F.; Fiche, C.; Hamon, P.

    1985-02-01

    The protection of people and property must be assured by every situation around an industrial power plant. That is why the FRENCH Commissariat a l'Energie Atomique has defined the size of the confinement of Super Phenix to withstand the worst highly hypothetical accident. The study of the strength of the confinement has been carried out by two complementary means : - Calculation (Display poster # 491 188), - Experiment : reactor mock-up. The latter is presented in the film. The solution which have been adopted for the problems encountered are emphasied ; the work with high speed camera is presented. The film is illustrated with some fast movie sequences.

  17. Analyzing Ever Growing Datasets in PHENIX

    NASA Astrophysics Data System (ADS)

    Pinkenburg, Christopher; PHENIX Collaboration

    2011-12-01

    After 10 years of running, the PHENIX experiment has by now accumulated more than 700 TB of reconstructed data which are directly used for analysis. Analyzing these amounts of data efficiently requires a coordinated approach. Beginning in 2005 we started to develop a system for the RHIC Atlas Computing Facility (RACF) which allows the efficient analysis of these large data sets. The Analysis Taxi is now the tool which allows any collaborator to process any data set taken since 2003 in weekly passes with turnaround times of typically three to four days.

  18. d + Au hadron correlation measurements at PHENIX

    SciTech Connect

    Anne M. Sickles

    2014-05-13

    In these proceedings, we discuss recent results from d + Au collisions in PHENIX ridge related measurements and their possible hydrodynamic origin. We present the v2 at midrapidity and measurements of the pseudorapidity dependence of the ridge, distinguishing between the d-going and Au-going directions. We investigate the possible geometrical origin by comparing v2 in d + Au to that in p + Pb, Au + Au and Pb + Pb collisions. Future plans to clarify the role of geometry in small collision systems at RHIC are discussed.

  19. d + Au hadron correlation measurements from PHENIX

    NASA Astrophysics Data System (ADS)

    Sickles, Anne M.

    2015-01-01

    Recent observations of extended pseudorapidity correlations at the LHC in p+p and p+Pb collisions are of great interest. Here we present related results from d+Au collisions at PHENIX. We present the observed v2 and discuss the possible origin in the geometry of the collision region. We also present new measurements of the pseudorapidity dependence of the ridge in d+Au collision. Future plans to clarify the role of geometry in small collision systems using 3 He + Au collisions are discussed.

  20. New investigations of the Phenix negative reactivity events

    SciTech Connect

    Dumaz, P.; Alpy, N.; Broc, D.; Bucci, M.; Cardolaccia, J.; Guenaut, C.; Hourcade, E.; Martin, L.; Jolly, J. A.; Masoni, P.; Pascal, V.; Simon, N.; Schmidt, N.

    2012-07-01

    In 1989 and 1990, four very fast and high amplitude decreases of the measured neutron flux, known as 'AURN' events, occurred in the Phenix fast neutron reactor and were not well explained despite a significant investigation program carried out in the 90 s. The perspective of the Phenix end of life led the French Nuclear Energy Div. to reinitiate AURN studies in particular with dedicated Phenix tests. It comes out from simulations with improved fluid-structure interaction model of the core movement that an outward movement of the sub-assemblies can generate a power variation consistent with the AURN signals. 'AURN' Phenix tests confirm the abnormal thermal behavior of an experimental sub-assembly, a new A URN scenario has been proposed on this basis. (authors)

  1. Nose-cone calorimeter: PHENIX forward upgrade

    NASA Astrophysics Data System (ADS)

    Chvala, Ondrej

    2009-07-01

    PHENIX is a high rate experiment efficient at measuring rare processes, but has limited acceptance in azimuth and pseudorapidity ( η). The Nose Cone Calorimeter (NCC), a W-Si sampling calorimeter in the region of 0.9< η<3, is one of the upgrades which will significantly increase coverage in both azimuth and pseudorapidity. The NCC will expand PHENIX’s precision measurements of electromagnetic probes in η, reconstruct jets, perform a wide scope of correlation measurements, and enhance triggering capabilities. The detector will significantly contribute to measurements of γ-jet correlations, quarkonia production, and low- x nuclear structure functions. This report discusses details of the detector design and its performance concerning a sample of the physics topics which will benefit from the NCC. In view of recent funding difficulties, outlook of the activities is discussed.

  2. Thermal and direct photons in PHENIX

    NASA Astrophysics Data System (ADS)

    Campbell, Sarah; Phenix Collaboration

    2013-03-01

    Thermal and direct photons in PHENIX are measured by virtual photons (γ* → e+e-) for pT 1-5 GeV/c, and real photons for pT 4-20 GeV/c. In Au+Au, high pT direct photons show no strong deviation from the TAA-scaled p+p spectrum. The low pT thermal photon spectra lie above the TAA-scaled p+p fit. Partonic photon production models describe this enhancement with early formation times and high initial temperatures. The Au+Au direct photon elliptic flow, v2, is large at pT < 4 GeV/c and consistent with zero at pT > 4 GeV/c. Hydrodynamic parton models under-predict the low pT photon v2.

  3. A FOrward CALorimeter Upgrade For PHENIX

    SciTech Connect

    Hollis, Richard S.

    2011-06-01

    Over the past few years, the PHENIX detector has undergone several upgrades in the forward region (1<|{eta}|<4), initially covered only by the muon arms. The focus of these upgrades is toward a better understanding of the Color-Glass Condensate and the interplay between the different components of the proton's spin valence/sea quark and gluon contributions. This paper highlights the newly proposed forward calorimeter detector, FOCAL. FOCAL is a tungsten-silicon sampling calorimeter with high position and energy resolution, covering a pseudorapidity of 1.6<{eta}<2.5. This future detector aims to constrain the current view of gluon saturation at small x in the Color-Glass Condensate framework, through isolation of direct photons at high-p{sub T} over a broad range of pseudorapidity.

  4. PHENIX WBS notes. Cost and schedule review copy

    SciTech Connect

    Not Available

    1994-02-01

    The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

  5. PHENIX Work Breakdown Structure. Cost and schedule review copy

    SciTech Connect

    Not Available

    1994-02-01

    The Work Breakdown Structure (WBS) Book begins with this Overview section, which contains the high-level summary cost estimate, the cost profile, and the global construction schedule. The summary cost estimate shows the total US cost and the cost in terms of PHENIX construction funds for building the PHENIX detector. All costs in the WBS book are shown in FY 1993 dollars. Also shown are the institutional and foreign contributions, the level of pre-operations funding, and the cost of deferred items. Pie charts are presented at PHENIX WBS level 1 and 2 that show this information. The PHENIX construction funds are shown broken down to PHENIX WBS level 3 items per fiscal year, and the resulting profile is compared to the RHIC target profile. An accumulated difference of the two profiles is also shown. The PHENIX global construction schedule is presented at the end of the Overview section. Following the Overview are sections for each subsystem. Each subsystem section begins with a summary cost estimate, cost profile, and critical path. The total level 3 cost is broken down into fixed costs (M&S), engineering costs (EDIA) and labor costs. Costs are further broken down in terms of PHENIX construction funds, institutional and foreign contributions, pre-operations funding, and deferred items. Also shown is the contingency at level 3 and the level 4 breakdown of the total cost. The cost profile in fiscal years is shown at level 3. The subsystem summaries are followed by the full cost estimate and schedule sheets for that subsystem. These detailed sheets are typically carried down to level 7 or 8. The cost estimate shows Total, M&S, EDIA, and Labor breakdowns, as well as contingency, for each WBS entry.

  6. Improved ligand geometries in crystallographic refinement using AFITT in PHENIX.

    PubMed

    Janowski, Pawel A; Moriarty, Nigel W; Kelley, Brian P; Case, David A; York, Darrin M; Adams, Paul D; Warren, Gregory L

    2016-09-01

    Modern crystal structure refinement programs rely on geometry restraints to overcome the challenge of a low data-to-parameter ratio. While the classical Engh and Huber restraints work well for standard amino-acid residues, the chemical complexity of small-molecule ligands presents a particular challenge. Most current approaches either limit ligand restraints to those that can be readily described in the Crystallographic Information File (CIF) format, thus sacrificing chemical flexibility and energetic accuracy, or they employ protocols that substantially lengthen the refinement time, potentially hindering rapid automated refinement workflows. PHENIX-AFITT refinement uses a full molecular-mechanics force field for user-selected small-molecule ligands during refinement, eliminating the potentially difficult problem of finding or generating high-quality geometry restraints. It is fully integrated with a standard refinement protocol and requires practically no additional steps from the user, making it ideal for high-throughput workflows. PHENIX-AFITT refinements also handle multiple ligands in a single model, alternate conformations and covalently bound ligands. Here, the results of combining AFITT and the PHENIX software suite on a data set of 189 protein-ligand PDB structures are presented. Refinements using PHENIX-AFITT significantly reduce ligand conformational energy and lead to improved geometries without detriment to the fit to the experimental data. For the data presented, PHENIX-AFITT refinements result in more chemically accurate models for small-molecule ligands. PMID:27599738

  7. Towards automated crystallographic structure refinement with phenix.refine.

    PubMed

    Afonine, Pavel V; Grosse-Kunstleve, Ralf W; Echols, Nathaniel; Headd, Jeffrey J; Moriarty, Nigel W; Mustyakimov, Marat; Terwilliger, Thomas C; Urzhumtsev, Alexandre; Zwart, Peter H; Adams, Paul D

    2012-04-01

    phenix.refine is a program within the PHENIX package that supports crystallographic structure refinement against experimental data with a wide range of upper resolution limits using a large repertoire of model parameterizations. It has several automation features and is also highly flexible. Several hundred parameters enable extensive customizations for complex use cases. Multiple user-defined refinement strategies can be applied to specific parts of the model in a single refinement run. An intuitive graphical user interface is available to guide novice users and to assist advanced users in managing refinement projects. X-ray or neutron diffraction data can be used separately or jointly in refinement. phenix.refine is tightly integrated into the PHENIX suite, where it serves as a critical component in automated model building, final structure refinement, structure validation and deposition to the wwPDB. This paper presents an overview of the major phenix.refine features, with extensive literature references for readers interested in more detailed discussions of the methods. PMID:22505256

  8. Towards automated crystallographic structure refinement with phenix.refine

    PubMed Central

    Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel; Headd, Jeffrey J.; Moriarty, Nigel W.; Mustyakimov, Marat; Terwilliger, Thomas C.; Urzhumtsev, Alexandre; Zwart, Peter H.; Adams, Paul D.

    2012-01-01

    phenix.refine is a program within the PHENIX package that supports crystallographic structure refinement against experimental data with a wide range of upper resolution limits using a large repertoire of model parameterizations. It has several automation features and is also highly flexible. Several hundred parameters enable extensive customizations for complex use cases. Multiple user-defined refinement strategies can be applied to specific parts of the model in a single refinement run. An intuitive graphical user interface is available to guide novice users and to assist advanced users in managing refinement projects. X-ray or neutron diffraction data can be used separately or jointly in refinement. phenix.refine is tightly integrated into the PHENIX suite, where it serves as a critical component in automated model building, final structure refinement, structure validation and deposition to the wwPDB. This paper presents an overview of the major phenix.refine features, with extensive literature references for readers interested in more detailed discussions of the methods. PMID:22505256

  9. 40 CFR 81.58 - Columbus (Georgia)-Phenix City (Alabama) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.58 Columbus (Georgia)-Phenix City (Alabama) Interstate Air Quality Control Region. The Columbus (Georgia)-Phenix City (Alabama) Interstate... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Columbus (Georgia)-Phenix...

  10. 40 CFR 81.58 - Columbus (Georgia)-Phenix City (Alabama) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.58 Columbus (Georgia)-Phenix City (Alabama) Interstate Air Quality Control Region. The Columbus (Georgia)-Phenix City (Alabama) Interstate... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Columbus (Georgia)-Phenix...

  11. 40 CFR 81.58 - Columbus (Georgia)-Phenix City (Alabama) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.58 Columbus (Georgia)-Phenix City (Alabama) Interstate Air Quality Control Region. The Columbus (Georgia)-Phenix City (Alabama) Interstate... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Columbus (Georgia)-Phenix...

  12. 40 CFR 81.58 - Columbus (Georgia)-Phenix City (Alabama) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.58 Columbus (Georgia)-Phenix City (Alabama) Interstate Air Quality Control Region. The Columbus (Georgia)-Phenix City (Alabama) Interstate... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Columbus (Georgia)-Phenix...

  13. An Interface between PHENIX Simulation and Off-line Software

    NASA Astrophysics Data System (ADS)

    Trivedi, Anita; Maguire, Charles; Rose, Andrew

    1997-04-01

    We demonstrate a method for developing an interface between the simulation software and the off-line software used in the PHENIX experiment. The GEANT based PHENIX simulation code (PISA) has been made compatible with highly modular object oriented based off-line software written in C/C++. A message passing interface between the controller central brain of the off-line software and the new merged software has been established using parallel virtual machine (PVM) package. This interface is used to pass commands and assign jobs to the modules made from the simulation software. An object oriented method is used for this work. Each module has its own state cycle. For the PHENIX analysis software an interface has been developed to translate data received from the GEANT software in ZEBRA format to the DSPACK format compatible with the off-line software. Details of this work will be discussed in this presentation.

  14. Tungsten Scintillating Fibers Electromagnetic Calorimeters for sPHENIX upgrade

    NASA Astrophysics Data System (ADS)

    Li, Siyang; Loggins, Vera; Phipps, Michael; Sickles, Anne

    2015-10-01

    sPHENIX, a planned new detector at RHIC, features electromagnetic and hadronic calorimetry that covers | η| < 1.1 and φ = 2 π. The large acceptance calorimeter design is optimized for the study of jets in heavy ion collisions. The design includes a tungsten fiber EmCal that is made out of a tower array of plastic scintillating fiber embedded inside a mixture of tungsten powder and epoxy. For this calorimeter, silicon photomultipliers will be attached at the end of the module to convert scintillated optical photons into electrical signals. The sPHENIX group at Illinois is currently making samples of these modules to study the production process and achievable density. In addition, we have set up a silicon photomultiplier read out test system which will be used to evaluate the module performance. sPHENIX collaboration and Brookhaven National Laboratory.

  15. Improving PHENIX search with Solr, Nutch and Drupal.

    NASA Astrophysics Data System (ADS)

    Morrison, Dave; Sourikova, Irina

    2012-12-01

    During its 20 years of R&D, construction and operation the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) has accumulated large amounts of proprietary collaboration data that is hosted on many servers around the world and is not open for commercial search engines for indexing and searching. The legacy search infrastructure did not scale well with the fast growing PHENIX document base and produced results inadequate in both precision and recall. After considering the possible alternatives that would provide an aggregated, fast, full text search of a variety of data sources and file formats we decided to use Nutch [1] as a web crawler and Solr [2] as a search engine. To present XML-based Solr search results in a user-friendly format we use Drupal [3] as a web interface to Solr. We describe the experience of building a federated search for a heterogeneous collection of 10 million PHENIX documents with Nutch, Solr and Drupal.

  16. Nose-Cone Calorimeter: upgrade of PHENIX detector

    NASA Astrophysics Data System (ADS)

    Chvala, Ondrej

    2008-10-01

    PHENIX experiment at RHIC is efficient at measuring processes involving rare probes, but has limited acceptance in azimuth and pseudorapidity (η). The Nose Cone Calorimeter (NCC), a W-Si sampling calorimeter in the region of 0.9,<η<,, is one of the upgrades which will dramatically increase coverage in azimuth and pseudorapidity. The NCC will expand PHENIX's precision measurements of electromagnetic probes in η, reconstruct jets, and enhance triggering capabilities. It will significantly contribute to measurements of γ-jets, quarkonia, and low-x nuclear structure functions. Details of the detector design, performance, and a sample of the physics topics which will benefit from the NCC, will be discussed.

  17. Bilan de santé chez l’adulte

    PubMed Central

    Ridley, Jane; Ischayek, Amanda; Dubey, Vinita; Iglar, Karl

    2016-01-01

    Résumé Objectif Décrire les mises à jour apportées à Soins préventifs - Fiche de contrôle© pour aider les médecins à se tenir au fait des plus récentes recommandations en matière de soins de santé préventifs. Qualité des données Une recension dans la base de données Ovid MEDLINE a été effectuée à l’aide de mots-clés et d’autres paradigmes pertinents au bilan de santé périodique. Des sources secondaires, comme le Groupe d’étude canadien sur les soins de santé préventifs, l’Agence de la santé publique du Canada, la base de données Trip et l’Infobanque de l’Association médicale canadienne, ont aussi fait l’objet d’une recherche. Nous avons révisé les recommandations relatives aux soins préventifs pour des adultes à risque moyen. Les recommandations de bonne qualité et passables sont présentées respectivement en caractères gras et italiques. Message principal La fiche de contrôle a été mise à jour en fonction des recommandations du Groupe d’étude canadien sur les soins de santé préventif relatives au dépistage de l’obésité (2015), du cancer du col (2013), de la dépression (2013), de l’ostéoporose (2013), de l’hypertension (2012), du diabète (2012, 2013) et du cancer du sein (2011). D’autres mises à jour se fondent sur les recommandations d’autres organisations canadiennes concernant le dépistage du VIH (2013), le dépistage des infections transmises sexuellement (2013), les immunisations (2012 à 2014), le dépistage de la dyslipidémie (2012), le counseling en fertilité chez la femme (2011, 2012) et le dépistage du cancer colorectal (2010). Certaines recommandations antérieures ont été éliminées et d’autres, peu étayées par des données probantes, n’ont pas été incluses. Conclusion Soins préventifs - Fiche de contrôle a été mise à jour pour inclure les recommandations récentes afin de permettre aux médecins de famille d’offrir des soins complets et fondés sur des

  18. Traumatismes Oculaires par Petards: Bilan sur Trois Annees

    PubMed Central

    Zouaoui-Kesraoui, N.; Derdour, A.

    2009-01-01

    Summary Les accidents dus aux pétards sont des accidents graves. Leur recrudescence ces dernières années en Algérie, essentiellement durant les fêtes du Mawlid Ennabaoui (fête de la naissance du prophète), mérite à notre sens d'entreprendre des bilans exhaustifs dont celui-ci dans le but d'une sensibilisation de toutes les compétences concernées. Nous avons réuni sur trois années consécutives (2002, 2003, 2004) 60 dossiers de malades ayant subi des accidents oculaires par pétards. Nos patients sont répartis en 42 consultations pour blessures légères et 18 hospitalisations pour blessures graves. Parmi ces derniers, neuf ont présenté des complications et séquelles graves (cinq cas de cécité par atrophie du globe oculaire, trois cas de cécité cornéenne et un cas de cécité par trou maculaire). Dans tous ces cas l'incapacité permanente partielle est au minimum de 30%. Au vu de ces données nous proposons des mesures d'éducation sanitaire et une sensibilisation du grand public aux traumatismes oculaires, par le biais de mé dias appropriés: radio, télévision, affiches. PMID:21991157

  19. FLUCTUATION AND LOW TRANSVERSE MOMENTUM CORRELATION RESULTS FROM PHENIX.

    SciTech Connect

    MITCHELL,J.T.

    2006-07-03

    The PHENIX Experiment at the Relativistic Heavy Ion Collider has conducted a survey of fluctuations in charged hadron multiplicity in Au+Au and Cu+Cu collisions at {radical}s{sub NN} = 22, 62, and 200 GeV. A universal power law scaling for multiplicity fluctuations expressed as {sigma}{sup 2}/{mu}{sup 2} is observed as a function of N{sub part} for all species studied that is independent of the transverse momentum range of the measurement. PHENIX has also measured transverse momentum correlation amplitudes in p+p, d+Au, and Au+Au collisions. At low transverse momentum, significant differences in the correlations between the baseline p+p and d+Au data and the Au+Au data are presented.

  20. PHENIX EXPERIMENT AT RHIC: DECADAL PLAN 2004-2013

    SciTech Connect

    ZAJC,W.ET. AL.

    2003-11-30

    The PHENIX Collaboration has developed a plan for the detailed investigation of quantum chromodynamics in the next decade. The demonstrated capabilities of the PHENIX experiment to measure rare processes in hadronic, leptonic and photonic channels, in combination with RHIC's unparalleled flexibility as a hadronic collider, provides a physics program of extraordinary breadth and depth. A superlative set of measurements to elucidate the states of both hot and cold nuclear matter, and to measure the spin structure of the proton has been identified. The components of this plan include: (1) Definitive measurements that will establish the nature of the matter created in nucleus+nucleus collisions, that will determine if the description of such matter as a quark-gluon plasma is appropriate, and that will quantify both the equilibrium and non-equilibrium features of the produced medium. (2) Precision measurements of the gluon structure of the proton, and of the spin structure of the gluon and sea-quark distributions of the proton via polarized proton+proton collisions. (3) Determination of the gluon distribution in cold nuclear matter using proton+nucleus collisions. Each of these fundamental fields of investigation will be addressed through a program of correlated measurements in some or all of the following channels: (1) Particle production at high transverse momentum, studied via single particle inclusive measurements of identified charged and neutral hadrons, multi-particle correlations and jet production. (2) Direct photon, photon+jet and virtual photon production. (3) Light and heavy vector mesons. (4) Heavy flavor production. These measurements, together with the established PHENIX abilities to identify hadrons at low transverse momentum, to perform detailed centrality selections, and to monitor polarization and luminosity with high precision create a superb opportunity for performing world-class science with PHENIX for the next decade. A portion of this program is

  1. Forward physics at PHENIX with precision silicon tracking

    NASA Astrophysics Data System (ADS)

    Durham, J. Matthew

    2014-03-01

    The PHENIX experiment at RHIC has developed and installed a new silicon detector, the Forward Silicon Vertex Tracker (FVTX), to provide precise tracking at forward and backward rapidity (1 . 2 < | y | < 2 . 2) . The FVTX consists of four layers of silicon mini-strip sensors with a 75 micron pitch in the radial direction, and is located in front of the existing PHENIX muon arms. By determining muon tracks with high precision before any interactions occur in the hadron absorber, the FVTX will enhance the mass resolution of dimuon resonance measurements as well as allow separation of decay muons from charm and bottom hadrons produced in heavy ion collisions. In this talk, the design and capabilities of the FVTX will be discussed, along with the analysis status of FVTX data.

  2. Testing and Evaluation of PHENIX Reaction Plane Detector Photomultiplier Tubes

    NASA Astrophysics Data System (ADS)

    Anderson, Nicholas; Richardson, Eric; Mignerey, Alice

    2006-10-01

    The PHENIX Reaction Plane Detector (RxnP) at the Relativistic Heavy Ion Collider is designed to determine the reaction plane in heavy ion collisions. Currently the reaction plane is determined using the Beam Beam Counters. However, the RxnP will increase the resolution by nearly a factor of two over the currently achievable levels. This detector's location in the central region of PHENIX will expose it to a magnetic field of approximately 1 Tesla. The curvature of the field lines makes it necessary to understand the relationship between the angle of the photomultiplier tubes (PMTs) in the magnetic field and the PMTs' output. Results of bench-top tests of the PMTs in similar magnetic fields and their impact on the final design will be presented.

  3. First Measurements of Pion Correlations by the PHENIX Experiment

    SciTech Connect

    Johnson, S C

    2001-04-11

    First identical-pion correlations measured at RHIC energies by PHENIX are presented. Two analyses with separate detectors, systematics, and statistics provide consistent results. The resulting HBT radii are moderately larger than those measured at lower energies. The k{sub t} dependence of the Bertsch-Pratt HBT radii is also similar to previous measures and is consistent with the conjecture of an expanding source.

  4. The sPHENIX Barrel Upgrade: Jet Physics and Beyond

    NASA Astrophysics Data System (ADS)

    Haggerty, John S.

    2013-05-01

    The past decade of heavy ion physics at RHIC has produced many surprising discoveries and puzzles. Currently the experiments at the LHC are providing a first look at things to come: a burgeoning program for studying the quark-gluon plasma with reconstructed jets. The PHENIX collaboration has developed a long term plan involving a series of upgrades designed to expand the physics capabilities and make use of the full enhanced luminosity at RHIC. With increased coverage and the addition of hadronic calorimetry, we demonstrate that the sPHENIX upgrade will be well positioned to provide a broad and exciting program of jet probe measurements. Sampling 50 billion Au + Au events annually, we will collect 10 million jets with transverse energy above 20 GeV and 100 thousand jets above 40 GeV. With the addition of new tracking layers and an EM preshower, a crucial program of upsilon measurements, as well as neutral pion measurements with a 40 GeV/c reach, can be made in a flexible accelerator facility capable of providing a diverse range of collision systems across many beam energies. And, ultimately, the sPHENIX detector will provide the base for staging a future electron-ion collider detector at eRHIC.

  5. Recent highlights from the PHENIX heavy ion program

    NASA Astrophysics Data System (ADS)

    Hill, J. C.

    2015-05-01

    It is accepted that a QGP can be formed in relativistic collisions of heavy nuclei (A+A). Recently long-range correlations have been observed in p+A collisions at the LHC in high multiplicity events. PHENIX has carried out a series of studies of d+Au collisions at 200 GeV to see if such correlations persist at lower energies compared to those at the LHC. Results of a study of long-range correlations and flow are presented for d+Au collisions. Data from Au+Au collisions collected during the beam energy scan (BES) was used to determine both quark and nucleon number scaling. The HBT method was used to determine radii of the fireball at kinetic freezeout. Implications for the nuclear EOS are discussed. Also results of a search for "dark photons" are presented. Recent PHENIX highlights on heavy flavor, electromagnetic probes, spin and plans for PHENIX upgrades were presented in other talks at this conference.

  6. The Phenix Software for Automated Determination of Macromolecular Structures

    PubMed Central

    Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor; Chen, Vincent B.; Echols, Nathaniel; Headd, Jeffrey J.; Hung, Li-Wei; Jain, Swati; Kapral, Gary J.; Grosse Kunstleve, Ralf W.; McCoy, Airlie J.; Moriarty, Nigel W.; Oeffner, Robert D.; Read, Randy J.; Richardson, David C.; Richardson, Jane S.; Terwilliger, Thomas C.; Zwart, Peter H.

    2011-01-01

    X-ray crystallography is a critical tool in the study of biological systems. It is able to provide information that has been a prerequisite to understanding the fundamentals of life. It is also a method that is central to the development of new therapeutics for human disease. Significant time and effort are required to determine and optimize many macromolecular structures because of the need for manual interpretation of complex numerical data, often using many different software packages, and the repeated use of interactive three-dimensional graphics. The Phenix software package has been developed to provide a comprehensive system for macromolecular crystallographic structure solution with an emphasis on automation. This has required the development of new algorithms that minimize or eliminate subjective input in favour of built-in expert-systems knowledge, the automation of procedures that are traditionally performed by hand, and the development of a computational framework that allows a tight integration between the algorithms. The application of automated methods is particularly appropriate in the field of structural proteomics, where high throughput is desired. Features in Phenix for the automation of experimental phasing with subsequent model building, molecular replacement, structure refinement and validation are described and examples given of running Phenix from both the command line and graphical user interface. PMID:21821126

  7. Readout Electronics for the Forward Vertex Detector at PHENIX

    NASA Astrophysics Data System (ADS)

    Phillips, Michael

    2010-11-01

    The PHENIX experiment at RHIC at Brookhaven National Laboratory has been providing high quality physics data for over 10 years. The current PHENIX physics program will be significantly enhanced by addition of the Forward Silicon Vertex upgrade detector (FVTX) in the acceptance of existing muon arm detectors. The proposed tracker is planned to be put into operation in 2012. Each arm of the FVTX detector consist of 4 discs of silicon strip sensors combined with FPHX readout chips, designed at FNAL. The full detector consists of over 1 million active mini-strip channels with instantaneous bandwidth topping 3.4 Tb/s. The FPHX chip utilizes data push architecture with 2 serial output streams at 200 MHz. The readout electronics design consists of Read-Out Cards (ROC) located in the vicinity of the detector and Front End Modules (FEM) located in the Counting House. ROC boards combine the data from several chips, synchronizes data streams and send them to FEM over a Fiber Optics Link. The data are buffered in the FEM and then sent to a standard PHENIX DAQ interface upon Level-1 trigger request. We will present the current status of the readout electronics development and testing, including tests with data from production wedges.

  8. phenix.mr_rosetta: a new tool for difficult molecular replacement problems

    SciTech Connect

    Terwilliger, Thomas C; Read, Randy; De Maio, Frank; Baker, David

    2011-01-12

    The PHENIX development team is working with the Baker laboratory at the University of Washington to combine the power of Rosetta structure modeling with PHENIX automated molecular replacement (MR), model-building, density modification, and refinement. The basic idea is to find MR solutions with phenix. automr, rebuild them with Rosetta, including electron density map information, then rebuild those models with phenix. autobuild. The combination of Rosetta rebuilding and phenix rebuilding is the key part of this method. MR solutions are found with phenix. automr (Phaser), scored with LLG (optionally following Rosetta relaxation), the best solutions are picked and rebuilt with Rosetta including map information, the resulting models are scored with Rosetta, and then rescored with LLG, and the top models are rebuilt with phenix. autobuild. It can be very useful for cases where the search model used in molecular replacement is slightly too distant to rebuild successfully with phenix. autobuild. It can also be useful in cases where the model is too distant to even find a molecular replacement solution, and prerefinement with Rosetta can yield an improved search model.

  9. PHENIX (Pioneering High Energy Nuclear Interaction eXperiment): Data Tables and Figures from Published Papers

    DOE Data Explorer

    The PHENIX Experiment is the largest of the four experiments currently taking data at the Relativistic Heavy Ion Collider. PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, is an exploratory experiment for the investigation of high energy collisions of heavy ions and protons. PHENIX is designed specifically to measure direct probes of the collisions such as electrons, muons, and photons. The primary goal of PHENIX is to discover and study a new state of matter called the Quark-Gluon Plasma. More than 60 published papers and preprints are listed here with links to the full text and separate links to the supporting PHENIX data in plain text tables and to EPS and GIF figures from the papers.

  10. Magnétométrie à hélium par pompage laser: le bilan

    NASA Astrophysics Data System (ADS)

    Gilles, H.; Hamel, J.; Monfort, Y.

    2002-06-01

    Depuis 1986, l'équipe Physique Atomique et Capteurs du CIRIL-ISMRA de Caen étudie les magnétomètres à hélium par pompage laser. On présente ici le bilan de ces travaux de recherche et les performances des deux prototypes (hélium4 et hélium3) réalisés au Laboratoire.

  11. Emersion Testing of Phenix Reactor Components From Liquid Sodium

    SciTech Connect

    Baque, F.

    2002-07-01

    The life extension of the Phenix LMFR involved the inspection of reactor vessel internal structures: among other techniques, a visual inspection was performed of the above core structure, fuel assembly heads and upper components. To make this inspection possible, a partial draining of the main vessel from primary liquid sodium was carried out (sodium at 180 and argon cover at 150 ). The test program aimed at obtaining further knowledge on the process of wetting of sodium - as pure metal - on Phenix Plant assembly heads - made of stainless steel -, as well as on the internal structure welding, was carried out from November 1998 to January 1999. The main results were as follows: - the sodium meniscus measured during sodium lowering against the non-wet vertical structures reaches 10 mm in height. On wetted structures, it reaches only 5.3 mm. - when sodium level decreases, the process if very regular. However, re-flooding is carried out in stages. - a difference of 0.2 mm between two heads altitudes is enough to observe successively each of the heads. - the quality of sodium does not modify the wetting process (in the range of cold trap temperature: 110-140 deg. C). - the influence of lighting is important. - the visibility limit of emerging electro-eroded cracks (from 0.17 to 1.0 mm) is at 0.20 mm. - the visibility of a horizontal welding, machined or not, is good when the lighting is sufficient. - the superficial flow of sodium only modifies the wetting process for the closest heads. A final test allowed to observe that the global inclination of the assembly head mock-up does not modify the wetting process. These experimental results were part of the feasibility demonstration of the visual inspection within the actual Phenix Plant that was undertaken in 2001. (authors)

  12. Performance of Front-End Readout System for PHENIX RICH

    SciTech Connect

    Oyama, K.; Hamagaki, H.; Nishimura, S.; Shigaki, K.; Hayano, R.S.; Hibino, M.; Kametani, S.; Kikuchi, J.; Matsumoto, T.; Sakaguchi, T.; Ebisu, K.; Hara, H.; Tanaka, Y.; Ushiroda, T.; Moscone, C.G.; Wintenberg, A.L.; Young, G.R.

    1999-11-15

    A front-end electronics system has been developed for the Ring Imaging Cerenkov (RICH) detector of the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC), Brookhaven National Laboratory (BNL). A high speed custom back-plane with source synchronous bus architecture, a full custom analog ASIC, and board modules with FPGA's and CPLD's were developed for high performance real time data acquisition. The transfer rate of the back-lane has reached 640 MB/s with 128 bits data bus. Total transaction time is estimated to be less than 30 {micro}s per event. The design specifications and test results of the system are presented in this paper.

  13. Direct Photons and Dileptons in PHENIX at RHIC

    SciTech Connect

    David, G.

    2009-12-17

    Direct photons and dileptons are penetrating probes of relativistic heavy ion collisions. Generated throughout the entire history of the collision and then emerging without further interaction they give insight into basic processes that are otherwise not directly accessible experimentally. One of the main objectives and strengths of the PHENIX experiment at RHIC is the measurement of both types of electromagnetic probes in the same apparatus and in the widest p{sub T} range in nucleon-nucleon and heavy ion collisions. The experimental results and recent developments of theory started to change our perception of high transverse momentum photons from A+A collisions.

  14. Recent PHENIX results on hard probes and direct photon production

    NASA Astrophysics Data System (ADS)

    Riabov, V.; PHENIX Collaboration

    2016-02-01

    A hot and dense matter called strongly interacting quark-gluon plasma (sQGP) is created in heavy ion collisions at RHIC energies. Detailed study of the properties of this new state of matter is a driving force of recent research at RHIC. In these proceedings we present most recent PHENIX results for system size and energy dependence of hadron and jet production at high transverse momentum in heavy ion collisions at RHIC. We also report latest results for direct photon production including soft direct photon yields and anisotropic flow.

  15. Highlights from PHENIX-I: initial state and early times

    SciTech Connect

    Leitch, Michael J

    2009-01-01

    We will review the latest physics developments from PHENIX concentrating on cold nuclear matter effects, the initial state for heavy-ion collisions, and probes of the earliest stages of the hot-dense medium created in those collisions. Recent physics results from p + p and d + Au collisions; and from direct photons, quarkonia and low-mass vector mesons in A+A collisions will be highlighted. Insights from these measurements into the characteristics of the initial state and about the earliest times in heavy-ion collisions will be discussed.

  16. Methods to improve track fit parameters in the PHENIX

    NASA Astrophysics Data System (ADS)

    Omiwade, Olusoji

    2003-10-01

    During the summer of 2003, several problems in the muon tracking chambers of the PHENIX experiment at Brookhaven National Lab needed to be fixed. This presentation discusses the needed software to help speed up the task of analyzing the data that were used to find broken cathode strips on one of the muon tracker stations. The inclusion of cathode strips that have been scratched or broken causes problems for chamber alignment issues and for correct track reconstruction. First we had to take the raw data obtained using the muon tracker calibration system, which sent pulses to selected anode wires though the high-voltage distributions system, and convert it into data that the CERN ROOT program could manipulate. Most of the work here will describe the set of software scripts that greatly reduced the amount of work required so that more time could be spent looking at the results of the analysis. The ROOT macros and C++ programs written were essentially for handling the job. This should result in more accurate tracking and better mass resolution for the muon arms in the PHENIX experiment.

  17. Noise studies on the PHENIX RPC1 prototype

    NASA Astrophysics Data System (ADS)

    Zarndt, Emily

    2011-10-01

    An important goal of the PHENIX collaboration at the Relativistic Heavy Ion Collider is to measure the spin contributions of sea quarks to the overall spin of the proton. The detection of W-bosons resulting from polarized p-p collisions enables us to directly probe and separate by flavor the spin dependent quark and anti-quark distributions in the proton. In order to improve the trigger efficiency for final state muons with high transverse momentum from W-boson decay, the muon spectrometers in PHENIX are being upgraded with fast front-end electronics for the cathode strip tracking chambers and with two stations of Resistive Plate Chambers (RPCs). A prototype of RPC1, the RPC station near the collision point upstream of the muon tracking magnet, was tested in a cosmic ray test stand including detailed studies of the signal noise: we have carried out an optimization of the threshold used in the RPC pre-amplifier, characterized the noise for different high voltage settings and front-end shielding configurations, and measured the average noise rates. These studies have led to the final techniques used for the RPC1 detector assembly and to the choice of operating parameters for the detector.

  18. Analysis of Phenix natural convection test with the TRACE code

    SciTech Connect

    Chenu, A.; Mikityuk, K.; Chawla, R.

    2012-07-01

    Experimental data from the Natural Convection (NC) test performed in the Phenix reactor prior to its final shutdown have been used to further validate the single-phase sodium flow modeling in TRACE. The experimental data for the benchmark have been shared by the CEA in the frame of a Coordinated Research Project (CRP), initiated by the IAEA Technical Working Group on Fast Reactors (TWG-FR). This paper presents a complete TRACE model of the Phenix primary circuit developed for the analysis. Steady-state calculations at nominal (350 MWth) and reduced (120 MWth) power are compared to the experimental data for the validation of the model. We presents results from the 'blind' comparison, i.e. the comparison of the test results with those computed prior to the communication of the experimental data, so-called 'pre-test' results. 'Post-test' results, calculated from a model improved on the basis of the discrepancies identified from the blind comparison, are also presented. The analysis highlights the need to accurately simulate the reactor structures, since these define the thermal inertia of the system during the first phase of the transient. Furthermore, it shows the limitations of computed 1D-results when applied to the simulation of highly-stratified temperature fields. Nevertheless, the simulated reactor behavior and temperatures are found to match very well with the experimental data after the first two hours and, in general, the TRACE blind predictions may be considered as having been quite satisfactory. (authors)

  19. Rebirth of a control rod at the Phenix power plant

    SciTech Connect

    De Carvalho, Corinne; Vignau, Bernard; Masson, Marc

    2007-07-01

    This paper outlines the operations involved in cleaning the control rod for the complementary shutdown system in the Phenix Power Plant, the French sodium-cooled fast reactor. The Phenix reactor is controlled by six control rods and a complementary shutdown system. The latter comprises a control rod and a mechanism maintaining the rod in position by means of an electromagnet. The electromagnet is continuously supplied with power and holds the rod control assembly in position by magnetisation on a plane circular surface made from pure iron. The bearing capacity of the mechanism on the rod was initially 80 daN with a rod weight of 26.3 daN. This deteriorated progressively over time. The bearing surface of the rod and the electromagnet became contaminated with a deposit of sodium oxides and metallic particles, thus creating an air gap. This reached a figure of 36 daN in 2005 and was deemed not to be sufficient to prevent the rod from dropping at the wrong time during reactor operation. The Power Plant thus decided to replace the rod mechanism in the reactor in an initial phase, followed by the control rod itself. As the Phenix Power Plant had no spare control rods left, they initiated a 'salvage' plan, over two stages, for the rod removed from the reactor and placed in the fuel storage drum: - Inspection of the bearing surface of the rod by means of a borescope to check whether the rod could be salvaged, - A cleaning operation on the bearing face and checks on the bearing capacity of the rod. The operation is subject to very stringent requirements: the rod must not be taken out of the sodium to ensure that it can be reused in the reactor. The operation must thus take place in the fuel storage drum where there are no facilities for such an operation and where operating conditions are very hostile: high temperatures (the sodium in the fuel storage drum is at a temperature of 150 deg. C, high dose rate (3 mGy/h on the bearing surface) and the bearing surface is submerged

  20. HIGH PERPENDICULAR CHARGED PARTICLES AZIMUTHAL CORRELATION IN PHENIX.

    SciTech Connect

    RAK,J. FOR THE PHENIX COLLABORATION

    2002-01-13

    A two-particle azimuthal correlation analysis of the PHENIX data taken at {radical}s{sub NN} = 130 GeV/c is discussed. A comparison of the magnitude of v{sub 2}(p{perpendicular}) extracted from the correlation analysis with those obtained from a reaction plane analysis by the STAR collaboration, indicate surprisingly small non-flow contributions. A similar comparison obtained from the CERES experiment at {radical}s{sub NN} = 17 GeV/c shows stronger non-flow contributions for a similar p{perpendicular}-range which can be attributed to the presence of mini-jets. It is argued that for the p{perpendicular}-range below 2-3 GeV/c the RHIC results may be indicative of a novel particle production mechanism related to low-x gluon saturation.

  1. PHENIX On-Line Distributed Computing System Architecture

    SciTech Connect

    Desmond, Edmond; Haggerty, John; Kehayias, Hyon Joo; Purschke, Martin L.; Witzig, Chris; Kozlowski, Thomas

    1997-05-22

    PHENIX is one of the two large experiments at the Relativistic Heavy Ion Collider (RHIC) currently under construction at Brookhaven National Laboratory. The detector consists of 11 sub-detectors, that are further subdivided into 29 units (``granules``) that can be operated independently, which includes simultaneous data taking with independent data streams and independent triggers. The detector has 250,000 channels and is read out by front end modules, where the data is buffered in a pipeline while awaiting the level trigger decision. Zero suppression and calibration is done after the level accept in custom built data collection modules (DCMs) with DSPs before the data is sent to an event builder (design throughput of 2 Gb/sec) and higher level triggers. The On-line Computing Systems Group (ONCS) has two responsibilities. Firstly it is responsible for receiving the data from the event builder, routing it through a network of workstations to consumer processes and archiving it at a data rate of 20 MB/sec. Secondly it is also responsible for the overall configuration, control and operation of the detector and data acquisition chain, which comprises the software integration for several thousand custom built hardware modules. The software must furthermore support the independent operation of the above mentioned granules, which includes the coordination of processes that run in 60-100 VME processors and workstations. ONOS has adapted the Shlaer- Mellor Object Oriented Methodology for the design of the top layer software. CORBA is used as communication layer between the distributed objects, which are implemented as asynchronous finite state machines. We will give an overview of the PHENIX online system with the main focus on the system architecture, software components and integration tasks of the On-line Computing group ONCS and report on the status of the current prototypes.

  2. Time memory cell VLSI for the PHENIX drift chamber

    SciTech Connect

    Arai, Y.; Ikeno, M.; Sagara, M.; Emura, T.

    1998-06-01

    A high-precision Time-to-Digital-Converter VLSI, TMC-PHX1, was developed for the PHENIX drift chamber. The chip contains 4 channels of TDC with two stages of data buffering and one level of trigger buffering required in very high rate experiments. In addition to a fixed data size readout, the chip also supports a zero-suppression mode readout. The chip records both rising and falling edge timings, and has a least timing count of 0.83 ns/bit and 1.66 ns/bit respectively. A level 1 buffer has a recording depth of 6.8 {micro}sec and a readout FIFO has a depth of 128 words. High precision timing was derived from an asymmetric ring oscillator stabilized with a PLL. The chip runs at 4 times faster clock (37.6 MHz) of the RHIC bunch clock, and was fabricated with 0.5 {micro}m CMOS gate-array technology.

  3. U+U and Cu+Au results from PHENIX

    NASA Astrophysics Data System (ADS)

    Iordanova, Aneta; PHENIX Collaboration

    2013-08-01

    The flexibility of RHIC to collide different nuclei provides experiments with a rich set of data to systematically test models and scaling behaviors in various collision systems. The latest RHIC run collided U+U and Cu+Au nuclei. These collisions promise an array of unique initial geometrical configurations. For example, in U+U collisions the slightly elongated nuclei overlap in a variety of different ways such that, even at zero impact parameter, distinct configurations exist. In central Cu+Au collisions the Cu nucleus is completely embedded within the Au. Such geometries present an opportunity to measure the wide range of initial energy densities of these systems. They also allow the study of some unique features arising from these configurations. In particular, the odd harmonics from the Cu+Au system offer sensitivity to v3 generated from the collision geometry as opposed to fluctuations in a symmetric system. In these proceedings the analysis status of the recently taken U+U and Cu+Au data in PHENIX is presented. The results from the global particle production and the challenges in analyzing these asymmetric systems is discussed.

  4. The calibration and monitoring system for the PHENIX lead-scintillator electromagnetic calorimeter

    SciTech Connect

    David, G.; Kistenev, E.; Stoll, S.

    1997-11-01

    A system for calibrating the PHENIX lead-scintillator electromagnetic calorimeter modules with cosmic rays and monitoring the stability during operation is described. The system is based on a UV laser which delivers light to each module through a network of optical fibers and splutters and is monitored at various points with silicon and vacuum photodiodes. Results are given from a prototype system which used a nitrogen laser to set the initial phototube gains and to establish the energy calibration of calorimeter modules and monitor their stability. A description of the final system to be used in PHENIX based on a high power YAG laser, is also given.

  5. Post-radiation memory correction using differential subtraction for Phenix

    SciTech Connect

    Britton, C.L. Jr.; Wintenberg, A.L.; Womac, M.; Kennedy, E.J.; Smith, R.S.; Young, G.R.; Awes, T.C.

    1995-06-01

    In colliders such as RHIC, the radiation levels are well below those of colliders such as LHC. The problem is that there can be enough radiation at the inner detector (Multiplicity-Vertex Detector or MVD) to significantly affect a low-priced, nonradiation-hard CMOS process. If the radiation affects the entire analog memory in a uniform fashion, then a real-time correction should be able to be performed to correct any changes seen in the memory and also the induced correlated noise from detector pickup thus precluding the need for a more expensive rad-hard process. This paper will present testing on memories fabricated in a `soft` process and exposed to ionizing radiation. We used a single pipeline as a reference to be subtracted in a cell-by-cell basis from each pipe during read out and investigated the spatial effects of using different pipes for the reference. Use of this method reduced the noise which was common to all pipes (common-mode noise) and thus reduced both common-mode input noise and pattern noise generated from address lines being exercised on the AMU. The correlation across the memories (6-, 8-, and 16-channel AMUs fabricated in the Orbit 1.2{mu} CMOS process) vs. radiation dose was found to be quite good. Both pre-and post-radiation results are presented on systems designed for PHENIX and WA98 at CERN as well as measured results on the minimization of the effects of injected systematic noise.

  6. 40 CFR 81.58 - Columbus (Georgia)-Phenix City (Alabama) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Columbus (Georgia)-Phenix City (Alabama) Interstate Air Quality Control Region. 81.58 Section 81.58 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality...

  7. Decision-making in structure solution using Bayesian estimates of map quality: the PHENIX autosol wizard

    SciTech Connect

    Terwilliger, Thomas C; Adams, Paul D; Read, Randy J; Mccoy, Airlie J

    2008-01-01

    Ten measures of experimental electron-density-map quality are examined and the skewness of electron density is found to be the best indicator of actual map quality. A Bayesian approach to estimating map quality is developed and used in the PHENIX AutoSol wizard to make decisions during automated structure solution.

  8. Understanding the composition of nucleon spin with the PHENIX detector at RHIC

    SciTech Connect

    Deshpande, Abhay

    2015-01-12

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) has just finished 14 years of operation. A significant fraction of these operating years were with polarized proton collisions at 62.4, 200, and 500 GeV center of mass, investigating various aspects of nucleon spin through longitudinal and transversely polarized collisions. These data have helped to address some of the most puzzling and fundamental questions in quantum chromodynamics including: what fraction of the nucleon’s spin originates in the gluon’s helicity contribution?, how polarized are the sea quarks?, and what if any, is the evidence for transverse motion of quarks in polarized protons? These questions have been addressed by the PHENIX detector collaboration. We present in this review highlights of the PHENIX results and discuss their impact.

  9. The calibration and monitoring system for the PHENIX lead-scintillator electromagnetic calorimeter

    SciTech Connect

    David, G.; Kistenev, E.; Stoll, S.; White, S.; Woody, C.; Bazilevsky, A.; Belikov, S.; Chernichenkov, S.; Denisov, A.; Gilitzky, Y.; Kochetkov, V.; Melnikov, Y.; Onuchin, V.; Semenov, A.; Shelikhov, V.; Soldatov, A.

    1998-11-01

    A system for calibrating the PHENIX lead-scintillator electromagnetic calorimeter modules with cosmic rays and monitoring the stability during operation is described. The system is based on a UV laser which delivers light to each module through a network of optical fibers and splitters and is monitored at various points with silicon and vacuum photodiodes. Results are given from a prototype system which used a nitrogen laser to set the initial phototube gains and to establish the energy calibration of calorimeter modules and monitor their stability. A description of the final system to be used in PHENIX, based on a high power YAG laser, is also given. {copyright} {ital 1998 American Institute of Physics.}

  10. Understanding the composition of nucleon spin with the PHENIX detector at RHIC

    DOE PAGESBeta

    Deshpande, Abhay

    2015-01-12

    The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) has just finished 14 years of operation. A significant fraction of these operating years were with polarized proton collisions at 62.4, 200, and 500 GeV center of mass, investigating various aspects of nucleon spin through longitudinal and transversely polarized collisions. These data have helped to address some of the most puzzling and fundamental questions in quantum chromodynamics including: what fraction of the nucleon’s spin originates in the gluon’s helicity contribution?, how polarized are the sea quarks?, and what if any, is the evidence for transverse motion of quarks inmore » polarized protons? These questions have been addressed by the PHENIX detector collaboration. We present in this review highlights of the PHENIX results and discuss their impact.« less

  11. {Delta}G and {Delta}q-bar measurements at PHENIX

    SciTech Connect

    Okada, Kensuke; Collaboration: PHENIX Collaboration

    2011-12-14

    RHIC provides a unique opportunity to address the components of the proton spin. In comparison to deep inelastic scattering experiments, the gluon is the main player in proton-proton collisions. PHENIX has measured double spin asymmetries of various processes. Those contain the information of the gluon spin component ({Delta}G). In addition high energy collisions open the unique channel to access flavor dependent information of quark polarization through the real W boson production. Because of the feature of weak interaction, the parity violating process defines the helicity of quarks in the interaction. The single spin asymmetry is the observable. It is especially interesting to probe anti-quark components ({Delta}q-bar). In this article, we report the recent progress of {Delta}G and {Delta}q-bar measurements at PHENIX.

  12. The test stand system for the PHENIX iFVTX silicon detector

    SciTech Connect

    Rivera, Ryan A.; Turqueti, Marcos A.; /Fermilab

    2007-05-01

    PHENIX is the largest of the four experiments currently taking data at the Relativistic Heavy Ion Collider (RHIC), and the iFVTX is a new pixel tracker which will be installed in the forward tracker region of PHENIX. Fermilab has developed a complete test stand system for the examination of FPix2.1 modules, hybrids, and pixel chips that will be installed in the iFVTX. The system is currently in use for chip, module, and wafer testing at Fermilab. The test stand architecture is flexible and can be adapted to new requirements. In this paper, the software and hardware integration will be discussed followed by an analysis of the advantages of choosing a modular approach for the system. Finally, a selection of tests supported by the system, along with sample results, will be presented and explained.

  13. Systematic studies of the centrality dependence of soft photon production in Au + Au collision with PHENIX

    NASA Astrophysics Data System (ADS)

    Bannier, Benjamin

    2014-11-01

    Since the earliest days of Heavy Ion Physics thermal soft photon radiation emitted during the reaction had been theorized as a smoking gun signal for formation of a quark-gluon plasma and as a tool to characterize its properties. In recent years the existence of excess photon radiation in heavy ion collisions over the expectation from initial hard interactions has been confirmed at both RHIC and LHC energies by PHENIX and ALICE respectively. There the radiation has been found to exhibit elliptic flow v2 well above what can currently be reconciled with a picture of early emission from a plasma phase. During the 2007 and 2010 Au + Au runs PHENIX has measured a high purity sample of soft photons down to pT > 0.4 GeV / c using an external conversion method. We present recent systematic studies by PHENIX from that sample on the centrality dependence of the soft photon yield, and elliptic and triangular flow v2 and v3 in Au + Au collisions which fill in the experimental picture and enable discrimination of competing soft photon production scenarios.

  14. Iterative model-building, structure refinement, and density modification with the PHENIX AutoBuild Wizard

    SciTech Connect

    Los Alamos National Laboratory, Mailstop M888, Los Alamos, NM 87545, USA; Lawrence Berkeley National Laboratory, One Cyclotron Road, Building 64R0121, Berkeley, CA 94720, USA; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, England; Terwilliger, Thomas; Terwilliger, T.C.; Grosse-Kunstleve, Ralf Wilhelm; Afonine, P.V.; Moriarty, N.W.; Zwart, P.H.; Hung, L.-W.; Read, R.J.; Adams, P.D.

    2007-04-29

    The PHENIX AutoBuild Wizard is a highly automated tool for iterative model-building, structure refinement and density modification using RESOLVE or TEXTAL model-building, RESOLVE statistical density modification, and phenix.refine structure refinement. Recent advances in the AutoBuild Wizard and phenix.refine include automated detection and application of NCS from models as they are built, extensive model completion algorithms, and automated solvent molecule picking. Model completion algorithms in the AutoBuild Wizard include loop-building, crossovers between chains in different models of a structure, and side-chain optimization. The AutoBuild Wizard has been applied to a set of 48 structures at resolutions ranging from 1.1 {angstrom} to 3.2 {angstrom}, resulting in a mean R-factor of 0.24 and a mean free R factor of 0.29. The R-factor of the final model is dependent on the quality of the starting electron density, and relatively independent of resolution.

  15. Method to perform in-situ tests on the PHENIX cathodes in the muon tracking chambers.

    NASA Astrophysics Data System (ADS)

    Isenhower, Larry

    2003-10-01

    The PHENIX detector has recently completed the third year of running at the Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC). Run 3 was the first RHIC run for the complete muon detector system to be in place in PHENIX. Various repairs were needed during the summer to improve the detectors' performance for Run 4. During Run 3 experts noticed that there were broken cathode strips in some of PHENIX's second muon-north tracking chambers. It was necessary to find a method that could find which strips had these breaks. The calibration system had been used before installation to perform these tests, so it was decided to try this method again. With the chambers installed, it was necessary to send the calibration pulse through the high voltage distribution system. Since the anode cards cover regions running from the inner to outer radia, the approximate location of the break can be found by looking for where a missing or attenuated signal returns to its expected pulse height. By removing the broken strips from the analysis the reconstructed tracks will be more accurate, resulting in better mass resolution for detected J/ψ mesons.

  16. AN of Single Heavy Flavor Decay Muon in the PHENIX Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Wang, Xiaorong; Wei, Feng

    2016-02-01

    Transverse single-spin asymmetries provide valuable information about the spin structure of the nucleon. At RHIC energies, heavy-flavor production is dominated by gluon-gluon fusion, and the subsequent decay into high pT electrons or muons can be observed statistically in a collider detector like PHENIX. The transverse single-spin asymmetry in heavy-flavor production originates from the initial state correlation between the internal transverse momentum of the parton and the transverse spin of the nucleon (similar with the known Sivers effect). The measurement of transverse single-spin asymmetry of single muons from heavy flavor decay at RHIC serves as a clean probe and would provide important information on the gluon Sivers function. In 2012, the PHENIX experiment collected 9.2 pb‑1 integrated luminosity in transversely polarized p + p collisions at s = 200 GeV with a polarization of 60%. The signal-to-background ratio was improved by a factor of two compared to the previous RHIC 2006 and 2008 results in high transverse momentum region (pT > 3GeV). The recent PHENIX preliminary results of transverse single-spin asymmetries of single heavy flavor decay muon at forward-rapidity will be shown and the possible improvement on this measurement in 2015 with the help of the FVTX detector will be discussed.

  17. PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT

    SciTech Connect

    AKIBA,Y.

    2004-10-01

    We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--(a) Potential enhancement of charm production, (b) Open beauty production, (c) Flavor dependence of jet quenching and QCD energy loss, (d) Accurate charm reference for quarkonium, (e) Thermal dilepton radiation, (f) High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}, and (g) Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--(a) {Delta}G/G with charm, (b) {Delta}G/G with beauty, and (c) x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range.

  18. TECHNICAL DESIGN REPORT FOR A NOSECONE CALORIMETER (NCC) FOR THE PHENIX EXPERIMENT.

    SciTech Connect

    PHENIX EXPERIMENT; OBRIEN,E.; BOOSE, S.; CHIU, M.; JOHNSON, B.M.; KISTENEV, E.P.; LYNCH, D.; NOUICER, R.; PAK, R.; PISANI, R.; STOLL, S.P.; SUKHANOV, A.; WOODY, C.L.; LI, Z.; RADEKA, V.; RESCIA, S.

    2007-08-01

    A remarkable result has emerged from the first several years of data taking at RHIC--the high temperature and density phase of QCD matter created in heavy ion collisions at RHIC is best described as a near perfect fluid--the strongly interacting Quark-Gluon-Plasma (sQGP). This state is characterized by a small viscosity to entropy ratio, and a high density of color charges which induces huge energy losses of partons transversing the medium. The task for the future is to understand the characteristics of the sQGP, and perhaps more importantly--to gain some insight into how and why such a medium is created. The PHENIX detector has been one of the primary experimental tools at RHIC; in particular the electromagnetic calorimeter has been a critical component of many of the measurements leading to this discovery. The coverage of the present PHENIX electromagnetic calorimeter is rather limited, covering half the azimuth and -0.35< {eta} <0.35 Further progress requires larger coverage of electromagnetic calorimetry, both to increase the rate for low cross section phenomena, and to cover a broader range of pseudorapidity to study the rapidity dependence of the medium. A pair of Nosecone Calorimeters (NCC) has been designed covering both positive and negative rapidity regions 1< |{eta}| <3 of the PHENIX detector. The NCC will make it possible to perform tomographic studies of the jet energy dependence of energy loss and medium response, by using direct photons as trigger particles over a large rapidity range. The technique of correlating trigger hadrons with low momentum hadrons has been powerfully exploited at RHIC to study the evolution of back to back jets [1, 2] and hence the response of the medium. The NCC will make it possible to do such studies using direct photons as the trigger particles. The direct photon in such ''photon-jet'' events tags the transverse momentum of outgoing parton which then fragments into lower energy particles. Together with the Forward Silicon

  19. Analysis of the Phenix end-of-life natural convection test with SAS4A/SASSYS-1

    SciTech Connect

    Thomas, J. W.; Fanning, T. H.; Dunn, F. E.; Sofu, T.

    2012-07-01

    From a reduced power and flow condition, the 2009 Phenix Natural Convection Test mimics a protected loss-of-heat sink event. The measured transient response of the Phenix reactor to such an event provides an important data set for validating safety analysis codes. A model of the Phenix reactor and primary coolant system was developed using the reactor safety analysis code system SAS4A/SASSYS-1. While the overall global response of the reactor was predicted reasonably well, there were some non-negligible discrepancies in the temperature predictions during the transient and work continues to improve the model. Some modeling issues have been identified, and will be addressed as improvements to the model continue. (authors)

  20. PHENIX Conceptual Design Report. An experiment to be performed at the Brookhaven National Laboratory Relativistic Heavy Ion Collider

    SciTech Connect

    Nagamiya, Shoji; Aronson, Samuel H.; Young, Glenn R.; Paffrath, Leo

    1993-01-29

    The PHENIX Conceptual Design Report (CDR) describes the detector design of the PHENIX experiment for Day-1 operation at the Relativistic Heavy Ion Collider (RHIC). The CDR presents the physics capabilities, technical details, cost estimate, construction schedule, funding profile, management structure, and possible upgrade paths of the PHENIX experiment. The primary goals of the PHENIX experiment are to detect the quark-gluon plasma (QGP) and to measure its properties. Many of the potential signatures for the QGP are measured as a function of a well-defined common variable to see if any or all of these signatures show a simultaneous anomaly due to the formation of the QGP. In addition, basic quantum chromodynamics phenomena, collision dynamics, and thermodynamic features of the initial states of the collision are studied. To achieve these goals, the PHENIX experiment measures lepton pairs (dielectrons and dimuons) to study various properties of vector mesons, such as the mass, the width, and the degree of yield suppression due to the formation of the QGP. The effect of thermal radiation on the continuum is studied in different regions of rapidity and mass. The e{mu} coincidence is measured to study charm production, and aids in understanding the shape of the continuum dilepton spectrum. Photons are measured to study direct emission of single photons and to study {pi}{sup 0} and {eta} production. Charged hadrons are identified to study the spectrum shape, production of antinuclei, the {phi} meson (via K{sup +}K{sup {minus}} decay), jets, and two-boson correlations. The measurements are made down to small cross sections to allow the study of high p{sub T} spectra, and J/{psi} and {Upsilon} production. The PHENIX collaboration consists of over 300 scientists, engineers, and graduate students from 43 institutions in 10 countries. This large international collaboration is supported by US resources and significant foreign resources.

  1. Advanced In-Service Inspection Approaches Applied to the Phenix Fast Breeder Reactor

    SciTech Connect

    Guidez, J.; Martin, L.; Dupraz, R.

    2006-07-01

    The safety upgrading of the Phenix plant undertaken between 1994 and 1997 involved a vast inspection programme of the reactor, the external storage drum and the secondary sodium circuits in order to meet the requirements of the defence-in-depth safety approach. The three lines of defence were analysed for every safety related component: demonstration of the quality of design and construction, appropriate in-service inspection and controlling the consequences of an accident. The in-service reactor block inspection programme consisted in controlling the core support structures and the high-temperature elements. Despite the fact that limited consideration had been given to inspection constraints during the design stage of the reactor in the 1960's, as compared to more recent reactor projects such as the European Fast Reactor (EFR), all the core support line elements were able to be inspected. The three following main operations are described: Ultrasonic inspection of the upper hangers of the main vessel, using small transducers able to withstand temperatures of 130 deg. C, Inspection of the conical shell supporting the core dia-grid. A specific ultrasonic method and a special implementation technique were used to control the under sodium structure welds, located up to several meters away from the scan surface. Remote inspection of the hot pool structures, particularly the core cover plug after partial sodium drainage of the reactor vessel. Other inspections are also summarized: control of secondary sodium circuit piping, intermediate heat exchangers, primary sodium pumps, steam generator units and external storage drum. The pool type reactor concept, developed in France since the 1960's, presents several favourable safety and operational features. The feedback from the Phenix plant also shows real potential for in-service inspection. The design of future generation IV sodium fast reactors will benefit from the experience acquired from the Phenix plant. (authors)

  2. Results from Cu+Au collisions at 200 GeV in PHENIX Experiment

    NASA Astrophysics Data System (ADS)

    Berdnikov, Ya. A.; Ivanishchev, D. A.; Kotov, D. O.; Riabov, V. G.; Riabov, Yu. G.; Samsonov, V. M.; Safonov, A. S.

    2016-01-01

    Collisions of asymmetric nuclei (Cu+Au) differ essentially from the case of symmetric nuclei (Cu+Cu, Au+Au) collisions in the geometry of overlap region. This leads to a number of consequences, which provide more absolute and accurate information about fundamental properties of matter under extreme conditions. Nuclear modification factors for π-mesons in Cu+Au interactions at 200 GeV were measured in PHENIX Experiment at RHIC. New experimental data on measurement of flows of different order (v1, v2) for light hadrons in Cu+Au interactions at 200 GeV will be discussed in this paper.

  3. SCALING PROPERTIES OF FLUCTUATION RESULTS FROM THE PHENIX EXPERIMENT AT RHIC.

    SciTech Connect

    MITCHELL,J.T.

    2006-06-05

    The PHENIX Experiment at the Relativistic Heavy Ion Collider has made measurements of event-by-event fluctuations in the charged particle multiplicity as a function of collision energy, centrality, collision species, and transverse momentum in several heavy ion collision systems. It is observed that the fluctuations in terms of {sigma}{sup 2}/{mu}{sup 2} exhibit a universal power-law scaling as a function of N{sub participants} that is independent of the transverse momentum range of the measurement.

  4. Study of Isospin Correlation in High Energy Heavy Ion Interactions with the RHIC PHENIX. Final Report

    SciTech Connect

    Takahashi, Y.

    2003-06-08

    This report describes the research work performed under the support of the DOE research grant E-FG02-97ER4108. The work is composed of three parts: (1) Visual analysis and quality control of the Micro Vertex Detector (MVD) of the PHENIX experiments carried out of Brookhaven National Laboratory. (2) Continuation of the data analysis of the EMU05/09/16 experiments for the study of the inclusive particle production spectra and multi-particle correlation. (3) Exploration of a new statistical means to study very high-multiplicity of nuclear-particle ensembles and its perspectives to apply to the higher energy experiments.

  5. Design, construction, operation and performance of a Hadron Blind Detector for the PHENIX experiment

    SciTech Connect

    Anderson, W.; Azmoun, B.; Cherlin, A.; Chi, C.Y.; Citron, Z.; Connors, M.; Dubey, A.; Durham, J.M.; Fraenkel, Z.; Hemmick, T.; Kamin, J.; Kozlov, A.; Lewis, B.; Makek, M.; Milov, A.; Naglis, M.; Pantuev, V.; Pisani, R.; Proissl, M.; Ravinovich, I.; Rolnick, S.; Sakaguchi, T.; Sharma, D.; Stoll, S.; Sun, J.; Tserruya, I.; Woody, C.

    2011-04-15

    A Hadron Blind Detector (HBD) has been developed, constructed and successfully operated within the PHENIX detector at RHIC. The HBD is a Cherenkov detector operated with pure CF{sub 4}. It has a 50 cm long radiator directly coupled in a windowless configuration to a readout element consisting of a triple GEM stack, with a CsI photocathode evaporated on the top surface of the top GEM and pad readout at the bottom of the stack. This paper gives a comprehensive account of the construction, operation and in-beam performance of the detector.

  6. Two-Particle Interferometry of 200 GeV Au+Au Collisions at PHENIX

    SciTech Connect

    Heffner, M

    2004-04-19

    The PHENIX experiment has measured pion-pion, kaon-kaon, and proton-proton correlations in Au+Au collisions at {radical}S{sub NN} = 200GeV. The correlations are fit to extract radii using both the Bowler Coulomb correction and full calculation of the two-particle wave function. The resulting radii are similar for all three species and decrease with increasing k{sub t} as expected for collective flow. The R{sub out} and R{sub side} radii are approximately equal indicating a short emission duration.

  7. Prospects for jet measurements with sPHENIX and in the LHC Run 2

    NASA Astrophysics Data System (ADS)

    Perepelitsa, Dennis

    2015-10-01

    Measurements of fully reconstructed jets have become a sophisticated tool to probe the properties of the quark gluon plasma created in the collisions of ultrarelativistic heavy nuclei at RHIC and the LHC. This talk will discuss the prospects for what future jet measurements can reveal about the physics of jet quenching in the upcoming 5 TeV Pb+Pb collision data-taking at the LHC Run 2 and in 200 GeV Au+Au collisions at RHIC that are enabled by the sPHENIX detector upgrade.

  8. Extracting W Single Spin Asymmetry in Longitudinally Polarized pp Collisions at PHENIX forward arms

    NASA Astrophysics Data System (ADS)

    Meles, Abraham

    2014-09-01

    The parity-violating longitudinal single spin asymmetry AL in the production of W bosons in p + p collisions at √{ s} = 510 GeV is sensitive to the polarization of light quarks and anti-quarks in the proton. However, identifying the muons from the decay of the W is challenging due to a great background of hadronic processes and other muon producing processes. In the forward and backward hemispheres of PHENIX at RHIC, the muon spectrometers have been recently upgraded in order to provide additional trigger and tracking information to suppress those backgrounds. One of those upgrades is the Forward Vertex (FVTX) detector, a silicon-strip tracker. In 2013, PHENIX collected approximately 240 pb-1 of polarized p + p collisions at √{ s} = 510 GeV with a beam polarization of 56 %. The ability of the FVTX to improve the W signal will be reviewed, over view of the analysis techniques used to extract the signal from the data in RHIC 2013 run will be discussed. The parity-violating longitudinal single spin asymmetry AL in the production of W bosons in p + p collisions at √{ s} = 510 GeV is sensitive to the polarization of light quarks and anti-quarks in the proton. However, identifying the muons from the decay of the W is challenging due to a great background of hadronic processes and other muon producing processes. In the forward and backward hemispheres of PHENIX at RHIC, the muon spectrometers have been recently upgraded in order to provide additional trigger and tracking information to suppress those backgrounds. One of those upgrades is the Forward Vertex (FVTX) detector, a silicon-strip tracker. In 2013, PHENIX collected approximately 240 pb-1 of polarized p + p collisions at √{ s} = 510 GeV with a beam polarization of 56 %. The ability of the FVTX to improve the W signal will be reviewed, over view of the analysis techniques used to extract the signal from the data in RHIC 2013 run will be discussed. Support from US Department of Energy.

  9. TGV32: A 32-channel preamplifier chip for the multiplicity vertex detector at PHENIX

    SciTech Connect

    Britton, C.L. Jr.; Ericson, M.N.; Frank, S.S.

    1997-12-31

    The TGV32, a 32-channel preamplifier-multiplicity discriminator chip for the Multiplicity Vertex Detector (MVD) at PHENIX, is a unique silicon preamplifier in that it provides both an analog output for storage in an analog memory and a weighted summed-current output for conversion to a channel multiplicity count. The architecture and test results of the chip are presented. Details about the design of the preamplifier, discriminator, and programmable digital-analog converters (DACs) performance as well as the process variations are presented. The chip is fabricated in a 1.2-{micro}m, n-well, CMOS process.

  10. Methods to improve track fit parameters in the PHENIX muon arms

    NASA Astrophysics Data System (ADS)

    Omiwade, Olusoji

    2003-10-01

    During the summer of 2003, several problems in the muon tracking chambers of the PHENIX experiment at Brookhaven National Lab needed to be fixed. This presentation discusses the needed software to help speed up the task of analyzing the data that were used to find broken cathode strips on one of the muon tracker stations. The inclusion of cathode strips that have been scratched or broken causes problems for chamber alignment issues and for correct track reconstruction. First we had to take the raw data obtained using the muon tracker calibration system, which sent pulses to selected anode wires through the high-voltage distributions system, and convert it into data that the CERN ROOT program could manipulate. Most of the work here will describe the set of software scripts that greatly reduced the amount of work required so that more time could be spent looking at the results of the analysis to improve other software. The ROOT macros and C++ programs written were essential for handling the job. This should result in more accurate tracking and better mass resolution for the muon arms in the PHENIX experiment.

  11. A Tungsten Powder Epoxy Scintillating Fiber EMCAL for sPHENIX

    NASA Astrophysics Data System (ADS)

    Loggins, Vera

    2015-10-01

    The sPHENIX detector is a proposed new detector at the Relativistic Heavy Ion Collider (RHIC). The sPHENIX physics program focuses on jets and hard probes of the quark gluon plasma (QGP). The proposed design of the electromagnetic calorimeter (EMCAL), made of a tungsten powder and epoxy composite with embedded scintillating fibers, is designed to have a small Moliere radius and short radiation length, and will be located at a radius of about 90 cm from the interaction region. It will have an energy resolution 12 % /√{ E} and will be used in conjunction with a new hadronic calorimeter (HCAL) to provide a jet energy resolution σE / E = 120 % /√{ E} to resolve single photons and electrons, as well as photon jets, in the high multiplicity environment of central heavy ion collisions. The η and ϕ segmentation of the EMCAL is 0.024 x 0.024. Preliminary tests of the calorimeter design have already taken place. In this talk, I will focus on the process of building these prototype modules and the preparation of the modules for the test beam at Fermilab in 2016.

  12. Jet Studies on the MPC-EX pre shower detector upgrade to the PHENIX experiment

    NASA Astrophysics Data System (ADS)

    Flores, Lucas; Seto, Richard; Phenix Collaboration

    2014-09-01

    As a part of the PHENIX experiment at RHIC, we are performing jet studies using the MPC-EX detector. The MPC-EX is pre shower extension to the MPC (the current lead tungstate calorimeter), made up of interleaved Silicon mini-pad detectors and Tungsten plates. This high resolution detector adds tracking and allows for the identification of π0s and direct photons in the rapidity range 3 < η < 4. By studying jet + photon events in simulations of protons on heavy nuclei, we aim to determine how well measurements of the Gluon Structure function can be made by the MPC-EX detector. One of the leading hypothesis to explain gluon distributions at low-x is the Color Glass Condensate. As a part of the PHENIX experiment at RHIC, we are performing jet studies using the MPC-EX detector. The MPC-EX is pre shower extension to the MPC (the current lead tungstate calorimeter), made up of interleaved Silicon mini-pad detectors and Tungsten plates. This high resolution detector adds tracking and allows for the identification of π0s and direct photons in the rapidity range 3 < η < 4. By studying jet + photon events in simulations of protons on heavy nuclei, we aim to determine how well measurements of the Gluon Structure function can be made by the MPC-EX detector. One of the leading hypothesis to explain gluon distributions at low-x is the Color Glass Condensate. MARC U Star Trainee Program.

  13. Sea Quark Polarization Measurement Via W-Boson in Forward Rapidity at PHENIX

    SciTech Connect

    Nakagawa, Itaru; Collaboration: PHENIX Forward Muon Trigger Upgrade Collaboration

    2011-12-14

    The Relativistic Heavy Ion Collider (RHIC) at BNL provides a unique opportunity to collide polarized protons. One of the hightlight of the spin program at {radical}(s) = 500 GeV is the direct measurement of sea quark contribution to the proton spin via W-boson production by measuring parity violating single spin asymmetry. A new trigger on forward muons in PHENIX identiienAoes and triggers on high momentum Ws suppressing a large number of low momentum muons coming from hadronic decays. Since the original muon trigger will fire on any muon above {approx}2 GeV/c, it will not provide the required rejection factor for 500 GeV running, which is about 4500. New fast readout trigger electronics and timing device were developed and installed to existing muon detection system in PHENIX. The performance of the new muon trigger and the fast turnaround offline analysis result from the first {radical}(s) = 500 GeV production run (Run11) will be discussed.

  14. The Calorimeter Systems for the sPHENIX Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Woody, C.; Kistenev, E.; PHENIX Collaboration

    2012-12-01

    A major upgrade is being planned for the PHENIX experiment that will have greatly enhanced physics capabilities to measure jets in relativistic heavy ion collisions at RHIC, as well as in polarized proton interactions, and eventually electron ion collisions at an Electron Ion Collider. This upgrade, sPHENIX, will include two new calorimeter systems. One will be a hadronic calorimeter, which will be the first hadronic calorimeter ever used in an experiment at RHIC, and another will be a new compact electromagnetic calorimeter. Both calorimeters will cover a region of +/-1.1 in pseudorapidity and 2π in phi. The hadron calorimeter will be based on scintillator plates interspersed between steel absorber plates and read out with wavelength shifting fibers. The electromagnetic calorimeter will be an accordion design that will utilize scintillating fibers embedded in a matrix consisting of tungsten plates, tungsten powder and epoxy. The readout for both calorimeters will use silicon photomultipliers. The overall design of these two calorimeter systems is described along with the R&D efforts currently being pursued to develop them along with their readout.

  15. Extracting W Single Spin Asymmetry in Longitudinally Polarized pp Collisions at PHENIX forward arms

    NASA Astrophysics Data System (ADS)

    Meles, Abraham

    2014-03-01

    The parity-violating asymmetry AL in the production of W bosons in p + p collisions at √{ s} = 510 GeV is sensitive to the polarization of light quarks and anti-quarks in the proton. However, identifying the lepton from the decay of the W is challenging due to a great background of hadronic processes. In the forward and backward hemispheres of PHENIX at RHIC, the muon spectrometers have been recently upgraded in order to provide additional trigger and tracking information to suppress those backgrounds. One of those upgrades is the Forward Vertex (FVTX) detector, a silicon-strip tracker. In 2013, PHENIX collected approximately 240 pb-1 of polarized p + p collisions at √{ s} = 510 GeV with a beam polarization of 52 %. The ability of the FVTX to improve the W signal will be reviewed, and progress on analysis of real data in the RHIC 2013 run will be discussed. Supported by the US DOE, Office of Science.

  16. Signal Efficiency of the Resistive Plate Chambers in the PHENIX Forward Trigger Upgrade

    NASA Astrophysics Data System (ADS)

    Coley, Mark

    2009-10-01

    PHENIX is an experiment at the Relativistic Heavy Ion Collider (RHIC) that studies polarized proton-proton and heavy ion collisions. PHENIX is in the process of upgrading the forward muon trigger to improve its capabilities of studying W-bosons. By triggering on single, high transverse momentum muons, new observations on the spin structure of a proton will be obtained. The trigger upgrade will consist of four stations of Resistive Plate Chambers (RPCs) with two stations on each side of the interaction region. Inside an RPC, there are several copper strips which form a signal plane. When a charged particle travels through the adjacent gas gaps a signal is induced on these strips. This signal propagates from the copper strip to the readout electronics. In the readout electronics, the signal is amplified and sent to a discriminator. Care must be taken when setting the chamber high voltage and the readout electronics threshold to balance the detector efficiency and noise. Lowering the threshold increases the efficiency of detecting muons but also increases the background interference. These RPCs are tested on a cosmic ray test stand to determine the optimal operating conditions. This poster will describe the RPCs, how the signal propagates out of the chamber and how the high voltage and threshold affect performance.

  17. Quality Analysis and Control Procedures for the PHENIX RPC Forward Trigger Upgrade

    NASA Astrophysics Data System (ADS)

    Thomas, Dillon

    2008-03-01

    The PHENIX detector is located at Brookhaven National Laboratory on the Relativistic Heavy Ion Collider (RHIC) ring where it studies both heavy ion and polarized proton-proton collisions. One of the primary goals of the polarized proton program is to improve our understanding of the proton's spin structure. A level 1 trigger upgrade is currently being constructed for PHENIX. This will involve the installation of Resistive Plate Chambers (RPCs). These new chambers will improve our abil- ity to trigger on high transverse single muons that are produced in the decay of W bosons. Before these new chambers can be installed they must pass a series of quality control tests. These simple but effective tests will be performed on internal components of the RPCs before the individual modules are assembled. These tests will yield a pass or fail result for each gas gap. All gaps that pass these tests can then be used in the construction of the RPC modules. A brief introduction to the physics and construction of RPCs, current quality procedures and tests, and current status of the RPC tent will be presented.

  18. PHENIX CDR update: An experiment to be performed at the Brookhaven National Laboratory relativistic heavy ion collider. Revision

    SciTech Connect

    Not Available

    1994-11-01

    The PHENIX Conceptual Design Report Update (CDR Update) is intended for use together with the Conceptual Design Report (CDR). The CDR Update is a companion document to the CDR, and it describes the collaboration`s progress since the CDR was submitted in January 1993. Therefore, this document concentrates on changes, refinements, and decisions that have been made over the past year. These documents together define the baseline PHENIX detector that the collaboration intends to build for operation at RHIC startup. In this chapter the current status of the detector and its motivation are briefly described. In Chapters 2 and 3 the detector and the physics performance are more fully developed. In Chapters 4 through 13 the details of the present design status, the technology choices, and the construction costs and schedules are presented. The physics goals of PHENIX collaboration have remained exactly as they were described in the CDR. Primary among these is the detection of a new phase of matter, the quark-gluon plasma (QGP), and the measurement of its properties. The PHENIX experiment will measure many of the best potential QGP signatures to see if any or all of these physics variables show anomalies simultaneously due to the formation of the QGP.

  19. 75 FR 66745 - Eagle and Phenix Hydro Company, Inc. and UPtown Columbus, Inc.; Notice of Application Accepted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ...: Eagle and Phenix Mills and City Mills Hydroelectric Projects. f. Location: Lower Chattahoochee River Basin on the main stem of the Chattahoochee River in the City of Columbus, Muscogee County, Georgia, and... surrenders are necessary for the initiation of the Aquatic Ecosystem Restoration of the Chattahoochee...

  20. Front-end module readout and control electronics for the PHENIX Multiplicity Vertex Detector

    SciTech Connect

    Ericson, M.N.; Allen, M.D.; Boissevain, J.

    1997-11-01

    Front-end module (FEM) readout and control are implemented as modular, high-density, reprogrammable functions in the PHENIX Multiplicity Vertex Detector. FEM control is performed by the heap manager, an FPGA-based circuit in the FEM unit. Each FEM has 256 channels of front-end electronics, readout, and control, all located on an MCM. Data readout, formatting, and control are performed by the heap manager along with 4 interface units that reside outside the MVD detector cylinder. This paper discusses the application of a generic heap manager and the addition of 4 interface module types to meet the specific control and data readout needs of the MVD. Unit functioning, interfaces, timing, data format, and communication rates will be discussed in detail. In addition, subsystem issues regarding mode control, serial architecture and functions, error handling, and FPGA implementation and programming will be presented.

  1. A CMOS variable gain amplifier for PHENIX electromagnetic calorimeter and RICH energy measurements

    SciTech Connect

    Wintenberg, A.L.; Simpson, M.L.; Young, G.R.; Palmer, R.L.; Moscone, C.G.; Jackson, R.G.

    1996-12-31

    A variable gain amplifier (VGA) has been developed equalizing the gains of integrating amplifier channels used with multiple photomultiplier tubes operating from common high-voltage supplies. The PHENIX lead-scintillator electromagnetic calorimeter will operate in that manner, and gain equalization is needed to preserve the dynamic range of the analog memory and ADC following the integrating amplifier. The VGA is also needed for matching energy channel gains prior to forming analog sums for trigger purposes. The gain of the VGA is variable over a 3:1 range using a 5-bit digital control, and the risetime is held between 15 and 23 ns using switched compensation in the VGA. An additional feature is gated baseline restoration. Details of the design and results from several prototype devices fabricated in 1.2-{mu}m Orbit CMOS are presented.

  2. Phenix - a comprehensive python-based system for macromolecular structure solution

    SciTech Connect

    Terwilliger, Thomas C; Hung, Li - Wei; Adams, Paul D; Afonine, Pavel V; Bunkoczi, Gabor; Chen, Vincent B; Davis, Ian; Echols, Nathaniel; Headd, Jeffrey J; Grosse Kunstleve, Ralf W; Mccoy, Airlie J; Moriarty, Nigel W; Oeffner, Robert; Read, Randy J; Richardson, David C; Richardson, Jane S; Zwarta, Peter H

    2009-01-01

    Macromolecular X-ray crystallography is routinely applied to understand biological processes at a molecular level. However, significant time and effort are still required to solve and complete many of these structures because of the need for manual interpretation of complex numerical data using many software packages, and the repeated use of interactive three-dimensional graphics. Phenix has been developed to provide a comprehensive system for crystallographic structure solution with an emphasis on automation of all procedures. This has relied on the development of algorithms that minimize or eliminate subjective input, the development of algorithms that automate procedures that are traditionally performed by hand, and finally the development of a framework that allows a tight integration between the algorithms.

  3. FPHX: A New Silicon Strip Readout Chip for the PHENIX Experiment at RHIC

    SciTech Connect

    Hoff, James R.; Zimmerman, Tom N.; Yarema, Raymond J.; Kapustinsky, Jon S.; Brookes, Melynda L.; /LOS ALAMOS

    2009-01-01

    The FPHX chip is a silicon strip readout chip developed at Fermilab for use in the FVTX Detector of the PHENIX experiment at RHIC. Each front end consists of an integrator which is AC coupled to a shaper, followed by a discriminator and a 3-bit analog-to-digital converter. The backend is a novel architecture in two stages that permits dead-timeless operation and high-speed readout with very low latency. A slow controller provides an interface for all on-chip programmable functions. This chip has been fabricated in the 0.25um TSMC process. All functionality including the analog front-end, the digital back-end, and the slow controller has been verified experimentally.

  4. Development of a front end controller/heap manager for PHENIX

    SciTech Connect

    Ericson, M.N.; Allen, M.D.; Musrock, M.S.; Walker, J.W.; Britton, C.L. Jr.; Wintenberg, A.L.; Young, G.R.

    1996-12-31

    A controller/heap manager has been designed for applicability to all detector subsystem types of PHENIX. the heap manager performs all functions associated with front end electronics control including ADC and analog memory control, data collection, command interpretation and execution, and data packet forming and communication. Interfaces to the unit consist of a timing and control bus, a serial bus, a parallel data bus, and a trigger interface. The topology developed is modular so that many functional blocks are identical for a number of subsystem types. Programmability is maximized through the use of flexible modular functions and implementation using field programmable gate arrays (FPGAs). Details of unit design and functionality will be discussed with particular detail given to subsystems having analog memory-based front end electronics. In addition, mode control, serial functions, and FPGA implementation details will be presented.

  5. Drell-Yan Cross Section and Longitudinal Double Spin Asymmetry in the PHENIX Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Perera, Gonaduwage

    2015-10-01

    Analysis of the Drell-Yan process in high energy polarized proton-proton collisions is a unique method for probing the proton spin structure. Measurement of the longitudinal double spin asymmetry (ALL) in the Drell-Yan process provides clean access to the anti-quark helicity distributions without involving quark fragmentation functions. In the PHENIX experiment at RHIC, the Forward Silicon Vertex Detector (FVTX), together with forward muon spectrometers, allows us to study the Drell-Yan process by detecting the muon pairs in the forward region (1 . 2 < | η | < 2 . 4) while also suppressing backgrounds due to heavy-flavor production. In this talk we present the status of the Drell-Yan cross-section and ALL measurement for the intermediate mass region (4 GeV < M < 8 GeV) using the RHIC 2013 data of proton-proton collisions at a center of mass energy of 510 GeV.

  6. Design and performance of beam test electronics for the PHENIX Multiplicity Vertex Detector

    SciTech Connect

    Britton, C.L. Jr.; Bryan, W.L.; Emery, M.S.

    1996-12-31

    The system architecture and test results of the custom circuits and beam test system for the Multiplicity-Vertex Detector (MVD) for the PHENIX detector collaboration at the Relativistic Heavy Ion Collider (RHIC) are presented in this paper. The final detector per-channel signal processing chain will consist of a preamplifier-gain stage, a current-mode summed multiplicity discriminator, a 64-deep analog memory (simultaneous read-write), a post-memory analog correlator, and a 10-bit 5 {mu}s ADC. The Heap Manager provides all timing control, data buffering, and data formatting for a single 256-channel multi-chip module (MCM). Each chip set is partitioned into 32-channel sets. Beam test (16-cell deep memory) performance for the various blocks will be presented as well as the ionizing radiation damage performance of the 1.2 {mu} n-well CMOS process used for preamplifier fabrication.

  7. Suppression of High pT Hadrons at Midrapidity in Central Heavy Ion Collisions from Phenix

    NASA Astrophysics Data System (ADS)

    Bumazhnov, V.

    2015-06-01

    Hard scattered partons lose a significant fraction of their energy traversing the medium created in high energy collisions of heavy nuclei, resulting in yields suppression of final state high pT hadrons. Results from the PHENIX experiment at RHIC on the suppression of high pT hadrons at midrapidity in central Au+Au and Cu+Cu collisions at √ {s_{NN}} = 200 ;{textrm{GeV}} are presented. In addition, results on direct photon yields, which don't suffer energy loss due to the strong nuclear force, and suppression of the high pT electrons and positrons from the decays of hadrons containing open heavy quarks are presented for Au+Au and d+Au collisions too.

  8. Corrections to Transverse Energy Measurements taken by the PHENIX Muon Piston Calorimeter

    NASA Astrophysics Data System (ADS)

    Reinert, David; Phenix Collaboration

    2015-10-01

    The PHENIX Muon Piston Calorimeter (MPC) is being used to measure transverse energy produced in the forward/backward kinematic region (3 . 1 < | η | < 3 . 9) by the collision of Au+Au nuclei at the Relativistic Heavy Ion Collider (RHIC). Undergraduates at Muhlenberg College have worked since 2013 to produce and verify corrections for these measurements. To this point, corrections for the inflow and outflow of energy (mostly due to particle decays), efficiency, and hadronic response have been considered and will be described. Attempts to consistency check these current attempts using other approaches will also be described. Efforts are currently underway to analyze 2010 Au+Au collisions at √{SNN} = 200, 62.4, 39, and 7.7 GeV. This material is based upon work supported by the National Science Foundation under Grant No. 1507841.

  9. PROPOSAL FOR A SILICON VERTEX TRACKER (VTX) FOR THE PHENIX EXPERIMENT.

    SciTech Connect

    AKIBA,Y.

    2004-03-30

    We propose the construction of a Silicon Vertex Tracker (VTX) for the PHENIX experiment at RHIC. The VTX will substantially enhance the physics capabilities of the PHENIX central arm spectrometers. Our prime motivation is to provide precision measurements of heavy-quark production (charm and beauty) in A+A, p(d)+A, and polarized p+p collisions. These are key measurements for the future RHIC program, both for the heavy ion program as it moves from the discovery phase towards detailed investigation of the properties of the dense nuclear medium created in heavy ion collisions, and for the exploration of the nucleon spin-structure functions. In addition, the VTX will also considerably improve other measurements with PHENIX. The main physics topics addressed by the VTX are: (1) Hot and dense strongly interacting matter--Potential enhancement of charm production; Open beauty production; Flavor dependence of jet quenching and QCD energy loss; Accurate charm reference for quarkonium; Thermal dilepton radiation; High p{sub T} phenomena with light flavors above 10-15 GeV/c in p{sub T}; and Upsilon spectroscopy in the e{sup +}e{sup -} decay channel. (2) Gluon spin structure of the nucleon--{Delta}G/G with charm; {Delta}G/G with beauty; and x dependence of {Delta}G/G with {gamma}-jet correlations. (3) Nucleon structure in nuclei--Gluon shadowing over broad x-range. With the present PHENIX detector, heavy-quark production has been measured indirectly through the observation of single electrons. These measurements are inherently limited in accuracy by systematic uncertainties resulting from the large electron background from Dalitz decays and photon conversions. In particular, the statistical nature of the analysis does not allow for a model-independent separation of the charm and beauty contributions. The VTX detector will provide vertex tracking with a resolution of <50 {micro}m over a large coverage both in rapidity (|{eta}| < 1.2) and in azimuthal angle ({Delta}{phi} {approx

  10. Assembly procedure for the silicon pixel ladder for PHENIX silicon vertex tracker.

    SciTech Connect

    Onuki, Y.; PHENIX Collaboration, et al.

    2009-05-08

    The silicon vertex tracker (VTX) will be installed in the summer of 2010 to enhance the physics capabilities of the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) experiment at Brookhaven National Laboratory. The VTX consists of two types of silicon detectors: a pixel detector and a strip detector. The pixel detector consists of 30 pixel ladders placed on the two inner cylindrical layers of the VTX. The ladders are required to be assembled with high precision, however, they should be assembled in both cost and time efficient manner. We have developed an assembly bench for the ladder with several assembly fixtures and a quality assurance (Q/A) system using a 3D measurement machine. We have also developed an assembly procedure for the ladder, including a method for dispensing adhesive uniformly and encapsulation of bonding wires. The developed procedures were adopted in the assembly of the first pixel ladder and satisfy the requirements.

  11. Analysis of Phenix end-of-life natural convection test with the MARS-LMR code

    SciTech Connect

    Jeong, H. Y.; Ha, K. S.; Lee, K. L.; Chang, W. P.; Kim, Y. I.

    2012-07-01

    The end-of-life test of Phenix reactor performed by the CEA provided an opportunity to have reliable and valuable test data for the validation and verification of a SFR system analysis code. KAERI joined this international program for the analysis of Phenix end-of-life natural circulation test coordinated by the IAEA from 2008. The main objectives of this study were to evaluate the capability of existing SFR system analysis code MARS-LMR and to identify any limitation of the code. The analysis was performed in three stages: pre-test analysis, blind posttest analysis, and final post-test analysis. In the pre-test analysis, the design conditions provided by the CEA were used to obtain a prediction of the test. The blind post-test analysis was based on the test conditions measured during the tests but the test results were not provided from the CEA. The final post-test analysis was performed to predict the test results as accurate as possible by improving the previous modeling of the test. Based on the pre-test analysis and blind test analysis, the modeling for heat structures in the hot pool and cold pool, steel structures in the core, heat loss from roof and vessel, and the flow path at core outlet were reinforced in the final analysis. The results of the final post-test analysis could be characterized into three different phases. In the early phase, the MARS-LMR simulated the heat-up process correctly due to the enhanced heat structure modeling. In the mid phase before the opening of SG casing, the code reproduced the decrease of core outlet temperature successfully. Finally, in the later phase the increase of heat removal by the opening of the SG opening was well predicted with the MARS-LMR code. (authors)

  12. Calculation of the Phenix end-of-life test in natural circulation with the CATHARE code

    SciTech Connect

    Maas, L.; Cocheme, F.

    2012-07-01

    The Inst. of Radiological Protection and Nuclear Safety (IRSN) acts as technical support to French public authorities. As such, IRSN is in charge of safety assessment of operating and under construction reactors, as well as future projects. In this framework, one current objective of IRSN is to evaluate the ability and accuracy of numerical tools to foresee consequences of accidents. One of the advantages pointed up for fast reactors cooled by heavy liquid metal is the possibility of decay heat removal based on natural convection. The promotion of this passive cooling mode in future safety demonstrations will involve the use of adapted and validated numerical codes. After the final shutdown of the Phenix sodium cooled fast reactor in 2009, a set of tests covering different areas was conducted for code validation, including a natural circulation test in the primary circuit. Experimental data were issued by CEA to organize a benchmark exercise in the frame of an IAEA Coordinated Research Project (CRP), with the objective to assess the system-codes capability in simulating the thermal-hydraulics behavior of sodium cooled fast reactors in such accidental conditions. IRSN participated to this benchmark with the CATHARE code. This code, co-developed by CEA, EDF, AREVA and IRSN and widely used for PWR safety studies, was recently extended for sodium applications. This paper presents the CATHARE modeling of the Phenix primary circuit and the results obtained. A relatively good agreement was found with available measurements considering the experimental uncertainties. This work stressed the local aspects of phenomena occurring during the natural convection establishment and the limits of a 0D/1D approach. (authors)

  13. Design Studies of the Calorimeter Systems for the sPHENIX Experiment at RHIC and Future Upgrade Plans

    NASA Astrophysics Data System (ADS)

    Woody, C.; Kistenev, E.; PHENIX Collaboration

    2015-02-01

    The PHENIX Experiment at RHIC is planning a series of major upgrades that will enable a comprehensive measurement of jets in relativistic heavy ion collisions, provide enhanced physics capabilities for studying nucleon-nucleus and polarized proton collisions, and allow a detailed study of electron-nucleus collisions at the Electron Ion Collider at Brookhaven (eRHIC). The first of these upgrades, sPHENIX, will be based on the former BaBar magnet and will include a hadronic calorimeter and new electromagnetic calorimeter that will cover ±1.1 units in pseudorapidity and 2π in azimuth in the central region, resulting in a factor of 6 increase in acceptance over the present PHENIX detector. The electromagnetic calorimeter will be a tungsten scintillating fiber design with a radiation length ~ 7 mm and a Moliere radius ~ 2 cm. It will have a total depth of ~ 18 radiation lengths and an energy resolution ~ 15%/√E. The hadronic calorimeter will consist of steel plates with scintillating tiles in between that are read out with wavelength shifting fibers, It will have a total depth of ~ 5 interaction lengths and an energy resolution 100%/√E. Both calorimeters will use silicon photomultipliers as the readout sensor. Detailed design studies and Monte Carlo simulations for both calorimeters have been carried out and prototype detectors have been constructed and tested in a test beam at Fermilab in February 2014. This contribution describes these design studies for the sPHENIX experiment and its future upgrade plans at RHIC.

  14. Vernier Scan Analysis for PHENIX Run 15 p+p Collisions, √{ s} = 200 GeV

    NASA Astrophysics Data System (ADS)

    Ottino, Gregory; Phenix Collaboration

    2015-10-01

    In high energy nuclear physics, cross-section measurements are critical to form an understanding of particle production and they require a characterization of absolute integrated luminosity. The technique used by the PHENIX experiment for luminosity calculations is the Vernier Scan or Van Der Meer Scan. The scan consists of sweeping one beam across the other in the vertical and radial directions in the transverse plane, and then fitting the data of event rate vs. position to a 2D Gaussian distribution. The fit is analyzed to extract the overlap profile of the colliding bunches. The extracted widths, along with the number of protons, are used to calculate the luminosity, L . This, in turn, is used to calculate the p+p cross-section available to the minimum bias trigger, σBBC. Further analyses provide various correction factors that refine the measurements of rates and positions, improving the initial calculations of L . Final corrected measurement of σBBC is used to calculate integrated luminosity in any of the cross-section measurements with the relevant PHENIX data set. The current data set to be analyzed is from PHENIX Run 15 p+p collisions at √{ s} = 200 GeV.

  15. Integrated constant-fraction discriminator shaping techniques for the PHENIX lead-scintillator calorimeter

    SciTech Connect

    Jackson, R.G.; Blalock, T.V.; Simpson, M.L.; Wintenberg, A.L.; Young, G.R.

    1996-12-31

    The suitability of several on-chip constant-fraction discriminator (CFD) shaping methods for use in the multichannel PHENIX Lead- Scintillator detector has been investigated. Three CFD circuits utilizing a distributed R-C delay-line, a lumped-element R-C delay- line and the Nowlin shaping method have been realized in a standard 1. 2-{mu} n- well CMOS process. A CFD using ideal delay-line shaping was also studied for comparison. Time walk for 5 ns risetime input signals over a dynamic range of - 2 V to - 20 mV was less than {+-} 175 ps, {+-} 150 ps, {+-} 150, and {+-} 185 ps while worst case rms timing jitter measured 85 ps, 90 ps, 100 ps, and 65 ps, respectively, for the four methods mentioned above. Area requirements for the three candidate methods tested including the fraction circuit were 172 {mu} X 70 {mu}, 160 {mu} X 65 {mu}, 179 {mu} X 53 g, respectively. The fraction circuit area for the external delay-line circuit was 67 {mu} X 65 {mu}. Each shaping method studied consumed no power from the dc supply.

  16. On the Optimization of Homogenous Light Output in Scintillator Panels for the sPHENIX Collaboration

    NASA Astrophysics Data System (ADS)

    Vazquez-Carson, Sebastian; Sphenix Collaboration

    2015-10-01

    The sPHENIX detector at RHIC will contain an electromagnetic and a hadronic calorimeter used for the detection of particles ejected in jets from heavy ion collisions. The hadronic calorimeter will be composed of layers of steel plates that are alternated with plastic scintillators. Within the scintillator panels, wavelength shifting fiber optic cables are embedded and coupled to silicon photo multipliers (SiPMs). The signal from the SiPMs pass through a preamp that shapes and amplifies the signal before passing it to a analog to digital converter (ADC) from which the energy deposited in the scintillator is calculated. The scintillator panels are manufactured with a diffusive coating to improve reflection and increase sensitivity. With the test setup at the University of Colorado at Boulder, we explored the correlation between the presence and density of the diffusive coating and the uniformity of light output within the panels. We prototyped various SiPM mounting systems and characterized the performance of the preamps with the aim of optimizing light collection, panel response sensitivity, and signal clarity.

  17. Direct Photon Production and Gluon Polarization Measurements in Proton-Proton Collisions at PHENIX

    NASA Astrophysics Data System (ADS)

    Feege, Nils; Phenix Collaboration

    2015-10-01

    Direct photons probe the hard scattering process in proton-proton collisions. The channel that dominates their production in these collisions is ``the inverse QCD Compton effect,'' g + q --> γ + q . Calculating this process requires no photon fragmentation function, which facilitates comparisons between theories and experiments. In polarized p+p collisions, direct photons help determine the proton spin structure. At leading order, the longitudinal double-spin asymmetry ALL is directly proportional to the product of quark and gluon polarizations. The polarized quark distributions are known from polarized lepton-proton scattering experiments. Using them together with ALL measurements allows to access both the magnitude and sign of the polarized gluon distribution. The PHENIX experiment has collected data from polarized p+p collisions at RHIC at center of mass energies of 200 GeV and 500 GeV. This talk presents the status of direct photon cross section measurements and ALL measurements at midrapidity (| η | < 0 . 35) using these data.

  18. Transverse Single Spin Asymmetry of π0 and η Mesons at RHIC/PHENIX

    NASA Astrophysics Data System (ADS)

    Wang, Xiaorong

    2016-02-01

    We presented measurements of the transverse single spin asymmetries (AN) for neutral π and η meson at forward rapidities and central rapidity with the PHENIX detector at RHIC at 62.4 GeV and 200 GeV. At mid-rapidity, π0 and eta are reconstructed from di-photon decay. At forward rapidities, π0 and eta meson are measured using di-photons decays and electromagnetic clusters due to the photon merging effects are significant for energy E > 20GeV. The neutral-pion measurement of AN at mid-rapidity is consistent with zero with uncertainties a factor of 20 smaller than previous publications, which will lead to improved constraints on the gluon Sivers function. At higher rapidities, both neutral π and η AN exhibit sizable asymmetries. The origin of the forward AN is presently not understood quantitatively. We also measured η meson cross section for 0.5 < pT < 5.0 GeV/c and 3.0 < η < 3.8. It is well described by a NLO pQCD calculation.

  19. Proton Quark Helicity Structure via W-Boson Production in PP Collision @ Phenix

    NASA Astrophysics Data System (ADS)

    Giordano, F.

    2016-02-01

    The spin structure of the proton has been long studied in the past decades, but, while the contributions to the proton spin from valence quarks is by now precisely known, large uncertainties are still affecting our knowledge of the sea quark contributions. The measurement of single-spin asymmetries of the parity violating W production in pp collision allows a (quasi-)model independent access to the flavor-dependent light sea quark contributions. Being maximally parity violating, the W charge can be directly realted to the quark and antiquark flavor, and in addition, moving from forward to backward rapidities with respect to the polarized proton beam direction it is possible to change the relative contributions of u, d, anti-u, anti-d quarks, thus accessing each light-quark spin alignment with respect to the proton spin. At PHENIX, the W boson produced in pp collision at center of mass energies of about 500 GeV is accessed via its decays into electron (muon) at central (forward) rapidities. Here the status of the analysis and the most updated results is reported.

  20. Measurement of Dielectron Spectra with the Hadron Blind Detector in PHENIX

    NASA Astrophysics Data System (ADS)

    Sun, Jiayin

    2013-04-01

    Dielectrons are an important color neutral probe for studying the evolution of the hot dense medium created by heavy ion collisions at RHIC. At low mass region, dielectron spectra consists mainly of direct photons and light vector mesons, and give insight on the earliest stages of the collisions and thus constrain theoretical models on thermalization and chiral symmetry restoration in heavy ion collisions. At intermediate and high mass region, there are significant contributions from charm and bottom. The region was utilized to measure cross sections of open charm and open bottom, as well as quarkonium suppression. The measurement of the dielectron spectra, however, suffers from an unfavorable signal to background ratio. Random combination of electron positron pairs from unrelated sources, mostly Dalitz decay of π0 and external conversion of decay photon to electrons, are the main contributor to the background. The Hadron Blind Detector, a windowless proximity focusing Cerenkov detector, is designed to reduce this background by identifying electron tracks from photon conversions and π0 Dalitz decays. The detector has been installed and operated in PHENIX in 2009 and 2010, where Au+Au and reference p+p data sets were taken. Results from these data sets will be presented.

  1. Performance of the Time Expansion Chamber / Transition Radiation Detector in PHENIX Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Luiz Silva, Cesar

    2004-10-01

    The Time Expansion Chamber / Transition Radiation Detector (TEC/TRD) in the PHENIX Experiment at RHIC measures ionization losses (dE/dX) and transition radiation from charged particles produced by beam collisions. It is designed to perform tracking and identification for charged particles on very high particle multiplicity environment. The TEC/TRD consists of 24 wire chambers readout on both sides filled with recycled Xe-based gas mixture. This wire chamber configuration, besides providing measurements of ionization losses for charged particles, can absorb X-Ray photons generated by transition radiation from incident particles with γ>1000 crossing fiber radiators placed at the entrance of the chambers. This allows TEC/TRD to distinguish electrons from the huge pion signal produced over a broad momentum range (1GeV/c

  2. The FUTURIX-FTA experiment in Phenix: status of oxides fuels fabrication

    SciTech Connect

    Jorion, F.; Donnet, L.

    2007-07-01

    Eliminating long-lived radionuclides by transmuting them into nonradioactive or short-lived nuclei is a reference approach in nuclear waste management. FUTURIX/FTA (FUels for Transmutation of transuranium elements in Phenix / Fortes Teneurs en Actinides [high actinide content]) is an international program intended to demonstrate the technical feasibility, primarily with regard to fuel behavior, of transmuting minor actinides in fast neutron reactors. This research is carried out in collaboration with the US Department of Energy (DOE), the Japan Atomic Energy Research Institute (JAERI), the Institute for Transuranium Elements (ITU) in Germany, and the Commissariat a l'Energie Atomique (CEA) in France. In this context, the CEA investigated four ceramic/ceramic (cercer) compositions ((Pu{sub 0.5}Am{sub 0.5})O{sub 2-x} + 80 vol% MgO), (Pu{sub 0.5}Am{sub 0.5})O{sub 2-x} + 70 vol% MgO), (Pu{sub 0.2}Am{sub 0.8})O{sub 2-x} + 75 vol% MgO), (Pu{sub 0.2}Am{sub 0.8})O{sub 2-x} + 65 vol% MgO) and fabricated two fuel pins. The mixed actinide oxides were synthesized by oxalate co-conversion and incorporated into a magnesia matrix by classical powder metallurgy. The resulting fuel pellets were subjected to chemical, dimensional, structural and microstructural characterization. The results for each composition were interpreted and compared. (authors)

  3. Measurements of soft and intermediate p photons from hot and dense matter at RHIC-PHENIX

    NASA Astrophysics Data System (ADS)

    PHENIX Collaboration; Yamaguchi, Yorito; PHENIX Collaboration

    2009-11-01

    The measurements of direct photons in 1.0PHENIX. The fraction of the direct γ∗ component to the inclusive e+e- yield is determined by a shape analysis using the e+e- mass spectra in m<300MeV/c2 for 1.0

  4. Macromolecular Crystallography for Synthetic Abiological Molecules: Combining xMDFF and PHENIX for Structure Determination of Cyanostar Macrocycles

    PubMed Central

    Singharoy, Abhishek; Venkatakrishnan, Balasubramanian; Liu, Yun; Mayne, Christopher G.; Lee, Semin; Chen, Chun-Hsing; Zlotnick, Adam; Schulten, Klaus; Flood, Amar H.

    2015-01-01

    Crystal structure determination has long provided insight into structure and bonding of small molecules. When those same small molecules are designed to come together in multi-molecular assemblies, such as in coordination cages, supramolecular architectures and organic-based frameworks, their crystallographic characteristics closely resemble biological macromolecules. This resemblance suggests that bio-macromolecular refinement approaches be used for structure determination of abiological molecular complexes that arise in an aggregate state. Following this suggestion we investigated the crystal structure of a pentagonal macrocycle, cyanostar, by means of biological structure analysis methods and compared results to traditional small molecule methods. Cyanostar presents difficulties seen in supramolecular crystallography including whole molecule disorder and highly flexible solvent molecules sitting in macrocyclic and intermolecule void spaces. We used the force-field assisted refinement method, molecular dynamics flexible fitting algorithm for X-ray crystallography (xMDFF), along with tools from the macromolecular structure determination suite PHENIX. We found that a standard implementation of PHENIX, namely one without xMDFF, either fails to produce a solution by molecular replacement alone or produces an inaccurate structure when using generic geometry restraints, even at a very high diffraction data resolution of 0.84 Å. The problems disappear when taking advantage of xMDFF, which applies an optimized force field to re-align molecular models during phasing by providing accurate restraints. The structure determination for this model system shows excellent agreement with the small-molecule methods. Therefore, the joint xMDFF-PHENIX refinement protocol provides a new strategy that uses macromolecule methods for structure determination of small molecules and their assemblies. PMID:26121416

  5. Study of Polarized Sea Quark Distributions in Polarized Proton-Proton Collisions at sq root(s) = 500 GeV with PHENIX

    SciTech Connect

    Mibe, Tsutomu

    2009-08-04

    The PHENIX spin program studies the flavor structure of the polarized sea quark distributions in polarized proton-proton collisions. Starting from 2009 run, the quark and antiquark polarization, sorted by flavor, will be investigated with the parity-violating single-spin asymmetry of W-boson production at the collision energy of sq root(s) = 500 GeV. High momentum muons from W-boson decay are detected in the PHENIX muon arms. The muon trigger is being upgraded to allow one to select high momentum muons.

  6. Calculation of the Phenix end-of-life test 'Control Rod Withdrawal' with the ERANOS code

    SciTech Connect

    Tiberi, V.

    2012-07-01

    The Inst. of Radiological Protection and Nuclear Safety (IRSN) acts as technical support to French public authorities. As such, IRSN is in charge of safety assessment of operating and under construction reactors, as well as future projects. In this framework, one current objective of IRSN is to evaluate the ability and accuracy of numerical tools to foresee consequences of accidents. Neutronic studies step in the safety assessment from different points of view among which the core design and its protection system. They are necessary to evaluate the core behavior in case of accident in order to assess the integrity of the first barrier and the absence of a prompt criticality risk. To reach this objective one main physical quantity has to be evaluated accurately: the neutronic power distribution in core during whole reactor lifetime. Phenix end of life tests, carried out in 2009, aim at increasing the experience feedback on sodium cooled fast reactors. These experiments have been done in the framework of the development of the 4. generation of nuclear reactors. Ten tests have been carried out: 6 on neutronic and fuel aspects, 2 on thermal hydraulics and 2 for the emergency shutdown. Two of them have been chosen for an international exercise on thermal hydraulics and neutronics in the frame of an IAEA Coordinated Research Project. Concerning neutronics, the Control Rod Withdrawal test is relevant for safety because it allows evaluating the capability of calculation tools to compute the radial power distribution on fast reactors core configurations in which the flux field is very deformed. IRSN participated to this benchmark with the ERANOS code developed by CEA for fast reactors studies. This paper presents the results obtained in the framework of the benchmark activity. A relatively good agreement was found with available measures considering the approximations done in the modeling. The work underlines the importance of burn-up calculations in order to have a fine

  7. Tritium Retention and Permeation in Ion- and Neutron-Irradiated Tungsten under US-Japan PHENIX Collaboration

    NASA Astrophysics Data System (ADS)

    Shimada, Masashi; Taylor, Chase N.; Kolasinski, Robert D.; Buchenauer, Dean A.; Chikada, Takumi; Oya, Yasuhisa; Hatano, Yuji

    2015-11-01

    A critical challenge for long-term operation of ITER and beyond to a FNSF, a DEMO and future fusion reactor will be the development of plasma-facing components (PFCs) that demonstrate erosion resistance to intense heat and neutral/ion particle fluxes under the extreme fusion nuclear environment, while minimizing in-vessel inventories and ex-vessel permeation of tritium. Recent work at Tritium Plasma Experiment demonstrated that tritium diffuses in bulk tungsten at elevated temperatures, and can be trapped in radiation-induced trap site (up to 1 at. % T/W) in tungsten [M. Shimada, et.al., Nucl. Fusion 55 (2015) 013008]. US-Japan PHENIX collaboration (2013-2019) investigates irradiation response on tritium behavior in tungsten, and performs one-of-a-kind neutron-irradiation with Gd thermal neutron shield at High Flux Isotope Reactor, ORNL. This presentation describes the challenge in elucidating tritium behavior in neutron-irradiated PFCs, the PHENIX plans for neutron-irradiation and post irradiation examination, and the recent findings on tritium retention and permeation in 14MeV neutron-irradiated and Fe ion irradiated tungsten. This work was prepared for the U.S. Department of Energy, Office of Fusion Energy Sciences, under the DOE Idaho Field Office contract number DE-AC07-05ID14517.

  8. Decision-Making in Structure Solution using Bayesian Estimates of Map Quality: The PHENIX AutoSol Wizard

    SciTech Connect

    Terwilliger, T. C.; Adams, P. D.; Read, R. J.; McCoy, A. J.; Moriarty, Nigel W.; Grosse-Kunstleve, R. W.; Afonine, P. V.; Zwart, P. H.; Hung, L.-W.

    2009-03-01

    Estimates of the quality of experimental maps are important in many stages of structure determination of macromolecules. Map quality is defined here as the correlation between a map and the map calculated based on a final refined model. Here we examine 10 different measures of experimental map quality using a set of 1359 maps calculated by reanalysis of 246 solved MAD, SAD, and MIR datasets. A simple Bayesian approach to estimation of map quality from one or more measures is presented. We find that a Bayesian estimator based on the skew of histograms of electron density is the most accurate of the 10 individual Bayesian estimators of map quality examined, with a correlation between estimated and actual map quality of 0.90. A combination of the skew of electron density with the local correlation of rms density gives a further improvement in estimating map quality, with an overall correlation coefficient of 0.92. The PHENIX AutoSol Wizard carries out automated structure solution based on any combination of SAD, MAD, SIR, or MIR datasets. The Wizard is based on tools from the PHENIX package and uses the Bayesian estimates of map quality described here to choose the highest-quality solutions after experimental phasing.

  9. Dielectron Mass Spectra in square root of sNN = 200 GeV Copper plus Copper Collisions at PHENIX

    NASA Astrophysics Data System (ADS)

    Campbell, Sarah Catherine

    The dielectron mass spectrum consists of light vector meson decays, correlated heavy quark contributions and decays from other hadronic and photonic sources. Thermal radiation and modifications to the light vector mesons may provide additional signals at low masses above known hadronic sources. The PHENIX sNN = 200 GeV Au+Au and Cu+Cu analyses have measured a centrality dependent excess in the the low mass region between 0.15 GeV/c 2 and 0.75 GeV/c2. Between the φ and the J/ψ, in the intermediate mass range, the correlated heavy quark decays are the primary dielectron source; direct photons may augment this region as well. The Cu+Cu system is sensitive to the onset of the dielectron excess. By studying the Cu+Cu mass spectra and yields as a function of pair pT and collision centrality we obtain further understanding of its behavior. Comparisons to the PHENIX Au+Au and p+p measurements an extrapolations from theory are presented.

  10. Accurate macromolecular crystallographic refinement: incorporation of the linear scaling, semiempirical quantum-mechanics program DivCon into the PHENIX refinement package

    PubMed Central

    Borbulevych, Oleg Y.; Plumley, Joshua A.; Martin, Roger I.; Merz, Kenneth M.; Westerhoff, Lance M.

    2014-01-01

    Macromolecular crystallographic refinement relies on sometimes dubious stereochemical restraints and rudimentary energy functionals to ensure the correct geometry of the model of the macromolecule and any covalently bound ligand(s). The ligand stereochemical restraint file (CIF) requires a priori understanding of the ligand geometry within the active site, and creation of the CIF is often an error-prone process owing to the great variety of potential ligand chemistry and structure. Stereochemical restraints have been replaced with more robust functionals through the integration of the linear-scaling, semiempirical quantum-mechanics (SE-QM) program DivCon with the PHENIX X-ray refinement engine. The PHENIX/DivCon package has been thoroughly validated on a population of 50 protein–ligand Protein Data Bank (PDB) structures with a range of resolutions and chemistry. The PDB structures used for the validation were originally refined utilizing various refinement packages and were published within the past five years. PHENIX/DivCon does not utilize CIF(s), link restraints and other parameters for refinement and hence it does not make as many a priori assumptions about the model. Across the entire population, the method results in reasonable ligand geometries and low ligand strains, even when the original refinement exhibited difficulties, indicating that PHENIX/DivCon is applicable to both single-structure and high-throughput crystallography. PMID:24816093

  11. A new default restraint library for the protein backbone in Phenix: a conformation-dependent geometry goes mainstream

    PubMed Central

    Moriarty, Nigel W.; Tronrud, Dale E.; Adams, Paul D.; Karplus, P. Andrew

    2016-01-01

    Chemical restraints are a fundamental part of crystallographic protein structure refinement. In response to mounting evidence that conventional restraints have shortcomings, it has previously been documented that using backbone restraints that depend on the protein backbone conformation helps to address these shortcomings and improves the performance of refinements [Moriarty et al. (2014 ▸), FEBS J. 281, 4061–4071]. It is important that these improvements be made available to all in the protein crystallography community. Toward this end, a change in the default geometry library used by Phenix is described here. Tests are presented showing that this change will not generate increased numbers of outliers during validation, or deposition in the Protein Data Bank, during the transition period in which some validation tools still use the conventional restraint libraries. PMID:26894545

  12. Probing properties of hot and dense QCD matter with heavy flavor in the PHENIX experiment at RHIC

    SciTech Connect

    Nouicer, Rachid

    2015-05-29

    Hadrons carrying heavy quarks, i.e. charm or bottom, are important probes of the hot and dense medium created in relativistic heavy ion collisions. Heavy quark-antiquark pairs are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. Heavy quark production has been studied by the PHENIX experiment at RHIC via measurements of single leptons from semi-leptonic decays in both the electron channel at mid-rapidity and in the muon channel at forward rapidity. A large suppression and azimuthal anisotropy of single electrons have been observed in Au + Au collisions at 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. The PHENIX experiment has also measured J/ψ production at 200 GeV in p + p, d + Au, Cu + Cu and Au + Au collisions, both at mid- and forward-rapidities, and additionally Cu + Au and U + U at forward-rapidities. In the most energetic collisions, more suppression is observed at forward rapidity than at central rapidity. This can be interpreted either as a sign of quark recombination, or as a hint of additional cold nuclear matter effects. The centrality dependence of nuclear modification factor, RAA(pT), for J/ψ in U + U collisions at √sNN = 193 GeV shows a similar trend to the lighter systems, Au + Au and Cu + Cu, at similar energy 200 GeV.

  13. Probing properties of hot and dense QCD matter with heavy flavor in the PHENIX experiment at RHIC

    DOE PAGESBeta

    Nouicer, Rachid

    2015-05-29

    Hadrons carrying heavy quarks, i.e. charm or bottom, are important probes of the hot and dense medium created in relativistic heavy ion collisions. Heavy quark-antiquark pairs are mainly produced in initial hard scattering processes of partons. While some of the produced pairs form bound quarkonia, the vast majority hadronize into particles carrying open heavy flavor. Heavy quark production has been studied by the PHENIX experiment at RHIC via measurements of single leptons from semi-leptonic decays in both the electron channel at mid-rapidity and in the muon channel at forward rapidity. A large suppression and azimuthal anisotropy of single electrons havemore » been observed in Au + Au collisions at 200 GeV. These results suggest a large energy loss and flow of heavy quarks in the hot, dense matter. The PHENIX experiment has also measured J/ψ production at 200 GeV in p + p, d + Au, Cu + Cu and Au + Au collisions, both at mid- and forward-rapidities, and additionally Cu + Au and U + U at forward-rapidities. In the most energetic collisions, more suppression is observed at forward rapidity than at central rapidity. This can be interpreted either as a sign of quark recombination, or as a hint of additional cold nuclear matter effects. The centrality dependence of nuclear modification factor, RAA(pT), for J/ψ in U + U collisions at √sNN = 193 GeV shows a similar trend to the lighter systems, Au + Au and Cu + Cu, at similar energy 200 GeV.« less

  14. Calibrating the PHENIX Muon Piston Calorimeter for Au+Au collisions at √{SNN} = 200, 62.4, 39, and 7.7 GeV

    NASA Astrophysics Data System (ADS)

    Herrera Acevedo, Carlos; Phenix Collaboration

    2015-10-01

    The PHENIX Muon Piston Calorimeter (MPC), a homogenous electromagnetic calorimeter, covers forward/backward pseudorapidities (3 . 1 < | η | < 3 . 9). MPC calibrations of data collected by PHENIX during the 2010 RHIC run are underway. These will be used for the measurement of transverse energy in the forward/backward direction. For the calibration, an iterative process is used in which photon clusters are paired to produce tower by tower mass plots containing neutral pion peaks. The gains of each tower are adjusted until the peaks in the mass histograms are shifted to the positions predicted by a full detector simulation. For towers in which a neutral pion peak is not immediately evident, other methods can be applied to adjust the gains until a neutral pion peak appears. This material is based upon work supported by the National Science Foundation under Grant No. 1507841.

  15. Developpement et application d'un systeme mobile de laser terrestre pour quantifier le bilan sedimentaire des plages

    NASA Astrophysics Data System (ADS)

    Van-Wierts, Stefanie

    ,4 m). Un indice de bilan sédimentaire des plages a été testé et il constitue un excellent proxy pour évaluer la disponibilité sédimentaire des plages ainsi qu'identifier les secteurs déficitaires. La réalisation d'une couverture complète au LiDAR a permis de constater que des profils de plage réalisés à un intervalle de plus de 200 m sur des côtes diversifiées mènent à des résultats significativement différents de la réalité. Par contre, il semble que l'intervalle des profils à peu d'impact sur de longs secteurs de plages uniformes.

  16. Decay heat of sodium fast reactor: Comparison of experimental measurements on the PHENIX reactor with calculations performed with the French DARWIN package

    SciTech Connect

    Benoit, J. C.; Bourdot, P.; Eschbach, R.; Boucher, L.; Pascal, V.; Fontaine, B.; Martin, L.; Serot, O.

    2012-07-01

    A Decay Heat (DH) experiment on the whole core of the French Sodium-Cooled Fast Reactor PHENIX has been conducted in May 2008. The measurements began an hour and a half after the shutdown of the reactor and lasted twelve days. It is one of the experiments used for the experimental validation of the depletion code DARWIN thereby confirming the excellent performance of the aforementioned code. Discrepancies between measured and calculated decay heat do not exceed 8%. (authors)

  17. Measurement of Di-electron Continuum in p+p at √s=200 GeV collisions by PHENIX using the Hadron Blind Detector

    NASA Astrophysics Data System (ADS)

    Rolnick, Sky

    2012-10-01

    Dielectrons provide a very important probe for studying the hot dense nuclear matter created in heavy ion collisions at RHIC. Since dielectrons are color neutral and produced during all stages of the collision, they provide access to an abundance of information including thermal sources, Dalitz decays, vector meson resonances, correlated open charm and bottom decay, and Drell-Yan processes. Previous measurements from PHENIX have indicated an unexpectedly large enhancement of dielectrons in Au+Au collisions in the low mass region (0.3-0.8 GeV/c^2), a possible signal of chiral symmetry restoration.footnotetextS. Afanasiev et al. [PHENIX Collaboration], arXiv:0706.3034 [nucl-ex]. These measurements were limited by large systematic uncertainties, primarily from a poor S/B ratio. In 2009 the PHENIX experiment was upgraded with the addition of the Hadron Blind Detector which will improve the background rejection by allowing removal of pairs from both partially reconstructed Dalitz decays and photon conversions. In this talk, we will report on the results obtained from 2009 data in p+p using the HBD which will serve as a baseline for the Au+Au results obtained in 2010.

  18. Neutral pion production in \\sqrt{s_{NN}}=200 GeV Cu+Au collisions at PHENIX

    NASA Astrophysics Data System (ADS)

    Campbell, Sarah; PHENIX Collaboration

    2015-05-01

    Cu+Au collisions at RHIC generate asymmetric initial geometries and densities in both azimuth and rapidity. High pT π0s produced in \\sqrt{sNN} = 200 GeV Cu+Au collisions provide new environments to study parton energy loss in the Quark Gluon Plasma, including very central events where the Cu nucleus is enveloped by the Au nucleus. By measuring π0 yields in ϕ relative to the event plane, we can probe different core-corona regions in these very central events and study the path length dependence of energy loss in various lopsided initial geometries. PHENIX has observed the suppression of π0s as a function of the azimuthal angle with respect to the event plane in \\sqrt{sNN} = 200 GeV Au+Au collisions and found it consistent with a larger than quadratic path length dependence suggesting a non-perturbative energy loss model applies. The unique collision geometries available in Cu+Au provide new settings to explore and possibly confirm this path length dependence. The status of the Cu+Au π0 analysis is presented.

  19. Measurement of nuclear-modification factors for {pi}{sup 0}, {eta}, and {phi} mesons and protons in heavy-ion interactions in the PHENIX experiment

    SciTech Connect

    Kotov, D. O.

    2011-05-15

    Light hadrons provide a convenient tool for studying the properties of hot and dense media formed in central collisions of relativistic heavy nuclei. The results obtained in the PHENIX experiment at the relativistic heavy-ion collider (RHIC, Brookhaven National Laboratory, USA) by measuring nuclearmodification factors for light hadrons in various colliding systems (pp, dAu, CuCu, and AuAu) at the c.m. energies of {radical}s{sub NN} = 62.4 and 200 GeV are presented.

  20. The design and construction of the muon arm in PHENIX. Progress report for the period December 15, 1993--December 1, 1994

    SciTech Connect

    Kirk, P.N.

    1994-12-15

    The purpose of this report is to describe activities performed by the Intermediate Energy Nuclear Physics Group (IENPG) at the Louisiana State University (LSU). The report will cover the period of time between approximately December 15, 1993, and the present. The principal focus of the activities is the muon subgroup of the PHENIX Collaboration. During the preceding year the authors have contributed substantially to the development of hardware for the muon arm of PHENIX and have undertaken an important simulation that will be discussed in the accompanying renewal proposal. The authors are, however, in the process of concluding other activities, most notably their membership in the Di-Lepton Spectrometer (DLS) Collaboration at LBL. During the preceding year the authors have undertaken a major calculation on behalf of the DLS Collaboration. Because of its fundamental nature, its importance to the DLS Collaboration, and its applicability to any other spectrometer, they shall discuss this calculation in considerable detail, both in this progress report and the accompanying renewal proposal. In addition they are members of the E866 Collaboration at Fermilab and the AMY Collaboration at KEK.

  1. Overall results of and lessons learned from the IAEA CRP on sodium natural circulation test performed during the Phenix end-of-life experiments

    SciTech Connect

    Monti, S.; Toti, A.; Tenchine, D.; Pialla, D.

    2012-07-01

    In 2007, the International Atomic Energy Agency (IAEA) launched the Coordinated Research Project (CRP) 'Control Rod Withdrawal and Sodium Natural Circulation Tests Performed during the Phenix End-of-Life Experiments'. The overall purpose of the CRP, performed within the framework of the IAEA programme in support of innovative fast reactor technology development and deployment, is to improve the Member States' analytical capabilities in the various fields of research and design of sodium-cooled fast reactors through data and codes verification and validation. In particular the CRP, taking advantage of the End-of-Life set of experiments performed before the final shut-down of the French prototype fast breeder power reactor Phenix, aims at improving fast reactor simulation methods and design capabilities in the field of temperature and power distribution evaluation, as well as of the analysis of sodium natural circulation phenomena. The paper presents the overall results of the CRP, including blind calculations and post-test and sensitivity analyses carried out by the CRP participants, as well as lessons learned and recommendations for further future implementations to resolve open issues. (authors)

  2. Two-particle correlations in 200 GeV p+p with the MPC-EX at RHIC-PHENIX

    NASA Astrophysics Data System (ADS)

    White, John; Phenix Collaboration

    2015-10-01

    The Extension to the Muon Piston Calorimeter (MPC-EX) is a newly installed tungsten-silicon preshower added to enhance the forward (3<| η|<4) photon identification in p + p and p +A collisions in the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). At these pseudorapidities new and extended measurements using the correlation of two particles can be made. For example, one can look for a flow-like correlation with low momentum pairs in high multiplicity collisions. At higher momentum jet-like correlations probe high-Q2 and low- x partons in the target proton or nucleus and can potentially test models of gluon saturation. In this poster, we outline some details of the MPC-EX detector and its performance in the p + p and p +Au runs during 2015 as well as give a current status of two-particle correlation analysis using the MPC-EX.

  3. Handling Difficult Towers in the Calibration of the PHENIX Muon Piston Calorimeter (MPC) for Analysis of RHIC Au+Au Collisions

    NASA Astrophysics Data System (ADS)

    Lallow, Emran; Phenix Collaboration

    2015-10-01

    The PHENIX Muon Piston Calorimeter (MPC) is an electromagnetic detector with a kinematic coverage of (3 . 1 < | η | < 3 . 9). This allows for measurements at high forward and backward pseudorapidity and will be used to measure transverse energy in √{SNN} = 200, 62.4, 39, and 7.7 GeV RHIC Au+Au collisions in this kinematic region. The towers will be calibrated by using an iterative procedure in which neutral pions are reconstructed from their decay photons. To augment the iterative process, rough calibrations of individual towers can be obtained by direct examination of ADC distributions. These rough calibrations serve as input to the more rigorous neutral pion reconstruction method and will be described in this poster. This material is based upon work supported by the National Science Foundation under Grant No. 1507841.

  4. Measurement of electrons from heavy-flavor decays from p + p, d + Au , and Cu + Cu collisions in the PHENIX experiment

    NASA Astrophysics Data System (ADS)

    Lim, Sanghoon

    2014-11-01

    Charm and bottom quarks are formed predominantly by gluon fusion in the initial hard scatterings at RHIC, making them good probes of the full medium evolution. Previous measurements at RHIC have shown large suppression and azimuthal anisotropy of open heavy-flavor hadrons in Au + Au collisions at √{sNN} = 200 GeV. Explaining the simultaneously large suppression and flow of heavy quarks has been challenging. To further understand the heavy-flavor transport in the hot and dense medium, it is imperative to also measure cold nuclear matter effects which affect the initial distribution of heavy quarks as well as the system size dependence of the final state suppression. In this talk, new measurements by the PHENIX Collaboration of electrons from heavy-flavor decays in p + p, d + Au , and Cu + Cu collisions at √{sNN} = 200 GeV are presented. In particular, a surprising enhancement of intermediate transverse momentum heavy-flavor decay leptons in d + Au at mid and backward rapidity are also seen in mid-central Cu + Cu collisions. This enhancement is much larger than the expectation from anti-shadowing of the parton distributions and is theoretically unexplained.

  5. Low Momentum Direct Photons in Au + Au collisions at √{ s} = 39 GeV and 62 . 4 GeV measured by the PHENIX Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Khachatryan, Vladimir; Phenix Collaboration

    2015-10-01

    Direct photons, which are produced during all stages of a heavy-ion collision, directly probe the conditions of their production environment. The large yield and large anisotropy of low momentum direct photons observed in 200 GeV Au + Au collisions pose a significant challenge to theoretical models. Measurements at lower collision energy may provide new insight on the origin of the low momentum direct photons. Direct photons are difficult to measure with electromagnetic calorimeters, in particular at low momentum, because of neutral hadron and minimal-ionizing particle contamination, large decay photon backgrounds, and worsening calorimeter resolution. Therefore PHENIX has measured the direct photons at √{ s} = 200 GeV via their external conversion to di-electron pairs. This method virtually eliminates the hadron contamination due to a very clean photon identification based on di-electron pair. The same method is also used in our current analysis of the direct photons at two lower energies. We will present the current status on the measurements of the low momentum direct photons at √{ s} = 39 GeV and 62 . 4 GeV.

  6. Azimuthal Anisotropy at Intermediate Rapidity in √SNN = 200 GeV Au-Au Collisions in PHENIX at RHIC-BNL

    NASA Astrophysics Data System (ADS)

    Norman, Benjamin

    2005-04-01

    In mid-central heavy ion collisions, the nuclear overlap region is almond shaped. This spatial anisotropy leads to a momentum space anisotropy, which has symmetry about the plane defined by the beam axis and the impact parameter. This reaction plane (or event plane) can be determined in experiment using the final particle azimuthal distribution. The reaction plane resolution depends on particle multiplicity, azimuthal angle resolution, azimuthal hermeticity, and the amount of actual asymmetry that exists in the collision. We will present the effect of these factors on the resolution of the reaction plane for Au-Au collisions in general and more specifically for the pad planes of the PHENIX Multiplicity Vertex Detector (MVD). These pad planes are in the pseudorapidity range 1.8 < |eta| < 2.6 on either side of the vertex region for which PHOBOS data (nucl-ex/0403025) suggest a v2 of about 4 percent for mid-central Au-Au collisions at √SNN of 200 GeV.

  7. High pT Charged Hadron Spectrum in Au+Au Collisions at 200 GeV as Measured by PHENIX

    NASA Astrophysics Data System (ADS)

    Bryslawskyj, Jason; Phenix Collaboration

    2015-10-01

    The suppression of single hadrons still provides one of the strongest constraints on energy loss mechanisms in the Quark-Gluon Plasma. Currently the best measurement at RHIC of single particle suppression comes from neutral pions. Charged hadrons have independent sources of systematic uncertainty and can thus provide additional constraints. Off-vertex background from photon conversions and weak decays, which mimick high pT particles, have limited the measurement of charged hadrons to pT < 10 GeV/c at PHENIX. These background sources can be rejected by the silicon vertex tracker upgrade (VTX) allowing the measurement of the charged hadron spectrum out to a significantly higher momentum. The VTX is capable of performing precision measurements of the distance of closest approach of a track to the primary vertex (DCA). Off-vertex photon conversions and weak decays are vetoed with the VTX by rejecting tracks with large DCA. The status of high-pT charged tracking and associated high-pT charged hadron spectrum will be reported.

  8. Measurement of Longitudinal Single Spin Asymmetry in the Production of Muons from W/Z Boson Decays in Polarized p+p Collisions at sqrt s = 510 GeV with the PHENIX Detector at RHIC

    NASA Astrophysics Data System (ADS)

    Meles, Abraham

    The contribution from the sea quarks to the proton spin have been poorly constrained mainly because of the limited knowledge we have on the fragmentation function in polarized Semi Inclusive Deep Inelastic Scattering (SIDIS) experiments. The parity-violating longitudinal single spin asymmetry AL in the production of W bosons in p + p collisions does not involve fragmentation function and is an alternative better way of exploring the polarization of sea quarks in the proton. The measurement will be useful especially in constraining u and d¯ in the very backward and forward rapidities respectively. However, identifying the muons from the decay of the W is challenging due to a great background of hadronic in flight decays and other muon producing processes such as heavy flavor decays. In the forward and backward hemispheres of PHENIX at RHIC, the muon spectrometers have been recently upgraded in order to provide additional trigger and tracking information to suppress those backgrounds. One of those upgrades is the Forward Vertex (FVTX) detector, a silicon-strip tracker. In 2013, PHENIX accumulated the largest amount of polarized p + p collision data ever collected in the world (˜ 240pb--1 ) at s = 510 GeV with a beam polarization of 56%. The analysis techniques used to extract the signal from the data and the longitudinal single spin asymmetries AL in RHIC 2013 run will be discussed.

  9. Longitudinal Double Spin Asymmetry and Cross Section for Direct Photon Production Measured at Mid-rapidity in Polarized {radical}(s) = 200 GeV pp Collisions at PHENIX

    SciTech Connect

    Bennett, Robert

    2009-08-04

    Direct photon production in pp collisions at RHIC is one of the important channels PHENIX will employ to determine the polarized gluon distribution {delta}G. The direct photon A{sub LL} is linear in {delta}G, therefore sensitive to its sign and magnitude. To establish the applicability of perturbative Quantum Chromodynamics (pQCD) to this process, we present a comparison of the direct photon unpolarized cross section, with next-to-leading order pQCD calculations. We then evaluate the double helicity spin asymmetries, A{sub LL}, from these data and compare with theoretical models. We present results and the current status the analysis of 2005 and 2006 data sets.

  10. Gluon polarization in the proton: Constraints at low x from the measurement of the double longitudinal spin asymmetry for forward-rapidity hadrons with the PHENIX detector at RHIC

    NASA Astrophysics Data System (ADS)

    McKinney, Cameron Palmer

    In the 1980s, polarized deep inelastic lepton-nucleon scattering experiments revealed that only about a third of the proton's spin of ½ h is carried by the quarks and antiquarks, leaving physicists with the puzzle of how to account for the remaining spin. As gluons carry roughly 50% of the proton's momentum, it seemed most logical to look to the gluon spin as another significant contributor. However, lepton-nucleon scattering experiments only access the gluon helicity distribution, Delta g, through effects on the quark distributions via scaling violations. Constraining Deltag through scaling violations requires experiments that together cover a large range of Q 2. Such experiments had been carried out with unpolarized beams, leaving g(x) (the unpolarized gluon distribution) relatively well-known, but the polarized experiments have only thus far provided weak constraints on Deltag in a limited momentum fraction range. With the commissioning in 2000 of the Relativistic Heavy Ion Collider, the first polarized proton-proton (pp) collider, and the first polarized pp running in 2002, the gluon distributions could be accessed directly by studying quark-gluon and gluon-gluon interactions. In 2009, data from measurements of double longitudinal spin asymmetries, ALL, at the STAR and PHENIX experiments through 2006 were included in a QCD global analysis performed by Daniel de Florian, Rodolfo Sassot, Marco Stratmann, and Werner Vogelsang (DSSV), yielding the first direct constraints on the gluon helicity. The DSSV group found that the contribution of the gluon spin to the proton spin was consistent with zero, but the data provided by PHENIX and STAR was all at mid-rapidity, meaning Delta g was constrained by data only a range in x from 0.05 to 0.2, leaving out helicity contributions from the huge number of low- x gluons. A more recent analysis by DSSV from 2014 including RHIC data through 2009 for the first time points to significant gluon polarization at intermediate

  11. K{sup -} and p-bar spectra for AuAu collisions at {radical}s = 200 GeV from STAR, PHENIX, and BRAHMS in comparison to core-corona model predictions

    SciTech Connect

    Schreiber, C.; Werner, K.; Aichelin, J.

    2012-05-15

    Based on results obtained with event generators we have launched the core-corona model. It describes in a simplified way but quite successfully the centrality dependence of multiplicity and of identified particles observed in heavy-ion reactions at beam energies between {radical}s = 17 and 200 GeV. Also the centrality dependence of the elliptic flow, {upsilon}{sub 2}, for all charged and identified particles could be explained in this model. Here we extend this analysis and study the centrality dependence of single-particle spectra of K{sup -} and p-bar measured by the PHENIX, STAR, and BRAHMS Collaborations. We find that also for these particles the analysis of the spectra in the core-corona model suffers from differences in the data published by the different experimental groups, notably for the pp collisions. As for protons and K{sup +}, for each experience the data agree well with the prediction of the core-corona model but the values of the two necessary parameters depend on the experiments. We show as well that the average momentum as a function of the centrality depends in a very sensitive way on the particle species and may be quite different for particles which have about the same mass. Therefore the idea to interpret this centrality dependence as a consequence of a collective expansion of the system, as done in blast way fits, may be premature.

  12. Mise au point d'un reacteur epitaxial CBE

    NASA Astrophysics Data System (ADS)

    Pelletier, Hubert

    Ce projet de maîtrise consiste à l'asservissement et la mise en marche d'un réacteur d'épi-taxie par jets chimiques au Laboratoire d'Épitaxie Avancée de l'Université de Sherbrooke. Le réacteur sert à la croissance dans l'ultravide de matériaux semi-conducteurs tels que l'arséniure de gallium (GaAs) et le phosphure d'indium-gallium (GaInP). La programmation LabVIEW et du matériel informatique de National Instruments sont utilisés pour asservir le réacteur. Le contrôle de la température de l'échantillon et de la pression de contrôle des réactifs de croissance dans le réacteur est assuré par des boucles de rétroaction. Ainsi, la température de l'échantillon est stabilisée à ±0, 4 °C, alors que les pressions de contrôle de gaz peuvent être modulées sur un ordre de grandeur en 2 à 4 secondes, et stabilisées à ±0, 002 Torr. Le système de pompage du réacteur a été amélioré suite à des mesures de vitesse de pompage d'une pompe cryogénique. Ces mesures révèlent une dégradation sur plus d'un ordre de grandeur de son pompage d'hydrogène avec l'opération à long terme. Le remplacement de la pompe cryogénique par une pompe turbo-moléculaire comme pompe principale a permis d'améliorer la fiabilité du système de pompage du système sous vide. D'autre part, la conductance du système d'acheminement de gaz et d'injection a été augmentée afin de réduire un effet mémoire des sources le système et faciliter la croissance de matériaux ternaires. Ainsi, des croissances de GaAs (100) sur substrat de même nature ont été effectuées et ont révélé un matériau de bonne qualité. Sa rugosité moyenne de 0,17 nm, mesurée par microscopie à force atomique, est très faible selon la littérature. De plus, une mobilité élevée des porteurs est obtenue à fort dopage au silicium, au tellure et au carbone, notamment une mobilité de 42 ± 9 cm2V -1s-1 des porteurs majoritaires '(trous) lors du dopage au carbone à 1, 5 · 1019 cm-3, en accord avec la courbe théorique. La croissance du matériau ternaire GaInP a aussi été réalisée en accord de maille avec le substrat de GaAs, et avec une rugosité de 0, 96 nm. Ceci constitue un premier pas dans la croissance d'alliages ternaires au laboratoire. Finalement, la mise en marche du réacteur d'épitaxie par jets chimiques permet maintenant à cinq étudiants gradués de faire progresser des projets reliés directement à la croissance épitaxiale au Laboratoire d'Épitaxie Avancée de l'Université de Sherbrooke. Mots-clés : Épitaxie par jets chimiques; Chemical beam epitaxy; CBE; MOMBE; GaAs; GaInP; LabVIEW; Théorie du vide.

  13. Modelisation et simulation de pyrolyse de pneus usages dans des reacteurs de laboratoire et industriel

    NASA Astrophysics Data System (ADS)

    Lanteigne, Jean-Remi

    The present thesis covers an applied study on tire pyrolysis. The main objective is to develop tools to allow predicting the production and the quality of oil from tire pyrolysis. The first research objective consisted in modelling the kinetics of tires pyrolysis in a reactor, namely an industrial rotary drum operating in batch mode. A literature review performed later demonstrated that almost all kinetics models developed to represent tire pyrolysis could not represent the actual industrial process with enough accuracy. Among the families of kinetics models for pyrolysis, three have been identified: models with one single global reaction, models with multiple combined parallel reactions, and models with multiple parallel and series reactions. It was observed that these models show limitations. In the models with one single global reaction and with multiple parallels reactions, the production of each individual pyrolytic product cannot be predicted, but only for combined volatiles. Morevoer, the mass term in the kinetics refers to the final char weight (Winfinity) that varies with pyrolysis conditions, which yields less robust models. Also, despite the fact that models with multiple parallels and series reactions can predict the rate of production for each pyrolysis product, the selectivities are determined for operating temperatures instead of real mass temperatures, giving models for which parameters tuning is not adequate when used at the industrial scale. A new kinetics model has been developed, allowing predicting the rate of production of noncondensable gas, oil, and char from tire pyrolysis. The novelty of this model is the consideration of intrinsic selectivities for each product as a function of temperature. This hypothesis has been assumed valid considering that in the industrial pyrolysis process, pyrolysis kinetics is limiting. The developed model considers individual kinetics for each of the three pyrolytic products proportional to the global decomposition kinetics of pyrolysables. The simulation with data obtained in industrial operation showed the robustness of the model to predict with accuracy in transient regime, tires pyrolysis, with the help of model parameters obtained at laboratory scale, namely in regards of the trigger of production, the residence time of tires (dynamic production) and the amount of oil produced (cumulative yield). It is a novel way to model pyrolysis that could be extrapolated to new waste materials. The second objective of this doctoral research was to determine the evolution of specific tires specific heat during pyrolysis and the enthalpy of pyrolysis. The origin of this objective comes from a primary contradiction. With few exceptions, it is acknowledged that organic materials pyrolysis is globally an endothermic phenomenon. At the opposite, all experiments led with laboratory apparatuses such as DSC (Differential Scanning Calorimetry) showed exothermic peaks during dynamic experiments (constant heating rate). It has been confirmed by results obtained at the industrial scale, where no sign of exothermicity has been observed. The Hess Law has also confirmed these results, that globally, pyrolysis is indeed a completely endothermic process. An accurate energy balance is required to predict mass temperature during pyrolysis, this parameter being unbindable from kinetics. An advanced investigation of char first allowed demonstrating that specific heat of solids during pyrolysis decreases with increasing temperature until the weight loss peak is reached, around 400°C, and then starts increasing again. This observation, combined with the fact that the sample loses weight during pyrolysis is considered as the major cause of the apparition of an exothermic peak in laboratory scale experiments. That is, the control system of these apparatuses generates a bias and an unavoidable overheat of the samples producing this exothermic behavior. It would thus be an artifact. On the base of new data on the evolution of global specific heat during pyrolysis, a model of the energy balance has be

  14. Methodes d'optimisation des parametres 2D du reflecteur dans un reacteur a eau pressurisee

    NASA Astrophysics Data System (ADS)

    Clerc, Thomas

    With a third of the reactors in activity, the Pressurized Water Reactor (PWR) is today the most used reactor design in the world. This technology equips all the 19 EDF power plants. PWRs fit into the category of thermal reactors, because it is mainly the thermal neutrons that contribute to the fission reaction. The pressurized light water is both used as the moderator of the reaction and as the coolant. The active part of the core is composed of uranium, slightly enriched in uranium 235. The reflector is a region surrounding the active core, and containing mostly water and stainless steel. The purpose of the reflector is to protect the vessel from radiations, and also to slow down the neutrons and reflect them into the core. Given that the neutrons participate to the reaction of fission, the study of their behavior within the core is capital to understand the general functioning of how the reactor works. The neutrons behavior is ruled by the transport equation, which is very complex to solve numerically, and requires very long calculation. This is the reason why the core codes that will be used in this study solve simplified equations to approach the neutrons behavior in the core, in an acceptable calculation time. In particular, we will focus our study on the diffusion equation and approximated transport equations, such as SPN or S N equations. The physical properties of the reflector are radically different from those of the fissile core, and this structural change causes important tilt in the neutron flux at the core/reflector interface. This is why it is very important to accurately design the reflector, in order to precisely recover the neutrons behavior over the whole core. Existing reflector calculation techniques are based on the Lefebvre-Lebigot method. This method is only valid if the energy continuum of the neutrons is discretized in two energy groups, and if the diffusion equation is used. The method leads to the calculation of a homogeneous reflector. The aim of this study is to create a computational scheme able to compute the parameters of heterogeneous, multi-group reflectors, with both diffusion and SPN/SN operators. For this purpose, two computational schemes are designed to perform such a reflector calculation. The strategy used in both schemes is to minimize the discrepancies between a power distribution computed with a core code and a reference distribution, which will be obtained with an APOLLO2 calculation based on the method Method Of Characteristics (MOC). In both computational schemes, the optimization parameters, also called control variables, are the diffusion coefficients in each zone of the reflector, for diffusion calculations, and the P-1 corrected macroscopic total cross-sections in each zone of the reflector, for SPN/SN calculations (or correction factors on these parameters). After a first validation of our computational schemes, the results are computed, always by optimizing the fast diffusion coefficient for each zone of the reflector. All the tools of the data assimilation have been used to reflect the different behavior of the solvers in the different parts of the core. Moreover, the reflector is refined in six separated zones, corresponding to the physical structure of the reflector. There will be then six control variables for the optimization algorithms. [special characters omitted]. Our computational schemes are then able to compute heterogeneous, 2-group or multi-group reflectors, using diffusion or SPN/SN operators. The optimization performed reduces the discrepancies distribution between the power computed with the core codes and the reference power. However, there are two main limitations to this study: first the homogeneous modeling of the reflector assemblies doesn't allow to properly describe its physical structure near the core/reflector interface. Moreover, the fissile assemblies are modeled in infinite medium, and this model reaches its limit at the core/reflector interface. These two problems should be tackled in future studies. (Abstract shortened by UMI.).

  15. L'Equin du Pied dans un Contexte de Brulure Grave - Interet du Bilan Photographique

    PubMed Central

    Girbon, J.P.; Maligot, B.; Coiffier, E.; Gonzalez-Gutierrez, L.; Gaussorgues, C.; Lacroix, P.; Braye, F.

    2008-01-01

    Summary The incorrect position of the foot in talipes equinus is common in the framework of prolonged confinement to bed in a patient in deep sedation. In the context of severe burns, this incorrect position is difficult to prevent and its fixation by cutaneous shrinkage, which is often associated with a musculotendinous fibrosis, constitutes an important functional after-effect. The onset of talipes equinus is insidious and progressive, and it is therefore important to be watchful both in detection and in prevention. Regular photographic assessment makes it possible to predict its appearance and to take appropriate preventive or curative action. PMID:21991119

  16. Conception et caracterisation d'un magnetoplasma produit par une onde de surface pour la pulverisation d'echantillons solides

    NASA Astrophysics Data System (ADS)

    Masse, Louis Philippe

    Suite a l'extraordinaire explosion de l'informatique de la derniere decennie, la science et la technologie des materiaux ont pris un essor extraordinaire. Par exemple, il est devenu crucial de concevoir des materiaux a haut degre de purete. Ce besoin a fortement motive le developpement de methodes d'analyse de solides. Traditionnellement, la methode adoptee est l'analyse par torche ICP, mais pour de nombreuses raisons, dont la lenteur de cette methode, la communaute scientifique oeuvrant en chimie analytique recherche des techniques d'analyse de solides directes, rapides et plus sensibles. Parmi les voies possibles, on trouve les methodes basees sur la pulverisation par plasma. Dans ce contexte, nous avons etudie la possibilite et la pertinence d'utiliser un magnetoplasma entretenu par une onde de surface pour pulveriser des solides dans le but de les analyser. Nos travaux portent principalement sur l'etude du comportement du plasma lors de la pulverisation. Nous avons montre que la pulverisation affecte la decharge de diverses facons. En premier lieu, la concentration d'especes provenant du materiau pulverise dans le plasma augmente avec la tension de polarisation. De plus, la concentration d'especes pulverisees diminue lorsque la pression croit, possiblement a cause du redepot. Nous avons aussi montre qu'il etait possible de pulveriser des solides isolants en exploitant le phenomene d'autopolarisation du a l'application d'une tension RF. Nous avons aussi etudie l'effet de la pulverisation sur la temperature et la densite electronique. Ainsi, lors de la pulverisation de metaux tels que le cuivre, la temperature electronique diminue lorsque la tension de polarisation augmente. Ceci est attribuable a l'augmentation de la densite d'especes metalliques neutres facilement ionisables par impact electronique. Nous avons aussi note que la densite electronique augmente avec la concentration d'especes metalliques dans le plasma, ce qui resulte d'un meilleur bilan de

  17. Developpement de mesures non destructives, par ondes ultrasonores, d'epaisseurs de fronts de solidification dans les reacteurs metallurgiques

    NASA Astrophysics Data System (ADS)

    Floquet, Jimmy

    Dans les cuves d'electrolyse d'aluminium, le milieu de reaction tres corrosif attaque les parois de la cuve, ce qui diminue leur duree de vie et augmente les couts de production. Le talus, qui se forme sous l'effet des pertes de chaleur qui maintiennent un equilibre thermique dans la cuve, sert de protection naturelle a la cuve. Son epaisseur doit etre controlee pour maximiser cet effet. Advenant la resorption non voulue de ce talus, les degats generes peuvent s'evaluer a plusieurs centaines de milliers de dollars par cuve. Aussi, l'objectif est de developper une mesure ultrasonore de l'epaisseur du talus, car elle serait non intrusive et non destructive. La precision attendue est de l'ordre du centimetre pour des mesures d'epaisseurs comprenant 2 materiaux, allant de 5 a 20 cm. Cette precision est le facteur cle permettant aux industriels de controler l'epaisseur du talus de maniere efficace (maximiser la protection des parois tout en maximisant l'efficacite energetique du procede), par l'ajout d'un flux thermique. Cependant, l'efficacite d'une mesure ultrasonore dans cet environnement hostile reste a demontrer. Les travaux preliminaires ont permis de selectionner un transducteur ultrasonore a contact ayant la capacite a resister aux conditions de mesure (hautes temperatures, materiaux non caracterises...). Differentes mesures a froid (traite par analyse temps-frequence) ont permis d'evaluer la vitesse de propagation des ondes dans le materiau de la cuve en graphite et de la cryolite, demontrant la possibilite d'extraire l'information pertinente d'epaisseur du talus in fine. Fort de cette phase de caracterisation des materiaux sur la reponse acoustique des materiaux, les travaux a venir ont ete realises sur un modele reduit de la cuve. Le montage experimental, un four evoluant a 1050 °C, instrumente d'une multitude de capteurs thermique, permettra une comparaison de la mesure intrusive LVDT a celle du transducteur, dans des conditions proches de la mesure industrielle. Mots-cles : Ultrasons, CND, Haute temperature, Aluminium, Cuve d'electrolyse.

  18. Ajustement du rechargement et des mecanismes de reactivite des reacteurs CANDU pour les cycles de combustible avances

    NASA Astrophysics Data System (ADS)

    St-Aubin, Emmanuel

    This research project main objectives are to set up and apply a methodology that can determine the potential of advanced thorium-based fuel cycles in CANDU reactors and that is able to adjust reactivity devices, in such a way as to maintain their reference efficiency for these new fuels. In order to select these fuel cycles, a large alternative fuel envelope is submitted to several discriminating criteria. A coarse parametric core modeling, that takes into account standard reactivity devices, is first used to highlight candidates presenting the best economical performances and to eliminate non viable options. Then, for the best candidates, the neutronic modeling is optimized before considering reactivity devices adjustment. For every reactivity device managed by the reactor regulating system, innovative generic optimization methods are used to achieve specific objectives for every fuel cycle, all of them being based on the reference natural uranium cycle behavior. Specific optimization objectives are assessed by simulating advanced fuel cycle for specific operating conditions, including : normal on-power refueling period, spurious reactor trip and fueling machine unavailibility. Unlike the generalized perturbative approach proposed in the OPTEX code, we have successfully implemented a multi-step method able to maximize both the energy extracted from the fuel using an equilibrium refueling optimization, and the reactivity devices adequacy. We also propose new reactivity device supercell models that provides accurate reactor databases for a fraction of the computing cost usually needed using a full model with a similar spatial discretization. Our approach is verified by comparing our simulation results with results published in the literature for the reference fuel cycle. The methodology developed identified advanced fuel cycles, containing up to 60%v. thorium, thereby increasing resources utilization by more than 50% and multiplying the fuel average exit burn-up by a factor of 4.4 when compared with the reference cycle. The reactivity devices were also retained after our optimization processes, requiring only minor modifications to the original design. We determined that a 10%v. heavy water doping of the light water within liquid zone controllers could increase the average exit burnup of the reference cycle by almost 1%, without any adverse consequence to the reactor control. This method is validated through its systematic application to numerous different cases. It demonstrates its capability to achieve very different objectives related to reactivity devices requirements, thus it can be now used for other similar studies.

  19. Integrating amplifiers for PHENIX lead-glass and lead-scintillator calorimeters

    SciTech Connect

    Wintenberg, A.L.; Simpson, M.L.; Britton, C.L. Jr.; Palmer, R.L.; Jackson, R.G.

    1995-12-31

    Two types of integrating amplifier systems have been developed for use with lead-glass and lead-scintillator calorimeters with photomultiplier tube readout. Requirements for the amplifier system include termination of the line from the photomultiplier, compact size and low power dissipation to allow multiple channels per chip, dual range outputs producing 10-bit accuracy over a 14-bit dynamic range, rms noise levels of one LSB or less, and compatibility with timing filter amplifiers, tower sum circuits for triggering and calibration circuits to be built on the same integrated circuit (IC). Advantages and disadvantages of an active integrator system are compared and contrasted to those of a passive integrator-based system. In addition, details of the designs and results from prototype devices including an 8-channel active integrator IC fabricated in 1.2 {micro}m Orbit CMOS are presented.

  20. PheniX: A New Vision for the Hard X-ray Sky

    NASA Technical Reports Server (NTRS)

    Roques, Jean-Pierre; Jourdain, Elisabeth; Bassani, Loredana; Bazzano, Angela; Belmont, Renaud; Bird, A. J.; Caroli, E.; Chauvin, M.; Clark, D.; Gehrels, N.; Goerlach, U.; Harrisson, F.; Laurent, P.; Malzac, J.; Medina, P.; Merloni, A.; Paltani, S.; Stephen, J.; Ubertini, P.; Wilms, J.

    2012-01-01

    We are proposing a mission devoted to high energy X-ray astronomy that is based on a focusing telescope operating in the 1-200 keV energy range but optimized for the hard X-ray range. The main scientific topics concern: Physics of compact objects: The proximity of compact objects provides a unique laboratory to study matter and radiation in extreme conditions of temperature and density in strong gravitational environment. The emission of high energy photons from these objects is far from being understood. The unprecedented sensitivity in the high energy domain will allow a precise determination of the non-thermal processes at work in the vicinity of compact objects. The full 1-200 keV energy coverage will be ideal to disentangle the emission processes produced in the spacetime regions most affected by strong-gravity, as well as the physical links: disk-thermal emission-iron line-comptonisation-reflection-non-thermal emission-jets. Neutron stars-magnetic field-cyclotron lines: Time resolved spectroscopy (and polarimetry) at ultra-high sensitivity of AXP, milliseconds pulsars and magnetars will give new tools to study the role of the synchrotron processes at work in these objects. Cyclotron lines-direct measurement of magnetic filed-equation of state constraints-short bursts-giant flares could all be studied with great details. AGN: The large sensitivity improvement will provide detailed spectral properties of the high energy emission of AGN's. This will give a fresh look to the connection between accretion and jet emission and will provide a new understanding of the physical processes at work. Detection of high-redshift active nuclei in this energy range will allow to introduce an evolutionary aspect to high-energy studies of AGN, probing directly the origin of the Cosmic X-ray Background also in the non-thermal range (> 20 keV). Element formation-Supernovae: The energy resolution achievable for this mission (<0.5 keV) and a large high energy effective area are ideally suited for the 44Ti line study (68 and 78 keV). This radioactive nuclei emission will give an estimate of their quantities and speed in their environment. In addition the study of the spatial structure and spectral emission of SNR will advance our knowledge of the dynamics of supernovae explosions, of particles acceleration mechanisms and how the elements are released in the interstellar medium. Instrumental design: The progress of X-ray focusing optics techniques allows a major step in the instrumental design: the collecting area becomes independent of the detection area. This drastically reduces the instrumental background and will open a new era. The optics will be based on depth-graded multi-layer mirrors in a Wolter I configuration. To obtain a significant effective area in the hundred of keV range a focal length in the 40-50 meters range (attainable with a deployable mast) is needed. In addition such a mission could benefit from recent progress made on mirror coating. We propose to cover the 1-200 keV energy range with a single detector, a double-sided Germanium strip detector operating at 80 K. The main features will be: (a) good energy resolution (.150 keV at 5 keV and <.5 keV at 100 keV), (b) 3 dimensional event localization with a low number of electronic chains, (c) background rejection by the 3D localization, (d) polarisation capabilities in the Compton regime.

  1. PheniX: a new vision for the hard X-ray sky

    NASA Astrophysics Data System (ADS)

    Roques, Jean-Pierre; Jourdain, Elisabeth; Bassani, Loredana; Bazzano, Angela; Belmont, Renaud; Bird, A. J.; Caroli, E.; Chauvin, M.; Clark, D.; Gehrels, N.; Goerlach, U.; Harrisson, F.; Laurent, P.; Malzac, J.; Medina, P.; Merloni, A.; Paltani, S.; Stephen, J.; Ubertini, P.; Wilms, J.

    2012-10-01

    We are proposing a mission devoted to high energy X-ray astronomy that is based on a focusing telescope operating in the 1-200 keV energy range but optimized for the hard X-ray range. The main scientific topics concern: Physics of compact objects: The proximity of compact objects provides a unique laboratory to study matter and radiation in extreme conditions of temperature and density in strong gravitational environment. The emission of high energy photons from these objects is far from being understood. The unprecedented sensitivity in the high energy domain will allow a precise determination of the non-thermal processes at work in the vicinity of compact objects. The full 1-200 keV energy coverage will be ideal to disentangle the emission processes produced in the spacetime regions most affected by strong-gravity, as well as the physical links: disk-thermal emission-iron line-comptonisation-reflection-non-thermal emission-jets. Neutron stars-magnetic field-cyclotron lines: Time resolved spectroscopy (and polarimetry) at ultra-high sensitivity of AXP, milliseconds pulsars and magnetars will give new tools to study the role of the synchrotron processes at work in these objects. Cyclotron lines-direct measurement of magnetic filed-equation of state constraints-short bursts-giant flares could all be studied with great details. AGN: The large sensitivity improvement will provide detailed spectral properties of the high energy emission of AGN's. This will give a fresh look to the connection between accretion and jet emission and will provide a new understanding of the physical processes at work. Detection of high-redshift active nuclei in this energy range will allow to introduce an evolutionary aspect to high-energy studies of AGN, probing directly the origin of the Cosmic X-ray Background also in the non-thermal range (> 20 keV). Element formation-Supernovae: The energy resolution achievable for this mission (<0.5 keV) and a large high energy effective area are ideally suited for the 44Ti line study (68 and 78 keV). This radioactive nuclei emission will give an estimate of their quantities and speed in their environment. In addition the study of the spatial structure and spectral emission of SNR will advance our knowledge of the dynamics of supernovae explosions, of particles acceleration mechanisms and how the elements are released in the interstellar medium. Instrumental design: The progress of X-ray focusing optics techniques allows a major step in the instrumental design: the collecting area becomes independent of the detection area. This drastically reduces the instrumental background and will open a new era. The optics will be based on depth-graded multi-layer mirrors in a Wolter I configuration. To obtain a significant effective area in the hundred of keV range a focal length in the 40-50 meters range (attainable with a deployable mast) is needed. In addition such a mission could benefit from recent progress made on mirror coating. We propose to cover the 1-200 keV energy range with a single detector, a double-sided Germanium strip detector operating at 80 K. The main features will be: (a) good energy resolution (.150 keV at 5 keV and <.5 keV at 100 keV), (b) 3 dimensional event localization with a low number of electronic chains, (c) background rejection by the 3D localization, (d) polarisation capabilities in the Compton regime.

  2. Bilan d'erreur pour la correction atmospherique d'images hyperspectrales dans le visible et le proche infrarouge

    NASA Astrophysics Data System (ADS)

    Bergeron, Martin

    Improvements to the predictions of climatic and climatological models depend, in part, on the quality of the modelization of the atmosphere. Its precision, in turn, depends on our theoretical understanding and on our capacity to evaluate the relevant atmospheric parameters. In the past, numerous efforts have been made but very few have dealt with an exhaustive study of the error factors, hence the lack of information on their accuracy. The current trend favouring quantitative over qualitative remote sensing necessitates improvements of our knowledge of the impact of atmospheric effects on image data. This thesis contributes to this goal. To this end, we present a simple yet efficient approach to the estimation of the error budget on the prediction of the apparent at-ground bidirectional reflectance factor (BRF) from the apparent at-sensor BRF. This method is essentially a sensibility analysis. Contributions from the different parameters are decomposed according to their relative importance to the total error. Results show that, in the case of the CASI sensor for the selected sites, the relative error (percentage error on the apparent at ground BRF) is around five percent, with a significant increase to about twenty percent in both the blue and the near-infrared. Sensor calibration appears as the largest source of error, aerosol optical depth being a distant second. The method is then validated according to its accuracy (absolute validation) through the extrapolation to the ground of the apparent at-sensor BRF acquired from multi-altitude imagery. The apparent at-ground BRF obtained is then considered representative of the ground truth and thus constitutes an absolute validation of the method. Results demonstrate the validity of the method to estimate the magnitude of the error on the atmospheric correction.

  3. Machines a Comprendre la Parole: Methodologie et Bilan de Recherche (Automatic Speech Recognition: Methodology and the State of the Research)

    ERIC Educational Resources Information Center

    Haton, Jean-Pierre

    1974-01-01

    Still no decisive result has been achieved in the automatic machine recognition of sentences of a natural language. Current research concentrates on developing algorithms for syntactic and semantic analysis. It is obvious that clues from all levels of perception have to be taken into account if a long term solution is ever to be found. (Author/MSE)

  4. Analyse du transfert de chaleur et de la perte de pression pour des ecoulements supercritiques dans le reacteur CANDU-SCWR

    NASA Astrophysics Data System (ADS)

    Zoghlami, Sarra

    The supercritical water reactor is one of the six concepts of generation IV nuclear reactors that has been selected by the International Generation IV Forum (GIF). Canada has chosen to conduct advanced research on this type of reactor. For the design and safety analysis of the reactor concept, the development of numerical simulation codes is needed. The ARTHUR code is a thermal-hydraulic computer code developed by Fassi-Fehri (2008), at the Ecole Polytechnique de Montreal, to analyse the CANDU-6 reactor. The purpose of this project is to modify this numerical code so that it can be used to treat the CANDU-SCWR. To calculate the coolant thermal-hydraulics properties in the fuel channel of a CANDU-SCWR, it was assumed that the water flows under supercritical conditions is a one-phase flow. Thus within this code, we developed the conservation equations for one-phase flow. Hydraulic resistance and heat transfer at supercritical pressure are two important aspects to be considered in the modeling of a fuel channel in a nuclear reactor. To choose the accurate correlation to predict the pressure friction factor, we compared numerical calculations, using different correlations found in literature, to experimental data. We concluded that the Garimella (2008) correlation is the most consistent, to be incorporated in the ARTHUR &barbelow;SCWR code. We proved that the choice of the friction factor correlation affects slightly the distribution of thermal-hydraulic properties in the fuel channel. Under supercritical conditions, water thermal-physical properties are characterized by significant variations in the pseudo-critical region. This behavior influences the forced convection heat transfer phenomena. To choose the adequate correlation to calculate the forced convection heat transfer coefficient, we compared numerical results to experimental data, and we found that the standard deviation given by Mokry et al. (2010) correlation is the lowest. In order to model the fuel channel, some geometrical simplifications are made. In fact, we assumed that the coolant flow in the fuel channel is represented by the flow around the fuel rod, bounded by the first crown. This simplified model was used for neutronic/thermal-hydraulic coupled calculation performed with neutronic codes DRAGON/DONJON (Varin et al., 2005), to analyse the thermal-hydraulic behavior of the fuel channel in CANDU-SCWR. We observed that the coolant density at the fuel rod external surface, at the sixth fuel bundle is 3.5 times lower than the average coolant density in the fuel channel. This puts into question the assumption of considering the supercritical water flow as an homogeneous flow and the ability to build a supercritical water nuclear reactor in CANDU type, i.e., with horizontal fuel channels. In order to validate ARTHUR &barbelow;SCWR code, we compared our results to SUBCHAN code (Jiang et al., 2009), which is a thermal-hydraulic code developed to analyze CANDU-SCWR. Both codes give the same shapes and orders of magnitude for the coolant average temperature and the cladding-surface temperature. The axial distribution of the centerline temperature in the fuel rod is different. This is due to the fact that the calculations performed by the SUBCHAN code are not coupled to a neutronic code. For this reason, the thermal power distributions differs in the two codes. The variation of the mass flow influences the forced convective heat transfer, so, the distribution of thermal-physical properties in the channel. In fact, if the mass flow is reduced by 50% compared to the nominal mass flow rate, following a pump failure, the external fuel rod surface temperature exceeds the melting point, which is between 1400°C and 1455°C. This phenomenon may results in the radioactive contamination of the environment.

  5. Very high temperature measurements: Applications to nuclear reactor safety tests; Mesures des tres hautes temperatures: Applications a des essais de surete des reacteurs nucleaires

    SciTech Connect

    Parga, Clemente-Jose

    2013-09-27

    This PhD dissertation focuses on the improvement of very high temperature thermometry (1100 deg. C to 2480 deg. C), with special emphasis on the application to the field of nuclear reactor safety and severe accident research. Two main projects were undertaken to achieve this objective: - The development, testing and transposition of high-temperature fixed point (HTFP) metal-carbon eutectic cells, from metrology laboratory precision (±0.001 deg. C) to applied research with a reasonable degradation of uncertainties (±3-5 deg. C). - The corrosion study and metallurgical characterization of Type-C thermocouple (service temp. 2300 deg. C) prospective sheath material was undertaken to extend the survivability of TCs used for molten metallic/oxide corium thermometry (below 2000 deg. C)

  6. Qualification sous irradiation du crayon cea: de la conception des composants a l'irradiation d'assemblages en reacteur de puissance

    NASA Astrophysics Data System (ADS)

    Marin, Jean-François; Pillet, Claude; François, Bernard; Morize, Pierre; Petitgrand, Sylvie; Atabek, Rose-Marie; Houdaille, Brigitte

    1982-04-01

    Cet article résume les principaux résultats obtenus au CEA au cours des dix dernières années dans la conception, la qualification et la fabrication des différents éléments originaux constitutifs d'un assemblage de réacteur à eau pressurisée, notamment: l'oxyde UO 2 obtenu par le procédé du Double Cycle Inverse, la gaine en zircaloy 4 recris talllsée, la grille à ressort papillon, la structure à grilles coulissantes. Les etudes et essais hors-pile de comportement thermomécanique du crayon et thermohydraulique des composants de l'assemblage, les irradiations paramétriques de crayons jusqu'à une combustion massique élevée, la validation à partir d'examens aprés irradiation des principaux modèles introduits dans les calculs de conception, enfin l'introduction en réacteur prototype, puis en réacteur de puissance d'assemblages comportant ces différents éléments, constituent les principales étapes de ce développement.

  7. La santé des pasteurs mobiles au Sahel - Bilan de 15 années de recherches et développement.

    PubMed

    Montavon, A; Jean-Richard, V; Bechir, M; Daugla, D M; Abdoulaye, M; Bongo Naré, R N; Diguimbaye-Djaibé, C; Alfaroukh, I O; Schelling, E; Wyss, K; Tanner, M; Zinsstag, J

    2013-07-13

    Dans le Sahel, entre la Mauritanie et la Somalie incluant le Nord Kenya, environ 20 à 30 millions de personnes vivent en transhumance. Le rythme de leur migration suit l'évolution saisonnière du climat et la disponibilité des ressources, telle que l'eau, le pâturage et le sel. Malgré une exposition élevée à certaines maladies comme les zoonoses et les problèmes conditionnés liés au climat, les pasteurs mobiles sont parmi les populations quasiment exclues du système de santé, car la mise à disposition des services sociaux adaptés à un mode de vie mobile est difficile. Suivant l'objectif de recherche d'un meilleur accès aux soins des pasteurs mobiles, l'Institut Tropical et de Santé Publique Suisse, en partenariat avec plusieurs institutions dans la région, est actif au Sahel depuis 15 ans, aussi bien dans le domaine de la recherche, que celui des actions de développement. Basées sur une approche orientée vers les besoins des pasteurs mobiles pour leur développement, des recherches interdisciplinaires ont contribué à mieux comprendre la situation et les problèmes des éleveurs. En relation de la proximité entre l'homme et son bétail, une approche unissant la santé humaine et animale s'est avérée bonne et la valeur ajoutée d'une meilleure collaboration entre médecine humaine, animale et l'environnement a été démontrée. Ces approches utiles devraient être poursuivies et consolidées dans les recherches et le développement des actions futurs. PMID:23848258

  8. Le gisement de Crayssac (Tithonien inférieur, Quercy, Lot, France) : découverte de pistes de dinosaures en place et premier bilan ichnologique

    NASA Astrophysics Data System (ADS)

    Mazin, Jean-Michel; Hantzpergue, Pierre; Bassoullet, Jean-Paul; Lafaurie, Gérard; Vignaud, Patrick

    1997-11-01

    The Tithonian limestones of Crayssac (Lot, Quercy, Southwestern France) correspond to a large littoral mud-flat with sedimentation in the inter- to supratidal area where continental and marine influences alternate. Vertebrate and invertebrate ichnites are abundant, among which pterosaurian and dinosaurian prints are the most common.

  9. Evaluation de l'impact du vent et des manoeuvres hydrauliques sur le calcul des apports naturels par bilan hydrique pour un reservoir hydroelectrique

    NASA Astrophysics Data System (ADS)

    Roy, Mathieu

    Natural inflow is an important data for a water resource manager. In fact, Hydro-Quebec uses historical natural inflow data to perform a daily prediction of the amount of water that will be received in each of its hydroelectric reservoirs. This prediction allows the establishment of reservoir operating rules in order to optimize hydropower without compromising the safety of hydraulic structures. To obtain an accurate prediction, it follows that the system's input needs to be very well known. However, it can be very difficult to accurately measure the natural supply of a set of regulated reservoirs. Therefore, Hydro-Quebec uses an indirect method of calculation. This method consists of evaluating the reservoir's inflow using the water balance equation. Yet, this equation is not immune to errors and uncertainties. Water level measurement is an important input in order to compute the water balance equation. However, several sources of uncertainty including the effect of wind and hydraulic maneuvers can affect the readings of limnimetric gages. Fluctuations in water level caused by these effects carry over in the water balance equation. Consequently, natural inflow's signal may become noisy and affected by external errors. The main objective of this report is to evaluate the uncertainty caused by the effects of wind and hydraulic maneuvers on water balance equation. To this end, hydrodynamic models of reservoirs Outardes 4 and Gouin were prepared. According to the literature review, wind effects can be studied either by an unsteady state approach or by assuming steady state approach. Unsteady state simulation of wind effects on reservoir Gouin and Outardes 4 were performed by hydrodynamic modelling. Consideration of an unsteady state implies that the wind conditions vary throughout the simulation. This feature allows taking into account temporal effect of wind duration. In addition, it also allows the consideration of inertial forces such as seiches which are caused by wind conditions that can vary abruptly. Once the models were calibrated, unsteady state simulations were conducted in closed system where unsteady observed winds were the only forces included. From the simulated water levels obtained at each gage, water balance equation was calculated to determine the daily uncertainty of natural inflow in unsteady conditions. At Outardes 4, a maximum uncertainty of 20 m3/s was estimated during the month of October 2010. On the other hand, at the Gouin reservoir, a maximum uncertainty of 340m3/s was estimated during the month of July 2012. Steady state modelling is another approach to evaluate wind effect uncertainty in the water balance equation. This type of approach consists of assuming that the water level is instantly tilted under the influence of wind. Hence, temporal effect of wind duration and seiches cannot be taken into account. However, the advantage of steady state modelling is that it's better suited than unsteady state modelling to evaluate wind uncertainty in real time. Two steady state modelling methods were experimented to estimate water level difference between gages in function of wind characteristics: hydrodynamic modelling and non-parametric regression. It has been found that non-parametric models are more efficient when it comes to estimate water level differences between gages. However, the use of hydrodynamic model demonstrated that to study wind uncertainty in the water balance equation, it is preferable to assess wind responses individually at each gage instead of using water level differences. Finally, a combination method of water level gages observations has been developed. It allows reducing wind/hydraulic maneuvers impacts on the water balance equation. This method, which is applicable in real time, consists of assigning a variable weight at each limnimetric gages. In other words, the weights automatically adjust in order to minimize steady state modeled wind responses. The estimation of hydraulic maneuvers has also been included in the gage weight adjustment. It has been found that this new combination method allows the correction of noisy natural inflow signal under wind and hydraulic maneuvers effects. However, some fluctuations persist which reflects the complexity of correcting these effects on a real time based daily water balance equation. (Abstract shortened by UMI.).

  10. Source parameters from identified hadron spectra and HBT radii for AuAu collisions at S=200 GeV in PHENIX

    NASA Astrophysics Data System (ADS)

    Burward-Hoy, J. M.; PHENIX Collaboration

    2003-03-01

    The characteristics of the particle emitting source are deduced from low pT identified hadron spectra ((mT - m0) < 1GeV) and HBT radii using a hydrodynamic interpretation. From the most peripheral to the most central data, the single particle spectra are fit simultaneously for all π±, K±, and p¯/p using the parameterization in [1] and assuming a linear transverse flow profile. Within the systematic uncertainties, the expansion parameters Tfo and βT, respectively decrease and increase with the number of participants, saturating for both at mid-centrality. The expansion using analytic calculations of the kT dependence of HBT radii in [2] is fit to the data but not χ2 minimum is found.

  11. Une alternative au cobalt pour la synthese de nanotubes de carbone monoparoi par plasma inductif thermique

    NASA Astrophysics Data System (ADS)

    Carrier, Jean-Francois

    synthese de C-SWNT. Le produit final est par la suite recolte sur des filtres metalliques poreux, une fois le systeme mis a l'arret. Dans un premier temps, une analyse thermodynamique, calculee avec le logiciel Fact-Sage, a permis de mettre en lumiere l'etat des differentes produits et reactifs, tout au long de leur passage dans le systeme. Elle a permis de reveler la similitude de composition de la phase liquide du melange catalytique ternaire de base, avec celui du melange binaire, avec nickel et oxyde d'yttrium. Par la suite, une analyse du bilan d'energie, a l'aide d'un systeme d'acquisition de donnees, a permis de determiner que les conditions operatoires des cinq echantillons mis a l'essai etaient similaires. Au total, le produit final a ete caracterise a l'aide de six methodes de caracterisations differentes : l'analyse thermogravimetrique, la diffraction de rayons X, la microscopie electronique a balayage a haute resolution (HRSEM), la microscopie electronique a transmission (MET), la spectroscopie RAMAN, ainsi que la mesure de la surface specifique (BET). Les resultats de ces analyses ont permis de constater, de facon coherente, que le melange a base de molybdene etait celui qui produisait la moins bonne qualite de produit. Ensuite, en ordre croissant, s'en suivait du melange a base de MnO2 et de ZrO2. Le melange de reference, a base de cobalt, est au deuxieme rang en matiere de qualite. La palme revient au melange binaire, dont la proportion est double en nickel. Les resultats de ce travail de recherche permettent d'affirmer qu'il existe une alternative performante au cobalt pour effectuer la synthese de nanotubes de carbone monoparoi, par plasma inductif thermique. Cette alternative est l'utilisation d'un melange catalytique binaire a base de nickel et d'oxyde d'yttrium. Il est suggere que les performances plus faibles des recettes alternatives, moins performantes, pourraient etre expliquees par le profil thermique fixe du reacteur. Ceci pourrait favoriser

  12. School Exchanges Present and Future. Proceedings of the Symposium (Barcelona, Spain, March 13-17, 1991) = Bilan et Perspectives des Echanges Scolaires. Actes du colloque (Barcelone, Spain, 13-17 mar 1991).

    ERIC Educational Resources Information Center

    Commission of the European Communities, Brussels (Belgium).

    This document sets forth the proceedings of a symposium on the subject of international educational exchanges. Part 1 of the document includes introductory remarks by Catalonia's minister of education and David Coyne of the European Commission's task force on human relations. Part 2 offers specific introductory material on political, theoretical,…

  13. Accessing the Sign and Magnitude of {delta}g via high P{sub T}, A{sub LL}{sup {pi}{sup {+-}}} in Polarized p+p Collisions at PHENIX

    SciTech Connect

    Morreale, Astrid

    2009-08-04

    The double-helicity asymmetries (A{sub LL}) of {pi}{sup +} and {pi}{sup -} production in polarized proton proton collisions are specially interesting probes of the gluon's polarization. Relative differences among A{sub LL} of positive, neutral, and negative pions at high transverse momentum are sensitive to the sign and of magnitude of {delta}g. Quark-gluon (qg) scattering starts to dominate mid-rapidity pion production at RHIC at transverse momenta above 5 GeV/c. In this kinematic region the favored and unfavored fragmentation functions for each pion species are sensitive to both the gluon and the quark distributions, with different flavors having different weights for each pion species. Charged pion asymmetry measurements will be an important component in future global analyses, aiming to determine the gluon polarization over a wide range in x, the most recent results using polarized longitudinal data at {radical}(s) = 200 GeV, are presented.

  14. Traitement par plasma thermique d'une liqueur caustique pour la destruction des cyanures

    NASA Astrophysics Data System (ADS)

    Fortin, Luc

    L'objectif principal de cette recherche est d'evaluer la possibilite de traiter le lixiviat de brasques usees produit par le procede LCL&L (Lixiviation a bas caustique et chaulage) par contact direct avec un jet de plasma thermique. L'utilisation d'un chalumeau au plasma permet d'eliminer les problemes de reaction avec les produits de combustion relies a l'utilisation de chalumeaux conventionnels (e.g. carbonatation du NaOH en Na2CO3). Le fait de se servir de ce type de chalumeau en mode submerge pour le traitement d'une solution liquide constitue l'originalite du projet. Les essais effectues dans le cadre de ce travail experimental sont realises a l'echelle banc d'essai dans un premier temps. Ils visent a determiner le taux de decomposition des cyanures contenus dans le lixiviat sous des conditions de plasma thermique en fonction de differents parametres et a faire la mise a l'echelle d'un reacteur pilote. La puissance electrique fournie au chalumeau, la temperature et la pression d'operation, le point d'addition d'eau, le volume de lixiviat traite et l'addition de peroxyde d'hydrogene (H2O2) comme co-reactif ont tous un impact sur le taux de destruction des cyanures trouve. Sous toutes les conditions etudiees, le reacteur plasma offre un taux de destruction plus rapide qu'un reacteur agite sous pression pour une meme concentration en cyanures. Ainsi, la comparaison de la constante cinetique obtenue pour le reacteur agite avec une constante similaire pour le reacteur plasma (pente du graphique -ln(C/C0) en fonction du temps) est de 0.04x10-3 s-1 vs 0.59x10-3 s-1 a 100°C et de 1.85x10-3 s-1' vs 3x10 -3 s-1s a 170°C. Ces resultats confirment que le plasma joue un role important sur la decomposition des cyanures et qu'il contribue a en augmenter le taux de destruction. Suite aux connaissances acquises sur le banc d'essai, un reacteur pilote est concu. Un chalumeau au plasma d'une puissance de 60 kW-150 kW et fonctionnant avec l'air comme gaz plasmagene y est

  15. Images in Transition. Proceedings of the Annual Society for the Advancement of Gifted Education (SAGE) Conference (3rd, Calgary, Alberta, Canada, September 24-26, 1992) and the Canadian Symposium on Gifted Education (6th).

    ERIC Educational Resources Information Center

    Calgary Univ. (Alberta). Centre for Gifted Education.

    This document presents the conference proceedings of the primary stakeholders in gifted education in Alberta (Canada): "Activities in Math for the Gifted Student" (Ballheim); "The Self Awareness Growth Experiences Approach" (Balogun); "Computer Simulations: An Integrating Tool" (Bilan); "The Portrayal of Gifted Children in Children's Books"…

  16. Langues et education en Afrique noire (Language and Education in Black Africa).

    ERIC Educational Resources Information Center

    Bearth, Thomas, Ed.

    1997-01-01

    Papers on language and education in Black Africa include: "L'enseignement des et en langues nationales au Zaire. Bilan d'une experience" ("The Teaching of and in National Languages in Zaire. Results of an Experiment") (Andre Mbula Paluku); "Langues et education au Rwanda" ("Languages and Education in Rwanda") (Melchior Kanyamibwa); "Un modele…

  17. Melanges pedagogiques 1989 (Pedagogical Mixtures 1989).

    ERIC Educational Resources Information Center

    Centre de Recherches et d'Applications Pedagogiques en Langues, Nancy (France).

    Seven articles, presented in English or French, address aspects of second language instruction. (Articles written in English have an abstract in French and articles in French have an accompanying English abstract.) They include the following: "Bilan d'une experience de sensibilisation interculturelle pour enseignants" (Report of an Experiment in…

  18. 40 CFR 81.114 - Augusta (Georgia)-Aiken (South Carolina) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.114 Augusta (Georgia)-Aiken (South..., Orangeburg County. Note: For identification purposes, the Columbus (Georgia)-Phenix City (Alabama)...

  19. 40 CFR 81.114 - Augusta (Georgia)-Aiken (South Carolina) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.114 Augusta (Georgia)-Aiken (South..., Orangeburg County. Note: For identification purposes, the Columbus (Georgia)-Phenix City (Alabama)...

  20. 40 CFR 81.114 - Augusta (Georgia)-Aiken (South Carolina) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.114 Augusta (Georgia)-Aiken (South..., Orangeburg County. Note: For identification purposes, the Columbus (Georgia)-Phenix City (Alabama)...

  1. 40 CFR 81.114 - Augusta (Georgia)-Aiken (South Carolina) Interstate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PLANNING PURPOSES Designation of Air Quality Control Regions § 81.114 Augusta (Georgia)-Aiken (South..., Orangeburg County. Note: For identification purposes, the Columbus (Georgia)-Phenix City (Alabama)...

  2. Searching for Meaning in Science Education.

    ERIC Educational Resources Information Center

    Berkheimer, Glenn D.; McLeod, Richard J.

    1979-01-01

    Discusses how science programs K-16 should be developed to meet the modern objectives of science education and restore its true meaning. The theories of Phenix and Ausubel are included in this discussion. (HM)

  3. Progress report for 1995-1996

    SciTech Connect

    He, X.; Lee, W.; Petitt, G.A.; Zhang, Z.

    1996-06-01

    We have been involved in several projects during the present contract period. These include completion of our work on the RD94 test runs performed at the Alternating Gradient Synchrotron (AGS) at Brookhaven; the PhD. thesis project of Ziyang Zhang which was completed during the year, was based on this work. We have continued our Monte Carlo simulation work. This includes studies of trigger rates in the muon identifier of the PHENIX experiment for RHIC. In addition to this we have continued our involvement in developing upgrades for the PISA and PISORP simulation codes for PHENIX. We are most heavily involved in work on the E866 experiment at Fermilab. GSU has taken on the task of modifying the trigger system for this experiment. A third level trigger based on digital signal processors (DSP`s) mounted on a VME bus is being developed for this. We feel that this project will be a valuable training ground for our work on PHENIX. We expect that the expertise that we acquire in development of the Level-3 trigger system for E866 will enable us to contribute significantly to development of the PHENIX trigger and online event processing system, especially for the PHENIX Muon Arms. These projects are discussed in detail in the following pages.

  4. Transverse Spin at RHIC

    NASA Astrophysics Data System (ADS)

    Wang, Xiaorong

    2016-03-01

    In recent years, there has been exciting development in both experimental and theoretical studies of transverse spin asymmetries in polarized p+p and and DIS collisions. As a unique polarized proton-proton collider, Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) provides a unique opportunity to investigate the novel physics mechanisms that cause the large single spin asymmetry at the forward rapidity. Both PHENIX and STAR experiments have been studying the transverse spin asymmetries with a variety of final state particles in different kinematic regimes since 2006. Especially, recent theoretical development on scattering a polarized probe on the saturated nuclear may provide a unique way to probe the gluon and quark TMDs. RHIC successfully ran polarized p+Au collisions in 2015. We will expect to have new results from polarized d+Au to compare with existing results from p+p collision to extend our understanding of QCD. Further more, In 2015, PHENIX installed MPC-ex calorimeter at very forward region to measure direct photon AN and STAR installed Roman Pots to study the diffractive events in polarized p+p and p+Au collisions. The recent results on transverse polarized p+p and p+Au collisions from both PHENIX and STAR experiments will be presented in this talk. I will also briefly discuss the possibility for the transverse Spin program at future experiments sPHENIX and forward sPHENIX at RHIC. Supported by US Department of Energy and RIKEN Brookhaven Research Center.

  5. Métastases choroïdiennes bilatérales d'origine inconnue: à propos d'un cas

    PubMed Central

    Alami, Fadoua; Ahmiti, Imane; Sebbah, Ramzia; El Yadari, Mohamed; Ouazzani, Bahia; Berraho, Amina

    2014-01-01

    Nous rapportons l'observation d'un patient de 52 ans sans antécédents pathologiques notables, qui présente depuis 10 mois un flou visuel de l’œil droit et des métamorphopsies au niveau de l’œil gauche, suivies de troubles visuels très gênants et baisse importante de l'acuité visuel du coté droit, motivant une consultation. Le bilan oculaire a mis en évidence des métastases choroïdiennes bilatérales; le bilan d'extension révèle des métastases multifocales dont le site primitif est inconnu, notre patient a décédé durant les jours d'explorations. PMID:25932063

  6. Hemangiopericytome nasosinusien: difficulté diagnostique et thérapeutique

    PubMed Central

    Roubal, Mohamed; Horra, Aziza; Bajja, Mohamed Yahya; El Ettar, Hicham; Abada, Reda; Rouadi, Sami; Mahtar, Mohamed; Janah, Abdelaziz; Kadiri, Fatmi

    2014-01-01

    L'hemangiopericytome est une tumeur vasculaire rare, développée à partir des pericytes des capillaires, dans sa localisation nasosinusienne elle ne représente que 0 .5% de l'ensemble des tumeurs de cette région. Une jeune de 35ans a présenté une tumeur rapidement évolutive au cours du bilan diagnostic, l’étude anatomopathologique a conclu à un hémangiopericytome. PMID:26113887

  7. Vénus version Express

    NASA Astrophysics Data System (ADS)

    Nazé, Yaël

    2010-04-01

    En avril 2006, Vénus a "capturé" un objet d'un genre particulier: une sonde robotique européenne, baptisée Venus Express et destinée à scruter cette planète sous tous les angles. Bilan de cette mission 5 ans après le lancement de la sonde, dont 4 d'observations vénusiennes.

  8. Mixed signal custom integrated circuit development for physics instrumentation

    SciTech Connect

    Britton, C.L. Jr.; Bryan, W.L.; Emery, M.S.

    1998-10-01

    The Monolithic Systems Development Group at the Oak Ridge National Laboratory has been greatly involved in custom mixed-mode integrated circuit development for the PHENIX detector at the Relativistic Heavy Ion collider (RHIC) at Brookhaven National Laboratory and position-sensitive germanium spectrometer front-ends for the Naval Research Laboratory (NRL). This paper will outline the work done for both PHENIX and the Naval Research Laboratory in the area of full-custom, mixed-signal CMOS integrated electronics. This paper presents the architectures chosen for the various PHENIX detectors which include position-sensitive silicon, capacitive pixel, and phototube detectors, and performance results for the subsystems as well as a system description of the NRL germanium strip system and its performance. The performance of the custom preamplifiers, discriminators, analog memories, analog-digital converters, and control circuitry for all systems will be presented.

  9. Measurements of Direct Photon Double Longitudinal Spin Asymmetry at Large Rapidity

    NASA Astrophysics Data System (ADS)

    Bourgeois, Paul

    2008-10-01

    Direct photon production in polarized p-p collisions is expected to be the cleanest measurement of the gluon polarization. Current measurements using inclusive pion production, in the PHENIX central arms, suggest a small contribution from the gluons to the proton spin in the presently accessible Bjorken x range xBj>10-2. The addition of the Nose Cone Calorimeter (NCC) in the large rapidity 1<η<3 will allow PHENIX to access xBj˜10-3. In this talk I will present the prospects of measuring direct photon double longitudinal spin asymmetry ALL employing the NCC.

  10. 40 CFR Appendix A to Part 81 - Air Quality Control Regions (AQCR's)

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Pt. 81, App. A Appendix A to Part 81—Air Quality Control Regions (AQCR's) AQCR No. Alabama: Alabama and Tombigbee Rivers 1 Columbus-Phenix City 2 East Alabama 3 Metropolitan Birmingham 4 Mobile-Pensacola-Panama City-Southern Mississippi (Fla.,...

  11. 40 CFR Appendix A to Part 81 - Air Quality Control Regions (AQCR's)

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Pt. 81, App. A Appendix A to Part 81—Air Quality Control Regions (AQCR's) AQCR No. Alabama: Alabama and Tombigbee Rivers 1 Columbus-Phenix City 2 East Alabama 3 Metropolitan Birmingham 4 Mobile-Pensacola-Panama City-Southern Mississippi (Fla.,...

  12. 40 CFR Appendix A to Part 81 - Air Quality Control Regions (AQCR's)

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Pt. 81, App. A Appendix A to Part 81—Air Quality Control Regions (AQCR's) AQCR No. Alabama: Alabama and Tombigbee Rivers 1 Columbus-Phenix City 2 East Alabama 3 Metropolitan Birmingham 4 Mobile-Pensacola-Panama City-Southern Mississippi (Fla.,...

  13. 40 CFR Appendix A to Part 81 - Air Quality Control Regions (AQCR's)

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Pt. 81, App. A Appendix A to Part 81—Air Quality Control Regions (AQCR's) AQCR No. Alabama: Alabama and Tombigbee Rivers 1 Columbus-Phenix City 2 East Alabama 3 Metropolitan Birmingham 4 Mobile-Pensacola-Panama City-Southern Mississippi (Fla.,...

  14. POSSIBLE ORIGIN OF RHIC R OUT / R SID HBT RESULTS.

    SciTech Connect

    PADULA,S.

    2002-07-18

    The effects of opacity of the nuclei together with a blackbody type of emission along the system history are considered as a means to explain the ratio R{sub out}/R{sub sid} observed by STAR and PHENIX collaborations at RHIC. Within our model, no flow is required to explain the data trend of this ratio for large surface emissivities.

  15. POSSIBLE ORIGIN OF RHIC R OUT/R SID HBT RESULTS.

    SciTech Connect

    PADULA,S.S.

    2002-07-18

    The effects of opacity of the nuclei together with a blackbody type of emission along the system history are considered as a means to explain the ratio R{sub out}/R{sub sid} observed by STAR and PHENIX collaborations at RHIC. Within our model, no flow is required to explain the data trend of this ratio for large surface emissivities.

  16. Evolution of heavy quark distribution function on quark-gluon plasma: Using the Iterative Laplace Transform Method

    NASA Astrophysics Data System (ADS)

    Mehrabi Pari, Sharareh; Javidan, Kurosh; Taghavi Shahri, Fatemeh

    2016-05-01

    The "Laplace Transform Method" is used to solve the Fokker-Plank equation for finding the time evolution of the heavy quarks distribution functions such as charm and bottom in quark gluon plasma. These solutions will lead us to calculation of nuclear suppression factor RAA. The results have good agreement with available experiment data from the PHENIX collaboration.

  17. Technology for Libraries.

    ERIC Educational Resources Information Center

    Phenix, Katharine; And Others

    1990-01-01

    Five articles discuss information technology in libraries: (1) "Software for Libraries" (Katharine Phenix); (2) "Online Update: European Online Services" (Martin Kesselman); (3) "Connect Time: Online Pricing Breakthroughs" (Barbara Quint); (4) "Microcomputing: Micro Biology Computer Viruses" (James LaRue); and (5) "Using Technology: Spreadsheet…

  18. Writing Instruction.

    ERIC Educational Resources Information Center

    Richgels, Donald J.

    2003-01-01

    Discusses four recent writing books: "Teaching to Write: Theory Into Practice" (Jane B. Hughey and Charlotte Slack); "The Writing Teacher's Handbook" (Jo Phenix); "Scaffolding Young Writers: A Writers' Workshop Approach" (Linda J. Dorn and Carla Soffos); and "Directing the Writing Workshop: An Elementary Teacher's Handbook" (Jean Wallace Gillet…

  19. Effective diagnosis of genetic disease by computational phenotype analysis of the disease-associated genome

    PubMed Central

    Zemojtel, Tomasz; Köhler, Sebastian; Mackenroth, Luisa; Jäger, Marten; Hecht, Jochen; Krawitz, Peter; Graul-Neumann, Luitgard; Doelken, Sandra; Ehmke, Nadja; Spielmann, Malte; Øien, Nancy Christine; Schweiger, Michal R.; Krüger, Ulrike; Frommer, Götz; Fischer, Björn; Kornak, Uwe; Flöttmann, Ricarda; Ardeshirdavani, Amin; Moreau, Yves; Lewis, Suzanna E.; Haendel, Melissa; Smedley, Damian; Horn, Denise; Mundlos, Stefan; Robinson, Peter N.

    2015-01-01

    Less than half of patients with suspected genetic disease receive a molecular diagnosis. We have therefore integrated next-generation sequencing (NGS), bioinformatics, and clinical data into an effective diagnostic workflow. We used variants in the 2741 established Mendelian disease genes [the disease-associated genome (DAG)] to develop a targeted enrichment DAG panel (7.1 Mb), which achieves a coverage of 20-fold or better for 98% of bases. Furthermore, we established a computational method [Phenotypic Interpretation of eXomes (PhenIX)] that evaluated and ranked variants based on pathogenicity and semantic similarity of patients’ phenotype described by Human Phenotype Ontology (HPO) terms to those of 3991 Mendelian diseases. In computer simulations, ranking genes based on the variant score put the true gene in first place less than 5% of the time; PhenIX placed the correct gene in first place more than 86% of the time. In a retrospective test of PhenIX on 52 patients with previously identified mutations and known diagnoses, the correct gene achieved a mean rank of 2.1. In a prospective study on 40 individuals without a diagnosis, PhenIX analysis enabled a diagnosis in 11 cases (28%, at a mean rank of 2.4). Thus, the NGS of the DAG followed by phenotype-driven bioinformatic analysis allows quick and effective differential diagnostics in medical genetics. PMID:25186178

  20. Sambamurti Lecture: The Whole Story Behind a Half, The Quest to Understand the Proton's Spin

    SciTech Connect

    Christine Aidala

    2008-07-22

    Aidala, a member of RHIC's PHENIX experiment since the first polarized proton run, has made measurements probing both the transverse as well as the longitudinal spin structure of the proton, helping to elucidate the structure of one of the fundamental building blocks of ordinary matter.

  1. National Outlook: An Espistemological Approach to Educational Philosophy

    ERIC Educational Resources Information Center

    Anthony, Taiwanna D.; Kritsonis, William Allan

    2006-01-01

    Since the beginning of public education educational practices have been vitally important. Leaders need to become aware of the necessity for the most effective possible educational system if they are to meet the demands of life in a highly precarious and rapidly changing world. According to Phenix (1986) humankind must see how important knowledge…

  2. National Agenda: Ten Suggestions to Incorporate the Realms of Meaning as a Decision Making Process to Improve Student Achievement in the United States

    ERIC Educational Resources Information Center

    Jacobs, Karen Dupre; Kritsonis, William Allan

    2006-01-01

    The "Realms of Meaning" by Philip H. Phenix emphasizes several key ideas that schools should address in their curriculum planning and implementation. Ethical educators would benefit from this text because it is a timeless work of art that speaks to past and current educational issues. With the federal 2001 No Child Left Behind mandate to schools…

  3. Syndrome CHARGE avec tétralogie de Fallot: à propos d'un cas

    PubMed Central

    Wahid, Fouad Amal; Seghrouchni, Aniss; Hatim, Abdedaim Elghadbane; Atmani, Noureddine; Abdou, Abdessamad; Bouzerda, Abdelmajid; Mouram, Sahar; Drissi, Mohamed; Houssa, Mahdi Ait; Boulahya, Abdelatif

    2014-01-01

    Le syndrome CHARGE est caractérisé par un large polymorphisme clinique associant colobome, anomalies cardiaques, atrésie de choanes, retard staturo-pondéral et de développement, anomalies génitales, anomalies des oreilles ainsi que d'autres anomalies. Les auteurs rapportent le cas d'un syndrome CHARGE diagnostiqué lors du bilan d'une tétralogie de Fallot chez un nourrisson de 22 mois. Les différentes manifestations cliniques de ce syndrome sont rapportées ainsi que les critères diagnostiques. PMID:25883746

  4. Cardiomyopathie hypertrophique néonatale de diagnostic étiologique difficile

    PubMed Central

    Hammami, Rania; Ouali, Sana; Naffeti, Ilyes; Hammas, Sami; Kacem, Slim; Gribaa, Rim; Remedi, Fahmi; Boughzela, Essia

    2011-01-01

    La cardiomyopathie hypertrophique néonatale est une entité rare, hétérogène regroupant plusieurs formes cliniques et donc de diagnostic étiologique difficile. Nous rapportons l'observation d'un nouveau né issu d'une grossesse gémellaire, ayant présenté à la naissance un tableau d'insuffisance cardiaque, l’échocardiographie avait conclut à une cardiomyopathie hypertrophique obstructive. Le bilan étiologique était négatif notamment une mère non diabétique. L’évolution était favorable avec régression de l'hypertrophie 2 semaines après la naissance. L’étiologie finalement suggérée était une cardiomyopathie secondaire à l'injection anténatale de corticoïdes dans le but d'accélérer la maturation pulmonaire. L’établissement par les sociétés savantes d'un consensus de bilan étiologique minimal standard selon une chronologie bien déterminée serait d'un grand apport dans la prise en charge de cette anomalie. PMID:22384306

  5. Central collisions of heavy ions. Progress report, October 1, 1992--August 31, 1993

    SciTech Connect

    Fung, Sun-yiu

    1993-08-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1992 to August 31, 1993. During this period, our AGS E802/E859/E866 experiments focused on strange particle production, and the fluctuation phenomenon associated with correlation studies in nucleus nucleus central collisions. We have designed and are implementing a new detector to replace the Target Multiplicity Array (TMA) for the E866 runs. As part of the PHENIX collaboration, we contributed to the Conceptual Design Report (CDR), and worked on a RHIC silicon microstrip detector R&D project, the central core of the multiplicity-vertex detector (MVD). In the coming year, we planned to complete the New Multiplicity Array (NMA) detector for the gold projectile E866 experiment, and analyzed the data associated with this new system. We are continuing our efforts in the preparation of the PHENIX detector system.

  6. Intercomparison of flow measurements at RHIC experiments

    NASA Astrophysics Data System (ADS)

    Vdovkina, S. S.

    2016-02-01

    The measurements of collective flow effects in particle production have provided invaluable insights on the transport properties of the strongly interacting matter produced in relativistic heavy-ion collisions at RHIC. The detailed comparison of flow measurements from PHENIX and STAR experiments at RHIC have been presented and discussed. For elliptic flow v2 of charged hadrons from Au+Au collisions at 200 GeV the two data sets overlap excellently for centralities > 20%, they increasingly diverge at small centralities, with a 30% difference between STAR an PHENIX in the 0-5% centrality bin. For v3 values the agreement is much worse and coming from the difference in STAR measurements. More investigations are needed to understand the reason for such differences.

  7. INELASTIC DIFFRACTION AT HEAVY ION COLLIDERS.

    SciTech Connect

    WHITE, S.

    2005-01-01

    The heavy ion physics approach to global event characterization has led us to instrument the forward region in the PHENIX experiment at RHIC. In heavy ion collisions this coverage yields a measurement of the ''spectator'' energy and its distribution about the beam direction. This energy flow is the basis of event-by-event determination of the centrality and reaction plane which are key to analyzing particle production in heavy ion collisions. These same tools have also enabled a unique set of measurements on inelastic diffraction with proton, deuteron and gold ion beams in the PHENIX experiment. We present first new results on this topic and discuss briefly the opportunity for diffractive physics with Heavy Ion beams at the LHC.

  8. Measurement of parity-violating spin asymmetries in W± production at midrapidity in longitudinally polarized p +p collisions

    NASA Astrophysics Data System (ADS)

    Adare, A.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Alexander, J.; Alfred, M.; Aoki, K.; Apadula, N.; Aramaki, Y.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Bai, X.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Bassalleck, B.; Bathe, S.; Baublis, V.; Baumann, C.; Baumgart, S.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belmont, R.; Berdnikov, A.; Berdnikov, Y.; Black, D.; Blau, D. S.; Bok, J. S.; Boyle, K.; Brooks, M. L.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Butsyk, S.; Campbell, S.; Chen, C.-H.; Chi, C. Y.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choi, S.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cole, B. A.; Connors, M.; Cronin, N.; Crossette, N.; Csanád, M.; Csörgő, T.; Dairaku, S.; Danley, T. W.; Datta, A.; Daugherity, M. S.; David, G.; Deblasio, K.; Dehmelt, K.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Dietzsch, O.; Ding, L.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Durham, J. M.; Durum, A.; Edwards, S.; Efremenko, Y. V.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fukao, Y.; Fusayasu, T.; Gainey, K.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, A.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, X.; Gonin, M.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guragain, H.; Hachiya, T.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamilton, H. F.; Han, S. Y.; Hanks, J.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Hayano, R.; Hayashi, S.; He, X.; Hemmick, T. K.; Hester, T.; Hill, J. C.; Hollis, R. S.; Homma, K.; Hong, B.; Horaguchi, T.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imazu, Y.; Imrek, J.; Inaba, M.; Iordanova, A.; Isenhower, D.; Isinhue, A.; Ivanishchev, D.; Jacak, B. V.; Javani, M.; Jeon, S. J.; Jezghani, M.; Jia, J.; Jiang, X.; Johnson, B. M.; Joo, E.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kamin, J.; Kanda, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kapustinsky, J.; Karatsu, K.; Kawall, D.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khandai, P. K.; Khanzadeev, A.; Kihara, K.; Kijima, K. M.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.-J.; Kim, G. W.; Kim, H.-J.; Kim, M.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kistenev, E.; Kitamura, R.; Klatsky, J.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kofarago, M.; Komkov, B.; Koster, J.; Kotchetkov, D.; Kotov, D.; Krizek, F.; Kurita, K.; Kurosawa, M.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Lebedev, A.; Lee, D. M.; Lee, G. H.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, S.; Lee, S. H.; Lee, S. R.; Leitch, M. J.; Leite, M. A. L.; Leitgab, M.; Lewis, B.; Li, X.; Lim, S. H.; Linden Levy, L. A.; Liu, M. X.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Manion, A.; Manko, V. I.; Mannel, E.; Maruyama, T.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Midori, J.; Mignerey, A. C.; Miller, A. J.; Milov, A.; Mishra, D. K.; Mitchell, J. T.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Mohapatra, S.; Montuenga, P.; Moon, H. J.; Moon, T.; Morrison, D. P.; Moskowitz, M.; Moukhanova, T. V.; Murakami, T.; Murata, J.; Mwai, A.; Nagae, T.; Nagamiya, S.; Nagashima, K.; Nagle, J. L.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nattrass, C.; Netrakanti, P. K.; Nihashi, M.; Niida, T.; Nishimura, S.; Nouicer, R.; Novák, T.; Novitzky, N.; Nukariya, A.; Nyanin, A. S.; Obayashi, H.; O'Brien, E.; Ogilvie, C. A.; Oide, H.; Okada, K.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ozaki, H.; Ozawa, K.; Pak, R.; Pantuev, V.; Papavassiliou, V.; Park, I. H.; Park, J. S.; Park, S.; Park, S. K.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Perepelitsa, D. V.; Perera, G. D. N.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Purschke, M. L.; Qu, H.; Rak, J.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Riveli, N.; Roach, D.; Roche, G.; Rolnick, S. D.; Rosati, M.; Rowan, Z.; Rubin, J. G.; Ryu, M. S.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sako, H.; Samsonov, V.; Sarsour, M.; Sato, S.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Sekiguchi, Y.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shaver, A.; Shein, I.; Shibata, T.-A.; Shigaki, K.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skolnik, M.; Slunečka, M.; Snowball, M.; Solano, S.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Stankus, P. W.; Steinberg, P.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Stone, M. R.; Sugitate, T.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tennant, E.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Tomášek, M.; Torii, H.; Towell, C. L.; Towell, M.; Towell, R.; Towell, R. S.; Tserruya, I.; Tsuchimoto, Y.; Vale, C.; van Hecke, H. W.; Vargyas, M.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Virius, M.; Voas, B.; Vrba, V.; Vznuzdaev, E.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Whitaker, S.; White, A. S.; White, S. N.; Winter, D.; Wolin, S.; Woody, C. L.; Wysocki, M.; Xia, B.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yanovich, A.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoon, I.; You, Z.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zelenski, A.; Zhou, S.; Zou, L.; Phenix Collaboration

    2016-03-01

    We present midrapidity measurements from the PHENIX experiment of large parity-violating single-spin asymmetries of high transverse momentum electrons and positrons from W±/Z decays, produced in longitudinally polarized p +p collisions at center of mass energies of √{s }=500 and 510 GeV. These asymmetries allow direct access to the antiquark polarized parton distribution functions due to the parity-violating nature of the W -boson coupling to quarks and antiquarks. The results presented are based on data collected in 2011, 2012, and 2013 with an integrated luminosity of 240 pb-1 , which exceeds previous PHENIX published results by a factor of more than 27. These high Q2 data probe the parton structure of the proton at W mass scale and provide an important addition to our understanding of the antiquark parton helicity distribution functions at an intermediate Bjorken x value of roughly MW/√{s }=0.16 .

  9. Centrality dependence of charm production from a measurement of single electrons in Au+Au collisions at sqrt[s(NN)]=200 GeV.

    PubMed

    Adler, S S; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Alexander, J; Amirikas, R; Aphecetche, L; Aronson, S H; Averbeck, R; Awes, T C; Azmoun, R; Babintsev, V; Baldisseri, A; Barish, K N; Barnes, P D; Bassalleck, B; Bathe, S; Batsouli, S; Baublis, V; Bazilevsky, A; Belikov, S; Berdnikov, Y; Bhagavatula, S; Boissevain, J G; Borel, H; Borenstein, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J M; Butsyk, S; Camard, X; Chai, J-S; Chand, P; Chang, W C; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J; Choudhury, R K; Chujo, T; Cianciolo, V; Cobigo, Y; Cole, B A; Constantin, P; d'Enterria, D G; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Devismes, A; Dietzsch, O; Drapier, O; Drees, A; du Rietz, R; Durum, A; Dutta, D; Efremenko, Y V; El Chenawi, K; Enokizono, A; En'yo, H; Esumi, S; Ewell, L; Fields, D E; Fleuret, F; Fokin, S L; Fox, B D; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fung, S-Y; Garpman, S; Ghosh, T K; Glenn, A; Gogiberidze, G; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grosse Perdekamp, M; Guryn, W; Gustafsson, H-A; Hachiya, T; Haggerty, J S; Hamagaki, H; Hansen, A G; Hartouni, E P; Harvey, M; Hayano, R; Hayashi, N; He, X; Heffner, M; Hemmick, T K; Heuser, J M; Hibino, M; Hill, J C; Holzmann, W; Homma, K; Hong, B; Hoover, A; Ichihara, T; Ikonnikov, V V; Imai, K; Isenhower, D; Ishihara, M; Issah, M; Isupov, A; Jacak, B V; Jang, W Y; Jeong, Y; Jia, J; Jinnouchi, O; Johnson, B M; Johnson, S C; Joo, K S; Jouan, D; Kametani, S; Kamihara, N; Kang, J H; Kapoor, S S; Katou, K; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D H; Kim, D J; Kim, D W; Kim, E; Kim, G-B; Kim, H J; Kistenev, E; Kiyomichi, A; Kiyoyama, K; Klein-Boesing, C; Kobayashi, H; Kochenda, L; Kochetkov, V; Koehler, D; Kohama, T; Kopytine, M; Kotchetkov, D; Kozlov, A; Kroon, P J; Kuberg, C H; Kurita, K; Kuroki, Y; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Ladygin, V; Lajoie, J G; Lebedev, A; Leckey, S; Lee, D M; Lee, S; Leitch, M J; Li, X H; Lim, H; Litvinenko, A; Liu, M X; Liu, Y; Maguire, C F; Makdisi, Y I; Malakhov, A; Manko, V I; Mao, Y; Martinez, G; Marx, M D; Masui, H; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Messer, F; Miake, Y; Milan, J; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Mukhopadhyay, D; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagle, J L; Nakamura, T; Nandi, B K; Nara, M; Newby, J; Nilsson, P; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Okada, K; Ono, M; Onuchin, V; Oskarsson, A; Otterlund, I; Oyama, K; Ozawa, K; Pal, D; Palounek, A P T; Pantuev, V S; Papavassiliou, V; Park, J; Parmar, A; Pate, S F; Peitzmann, T; Peng, J-C; Peresedov, V; Pinkenburg, C; Pisani, R P; Plasil, F; Purschke, M L; Purwar, A K; Rak, J; Ravinovich, I; Read, K F; Reuter, M; Reygers, K; Riabov, V; Riabov, Y; Roche, G; Romana, A; Rosati, M; Rosnet, P; Ryu, S S; Sadler, M E; Saito, N; Sakaguchi, T; Sakai, M; Sakai, S; Samsonov, V; Sanfratello, L; Santo, R; Sato, H D; Sato, S; Sawada, S; Schutz, Y; Semenov, V; Seto, R; Shaw, M R; Shea, T K; Shibata, T-A; Shigaki, K; Shiina, T; Silva, C L; Silvermyr, D; Sim, K S; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Sullivan, J P; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Tanida, K; Tannenbaum, M J; Tarján, P; Tepe, J D; Thomas, T L; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tuli, S K; Tydesjö, H; Tyurin, N; van Hecke, H W; Velkovska, J; Velkovsky, M; Veszprémi, V; Villatte, L; Vinogradov, A A; Volkov, M A; Vznuzdaev, E; Wang, X R; Watanabe, Y; White, S N; Wohn, F K; Woody, C L; Xie, W; Yang, Y; Yanovich, A; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, C; Zhou, S; Zhou, S J; Zolin, L

    2005-03-01

    The PHENIX experiment has measured midrapidity transverse momentum spectra (0.4PHENIX acceptance and are statistically removed. The subtracted nonphotonic electron spectra are primarily due to the semileptonic decays of hadrons containing heavy quarks, mainly charm at lower p(T). For all centralities, the charm production cross section is found to scale with the nuclear overlap function, T(AA). For minimum-bias collisions the charm cross section per binary collision is N(cc )/T(AA)=622+/-57(stat)+/-160(syst) microb. PMID:15783878

  10. On macromolecular refinement at subatomic resolution withinteratomic scatterers

    SciTech Connect

    Afonine, Pavel V.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.; Lunin, Vladimir Y.; Urzhumtsev, Alexandre

    2007-11-09

    A study of the accurate electron density distribution in molecular crystals at subatomic resolution, better than {approx} 1.0 {angstrom}, requires more detailed models than those based on independent spherical atoms. A tool conventionally used in small-molecule crystallography is the multipolar model. Even at upper resolution limits of 0.8-1.0 {angstrom}, the number of experimental data is insufficient for the full multipolar model refinement. As an alternative, a simpler model composed of conventional independent spherical atoms augmented by additional scatterers to model bonding effects has been proposed. Refinement of these mixed models for several benchmark datasets gave results comparable in quality with results of multipolar refinement and superior of those for conventional models. Applications to several datasets of both small- and macro-molecules are shown. These refinements were performed using the general-purpose macromolecular refinement module phenix.refine of the PHENIX package.

  11. Methods for Determining Elliptic Flow of Isolated Photons and π0's

    NASA Astrophysics Data System (ADS)

    Danley, Tyler; Phenix Collaboration

    2015-04-01

    We present methods for measurements of second order flow coefficients and derivations of reaction plane dependent efficiencies of isolated photons and π0's in Relativistic Heavy Ion Collisions. The method involves isolation cuts similar to those used in direct photon identification where the energy is summed inside an angular cone and cut if greater than a threshold energy. We show that this will result in a reaction plane dependent efficiency. We derive and verify azimuthal single and two particle correlation functions, including this efficiency, up to harmonic second order. We show that the standard v2 extraction method is only sensitive to an effective v2, which includes the sum of true v2 and the v2 of the isolation efficiency, which is generally negative. We will also present the status of applying these methods to PHENIX √{sNN} = 200GeV Au+Au data. for the PHENIX Collaboration.

  12. Centrality Dependence of Charm Production from a Measurement of Single Electrons in Au+Au Collisions at √(sNN)=200 GeV

    NASA Astrophysics Data System (ADS)

    Adler, S. S.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Alexander, J.; Amirikas, R.; Aphecetche, L.; Aronson, S. H.; Averbeck, R.; Awes, T. C.; Azmoun, R.; Babintsev, V.; Baldisseri, A.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Bathe, S.; Batsouli, S.; Baublis, V.; Bazilevsky, A.; Belikov, S.; Berdnikov, Y.; Bhagavatula, S.; Boissevain, J. G.; Borel, H.; Borenstein, S.; Brooks, M. L.; Brown, D. S.; Bruner, N.; Bucher, D.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Burward-Hoy, J. M.; Butsyk, S.; Camard, X.; Chai, J.-S.; Chand, P.; Chang, W. C.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J.; Choudhury, R. K.; Chujo, T.; Cianciolo, V.; Cobigo, Y.; Cole, B. A.; Constantin, P.; D'Enterria, D. G.; David, G.; Delagrange, H.; Denisov, A.; Deshpande, A.; Desmond, E. J.; Devismes, A.; Dietzsch, O.; Drapier, O.; Drees, A.; Du Rietz, R.; Durum, A.; Dutta, D.; Efremenko, Y. V.; El Chenawi, K.; Enokizono, A.; En'yo, H.; Esumi, S.; Ewell, L.; Fields, D. E.; Fleuret, F.; Fokin, S. L.; Fox, B. D.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fung, S.-Y.; Garpman, S.; Ghosh, T. K.; Glenn, A.; Gogiberidze, G.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grosse Perdekamp, M.; Guryn, W.; Gustafsson, H.-Å.; Hachiya, T.; Haggerty, J. S.; Hamagaki, H.; Hansen, A. G.; Hartouni, E. P.; Harvey, M.; Hayano, R.; Hayashi, N.; He, X.; Heffner, M.; Hemmick, T. K.; Heuser, J. M.; Hibino, M.; Hill, J. C.; Holzmann, W.; Homma, K.; Hong, B.; Hoover, A.; Ichihara, T.; Ikonnikov, V. V.; Imai, K.; Isenhower, D.; Ishihara, M.; Issah, M.; Isupov, A.; Jacak, B. V.; Jang, W. Y.; Jeong, Y.; Jia, J.; Jinnouchi, O.; Johnson, B. M.; Johnson, S. C.; Joo, K. S.; Jouan, D.; Kametani, S.; Kamihara, N.; Kang, J. H.; Kapoor, S. S.; Katou, K.; Kelly, S.; Khachaturov, B.; Khanzadeev, A.; Kikuchi, J.; Kim, D. H.; Kim, D. J.; Kim, D. W.; Kim, E.; Kim, G.-B.; Kim, H. J.; Kistenev, E.; Kiyomichi, A.; Kiyoyama, K.; Klein-Boesing, C.; Kobayashi, H.; Kochenda, L.; Kochetkov, V.; Koehler, D.; Kohama, T.; Kopytine, M.; Kotchetkov, D.; Kozlov, A.; Kroon, P. J.; Kuberg, C. H.; Kurita, K.; Kuroki, Y.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Ladygin, V.; Lajoie, J. G.; Lebedev, A.; Leckey, S.; Lee, D. M.; Lee, S.; Leitch, M. J.; Li, X. H.; Lim, H.; Litvinenko, A.; Liu, M. X.; Liu, Y.; Maguire, C. F.; Makdisi, Y. I.; Malakhov, A.; Manko, V. I.; Mao, Y.; Martinez, G.; Marx, M. D.; Masui, H.; Matathias, F.; Matsumoto, T.; McGaughey, P. L.; Melnikov, E.; Messer, F.; Miake, Y.; Milan, J.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mischke, R. E.; Mishra, G. C.; Mitchell, J. T.; Mohanty, A. K.; Morrison, D. P.; Moss, J. M.; Mühlbacher, F.; Mukhopadhyay, D.; Muniruzzaman, M.; Murata, J.; Nagamiya, S.; Nagle, J. L.; Nakamura, T.; Nandi, B. K.; Nara, M.; Newby, J.; Nilsson, P.; Nyanin, A. S.; Nystrand, J.; O'Brien, E.; Ogilvie, C. A.; Ohnishi, H.; Ojha, I. D.; Okada, K.; Ono, M.; Onuchin, V.; Oskarsson, A.; Otterlund, I.; Oyama, K.; Ozawa, K.; Pal, D.; Palounek, A. P.; Pantuev, V. S.; Papavassiliou, V.; Park, J.; Parmar, A.; Pate, S. F.; Peitzmann, T.; Peng, J.-C.; Peresedov, V.; Pinkenburg, C.; Pisani, R. P.; Plasil, F.; Purschke, M. L.; Purwar, A. K.; Rak, J.; Ravinovich, I.; Read, K. F.; Reuter, M.; Reygers, K.; Riabov, V.; Riabov, Y.; Roche, G.; Romana, A.; Rosati, M.; Rosnet, P.; Ryu, S. S.; Sadler, M. E.; Saito, N.; Sakaguchi, T.; Sakai, M.; Sakai, S.; Samsonov, V.; Sanfratello, L.; Santo, R.; Sato, H. D.; Sato, S.; Sawada, S.; Schutz, Y.; Semenov, V.; Seto, R.; Shaw, M. R.; Shea, T. K.; Shibata, T.-A.; Shigaki, K.; Shiina, T.; Silva, C. L.; Silvermyr, D.; Sim, K. S.; Singh, C. P.; Singh, V.; Sivertz, M.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Sullivan, J. P.; Takagui, E. M.; Taketani, A.; Tamai, M.; Tanaka, K. H.; Tanaka, Y.; Tanida, K.; Tannenbaum, M. J.; Tarján, P.; Tepe, J. D.; Thomas, T. L.; Tojo, J.; Torii, H.; Towell, R. S.; Tserruya, I.; Tsuruoka, H.; Tuli, S. K.; Tydesjö, H.; Tyurin, N.; van Hecke, H. W.; Velkovska, J.; Velkovsky, M.; Veszprémi, V.; Villatte, L.; Vinogradov, A. A.; Volkov, M. A.; Vznuzdaev, E.; Wang, X. R.; Watanabe, Y.; White, S. N.; Wohn, F. K.; Woody, C. L.; Xie, W.; Yang, Y.; Yanovich, A.; Yokkaichi, S.; Young, G. R.; Yushmanov, I. E.; Zajc, W. A.; Zhang, C.; Zhou, S.; Zhou, S. J.; Zolin, L.

    2005-03-01

    The PHENIX experiment has measured midrapidity transverse momentum spectra (0.4PHENIX acceptance and are statistically removed. The subtracted nonphotonic electron spectra are primarily due to the semileptonic decays of hadrons containing heavy quarks, mainly charm at lower pT. For all centralities, the charm production cross section is found to scale with the nuclear overlap function, TAA. For minimum-bias collisions the charm cross section per binary collision is Ncc¯/TAA=622±57(stat)±160(syst) μb.

  13. A Novel Time of Flight Detector for the Pioneering High Energy Nuclear Interaction eXperiment

    NASA Astrophysics Data System (ADS)

    Dix, Richard; Drummond, Kirk; Powell, William; Chiu, Mickey

    2010-11-01

    Time-of Flight (TOF) detectors allow one to identify particles created in collider experiments. The Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory is proposing new forward timing detectors to measure the TOF with a 10 picosecond (ps) timing resolution. A prototype of the detector electronics system was tested by using Cherenkov signals from cosmic rays and translating them into digital signals. Each signal was split and delivered to two analog-to-digital-converters (ADCs). C++ and ROOT were used to write programs to compare voltage readings reported by the two ADC channels and determine the time difference between them, which was 76 ps. Using new ADCs, which run 17 times faster, the timing resolution will be 5 ps. This will allow PHENIX to probe the meson-baryon anomaly at intermediate, transverse momentum by making detailed measurements in a psuedorapidity region which has not been well measured.

  14. Are flow measurements at RHIC reliable?

    NASA Astrophysics Data System (ADS)

    Taranenko, Arkadiy; Vishnyakov, Vladislav

    2016-01-01

    The measurements of collective flow effects in particle production have provided invaluable insights on the transport properties of the strongly interacting matter produced in relativistic heavy-ion collisions at RHIC. The detailed comparison of flow measurements from PHENIX and STAR experiments at RHIC have been presented and discussed. For elliptic flow ν2 of charged hadrons from Au+Au collisions at 200 GeV the two data sets overlap excellently for centralities > 20%, they increasingly diverge at small centralities, with a 30% difference between STAR an PHENIX in the 0-5% centrality bin. For ν3 values the agreement is much worse and coming from the difference in STAR measurements. More investigations are needed to understand the reason for such differences.

  15. Nuclear Modification of Jet Fragmentation in Au+Au Collisions

    NASA Astrophysics Data System (ADS)

    Rowan, Zachary; Phenix Collaboration

    2015-10-01

    The characterization of energy in the quark gluon plasma is facilitated by measurements of modifications to the observed jet fragmentation. A favorable channel of study relies on direct photons created in the initial parton interactions of heavy ion collisions. Such a photon traverses the created medium unscathed and grants us a proxy for the transverse momentum of an away side jet. PHENIX Au+Au data recorded at √{sNN} = 200 GeV during RHIC run 14 benefit from the background rejection capability of the silicon vertex detector, enabling the extraction of a higher purity hadron signal. This advantage, combined with a larger integrated luminosity, allows previous PHENIX measurements of fragmentation functions to be extended to greater jet energies. In this talk, the status of the analysis of direct photon hadron correlations with the new data set will be discussed.

  16. Shlaer-Mellor object-oriented analysis and recursive design, an effective modern software development method for development of computing systems for a large physics detector

    SciTech Connect

    Kozlowski, T.; Carey, T.A.; Maguire, C.F.

    1995-10-01

    After evaluation of several modern object-oriented methods for development of the computing systems for the PHENIX detector at RHIC, we selected the Shlaer-Mellor Object-Oriented Analysis and Recursive Design method as the most appropriate for the needs and development environment of a large nuclear or high energy physics detector. This paper discusses our specific needs and environment, our method selection criteria, and major features and components of the Shlaer-Mellor method.

  17. Meson interferometry in relativistic heavy ion collisions

    SciTech Connect

    Not Available

    1993-05-01

    This report contains discussions on the following topics: Recent HBT results form CERN experiment NA44; interferometry results from E802/E859/E866; recent results on two particle correlations from E814; source sizes from CERN data; intermittency and interferometry; Bose-Einstein correlations in 200A GeV S+Au collisions; HBT correlations at STAR; HBT interferometry with PHENIX; HBT calculations from ARC; three pion correlations; and pion correlations in proton-induced reactions.

  18. Centrality dependence of charged particle multiplicity in Au-Au collisions at square root of (s)NN = 130 GeV.

    PubMed

    Adcox, K; Adler, S S; Ajitanand, N N; Akiba, Y; Alexander, J; Aphecetche, L; Arai, Y; Aronson, S H; Averbeck, R; Awes, T C; Barish, K N; Barnes, P D; Barrette, J; Bassalleck, B; Bathe, S; Baublis, V; Bazilevsky, A; Belikov, S; Bellaiche, F G; Belyaev, S T; Bennett, M J; Berdnikov, Y; Botelho, S; Brooks, M L; Brown, D S; Bruner, N; Bucher, D; Buesching, H; Bumazhnov, V; Bunce, G; Burward-Hoy, J; Butsyk, S; Carey, T A; Chand, P; Chang, J; Chang, W C; Chavez, L L; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choudhury, R K; Christ, T; Chujo, T; Chung, M S; Chung, P; Cianciolo, V; Cole, B A; D'Enterria, D G; David, G; Delagrange, H; Denisov, A; Deshpande, A; Desmond, E J; Dietzsch, O; Dinesh, B V; Drees, A; Durum, A; Dutta, D; Ebisu, K; Efremenko, Y V; El Chenawi, K; En'yo, H; Esumi, S; Ewell, L; Ferdousi, T; Fields, D E; Fokin, S L; Fraenkel, Z; Franz, A; Frawley, A D; Fung, S Y; Garpman, S; Ghosh, T K; Glenn, A; Godoi, A L; Goto, Y; Greene, S V; Grosse Perdekamp, M; Gupta, S K; Guryn, W; Gustafsson, H A; Haggerty, J S; Hamagaki, H; Hansen, A G; Hara, H; Hartouni, E P; Hayano, R; Hayashi, N; He, X; Hemmick, T K; Heuser, J; Hibino, M; Hill, J C; Ho, D S; Homma, K; Hong, B; Hoover, A; Ichihara, T; Imai, K; Ippolitov, M S; Ishihara, M; Jacak, B V; Jang, W Y; Jia, J; Johnson, B M; Johnson, S C; Joo, K S; Kametani, S; Kang, J H; Kann, M; Kapoor, S S; Kelly, S; Khachaturov, B; Khanzadeev, A; Kikuchi, J; Kim, D J; Kim, H J; Kim, S Y; Kim, Y G; Kinnison, W W; Kistenev, E; Kiyomichi, A; Klein-Boesing, C; Klinksiek, S; Kochenda, L; Kochetkov, D; Kochetkov, V; Koehler, D; Kohama, T; Kozlov, A; Kroon, P J; Kurita, K; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lajoie, J G; Lauret, J; Lebedev, A; Lee, D M; Leitch, M J; Li, X H; Li, Z; Lim, D J; Liu, M X; Liu, X; Liu, Z; Maguire, C F; Mahon, J; Makdisi, Y I; Manko, V I; Mao, Y; Mark, S K; Markacs, S; Martinez, G; Marx, M D; Masaike, A; Matathias, F; Matsumoto, T; McGaughey, P L; Melnikov, E; Merschmeyer, M; Messer, F; Messer, M; Miake, Y; Miller, T E; Milov, A; Mioduszewski, S; Mischke, R E; Mishra, G C; Mitchell, J T; Mohanty, A K; Morrison, D P; Moss, J M; Mühlbacher, F; Muniruzzaman, M; Murata, J; Nagamiya, S; Nagasaka, Y; Nagle, J L; Nakada, Y; Nandi, B K; Newby, J; Nikkinen, L; Nilsson, P; Nishimura, S; Nyanin, A S; Nystrand, J; O'Brien, E; Ogilvie, C A; Ohnishi, H; Ojha, I D; Ono, M; Onuchin, V; Oskarsson, A; Osterman, L; Otterlund, I; Oyama, K; Paffrath, L; Palounek, A P; Pantuev, V S; Papavassiliou, V; Pate, S F; Peitzmann, T; Petridis, A N; Pinkenburg, C; Pisani, R P; Pitukhin, P; Plasil, F; Pollack, M; Pope, K; Purschke, M L; Ravinovich, I; Read, K F; Reygers, K; Riabov, V; Riabov, Y; Rosati, M; Rose, A A; Ryu, S S; Saito, N; Sakaguchi, A; Sakaguchi, T; Sako, H; Sakuma, T; Samsonov, V; Sangster, T C; Santo, R; Sato, H D; Sato, S; Sawada, S; Schlei, B R; Schutz, Y; Semenov, V; Seto, R; Shea, T K; Shein, I; Shibata, T A; Shigaki, K; Shiina, T; Shin, Y H; Sibiriak, I G; Silvermyr, D; Sim, K S; Simon-Gillo, J; Singh, C P; Singh, V; Sivertz, M; Soldatov, A; Soltz, R A; Sorensen, S; Stankus, P W; Starinsky, N; Steinberg, P; Stenlund, E; Ster, A; Stoll, S P; Sugioka, M; Sugitate, T; Sullivan, J P; Sumi, Y; Sun, Z; Suzuki, M; Takagui, E M; Taketani, A; Tamai, M; Tanaka, K H; Tanaka, Y; Taniguchi, E; Tannenbaum, M J; Thomas, J; Thomas, J H; Thomas, T L; Tian, W; Tojo, J; Torii, H; Towell, R S; Tserruya, I; Tsuruoka, H; Tsvetkov, A A; Tuli, S K; Tydesjö, H; Tyurin, N; Ushiroda, T; van Hecke, H W; Velissaris, C; Velkovska, J; Velkovsky, M; Vinogradov, A A; Volkov, M A; Vorobyov, A; Vznuzdaev, E; Wang, H; Watanabe, Y; White, S N; Witzig, C; Wohn, F K; Woody, C L; Xie, W; Yagi, K; Yokkaichi, S; Young, G R; Yushmanov, I E; Zajc, W A; Zhang, Z; Zhou, S

    2001-04-16

    We present results for the charged-particle multiplicity distribution at midrapidity in Au-Au collisions at square root of [s(NN)] = 130 GeV measured with the PHENIX detector at RHIC. For the 5% most central collisions we find dN(ch)/d eta(vertical line eta = 0) = 622+/-1(stat)+/-41(syst). The results, analyzed as a function of centrality, show a steady rise of the particle density per participating nucleon with centrality. PMID:11328008

  19. electronic Ligand Builder and Optimisation Workbench (eLBOW): A tool for ligand coordinate and restraint generation

    SciTech Connect

    Moriarty, Nigel; Grosse-Kunstleve, Ralf; Adams, Paul

    2009-07-01

    The electronic Ligand Builder and Optimisation Workbench (eLBOW) is a program module of the PHENIX suite of computational crystallographic software. It's designed to be a flexible procedure using simple and fast quantum chemical techniques to provide chemically accurate information for novel and known ligands alike. A variety of input formats and options allow for the attainment of a number of diverse goals including geometry optimisation and generation of restraints.

  20. electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation

    PubMed Central

    Moriarty, Nigel W.; Grosse-Kunstleve, Ralf W.; Adams, Paul D.

    2009-01-01

    The electronic Ligand Builder and Optimization Workbench (eLBOW) is a program module of the PHENIX suite of computational crystallographic software. It is designed to be a flexible procedure that uses simple and fast quantum-chemical techniques to provide chemically accurate information for novel and known ligands alike. A variety of input formats and options allow the attainment of a number of diverse goals including geometry optimization and generation of restraints. PMID:19770504

  1. Fabrication of Dispersed CERamic-CERamic and Ceramic-METallic pellets for the Transmutation of Actinides

    NASA Astrophysics Data System (ADS)

    Fernández, A.; Haas, D.; Konings, R. J. M.; Somers, J.

    2003-07-01

    This paper describes the development of fabrication technology for target materials to be used in irradiation experiments, in the PHENIX and HFR reactors. Several target concepts will be tested: micro- as well as macrodispersed composites of (Am,Y,Zr)O2 in MgO (cercer) and macrodispersed composites of (Pu,Y,Zr)O2 in Stainless Steel (cermet) material. Results of the completed fabrication campaigns for cermet and cercer will be presented.

  2. Heavy Flavor Measurements at RHIC in the Near Future

    SciTech Connect

    Xu, Nu

    2006-12-01

    We discuss the recent results on open charm measurements at RHIC. The heavy flavor upgrade program for both PHENIX and STAR experiments are briefly discussed. The completion of the program will yield important information on light flavor thermalization of the partonic matter created in high-energy nuclear collisions at RHIC. A new era of RHIC is ahead of us with the progress of the upgrade program.

  3. Scaling properties of collective effects at RHIC

    NASA Astrophysics Data System (ADS)

    Zaytsev, A. S.

    2016-02-01

    Azimuthal anisotropy is one of the key observables to study the properties of matter created in high energy heavy-ion collisions at RHIC and the LHC. The collective behaviour is quantified in terms of anisotropy coefficients vn measured with respect to their corresponding event planes. Predictions from the viscous hydrodynamics for the scaling of the anisotropic flow coefficients vn with eccentricity, system size and transverse energy are tested using the recent data from PHENIX Collaboration.

  4. [Creativeness as a potential for survival in the abyss between fear of and longing for death].

    PubMed

    Waser, G

    1991-02-19

    On the background of a creative psychotherapy with a young man covering the antagonism between Eros and Thanatos creativity is presented as a power not only mediating between destructive and constructive processes but integrating itself into the personal image and sense of life. Thanatophobic regression metamorphosizes into courage for life, the ability to face transitoriness and to discover the power of phenix in it which creates new creations. PMID:1706889

  5. New Developments on Automated Data Analysis System (CEAD)

    NASA Astrophysics Data System (ADS)

    Yan, J.; Clark, S.; Adams, P.; Ross, N.; Angel, R.; Parise, J.; Rivers, M.

    2006-12-01

    New developments of the automated data analysis environment of CEAD are reported by introducing the automation of two popular data processing and analysis programs, fit2d and GSAS. CEAD is based on the PHENIX system which is being developed on the basis of modern object-oriented programming language, Python/wyPython. Both fit2d and GSAS are broken into command line operation style and then form a task network in the PHYNIX system.

  6. Central collisions of heavy ions. Progress report, October 1, 1991--September 31, 1992

    SciTech Connect

    Fung, Sun-yiu

    1992-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R&D project was performed.

  7. Central collisions of heavy ions

    SciTech Connect

    Fung, Sun-yiu.

    1992-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1991 to September 30, 1992. During this period, the program focused on particle production at AGS energies, and correlation studies at the Bevalac in nucleus-nucleus central collisions. As part of the PHENIX collaboration, contributions were made to the Preliminary Conceptual Design Report (pCDR), and work on a RHIC silicon microstrip detector R D project was performed.

  8. Alignment and operability analysis of a vertical sodium pump

    SciTech Connect

    Gupta, V.K.; Fair, C.E.

    1981-01-01

    With the objective of identifying important alignment features of pumps such as FFTF, HALLAM, EBR II, PNC, PHENIX, and CRBR, alignment of the vertical sodium pump for the Clinch River Breeder Reactor Plant (CRBRP) is investigated. The CRBRP pump includes a flexibly coupled pump shaft and motor shaft, two oil-film tilting-pad hydrodynamic radial bearings in the motor plus a vertical thrust bearing, and two sodium hydrostatic bearings straddling the double-suction centrifugal impeller in the pump.

  9. Decontamination of liquid-metal fast breeder reactor components for reuse; The French experience

    SciTech Connect

    Michaille, P. ); Moroni, J.C. ); Lambert, I. )

    1991-02-01

    Decontamination of stainless steel liquid-metal fast breeder reactor components for reuse in France began with the decontamination of Rapsodie components. At that time, dilute phosphoric acid was used. To cope with additional irradiated components after Phenix came into operation, an extensive study was performed, which led to the selection of a procedure involving two baths. The first bath, alkaline permanganate (AP), is applied for 3 h; the second bath, sulfo-phosphoric acid (SP), is applied for 6 h, both at 60{degrees}C. Up to three cycles are repeated until the residual dose rate is sufficiently low. Eight intermediate heat exchangers (IHXs) and two primary pumps from Phenix were decontaminated using this method. This paper reports that because SP can pickle only a limited depth ({approximately} 3{mu}m), due to the passivation effect of phosphoric acid, and because of the waste treatment problems associated with phosphates, new solutions were explored. One possibility involves improvement of the AP-SP procedure: In the SPm procedure, the AP bath is omitted and the phosphoric concentration is reduced by a factor of 4. A second approach is the use of a new formula, called SECA, a mixture of maleic and citric acid used in reducing conditions (imposed by hydrazine). Since the Phenix and Superphenix waste treatment facilities are not designed to reprocess maleic-citric acid, only the SPm procedure has been used on reactor components. A low-contaminated IHX from Rapsodie served as a test benchmark, not only for the decontamination procedure, but also for the requalification criteria, before the SPm procedure was applied to a highly contaminated IHX from Phenix. Recent results are presented.

  10. Can I solve my structure by SAD phasing? Planning an experiment, scaling data and evaluating the useful anomalous correlation and anomalous signal

    PubMed Central

    Terwilliger, Thomas C.; Bunkóczi, Gábor; Hung, Li-Wei; Zwart, Peter H.; Smith, Janet L.; Akey, David L.; Adams, Paul D.

    2016-01-01

    A key challenge in the SAD phasing method is solving a structure when the anomalous signal-to-noise ratio is low. Here, algorithms and tools for evaluating and optimizing the useful anomalous correlation and the anomalous signal in a SAD experiment are described. A simple theoretical framework [Terwilliger et al. (2016 ▸), Acta Cryst. D72, 346–358] is used to develop methods for planning a SAD experiment, scaling SAD data sets and estimating the useful anomalous correlation and anomalous signal in a SAD data set. The phenix.plan_sad_experiment tool uses a database of solved and unsolved SAD data sets and the expected characteristics of a SAD data set to estimate the probability that the anomalous substructure will be found in the SAD experiment and the expected map quality that would be obtained if the substructure were found. The phenix.scale_and_merge tool scales unmerged SAD data from one or more crystals using local scaling and optimizes the anomalous signal by identifying the systematic differences among data sets, and the phenix.anomalous_signal tool estimates the useful anomalous correlation and anomalous signal after collecting SAD data and estimates the probability that the data set can be solved and the likely figure of merit of phasing. PMID:26960123