Science.gov

Sample records for reaction centers formed

  1. Nuclear Reaction Data Centers

    SciTech Connect

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  2. Characterization of iron dinitrosyl species formed in the reaction of nitric oxide with a biological Rieske center.

    PubMed

    Tinberg, Christine E; Tonzetich, Zachary J; Wang, Hongxin; Do, Loi H; Yoda, Yoshitaka; Cramer, Stephen P; Lippard, Stephen J

    2010-12-29

    Reactions of nitric oxide with cysteine-ligated iron-sulfur cluster proteins typically result in disassembly of the iron-sulfur core and formation of dinitrosyl iron complexes (DNICs). Here we report the first evidence that DNICs also form in the reaction of NO with Rieske-type [2Fe-2S] clusters. Upon treatment of a Rieske protein, component C of toluene/o-xylene monooxygenase from Pseudomonas sp. OX1, with an excess of NO(g) or NO-generators S-nitroso-N-acetyl-D,L-pencillamine and diethylamine NONOate, the absorbance bands of the [2Fe-2S] cluster are extinguished and replaced by a new feature that slowly grows in at 367 nm. Analysis of the reaction products by electron paramagnetic resonance, Mössbauer, and nuclear resonance vibrational spectroscopy reveals that the primary product of the reaction is a thiolate-bridged diiron tetranitrosyl species, [Fe(2)(μ-SCys)(2)(NO)(4)], having a Roussin's red ester (RRE) formula, and that mononuclear DNICs account for only a minor fraction of nitrosylated iron. Reduction of this RRE reaction product with sodium dithionite produces the one-electron-reduced RRE, having absorptions at 640 and 960 nm. These results demonstrate that NO reacts readily with a Rieske center in a protein and suggest that dinuclear RRE species, not mononuclear DNICs, may be the primary iron dinitrosyl species responsible for the pathological and physiological effects of nitric oxide in such systems in biology. PMID:21133361

  3. Photosynthetic reaction centers in bacteria

    SciTech Connect

    Norris, J.R. Univ. of Chicago, IL ); Schiffer, M. )

    1990-07-30

    The photochemistry of photosynthesis begins in complexes called reaction centers. These have become model systems to study the fundamental process by which plants and bacteria convert and store solar energy as chemical free energy. In green plants, photosynthesis occurs in two systems, each of which contains a different reaction center, working in series. In one, known as photosystem 1, oxidized nicotinamide adenine dinucleotide phosphate (NADP[sup +]) is reduced to NADPH for use in a series of dark reactions called the Calvin cycle, named for Nobel Laureate Melvin Calvin, by which carbon dioxide is converted into useful fuels such as carbohydrates and sugars. In the other half of the photosynthetic machinery of green plants, called photosystem 2, water is oxidized to produce molecular oxygen. A different form of photosynthesis occurs in photosynthetic bacteria, which typically live at the bottom of ponds and feed on organic debris. Two main types of photosynthetic bacteria exist: purple and green. Neither type liberates oxygen from water. Instead, the bacteria feed on organic media or inorganic materials, such as sulfides, which are easier to reduce or oxidize than carbon dioxide or water. Perhaps in consequence, their photosynthetic machinery is simpler than that of green, oxygen-evolving plants and their primary photochemistry is better understood.

  4. EPR and ENDOR Investigation of Rhodosemiquinone in Bacterial Reaction Centers Formed by B-Branch Electron Transfer

    PubMed Central

    Paddock, M. L.; Flores, M.; Isaacson, R.; Shepherd, J. N.

    2010-01-01

    In photosynthetic bacteria, light-induced electron transfer takes place in a protein called the reaction center (RC) leading to the reduction of a bound ubiquinone molecule, QB, coupled with proton binding from solution. We used electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) to study the magnetic properties of the protonated semiquinone, an intermediate proposed to play a role in proton coupled electron transfer to QB. To stabilize the protonated semiquinone state, we used a ubiquinone derivative, rhodoquinone, which as a semiquinone is more easily protonated than ubisemiquinone. To reduce this low-potential quinone we used mutant RCs modified to directly reduce the quinone in the QB site via B-branch electron transfer (Paddock et al. in Biochemistry 44:6920–6928, 2005). EPR and ENDOR signals were observed upon illumination of mutant RCs in the presence of rhodoquinone. The EPR signals had g values characteristic of rhodosemiquinone (gx = 2.0057, gy = 2.0048, gz ∼ 2.0018) at pH 9.5 and were changed at pH 4.5. The ENDOR spectrum showed couplings due to solvent exchangeable protons typical of hydrogen bonds similar to, but different from, those found for ubisemiquinone. This approach should be useful in future magnetic resonance studies of the protonated semiquinone. PMID:20157643

  5. Trimeric forms of the photosystem I reaction center complex pre-exist in the membranes of the cyanobacterium Spirulina platensis.

    PubMed

    Shubin, V V; Tsuprun, V L; Bezsmertnaya, I N; Karapetyan, N V

    1993-11-01

    Oligomeric and monomeric forms of chlorophyll-protein complexes of photosystem I (PSI) have been isolated from the mesophilic cyanobacterium Spirulina [(1992) FEBS Lett. 309, 340-342]. Electron microscopic analysis of the complexes showed that the oligomeric form is a trimer of the shape and dimensions similar to those of the trimer from thermophilic cyanobacteria. The chlorophyl ratio in the isolated trimer and monomer was found to be 7:3. The trimeric form of PSI complex in contrast to the monomeric one contains the chlorophyll emitting at 760 nm (77K), which is also found in Spirulina membranes and therefore could be used as an intrinsic probe for the trimeric complex. The 77K circular dichroism spectrum of the trimeric form is much more similar to that of Spirulina membranes than the spectrum of the monomer. Thus, the trimeric PSI complexes exist and dominate in the Spirulina membranes. PMID:8224233

  6. Structural and preliminary molecular dynamics studies of the Rhodobacter sphaeroides reaction center and its mutant form L(M196)H + H(M202)L

    NASA Astrophysics Data System (ADS)

    Klyashtorny, V. G.; Fufina, T. Yu.; Vasilieva, L. G.; Shuvalov, V. A.; Gabdulkhakov, A. G.

    2014-07-01

    Pigment-protein interactions are responsible for the high efficiency of the light-energy transfer and conversion in photosynthesis. The reaction center (RC) from the purple bacterium Rhodobacter sphaeroides is the most convenient model for studying the mechanisms of primary processes of photosynthesis. Site-directed mutagenesis can be used to study the effect of the protein environment of electron-transfer cofactors on the optical properties, stability, pigment composition, and functional activity of RC. The preliminary analysis of RC was performed by computer simulation of the amino acid substitutions L(M196)H + H(M202)L at the pigment-protein interface and by estimating the stability of the threedimensional structure of the mutant RC by the molecular dynamics method. The doubly mutated reaction center was overexpressed, purified, and crystallized. The three-dimensional structure of this mutant was determined by X-ray crystallography and compared with the molecular dynamics model.

  7. Electrostatics of photosynthetic reaction centers in membranes.

    PubMed

    Pennisi, Cristian P; Greenbaum, Elias; Yoshida, Ken

    2006-01-01

    Photosynthetic reaction centers are integral membrane complexes. They have potential application as molecular photovoltaic structures and have been used in diverse technological applications. A three-dimensional electrostatic model of the photosystem I reaction center (PSI) embedded in a lipid membrane is presented. The potential is obtained by solving the Poisson-Boltzmann equation with the finite element method (FEM). Simulations showing the potential distribution in a vesicle containing PSI reaction centers under different conditions are presented. The results of the simulations are compared with previous findings and a possible application of PSI to provide light activation of voltage-gated ion channels is discussed. PMID:17946611

  8. Photosynthetic reaction center complexes from heliobacteria

    NASA Technical Reports Server (NTRS)

    Trost, J. T.; Vermaas, W. F. J.; Blankenship, R. E.

    1991-01-01

    Photosynthetic reaction centers are pigment-protein complexes that are responsible for the transduction of light energy into chemical energy. Considerable evidence indicates that photosynthetic organisms were present very early in the evolution of life on Earth. The goal of this project is to understand the early evolutionary development of photosynthesis by examining the properties of reaction centers isolated from certain contemporary organisms that appear to contain the simplest photosynthetic reaction centers. The major focus is on the family of newly discovered strictly anaerobic photosynthetic organisms that are grouped with the gram-positive phylum of bacteria. The properties of these reactions centers suggest that they may be the descendants of an ancestor that also gave rise to Photosystem 1 found in oxygen-evolving photosynthetic organisms. Photoactive reaction center-core antenna complexes were isolated from the photosynthetic bacteria, Heliobacillus mobilis and Heliobacterium gestii, by extraction of membranes with Deriphat 160C followed by differential centrifugation and sucrose density gradient centrifugation. Other aspects of this investigation are briefly discussed.

  9. Origin and evolution of photosynthetic reaction centers

    NASA Astrophysics Data System (ADS)

    Olson, John M.; Pierson, Beverly K.

    1987-09-01

    The prototype reaction center may have used protoporphyrin-IX associated with small peptides to transfer electrons or protons across the primitive cell membrane. The precursor of all contemporary reaction centers contained chlorophylla molecules as both primary electron donor and initial electron acceptor and an Fe-S center as secondary acceptor (RC-1 type). The biosynthetic pathway for chlorophylla evolved along with the evolution of a better organized reaction center associated with cytochromes and quinones in a primitive cyclic electron transport system. This reaction center probably functioned initially in photoassimilation, but was easily adapted to CO2 fixation using H2 and H2S as reductants. During this phase bacteriochlorophyllg may have evolved from chlorophylla in response to competition for light, and thereby initiated the gram-positive line of eubacteria. A second reaction center (RC-2) evolved from RC-1 between 3.5 and 2.5 Ga ago in response to the competition for reductants for CO2 fixation. The new organism containing RC-2 in series with RC-1 would have been able to use poor reducing agents such as the abundant aqueous ferrous ion in place of H2 and H2S. This new organism is proposed to be the common ancestor of all phototrophic eubacteria except those related to the gram-positive bacteria. All organisms containing bacteriochlorophylla lost either RC-1 or RC-2, while those organisms containing chlorophylla (ancestors of cyanobacteria) added a water-splitting enzyme to RC-2 between 3.0 and 2.5 Ga ago in order to use H2O in place of hydrated ferrous ion as electron donor for autotrophic photosynthesis.

  10. Intramolecular coupling of eta/sup 2/-iminoacyl groups at group 4 metal centers: a kinetic study of the carbon-carbon double-bond-forming reaction

    SciTech Connect

    Durfee, L.D.; McMullen, A.K.; Rothwell, I.P.

    1988-03-02

    The series of bis(eta/sup 2/-iminoacyl) compounds of general formula M(OAr)/sub 2/(eta/sup 2/-R'NCR)/sub 2/ (M = Ti, Zr, Hf; OAr = 2,6-diisopropyl- and 2,6-di-tert-butylphenoxide; R = CH/sub 3/, CH/sub 2/Ph; R' = various substituted phenyls) undergo intramolecular coupling on thermolysis to produce the corresponding enediamide derivatives M(OAr)/sub 2/(R'NC(R) = C(R)NR'). A kinetic study of the reaction in hydrocarbon solvents has shown it to be first order. The reaction is metal dependent with the rate decreasing in the order Ti > Zr > Hf. The rate of the reaction is also dependent on the steric and electronic nature of the nitrogen substituent (R'). The use of the bulky aryl group 2,6-dimethylphenyl retards the reaction, while the use of various 3- and 4-substituted phenyls (3-F, 3-OMe, 4-OMe, 4-Cl, 4-NMe/sub 2/) shows the reaction to be accelerated by electron-withdrawing substituents. A sigma plot based on kinetic data obtained at 67/sup 0/C and 77/sup 0/C yielded rho values of 0.83 (R = 0.97) and 0.84 (R = 0.95), respectively. Both the steric and electronic dependence of the reactivity on the nitrogen substituents is discussed mechanistically and used to rationalize the much more facile intramolecular coupling observed for the related eta/sup 2/-acyl (eta/sup 2/-OCR) functionalities.

  11. Studying Reaction Intermediates Formed at Graphenic Surfaces

    NASA Astrophysics Data System (ADS)

    Sarkar, Depanjan; Sen Gupta, Soujit; Narayanan, Rahul; Pradeep, Thalappil

    2014-03-01

    We report in-situ production and detection of intermediates at graphenic surfaces, especially during alcohol oxidation. Alcohol oxidation to acid occurs on graphene oxide-coated paper surface, driven by an electrical potential, in a paper spray mass spectrometry experiment. As paper spray ionization is a fast process and the time scale matches with the reaction time scale, we were able to detect the intermediate, acetal. This is the first observation of acetal formed in surface oxidation. The process is not limited to alcohols and the reaction has been extended to aldehydes, amines, phosphenes, sugars, etc., where reaction products were detected instantaneously. By combining surface reactions with ambient ionization and mass spectrometry, we show that new insights into chemical reactions become feasible. We suggest that several other chemical transformations may be studied this way. This work opens up a new pathway for different industrially and energetically important reactions using different metal catalysts and modified substrate.

  12. Photo-CIDNP of Photosyntheitc Reaction Centers

    SciTech Connect

    Ann. E. McDermott

    2005-10-22

    Studies of Photochemically Induced Dynamic Nuclear Polarization in Photosynthetic Bacterial Reaction Centers: Wavelength and Time Dependence Solid-state NMR spectra of quinone-reduced photosynthetic bacterial reaction centers (RCs) and chromatophores exhibit certain strongly enhanced lines under illumination, a result of photochemically induced dynamic nuclear polarization (photo-CIDNP). This technique offers a new method to investigate photosynthetic electronic transactions while retaining the NMR advantages of narrow linewidths and site-specific resolution. Pulsed laser illumination at 532 nm was used as the basis for time resolved photo-CIDNP experiments, a technique not previously published for solid-state photosynthetic systems. These measurements offer insight about the origin of the polarization effects.

  13. Conformationally Constrained Macrocyclic Diporphyrin-Fullerene Artificial Photosynthetic Reaction Center

    SciTech Connect

    Garg, Vikas; Kodis, Gerdenis; Chachisvilis, Mirianas; Hambourger, Michael; Moore, Ana L.; Moore, Thomas A.; Gust, Devens

    2011-02-14

    Photosynthetic reaction centers convert excitation energy from absorbed sunlight into chemical potential energy in the form of a charge-separated state. The rates of the electron transfer reactions necessary to achieve long-lived, high-energy charge-separated states with high quantum yields are determined in part by precise control of the electronic coupling among the chromophores, donors, and acceptors and of the reaction energetics. Successful artificial photosynthetic reaction centers for solar energy conversion have similar requirements. Control of electronic coupling in particular necessitates chemical linkages between active component moieties that both mediate coupling and restrict conformational mobility so that only spatial arrangements that promote favorable coupling are populated. Toward this end, we report the synthesis, structure, and photochemical properties of an artificial reaction center containing two porphyrin electron donor moieties and a fullerene electron acceptor in a macrocyclic arrangement involving a ring of 42 atoms. The two porphyrins are closely spaced, in an arrangement reminiscent of that of the special pair in bacterial reaction centers. The molecule is produced by an unusual cyclization reaction that yields mainly a product with C2 symmetry and trans-2 disubstitution at the fullerene. The macrocycle maintains a rigid, highly constrained structure that was determined by UV-vis spectroscopy, NMR, mass spectrometry, and molecular modeling at the semiempirical PM6 and DFT (B3LYP/6-31G**) levels. Transient absorption results for the macrocycle in 2-methyltetrahydrofuran reveal photoinduced electron transfer from the porphyrin first excited singlet state to the fullerene to form a P•--C60•--P charge separated state with a time constant of 1.1 ps. Photoinduced electron transfer to the fullerene excited singlet state to form the same charge-separated state has a time constant of 15 ps. The

  14. Supramolecular structures modeling photosynthetic reaction center function

    SciTech Connect

    Wasielewski, M.R.; Gaines, G.L. III; Gosztola, D.; Niemczyk, M.P.; Svec, W.A.

    1992-08-20

    Work in our laboratory has focused on the influence of solvent motion on the rates and energetics of photochemical charge separation in glassy solids. The efficiencies of many nonadiabatic electron transfer reactions involving photochemical electron donors with relatively low excited state energies, such as porphyrins and chlorophylls, are poor in the solid state. Recent work has shown that placing a porphyrin-acceptor system in a glassy solid at low temperature significantly raises the energy of ks ion-pair state. This destabilization can be as much as 0.8 eV relative to the ion pair state energy in a polar liquid. This contrasts sharply with photosynthetic reaction centers, which maintain medium-independent electron transfer rates with relatively small free energies of charge separation. Using this information we have set out to design photochemical systems that produce long-lived radical ion pairs in glassy solids with high quantum efficiency. These systems maintain their efficiency when placed in other glassy matrices, such as polymers. An important consequence of this effort is the design of molecules that minimize the electronic interaction between the oxidized donor and reduced acceptor. This minimization can be attained by careful design of the spacer groups linking the donor and acceptor and by using more than a single electron transfer step to increase the distance between the separated charges as is done in natural photosynthesis.

  15. Photosynthetic reaction center of green sulfur bacteria studied by EPR

    SciTech Connect

    Nitschke, W.; Rutherford, A.W. ); Fieler, U. )

    1990-04-24

    Membrane preparations of two species of the green sulfur bacteria Chlorobium have been studied be EPR. Three signals were detected which were attributed to iron-sulfur centers acting as electron acceptors in the photosynthetic reaction center. (1) A signal from a center designated F{sub B}, was photoinduced at 4K. (2) A similar signal, F{sub A}, was photoinduced in addition to the F{sub B} signal upon a short period of illumination at 200 K. (3) Further illumination at 200 K resulted in the appearance of a broad feature at g=1.78. This is attributed to the g{sub x} component of an iron-sulfur center designated F{sub X}. The designations of these signals as F{sub B}, F{sub A}, and F{sub X} are based on their spectroscopic similarities to signals in photosystem I (PS I). The orientation dependence of these EPR signals in ordered Chlorobium membrane multilayers is remarkably similar to that of their PS I homologues. A magnetic interaction between the reduced forms of F{sub B} and F{sub A} occurs, which is also very similar to that seen in PS I. The triplet state of P{sub 840}, the primary electron donor, could be photoinduced at 4 K in samples which had been preincubated with sodium dithionite and methyl viologen and then preilluminated at 200 K. The preillumination reduces the iron-sulfur centers while the preincubation is thought to result in the inactivation of an earlier electron acceptor. Orientation studies of the triplet signal in ordered multilayers indicate that the bacteriochlorophylls which act as the primary electron donor in Chlorobium are arranged with a structural geometry almost identical with that of the special pair in purple bacteria. The Chlorobium reaction center appears to be similar in some respects to both PS I and to the purple bacterial reaction center. This is discussed with regard to the evolution of the different types of reaction centers from a common ancestor.

  16. Multiantenna artificial photosynthetic reaction center complex.

    PubMed

    Terazono, Yuichi; Kodis, Gerdenis; Liddell, Paul A; Garg, Vikas; Moore, Thomas A; Moore, Ana L; Gust, Devens

    2009-05-21

    In order to ensure efficient utilization of the solar spectrum, photosynthetic organisms use a variety of antenna chromophores to absorb light and transfer excitation to a reaction center, where photoinduced charge separation occurs. Reported here is a synthetic molecular heptad that features two bis(phenylethynyl)anthracene and two borondipyrromethene antennas linked to a hexaphenylbenzene core that also bears two zinc porphyrins. A fullerene electron acceptor self-assembles to both porhyrins via dative bonds. Excitation energy is transferred very efficiently from all four antennas to the porphyrins. Singlet-singlet energy transfer occurs both directly and by a stepwise funnel-like pathway wherein excitation moves down a thermodynamic gradient. The porphyrin excited states donate an electron to the fullerene with a time constant of 3 ps to generate a charge-separated state with a lifetime of 230 ps. The overall quantum yield is close to unity. In the absence of the fullerene, the porphyrin excited singlet state donates an electron to a borondipyrromethene on a slower time scale. This molecule demonstrates that by incorporating antennas, it is possible for a molecular system to harvest efficiently light throughout the visible from ultraviolet wavelengths out to approximately 650 nm. PMID:19438278

  17. Biodiesel forming reactions using heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Liu, Yijun

    Biodiesel synthesis from biomass provides a means for utilizing effectively renewable resources, a way to convert waste vegetable oils and animal fats to a useful product, a way to recycle carbon dioxide for a combustion fuel, and production of a fuel that is biodegradable, non-toxic, and has a lower emission profile than petroleum-diesel. Free fatty acid (FFA) esterification and triglyceride (TG) transesterification with low molecular weight alcohols constitute the synthetic routes to prepare biodiesel from lipid feedstocks. This project was aimed at developing a better understanding of important fundamental issues involved in heterogeneous catalyzed biodiesel forming reactions using mainly model compounds, representing part of on-going efforts to build up a rational base for assay, design, and performance optimization of solid acids/bases in biodiesel synthesis. As FFA esterification proceeds, water is continuously formed as a byproduct and affects reaction rates in a negative manner. Using sulfuric acid (as a catalyst) and acetic acid (as a model compound for FFA), the impact of increasing concentrations of water on acid catalysis was investigated. The order of the water effect on reaction rate was determined to be -0.83. Sulfuric acid lost up to 90% activity as the amount of water present increased. The nature of the negative effect of water on esterification was found to go beyond the scope of reverse hydrolysis and was associated with the diminished acid strength of sulfuric acid as a result of the preferential solvation by water molecules of its catalytic protons. The results indicate that as esterification progresses and byproduct water is produced, deactivation of a Bronsted acid catalyst like H2SO4 occurs. Using a solid composite acid (SAC-13) as an example of heterogeneous catalysts and sulfuric acid as a homogeneous reference, similar reaction inhibition by water was demonstrated for homogeneous and heterogeneous catalysis. This similarity together with

  18. Quantum oscillatory exciton migration in photosynthetic reaction centers

    NASA Astrophysics Data System (ADS)

    Abramavicius, Darius; Mukamel, Shaul

    2010-08-01

    The harvesting of solar energy and its conversion to chemical energy is essential for all forms of life. The primary photon absorption, transport, and charge separation events, which trigger a chain of chemical reactions, take place in membrane-bound photosynthetic complexes. Whether quantum effects, stemming from entanglement of chromophores, persist in the energy transport at room temperature, despite the rapid decoherence effects caused by environment fluctuations, is under current active debate. If confirmed, these may explain the high efficiency of light harvesting and open up numerous applications to quantum computing and information processing. We present simulations of the photosynthetic reaction center of photosystem II that clearly establish oscillatory energy transport at room temperature originating from interference of quantum pathways. These signatures of quantum transport may be observed by two dimensional coherent optical spectroscopy.

  19. Evolution of a reaction center in an explosive material

    NASA Technical Reports Server (NTRS)

    Jackson, T. L.; Kapila, A. K.; Stewart, D. S.

    1989-01-01

    Consideration is given to the spatial structure and temporal evolution of a reaction center for a model involving Arrhenius kinetics. The center, which is characterized by peaks in pressure and temperature with little diminution in local density, is found to have one of two possible self-similar structures. The analysis uses a combination of asymptotics and numerics and terminates when pressure and temperature in the reaction center have peaked.

  20. Design of dinuclear manganese cofactors for bacterial reaction centers.

    PubMed

    Olson, Tien L; Espiritu, Eduardo; Edwardraja, Selvakumar; Simmons, Chad R; Williams, JoAnn C; Ghirlanda, Giovanna; Allen, James P

    2016-05-01

    A compelling target for the design of electron transfer proteins with novel cofactors is to create a model for the oxygen-evolving complex, a Mn4Ca cluster, of photosystem II. A mononuclear Mn cofactor can be added to the bacterial reaction center, but the addition of multiple metal centers is constrained by the native protein architecture. Alternatively, metal centers can be incorporated into artificial proteins. Designs for the addition of dinuclear metal centers to four-helix bundles resulted in three artificial proteins with ligands for one, two, or three dinuclear metal centers able to bind Mn. The three-dimensional structure determined by X-ray crystallography of one of the Mn-proteins confirmed the design features and revealed details concerning coordination of the Mn center. Electron transfer between these artificial Mn-proteins and bacterial reaction centers was investigated using optical spectroscopy. After formation of a light-induced, charge-separated state, the experiments showed that the Mn-proteins can donate an electron to the oxidized bacteriochlorophyll dimer of modified reaction centers, with the Mn-proteins having additional metal centers being more effective at this electron transfer reaction. Modeling of the structure of the Mn-protein docked to the reaction center showed that the artificial protein likely binds on the periplasmic surface similarly to cytochrome c2, the natural secondary donor. Combining reaction centers with exogenous artificial proteins provides the opportunity to create ligands and investigate the influence of inhomogeneous protein environments on multinuclear redox-active metal centers. This article is part of a Special Issue entitled Biodesign for Bioenergetics - the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. PMID:26392146

  1. Evolution of heliobacteria: implications for photosynthetic reaction center complexes

    NASA Technical Reports Server (NTRS)

    Vermaas, W. F.; Blankenship, R. E. (Principal Investigator)

    1994-01-01

    The evolutionary position of the heliobacteria, a group of green photosynthetic bacteria with a photosynthetic apparatus functionally resembling Photosystem I of plants and cyanobacteria, has been investigated with respect to the evolutionary relationship to Gram-positive bacteria and cyanobacteria. On the basis of 16S rRNA sequence analysis, the heliobacteria appear to be most closely related to Gram-positive bacteria, but also an evolutionary link to cyanobacteria is evident. Interestingly, a 46-residue domain including the putative sixth membrane-spanning region of the heliobacterial reaction center protein show rather strong similarity (33% identity and 72% similarity) to a region including the sixth membrane-spanning region of the CP47 protein, a chlorophyll-binding core antenna polypeptide of Photosystem II. The N-terminal half of the heliobacterial reaction center polypeptide shows a moderate sequence similarity (22% identity over 232 residues) with the CP47 protein, which is significantly more than the similarity with the Photosystem I core polypeptides in this region. An evolutionary model for photosynthetic reaction center complexes is discussed, in which an ancestral homodimeric reaction center protein (possibly resembling the heliobacterial reaction center protein) with 11 membrane-spanning regions per polypeptide has diverged to give rise to the core of Photosystem I, Photosystem II, and of the photosynthetic apparatus in green, purple, and heliobacteria.

  2. Artificial photosynthetic reaction centers coupled to light-harvesting antennas.

    PubMed

    Ghosh, Pulak Kumar; Smirnov, Anatoly Yu; Nori, Franco

    2011-12-01

    We analyze a theoretical model for energy and electron transfer in an artificial photosynthetic system. The photosystem consists of a molecular triad (i.e., with a donor, a photosensitive unit, and an acceptor) coupled to four accessory light-harvesting-antenna pigments. The resonant energy transfer from the antennas to the artificial reaction center (the molecular triad) is described here by the Förster mechanism. We consider two different kinds of arrangements of the accessory light-harvesting pigments around the reaction center. The first arrangement allows direct excitation transfer to the reaction center from all the surrounding pigments. The second configuration transmits energy via a cascade mechanism along a chain of light-harvesting chromophores, where only one chromophore is connected to the reaction center. We show that the artificial photosynthetic system using the cascade energy transfer absorbs photons in a broader wavelength range and converts their energy into electricity with a higher efficiency than the system based on direct couplings between all the antenna chromophores and the reaction center. PMID:22304071

  3. Artificial photosynthetic reaction centers coupled to light-harvesting antennas

    NASA Astrophysics Data System (ADS)

    Ghosh, Pulak Kumar; Smirnov, Anatoly Yu.; Nori, Franco

    2011-12-01

    We analyze a theoretical model for energy and electron transfer in an artificial photosynthetic system. The photosystem consists of a molecular triad (i.e., with a donor, a photosensitive unit, and an acceptor) coupled to four accessory light-harvesting-antenna pigments. The resonant energy transfer from the antennas to the artificial reaction center (the molecular triad) is described here by the Förster mechanism. We consider two different kinds of arrangements of the accessory light-harvesting pigments around the reaction center. The first arrangement allows direct excitation transfer to the reaction center from all the surrounding pigments. The second configuration transmits energy via a cascade mechanism along a chain of light-harvesting chromophores, where only one chromophore is connected to the reaction center. We show that the artificial photosynthetic system using the cascade energy transfer absorbs photons in a broader wavelength range and converts their energy into electricity with a higher efficiency than the system based on direct couplings between all the antenna chromophores and the reaction center.

  4. Bio-Photoelectrochemical Solar Cells Incorporating Reaction Center and Reaction Center Plus Light Harvesting Complexes

    NASA Astrophysics Data System (ADS)

    Yaghoubi, Houman

    Harvesting solar energy can potentially be a promising solution to the energy crisis now and in the future. However, material and processing costs continue to be the most important limitations for the commercial devices. A key solution to these problems might lie within the development of bio-hybrid solar cells that seeks to mimic photosynthesis to harvest solar energy and to take advantage of the low material costs, negative carbon footprint, and material abundance. The bio-photoelectrochemical cell technologies exploit biomimetic means of energy conversion by utilizing plant-derived photosystems which can be inexpensive and ultimately the most sustainable alternative. Plants and photosynthetic bacteria harvest light, through special proteins called reaction centers (RCs), with high efficiency and convert it into electrochemical energy. In theory, photosynthetic RCs can be used in a device to harvest solar energy and generate 1.1 V open circuit voltage and ~1 mA cm-2 short circuit photocurrent. Considering the nearly perfect quantum yield of photo-induced charge separation, efficiency of a protein-based solar cell might exceed 20%. In practice, the efficiency of fabricated devices has been limited mainly due to the challenges in the electron transfer between the protein complex and the device electrodes as well as limited light absorption. The overarching goal of this work is to increase the power conversion efficiency in protein-based solar cells by addressing those issues (i.e. electron transfer and light absorption). This work presents several approaches to increase the charge transfer rate between the photosynthetic RC and underlying electrode as well as increasing the light absorption to eventually enhance the external quantum efficiency (EQE) of bio-hybrid solar cells. The first approach is to decrease the electron transfer distance between one of the redox active sites in the RC and the underlying electrode by direct attachment of the of protein complex

  5. Primary charge separation in isolated photosystem II reaction centers

    SciTech Connect

    Seibert, M.; Toon, S.; Govindjee; O`Neil, M.P.; Wasielewski, M.R.

    1992-08-24

    Primary charge-separation in isolated bacterial reaction center (RC) complex occurs in 2.8 ps at room temperature and 0.7--1.2 ps at 10 K. Because of similarities between the bacterial and photosystem II (PSII) RCs, it has been of considerable interest to obtain analogous charge-separation rates in the higher plant system. Our previous femtosecond transient absorption studies used PSII RC material stabilized with PEG or by exchanging dodecyl maltoside (DM) for Triton in the isolation procedure. These materials gave charge-separation 1/e times of 3.0 {plus_minus} 0.6 ps at 4{degree}C and 1.4{plus_minus} 0.2 ps at 15 K based on the risetime of transient absorption kinetics at 820 nm. These values were thought to represent the time required for formation of the P680{sup +}-Pheo{sup {minus}} state. Recent results of Hastings et al. obtained at high data acquisition rates and low flash intensities, suggest that the Pheo{sup {minus}} state may form more slowly. In light of this work, we have carried out additional time domain studies of both electron transport and energy transfer phenomena in stabilized DM PSII RCs at room temperature. We used a 1-kHz repetition rate femtosecond transient absorption spectrometer with a 200 fs instrumental time resolution and compared the results with those obtained by others using frequency domain hole-burning techniques.

  6. 75 FR 22438 - Proposed Information Collection (Health Resource Center Medical Center Payment Form) Activity...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... medical care copayment online. DATES: Written comments and recommendations on the proposed collection of... 10-0505 will be used to allow claimants with medical care copayment debts to pay online with a credit... AFFAIRS Proposed Information Collection (Health Resource Center Medical Center Payment Form)...

  7. Native FMO-reaction center supercomplex in green sulfur bacteria: an electron microscopy study.

    PubMed

    Bína, David; Gardian, Zdenko; Vácha, František; Litvín, Radek

    2016-04-01

    Chlorobaculum tepidum is a representative of green sulfur bacteria, a group of anoxygenic photoautotrophs that employ chlorosomes as the main light-harvesting structures. Chlorosomes are coupled to a ferredoxin-reducing reaction center by means of the Fenna-Matthews-Olson (FMO) protein. While the biochemical properties and physical functioning of all the individual components of this photosynthetic machinery are quite well understood, the native architecture of the photosynthetic supercomplexes is not. Here we report observations of membrane-bound FMO and the analysis of the respective FMO-reaction center complex. We propose the existence of a supercomplex formed by two reaction centers and four FMO trimers based on the single-particle analysis of the complexes attached to native membrane. Moreover, the structure of the photosynthetic unit comprising the chlorosome with the associated pool of RC-FMO supercomplexes is proposed. PMID:26589322

  8. Conservation of distantly related membrane proteins: photosynthetic reaction centers share a common structural core.

    PubMed

    Sadekar, Sumedha; Raymond, Jason; Blankenship, Robert E

    2006-11-01

    Photosynthesis was established on Earth more than 3 billion years ago. All available evidences suggest that the earliest photosynthetic organisms were anoxygenic and that oxygen-evolving photosynthesis is a more recent development. The reaction center complexes that form the heart of the energy storage process are integral membrane pigment proteins that span the membrane in vectorial fashion to carry out electron transfer. The origin and extent of distribution of these proteins has been perplexing from a phylogenetic point of view mostly because of extreme sequence divergence. A series of integral membrane proteins of known structure and varying degrees of sequence identity have been compared using combinatorial extension-Monte Carlo methods. The proteins include photosynthetic reaction centers from proteobacteria and cyanobacterial photosystems I and II, as well as cytochrome oxidase, bacteriorhodopsin, and cytochrome b. The reaction center complexes show a remarkable conservation of the core structure of 5 transmembrane helices, strongly implying common ancestry, even though the residual sequence identity is less than 10%, whereas the other proteins have structures that are unrelated. A relationship of sequence with structure was derived from the reaction center structures; with characteristic decay length of 1.6 A. Phylogenetic trees derived from the structural alignments give insights into the earliest photosynthetic reaction center, strongly suggesting that it was a homodimeric complex that did not evolve oxygen. PMID:16887904

  9. Severe Cutaneous Drug Reactions: Do Overlapping Forms Exist?

    PubMed

    Horcajada-Reales, C; Pulido-Pérez, A; Suárez-Fernández, R

    2016-01-01

    Acute generalized exanthematous pustulosis, Stevens-Johnson syndrome, toxic epidermal necrolysis, and drug reaction with eosinophilia and systemic symptoms are all severe hypersensitivity reactions to medications. While each of these reactions is a well-established entity with specific diagnostic criteria, clinicians see cases that fulfill criteria for more than one form, prompting discussion on the possibility of combined forms. Such overlapping clinical pictures meeting the criteria for 2 conditions have thus become a topic of debate in dermatology in recent years. We describe 2 patients with cutaneous drug reactions having the characteristics of both acute generalized exanthematous pustulosis and Stevens-Johnson syndrome -toxic epidermal necrolysis. We also review previously published cases and current thinking on such overlapping conditions. PMID:26520037

  10. Cu-Free 1,3-Dipolar Cycloaddition Click Reactions To Form Isoxazole Linkers in Chelating Ligands for fac-[MI(CO)3]+ Centers (M = Re, 99mTc)

    PubMed Central

    2015-01-01

    Isoxazole ring formation was examined as a potential Cu-free alternative click reaction to CuI-catalyzed alkyne/azide cycloaddition. The isoxazole reaction was explored at macroscopic and radiotracer concentrations with the fac-[MI(CO)3]+ (M = Re, 99mTc) core for use as a noncoordinating linker strategy between covalently linked molecules. Two click assembly methods (click, then chelate and chelate, then click) were examined to determine the feasibility of isoxazole ring formation with either alkyne-functionalized tridentate chelates or their respective fac-[MI(CO)3]+ complexes with a model nitrile oxide generator. Macroscale experiments, alkyne-functionalized chelates, or Re complexes indicate facile formation of the isoxazole ring. 99mTc experiments demonstrate efficient radiolabeling with click, then chelate; however, the chelate, then click approach led to faster product formation, but lower yields compared to the Re analogues. PMID:24483834

  11. A Problem-Centered Approach to Canonical Matrix Forms

    ERIC Educational Resources Information Center

    Sylvestre, Jeremy

    2014-01-01

    This article outlines a problem-centered approach to the topic of canonical matrix forms in a second linear algebra course. In this approach, abstract theory, including such topics as eigenvalues, generalized eigenspaces, invariant subspaces, independent subspaces, nilpotency, and cyclic spaces, is developed in response to the patterns discovered…

  12. Measurement of electrostatic potentials above oriented single photosynthetic reaction centers

    SciTech Connect

    Lee, I.; Lee, J.W.; Stubna, A.; Greenbaum, E.

    2000-03-23

    Photosystem 1 (PS 1) reaction centers are nanometer-size robust supramolecular structures that can be isolated and purified from green plants. Using the technique of Kelvin force probe microscopy, the authors report here the first measurement of exogenous photovoltages generated from single PS 1 reaction centers in a heterostructure composed of PS 1, organosulfur molecules, and atomically flat gold. Illumination of the reaction centers was achieved with a diode laser at {lambda} = 670 nm. Data sets consisting of 22 individual PS 1s measured entirely in darkness, and four PS 1s in which the light-dark transition occurred in midscan of a single PS 1 were obtained. The average values of the light minus dark voltages relative to the substrate for the four PS 1s were {minus}1.13 {+-} 0.14 and {minus}1.20 {+-} 0.19 V at diametrical peripheries and {minus}0.97 {+-} 0.04 V at the center. Under illumination, the potentials of the central region of the PS 1s were typically more positive than the periphery by 6--9 kT, where kT is the Boltzmann energy at room temperature. These energies suggest a possible mechanism whereby negatively charged ferredoxin, the soluble electron carrier from PS 1 to the Calvin-Benson cycle, is anchored and positioned at the reducing end of PS 1 for electron transfer. The results are placed in context with the prior experimental literature on the structure of the reducing end of PS 1.

  13. Uranium oxidation: characterization of oxides formed by reaction with water

    SciTech Connect

    Fuller, E.L. Jr.; Smyrl, N.R.; Condon, J.B.; Eager, M.H.

    1983-04-27

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. Results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. 27 figures.

  14. Forming Stereogenic Centers in Acyclic Systems from Alkynes.

    PubMed

    Vabre, Roxane; Island, Biana; Diehl, Claudia J; Schreiner, Peter R; Marek, Ilan

    2015-08-17

    The combined carbometalation/zinc homologation followed by reactions with α-heterosubstituted aldehydes and imines proceed through a chair-like transition structure with the substituent of the incoming aldehyde residue preferentially occupying a pseudo-axial position to avoid the two gauche interactions. The heteroatom in the axial position produces a chelated intermediate (and not a Cornforth-Evans transition structure for α-chloro aldehydes and imines) leading to a face differentiation in the allylation reaction. This method provides access to functionalized products in which three new carbon-carbon bonds and two to three stereogenic centers, including a quaternary one, were created in acyclic systems in a single-pot operation from simple alkynes. PMID:26130570

  15. Probing active electron transfer branch in photosystem I reaction center.

    NASA Astrophysics Data System (ADS)

    Savikhin, Sergei; Dashdorj, Naranbaatar; Xu, Wu; Martinsson, Peter; Chitnis, Parag

    2003-03-01

    Complimentary point mutations were introduced at the primary electron acceptor sites in A and B branches of the photosystem I (PS I) reaction center (RC) from Synechocystis sp. PCC 6803 and their effect on the kinetics of the electron transfer process was studied by means of ultrafast pump-probe spectroscopy. The results indicate that in these species the electron transfer occurs primarily along the A-branch. Previous optical experiments on PS I complexes from Chlorella sorokiniana demonstrated that both branches of RC are equally active. That suggests that the directionality of electron transfer in PS I is species dependent.

  16. Electron transfer pathways in photosystem I reaction centers

    NASA Astrophysics Data System (ADS)

    Ivashin, Nikolaj; Larsson, Sven

    2003-07-01

    Electron transfer following charge separation in the photosystem I (PSI) reaction center of Synechococcus elongatus is studied using theoretical methods. The difference in rate between two almost symmetrical A- and B-branches is caused by a difference in a single residue (Trp B673 versus Gly A693), close to the F X iron-sulfur cluster. Partly due to its polar environment, Trp B673 acts as an electron acceptor in its π-system. The rate increases on the B-side due to shortened distances for electron transfer.

  17. A multi-pathway model for photosynthetic reaction center

    NASA Astrophysics Data System (ADS)

    Qin, M.; Shen, H. Z.; Yi, X. X.

    2016-03-01

    Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments.

  18. Photosynthetic reaction center as a quantum heat engine.

    PubMed

    Dorfman, Konstantin E; Voronine, Dmitri V; Mukamel, Shaul; Scully, Marlan O

    2013-02-19

    Two seemingly unrelated effects attributed to quantum coherence have been reported recently in natural and artificial light-harvesting systems. First, an enhanced solar cell efficiency was predicted and second, population oscillations were measured in photosynthetic antennae excited by sequences of coherent ultrashort laser pulses. Because both systems operate as quantum heat engines (QHEs) that convert the solar photon energy to useful work (electric currents or chemical energy, respectively), the question arises whether coherence could also enhance the photosynthetic yield. Here, we show that both effects arise from the same population-coherence coupling term which is induced by noise, does not require coherent light, and will therefore work for incoherent excitation under natural conditions of solar excitation. Charge separation in light-harvesting complexes occurs in a pair of tightly coupled chlorophylls (the special pair) at the heart of photosynthetic reaction centers of both plants and bacteria. We show the analogy between the energy level schemes of the special pair and of the laser/photocell QHEs, and that both population oscillations and enhanced yield have a common origin and are expected to coexist for typical parameters. We predict an enhanced yield of 27% in a QHE motivated by the reaction center. This suggests nature-mimicking architectures for artificial solar energy devices. PMID:23365138

  19. A multi-pathway model for photosynthetic reaction center.

    PubMed

    Qin, M; Shen, H Z; Yi, X X

    2016-03-28

    Charge separation occurs in a pair of tightly coupled chlorophylls at the heart of photosynthetic reaction centers of both plants and bacteria. Recently it has been shown that quantum coherence can, in principle, enhance the efficiency of a solar cell, working like a quantum heat engine. Here, we propose a biological quantum heat engine (BQHE) motivated by Photosystem II reaction center (PSII RC) to describe the charge separation. Our model mainly considers two charge-separation pathways which is more than that typically considered in the published literature. We explore how these cross-couplings increase the current and power of the charge separation and discuss the effects of multiple pathways in terms of current and power. The robustness of the BQHE against the charge recombination in natural PSII RC and dephasing induced by environments is also explored, and extension from two pathways to multiple pathways is made. These results suggest that noise-induced quantum coherence helps to suppress the influence of acceptor-to-donor charge recombination, and besides, nature-mimicking architectures with engineered multiple pathways for charge separations might be better for artificial solar energy devices considering the influence of environments. PMID:27036480

  20. Analysis of quasifission competition in fusion reactions forming heavy nuclei

    NASA Astrophysics Data System (ADS)

    Hammerton, Kalee; Kohley, Zachary; Morrissey, Dave; Wakhle, Aditya; Stiefel, Krystin; Hinde, David; Dasgupta, Mahananda; Williams, Elizabeth; Simenel, Cedric; Carter, Ian; Cook, Kaitlin; Jeung, Dongyun; Luong, Duc Huy; McNeil, Steven; Palshetkar, Chandani; Rafferty, Dominic

    2015-10-01

    Heavy-ion fusion reactions have provided a mechanism for the production of superheavy elements allowing for the extension of both the periodic table and chart of the nuclides. However, fusion of the projectile and target, forming a compound nucleus, is hindered by orders of magnitude by the quasifission process in heavy systems. In order to fully understand this mechanism, and make accurate predictions for superheavy element production cross sections, a clear description of the interplay between the fusion-fission and quasifission reaction channels is necessary. The mass-angle distributions of fragments formed in 8 different Cr + W reactions were measured at the Australia National University in order to explore the N/Z dependence of the quasifission process. Two sets of data were measured: one at a constant energy relative to the fusion barrier and one at a constant compound nucleus excitation energy. The results of this analysis will provide insight into the effect of using more neutron-rich beams in superheavy element production reactions.

  1. Structure-function investigations of bacterial photosynthetic reaction centers.

    PubMed

    Leonova, M M; Fufina, T Yu; Vasilieva, L G; Shuvalov, V A

    2011-12-01

    During photosynthesis light energy is converted into energy of chemical bonds through a series of electron and proton transfer reactions. Over the first ultrafast steps of photosynthesis that take place in the reaction center (RC) the quantum efficiency of the light energy transduction is nearly 100%. Compared to the plant and cyanobacterial photosystems, bacterial RCs are well studied and have relatively simple structure. Therefore they represent a useful model system both for manipulating of the electron transfer parameters to study detailed mechanisms of its separate steps as well as to investigate the common principles of the photosynthetic RC structure, function, and evolution. This review is focused on the research papers devoted to chemical and genetic modifications of the RCs of purple bacteria in order to study principles and mechanisms of their functioning. Investigations of the last two decades show that the maximal rates of the electron transfer reactions in the RC depend on a number of parameters. Chemical structure of the cofactors, distances between them, their relative orientation, and interactions to each other are of great importance for this process. By means of genetic and spectral methods, it was demonstrated that RC protein is also an essential factor affecting the efficiency of the photochemical charge separation. Finally, some of conservative water molecules found in RC not only contribute to stability of the protein structure, but are directly involved in the functioning of the complex. PMID:22339599

  2. Primary charge separation in isolated photosystem II reaction centers

    SciTech Connect

    Seibert, M.; Toon, S. ); Govindjee ); O'Neil, M.P.; Wasielewski, M.R. )

    1992-08-24

    Primary charge-separation in isolated bacterial reaction center (RC) complex occurs in 2.8 ps at room temperature and 0.7--1.2 ps at 10 K. Because of similarities between the bacterial and photosystem II (PSII) RCs, it has been of considerable interest to obtain analogous charge-separation rates in the higher plant system. Our previous femtosecond transient absorption studies used PSII RC material stabilized with PEG or by exchanging dodecyl maltoside (DM) for Triton in the isolation procedure. These materials gave charge-separation 1/e times of 3.0 [plus minus] 0.6 ps at 4[degree]C and 1.4[plus minus] 0.2 ps at 15 K based on the risetime of transient absorption kinetics at 820 nm. These values were thought to represent the time required for formation of the P680[sup +]-Pheo[sup [minus

  3. Germinal center B cells and mixed leukocyte reactions

    SciTech Connect

    Monfalcone, A.P.; Kosco, M.H.; Szakal, A.K.; Tew, J.G. )

    1989-09-01

    The present study was undertaken to determine if germinal center (GC) B cells are sufficiently activated to stimulate mixed leukocyte reactions (MLR). Percoll density fractionation and a panning technique with peanut agglutinin (PNA) were used to isolate GC B cells from the lymph nodes of immune mice. The GC B cells were treated with mitomycin C or irradiation and used to stimulate allogeneic or syngeneic splenic T cells in the MLR. Controls included high-density (HD) B cells prepared from spleens of the same mice and HD B cells activated with lipopolysaccharide (LPS) and dextran sulfate. GC B cells bound high amount sof PNA (i.e., PNAhi). Similarly, the LPS-dextran sulfate-activated B cells were PNAhi. Treatment with neuraminidase rendered the PNAlo HD B cells PNAhi. GC B cells and the LPS-dextran sulfate-activated HD B cells stimulated a potent MLR, while the untreated HD B cells did not. However, following neuraminidase treatment, the resulting PNAhi HD B cell population was able to induce an MLR. The PNA marker appeared to be an indicator of stimulatory activity, but incubating the cells with PNA to bind the cell surface ligand did not interfere with the MLR. GC B cells were also capable of stimulating a syngeneic MLR in most experiments although this was not consistently obtained. It appears that germinal centers represent a unique in vivo microenvironment that provides the necessary signals for B cells to become highly effective antigen-presenting cells.

  4. Structural studies of iron and manganese in photosynthetic reaction centers

    SciTech Connect

    McDermott, A.E.

    1987-11-01

    Electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) were used to characterize components involved in the light reactions of photosynthetic reaction centers from spinach and a thermophilic cyanobacterium, Synechococcus sp.: center X, the low electron potential acceptor in Photosystem I (PS I) and the Mn complex involved in water oxidation and oxygen evolution. The dependence of its EPR amplitude on microwave power and temperature indicate an Orbach spin relaxation mechanism involving an excited state at 40 cm/sup -1/. This low energy contributes to its unusually anisotropic g-tensor. XAS of iron in PS I preparations containing ferredoxins A, B and X are consistent with a model with (4Fe-4S) ferredoxins, which are presumably centers A and B and (2Fe-2S) ferredoxins, which would be X. Illumination of dark-adapted Synechococcus PS II samples at 220 to 240 K results in the formation of the multiline EPR signal previously assigned as a Mn S/sub 2/ species, and g = 1.8 and 1.9 signals of Fe/sup 2 +/ Q/sub A//sup -/. In contrast to spinach, illumination at 110 to 160 K produces only a new EPR signal at g = 1.6 which we assign to another configuration of Fe/sup 2+ - Q/sup -/. Following illumination of a S/sub 1/ sample at 140 K or 215 K, the Mn x-ray absorption edge inflection energy changes from 6550 eV to 6551 eV, indicating an oxidation of Mn, and average valences greater than Mn(II). Concomitant changes in the shape of the pre-edge spectrum indicate oxidation of Mn(III) to Mn(IV). The Mn EXAFS spectrum of PS II from Synechococcus is similar in the S/sub 1/ and S/sub 2/ states, indicating O or N ligands at 1.75 +- 0.05 A, transition metal neighbor(s) at 2.75 +- 0.05 A, and N and O ligands at 2.2 A with heterogeneous bond lengths; these data demonstrate the presence of a di-..mu..-oxo bridged Mn structure. 202 refs., 40 figs., 7 tabs.

  5. Zirconium fluoride glass - Surface crystals formed by reaction with water

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.; Bansal, N. P.; Bradner, T.; Murphy, D.

    1984-01-01

    The hydrated surfaces of a zirconium barium fluoride glass, which has potential for application in optical fibers and other optical elements, were observed by scanning electron microscopy. Crystalline zirconium fluoride was identified by analysis of X-ray diffraction patterns of the surface crystals and found to be the main constituent of the surface material. It was also found that hydrated zirconium fluorides form only in highly acidic fluoride solutions. It is possible that the zirconium fluoride crystals form directly on the glass surface as a result of its depletion of other ions. The solubility of zirconium fluoride is suggested to be probably much lower than that of barium fluoride (0.16 g/100 cu cm at 18 C). Dissolution was determined to be the predominant process in the initial stages of the reaction of the glass with water. Penetration of water into the glass has little effect.

  6. Microstructure and Mechanical Properties of Reaction-Formed Joints in Reaction Bonded Silicon Carbide Ceramics

    NASA Technical Reports Server (NTRS)

    Singh, M.

    1998-01-01

    A reaction-bonded silicon carbide (RB-SiC) ceramic material (Carborundum's Cerastar RB-SIC) has been joined using a reaction forming approach. Microstructure and mechanical properties of three types of reaction-formed joints (350 micron, 50-55 micron, and 20-25 micron thick) have been evaluated. Thick (approximately 350 micron) joints consist mainly of silicon with a small amount of silicon carbide. The flexural strength of thick joints is about 44 plus or minus 2 MPa, and fracture always occurs at the joints. The microscopic examination of fracture surfaces of specimens with thick joints tested at room temperature revealed the failure mode to be typically brittle. Thin joints (<50-55 micron) consist of silicon carbide and silicon phases. The room and high temperature flexural strengths of thin (<50-55 micron) reaction-formed joints have been found to be at least equal to that of the bulk Cerastar RB-SIC materials because the flexure bars fracture away from the joint regions. In this case, the fracture origins appear to be inhomogeneities inside the parent material. This was always found to be the case for thin joints tested at temperatures up to 1350C in air. This observation suggests that the strength of Cerastar RB-SIC material containing a thin joint is not limited by the joint strength but by the strength of the bulk (parent) materials.

  7. Tandem Bond-Forming Reactions of 1-Alkynyl Ethers.

    PubMed

    Minehan, Thomas G

    2016-06-21

    Electron-rich alkynes, such as ynamines, ynamides, and ynol ethers, are functional groups that possess significant potential in organic chemistry for the formation of carbon-carbon bonds. While the synthetic utility of ynamides has recently been expanded considerably, 1-alkynyl ethers, which possess many of the reactivity features of ynamides, have traditionally been far less investigated because of concerns about their stability. Like ynamides, ynol ethers are relatively unhindered to approach by functional groups present in the same or different molecules because of their linear geometry, and they can potentially form up to four new bonds in a single transformation. Ynol ethers also possess unique reactivity features that make them complementary to ynamides. Research over the past decade has shown that ynol ethers formed in situ from stable precursors engage in a variety of useful carbon-carbon bond-forming processes. Upon formation at -78 °C, allyl alkynyl ethers undergo a rapid [3,3]-sigmatropic rearrangement to form allyl ketene intermediates, which may be trapped with alcohol or amine nucleophiles to form γ,δ-unsaturated carboxylic acid derivatives. The process is stereospecific, takes place in minutes at cryogenic temperatures, and affords products containing (quaternary) stereogenic carbon atoms. Trapping of the intermediate allyl ketene with carbonyl compounds, epoxides, or oxetanes instead leads to complex α-functionalized β-, γ-, or δ-lactones, respectively. [3,3]-Sigmatropic rearrangement of benzyl alkynyl ethers also takes place at temperatures ranging from -78 to 60 °C to afford substituted 2-indanones via intramolecular carbocyclization of the ketene intermediate. tert-Butyl alkynyl ethers containing pendant di- and trisubstituted alkenes and enol ethers are stable to chromatographic isolation and undergo a retro-ene/[2 + 2] cycloaddition reaction upon mild thermolysis (90 °C) to afford cis-fused cyclobutanones and donor

  8. How to harvest solar energy with the photosynthetic reaction center

    NASA Astrophysics Data System (ADS)

    Balaeff, Alexander; Reyes, Justin

    Photosynthetic reaction center (PRC) is a protein complex that performs a key step in photosynthesis: the electron-hole separation driven by photon absorbtion. The PRC has a great promise for applications in solar energy harvesting and photosensing. Such applications, however, are hampered by the difficulty in extracting the photogenerated electric charge from the PRC. To that end, it was proposed to attach the PRC to a molecular wire through which the charge could be collected. In order to find the attachment point for the wire that would maximize the rate of charge outflow from the PRC, we performed a computational study of the PRC from the R. virdis bacterium. An ensemble of PRC structures generated by a molecular dynamics simulation was used to calculate the rate of charge transport from the site of initial charge separation to several trial sites on the protein surface. The Pathways model was used to calculate the charge transfer rate in each step of the network of heme co-factors through which the charge transport was presumed to proceed. A simple kinetic model was then used to determine the overall rate of the multistep charge transport. The calculations revealed several candidate sites for the molecular wire attachment, recommended for experimental verification.

  9. Nonphotochemical hole burning of the reaction center of Rhodopseudomonas viridis

    SciTech Connect

    Reddy, N.R.S.; Kolaczkowski, S.V.; Small, G.J. )

    1993-07-01

    Reddy et al. (Science, accepted) have reported persistent, nonphotochemical hole-burned (NPHB) spectra for the Q[sub y] states of the reaction center of Rhodopseudomonas viridis. The photoinduced structural transformation was shown to be highly localized on the special pair. This transformation leads to a red shift of the special pair's lowest-energy absorption band, P960, of 150 cm[sup [minus]1] and a comparable blue shift for a state at 850 nm, which, as a consequence, could be assigned as being most closely associated with the upper dimer component. Additional experimental results are presented here together with a theoretical analysis of the extent to which the NPHB spectra provide information on the contribution from the bacteriochlorophyll monomers of the special pair to the Q[sub y] states that absorb higher in energy than P960. Structured photochemical hole-burned (PHB) spectra of P960 are also presented that underscore the importance of strong electron-phonon coupling from a broad distribution of modes with a mean frequency of 30 cm[sup [minus]1] for an understanding of the P960 absorption profile. These spectra also identify the zero-phonon hole of the strongly damped special pair marker mode (145 cm[sup [minus]1]) and its associated phonon sideband structure. Calculated spectra are presented which are in good agreement with the experimental PHB spectra. 30 refs., 6 figs., 4 tabs.

  10. Bacteriopheophytin triplet state in Rhodobacter sphaeroides reaction centers.

    PubMed

    Białek, Rafał; Burdziński, Gotard; Jones, Michael R; Gibasiewicz, Krzysztof

    2016-08-01

    It is well established that photoexcitation of Rhodobacter sphaeroides reaction centers (RC) with reduced quinone acceptors results in the formation of a triplet state localized on the primary electron donor P with a significant yield. The energy of this long-lived and therefore potentially damaging excited state is then efficiently quenched by energy transfer to the RC spheroidenone carotenoid, with its subsequent decay to the ground state by intersystem crossing. In this contribution, we present a detailed transient absorption study of triplet states in a set of mutated RCs characterized by different efficiencies of triplet formation that correlate with lifetimes of the initial charge-separated state P(+)H A (-) . On a microsecond time scale, two types of triplet state were detected: in addition to the well-known spheroidenone triplet state with a lifetime of ~4 μs, in some RCs we discovered a bacteriopheophytin triplet state with a lifetime of ~40 μs. As expected, the yield of the carotenoid triplet increased approximately linearly with the lifetime of P(+)H A (-) , reaching the value of 42 % for one of the mutants. However, surprisingly, the yield of the bacteriopheophytin triplet was the highest in RCs with the shortest P(+)H A (-) lifetime and the smallest yield of carotenoid triplet. For these the estimated yield of bacteriopheophytin triplet was comparable with the yield of the carotenoid triplet, reaching a value of ~7 %. Possible mechanisms of formation of the bacteriopheophytin triplet state are discussed. PMID:27368166

  11. George Feher: a pioneer in reaction center research.

    PubMed

    Okamura, Melvin

    2014-05-01

    Our understanding of photosynthesis has been greatly advanced by the elucidation of the structure and function of the reaction center (RC), the membrane protein responsible for the initial light-induced charge separation in photosynthetic bacteria and green plants. Although today we know a great deal about the details of the primary processes in photosynthesis, little was known in the early days. George Feher made pioneering contributions to photosynthesis research in characterizing RCs from photosynthetic bacteria following the ground-breaking work of Lou Duysens and Rod Clayton (see articles in this issue by van Gorkom and Wraight). The work in his laboratory at the University of California, San Diego, started in the late 1960s and continued for over 30 years. He isolated a pure RC protein and used magnetic resonance spectroscopy to study the primary reactants. Following this pioneering work, Feher studied the detailed structure of the RC and the basic electron and proton transfer functions that it performs using a wide variety of biophysical and biochemical techniques. These studies, together with work from many other researchers, have led to our present detailed understanding of these proteins and their function in photosynthesis. The present article is a brief historical account of his pioneering contributions to photosynthesis research. A more detailed description of his work can be found in an earlier biographical paper (Feher in Photosynth Res 55:1-40, 1998a). PMID:24104959

  12. Primary electron transfer reactions in modified reaction centers from Rhodopseudomonas sphaeroides

    PubMed Central

    Shuvalov, V. A.; Duysens, L. N. M.

    1986-01-01

    Absorption spectra were measured by means of an optical multichannel analyzer in Rhodopseudomonas sphaeroides R-26 reaction centers (RCs) modified by treatment with NaBH4 at various times (≥1 ps) after the onset of a short excitation flash at 880 nm. Most of these RCs (75-95%) have only one “monomeric” bacteriochlorophyll-800 (B1) molecule and are as active as the original RCs. The duration of the excitation and measuring pulses was ≈33 ps. If the center of the excitation pulse preceded the center of the measuring pulse by 36-40 ps, the formation of a state PE (early state), which is converted to the state PF (P+ bacteriopheophytin-) in 4 ± 1 ps (1/e time), was observed. Also the kinetics and the spectrum of the stimulated emission (reflecting the kinetics and the emission spectrum of the excited state P*) were determined. The difference spectrum of the state PE approximately equals the sum of the spectra of the states P* (≈65%) and 1[P+B1-] (≈35%). This indicates that B1- is an intermediate in the electron transfer from P* to bacteriopheophytin, H1, transferring this electron with a rate constant of (4 × 0.35 ps)-1 = 7 × 1011 s-1. PMID:16593664

  13. Interfacial thiol-ene photoclick reactions for forming multilayer hydrogels.

    PubMed

    Shih, Han; Fraser, Andrew K; Lin, Chien-Chi

    2013-03-13

    Interfacial visible light-mediated thiol-ene photoclick reactions were developed for preparing step-growth hydrogels with multilayer structures. The effect of a noncleavage type photoinitiator eosin-Y on visible-light-mediated thiol-ene photopolymerization was first characterized using in situ photorheometry, gel fraction, and equilibrium swelling ratio. Next, spectrophotometric properties of eosin-Y in the presence of various relevant macromer species were evaluated using ultraviolet-visible light (UV-vis) spectrometry. It was determined that eosin-Y was able to reinitiate the thiol-ene photoclick reaction, even after light exposure. Because of its small molecular weight, most eosin-Y molecules readily leached out from the hydrogels. The diffusion of residual eosin-Y from preformed hydrogels was exploited for fabricating multilayer step-growth hydrogels. Interfacial hydrogel coating was formed via the same visible-light-mediated gelation mechanism without adding fresh initiator. The thickness of the thiol-ene gel coating could be easily controlled by adjusting visible light exposure time, eosin-Y concentration initially loaded in the core gel, or macromer concentration in the coating solution. The major benefits of this interfacial thiol-ene coating system include its simplicity and cytocompatibility. The formation of thiol-ene hydrogels and coatings neither requires nor generates any cytotoxic components. This new gelation chemistry may have great utilities in controlled release of multiple sensitive growth factors and encapsulation of multiple cell types for tissue regeneration. PMID:23384151

  14. Procedure for rapid isolation of photosynthetic reaction centers using cytochrome c affinity chromatography

    SciTech Connect

    Brudvig, G.W.; Worland, S.T.; Sauer, K.

    1983-02-01

    Horse heart cytochrome c linked to Sepharose 4B is used to purify reaction centers from Rhodopseudomonas sphaeroides R-26. This procedure allows for an initial recovery of 80-90% of the bacterial reaction centers present in chromatophore membranes. High purity reaction centers (A/sub 280//A/sub 802/ < 1.30) can be obtained with a 30% recovery. Reaction centers from wild-type Rps. sphaeroides and Rps. capsulata also bind to a cytochrome c column. Cytochrome c affinity chromatography can also be used to isolate photosystem I complexes from spinach chloroplasts.

  15. Excited states of the 5-chlorophyll photosystem II reaction center

    SciTech Connect

    Jankowiak, R.; Raetsep, M.; Picorel, R.; Seibert, M.; Small, G.J.

    1999-11-04

    Results of 4.2 K hole burning, chemical reduction (sodium dithionite, in dark and with illumination), and oxidation (ferricyanide) experiments are reported for the isolated PS II reaction center containing five chlorophyll (Chl) molecules (RC-5). Q{sub y} states at 679.6 and 668.3 nm are identified as being highly localized on pheophytin a of the D{sub 1} branch (Pheo{sub 1}) and pheophytin a of the D{sub 2} branch (Pheo{sub 2}), respectively. The Pheo{sub 1}-Q{sub x} and Pheo{sub 2}-Q{sub x} transitions were found to lie on the low and high energy sides of the single Pheo-Q{sub x} absorption band, at 544.4 and 541.2 nm, respectively. The Q{sub y} band of the 684 nm absorbing Chl, which is more apparent in absorption in RC-5 than in RC-6 samples, is assigned to the peripheral Chl on the D{sub 1} side. The results are consistent with that peripheral Chl being Chl{sub z}. The results indicate that P680, the primary electron donor, is the main acceptor for energy transfer from the Pheo{sub 1}-Q{sub y} state and that excitation energy transfer from the Pheo{sub 1}-Q{sub y} state and P680* to the 684 nm Chl is inefficient. It is concluded that the procedure used to prepare RC-5 has only a small effect on the energies of the Q{sub y} states associated with the core cofactors of the 6-Chl RC as well as the 684 nm Chl. Implications of the results for the multimer model are considered. In that model the Q{sub y}-states of the core are significantly delocalized over several cofactors. The results presented provide no support for this model.

  16. Compensation for L212GLU in bacterial reaction centers

    SciTech Connect

    Hanson, D.K.; Deng, Y.L.; Schiffer, M.; Sebban, P.

    1995-12-31

    In wild-type bacterial reaction centers (RC), residue L212Glu, which is located about 5 {Angstrom} away from Q{sub B}, is involved in the delivery of the second proton to Q{sub B{sup 2}{minus}} [1-4]. We previously constructed the L212Glu-L213Asp {yields} Ala-Ala double mutant of Rhodobacter capsulatus, and it is incapable of photosynthetic growth (PS{sup {minus}}) due to interruption of the proton transfer pathway to Q{sub B}[3,4]. We have isolated several photocompetent (PS{sup +}) phenotypic revertants of this L212-L213AA double mutant [3-7]. The compensatory mutations that restore function in these strains are diverse and show that neither L212Glu nor L213Asp is absolutely required for efficient light-induced electron or proton transfer. Genotypic revertant and second-site mutations, located within the Q{sub B} binding picket or at more distant sites, can compensate for mutations at L212 and L213 to restore photocompetence. One of the phenotypic revertants of the L212Ala-L213Ala double mutant carries a genotypic reversion of L213Ala to Asp; the Ala substitution at L212 remains. We were intrigued that this L212Glu {yields} Ala mutant R. capsulatus is photocompetent, while the L212Glu {yields} Gln mutant of R. sphaeroides is not, particularly since the sequence identity in the Q{sub B} site of these two strains is 90{percent} [8]. To this end, we constructed the L212Glu {yields} Gln mutant in R. capsulatus, and it is also PS{sup {minus}}. To determine the function that is lost in the L212Gln mutant but restored by Ala at that site, we selected four PS{sup +} revertants from the L212Gln strain.

  17. Immobilization and orientation of Photosystem I reaction centers on solid surfaces. Final report

    SciTech Connect

    1998-01-20

    The overall objective of this project was to test the potential for immobilization and orientation of Photosystem I reaction center protein on solid surfaces. In order to maximize the resources available for this work, bleomycin complexes were used as a test substrate. The reaction of [(H{sub 2}O)(NH{sub 3}){sub 5}Ru{sup II}]{sup 2+} with bleomycin forms at least two stable products following oxidation to the Ru(III) analog. Spectroscopic and electrochemical measurements indicate monodentate binding of [(NH{sub 3}){sub 5}Ru{sup III}] to the imidazole and pyrimidine moieties, with coordination to the latter involving the exocyclic amine nitrogen. DNA cleavage studies show the complexes to be ineffective in DNA strand scission.

  18. From photons to protons in the photocycle of bacterial reaction center

    SciTech Connect

    Maroti, P., Osvath, S., Tapai, C., Hanson, D.K. , Sebban, P.

    1995-12-31

    The detailed knowledge of the atomic coordinates of the bacterial reaction center (RC) has permitted a close scrutiny of structure/function relationships not only of the quinones but of the protein itself with its internal water structure. Protonatable groups were identified as intrinsic part of the redox reactions, providing charge compensation and forming channels for the movement of hydrogen ions to QB2-. The nature and position of these groups give rise to electrostatic profiles that determine the kinetics and energetics of proton transport. Fine tuning or dramatic variations of protein delivery pathways can adapt the photocycle to changes in bulk phase pH value, buffering capacities and primary structure of the RC.

  19. Non-Markov dissipative dynamics of electron transfer in a photosynthetic reaction center

    NASA Astrophysics Data System (ADS)

    Poddubnyy, V. V.; Glebov, I. O.; Eremin, V. V.

    2014-02-01

    We consider the dissipative dynamics of electron transfer in the photosynthetic reaction center of purple bacteria and propose a model where the transition between electron states arises only due to the interaction between a chromophore system and the protein environment and is not accompanied by the motion of nuclei of the reaction subsystem. We establish applicability conditions for the Markov approximation in the framework of this model and show that these conditions are not necessarily satisfied in the protein medium. We represent the spectral function of the "system+heat bath" interaction in the form of one or several Gaussian functions to study specific characteristics of non-Markov dynamics of the final state population, the presence of an induction period and vibrations. The consistency of the computational results obtained for non-Markov dynamics with experimental data confirms the correctness of the proposed approach.

  20. Form Follows Function: Redesigning the School Library Media Center.

    ERIC Educational Resources Information Center

    Perry, Karen

    1997-01-01

    Discusses factors in redesigning school library media centers: electronic resources, electricity, furniture, lighting, and acoustics. Presents a case study of Wake County (North Carolina) Schools and describes the county standards for media center design and renovation for elementary, middle, and high schools. (PEN)

  1. Artificial photosynthetic reaction center with a coumarin-based antenna system.

    PubMed

    Garg, Vikas; Kodis, Gerdenis; Liddell, Paul A; Terazono, Yuichi; Moore, Thomas A; Moore, Ana L; Gust, Devens

    2013-09-26

    In photosynthesis, sunlight is absorbed mainly by antenna chromophores that transfer singlet excitation energy to reaction centers for conversion to useful electrochemical energy. Antennas may likewise be useful in artificial photosynthetic systems that use sunlight to make fuels or electricity. Here, we report the synthesis and spectroscopic properties of a molecular hexad comprising two porphyrin moieties and four coumarin antenna chromophores, all organized by a central hexaphenylbenzene core. Light absorbed by any of the coumarins is transferred to a porphyrin on the 1-10 ps time scale, depending on the site of initial excitation. The quantum yield of singlet energy transfer is 1.0. The energy transfer rate constants are consistent with transfer by the Förster dipole-dipole mechanism. A pyridyl-bearing fullerene moiety self-assembles to the form of the hexad containing zinc porphyrins to yield an antenna-reaction center complex. In the resulting heptad, energy transfer to the porphyrins is followed by photoinduced electron transfer to the fullerene with a time constant of 3 ps. The resulting P(•+)-C60(•-) charge-separated state is formed with an overall quantum yield of 1.0 and decays with a time constant of 230 ps in 1,2-difluorobenzene as the solvent. PMID:23534929

  2. The Friedel-Crafts Reaction - A Sixth Form Project

    ERIC Educational Resources Information Center

    Hodson, D.

    1973-01-01

    Suggests that the Friedel-Crafts reaction, used for synthesizing a wide range of aromatic compounds, is an ideal vehicle for extended senior high school project work in chemistry. Provides a theoretical discussion of the reaction, suggests a number of suitable investigations, and outlines the experimental details. (JR)

  3. Organic Reaction Mechanisms in the Sixth Form Part 2.

    ERIC Educational Resources Information Center

    Simpson, Peter

    1989-01-01

    Presents the mechanistic ideas underlying reactions between nucleophiles and carbonyl compounds as well as some popular misconceptions. Relates reactions of carboxylic acid derivatives to those of aldehydes and ketones. Discusses leaving group ability and the ability of carbonyl oxygen to accept a negative charge. (Author/MVL)

  4. The carboxyl-terminal processing of precursor D1 protein of the photosystem II reaction center.

    PubMed

    Satoh, Kimiyuki; Yamamoto, Yumiko

    2007-01-01

    The D1 protein, a key subunit of photosystem II reaction center, is synthesized as a precursor form with a carboxyl-terminal extension, in oxygenic photosynthetic organisms with some exceptions. This part of the protein is removed by the action of an endopeptidase, and the proteolytic processing is indispensable for the manifestation of oxygen-evolving activity in photosynthesis. The carboxyl-terminus of mature D1 protein, which appears upon the cleavage, has recently been demonstrated to be a ligand for a manganese atom in the Mn(4)Ca-cluster, which is responsible for the water oxidation chemistry in photosystem II, based on the isotope-edited Fourier transform infrared spectroscopy and the X-ray crystallography. On the other hand, the structure of a peptidase involved in the cleavage of precursor D1 protein has been resolved at a higher resolution, and the enzyme-substrate interactions have extensively been analyzed both in vivo and in vitro. The present article briefly summarizes the history of research and the present state of our knowledge on the carboxyl-terminal processing of precursor D1 protein in the photosystem II reaction center. PMID:17551844

  5. Metal forming at the center of excellence for the synthesis and processing of advanced materials

    NASA Astrophysics Data System (ADS)

    Hughes, D. A.; Kassner, M. E.; Stout, M. G.; Vetrano, J. S.

    1998-06-01

    The U.S. Department of Energy’s Office of Basic Energy Sciences recently established the Center for Excellence in the Synthesis and Processing of Advanced Materials. Projects at the center typically include several national laboratories, industrial partners, and universities; metal forming is one of eight projects within the center. This article describes the center’s metal forming project, which emphasizes aluminum alloy forming, particularly as applicable to the automotive industry.

  6. Purification and spectroscopic characterization of photosystem II reaction center complexes isolated with or without Triton X-100.

    PubMed

    Eijckelhoff, C; van Roon, H; Groot, M L; van Grondelle, R; Dekker, J P

    1996-10-01

    The pigment composition of the isolated photosystem II reaction center complex in its most stable and pure form currently is a matter of considerable debate. In this contribution, we present a new method based on a combination of gel filtration chromatography and diode array detection to analyze the composition of photosystem II reaction center preparations. We show that the method is very sensitive for the detection of contaminants such as the core antenna protein CP47, pigment-free and denatured reaction center proteins, and unbound chlorophyll and pheophytin molecules. We also present a method by which the photosystem II reaction center complex is highly purified without using Triton X-100, and we show that in this preparation the contamination with CP47 is less than 0.1%. The results strongly indicate that the photosystem II reaction center complex in its most stable and pure form binds six chlorophyll a, two pheophytin a, and two beta-carotene molecules and that the main effect of Triton X-100 is the extraction of beta-carotene from the complex. Analysis of 4 K absorption and emission spectra indicates that the spectroscopic properties of this preparation are similar to those obtained by a short Triton X-100 treatment. In contrast, preparations obtained by long Triton X-100 treatment show decreased absorption of the shoulder at 684 nm in the 4 K absorption spectrum and an increased number of pigments that trap excitation energy at very low temperatures. We conclude that the 684 nm shoulder in the 4 K absorption spectrum should at least in part be attributed to the primary electron donor of photosystem II. PMID:8841130

  7. Protein structure, electron transfer and evolution of prokaryotic photosynthetic reaction centers

    NASA Technical Reports Server (NTRS)

    Blankenship, R. E.

    1994-01-01

    Photosynthetic reaction centers from a variety of organisms have been isolated and characterized. The groups of prokaryotic photosynthetic organisms include the purple bacteria, the filamentous green bacteria, the green sulfur bacteria and the heliobacteria as anoxygenic representatives as well as the cyanobacteria and prochlorophytes as oxygenic representatives. This review focuses on structural and functional comparisons of the various groups of photosynthetic reaction centers and considers possible evolutionary scenarios to explain the diversity of existing photosynthetic organisms.

  8. Quality check of spontaneous adverse drug reaction reporting forms of different countries.

    PubMed

    Bandekar, M S; Anwikar, S R; Kshirsagar, N A

    2010-11-01

    Adverse drug reactions (ADRs) are considered as one of the leading causes of death among hospitalized patients. Thus reporting of adverse drug reactions become an important phenomenon. Spontaneous adverse drug reaction reporting form is an essential component and a major tool of the pharmacovigilance system of any country. This form is a tool to collect information of ADRs which helps in establishing the causal relationship between the suspected drug and the reaction. As different countries have different forms, our aim was to study, analyze the suspected adverse drug reaction reporting form of different countries, and assess if these forms can capture all the data regarding the adverse drug reaction. For this analysis we identified 18 points which are essential to make a good adverse drug reaction report, enabling proper causality assessment of adverse reaction to generate a safety signal. Adverse drug reaction reporting forms of 10 different countries were collected from the internet and compared for 18 points like patient information, information about dechallenge-rechallenge, adequacy of space and columns to capture necessary information required for its causality assessment, etc. Of the ADR forms that we analyzed, Malaysia was the highest scorer with 16 out of 18 points. This study reveals that there is a need to harmonize the ADR reporting forms of all the countries because there is a lot of discrepancy in data captured by the existing ADR reporting forms as the design of these forms is different for different countries. These incomplete data obtained result in inappropriate causality assessment. PMID:20845409

  9. Forming a Research Question from a Multi-Center Database

    PubMed Central

    Likosky, Donald S.

    2009-01-01

    Abstract: It is not uncommon for individuals to ask biostatisiticians and epidemiologists to assist them with a research project. Often the request is in the shape of statistical analyses. However, most of these requests are nothing more than missed opportunities. This manuscript focuses on the reasons underlying such a statement. Most individuals might say that the most important aspect of a study is its conclusion. Many who would disagree with this sentiment and would feel that the most important aspect of a study rather is the question it intends to address. If this question is not articulated sufficiently, any additional information stemming from the study will most likely be irrelevant. Herein, some principles for formulating (successfully) a question from a multi-center database will be described. PMID:19361039

  10. High Throughput Engineering to Revitalize a Vestigial Electron Transfer Pathway in Bacterial Photosynthetic Reaction Centers*

    PubMed Central

    Faries, Kaitlyn M.; Kressel, Lucas L.; Wander, Marc J.; Holten, Dewey; Laible, Philip D.; Kirmaier, Christine; Hanson, Deborah K.

    2012-01-01

    Photosynthetic reaction centers convert light energy into chemical energy in a series of transmembrane electron transfer reactions, each with near 100% yield. The structures of reaction centers reveal two symmetry-related branches of cofactors (denoted A and B) that are functionally asymmetric; purple bacterial reaction centers use the A pathway exclusively. Previously, site-specific mutagenesis has yielded reaction centers capable of transmembrane charge separation solely via the B branch cofactors, but the best overall electron transfer yields are still low. In an attempt to better realize the architectural and energetic factors that underlie the directionality and yields of electron transfer, sites within the protein-cofactor complex were targeted in a directed molecular evolution strategy that implements streamlined mutagenesis and high throughput spectroscopic screening. The polycistronic approach enables efficient construction and expression of a large number of variants of a heteroligomeric complex that has two intimately regulated subunits with high sequence similarity, common features of many prokaryotic and eukaryotic transmembrane protein assemblies. The strategy has succeeded in the discovery of several mutant reaction centers with increased efficiency of the B pathway; they carry multiple substitutions that have not been explored or linked using traditional approaches. This work expands our understanding of the structure-function relationships that dictate the efficiency of biological energy-conversion reactions, concepts that will aid the design of bio-inspired assemblies capable of both efficient charge separation and charge stabilization. PMID:22247556

  11. Direct Reaction of Amides with Nitric Oxide To Form Diazeniumdiolates

    PubMed Central

    2015-01-01

    We report the apparently unprecedented direct reaction of nitric oxide (NO) with amides to generate ions of structure R(C=O)NH–N(O)=NO–, with examples including R = Me (1a) or 3-pyridyl (1b). The sodium salts of both released NO in pH 7.4 buffer, with 37 °C half-lives of 1–3 min. As NO-releasing drug candidates, diazeniumdiolated amides would have the advantage of generating only 1 equiv of base on hydrolyzing exhaustively to NO, in contrast to their amine counterparts, which generate 2 equiv of base. PMID:25210948

  12. Photosynthetic antennas and reaction centers: Current understanding and prospects for improvement

    SciTech Connect

    Blankenship, R.E.

    1996-09-01

    A brief introduction to the principles, structures and kinetic processes that take place in natural photosynthetic reaction center complexes is presented. Energy is first collected by an antenna system, and is transferred to a reaction center complex where primary electron transfer takes place. Secondary reactions lead to oxidation of water and reduction of CO{sub 2} in some classes of organisms. Antenna systems are highly regulated to maximize energy collection efficiency while avoiding photodamage. Some areas that are presently not well understood are listed.

  13. Spatial distribution of the electric potential from photosystem I reaction centers in lipid vesicles.

    PubMed

    Pennisi, C P; Greenbaum, E; Yoshida, K

    2008-06-01

    Photosynthetic reaction centers are integral membrane complexes that produce a net transmembrane charge separation in response to light. The Photosystem I (PSI) complex is a thoroughly studied reaction center that has been proposed as a nanoscale photovoltaic structure in diverse applications, including activation of excitable cells by triggering of voltage-gated ion channels. An electrostatic model of a spherical lipid vesicle embedded with PSI and suspended in an aqueous medium is presented. The distribution of the electric potential is obtained by solving the nonlinear Poisson-Boltzmann equation with the finite-element method. The model predicts a maximum potential difference of 1.3 V between charges. This value depends mostly on the intrinsic dielectric constants of the reaction center and distance between charges. However, the potential distribution near the reaction center depends on the ionic strength of the aqueous medium. When the ionic strength is zero, the vesicle develops a transmembrane potential that increases linearly with the density of reaction centers. When the ionic strength increases, this potential difference approaches to zero. The main results of the simulations are consistent with previously reported experimental data. Based on the presented results, the potential application of PSI to light activation of voltage-gated ion channels is discussed. PMID:18556264

  14. Resident Reactions to Person-Centered Communication by Long-Term Care Staff.

    PubMed

    Savundranayagam, Marie Y; Sibalija, Jovana; Scotchmer, Emma

    2016-09-01

    Long-term care staff caregivers who are person centered incorporate the life history, preferences, and feelings of residents with dementia during care interactions. Communication is essential for person-centered care. However, little is known about residents' verbal reactions when staff use person-centered communication. Accordingly, this study investigated the impact of person-centered communication and missed opportunities for such communication by staff on resident reactions. Conversations (N = 46) between staff-resident dyads were audio-recorded during routine care tasks over 12 weeks. Staff utterances were coded for person-centered communication and missed opportunities. Resident utterances were coded for positive reactions, such as cooperation, and negative reactions, such as distress. Linear regression analyses revealed that the more staff used person-centered communication, the more likely that residents reacted positively. Additionally, the more missed opportunities in a conversation, the more likely that the residents reacted negatively. Conversation illustrations elaborate on the quantitative findings and implications for staff training are discussed. PMID:26744507

  15. Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions.

    PubMed

    Kirilovsky, Diana

    2015-10-01

    Photosynthetic organisms tightly regulate the energy arriving to the reaction centers in order to avoid photodamage or imbalance between the photosystems. To this purpose, cyanobacteria have developed mechanisms involving relatively rapid (seconds to minutes) changes in the photosynthetic apparatus. In this review, two of these processes will be described: orange carotenoid protein(OCP)-related photoprotection and state transitions which optimize energy distribution between the two photosystems. The photoactive OCP is a light intensity sensor and an energy dissipater. Photoactivation depends on light intensity and only the red-active OCP form, by interacting with phycobilisome cores, increases thermal energy dissipation at the level of the antenna. A second protein, the "fluorescence recovery protein", is needed to recover full antenna capacity under low light conditions. This protein accelerates OCP conversion to the inactive orange form and plays a role in dislodging the red OCP protein from the phycobilisome. The mechanism of state transitions is still controversial. Changes in the redox state of the plastoquinone pool induce movement of phycobilisomes and/or photosystems leading to redistribution of energy absorbed by phycobilisomes between PSII and PSI and/or to changes in excitation energy spillover between photosystems. The different steps going from the induction of redox changes to movement of phycobilisomes or photosystems remain to be elucidated. PMID:25139327

  16. An x-ray absorption study of the iron site in bacterial photosynthetic reaction centers.

    PubMed Central

    Bunker, G; Stern, E A; Blankenship, R E; Parson, W W

    1982-01-01

    Measurements were made of the extended x-ray absorption fine structure (EXAFS) of the iron site in photosynthetic reaction centers from the bacterium Rhodopseudomonas sphaeroides. Forms with two quinones, two quinones with added o-phenanthroline, and one quinone were studied. Only the two forms containing two quinones maintained their integrity and were analyzed. The spectra show directly that the added o-phenanthroline does not chelate the iron atom. Further analysis indicates that the iron is octahedrally coordinated by nitrogen and/or oxygen atoms located at various distances, with the average value of about 2.14 A. The analysis suggests that most of the ligands are nitrogens and that three of the nitrogen ligands belong to histidine rings. This interpretation accounts for several unusual features of the EXAFS spectrum. We speculate that the quinones are bound to the histidine rings in some manner. Qualitative features of the absorption edge spectra also are discussed and are related to the Fe-ligand distance. PMID:6977382

  17. Time-resolved tryptophan fluorescence in photosynthetic reaction centers from Rhodobacter sphaeroides

    NASA Technical Reports Server (NTRS)

    Godik, V. I.; Blankenship, R. E.; Causgrove, T. P.; Woodbury, N.

    1993-01-01

    Tryptophan fluorescence of reaction centers isolated from Rhodobacter sphaeroides, both stationary and time-resolved, was studied. Fluorescence kinetics were found to fit best a sum of four discrete exponential components. Half of the initial amplitude was due to a component with a lifetime of congruent to 60 ps, belonging to Trp residues, capable of efficient transfer of excitation energy to bacteriochlorophyll molecules of the reaction center. The three other components seem to be emitted by Trp ground-state conformers, unable to participate in such a transfer. Under the influence of intense actinic light, photooxidizing the reaction centers, the yield of stationary fluorescence diminished by congruent to 1.5 times, while the number of the kinetic components and their life times remained practically unchanged. Possible implications of the observed effects for the primary photosynthesis events are considered.

  18. Protein dynamics control of electron transfer in photosynthetic reaction centers from Rps. sulfoviridis.

    PubMed

    Medvedev, E S; Kotelnikov, A I; Barinov, A V; Psikha, B L; Ortega, J M; Popović, D M; Stuchebrukhov, A A

    2008-03-13

    In the cycle of photosynthetic reaction centers, the initially oxidized special pair of bacteriochlorophyll molecules is subsequently reduced by an electron transferred over a chain of four hemes of the complex. Here, we examine the kinetics of electron transfer between the proximal heme c-559 of the chain and the oxidized special pair in the reaction center from Rps. sulfoviridis in the range of temperatures from 294 to 40 K. The experimental data were obtained for three redox states of the reaction center, in which one, two, or three nearest hemes of the chain are reduced prior to special pair oxidation. The experimental kinetic data are analyzed in terms of a Sumi-Marcus-type model developed in our previous paper,1 in which similar measurements were reported on the reaction centers from Rps. viridis. The model allows us to establish a connection between the observed nonexponential electron-transfer kinetics and the local structural relaxation dynamics of the reaction center protein on the microsecond time scale. The activation energy for relaxation dynamics of the protein medium has been found to be around 0.1 eV for all three redox states, which is in contrast to a value around 0.4-0.6 eV in Rps. viridis.1 The possible nature of the difference between the reaction centers from Rps. viridis and Rps. sulfoviridis, which are believed to be very similar, is discussed. The role of the protein glass transition at low temperatures and that of internal water molecules in the process are analyzed. PMID:18284231

  19. Protein Dynamics Control of Electron Transfer in Photosynthetic Reaction Centers from Rps. Sulfoviridis

    PubMed Central

    Medvedev, E. S.; Kotelnikov, A. I.; Barinov, A. V.; Psikha, B. L.; Ortega, J. M.; Popović, D. M.; Stuchebrukhov, A. A.

    2009-01-01

    In the cycle of photosynthetic reaction centers, the initially oxidized special pair of bacteriochlorophyll molecules is subsequently reduced by an electron transferred over a chain of four hemes of the complex. Here, we examine the kinetics of electron transfer between the proximal heme c-559 of the chain and the oxidized special pair in the reaction center from Rps. sulfoviridis in the range of temperatures from 294 to 40 K. The experimental data were obtained for three redox states of the reaction center, in which one, two, or three nearest hemes of the chain are reduced prior to special pair oxidation. The experimental kinetic data are analyzed in terms of a Sumi–Marcus-type model developed in our previous paper,1 in which similar measurements were reported on the reaction centers from Rps. viridis. The model allows us to establish a connection between the observed nonexponential electron-transfer kinetics and the local structural relaxation dynamics of the reaction center protein on the microsecond time scale. The activation energy for relaxation dynamics of the protein medium has been found to be around 0.1 eV for all three redox states, which is in contrast to a value around 0.4–0.6 eV in Rps. viridis.1 The possible nature of the difference between the reaction centers from Rps. viridis and Rps. sulfoviridis, which are believed to be very similar, is discussed. The role of the protein glass transition at low temperatures and that of internal water molecules in the process are analyzed. PMID:18284231

  20. Photochemistry of benzylallene: ring-closing reactions to form naphthalene.

    PubMed

    Sebree, Joshua A; Kidwell, Nathanael M; Selby, Talitha M; Amberger, Brent K; McMahon, Robert J; Zwier, Timothy S

    2012-01-18

    Conformer-specific, vibrationally resolved electronic spectroscopy of benzylallene (4-phenyl-1,2-butadiene) is presented along with a detailed analysis of the products formed via its ultraviolet photoexcitation. Benzylallene is the minor product of the recombination of benzyl and propargyl radicals. The mass-selective resonant two-photon ionization spectrum of benzylallene was recorded under jet-cooled conditions, with its S(0)-S(1) origin at 37,483 cm(-1). UV-UV holeburning spectroscopy was used to show that only one conformer was present in the expansion. Rotational band contour analysis provided rotational constants and transition dipole moment direction consistent with a conformation in which the allene side chain is in the anti position, pointing away from the phenyl ring. The photochemistry of benzylallene was studied in a pump-probe geometry in which photoexcitation occurred by counter-propagating the expansion with a photoexcitation laser. The laser was timed to interact with the gas pulse in a short tube that extended the collisional region of the expansion. The products were cooled during expansion of the gas mixture into vacuum, before being interrogated using mass-selective resonant two-photon ionization. The UV-vis spectra of the photochemical products were compared to literature spectra for identification. Several wavelengths were chosen for photoexcitation, ranging from the S(0)-S(1) origin transition (266.79 nm) to 193 nm. Comparison of the product spectral intensities as a function of photoexcitation wavelength provides information on the wavelength dependence of the product yields. Photoexcitation at 266.79 nm yielded five products (benzyl radical, benzylallenyl radical, 1-phenyl-1,3-butadiene, 1,2-dihydronaphthalene, and naphthalene), with naphthalene and benzylallenyl radicals dominant. At 193 nm, the benzylallenyl radical signal was greatly reduced in intensity, while three additional C(10)H(8) isomeric products were observed. An extensive set

  1. Recent developments in enzyme promiscuity for carbon-carbon bond-forming reactions.

    PubMed

    Miao, Yufeng; Rahimi, Mehran; Geertsema, Edzard M; Poelarends, Gerrit J

    2015-04-01

    Numerous enzymes have been found to catalyze additional and completely different types of reactions relative to the natural activity they evolved for. This phenomenon, called catalytic promiscuity, has proven to be a fruitful guide for the development of novel biocatalysts for organic synthesis purposes. As such, enzymes have been identified with promiscuous catalytic activity for, one or more, eminent types of carbon-carbon bond-forming reactions like aldol couplings, Michael(-type) additions, Mannich reactions, Henry reactions, and Knoevenagel condensations. This review focuses on enzymes that promiscuously catalyze these reaction types and exhibit high enantioselectivities (in case chiral products are obtained). PMID:25598537

  2. Genetic probes of structure/function relationships in the Q{sub B} binding site of the photosynthetic reaction center

    SciTech Connect

    Hanson, D.K.; Tiede, D.M.; Nance, S.L.; Chang, Chong-Hwan; Schiffer, M.

    1991-06-25

    In photosynthetic reaction centers, a quinone molecule, Q{sub B}, is the terminal acceptor in light-induced electron transfer. The crystal structure of the reaction center implicates the protonatable amiho acid residues L212Glu and L213Asp in the binding of Q{sub B} to the reaction center and in proton transfer to the anionic forms of Q{sub B} generated by electron transfer from Q{sub A}. Here we report the construction of the double mutant L212Ala-L213Ala by site-specific mutagenesis, and the isolation and preliminary biophysical characterization of revertant and suppressor strains that have regained the ability to grow under photosynthetic conditions. Our results show that neither L212Glu nor L213Asp is essential for efficient light-induced electron or proton transfer in Rhodobacter capsulatus and that second-site mutations, located within the QB binding pocket or at a more distant site, can compensate for mutations at L212 and L213. Acquisition of a single negatively charged residue (at position L213, or on the other side of the binding pocket at position L225) or loss of a positively charged residue (at position M231) is sufficient to restore activity to the complex.

  3. Reactions to Discrimination, Stigmatization, Ostracism, and Other Forms of Interpersonal Rejection: A Multimotive Model

    ERIC Educational Resources Information Center

    Richman, Laura Smart; Leary, Mark R.

    2009-01-01

    This article describes a new model that provides a framework for understanding people's reactions to threats to social acceptance and belonging as they occur in the context of diverse phenomena such as rejection, discrimination, ostracism, betrayal, and stigmatization. People's immediate reactions are quite similar across different forms of…

  4. Method of densifying an article formed of reaction bonded silicon nitride

    NASA Technical Reports Server (NTRS)

    Mangels, John A. (Inventor)

    1982-01-01

    A method of densifying an article formed of reaction bonded silicon nitride is disclosed. The reaction bonded silicon nitride article is packed in a packing mixture consisting of silicon nitride powder and a densification aid. The reaction bonded silicon nitride article and packing powder are sujected to a positive, low pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause any open porosity originally found in the reaction bonded silicon nitride article to be substantially closed. Thereafter, the reaction bonded silicon nitride article and packing powder are subjected to a positive high pressure nitrogen gas treatment while being heated to a treatment temperature and for a treatment time to cause a sintering of the reaction bonded silicon nitride article whereby the strength of the reaction bonded silicon nitride article is increased.

  5. Energies and kinetics of radical pairs involving bacteriochlorophyll and bacteriopheophytin in bacterial reaction centers

    PubMed Central

    Shuvalov, Vladimir A.; Parson, William W.

    1981-01-01

    Absorbance changes reflecting the formation of a transient radical-pair state, PF, were measured in reaction centers from Rhodopseudomonas sphaeroides under conditions that blocked electron transfer to a later carrier (a quinone, Q). The temperature dependence of the absorbance changes suggests that PF is an equilibrium mixture of two states, which appear to be mainly 1[P[unk]B[unk

  6. PsbN is required for assembly of the photosystem II reaction center in Nicotiana tabacum.

    PubMed

    Torabi, Salar; Umate, Pavan; Manavski, Nikolay; Plöchinger, Magdalena; Kleinknecht, Laura; Bogireddi, Hanumakumar; Herrmann, Reinhold G; Wanner, Gerhard; Schröder, Wolfgang P; Meurer, Jörg

    2014-03-01

    The chloroplast-encoded low molecular weight protein PsbN is annotated as a photosystem II (PSII) subunit. To elucidate the localization and function of PsbN, encoded on the opposite strand to the psbB gene cluster, we raised antibodies and inserted a resistance cassette into PsbN in both directions. Both homoplastomic tobacco (Nicotiana tabacum) mutants psbN-F and psbN-R show essentially the same PSII deficiencies. The mutants are extremely light sensitive and failed to recover from photoinhibition. Although synthesis of PSII proteins was not altered significantly, both mutants accumulated only ∼25% of PSII proteins compared with the wild type. Assembly of PSII precomplexes occurred at normal rates, but heterodimeric PSII reaction centers (RCs) and higher order PSII assemblies were not formed efficiently in the mutants. The psbN-R mutant was complemented by allotopic expression of the PsbN gene fused to the sequence of a chloroplast transit peptide in the nuclear genome. PsbN represents a bitopic trans-membrane peptide localized in stroma lamellae with its highly conserved C terminus exposed to the stroma. Significant amounts of PsbN were already present in dark-grown seedling. Our data prove that PsbN is not a constituent subunit of PSII but is required for repair from photoinhibition and efficient assembly of the PSII RC. PMID:24619613

  7. In vivo assessment of effect of phytotoxin tenuazonic acid on PSII reaction centers.

    PubMed

    Chen, Shiguo; Strasser, Reto Jörg; Qiang, Sheng

    2014-11-01

    Tenuazonic acid (TeA), a phytotoxin produced by the fungus Alternaria alternata isolated from diseased croftonweed (Ageratina adenophora), exhibits a strong inhibition in photosystem II (PSII) activity. In vivo chlorophyll fluorescence transients of the host plant croftonweed, show that the dominant effect of TeA is not on the primary photochemical reaction but on the biochemical reaction after QA. The most important action site of TeA is the QB site on the PSII electron-acceptor side, blocking electron transport beyond QA(-) by occupying the QB site in the D1 protein. However, TeA does not affect the antenna pigments, the energy transfer from antenna pigment molecules to reaction centers (RCs), and the oxygen-evolving complex (OEC) at the donor side of PSII. TeA severely inactivated PSII RCs. The fraction of non-QA reducing centers and non-QB reducing centers show a time- and concentration-dependent linear increase. Conversely, the amount of active QA or QB reducing centers declined sharply in a linear way. The fraction of non-QB reducing centers calculated from data of fluorescence transients is close to the number of PSII RCs with their QB site filled by TeA. An increase of the step-J level (VJ) in the OJIP fluorescence transients attributed to QA(-) accumulation due to TeA bound to the QB site is a typical characteristic response of the plants leaf with respect to TeA penetration. PMID:25240106

  8. Structure-function studies of the photosynthetic reaction center using herbicides that compete for the quinone binding site

    SciTech Connect

    Bylina, E.J.

    1995-12-31

    Certain classes of herbicides act as competitive inhibitors of the photosynthetic reaction center. Genetic engineering techniques can be used to generate photosynthetic reaction centers which contain altered quinone binding sites. A genetic system for rapidly screening herbicides developed in the photosynthetic bacterium Rhodobacter capsulatus has been used to examine the effect of different s-triazine herbicides on the growth of bacteria containing reaction centers with altered quinone binding sites. Structural insights into herbicide binding have been obtained by determining the level of resistance or sensitivity to structurally related herbicides in these modified reaction centers.

  9. Photochemical reactions of metal nitrosyl complexes. Mechanisms of NO reactions with biologically relevant metal centers

    DOE PAGESBeta

    Ford, Peter C.

    2001-01-01

    Tmore » he discoveries that nitric oxide (a.k.a. nitrogen monoxide) serves important roles in mammalian bioregulation and immunology have stimulated intense interest in the chemistry and biochemistry of NO and derivatives such as metal nitrosyl complexes. Also of interest are strategies to deliver NO to biological targets on demand. One such strategy would be to employ a precursor which displays relatively low thermal reactivity but is photochemically active to release NO.his proposition led us to investigate laser flash and continuous photolysis kinetics of nitrosyl complexes such as the Roussin's iron-sulfur-nitrosyl cluster anions Fe 2 S 2 ( NO ) 4 2 − and Fe 4 S 3 ( NO ) 7 − and several ruthenium salen and porphyrin nitrosyls.hese include studies using metal-nitrosyl photochemistry as a vehicle for delivering NO to hypoxic cell cultures in order to sensitize γ -radiation damage. Also studied were the rates and mechanisms of NO “on” reactions with model water soluble heme compounds, the ferriheme protein met-myoglobin and various ruthenium complexes using ns laser flash photolysis techniques. An overview of these studies is presented.« less

  10. Wittig reactions on photoprotoporphyrin IX: new synthetic models for the special pair of the photosynthetic reaction center.

    PubMed

    Zheng, G; Shibata, M; Dougherty, T J; Pandey, R K

    2000-01-28

    A first example of spirochlorin-chlorin dimer with fixed distances and orientations as potential model for the "special pair" of the photosynthetic reaction center is discussed. For the preparation of such a novel structure, the Wittig reagent of the desired "spacer" 5 was reacted with photoprotoporphyrin IX dimethyl ester 3 to produce the intermediate dimer 6, which on intramolecular [4 + 2] Diels-Alder cycloaddition gave an unexpected spirochlorin-chlorin dimer 9. Dehydration of dimer 6 under acid-catalyzed conditions generated the corresponding spirochlorin-porphyrin dimer 16 in quantitative yield. The asymmetry in dimer 6 caused by the biphenyl-type anisotropic effect was confirmed by NMR and model studies. The formation of dihydrobenzoporphyrin 14 by reacting chlorin 3 with the phosphonium salt of p-methylbenzylbromide 10 and isolation of 8-phenanthrenevinylporphyrin 19 from chlorin 7 further confirmed our proposed mechanism for the formation of a spirochlorin-chlorin dimer 9. Following a similar approach, chlorin 3 on reacting with bis-phosphonium salt of 4, 4'-bischloromethylbiphenyl produced conjugated chlorin dimer 25. The spectroscopic data obtained from these dimers suggest that, in these compounds, the individual chromophores are not behaving as an individual molecule, but as a single macrocycle. To examine whether the pi-pi interaction exhibited by dimer 9 resembles the structural arrangement of bacteriochlorophylls in reaction center (RC), we investigated the geometrical parameters used to characterize the pi-pi interactions in tetrapyrrolic macrocycles. Starting from the crystallographic coordinates of 9, the molecular mechanics energy minimization was performed to obtain the model dimer structure. The geometrical parameters that measure the single pyrrole ring overlap were used to compare the model structure with the crystallographic coordinates of the special pair in photosynthetic reaction center. The results indicated that the ring A of

  11. Ultrafast Electron Transfer Kinetics in the LM Dimer of Bacterial Photosynthetic Reaction Center from Rhodobacter sphaeroides.

    PubMed

    Sun, Chang; Carey, Anne-Marie; Gao, Bing-Rong; Wraight, Colin A; Woodbury, Neal W; Lin, Su

    2016-06-23

    It has become increasingly clear that dynamics plays a major role in the function of many protein systems. One system that has proven particularly facile for studying the effects of dynamics on protein-mediated chemistry is the bacterial photosynthetic reaction center from Rhodobacter sphaeroides. Previous experimental and computational analysis have suggested that the dynamics of the protein matrix surrounding the primary quinone acceptor, QA, may be particularly important in electron transfer involving this cofactor. One can substantially increase the flexibility of this region by removing one of the reaction center subunits, the H-subunit. Even with this large change in structure, photoinduced electron transfer to the quinone still takes place. To evaluate the effect of H-subunit removal on electron transfer to QA, we have compared the kinetics of electron transfer and associated spectral evolution for the LM dimer with that of the intact reaction center complex on picosecond to millisecond time scales. The transient absorption spectra associated with all measured electron transfer reactions are similar, with the exception of a broadening in the QX transition and a blue-shift in the QY transition bands of the special pair of bacteriochlorophylls (P) in the LM dimer. The kinetics of the electron transfer reactions not involving quinones are unaffected. There is, however, a 4-fold decrease in the electron transfer rate from the reduced bacteriopheophytin to QA in the LM dimer compared to the intact reaction center and a similar decrease in the recombination rate of the resulting charge-separated state (P(+)QA(-)). These results are consistent with the concept that the removal of the H-subunit results in increased flexibility in the region around the quinone and an associated shift in the reorganization energy associated with charge separation and recombination. PMID:27243380

  12. Photochemical reactions of chlorophyll in dehydrated photosystem II: two chlorophyll forms (680 and 700 nm).

    PubMed

    Heber, Ulrich; Shuvalov, Vladimir A

    2005-06-01

    Lichens and phototolerant poikilohydric mosses differ from spinach leaves, fern fronds or photosensitive mosses in that they show strongly decreased Fo chlorophyll fluorescence after drying. This desiccation-induced fluorescence loss is rapidly reversible under rehydration. Fluorescence emission from Photosystem II at 685 nm was decreased more strongly by dehydration than 720 nm emission. Reaction centers of Photosystem II lose activity on dehydration and regain it on hydration. Heating of desiccated lichens increased Fo chlorophyll fluorescence. The activation energy for the reversible part of the temperature-dependent fluorescence increase was 0.045 eV, which corresponds to the energy difference between the 680 and 697 nm absorption bands. In desiccated chlorolichens such as Parmelia sulcata, heating induces the appearance of positive variable fluorescence related to the reversible reduction of QA due to overcoming the energy barrier. This is interpreted to provide information on the mechanism of photoprotection: energy is dissipated by changing Chl680 or P680 into a chlorophyll form, which absorbs at 700 nm and emits light at 720 nm (Chl-720 or P680(700)) with a low quantum yield. Dissipation of light energy in this trap is activated by desiccation. PMID:16049759

  13. Tropospheric reactions of the haloalkyl radicals formed from hydroxyl radical reaction with a series of alternative fluorocarbons

    NASA Technical Reports Server (NTRS)

    Atkinson, Roger

    1990-01-01

    In the present assessment, the hydrogen containing halocarbons being considered as alternatives to the the presently used chlorofluorocarbons are the hydrochlorofluorocarbons (HCFCs) 123 (CF3CHCl2), 141b (CFCl2CH3), 142b (CF2ClCH3), 22 (CHF2Cl) and 124 (CF3CHFCl) and the hydrofluorocarbons (HFCs) 134a (CF3CH2F), 152a (CHF2CH3) and 125 (CF3CHF2). All of these HCFCs and HFCs will react with the hydroxyl (OH) radical in the troposphere, giving rise to haloalkyl radicals which then undergo a complex series of reactions in the troposphere. These reactions of the haloalkyl radicals formed from the initial OH radical reactions with the HCFCs and HFCs under tropospheric conditions are the focus here.

  14. IDENTIFICATION OF CASO4 FORMED BY REACTION OF CAO AND SO2

    EPA Science Inventory

    The article discusses the XRD-determination of the identity of CaSO4, formed by the reaction between CaO and S02, and the support of that determination by density measurements with helium pycnometry. The anhydrous CaS04 compound formed has an orthorhombic crystal structure and an...

  15. Normal form and limit cycle bifurcation of piecewise smooth differential systems with a center

    NASA Astrophysics Data System (ADS)

    Wei, Lijun; Zhang, Xiang

    2016-07-01

    In this paper we prove that any Σ-center (either nondegenerate or degenerate) of a planar piecewise Cr smooth vector field Z is topologically equivalent to that of Z0: (x ˙ , y ˙) = (- 1 , 2 x) for y ≥ 0, (x ˙ , y ˙) = (1 , 2 x) for y ≤ 0, and that the homeomorphism between Z and Z0 is Cr smoothness when restricted to each side of the switching line except at the center p. We illustrate by examples that there are degenerate Σ-centers whose flows are conjugate to that of Z0, and also there exist nondegenerate Σ-centers whose flows cannot be conjugate to that of Z0. Finally applying the normal form Z0 together with the piecewise smooth equivalence, we study the number of limit cycles which can be bifurcated from the Σ-center of Z.

  16. Export or recombination of charges in reaction centers in intact cells of photosynthetic bacteria.

    PubMed

    Asztalos, Emese; Maróti, Péter

    2009-12-01

    The kinetics and thermodynamics of forward and reverse electron transfer around the reaction center of purple bacterium Rhodobacter sphaeroides were studied in vivo by flash-excited delayed fluorescence, prompt fluorescence (induction) and kinetic difference absorption. By protection of the photomultiplier from intense bacteriochlorophyll prompt fluorescence evoked by laser excitation, the time resolution of the fluorometer was reduced typically 10 micros. Two precursor states of the delayed fluorescence were identified: P(+)Q(A)(-) and cyt c(2)(3+)Q(A)(-) whose enthalpy levels were 340 meV and 1020 meV below A, respectively. The free energy of the P(+)Q(A)(-) state relative to A* was -870 meV in whole cells. Similar values were obtained earlier for isolated reaction center and chromatophore. The free energies of cyt c(2)(3+)Q(A)(-) and P(+)Q(A)(-) states showed no or very weak (-6 meV/pH unit) pH-dependence, respectively, supporting the concept of pH-independent redox midpoint potential of Q(A)/Q(A)(-) in intact cells. In accordance with the multiphasic kinetics of delayed fluorescence, the kinetics of re-opening of the closed reaction center is also complex (it extends up to 1 s) as a consequence of acceptor and donor-side reactions. The control of charge export from the reaction center by light regime, redox agents and inhibitors is investigated. The complex kinetics may arise from the distribution of quinones in different redox states on the acceptor side (Q(B) binding site and pool) and from organization of electron transfer components in supercomplexes. PMID:19555655

  17. Populations of photoinactivated photosystem II reaction centers characterized by chlorophyll a fluorescence lifetime in vivo

    PubMed Central

    Matsubara, Shizue; Chow, Wah Soon

    2004-01-01

    Photosystem (PS) II centers, which split water into oxygen, protons, and electrons during photosynthesis, require light but are paradoxically inactivated by it. Prolonged light exposure concomitantly decreased both the functional fraction of PSII reaction centers and the integral PSII chlorophyll (Chl) a fluorescence lifetime in leaf segments of Capsicum annuum L. Acceleration of photoinactivation of PSII by a pretreatment with the inhibitors/uncoupler lincomycin, DTT, or nigericin further reduced PSII Chl a fluorescence lifetimes. A global analysis of fluorescence lifetime distributions revealed the presence of at least two distinct populations of photoinactivated PSII centers, one at 1.25 ns, and the other at 0.58 ns. Light treatment first increased the 1.25-ns component, a weak quencher, at the expense of a component at 2.22 ns corresponding to functional PSII centers. The 0.58-ns component, a strong quencher, emerged later than the 1.25-ns component. The strongly quenching PSII reaction centers could serve to avoid further damage to themselves and protect their functional neighbors by acting as strong energy sinks. PMID:15601775

  18. Quantum trajectory tests of radical-pair quantum dynamics in CIDNP measurements of photosynthetic reaction centers

    NASA Astrophysics Data System (ADS)

    Tsampourakis, K.; Kominis, I. K.

    2015-11-01

    Chemically induced dynamic nuclear polarization is a ubiquitous phenomenon in photosynthetic reaction centers. The relevant nuclear spin observables are a direct manifestation of the radical-pair mechanism. We here use quantum trajectories to describe the time evolution of radical-pairs, and compare their prediction of nuclear spin observables to the one derived from the radical-pair master equation. While our approach provides a consistent description, we unravel a major inconsistency within the conventional theory, thus challenging the theoretical interpretation of numerous CIDNP experiments sensitive to radical-pair reaction kinetics.

  19. Chemistry of the catalytic conversion of phthalate into its cis-dihydrodiol during the reaction of oxygen with the reduced form of phthalate dioxygenase.

    PubMed

    Tarasev, Michael; Ballou, David P

    2005-04-26

    The phthalate dioxygenase system, a Rieske non-heme iron dioxygenase, catalyzes the dihydroxylation of phthalate to form the 4,5-dihydro-cis-dihydrodiol of phthalate (DHD). It has two components: phthalate dioxygenase (PDO), a multimer with one Rieske-type [2Fe-2S] and one mononuclear Fe(II) center per monomer, and a reductase (PDR) that contains flavin mononucleotide (FMN) and a plant-type ferredoxin [2Fe-2S] center. This work shows that product formation in steady-state reactions is tightly coupled to electron delivery, with 1 dihydrodiol (DHD) of phthalate formed for every 2 electrons delivered from NADH. However, in reactions of reduced PDO with O(2), only about 0.5 DHD is formed per Rieske center that becomes oxidized. Although the product forms rapidly, its release from PDO is slow in these reactions with oxygen that do not include reductase and NADH. EPR data show that, at the completion of the oxidation, iron in the mononuclear center remains in the ferrous state. In contrast, naphthalene dioxygenase (NDO) [Wolfe, M. D., Parales, J. V., Gibson, D. T., and Lipscomb, J. D. (2001) J. Biol. Chem. 276, 1945-1953] and benzoate dioxygenase (BZDO) [Wolfe, M. D., Altier, D. J., Stubna, A., Popescu, C. V., Munck, E., and Lipscomb, J. D. (2002) Biochemistry, 41, 9611-9626], related Rieske non-heme iron dioxygenases, form 1 DHD per Rieske center oxidized, and the mononuclear center iron ends up ferric. Thus, both electrons from reduced NDO and BZDO monomers are used to form the product, whereas only the reduced Rieske centers in PDO become oxidized during production of DHD. This emphasizes the importance of PDO subunit interaction in catalysis. Electron redistribution was practically unaffected by the presence of oxidized PDR. A scheme is presented that emphasizes some of the differences in the mechanisms involved in substrate hydroxylation employed by PDO and either NDO or BZDO. PMID:15835907

  20. Carbon-carbon bond-forming reactions of α-thioaryl carbonyl compounds for the synthesis of complex heterocyclic molecules.

    PubMed

    Biggs-Houck, James E; Davis, Rebecca L; Wei, Jingqiang; Mercado, Brandon Q; Olmstead, Marilyn M; Tantillo, Dean J; Shaw, Jared T

    2012-01-01

    Strategies for the formation of carbon-carbon bonds from the α-thioaryl carbonyl products of substituted lactams are described. Although direct functionalization is possible, a two step process of oxidation and magnesium-sulfoxide exchange has proven optimal. The oxidation step results in the formation of two diastereomers that exhibit markedly different levels of stability toward elimination, which is rationalized on the basis of quantum mechanical calculations and X-ray crystallography. Treatment of the sulfoxide with i-PrMgCl results in the formation of a magnesium enolate that will undergo an intramolecular Michael addition reaction to form two new stereogenic centers. The relationship between the substitution patterns of the sulfoxide substrate and the efficiency of the magnesium exchange reaction are also described. PMID:22023077

  1. Nuclear Reaction and Structure Databases of the National Nuclear Data Center

    SciTech Connect

    Pritychenko, B.; Arcilla, R.; Herman, M. W.; Oblozinsky, P.; Rochman, D.; Sonzogni, A. A.; Tuli, J. K.; Winchell, D. F.

    2006-03-13

    The National Nuclear Data Center (NNDC) collects, evaluates, and disseminates nuclear physics data for basic research and applied nuclear technologies. In 2004, the NNDC migrated all databases into modern relational database software, installed new generation of Linux servers and developed new Java-based Web service. This nuclear database development means much faster, more flexible and more convenient service to all users in the United States. These nuclear reaction and structure database developments as well as related Web services are briefly described.

  2. Isolation and characterization of photosynthetic reaction centers from Rhodopseudomonas capsulata and Rhodopseudomonas sphaeroides

    SciTech Connect

    Worland, S.T.

    1984-09-01

    Reaction centers were isolated by affinity chromatography on equine cytochrome C. Peripheral proteins were removed with 0.05% LDAO. Absorption and EPR spectra and bleaching assays indicate that the reaction centers retained their electron donors and acceptors in the native environment. Three reaction center polypeptides were isolated and submitted for amino-terminal sequence determination. By comparing these sequences to those deduced from DNA, it was established that the M and L subunits are post-translationally modified to remove the aminoterminal Met, whereas the H subunit is not. Inhibition of O/sub 2/ evolution in photosystem II particles from spinach by naphthoquinone derivatives show O/sub 2/ inhibition by bromomethyl and acetoxymethyl derivatives but not with hydroxymethyl derivatives. Inhibition by acetoxymethyl derivatives in irreversible and dependent on illumination suggesting that reduction of the quinone is necessary. Therefore acetoxymethyl derivatives may be useful as suicide reagents for labelling quinone binding sites. Procedures were developed to extract one or both of the quinones present in reaction centers and preserve the integrity of the co-factor binding sites. The H and M subunits were cleaned using furmic acid. Both fragments were isolated from the H subunit, while the larger fragment was isolated from the M subunit. Electrophoretic mobilities of the isolated fragments agrees well with the expected molecular weights. The L subunit was digested with Staphylococcus areus vs protease. The pattern obtained was consistant with the potential sites of cleavage, but it was not possible to assign cleavage sites unambiguously. 112 references, 37 figures, 2 tables.

  3. Simplicity in complexity: the photosynthetic reaction center performs as a simple 0.2 V battery.

    PubMed

    van Rotterdam, Bart J; Crielaard, Wim; van Stokkum, Ivo H M; Hellingwerf, Klaas J; Westerhoff, Hans V

    2002-01-01

    The photosynthetic reaction center is one of the most complicated molecular complexes. Transducing photon energy to a transmembrane electrochemical potential difference for protons, it is the direct or indirect energy source for virtually all life. We show here that it operates in a simple, battery-like manner, with a maximum potential of 0.20 V. Intriguingly this is only one fifth of the energy of the absorbed photon. PMID:11755540

  4. Chemical Characterization of Secondary Organic Aerosol Formed from Atmospheric Aqueous-phase Reactions of Phenolic Compounds

    NASA Astrophysics Data System (ADS)

    Yu, L.; Smith, J.; Anastasio, C.; Zhang, Q.

    2012-12-01

    Phenolic compounds, which are released in significant amounts from biomass burning, may undergo fast aqueous-phase reactions to form secondary organic aerosol (SOA) in the atmosphere. Understanding the aqueous-phase reaction mechanisms of these compounds and the composition of their reaction products is thus important for constraining SOA sources and predicting organic aerosol properties in models. In this study, we investigate the aqueous-phase reactions of three phenols (phenol, guaiacol and syringol) with two oxidants - excited triplet states (3C*) of non-phenolic aromatic carbonyls and hydroxyl radical (OH). By employing four analytical methods including high-resolution aerosol mass spectrometry, total organic carbon analysis, ion chromatography, and liquid chromatography-mass spectrometry, we thoroughly characterize the chemical compositions of the low volatility reaction products of phenols and propose formation mechanisms based on this information. Our results indicate that phenolic SOA is highly oxygenated, with O/C ratios in the range of 0.83-1.03, and that the SOA of phenol is usually more oxidized than those of guaiacol and syringol. Among the three precursors, syringol generates the largest fraction of higher molecular weight (MW) products. For the same precursor, the SOA formed via reaction with 3C* is less oxidized than that formed via reaction with OH. In addition, oxidation by 3C* enhances the formation of higher MW species, including phenolic dimers, higher oligomers and hydroxylated products, compared to reactions initiated by OH, which appear to favor the formation of organic acids. However, our results indicate that the yields of small organic acids (e.g., formate, acetate, oxalate, and malate) are low for both reaction pathways, together accounting for less than 5% of total SOA mass.

  5. Optimizing multi-step B-side charge separation in photosynthetic reaction centers from Rhodobacter capsulatus.

    PubMed

    Faries, Kaitlyn M; Kressel, Lucas L; Dylla, Nicholas P; Wander, Marc J; Hanson, Deborah K; Holten, Dewey; Laible, Philip D; Kirmaier, Christine

    2016-02-01

    Using high-throughput methods for mutagenesis, protein isolation and charge-separation functionality, we have assayed 40 Rhodobacter capsulatus reaction center (RC) mutants for their P(+)QB(-) yield (P is a dimer of bacteriochlorophylls and Q is a ubiquinone) as produced using the normally inactive B-side cofactors BB and HB (where B is a bacteriochlorophyll and H is a bacteriopheophytin). Two sets of mutants explore all possible residues at M131 (M polypeptide, native residue Val near HB) in tandem with either a fixed His or a fixed Asn at L181 (L polypeptide, native residue Phe near BB). A third set of mutants explores all possible residues at L181 with a fixed Glu at M131 that can form a hydrogen bond to HB. For each set of mutants, the results of a rapid millisecond screening assay that probes the yield of P(+)QB(-) are compared among that set and to the other mutants reported here or previously. For a subset of eight mutants, the rate constants and yields of the individual B-side electron transfer processes are determined via transient absorption measurements spanning 100 fs to 50 μs. The resulting ranking of mutants for their yield of P(+)QB(-) from ultrafast experiments is in good agreement with that obtained from the millisecond screening assay, further validating the efficient, high-throughput screen for B-side transmembrane charge separation. Results from mutants that individually show progress toward optimization of P(+)HB(-)→P(+)QB(-) electron transfer or initial P*→P(+)HB(-) conversion highlight unmet challenges of optimizing both processes simultaneously. PMID:26658355

  6. Millimeter and Submillimeter Studies of O(^1D) Insertion Reactions to Form Molecules of Astrophysical Interest

    NASA Astrophysics Data System (ADS)

    Hays, Brian; Wehres, Nadine; Deprince, Bridget Alligood; Roy, Althea A. M.; Laas, Jacob; Widicus Weaver, Susanna L.

    2015-06-01

    While both the number of detected interstellar molecules and their chemical complexity continue to increase, understanding of the processes leading to their formation is lacking. Our research group combines laboratory spectroscopy, observational astronomy, and astrochemical modeling for an interdisciplinary examination of the chemistry of star and planet formation. This talk will focus on our laboratory studies of O(^1D) insertion reactions with organic molecules to produce molecules of astrophysical interest. By employing these reactions in a supersonic expansion, we are able to produce interstellar organic reaction intermediates that are unstable under terrestrial conditions; we then probe the products using millimeter and submillimeter spectroscopy. We benchmarked this setup using the well-studied O(^1D) + methane reaction to form methanol. After optimizing methanol production, we moved on to study the O(^1D) + ethylene reaction to form vinyl alcohol (CH_2CHOH), and the O(^1D) + methyl amine reaction to form aminomethanol (NH_2CH_2OH). Vinyl alcohol measurements have now been extended up to 450 GHz, and the associated spectral analysis is complete. A possible detection of aminomethanol has also been made, and continued spectral studies and analysis are underway. We will present the results from these experiments and discuss future applications of these molecular and spectroscopic techniques.

  7. Secondary organic aerosol-forming reactions of glyoxal with amino acids.

    PubMed

    De Haan, David O; Corrigan, Ashley L; Smith, Kyle W; Stroik, Daniel R; Turley, Jacob J; Lee, Frances E; Tolbert, Margaret A; Jimenez, Jose L; Cordova, Kyle E; Ferrell, Grant R

    2009-04-15

    Glyoxal, the simplest and most abundant alpha-dicarbonyl compound in the atmosphere, is scavenged by clouds and aerosol, where it reacts with nucleophiles to form low-volatility products. Here we examine the reactions of glyoxal with five amino acids common in clouds. When glyoxal and glycine, serine, aspartic acid or ornithine are present at concentrations as low as 30/microM in evaporating aqueous droplets or bulk solutions, 1,3-disubstituted imidazoles are formed in irreversible second-order reactions detected by nuclear magnetic resonance (NMR), aerosol mass spectrometry (AMS) and electrospray ionization mass spectrometry (ESI-MS). In contrast, glyoxal reacts with arginine preferentially at side chain amino groups, forming nonaromatic five-membered rings. All reactions were accompanied by browning. The uptake of 45 ppb glyoxal by solid-phase glycine aerosol at 50% RH was also studied and found to cause particle growth and the production of imidazole measured by scanning mobility particle sizing and AMS, respectively, with a glyoxal uptake coefficient alpha = 0.0004. Comparison of reaction kinetics in bulk and in drying droplets shows that conversion of glyoxal dihydrate to monohydrate accelerates the reaction by over 3 orders of magnitude, allowing these reactions to occur at atmospheric conditions. PMID:19475956

  8. Characterization of SiC Fiber (SCS-6) Reinforced-Reaction-Formed Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, M.; Dickerson, R. M.

    1996-01-01

    Silicon carbide fiber (SCS-6) reinforced-reaction-formed silicon carbide matrix composites were fabricated using a reaction-forming process. Silicon-2 at.% niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bimodal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon, and silicon. Fiber pushout tests on these composites determined a debond stress of approximately 67 MPa and a frictional stress of approximately 60 MPa. A typical four-point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pullout.

  9. Characterization of SiC (SCS-6) Fiber Reinforced Reaction-Formed Silicon Carbide Matrix Composites

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Dickerson, Robert M.

    1995-01-01

    Silicon carbide (SCS-6) fiber reinforced-reaction formed silicon carbide matrix composites were fabricated using NASA's reaction forming process. Silicon-2 at a percent of niobium alloy was used as an infiltrant instead of pure silicon to reduce the amount of free silicon in the matrix after reaction forming. The matrix primarily consists of silicon carbide with a bi-modal grain size distribution. Minority phases dispersed within the matrix are niobium disilicide (NbSi2), carbon and silicon. Fiber push-out tests on these composites determined a debond stress of approx. 67 MPa and a frictional stress of approx. 60 MPa. A typical four point flexural strength of the composite is 297 MPa (43.1 KSi). This composite shows tough behavior through fiber pull out.

  10. Primary acceptor in bacterial photosynthesis: obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas spheroides.

    PubMed Central

    Okamura, M Y; Isaacson, R A; Feher, G

    1975-01-01

    Reaction centers were found to bind two ubiquinones, both of which could be removed by o-phenanthroline and the detergent lauryldimethylamine oxide. One ubiquinone was more easily removed than the other. The low-temperature light-induced optical and electron paramagnetic resonance (EPR) changes were eliminated and restored upon removal and readdition of ubiquinone and were quantitatively correlated with the amount of tightly bound ubiquinone. We, therefore, conclude that this ubiquinone plays an obligatory role in the primary photochemistry. The easily removed ubiquinone is thought to be the secondary electron acceptor. The low-temperature charge recombination kinetics, as well as the optical and EPR spectra, were the same for untreated reaction centers and for those reconstituted with ubiquinone. This indicates that extraction and reconstitution were accomplished without altering the conformation of the active site. Reaction centers reconstituted with other quinones also showed restored photochemical activity, although they exhibited changes in their low-temperature recombination kinetics and light-induced (g = 1.8) EPR signal is interpreted in terms of a magnetically coupled ubiquinone--Fe2+ acceptor complex. A possible role of iron is to facilitate electron transfer between the primary and secondary ubiquinones. PMID:1081231

  11. CTEPP DATA COLLECTION FORM 05: CHILD DAY CARE CENTER PRE-MONITORING QUESTIONNAIRE

    EPA Science Inventory

    This data collection form is used to identify the potential sources of pollutants at the day care center. The day care teacher is asked questions related to the age of their day care building; age and frequency of cleaning carpets or rugs; types of heating and air conditioning de...

  12. CTEPP DATA COLLECTION FORM 03:HOUSE/BUILDING CHARACTERISTICS OBSERVATION SURVEY FOR THE DAY CARE CENTER

    EPA Science Inventory

    This data collection form is used to document the physical characteristics of the day care center and identify and inventory possible sources of pollutants.

    The Children's Total Exposure to Persistent Pesticides and Other Persistent Pollutant (CTEPP) study was one of the large...

  13. Transition-Metal-Catalyzed Laboratory-Scale Carbon–Carbon Bond-Forming Reactions of Ethylene

    PubMed Central

    Saini, Vaneet; Stokes, Benjamin J.; Sigman, Matthew S.

    2014-01-01

    Ethylene, the simplest alkene, is the most abundantly synthesized organic molecule by volume. It is readily incorporated into transitionmetal–catalyzed carbon-carbon bond-forming reactions through migratory insertions into alkylmetal intermediates. Because of its D2h symmetry, only one insertion outcome is possible. This limits byproduct formation and greatly simplifies analysis. As described within this Minireview, many carbon–carbon bond-forming reactions incorporate a molecule (or more) of ethylene at ambient pressure and temperature. In many cases, a useful substituted alkene is incorporated into the product. PMID:24105881

  14. Electron Transfer in Bacterial Reaction Centers with the Photoactive Bacteriopheophytin Replaced by a Bacteriochlorophyll through Coordinating Ligand Substitution.

    PubMed

    Pan, Jie; Saer, Rafael; Lin, Su; Beatty, J Thomas; Woodbury, Neal W

    2016-09-01

    The influence of amino acid substitutions at position M214 (M-subunit, residue 214) on the rate and pathway of electron transfer involving the bacteriopheophytin cofactor, HA, in a bacterial photosynthetic reaction center has been explored in a series of Rhodobacter sphaeroides mutants. The M214 leucine (L) residue of the wild type was replaced with histidine (H), glutamine (Q), and asparagine (N), creating the mutants M214LH, M214LQ, and M214LN, respectively. As has been reported previously for M214LH, each of these mutations resulted in a bacteriochlorophyll molecule in place of a bacteriopheophytin in the HA pocket, forming so-called β-type mutants (in which the HA cofactor is called βA). In addition, these mutations changed the properties of the surrounding protein environment in terms of charge distribution and the amino acid side chain volume. Electron transfer reactions from the excited primary donor P to the acceptor QA were characterized using ultrafast transient absorption spectroscopic techniques. Similar to that of the previously characterized M214LH (β mutant), the strong energetic mixing of the P(+)BA(-) and P(+)βA(-) states (the mixed anion is denoted I(-)) increased the rate of charge recombination between P(+) and I(-) in competition with the I(-) → QA forward reaction. This reduced the overall yield of charge separation forming the P(+)QA(-) state. While the kinetics of the primary electron transfer forming P(+)I(-) were essentially identical in all three β mutants, the rates of the βA(-) (I(-)) → QA electron transfer in M214LQ and M214LH were very similar but quite different from that of the M214LN mutant. The observed yield changes and the differences in kinetics are correlated more closely with the volume of the mutated amino acid than with their charge characteristics. These results are consistent with those of previous studies of a series of M214 mutants with different sizes of amino acid side chains that did not alter the HA

  15. The Role of Grain Surface Reactions in the Chemistry of Star Forming Regions

    NASA Technical Reports Server (NTRS)

    Kress, M. E.; Tielens, A. G. G. M.; Roberge, W. G.

    1998-01-01

    The importance of reactions at the surfaces of dust grains has long been recognized to be one of the two main chemical processes that form molecules in cold, dark interstellar clouds where simple, saturated (fully-hydrogenated) molecules such as H2 water, methanol, H2CO, H2S, ammonia and CH4 are present in quantities far too high to be consistent with their extremely low gas phase formation rates. In cold dark regions of interstellar space, dust grains provide a substrate onto which gas-phase species can accrete and react. Grains provide a "third body" or a sink for the energy released in the exothermic reactions that form chemical bonds. In essence, the surfaces of dust grains open up alternative reaction pathways to form observed molecules whose abundances cannot be explained with gas-phase chemistry alone. This concept is taken one step further in this work: instead of merely acting as a substrate onto which radicals and molecules may physically adsorb, some grains may actively participate in the reaction itself, forming chemical bonds with the accreting species. Until recently, surface chemical reactions had not been thought to be important in warm circumstellar media because adspecies rapidly desorb from grains at very low temperatures; thus, the residence times of molecules and radicals on the surface of grains at all but the lowest temperatures are far too short to allow these reactions to occur. However, if the adspecies could adsorb more strongly, via a true chemical bond with surfaces of some dust grains, then grain surface reactions will play an important role in warm circumstellar regions as well. In this work, the surface-catalyzed reaction CO + 3 H2 yields CH4 + H2O is studied in the context that it may be very effective at converting the inorganic molecule CO into the simplest organic compound, methane. H2 and CO are the most abundant molecules in space, and the reaction converting them to methane, while kinetically inhibited in the gas phase under

  16. Uranium oxidation: Characterization of oxides formed by reaction with water by infrared and sorption analyses

    NASA Astrophysics Data System (ADS)

    Fuller, E. L.; Smyrl, N. R.; Condon, J. B.; Eager, M. H.

    1984-04-01

    Three different uranium oxide samples have been characterized with respect to the different preparation techniques. The results show that the water reaction with uranium metal occurs cyclically forming laminar layers of oxide which spall off due to the strain at the oxide/metal interface. Single laminae are released if liquid water is present due to the prizing penetration at the reaction zone. The rate of reaction of water with uranium is directly proportional to the amount of adsorbed water on the oxide product. Rapid transport is effected through the open hydrous oxide product. Dehydration of the hydrous oxide irreversibly forms a more inert oxide which cannot be rehydrated to the degree that prevails in the original hydrous product of uranium oxidation with water. Inert gas sorption analyses and diffuse reflectance infrared studies combined with electron microscopy prove valuable in defining the chemistry and morphology of the oxidic products and hydrated intermediates.

  17. Strong evidence for quasifission in asymmetric reactions forming {sup 202}Po

    SciTech Connect

    Rafiei, R.; Thomas, R. G.; Hinde, D. J.; Dasgupta, M.; Morton, C. R.; Gasques, L. R.; Brown, M. L.; Rodriguez, M. D.

    2008-02-15

    Fission fragment mass-angle correlations and mass ratio distributions have been measured for the reactions {sup 16}O+{sup 186}Os, {sup 24}Mg+{sup 178}Hf, {sup 34}S+{sup 168}Er, and {sup 48}Ti+{sup 154}Sm, forming the {sup 202}Po composite nucleus, at near barrier energies. Systematic analysis based on the expected dependence of the variance of the mass distribution on the angular momentum and temperature of the compound nucleus indicate that the two lighter systems evolve through true compound nucleus fission. Evidence of quasifission was observed for the two most mass-symmetric reactions, through strong mass-angle correlations for the {sup 48}Ti+{sup 154}Sm reaction and a broadened mass ratio distribution for the {sup 34}S+{sup 168}Er reaction. Furthermore, the increase in mass width at near barrier energies shows the influence of the alignment of statically deformed target nuclei.

  18. Reactions to Discrimination, Stigmatization, Ostracism, and Other Forms of Interpersonal Rejection

    PubMed Central

    Richman, Laura Smart; Leary, Mark R.

    2009-01-01

    This article describes a new model that provides a framework for understanding people’s reactions to threats to social acceptance and belonging as they occur in the context of diverse phenomena such as rejection, discrimination, ostracism, betrayal, and stigmatization. People’s immediate reactions are quite similar across different forms of rejection in terms of negative affect and lowered self-esteem. However, following these immediate responses, people’s reactions are influenced by construals of the rejection experience that predict 3 distinct motives for prosocial, antisocial, and socially avoidant behavioral responses. The authors describe the relational, contextual, and dispositional factors that affect which motives determine people’s reactions to a rejection experience and the ways in which these 3 motives may work at cross-purposes. The multimotive model accounts for the myriad ways in which responses to rejection unfold over time and offers a basis for the next generation of research on interpersonal rejection. PMID:19348546

  19. Eliciting Students' Understandings of Chemical Reactions Using Two Forms of Essay Questions during a Learning Cycle.

    ERIC Educational Resources Information Center

    Cavallo, Ann M. L.; McNeely, Jack C.; Marek, Edmund A.

    2003-01-01

    Examines 9th grade students' explanations of chemical reactions using two forms of open-ended essay questions, those providing students with key terms to be used as "anchors" on which to base their essay, and those that do not provide terms. Results indicate that more misunderstandings were elicited by the use of key terms as compared to the…

  20. The aluminium and iodine pentoxide reaction for the destruction of spore forming bacteria.

    PubMed

    Clark, Billy R; Pantoya, Michelle L

    2010-10-21

    The threat of biological weapons is a major concern in the present day and has led to studying methods to neutralize spore forming bacteria. A new technique involves the use of a thermite reaction that exhibits biocidal properties to limit bacterial growth. The objective was to examine the influence on bacteria growth upon spore exposure to thermite reactions with and without biocidal properties. Three thermites are considered: two that have biocidal properties (aluminium (Al) combined with iodine pentoxide (I(2)O(5)) and Al combined with silver oxide (Ag(2)O)); and, one that produces a highly exothermic reaction but has no biocidal properties (Al combined with iron oxide (Fe(2)O(3))). Results show that Al + I(2)O(5) is extremely effective at neutralizing spores after only one hour of exposure. The temperature generated by the reaction was not determined to be an influential factor affecting spore growth kinetics. Further analysis of the thermite reactions revealed that the Al + I(2)O(5) reaction produces iodine gas that effectively interacts with the spores and neutralizes bacteria growth, while the Al + Ag(2)O reaction temperature does not vaporize silver. In the condensed phase silver does not interact with the spores enough to neutralize bacteria growth. This study gives evidence that a thermite can be used as a stable transportation and delivery system for biocidal gas. PMID:20730185

  1. Studies of reductive elimination reactions to form carbon-oxygen bonds from Pt(IV) complexes.

    PubMed

    Williams, B S; Goldberg, K I

    2001-03-21

    The platinum(IV) complexes fac-L(2)PtMe(3)(OR) (L(2) = bis(diphenylphosphino)ethane, o-bis(diphenylphosphino)benzene, R = carboxyl, aryl; L = PMe(3), R = aryl) undergo reductive elimination reactions to form carbon-oxygen bonds and/or carbon-carbon bonds. The carbon-oxygen reductive elimination reaction produces either methyl esters or methyl aryl ethers (anisoles) and L(2)PtMe(2), while the carbon-carbon reductive elimination reaction affords ethane and L(2)PtMe(OR). Choice of reaction conditions allows the selection of either type of coupling over the other. A detailed mechanistic study of the reductive elimination reactions supports dissociation of the OR(-) ligand as the initial step for the C-O bond formation reaction. This is followed by a nucleophilic attack of OR(-) upon a methyl group bound to the Pt(IV) cation to produce the products MeOR and L(2)PtMe(2). C-C reductive elimination proceeds from L(2)PtMe(3)(OR) by initial L (L = PMe(3)) or OR(-) (L(2) = dppe, dppbz) dissociation, followed by C-C coupling from the resulting five-coordinate intermediate. Our studies demonstrate that both C-C and C-O reductive elimination reactions from Pt(IV) are more facile in polar solvents, in the presence of Lewis acids, and for OR(-) groups that contain electron withdrawing substituents. PMID:11456927

  2. Distant electrostatic interactions modulate the free energy level of Q{sub A}{sup -} in the photosynthetic reaction center

    SciTech Connect

    Miksovska, J.; Sebban, P.; Tandori, J.

    1996-12-03

    In the reaction centers from the purple photosynthetic bacterium Rhodobacter capsulatus, we have determined that residue L212Glu, situated near the secondary quinone acceptor Q{sub B}, modulates the free energy level of the reduced primary quinone molecule A{sub A}{sup -} at high pH. Even though the distance between L212Glu and Q{sub A} is 17 {angstrom}, our results indicate an apparent interaction energy between them of 30 {plus_minus} 18 meV. This interaction was measured by quantitating the stoichiometry of partial proton uptake upon formation of Q{sub A}{sup -} as a function of pH in four mutant strains which lack L212Glu, in comparison with the wild type. Below pH 7.5, the stoichiometry of proton uptake form all stains is nearly superimposable with that of the wild type. However, at variance with the wild type, reaction centers from all strains that lack L212Glu fail to take up protons above pH 9. The lack of a change in the free energy level is confirmed by the determination of the pH dependence of the rate (k{sub AP}) of P{sup +}Q{sub A}{sup -} charge recombination in the reaction centers where the native Q{sub A} is replaced by quinones having low redox potentials. Our data show that the ionization state of L212Glu, either on its own or via interactions with closely associated ionizable groups, is mainly involved in the proton uptake at high pH by reaction centers in the PQ{sub A}{sup -} state. This suggests that the formation of the Q{sub A}{sup -} semiquinone state induces shifts in pK{sub a}S of residues in the Q{sub B} proteic environment. This long-distance influence of ionization states is a mechanism which would facilitate electron transfer from Q{sub A} to Q{sub B} on the first and second flashes. The functional communication between the two quinone protein pockets may involve the iron-ligand complex which spans the distance between them. 48 refs., 4 figs.

  3. Formation of photosystem II reaction centers that work as energy sinks in lichen symbiotic Trebouxiophyceae microalgae.

    PubMed

    Guéra, Alfredo; Gasulla, Francisco; Barreno, Eva

    2016-04-01

    Lichens are poikilohydric symbiotic organisms that can survive in the absence of water. Photosynthesis must be highly regulated in these organisms, which live under continuous desiccation-rehydration cycles, to avoid photooxidative damage. Analysis of chlorophyll a fluorescence induction curves in the lichen microalgae of the Trebouxiophyceae Asterochloris erici and in Trebouxia jamesii (TR1) and Trebouxia sp. (TR9) phycobionts, isolated from the lichen Ramalina farinacea, shows differences with higher plants. In the presence of the photosynthetic electron transport inhibitor DCMU, the kinetics of Q(A) reduction is related to variable fluorescence by a sigmoidal function that approaches a horizontal asymptote. An excellent fit to these curves was obtained by applying a model based on the following assumptions: (1) after closure, the reaction centers (RCs) can be converted into "energy sink" centers (sRCs); (2) the probability of energy leaving the sRCs is very low or zero and (3) energy is not transferred from the antenna of PSII units with sRCs to other PSII units. The formation of sRCs units is also induced by repetitive light saturating pulses or at the transition from dark to light and probably requires the accumulation of reduced Q(A), as well as structural changes in the reaction centers of PSII. This type of energy sink would provide a very efficient way to protect symbiotic microalgae against abrupt changes in light intensity. PMID:26482588

  4. Morphology of melt-rich channels formed during reaction infiltration experiments on partially molten mantle rocks

    NASA Astrophysics Data System (ADS)

    Pec, Matej; Holtzman, Benjamin; Zimmerman, Mark; Kohlstedt, David

    2016-04-01

    Geochemical, geophysical and geological observations suggest that melt extraction from the partially molten mantle occurs by some sort of channelized flow. Melt-solid reactions can lead to melt channelization due to a positive feedback between melt flow and reaction. If a melt-solid reaction increases local permeability, subsequent flow is increased as well and promotes further reaction. This process can lead to the development of high-permeability channels which emerge from background flow. In nature, anastomozing tabular dunite bodies within peridotitic massifs are thought to represent fossilized channels that formed by reactive flow. The conditions under which such channels can emerge are treated by the reaction infiltration instability (RII) theory (e.g. Szymczak and Ladd 2014). In this contribution, we report the results of a series of Darcy type experiments designed to study the development of channels due to RII in mantle lithologies (Pec et al. 2015). We sandwiched a partially molten rock between a melt source and a porous sink and annealed it at high-pressures (P = 300 MPa) and high-temperatures (T = 1200° or 1250° C) under a controlled pressure gradient (∇P = 0-100 MPa/mm) for up to 5 hours. The partially molten rock is formed by 50:50 mixtures of San Carlos olivine (Ol, Fo ˜ 88) and clinopyroxene (Cpx) with either 4, 10 or 20 vol% of alkali basalt added. The source and sink are disks of alkali basalt and porous alumina, respectively. During the experiments, silica undersaturated melt from the melt source dissolves Cpx and precipitates an iron rich Ol (Fo ˜ 82) thereby forming a Cpx-free reaction layer at the melt source - partially molten rock interface. The melt fraction in the reaction layer increases significantly (40% melt) compared to the protolith, confirming that the reaction increases the permeability of the partially molten rock. In experiments annealed under a low pressure gradient (and hence slow melt flow velocity) the reaction layer is

  5. Fusion of liposomones and chromatophores of Rhodopseudomonas capsulata: effect on photosynthetic energy transfer between B875 and reaction center complexes

    SciTech Connect

    Takemoto, J.Y.; Schonhardt, T.; Golecki, J.R.; Drews, G.

    1985-06-01

    The photosynthetic chromatophore membranes of Rhodopseudomonas capsulata were fused with liposomes to investigate the effects of lipid dilution on energy transfer between the bacteriochlorophyll-protein complexes of this membrane. Freeze-fracture electron microscopy revealed that the fractions contained closed vesicles formed by the fusion of liposomes to chromatophores. Particles with 9-nm diameters on the P fracture faces did not appear to change in size with increasing lipid content, but the number of particles per membrane area decreased proportionally with increases in the lipid-to-protein ratio. The bacteriochlorophyll-to-protein ratios, electrophoretic polypeptide profiles on sodium dodecyl sulfate-polyacrylamide gels, and light-induced absorbance changes at 595 nm caused by photosynthetic reaction centers were not altered by fusion. The relative fluorescence emission intensities due to the B875 light-harvesting complex increased significantly with increasing lipid content, but no increases in fluorescence due to the B800-B850 light-harvesting complex were observed. Electron transport rates, measured as succinate-cytochrome c reductase activities, decreased with increased lipid content. The results indicate an uncoupling of energy transfer between the B875 light-harvesting and reaction center complexes with lipid dilution of the chromatophore membrane.

  6. Coupling of collective motions of the protein matrix to vibrations of the non-heme iron in bacterial photosynthetic reaction centers.

    PubMed

    Orzechowska, A; Lipińska, M; Fiedor, J; Chumakov, A; Zajac, M; Slezak, T; Matlak, K; Strzałka, K; Korecki, J; Fiedor, L; Burda, K

    2010-10-01

    Non-heme iron is a conservative component of type II photosynthetic reaction centers of unknown function. We found that in the reaction center from Rba. sphaeroides it exists in two forms, high and low spin ferrous states, whereas in Rsp. rubrum mostly in a low spin state, in line with our earlier finding of its low spin state in the algal photosystem II reaction center (Burda et al., 2003). The temperature dependence of the non-heme iron displacement studied by Mössbauer spectroscopy shows that the surrounding of the high spin iron is more flexible (Debye temperature ~165K) than that of the low spin atom (~207K). Nuclear inelastic scattering measurements of the collective motions in the Rba. sphaeroides reaction center show that the density of vibrational states, originating from non-heme iron, has well-separated modes between lower (4-17meV) and higher (17-25meV) energies while in the one from Rsp. rubrum its distribution is more uniform with only little contribution of low energy (~6meV) vibrations. It is the first experimental evidence that the fluctuations of the protein matrix in type II reaction center are correlated to the spin state of non-heme iron. We propose a simple mechanism in which the spin state of non-heme iron directly determines the strength of coupling between the two quinone acceptors (Q(A) and Q(B)) and fast collective motions of protein matrix that play a crucial role in activation and regulation of the electron and proton transfer between these two quinones. We suggest that hydrogen bond network on the acceptor side of reaction center is responsible for stabilization of non-heme iron in different spin states. PMID:20603098

  7. Volume contraction on photoexcitation of the reaction center from Rhodobacter sphaeroides R-26: internal probe of dielectrics.

    PubMed Central

    Mauzerall, D C; Gunner, M R; Zhang, J W

    1995-01-01

    Reaction centers of Rhodobacter sphaeroides undergo a approximately 20 A3/mole volume contraction in < 50 ns after excitation. The rapid volume change is tentatively assigned to electrostriction. From its magnitude, we infer that the effective dielectric coefficient is 10-15 if the compressibility of the reaction center is similar to that of globular proteins. The volume contraction is not sensitive to replacement of the natural ubiquinone at the QA site by other quinones or to the occupancy of the QB site. The quenching caused by pressure on the reaction centers most likely occurs on a faster time scale than that of electron transfer. PMID:7711251

  8. Intermediates Formed in the Reactions of Organocuprates with α,β-Unsaturated Nitriles.

    PubMed

    Putau, Aliaksei; Brand, Harald; Koszinowski, Konrad

    2016-08-26

    Conjugate additions of organocuprates are of outstanding importance for organic synthesis. To improve our mechanistic understanding of these reactions, we have used electrospray ionization mass spectrometry for the identification of the ionic intermediates formed upon the treatment of LiCuR2 ⋅LiCN (R=Me, Bu, Ph) with a series of α,β-unsaturated nitriles. Acrylonitrile, the weakest Michael acceptor included, did not afford any detectable intermediates. Fumaronitrile (FN) yielded adducts of the type Lin-1 Cun R2n (FN)n (-) , n=1-3. When subjected to fragmentation in the gas phase, these adducts were not converted into the conjugate addition products, but re-dissociated into the reactants. In contrast, the reaction with 1,1-dicyanoethylene furnished the products of the conjugate addition without any observable intermediates. Tri- and tetracyanoethylene proved to be quite reactive as well. The presence of several cyano groups in these substrates opened up reaction pathways different from simple conjugate additions, however, and led to dimerization and substitution reactions. Moreover, the gas-phase fragmentation behavior of the species formed from these substrates indicated the occurrence of single-electron transfer processes. Additional quantum-chemical calculations provided insight into the structures and stabilities of the observed intermediates and their consecutive reactions. PMID:27461093

  9. Arylpalladium Phosphonate Complexes as Reactive Intermediates in Phosphorus-Carbon Bond Forming Reactions

    SciTech Connect

    Kohler, Mark C.; Grimes, Thomas V.; Wang, Xiaoping; Cundari, Thomas R.; Stockland, Robert A. Jr.

    2009-01-01

    Phosphorus-carbon bond formation from discrete transition metal complexes have been investigated through a combination of synthetic, spectroscopic, crystallographic, and computational methods. Reactive intermediates of the type (diphosphine)Pd(aryl)(P(O)(OEt)(2)) have been prepared, characterized, and studied as possible intermediates in metal-mediated coupling reactions. Several of the reactive intermediates were characterized crystallographicaliy, and a discussion of the solid state structures is presented. In contrast to other carbon-heteroelement bond forming reactions, palladium complexes containing electron-donating substituents on the aromatic fragment exhibited faster rates of reductive elimination. Large bite angle diphosphine ligands induced rapid rates of elimination, while bipyridine and small bite angle diphosphine ligands resulted in much slower rates of elimination. An investigation of the effect of typical impurities on the elimination reaction was carried out. While excess diphosphine, pyridine, and acetonitrile had little effect on the observed rate, the addition of water slowed the phosphorus-carbon bond forming reaction. Coordination of water to the complex was observed spectroscopically and crystallographically. Computational studies were utilized to probe the reaction pathways for P-C bond formation via Pd catalysis.

  10. Identification, isolation, and sequence of the reaction center protein genes of the photosynthetic purple bacterium Rhodopseudomonas capsulata

    SciTech Connect

    Hearst, J.E.

    1984-07-01

    Reaction centers in photosynthetic membranes are the centers to which electronic excitation due to light absorption is transferred. This excitation brings about a charge separation between a bacteriochlorophyll molecule and two quinone molecules which ultimately leads to the formation of a hydroquinone. The reduced hydroquinone is then utilized to produce a proton gradient across the membrane and ultimately to produce ATP. We have focused our interest on the structure of the reaction center in the photosynthetic purple bacterium, Rhodopseudomonas capsulata, with the intention of establishing a detailed understanding of these first chemical steps in the natural fixation of sunlight. The methods used to identify and isolate the genes for the three reaction center subunits, L, M, and H, in Rps. capsulata are outlined. These genes have then been sequenced, and the sequences analyzed in detail for their similarity with sequences of comparable proteins from more advanced photosynthetic bacteria such as Anabena, from algae such as Euglena and Chlamydomonas, and from higher plants such as amaranthus, soybean, tobacco and spinach. Homology was found which has been tentatively interpreted to be in the region of quinone binding in all of these reaction centers. There is growing optimism that there will be substantial structural similarity between the reaction centers of the purple bacteria and those of photosystem II in higher plants. This conclusion is important because the x-ray crystal structures of several of the purple bacteria reaction center complexes are presently being worked on and will ultimately be solved.

  11. Species differences in unlocking B-side electron transfer in bacterial reaction centers.

    PubMed

    Dylla, Nicholas P; Faries, Kaitlyn M; Wyllie, Ryan M; Swenson, Angela M; Hanson, Deborah K; Holten, Dewey; Kirmaier, Christine; Laible, Philip D

    2016-08-01

    The structure of the bacterial photosynthetic reaction center (RC) reveals symmetry-related electron transfer (ET) pathways, but only one path is used in native RCs. Analogous mutations have been made in two Rhodobacter (R.) species. A glutamic acid at position 133 in the M subunit increases transmembrane charge separation via the naturally inactive (B-side) path through impacts on primary ET in mutant R. sphaeroidesRCs. Prior work showed that the analogous substitution in the R. capsulatusRC also increases B-side activity, but mainly affects secondary ET. The overall yields of transmembrane ET are similar, but enabled in fundamentally different ways. PMID:27325608

  12. Weak temperature dependence of P (+) H A (-) recombination in mutant Rhodobacter sphaeroides reaction centers.

    PubMed

    Gibasiewicz, Krzysztof; Białek, Rafał; Pajzderska, Maria; Karolczak, Jerzy; Burdziński, Gotard; Jones, Michael R; Brettel, Klaus

    2016-06-01

    In contrast with findings on the wild-type Rhodobacter sphaeroides reaction center, biexponential P (+) H A (-)  → PH A charge recombination is shown to be weakly dependent on temperature between 78 and 298 K in three variants with single amino acids exchanged in the vicinity of primary electron acceptors. These mutated reaction centers have diverse overall kinetics of charge recombination, spanning an average lifetime from ~2 to ~20 ns. Despite these differences a protein relaxation model applied previously to wild-type reaction centers was successfully used to relate the observed kinetics to the temporal evolution of the free energy level of the state P (+) H A (-) relative to P (+) B A (-) . We conclude that the observed variety in the kinetics of charge recombination, together with their weak temperature dependence, is caused by a combination of factors that are each affected to a different extent by the point mutations in a particular mutant complex. These are as follows: (1) the initial free energy gap between the states P (+) B A (-) and P (+) H A (-) , (2) the intrinsic rate of P (+) B A (-)  → PB A charge recombination, and (3) the rate of protein relaxation in response to the appearance of the charge separated states. In the case of a mutant which displays rapid P (+) H A (-) recombination (ELL), most of this recombination occurs in an unrelaxed protein in which P (+) B A (-) and P (+) H A (-) are almost isoenergetic. In contrast, in a mutant in which P (+) H A (-) recombination is relatively slow (GML), most of the recombination occurs in a relaxed protein in which P (+) H A (-) is much lower in energy than P (+) H A (-) . The weak temperature dependence in the ELL reaction center and a YLH mutant was modeled in two ways: (1) by assuming that the initial P (+) B A (-) and P (+) H A (-) states in an unrelaxed protein are isoenergetic, whereas the final free energy gap between these states following the protein relaxation is large (~250 meV or

  13. Investigation of photochemical reaction products of glucose formed during direct UV detection in CE.

    PubMed

    Schmid, Thomas; Himmelsbach, Markus; Buchberger, Wolfgang W

    2016-04-01

    In CE, saccharides are accessible to direct UV detection due to a photochemical reaction in the detection window of the separation capillary resulting in the formation of UV absorbing substances. Employing a CE method that allows long in-capillary irradiation with subsequent UV and MS detection, the present study could identify several reaction products of glucose. Among these were UV absorbing substances so far unknown to be formed during direct UV detection with the chemical formulas C4 H6 O2 , C5 H6 O4 , C5 H8 O3, and C6 H8 O5 . Investigations of the impact of the irradiation time revealed differences between these reaction products suggesting differing reaction mechanisms especially for the smallest products. More detailed information could be obtained by experiments with isotope-labeled substrates performed to determine the parts of glucose that are converted to the particular reaction products. In addition, structural formulas for the reaction products were suggested based on HPLC-MS/MS measurements of off-line irradiated glucose solutions which revealed the existence of functional groups such as carboxylic acid or aldehyde groups. PMID:26257208

  14. Materials Characterization Center meeting on impact testing of waste forms. Summary report

    SciTech Connect

    Merz, M.D.; Atteridge, D.; Dudder, G.

    1981-10-01

    A meeting was held on March 25-26, 1981 to discuss impact test methods for waste form materials to be used in nuclear waste repositories. The purpose of the meeting was to obtain guidance for the Materials Characterization Center (MCC) in preparing the MCC-10 Impact Test Method to be approved by the Materials Review Board. The meeting focused on two essential aspects of the test method, namely the mechanical process, or impact, used to effect rapid fracture of a waste form and the analysis technique(s) used to characterize particulates generated by the impact.

  15. Inter-and intraspecific variation in excited-state triplet energy transfer rates in reaction centers of photosynthetic bacteria.

    SciTech Connect

    Laible, P. D.; Morris, Z. S.; Thurnauer, M. C.; Schiffer, M.; Hanson, D. K.

    2003-08-01

    In protein-cofactor reaction center (RC) complexes of purple photosynthetic bacteria, the major role of the bound carotenoid (C) is to quench the triplet state formed on the primary electron donor (P) before its sensitization of the excited singlet state of molecular oxygen from its ground triplet state. This triplet energy is transferred from P to C via the bacteriochlorophyll monomer B{sub B}. Using time-resolved electron paramagnetic resonance (TREPR), we have examined the temperature dependence of the rates of this triplet energy transfer reaction in the RC of three wild-type species of purple nonsulfur bacteria. Species-specific differences in the rate of transfer were observed. Wild-type Rhodobacter capsulatus RCs were less efficient at the triplet transfer reaction than Rhodobacter sphaeroides RCs, but were more efficient than Rhodospirillum rubrum RCs. In addition, RCs from three mutant strains of R. capsulatus carrying substitutions of amino acids near P and B{sub B} were examined. Two of the mutant RCs showed decreased triplet transfer rates compared with wild-type RCs, whereas one of the mutant RCs demonstrated a slight increase in triplet transfer rate at low temperatures. The results show that site-specific changes within the RC of R. capsulatus can mimic interspecies differences in the rates of triplet energy transfer. This application of TREPR was instrumental in defining critical energetic and coupling factors that dictate the efficiency of this photoprotective process.

  16. Heat of Combustion of the Product Formed by the Reaction of Acetylene, Ethylene, and Diborane

    NASA Technical Reports Server (NTRS)

    Tannenbaum, Stanley

    1957-01-01

    The net heat of combustion of the product formed by the reaction of diborane with a mixture of acetylene and ethylene was found to be 20,440 +/- 150 Btu per pound for the reaction of liquid fuel to gaseous carbon dioxide, gaseous water, and solid boric oxide. The measurements were made in a Parr oxygen-bomb calorimeter, and the combustion was believed to be 98 percent complete. The estimated net-heat of combustion for complete combustion would therefore be 20,850 +/- 150 Btu per pound.

  17. Cyanoalkylation: Alkylnitriles in Catalytic C-C Bond-Forming Reactions.

    PubMed

    López, Rosa; Palomo, Claudio

    2015-11-01

    Alkylnitriles are one of the most ubiquitous nitrogen-containing chemicals and are widely employed in reactions which result in nitrile-group conversion into other functionalities. Nevertheless, their use as carbon pronucleophiles in carbon-carbon bond-forming reactions has been hampered by difficulties associated mainly with the catalytic generation of active species, that is, α-cyano carbanions or metalated nitriles. Recent investigations have addressed this challenge and have resulted in different modes of alkylnitrile activation. This review illustrates these findings, which have set the foundation for the development of practical and conceptually new catalytic, direct cyanoalkylation methodologies. PMID:26387483

  18. tert-Butanesulfinamides as Nitrogen Nucleophiles in Carbon-Nitrogen Bond Forming Reactions.

    PubMed

    Ramirez Hernandez, Johana; Chemla, Fabrice; Ferreira, Franck; Jackowski, Olivier; Oble, Julie; Perez-Luna, Alejandro; Poli, Giovanni

    2016-01-01

    The use of tert-butanesulfinamides as nitrogen nucleophiles in carbon-nitrogen bond forming reactions is reviewed. This field has grown in the shadow of the general interest in N-tert-butanesulfinyl imines for asymmetric synthesis and occupies now an important place in its own right in the chemistry of the chiral amine reagent tert-butanesulfinamide. This article provides an overview of the area and emphasizes recent contributions wherein the tert-butanesulfinamides act as chiral auxiliaries or perform as nitrogen donors in metal-catalyzed amination reactions. PMID:26931222

  19. Non-photochemical Fluorescence Quenching in Photosystem II Antenna Complexes by the Reaction Center Cation Radical.

    PubMed

    Paschenko, V Z; Gorokhov, V V; Grishanova, N P; Korvatovskii, B N; Ivanov, M V; Maksimov, E G; Mamedov, M D

    2016-06-01

    In direct experiments, rate constants of photochemical (kP) and non-photochemical (kP(+)) fluorescence quenching were determined in membrane fragments of photosystem II (PSII), in oxygen-evolving PSII core particles, as well as in core particles deprived of the oxygen-evolving complex. For this purpose, a new approach to the pulse fluorometry method was implemented. In the "dark" reaction center (RC) state, antenna fluorescence decay kinetics were measured under low-intensity excitation (532 nm, pulse repetition rate 1 Hz), and the emission was registered by a streak camera. To create a "closed" [P680(+)QA(-)] RC state, a high-intensity pre-excitation pulse (pump pulse, 532 nm) of the sample was used. The time advance of the pump pulse against the measuring pulse was 8 ns. In this experimental configuration, under the pump pulse, the [P680(+)QA(-)] state was formed in RC, whereupon antenna fluorescence kinetics was measured using a weak testing picosecond pulsed excitation light applied to the sample 8 ns after the pump pulse. The data were fitted by a two-exponential approximation. Efficiency of antenna fluorescence quenching by the photoactive RC pigment in its oxidized (P680(+)) state was found to be ~1.5 times higher than that of the neutral (P680) RC state. To verify the data obtained with a streak camera, control measurements of PSII complex fluorescence decay kinetics by the single-photon counting technique were carried out. The results support the conclusions drawn from the measurements registered with the streak camera. In this case, the fitting of fluorescence kinetics was performed in three-exponential approximation, using the value of τ1 obtained by analyzing data registered by the streak camera. An additional third component obtained by modeling the data of single photon counting describes the P680(+)Pheo(-) charge recombination. Thus, for the first time the ratio of kP(+)/kP = 1.5 was determined in a direct experiment. The mechanisms of higher

  20. A generalized garnet-forming reaction for metaigneous rocks in the Adirondacks

    USGS Publications Warehouse

    McLelland, J.M.; Whitney, P.R.

    1980-01-01

    A generalized reaction is presented to account for garnet formation in a variety of Adirondack metaigneous rocks. This reaction, which is the sum of five partial reactions written in aluminum-fixed frames of reference, is given by: 4(y+1+w)Anorthite+4 k(y+1+2 w)Olivine +4(1-k)(y+1+2 w)Fe-oxide+(8(y+1) -4 k(y+1+2 w))Orthopyroxene = 2(y+1)Garnet +2(y+1+2 w)Clinopyroxene+4 wSpinel where y is a function of plagioclase composition, k refers to the relative amounts of olivine and Fe-oxide participating in the reaction, and w is a measure of silicon mobility. When mass balanced for Mg and Fe, this reaction is found to be consistent with analyzed mineral compositions in a wide range of Adirondack metaigneous rocks. The reaction applies equally well whether the garnets were formed directly from the rectants given above or went through an intermadiate stage involving the formation of spinel, orthopyroxene, and clinopyroxene. The actual reactions which have produced garnet in both undersaturated and quartz-bearing rocks are special cases of the above general reaction. The most important special cases appear to be those in which the reactants include either olivine alone (k=1) or Fe-oxide alone (k=0). Silicon is relatively immobile (w =2) in olivine bearing, magnesium-rich rocks (k???1), and this correlates with the increased intensity in spinel clouding of plagioclase in these rocks. Silicon mobility apparently increases in the more iron-rich rocks, which also tend to contain clear or lightly clouded plagioclase. In all the rocks studied the most common composition of metamorphic plagioclase is close to An33 (i.e., y=1). Plagioclase of lower anorthite content may be too sodic to participate in garnet formation at the P-T conditions involved. ?? 1980 Springer-Verlag.

  1. Mutations to R. sphaeroides Reaction Center Perturb Energy Levels and Vibronic Coupling but Not Observed Energy Transfer Rates.

    PubMed

    Flanagan, Moira L; Long, Phillip D; Dahlberg, Peter D; Rolczynski, Brian S; Massey, Sara C; Engel, Gregory S

    2016-03-10

    The bacterial reaction center is capable of both efficiently collecting and quickly transferring energy within the complex; therefore, the reaction center serves as a convenient model for both energy transfer and charge separation. To spectroscopically probe the interactions between the electronic excited states on the chromophores and their intricate relationship with vibrational motions in their environment, we examine coherences between the excited states. Here, we investigate this question by introducing a series of point mutations within 12 Å of the special pair of bacteriochlorophylls in the Rhodobacter sphaeroides reaction center. Using two-dimensional spectroscopy, we find that the time scales of energy transfer dynamics remain unperturbed by these mutations. However, within these spectra, we detect changes in the mixed vibrational-electronic coherences in these reaction centers. Our results indicate that resonance between bacteriochlorophyll vibrational modes and excitonic energy gaps promote electronic coherences and support current vibronic models of photosynthetic energy transfer. PMID:26630123

  2. Comparison of reaction centers from Rhodobacter sphaeroides and rhodopseudomonas viridis: Overall archistecture and protein-pigment interactions

    SciTech Connect

    Elkabbani, Ossama; Chang, Chonghwan; Tiede, D.; Norris, J.; Schiffer, M. )

    1991-06-04

    Photosynthetic reaction centers (RCs) from the photosynthetic bacteria Rhodobacter sphaeroides and Rhodopseudomonas viridis are protein complexes closely related in both structure and function. The structure of the Rps. viridis RC was used to determine the structure of the RC from Rb. sphaeroides. Small but meaningful differences between the positions of the helices and the cofactors in the two complexes were identified. The distances between helices A{sub L} adn A{sub M}, between B{sub L} and B{sub M}, and between bacteriopheophytins BP{sub L} and BP{sub M} are significantly shorter in Rps. viridis than they are in Rb. sphaeroides RCs. There are a number of differences in the amino acid residues that surround the cofactors; some of these residues form hydrogen bonds with the cofactors. Differences in chemical properties of the two RCs.

  3. Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide

    NASA Astrophysics Data System (ADS)

    Birdsall, A. W.; Miner, C. R.; Mael, L. E.; Elrod, M. J.

    2014-08-01

    Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of a similar magnitude, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity-dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.

  4. Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide

    NASA Astrophysics Data System (ADS)

    Birdsall, A. W.; Miner, C. R.; Mael, L. E.; Elrod, M. J.

    2014-12-01

    Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters, and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied with experimental methods. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of similar magnitudes, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.

  5. Simulations of the Two-Dimensional Electronic Spectroscopy of the Photosystem II Reaction Center

    PubMed Central

    Lewis, K. L. M.; Fuller, F. D.; Myers, J. A.; Yocum, C. F.; Mukamel, S.; Abramavicius, D.; Ogilvie, J. P.

    2013-01-01

    We report simulations of the two-dimensional electronic spectroscopy of the Qy band of the D1-D2-Cyt b559 photosystem II reaction center at 77 K. We base the simulations on an existing Hamiltonian that was derived by simultaneous fitting to a wide range of linear spectroscopic measurements and described within modified Redfield theory. The model obtains reasonable agreement with most aspects of the two-dimensional spectra, including the overall peak shapes and excited state absorption features. It does not reproduce the rapid equilibration from high energy to low energy excitonic states evident by a strong cross-peak below the diagonal. We explore modifications to the model to incorporate new structural data and improve agreement with the two-dimensional spectra. We find that strengthening the system–bath coupling and lowering the degree of disorder significantly improves agreement with the cross-peak feature, while lessening agreement with the relative diagonal/antidiagonal width of the 2D spectra. We conclude that two-dimensional electronic spectroscopy provides a sensitive test of excitonic models of the photosystem II reaction center and discuss avenues for further refinement of such models. PMID:23210463

  6. The kinetic model for slow photoinduced electron transport in the reaction centers of purple bacteria.

    PubMed

    Serdenko, T V; Barabash, Y M; Knox, P P; Seifullina, N Kh

    2016-12-01

    The present work is related to the investigation of slow kinetics of electron transport in the reaction centers (RCs) of Rhodobacter sphaeroides. Experimental data on the absorption kinetics of aqueous solutions of reaction centers at different modes of photoexcitation are given. It is shown that the kinetics of oxidation and reduction of RCs are well described by the sum of three exponential functions. This allows to suggest a two-level kinetic model for electron transport in the RC as a system of four electron-conformational states which correspond to three balance differential equations combined with state equation. The solution of inverse problem made it possible to obtain the rate constant values in kinetic equations for different times and intensities of exciting light. Analysis of rate constant values in different modes of RC excitation allowed to suggest that two mechanisms of structural changes are involved in RC photo-oxidation. One mechanism leads to the increment of the rate of electron return, another one-to its drop. Structural changes were found out to occur in the RCs under incident light. After light was turned off, the reduction of RCs was determined by the second mechanism. PMID:27271854

  7. The kinetic model for slow photoinduced electron transport in the reaction centers of purple bacteria

    NASA Astrophysics Data System (ADS)

    Serdenko, T. V.; Barabash, Y. M.; Knox, P. P.; Seifullina, N. Kh.

    2016-06-01

    The present work is related to the investigation of slow kinetics of electron transport in the reaction centers (RCs) of Rhodobacter sphaeroides. Experimental data on the absorption kinetics of aqueous solutions of reaction centers at different modes of photoexcitation are given. It is shown that the kinetics of oxidation and reduction of RCs are well described by the sum of three exponential functions. This allows to suggest a two-level kinetic model for electron transport in the RC as a system of four electron-conformational states which correspond to three balance differential equations combined with state equation. The solution of inverse problem made it possible to obtain the rate constant values in kinetic equations for different times and intensities of exciting light. Analysis of rate constant values in different modes of RC excitation allowed to suggest that two mechanisms of structural changes are involved in RC photo-oxidation. One mechanism leads to the increment of the rate of electron return, another one—to its drop. Structural changes were found out to occur in the RCs under incident light. After light was turned off, the reduction of RCs was determined by the second mechanism.

  8. Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms.

    PubMed

    Mamedov, Mahir; Govindjee; Nadtochenko, Victor; Semenov, Alexey

    2015-08-01

    This minireview is written in honor of Vladimir A. Shuvalov, a pioneer in the area of primary photochemistry of both oxygenic and anoxygenic photosyntheses (See a News Report: Allakhverdiev et al. 2014). In the present paper, we describe the current state of the formation of the primary and secondary ion-radical pairs within photosystems (PS) II and I in oxygenic organisms. Spectral-kinetic studies of primary events in PS II and PS I, upon excitation by ~20 fs laser pulses, are now available and reviewed here; for PS II, excitation was centered at 710 nm, and for PS I, it was at 720 nm. In PS I, conditions were chosen to maximally increase the relative contribution of the direct excitation of the reaction center (RC) in order to separate the kinetics of the primary steps of charge separation in the RC from that of the excitation energy transfer in the antenna. Our results suggest that the sequence of the primary electron transfer reactions is P680 → ChlD1 → PheD1 → QA (PS II) and P700 → A 0A/A 0B → A 1A/A 1B (PS I). However, alternate routes of charge separation in PS II, under different excitation conditions, are not ruled out. PMID:25648636

  9. Isolated Photosystem I Reaction Centers on a Functionalized Gated High Electron Mobility Transistor

    SciTech Connect

    Eliza, Sazia A.; Lee, Ida; Tulip, Fahmida S; Islam, Syed K; Mostafa, Salwa; Greenbaum, Elias; Ericson, Milton Nance

    2011-01-01

    In oxygenic plants, photons are captured with high quantum efficiency by two specialized reaction centers (RC) called Photosystem I (PS I) and Photosystem II (PS II). The captured photon triggers rapid charge separation and the photon energy is converted into an electrostatic potential across the nanometer-scale nm reaction centers. The exogenous photovoltages from a single PS I RC have been previously measured using the technique of Kelvin force probe microscopy (KFM). However, biomolecular photovoltaic applications require two-terminal devices. This paper presents for the first time, a micro-device for detection and characterization of isolated PS I RCs. The device is based on an AlGaN/GaN high electron mobility transistor (HEMT) structure. AlGaN/GaN HEMTs show high current throughputs and greater sensitivity to surface charges compared to other field-effect devices. PS I complexes immobilized on the floating gate of AlGaN/GaN HEMTs resulted in significant changes in the device characteristics under illumination. An analytical model has been developed to estimate the RCs of a major orientation on the functionalized gate surface of the HEMTs.

  10. Isolated photosystem I reaction centers on a functionalized gated high electron mobility transistor.

    PubMed

    Eliza, Sazia A; Lee, Ida; Tulip, Fahmida S; Mostafa, Salwa; Greenbaum, Elias; Ericson, M Nance; Islam, Syed K

    2011-09-01

    In oxygenic plants, photons are captured with high quantum efficiency by two specialized reaction centers (RC) called Photosystem I (PS I) and Photosystem II (PS II). The captured photon triggers rapid charge separation and the photon energy is converted into an electrostatic potential across the nanometer-scale (~6 nm) reaction centers. The exogenous photovoltages from a single PS I RC have been previously measured using the technique of Kelvin force probe microscopy (KFM). However, biomolecular photovoltaic applications require two-terminal devices. This paper presents for the first time, a micro-device for detection and characterization of isolated PS I RCs. The device is based on an AlGaN/GaN high electron mobility transistor (HEMT) structure. AlGaN/GaN HEMTs show high current throughputs and greater sensitivity to surface charges compared to other field-effect devices. PS I complexes immobilized on the floating gate of AlGaN/GaN HEMTs resulted in significant changes in the device characteristics under illumination. An analytical model has been developed to estimate the RCs of a major orientation on the functionalized gate surface of the HEMTs. PMID:21926029

  11. Reactions in microemulsion formed by sodium dodecyl sulfate, water, and hexanol

    SciTech Connect

    Valaulikar, B.S. . Chemistry Div.)

    1993-11-01

    The reactions, oxidation of iodide by persulfate and basic hydrolysis of crystal violet, were investigated in the w/o microemulsion formed by sodium dodecyl sulfate, water, and hexanol. The second order rate constants were measured as a function of emulsion formed by sodium dodecyl sulfate, water, and hexanol. The second order rate constants were measured as a function of water to surfactant molar ratio and hexanol content. The increased rates were attributed to the smaller droplet size of the water pools. The rates are shown to be controlled by the water content as well as the hexanol content. It is shown that the manner in which the rate is affected applies to the catalyzed as well as the retarded reactions. This system is shown to be more effective than the AOT/water/decane system.

  12. Bond-forming reactions of small triply charged cations with neutral molecules.

    PubMed

    Fletcher, James D; Parkes, Michael A; Price, Stephen D

    2013-08-12

    Time-of-flight mass spectrometry reveals that atomic and small molecular triply charged cations exhibit extensive bond-forming chemistry, following gas-phase collisions with neutral molecules. These experiments show that at collision energies of a few eV, I(3+) reacts with a variety of small molecules to generate molecular monocations and molecular dications containing iodine. Xe(3+) and CS2(3+) react in a similar manner to I(3+), undergoing bond-forming reactions with neutrals. A simple model, involving relative product energetics and electrostatic interaction potentials, is used to account for the observed reactivity. PMID:23843367

  13. Forming compliance dominated memristive switching through interfacial reaction in Ti/TiO2/Au structure

    NASA Astrophysics Data System (ADS)

    Tang, Zhensen; Fang, Liang; Xu, Nuo; Liu, Rulin

    2015-11-01

    The effects of the forming compliance current (CC) on bipolar resistive switching (BRS) characteristics in Au/Ti/TiO2/Au memristive switches were investigated. After forming with a low CC, a typical BRS with an abrupt SET and negative differential resistance RESET behaviors were observed. In comparison, the sample formed with a high CC exhibited an abnormal BRS with stepwise SET and abrupt RESET transitions. The conduction mechanisms at a high resistance state and a low resistance state were analyzed, respectively. The impact of the forming compliance on the interfacial reaction between Ti and TiO2 was discussed. The Ti-induced interfacial layer played an important role of manipulating the oxygen vacancies, thus providing the possibility of affecting the switching behavior. A physical model based on a combination of the bulk and interfacial effects was proposed to explain our observations.

  14. Pigment organization and their interactions in reaction centers of photosystem II: optical spectroscopy at 6 K of reaction centers with modified pheophytin composition.

    PubMed

    Germano, M; Shkuropatov, A Y; Permentier, H; de Wijn, R; Hoff, A J; Shuvalov, V A; van Gorkom, H J

    2001-09-25

    Photosystem II reaction centers (RC) with selectively exchanged pheophytin (Pheo) molecules as described in [Germano, M., Shkuropatov, A. Ya., Permentier, H., Khatypov, R. A., Shuvalov, V. A., Hoff, A. J., and van Gorkom, H. J. (2000) Photosynth. Res. 64, 189-198] were studied by low-temperature absorption, linear and circular dichroism, and triplet-minus-singlet absorption-difference spectroscopy. The ratio of extinction coefficients epsilon(Pheo)/epsilon(Chl) for Q(Y) absorption in the RC is approximately 0.40 at 6 K and approximately 0.45 at room temperature. The presence of 2 beta-carotenes, one parallel and one perpendicular to the membrane plane, is confirmed. Absorption at 670 nm is due to the perpendicular Q(Y) transitions of the two peripheral chlorophylls (Chl) and not to either Pheo. The "core" pigments, two Pheo and four Chl absorb in the 676-685 nm range. Delocalized excited states as predicted by the "multimer model" are seen in the active branch. The inactive Pheo and the nearby Chl, however, mainly contribute localized transitions at 676 and 680 nm, respectively, although large CD changes indicate that exciton interactions are present on both branches. Replacement of the active Pheo prevents triplet formation, causes an LD increase at 676 and 681 nm, a blue-shift of 680 nm absorbance, and a bleach of the 685 nm exciton band. The triplet state is mainly localized on the Chl corresponding to B(A) in purple bacteria. Both Pheo Q(Y) transitions are oriented out of the membrane plane. Their Q(X) transitions are parallel to that plane, so that the Pheos in PSII are structurally similar to their homologues in purple bacteria. PMID:11560495

  15. Induction and anisotropy of fluorescence of reaction center from photosynthetic bacterium Rhodobacter sphaeroides.

    PubMed

    Sipka, Gábor; Maróti, Péter

    2016-01-01

    Submillisecond dark-light changes of the yield (induction) and anisotropy of fluorescence under laser diode excitation were measured in the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides. Narrow band (1-2 nm) laser diodes emitting at 808 and 865 nm were used to selectively excite the accessory bacteriochlorophyll (B, 800 nm) or the upper excitonic state of the bacteriochlorophyll dimer (P-, 810 nm) and the lower excitonic state of the dimer (P+, 865 nm), respectively. The fluorescence spectrum of the wild type showed two bands centered at 850 nm (B) and 910 nm (P-). While the monotonous decay of the fluorescence yield at 910 nm tracked the light-induced oxidation of the dimer, the kinetics of the fluorescence yield at 850 nm showed an initial rise before a decrease. The anisotropy of the fluorescence excited at 865 nm (P-) was very close to the limiting value (0.4) across the whole spectral range. The excitation of both B and P- at 808 nm resulted in wavelength-dependent depolarization of the fluorescence from 0.35 to 0.24 in the wild type and from 0.30 to 0.24 in the reaction center of triple mutant (L131LH-M160LH-M197FH). The additivity law of the anisotropies of the fluorescence species accounts for the wavelength dependence of the anisotropy. The measured fluorescence yields and anisotropies are interpreted in terms of very fast energy transfer from (1)B* to (1)P- (either directly or indirectly by internal conversion from (1)P+) and to the oxidized dimer. PMID:25698106

  16. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  17. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  18. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    DOEpatents

    Cortright, Randy D.; Dumesic, James A.

    2013-04-02

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  19. Reaction sintered glass: A durable matrix for spinel-forming nuclear waste compositions

    NASA Astrophysics Data System (ADS)

    Gong, W. L.; Lutze, W.; Ewing, R. C.

    2000-01-01

    Glass formation by reaction sintering under isostatic pressure is an innovative process to vitrify refractory-rich high-level radioactive waste. We used a typical defense waste composition, containing spinel-forming components such as ˜4 wt% of Cr 2O 3, ˜23 wt% Al 2O 3, ˜13 wt% Fe 2O 3, and ˜9 wt% UO 2, with CeO 2 simulating UO 2. Reaction sintered silicate glasses with waste loading up to 45 wt% were prepared within three hours, by hot pressing at 800°C. The glass former was amorphous silica. Simulated waste was added as calcined oxides. The reaction sintered glass samples were characterized using scanning and analytical electron microscopy. The results show that extensive reaction sintering took place and a continuous glass phase formed. Waste components such as Na 2O, CaO, MnO 2, and Fe 2O 3, dissolved completely in the continuous glass phase. Cr 2O 3, Al 2O 3, and CeO 2 were only partially dissolved due to incomplete dissolution (Al 2O 3) or super-saturation and reprecipitation (Cr 2O 3 and CeO 2). The precipitation mechanism is related to a time dependent alkali content in the developing glass phase. Short-term corrosion tests in water showed that the glasses are chemically more durable than melted nuclear waste glasses. Based on hydration energies calculations, the long-term chemical durability of our reaction sintered glasses is expected to be comparable to that of rhyolitic and tektite glasses.

  20. Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide

    PubMed Central

    Song, Yang; Buettner, Garry R.

    2010-01-01

    The quinone/semiquinone/hydroquinone triad (Q/SQ•−/H2Q) represents a class of compounds that has great importance in a wide range of biological processes. The half-cell reduction potentials of these redox couples in aqueous solutions at neutral pH, E°′, provide a window to understanding the thermodynamic and kinetic characteristics of this triad and their associated chemistry and biochemistry in vivo. Substituents on the quinone ring can significantly influence the electron density “on the ring” and thus modify E°′ dramatically. E°′ of the quinone governs the reaction of semiquinone with dioxygen to form superoxide. At near-neutral pH the pKa's of the hydroquinone are outstanding indicators of the electron density in the aromatic ring of the members of these triads (electrophilicity) and thus are excellent tools to predict half-cell reduction potentials for both the one-electron and two-electron couples, which in turn allow estimates of rate constants for the reactions of these triads. For example, the higher the pKa's of H2Q, the lower the reduction potentials and the higher the rate constants for the reaction of SQ•− with dioxygen to form superoxide. However, hydroquinone autoxidation is controlled by the concentration of di-ionized hydroquinone; thus, the lower the pKa's the less stable H2Q to autoxidation. Catalysts, e.g., metals and quinone, can accelerate oxidation processes; by removing superoxide and increasing the rate of formation of quinone, superoxide dismutase can accelerate oxidation of hydroquinones and thereby increase the flux of hydrogen peroxide. The principal reactions of quinones are with nucleophiles via Michael addition, for example, with thiols and amines. The rate constants for these addition reactions are also related to E°′. Thus, pKa's of a hydroquinone and E°′ are central to the chemistry of these triads. PMID:20493944

  1. Reaction of Hydrogen Sulfide with Disulfide and Sulfenic Acid to Form the Strongly Nucleophilic Persulfide.

    PubMed

    Cuevasanta, Ernesto; Lange, Mike; Bonanata, Jenner; Coitiño, E Laura; Ferrer-Sueta, Gerardo; Filipovic, Milos R; Alvarez, Beatriz

    2015-11-01

    Hydrogen sulfide (H2S) is increasingly recognized to modulate physiological processes in mammals through mechanisms that are currently under scrutiny. H2S is not able to react with reduced thiols (RSH). However, H2S, more precisely HS(-), is able to react with oxidized thiol derivatives. We performed a systematic study of the reactivity of HS(-) toward symmetric low molecular weight disulfides (RSSR) and mixed albumin (HSA) disulfides. Correlations with thiol acidity and computational modeling showed that the reaction occurs through a concerted mechanism. Comparison with analogous reactions of thiolates indicated that the intrinsic reactivity of HS(-) is 1 order of magnitude lower than that of thiolates. In addition, H2S is able to react with sulfenic acids (RSOH). The rate constant of the reaction of H2S with the sulfenic acid formed in HSA was determined. Both reactions of H2S with disulfides and sulfenic acids yield persulfides (RSSH), recently identified post-translational modifications. The formation of this derivative in HSA was determined, and the rate constants of its reactions with a reporter disulfide and with peroxynitrite revealed that persulfides are better nucleophiles than thiols, which is consistent with the α effect. Experiments with cells in culture showed that treatment with hydrogen peroxide enhanced the formation of persulfides. Biological implications are discussed. Our results give light on the mechanisms of persulfide formation and provide quantitative evidence for the high nucleophilicity of these novel derivatives, setting the stage for understanding the contribution of the reactions of H2S with oxidized thiol derivatives to H2S effector processes. PMID:26269587

  2. Two-Dimensional Electronic Spectroscopy of the Photosystem II D1D2-cyt.b559 Reaction Center Complex

    NASA Astrophysics Data System (ADS)

    Myers, Jeffrey Allen

    Two-dimensional electronic spectroscopy (2DES) is a powerful new technique for examining the electronic and vibronic couplings and dynamics of chemical, semiconductor, and biological samples. We present several technical innovations in the implementation of 2DES. We have performed two-color 2DES experiments, extending the technique's ability to study energy transfer to states at frequencies far from the initial absorption. We have demonstrated 2DES in the pump-probe geometry using a pulse-shaper. This method eliminates many technical challenges inherent to previous implementations of 2DES, making it a more widely accessible technique. To broaden the available frequency information, we have demonstrated 2DES with a continuum probe pulse. We have utilized this method to observe vibrational wavepacket dynamics in a laser dye, demonstrating that these dynamics modulate 2D lineshapes and must be accounted for in modelling 2DES data. We perform 2DES studies on the Qy band of the D1D2-cyt.b559 reaction center of plant photosystem II. This reaction center is the core oxygen-evolving complex in plant photosynthesis, taking in light energy and forming a charge separated state capable of splitting water. Understanding the relationship between the structure and function has both fundamental importance and applications to improving artificial light-harvesting. Traditional spectroscopy methods have been unable to completely resolve the time-ordering of energy and charge transfer events or the degree of electronic coupling between chromophores due to severe spectral congestion in the Q y band. 2DES extends previous methods by frequency-resolving an additional dimension to reveal the degree of static disorder and electronic coupling, as well as a detailed picture of energy and charge transfer dynamics that will allow tests of excitonic models of the reaction center. Our data show direct evidence of electronic coupling and rapid sub-ps energy transfer between "blue" and "red

  3. Phosphinocyclodextrins as confining units for catalytic metal centres. Applications to carbon–carbon bond forming reactions

    PubMed Central

    Jouffroy, Matthieu; Gramage-Doria, Rafael; Sémeril, David; Oberhauser, Werner; Toupet, Loïc

    2014-01-01

    Summary The capacity of two cavity-shaped ligands, HUGPHOS-1 and HUGPHOS-2, to generate exclusively singly phosphorus-ligated complexes, in which the cyclodextrin cavity tightly wraps around the metal centre, was explored with a number of late transition metal cations. Both cyclodextrin-derived ligands were assessed in palladium-catalysed Mizoroki–Heck coupling reactions between aryl bromides and styrene on one hand, and the rhodium-catalysed asymmetric hydroformylation of styrene on the other hand. The inability of both chiral ligands to form standard bis(phosphine) complexes under catalytic conditions was established by high-pressure NMR studies and shown to have a deep impact on the two carbon–carbon bond forming reactions both in terms of activity and selectivity. For example, when used as ligands in the rhodium-catalysed hydroformylation of styrene, they lead to both high isoselectivity and high enantioselectivity. In the study dealing with the Mizoroki–Heck reactions, comparative tests were carried out with WIDEPHOS, a diphosphine analogue of HUGPHOS-2. PMID:25383109

  4. Involvement of ferryl in the reaction between nitrite and the oxy forms of globins.

    PubMed

    Hathazi, Denisa; Mahuţ, Sonia Diana; Scurtu, Florina-Violeta; Bischin, Cristina; Stanciu, Corina; Attia, Amr Ali; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2014-10-01

    The reaction between nitrite and the oxy forms of globins has complex autocatalytic kinetics with several branching steps and evolves through chain reactions mediated by reactive species (including radicals) such as hydrogen peroxide, ferryl and nitrogen dioxide, starting with a lag phase, after which it proceeds onto an autocatalytic phase. Reported here are UV-Vis spectra collected upon stopped-flow mixing of myoglobin with a supraphysiological excess of nitrite. The best fit to the experimental data follows an A → B → C reaction scheme involving the formation of a short-lived intermediate identified as ferryl. This is consistent with a mechanism where nitrite binds to oxy myoglobin to generate an undetectable ferrous-peroxynitrate intermediate, whose decay leads to nitrate and ferryl. The ferryl is then reduced to met by the excess nitrite. DFT calculations reveal an essentially barrierless reaction between nitrite and the oxy heme, with a notable outer-sphere component; the resulting metastable ferrous-peroxynitrate adduct is found to feature a very low barrier towards nitrate liberation, with ferryl as a final product-in good agreement with experiment. PMID:25064750

  5. Sequence Analysis of Trimer Isomers Formed by Montmorillonite Catalysis in the Reaction of Binary Monomer Mixtures

    NASA Astrophysics Data System (ADS)

    Ertem, Gözen; Hazen, Robert M.; Dworkin, Jason P.

    2007-10-01

    Oligonucleotides are structurally similar to short RNA strands. Therefore, their formation via non-enzymatic reactions is highly relevant to Gilbert's RNA world scenario (1986) and the origin of life. In laboratory synthesis of oligonucleotides from monomers, it is necessary to remove the water molecules from the reaction medium to shift the equilibrium in favor of oligonucleotide formation, which would have been impossible for reactions that took place in dilute solutions on the early Earth. Model studies designed to address this problem demonstrate that montmorillonite, a phyllosilicate common on Earth and identified on Mars, efficiently catalyzes phosphodiester-bond formation between activated mononucleotides in dilute solutions and produces RNA-like oligomers. The purpose of this study was to examine the sequences and regiospecificity of trimer isomers formed in the reaction of 5'-phosphorimidazolides of adenosine and uridine. Results demonstrated that regiospecificity and sequence specificity observed in the dimer fractions are conserved in their elongation products. With regard to regiospecificity, 61% of the linkages were found to be RNA-like 3',5'-phosphodiester bonds. With regard to sequence specificity, we found that 88% of the linear trimers were hetero-isomers with 61% A-monomer and 39% U-monomer incorporation. These results lend support to Bernal's hypothesis that minerals may have played a significant role in the chemical processes that led to the origin of life by catalyzing the formation of phosphodiester bonds in RNA-like oligomers.

  6. Origin of bimodal fluorescence enhancement factors of Chlorobaculum tepidum reaction centers on silver island films.

    PubMed

    Maćkowski, Sebastian; Czechowski, Nikodem; Ashraf, Khuram U; Szalkowski, Marcin; Lokstein, Heiko; Cogdell, Richard J; Kowalska, Dorota

    2016-08-01

    We focus on the spectral dependence of plasmon-induced enhancement of fluorescence of Chlorobaculum tepidum reaction centers. When deposited on silver island film, they exhibit up to a 60-fold increase in fluorescence. The dependence of enhancement factors on the excitation wavelength is not correlated with the absorption spectrum of the plasmonic structure. In particular, the presence of one (or multiple) trimers of the Fenna-Matthews-Olson (FMO) protein reveals itself in bimodal distribution of enhancement factors for the excitation at 589 nm, the wavelength corresponding to bacteriochlorophyll absorption of FMO and the core of the RC. We conclude that the structure of multichromophoric complexes can substantially affect the impact of plasmonic excitations, which is important in the context of assembling functional biohybrid systems. PMID:27406896

  7. Femtosecond excitation wavelength dependent photochemistry of isolated photosystem II reaction centers

    SciTech Connect

    Greenfield, S.R.; Seibert, M.; Wasielewski, M.R. |

    1995-12-31

    We have examined the kinetics of isolated six-chlorophyll photosystem II reaction centers as a function of excitation wavelength with transient absorption spectroscopy. Excitation is done from 665 to 690 nm with near-transform-limited sub-200-fs pulses provided by a optical parametric amplifier with a bandwidth of less than 5 nm. Probing at 545 nm monitors the bleach of the pheophytin, while probing at 738 nm monitors the stimulated emission of P680. Both parallel and perpendicular polarized probes are measured simultaneously, providing both isotropic (equivalent to magic angle) kinetics and anisotropy data. Transients are fit by a triple-exponential rise, and sample reduction with sodium dithionite is used to determine the component related to electron transfer.

  8. Light-harvesting bio-nanomaterial using porous silicon and photosynthetic reaction center

    PubMed Central

    2012-01-01

    Porous silicon microcavity (PSiMc) structures were used to immobilize the photosynthetic reaction center (RC) purified from the purple bacterium Rhodobacter sphaeroides R-26. Two different binding methods were compared by specular reflectance measurements. Structural characterization of PSiMc was performed by scanning electron microscopy and atomic force microscopy. The activity of the immobilized RC was checked by measuring the visible absorption spectra of the externally added electron donor, mammalian cytochrome c. PSi/RC complex was found to oxidize the cytochrome c after every saturating Xe flash, indicating the accessibility of specific surface binding sites on the immobilized RC, for the external electron donor. This new type of bio-nanomaterial is considered as an excellent model for new generation applications of silicon-based electronics and biological redox systems. PMID:22804837

  9. Light-harvesting bio-nanomaterial using porous silicon and photosynthetic reaction center

    NASA Astrophysics Data System (ADS)

    Hajdu, Kata; Gergely, Csilla; Martin, Marta; Zimányi, László; Agarwal, Vivechana; Palestino, Gabriela; Hernádi, Klára; Németh, Zoltán; Nagy, László

    2012-07-01

    Porous silicon microcavity (PSiMc) structures were used to immobilize the photosynthetic reaction center (RC) purified from the purple bacterium Rhodobacter sphaeroides R-26. Two different binding methods were compared by specular reflectance measurements. Structural characterization of PSiMc was performed by scanning electron microscopy and atomic force microscopy. The activity of the immobilized RC was checked by measuring the visible absorption spectra of the externally added electron donor, mammalian cytochrome c. PSi/RC complex was found to oxidize the cytochrome c after every saturating Xe flash, indicating the accessibility of specific surface binding sites on the immobilized RC, for the external electron donor. This new type of bio-nanomaterial is considered as an excellent model for new generation applications of silicon-based electronics and biological redox systems.

  10. A search for subpicosecond absorption components in photosystem II reaction centers

    NASA Astrophysics Data System (ADS)

    McCauley, S. W.; Baronavski, A. P.; Rice, Jane K.; Ghirardi, M. L.; Mattoo, A. K.

    1992-10-01

    The transient absorption kinetics of spinach photosystem II reaction centers were measured at 672 nm (detection bandwidth ≈ 11 nm) following excitation at 310 nm. A temporal resolution of ≈ 50 fs was used which is three times higher resolution than the current literature value. We observed a very fast absorption decrease with a rise time of 150 ± 15 fs followed by a 13 ± 4 ps recovery. The kinetics of the recovery step did not reveal a 3 ps component, however, a slight break in the data suggests a more complicated fit may explain the data as well or better. Based on a comparison of the rise time reported here and those reported by Durrant, the relaxation from S n to S 1 occurs very rapidly, within the 150 fs initial absorption decrease.

  11. Investigation of Stability of Photosynthetic Reaction Center and Quantum Dot Hybrid Films.

    PubMed

    Lukashev, E P; Knox, P P; Oleinikov, I P; Seifullina, N Kh; Grishanova, N P

    2016-01-01

    The efficiency of interaction (efficiency of energy transfer) between various quantum dots (QDs) and photosynthetic reaction centers (RCs) from the purple bacterium Rhodobacter sphaeroides and conditions of long-term stability of functioning of such hybrid complexes in film preparations were investigated. It was found that dry films containing RCs and QDs and maintained at atmospheric humidity are capable to keep their functional activity for at least some months as judging by results of measurement of their spectral characteristics, efficiency of energy transfer from QDs to RCs, and RC electron-transport activity. Addition of trehalose to the films giving them still greater stability is especially expressed for films maintained at low humidity. These stable hybrid film structures are promising for further biotechnological studies for developing new phototransformation devices. PMID:26885583

  12. M234Glu is a component of the proton sponge in the reaction center from photosynthetic bacteria.

    PubMed

    Cheap, Hélène; Bernad, Sophie; Derrien, Valérie; Gerencsér, László; Tandori, Julia; de Oliveira, Pedro; Hanson, Deborah K; Maróti, Péter; Sebban, Pierre

    2009-12-01

    Bacterial reaction centers use light energy to couple the uptake of protons to the successive semi-reduction of two quinones, namely Q(A) and Q(B). These molecules are situated symmetrically in regard to a non-heme iron atom. Four histidines and one glutamic acid, M234Glu, constitute the five ligands of this atom. By flash-induced absorption spectroscopy and delayed fluorescence we have studied in the M234EH and M234EL variants the role played by this acidic residue on the energetic balance between the two quinones as well as in proton uptake. Delayed fluorescence from the P(+)Q(A)(-) state (P is the primary electron donor) and temperature dependence of the rate of P(+)Q(A)(-) charge recombination that are in good agreement show that in the two RC variants, both Q(A)(-) and Q(B)(-) are destabilized by about the same free energy amount: respectively approximately 100 +/- 5 meV and 90 +/- 5 meV for the M234EH and M234EL variants, as compared to the WT. Importantly, in the M234EH and M234EL variants we observe a collapse of the high pH band (present in the wild-type reaction center) of the proton uptake amplitudes associated with formation of Q(A)(-) and Q(B)(-). This band has recently been shown to be a signature of a collective behaviour of an extended, multi-entry, proton uptake network. M234Glu seems to play a central role in the proton sponge-like system formed by the RC protein. PMID:19632193

  13. Microstructure and Mechanical Properties of Reaction-Formed Silicon Carbide (RFSC) Ceramics

    NASA Technical Reports Server (NTRS)

    Singh, M.; Behrendt, D. R.

    1994-01-01

    The microstructure and mechanical properties of reaction-formed silicon carbide (RFSC) ceramics fabricated by silicon infiltration of porous carbon preforms are discussed. The morphological characterization of the carbon preforms indicates a very narrow pore size distribution. Measurements of the preform density by physical methods and by mercury porosimetry agree very well and indicate that virtually all of the porosity in the preforms is open to infiltrating liquids. The average room temperature flexural strength of the RFSC material with approximately 8 at.% free silicon is 369 +/- 28 MPa (53.5 +/- 4 ksi). The Weibull strength distribution data give a characteristic strength value of 381 MPa (55 ksi) and a Weibull modulus of 14.3. The residual silicon content is lower and the strengths are superior to those of most commercially available reaction-bonded silicon carbide materials.

  14. The association of different detergents with the photosynthetic reaction center protein of Rhodobacter sphaeroides R26 and the effects on its photochemistry.

    PubMed

    Gast, P; Hemelrijk, P W; Van Gorkom, H J; Hoff, A J

    1996-08-01

    Detergent-free reaction centers from Rhodobacter sphaeroides R26 were used to study the solubilization of reaction centers in various detergents and their effects on reaction center photochemistry. 500 +/- 100 n-octyl-beta-D-glucopyranoside or 51 +/- 5 Triton X-100 molecules were associated with one reaction center. For N.N-alkylamine N-oxide detergents with chain lengths in the range from 8-13 carbon atoms, the number of detergent molecules associated with the reaction centers increased with decreasing chain length. The amount of detergent molecules associated with the reaction centers decreased almost tenfold if the pH was increased from pH 6 to pH 10. The addition of 5% 1,2,3-heptanetriol to various detergents lowered the detergent/reaction center ratio by a factor of two compared to that for the pure detergent. The detergent concentration at which solubilization of the reaction center occurs was close to the critical micelle concentration for all detergents studied. The absorption band at 865 nm of the primary donor in the reaction center shifts to 846 nm when detergent was removed from the reaction center; upon resolubilization with various detergents, this band shifts back to 865 nm. In 80-90% of the detergent-free reaction centers, the secondary electron transfer from QA to QB was inhibited: this electron transfer was restored after re-addition of detergent. PMID:8774729

  15. USING CENTER HOLE HEAT TRANSFER TO REDUCE FORMATION TIMES FOR CERAMIC WASTE FORMS FROM PYROPROCESSING

    SciTech Connect

    Kenneth J. Bateman; Charles W. Solbrig

    2006-07-01

    The waste produced from processing spent fuel from the EBR II reactor must be processed into a waste form suitable for long term storage in Yucca Mountain. The method chosen produces zeolite granules mixed with glass frit, which must then be converted into a solid. This is accomplished by loading it into a can and heating to 900 C in a furnace regulated at 915 C. During heatup to 900 C, the zeolite and glass frit react and consolidate to produce a sodalite monolith. The resultant ceramic waste form (CWF) is then cooled. The waste is 52 cm in diameter and initially 300 cm long but consolidates to 150 cm long during the heating process. After cooling it is then inserted in a 5-DHLW/DOE SNF Long Canister. Without intervention, the waste takes 82 hours to heat up to 900 C in a furnace designed to geometrically fit the cylindrical waste form. This paper investigates the reduction in heating times possible with four different methods of additional heating through a center hole. The hole size is kept small to maximize the amount of CWF that is processed in a single run. A hole radius of 1.82 cm was selected which removes only 1% of the CWF. A reference computation was done with a specified inner hole surface temperature of 915 C to provide a benchmark for the amount of improvement which can be made. It showed that the heatup time can potentially be reduced to 43 hours with center hole heating. The first method, simply pouring high temperature liquid aluminum into the hole, did not produce any noticeable effect on reducing heat up times. The second method, flowing liquid aluminum through the hole, works well as long as the velocity is high enough (2.5 cm/sec) to prevent solidification of the aluminum during the initial front movement of the aluminum into the center hole. The velocity can be reduced to 1 cm/sec after the initial front has traversed the ceramic. This procedure reduces the formation time to near that of the reference case. The third method, flowing a gas

  16. Trigonometric parallaxes to star-forming regions within 4 kpc of the galactic center

    SciTech Connect

    Sanna, A.; Menten, K. M.; Zhang, B.; Sato, M.; Brunthaler, A.; Immer, K.; Reid, M. J.; Dame, T. M.; Moscadelli, L.

    2014-02-01

    We report four trigonometric parallaxes for high-mass star-forming regions within 4 kpc of the Galactic center. These measurements were made with the Very Long Baseline Array as part of the BeSSeL Survey. By associating these sources kinematically with large-scale features in CO and H I longitude-velocity diagrams, we begin to outline some major features of the inner Milky Way: the Connecting arm, the near and far 3 kpc arms, and the Norma arm. The Connecting arm in the first Galactic quadrant lies closer to the Galactic center than the far 3 kpc arm and is offset by the long-bar's major axis near its leading edge, supporting the presence of an inner Lindblad resonance. Assuming the 3 kpc arms are a continuous physical structure, the relative Galactocentric distance of its near and far sides suggests highly elliptical streamlines of gas around the bar(s) and a bar corotation radius, r {sub CR} ≳ 3.6 kpc. At a Galactic longitude near 10° and a heliocentric distance of about 5 kpc, the near 3 kpc arm and the Norma arm intersect on a face-on view of our Galaxy, while passing at different Galactic latitudes. We provide an accurate distance measurement to the W 31 star-forming complex of 4.95{sub −0.43}{sup +0.51} kpc from the Sun, which associates it with a bright CO feature belonging to the near 3 kpc arm.

  17. Photoprotection of reaction centers: thermal dissipation of absorbed light energy vs charge separation in lichens.

    PubMed

    Heber, Ulrich; Soni, Vineet; Strasser, Reto J

    2011-05-01

    During desiccation, fluorescence emission and stable light-dependent charge separation in the reaction centers (RCs) of photosystem II (PSII) declined strongly in three different lichens: in Parmelia sulcata with an alga as the photobiont, in Peltigera neckeri with a cyanobacterium and in the tripartite lichen Lobaria pulmonaria. Most of the decline of fluorescence was caused by a decrease in the quantum efficiency of fluorescence emission. It indicated the activation of photoprotective thermal energy dissipation. Photochemical activity of the RCs was retained even after complete desiccation. It led to light-dependent absorption changes and found expression in reversible increases in fluorescence or in fluorescence quenching. Lowering the temperature changed the direction of fluorescence responses in P. sulcata. The observations are interpreted to show that reversible light-induced increases in fluorescence emission in desiccated lichens indicate the functionality of the RCs of PSII. Photoprotection is achieved by the drainage of light energy to dissipating centers outside the RCs before stable charge separation can take place. Reversible quenching of fluorescence by strong illumination is suggested to indicate the conversion of the RCs from energy conserving to energy dissipating units. This permits them to avoid photoinactivation. On hydration, re-conversion occurs to energy-conserving RCs. PMID:21029105

  18. [Functions of pheophytin, plastoquinone, iron and carotenoids in plant photosystem 2 reaction centers].

    PubMed

    Klimov, V V; Dolan, E; Ke, B

    1981-01-01

    Photoreduction of the intermediary electron acceptor, pheophytin (Ph), in photosystem-2 (PS-2) reaction centers of spinach chloroplasts or subchloroplast particles (TSF-II and TSF-IIa) at 220 K and Eh approximately -450 mV produces a narrow ESR signal of Ph. (g = 2.0033; delta H approximately 13 G) and a "doublet" centered at g = 2.00 with a splitting of 52 G at 7 K. The doublet (but not the narrow signal) is eliminated after extraction of lyophylized TSF-II with hexane, containing 0.1-0.2% methanol, or after extraction of Fe with LiClO4 and o-phenantroline, and the signal is restored by reconstitution with plastoquinone-A (PQ) or Fe++, respectively. The Fe removal results also in the development of a photoinduced ESR signal of PQ. (g approximately 2.0044; delta H approximately 9.2 G). The conclusion is made that the primary electron acceptor, Q, is in fact a complex PQ-Fe++ and that the exchange interaction of Ph. with PQ. -Fe++ is responsible for the ESR doublet. Photoreduction of Ph in TSF-IIa is accompanied by the 3-fold decrease in the formation of carotenoid triplet state (measured by the characteristic flash-induced absorbance changes) which is suggested to be a result of charge recombination in the pair [P680+ .PH.]. PMID:6274422

  19. Interplay between excitation kinetics and reaction-center dynamics in purple bacteria

    NASA Astrophysics Data System (ADS)

    Caycedo-Soler, Felipe; Rodríguez, Ferney J.; Quiroga, Luis; Johnson, Neil F.

    2010-09-01

    Photosynthesis is arguably the fundamental process of life, since it enables energy from the Sun to enter the food chain on the Earth. It is a remarkable non-equilibrium process in which photons are converted to many-body excitations, which traverse a complex biomolecular membrane, where they are captured and fuel chemical reactions within a reaction center (RC) in order to produce nutrients. The precise nature of these dynamical processes—which lie at the interface between quantum and classical behavior and involve both noise and coordination—is still being explored. Here, we focus on a striking recent empirical finding concerning an illumination-driven transition in the biomolecular membrane architecture of the purple bacteria Rsp. photometricum. Using stochastic realizations to describe a hopping rate model for excitation transfer, we show numerically and analytically that this surprising shift in preferred architectures can be traced to the interplay between the excitation kinetics and the RC dynamics. The net effect is that the bacteria profit from efficient metabolism at low illumination intensities while using dissipation to avoid an oversupply of energy at high illumination intensities.

  20. Ex vivo engineered immune organoids for controlled germinal center reactions.

    PubMed

    Purwada, Alberto; Jaiswal, Manish K; Ahn, Haelee; Nojima, Takuya; Kitamura, Daisuke; Gaharwar, Akhilesh K; Cerchietti, Leandro; Singh, Ankur

    2015-09-01

    Ex vivo engineered three-dimensional organotypic cultures have enabled the real-time study and control of biological functioning of mammalian tissues. Organs of broad interest where its architectural, cellular, and molecular complexity has prevented progress in ex vivo engineering are the secondary immune organs. Ex vivo immune organs can enable mechanistic understanding of the immune system and more importantly, accelerate the translation of immunotherapies as well as a deeper understanding of the mechanisms that lead to their malignant transformation into a variety of B and T cell malignancies. However, till date, no modular ex vivo immune organ has been developed with an ability to control the rate of immune reaction through tunable design parameter. Here we describe a B cell follicle organoid made of nanocomposite biomaterials, which recapitulates the anatomical microenvironment of a lymphoid tissue that provides the basis to induce an accelerated germinal center (GC) reaction by continuously providing extracellular matrix (ECM) and cell-cell signals to naïve B cells. Compared to existing co-cultures, immune organoids provide a control over primary B cell proliferation with ∼100-fold higher and rapid differentiation to the GC phenotype with robust antibody class switching. PMID:26072995

  1. Protein sequences and redox titrations indicate that the electron acceptors in reaction centers from heliobacteria are similar to Photosystem I

    NASA Technical Reports Server (NTRS)

    Trost, J. T.; Brune, D. C.; Blankenship, R. E.

    1992-01-01

    Photosynthetic reaction centers isolated from Heliobacillus mobilis exhibit a single major protein on SDS-PAGE of 47 000 Mr. Attempts to sequence the reaction center polypeptide indicated that the N-terminus is blocked. After enzymatic and chemical cleavage, four peptide fragments were sequenced from the Heliobacillus mobilis apoprotein. Only one of these sequences showed significant specific similarity to any of the protein and deduced protein sequences in the GenBank data base. This fragment is identical with 56% of the residues, including both cysteines, found in highly conserved region that is proposed to bind iron-sulfur center Fx in the Photosystem I reaction center peptide that is the psaB gene product. The similarity to the psaA gene product in this region is 48%. Redox titrations of laser-flash-induced photobleaching with millisecond decay kinetics on isolated reaction centers from Heliobacterium gestii indicate a midpoint potential of -414 mV with n = 2 titration behavior. In membranes, the behavior is intermediate between n = 1 and n = 2, and the apparent midpoint potential is -444 mV. This is compared to the behavior in Photosystem I, where the intermediate electron acceptor A1, thought to be a phylloquinone molecule, has been proposed to undergo a double reduction at low redox potentials in the presence of viologen redox mediators. These results strongly suggest that the acceptor side electron transfer system in reaction centers from heliobacteria is indeed analogous to that found in Photosystem I. The sequence similarities indicate that the divergence of the heliobacteria from the Photosystem I line occurred before the gene duplication and subsequent divergence that lead to the heterodimeric protein core of the Photosystem I reaction center.

  2. Reconstitution of photosynthetic energy conservation. II. Photophosphorylation in liposomes containing photosystem-I reaction center and chloroplast coupling-factor complex.

    PubMed

    Hauska, G; Samoray, D; Orlich, G; Nelson, N

    1980-10-01

    Photophosphorylation has been reconstituted in a liposomal system containing reaction centers of photosystem I and coupling-factor complex, both highly purified from spinach chloroplasts. This energy-converting model system was put together by diluting the preparation of the coupling-factor complex with an aqueous suspension of proteolipid vesicles, preformed from photosystem-I reaction centers and soybean phospholipids by sonication. In the presence of reduced N-methyl-phenazonium methosulfate the system catalyzed photophosphorylation with rates up to 50 mumol ATP formed x mg chlorophyll-1 x h-1, which was sensitive to uncouplers and to N,N'-dicyclohexyl-carbodiimide. The properties of the system in comparison to chloroplasts is discussed. PMID:6450680

  3. Reaction-Forming Method for Producing Near Net-Shape Refractory Metal Carbides

    SciTech Connect

    Palmisiano, Marc N.; Jakubenas, Kevin J.; Baranwal, Rita

    2004-07-20

    A method for reaction forming refractory metal carbides. The method involves the fabrication of a glassy carbon preform by casting an organic, resin-based liquid mixture into a mold and subsequently heat treating it in two steps, which cures and pyrolizes the resin resulting in a porous carbon preform. By varying the amounts of the constituents in the organic, resin-based liquid mixture, control over the density of the carbon preform is obtained. Control of the density and microstructure of the carbon preform allows for determination of the microstructure and properties of the refractory metal carbide material produced. The glassy carbon preform is placed on a bed of refractory metal or refractory metal--silicon alloy. The pieces are heated above the melting point of the metal or alloy. The molten metal wicks inside the porous carbon preform and reacts, forming the refractory metal carbide or refractory metal carbide plus a minor secondary phase.

  4. Dextran-based hydrogel formed by thiol-Michael addition reaction for 3D cell encapsulation.

    PubMed

    Liu, Zhen Qi; Wei, Zhao; Zhu, Xv Long; Huang, Guo You; Xu, Feng; Yang, Jian Hai; Osada, Yoshihito; Zrínyi, Miklós; Li, Jian Hui; Chen, Yong Mei

    2015-04-01

    Cell encapsulation in three-dimensional (3D) hydrogels can mimic native cell microenvironment and plays a major role in cell-based transplantation therapies. In this contribution, a novel in situ-forming hydrogel, Dex-l-DTT hydrogel ("l" means "linked-by"), by cross-linking glycidyl methacrylate derivatized dextran (Dex-GMA) and dithiothreitol (DTT) under physiological conditions, has been developed using thiol-Michael addition reaction. The mechanical properties, gelation process and degree of swelling of the hydrogel can be easily adjusted by changing the pH of phosphate buffer saline. The 3D cell encapsulation ability is demonstrated by encapsulating rat bone marrow mesenchymal stem cells (BMSCs) and NIH/3T3 fibroblasts into the in situ-forming hydrogel with maintained high viability. The BMSCs also maintain their differentiation potential after encapsulation. These results demonstrate that the Dex-l-DTT hydrogel holds great potential for biomedical field. PMID:25744162

  5. The interaction of quinone and detergent with reaction centers of purple bacteria. I. Slow quinone exchange between reaction center micelles and pure detergent micelles.

    PubMed Central

    Shinkarev, V P; Wraight, C A

    1997-01-01

    The kinetics of light-induced electron transfer in reaction centers (RCs) from the purple photosynthetic bacterium Rhodobacter sphaeroides were studied in the presence of the detergent lauryldimethylamine-N-oxide (LDAO). After the light-induced electron transfer from the primary donor (P) to the acceptor quinone complex, the dark re-reduction of P+ reflects recombination from the reduced acceptor quinones, QA- or QB-. The secondary quinone, QB, which is loosely bound to the RC, determines the rate of this process. Electron transfer to QB slows down the return of the electron to P+, giving rise to a slow phase of the recovery kinetics with time tau P approximately 1 s, whereas charge recombination in RCs lacking QB generates a fast phase with time tau AP approximately 0.1 s. The amount of quinone bound to RC micelles can be reduced by increasing the detergent concentration. The characteristic time of the slow component of P+ dark relaxation, observed at low quinone content per RC micelle (at high detergent concentration), is about 1.2-1.5 s, in sharp contrast to expectations from previous models, according to which the time of the slow component should approach the time of the fast component (about 0.1 s) when the quinone concentration approaches zero. To account for this large discrepancy, a new quantitative approach has been developed to analyze the kinetics of electron transfer in isolated RCs with the following key features: 1) The exchange of quinone between different micelles (RC and detergent micelles) occurs more slowly than electron transfer from QB- to P+; 2) The exchange of quinone between the detergent "phase" and the QB binding site within the same RC micelle is much faster than electron transfer between QA- and P+; 3) The time of the slow component of P+ dark relaxation is determined by (n) > or = 1, the average number of quinones in RC micelles, calculated only for those RC micelles that have at least one quinone per RC (in excess of QA). An

  6. Air oxidation of hydrazine. 1. Reaction kinetics on natural kaolinites, halloysites, and model substituent layers with varying iron and titanium oxide and O- center contents

    NASA Technical Reports Server (NTRS)

    Coyne, L.; Mariner, R.; Rice, A.

    1991-01-01

    Air oxidation of hydrazine was studied by using a group of kaolinites, halloysites, and substituent oxides as models for the tetrahedral and octahedral sheets. The rate was found to be linear with oxygen. The stoichiometry showed that oxygen was the primary oxidant and that dinitrogen was the only important nitrogen-containing product. The rates on kaolinites were strongly inhibited by water. Those on three-dimensional silica and gibbsite appeared not to be. That on a supposedly layered silica formed from a natural kaolinite by acid leaching showed transitional behavior--slowed relative to that expected from a second-order reaction relative to that on the gibbsite and silica but faster than those on the kaolinites. The most striking result of the reaction was the marked increase in the rate of reaction of a constant amount of hydrazine as the amount of clay was increased. The increase was apparent (in spite of the water inhibition at high conversions) over a 2 order of magnitude variation of the clay weight. The weight dependence was taken to indicate that the role of the clay is very important, that the number of reactive centers is very small, or that they may be deactivated over the course of the reaction. In contrast to the strong dependence on overall amount of clay, the variation of amounts of putative oxidizing centers, such as structural Fe(III), admixed TiO2 or Fe2O3, or O- centers, did not result in alteration of the rate commensurate with the degree of variation of the entity in question. Surface iron does play some role, however, as samples that were pretreated with a reducing agent were less active as catalysts than the parent material. These results were taken to indicate either that the various centers interact to such a degree that they cannot be considered independently or that the reaction might proceed by way of surface complexation, rather than single electron transfers.

  7. Interfacial thiol-ene photo-click reactions for forming multilayer hydrogels

    PubMed Central

    Shih, Han; Fraser, Andrew K.; Lin, Chien-Chi

    2014-01-01

    Interfacial visible light-mediated thiol-ene photo-click reactions were developed for preparing step-growth hydrogels with multilayer structures. The effect of a non-cleavage type photoinitiator eosin-Y on visible light-mediated thiol-ene photopolymerization was first characterized using in situ photo-rheometry, gel fraction, and equilibrium swelling ratio. Next, spectrophotometric properties of eosin-Y in the presence of various relevant macromer species were evaluated using UV/Vis spectrometry. It was determined that eosin-Y was able to re-initiate thiol-ene photo-click reaction even after light exposure. Due to its small molecular weight, most eosin-Y molecules readily leached out from the hydrogels. The diffusion of residual eosin-Y from pre-formed hydrogels was exploited for fabricating multilayer step-growth hydrogels. Interfacial hydrogel coating was formed via the same visible light-mediated gelation mechanism without adding fresh initiator. The thickness of the thiol-ene gel coating could be easily controlled by adjusting visible light exposure time, eosin-Y concentration initially loaded in the core gel, or macromer concentration in the coating solution. The major benefits of this interfacial thiol-ene coating system include its simplicity and cytocompatibility. The formation of thiol-ene hydrogels and coatings neither requires nor generates any cytotoxic components. This new gelation chemistry may have great utilities in controlled release of multiple sensitive growth factors and encapsulation of multiple cell types for tissue regeneration. PMID:23384151

  8. Blood transfusion safety: A study of adverse reactions at the blood bank of a tertiary care center

    PubMed Central

    Negi, Gita; Gaur, Dushyant Singh; Kaur, Rajveer

    2015-01-01

    Background: An adverse transfusion reaction (ATR) is an unfavorable reaction to the transfused unit, the severity of which may be different among individuals depending upon the type of reaction and the patient's susceptibility. Transfusion reactions may be immediate or delayed type depending on the onset and immune or nonimmune type depending on the pathogenesis. A study was conducted to study the frequency of various transfusion reactions and the associated morbidity. Materials and Methods: All ATRs occurring over a period of 3 years at a tertiary care health center were studied in detail according to the institute's protocol. Results: Of 38,013 units of blood and components that had been issued, 101 (0.2%) cases had an ATR. The most common reaction was allergic - 34/101 (33.6%) followed by febrile - 26/101 (25.7%). Other reactions included transfusion-related acute lung injury in 6/101 (5.9%) cases, and immune reactions were seen in 19/101 (18.8%) cases. Conclusion: Allergic and febrile reactions are most common and least harmful, but fatal reactions can also occur, and preventive measures must be taken to avoid such reactions. PMID:26682203

  9. Isotope study on diffusion in CaSO{sub 4} formed during sorbent-flue-gas reaction

    SciTech Connect

    Hsia, C.; St. Pierre, G.R.; Fan, L.S.

    1995-10-01

    In sorbent-flue-gas reactions, porous CaO sorbent particles are used to capture SO{sub 2} by formation of CaSO{sub 4}. Because of the large molar volume of CaSO{sub 4}, the internal surface area which is originally available for reaction diminishes as CaSO{sub 4} forms. Once the CaSO{sub 4} layer forms, further sorbent sulfation is believed to be controlled by the product layer diffusion process. It has been suggested that the product layer diffusion occurs by gaseous diffusion (Simons and Garman, 1976) and by ionic diffusion (Bhatia and Perlmutter, 1981). In this work, a two-stage sulfation experiment using {sup 32}SO{sub 2} and {sup 34}SO{sub 2} was performed. For the first stage of sulfation, at 1,300 C, 5,000 ppm {sup 32}SO{sub 2}/air mixture was passed into the mullite tube and circulated out through the bubbler continuously. This stage lasted for 14 days. When the first stage was terminated, the tablets were removed from the furnace and examined. At the beginning of the second stage sulfation, 5,000 ppm {sup 32}SO{sub 2}/air mixture was first used during the heating period. As soon as the tube temperature reached 1,300 C, the mechanical pump was turned on and the pressure in the tube was reduced immediately. Upon the completion of the evacuation, isotope gas 75%{sup 34}SO{sub 2}-25%{sup 32}SO{sub 2} was introduced into the mullite tube. Appropriate amount of air was also introduced into the tube such that the total SO{sub 2} concentration was roughly 5,000 ppm. The second stage sulfation lasted for three days. The SIMS analysis was performed by Microelectronics Center in North Carolina.

  10. Designing a national combined reporting form for adverse drug reactions and medication errors.

    PubMed

    Tanti, A; Serracino-Inglott, A; Borg, J J

    2015-04-01

    The Maltese Medicines Authority was tasked with developing a reporting form that captures high-quality case information on adverse drug reactions (ADRs) and medication errors in order to fulfil its public-health obligations set by the European Union (EU) legislation on pharmacovigilance. This paper describes the process of introducing the first combined ADR/medication error reporting form in the EU for health-care professionals, the analysis of reports generated by it and the promotion of the system. A review of existing ADR forms was carried out and recommendations from the European Medicines Agency and World Health Organization audits integrated. A new, combined ADR/medication error reporting form was developed and pilot tested based on case studies. The Authority's quality system (ISO 9001 certified) was redesigned and a promotion strategy was deployed. The process used in Malta can be useful for countries that need to develop systems relative to ADR/medication error reporting and to improve the quality of data capture within their systems. PMID:26077519

  11. Rates of primary electron transfer reactions in the photosystem I reaction center reconstituted with different quinones as the secondary acceptor

    SciTech Connect

    Kumazaki, Shigeichi; Kandori, Hideki; Yoshihara, Keitaro ); Iwaki, Masayo; Itoh, Shigeru ); Ikegamu, Isamu )

    1994-10-27

    Rates of sequential electron transfer reactions from the primary electron donor chlorophyll dimer (P700) to the electron acceptor chlorophyll a-686 (A[sub 0]) and to the secondary acceptor quinone (Q[sub [phi

  12. Two-electron tin centers arising in glassy chalcogenides of arsenic due to nuclear reactions

    SciTech Connect

    Bordovsky, G. A.; Gladkikh, P. V.; Kozhokar, M. Yu.; Marchenko, A. V.; Seregin, P. P.; Terukov, E. I.

    2010-08-15

    Impurity {sup 119m}Sn atoms arising as a result of radioactive decay of parent {sup 119mm}Sn atoms in the structure of the glasses As{sub 2}S{sub 3}, As{sub 2}Se{sub 3}, and As{sub 2}Te{sub 3} are part of the glass composition in the form of structural units corresponding to tetravalent tin. The impurity {sup 119m}Sn atoms formed as a result of radioactive decay of {sup 119}Sb atoms in the structure of the As{sub 2}S{sub 3} and As{sub 2}Se{sub 3} glasses are localized at the arsenic sites and play the role of two-electron centers with a negative correlation energy. For the As{sub 2}Te{sub 3} glass, similarly formed {sup 119m}Sn atoms are electrically inactive. The greatest part of the daughter {sup 119m}Sn atoms arising after radioactive decay of parent {sup 119m}Te atoms are located at the chalcogen sites and are electrically inactive in the As{sub 2}S{sub 3}, As{sub 2}Se{sub 3}, and As{sub 2}Te{sub 3} glasses. A significant recoil energy of daughter atoms in the case of the {sup 119m}Te radioactive decay brings about the appearance of the {sup 119m}Sn displaced atoms.

  13. Materials characterization center workshop on the irradiation effects in nuclear waste forms

    SciTech Connect

    Roberts, F.P.; Turcotte, R.P.; Weber, W.J.

    1981-01-01

    The Workshop on Irradiation Effects in Nuclear Waste Forms sponsored by the Materials Characterization Center (MCC) brought together experts in radiation damage in materials and waste-management technology to review the problems associated with irradiation effects on waste-form integrity and to evaluate standard methods for generating data to be included in the Nuclear Waste Materials Handbook. The workshop reached the following conclusions: the concept of Standard Test for the Effects of Alpha-Decay in Nuclear Waste Solids, (MCC-6) for evaluating the effects of alpha decay is valid and useful, and as a result of the workshop, modifications to the proposed procedure will be incorpoated in a revised version of MCC-6; the MCC-6 test is not applicable to the evaluation of radiation damage in spent fuel; plutonium-238 is recommended as the dopant for transuranic and defense high-level waste forms, and when high doses are required, as in the case of commercial high-level waste forms, /sup 244/Cm can be used; among the important property changes caused by irradiation are those that lead to greater leachability, and additionally, radiolysis of the leachant may increase leach rates; research is needed in this area; ionization-induced changes in physical properties can be as important as displacement damage in some materials, and a synergism is also likely to exist from the combined effects of ionization and displacement damage; and the effect of changing the temperature and dose rates on property changes induced by radiation damage needs to be determined.

  14. Reduction reactions of water soluble cyano-cobalt(III)-porphyrins: Metal versus ligand centered processes

    SciTech Connect

    Mosseri, S.; Neta, P.; Harriman, A.; Hambright, P. )

    1990-06-01

    Reduction reactions of dicyano-cobalt(III)-porphyrins (potential in vivo cyanide scavenger drugs) were studied by radiolytic and electrochemical methods using the water soluble tetrakis(4-sulfonatophenyl)porphyrin (TPPS) and tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP). For ((CN)2CoIIITPPS)-, reduction occurs stepwise to the CoII, CoI, and finally to the phlorin anion. This behavior is similar to that of the cobalt porphyrins in the absence of cyanide, except that the cyanide ligand shifts the reduction potentials to much more negative values. On the other hand, under radiolytic conditions, ((CN)2CoIIITMPyP)- is reduced on the porphyrin macrocycle by one electron to give the CoIII pi-radical anion, which disproportionates into the initial complex and the two-electron ring reduced CoIII phlorin. The radical anion is also formed by intramolecular electron transfer subsequent to the reaction of CoIITMPyP and cyanide. The results are compared with the chemistry of Vitamin B-12.

  15. Kinetics of Several Oxygen-Containing Carbon-Centered Free Radical Reactions with Nitric Oxide.

    PubMed

    Rissanen, Matti P; Ihlenborg, Marvin; Pekkanen, Timo T; Timonen, Raimo S

    2015-07-16

    Kinetics of four carbon-centered, oxygen-containing free radical reactions with nitric oxide (NO) were investigated as a function of temperature at a few Torr pressure of helium, employing flow tube reactors coupled to a laser-photolysis/resonance-gas-discharge-lamp photoionization mass spectrometer (LP-RPIMS). Rate coefficients were directly determined from radical (R) decay signals under pseudo-first-order conditions ([R]0 ≪ [NO]). The obtained rate coefficients showed negative temperature dependences, typical for a radical-radical association process, and can be represented by the following parametrizations (all in units of cm(3) molecule(-1) s(-1)): k(CH2OH + NO) = (4.76 × 10(-21)) × (T/300 K)(15.92) × exp[50700/(RT)] (T = 266-363 K, p = 0.79-3.44 Torr); k(CH3CHOH + NO) = (1.27 × 10(-16)) × (T/300 K)(6.81) × exp[28700/(RT)] (T = 241-363 K, p = 0.52-3.43 Torr); k(CH3OCH2 + NO) = (3.58 ± 0.12) × 10(-12) × (T/300 K)(-3.17±0.14) (T = 221-363 K, p = 0.50-0.80 Torr); k(T)3 = 9.62 × 10(-11) × (T/300 K)(-5.99) × exp[-7100/(RT)] (T = 221-473 K, p = 1.41-2.95 Torr), with the uncertainties given as standard errors of the fits and the overall uncertainties estimated as ±20%. The rate of CH3OCH2 + NO reaction was measured in two density ranges due to its observed considerable pressure dependence, which was not found in the studied hydroxyalkyl reactions. In addition, the CH3CO + NO rate coefficient was determined at two temperatures resulting in k298K(CH3CO + NO) = (5.6 ± 2.8) × 10(-13) cm(3) molecule(-1) s(-1). No products were found during these experiments, reasons for which are briefly discussed. PMID:26000890

  16. Identification of adducts formed by reaction of N-acetoxy-3,5-dimethylaniline with DNA

    PubMed Central

    Cui, Liang; Sun, Hsiao-Lan; Wishnok, John S.; Tannenbaum, Steven R.; Skipper, Paul L.

    2008-01-01

    Aromatic amines constitute one of the most extensively studied classes of chemical carcinogens. Although monocyclic aromatic amines are generally regarded as weak carcinogens, a recent epidemiologic study of bladder cancer found that the arylamine 3,5-dimethylaniline (3,5-DMA) may play a significant role in the etiology of this disease in man. Investigations using experimental animals also strongly suggested that DNA adducts—of indeterminate structure—formed by 3,5-DMA might account for its presumptive activity. The present study was undertaken to determine the structures of the major DNA adducts formed in vitro by the known, and possibly carcinogenic, N-hydroxylated metabolite. Calf thymus DNA (ct-DNA) was modified by reaction with N-acetoxy-3,5-dimethylaniline (N-AcO-3,5-DMA). After enzymatic hydrolysis of DNA to individual 2'-deoxyribonucleosides, adduct profiles were determined using HPLC/MS. 3,5-DMA formed four major DNA adducts, one to 2’-deoxyguanosine (dG), two to 2’-deoxyadenosine (dA), and one to 2’-deoxycytidine (dC). Reactions of N-AcO-3,5-DMA with dG, dA, and dC produced the same adducts as reaction with ct-DNA with very similar profiles. Adducts were isolated chromatographically and unambiguously characterized as N-(deoxyguanosin-8-yl)-3,5-dimethylaniline (dG-C8−3,5-DMA), 4-(deoxyadenosin-N6-yl)-3,5-dimethylaniline (dA-N6-3,5-DMA), N-(deoxyadenosin-8-yl)-3,5-dimethylaniline (dA-C8−3,5-DMA), and N-(deoxycytidin-5-yl)-3,5-dimethylaniline (dC-C5−3,5-DMA) by high-resolution mass spectra (HR-MS) and NMR spectroscopy including 1H-NMR, 13C-NMR, and two-dimensional NMR. This report includes the first detailed description of a dC adduct of an aromatic amine. The present results provide chemical support for a carcinogenic mechanism of action by 3,5-DMA based on N-hydroxylation and the intermediacy of a nitrenium ion in the formation of DNA adducts. PMID:18020398

  17. The seismic structure of crust formed in back-arc spreading centers.

    NASA Astrophysics Data System (ADS)

    Ranero, Cesar R.; Grevemeyer, Ingo

    2015-04-01

    About 3/4 of the Earth crust and most past subducted crust have been formed at oceanic spreading centers. Seismic experiments on oceanic crust that underlies most of the world ocean basins have defined a ubiquitous three-velocity-layers structure. Layer 1 is identified as sediment, but interpretation of layers 2 and 3 has remained a topic of intense research for more than half century. The nature of oceanic crust at basins has been mainly inferred from indirect geophysical measurements and rocks sampled at the seafloor. Current models propose that the formation of oceanic crust at mid ocean ridges (MOR) -away from hotspot anomalies- is essentially controlled by the rate of plate separation, with crustal types classified as ultraslow, slow, intermediate, and fast spreading crust. We present the first modern extensive seismic study of back-arc oceanic crust providing constrains on accretion processes. The depth-velocity distribution of back-arc crust resembles MOR layered structure, but velocities are systematically different to MOR crust formed at any spreading rate. In particular, Layer 3 display lower velocities, indicating either a considerable different rock composition or deformation process. Integrating our observations with data from other back-arc basins of the world indicates a considerable variety of crustal velocities. The seismic structure of the crust indicates that back-arc spreading represents a class of spreading in its own.

  18. Electrically active centers formed in silicon during the high-temperature diffusion of boron and aluminum

    SciTech Connect

    Sobolev, N. A.; Loshachenko, A. S.; Poloskin, D. S.; Shek, E. I.

    2013-02-15

    The parameters of electrically active centers formed during the high-temperature diffusion of boron and aluminum into silicon in various media are studied by the Hall method and capacitance spectroscopy. It is found that the variation in the resistivity of the n base of the structures with p-n junctions fabricated in the study is controlled by the formation of three donor levels Q1, E4, and Q3 with the energies E{sub c} - 0.31, E{sub c} - 0.27, and E{sub c} - 0.16 eV. Diffusion in a chlorine-containing atmosphere introduces only a single level E4, but its concentration is 2.5 times lower, compared with diffusion in air. The values of the ionization energy of the Q3 level, measured under equilibrium (Hall effect) and nonequilibrium (capacitance spectroscopy) conditions, almost coincide. The deepest level E1 with an energy of E{sub c} - 0.54 eV, formed upon diffusion in both media, has no effect on the resistivity in the n base of the structures.

  19. Characterization of the selenotrisulfide formed by reaction of selenite with end-capped phytochelatin-2.

    PubMed

    Spain, Stephen M; Rabenstein, Dallas L

    2004-03-01

    The phytochelatins are a family of peptides synthesized by plants in response to exposure to heavy metals and metalloids, including selenium in the form of selenite. The amino acid sequence of the phytochelatin (PC) peptides is (gamma-Glu-Cys)n-Gly, where n typically ranges from 2 to 5. In this paper, the products of the reaction of selenite with an end-capped analogue of PC2, Ac-(gamma-Glu-Cys)2-Gly-NH2, are characterized. Selenite reacts with Ac-(gamma-Glu-Cys)2-Gly-NH2 (Ac-PC2-NH2) to form a compound that contains an intramolecular selenotrisulfide (-SSeS-)-linkage (Se[Ac-PC2-NH2]) and oxidized Ac-PC2-NH2. Both Se[Ac-PC2-NH2] and oxidized Ac-PC2-NH2 were isolated by HPLC and were characterized by MALDI-TOF mass spectrometry, by two-dimensional 1H and 13C NMR and, in the case of Se[Ac-PC2-NH2], by 77Se NMR. Using dihedral angles determined from vicinal 1H-1H coupling constants as constraints for the conformations around the Cys(CalphaH)-Cys(CbetaH) bonds, structures were predicted for the most abundant form of both compounds by Monte Carlo molecular mechanics simulations. PMID:15214417

  20. Spectral, photophysical, and stability properties of isolated photosystem II reaction center

    SciTech Connect

    Seibert, M.; Picorel, R.; Rubin, A.B.; Connolly, J.S. )

    1988-06-01

    Photosystem II reaction center (RC) preparations isolated from spinach (Spinacea oleracea) by the Nanba-Satoh procedure are quite labile, even at 4{degree}C in the dark. Simple spectroscopic criteria were developed to characterize the native state of the material. Degradation of the RC results in (a) blue-shifting of the red-most absorption maximum, (b) a shift of the 77 K fluorescence maximum from {approximately}682 nm to {approximately}670 nm, and (c) a shift of fluorescence lifetime components from 1.3-4 nanoseconds and >25 nanoseconds to {approximately}6-7 nanoseconds. Fluorescence properties at 77 K seem to be a more sensitive spectral indicator of the integrity of the material. The >25 nanosecond lifetime component is assigned to P680{sup +} Phenophytin{sup -}recombination luminescence, which suggest a correlation between the observed spectral shifts and the photochemical competence of the preparation. Substitution of lauryl maltoside for Triton X-100 immediately after RC isolation stabilizes the RCs and suggests that Triton may be responsible for the instability.

  1. Early Bacteriopheophytin Reduction in Charge Separation in Reaction Centers of Rhodobacter sphaeroides

    PubMed Central

    Zhu, Jingyi; van Stokkum, Ivo H.M.; Paparelli, Laura; Jones, Michael R.; Groot, Marie Louise

    2013-01-01

    A question at the forefront of biophysical sciences is, to what extent do quantum effects and protein conformational changes play a role in processes such as biological sensing and energy conversion? At the heart of photosynthetic energy transduction lie processes involving ultrafast energy and electron transfers among a small number of tetrapyrrole pigments embedded in the interior of a protein. In the purple bacterial reaction center (RC), a highly efficient ultrafast charge separation takes place between a pair of bacteriochlorophylls: an accessory bacteriochlorophyll (B) and bacteriopheophytin (H). In this work, we applied ultrafast spectroscopy in the visible and near-infrared spectral region to Rhodobacter sphaeroides RCs to accurately track the timing of the electron on BA and HA via the appearance of the BA and HA anion bands. We observed an unexpectedly early rise of the HA− band that challenges the accepted simple picture of stepwise electron transfer with 3 ps and 1 ps time constants. The implications for the mechanism of initial charge separation in bacterial RCs are discussed in terms of a possible adiabatic electron transfer step between BA and HA, and the effect of protein conformation on the electron transfer rate. PMID:23746522

  2. Double Mutation in Photosystem II Reaction Centers and Elevated CO2 Grant Thermotolerance to Mesophilic Cyanobacterium

    PubMed Central

    Dinamarca, Jorge; Shlyk-Kerner, Oksana; Kaftan, David; Goldberg, Eran; Dulebo, Alexander; Gidekel, Manuel; Gutierrez, Ana; Scherz, Avigdor

    2011-01-01

    Photosynthetic biomass production rapidly declines in mesophilic cyanobacteria grown above their physiological temperatures largely due to the imbalance between degradation and repair of the D1 protein subunit of the heat susceptible Photosystem II reaction centers (PSIIRC). Here we show that simultaneous replacement of two conserved residues in the D1 protein of the mesophilic Synechocystis sp. PCC 6803, by the analogue residues present in the thermophilic Thermosynechococcus elongatus, enables photosynthetic growth, extensive biomass production and markedly enhanced stability and repair rate of PSIIRC for seven days even at 43°C but only at elevated CO2 (1%). Under the same conditions, the Synechocystis control strain initially presented very slow growth followed by a decline after 3 days. Change in the thylakoid membrane lipids, namely the saturation of the fatty acids is observed upon incubation for the different strains, but only the double mutant shows a concomitant major change of the enthalpy and entropy for the light activated QA−→QB electron transfer, rendering them similar to those of the thermophilic strain. Following these findings, computational chemistry and protein dynamics simulations we propose that the D1 double mutation increases the folding stability of the PSIIRC at elevated temperatures. This, together with the decreased impairment of D1 protein repair under increased CO2 concentrations result in the observed photothermal tolerance of the photosynthetic machinery in the double mutant PMID:22216094

  3. Photosynthetic electron transfer from reaction center pigment-protein complex in silica nanopores.

    PubMed

    Oda, Ippei; Iwaki, Masayo; Fujita, Daiju; Tsutsui, Yasutaka; Ishizaka, Souji; Dewa, Makiko; Nango, Mamoru; Kajino, Tsutomu; Fukushima, Yoshiaki; Itoh, Shigeru

    2010-08-17

    A photosynthetic reaction center (RC) pigment-protein complex purified from a thermophilic purple photosynthetic bacterium, Thermochromatium tepidum, was adsorbed to a folded-sheet silica mesoporous material (FSM). The RC has a molecular structure with a 7.0 x 5.0 x 13 nm diameter. The amount of RC adsorbed to the FSM compound with an average internal pore diameter of 7.9 nm (FSM(7.9)) was high at 0.29 gRC/gFSM, while that to the FSM(2.7) (2.7 nm diameter) was low at 0.02 gRC/gFSM, suggesting the specific binding of the RC into the 7.9 nm pores of FSM(7.9). An N(2)-adsorption isotherm study indicated the incorporation of the RC into the 7.9 nm pores. The RC inside FSM(7.9) showed absorption spectra in the visible and infrared regions similar to those of the RC in solution, indicating almost no structural changes induced by the adsorption. The RC-FSM(7.9) conjugate showed the high photochemical activity with the increased thermal stability up to 50 degrees C in the measurements by laser spectroscopy. The conjugates rapidly provided electrons to a dye in the outer medium or showed electric current on the ITO electrode upon the illumination. The RC-FSM conjugate will be useful for the construction of artificial photosynthetic systems and new photodevices. PMID:20695584

  4. Spectral exhibition of electron-vibrational relaxation in P* state of Rhodobacter sphaeroides reaction centers.

    PubMed

    Yakovlev, Andrei G; Shuvalov, Vladimir A

    2015-08-01

    Electron-vibrational relaxation in the excited state of the primary electron donor, bacteriochlorophyll dimer P, in the reaction centers (RCs) of purple photosynthetic bacteria Rhodobacter sphaeroides is modeled. A multimode model of three states (i.e., the ground state Pg, initially excited P1*, and relaxed excited P2*) is used to calculate the incoherent dynamics of the difference (ΔA) spectra on a femtosecond timescale for the YM210 W mutant RCs. The relaxation processes are described by the step-ladder model. The model shows that the electron-vibrational relaxation in the excited state of P is visualized by the transient red shift of the stimulated emission from P*. The dynamics of this shift is observed as a change in the ΔA spectrum shape in its red-most part, within a few hundreds of femtoseconds after excitation. As a result, an initial rise in the red-side ΔA kinetics is delayed with respect to the blue-side kinetics. The time constant of the P1* → P2* electronic relaxation (54 fs) and the Pg, P1*, and P2* vibrational relaxations (120 fs), used in the model, provided the best fit of the experimental time-resolved ΔA spectra and kinetics at 90 and 293 K. The possible nature of the P1* → P2* electronic relaxation is discussed. PMID:25240681

  5. Excited state dynamics in photosynthetic reaction center and light harvesting complex 1

    NASA Astrophysics Data System (ADS)

    Strümpfer, Johan; Schulten, Klaus

    2012-08-01

    Key to efficient harvesting of sunlight in photosynthesis is the first energy conversion process in which electronic excitation establishes a trans-membrane charge gradient. This conversion is accomplished by the photosynthetic reaction center (RC) that is, in case of the purple photosynthetic bacterium Rhodobacter sphaeroides studied here, surrounded by light harvesting complex 1 (LH1). The RC employs six pigment molecules to initiate the conversion: four bacteriochlorophylls and two bacteriopheophytins. The excited states of these pigments interact very strongly and are simultaneously influenced by the surrounding thermal protein environment. Likewise, LH1 employs 32 bacteriochlorophylls influenced in their excited state dynamics by strong interaction between the pigments and by interaction with the protein environment. Modeling the excited state dynamics in the RC as well as in LH1 requires theoretical methods, which account for both pigment-pigment interaction and pigment-environment interaction. In the present study we describe the excitation dynamics within a RC and excitation transfer between light harvesting complex 1 (LH1) and RC, employing the hierarchical equation of motion method. For this purpose a set of model parameters that reproduce RC as well as LH1 spectra and observed oscillatory excitation dynamics in the RC is suggested. We find that the environment has a significant effect on LH1-RC excitation transfer and that excitation transfers incoherently between LH1 and RC.

  6. Protein modifications affecting triplet energy transfer in bacterial photosynthetic reaction centers.

    SciTech Connect

    Laible, P. D.; Chynwat, V.; Thurnauer, M. C.; Schiffer, M.; Hanson, D. K.; Frank, H. A.; Univ.of Connecticut; Univ. of Connecticut

    1998-05-01

    The efficiency of triplet energy transfer from the special pair (P) to the carotenoid (C) in photosynthetic reaction centers (RCs) from a large family of mutant strains has been investigated. The mutants carry substitutions at positions L181 and/or M208 near chlorophyll-based cofactors on the inactive and active sides of the complex, respectively. Light-modulated electron paramagnetic resonance at 10 K, where triplet energy transfer is thermally prohibited, reveals that the mutations do not perturb the electronic distribution of P. At temperatures > or = 70 K, we observe reduced signals from the carotenoid in most of the RCs with L181 substitutions. In particular, triplet transfer efficiency is reduced in all RCs in which a lysine at L181 donates a sixth ligand to the monomeric bacteriochlorophyll B(B). Replacement of the native Tyr at M208 on the active side of the complex with several polar residues increased transfer efficiency. The difference in the efficiencies of transfer in the RCs demonstrates the ability of the protein environment to influence the electronic overlap of the chromophores and thus the thermal barrier for triplet energy transfer.

  7. Direct observation of vibrational coherence in bacterial reaction centers using femtosecond absorption spectroscopy.

    PubMed

    Vos, M H; Lambry, J C; Robles, S J; Youvan, D C; Breton, J; Martin, J L

    1991-10-15

    It is shown that vibrational coherence modulates the femtosecond kinetics of stimulated emission and absorption of reaction centers of purple bacteria. In the DLL mutant of Rhodobacter capsulatus, which lacks the bacteriopheophytin electron acceptor, oscillations with periods of approximately 500 fs and possibly also of approximately 2 ps were observed, which are associated with formation of the excited state. The kinetics, which reflect primary processes in Rhodobacter sphaeroides R-26, were modulated by oscillations with a period of approximately 700 fs at 796 nm and approximately 2 ps at 930 nm. In the latter case, at 930 nm, where the stimulated emission of the excited state, P*, is probed, oscillations could only be resolved when a sufficiently narrow (10 nm) and concomitantly long pump pulse was used. This may indicate that the potential energy surface of the excited state is anharmonic or that low-frequency oscillations are masked when higher frequency modes are also coherently excited, or both. The possibility is discussed that the primary charge separation may be a coherent and adiabatic process coupled to low-frequency vibrational modes. PMID:1924348

  8. Native Mass Spectrometry Characterizes the Photosynthetic Reaction Center Complex from the Purple Bacterium Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Harrington, Lucas B.; Lu, Yue; Prado, Mindy; Saer, Rafael; Rempel, Don; Blankenship, Robert E.; Gross, Michael L.

    2016-08-01

    Native mass spectrometry (MS) is an emerging approach to study protein complexes in their near-native states and to elucidate their stoichiometry and topology. Here, we report a native MS study of the membrane-embedded reaction center (RC) protein complex from the purple photosynthetic bacterium Rhodobacter sphaeroides. The membrane-embedded RC protein complex is stabilized by detergent micelles in aqueous solution, directly introduced into a mass spectrometer by nano-electrospray (nESI), and freed of detergents and dissociated in the gas phase by collisional activation. As the collision energy is increased, the chlorophyll pigments are gradually released from the RC complex, suggesting that native MS introduces a near-native structure that continues to bind pigments. Two bacteriochlorophyll a pigments remain tightly bound to the RC protein at the highest collision energy. The order of pigment release and their resistance to release by gas-phase activation indicates the strength of pigment interaction in the RC complex. This investigation sets the stage for future native MS studies of membrane-embedded photosynthetic pigment-protein and related complexes.

  9. Microaerophilic growth and induction of the photosynthetic reaction center in Rhodopseudomonas viridis

    SciTech Connect

    Lang, F.S.; Oesterhelt, D.

    1989-05-01

    Rhodopseudomonas viridis was grown in liquid culture at 30 degrees C anaerobically in light (generation time, 13 h) and under microaerophilic growth conditions in the dark (generation time, 24 h). The bacterium could be cloned at the same temperature anaerobically in light (1 week) and aerobically in the dark (3 to 4 weeks) if oxygen was limited to 0.1%. Oxygen could not be replaced by dimethyl sulfoxide, potassium nitrate, or sodium nitrite as a terminal electron acceptor. No growth was observed anaerobically in darkness or in the light when air was present. A variety of additional carbon sources were used to supplement the standard succinate medium, but enhanced stationary-phase cell density was observed only with glucose. Conditions for induction of the photosynthetic reaction center upon the change from microaerophilic to phototrophic growth conditions were investigated and optimized for a mutant functionally defective in phototrophic growth. R. viridis consumed about 20-fold its cell volume of oxygen per hour during respiration. The MICs of ampicillin, kanamycin, streptomycin, tetracycline, 1-methyl-3-nitro-1-nitrosoguanidine, and terbutryn were determined.

  10. Targeted genetic inactivation of the photosystem I reaction center in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed Central

    Smart, L B; Anderson, S L; McIntosh, L

    1991-01-01

    We describe the first complete segregation of a targeted inactivation of psaA encoding one of the P700-chlorophyll a apoproteins of photosystem (PS) I. A kanamycin resistance gene was used to interrupt the psaA gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Selection of a fully segregated mutant, ADK9, was performed under light-activated heterotrophic growth (LAHG) conditions; complete darkness except for 5 min of light every 24 h and 5 mM glucose. Under these conditions, wild-type cells showed a 4-fold decrease in chlorophyll (chl) per cell, primarily due to a decrease of PS I reaction centers. Evidence for the absence of PS I in ADK9 includes: the lack of EPR (electron paramagnetic resonance) signal I, from P700+; undetectable P700-apoprotein; greatly reduced whole-chain photosynthesis rates; and greatly reduced chl per cell, resulting in a turquoise blue phenotype. The PS I peripheral proteins PSA-C and PSA-D were not detected in this mutant. ADK9 does assemble near wild-type levels of functional PS II per cell, evidenced by: EPR signal II from YD+; high rates of oxygen evolution with 2,6-dichloro-p-benzoquinone (DCBQ), an electron acceptor from PS II; and accumulation of D1, a PS II core polypeptide. The success of this transformation indicates that this cyanobacterium may be utilized for site-directed mutagenesis of the PS I core. Images PMID:1717264

  11. miR-217 is an oncogene that enhances the germinal center reaction.

    PubMed

    de Yébenes, Virginia G; Bartolomé-Izquierdo, Nahikari; Nogales-Cadenas, Rubén; Pérez-Durán, Pablo; Mur, Sonia M; Martínez, Nerea; Di Lisio, Lorena; Robbiani, Davide F; Pascual-Montano, Alberto; Cañamero, Marta; Piris, Miguel A; Ramiro, Almudena R

    2014-07-10

    microRNAs are a class of regulators of gene expression that have been shown critical for a great number of biological processes; however, little is known of their role in germinal center (GC) B cells. Although the GC reaction is crucial to ensure a competent immune response, GC B cells are also the origin of most human lymphomas, presumably due to bystander effects of the immunoglobulin gene remodeling that takes place at these sites. Here we report that miR-217 is specifically upregulated in GC B cells. Gain- and loss-of-function mouse models reveal that miR-217 is a positive modulator of the GC response that increases the generation of class-switched antibodies and the frequency of somatic hypermutation. We find that miR-217 down-regulates the expression of a DNA damage response and repair gene network and in turn stabilizes Bcl-6 expression in GC B cells. Importantly, miR-217 overexpression also promotes mature B-cell lymphomagenesis; this is physiologically relevant as we find that miR-217 is overexpressed in aggressive human B-cell lymphomas. Therefore, miR-217 provides a novel molecular link between the normal GC response and B-cell transformation. PMID:24850757

  12. ENDOR studies of the intermediate electron acceptor radical anion I-. in Photosystem II reaction centers.

    PubMed

    Lubitz, W; Isaacson, R A; Okamura, M Y; Abresch, E C; Plato, M; Feher, G

    1989-11-23

    The EPR and ENDOR characteristics of the intermediate electron acceptor radical anion I-. in Photosystem II (PS II) are shown to be identical in membrane particles and in the D1D2 cytochrome b-559 complex (Nanba, O. and Satoh, K. (1987) Proc. Natl. Acad. Sci. USA 84, 109-112). These findings provide further evidence that the D1D2 complex is the reaction center of PS II and show that the pheophytin binding site is intact. A hydrogen bond between I-. and the protein (GLU D1-130) is postulated on the basis of D2O exchange experiments. The ENDOR data of I-. and of the pheophytin a radical anion in different organic solvents are compared and the observed differences are related to structural changes of the molecule on the basis of molecular orbital calculations (RHF-INDO/SP). The importance of the orientation of the vinyl group (attached to ring I) on electron transfer is discussed. PMID:2553112

  13. Delayed fluorescence from the photosynthetic reaction center measured by electronic gating of the photomultiplier.

    PubMed

    Filus, Z; Laczkó, G; Wraight, C A; Maróti, P

    The decay of the delayed fluorescence (920 nm) of reaction centers from the photosynthetic bacterium Rhodobacter sphaeroides R26 in the P(+)Q(A)(-) charge-separated state (P and Q(A) are the primary donor and quinone, respectively) has been monitored in a wide (100 ns to 100 ms) time range. The photomultiplier (Hamamatsu R3310-03) was protected from the intense prompt fluorescence by application of gating potential pulses (-280 V) to the first, third, and fifth dynodes during the laser pulse. The gain of the photomultiplier dropped transiently by a factor of 1 x 10(6). The delayed fluorescence showed a smooth but nonexponential decay from 100 ns to 1 ms that was explained by the relaxation of the average free energy between P* and P(+)Q(A)(-) changing from -580 to -910 meV. This relaxation is due to the slow protein response to charge separation and can be described by a Kohlrausch relaxation function with time constant of 65 micros and a stretching exponent of alpha = 0.45. PMID:15137102

  14. Self-assembling photosynthetic reaction centers on electrodes for current generation.

    PubMed

    Nakamura, C; Hasegawa, M; Yasuda, Y; Miyake, J

    2000-01-01

    Photosynthetic reaction centers (RCs) made from photosynthetic organisms can be used in solar batteries because their molecules cause light-induced charge separation. We present a simple immobilization system of the intact RCs from Rhodobacter sphaeroides on an electrode that uses nickel ligand binding by the hexameric histidine tag on H subunit (HHisRC). The binding constant of HHisRC to the nickel-nitrilotriacetic acid (Ni-NTA) chip measured with a surface plasmon resonance instrument was 1.6 x 10(8) M-1. HHisRCs were immobilized on an indium tin oxide electrode overlaid with an Ni-NTA gold substrate. The photoinduced displacement current of this electrode was measured to estimate the orientation of HHisRC on the electrode, and the detachability of HHisRC from the electrode was determined by using an imidazole solution wash. The direction of the flash-light-induced displacement current suggested that the H subunit side of the immobilized HHisRC faced the surface of the electrode. The photoinduced current disappeared after the electrode was washed in the imidazole solution. This simple immobilization and detachment of HHisRC to the electrode might be useful for making a reproducible photocurrent device. PMID:10849806

  15. Materials Characterization Center workshop on leaching of radioactive waste forms. Summary report

    SciTech Connect

    Ross, W.A.; Strachan, D.M.; Turcotte, R.P.; Westsik, J.H. Jr.

    1980-04-01

    At the first Materials Characterization Center (MCC) workshop, on the leaching of radioactive waste forms, there was general agreement that, after certain revisions, the proposed leach test plan set forth by the MCC can be expected to meet most of the nuclear waste community's waste form durability data requirements. The revisions give a clearer definition of the purposes of each test and the end uses of the data. As a result of the workshop, the format of the test program has been recast to clarify the purposes, limitations, and interrelationships of the individual tests. There was also a recognition that the leach test program must be based on an understanding of the mechanistic principles of leaching, and that further study is needed to ensure that the approved data from the MCC leach tests will be compatible with mechanistic research needs. It was agreed that another meeting of the participants in Working Groups 3 and 4, and perhaps some other experts, should be held as soon as possible to focus just on the definition of leach test requirements for mechanistic research. The MCC plans to hold this meeting in April 1980. Many of the tests that will lead to increased understanding of mechanisms will of necessity be long-term tests, sometimes lasting for several years. But the MCC also faces pressing needs to produce approved data that can be used for the comparison of waste forms in the relative near-term, i.e., in the next 1 to 3 yr. Therefore, it was decided to initiate a round-robin test of the MCC short-term static leach procedure as soon as practicable. The MCC has tentative plans for organization of the round robin in May 1980.

  16. Forming ceria shell on Au-core by LSPR photothermal induced interface reaction

    NASA Astrophysics Data System (ADS)

    Qu, Y. H.; Liu, F.; Wei, Y.; Gu, C. L.; Zhang, L. H.; Liu, Y.

    2015-07-01

    A novel method for preparing core-shell structure of Au@ceria was presented, which is characterized with using photothermal effect from localized surface plasmon resonance (LSPR) to induce heat, and the heat can trigger the shell formation reactions confined on the surface of the Au nanoparticles (NPs). In short of the preparation procedure, aqueous sol of Au NPs, citric acid, ethylene glycol and cerous nitrate were irradiated with a Xe arc lamp, maintaining the temperature of the sol at 25 °C by cooling and stirring the sol. The Au NPs could generate heat from LSPR, and the heat induced polymerization reaction in the sol, resulting in cerium gel formation which enveloped each of the Au NPs, and the gel containing cerium formed only on the surface of the Au NPs. After calcination, Au@ceria was obtained. This method can be extended for preparing various core@shell nanocomposites in which metal cores possess LSPR effect and the shell formation can be induced by heat.

  17. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-03-01

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures.

  18. High-temperature oxidation behavior of reaction-formed silicon carbide ceramics

    NASA Technical Reports Server (NTRS)

    Ogbuji, Linus U. J. T.; Singh, M.

    1995-01-01

    The oxidation behavior of reaction-formed silicon carbide (RFSC) ceramics was investigated in the temperature range of 1100 to 1400 C. The oxidation weight change was recorded by TGA; the oxidized materials were examined by light and electron microscopy, and the oxidation product by x-ray diffraction analysis (XRD). The materials exhibited initial weight loss, followed by passive weight gain (with enhanced parabolic rates, k(sub p)), and ending with a negative (logarithmic) deviation from the parabolic law. The weight loss arose from the oxidation of residual carbon, and the enhanced k(sub p) values from internal oxidation and the oxidation of residual silicon, while the logarithmic kinetics is thought to have resulted from crystallization of the oxide. The presence of a small amount of MoSi, in the RFSC material caused a further increase in the oxidation rate. The only solid oxidation product for all temperatures studied was silica.

  19. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles

    PubMed Central

    Kim, Kyoung Hwan; Lee, Dong Jin; Cho, Kyeong Min; Kim, Seon Joon; Park, Jung-Ki; Jung, Hee-Tae

    2015-01-01

    Owing to its simplicity and low temperature conditions, magnesiothermic reduction of silica is one of the most powerful methods for producing silicon nanostructures. However, incomplete reduction takes place in this process leaving unconverted silica under the silicon layer. This phenomenon limits the use of this method for the rational design of silicon structures. In this effort, a technique that enables complete magnesiothermic reduction of silica to form silicon has been developed. The procedure involves magnesium promoted reduction of vertically oriented mesoporous silica channels on reduced graphene oxides (rGO) sheets. The mesopores play a significant role in effectively enabling magnesium gas to interact with silica through a large number of reaction sites. Utilizing this approach, highly uniform, ca. 10 nm sized silicon nanoparticles are generated without contamination by unreacted silica. The new method for complete magnesiothermic reduction of mesoporous silica approach provides a foundation for the rational design of silicon structures. PMID:25757800

  20. Microstructural Characterization of Reaction-Formed Silicon Carbide Ceramics. Materials Characterization

    NASA Technical Reports Server (NTRS)

    Singh, M.; Leonhardt, T. A.

    1995-01-01

    Microstructural characterization of two reaction-formed silicon carbide ceramics has been carried out by interference layering, plasma etching, and microscopy. These specimens contained free silicon and niobium disilicide as minor phases with silicon carbide as the major phase. In conventionally prepared samples, the niobium disilicide cannot be distinguished from silicon in optical micrographs. After interference layering, all phases are clearly distinguishable. Back scattered electron (BSE) imaging and energy dispersive spectrometry (EDS) confirmed the results obtained by interference layering. Plasma etching with CF4 plus 4% O2 selectively attacks silicon in these specimens. It is demonstrated that interference layering and plasma etching are very useful techniques in the phase identification and microstructural characterization of multiphase ceramic materials.

  1. Protein secondary structure of the isolated photosystem II reaction center and conformational changes studied by Fourier transform infrared spectroscopy.

    PubMed

    He, W Z; Newell, W R; Haris, P I; Chapman, D; Barber, J

    1991-05-01

    The secondary structure of the photosystem II (PSII) reaction center isolated from pea chloroplasts has been characterized by Fourier transform infrared (FTIR) spectroscopy. Spectra were recorded in aqueous buffers containing H2O or D2O; the detergent present for most measurements was dodecyl maltoside. The broad amide I and amide II bands were analyzed by using second-derivative and deconvolution procedures. Absorption bands were assigned to the presence of alpha-helices, beta-sheets, turns, or random structure. Quantitative analysis revealed that this complex contained a high proportion of alpha-helices (67%) and some antiparallel beta-sheets (9%) and turns (11%). An irreversible decrease in the intensity of the band associated with the alpha-helices occurs upon exposure of the isolated PSII reaction center to bright illumination. This loss of alpha-helical content gave rise to an increase in other secondary structures, particularly beta-sheets. After similar pretreatment with light, sodium dodecyl sulfate polyacrylamide gel electrophoresis reveals lower mobility and solubility of constituent D1 and D2 polypeptides of the PSII reaction center. Some degradation of these polypeptides also occurs. In contrast, there is no change in the mobility of the two subunits of cytochrome b559. In the absence of illumination, the PSII reaction center exchanged into dodecyl maltoside shows good thermal stability as compared with samples in Triton X-100. Only at a temperature of about 60 degrees C do spectral changes take place that are indicative of denaturation. PMID:1850626

  2. Does the proposed DSE motif form the active center in the Hermes transposase?

    PubMed

    Michel, K; O'Brochta, D A; Atkinson, P W

    2002-10-01

    Donor cleavage and strand transfer are two functions performed by transposases during transposition of class II transposable elements. Within transposable elements, the only active center described, to date, facilitating both functions, is the so-called DDE motif. A second motif, R-K-H/K-R-H/W-Y, is found in the site-specific recombinases of the tyrosine recombinase family. While present in many bacterial insertion sequences as well as in the eukaryotic family of mariner/Tc1 elements, the DDE motif was considered absent in other classes of eukaryotic class II elements such as P, and hAT and piggyBac. Based on sequence alignments of a hobo-like element from the nematode Caenorhabditis elegans, to a variety of other hAT transposases and several members of the mariner/Tc1 group, Bigot et al. [Gene 174 (1996) 265] proposed the presence of a DSE motif in hAT transposases. In the present study we tested if each of these three residues is required for transposition of the Hermes element, a member of the hAT family commonly used for insect transformation. While D402N and E572Q mutations lead to knock-out of Hermes function, mutations S535A and S535D did not affect transposition frequency or the choice of integration sites. These data give the first experimental support that D402 and E572 are indeed required for transposition of Hermes. Furthermore, this study indicates that the active center of the Hermes transposase differs from the proposed DSE motif. It remains to be shown if other residues also form the active site of this transposase. PMID:12426102

  3. PsbN Is Required for Assembly of the Photosystem II Reaction Center in Nicotiana tabacum[W

    PubMed Central

    Torabi, Salar; Umate, Pavan; Manavski, Nikolay; Plöchinger, Magdalena; Kleinknecht, Laura; Bogireddi, Hanumakumar; Herrmann, Reinhold G.; Wanner, Gerhard; Schröder, Wolfgang P.; Meurer, Jörg

    2014-01-01

    The chloroplast-encoded low molecular weight protein PsbN is annotated as a photosystem II (PSII) subunit. To elucidate the localization and function of PsbN, encoded on the opposite strand to the psbB gene cluster, we raised antibodies and inserted a resistance cassette into PsbN in both directions. Both homoplastomic tobacco (Nicotiana tabacum) mutants ∆psbN-F and ∆psbN-R show essentially the same PSII deficiencies. The mutants are extremely light sensitive and failed to recover from photoinhibition. Although synthesis of PSII proteins was not altered significantly, both mutants accumulated only ∼25% of PSII proteins compared with the wild type. Assembly of PSII precomplexes occurred at normal rates, but heterodimeric PSII reaction centers (RCs) and higher order PSII assemblies were not formed efficiently in the mutants. The ∆psbN-R mutant was complemented by allotopic expression of the PsbN gene fused to the sequence of a chloroplast transit peptide in the nuclear genome. PsbN represents a bitopic trans-membrane peptide localized in stroma lamellae with its highly conserved C terminus exposed to the stroma. Significant amounts of PsbN were already present in dark-grown seedling. Our data prove that PsbN is not a constituent subunit of PSII but is required for repair from photoinhibition and efficient assembly of the PSII RC. PMID:24619613

  4. Putative Hydrogen Bond to Tyrosine M208 in Photosynthetic Reaction Centers from Rhodobacter capsulatus Significantly Slows Primary Charge Separation

    PubMed Central

    2015-01-01

    Slow, ∼50 ps, P* → P+HA– electron transfer is observed in Rhodobacter capsulatus reaction centers (RCs) bearing the native Tyr residue at M208 and the single amino acid change of isoleucine at M204 to glutamic acid. The P* decay kinetics are unusually homogeneous (single exponential) at room temperature. Comparative solid-state NMR of [4′-13C]Tyr labeled wild-type and M204E RCs show that the chemical shift of Tyr M208 is significantly altered in the M204E mutant and in a manner consistent with formation of a hydrogen bond to the Tyr M208 hydroxyl group. Models based on RC crystal structure coordinates indicate that if such a hydrogen bond is formed between the Glu at M204 and the M208 Tyr hydroxyl group, the −OH would be oriented in a fashion expected (based on the calculations by Alden et al., J. Phys. Chem.1996, 100, 16761–16770) to destabilize P+BA– in free energy. Alteration of the environment of Tyr M208 and BA by Glu M204 via this putative hydrogen bond has a powerful influence on primary charge separation. PMID:24902471

  5. Direct Detection of Supramolecular Reaction Centers in the Methanol-to-Olefins Conversion over Zeolite H-ZSM-5 by (13)C-(27)Al Solid-State NMR Spectroscopy.

    PubMed

    Wang, Chao; Wang, Qiang; Xu, Jun; Qi, Guodong; Gao, Pan; Wang, Weiyu; Zou, Yunyun; Feng, Ningdong; Liu, Xiaolong; Deng, Feng

    2016-02-12

    Hydrocarbon-pool chemistry is important in methanol to olefins (MTO) conversion on acidic zeolite catalysts. The hydrocarbon-pool (HP) species, such as methylbenzenes and cyclic carbocations, confined in zeolite channels during the reaction are essential in determining the reaction pathway. Herein, we experimentally demonstrate the formation of supramolecular reaction centers composed of organic hydrocarbon species and the inorganic zeolite framework in H-ZSM-5 zeolite by advanced (13)C-(27)Al double-resonance solid-state NMR spectroscopy. Methylbenzenes and cyclic carbocations located near Brønsted acid/base sites form the supramolecular reaction centers in the zeolite channel. The internuclear spatial interaction/proximity between the (13)C nuclei (associated with HP species) and the (27) Al nuclei (associated with Brønsted acid/base sites) determines the reactivity of the HP species. The closer the HP species are to the zeolite framework Al, the higher their reactivity in the MTO reaction. PMID:26732748

  6. Readability of informed consent forms in clinical trials conducted in a skin research center

    PubMed Central

    Samadi, Aniseh; Asghari, Fariba

    2016-01-01

    Obtaining informed consents is one of the most fundamental principles in conducting a clinical trial. In order for the consent to be informed, the patient must receive and comprehend the information appropriately. Complexity of the consent form is a common problem that has been shown to be a major barrier to comprehension for many patients. The objective of this study was to assess the readability of different templates of informed consent forms (ICFs) used in clinical trials in the Center for Research and Training in Skin Diseases and Leprosy (CRTSDL), Tehran, Iran. This study was conducted on ICFs of 45 clinical trials of the CRTSDL affiliated with Tehran University of Medical Sciences. ICFs were tested for reading difficulty, using the readability assessments formula adjusted for the Persian language including the Flesch–Kincaid reading ease score, Flesch–Kincaid grade level, and Gunning fog index. Mean readability score of the whole text of ICFs as well as their 7 main information parts were calculated. The mean ± SD Flesch Reading Ease score for all ICFs was 31.96 ± 5.62 that is in the difficult range. The mean ± SD grade level was calculated as 10.71 ± 1.8 (8.23–14.09) using the Flesch–Kincaid formula and 14.64 ± 1.22 (12.67–18.27) using the Gunning fog index. These results indicate that the text is expected to be understandable for an average student in the 11th grade, while the ethics committee recommend grade level 8 as the standard readability level for ICFs. The results showed that the readability scores of ICFs assessed in our study were not in the acceptable range. This means they were too complex to be understood by the general population. Ethics committees must examine the simplicity and readability of ICFs used in clinical trials. PMID:27471590

  7. Readability of informed consent forms in clinical trials conducted in a skin research center.

    PubMed

    Samadi, Aniseh; Asghari, Fariba

    2016-01-01

    Obtaining informed consents is one of the most fundamental principles in conducting a clinical trial. In order for the consent to be informed, the patient must receive and comprehend the information appropriately. Complexity of the consent form is a common problem that has been shown to be a major barrier to comprehension for many patients. The objective of this study was to assess the readability of different templates of informed consent forms (ICFs) used in clinical trials in the Center for Research and Training in Skin Diseases and Leprosy (CRTSDL), Tehran, Iran. This study was conducted on ICFs of 45 clinical trials of the CRTSDL affiliated with Tehran University of Medical Sciences. ICFs were tested for reading difficulty, using the readability assessments formula adjusted for the Persian language including the Flesch-Kincaid reading ease score, Flesch-Kincaid grade level, and Gunning fog index. Mean readability score of the whole text of ICFs as well as their 7 main information parts were calculated. The mean ± SD Flesch Reading Ease score for all ICFs was 31.96 ± 5.62 that is in the difficult range. The mean ± SD grade level was calculated as 10.71 ± 1.8 (8.23-14.09) using the Flesch-Kincaid formula and 14.64 ± 1.22 (12.67-18.27) using the Gunning fog index. These results indicate that the text is expected to be understandable for an average student in the 11(th) grade, while the ethics committee recommend grade level 8 as the standard readability level for ICFs. The results showed that the readability scores of ICFs assessed in our study were not in the acceptable range. This means they were too complex to be understood by the general population. Ethics committees must examine the simplicity and readability of ICFs used in clinical trials. PMID:27471590

  8. Rad52 forms DNA repair and recombination centers during S phase

    PubMed Central

    Lisby, Michael; Rothstein, Rodney; Mortensen, Uffe H.

    2001-01-01

    Maintenance of genomic integrity and stable transmission of genetic information depend on a number of DNA repair processes. Failure to faithfully perform these processes can result in genetic alterations and subsequent development of cancer and other genetic diseases. In the eukaryote Saccharomyces cerevisiae, homologous recombination is the major pathway for repairing DNA double-strand breaks. The key role played by Rad52 in this pathway has been attributed to its ability to seek out and mediate annealing of homologous DNA strands. In this study, we find that S. cerevisiae Rad52 fused to green fluorescent protein (GFP) is fully functional in DNA repair and recombination. After induction of DNA double-strand breaks by γ-irradiation, meiosis, or the HO endonuclease, Rad52-GFP relocalizes from a diffuse nuclear distribution to distinct foci. Interestingly, Rad52 foci are formed almost exclusively during the S phase of mitotic cells, consistent with coordination between recombinational repair and DNA replication. This notion is further strengthened by the dramatic increase in the frequency of Rad52 focus formation observed in a pol12-100 replication mutant and a mec1 DNA damage checkpoint mutant. Furthermore, our data indicate that each Rad52 focus represents a center of recombinational repair capable of processing multiple DNA lesions. PMID:11459964

  9. Multiple Scattering X-Ray Absorption Studies of Zn2+ Binding Sites in Bacterial Photosynthetic Reaction Centers

    PubMed Central

    Giachini, Lisa; Francia, Francesco; Mallardi, Antonia; Palazzo, Gerardo; Carpenè, Emilio; Boscherini, Federico; Venturoli, Giovanni

    2005-01-01

    Binding of transition metal ions to the reaction center (RC) protein of the photosynthetic bacterium Rhodobacter sphaeroides has been previously shown to slow light-induced electron and proton transfer to the secondary quinone acceptor molecule, QB. On the basis of x-ray diffraction at 2.5 Å resolution a site, formed by AspH124, HisH126, and HisH128, has been identified at the protein surface which binds Cd2+ or Zn2+. Using Zn K-edge x-ray absorption fine structure spectroscopy we report here on the local structure of Zn2+ ions bound to purified RC complexes embedded into polyvinyl alcohol films. X-ray absorption fine structure data were analyzed by combining ab initio simulations and multiparameter fitting; structural contributions up to the fourth coordination shell and multiple scattering paths (involving three atoms) have been included. Results for complexes characterized by a Zn to RC stoichiometry close to one indicate that Zn2+ binds two O and two N atoms in the first coordination shell. Higher shell contributions are consistent with a binding cluster formed by two His, one Asp residue, and a water molecule. Analysis of complexes characterized by ∼2 Zn ions per RC reveals a second structurally distinct binding site, involving one O and three N atoms, not belonging to a His residue. The local structure obtained for the higher affinity site nicely fits the coordination geometry proposed on the basis of x-ray diffraction data, but detects a significant contraction of the first shell. Two possible locations of the second new binding site at the cytoplasmic surface of the RC are proposed. PMID:15613631

  10. Structural and spectropotentiometric analysis of Blastochloris viridis heterodimer mutant reaction center

    SciTech Connect

    Ponomarenko, Nina S.; Li, Liang; Marino, Antony R.; Tereshko, Valentina; Ostafin, Agnes; Popova, Julia A.; Bylina, Edward J.; Ismagilov, Rustem F.; Norris, Jr., James R.

    2010-07-22

    Heterodimer mutant reaction centers (RCs) of Blastochloris viridis were crystallized using microfluidic technology. In this mutant, a leucine residue replaced the histidine residue which had acted as a fifth ligand to the bacteriochlorophyll (BChl) of the primary electron donor dimer M site (HisM200). With the loss of the histidine-coordinated Mg, one bacteriochlorophyll of the special pair was converted into a bacteriopheophytin (BPhe), and the primary donor became a heterodimer supermolecule. The crystals had dimensions 400 x 100 x 100 {micro}m, belonged to space group P4{sub 3}2{sub 1}2, and were isomorphous to the ones reported earlier for the wild type (WT) strain. The structure was solved to a 2.5 {angstrom} resolution limit. Electron-density maps confirmed the replacement of the histidine residue and the absence of Mg. Structural changes in the heterodimer mutant RC relative to the WT included the absence of the water molecule that is typically positioned between the M side of the primary donor and the accessory BChl, a slight shift in the position of amino acids surrounding the site of the mutation, and the rotation of the M194 phenylalanine. The cytochrome subunit was anchored similarly as in the WT and had no detectable changes in its overall position. The highly conserved tyrosine L162, located between the primary donor and the highest potential heme C{sub 380}, revealed only a minor deviation of its hydroxyl group. Concomitantly to modification of the BChl molecule, the redox potential of the heterodimer primary donor increased relative to that of the WT organism (772 mV vs. 517 mV). The availability of this heterodimer mutant and its crystal structure provides opportunities for investigating changes in light-induced electron transfer that reflect differences in redox cascades.

  11. Calculated coupling of electron and proton transfer in the photosynthetic reaction center of Rhodopseudomonas viridis.

    PubMed Central

    Lancaster, C R; Michel, H; Honig, B; Gunner, M R

    1996-01-01

    Based on new Rhodopseudomonas (Rp.) viridis reaction center (RC) coordinates with a reliable structure of the secondary acceptor quinone (QB) site, a continuum dielectric model and finite difference technique have been used to identify clusters of electrostatically interacting ionizable residues. Twenty-three residues within a distance of 25 A from QB (QB cluster) have been shown to be strongly electrostatically coupled to QB, either directly or indirectly. An analogous cluster of 24 residues is found to interact with QA (QA cluster). Both clusters extend to the cytoplasmic surface in at least two directions. However, the QB cluster differs from the QA cluster in that it has a surplus of acidic residues, more strong electrostatic interactions, is less solvated, and experiences a strong positive electrostatic field arising from the polypeptide backbone. Consequently, upon reduction of QA or QB, it is the QB cluster, and not the QA cluster, which is responsible for substoichiometric proton uptake at neutral pH. The bulk of the changes in the QB cluster are calculated to be due to the protonation of a tightly coupled cluster of the three Glu residues (L212, H177, and M234) within the QB cluster. If the lifetime of the doubly reduced state QB2- is long enough, Asp M43 and Ser L223 are predicted to also become protonated. The calculated complex titration behavior of the strongly interacting residues of the QB cluster and the resulting electrostatic response to electron transfer may be a common feature in proton-transferring membrane protein complexes. Images FIGURE 2 p2482-a FIGURE 6 FIGURE 8 FIGURE 10 PMID:8744288

  12. Calculated coupling of electron and proton transfer in the photosynthetic reaction center of Rhodopseudomonas viridis.

    PubMed

    Lancaster, C R; Michel, H; Honig, B; Gunner, M R

    1996-06-01

    Based on new Rhodopseudomonas (Rp.) viridis reaction center (RC) coordinates with a reliable structure of the secondary acceptor quinone (QB) site, a continuum dielectric model and finite difference technique have been used to identify clusters of electrostatically interacting ionizable residues. Twenty-three residues within a distance of 25 A from QB (QB cluster) have been shown to be strongly electrostatically coupled to QB, either directly or indirectly. An analogous cluster of 24 residues is found to interact with QA (QA cluster). Both clusters extend to the cytoplasmic surface in at least two directions. However, the QB cluster differs from the QA cluster in that it has a surplus of acidic residues, more strong electrostatic interactions, is less solvated, and experiences a strong positive electrostatic field arising from the polypeptide backbone. Consequently, upon reduction of QA or QB, it is the QB cluster, and not the QA cluster, which is responsible for substoichiometric proton uptake at neutral pH. The bulk of the changes in the QB cluster are calculated to be due to the protonation of a tightly coupled cluster of the three Glu residues (L212, H177, and M234) within the QB cluster. If the lifetime of the doubly reduced state QB2- is long enough, Asp M43 and Ser L223 are predicted to also become protonated. The calculated complex titration behavior of the strongly interacting residues of the QB cluster and the resulting electrostatic response to electron transfer may be a common feature in proton-transferring membrane protein complexes. PMID:8744288

  13. Germinal center reaction following cutaneous dengue virus infection in immune-competent mice.

    PubMed

    Yam-Puc, Juan Carlos; García-Cordero, Julio; Calderón-Amador, Juana; Donis-Maturano, Luis; Cedillo-Barrón, Leticia; Flores-Romo, Leopoldo

    2015-01-01

    Dengue virus (DENV) has four serotypes, which can cause from asymptomatic disease to severe dengue. Heterologous secondary infections have been associated to a greater risk of potentially fatal dengue due to non-neutralizing memory antibodies (Abs), which facilitate the infection, such as anti-precursor membrane (prM) Abs, among other mechanisms. Usually, class-switched memory Abs are generated mainly through germinal centers (GCs). However, the cellular events underlying these Ab responses to DENV, especially during repeated/secondary infections, have been poorly studied. We wanted to know whether there is involvement of GC reactions during cutaneous DENV infection and whether there is any sort of preferential Ab responses to defined viral proteins. Intradermal DENV inoculation at a relatively low dose efficiently infects immune-competent BALB/c mice, inducing higher quantities of DENV-specific GC B cells and larger GCs than the control conditions. Interestingly, GCs exhibited as much prM as envelope (E) and non-structural 3 viral proteins in situ. Intriguingly, despite the much larger abundance of E protein than of prM protein in the virions, infected animals showed similar amounts of circulating Abs and Ag-specific GC B cells both for prM and for E proteins, even significantly higher for prM. To the best of our knowledge, there are no reports of the GC responses during DENV infection. This relatively stronger anti-prM response could be triggered by DENV to preferentially promote Abs against certain viral proteins, which might favor infections by facilitating DENV invasion of host cells. It is thus conceivably that DENV might have evolved to induce this kind of Ab responses. PMID:25964784

  14. Triplet energy transfer between the primary donor and carotenoids in Rhodobacter sphaeroides R-26.1 reaction centers incorporated with spheroidene analogs having different extents of pi-electron conjugation.

    PubMed

    Farhoosh, R; Chynwat, V; Gebhard, R; Lugtenburg, J; Frank, H A

    1997-07-01

    Three carotenoids, spheroidene, 3,4-dihydrospheroidene and 3,4,5,6-tetrahydrospheroidene, having 8, 9 and 10 conjugated carbon-carbon double bonds, respectively, were incorporated into Rhodobacter (Rb.) sphaeroides R-26.1 reaction centers. The extents of binding were found to be 95 +/- 5% for spheroidene, 65 +/- 5% for 3,4-dihydrospheroidene and 60 +/- 10% for 3,4,5,6-tetrahydrospheroidene. The dynamics of the triplet states of the primary donor and carotenoid were measured at room temperature by flash absorption spectroscopy. The carotenoid, spheroidene, was observed to quench the primary donor triplet state. The triplet state of spheroidene that was formed subsequently decayed to the ground state with a lifetime of 7.0 +/- 0.5 microseconds. The primary donor triplet lifetime in the Rb. sphaeroides R-26.1 reaction centers lacking carotenoids was 60 +/- 5 microseconds. Quenching of the primary donor triplet state by the carotenoid was not observed in the Rb. sphaeroides R-26.1 reaction centers containing 3,4-dihydrospheroidene nor in the R-26.1 reaction centers containing 3,4,5,6-tetrahydrospheroidene. Triplet-state electron paramagnetic resonance was also carried out on the samples. The experiments revealed carotenoid triple-state signals in the Rb. sphaeroides R-26.1 reaction centers incorporated with spheroidene, indicating that the primary donor triplet is quenched by the carotenoid. No carotenoid signals were observed from Rb. sphaeroides R-26.1 reaction centers incorporating 3,4-dihydrospheroidene nor in reaction centers incorporating 3,4,5,6-tetrahydrospheroidene. Circular dichroism, steady-state absorbance band shifts accompanying the primary photochemistry in the reaction center and singlet energy transfer from the carotenoid to the primary donor confirm that the carotenoids are bound in the reaction centers and interacting with the primary donor. These studies provide a systematic approach to exploring the effects of carotenoid structure and excited

  15. Kinetics and Mechanism of Deoxygenation Reactions over Proton-Form and Molybdenum-Modified Zeolite Catalysts

    NASA Astrophysics Data System (ADS)

    Bedard, Jeremy William

    The depletion of fossil fuel resources and the environmental consequences of their use have dictated the development of new sources of energy that are both sustainable and economical. Biomass has emerged as a renewable carbon feedstock that can be used to produce chemicals and fuels traditionally obtained from petroleum. The oxygen content of biomass prohibits its use without modification because oxygenated hydrocarbons are non-volatile and have lower energy content. Chemical processes that eliminate oxygen and keep the carbon backbone intact are required for the development of biomass as a viable chemical feedstock. This dissertation reports on the kinetic and mechanistic studies conducted on high and low temperature catalytic processes for deoxygenation of biomass precursors to produce high-value chemicals and fuels. Low temperature, steady state reaction studies of acetic acid and ethanol were used to identify co-adsorbed acetic acid/ethanol dimers as surface intermediates within specific elementary steps involved in the esterification of acetic acid with ethanol on zeolites. A reaction mechanism involving two dominating surface species, an inactive ethanol dimeric species adsorbed on Bronsted sites inhibiting ester formation and a co-adsorbed complex of acetic acid and ethanol on the active site reacting to produce ethyl acetate, is shown to describe the reaction rate as a function of temperature (323 -- 383 K), acetic acid (0.5 -- 6.0 kPa), and ethanol (5.0 -- 13.0 kPa) partial pressure on proton-form BEA, FER, MFI, and MOR zeolites. Measured differences in rates as a function of zeolite structure and the rigorous interpretation of these differences in terms of esterification rate and equilibrium constants is presented to show that the intrinsic rate constant for the activation of the co-adsorbed complex increases in the order FER < MOR < MFI < BEA. High temperature co-processing of acetic acid, formic acid, or carbon dioxide with methane (CH3COOH/CH4 = 0

  16. The protein environment of the bacteriopheophytin anion modulates charge separation and charge recombination in bacterial reaction centers.

    PubMed

    Pan, Jie; Saer, Rafael G; Lin, Su; Guo, Zhi; Beatty, J Thomas; Woodbury, Neal W

    2013-06-20

    The kinetics and pathway of electron transfer has been explored in a series of reaction center mutants from Rhodobacter sphaeroides, in which the leucine residue at M214 near the bacteriopheophytin cofactor in the A-branch has been replaced with methionine, cysteine, alanine, and glycine. These amino acids have substantially different volumes, both from each other and, except for methionine, from the native leucine. Though the mutation site of M214 is close to the bacteriopheophytin cofactor, which is involved in the electron transfer, none of the mutations alter the cofactor composition of the reaction center and the primary charge separation reaction is essentially undisturbed. However, the kinetics of electron transfer from HA(-) → QA becomes both slower and substantially heterogeneous in three of the four mutants. The decreased HA(-) → QA electron transfer rate allows charge recombination between P(+) and HA(-) to compete with the forward reaction, resulting in a drop in the overall yield of charge separation. Both the yield change and the variation in kinetics correlate well with the volume of the mutant amino acid side chains. Analysis of the kinetics suggests that the introduction of a smaller side chain at M214 results in greater protein structural heterogeneity and dynamics on multiple time scales, resulting in perturbation of the electronic environment and its evolution in the vicinity of the early charge-separated radical pair, P(+)HA(-), and the subsequent acceptor QA, affecting both the extent and time scale of dielectric relaxation. It appears that the reaction center has been optimized not only in terms of its static structure-function relationships, but also finely tuned to favor particular reaction pathways on particular time scales by adjusting protein dynamics. PMID:23688348

  17. On stabilization of scattering resonances in recombination reaction that forms ozone

    NASA Astrophysics Data System (ADS)

    Ivanov, Mikhail V.; Babikov, Dmitri

    2016-04-01

    Calculations of energy transfer in the recombination reaction that forms ozone are carried out within the framework of the mixed quantum/classical theory and using the dimensionally reduced 2D-model of ozone molecule, with bending motion neglected. Recombination rate coefficients are obtained at room temperature for symmetric and asymmetric isotopomers of singly and doubly substituted isotopologues. The processes of resonance formation, spontaneous decay, collisional dissociation, and stabilization by bath gas (Ar) are all characterized and taken into account within the steady-state approximation for kinetics. The focus is on stabilization step, where the mysterious isotopic η-effect was thought to originate from. Our results indicate no difference in cross sections for stabilization of scattering resonances in symmetric and asymmetric isotopomers. As practical results, the general and simple analytic models for stabilization and dissociation cross sections are presented, which can be applied to resonances in any ozone molecule, symmetric or asymmetric, singly or doubly substituted. Present calculations show some isotope effect that looks similar to the experimentally observed η-effect, and the origin of this phenomenon is in the rates of formation/decay of scattering resonances, determined by their widths, that are somewhat larger in asymmetric isotopomers than in their symmetric analogues. However, the approximate two-dimensional model used here is insufficient for consistent and reliable description of all features of the isotopic effect in ozone. Calculations using an accurate 3D model are still needed.

  18. CTEPP-OH DATA COLLECTED ON FORM 05: CHILD DAY CARE CENTER PRE-MONITORING QUESTIONNAIRE

    EPA Science Inventory

    This data set contains data for CTEPP-OH concerning the potential sources of pollutants at the day care center including the chemicals that have been applied in the past at the day care center by staff members or by commercial contractors. The day care teacher was asked questions...

  19. CTEPP NC DATA COLLECTED ON FORM 05: CHILD DAY CARE CENTER PRE-MONITORING QUESTIONNAIRE

    EPA Science Inventory

    This data set contains data concerning the potential sources of pollutants at the day care center including the chemicals that have been applied in the past at the day care center by staff members or by commercial contractors. The day care teacher was asked questions related to t...

  20. Modulating the Redox Potential of the Stable Electron Acceptor, QB, in Mutagenized Photosystem II Reaction Centers.

    SciTech Connect

    Perrine, Zoee; Sayre, Richard

    2011-02-10

    One of the unique features of electron transfer processes in photosystem II (PSII) reaction centers (RC) is the exclusive transfer of electrons down only one of the two parallel cofactor branches. In contrast to the RC core polypeptides (psaA and psaB) of photosystem I (PSI), where electron transfer occurs down both parallel redox-active cofactor branches, there is greater protein-cofactor asymmetry between the PSII RC core polypeptides (D1 and D2). We have focused on the identification of protein-cofactor relationships that determine the branch along which primary charge separation occurs (P680+/pheophytin-(Pheo)). We have previously shown that mutagenesis of the strong hydrogen-bonding residue, D1-E130, to less polar residues (D1-E130Q,H,L) shifted the midpoint potential of the PheoD1/PheoD1- couple to more negative values, reducing the quantum yield of primary charge separation. We did not observe, however, electron transfer down the inactive branch in D1-E130 mutants. The protein residue corresponding to D1-E130 on the inactive branch is D2-Q129 which presumably has a reduced hydrogen-bonding interaction with PheoD2 relative to the D1-E130 residue with PheoD1. Analysis of the recent 2.9 Å cyanobacterial PSII crystal structure indicated, however, that the D2-Q129 residue was too distant from the PheoD2 headgroup to serve as a possible hydrogen bond donor and directly impact its midpoint potential as well as potentially determine the directionality of electron transfer. Our objective was to characterize the function of this highly conserved inactive branch residue by replacing it with a nonconservative leucine or a conservative histidine residue. Measurements of Chl fluorescence decay kinetics and thermoluminescence studies indicate that the mutagenesis of D2-Q129 decreases the redox gap between QA and QB due to a lowering of the redox potential of QB. The

  1. Stigmatellin Probes the Electrostatic Potential in the QB Site of the Photosynthetic Reaction Center

    PubMed Central

    Gerencsér, László; Boros, Bogáta; Derrien, Valerie; Hanson, Deborah K.; Wraight, Colin A.; Sebban, Pierre; Maróti, Péter

    2015-01-01

    The electrostatic potential in the secondary quinone (QB) binding site of the reaction center (RC) of the photosynthetic bacterium Rhodobacter sphaeroides determines the rate and free energy change (driving force) of electron transfer to QB. It is controlled by the ionization states of residues in a strongly interacting cluster around the QB site. Reduction of the QB induces change of the ionization states of residues and binding of protons from the bulk. Stigmatellin, an inhibitor of the mitochondrial and photosynthetic respiratory chain, has been proven to be a unique voltage probe of the QB binding pocket. It binds to the QB site with high affinity, and the pK value of its phenolic group monitors the local electrostatic potential with high sensitivity. Investigations with different types of detergent as a model system of isolated RC revealed that the pK of stigmatellin was controlled overwhelmingly by electrostatic and slightly by hydrophobic interactions. Measurements showed a high pK value (>11) of stigmatellin in the QB pocket of the dark-state wild-type RC, indicating substantial negative potential. When the local electrostatics of the QB site was modulated by a single mutation, L213Asp→Ala, or double mutations, L213Asp-L212Glu→Ala-Ala (AA), the pK of stigmatellin dropped to 7.5 and 7.4, respectively, which corresponds to a >210 mV increase in the electrostatic potential relative to the wild-type RC. This significant pK drop (ΔpK > 3.5) decreased dramatically to (ΔpK > 0.75) in the RC of the compensatory mutant (AA+M44Asn→AA+M44Asp). Our results indicate that the L213Asp is the most important actor in the control of the electrostatic potential in the QB site of the dark-state wild-type RC, in good accordance with conclusions of former studies using theoretical calculations or light-induced charge recombination assay. PMID:25606686

  2. Cu2+ site in photosynthetic bacterial reaction centers from Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis.

    PubMed

    Utschig, L M; Poluektov, O; Schlesselman, S L; Thurnauer, M C; Tiede, D M

    2001-05-22

    The interaction of metal ions with isolated photosynthetic reaction centers (RCs) from the purple bacteria Rhodobacter sphaeroides, Rhodobacter capsulatus, and Rhodopseudomonas viridis has been investigated with transient optical and magnetic resonance techniques. In RCs from all species, the electrochromic response of the bacteriopheophytin cofactors associated with Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron transfer is slowed in the presence of Cu(2+). This slowing is similar to the metal ion effect observed for RCs from Rb. sphaeroides where Zn(2+) was bound to a specific site on the surface of the RC [Utschig et al. (1998) Biochemistry 37, 8278]. The coordination environments of the Cu(2+) sites were probed with electron paramagnetic resonance (EPR) spectroscopy, providing the first direct spectroscopic evidence for the existence of a second metal site in RCs from Rb. capsulatus and Rps. viridis. In the dark, RCs with Cu(2+) bound to the surface exhibit axially symmetric EPR spectra. Electron spin echo envelope modulation (ESEEM) spectral results indicate multiple weakly hyperfine coupled (14)N nuclei in close proximity to Cu(2+). These ESEEM spectra resemble those observed for Cu(2+) RCs from Rb. sphaeroides [Utschig et al. (2000) Biochemistry 39, 2961] and indicate that two or more histidines ligate the Cu(2+) at the surface site in each RC. Thus, RCs from Rb. sphaeroides, Rb. capsulatus, and Rps. viridis each have a structurally analogous Cu(2+) binding site that is involved in modulating the Q(A)(-)Q(B) --> Q(A)Q(B)(-) electron-transfer process. Inspection of the Rps. viridis crystal structure reveals four potential histidine ligands from three different subunits (M16, H178, H72, and L211) located beneath the Q(B) binding pocket. The location of these histidines is surprisingly similar to the grouping of four histidine residues (H68, H126, H128, and L211) observed in the Rb. sphaeroides RC crystal structure. Further elucidation of these Cu(2+) sites will provide

  3. Application of micro X-ray diffraction to investigate the reaction products formed by the alkali silica reaction in concrete structures

    SciTech Connect

    Dähn, R.; Arakcheeva, A.; Schaub, Ph.; Pattison, P.; Chapuis, G.; Grolimund, D.; Wieland, E.; Leemann, A.

    2015-12-21

    Alkali–silica reaction (ASR) is one of the most important deterioration mechanisms in concrete leading to substantial damages of structures worldwide. Synchrotron-based micro-X-ray diffraction (micro-XRD) was employed to characterize the mineral phases formed in micro-cracks of concrete aggregates as a consequence of ASR. This particular high spatial resolution technique enables to directly gain structural information on ASR products formed in a 40-year old motorway bridge damaged due to ASR. Micro-X-ray-fluorescence was applied on thin sections to locate the reaction products formed in veins within concrete aggregates. Micro-XRD pattern were collected at selected points of interest along a vein by rotating the sample. Rietveld refinement determined the structure of the ASR product consisting of a new layered framework similar to mountainite and rhodesite. Furthermore, it is conceivable that understanding the structure of the ASR product may help developing new technical treatments inhibiting ASR.

  4. Isolation of a photosystem II reaction center consisting of D-1 and D-2 polypeptides and cytochrome b-559

    SciTech Connect

    Nanba, O.; Satoh, K.

    1987-01-01

    A photosystem II reaction center complex consisting of D-1 and D-2 polypeptides and cytochrome b-559 was isolated from spinach grana thylakoids, treated with 4% (wt/vol) Triton X-100, by ion-exchange chromatography using DEAE-Toyopearl 650S. The isolated complex appears to contain five chlorophyll a, two pheophytin a, one ..beta..-carotene, and one or two cytochrome b-559 heme(s) (molar ratio) and exhibits a reversible absorbance change attributable to the photochemical accumulation of reduced pheophytin typical for the intermediary electron acceptor of photosystem II reaction center. These results strongly suggest that the site of primary charge separation in photosystem II is located on the heterodimer composed of D-1 and D-2 subunits.

  5. Direct Measurement of the Effective Rate Constant for Primary Charge Separation in Isolated Photosystem II Reaction Centers

    SciTech Connect

    Greenfield, S. R.; Seibert, M.; Govindjee; Wasielewski, M. R.

    1997-03-27

    Transient absorption measurements of the pheophytin a anion band and Qx band bleach region using preferential excitation of P680 are performed on isolated photosystem II reaction centers to determine the effective rate constant for charge separtion. A novel analysis of the Qx band bleach region explicity takes the changing background into account in order to directly measure the rate of growth of the bleach. Both spectral regions reveal biphasic kinetics, with a ca. (8 ps)-1 rate constant for the faster component, and a ca. (50 ps)-1 rate constant for the slower component. We propose that the fster component corresponds to the effective rate constant for charge separation from within the equilibrated reaction center core and provides a lower limit for the intrinsic rate constant for charge separation. The slower component corresponds to charge separation that is limited by slow energy transfer from a long-wavelength accessory chlorophyll a.

  6. Axially assembled photosynthetic reaction center mimics composed of tetrathiafulvalene, aluminum(iii) porphyrin and fullerene entities

    NASA Astrophysics Data System (ADS)

    Poddutoori, Prashanth K.; Lim, Gary N.; Sandanayaka, Atula S. D.; Karr, Paul A.; Ito, Osamu; D'Souza, Francis; Pilkington, Melanie; van der Est, Art

    2015-07-01

    The distance dependence of sequential electron transfer has been studied in six, vertical, linear supramolecular triads, (TTF-Phn-py --> AlPor-Phm-C60, n = 0, 1 and m = 1, 2, 3), constructed using tetrathiafulvalene (TTF), aluminum(iii) porphyrin (AlPor) and fullerene (C60) entities. The C60 and TTF units are bound to the Al center on opposite faces of the porphyrin; the C60 through a covalent axial bond using a benzoate spacer, and the TTF through a coordination bond via an appended pyridine. Time-resolved optical and EPR spectroscopic methods and computational studies are used to demonstrate that excitation of the porphyrin leads to step-wise, sequential electron transfer (ET) between TTF and C60, and to study the electron transfer rates and exchange coupling between the components of the triads as a function of the bridge lengths. Femtosecond transient absorption studies show that the rates of charge separation, kCS are in the range of 109-1011 s-1, depending on the length of the bridges. The lifetimes of the charge-separated state TTF&z.rad;+-C&z.rad;-60 obtained from transient absorbance experiments and the singlet lifetimes of the radical pairs obtained by time-resolved EPR are in good agreement with each other and range from 60-130 ns in the triads. The time-resolved EPR data also show that population of the triplet sublevels of the charge-separated state in the presence of a magnetic field leads to much longer lifetimes of >1 μs. The data show that a modest stabilization of the charge separation lifetime occurs in the triads. The attenuation factor β = 0.36 Å-1 obtained from the exchange coupling values between TTF&z.rad;+ and C&z.rad;-60 is consistent with values reported in the literature for oligophenylene bridged TTF-C60 conjugates. The singlet charge recombination lifetime shows a much weaker dependence on the distance between the donor and acceptor, suggesting that a simple superexchange model is not sufficient to describe the back reaction

  7. Resolution of electron and proton transfer events in the electrochromism associated with quinone reduction in bacterial reaction centers.

    SciTech Connect

    Tiede, D. M.; Utschig, L.; Gallo, D. M.; Hanson, D. K.; Augustana Coll.

    1998-01-01

    We have measured the electrochromic response of the bacteriopheophytin, BPh, and bacteriochlorophyll, BChl, cofactors during the Q{sub A} {sup -}Q{sub B} {yields} Q{sub A}Q{sub B}{sup -} electron transfer in chromatophores of Rhodobacter (Rb.) capsulatus and Rb. sphaeroides. The electrochromic response rises faster in chromatophores and is more clearly biexponential than it is in isolated reaction centers. The chromatophore spectra can be interpreted in terms of a clear kinetic separation between fast electron transfer and slower non-electron transfer events such as proton transfer or protein relaxation. The electrochromic response to electron transfer exhibits rise times of about 4 {micro}s (70%) and 40 {micro}s (30%) in Rb. capsulatus and 4 {micro}s (60%) and 80 {micro}s (40%) in Rb. sphaeroides. The BPh absorption band is shifted to nearly equivalent positions in the Q{sub A}{sup -} and nascent Q{sub B}{sup -} states, indicating that the electrochromic perturbation of BPh absorption from the newly formed Q{sub B}{sup -} state is comparable to that of Q{sub A}{sup -} . Subsequently, partial attenuation of the Q{sub B}{sup -} electrochromism occurs with a time constant on the order of 200 {micro}s. This can be attributed to partial charge compensation by H{sup +} (or other counter ion) movement into the Q{sub B} pocket. Electron transfer events were found to be slower in detergent isolated RCs than in chromatophores, more nearly monoexponential, and overlap H{sup +} transfer, suggesting that a change in rate-limiting step has occurred upon detergent solubilization.

  8. Identification of the radicals formed in the reactions of some endogenous photosensitizers with oleic acid under the UVA irradiation.

    PubMed

    Mori, Hiroko; Iwahashi, Hideo

    2012-11-01

    Electron spin resonance measurements were performed for the reactions of some endogenous photosensitizers (flavin mononucleotide or flavin adenine dinucleotide or folic acid or β-nicotinamide adenine dinucleotide or β-nicotinamide adenine dinucleotide phosphate or pyridoxal-5'-phosphate or urocanic acid) with oleic acid under the ultraviolet light A irradiation using α-(4-pyridyl-1-oxide)-N-tert-butylnitrone as a spin trap reagent. Of the endogenous photosensitizers, prominent electron spin resonance signals (α(N) = 1.58 mT and α(H)β = 0.26 mT) were observed for the reaction mixture of flavin mononucleotide (or flavin adenine dinucleotide or folic acid), suggesting that radical species form in the reaction mixtures. Singlet oxygen seems to participate in the formation of the radicals because the electron spin resonance peak heights increased for the reactions in D(2)O to a great extent. A high performance liquid chromatography-electron spin resonance-mass spectrometry was employed to identify the radicals formed in the reactions of the endogenous photosensitizers (flavin mononucleotide or flavin adenine dinucleotide or folic acid) with oleic acid under the ultraviolet light A irradiation. The high performance liquid chromatography-electron spin resonance-mass spectrometry analyses showed that 7-carboxyheptyl and 1-(3-carboxypropyl)-4-hydroxybutyl radicals form in the reaction mixture of flavin mononucleotide (or flavin adenine dinucleotide or folic acid). PMID:23170043

  9. Origin of Nanobubbles Electrochemically Formed in a Magnetic Field: Ionic Vacancy Production in Electrode Reaction.

    PubMed

    Aogaki, Ryoichi; Sugiyama, Atsushi; Miura, Makoto; Oshikiri, Yoshinobu; Miura, Miki; Morimoto, Ryoichi; Takagi, Satoshi; Mogi, Iwao; Yamauchi, Yusuke

    2016-01-01

    As a process complementing conventional electrode reactions, ionic vacancy production in electrode reaction was theoretically examined; whether reaction is anodic or cathodic, based on the momentum conservation by Newton's second law of motion, electron transfer necessarily leads to the emission of original embryo vacancies, and dielectric polarization endows to them the same electric charge as trans- ferred in the reaction. Then, the emitted embryo vacancies immediately receive the thermal relaxation of solution particles to develop steady-state vacancies. After the vacancy production, nanobubbles are created by the collision of the vacancies in a vertical magnetic field. PMID:27377532

  10. Origin of Nanobubbles Electrochemically Formed in a Magnetic Field: Ionic Vacancy Production in Electrode Reaction

    NASA Astrophysics Data System (ADS)

    Aogaki, Ryoichi; Sugiyama, Atsushi; Miura, Makoto; Oshikiri, Yoshinobu; Miura, Miki; Morimoto, Ryoichi; Takagi, Satoshi; Mogi, Iwao; Yamauchi, Yusuke

    2016-07-01

    As a process complementing conventional electrode reactions, ionic vacancy production in electrode reaction was theoretically examined; whether reaction is anodic or cathodic, based on the momentum conservation by Newton’s second law of motion, electron transfer necessarily leads to the emission of original embryo vacancies, and dielectric polarization endows to them the same electric charge as trans- ferred in the reaction. Then, the emitted embryo vacancies immediately receive the thermal relaxation of solution particles to develop steady-state vacancies. After the vacancy production, nanobubbles are created by the collision of the vacancies in a vertical magnetic field.